xref: /openbmc/linux/arch/x86/mm/pat/set_memory.c (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 #include <linux/cc_platform.h>
22 
23 #include <asm/e820/api.h>
24 #include <asm/processor.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <linux/uaccess.h>
29 #include <asm/pgalloc.h>
30 #include <asm/proto.h>
31 #include <asm/memtype.h>
32 #include <asm/set_memory.h>
33 #include <asm/hyperv-tlfs.h>
34 #include <asm/mshyperv.h>
35 
36 #include "../mm_internal.h"
37 
38 /*
39  * The current flushing context - we pass it instead of 5 arguments:
40  */
41 struct cpa_data {
42 	unsigned long	*vaddr;
43 	pgd_t		*pgd;
44 	pgprot_t	mask_set;
45 	pgprot_t	mask_clr;
46 	unsigned long	numpages;
47 	unsigned long	curpage;
48 	unsigned long	pfn;
49 	unsigned int	flags;
50 	unsigned int	force_split		: 1,
51 			force_static_prot	: 1,
52 			force_flush_all		: 1;
53 	struct page	**pages;
54 };
55 
56 enum cpa_warn {
57 	CPA_CONFLICT,
58 	CPA_PROTECT,
59 	CPA_DETECT,
60 };
61 
62 static const int cpa_warn_level = CPA_PROTECT;
63 
64 /*
65  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
66  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
67  * entries change the page attribute in parallel to some other cpu
68  * splitting a large page entry along with changing the attribute.
69  */
70 static DEFINE_SPINLOCK(cpa_lock);
71 
72 #define CPA_FLUSHTLB 1
73 #define CPA_ARRAY 2
74 #define CPA_PAGES_ARRAY 4
75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
76 
77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
78 {
79 	return __pgprot(cachemode2protval(pcm));
80 }
81 
82 #ifdef CONFIG_PROC_FS
83 static unsigned long direct_pages_count[PG_LEVEL_NUM];
84 
85 void update_page_count(int level, unsigned long pages)
86 {
87 	/* Protect against CPA */
88 	spin_lock(&pgd_lock);
89 	direct_pages_count[level] += pages;
90 	spin_unlock(&pgd_lock);
91 }
92 
93 static void split_page_count(int level)
94 {
95 	if (direct_pages_count[level] == 0)
96 		return;
97 
98 	direct_pages_count[level]--;
99 	if (system_state == SYSTEM_RUNNING) {
100 		if (level == PG_LEVEL_2M)
101 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
102 		else if (level == PG_LEVEL_1G)
103 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
104 	}
105 	direct_pages_count[level - 1] += PTRS_PER_PTE;
106 }
107 
108 void arch_report_meminfo(struct seq_file *m)
109 {
110 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
111 			direct_pages_count[PG_LEVEL_4K] << 2);
112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
113 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
114 			direct_pages_count[PG_LEVEL_2M] << 11);
115 #else
116 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
117 			direct_pages_count[PG_LEVEL_2M] << 12);
118 #endif
119 	if (direct_gbpages)
120 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
121 			direct_pages_count[PG_LEVEL_1G] << 20);
122 }
123 #else
124 static inline void split_page_count(int level) { }
125 #endif
126 
127 #ifdef CONFIG_X86_CPA_STATISTICS
128 
129 static unsigned long cpa_1g_checked;
130 static unsigned long cpa_1g_sameprot;
131 static unsigned long cpa_1g_preserved;
132 static unsigned long cpa_2m_checked;
133 static unsigned long cpa_2m_sameprot;
134 static unsigned long cpa_2m_preserved;
135 static unsigned long cpa_4k_install;
136 
137 static inline void cpa_inc_1g_checked(void)
138 {
139 	cpa_1g_checked++;
140 }
141 
142 static inline void cpa_inc_2m_checked(void)
143 {
144 	cpa_2m_checked++;
145 }
146 
147 static inline void cpa_inc_4k_install(void)
148 {
149 	data_race(cpa_4k_install++);
150 }
151 
152 static inline void cpa_inc_lp_sameprot(int level)
153 {
154 	if (level == PG_LEVEL_1G)
155 		cpa_1g_sameprot++;
156 	else
157 		cpa_2m_sameprot++;
158 }
159 
160 static inline void cpa_inc_lp_preserved(int level)
161 {
162 	if (level == PG_LEVEL_1G)
163 		cpa_1g_preserved++;
164 	else
165 		cpa_2m_preserved++;
166 }
167 
168 static int cpastats_show(struct seq_file *m, void *p)
169 {
170 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
171 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
172 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
173 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
174 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
175 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
176 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
177 	return 0;
178 }
179 
180 static int cpastats_open(struct inode *inode, struct file *file)
181 {
182 	return single_open(file, cpastats_show, NULL);
183 }
184 
185 static const struct file_operations cpastats_fops = {
186 	.open		= cpastats_open,
187 	.read		= seq_read,
188 	.llseek		= seq_lseek,
189 	.release	= single_release,
190 };
191 
192 static int __init cpa_stats_init(void)
193 {
194 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
195 			    &cpastats_fops);
196 	return 0;
197 }
198 late_initcall(cpa_stats_init);
199 #else
200 static inline void cpa_inc_1g_checked(void) { }
201 static inline void cpa_inc_2m_checked(void) { }
202 static inline void cpa_inc_4k_install(void) { }
203 static inline void cpa_inc_lp_sameprot(int level) { }
204 static inline void cpa_inc_lp_preserved(int level) { }
205 #endif
206 
207 
208 static inline int
209 within(unsigned long addr, unsigned long start, unsigned long end)
210 {
211 	return addr >= start && addr < end;
212 }
213 
214 static inline int
215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
216 {
217 	return addr >= start && addr <= end;
218 }
219 
220 #ifdef CONFIG_X86_64
221 
222 static inline unsigned long highmap_start_pfn(void)
223 {
224 	return __pa_symbol(_text) >> PAGE_SHIFT;
225 }
226 
227 static inline unsigned long highmap_end_pfn(void)
228 {
229 	/* Do not reference physical address outside the kernel. */
230 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
231 }
232 
233 static bool __cpa_pfn_in_highmap(unsigned long pfn)
234 {
235 	/*
236 	 * Kernel text has an alias mapping at a high address, known
237 	 * here as "highmap".
238 	 */
239 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
240 }
241 
242 #else
243 
244 static bool __cpa_pfn_in_highmap(unsigned long pfn)
245 {
246 	/* There is no highmap on 32-bit */
247 	return false;
248 }
249 
250 #endif
251 
252 /*
253  * See set_mce_nospec().
254  *
255  * Machine check recovery code needs to change cache mode of poisoned pages to
256  * UC to avoid speculative access logging another error. But passing the
257  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
258  * speculative access. So we cheat and flip the top bit of the address. This
259  * works fine for the code that updates the page tables. But at the end of the
260  * process we need to flush the TLB and cache and the non-canonical address
261  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
262  *
263  * But in the common case we already have a canonical address. This code
264  * will fix the top bit if needed and is a no-op otherwise.
265  */
266 static inline unsigned long fix_addr(unsigned long addr)
267 {
268 #ifdef CONFIG_X86_64
269 	return (long)(addr << 1) >> 1;
270 #else
271 	return addr;
272 #endif
273 }
274 
275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
276 {
277 	if (cpa->flags & CPA_PAGES_ARRAY) {
278 		struct page *page = cpa->pages[idx];
279 
280 		if (unlikely(PageHighMem(page)))
281 			return 0;
282 
283 		return (unsigned long)page_address(page);
284 	}
285 
286 	if (cpa->flags & CPA_ARRAY)
287 		return cpa->vaddr[idx];
288 
289 	return *cpa->vaddr + idx * PAGE_SIZE;
290 }
291 
292 /*
293  * Flushing functions
294  */
295 
296 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
297 {
298 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
299 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
300 	void *vend = vaddr + size;
301 
302 	if (p >= vend)
303 		return;
304 
305 	for (; p < vend; p += clflush_size)
306 		clflushopt(p);
307 }
308 
309 /**
310  * clflush_cache_range - flush a cache range with clflush
311  * @vaddr:	virtual start address
312  * @size:	number of bytes to flush
313  *
314  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
315  * SFENCE to avoid ordering issues.
316  */
317 void clflush_cache_range(void *vaddr, unsigned int size)
318 {
319 	mb();
320 	clflush_cache_range_opt(vaddr, size);
321 	mb();
322 }
323 EXPORT_SYMBOL_GPL(clflush_cache_range);
324 
325 #ifdef CONFIG_ARCH_HAS_PMEM_API
326 void arch_invalidate_pmem(void *addr, size_t size)
327 {
328 	clflush_cache_range(addr, size);
329 }
330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
331 #endif
332 
333 static void __cpa_flush_all(void *arg)
334 {
335 	unsigned long cache = (unsigned long)arg;
336 
337 	/*
338 	 * Flush all to work around Errata in early athlons regarding
339 	 * large page flushing.
340 	 */
341 	__flush_tlb_all();
342 
343 	if (cache && boot_cpu_data.x86 >= 4)
344 		wbinvd();
345 }
346 
347 static void cpa_flush_all(unsigned long cache)
348 {
349 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350 
351 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
352 }
353 
354 static void __cpa_flush_tlb(void *data)
355 {
356 	struct cpa_data *cpa = data;
357 	unsigned int i;
358 
359 	for (i = 0; i < cpa->numpages; i++)
360 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
361 }
362 
363 static void cpa_flush(struct cpa_data *data, int cache)
364 {
365 	struct cpa_data *cpa = data;
366 	unsigned int i;
367 
368 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
369 
370 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
371 		cpa_flush_all(cache);
372 		return;
373 	}
374 
375 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
376 		flush_tlb_all();
377 	else
378 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
379 
380 	if (!cache)
381 		return;
382 
383 	mb();
384 	for (i = 0; i < cpa->numpages; i++) {
385 		unsigned long addr = __cpa_addr(cpa, i);
386 		unsigned int level;
387 
388 		pte_t *pte = lookup_address(addr, &level);
389 
390 		/*
391 		 * Only flush present addresses:
392 		 */
393 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
394 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
395 	}
396 	mb();
397 }
398 
399 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
400 		     unsigned long r2_start, unsigned long r2_end)
401 {
402 	return (r1_start <= r2_end && r1_end >= r2_start) ||
403 		(r2_start <= r1_end && r2_end >= r1_start);
404 }
405 
406 #ifdef CONFIG_PCI_BIOS
407 /*
408  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
409  * based config access (CONFIG_PCI_GOBIOS) support.
410  */
411 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
412 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
413 
414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
415 {
416 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
417 		return _PAGE_NX;
418 	return 0;
419 }
420 #else
421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
422 {
423 	return 0;
424 }
425 #endif
426 
427 /*
428  * The .rodata section needs to be read-only. Using the pfn catches all
429  * aliases.  This also includes __ro_after_init, so do not enforce until
430  * kernel_set_to_readonly is true.
431  */
432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
433 {
434 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
435 
436 	/*
437 	 * Note: __end_rodata is at page aligned and not inclusive, so
438 	 * subtract 1 to get the last enforced PFN in the rodata area.
439 	 */
440 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
441 
442 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
443 		return _PAGE_RW;
444 	return 0;
445 }
446 
447 /*
448  * Protect kernel text against becoming non executable by forbidding
449  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
450  * out of which the kernel actually executes.  Do not protect the low
451  * mapping.
452  *
453  * This does not cover __inittext since that is gone after boot.
454  */
455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
456 {
457 	unsigned long t_end = (unsigned long)_etext - 1;
458 	unsigned long t_start = (unsigned long)_text;
459 
460 	if (overlaps(start, end, t_start, t_end))
461 		return _PAGE_NX;
462 	return 0;
463 }
464 
465 #if defined(CONFIG_X86_64)
466 /*
467  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
468  * kernel text mappings for the large page aligned text, rodata sections
469  * will be always read-only. For the kernel identity mappings covering the
470  * holes caused by this alignment can be anything that user asks.
471  *
472  * This will preserve the large page mappings for kernel text/data at no
473  * extra cost.
474  */
475 static pgprotval_t protect_kernel_text_ro(unsigned long start,
476 					  unsigned long end)
477 {
478 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
479 	unsigned long t_start = (unsigned long)_text;
480 	unsigned int level;
481 
482 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
483 		return 0;
484 	/*
485 	 * Don't enforce the !RW mapping for the kernel text mapping, if
486 	 * the current mapping is already using small page mapping.  No
487 	 * need to work hard to preserve large page mappings in this case.
488 	 *
489 	 * This also fixes the Linux Xen paravirt guest boot failure caused
490 	 * by unexpected read-only mappings for kernel identity
491 	 * mappings. In this paravirt guest case, the kernel text mapping
492 	 * and the kernel identity mapping share the same page-table pages,
493 	 * so the protections for kernel text and identity mappings have to
494 	 * be the same.
495 	 */
496 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
497 		return _PAGE_RW;
498 	return 0;
499 }
500 #else
501 static pgprotval_t protect_kernel_text_ro(unsigned long start,
502 					  unsigned long end)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
509 {
510 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
511 }
512 
513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
514 				  unsigned long start, unsigned long end,
515 				  unsigned long pfn, const char *txt)
516 {
517 	static const char *lvltxt[] = {
518 		[CPA_CONFLICT]	= "conflict",
519 		[CPA_PROTECT]	= "protect",
520 		[CPA_DETECT]	= "detect",
521 	};
522 
523 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
524 		return;
525 
526 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
527 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
528 		(unsigned long long)val);
529 }
530 
531 /*
532  * Certain areas of memory on x86 require very specific protection flags,
533  * for example the BIOS area or kernel text. Callers don't always get this
534  * right (again, ioremap() on BIOS memory is not uncommon) so this function
535  * checks and fixes these known static required protection bits.
536  */
537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
538 					  unsigned long pfn, unsigned long npg,
539 					  unsigned long lpsize, int warnlvl)
540 {
541 	pgprotval_t forbidden, res;
542 	unsigned long end;
543 
544 	/*
545 	 * There is no point in checking RW/NX conflicts when the requested
546 	 * mapping is setting the page !PRESENT.
547 	 */
548 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
549 		return prot;
550 
551 	/* Operate on the virtual address */
552 	end = start + npg * PAGE_SIZE - 1;
553 
554 	res = protect_kernel_text(start, end);
555 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
556 	forbidden = res;
557 
558 	/*
559 	 * Special case to preserve a large page. If the change spawns the
560 	 * full large page mapping then there is no point to split it
561 	 * up. Happens with ftrace and is going to be removed once ftrace
562 	 * switched to text_poke().
563 	 */
564 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
565 		res = protect_kernel_text_ro(start, end);
566 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
567 		forbidden |= res;
568 	}
569 
570 	/* Check the PFN directly */
571 	res = protect_pci_bios(pfn, pfn + npg - 1);
572 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
573 	forbidden |= res;
574 
575 	res = protect_rodata(pfn, pfn + npg - 1);
576 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
577 	forbidden |= res;
578 
579 	return __pgprot(pgprot_val(prot) & ~forbidden);
580 }
581 
582 /*
583  * Lookup the page table entry for a virtual address in a specific pgd.
584  * Return a pointer to the entry and the level of the mapping.
585  */
586 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
587 			     unsigned int *level)
588 {
589 	p4d_t *p4d;
590 	pud_t *pud;
591 	pmd_t *pmd;
592 
593 	*level = PG_LEVEL_NONE;
594 
595 	if (pgd_none(*pgd))
596 		return NULL;
597 
598 	p4d = p4d_offset(pgd, address);
599 	if (p4d_none(*p4d))
600 		return NULL;
601 
602 	*level = PG_LEVEL_512G;
603 	if (p4d_large(*p4d) || !p4d_present(*p4d))
604 		return (pte_t *)p4d;
605 
606 	pud = pud_offset(p4d, address);
607 	if (pud_none(*pud))
608 		return NULL;
609 
610 	*level = PG_LEVEL_1G;
611 	if (pud_large(*pud) || !pud_present(*pud))
612 		return (pte_t *)pud;
613 
614 	pmd = pmd_offset(pud, address);
615 	if (pmd_none(*pmd))
616 		return NULL;
617 
618 	*level = PG_LEVEL_2M;
619 	if (pmd_large(*pmd) || !pmd_present(*pmd))
620 		return (pte_t *)pmd;
621 
622 	*level = PG_LEVEL_4K;
623 
624 	return pte_offset_kernel(pmd, address);
625 }
626 
627 /*
628  * Lookup the page table entry for a virtual address. Return a pointer
629  * to the entry and the level of the mapping.
630  *
631  * Note: We return pud and pmd either when the entry is marked large
632  * or when the present bit is not set. Otherwise we would return a
633  * pointer to a nonexisting mapping.
634  */
635 pte_t *lookup_address(unsigned long address, unsigned int *level)
636 {
637 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
638 }
639 EXPORT_SYMBOL_GPL(lookup_address);
640 
641 /*
642  * Lookup the page table entry for a virtual address in a given mm. Return a
643  * pointer to the entry and the level of the mapping.
644  */
645 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
646 			    unsigned int *level)
647 {
648 	return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
649 }
650 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
651 
652 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
653 				  unsigned int *level)
654 {
655 	if (cpa->pgd)
656 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
657 					       address, level);
658 
659 	return lookup_address(address, level);
660 }
661 
662 /*
663  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
664  * or NULL if not present.
665  */
666 pmd_t *lookup_pmd_address(unsigned long address)
667 {
668 	pgd_t *pgd;
669 	p4d_t *p4d;
670 	pud_t *pud;
671 
672 	pgd = pgd_offset_k(address);
673 	if (pgd_none(*pgd))
674 		return NULL;
675 
676 	p4d = p4d_offset(pgd, address);
677 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
678 		return NULL;
679 
680 	pud = pud_offset(p4d, address);
681 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
682 		return NULL;
683 
684 	return pmd_offset(pud, address);
685 }
686 
687 /*
688  * This is necessary because __pa() does not work on some
689  * kinds of memory, like vmalloc() or the alloc_remap()
690  * areas on 32-bit NUMA systems.  The percpu areas can
691  * end up in this kind of memory, for instance.
692  *
693  * This could be optimized, but it is only intended to be
694  * used at initialization time, and keeping it
695  * unoptimized should increase the testing coverage for
696  * the more obscure platforms.
697  */
698 phys_addr_t slow_virt_to_phys(void *__virt_addr)
699 {
700 	unsigned long virt_addr = (unsigned long)__virt_addr;
701 	phys_addr_t phys_addr;
702 	unsigned long offset;
703 	enum pg_level level;
704 	pte_t *pte;
705 
706 	pte = lookup_address(virt_addr, &level);
707 	BUG_ON(!pte);
708 
709 	/*
710 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
711 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
712 	 * make 32-PAE kernel work correctly.
713 	 */
714 	switch (level) {
715 	case PG_LEVEL_1G:
716 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
717 		offset = virt_addr & ~PUD_PAGE_MASK;
718 		break;
719 	case PG_LEVEL_2M:
720 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
721 		offset = virt_addr & ~PMD_PAGE_MASK;
722 		break;
723 	default:
724 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
725 		offset = virt_addr & ~PAGE_MASK;
726 	}
727 
728 	return (phys_addr_t)(phys_addr | offset);
729 }
730 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
731 
732 /*
733  * Set the new pmd in all the pgds we know about:
734  */
735 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
736 {
737 	/* change init_mm */
738 	set_pte_atomic(kpte, pte);
739 #ifdef CONFIG_X86_32
740 	if (!SHARED_KERNEL_PMD) {
741 		struct page *page;
742 
743 		list_for_each_entry(page, &pgd_list, lru) {
744 			pgd_t *pgd;
745 			p4d_t *p4d;
746 			pud_t *pud;
747 			pmd_t *pmd;
748 
749 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
750 			p4d = p4d_offset(pgd, address);
751 			pud = pud_offset(p4d, address);
752 			pmd = pmd_offset(pud, address);
753 			set_pte_atomic((pte_t *)pmd, pte);
754 		}
755 	}
756 #endif
757 }
758 
759 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
760 {
761 	/*
762 	 * _PAGE_GLOBAL means "global page" for present PTEs.
763 	 * But, it is also used to indicate _PAGE_PROTNONE
764 	 * for non-present PTEs.
765 	 *
766 	 * This ensures that a _PAGE_GLOBAL PTE going from
767 	 * present to non-present is not confused as
768 	 * _PAGE_PROTNONE.
769 	 */
770 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
771 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
772 
773 	return prot;
774 }
775 
776 static int __should_split_large_page(pte_t *kpte, unsigned long address,
777 				     struct cpa_data *cpa)
778 {
779 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
780 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
781 	pte_t new_pte, *tmp;
782 	enum pg_level level;
783 
784 	/*
785 	 * Check for races, another CPU might have split this page
786 	 * up already:
787 	 */
788 	tmp = _lookup_address_cpa(cpa, address, &level);
789 	if (tmp != kpte)
790 		return 1;
791 
792 	switch (level) {
793 	case PG_LEVEL_2M:
794 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
795 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
796 		cpa_inc_2m_checked();
797 		break;
798 	case PG_LEVEL_1G:
799 		old_prot = pud_pgprot(*(pud_t *)kpte);
800 		old_pfn = pud_pfn(*(pud_t *)kpte);
801 		cpa_inc_1g_checked();
802 		break;
803 	default:
804 		return -EINVAL;
805 	}
806 
807 	psize = page_level_size(level);
808 	pmask = page_level_mask(level);
809 
810 	/*
811 	 * Calculate the number of pages, which fit into this large
812 	 * page starting at address:
813 	 */
814 	lpaddr = (address + psize) & pmask;
815 	numpages = (lpaddr - address) >> PAGE_SHIFT;
816 	if (numpages < cpa->numpages)
817 		cpa->numpages = numpages;
818 
819 	/*
820 	 * We are safe now. Check whether the new pgprot is the same:
821 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
822 	 * up accordingly.
823 	 */
824 
825 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
826 	req_prot = pgprot_large_2_4k(old_prot);
827 
828 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
829 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
830 
831 	/*
832 	 * req_prot is in format of 4k pages. It must be converted to large
833 	 * page format: the caching mode includes the PAT bit located at
834 	 * different bit positions in the two formats.
835 	 */
836 	req_prot = pgprot_4k_2_large(req_prot);
837 	req_prot = pgprot_clear_protnone_bits(req_prot);
838 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
839 		pgprot_val(req_prot) |= _PAGE_PSE;
840 
841 	/*
842 	 * old_pfn points to the large page base pfn. So we need to add the
843 	 * offset of the virtual address:
844 	 */
845 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
846 	cpa->pfn = pfn;
847 
848 	/*
849 	 * Calculate the large page base address and the number of 4K pages
850 	 * in the large page
851 	 */
852 	lpaddr = address & pmask;
853 	numpages = psize >> PAGE_SHIFT;
854 
855 	/*
856 	 * Sanity check that the existing mapping is correct versus the static
857 	 * protections. static_protections() guards against !PRESENT, so no
858 	 * extra conditional required here.
859 	 */
860 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
861 				      psize, CPA_CONFLICT);
862 
863 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
864 		/*
865 		 * Split the large page and tell the split code to
866 		 * enforce static protections.
867 		 */
868 		cpa->force_static_prot = 1;
869 		return 1;
870 	}
871 
872 	/*
873 	 * Optimization: If the requested pgprot is the same as the current
874 	 * pgprot, then the large page can be preserved and no updates are
875 	 * required independent of alignment and length of the requested
876 	 * range. The above already established that the current pgprot is
877 	 * correct, which in consequence makes the requested pgprot correct
878 	 * as well if it is the same. The static protection scan below will
879 	 * not come to a different conclusion.
880 	 */
881 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
882 		cpa_inc_lp_sameprot(level);
883 		return 0;
884 	}
885 
886 	/*
887 	 * If the requested range does not cover the full page, split it up
888 	 */
889 	if (address != lpaddr || cpa->numpages != numpages)
890 		return 1;
891 
892 	/*
893 	 * Check whether the requested pgprot is conflicting with a static
894 	 * protection requirement in the large page.
895 	 */
896 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
897 				      psize, CPA_DETECT);
898 
899 	/*
900 	 * If there is a conflict, split the large page.
901 	 *
902 	 * There used to be a 4k wise evaluation trying really hard to
903 	 * preserve the large pages, but experimentation has shown, that this
904 	 * does not help at all. There might be corner cases which would
905 	 * preserve one large page occasionally, but it's really not worth the
906 	 * extra code and cycles for the common case.
907 	 */
908 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
909 		return 1;
910 
911 	/* All checks passed. Update the large page mapping. */
912 	new_pte = pfn_pte(old_pfn, new_prot);
913 	__set_pmd_pte(kpte, address, new_pte);
914 	cpa->flags |= CPA_FLUSHTLB;
915 	cpa_inc_lp_preserved(level);
916 	return 0;
917 }
918 
919 static int should_split_large_page(pte_t *kpte, unsigned long address,
920 				   struct cpa_data *cpa)
921 {
922 	int do_split;
923 
924 	if (cpa->force_split)
925 		return 1;
926 
927 	spin_lock(&pgd_lock);
928 	do_split = __should_split_large_page(kpte, address, cpa);
929 	spin_unlock(&pgd_lock);
930 
931 	return do_split;
932 }
933 
934 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
935 			  pgprot_t ref_prot, unsigned long address,
936 			  unsigned long size)
937 {
938 	unsigned int npg = PFN_DOWN(size);
939 	pgprot_t prot;
940 
941 	/*
942 	 * If should_split_large_page() discovered an inconsistent mapping,
943 	 * remove the invalid protection in the split mapping.
944 	 */
945 	if (!cpa->force_static_prot)
946 		goto set;
947 
948 	/* Hand in lpsize = 0 to enforce the protection mechanism */
949 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
950 
951 	if (pgprot_val(prot) == pgprot_val(ref_prot))
952 		goto set;
953 
954 	/*
955 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
956 	 * fixed trivially as that would require to rescan the newly
957 	 * installed PMD mappings after returning from split_large_page()
958 	 * so an eventual further split can allocate the necessary PTE
959 	 * pages. Warn for now and revisit it in case this actually
960 	 * happens.
961 	 */
962 	if (size == PAGE_SIZE)
963 		ref_prot = prot;
964 	else
965 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
966 set:
967 	set_pte(pte, pfn_pte(pfn, ref_prot));
968 }
969 
970 static int
971 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
972 		   struct page *base)
973 {
974 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
975 	pte_t *pbase = (pte_t *)page_address(base);
976 	unsigned int i, level;
977 	pgprot_t ref_prot;
978 	pte_t *tmp;
979 
980 	spin_lock(&pgd_lock);
981 	/*
982 	 * Check for races, another CPU might have split this page
983 	 * up for us already:
984 	 */
985 	tmp = _lookup_address_cpa(cpa, address, &level);
986 	if (tmp != kpte) {
987 		spin_unlock(&pgd_lock);
988 		return 1;
989 	}
990 
991 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
992 
993 	switch (level) {
994 	case PG_LEVEL_2M:
995 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
996 		/*
997 		 * Clear PSE (aka _PAGE_PAT) and move
998 		 * PAT bit to correct position.
999 		 */
1000 		ref_prot = pgprot_large_2_4k(ref_prot);
1001 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1002 		lpaddr = address & PMD_MASK;
1003 		lpinc = PAGE_SIZE;
1004 		break;
1005 
1006 	case PG_LEVEL_1G:
1007 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1008 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1009 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1010 		lpaddr = address & PUD_MASK;
1011 		lpinc = PMD_SIZE;
1012 		/*
1013 		 * Clear the PSE flags if the PRESENT flag is not set
1014 		 * otherwise pmd_present/pmd_huge will return true
1015 		 * even on a non present pmd.
1016 		 */
1017 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1018 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1019 		break;
1020 
1021 	default:
1022 		spin_unlock(&pgd_lock);
1023 		return 1;
1024 	}
1025 
1026 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1027 
1028 	/*
1029 	 * Get the target pfn from the original entry:
1030 	 */
1031 	pfn = ref_pfn;
1032 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1033 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1034 
1035 	if (virt_addr_valid(address)) {
1036 		unsigned long pfn = PFN_DOWN(__pa(address));
1037 
1038 		if (pfn_range_is_mapped(pfn, pfn + 1))
1039 			split_page_count(level);
1040 	}
1041 
1042 	/*
1043 	 * Install the new, split up pagetable.
1044 	 *
1045 	 * We use the standard kernel pagetable protections for the new
1046 	 * pagetable protections, the actual ptes set above control the
1047 	 * primary protection behavior:
1048 	 */
1049 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1050 
1051 	/*
1052 	 * Do a global flush tlb after splitting the large page
1053 	 * and before we do the actual change page attribute in the PTE.
1054 	 *
1055 	 * Without this, we violate the TLB application note, that says:
1056 	 * "The TLBs may contain both ordinary and large-page
1057 	 *  translations for a 4-KByte range of linear addresses. This
1058 	 *  may occur if software modifies the paging structures so that
1059 	 *  the page size used for the address range changes. If the two
1060 	 *  translations differ with respect to page frame or attributes
1061 	 *  (e.g., permissions), processor behavior is undefined and may
1062 	 *  be implementation-specific."
1063 	 *
1064 	 * We do this global tlb flush inside the cpa_lock, so that we
1065 	 * don't allow any other cpu, with stale tlb entries change the
1066 	 * page attribute in parallel, that also falls into the
1067 	 * just split large page entry.
1068 	 */
1069 	flush_tlb_all();
1070 	spin_unlock(&pgd_lock);
1071 
1072 	return 0;
1073 }
1074 
1075 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1076 			    unsigned long address)
1077 {
1078 	struct page *base;
1079 
1080 	if (!debug_pagealloc_enabled())
1081 		spin_unlock(&cpa_lock);
1082 	base = alloc_pages(GFP_KERNEL, 0);
1083 	if (!debug_pagealloc_enabled())
1084 		spin_lock(&cpa_lock);
1085 	if (!base)
1086 		return -ENOMEM;
1087 
1088 	if (__split_large_page(cpa, kpte, address, base))
1089 		__free_page(base);
1090 
1091 	return 0;
1092 }
1093 
1094 static bool try_to_free_pte_page(pte_t *pte)
1095 {
1096 	int i;
1097 
1098 	for (i = 0; i < PTRS_PER_PTE; i++)
1099 		if (!pte_none(pte[i]))
1100 			return false;
1101 
1102 	free_page((unsigned long)pte);
1103 	return true;
1104 }
1105 
1106 static bool try_to_free_pmd_page(pmd_t *pmd)
1107 {
1108 	int i;
1109 
1110 	for (i = 0; i < PTRS_PER_PMD; i++)
1111 		if (!pmd_none(pmd[i]))
1112 			return false;
1113 
1114 	free_page((unsigned long)pmd);
1115 	return true;
1116 }
1117 
1118 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1119 {
1120 	pte_t *pte = pte_offset_kernel(pmd, start);
1121 
1122 	while (start < end) {
1123 		set_pte(pte, __pte(0));
1124 
1125 		start += PAGE_SIZE;
1126 		pte++;
1127 	}
1128 
1129 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1130 		pmd_clear(pmd);
1131 		return true;
1132 	}
1133 	return false;
1134 }
1135 
1136 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1137 			      unsigned long start, unsigned long end)
1138 {
1139 	if (unmap_pte_range(pmd, start, end))
1140 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1141 			pud_clear(pud);
1142 }
1143 
1144 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1145 {
1146 	pmd_t *pmd = pmd_offset(pud, start);
1147 
1148 	/*
1149 	 * Not on a 2MB page boundary?
1150 	 */
1151 	if (start & (PMD_SIZE - 1)) {
1152 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1153 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1154 
1155 		__unmap_pmd_range(pud, pmd, start, pre_end);
1156 
1157 		start = pre_end;
1158 		pmd++;
1159 	}
1160 
1161 	/*
1162 	 * Try to unmap in 2M chunks.
1163 	 */
1164 	while (end - start >= PMD_SIZE) {
1165 		if (pmd_large(*pmd))
1166 			pmd_clear(pmd);
1167 		else
1168 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1169 
1170 		start += PMD_SIZE;
1171 		pmd++;
1172 	}
1173 
1174 	/*
1175 	 * 4K leftovers?
1176 	 */
1177 	if (start < end)
1178 		return __unmap_pmd_range(pud, pmd, start, end);
1179 
1180 	/*
1181 	 * Try again to free the PMD page if haven't succeeded above.
1182 	 */
1183 	if (!pud_none(*pud))
1184 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1185 			pud_clear(pud);
1186 }
1187 
1188 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1189 {
1190 	pud_t *pud = pud_offset(p4d, start);
1191 
1192 	/*
1193 	 * Not on a GB page boundary?
1194 	 */
1195 	if (start & (PUD_SIZE - 1)) {
1196 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1197 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1198 
1199 		unmap_pmd_range(pud, start, pre_end);
1200 
1201 		start = pre_end;
1202 		pud++;
1203 	}
1204 
1205 	/*
1206 	 * Try to unmap in 1G chunks?
1207 	 */
1208 	while (end - start >= PUD_SIZE) {
1209 
1210 		if (pud_large(*pud))
1211 			pud_clear(pud);
1212 		else
1213 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1214 
1215 		start += PUD_SIZE;
1216 		pud++;
1217 	}
1218 
1219 	/*
1220 	 * 2M leftovers?
1221 	 */
1222 	if (start < end)
1223 		unmap_pmd_range(pud, start, end);
1224 
1225 	/*
1226 	 * No need to try to free the PUD page because we'll free it in
1227 	 * populate_pgd's error path
1228 	 */
1229 }
1230 
1231 static int alloc_pte_page(pmd_t *pmd)
1232 {
1233 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1234 	if (!pte)
1235 		return -1;
1236 
1237 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1238 	return 0;
1239 }
1240 
1241 static int alloc_pmd_page(pud_t *pud)
1242 {
1243 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1244 	if (!pmd)
1245 		return -1;
1246 
1247 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1248 	return 0;
1249 }
1250 
1251 static void populate_pte(struct cpa_data *cpa,
1252 			 unsigned long start, unsigned long end,
1253 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1254 {
1255 	pte_t *pte;
1256 
1257 	pte = pte_offset_kernel(pmd, start);
1258 
1259 	pgprot = pgprot_clear_protnone_bits(pgprot);
1260 
1261 	while (num_pages-- && start < end) {
1262 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1263 
1264 		start	 += PAGE_SIZE;
1265 		cpa->pfn++;
1266 		pte++;
1267 	}
1268 }
1269 
1270 static long populate_pmd(struct cpa_data *cpa,
1271 			 unsigned long start, unsigned long end,
1272 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1273 {
1274 	long cur_pages = 0;
1275 	pmd_t *pmd;
1276 	pgprot_t pmd_pgprot;
1277 
1278 	/*
1279 	 * Not on a 2M boundary?
1280 	 */
1281 	if (start & (PMD_SIZE - 1)) {
1282 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1283 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1284 
1285 		pre_end   = min_t(unsigned long, pre_end, next_page);
1286 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1287 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1288 
1289 		/*
1290 		 * Need a PTE page?
1291 		 */
1292 		pmd = pmd_offset(pud, start);
1293 		if (pmd_none(*pmd))
1294 			if (alloc_pte_page(pmd))
1295 				return -1;
1296 
1297 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1298 
1299 		start = pre_end;
1300 	}
1301 
1302 	/*
1303 	 * We mapped them all?
1304 	 */
1305 	if (num_pages == cur_pages)
1306 		return cur_pages;
1307 
1308 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1309 
1310 	while (end - start >= PMD_SIZE) {
1311 
1312 		/*
1313 		 * We cannot use a 1G page so allocate a PMD page if needed.
1314 		 */
1315 		if (pud_none(*pud))
1316 			if (alloc_pmd_page(pud))
1317 				return -1;
1318 
1319 		pmd = pmd_offset(pud, start);
1320 
1321 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1322 					canon_pgprot(pmd_pgprot))));
1323 
1324 		start	  += PMD_SIZE;
1325 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1326 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1327 	}
1328 
1329 	/*
1330 	 * Map trailing 4K pages.
1331 	 */
1332 	if (start < end) {
1333 		pmd = pmd_offset(pud, start);
1334 		if (pmd_none(*pmd))
1335 			if (alloc_pte_page(pmd))
1336 				return -1;
1337 
1338 		populate_pte(cpa, start, end, num_pages - cur_pages,
1339 			     pmd, pgprot);
1340 	}
1341 	return num_pages;
1342 }
1343 
1344 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1345 			pgprot_t pgprot)
1346 {
1347 	pud_t *pud;
1348 	unsigned long end;
1349 	long cur_pages = 0;
1350 	pgprot_t pud_pgprot;
1351 
1352 	end = start + (cpa->numpages << PAGE_SHIFT);
1353 
1354 	/*
1355 	 * Not on a Gb page boundary? => map everything up to it with
1356 	 * smaller pages.
1357 	 */
1358 	if (start & (PUD_SIZE - 1)) {
1359 		unsigned long pre_end;
1360 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1361 
1362 		pre_end   = min_t(unsigned long, end, next_page);
1363 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1364 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1365 
1366 		pud = pud_offset(p4d, start);
1367 
1368 		/*
1369 		 * Need a PMD page?
1370 		 */
1371 		if (pud_none(*pud))
1372 			if (alloc_pmd_page(pud))
1373 				return -1;
1374 
1375 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1376 					 pud, pgprot);
1377 		if (cur_pages < 0)
1378 			return cur_pages;
1379 
1380 		start = pre_end;
1381 	}
1382 
1383 	/* We mapped them all? */
1384 	if (cpa->numpages == cur_pages)
1385 		return cur_pages;
1386 
1387 	pud = pud_offset(p4d, start);
1388 	pud_pgprot = pgprot_4k_2_large(pgprot);
1389 
1390 	/*
1391 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1392 	 */
1393 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1394 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1395 				   canon_pgprot(pud_pgprot))));
1396 
1397 		start	  += PUD_SIZE;
1398 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1399 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1400 		pud++;
1401 	}
1402 
1403 	/* Map trailing leftover */
1404 	if (start < end) {
1405 		long tmp;
1406 
1407 		pud = pud_offset(p4d, start);
1408 		if (pud_none(*pud))
1409 			if (alloc_pmd_page(pud))
1410 				return -1;
1411 
1412 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1413 				   pud, pgprot);
1414 		if (tmp < 0)
1415 			return cur_pages;
1416 
1417 		cur_pages += tmp;
1418 	}
1419 	return cur_pages;
1420 }
1421 
1422 /*
1423  * Restrictions for kernel page table do not necessarily apply when mapping in
1424  * an alternate PGD.
1425  */
1426 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1427 {
1428 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1429 	pud_t *pud = NULL;	/* shut up gcc */
1430 	p4d_t *p4d;
1431 	pgd_t *pgd_entry;
1432 	long ret;
1433 
1434 	pgd_entry = cpa->pgd + pgd_index(addr);
1435 
1436 	if (pgd_none(*pgd_entry)) {
1437 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1438 		if (!p4d)
1439 			return -1;
1440 
1441 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1442 	}
1443 
1444 	/*
1445 	 * Allocate a PUD page and hand it down for mapping.
1446 	 */
1447 	p4d = p4d_offset(pgd_entry, addr);
1448 	if (p4d_none(*p4d)) {
1449 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1450 		if (!pud)
1451 			return -1;
1452 
1453 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1454 	}
1455 
1456 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1457 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1458 
1459 	ret = populate_pud(cpa, addr, p4d, pgprot);
1460 	if (ret < 0) {
1461 		/*
1462 		 * Leave the PUD page in place in case some other CPU or thread
1463 		 * already found it, but remove any useless entries we just
1464 		 * added to it.
1465 		 */
1466 		unmap_pud_range(p4d, addr,
1467 				addr + (cpa->numpages << PAGE_SHIFT));
1468 		return ret;
1469 	}
1470 
1471 	cpa->numpages = ret;
1472 	return 0;
1473 }
1474 
1475 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1476 			       int primary)
1477 {
1478 	if (cpa->pgd) {
1479 		/*
1480 		 * Right now, we only execute this code path when mapping
1481 		 * the EFI virtual memory map regions, no other users
1482 		 * provide a ->pgd value. This may change in the future.
1483 		 */
1484 		return populate_pgd(cpa, vaddr);
1485 	}
1486 
1487 	/*
1488 	 * Ignore all non primary paths.
1489 	 */
1490 	if (!primary) {
1491 		cpa->numpages = 1;
1492 		return 0;
1493 	}
1494 
1495 	/*
1496 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1497 	 * to have holes.
1498 	 * Also set numpages to '1' indicating that we processed cpa req for
1499 	 * one virtual address page and its pfn. TBD: numpages can be set based
1500 	 * on the initial value and the level returned by lookup_address().
1501 	 */
1502 	if (within(vaddr, PAGE_OFFSET,
1503 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1504 		cpa->numpages = 1;
1505 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1506 		return 0;
1507 
1508 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1509 		/* Faults in the highmap are OK, so do not warn: */
1510 		return -EFAULT;
1511 	} else {
1512 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1513 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1514 			*cpa->vaddr);
1515 
1516 		return -EFAULT;
1517 	}
1518 }
1519 
1520 static int __change_page_attr(struct cpa_data *cpa, int primary)
1521 {
1522 	unsigned long address;
1523 	int do_split, err;
1524 	unsigned int level;
1525 	pte_t *kpte, old_pte;
1526 
1527 	address = __cpa_addr(cpa, cpa->curpage);
1528 repeat:
1529 	kpte = _lookup_address_cpa(cpa, address, &level);
1530 	if (!kpte)
1531 		return __cpa_process_fault(cpa, address, primary);
1532 
1533 	old_pte = *kpte;
1534 	if (pte_none(old_pte))
1535 		return __cpa_process_fault(cpa, address, primary);
1536 
1537 	if (level == PG_LEVEL_4K) {
1538 		pte_t new_pte;
1539 		pgprot_t new_prot = pte_pgprot(old_pte);
1540 		unsigned long pfn = pte_pfn(old_pte);
1541 
1542 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1543 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1544 
1545 		cpa_inc_4k_install();
1546 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1547 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1548 					      CPA_PROTECT);
1549 
1550 		new_prot = pgprot_clear_protnone_bits(new_prot);
1551 
1552 		/*
1553 		 * We need to keep the pfn from the existing PTE,
1554 		 * after all we're only going to change it's attributes
1555 		 * not the memory it points to
1556 		 */
1557 		new_pte = pfn_pte(pfn, new_prot);
1558 		cpa->pfn = pfn;
1559 		/*
1560 		 * Do we really change anything ?
1561 		 */
1562 		if (pte_val(old_pte) != pte_val(new_pte)) {
1563 			set_pte_atomic(kpte, new_pte);
1564 			cpa->flags |= CPA_FLUSHTLB;
1565 		}
1566 		cpa->numpages = 1;
1567 		return 0;
1568 	}
1569 
1570 	/*
1571 	 * Check, whether we can keep the large page intact
1572 	 * and just change the pte:
1573 	 */
1574 	do_split = should_split_large_page(kpte, address, cpa);
1575 	/*
1576 	 * When the range fits into the existing large page,
1577 	 * return. cp->numpages and cpa->tlbflush have been updated in
1578 	 * try_large_page:
1579 	 */
1580 	if (do_split <= 0)
1581 		return do_split;
1582 
1583 	/*
1584 	 * We have to split the large page:
1585 	 */
1586 	err = split_large_page(cpa, kpte, address);
1587 	if (!err)
1588 		goto repeat;
1589 
1590 	return err;
1591 }
1592 
1593 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1594 
1595 static int cpa_process_alias(struct cpa_data *cpa)
1596 {
1597 	struct cpa_data alias_cpa;
1598 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1599 	unsigned long vaddr;
1600 	int ret;
1601 
1602 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1603 		return 0;
1604 
1605 	/*
1606 	 * No need to redo, when the primary call touched the direct
1607 	 * mapping already:
1608 	 */
1609 	vaddr = __cpa_addr(cpa, cpa->curpage);
1610 	if (!(within(vaddr, PAGE_OFFSET,
1611 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1612 
1613 		alias_cpa = *cpa;
1614 		alias_cpa.vaddr = &laddr;
1615 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1616 		alias_cpa.curpage = 0;
1617 
1618 		cpa->force_flush_all = 1;
1619 
1620 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1621 		if (ret)
1622 			return ret;
1623 	}
1624 
1625 #ifdef CONFIG_X86_64
1626 	/*
1627 	 * If the primary call didn't touch the high mapping already
1628 	 * and the physical address is inside the kernel map, we need
1629 	 * to touch the high mapped kernel as well:
1630 	 */
1631 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1632 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1633 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1634 					       __START_KERNEL_map - phys_base;
1635 		alias_cpa = *cpa;
1636 		alias_cpa.vaddr = &temp_cpa_vaddr;
1637 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1638 		alias_cpa.curpage = 0;
1639 
1640 		cpa->force_flush_all = 1;
1641 		/*
1642 		 * The high mapping range is imprecise, so ignore the
1643 		 * return value.
1644 		 */
1645 		__change_page_attr_set_clr(&alias_cpa, 0);
1646 	}
1647 #endif
1648 
1649 	return 0;
1650 }
1651 
1652 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1653 {
1654 	unsigned long numpages = cpa->numpages;
1655 	unsigned long rempages = numpages;
1656 	int ret = 0;
1657 
1658 	while (rempages) {
1659 		/*
1660 		 * Store the remaining nr of pages for the large page
1661 		 * preservation check.
1662 		 */
1663 		cpa->numpages = rempages;
1664 		/* for array changes, we can't use large page */
1665 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1666 			cpa->numpages = 1;
1667 
1668 		if (!debug_pagealloc_enabled())
1669 			spin_lock(&cpa_lock);
1670 		ret = __change_page_attr(cpa, checkalias);
1671 		if (!debug_pagealloc_enabled())
1672 			spin_unlock(&cpa_lock);
1673 		if (ret)
1674 			goto out;
1675 
1676 		if (checkalias) {
1677 			ret = cpa_process_alias(cpa);
1678 			if (ret)
1679 				goto out;
1680 		}
1681 
1682 		/*
1683 		 * Adjust the number of pages with the result of the
1684 		 * CPA operation. Either a large page has been
1685 		 * preserved or a single page update happened.
1686 		 */
1687 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1688 		rempages -= cpa->numpages;
1689 		cpa->curpage += cpa->numpages;
1690 	}
1691 
1692 out:
1693 	/* Restore the original numpages */
1694 	cpa->numpages = numpages;
1695 	return ret;
1696 }
1697 
1698 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1699 				    pgprot_t mask_set, pgprot_t mask_clr,
1700 				    int force_split, int in_flag,
1701 				    struct page **pages)
1702 {
1703 	struct cpa_data cpa;
1704 	int ret, cache, checkalias;
1705 
1706 	memset(&cpa, 0, sizeof(cpa));
1707 
1708 	/*
1709 	 * Check, if we are requested to set a not supported
1710 	 * feature.  Clearing non-supported features is OK.
1711 	 */
1712 	mask_set = canon_pgprot(mask_set);
1713 
1714 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1715 		return 0;
1716 
1717 	/* Ensure we are PAGE_SIZE aligned */
1718 	if (in_flag & CPA_ARRAY) {
1719 		int i;
1720 		for (i = 0; i < numpages; i++) {
1721 			if (addr[i] & ~PAGE_MASK) {
1722 				addr[i] &= PAGE_MASK;
1723 				WARN_ON_ONCE(1);
1724 			}
1725 		}
1726 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1727 		/*
1728 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1729 		 * No need to check in that case
1730 		 */
1731 		if (*addr & ~PAGE_MASK) {
1732 			*addr &= PAGE_MASK;
1733 			/*
1734 			 * People should not be passing in unaligned addresses:
1735 			 */
1736 			WARN_ON_ONCE(1);
1737 		}
1738 	}
1739 
1740 	/* Must avoid aliasing mappings in the highmem code */
1741 	kmap_flush_unused();
1742 
1743 	vm_unmap_aliases();
1744 
1745 	cpa.vaddr = addr;
1746 	cpa.pages = pages;
1747 	cpa.numpages = numpages;
1748 	cpa.mask_set = mask_set;
1749 	cpa.mask_clr = mask_clr;
1750 	cpa.flags = 0;
1751 	cpa.curpage = 0;
1752 	cpa.force_split = force_split;
1753 
1754 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1755 		cpa.flags |= in_flag;
1756 
1757 	/* No alias checking for _NX bit modifications */
1758 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1759 	/* Has caller explicitly disabled alias checking? */
1760 	if (in_flag & CPA_NO_CHECK_ALIAS)
1761 		checkalias = 0;
1762 
1763 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1764 
1765 	/*
1766 	 * Check whether we really changed something:
1767 	 */
1768 	if (!(cpa.flags & CPA_FLUSHTLB))
1769 		goto out;
1770 
1771 	/*
1772 	 * No need to flush, when we did not set any of the caching
1773 	 * attributes:
1774 	 */
1775 	cache = !!pgprot2cachemode(mask_set);
1776 
1777 	/*
1778 	 * On error; flush everything to be sure.
1779 	 */
1780 	if (ret) {
1781 		cpa_flush_all(cache);
1782 		goto out;
1783 	}
1784 
1785 	cpa_flush(&cpa, cache);
1786 out:
1787 	return ret;
1788 }
1789 
1790 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1791 				       pgprot_t mask, int array)
1792 {
1793 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1794 		(array ? CPA_ARRAY : 0), NULL);
1795 }
1796 
1797 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1798 					 pgprot_t mask, int array)
1799 {
1800 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1801 		(array ? CPA_ARRAY : 0), NULL);
1802 }
1803 
1804 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1805 				       pgprot_t mask)
1806 {
1807 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1808 		CPA_PAGES_ARRAY, pages);
1809 }
1810 
1811 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1812 					 pgprot_t mask)
1813 {
1814 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1815 		CPA_PAGES_ARRAY, pages);
1816 }
1817 
1818 /*
1819  * _set_memory_prot is an internal helper for callers that have been passed
1820  * a pgprot_t value from upper layers and a reservation has already been taken.
1821  * If you want to set the pgprot to a specific page protocol, use the
1822  * set_memory_xx() functions.
1823  */
1824 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1825 {
1826 	return change_page_attr_set_clr(&addr, numpages, prot,
1827 					__pgprot(~pgprot_val(prot)), 0, 0,
1828 					NULL);
1829 }
1830 
1831 int _set_memory_uc(unsigned long addr, int numpages)
1832 {
1833 	/*
1834 	 * for now UC MINUS. see comments in ioremap()
1835 	 * If you really need strong UC use ioremap_uc(), but note
1836 	 * that you cannot override IO areas with set_memory_*() as
1837 	 * these helpers cannot work with IO memory.
1838 	 */
1839 	return change_page_attr_set(&addr, numpages,
1840 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1841 				    0);
1842 }
1843 
1844 int set_memory_uc(unsigned long addr, int numpages)
1845 {
1846 	int ret;
1847 
1848 	/*
1849 	 * for now UC MINUS. see comments in ioremap()
1850 	 */
1851 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1852 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1853 	if (ret)
1854 		goto out_err;
1855 
1856 	ret = _set_memory_uc(addr, numpages);
1857 	if (ret)
1858 		goto out_free;
1859 
1860 	return 0;
1861 
1862 out_free:
1863 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1864 out_err:
1865 	return ret;
1866 }
1867 EXPORT_SYMBOL(set_memory_uc);
1868 
1869 int _set_memory_wc(unsigned long addr, int numpages)
1870 {
1871 	int ret;
1872 
1873 	ret = change_page_attr_set(&addr, numpages,
1874 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1875 				   0);
1876 	if (!ret) {
1877 		ret = change_page_attr_set_clr(&addr, numpages,
1878 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1879 					       __pgprot(_PAGE_CACHE_MASK),
1880 					       0, 0, NULL);
1881 	}
1882 	return ret;
1883 }
1884 
1885 int set_memory_wc(unsigned long addr, int numpages)
1886 {
1887 	int ret;
1888 
1889 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890 		_PAGE_CACHE_MODE_WC, NULL);
1891 	if (ret)
1892 		return ret;
1893 
1894 	ret = _set_memory_wc(addr, numpages);
1895 	if (ret)
1896 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1897 
1898 	return ret;
1899 }
1900 EXPORT_SYMBOL(set_memory_wc);
1901 
1902 int _set_memory_wt(unsigned long addr, int numpages)
1903 {
1904 	return change_page_attr_set(&addr, numpages,
1905 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1906 }
1907 
1908 int _set_memory_wb(unsigned long addr, int numpages)
1909 {
1910 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1911 	return change_page_attr_clear(&addr, numpages,
1912 				      __pgprot(_PAGE_CACHE_MASK), 0);
1913 }
1914 
1915 int set_memory_wb(unsigned long addr, int numpages)
1916 {
1917 	int ret;
1918 
1919 	ret = _set_memory_wb(addr, numpages);
1920 	if (ret)
1921 		return ret;
1922 
1923 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1924 	return 0;
1925 }
1926 EXPORT_SYMBOL(set_memory_wb);
1927 
1928 int set_memory_x(unsigned long addr, int numpages)
1929 {
1930 	if (!(__supported_pte_mask & _PAGE_NX))
1931 		return 0;
1932 
1933 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1934 }
1935 
1936 int set_memory_nx(unsigned long addr, int numpages)
1937 {
1938 	if (!(__supported_pte_mask & _PAGE_NX))
1939 		return 0;
1940 
1941 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1942 }
1943 
1944 int set_memory_ro(unsigned long addr, int numpages)
1945 {
1946 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1947 }
1948 
1949 int set_memory_rw(unsigned long addr, int numpages)
1950 {
1951 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1952 }
1953 
1954 int set_memory_np(unsigned long addr, int numpages)
1955 {
1956 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1957 }
1958 
1959 int set_memory_np_noalias(unsigned long addr, int numpages)
1960 {
1961 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1962 
1963 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1964 					__pgprot(_PAGE_PRESENT), 0,
1965 					cpa_flags, NULL);
1966 }
1967 
1968 int set_memory_4k(unsigned long addr, int numpages)
1969 {
1970 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1971 					__pgprot(0), 1, 0, NULL);
1972 }
1973 
1974 int set_memory_nonglobal(unsigned long addr, int numpages)
1975 {
1976 	return change_page_attr_clear(&addr, numpages,
1977 				      __pgprot(_PAGE_GLOBAL), 0);
1978 }
1979 
1980 int set_memory_global(unsigned long addr, int numpages)
1981 {
1982 	return change_page_attr_set(&addr, numpages,
1983 				    __pgprot(_PAGE_GLOBAL), 0);
1984 }
1985 
1986 /*
1987  * __set_memory_enc_pgtable() is used for the hypervisors that get
1988  * informed about "encryption" status via page tables.
1989  */
1990 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
1991 {
1992 	pgprot_t empty = __pgprot(0);
1993 	struct cpa_data cpa;
1994 	int ret;
1995 
1996 	/* Should not be working on unaligned addresses */
1997 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1998 		addr &= PAGE_MASK;
1999 
2000 	memset(&cpa, 0, sizeof(cpa));
2001 	cpa.vaddr = &addr;
2002 	cpa.numpages = numpages;
2003 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2004 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2005 	cpa.pgd = init_mm.pgd;
2006 
2007 	/* Must avoid aliasing mappings in the highmem code */
2008 	kmap_flush_unused();
2009 	vm_unmap_aliases();
2010 
2011 	/* Flush the caches as needed before changing the encryption attribute. */
2012 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2013 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2014 
2015 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2016 	x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2017 
2018 	ret = __change_page_attr_set_clr(&cpa, 1);
2019 
2020 	/*
2021 	 * After changing the encryption attribute, we need to flush TLBs again
2022 	 * in case any speculative TLB caching occurred (but no need to flush
2023 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2024 	 * flushing gets optimized in the cpa_flush() path use the same logic
2025 	 * as above.
2026 	 */
2027 	cpa_flush(&cpa, 0);
2028 
2029 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2030 	if (!ret) {
2031 		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2032 			ret = -EIO;
2033 	}
2034 
2035 	return ret;
2036 }
2037 
2038 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2039 {
2040 	if (hv_is_isolation_supported())
2041 		return hv_set_mem_host_visibility(addr, numpages, !enc);
2042 
2043 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2044 		return __set_memory_enc_pgtable(addr, numpages, enc);
2045 
2046 	return 0;
2047 }
2048 
2049 int set_memory_encrypted(unsigned long addr, int numpages)
2050 {
2051 	return __set_memory_enc_dec(addr, numpages, true);
2052 }
2053 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2054 
2055 int set_memory_decrypted(unsigned long addr, int numpages)
2056 {
2057 	return __set_memory_enc_dec(addr, numpages, false);
2058 }
2059 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2060 
2061 int set_pages_uc(struct page *page, int numpages)
2062 {
2063 	unsigned long addr = (unsigned long)page_address(page);
2064 
2065 	return set_memory_uc(addr, numpages);
2066 }
2067 EXPORT_SYMBOL(set_pages_uc);
2068 
2069 static int _set_pages_array(struct page **pages, int numpages,
2070 		enum page_cache_mode new_type)
2071 {
2072 	unsigned long start;
2073 	unsigned long end;
2074 	enum page_cache_mode set_type;
2075 	int i;
2076 	int free_idx;
2077 	int ret;
2078 
2079 	for (i = 0; i < numpages; i++) {
2080 		if (PageHighMem(pages[i]))
2081 			continue;
2082 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2083 		end = start + PAGE_SIZE;
2084 		if (memtype_reserve(start, end, new_type, NULL))
2085 			goto err_out;
2086 	}
2087 
2088 	/* If WC, set to UC- first and then WC */
2089 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2090 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2091 
2092 	ret = cpa_set_pages_array(pages, numpages,
2093 				  cachemode2pgprot(set_type));
2094 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2095 		ret = change_page_attr_set_clr(NULL, numpages,
2096 					       cachemode2pgprot(
2097 						_PAGE_CACHE_MODE_WC),
2098 					       __pgprot(_PAGE_CACHE_MASK),
2099 					       0, CPA_PAGES_ARRAY, pages);
2100 	if (ret)
2101 		goto err_out;
2102 	return 0; /* Success */
2103 err_out:
2104 	free_idx = i;
2105 	for (i = 0; i < free_idx; i++) {
2106 		if (PageHighMem(pages[i]))
2107 			continue;
2108 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2109 		end = start + PAGE_SIZE;
2110 		memtype_free(start, end);
2111 	}
2112 	return -EINVAL;
2113 }
2114 
2115 int set_pages_array_uc(struct page **pages, int numpages)
2116 {
2117 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2118 }
2119 EXPORT_SYMBOL(set_pages_array_uc);
2120 
2121 int set_pages_array_wc(struct page **pages, int numpages)
2122 {
2123 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2124 }
2125 EXPORT_SYMBOL(set_pages_array_wc);
2126 
2127 int set_pages_wb(struct page *page, int numpages)
2128 {
2129 	unsigned long addr = (unsigned long)page_address(page);
2130 
2131 	return set_memory_wb(addr, numpages);
2132 }
2133 EXPORT_SYMBOL(set_pages_wb);
2134 
2135 int set_pages_array_wb(struct page **pages, int numpages)
2136 {
2137 	int retval;
2138 	unsigned long start;
2139 	unsigned long end;
2140 	int i;
2141 
2142 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2143 	retval = cpa_clear_pages_array(pages, numpages,
2144 			__pgprot(_PAGE_CACHE_MASK));
2145 	if (retval)
2146 		return retval;
2147 
2148 	for (i = 0; i < numpages; i++) {
2149 		if (PageHighMem(pages[i]))
2150 			continue;
2151 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2152 		end = start + PAGE_SIZE;
2153 		memtype_free(start, end);
2154 	}
2155 
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(set_pages_array_wb);
2159 
2160 int set_pages_ro(struct page *page, int numpages)
2161 {
2162 	unsigned long addr = (unsigned long)page_address(page);
2163 
2164 	return set_memory_ro(addr, numpages);
2165 }
2166 
2167 int set_pages_rw(struct page *page, int numpages)
2168 {
2169 	unsigned long addr = (unsigned long)page_address(page);
2170 
2171 	return set_memory_rw(addr, numpages);
2172 }
2173 
2174 static int __set_pages_p(struct page *page, int numpages)
2175 {
2176 	unsigned long tempaddr = (unsigned long) page_address(page);
2177 	struct cpa_data cpa = { .vaddr = &tempaddr,
2178 				.pgd = NULL,
2179 				.numpages = numpages,
2180 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2181 				.mask_clr = __pgprot(0),
2182 				.flags = 0};
2183 
2184 	/*
2185 	 * No alias checking needed for setting present flag. otherwise,
2186 	 * we may need to break large pages for 64-bit kernel text
2187 	 * mappings (this adds to complexity if we want to do this from
2188 	 * atomic context especially). Let's keep it simple!
2189 	 */
2190 	return __change_page_attr_set_clr(&cpa, 0);
2191 }
2192 
2193 static int __set_pages_np(struct page *page, int numpages)
2194 {
2195 	unsigned long tempaddr = (unsigned long) page_address(page);
2196 	struct cpa_data cpa = { .vaddr = &tempaddr,
2197 				.pgd = NULL,
2198 				.numpages = numpages,
2199 				.mask_set = __pgprot(0),
2200 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2201 				.flags = 0};
2202 
2203 	/*
2204 	 * No alias checking needed for setting not present flag. otherwise,
2205 	 * we may need to break large pages for 64-bit kernel text
2206 	 * mappings (this adds to complexity if we want to do this from
2207 	 * atomic context especially). Let's keep it simple!
2208 	 */
2209 	return __change_page_attr_set_clr(&cpa, 0);
2210 }
2211 
2212 int set_direct_map_invalid_noflush(struct page *page)
2213 {
2214 	return __set_pages_np(page, 1);
2215 }
2216 
2217 int set_direct_map_default_noflush(struct page *page)
2218 {
2219 	return __set_pages_p(page, 1);
2220 }
2221 
2222 #ifdef CONFIG_DEBUG_PAGEALLOC
2223 void __kernel_map_pages(struct page *page, int numpages, int enable)
2224 {
2225 	if (PageHighMem(page))
2226 		return;
2227 	if (!enable) {
2228 		debug_check_no_locks_freed(page_address(page),
2229 					   numpages * PAGE_SIZE);
2230 	}
2231 
2232 	/*
2233 	 * The return value is ignored as the calls cannot fail.
2234 	 * Large pages for identity mappings are not used at boot time
2235 	 * and hence no memory allocations during large page split.
2236 	 */
2237 	if (enable)
2238 		__set_pages_p(page, numpages);
2239 	else
2240 		__set_pages_np(page, numpages);
2241 
2242 	/*
2243 	 * We should perform an IPI and flush all tlbs,
2244 	 * but that can deadlock->flush only current cpu.
2245 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2246 	 * CR3 reload in __native_flush_tlb().
2247 	 */
2248 	preempt_disable();
2249 	__flush_tlb_all();
2250 	preempt_enable();
2251 
2252 	arch_flush_lazy_mmu_mode();
2253 }
2254 #endif /* CONFIG_DEBUG_PAGEALLOC */
2255 
2256 bool kernel_page_present(struct page *page)
2257 {
2258 	unsigned int level;
2259 	pte_t *pte;
2260 
2261 	if (PageHighMem(page))
2262 		return false;
2263 
2264 	pte = lookup_address((unsigned long)page_address(page), &level);
2265 	return (pte_val(*pte) & _PAGE_PRESENT);
2266 }
2267 
2268 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2269 				   unsigned numpages, unsigned long page_flags)
2270 {
2271 	int retval = -EINVAL;
2272 
2273 	struct cpa_data cpa = {
2274 		.vaddr = &address,
2275 		.pfn = pfn,
2276 		.pgd = pgd,
2277 		.numpages = numpages,
2278 		.mask_set = __pgprot(0),
2279 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2280 		.flags = 0,
2281 	};
2282 
2283 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2284 
2285 	if (!(__supported_pte_mask & _PAGE_NX))
2286 		goto out;
2287 
2288 	if (!(page_flags & _PAGE_ENC))
2289 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2290 
2291 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2292 
2293 	retval = __change_page_attr_set_clr(&cpa, 0);
2294 	__flush_tlb_all();
2295 
2296 out:
2297 	return retval;
2298 }
2299 
2300 /*
2301  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2302  * function shouldn't be used in an SMP environment. Presently, it's used only
2303  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2304  */
2305 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2306 				     unsigned long numpages)
2307 {
2308 	int retval;
2309 
2310 	/*
2311 	 * The typical sequence for unmapping is to find a pte through
2312 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2313 	 * the address is already mapped) and change it's protections. As pfn is
2314 	 * the *target* of a mapping, it's not useful while unmapping.
2315 	 */
2316 	struct cpa_data cpa = {
2317 		.vaddr		= &address,
2318 		.pfn		= 0,
2319 		.pgd		= pgd,
2320 		.numpages	= numpages,
2321 		.mask_set	= __pgprot(0),
2322 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2323 		.flags		= 0,
2324 	};
2325 
2326 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2327 
2328 	retval = __change_page_attr_set_clr(&cpa, 0);
2329 	__flush_tlb_all();
2330 
2331 	return retval;
2332 }
2333 
2334 /*
2335  * The testcases use internal knowledge of the implementation that shouldn't
2336  * be exposed to the rest of the kernel. Include these directly here.
2337  */
2338 #ifdef CONFIG_CPA_DEBUG
2339 #include "cpa-test.c"
2340 #endif
2341