1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/bootmem.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 #include <linux/mm_types.h> 20 21 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 22 #include <asm/traps.h> /* dotraplinkage, ... */ 23 #include <asm/pgalloc.h> /* pgd_*(), ... */ 24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 25 #include <asm/vsyscall.h> /* emulate_vsyscall */ 26 #include <asm/vm86.h> /* struct vm86 */ 27 #include <asm/mmu_context.h> /* vma_pkey() */ 28 29 #define CREATE_TRACE_POINTS 30 #include <asm/trace/exceptions.h> 31 32 /* 33 * Returns 0 if mmiotrace is disabled, or if the fault is not 34 * handled by mmiotrace: 35 */ 36 static nokprobe_inline int 37 kmmio_fault(struct pt_regs *regs, unsigned long addr) 38 { 39 if (unlikely(is_kmmio_active())) 40 if (kmmio_handler(regs, addr) == 1) 41 return -1; 42 return 0; 43 } 44 45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 46 { 47 int ret = 0; 48 49 /* kprobe_running() needs smp_processor_id() */ 50 if (kprobes_built_in() && !user_mode(regs)) { 51 preempt_disable(); 52 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 53 ret = 1; 54 preempt_enable(); 55 } 56 57 return ret; 58 } 59 60 /* 61 * Prefetch quirks: 62 * 63 * 32-bit mode: 64 * 65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 66 * Check that here and ignore it. 67 * 68 * 64-bit mode: 69 * 70 * Sometimes the CPU reports invalid exceptions on prefetch. 71 * Check that here and ignore it. 72 * 73 * Opcode checker based on code by Richard Brunner. 74 */ 75 static inline int 76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 77 unsigned char opcode, int *prefetch) 78 { 79 unsigned char instr_hi = opcode & 0xf0; 80 unsigned char instr_lo = opcode & 0x0f; 81 82 switch (instr_hi) { 83 case 0x20: 84 case 0x30: 85 /* 86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 87 * In X86_64 long mode, the CPU will signal invalid 88 * opcode if some of these prefixes are present so 89 * X86_64 will never get here anyway 90 */ 91 return ((instr_lo & 7) == 0x6); 92 #ifdef CONFIG_X86_64 93 case 0x40: 94 /* 95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 96 * Need to figure out under what instruction mode the 97 * instruction was issued. Could check the LDT for lm, 98 * but for now it's good enough to assume that long 99 * mode only uses well known segments or kernel. 100 */ 101 return (!user_mode(regs) || user_64bit_mode(regs)); 102 #endif 103 case 0x60: 104 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 105 return (instr_lo & 0xC) == 0x4; 106 case 0xF0: 107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 108 return !instr_lo || (instr_lo>>1) == 1; 109 case 0x00: 110 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 111 if (probe_kernel_address(instr, opcode)) 112 return 0; 113 114 *prefetch = (instr_lo == 0xF) && 115 (opcode == 0x0D || opcode == 0x18); 116 return 0; 117 default: 118 return 0; 119 } 120 } 121 122 static int 123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 124 { 125 unsigned char *max_instr; 126 unsigned char *instr; 127 int prefetch = 0; 128 129 /* 130 * If it was a exec (instruction fetch) fault on NX page, then 131 * do not ignore the fault: 132 */ 133 if (error_code & X86_PF_INSTR) 134 return 0; 135 136 instr = (void *)convert_ip_to_linear(current, regs); 137 max_instr = instr + 15; 138 139 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 140 return 0; 141 142 while (instr < max_instr) { 143 unsigned char opcode; 144 145 if (probe_kernel_address(instr, opcode)) 146 break; 147 148 instr++; 149 150 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 151 break; 152 } 153 return prefetch; 154 } 155 156 DEFINE_SPINLOCK(pgd_lock); 157 LIST_HEAD(pgd_list); 158 159 #ifdef CONFIG_X86_32 160 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 161 { 162 unsigned index = pgd_index(address); 163 pgd_t *pgd_k; 164 p4d_t *p4d, *p4d_k; 165 pud_t *pud, *pud_k; 166 pmd_t *pmd, *pmd_k; 167 168 pgd += index; 169 pgd_k = init_mm.pgd + index; 170 171 if (!pgd_present(*pgd_k)) 172 return NULL; 173 174 /* 175 * set_pgd(pgd, *pgd_k); here would be useless on PAE 176 * and redundant with the set_pmd() on non-PAE. As would 177 * set_p4d/set_pud. 178 */ 179 p4d = p4d_offset(pgd, address); 180 p4d_k = p4d_offset(pgd_k, address); 181 if (!p4d_present(*p4d_k)) 182 return NULL; 183 184 pud = pud_offset(p4d, address); 185 pud_k = pud_offset(p4d_k, address); 186 if (!pud_present(*pud_k)) 187 return NULL; 188 189 pmd = pmd_offset(pud, address); 190 pmd_k = pmd_offset(pud_k, address); 191 if (!pmd_present(*pmd_k)) 192 return NULL; 193 194 if (!pmd_present(*pmd)) 195 set_pmd(pmd, *pmd_k); 196 else 197 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 198 199 return pmd_k; 200 } 201 202 void vmalloc_sync_all(void) 203 { 204 unsigned long address; 205 206 if (SHARED_KERNEL_PMD) 207 return; 208 209 for (address = VMALLOC_START & PMD_MASK; 210 address >= TASK_SIZE_MAX && address < FIXADDR_TOP; 211 address += PMD_SIZE) { 212 struct page *page; 213 214 spin_lock(&pgd_lock); 215 list_for_each_entry(page, &pgd_list, lru) { 216 spinlock_t *pgt_lock; 217 pmd_t *ret; 218 219 /* the pgt_lock only for Xen */ 220 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 221 222 spin_lock(pgt_lock); 223 ret = vmalloc_sync_one(page_address(page), address); 224 spin_unlock(pgt_lock); 225 226 if (!ret) 227 break; 228 } 229 spin_unlock(&pgd_lock); 230 } 231 } 232 233 /* 234 * 32-bit: 235 * 236 * Handle a fault on the vmalloc or module mapping area 237 */ 238 static noinline int vmalloc_fault(unsigned long address) 239 { 240 unsigned long pgd_paddr; 241 pmd_t *pmd_k; 242 pte_t *pte_k; 243 244 /* Make sure we are in vmalloc area: */ 245 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 246 return -1; 247 248 /* 249 * Synchronize this task's top level page-table 250 * with the 'reference' page table. 251 * 252 * Do _not_ use "current" here. We might be inside 253 * an interrupt in the middle of a task switch.. 254 */ 255 pgd_paddr = read_cr3_pa(); 256 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 257 if (!pmd_k) 258 return -1; 259 260 if (pmd_large(*pmd_k)) 261 return 0; 262 263 pte_k = pte_offset_kernel(pmd_k, address); 264 if (!pte_present(*pte_k)) 265 return -1; 266 267 return 0; 268 } 269 NOKPROBE_SYMBOL(vmalloc_fault); 270 271 /* 272 * Did it hit the DOS screen memory VA from vm86 mode? 273 */ 274 static inline void 275 check_v8086_mode(struct pt_regs *regs, unsigned long address, 276 struct task_struct *tsk) 277 { 278 #ifdef CONFIG_VM86 279 unsigned long bit; 280 281 if (!v8086_mode(regs) || !tsk->thread.vm86) 282 return; 283 284 bit = (address - 0xA0000) >> PAGE_SHIFT; 285 if (bit < 32) 286 tsk->thread.vm86->screen_bitmap |= 1 << bit; 287 #endif 288 } 289 290 static bool low_pfn(unsigned long pfn) 291 { 292 return pfn < max_low_pfn; 293 } 294 295 static void dump_pagetable(unsigned long address) 296 { 297 pgd_t *base = __va(read_cr3_pa()); 298 pgd_t *pgd = &base[pgd_index(address)]; 299 p4d_t *p4d; 300 pud_t *pud; 301 pmd_t *pmd; 302 pte_t *pte; 303 304 #ifdef CONFIG_X86_PAE 305 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 306 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 307 goto out; 308 #define pr_pde pr_cont 309 #else 310 #define pr_pde pr_info 311 #endif 312 p4d = p4d_offset(pgd, address); 313 pud = pud_offset(p4d, address); 314 pmd = pmd_offset(pud, address); 315 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 316 #undef pr_pde 317 318 /* 319 * We must not directly access the pte in the highpte 320 * case if the page table is located in highmem. 321 * And let's rather not kmap-atomic the pte, just in case 322 * it's allocated already: 323 */ 324 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 325 goto out; 326 327 pte = pte_offset_kernel(pmd, address); 328 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 329 out: 330 pr_cont("\n"); 331 } 332 333 #else /* CONFIG_X86_64: */ 334 335 void vmalloc_sync_all(void) 336 { 337 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 338 } 339 340 /* 341 * 64-bit: 342 * 343 * Handle a fault on the vmalloc area 344 */ 345 static noinline int vmalloc_fault(unsigned long address) 346 { 347 pgd_t *pgd, *pgd_k; 348 p4d_t *p4d, *p4d_k; 349 pud_t *pud; 350 pmd_t *pmd; 351 pte_t *pte; 352 353 /* Make sure we are in vmalloc area: */ 354 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 355 return -1; 356 357 WARN_ON_ONCE(in_nmi()); 358 359 /* 360 * Copy kernel mappings over when needed. This can also 361 * happen within a race in page table update. In the later 362 * case just flush: 363 */ 364 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); 365 pgd_k = pgd_offset_k(address); 366 if (pgd_none(*pgd_k)) 367 return -1; 368 369 if (pgtable_l5_enabled()) { 370 if (pgd_none(*pgd)) { 371 set_pgd(pgd, *pgd_k); 372 arch_flush_lazy_mmu_mode(); 373 } else { 374 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k)); 375 } 376 } 377 378 /* With 4-level paging, copying happens on the p4d level. */ 379 p4d = p4d_offset(pgd, address); 380 p4d_k = p4d_offset(pgd_k, address); 381 if (p4d_none(*p4d_k)) 382 return -1; 383 384 if (p4d_none(*p4d) && !pgtable_l5_enabled()) { 385 set_p4d(p4d, *p4d_k); 386 arch_flush_lazy_mmu_mode(); 387 } else { 388 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k)); 389 } 390 391 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4); 392 393 pud = pud_offset(p4d, address); 394 if (pud_none(*pud)) 395 return -1; 396 397 if (pud_large(*pud)) 398 return 0; 399 400 pmd = pmd_offset(pud, address); 401 if (pmd_none(*pmd)) 402 return -1; 403 404 if (pmd_large(*pmd)) 405 return 0; 406 407 pte = pte_offset_kernel(pmd, address); 408 if (!pte_present(*pte)) 409 return -1; 410 411 return 0; 412 } 413 NOKPROBE_SYMBOL(vmalloc_fault); 414 415 #ifdef CONFIG_CPU_SUP_AMD 416 static const char errata93_warning[] = 417 KERN_ERR 418 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 419 "******* Working around it, but it may cause SEGVs or burn power.\n" 420 "******* Please consider a BIOS update.\n" 421 "******* Disabling USB legacy in the BIOS may also help.\n"; 422 #endif 423 424 /* 425 * No vm86 mode in 64-bit mode: 426 */ 427 static inline void 428 check_v8086_mode(struct pt_regs *regs, unsigned long address, 429 struct task_struct *tsk) 430 { 431 } 432 433 static int bad_address(void *p) 434 { 435 unsigned long dummy; 436 437 return probe_kernel_address((unsigned long *)p, dummy); 438 } 439 440 static void dump_pagetable(unsigned long address) 441 { 442 pgd_t *base = __va(read_cr3_pa()); 443 pgd_t *pgd = base + pgd_index(address); 444 p4d_t *p4d; 445 pud_t *pud; 446 pmd_t *pmd; 447 pte_t *pte; 448 449 if (bad_address(pgd)) 450 goto bad; 451 452 pr_info("PGD %lx ", pgd_val(*pgd)); 453 454 if (!pgd_present(*pgd)) 455 goto out; 456 457 p4d = p4d_offset(pgd, address); 458 if (bad_address(p4d)) 459 goto bad; 460 461 pr_cont("P4D %lx ", p4d_val(*p4d)); 462 if (!p4d_present(*p4d) || p4d_large(*p4d)) 463 goto out; 464 465 pud = pud_offset(p4d, address); 466 if (bad_address(pud)) 467 goto bad; 468 469 pr_cont("PUD %lx ", pud_val(*pud)); 470 if (!pud_present(*pud) || pud_large(*pud)) 471 goto out; 472 473 pmd = pmd_offset(pud, address); 474 if (bad_address(pmd)) 475 goto bad; 476 477 pr_cont("PMD %lx ", pmd_val(*pmd)); 478 if (!pmd_present(*pmd) || pmd_large(*pmd)) 479 goto out; 480 481 pte = pte_offset_kernel(pmd, address); 482 if (bad_address(pte)) 483 goto bad; 484 485 pr_cont("PTE %lx", pte_val(*pte)); 486 out: 487 pr_cont("\n"); 488 return; 489 bad: 490 pr_info("BAD\n"); 491 } 492 493 #endif /* CONFIG_X86_64 */ 494 495 /* 496 * Workaround for K8 erratum #93 & buggy BIOS. 497 * 498 * BIOS SMM functions are required to use a specific workaround 499 * to avoid corruption of the 64bit RIP register on C stepping K8. 500 * 501 * A lot of BIOS that didn't get tested properly miss this. 502 * 503 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 504 * Try to work around it here. 505 * 506 * Note we only handle faults in kernel here. 507 * Does nothing on 32-bit. 508 */ 509 static int is_errata93(struct pt_regs *regs, unsigned long address) 510 { 511 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 512 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 513 || boot_cpu_data.x86 != 0xf) 514 return 0; 515 516 if (address != regs->ip) 517 return 0; 518 519 if ((address >> 32) != 0) 520 return 0; 521 522 address |= 0xffffffffUL << 32; 523 if ((address >= (u64)_stext && address <= (u64)_etext) || 524 (address >= MODULES_VADDR && address <= MODULES_END)) { 525 printk_once(errata93_warning); 526 regs->ip = address; 527 return 1; 528 } 529 #endif 530 return 0; 531 } 532 533 /* 534 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 535 * to illegal addresses >4GB. 536 * 537 * We catch this in the page fault handler because these addresses 538 * are not reachable. Just detect this case and return. Any code 539 * segment in LDT is compatibility mode. 540 */ 541 static int is_errata100(struct pt_regs *regs, unsigned long address) 542 { 543 #ifdef CONFIG_X86_64 544 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 545 return 1; 546 #endif 547 return 0; 548 } 549 550 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 551 { 552 #ifdef CONFIG_X86_F00F_BUG 553 unsigned long nr; 554 555 /* 556 * Pentium F0 0F C7 C8 bug workaround: 557 */ 558 if (boot_cpu_has_bug(X86_BUG_F00F)) { 559 nr = (address - idt_descr.address) >> 3; 560 561 if (nr == 6) { 562 do_invalid_op(regs, 0); 563 return 1; 564 } 565 } 566 #endif 567 return 0; 568 } 569 570 static void 571 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 572 unsigned long address) 573 { 574 if (!oops_may_print()) 575 return; 576 577 if (error_code & X86_PF_INSTR) { 578 unsigned int level; 579 pgd_t *pgd; 580 pte_t *pte; 581 582 pgd = __va(read_cr3_pa()); 583 pgd += pgd_index(address); 584 585 pte = lookup_address_in_pgd(pgd, address, &level); 586 587 if (pte && pte_present(*pte) && !pte_exec(*pte)) 588 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 589 from_kuid(&init_user_ns, current_uid())); 590 if (pte && pte_present(*pte) && pte_exec(*pte) && 591 (pgd_flags(*pgd) & _PAGE_USER) && 592 (__read_cr4() & X86_CR4_SMEP)) 593 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 594 from_kuid(&init_user_ns, current_uid())); 595 } 596 597 pr_alert("BUG: unable to handle kernel %s at %px\n", 598 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", 599 (void *)address); 600 601 dump_pagetable(address); 602 } 603 604 static noinline void 605 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 606 unsigned long address) 607 { 608 struct task_struct *tsk; 609 unsigned long flags; 610 int sig; 611 612 flags = oops_begin(); 613 tsk = current; 614 sig = SIGKILL; 615 616 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 617 tsk->comm, address); 618 dump_pagetable(address); 619 620 tsk->thread.cr2 = address; 621 tsk->thread.trap_nr = X86_TRAP_PF; 622 tsk->thread.error_code = error_code; 623 624 if (__die("Bad pagetable", regs, error_code)) 625 sig = 0; 626 627 oops_end(flags, regs, sig); 628 } 629 630 static noinline void 631 no_context(struct pt_regs *regs, unsigned long error_code, 632 unsigned long address, int signal, int si_code) 633 { 634 struct task_struct *tsk = current; 635 unsigned long flags; 636 int sig; 637 638 /* Are we prepared to handle this kernel fault? */ 639 if (fixup_exception(regs, X86_TRAP_PF)) { 640 /* 641 * Any interrupt that takes a fault gets the fixup. This makes 642 * the below recursive fault logic only apply to a faults from 643 * task context. 644 */ 645 if (in_interrupt()) 646 return; 647 648 /* 649 * Per the above we're !in_interrupt(), aka. task context. 650 * 651 * In this case we need to make sure we're not recursively 652 * faulting through the emulate_vsyscall() logic. 653 */ 654 if (current->thread.sig_on_uaccess_err && signal) { 655 tsk->thread.trap_nr = X86_TRAP_PF; 656 tsk->thread.error_code = error_code | X86_PF_USER; 657 tsk->thread.cr2 = address; 658 659 /* XXX: hwpoison faults will set the wrong code. */ 660 force_sig_fault(signal, si_code, (void __user *)address, 661 tsk); 662 } 663 664 /* 665 * Barring that, we can do the fixup and be happy. 666 */ 667 return; 668 } 669 670 #ifdef CONFIG_VMAP_STACK 671 /* 672 * Stack overflow? During boot, we can fault near the initial 673 * stack in the direct map, but that's not an overflow -- check 674 * that we're in vmalloc space to avoid this. 675 */ 676 if (is_vmalloc_addr((void *)address) && 677 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 678 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 679 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); 680 /* 681 * We're likely to be running with very little stack space 682 * left. It's plausible that we'd hit this condition but 683 * double-fault even before we get this far, in which case 684 * we're fine: the double-fault handler will deal with it. 685 * 686 * We don't want to make it all the way into the oops code 687 * and then double-fault, though, because we're likely to 688 * break the console driver and lose most of the stack dump. 689 */ 690 asm volatile ("movq %[stack], %%rsp\n\t" 691 "call handle_stack_overflow\n\t" 692 "1: jmp 1b" 693 : ASM_CALL_CONSTRAINT 694 : "D" ("kernel stack overflow (page fault)"), 695 "S" (regs), "d" (address), 696 [stack] "rm" (stack)); 697 unreachable(); 698 } 699 #endif 700 701 /* 702 * 32-bit: 703 * 704 * Valid to do another page fault here, because if this fault 705 * had been triggered by is_prefetch fixup_exception would have 706 * handled it. 707 * 708 * 64-bit: 709 * 710 * Hall of shame of CPU/BIOS bugs. 711 */ 712 if (is_prefetch(regs, error_code, address)) 713 return; 714 715 if (is_errata93(regs, address)) 716 return; 717 718 /* 719 * Oops. The kernel tried to access some bad page. We'll have to 720 * terminate things with extreme prejudice: 721 */ 722 flags = oops_begin(); 723 724 show_fault_oops(regs, error_code, address); 725 726 if (task_stack_end_corrupted(tsk)) 727 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 728 729 tsk->thread.cr2 = address; 730 tsk->thread.trap_nr = X86_TRAP_PF; 731 tsk->thread.error_code = error_code; 732 733 sig = SIGKILL; 734 if (__die("Oops", regs, error_code)) 735 sig = 0; 736 737 /* Executive summary in case the body of the oops scrolled away */ 738 printk(KERN_DEFAULT "CR2: %016lx\n", address); 739 740 oops_end(flags, regs, sig); 741 } 742 743 /* 744 * Print out info about fatal segfaults, if the show_unhandled_signals 745 * sysctl is set: 746 */ 747 static inline void 748 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 749 unsigned long address, struct task_struct *tsk) 750 { 751 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 752 753 if (!unhandled_signal(tsk, SIGSEGV)) 754 return; 755 756 if (!printk_ratelimit()) 757 return; 758 759 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 760 loglvl, tsk->comm, task_pid_nr(tsk), address, 761 (void *)regs->ip, (void *)regs->sp, error_code); 762 763 print_vma_addr(KERN_CONT " in ", regs->ip); 764 765 printk(KERN_CONT "\n"); 766 767 show_opcodes((u8 *)regs->ip, loglvl); 768 } 769 770 static void 771 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 772 unsigned long address, u32 *pkey, int si_code) 773 { 774 struct task_struct *tsk = current; 775 776 /* User mode accesses just cause a SIGSEGV */ 777 if (error_code & X86_PF_USER) { 778 /* 779 * It's possible to have interrupts off here: 780 */ 781 local_irq_enable(); 782 783 /* 784 * Valid to do another page fault here because this one came 785 * from user space: 786 */ 787 if (is_prefetch(regs, error_code, address)) 788 return; 789 790 if (is_errata100(regs, address)) 791 return; 792 793 #ifdef CONFIG_X86_64 794 /* 795 * Instruction fetch faults in the vsyscall page might need 796 * emulation. 797 */ 798 if (unlikely((error_code & X86_PF_INSTR) && 799 ((address & ~0xfff) == VSYSCALL_ADDR))) { 800 if (emulate_vsyscall(regs, address)) 801 return; 802 } 803 #endif 804 805 /* 806 * To avoid leaking information about the kernel page table 807 * layout, pretend that user-mode accesses to kernel addresses 808 * are always protection faults. 809 */ 810 if (address >= TASK_SIZE_MAX) 811 error_code |= X86_PF_PROT; 812 813 if (likely(show_unhandled_signals)) 814 show_signal_msg(regs, error_code, address, tsk); 815 816 tsk->thread.cr2 = address; 817 tsk->thread.error_code = error_code; 818 tsk->thread.trap_nr = X86_TRAP_PF; 819 820 if (si_code == SEGV_PKUERR) 821 force_sig_pkuerr((void __user *)address, *pkey); 822 823 force_sig_fault(SIGSEGV, si_code, (void __user *)address, tsk); 824 825 return; 826 } 827 828 if (is_f00f_bug(regs, address)) 829 return; 830 831 no_context(regs, error_code, address, SIGSEGV, si_code); 832 } 833 834 static noinline void 835 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 836 unsigned long address) 837 { 838 __bad_area_nosemaphore(regs, error_code, address, NULL, SEGV_MAPERR); 839 } 840 841 static void 842 __bad_area(struct pt_regs *regs, unsigned long error_code, 843 unsigned long address, u32 *pkey, int si_code) 844 { 845 struct mm_struct *mm = current->mm; 846 /* 847 * Something tried to access memory that isn't in our memory map.. 848 * Fix it, but check if it's kernel or user first.. 849 */ 850 up_read(&mm->mmap_sem); 851 852 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 853 } 854 855 static noinline void 856 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 857 { 858 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR); 859 } 860 861 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 862 struct vm_area_struct *vma) 863 { 864 /* This code is always called on the current mm */ 865 bool foreign = false; 866 867 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 868 return false; 869 if (error_code & X86_PF_PK) 870 return true; 871 /* this checks permission keys on the VMA: */ 872 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 873 (error_code & X86_PF_INSTR), foreign)) 874 return true; 875 return false; 876 } 877 878 static noinline void 879 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 880 unsigned long address, struct vm_area_struct *vma) 881 { 882 /* 883 * This OSPKE check is not strictly necessary at runtime. 884 * But, doing it this way allows compiler optimizations 885 * if pkeys are compiled out. 886 */ 887 if (bad_area_access_from_pkeys(error_code, vma)) { 888 /* 889 * A protection key fault means that the PKRU value did not allow 890 * access to some PTE. Userspace can figure out what PKRU was 891 * from the XSAVE state. This function captures the pkey from 892 * the vma and passes it to userspace so userspace can discover 893 * which protection key was set on the PTE. 894 * 895 * If we get here, we know that the hardware signaled a X86_PF_PK 896 * fault and that there was a VMA once we got in the fault 897 * handler. It does *not* guarantee that the VMA we find here 898 * was the one that we faulted on. 899 * 900 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 901 * 2. T1 : set PKRU to deny access to pkey=4, touches page 902 * 3. T1 : faults... 903 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 904 * 5. T1 : enters fault handler, takes mmap_sem, etc... 905 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 906 * faulted on a pte with its pkey=4. 907 */ 908 u32 pkey = vma_pkey(vma); 909 910 __bad_area(regs, error_code, address, &pkey, SEGV_PKUERR); 911 } else { 912 __bad_area(regs, error_code, address, NULL, SEGV_ACCERR); 913 } 914 } 915 916 static void 917 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 918 unsigned int fault) 919 { 920 struct task_struct *tsk = current; 921 922 /* Kernel mode? Handle exceptions or die: */ 923 if (!(error_code & X86_PF_USER)) { 924 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 925 return; 926 } 927 928 /* User-space => ok to do another page fault: */ 929 if (is_prefetch(regs, error_code, address)) 930 return; 931 932 tsk->thread.cr2 = address; 933 tsk->thread.error_code = error_code; 934 tsk->thread.trap_nr = X86_TRAP_PF; 935 936 #ifdef CONFIG_MEMORY_FAILURE 937 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 938 unsigned lsb = 0; 939 940 pr_err( 941 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 942 tsk->comm, tsk->pid, address); 943 if (fault & VM_FAULT_HWPOISON_LARGE) 944 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 945 if (fault & VM_FAULT_HWPOISON) 946 lsb = PAGE_SHIFT; 947 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, tsk); 948 return; 949 } 950 #endif 951 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, tsk); 952 } 953 954 static noinline void 955 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 956 unsigned long address, vm_fault_t fault) 957 { 958 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { 959 no_context(regs, error_code, address, 0, 0); 960 return; 961 } 962 963 if (fault & VM_FAULT_OOM) { 964 /* Kernel mode? Handle exceptions or die: */ 965 if (!(error_code & X86_PF_USER)) { 966 no_context(regs, error_code, address, 967 SIGSEGV, SEGV_MAPERR); 968 return; 969 } 970 971 /* 972 * We ran out of memory, call the OOM killer, and return the 973 * userspace (which will retry the fault, or kill us if we got 974 * oom-killed): 975 */ 976 pagefault_out_of_memory(); 977 } else { 978 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 979 VM_FAULT_HWPOISON_LARGE)) 980 do_sigbus(regs, error_code, address, fault); 981 else if (fault & VM_FAULT_SIGSEGV) 982 bad_area_nosemaphore(regs, error_code, address); 983 else 984 BUG(); 985 } 986 } 987 988 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 989 { 990 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 991 return 0; 992 993 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 994 return 0; 995 /* 996 * Note: We do not do lazy flushing on protection key 997 * changes, so no spurious fault will ever set X86_PF_PK. 998 */ 999 if ((error_code & X86_PF_PK)) 1000 return 1; 1001 1002 return 1; 1003 } 1004 1005 /* 1006 * Handle a spurious fault caused by a stale TLB entry. 1007 * 1008 * This allows us to lazily refresh the TLB when increasing the 1009 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1010 * eagerly is very expensive since that implies doing a full 1011 * cross-processor TLB flush, even if no stale TLB entries exist 1012 * on other processors. 1013 * 1014 * Spurious faults may only occur if the TLB contains an entry with 1015 * fewer permission than the page table entry. Non-present (P = 0) 1016 * and reserved bit (R = 1) faults are never spurious. 1017 * 1018 * There are no security implications to leaving a stale TLB when 1019 * increasing the permissions on a page. 1020 * 1021 * Returns non-zero if a spurious fault was handled, zero otherwise. 1022 * 1023 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1024 * (Optional Invalidation). 1025 */ 1026 static noinline int 1027 spurious_fault(unsigned long error_code, unsigned long address) 1028 { 1029 pgd_t *pgd; 1030 p4d_t *p4d; 1031 pud_t *pud; 1032 pmd_t *pmd; 1033 pte_t *pte; 1034 int ret; 1035 1036 /* 1037 * Only writes to RO or instruction fetches from NX may cause 1038 * spurious faults. 1039 * 1040 * These could be from user or supervisor accesses but the TLB 1041 * is only lazily flushed after a kernel mapping protection 1042 * change, so user accesses are not expected to cause spurious 1043 * faults. 1044 */ 1045 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1046 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1047 return 0; 1048 1049 pgd = init_mm.pgd + pgd_index(address); 1050 if (!pgd_present(*pgd)) 1051 return 0; 1052 1053 p4d = p4d_offset(pgd, address); 1054 if (!p4d_present(*p4d)) 1055 return 0; 1056 1057 if (p4d_large(*p4d)) 1058 return spurious_fault_check(error_code, (pte_t *) p4d); 1059 1060 pud = pud_offset(p4d, address); 1061 if (!pud_present(*pud)) 1062 return 0; 1063 1064 if (pud_large(*pud)) 1065 return spurious_fault_check(error_code, (pte_t *) pud); 1066 1067 pmd = pmd_offset(pud, address); 1068 if (!pmd_present(*pmd)) 1069 return 0; 1070 1071 if (pmd_large(*pmd)) 1072 return spurious_fault_check(error_code, (pte_t *) pmd); 1073 1074 pte = pte_offset_kernel(pmd, address); 1075 if (!pte_present(*pte)) 1076 return 0; 1077 1078 ret = spurious_fault_check(error_code, pte); 1079 if (!ret) 1080 return 0; 1081 1082 /* 1083 * Make sure we have permissions in PMD. 1084 * If not, then there's a bug in the page tables: 1085 */ 1086 ret = spurious_fault_check(error_code, (pte_t *) pmd); 1087 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1088 1089 return ret; 1090 } 1091 NOKPROBE_SYMBOL(spurious_fault); 1092 1093 int show_unhandled_signals = 1; 1094 1095 static inline int 1096 access_error(unsigned long error_code, struct vm_area_struct *vma) 1097 { 1098 /* This is only called for the current mm, so: */ 1099 bool foreign = false; 1100 1101 /* 1102 * Read or write was blocked by protection keys. This is 1103 * always an unconditional error and can never result in 1104 * a follow-up action to resolve the fault, like a COW. 1105 */ 1106 if (error_code & X86_PF_PK) 1107 return 1; 1108 1109 /* 1110 * Make sure to check the VMA so that we do not perform 1111 * faults just to hit a X86_PF_PK as soon as we fill in a 1112 * page. 1113 */ 1114 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1115 (error_code & X86_PF_INSTR), foreign)) 1116 return 1; 1117 1118 if (error_code & X86_PF_WRITE) { 1119 /* write, present and write, not present: */ 1120 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1121 return 1; 1122 return 0; 1123 } 1124 1125 /* read, present: */ 1126 if (unlikely(error_code & X86_PF_PROT)) 1127 return 1; 1128 1129 /* read, not present: */ 1130 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1131 return 1; 1132 1133 return 0; 1134 } 1135 1136 static int fault_in_kernel_space(unsigned long address) 1137 { 1138 return address >= TASK_SIZE_MAX; 1139 } 1140 1141 static inline bool smap_violation(int error_code, struct pt_regs *regs) 1142 { 1143 if (!IS_ENABLED(CONFIG_X86_SMAP)) 1144 return false; 1145 1146 if (!static_cpu_has(X86_FEATURE_SMAP)) 1147 return false; 1148 1149 if (error_code & X86_PF_USER) 1150 return false; 1151 1152 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) 1153 return false; 1154 1155 return true; 1156 } 1157 1158 /* 1159 * This routine handles page faults. It determines the address, 1160 * and the problem, and then passes it off to one of the appropriate 1161 * routines. 1162 */ 1163 static noinline void 1164 __do_page_fault(struct pt_regs *regs, unsigned long error_code, 1165 unsigned long address) 1166 { 1167 struct vm_area_struct *vma; 1168 struct task_struct *tsk; 1169 struct mm_struct *mm; 1170 vm_fault_t fault, major = 0; 1171 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1172 1173 tsk = current; 1174 mm = tsk->mm; 1175 1176 prefetchw(&mm->mmap_sem); 1177 1178 if (unlikely(kmmio_fault(regs, address))) 1179 return; 1180 1181 /* 1182 * We fault-in kernel-space virtual memory on-demand. The 1183 * 'reference' page table is init_mm.pgd. 1184 * 1185 * NOTE! We MUST NOT take any locks for this case. We may 1186 * be in an interrupt or a critical region, and should 1187 * only copy the information from the master page table, 1188 * nothing more. 1189 * 1190 * This verifies that the fault happens in kernel space 1191 * (error_code & 4) == 0, and that the fault was not a 1192 * protection error (error_code & 9) == 0. 1193 */ 1194 if (unlikely(fault_in_kernel_space(address))) { 1195 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1196 if (vmalloc_fault(address) >= 0) 1197 return; 1198 } 1199 1200 /* Can handle a stale RO->RW TLB: */ 1201 if (spurious_fault(error_code, address)) 1202 return; 1203 1204 /* kprobes don't want to hook the spurious faults: */ 1205 if (kprobes_fault(regs)) 1206 return; 1207 /* 1208 * Don't take the mm semaphore here. If we fixup a prefetch 1209 * fault we could otherwise deadlock: 1210 */ 1211 bad_area_nosemaphore(regs, error_code, address); 1212 1213 return; 1214 } 1215 1216 /* kprobes don't want to hook the spurious faults: */ 1217 if (unlikely(kprobes_fault(regs))) 1218 return; 1219 1220 if (unlikely(error_code & X86_PF_RSVD)) 1221 pgtable_bad(regs, error_code, address); 1222 1223 if (unlikely(smap_violation(error_code, regs))) { 1224 bad_area_nosemaphore(regs, error_code, address); 1225 return; 1226 } 1227 1228 /* 1229 * If we're in an interrupt, have no user context or are running 1230 * in a region with pagefaults disabled then we must not take the fault 1231 */ 1232 if (unlikely(faulthandler_disabled() || !mm)) { 1233 bad_area_nosemaphore(regs, error_code, address); 1234 return; 1235 } 1236 1237 /* 1238 * It's safe to allow irq's after cr2 has been saved and the 1239 * vmalloc fault has been handled. 1240 * 1241 * User-mode registers count as a user access even for any 1242 * potential system fault or CPU buglet: 1243 */ 1244 if (user_mode(regs)) { 1245 local_irq_enable(); 1246 error_code |= X86_PF_USER; 1247 flags |= FAULT_FLAG_USER; 1248 } else { 1249 if (regs->flags & X86_EFLAGS_IF) 1250 local_irq_enable(); 1251 } 1252 1253 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1254 1255 if (error_code & X86_PF_WRITE) 1256 flags |= FAULT_FLAG_WRITE; 1257 if (error_code & X86_PF_INSTR) 1258 flags |= FAULT_FLAG_INSTRUCTION; 1259 1260 /* 1261 * When running in the kernel we expect faults to occur only to 1262 * addresses in user space. All other faults represent errors in 1263 * the kernel and should generate an OOPS. Unfortunately, in the 1264 * case of an erroneous fault occurring in a code path which already 1265 * holds mmap_sem we will deadlock attempting to validate the fault 1266 * against the address space. Luckily the kernel only validly 1267 * references user space from well defined areas of code, which are 1268 * listed in the exceptions table. 1269 * 1270 * As the vast majority of faults will be valid we will only perform 1271 * the source reference check when there is a possibility of a 1272 * deadlock. Attempt to lock the address space, if we cannot we then 1273 * validate the source. If this is invalid we can skip the address 1274 * space check, thus avoiding the deadlock: 1275 */ 1276 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1277 if (!(error_code & X86_PF_USER) && 1278 !search_exception_tables(regs->ip)) { 1279 bad_area_nosemaphore(regs, error_code, address); 1280 return; 1281 } 1282 retry: 1283 down_read(&mm->mmap_sem); 1284 } else { 1285 /* 1286 * The above down_read_trylock() might have succeeded in 1287 * which case we'll have missed the might_sleep() from 1288 * down_read(): 1289 */ 1290 might_sleep(); 1291 } 1292 1293 vma = find_vma(mm, address); 1294 if (unlikely(!vma)) { 1295 bad_area(regs, error_code, address); 1296 return; 1297 } 1298 if (likely(vma->vm_start <= address)) 1299 goto good_area; 1300 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1301 bad_area(regs, error_code, address); 1302 return; 1303 } 1304 if (error_code & X86_PF_USER) { 1305 /* 1306 * Accessing the stack below %sp is always a bug. 1307 * The large cushion allows instructions like enter 1308 * and pusha to work. ("enter $65535, $31" pushes 1309 * 32 pointers and then decrements %sp by 65535.) 1310 */ 1311 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1312 bad_area(regs, error_code, address); 1313 return; 1314 } 1315 } 1316 if (unlikely(expand_stack(vma, address))) { 1317 bad_area(regs, error_code, address); 1318 return; 1319 } 1320 1321 /* 1322 * Ok, we have a good vm_area for this memory access, so 1323 * we can handle it.. 1324 */ 1325 good_area: 1326 if (unlikely(access_error(error_code, vma))) { 1327 bad_area_access_error(regs, error_code, address, vma); 1328 return; 1329 } 1330 1331 /* 1332 * If for any reason at all we couldn't handle the fault, 1333 * make sure we exit gracefully rather than endlessly redo 1334 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1335 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1336 * 1337 * Note that handle_userfault() may also release and reacquire mmap_sem 1338 * (and not return with VM_FAULT_RETRY), when returning to userland to 1339 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1340 * (potentially after handling any pending signal during the return to 1341 * userland). The return to userland is identified whenever 1342 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1343 */ 1344 fault = handle_mm_fault(vma, address, flags); 1345 major |= fault & VM_FAULT_MAJOR; 1346 1347 /* 1348 * If we need to retry the mmap_sem has already been released, 1349 * and if there is a fatal signal pending there is no guarantee 1350 * that we made any progress. Handle this case first. 1351 */ 1352 if (unlikely(fault & VM_FAULT_RETRY)) { 1353 /* Retry at most once */ 1354 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1355 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1356 flags |= FAULT_FLAG_TRIED; 1357 if (!fatal_signal_pending(tsk)) 1358 goto retry; 1359 } 1360 1361 /* User mode? Just return to handle the fatal exception */ 1362 if (flags & FAULT_FLAG_USER) 1363 return; 1364 1365 /* Not returning to user mode? Handle exceptions or die: */ 1366 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1367 return; 1368 } 1369 1370 up_read(&mm->mmap_sem); 1371 if (unlikely(fault & VM_FAULT_ERROR)) { 1372 mm_fault_error(regs, error_code, address, fault); 1373 return; 1374 } 1375 1376 /* 1377 * Major/minor page fault accounting. If any of the events 1378 * returned VM_FAULT_MAJOR, we account it as a major fault. 1379 */ 1380 if (major) { 1381 tsk->maj_flt++; 1382 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1383 } else { 1384 tsk->min_flt++; 1385 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1386 } 1387 1388 check_v8086_mode(regs, address, tsk); 1389 } 1390 NOKPROBE_SYMBOL(__do_page_fault); 1391 1392 static nokprobe_inline void 1393 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1394 unsigned long error_code) 1395 { 1396 if (user_mode(regs)) 1397 trace_page_fault_user(address, regs, error_code); 1398 else 1399 trace_page_fault_kernel(address, regs, error_code); 1400 } 1401 1402 /* 1403 * We must have this function blacklisted from kprobes, tagged with notrace 1404 * and call read_cr2() before calling anything else. To avoid calling any 1405 * kind of tracing machinery before we've observed the CR2 value. 1406 * 1407 * exception_{enter,exit}() contains all sorts of tracepoints. 1408 */ 1409 dotraplinkage void notrace 1410 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1411 { 1412 unsigned long address = read_cr2(); /* Get the faulting address */ 1413 enum ctx_state prev_state; 1414 1415 prev_state = exception_enter(); 1416 if (trace_pagefault_enabled()) 1417 trace_page_fault_entries(address, regs, error_code); 1418 1419 __do_page_fault(regs, error_code, address); 1420 exception_exit(prev_state); 1421 } 1422 NOKPROBE_SYMBOL(do_page_fault); 1423