xref: /openbmc/linux/arch/x86/mm/fault.c (revision b4fd52f25c614f6904b86f708c20c82951c152ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/mm_types.h>
20 
21 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
22 #include <asm/traps.h>			/* dotraplinkage, ...		*/
23 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
31 
32 /*
33  * Returns 0 if mmiotrace is disabled, or if the fault is not
34  * handled by mmiotrace:
35  */
36 static nokprobe_inline int
37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
38 {
39 	if (unlikely(is_kmmio_active()))
40 		if (kmmio_handler(regs, addr) == 1)
41 			return -1;
42 	return 0;
43 }
44 
45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
46 {
47 	int ret = 0;
48 
49 	/* kprobe_running() needs smp_processor_id() */
50 	if (kprobes_built_in() && !user_mode(regs)) {
51 		preempt_disable();
52 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 			ret = 1;
54 		preempt_enable();
55 	}
56 
57 	return ret;
58 }
59 
60 /*
61  * Prefetch quirks:
62  *
63  * 32-bit mode:
64  *
65  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66  *   Check that here and ignore it.
67  *
68  * 64-bit mode:
69  *
70  *   Sometimes the CPU reports invalid exceptions on prefetch.
71  *   Check that here and ignore it.
72  *
73  * Opcode checker based on code by Richard Brunner.
74  */
75 static inline int
76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 		      unsigned char opcode, int *prefetch)
78 {
79 	unsigned char instr_hi = opcode & 0xf0;
80 	unsigned char instr_lo = opcode & 0x0f;
81 
82 	switch (instr_hi) {
83 	case 0x20:
84 	case 0x30:
85 		/*
86 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 		 * In X86_64 long mode, the CPU will signal invalid
88 		 * opcode if some of these prefixes are present so
89 		 * X86_64 will never get here anyway
90 		 */
91 		return ((instr_lo & 7) == 0x6);
92 #ifdef CONFIG_X86_64
93 	case 0x40:
94 		/*
95 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 		 * Need to figure out under what instruction mode the
97 		 * instruction was issued. Could check the LDT for lm,
98 		 * but for now it's good enough to assume that long
99 		 * mode only uses well known segments or kernel.
100 		 */
101 		return (!user_mode(regs) || user_64bit_mode(regs));
102 #endif
103 	case 0x60:
104 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
105 		return (instr_lo & 0xC) == 0x4;
106 	case 0xF0:
107 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 		return !instr_lo || (instr_lo>>1) == 1;
109 	case 0x00:
110 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
111 		if (probe_kernel_address(instr, opcode))
112 			return 0;
113 
114 		*prefetch = (instr_lo == 0xF) &&
115 			(opcode == 0x0D || opcode == 0x18);
116 		return 0;
117 	default:
118 		return 0;
119 	}
120 }
121 
122 static int
123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 {
125 	unsigned char *max_instr;
126 	unsigned char *instr;
127 	int prefetch = 0;
128 
129 	/*
130 	 * If it was a exec (instruction fetch) fault on NX page, then
131 	 * do not ignore the fault:
132 	 */
133 	if (error_code & X86_PF_INSTR)
134 		return 0;
135 
136 	instr = (void *)convert_ip_to_linear(current, regs);
137 	max_instr = instr + 15;
138 
139 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
140 		return 0;
141 
142 	while (instr < max_instr) {
143 		unsigned char opcode;
144 
145 		if (probe_kernel_address(instr, opcode))
146 			break;
147 
148 		instr++;
149 
150 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
151 			break;
152 	}
153 	return prefetch;
154 }
155 
156 DEFINE_SPINLOCK(pgd_lock);
157 LIST_HEAD(pgd_list);
158 
159 #ifdef CONFIG_X86_32
160 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
161 {
162 	unsigned index = pgd_index(address);
163 	pgd_t *pgd_k;
164 	p4d_t *p4d, *p4d_k;
165 	pud_t *pud, *pud_k;
166 	pmd_t *pmd, *pmd_k;
167 
168 	pgd += index;
169 	pgd_k = init_mm.pgd + index;
170 
171 	if (!pgd_present(*pgd_k))
172 		return NULL;
173 
174 	/*
175 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
176 	 * and redundant with the set_pmd() on non-PAE. As would
177 	 * set_p4d/set_pud.
178 	 */
179 	p4d = p4d_offset(pgd, address);
180 	p4d_k = p4d_offset(pgd_k, address);
181 	if (!p4d_present(*p4d_k))
182 		return NULL;
183 
184 	pud = pud_offset(p4d, address);
185 	pud_k = pud_offset(p4d_k, address);
186 	if (!pud_present(*pud_k))
187 		return NULL;
188 
189 	pmd = pmd_offset(pud, address);
190 	pmd_k = pmd_offset(pud_k, address);
191 	if (!pmd_present(*pmd_k))
192 		return NULL;
193 
194 	if (!pmd_present(*pmd))
195 		set_pmd(pmd, *pmd_k);
196 	else
197 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
198 
199 	return pmd_k;
200 }
201 
202 void vmalloc_sync_all(void)
203 {
204 	unsigned long address;
205 
206 	if (SHARED_KERNEL_PMD)
207 		return;
208 
209 	for (address = VMALLOC_START & PMD_MASK;
210 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
211 	     address += PMD_SIZE) {
212 		struct page *page;
213 
214 		spin_lock(&pgd_lock);
215 		list_for_each_entry(page, &pgd_list, lru) {
216 			spinlock_t *pgt_lock;
217 			pmd_t *ret;
218 
219 			/* the pgt_lock only for Xen */
220 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
221 
222 			spin_lock(pgt_lock);
223 			ret = vmalloc_sync_one(page_address(page), address);
224 			spin_unlock(pgt_lock);
225 
226 			if (!ret)
227 				break;
228 		}
229 		spin_unlock(&pgd_lock);
230 	}
231 }
232 
233 /*
234  * 32-bit:
235  *
236  *   Handle a fault on the vmalloc or module mapping area
237  */
238 static noinline int vmalloc_fault(unsigned long address)
239 {
240 	unsigned long pgd_paddr;
241 	pmd_t *pmd_k;
242 	pte_t *pte_k;
243 
244 	/* Make sure we are in vmalloc area: */
245 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
246 		return -1;
247 
248 	/*
249 	 * Synchronize this task's top level page-table
250 	 * with the 'reference' page table.
251 	 *
252 	 * Do _not_ use "current" here. We might be inside
253 	 * an interrupt in the middle of a task switch..
254 	 */
255 	pgd_paddr = read_cr3_pa();
256 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
257 	if (!pmd_k)
258 		return -1;
259 
260 	if (pmd_large(*pmd_k))
261 		return 0;
262 
263 	pte_k = pte_offset_kernel(pmd_k, address);
264 	if (!pte_present(*pte_k))
265 		return -1;
266 
267 	return 0;
268 }
269 NOKPROBE_SYMBOL(vmalloc_fault);
270 
271 /*
272  * Did it hit the DOS screen memory VA from vm86 mode?
273  */
274 static inline void
275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 		 struct task_struct *tsk)
277 {
278 #ifdef CONFIG_VM86
279 	unsigned long bit;
280 
281 	if (!v8086_mode(regs) || !tsk->thread.vm86)
282 		return;
283 
284 	bit = (address - 0xA0000) >> PAGE_SHIFT;
285 	if (bit < 32)
286 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
287 #endif
288 }
289 
290 static bool low_pfn(unsigned long pfn)
291 {
292 	return pfn < max_low_pfn;
293 }
294 
295 static void dump_pagetable(unsigned long address)
296 {
297 	pgd_t *base = __va(read_cr3_pa());
298 	pgd_t *pgd = &base[pgd_index(address)];
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 
304 #ifdef CONFIG_X86_PAE
305 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307 		goto out;
308 #define pr_pde pr_cont
309 #else
310 #define pr_pde pr_info
311 #endif
312 	p4d = p4d_offset(pgd, address);
313 	pud = pud_offset(p4d, address);
314 	pmd = pmd_offset(pud, address);
315 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316 #undef pr_pde
317 
318 	/*
319 	 * We must not directly access the pte in the highpte
320 	 * case if the page table is located in highmem.
321 	 * And let's rather not kmap-atomic the pte, just in case
322 	 * it's allocated already:
323 	 */
324 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
325 		goto out;
326 
327 	pte = pte_offset_kernel(pmd, address);
328 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329 out:
330 	pr_cont("\n");
331 }
332 
333 #else /* CONFIG_X86_64: */
334 
335 void vmalloc_sync_all(void)
336 {
337 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
338 }
339 
340 /*
341  * 64-bit:
342  *
343  *   Handle a fault on the vmalloc area
344  */
345 static noinline int vmalloc_fault(unsigned long address)
346 {
347 	pgd_t *pgd, *pgd_k;
348 	p4d_t *p4d, *p4d_k;
349 	pud_t *pud;
350 	pmd_t *pmd;
351 	pte_t *pte;
352 
353 	/* Make sure we are in vmalloc area: */
354 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
355 		return -1;
356 
357 	WARN_ON_ONCE(in_nmi());
358 
359 	/*
360 	 * Copy kernel mappings over when needed. This can also
361 	 * happen within a race in page table update. In the later
362 	 * case just flush:
363 	 */
364 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
365 	pgd_k = pgd_offset_k(address);
366 	if (pgd_none(*pgd_k))
367 		return -1;
368 
369 	if (pgtable_l5_enabled()) {
370 		if (pgd_none(*pgd)) {
371 			set_pgd(pgd, *pgd_k);
372 			arch_flush_lazy_mmu_mode();
373 		} else {
374 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
375 		}
376 	}
377 
378 	/* With 4-level paging, copying happens on the p4d level. */
379 	p4d = p4d_offset(pgd, address);
380 	p4d_k = p4d_offset(pgd_k, address);
381 	if (p4d_none(*p4d_k))
382 		return -1;
383 
384 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
385 		set_p4d(p4d, *p4d_k);
386 		arch_flush_lazy_mmu_mode();
387 	} else {
388 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
389 	}
390 
391 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
392 
393 	pud = pud_offset(p4d, address);
394 	if (pud_none(*pud))
395 		return -1;
396 
397 	if (pud_large(*pud))
398 		return 0;
399 
400 	pmd = pmd_offset(pud, address);
401 	if (pmd_none(*pmd))
402 		return -1;
403 
404 	if (pmd_large(*pmd))
405 		return 0;
406 
407 	pte = pte_offset_kernel(pmd, address);
408 	if (!pte_present(*pte))
409 		return -1;
410 
411 	return 0;
412 }
413 NOKPROBE_SYMBOL(vmalloc_fault);
414 
415 #ifdef CONFIG_CPU_SUP_AMD
416 static const char errata93_warning[] =
417 KERN_ERR
418 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
419 "******* Working around it, but it may cause SEGVs or burn power.\n"
420 "******* Please consider a BIOS update.\n"
421 "******* Disabling USB legacy in the BIOS may also help.\n";
422 #endif
423 
424 /*
425  * No vm86 mode in 64-bit mode:
426  */
427 static inline void
428 check_v8086_mode(struct pt_regs *regs, unsigned long address,
429 		 struct task_struct *tsk)
430 {
431 }
432 
433 static int bad_address(void *p)
434 {
435 	unsigned long dummy;
436 
437 	return probe_kernel_address((unsigned long *)p, dummy);
438 }
439 
440 static void dump_pagetable(unsigned long address)
441 {
442 	pgd_t *base = __va(read_cr3_pa());
443 	pgd_t *pgd = base + pgd_index(address);
444 	p4d_t *p4d;
445 	pud_t *pud;
446 	pmd_t *pmd;
447 	pte_t *pte;
448 
449 	if (bad_address(pgd))
450 		goto bad;
451 
452 	pr_info("PGD %lx ", pgd_val(*pgd));
453 
454 	if (!pgd_present(*pgd))
455 		goto out;
456 
457 	p4d = p4d_offset(pgd, address);
458 	if (bad_address(p4d))
459 		goto bad;
460 
461 	pr_cont("P4D %lx ", p4d_val(*p4d));
462 	if (!p4d_present(*p4d) || p4d_large(*p4d))
463 		goto out;
464 
465 	pud = pud_offset(p4d, address);
466 	if (bad_address(pud))
467 		goto bad;
468 
469 	pr_cont("PUD %lx ", pud_val(*pud));
470 	if (!pud_present(*pud) || pud_large(*pud))
471 		goto out;
472 
473 	pmd = pmd_offset(pud, address);
474 	if (bad_address(pmd))
475 		goto bad;
476 
477 	pr_cont("PMD %lx ", pmd_val(*pmd));
478 	if (!pmd_present(*pmd) || pmd_large(*pmd))
479 		goto out;
480 
481 	pte = pte_offset_kernel(pmd, address);
482 	if (bad_address(pte))
483 		goto bad;
484 
485 	pr_cont("PTE %lx", pte_val(*pte));
486 out:
487 	pr_cont("\n");
488 	return;
489 bad:
490 	pr_info("BAD\n");
491 }
492 
493 #endif /* CONFIG_X86_64 */
494 
495 /*
496  * Workaround for K8 erratum #93 & buggy BIOS.
497  *
498  * BIOS SMM functions are required to use a specific workaround
499  * to avoid corruption of the 64bit RIP register on C stepping K8.
500  *
501  * A lot of BIOS that didn't get tested properly miss this.
502  *
503  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
504  * Try to work around it here.
505  *
506  * Note we only handle faults in kernel here.
507  * Does nothing on 32-bit.
508  */
509 static int is_errata93(struct pt_regs *regs, unsigned long address)
510 {
511 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
512 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
513 	    || boot_cpu_data.x86 != 0xf)
514 		return 0;
515 
516 	if (address != regs->ip)
517 		return 0;
518 
519 	if ((address >> 32) != 0)
520 		return 0;
521 
522 	address |= 0xffffffffUL << 32;
523 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
524 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
525 		printk_once(errata93_warning);
526 		regs->ip = address;
527 		return 1;
528 	}
529 #endif
530 	return 0;
531 }
532 
533 /*
534  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
535  * to illegal addresses >4GB.
536  *
537  * We catch this in the page fault handler because these addresses
538  * are not reachable. Just detect this case and return.  Any code
539  * segment in LDT is compatibility mode.
540  */
541 static int is_errata100(struct pt_regs *regs, unsigned long address)
542 {
543 #ifdef CONFIG_X86_64
544 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
545 		return 1;
546 #endif
547 	return 0;
548 }
549 
550 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
551 {
552 #ifdef CONFIG_X86_F00F_BUG
553 	unsigned long nr;
554 
555 	/*
556 	 * Pentium F0 0F C7 C8 bug workaround:
557 	 */
558 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
559 		nr = (address - idt_descr.address) >> 3;
560 
561 		if (nr == 6) {
562 			do_invalid_op(regs, 0);
563 			return 1;
564 		}
565 	}
566 #endif
567 	return 0;
568 }
569 
570 static void
571 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
572 		unsigned long address)
573 {
574 	if (!oops_may_print())
575 		return;
576 
577 	if (error_code & X86_PF_INSTR) {
578 		unsigned int level;
579 		pgd_t *pgd;
580 		pte_t *pte;
581 
582 		pgd = __va(read_cr3_pa());
583 		pgd += pgd_index(address);
584 
585 		pte = lookup_address_in_pgd(pgd, address, &level);
586 
587 		if (pte && pte_present(*pte) && !pte_exec(*pte))
588 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
589 				from_kuid(&init_user_ns, current_uid()));
590 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
591 				(pgd_flags(*pgd) & _PAGE_USER) &&
592 				(__read_cr4() & X86_CR4_SMEP))
593 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
594 				from_kuid(&init_user_ns, current_uid()));
595 	}
596 
597 	pr_alert("BUG: unable to handle kernel %s at %px\n",
598 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
599 		 (void *)address);
600 
601 	dump_pagetable(address);
602 }
603 
604 static noinline void
605 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 	    unsigned long address)
607 {
608 	struct task_struct *tsk;
609 	unsigned long flags;
610 	int sig;
611 
612 	flags = oops_begin();
613 	tsk = current;
614 	sig = SIGKILL;
615 
616 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 	       tsk->comm, address);
618 	dump_pagetable(address);
619 
620 	tsk->thread.cr2		= address;
621 	tsk->thread.trap_nr	= X86_TRAP_PF;
622 	tsk->thread.error_code	= error_code;
623 
624 	if (__die("Bad pagetable", regs, error_code))
625 		sig = 0;
626 
627 	oops_end(flags, regs, sig);
628 }
629 
630 static noinline void
631 no_context(struct pt_regs *regs, unsigned long error_code,
632 	   unsigned long address, int signal, int si_code)
633 {
634 	struct task_struct *tsk = current;
635 	unsigned long flags;
636 	int sig;
637 
638 	/* Are we prepared to handle this kernel fault? */
639 	if (fixup_exception(regs, X86_TRAP_PF)) {
640 		/*
641 		 * Any interrupt that takes a fault gets the fixup. This makes
642 		 * the below recursive fault logic only apply to a faults from
643 		 * task context.
644 		 */
645 		if (in_interrupt())
646 			return;
647 
648 		/*
649 		 * Per the above we're !in_interrupt(), aka. task context.
650 		 *
651 		 * In this case we need to make sure we're not recursively
652 		 * faulting through the emulate_vsyscall() logic.
653 		 */
654 		if (current->thread.sig_on_uaccess_err && signal) {
655 			tsk->thread.trap_nr = X86_TRAP_PF;
656 			tsk->thread.error_code = error_code | X86_PF_USER;
657 			tsk->thread.cr2 = address;
658 
659 			/* XXX: hwpoison faults will set the wrong code. */
660 			force_sig_fault(signal, si_code, (void __user *)address,
661 					tsk);
662 		}
663 
664 		/*
665 		 * Barring that, we can do the fixup and be happy.
666 		 */
667 		return;
668 	}
669 
670 #ifdef CONFIG_VMAP_STACK
671 	/*
672 	 * Stack overflow?  During boot, we can fault near the initial
673 	 * stack in the direct map, but that's not an overflow -- check
674 	 * that we're in vmalloc space to avoid this.
675 	 */
676 	if (is_vmalloc_addr((void *)address) &&
677 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
678 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
679 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
680 		/*
681 		 * We're likely to be running with very little stack space
682 		 * left.  It's plausible that we'd hit this condition but
683 		 * double-fault even before we get this far, in which case
684 		 * we're fine: the double-fault handler will deal with it.
685 		 *
686 		 * We don't want to make it all the way into the oops code
687 		 * and then double-fault, though, because we're likely to
688 		 * break the console driver and lose most of the stack dump.
689 		 */
690 		asm volatile ("movq %[stack], %%rsp\n\t"
691 			      "call handle_stack_overflow\n\t"
692 			      "1: jmp 1b"
693 			      : ASM_CALL_CONSTRAINT
694 			      : "D" ("kernel stack overflow (page fault)"),
695 				"S" (regs), "d" (address),
696 				[stack] "rm" (stack));
697 		unreachable();
698 	}
699 #endif
700 
701 	/*
702 	 * 32-bit:
703 	 *
704 	 *   Valid to do another page fault here, because if this fault
705 	 *   had been triggered by is_prefetch fixup_exception would have
706 	 *   handled it.
707 	 *
708 	 * 64-bit:
709 	 *
710 	 *   Hall of shame of CPU/BIOS bugs.
711 	 */
712 	if (is_prefetch(regs, error_code, address))
713 		return;
714 
715 	if (is_errata93(regs, address))
716 		return;
717 
718 	/*
719 	 * Oops. The kernel tried to access some bad page. We'll have to
720 	 * terminate things with extreme prejudice:
721 	 */
722 	flags = oops_begin();
723 
724 	show_fault_oops(regs, error_code, address);
725 
726 	if (task_stack_end_corrupted(tsk))
727 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
728 
729 	tsk->thread.cr2		= address;
730 	tsk->thread.trap_nr	= X86_TRAP_PF;
731 	tsk->thread.error_code	= error_code;
732 
733 	sig = SIGKILL;
734 	if (__die("Oops", regs, error_code))
735 		sig = 0;
736 
737 	/* Executive summary in case the body of the oops scrolled away */
738 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
739 
740 	oops_end(flags, regs, sig);
741 }
742 
743 /*
744  * Print out info about fatal segfaults, if the show_unhandled_signals
745  * sysctl is set:
746  */
747 static inline void
748 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
749 		unsigned long address, struct task_struct *tsk)
750 {
751 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
752 
753 	if (!unhandled_signal(tsk, SIGSEGV))
754 		return;
755 
756 	if (!printk_ratelimit())
757 		return;
758 
759 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
760 		loglvl, tsk->comm, task_pid_nr(tsk), address,
761 		(void *)regs->ip, (void *)regs->sp, error_code);
762 
763 	print_vma_addr(KERN_CONT " in ", regs->ip);
764 
765 	printk(KERN_CONT "\n");
766 
767 	show_opcodes((u8 *)regs->ip, loglvl);
768 }
769 
770 static void
771 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
772 		       unsigned long address, u32 *pkey, int si_code)
773 {
774 	struct task_struct *tsk = current;
775 
776 	/* User mode accesses just cause a SIGSEGV */
777 	if (error_code & X86_PF_USER) {
778 		/*
779 		 * It's possible to have interrupts off here:
780 		 */
781 		local_irq_enable();
782 
783 		/*
784 		 * Valid to do another page fault here because this one came
785 		 * from user space:
786 		 */
787 		if (is_prefetch(regs, error_code, address))
788 			return;
789 
790 		if (is_errata100(regs, address))
791 			return;
792 
793 #ifdef CONFIG_X86_64
794 		/*
795 		 * Instruction fetch faults in the vsyscall page might need
796 		 * emulation.
797 		 */
798 		if (unlikely((error_code & X86_PF_INSTR) &&
799 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
800 			if (emulate_vsyscall(regs, address))
801 				return;
802 		}
803 #endif
804 
805 		/*
806 		 * To avoid leaking information about the kernel page table
807 		 * layout, pretend that user-mode accesses to kernel addresses
808 		 * are always protection faults.
809 		 */
810 		if (address >= TASK_SIZE_MAX)
811 			error_code |= X86_PF_PROT;
812 
813 		if (likely(show_unhandled_signals))
814 			show_signal_msg(regs, error_code, address, tsk);
815 
816 		tsk->thread.cr2		= address;
817 		tsk->thread.error_code	= error_code;
818 		tsk->thread.trap_nr	= X86_TRAP_PF;
819 
820 		if (si_code == SEGV_PKUERR)
821 			force_sig_pkuerr((void __user *)address, *pkey);
822 
823 		force_sig_fault(SIGSEGV, si_code, (void __user *)address, tsk);
824 
825 		return;
826 	}
827 
828 	if (is_f00f_bug(regs, address))
829 		return;
830 
831 	no_context(regs, error_code, address, SIGSEGV, si_code);
832 }
833 
834 static noinline void
835 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
836 		     unsigned long address)
837 {
838 	__bad_area_nosemaphore(regs, error_code, address, NULL, SEGV_MAPERR);
839 }
840 
841 static void
842 __bad_area(struct pt_regs *regs, unsigned long error_code,
843 	   unsigned long address, u32 *pkey, int si_code)
844 {
845 	struct mm_struct *mm = current->mm;
846 	/*
847 	 * Something tried to access memory that isn't in our memory map..
848 	 * Fix it, but check if it's kernel or user first..
849 	 */
850 	up_read(&mm->mmap_sem);
851 
852 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
853 }
854 
855 static noinline void
856 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
857 {
858 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
859 }
860 
861 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
862 		struct vm_area_struct *vma)
863 {
864 	/* This code is always called on the current mm */
865 	bool foreign = false;
866 
867 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
868 		return false;
869 	if (error_code & X86_PF_PK)
870 		return true;
871 	/* this checks permission keys on the VMA: */
872 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
873 				       (error_code & X86_PF_INSTR), foreign))
874 		return true;
875 	return false;
876 }
877 
878 static noinline void
879 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
880 		      unsigned long address, struct vm_area_struct *vma)
881 {
882 	/*
883 	 * This OSPKE check is not strictly necessary at runtime.
884 	 * But, doing it this way allows compiler optimizations
885 	 * if pkeys are compiled out.
886 	 */
887 	if (bad_area_access_from_pkeys(error_code, vma)) {
888 		/*
889 		 * A protection key fault means that the PKRU value did not allow
890 		 * access to some PTE.  Userspace can figure out what PKRU was
891 		 * from the XSAVE state.  This function captures the pkey from
892 		 * the vma and passes it to userspace so userspace can discover
893 		 * which protection key was set on the PTE.
894 		 *
895 		 * If we get here, we know that the hardware signaled a X86_PF_PK
896 		 * fault and that there was a VMA once we got in the fault
897 		 * handler.  It does *not* guarantee that the VMA we find here
898 		 * was the one that we faulted on.
899 		 *
900 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
901 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
902 		 * 3. T1   : faults...
903 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
904 		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
905 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
906 		 *	     faulted on a pte with its pkey=4.
907 		 */
908 		u32 pkey = vma_pkey(vma);
909 
910 		__bad_area(regs, error_code, address, &pkey, SEGV_PKUERR);
911 	} else {
912 		__bad_area(regs, error_code, address, NULL, SEGV_ACCERR);
913 	}
914 }
915 
916 static void
917 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
918 	  unsigned int fault)
919 {
920 	struct task_struct *tsk = current;
921 
922 	/* Kernel mode? Handle exceptions or die: */
923 	if (!(error_code & X86_PF_USER)) {
924 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
925 		return;
926 	}
927 
928 	/* User-space => ok to do another page fault: */
929 	if (is_prefetch(regs, error_code, address))
930 		return;
931 
932 	tsk->thread.cr2		= address;
933 	tsk->thread.error_code	= error_code;
934 	tsk->thread.trap_nr	= X86_TRAP_PF;
935 
936 #ifdef CONFIG_MEMORY_FAILURE
937 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
938 		unsigned lsb = 0;
939 
940 		pr_err(
941 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
942 			tsk->comm, tsk->pid, address);
943 		if (fault & VM_FAULT_HWPOISON_LARGE)
944 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
945 		if (fault & VM_FAULT_HWPOISON)
946 			lsb = PAGE_SHIFT;
947 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, tsk);
948 		return;
949 	}
950 #endif
951 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, tsk);
952 }
953 
954 static noinline void
955 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
956 	       unsigned long address, vm_fault_t fault)
957 {
958 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
959 		no_context(regs, error_code, address, 0, 0);
960 		return;
961 	}
962 
963 	if (fault & VM_FAULT_OOM) {
964 		/* Kernel mode? Handle exceptions or die: */
965 		if (!(error_code & X86_PF_USER)) {
966 			no_context(regs, error_code, address,
967 				   SIGSEGV, SEGV_MAPERR);
968 			return;
969 		}
970 
971 		/*
972 		 * We ran out of memory, call the OOM killer, and return the
973 		 * userspace (which will retry the fault, or kill us if we got
974 		 * oom-killed):
975 		 */
976 		pagefault_out_of_memory();
977 	} else {
978 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
979 			     VM_FAULT_HWPOISON_LARGE))
980 			do_sigbus(regs, error_code, address, fault);
981 		else if (fault & VM_FAULT_SIGSEGV)
982 			bad_area_nosemaphore(regs, error_code, address);
983 		else
984 			BUG();
985 	}
986 }
987 
988 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
989 {
990 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
991 		return 0;
992 
993 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
994 		return 0;
995 	/*
996 	 * Note: We do not do lazy flushing on protection key
997 	 * changes, so no spurious fault will ever set X86_PF_PK.
998 	 */
999 	if ((error_code & X86_PF_PK))
1000 		return 1;
1001 
1002 	return 1;
1003 }
1004 
1005 /*
1006  * Handle a spurious fault caused by a stale TLB entry.
1007  *
1008  * This allows us to lazily refresh the TLB when increasing the
1009  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1010  * eagerly is very expensive since that implies doing a full
1011  * cross-processor TLB flush, even if no stale TLB entries exist
1012  * on other processors.
1013  *
1014  * Spurious faults may only occur if the TLB contains an entry with
1015  * fewer permission than the page table entry.  Non-present (P = 0)
1016  * and reserved bit (R = 1) faults are never spurious.
1017  *
1018  * There are no security implications to leaving a stale TLB when
1019  * increasing the permissions on a page.
1020  *
1021  * Returns non-zero if a spurious fault was handled, zero otherwise.
1022  *
1023  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1024  * (Optional Invalidation).
1025  */
1026 static noinline int
1027 spurious_fault(unsigned long error_code, unsigned long address)
1028 {
1029 	pgd_t *pgd;
1030 	p4d_t *p4d;
1031 	pud_t *pud;
1032 	pmd_t *pmd;
1033 	pte_t *pte;
1034 	int ret;
1035 
1036 	/*
1037 	 * Only writes to RO or instruction fetches from NX may cause
1038 	 * spurious faults.
1039 	 *
1040 	 * These could be from user or supervisor accesses but the TLB
1041 	 * is only lazily flushed after a kernel mapping protection
1042 	 * change, so user accesses are not expected to cause spurious
1043 	 * faults.
1044 	 */
1045 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1046 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1047 		return 0;
1048 
1049 	pgd = init_mm.pgd + pgd_index(address);
1050 	if (!pgd_present(*pgd))
1051 		return 0;
1052 
1053 	p4d = p4d_offset(pgd, address);
1054 	if (!p4d_present(*p4d))
1055 		return 0;
1056 
1057 	if (p4d_large(*p4d))
1058 		return spurious_fault_check(error_code, (pte_t *) p4d);
1059 
1060 	pud = pud_offset(p4d, address);
1061 	if (!pud_present(*pud))
1062 		return 0;
1063 
1064 	if (pud_large(*pud))
1065 		return spurious_fault_check(error_code, (pte_t *) pud);
1066 
1067 	pmd = pmd_offset(pud, address);
1068 	if (!pmd_present(*pmd))
1069 		return 0;
1070 
1071 	if (pmd_large(*pmd))
1072 		return spurious_fault_check(error_code, (pte_t *) pmd);
1073 
1074 	pte = pte_offset_kernel(pmd, address);
1075 	if (!pte_present(*pte))
1076 		return 0;
1077 
1078 	ret = spurious_fault_check(error_code, pte);
1079 	if (!ret)
1080 		return 0;
1081 
1082 	/*
1083 	 * Make sure we have permissions in PMD.
1084 	 * If not, then there's a bug in the page tables:
1085 	 */
1086 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1087 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1088 
1089 	return ret;
1090 }
1091 NOKPROBE_SYMBOL(spurious_fault);
1092 
1093 int show_unhandled_signals = 1;
1094 
1095 static inline int
1096 access_error(unsigned long error_code, struct vm_area_struct *vma)
1097 {
1098 	/* This is only called for the current mm, so: */
1099 	bool foreign = false;
1100 
1101 	/*
1102 	 * Read or write was blocked by protection keys.  This is
1103 	 * always an unconditional error and can never result in
1104 	 * a follow-up action to resolve the fault, like a COW.
1105 	 */
1106 	if (error_code & X86_PF_PK)
1107 		return 1;
1108 
1109 	/*
1110 	 * Make sure to check the VMA so that we do not perform
1111 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1112 	 * page.
1113 	 */
1114 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1115 				       (error_code & X86_PF_INSTR), foreign))
1116 		return 1;
1117 
1118 	if (error_code & X86_PF_WRITE) {
1119 		/* write, present and write, not present: */
1120 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1121 			return 1;
1122 		return 0;
1123 	}
1124 
1125 	/* read, present: */
1126 	if (unlikely(error_code & X86_PF_PROT))
1127 		return 1;
1128 
1129 	/* read, not present: */
1130 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1131 		return 1;
1132 
1133 	return 0;
1134 }
1135 
1136 static int fault_in_kernel_space(unsigned long address)
1137 {
1138 	return address >= TASK_SIZE_MAX;
1139 }
1140 
1141 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1142 {
1143 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1144 		return false;
1145 
1146 	if (!static_cpu_has(X86_FEATURE_SMAP))
1147 		return false;
1148 
1149 	if (error_code & X86_PF_USER)
1150 		return false;
1151 
1152 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1153 		return false;
1154 
1155 	return true;
1156 }
1157 
1158 /*
1159  * This routine handles page faults.  It determines the address,
1160  * and the problem, and then passes it off to one of the appropriate
1161  * routines.
1162  */
1163 static noinline void
1164 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1165 		unsigned long address)
1166 {
1167 	struct vm_area_struct *vma;
1168 	struct task_struct *tsk;
1169 	struct mm_struct *mm;
1170 	vm_fault_t fault, major = 0;
1171 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1172 
1173 	tsk = current;
1174 	mm = tsk->mm;
1175 
1176 	prefetchw(&mm->mmap_sem);
1177 
1178 	if (unlikely(kmmio_fault(regs, address)))
1179 		return;
1180 
1181 	/*
1182 	 * We fault-in kernel-space virtual memory on-demand. The
1183 	 * 'reference' page table is init_mm.pgd.
1184 	 *
1185 	 * NOTE! We MUST NOT take any locks for this case. We may
1186 	 * be in an interrupt or a critical region, and should
1187 	 * only copy the information from the master page table,
1188 	 * nothing more.
1189 	 *
1190 	 * This verifies that the fault happens in kernel space
1191 	 * (error_code & 4) == 0, and that the fault was not a
1192 	 * protection error (error_code & 9) == 0.
1193 	 */
1194 	if (unlikely(fault_in_kernel_space(address))) {
1195 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1196 			if (vmalloc_fault(address) >= 0)
1197 				return;
1198 		}
1199 
1200 		/* Can handle a stale RO->RW TLB: */
1201 		if (spurious_fault(error_code, address))
1202 			return;
1203 
1204 		/* kprobes don't want to hook the spurious faults: */
1205 		if (kprobes_fault(regs))
1206 			return;
1207 		/*
1208 		 * Don't take the mm semaphore here. If we fixup a prefetch
1209 		 * fault we could otherwise deadlock:
1210 		 */
1211 		bad_area_nosemaphore(regs, error_code, address);
1212 
1213 		return;
1214 	}
1215 
1216 	/* kprobes don't want to hook the spurious faults: */
1217 	if (unlikely(kprobes_fault(regs)))
1218 		return;
1219 
1220 	if (unlikely(error_code & X86_PF_RSVD))
1221 		pgtable_bad(regs, error_code, address);
1222 
1223 	if (unlikely(smap_violation(error_code, regs))) {
1224 		bad_area_nosemaphore(regs, error_code, address);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * If we're in an interrupt, have no user context or are running
1230 	 * in a region with pagefaults disabled then we must not take the fault
1231 	 */
1232 	if (unlikely(faulthandler_disabled() || !mm)) {
1233 		bad_area_nosemaphore(regs, error_code, address);
1234 		return;
1235 	}
1236 
1237 	/*
1238 	 * It's safe to allow irq's after cr2 has been saved and the
1239 	 * vmalloc fault has been handled.
1240 	 *
1241 	 * User-mode registers count as a user access even for any
1242 	 * potential system fault or CPU buglet:
1243 	 */
1244 	if (user_mode(regs)) {
1245 		local_irq_enable();
1246 		error_code |= X86_PF_USER;
1247 		flags |= FAULT_FLAG_USER;
1248 	} else {
1249 		if (regs->flags & X86_EFLAGS_IF)
1250 			local_irq_enable();
1251 	}
1252 
1253 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1254 
1255 	if (error_code & X86_PF_WRITE)
1256 		flags |= FAULT_FLAG_WRITE;
1257 	if (error_code & X86_PF_INSTR)
1258 		flags |= FAULT_FLAG_INSTRUCTION;
1259 
1260 	/*
1261 	 * When running in the kernel we expect faults to occur only to
1262 	 * addresses in user space.  All other faults represent errors in
1263 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1264 	 * case of an erroneous fault occurring in a code path which already
1265 	 * holds mmap_sem we will deadlock attempting to validate the fault
1266 	 * against the address space.  Luckily the kernel only validly
1267 	 * references user space from well defined areas of code, which are
1268 	 * listed in the exceptions table.
1269 	 *
1270 	 * As the vast majority of faults will be valid we will only perform
1271 	 * the source reference check when there is a possibility of a
1272 	 * deadlock. Attempt to lock the address space, if we cannot we then
1273 	 * validate the source. If this is invalid we can skip the address
1274 	 * space check, thus avoiding the deadlock:
1275 	 */
1276 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1277 		if (!(error_code & X86_PF_USER) &&
1278 		    !search_exception_tables(regs->ip)) {
1279 			bad_area_nosemaphore(regs, error_code, address);
1280 			return;
1281 		}
1282 retry:
1283 		down_read(&mm->mmap_sem);
1284 	} else {
1285 		/*
1286 		 * The above down_read_trylock() might have succeeded in
1287 		 * which case we'll have missed the might_sleep() from
1288 		 * down_read():
1289 		 */
1290 		might_sleep();
1291 	}
1292 
1293 	vma = find_vma(mm, address);
1294 	if (unlikely(!vma)) {
1295 		bad_area(regs, error_code, address);
1296 		return;
1297 	}
1298 	if (likely(vma->vm_start <= address))
1299 		goto good_area;
1300 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1301 		bad_area(regs, error_code, address);
1302 		return;
1303 	}
1304 	if (error_code & X86_PF_USER) {
1305 		/*
1306 		 * Accessing the stack below %sp is always a bug.
1307 		 * The large cushion allows instructions like enter
1308 		 * and pusha to work. ("enter $65535, $31" pushes
1309 		 * 32 pointers and then decrements %sp by 65535.)
1310 		 */
1311 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1312 			bad_area(regs, error_code, address);
1313 			return;
1314 		}
1315 	}
1316 	if (unlikely(expand_stack(vma, address))) {
1317 		bad_area(regs, error_code, address);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * Ok, we have a good vm_area for this memory access, so
1323 	 * we can handle it..
1324 	 */
1325 good_area:
1326 	if (unlikely(access_error(error_code, vma))) {
1327 		bad_area_access_error(regs, error_code, address, vma);
1328 		return;
1329 	}
1330 
1331 	/*
1332 	 * If for any reason at all we couldn't handle the fault,
1333 	 * make sure we exit gracefully rather than endlessly redo
1334 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1335 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1336 	 *
1337 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1338 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1339 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1340 	 * (potentially after handling any pending signal during the return to
1341 	 * userland). The return to userland is identified whenever
1342 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1343 	 */
1344 	fault = handle_mm_fault(vma, address, flags);
1345 	major |= fault & VM_FAULT_MAJOR;
1346 
1347 	/*
1348 	 * If we need to retry the mmap_sem has already been released,
1349 	 * and if there is a fatal signal pending there is no guarantee
1350 	 * that we made any progress. Handle this case first.
1351 	 */
1352 	if (unlikely(fault & VM_FAULT_RETRY)) {
1353 		/* Retry at most once */
1354 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1355 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1356 			flags |= FAULT_FLAG_TRIED;
1357 			if (!fatal_signal_pending(tsk))
1358 				goto retry;
1359 		}
1360 
1361 		/* User mode? Just return to handle the fatal exception */
1362 		if (flags & FAULT_FLAG_USER)
1363 			return;
1364 
1365 		/* Not returning to user mode? Handle exceptions or die: */
1366 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1367 		return;
1368 	}
1369 
1370 	up_read(&mm->mmap_sem);
1371 	if (unlikely(fault & VM_FAULT_ERROR)) {
1372 		mm_fault_error(regs, error_code, address, fault);
1373 		return;
1374 	}
1375 
1376 	/*
1377 	 * Major/minor page fault accounting. If any of the events
1378 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1379 	 */
1380 	if (major) {
1381 		tsk->maj_flt++;
1382 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1383 	} else {
1384 		tsk->min_flt++;
1385 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1386 	}
1387 
1388 	check_v8086_mode(regs, address, tsk);
1389 }
1390 NOKPROBE_SYMBOL(__do_page_fault);
1391 
1392 static nokprobe_inline void
1393 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1394 			 unsigned long error_code)
1395 {
1396 	if (user_mode(regs))
1397 		trace_page_fault_user(address, regs, error_code);
1398 	else
1399 		trace_page_fault_kernel(address, regs, error_code);
1400 }
1401 
1402 /*
1403  * We must have this function blacklisted from kprobes, tagged with notrace
1404  * and call read_cr2() before calling anything else. To avoid calling any
1405  * kind of tracing machinery before we've observed the CR2 value.
1406  *
1407  * exception_{enter,exit}() contains all sorts of tracepoints.
1408  */
1409 dotraplinkage void notrace
1410 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1411 {
1412 	unsigned long address = read_cr2(); /* Get the faulting address */
1413 	enum ctx_state prev_state;
1414 
1415 	prev_state = exception_enter();
1416 	if (trace_pagefault_enabled())
1417 		trace_page_fault_entries(address, regs, error_code);
1418 
1419 	__do_page_fault(regs, error_code, address);
1420 	exception_exit(prev_state);
1421 }
1422 NOKPROBE_SYMBOL(do_page_fault);
1423