xref: /openbmc/linux/arch/x86/mm/fault.c (revision 7b2d0dbac4890c8ca4a8acc57709639fc8b158e9)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8 #include <linux/module.h>		/* search_exception_table	*/
9 #include <linux/bootmem.h>		/* max_low_pfn			*/
10 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12 #include <linux/perf_event.h>		/* perf_sw_event		*/
13 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14 #include <linux/prefetch.h>		/* prefetchw			*/
15 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
17 
18 #include <asm/traps.h>			/* dotraplinkage, ...		*/
19 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
20 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
21 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
22 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
23 #include <asm/vm86.h>			/* struct vm86			*/
24 
25 #define CREATE_TRACE_POINTS
26 #include <asm/trace/exceptions.h>
27 
28 /*
29  * Page fault error code bits:
30  *
31  *   bit 0 ==	 0: no page found	1: protection fault
32  *   bit 1 ==	 0: read access		1: write access
33  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
34  *   bit 3 ==				1: use of reserved bit detected
35  *   bit 4 ==				1: fault was an instruction fetch
36  *   bit 5 ==				1: protection keys block access
37  */
38 enum x86_pf_error_code {
39 
40 	PF_PROT		=		1 << 0,
41 	PF_WRITE	=		1 << 1,
42 	PF_USER		=		1 << 2,
43 	PF_RSVD		=		1 << 3,
44 	PF_INSTR	=		1 << 4,
45 	PF_PK		=		1 << 5,
46 };
47 
48 /*
49  * Returns 0 if mmiotrace is disabled, or if the fault is not
50  * handled by mmiotrace:
51  */
52 static nokprobe_inline int
53 kmmio_fault(struct pt_regs *regs, unsigned long addr)
54 {
55 	if (unlikely(is_kmmio_active()))
56 		if (kmmio_handler(regs, addr) == 1)
57 			return -1;
58 	return 0;
59 }
60 
61 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
62 {
63 	int ret = 0;
64 
65 	/* kprobe_running() needs smp_processor_id() */
66 	if (kprobes_built_in() && !user_mode(regs)) {
67 		preempt_disable();
68 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
69 			ret = 1;
70 		preempt_enable();
71 	}
72 
73 	return ret;
74 }
75 
76 /*
77  * Prefetch quirks:
78  *
79  * 32-bit mode:
80  *
81  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
82  *   Check that here and ignore it.
83  *
84  * 64-bit mode:
85  *
86  *   Sometimes the CPU reports invalid exceptions on prefetch.
87  *   Check that here and ignore it.
88  *
89  * Opcode checker based on code by Richard Brunner.
90  */
91 static inline int
92 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
93 		      unsigned char opcode, int *prefetch)
94 {
95 	unsigned char instr_hi = opcode & 0xf0;
96 	unsigned char instr_lo = opcode & 0x0f;
97 
98 	switch (instr_hi) {
99 	case 0x20:
100 	case 0x30:
101 		/*
102 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
103 		 * In X86_64 long mode, the CPU will signal invalid
104 		 * opcode if some of these prefixes are present so
105 		 * X86_64 will never get here anyway
106 		 */
107 		return ((instr_lo & 7) == 0x6);
108 #ifdef CONFIG_X86_64
109 	case 0x40:
110 		/*
111 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
112 		 * Need to figure out under what instruction mode the
113 		 * instruction was issued. Could check the LDT for lm,
114 		 * but for now it's good enough to assume that long
115 		 * mode only uses well known segments or kernel.
116 		 */
117 		return (!user_mode(regs) || user_64bit_mode(regs));
118 #endif
119 	case 0x60:
120 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
121 		return (instr_lo & 0xC) == 0x4;
122 	case 0xF0:
123 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
124 		return !instr_lo || (instr_lo>>1) == 1;
125 	case 0x00:
126 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
127 		if (probe_kernel_address(instr, opcode))
128 			return 0;
129 
130 		*prefetch = (instr_lo == 0xF) &&
131 			(opcode == 0x0D || opcode == 0x18);
132 		return 0;
133 	default:
134 		return 0;
135 	}
136 }
137 
138 static int
139 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
140 {
141 	unsigned char *max_instr;
142 	unsigned char *instr;
143 	int prefetch = 0;
144 
145 	/*
146 	 * If it was a exec (instruction fetch) fault on NX page, then
147 	 * do not ignore the fault:
148 	 */
149 	if (error_code & PF_INSTR)
150 		return 0;
151 
152 	instr = (void *)convert_ip_to_linear(current, regs);
153 	max_instr = instr + 15;
154 
155 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
156 		return 0;
157 
158 	while (instr < max_instr) {
159 		unsigned char opcode;
160 
161 		if (probe_kernel_address(instr, opcode))
162 			break;
163 
164 		instr++;
165 
166 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
167 			break;
168 	}
169 	return prefetch;
170 }
171 
172 static void
173 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
174 		     struct task_struct *tsk, struct vm_area_struct *vma,
175 		     int fault)
176 {
177 	unsigned lsb = 0;
178 	siginfo_t info;
179 
180 	info.si_signo	= si_signo;
181 	info.si_errno	= 0;
182 	info.si_code	= si_code;
183 	info.si_addr	= (void __user *)address;
184 	if (fault & VM_FAULT_HWPOISON_LARGE)
185 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
186 	if (fault & VM_FAULT_HWPOISON)
187 		lsb = PAGE_SHIFT;
188 	info.si_addr_lsb = lsb;
189 
190 	force_sig_info(si_signo, &info, tsk);
191 }
192 
193 DEFINE_SPINLOCK(pgd_lock);
194 LIST_HEAD(pgd_list);
195 
196 #ifdef CONFIG_X86_32
197 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
198 {
199 	unsigned index = pgd_index(address);
200 	pgd_t *pgd_k;
201 	pud_t *pud, *pud_k;
202 	pmd_t *pmd, *pmd_k;
203 
204 	pgd += index;
205 	pgd_k = init_mm.pgd + index;
206 
207 	if (!pgd_present(*pgd_k))
208 		return NULL;
209 
210 	/*
211 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
212 	 * and redundant with the set_pmd() on non-PAE. As would
213 	 * set_pud.
214 	 */
215 	pud = pud_offset(pgd, address);
216 	pud_k = pud_offset(pgd_k, address);
217 	if (!pud_present(*pud_k))
218 		return NULL;
219 
220 	pmd = pmd_offset(pud, address);
221 	pmd_k = pmd_offset(pud_k, address);
222 	if (!pmd_present(*pmd_k))
223 		return NULL;
224 
225 	if (!pmd_present(*pmd))
226 		set_pmd(pmd, *pmd_k);
227 	else
228 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
229 
230 	return pmd_k;
231 }
232 
233 void vmalloc_sync_all(void)
234 {
235 	unsigned long address;
236 
237 	if (SHARED_KERNEL_PMD)
238 		return;
239 
240 	for (address = VMALLOC_START & PMD_MASK;
241 	     address >= TASK_SIZE && address < FIXADDR_TOP;
242 	     address += PMD_SIZE) {
243 		struct page *page;
244 
245 		spin_lock(&pgd_lock);
246 		list_for_each_entry(page, &pgd_list, lru) {
247 			spinlock_t *pgt_lock;
248 			pmd_t *ret;
249 
250 			/* the pgt_lock only for Xen */
251 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
252 
253 			spin_lock(pgt_lock);
254 			ret = vmalloc_sync_one(page_address(page), address);
255 			spin_unlock(pgt_lock);
256 
257 			if (!ret)
258 				break;
259 		}
260 		spin_unlock(&pgd_lock);
261 	}
262 }
263 
264 /*
265  * 32-bit:
266  *
267  *   Handle a fault on the vmalloc or module mapping area
268  */
269 static noinline int vmalloc_fault(unsigned long address)
270 {
271 	unsigned long pgd_paddr;
272 	pmd_t *pmd_k;
273 	pte_t *pte_k;
274 
275 	/* Make sure we are in vmalloc area: */
276 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
277 		return -1;
278 
279 	WARN_ON_ONCE(in_nmi());
280 
281 	/*
282 	 * Synchronize this task's top level page-table
283 	 * with the 'reference' page table.
284 	 *
285 	 * Do _not_ use "current" here. We might be inside
286 	 * an interrupt in the middle of a task switch..
287 	 */
288 	pgd_paddr = read_cr3();
289 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
290 	if (!pmd_k)
291 		return -1;
292 
293 	pte_k = pte_offset_kernel(pmd_k, address);
294 	if (!pte_present(*pte_k))
295 		return -1;
296 
297 	return 0;
298 }
299 NOKPROBE_SYMBOL(vmalloc_fault);
300 
301 /*
302  * Did it hit the DOS screen memory VA from vm86 mode?
303  */
304 static inline void
305 check_v8086_mode(struct pt_regs *regs, unsigned long address,
306 		 struct task_struct *tsk)
307 {
308 #ifdef CONFIG_VM86
309 	unsigned long bit;
310 
311 	if (!v8086_mode(regs) || !tsk->thread.vm86)
312 		return;
313 
314 	bit = (address - 0xA0000) >> PAGE_SHIFT;
315 	if (bit < 32)
316 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
317 #endif
318 }
319 
320 static bool low_pfn(unsigned long pfn)
321 {
322 	return pfn < max_low_pfn;
323 }
324 
325 static void dump_pagetable(unsigned long address)
326 {
327 	pgd_t *base = __va(read_cr3());
328 	pgd_t *pgd = &base[pgd_index(address)];
329 	pmd_t *pmd;
330 	pte_t *pte;
331 
332 #ifdef CONFIG_X86_PAE
333 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
334 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
335 		goto out;
336 #endif
337 	pmd = pmd_offset(pud_offset(pgd, address), address);
338 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
339 
340 	/*
341 	 * We must not directly access the pte in the highpte
342 	 * case if the page table is located in highmem.
343 	 * And let's rather not kmap-atomic the pte, just in case
344 	 * it's allocated already:
345 	 */
346 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
347 		goto out;
348 
349 	pte = pte_offset_kernel(pmd, address);
350 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
351 out:
352 	printk("\n");
353 }
354 
355 #else /* CONFIG_X86_64: */
356 
357 void vmalloc_sync_all(void)
358 {
359 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
360 }
361 
362 /*
363  * 64-bit:
364  *
365  *   Handle a fault on the vmalloc area
366  *
367  * This assumes no large pages in there.
368  */
369 static noinline int vmalloc_fault(unsigned long address)
370 {
371 	pgd_t *pgd, *pgd_ref;
372 	pud_t *pud, *pud_ref;
373 	pmd_t *pmd, *pmd_ref;
374 	pte_t *pte, *pte_ref;
375 
376 	/* Make sure we are in vmalloc area: */
377 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
378 		return -1;
379 
380 	WARN_ON_ONCE(in_nmi());
381 
382 	/*
383 	 * Copy kernel mappings over when needed. This can also
384 	 * happen within a race in page table update. In the later
385 	 * case just flush:
386 	 */
387 	pgd = pgd_offset(current->active_mm, address);
388 	pgd_ref = pgd_offset_k(address);
389 	if (pgd_none(*pgd_ref))
390 		return -1;
391 
392 	if (pgd_none(*pgd)) {
393 		set_pgd(pgd, *pgd_ref);
394 		arch_flush_lazy_mmu_mode();
395 	} else {
396 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
397 	}
398 
399 	/*
400 	 * Below here mismatches are bugs because these lower tables
401 	 * are shared:
402 	 */
403 
404 	pud = pud_offset(pgd, address);
405 	pud_ref = pud_offset(pgd_ref, address);
406 	if (pud_none(*pud_ref))
407 		return -1;
408 
409 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
410 		BUG();
411 
412 	pmd = pmd_offset(pud, address);
413 	pmd_ref = pmd_offset(pud_ref, address);
414 	if (pmd_none(*pmd_ref))
415 		return -1;
416 
417 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
418 		BUG();
419 
420 	pte_ref = pte_offset_kernel(pmd_ref, address);
421 	if (!pte_present(*pte_ref))
422 		return -1;
423 
424 	pte = pte_offset_kernel(pmd, address);
425 
426 	/*
427 	 * Don't use pte_page here, because the mappings can point
428 	 * outside mem_map, and the NUMA hash lookup cannot handle
429 	 * that:
430 	 */
431 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
432 		BUG();
433 
434 	return 0;
435 }
436 NOKPROBE_SYMBOL(vmalloc_fault);
437 
438 #ifdef CONFIG_CPU_SUP_AMD
439 static const char errata93_warning[] =
440 KERN_ERR
441 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
442 "******* Working around it, but it may cause SEGVs or burn power.\n"
443 "******* Please consider a BIOS update.\n"
444 "******* Disabling USB legacy in the BIOS may also help.\n";
445 #endif
446 
447 /*
448  * No vm86 mode in 64-bit mode:
449  */
450 static inline void
451 check_v8086_mode(struct pt_regs *regs, unsigned long address,
452 		 struct task_struct *tsk)
453 {
454 }
455 
456 static int bad_address(void *p)
457 {
458 	unsigned long dummy;
459 
460 	return probe_kernel_address((unsigned long *)p, dummy);
461 }
462 
463 static void dump_pagetable(unsigned long address)
464 {
465 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
466 	pgd_t *pgd = base + pgd_index(address);
467 	pud_t *pud;
468 	pmd_t *pmd;
469 	pte_t *pte;
470 
471 	if (bad_address(pgd))
472 		goto bad;
473 
474 	printk("PGD %lx ", pgd_val(*pgd));
475 
476 	if (!pgd_present(*pgd))
477 		goto out;
478 
479 	pud = pud_offset(pgd, address);
480 	if (bad_address(pud))
481 		goto bad;
482 
483 	printk("PUD %lx ", pud_val(*pud));
484 	if (!pud_present(*pud) || pud_large(*pud))
485 		goto out;
486 
487 	pmd = pmd_offset(pud, address);
488 	if (bad_address(pmd))
489 		goto bad;
490 
491 	printk("PMD %lx ", pmd_val(*pmd));
492 	if (!pmd_present(*pmd) || pmd_large(*pmd))
493 		goto out;
494 
495 	pte = pte_offset_kernel(pmd, address);
496 	if (bad_address(pte))
497 		goto bad;
498 
499 	printk("PTE %lx", pte_val(*pte));
500 out:
501 	printk("\n");
502 	return;
503 bad:
504 	printk("BAD\n");
505 }
506 
507 #endif /* CONFIG_X86_64 */
508 
509 /*
510  * Workaround for K8 erratum #93 & buggy BIOS.
511  *
512  * BIOS SMM functions are required to use a specific workaround
513  * to avoid corruption of the 64bit RIP register on C stepping K8.
514  *
515  * A lot of BIOS that didn't get tested properly miss this.
516  *
517  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
518  * Try to work around it here.
519  *
520  * Note we only handle faults in kernel here.
521  * Does nothing on 32-bit.
522  */
523 static int is_errata93(struct pt_regs *regs, unsigned long address)
524 {
525 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
526 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
527 	    || boot_cpu_data.x86 != 0xf)
528 		return 0;
529 
530 	if (address != regs->ip)
531 		return 0;
532 
533 	if ((address >> 32) != 0)
534 		return 0;
535 
536 	address |= 0xffffffffUL << 32;
537 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
538 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
539 		printk_once(errata93_warning);
540 		regs->ip = address;
541 		return 1;
542 	}
543 #endif
544 	return 0;
545 }
546 
547 /*
548  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
549  * to illegal addresses >4GB.
550  *
551  * We catch this in the page fault handler because these addresses
552  * are not reachable. Just detect this case and return.  Any code
553  * segment in LDT is compatibility mode.
554  */
555 static int is_errata100(struct pt_regs *regs, unsigned long address)
556 {
557 #ifdef CONFIG_X86_64
558 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
559 		return 1;
560 #endif
561 	return 0;
562 }
563 
564 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
565 {
566 #ifdef CONFIG_X86_F00F_BUG
567 	unsigned long nr;
568 
569 	/*
570 	 * Pentium F0 0F C7 C8 bug workaround:
571 	 */
572 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
573 		nr = (address - idt_descr.address) >> 3;
574 
575 		if (nr == 6) {
576 			do_invalid_op(regs, 0);
577 			return 1;
578 		}
579 	}
580 #endif
581 	return 0;
582 }
583 
584 static const char nx_warning[] = KERN_CRIT
585 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
586 static const char smep_warning[] = KERN_CRIT
587 "unable to execute userspace code (SMEP?) (uid: %d)\n";
588 
589 static void
590 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
591 		unsigned long address)
592 {
593 	if (!oops_may_print())
594 		return;
595 
596 	if (error_code & PF_INSTR) {
597 		unsigned int level;
598 		pgd_t *pgd;
599 		pte_t *pte;
600 
601 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
602 		pgd += pgd_index(address);
603 
604 		pte = lookup_address_in_pgd(pgd, address, &level);
605 
606 		if (pte && pte_present(*pte) && !pte_exec(*pte))
607 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
608 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
609 				(pgd_flags(*pgd) & _PAGE_USER) &&
610 				(__read_cr4() & X86_CR4_SMEP))
611 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
612 	}
613 
614 	printk(KERN_ALERT "BUG: unable to handle kernel ");
615 	if (address < PAGE_SIZE)
616 		printk(KERN_CONT "NULL pointer dereference");
617 	else
618 		printk(KERN_CONT "paging request");
619 
620 	printk(KERN_CONT " at %p\n", (void *) address);
621 	printk(KERN_ALERT "IP:");
622 	printk_address(regs->ip);
623 
624 	dump_pagetable(address);
625 }
626 
627 static noinline void
628 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
629 	    unsigned long address)
630 {
631 	struct task_struct *tsk;
632 	unsigned long flags;
633 	int sig;
634 
635 	flags = oops_begin();
636 	tsk = current;
637 	sig = SIGKILL;
638 
639 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
640 	       tsk->comm, address);
641 	dump_pagetable(address);
642 
643 	tsk->thread.cr2		= address;
644 	tsk->thread.trap_nr	= X86_TRAP_PF;
645 	tsk->thread.error_code	= error_code;
646 
647 	if (__die("Bad pagetable", regs, error_code))
648 		sig = 0;
649 
650 	oops_end(flags, regs, sig);
651 }
652 
653 static noinline void
654 no_context(struct pt_regs *regs, unsigned long error_code,
655 	   unsigned long address, int signal, int si_code)
656 {
657 	struct task_struct *tsk = current;
658 	unsigned long flags;
659 	int sig;
660 	/* No context means no VMA to pass down */
661 	struct vm_area_struct *vma = NULL;
662 
663 	/* Are we prepared to handle this kernel fault? */
664 	if (fixup_exception(regs)) {
665 		/*
666 		 * Any interrupt that takes a fault gets the fixup. This makes
667 		 * the below recursive fault logic only apply to a faults from
668 		 * task context.
669 		 */
670 		if (in_interrupt())
671 			return;
672 
673 		/*
674 		 * Per the above we're !in_interrupt(), aka. task context.
675 		 *
676 		 * In this case we need to make sure we're not recursively
677 		 * faulting through the emulate_vsyscall() logic.
678 		 */
679 		if (current_thread_info()->sig_on_uaccess_error && signal) {
680 			tsk->thread.trap_nr = X86_TRAP_PF;
681 			tsk->thread.error_code = error_code | PF_USER;
682 			tsk->thread.cr2 = address;
683 
684 			/* XXX: hwpoison faults will set the wrong code. */
685 			force_sig_info_fault(signal, si_code, address,
686 					     tsk, vma, 0);
687 		}
688 
689 		/*
690 		 * Barring that, we can do the fixup and be happy.
691 		 */
692 		return;
693 	}
694 
695 	/*
696 	 * 32-bit:
697 	 *
698 	 *   Valid to do another page fault here, because if this fault
699 	 *   had been triggered by is_prefetch fixup_exception would have
700 	 *   handled it.
701 	 *
702 	 * 64-bit:
703 	 *
704 	 *   Hall of shame of CPU/BIOS bugs.
705 	 */
706 	if (is_prefetch(regs, error_code, address))
707 		return;
708 
709 	if (is_errata93(regs, address))
710 		return;
711 
712 	/*
713 	 * Oops. The kernel tried to access some bad page. We'll have to
714 	 * terminate things with extreme prejudice:
715 	 */
716 	flags = oops_begin();
717 
718 	show_fault_oops(regs, error_code, address);
719 
720 	if (task_stack_end_corrupted(tsk))
721 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
722 
723 	tsk->thread.cr2		= address;
724 	tsk->thread.trap_nr	= X86_TRAP_PF;
725 	tsk->thread.error_code	= error_code;
726 
727 	sig = SIGKILL;
728 	if (__die("Oops", regs, error_code))
729 		sig = 0;
730 
731 	/* Executive summary in case the body of the oops scrolled away */
732 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
733 
734 	oops_end(flags, regs, sig);
735 }
736 
737 /*
738  * Print out info about fatal segfaults, if the show_unhandled_signals
739  * sysctl is set:
740  */
741 static inline void
742 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
743 		unsigned long address, struct task_struct *tsk)
744 {
745 	if (!unhandled_signal(tsk, SIGSEGV))
746 		return;
747 
748 	if (!printk_ratelimit())
749 		return;
750 
751 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
752 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
753 		tsk->comm, task_pid_nr(tsk), address,
754 		(void *)regs->ip, (void *)regs->sp, error_code);
755 
756 	print_vma_addr(KERN_CONT " in ", regs->ip);
757 
758 	printk(KERN_CONT "\n");
759 }
760 
761 static void
762 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
763 		       unsigned long address, struct vm_area_struct *vma,
764 		       int si_code)
765 {
766 	struct task_struct *tsk = current;
767 
768 	/* User mode accesses just cause a SIGSEGV */
769 	if (error_code & PF_USER) {
770 		/*
771 		 * It's possible to have interrupts off here:
772 		 */
773 		local_irq_enable();
774 
775 		/*
776 		 * Valid to do another page fault here because this one came
777 		 * from user space:
778 		 */
779 		if (is_prefetch(regs, error_code, address))
780 			return;
781 
782 		if (is_errata100(regs, address))
783 			return;
784 
785 #ifdef CONFIG_X86_64
786 		/*
787 		 * Instruction fetch faults in the vsyscall page might need
788 		 * emulation.
789 		 */
790 		if (unlikely((error_code & PF_INSTR) &&
791 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
792 			if (emulate_vsyscall(regs, address))
793 				return;
794 		}
795 #endif
796 		/* Kernel addresses are always protection faults: */
797 		if (address >= TASK_SIZE)
798 			error_code |= PF_PROT;
799 
800 		if (likely(show_unhandled_signals))
801 			show_signal_msg(regs, error_code, address, tsk);
802 
803 		tsk->thread.cr2		= address;
804 		tsk->thread.error_code	= error_code;
805 		tsk->thread.trap_nr	= X86_TRAP_PF;
806 
807 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
808 
809 		return;
810 	}
811 
812 	if (is_f00f_bug(regs, address))
813 		return;
814 
815 	no_context(regs, error_code, address, SIGSEGV, si_code);
816 }
817 
818 static noinline void
819 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
820 		     unsigned long address, struct vm_area_struct *vma)
821 {
822 	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
823 }
824 
825 static void
826 __bad_area(struct pt_regs *regs, unsigned long error_code,
827 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
828 {
829 	struct mm_struct *mm = current->mm;
830 
831 	/*
832 	 * Something tried to access memory that isn't in our memory map..
833 	 * Fix it, but check if it's kernel or user first..
834 	 */
835 	up_read(&mm->mmap_sem);
836 
837 	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
838 }
839 
840 static noinline void
841 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
842 {
843 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
844 }
845 
846 static noinline void
847 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
848 		      unsigned long address, struct vm_area_struct *vma)
849 {
850 	__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
851 }
852 
853 static void
854 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
855 	  struct vm_area_struct *vma, unsigned int fault)
856 {
857 	struct task_struct *tsk = current;
858 	int code = BUS_ADRERR;
859 
860 	/* Kernel mode? Handle exceptions or die: */
861 	if (!(error_code & PF_USER)) {
862 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
863 		return;
864 	}
865 
866 	/* User-space => ok to do another page fault: */
867 	if (is_prefetch(regs, error_code, address))
868 		return;
869 
870 	tsk->thread.cr2		= address;
871 	tsk->thread.error_code	= error_code;
872 	tsk->thread.trap_nr	= X86_TRAP_PF;
873 
874 #ifdef CONFIG_MEMORY_FAILURE
875 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
876 		printk(KERN_ERR
877 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
878 			tsk->comm, tsk->pid, address);
879 		code = BUS_MCEERR_AR;
880 	}
881 #endif
882 	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
883 }
884 
885 static noinline void
886 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
887 	       unsigned long address, struct vm_area_struct *vma,
888 	       unsigned int fault)
889 {
890 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
891 		no_context(regs, error_code, address, 0, 0);
892 		return;
893 	}
894 
895 	if (fault & VM_FAULT_OOM) {
896 		/* Kernel mode? Handle exceptions or die: */
897 		if (!(error_code & PF_USER)) {
898 			no_context(regs, error_code, address,
899 				   SIGSEGV, SEGV_MAPERR);
900 			return;
901 		}
902 
903 		/*
904 		 * We ran out of memory, call the OOM killer, and return the
905 		 * userspace (which will retry the fault, or kill us if we got
906 		 * oom-killed):
907 		 */
908 		pagefault_out_of_memory();
909 	} else {
910 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
911 			     VM_FAULT_HWPOISON_LARGE))
912 			do_sigbus(regs, error_code, address, vma, fault);
913 		else if (fault & VM_FAULT_SIGSEGV)
914 			bad_area_nosemaphore(regs, error_code, address, vma);
915 		else
916 			BUG();
917 	}
918 }
919 
920 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
921 {
922 	if ((error_code & PF_WRITE) && !pte_write(*pte))
923 		return 0;
924 
925 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
926 		return 0;
927 	/*
928 	 * Note: We do not do lazy flushing on protection key
929 	 * changes, so no spurious fault will ever set PF_PK.
930 	 */
931 	if ((error_code & PF_PK))
932 		return 1;
933 
934 	return 1;
935 }
936 
937 /*
938  * Handle a spurious fault caused by a stale TLB entry.
939  *
940  * This allows us to lazily refresh the TLB when increasing the
941  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
942  * eagerly is very expensive since that implies doing a full
943  * cross-processor TLB flush, even if no stale TLB entries exist
944  * on other processors.
945  *
946  * Spurious faults may only occur if the TLB contains an entry with
947  * fewer permission than the page table entry.  Non-present (P = 0)
948  * and reserved bit (R = 1) faults are never spurious.
949  *
950  * There are no security implications to leaving a stale TLB when
951  * increasing the permissions on a page.
952  *
953  * Returns non-zero if a spurious fault was handled, zero otherwise.
954  *
955  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
956  * (Optional Invalidation).
957  */
958 static noinline int
959 spurious_fault(unsigned long error_code, unsigned long address)
960 {
961 	pgd_t *pgd;
962 	pud_t *pud;
963 	pmd_t *pmd;
964 	pte_t *pte;
965 	int ret;
966 
967 	/*
968 	 * Only writes to RO or instruction fetches from NX may cause
969 	 * spurious faults.
970 	 *
971 	 * These could be from user or supervisor accesses but the TLB
972 	 * is only lazily flushed after a kernel mapping protection
973 	 * change, so user accesses are not expected to cause spurious
974 	 * faults.
975 	 */
976 	if (error_code != (PF_WRITE | PF_PROT)
977 	    && error_code != (PF_INSTR | PF_PROT))
978 		return 0;
979 
980 	pgd = init_mm.pgd + pgd_index(address);
981 	if (!pgd_present(*pgd))
982 		return 0;
983 
984 	pud = pud_offset(pgd, address);
985 	if (!pud_present(*pud))
986 		return 0;
987 
988 	if (pud_large(*pud))
989 		return spurious_fault_check(error_code, (pte_t *) pud);
990 
991 	pmd = pmd_offset(pud, address);
992 	if (!pmd_present(*pmd))
993 		return 0;
994 
995 	if (pmd_large(*pmd))
996 		return spurious_fault_check(error_code, (pte_t *) pmd);
997 
998 	pte = pte_offset_kernel(pmd, address);
999 	if (!pte_present(*pte))
1000 		return 0;
1001 
1002 	ret = spurious_fault_check(error_code, pte);
1003 	if (!ret)
1004 		return 0;
1005 
1006 	/*
1007 	 * Make sure we have permissions in PMD.
1008 	 * If not, then there's a bug in the page tables:
1009 	 */
1010 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1011 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1012 
1013 	return ret;
1014 }
1015 NOKPROBE_SYMBOL(spurious_fault);
1016 
1017 int show_unhandled_signals = 1;
1018 
1019 static inline int
1020 access_error(unsigned long error_code, struct vm_area_struct *vma)
1021 {
1022 	if (error_code & PF_WRITE) {
1023 		/* write, present and write, not present: */
1024 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1025 			return 1;
1026 		return 0;
1027 	}
1028 
1029 	/* read, present: */
1030 	if (unlikely(error_code & PF_PROT))
1031 		return 1;
1032 
1033 	/* read, not present: */
1034 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1035 		return 1;
1036 
1037 	return 0;
1038 }
1039 
1040 static int fault_in_kernel_space(unsigned long address)
1041 {
1042 	return address >= TASK_SIZE_MAX;
1043 }
1044 
1045 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1046 {
1047 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1048 		return false;
1049 
1050 	if (!static_cpu_has(X86_FEATURE_SMAP))
1051 		return false;
1052 
1053 	if (error_code & PF_USER)
1054 		return false;
1055 
1056 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1057 		return false;
1058 
1059 	return true;
1060 }
1061 
1062 /*
1063  * This routine handles page faults.  It determines the address,
1064  * and the problem, and then passes it off to one of the appropriate
1065  * routines.
1066  *
1067  * This function must have noinline because both callers
1068  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1069  * guarantees there's a function trace entry.
1070  */
1071 static noinline void
1072 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1073 		unsigned long address)
1074 {
1075 	struct vm_area_struct *vma;
1076 	struct task_struct *tsk;
1077 	struct mm_struct *mm;
1078 	int fault, major = 0;
1079 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1080 
1081 	tsk = current;
1082 	mm = tsk->mm;
1083 
1084 	/*
1085 	 * Detect and handle instructions that would cause a page fault for
1086 	 * both a tracked kernel page and a userspace page.
1087 	 */
1088 	if (kmemcheck_active(regs))
1089 		kmemcheck_hide(regs);
1090 	prefetchw(&mm->mmap_sem);
1091 
1092 	if (unlikely(kmmio_fault(regs, address)))
1093 		return;
1094 
1095 	/*
1096 	 * We fault-in kernel-space virtual memory on-demand. The
1097 	 * 'reference' page table is init_mm.pgd.
1098 	 *
1099 	 * NOTE! We MUST NOT take any locks for this case. We may
1100 	 * be in an interrupt or a critical region, and should
1101 	 * only copy the information from the master page table,
1102 	 * nothing more.
1103 	 *
1104 	 * This verifies that the fault happens in kernel space
1105 	 * (error_code & 4) == 0, and that the fault was not a
1106 	 * protection error (error_code & 9) == 0.
1107 	 */
1108 	if (unlikely(fault_in_kernel_space(address))) {
1109 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1110 			if (vmalloc_fault(address) >= 0)
1111 				return;
1112 
1113 			if (kmemcheck_fault(regs, address, error_code))
1114 				return;
1115 		}
1116 
1117 		/* Can handle a stale RO->RW TLB: */
1118 		if (spurious_fault(error_code, address))
1119 			return;
1120 
1121 		/* kprobes don't want to hook the spurious faults: */
1122 		if (kprobes_fault(regs))
1123 			return;
1124 		/*
1125 		 * Don't take the mm semaphore here. If we fixup a prefetch
1126 		 * fault we could otherwise deadlock:
1127 		 */
1128 		bad_area_nosemaphore(regs, error_code, address, NULL);
1129 
1130 		return;
1131 	}
1132 
1133 	/* kprobes don't want to hook the spurious faults: */
1134 	if (unlikely(kprobes_fault(regs)))
1135 		return;
1136 
1137 	if (unlikely(error_code & PF_RSVD))
1138 		pgtable_bad(regs, error_code, address);
1139 
1140 	if (unlikely(smap_violation(error_code, regs))) {
1141 		bad_area_nosemaphore(regs, error_code, address, NULL);
1142 		return;
1143 	}
1144 
1145 	/*
1146 	 * If we're in an interrupt, have no user context or are running
1147 	 * in a region with pagefaults disabled then we must not take the fault
1148 	 */
1149 	if (unlikely(faulthandler_disabled() || !mm)) {
1150 		bad_area_nosemaphore(regs, error_code, address, NULL);
1151 		return;
1152 	}
1153 
1154 	/*
1155 	 * It's safe to allow irq's after cr2 has been saved and the
1156 	 * vmalloc fault has been handled.
1157 	 *
1158 	 * User-mode registers count as a user access even for any
1159 	 * potential system fault or CPU buglet:
1160 	 */
1161 	if (user_mode(regs)) {
1162 		local_irq_enable();
1163 		error_code |= PF_USER;
1164 		flags |= FAULT_FLAG_USER;
1165 	} else {
1166 		if (regs->flags & X86_EFLAGS_IF)
1167 			local_irq_enable();
1168 	}
1169 
1170 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1171 
1172 	if (error_code & PF_WRITE)
1173 		flags |= FAULT_FLAG_WRITE;
1174 
1175 	/*
1176 	 * When running in the kernel we expect faults to occur only to
1177 	 * addresses in user space.  All other faults represent errors in
1178 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1179 	 * case of an erroneous fault occurring in a code path which already
1180 	 * holds mmap_sem we will deadlock attempting to validate the fault
1181 	 * against the address space.  Luckily the kernel only validly
1182 	 * references user space from well defined areas of code, which are
1183 	 * listed in the exceptions table.
1184 	 *
1185 	 * As the vast majority of faults will be valid we will only perform
1186 	 * the source reference check when there is a possibility of a
1187 	 * deadlock. Attempt to lock the address space, if we cannot we then
1188 	 * validate the source. If this is invalid we can skip the address
1189 	 * space check, thus avoiding the deadlock:
1190 	 */
1191 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1192 		if ((error_code & PF_USER) == 0 &&
1193 		    !search_exception_tables(regs->ip)) {
1194 			bad_area_nosemaphore(regs, error_code, address, NULL);
1195 			return;
1196 		}
1197 retry:
1198 		down_read(&mm->mmap_sem);
1199 	} else {
1200 		/*
1201 		 * The above down_read_trylock() might have succeeded in
1202 		 * which case we'll have missed the might_sleep() from
1203 		 * down_read():
1204 		 */
1205 		might_sleep();
1206 	}
1207 
1208 	vma = find_vma(mm, address);
1209 	if (unlikely(!vma)) {
1210 		bad_area(regs, error_code, address);
1211 		return;
1212 	}
1213 	if (likely(vma->vm_start <= address))
1214 		goto good_area;
1215 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1216 		bad_area(regs, error_code, address);
1217 		return;
1218 	}
1219 	if (error_code & PF_USER) {
1220 		/*
1221 		 * Accessing the stack below %sp is always a bug.
1222 		 * The large cushion allows instructions like enter
1223 		 * and pusha to work. ("enter $65535, $31" pushes
1224 		 * 32 pointers and then decrements %sp by 65535.)
1225 		 */
1226 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1227 			bad_area(regs, error_code, address);
1228 			return;
1229 		}
1230 	}
1231 	if (unlikely(expand_stack(vma, address))) {
1232 		bad_area(regs, error_code, address);
1233 		return;
1234 	}
1235 
1236 	/*
1237 	 * Ok, we have a good vm_area for this memory access, so
1238 	 * we can handle it..
1239 	 */
1240 good_area:
1241 	if (unlikely(access_error(error_code, vma))) {
1242 		bad_area_access_error(regs, error_code, address, vma);
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * If for any reason at all we couldn't handle the fault,
1248 	 * make sure we exit gracefully rather than endlessly redo
1249 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1250 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1251 	 */
1252 	fault = handle_mm_fault(mm, vma, address, flags);
1253 	major |= fault & VM_FAULT_MAJOR;
1254 
1255 	/*
1256 	 * If we need to retry the mmap_sem has already been released,
1257 	 * and if there is a fatal signal pending there is no guarantee
1258 	 * that we made any progress. Handle this case first.
1259 	 */
1260 	if (unlikely(fault & VM_FAULT_RETRY)) {
1261 		/* Retry at most once */
1262 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1263 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1264 			flags |= FAULT_FLAG_TRIED;
1265 			if (!fatal_signal_pending(tsk))
1266 				goto retry;
1267 		}
1268 
1269 		/* User mode? Just return to handle the fatal exception */
1270 		if (flags & FAULT_FLAG_USER)
1271 			return;
1272 
1273 		/* Not returning to user mode? Handle exceptions or die: */
1274 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1275 		return;
1276 	}
1277 
1278 	up_read(&mm->mmap_sem);
1279 	if (unlikely(fault & VM_FAULT_ERROR)) {
1280 		mm_fault_error(regs, error_code, address, vma, fault);
1281 		return;
1282 	}
1283 
1284 	/*
1285 	 * Major/minor page fault accounting. If any of the events
1286 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1287 	 */
1288 	if (major) {
1289 		tsk->maj_flt++;
1290 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1291 	} else {
1292 		tsk->min_flt++;
1293 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1294 	}
1295 
1296 	check_v8086_mode(regs, address, tsk);
1297 }
1298 NOKPROBE_SYMBOL(__do_page_fault);
1299 
1300 dotraplinkage void notrace
1301 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1302 {
1303 	unsigned long address = read_cr2(); /* Get the faulting address */
1304 	enum ctx_state prev_state;
1305 
1306 	/*
1307 	 * We must have this function tagged with __kprobes, notrace and call
1308 	 * read_cr2() before calling anything else. To avoid calling any kind
1309 	 * of tracing machinery before we've observed the CR2 value.
1310 	 *
1311 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1312 	 */
1313 
1314 	prev_state = exception_enter();
1315 	__do_page_fault(regs, error_code, address);
1316 	exception_exit(prev_state);
1317 }
1318 NOKPROBE_SYMBOL(do_page_fault);
1319 
1320 #ifdef CONFIG_TRACING
1321 static nokprobe_inline void
1322 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1323 			 unsigned long error_code)
1324 {
1325 	if (user_mode(regs))
1326 		trace_page_fault_user(address, regs, error_code);
1327 	else
1328 		trace_page_fault_kernel(address, regs, error_code);
1329 }
1330 
1331 dotraplinkage void notrace
1332 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1333 {
1334 	/*
1335 	 * The exception_enter and tracepoint processing could
1336 	 * trigger another page faults (user space callchain
1337 	 * reading) and destroy the original cr2 value, so read
1338 	 * the faulting address now.
1339 	 */
1340 	unsigned long address = read_cr2();
1341 	enum ctx_state prev_state;
1342 
1343 	prev_state = exception_enter();
1344 	trace_page_fault_entries(address, regs, error_code);
1345 	__do_page_fault(regs, error_code, address);
1346 	exception_exit(prev_state);
1347 }
1348 NOKPROBE_SYMBOL(trace_do_page_fault);
1349 #endif /* CONFIG_TRACING */
1350