xref: /openbmc/linux/arch/x86/mm/fault.c (revision 66fcd98883816dba3b66da20b5fc86fa410638b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
29 #include <asm/desc.h>			/* store_idt(), ...		*/
30 #include <asm/cpu_entry_area.h>		/* exception stack		*/
31 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
32 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
33 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
34 
35 #define CREATE_TRACE_POINTS
36 #include <asm/trace/exceptions.h>
37 
38 /*
39  * Returns 0 if mmiotrace is disabled, or if the fault is not
40  * handled by mmiotrace:
41  */
42 static nokprobe_inline int
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 	if (unlikely(is_kmmio_active()))
46 		if (kmmio_handler(regs, addr) == 1)
47 			return -1;
48 	return 0;
49 }
50 
51 /*
52  * Prefetch quirks:
53  *
54  * 32-bit mode:
55  *
56  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
57  *   Check that here and ignore it.  This is AMD erratum #91.
58  *
59  * 64-bit mode:
60  *
61  *   Sometimes the CPU reports invalid exceptions on prefetch.
62  *   Check that here and ignore it.
63  *
64  * Opcode checker based on code by Richard Brunner.
65  */
66 static inline int
67 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
68 		      unsigned char opcode, int *prefetch)
69 {
70 	unsigned char instr_hi = opcode & 0xf0;
71 	unsigned char instr_lo = opcode & 0x0f;
72 
73 	switch (instr_hi) {
74 	case 0x20:
75 	case 0x30:
76 		/*
77 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
78 		 * In X86_64 long mode, the CPU will signal invalid
79 		 * opcode if some of these prefixes are present so
80 		 * X86_64 will never get here anyway
81 		 */
82 		return ((instr_lo & 7) == 0x6);
83 #ifdef CONFIG_X86_64
84 	case 0x40:
85 		/*
86 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
87 		 */
88 		return (!user_mode(regs) || user_64bit_mode(regs));
89 #endif
90 	case 0x60:
91 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
92 		return (instr_lo & 0xC) == 0x4;
93 	case 0xF0:
94 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
95 		return !instr_lo || (instr_lo>>1) == 1;
96 	case 0x00:
97 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
98 		if (get_kernel_nofault(opcode, instr))
99 			return 0;
100 
101 		*prefetch = (instr_lo == 0xF) &&
102 			(opcode == 0x0D || opcode == 0x18);
103 		return 0;
104 	default:
105 		return 0;
106 	}
107 }
108 
109 static bool is_amd_k8_pre_npt(void)
110 {
111 	struct cpuinfo_x86 *c = &boot_cpu_data;
112 
113 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
114 			c->x86_vendor == X86_VENDOR_AMD &&
115 			c->x86 == 0xf && c->x86_model < 0x40);
116 }
117 
118 static int
119 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
120 {
121 	unsigned char *max_instr;
122 	unsigned char *instr;
123 	int prefetch = 0;
124 
125 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
126 	if (!is_amd_k8_pre_npt())
127 		return 0;
128 
129 	/*
130 	 * If it was a exec (instruction fetch) fault on NX page, then
131 	 * do not ignore the fault:
132 	 */
133 	if (error_code & X86_PF_INSTR)
134 		return 0;
135 
136 	instr = (void *)convert_ip_to_linear(current, regs);
137 	max_instr = instr + 15;
138 
139 	/*
140 	 * This code has historically always bailed out if IP points to a
141 	 * not-present page (e.g. due to a race).  No one has ever
142 	 * complained about this.
143 	 */
144 	pagefault_disable();
145 
146 	while (instr < max_instr) {
147 		unsigned char opcode;
148 
149 		if (user_mode(regs)) {
150 			if (get_user(opcode, instr))
151 				break;
152 		} else {
153 			if (get_kernel_nofault(opcode, instr))
154 				break;
155 		}
156 
157 		instr++;
158 
159 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
160 			break;
161 	}
162 
163 	pagefault_enable();
164 	return prefetch;
165 }
166 
167 DEFINE_SPINLOCK(pgd_lock);
168 LIST_HEAD(pgd_list);
169 
170 #ifdef CONFIG_X86_32
171 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
172 {
173 	unsigned index = pgd_index(address);
174 	pgd_t *pgd_k;
175 	p4d_t *p4d, *p4d_k;
176 	pud_t *pud, *pud_k;
177 	pmd_t *pmd, *pmd_k;
178 
179 	pgd += index;
180 	pgd_k = init_mm.pgd + index;
181 
182 	if (!pgd_present(*pgd_k))
183 		return NULL;
184 
185 	/*
186 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
187 	 * and redundant with the set_pmd() on non-PAE. As would
188 	 * set_p4d/set_pud.
189 	 */
190 	p4d = p4d_offset(pgd, address);
191 	p4d_k = p4d_offset(pgd_k, address);
192 	if (!p4d_present(*p4d_k))
193 		return NULL;
194 
195 	pud = pud_offset(p4d, address);
196 	pud_k = pud_offset(p4d_k, address);
197 	if (!pud_present(*pud_k))
198 		return NULL;
199 
200 	pmd = pmd_offset(pud, address);
201 	pmd_k = pmd_offset(pud_k, address);
202 
203 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
204 		set_pmd(pmd, *pmd_k);
205 
206 	if (!pmd_present(*pmd_k))
207 		return NULL;
208 	else
209 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
210 
211 	return pmd_k;
212 }
213 
214 /*
215  *   Handle a fault on the vmalloc or module mapping area
216  *
217  *   This is needed because there is a race condition between the time
218  *   when the vmalloc mapping code updates the PMD to the point in time
219  *   where it synchronizes this update with the other page-tables in the
220  *   system.
221  *
222  *   In this race window another thread/CPU can map an area on the same
223  *   PMD, finds it already present and does not synchronize it with the
224  *   rest of the system yet. As a result v[mz]alloc might return areas
225  *   which are not mapped in every page-table in the system, causing an
226  *   unhandled page-fault when they are accessed.
227  */
228 static noinline int vmalloc_fault(unsigned long address)
229 {
230 	unsigned long pgd_paddr;
231 	pmd_t *pmd_k;
232 	pte_t *pte_k;
233 
234 	/* Make sure we are in vmalloc area: */
235 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
236 		return -1;
237 
238 	/*
239 	 * Synchronize this task's top level page-table
240 	 * with the 'reference' page table.
241 	 *
242 	 * Do _not_ use "current" here. We might be inside
243 	 * an interrupt in the middle of a task switch..
244 	 */
245 	pgd_paddr = read_cr3_pa();
246 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
247 	if (!pmd_k)
248 		return -1;
249 
250 	if (pmd_large(*pmd_k))
251 		return 0;
252 
253 	pte_k = pte_offset_kernel(pmd_k, address);
254 	if (!pte_present(*pte_k))
255 		return -1;
256 
257 	return 0;
258 }
259 NOKPROBE_SYMBOL(vmalloc_fault);
260 
261 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
262 {
263 	unsigned long addr;
264 
265 	for (addr = start & PMD_MASK;
266 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
267 	     addr += PMD_SIZE) {
268 		struct page *page;
269 
270 		spin_lock(&pgd_lock);
271 		list_for_each_entry(page, &pgd_list, lru) {
272 			spinlock_t *pgt_lock;
273 
274 			/* the pgt_lock only for Xen */
275 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
276 
277 			spin_lock(pgt_lock);
278 			vmalloc_sync_one(page_address(page), addr);
279 			spin_unlock(pgt_lock);
280 		}
281 		spin_unlock(&pgd_lock);
282 	}
283 }
284 
285 /*
286  * Did it hit the DOS screen memory VA from vm86 mode?
287  */
288 static inline void
289 check_v8086_mode(struct pt_regs *regs, unsigned long address,
290 		 struct task_struct *tsk)
291 {
292 #ifdef CONFIG_VM86
293 	unsigned long bit;
294 
295 	if (!v8086_mode(regs) || !tsk->thread.vm86)
296 		return;
297 
298 	bit = (address - 0xA0000) >> PAGE_SHIFT;
299 	if (bit < 32)
300 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
301 #endif
302 }
303 
304 static bool low_pfn(unsigned long pfn)
305 {
306 	return pfn < max_low_pfn;
307 }
308 
309 static void dump_pagetable(unsigned long address)
310 {
311 	pgd_t *base = __va(read_cr3_pa());
312 	pgd_t *pgd = &base[pgd_index(address)];
313 	p4d_t *p4d;
314 	pud_t *pud;
315 	pmd_t *pmd;
316 	pte_t *pte;
317 
318 #ifdef CONFIG_X86_PAE
319 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
320 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
321 		goto out;
322 #define pr_pde pr_cont
323 #else
324 #define pr_pde pr_info
325 #endif
326 	p4d = p4d_offset(pgd, address);
327 	pud = pud_offset(p4d, address);
328 	pmd = pmd_offset(pud, address);
329 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
330 #undef pr_pde
331 
332 	/*
333 	 * We must not directly access the pte in the highpte
334 	 * case if the page table is located in highmem.
335 	 * And let's rather not kmap-atomic the pte, just in case
336 	 * it's allocated already:
337 	 */
338 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
339 		goto out;
340 
341 	pte = pte_offset_kernel(pmd, address);
342 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
343 out:
344 	pr_cont("\n");
345 }
346 
347 #else /* CONFIG_X86_64: */
348 
349 #ifdef CONFIG_CPU_SUP_AMD
350 static const char errata93_warning[] =
351 KERN_ERR
352 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
353 "******* Working around it, but it may cause SEGVs or burn power.\n"
354 "******* Please consider a BIOS update.\n"
355 "******* Disabling USB legacy in the BIOS may also help.\n";
356 #endif
357 
358 /*
359  * No vm86 mode in 64-bit mode:
360  */
361 static inline void
362 check_v8086_mode(struct pt_regs *regs, unsigned long address,
363 		 struct task_struct *tsk)
364 {
365 }
366 
367 static int bad_address(void *p)
368 {
369 	unsigned long dummy;
370 
371 	return get_kernel_nofault(dummy, (unsigned long *)p);
372 }
373 
374 static void dump_pagetable(unsigned long address)
375 {
376 	pgd_t *base = __va(read_cr3_pa());
377 	pgd_t *pgd = base + pgd_index(address);
378 	p4d_t *p4d;
379 	pud_t *pud;
380 	pmd_t *pmd;
381 	pte_t *pte;
382 
383 	if (bad_address(pgd))
384 		goto bad;
385 
386 	pr_info("PGD %lx ", pgd_val(*pgd));
387 
388 	if (!pgd_present(*pgd))
389 		goto out;
390 
391 	p4d = p4d_offset(pgd, address);
392 	if (bad_address(p4d))
393 		goto bad;
394 
395 	pr_cont("P4D %lx ", p4d_val(*p4d));
396 	if (!p4d_present(*p4d) || p4d_large(*p4d))
397 		goto out;
398 
399 	pud = pud_offset(p4d, address);
400 	if (bad_address(pud))
401 		goto bad;
402 
403 	pr_cont("PUD %lx ", pud_val(*pud));
404 	if (!pud_present(*pud) || pud_large(*pud))
405 		goto out;
406 
407 	pmd = pmd_offset(pud, address);
408 	if (bad_address(pmd))
409 		goto bad;
410 
411 	pr_cont("PMD %lx ", pmd_val(*pmd));
412 	if (!pmd_present(*pmd) || pmd_large(*pmd))
413 		goto out;
414 
415 	pte = pte_offset_kernel(pmd, address);
416 	if (bad_address(pte))
417 		goto bad;
418 
419 	pr_cont("PTE %lx", pte_val(*pte));
420 out:
421 	pr_cont("\n");
422 	return;
423 bad:
424 	pr_info("BAD\n");
425 }
426 
427 #endif /* CONFIG_X86_64 */
428 
429 /*
430  * Workaround for K8 erratum #93 & buggy BIOS.
431  *
432  * BIOS SMM functions are required to use a specific workaround
433  * to avoid corruption of the 64bit RIP register on C stepping K8.
434  *
435  * A lot of BIOS that didn't get tested properly miss this.
436  *
437  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
438  * Try to work around it here.
439  *
440  * Note we only handle faults in kernel here.
441  * Does nothing on 32-bit.
442  */
443 static int is_errata93(struct pt_regs *regs, unsigned long address)
444 {
445 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
446 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
447 	    || boot_cpu_data.x86 != 0xf)
448 		return 0;
449 
450 	if (user_mode(regs))
451 		return 0;
452 
453 	if (address != regs->ip)
454 		return 0;
455 
456 	if ((address >> 32) != 0)
457 		return 0;
458 
459 	address |= 0xffffffffUL << 32;
460 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
461 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
462 		printk_once(errata93_warning);
463 		regs->ip = address;
464 		return 1;
465 	}
466 #endif
467 	return 0;
468 }
469 
470 /*
471  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
472  * to illegal addresses >4GB.
473  *
474  * We catch this in the page fault handler because these addresses
475  * are not reachable. Just detect this case and return.  Any code
476  * segment in LDT is compatibility mode.
477  */
478 static int is_errata100(struct pt_regs *regs, unsigned long address)
479 {
480 #ifdef CONFIG_X86_64
481 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
482 		return 1;
483 #endif
484 	return 0;
485 }
486 
487 /* Pentium F0 0F C7 C8 bug workaround: */
488 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
489 		       unsigned long address)
490 {
491 #ifdef CONFIG_X86_F00F_BUG
492 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
493 	    idt_is_f00f_address(address)) {
494 		handle_invalid_op(regs);
495 		return 1;
496 	}
497 #endif
498 	return 0;
499 }
500 
501 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
502 {
503 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
504 	unsigned long addr;
505 	struct ldttss_desc desc;
506 
507 	if (index == 0) {
508 		pr_alert("%s: NULL\n", name);
509 		return;
510 	}
511 
512 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
513 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
514 		return;
515 	}
516 
517 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
518 			      sizeof(struct ldttss_desc))) {
519 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
520 			 name, index);
521 		return;
522 	}
523 
524 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
525 #ifdef CONFIG_X86_64
526 	addr |= ((u64)desc.base3 << 32);
527 #endif
528 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
529 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
530 }
531 
532 static void
533 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
534 {
535 	if (!oops_may_print())
536 		return;
537 
538 	if (error_code & X86_PF_INSTR) {
539 		unsigned int level;
540 		pgd_t *pgd;
541 		pte_t *pte;
542 
543 		pgd = __va(read_cr3_pa());
544 		pgd += pgd_index(address);
545 
546 		pte = lookup_address_in_pgd(pgd, address, &level);
547 
548 		if (pte && pte_present(*pte) && !pte_exec(*pte))
549 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
550 				from_kuid(&init_user_ns, current_uid()));
551 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
552 				(pgd_flags(*pgd) & _PAGE_USER) &&
553 				(__read_cr4() & X86_CR4_SMEP))
554 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
555 				from_kuid(&init_user_ns, current_uid()));
556 	}
557 
558 	if (address < PAGE_SIZE && !user_mode(regs))
559 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
560 			(void *)address);
561 	else
562 		pr_alert("BUG: unable to handle page fault for address: %px\n",
563 			(void *)address);
564 
565 	pr_alert("#PF: %s %s in %s mode\n",
566 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
567 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
568 		 (error_code & X86_PF_WRITE) ? "write access" :
569 					       "read access",
570 			     user_mode(regs) ? "user" : "kernel");
571 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
572 		 !(error_code & X86_PF_PROT) ? "not-present page" :
573 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
574 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
575 					       "permissions violation");
576 
577 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
578 		struct desc_ptr idt, gdt;
579 		u16 ldtr, tr;
580 
581 		/*
582 		 * This can happen for quite a few reasons.  The more obvious
583 		 * ones are faults accessing the GDT, or LDT.  Perhaps
584 		 * surprisingly, if the CPU tries to deliver a benign or
585 		 * contributory exception from user code and gets a page fault
586 		 * during delivery, the page fault can be delivered as though
587 		 * it originated directly from user code.  This could happen
588 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
589 		 * kernel or IST stack.
590 		 */
591 		store_idt(&idt);
592 
593 		/* Usable even on Xen PV -- it's just slow. */
594 		native_store_gdt(&gdt);
595 
596 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
597 			 idt.address, idt.size, gdt.address, gdt.size);
598 
599 		store_ldt(ldtr);
600 		show_ldttss(&gdt, "LDTR", ldtr);
601 
602 		store_tr(tr);
603 		show_ldttss(&gdt, "TR", tr);
604 	}
605 
606 	dump_pagetable(address);
607 }
608 
609 static noinline void
610 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
611 	    unsigned long address)
612 {
613 	struct task_struct *tsk;
614 	unsigned long flags;
615 	int sig;
616 
617 	flags = oops_begin();
618 	tsk = current;
619 	sig = SIGKILL;
620 
621 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
622 	       tsk->comm, address);
623 	dump_pagetable(address);
624 
625 	if (__die("Bad pagetable", regs, error_code))
626 		sig = 0;
627 
628 	oops_end(flags, regs, sig);
629 }
630 
631 static void sanitize_error_code(unsigned long address,
632 				unsigned long *error_code)
633 {
634 	/*
635 	 * To avoid leaking information about the kernel page
636 	 * table layout, pretend that user-mode accesses to
637 	 * kernel addresses are always protection faults.
638 	 *
639 	 * NB: This means that failed vsyscalls with vsyscall=none
640 	 * will have the PROT bit.  This doesn't leak any
641 	 * information and does not appear to cause any problems.
642 	 */
643 	if (address >= TASK_SIZE_MAX)
644 		*error_code |= X86_PF_PROT;
645 }
646 
647 static void set_signal_archinfo(unsigned long address,
648 				unsigned long error_code)
649 {
650 	struct task_struct *tsk = current;
651 
652 	tsk->thread.trap_nr = X86_TRAP_PF;
653 	tsk->thread.error_code = error_code | X86_PF_USER;
654 	tsk->thread.cr2 = address;
655 }
656 
657 static noinline void
658 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
659 		unsigned long address)
660 {
661 	unsigned long flags;
662 	int sig;
663 
664 	if (user_mode(regs)) {
665 		/*
666 		 * Implicit kernel access from user mode?  Skip the stack
667 		 * overflow and EFI special cases.
668 		 */
669 		goto oops;
670 	}
671 
672 #ifdef CONFIG_VMAP_STACK
673 	/*
674 	 * Stack overflow?  During boot, we can fault near the initial
675 	 * stack in the direct map, but that's not an overflow -- check
676 	 * that we're in vmalloc space to avoid this.
677 	 */
678 	if (is_vmalloc_addr((void *)address) &&
679 	    (((unsigned long)current->stack - 1 - address < PAGE_SIZE) ||
680 	     address - ((unsigned long)current->stack + THREAD_SIZE) < PAGE_SIZE)) {
681 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
682 		/*
683 		 * We're likely to be running with very little stack space
684 		 * left.  It's plausible that we'd hit this condition but
685 		 * double-fault even before we get this far, in which case
686 		 * we're fine: the double-fault handler will deal with it.
687 		 *
688 		 * We don't want to make it all the way into the oops code
689 		 * and then double-fault, though, because we're likely to
690 		 * break the console driver and lose most of the stack dump.
691 		 */
692 		asm volatile ("movq %[stack], %%rsp\n\t"
693 			      "call handle_stack_overflow\n\t"
694 			      "1: jmp 1b"
695 			      : ASM_CALL_CONSTRAINT
696 			      : "D" ("kernel stack overflow (page fault)"),
697 				"S" (regs), "d" (address),
698 				[stack] "rm" (stack));
699 		unreachable();
700 	}
701 #endif
702 
703 	/*
704 	 * Buggy firmware could access regions which might page fault, try to
705 	 * recover from such faults.
706 	 */
707 	if (IS_ENABLED(CONFIG_EFI))
708 		efi_recover_from_page_fault(address);
709 
710 oops:
711 	/*
712 	 * Oops. The kernel tried to access some bad page. We'll have to
713 	 * terminate things with extreme prejudice:
714 	 */
715 	flags = oops_begin();
716 
717 	show_fault_oops(regs, error_code, address);
718 
719 	if (task_stack_end_corrupted(current))
720 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
721 
722 	sig = SIGKILL;
723 	if (__die("Oops", regs, error_code))
724 		sig = 0;
725 
726 	/* Executive summary in case the body of the oops scrolled away */
727 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
728 
729 	oops_end(flags, regs, sig);
730 }
731 
732 static noinline void
733 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
734 			 unsigned long address, int signal, int si_code)
735 {
736 	WARN_ON_ONCE(user_mode(regs));
737 
738 	/* Are we prepared to handle this kernel fault? */
739 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
740 		/*
741 		 * Any interrupt that takes a fault gets the fixup. This makes
742 		 * the below recursive fault logic only apply to a faults from
743 		 * task context.
744 		 */
745 		if (in_interrupt())
746 			return;
747 
748 		/*
749 		 * Per the above we're !in_interrupt(), aka. task context.
750 		 *
751 		 * In this case we need to make sure we're not recursively
752 		 * faulting through the emulate_vsyscall() logic.
753 		 */
754 		if (current->thread.sig_on_uaccess_err && signal) {
755 			sanitize_error_code(address, &error_code);
756 
757 			set_signal_archinfo(address, error_code);
758 
759 			/* XXX: hwpoison faults will set the wrong code. */
760 			force_sig_fault(signal, si_code, (void __user *)address);
761 		}
762 
763 		/*
764 		 * Barring that, we can do the fixup and be happy.
765 		 */
766 		return;
767 	}
768 
769 	/*
770 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
771 	 * instruction.
772 	 */
773 	if (is_prefetch(regs, error_code, address))
774 		return;
775 
776 	page_fault_oops(regs, error_code, address);
777 }
778 
779 /*
780  * Print out info about fatal segfaults, if the show_unhandled_signals
781  * sysctl is set:
782  */
783 static inline void
784 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
785 		unsigned long address, struct task_struct *tsk)
786 {
787 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
788 
789 	if (!unhandled_signal(tsk, SIGSEGV))
790 		return;
791 
792 	if (!printk_ratelimit())
793 		return;
794 
795 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
796 		loglvl, tsk->comm, task_pid_nr(tsk), address,
797 		(void *)regs->ip, (void *)regs->sp, error_code);
798 
799 	print_vma_addr(KERN_CONT " in ", regs->ip);
800 
801 	printk(KERN_CONT "\n");
802 
803 	show_opcodes(regs, loglvl);
804 }
805 
806 /*
807  * The (legacy) vsyscall page is the long page in the kernel portion
808  * of the address space that has user-accessible permissions.
809  */
810 static bool is_vsyscall_vaddr(unsigned long vaddr)
811 {
812 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
813 }
814 
815 static void
816 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
817 		       unsigned long address, u32 pkey, int si_code)
818 {
819 	struct task_struct *tsk = current;
820 
821 	if (!user_mode(regs)) {
822 		kernelmode_fixup_or_oops(regs, error_code, address, pkey, si_code);
823 		return;
824 	}
825 
826 	if (!(error_code & X86_PF_USER)) {
827 		/* Implicit user access to kernel memory -- just oops */
828 		page_fault_oops(regs, error_code, address);
829 		return;
830 	}
831 
832 	/*
833 	 * User mode accesses just cause a SIGSEGV.
834 	 * It's possible to have interrupts off here:
835 	 */
836 	local_irq_enable();
837 
838 	/*
839 	 * Valid to do another page fault here because this one came
840 	 * from user space:
841 	 */
842 	if (is_prefetch(regs, error_code, address))
843 		return;
844 
845 	if (is_errata100(regs, address))
846 		return;
847 
848 	sanitize_error_code(address, &error_code);
849 
850 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
851 		return;
852 
853 	if (likely(show_unhandled_signals))
854 		show_signal_msg(regs, error_code, address, tsk);
855 
856 	set_signal_archinfo(address, error_code);
857 
858 	if (si_code == SEGV_PKUERR)
859 		force_sig_pkuerr((void __user *)address, pkey);
860 
861 	force_sig_fault(SIGSEGV, si_code, (void __user *)address);
862 
863 	local_irq_disable();
864 }
865 
866 static noinline void
867 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
868 		     unsigned long address)
869 {
870 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
871 }
872 
873 static void
874 __bad_area(struct pt_regs *regs, unsigned long error_code,
875 	   unsigned long address, u32 pkey, int si_code)
876 {
877 	struct mm_struct *mm = current->mm;
878 	/*
879 	 * Something tried to access memory that isn't in our memory map..
880 	 * Fix it, but check if it's kernel or user first..
881 	 */
882 	mmap_read_unlock(mm);
883 
884 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
885 }
886 
887 static noinline void
888 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
889 {
890 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
891 }
892 
893 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
894 		struct vm_area_struct *vma)
895 {
896 	/* This code is always called on the current mm */
897 	bool foreign = false;
898 
899 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
900 		return false;
901 	if (error_code & X86_PF_PK)
902 		return true;
903 	/* this checks permission keys on the VMA: */
904 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
905 				       (error_code & X86_PF_INSTR), foreign))
906 		return true;
907 	return false;
908 }
909 
910 static noinline void
911 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
912 		      unsigned long address, struct vm_area_struct *vma)
913 {
914 	/*
915 	 * This OSPKE check is not strictly necessary at runtime.
916 	 * But, doing it this way allows compiler optimizations
917 	 * if pkeys are compiled out.
918 	 */
919 	if (bad_area_access_from_pkeys(error_code, vma)) {
920 		/*
921 		 * A protection key fault means that the PKRU value did not allow
922 		 * access to some PTE.  Userspace can figure out what PKRU was
923 		 * from the XSAVE state.  This function captures the pkey from
924 		 * the vma and passes it to userspace so userspace can discover
925 		 * which protection key was set on the PTE.
926 		 *
927 		 * If we get here, we know that the hardware signaled a X86_PF_PK
928 		 * fault and that there was a VMA once we got in the fault
929 		 * handler.  It does *not* guarantee that the VMA we find here
930 		 * was the one that we faulted on.
931 		 *
932 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
933 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
934 		 * 3. T1   : faults...
935 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
936 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
937 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
938 		 *	     faulted on a pte with its pkey=4.
939 		 */
940 		u32 pkey = vma_pkey(vma);
941 
942 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
943 	} else {
944 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
945 	}
946 }
947 
948 static void
949 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
950 	  vm_fault_t fault)
951 {
952 	/* Kernel mode? Handle exceptions or die: */
953 	if (!user_mode(regs)) {
954 		kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR);
955 		return;
956 	}
957 
958 	/* User-space => ok to do another page fault: */
959 	if (is_prefetch(regs, error_code, address))
960 		return;
961 
962 	sanitize_error_code(address, &error_code);
963 
964 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
965 		return;
966 
967 	set_signal_archinfo(address, error_code);
968 
969 #ifdef CONFIG_MEMORY_FAILURE
970 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
971 		struct task_struct *tsk = current;
972 		unsigned lsb = 0;
973 
974 		pr_err(
975 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
976 			tsk->comm, tsk->pid, address);
977 		if (fault & VM_FAULT_HWPOISON_LARGE)
978 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
979 		if (fault & VM_FAULT_HWPOISON)
980 			lsb = PAGE_SHIFT;
981 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
982 		return;
983 	}
984 #endif
985 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
986 }
987 
988 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
989 {
990 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
991 		return 0;
992 
993 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
994 		return 0;
995 
996 	return 1;
997 }
998 
999 /*
1000  * Handle a spurious fault caused by a stale TLB entry.
1001  *
1002  * This allows us to lazily refresh the TLB when increasing the
1003  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1004  * eagerly is very expensive since that implies doing a full
1005  * cross-processor TLB flush, even if no stale TLB entries exist
1006  * on other processors.
1007  *
1008  * Spurious faults may only occur if the TLB contains an entry with
1009  * fewer permission than the page table entry.  Non-present (P = 0)
1010  * and reserved bit (R = 1) faults are never spurious.
1011  *
1012  * There are no security implications to leaving a stale TLB when
1013  * increasing the permissions on a page.
1014  *
1015  * Returns non-zero if a spurious fault was handled, zero otherwise.
1016  *
1017  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1018  * (Optional Invalidation).
1019  */
1020 static noinline int
1021 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1022 {
1023 	pgd_t *pgd;
1024 	p4d_t *p4d;
1025 	pud_t *pud;
1026 	pmd_t *pmd;
1027 	pte_t *pte;
1028 	int ret;
1029 
1030 	/*
1031 	 * Only writes to RO or instruction fetches from NX may cause
1032 	 * spurious faults.
1033 	 *
1034 	 * These could be from user or supervisor accesses but the TLB
1035 	 * is only lazily flushed after a kernel mapping protection
1036 	 * change, so user accesses are not expected to cause spurious
1037 	 * faults.
1038 	 */
1039 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1040 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1041 		return 0;
1042 
1043 	pgd = init_mm.pgd + pgd_index(address);
1044 	if (!pgd_present(*pgd))
1045 		return 0;
1046 
1047 	p4d = p4d_offset(pgd, address);
1048 	if (!p4d_present(*p4d))
1049 		return 0;
1050 
1051 	if (p4d_large(*p4d))
1052 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1053 
1054 	pud = pud_offset(p4d, address);
1055 	if (!pud_present(*pud))
1056 		return 0;
1057 
1058 	if (pud_large(*pud))
1059 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1060 
1061 	pmd = pmd_offset(pud, address);
1062 	if (!pmd_present(*pmd))
1063 		return 0;
1064 
1065 	if (pmd_large(*pmd))
1066 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1067 
1068 	pte = pte_offset_kernel(pmd, address);
1069 	if (!pte_present(*pte))
1070 		return 0;
1071 
1072 	ret = spurious_kernel_fault_check(error_code, pte);
1073 	if (!ret)
1074 		return 0;
1075 
1076 	/*
1077 	 * Make sure we have permissions in PMD.
1078 	 * If not, then there's a bug in the page tables:
1079 	 */
1080 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1081 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1082 
1083 	return ret;
1084 }
1085 NOKPROBE_SYMBOL(spurious_kernel_fault);
1086 
1087 int show_unhandled_signals = 1;
1088 
1089 static inline int
1090 access_error(unsigned long error_code, struct vm_area_struct *vma)
1091 {
1092 	/* This is only called for the current mm, so: */
1093 	bool foreign = false;
1094 
1095 	/*
1096 	 * Read or write was blocked by protection keys.  This is
1097 	 * always an unconditional error and can never result in
1098 	 * a follow-up action to resolve the fault, like a COW.
1099 	 */
1100 	if (error_code & X86_PF_PK)
1101 		return 1;
1102 
1103 	/*
1104 	 * SGX hardware blocked the access.  This usually happens
1105 	 * when the enclave memory contents have been destroyed, like
1106 	 * after a suspend/resume cycle. In any case, the kernel can't
1107 	 * fix the cause of the fault.  Handle the fault as an access
1108 	 * error even in cases where no actual access violation
1109 	 * occurred.  This allows userspace to rebuild the enclave in
1110 	 * response to the signal.
1111 	 */
1112 	if (unlikely(error_code & X86_PF_SGX))
1113 		return 1;
1114 
1115 	/*
1116 	 * Make sure to check the VMA so that we do not perform
1117 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1118 	 * page.
1119 	 */
1120 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1121 				       (error_code & X86_PF_INSTR), foreign))
1122 		return 1;
1123 
1124 	if (error_code & X86_PF_WRITE) {
1125 		/* write, present and write, not present: */
1126 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1127 			return 1;
1128 		return 0;
1129 	}
1130 
1131 	/* read, present: */
1132 	if (unlikely(error_code & X86_PF_PROT))
1133 		return 1;
1134 
1135 	/* read, not present: */
1136 	if (unlikely(!vma_is_accessible(vma)))
1137 		return 1;
1138 
1139 	return 0;
1140 }
1141 
1142 bool fault_in_kernel_space(unsigned long address)
1143 {
1144 	/*
1145 	 * On 64-bit systems, the vsyscall page is at an address above
1146 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1147 	 * address space.
1148 	 */
1149 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1150 		return false;
1151 
1152 	return address >= TASK_SIZE_MAX;
1153 }
1154 
1155 /*
1156  * Called for all faults where 'address' is part of the kernel address
1157  * space.  Might get called for faults that originate from *code* that
1158  * ran in userspace or the kernel.
1159  */
1160 static void
1161 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1162 		   unsigned long address)
1163 {
1164 	/*
1165 	 * Protection keys exceptions only happen on user pages.  We
1166 	 * have no user pages in the kernel portion of the address
1167 	 * space, so do not expect them here.
1168 	 */
1169 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1170 
1171 #ifdef CONFIG_X86_32
1172 	/*
1173 	 * We can fault-in kernel-space virtual memory on-demand. The
1174 	 * 'reference' page table is init_mm.pgd.
1175 	 *
1176 	 * NOTE! We MUST NOT take any locks for this case. We may
1177 	 * be in an interrupt or a critical region, and should
1178 	 * only copy the information from the master page table,
1179 	 * nothing more.
1180 	 *
1181 	 * Before doing this on-demand faulting, ensure that the
1182 	 * fault is not any of the following:
1183 	 * 1. A fault on a PTE with a reserved bit set.
1184 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1185 	 *    fault kernel memory due to user-mode accesses).
1186 	 * 3. A fault caused by a page-level protection violation.
1187 	 *    (A demand fault would be on a non-present page which
1188 	 *     would have X86_PF_PROT==0).
1189 	 *
1190 	 * This is only needed to close a race condition on x86-32 in
1191 	 * the vmalloc mapping/unmapping code. See the comment above
1192 	 * vmalloc_fault() for details. On x86-64 the race does not
1193 	 * exist as the vmalloc mappings don't need to be synchronized
1194 	 * there.
1195 	 */
1196 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1197 		if (vmalloc_fault(address) >= 0)
1198 			return;
1199 	}
1200 #endif
1201 
1202 	if (is_f00f_bug(regs, hw_error_code, address))
1203 		return;
1204 
1205 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1206 	if (spurious_kernel_fault(hw_error_code, address))
1207 		return;
1208 
1209 	/* kprobes don't want to hook the spurious faults: */
1210 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1211 		return;
1212 
1213 	/*
1214 	 * Note, despite being a "bad area", there are quite a few
1215 	 * acceptable reasons to get here, such as erratum fixups
1216 	 * and handling kernel code that can fault, like get_user().
1217 	 *
1218 	 * Don't take the mm semaphore here. If we fixup a prefetch
1219 	 * fault we could otherwise deadlock:
1220 	 */
1221 	bad_area_nosemaphore(regs, hw_error_code, address);
1222 }
1223 NOKPROBE_SYMBOL(do_kern_addr_fault);
1224 
1225 /*
1226  * Handle faults in the user portion of the address space.  Nothing in here
1227  * should check X86_PF_USER without a specific justification: for almost
1228  * all purposes, we should treat a normal kernel access to user memory
1229  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1230  * The one exception is AC flag handling, which is, per the x86
1231  * architecture, special for WRUSS.
1232  */
1233 static inline
1234 void do_user_addr_fault(struct pt_regs *regs,
1235 			unsigned long error_code,
1236 			unsigned long address)
1237 {
1238 	struct vm_area_struct *vma;
1239 	struct task_struct *tsk;
1240 	struct mm_struct *mm;
1241 	vm_fault_t fault;
1242 	unsigned int flags = FAULT_FLAG_DEFAULT;
1243 
1244 	tsk = current;
1245 	mm = tsk->mm;
1246 
1247 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1248 		/*
1249 		 * Whoops, this is kernel mode code trying to execute from
1250 		 * user memory.  Unless this is AMD erratum #93, which
1251 		 * corrupts RIP such that it looks like a user address,
1252 		 * this is unrecoverable.  Don't even try to look up the
1253 		 * VMA or look for extable entries.
1254 		 */
1255 		if (is_errata93(regs, address))
1256 			return;
1257 
1258 		page_fault_oops(regs, error_code, address);
1259 		return;
1260 	}
1261 
1262 	/* kprobes don't want to hook the spurious faults: */
1263 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1264 		return;
1265 
1266 	/*
1267 	 * Reserved bits are never expected to be set on
1268 	 * entries in the user portion of the page tables.
1269 	 */
1270 	if (unlikely(error_code & X86_PF_RSVD))
1271 		pgtable_bad(regs, error_code, address);
1272 
1273 	/*
1274 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1275 	 * pages in the user address space.  The odd case here is WRUSS,
1276 	 * which, according to the preliminary documentation, does not respect
1277 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1278 	 * enforcement appears to be consistent with the USER bit.
1279 	 */
1280 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1281 		     !(error_code & X86_PF_USER) &&
1282 		     !(regs->flags & X86_EFLAGS_AC)))
1283 	{
1284 		bad_area_nosemaphore(regs, error_code, address);
1285 		return;
1286 	}
1287 
1288 	/*
1289 	 * If we're in an interrupt, have no user context or are running
1290 	 * in a region with pagefaults disabled then we must not take the fault
1291 	 */
1292 	if (unlikely(faulthandler_disabled() || !mm)) {
1293 		bad_area_nosemaphore(regs, error_code, address);
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * It's safe to allow irq's after cr2 has been saved and the
1299 	 * vmalloc fault has been handled.
1300 	 *
1301 	 * User-mode registers count as a user access even for any
1302 	 * potential system fault or CPU buglet:
1303 	 */
1304 	if (user_mode(regs)) {
1305 		local_irq_enable();
1306 		flags |= FAULT_FLAG_USER;
1307 	} else {
1308 		if (regs->flags & X86_EFLAGS_IF)
1309 			local_irq_enable();
1310 	}
1311 
1312 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1313 
1314 	if (error_code & X86_PF_WRITE)
1315 		flags |= FAULT_FLAG_WRITE;
1316 	if (error_code & X86_PF_INSTR)
1317 		flags |= FAULT_FLAG_INSTRUCTION;
1318 
1319 #ifdef CONFIG_X86_64
1320 	/*
1321 	 * Faults in the vsyscall page might need emulation.  The
1322 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1323 	 * considered to be part of the user address space.
1324 	 *
1325 	 * The vsyscall page does not have a "real" VMA, so do this
1326 	 * emulation before we go searching for VMAs.
1327 	 *
1328 	 * PKRU never rejects instruction fetches, so we don't need
1329 	 * to consider the PF_PK bit.
1330 	 */
1331 	if (is_vsyscall_vaddr(address)) {
1332 		if (emulate_vsyscall(error_code, regs, address))
1333 			return;
1334 	}
1335 #endif
1336 
1337 	/*
1338 	 * Kernel-mode access to the user address space should only occur
1339 	 * on well-defined single instructions listed in the exception
1340 	 * tables.  But, an erroneous kernel fault occurring outside one of
1341 	 * those areas which also holds mmap_lock might deadlock attempting
1342 	 * to validate the fault against the address space.
1343 	 *
1344 	 * Only do the expensive exception table search when we might be at
1345 	 * risk of a deadlock.  This happens if we
1346 	 * 1. Failed to acquire mmap_lock, and
1347 	 * 2. The access did not originate in userspace.
1348 	 */
1349 	if (unlikely(!mmap_read_trylock(mm))) {
1350 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1351 			/*
1352 			 * Fault from code in kernel from
1353 			 * which we do not expect faults.
1354 			 */
1355 			bad_area_nosemaphore(regs, error_code, address);
1356 			return;
1357 		}
1358 retry:
1359 		mmap_read_lock(mm);
1360 	} else {
1361 		/*
1362 		 * The above down_read_trylock() might have succeeded in
1363 		 * which case we'll have missed the might_sleep() from
1364 		 * down_read():
1365 		 */
1366 		might_sleep();
1367 	}
1368 
1369 	vma = find_vma(mm, address);
1370 	if (unlikely(!vma)) {
1371 		bad_area(regs, error_code, address);
1372 		return;
1373 	}
1374 	if (likely(vma->vm_start <= address))
1375 		goto good_area;
1376 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1377 		bad_area(regs, error_code, address);
1378 		return;
1379 	}
1380 	if (unlikely(expand_stack(vma, address))) {
1381 		bad_area(regs, error_code, address);
1382 		return;
1383 	}
1384 
1385 	/*
1386 	 * Ok, we have a good vm_area for this memory access, so
1387 	 * we can handle it..
1388 	 */
1389 good_area:
1390 	if (unlikely(access_error(error_code, vma))) {
1391 		bad_area_access_error(regs, error_code, address, vma);
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * If for any reason at all we couldn't handle the fault,
1397 	 * make sure we exit gracefully rather than endlessly redo
1398 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1399 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1400 	 *
1401 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1402 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1403 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1404 	 * (potentially after handling any pending signal during the return to
1405 	 * userland). The return to userland is identified whenever
1406 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1407 	 */
1408 	fault = handle_mm_fault(vma, address, flags, regs);
1409 
1410 	if (fault_signal_pending(fault, regs)) {
1411 		/*
1412 		 * Quick path to respond to signals.  The core mm code
1413 		 * has unlocked the mm for us if we get here.
1414 		 */
1415 		if (!user_mode(regs))
1416 			kernelmode_fixup_or_oops(regs, error_code, address,
1417 						 SIGBUS, BUS_ADRERR);
1418 		return;
1419 	}
1420 
1421 	/*
1422 	 * If we need to retry the mmap_lock has already been released,
1423 	 * and if there is a fatal signal pending there is no guarantee
1424 	 * that we made any progress. Handle this case first.
1425 	 */
1426 	if (unlikely((fault & VM_FAULT_RETRY) &&
1427 		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1428 		flags |= FAULT_FLAG_TRIED;
1429 		goto retry;
1430 	}
1431 
1432 	mmap_read_unlock(mm);
1433 	if (likely(!(fault & VM_FAULT_ERROR)))
1434 		return;
1435 
1436 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1437 		kernelmode_fixup_or_oops(regs, error_code, address, 0, 0);
1438 		return;
1439 	}
1440 
1441 	if (fault & VM_FAULT_OOM) {
1442 		/* Kernel mode? Handle exceptions or die: */
1443 		if (!user_mode(regs)) {
1444 			kernelmode_fixup_or_oops(regs, error_code, address,
1445 						 SIGSEGV, SEGV_MAPERR);
1446 			return;
1447 		}
1448 
1449 		/*
1450 		 * We ran out of memory, call the OOM killer, and return the
1451 		 * userspace (which will retry the fault, or kill us if we got
1452 		 * oom-killed):
1453 		 */
1454 		pagefault_out_of_memory();
1455 	} else {
1456 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1457 			     VM_FAULT_HWPOISON_LARGE))
1458 			do_sigbus(regs, error_code, address, fault);
1459 		else if (fault & VM_FAULT_SIGSEGV)
1460 			bad_area_nosemaphore(regs, error_code, address);
1461 		else
1462 			BUG();
1463 	}
1464 
1465 	check_v8086_mode(regs, address, tsk);
1466 }
1467 NOKPROBE_SYMBOL(do_user_addr_fault);
1468 
1469 static __always_inline void
1470 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1471 			 unsigned long address)
1472 {
1473 	if (!trace_pagefault_enabled())
1474 		return;
1475 
1476 	if (user_mode(regs))
1477 		trace_page_fault_user(address, regs, error_code);
1478 	else
1479 		trace_page_fault_kernel(address, regs, error_code);
1480 }
1481 
1482 static __always_inline void
1483 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1484 			      unsigned long address)
1485 {
1486 	trace_page_fault_entries(regs, error_code, address);
1487 
1488 	if (unlikely(kmmio_fault(regs, address)))
1489 		return;
1490 
1491 	/* Was the fault on kernel-controlled part of the address space? */
1492 	if (unlikely(fault_in_kernel_space(address))) {
1493 		do_kern_addr_fault(regs, error_code, address);
1494 	} else {
1495 		do_user_addr_fault(regs, error_code, address);
1496 		/*
1497 		 * User address page fault handling might have reenabled
1498 		 * interrupts. Fixing up all potential exit points of
1499 		 * do_user_addr_fault() and its leaf functions is just not
1500 		 * doable w/o creating an unholy mess or turning the code
1501 		 * upside down.
1502 		 */
1503 		local_irq_disable();
1504 	}
1505 }
1506 
1507 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1508 {
1509 	unsigned long address = read_cr2();
1510 	irqentry_state_t state;
1511 
1512 	prefetchw(&current->mm->mmap_lock);
1513 
1514 	/*
1515 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1516 	 * (asynchronous page fault mechanism). The event happens when a
1517 	 * userspace task is trying to access some valid (from guest's point of
1518 	 * view) memory which is not currently mapped by the host (e.g. the
1519 	 * memory is swapped out). Note, the corresponding "page ready" event
1520 	 * which is injected when the memory becomes available, is delived via
1521 	 * an interrupt mechanism and not a #PF exception
1522 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1523 	 *
1524 	 * We are relying on the interrupted context being sane (valid RSP,
1525 	 * relevant locks not held, etc.), which is fine as long as the
1526 	 * interrupted context had IF=1.  We are also relying on the KVM
1527 	 * async pf type field and CR2 being read consistently instead of
1528 	 * getting values from real and async page faults mixed up.
1529 	 *
1530 	 * Fingers crossed.
1531 	 *
1532 	 * The async #PF handling code takes care of idtentry handling
1533 	 * itself.
1534 	 */
1535 	if (kvm_handle_async_pf(regs, (u32)address))
1536 		return;
1537 
1538 	/*
1539 	 * Entry handling for valid #PF from kernel mode is slightly
1540 	 * different: RCU is already watching and rcu_irq_enter() must not
1541 	 * be invoked because a kernel fault on a user space address might
1542 	 * sleep.
1543 	 *
1544 	 * In case the fault hit a RCU idle region the conditional entry
1545 	 * code reenabled RCU to avoid subsequent wreckage which helps
1546 	 * debugability.
1547 	 */
1548 	state = irqentry_enter(regs);
1549 
1550 	instrumentation_begin();
1551 	handle_page_fault(regs, error_code, address);
1552 	instrumentation_end();
1553 
1554 	irqentry_exit(regs, state);
1555 }
1556