xref: /openbmc/linux/arch/x86/mm/fault.c (revision 16ccca11088c1bdd9311a2c630b453541305c48a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 
33 #define CREATE_TRACE_POINTS
34 #include <asm/trace/exceptions.h>
35 
36 /*
37  * Returns 0 if mmiotrace is disabled, or if the fault is not
38  * handled by mmiotrace:
39  */
40 static nokprobe_inline int
41 kmmio_fault(struct pt_regs *regs, unsigned long addr)
42 {
43 	if (unlikely(is_kmmio_active()))
44 		if (kmmio_handler(regs, addr) == 1)
45 			return -1;
46 	return 0;
47 }
48 
49 /*
50  * Prefetch quirks:
51  *
52  * 32-bit mode:
53  *
54  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
55  *   Check that here and ignore it.
56  *
57  * 64-bit mode:
58  *
59  *   Sometimes the CPU reports invalid exceptions on prefetch.
60  *   Check that here and ignore it.
61  *
62  * Opcode checker based on code by Richard Brunner.
63  */
64 static inline int
65 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
66 		      unsigned char opcode, int *prefetch)
67 {
68 	unsigned char instr_hi = opcode & 0xf0;
69 	unsigned char instr_lo = opcode & 0x0f;
70 
71 	switch (instr_hi) {
72 	case 0x20:
73 	case 0x30:
74 		/*
75 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
76 		 * In X86_64 long mode, the CPU will signal invalid
77 		 * opcode if some of these prefixes are present so
78 		 * X86_64 will never get here anyway
79 		 */
80 		return ((instr_lo & 7) == 0x6);
81 #ifdef CONFIG_X86_64
82 	case 0x40:
83 		/*
84 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
85 		 * Need to figure out under what instruction mode the
86 		 * instruction was issued. Could check the LDT for lm,
87 		 * but for now it's good enough to assume that long
88 		 * mode only uses well known segments or kernel.
89 		 */
90 		return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 	case 0x60:
93 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
94 		return (instr_lo & 0xC) == 0x4;
95 	case 0xF0:
96 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 		return !instr_lo || (instr_lo>>1) == 1;
98 	case 0x00:
99 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
100 		if (probe_kernel_address(instr, opcode))
101 			return 0;
102 
103 		*prefetch = (instr_lo == 0xF) &&
104 			(opcode == 0x0D || opcode == 0x18);
105 		return 0;
106 	default:
107 		return 0;
108 	}
109 }
110 
111 static int
112 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
113 {
114 	unsigned char *max_instr;
115 	unsigned char *instr;
116 	int prefetch = 0;
117 
118 	/*
119 	 * If it was a exec (instruction fetch) fault on NX page, then
120 	 * do not ignore the fault:
121 	 */
122 	if (error_code & X86_PF_INSTR)
123 		return 0;
124 
125 	instr = (void *)convert_ip_to_linear(current, regs);
126 	max_instr = instr + 15;
127 
128 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
129 		return 0;
130 
131 	while (instr < max_instr) {
132 		unsigned char opcode;
133 
134 		if (probe_kernel_address(instr, opcode))
135 			break;
136 
137 		instr++;
138 
139 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
140 			break;
141 	}
142 	return prefetch;
143 }
144 
145 DEFINE_SPINLOCK(pgd_lock);
146 LIST_HEAD(pgd_list);
147 
148 #ifdef CONFIG_X86_32
149 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
150 {
151 	unsigned index = pgd_index(address);
152 	pgd_t *pgd_k;
153 	p4d_t *p4d, *p4d_k;
154 	pud_t *pud, *pud_k;
155 	pmd_t *pmd, *pmd_k;
156 
157 	pgd += index;
158 	pgd_k = init_mm.pgd + index;
159 
160 	if (!pgd_present(*pgd_k))
161 		return NULL;
162 
163 	/*
164 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
165 	 * and redundant with the set_pmd() on non-PAE. As would
166 	 * set_p4d/set_pud.
167 	 */
168 	p4d = p4d_offset(pgd, address);
169 	p4d_k = p4d_offset(pgd_k, address);
170 	if (!p4d_present(*p4d_k))
171 		return NULL;
172 
173 	pud = pud_offset(p4d, address);
174 	pud_k = pud_offset(p4d_k, address);
175 	if (!pud_present(*pud_k))
176 		return NULL;
177 
178 	pmd = pmd_offset(pud, address);
179 	pmd_k = pmd_offset(pud_k, address);
180 
181 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
182 		set_pmd(pmd, *pmd_k);
183 
184 	if (!pmd_present(*pmd_k))
185 		return NULL;
186 	else
187 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
188 
189 	return pmd_k;
190 }
191 
192 void vmalloc_sync_all(void)
193 {
194 	unsigned long address;
195 
196 	if (SHARED_KERNEL_PMD)
197 		return;
198 
199 	for (address = VMALLOC_START & PMD_MASK;
200 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
201 	     address += PMD_SIZE) {
202 		struct page *page;
203 
204 		spin_lock(&pgd_lock);
205 		list_for_each_entry(page, &pgd_list, lru) {
206 			spinlock_t *pgt_lock;
207 
208 			/* the pgt_lock only for Xen */
209 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
210 
211 			spin_lock(pgt_lock);
212 			vmalloc_sync_one(page_address(page), address);
213 			spin_unlock(pgt_lock);
214 		}
215 		spin_unlock(&pgd_lock);
216 	}
217 }
218 
219 /*
220  * 32-bit:
221  *
222  *   Handle a fault on the vmalloc or module mapping area
223  */
224 static noinline int vmalloc_fault(unsigned long address)
225 {
226 	unsigned long pgd_paddr;
227 	pmd_t *pmd_k;
228 	pte_t *pte_k;
229 
230 	/* Make sure we are in vmalloc area: */
231 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
232 		return -1;
233 
234 	/*
235 	 * Synchronize this task's top level page-table
236 	 * with the 'reference' page table.
237 	 *
238 	 * Do _not_ use "current" here. We might be inside
239 	 * an interrupt in the middle of a task switch..
240 	 */
241 	pgd_paddr = read_cr3_pa();
242 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
243 	if (!pmd_k)
244 		return -1;
245 
246 	if (pmd_large(*pmd_k))
247 		return 0;
248 
249 	pte_k = pte_offset_kernel(pmd_k, address);
250 	if (!pte_present(*pte_k))
251 		return -1;
252 
253 	return 0;
254 }
255 NOKPROBE_SYMBOL(vmalloc_fault);
256 
257 /*
258  * Did it hit the DOS screen memory VA from vm86 mode?
259  */
260 static inline void
261 check_v8086_mode(struct pt_regs *regs, unsigned long address,
262 		 struct task_struct *tsk)
263 {
264 #ifdef CONFIG_VM86
265 	unsigned long bit;
266 
267 	if (!v8086_mode(regs) || !tsk->thread.vm86)
268 		return;
269 
270 	bit = (address - 0xA0000) >> PAGE_SHIFT;
271 	if (bit < 32)
272 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
273 #endif
274 }
275 
276 static bool low_pfn(unsigned long pfn)
277 {
278 	return pfn < max_low_pfn;
279 }
280 
281 static void dump_pagetable(unsigned long address)
282 {
283 	pgd_t *base = __va(read_cr3_pa());
284 	pgd_t *pgd = &base[pgd_index(address)];
285 	p4d_t *p4d;
286 	pud_t *pud;
287 	pmd_t *pmd;
288 	pte_t *pte;
289 
290 #ifdef CONFIG_X86_PAE
291 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
292 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
293 		goto out;
294 #define pr_pde pr_cont
295 #else
296 #define pr_pde pr_info
297 #endif
298 	p4d = p4d_offset(pgd, address);
299 	pud = pud_offset(p4d, address);
300 	pmd = pmd_offset(pud, address);
301 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
302 #undef pr_pde
303 
304 	/*
305 	 * We must not directly access the pte in the highpte
306 	 * case if the page table is located in highmem.
307 	 * And let's rather not kmap-atomic the pte, just in case
308 	 * it's allocated already:
309 	 */
310 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
311 		goto out;
312 
313 	pte = pte_offset_kernel(pmd, address);
314 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
315 out:
316 	pr_cont("\n");
317 }
318 
319 #else /* CONFIG_X86_64: */
320 
321 void vmalloc_sync_all(void)
322 {
323 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
324 }
325 
326 /*
327  * 64-bit:
328  *
329  *   Handle a fault on the vmalloc area
330  */
331 static noinline int vmalloc_fault(unsigned long address)
332 {
333 	pgd_t *pgd, *pgd_k;
334 	p4d_t *p4d, *p4d_k;
335 	pud_t *pud;
336 	pmd_t *pmd;
337 	pte_t *pte;
338 
339 	/* Make sure we are in vmalloc area: */
340 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
341 		return -1;
342 
343 	/*
344 	 * Copy kernel mappings over when needed. This can also
345 	 * happen within a race in page table update. In the later
346 	 * case just flush:
347 	 */
348 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
349 	pgd_k = pgd_offset_k(address);
350 	if (pgd_none(*pgd_k))
351 		return -1;
352 
353 	if (pgtable_l5_enabled()) {
354 		if (pgd_none(*pgd)) {
355 			set_pgd(pgd, *pgd_k);
356 			arch_flush_lazy_mmu_mode();
357 		} else {
358 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
359 		}
360 	}
361 
362 	/* With 4-level paging, copying happens on the p4d level. */
363 	p4d = p4d_offset(pgd, address);
364 	p4d_k = p4d_offset(pgd_k, address);
365 	if (p4d_none(*p4d_k))
366 		return -1;
367 
368 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
369 		set_p4d(p4d, *p4d_k);
370 		arch_flush_lazy_mmu_mode();
371 	} else {
372 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
373 	}
374 
375 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
376 
377 	pud = pud_offset(p4d, address);
378 	if (pud_none(*pud))
379 		return -1;
380 
381 	if (pud_large(*pud))
382 		return 0;
383 
384 	pmd = pmd_offset(pud, address);
385 	if (pmd_none(*pmd))
386 		return -1;
387 
388 	if (pmd_large(*pmd))
389 		return 0;
390 
391 	pte = pte_offset_kernel(pmd, address);
392 	if (!pte_present(*pte))
393 		return -1;
394 
395 	return 0;
396 }
397 NOKPROBE_SYMBOL(vmalloc_fault);
398 
399 #ifdef CONFIG_CPU_SUP_AMD
400 static const char errata93_warning[] =
401 KERN_ERR
402 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
403 "******* Working around it, but it may cause SEGVs or burn power.\n"
404 "******* Please consider a BIOS update.\n"
405 "******* Disabling USB legacy in the BIOS may also help.\n";
406 #endif
407 
408 /*
409  * No vm86 mode in 64-bit mode:
410  */
411 static inline void
412 check_v8086_mode(struct pt_regs *regs, unsigned long address,
413 		 struct task_struct *tsk)
414 {
415 }
416 
417 static int bad_address(void *p)
418 {
419 	unsigned long dummy;
420 
421 	return probe_kernel_address((unsigned long *)p, dummy);
422 }
423 
424 static void dump_pagetable(unsigned long address)
425 {
426 	pgd_t *base = __va(read_cr3_pa());
427 	pgd_t *pgd = base + pgd_index(address);
428 	p4d_t *p4d;
429 	pud_t *pud;
430 	pmd_t *pmd;
431 	pte_t *pte;
432 
433 	if (bad_address(pgd))
434 		goto bad;
435 
436 	pr_info("PGD %lx ", pgd_val(*pgd));
437 
438 	if (!pgd_present(*pgd))
439 		goto out;
440 
441 	p4d = p4d_offset(pgd, address);
442 	if (bad_address(p4d))
443 		goto bad;
444 
445 	pr_cont("P4D %lx ", p4d_val(*p4d));
446 	if (!p4d_present(*p4d) || p4d_large(*p4d))
447 		goto out;
448 
449 	pud = pud_offset(p4d, address);
450 	if (bad_address(pud))
451 		goto bad;
452 
453 	pr_cont("PUD %lx ", pud_val(*pud));
454 	if (!pud_present(*pud) || pud_large(*pud))
455 		goto out;
456 
457 	pmd = pmd_offset(pud, address);
458 	if (bad_address(pmd))
459 		goto bad;
460 
461 	pr_cont("PMD %lx ", pmd_val(*pmd));
462 	if (!pmd_present(*pmd) || pmd_large(*pmd))
463 		goto out;
464 
465 	pte = pte_offset_kernel(pmd, address);
466 	if (bad_address(pte))
467 		goto bad;
468 
469 	pr_cont("PTE %lx", pte_val(*pte));
470 out:
471 	pr_cont("\n");
472 	return;
473 bad:
474 	pr_info("BAD\n");
475 }
476 
477 #endif /* CONFIG_X86_64 */
478 
479 /*
480  * Workaround for K8 erratum #93 & buggy BIOS.
481  *
482  * BIOS SMM functions are required to use a specific workaround
483  * to avoid corruption of the 64bit RIP register on C stepping K8.
484  *
485  * A lot of BIOS that didn't get tested properly miss this.
486  *
487  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
488  * Try to work around it here.
489  *
490  * Note we only handle faults in kernel here.
491  * Does nothing on 32-bit.
492  */
493 static int is_errata93(struct pt_regs *regs, unsigned long address)
494 {
495 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
496 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
497 	    || boot_cpu_data.x86 != 0xf)
498 		return 0;
499 
500 	if (address != regs->ip)
501 		return 0;
502 
503 	if ((address >> 32) != 0)
504 		return 0;
505 
506 	address |= 0xffffffffUL << 32;
507 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
508 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
509 		printk_once(errata93_warning);
510 		regs->ip = address;
511 		return 1;
512 	}
513 #endif
514 	return 0;
515 }
516 
517 /*
518  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
519  * to illegal addresses >4GB.
520  *
521  * We catch this in the page fault handler because these addresses
522  * are not reachable. Just detect this case and return.  Any code
523  * segment in LDT is compatibility mode.
524  */
525 static int is_errata100(struct pt_regs *regs, unsigned long address)
526 {
527 #ifdef CONFIG_X86_64
528 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
529 		return 1;
530 #endif
531 	return 0;
532 }
533 
534 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
535 {
536 #ifdef CONFIG_X86_F00F_BUG
537 	unsigned long nr;
538 
539 	/*
540 	 * Pentium F0 0F C7 C8 bug workaround:
541 	 */
542 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
543 		nr = (address - idt_descr.address) >> 3;
544 
545 		if (nr == 6) {
546 			do_invalid_op(regs, 0);
547 			return 1;
548 		}
549 	}
550 #endif
551 	return 0;
552 }
553 
554 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
555 {
556 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
557 	unsigned long addr;
558 	struct ldttss_desc desc;
559 
560 	if (index == 0) {
561 		pr_alert("%s: NULL\n", name);
562 		return;
563 	}
564 
565 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
566 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
567 		return;
568 	}
569 
570 	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
571 			      sizeof(struct ldttss_desc))) {
572 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
573 			 name, index);
574 		return;
575 	}
576 
577 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
578 #ifdef CONFIG_X86_64
579 	addr |= ((u64)desc.base3 << 32);
580 #endif
581 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
582 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
583 }
584 
585 static void
586 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
587 {
588 	if (!oops_may_print())
589 		return;
590 
591 	if (error_code & X86_PF_INSTR) {
592 		unsigned int level;
593 		pgd_t *pgd;
594 		pte_t *pte;
595 
596 		pgd = __va(read_cr3_pa());
597 		pgd += pgd_index(address);
598 
599 		pte = lookup_address_in_pgd(pgd, address, &level);
600 
601 		if (pte && pte_present(*pte) && !pte_exec(*pte))
602 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
603 				from_kuid(&init_user_ns, current_uid()));
604 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
605 				(pgd_flags(*pgd) & _PAGE_USER) &&
606 				(__read_cr4() & X86_CR4_SMEP))
607 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
608 				from_kuid(&init_user_ns, current_uid()));
609 	}
610 
611 	if (address < PAGE_SIZE && !user_mode(regs))
612 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
613 			(void *)address);
614 	else
615 		pr_alert("BUG: unable to handle page fault for address: %px\n",
616 			(void *)address);
617 
618 	pr_alert("#PF: %s %s in %s mode\n",
619 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
620 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
621 		 (error_code & X86_PF_WRITE) ? "write access" :
622 					       "read access",
623 			     user_mode(regs) ? "user" : "kernel");
624 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
625 		 !(error_code & X86_PF_PROT) ? "not-present page" :
626 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
627 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
628 					       "permissions violation");
629 
630 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
631 		struct desc_ptr idt, gdt;
632 		u16 ldtr, tr;
633 
634 		/*
635 		 * This can happen for quite a few reasons.  The more obvious
636 		 * ones are faults accessing the GDT, or LDT.  Perhaps
637 		 * surprisingly, if the CPU tries to deliver a benign or
638 		 * contributory exception from user code and gets a page fault
639 		 * during delivery, the page fault can be delivered as though
640 		 * it originated directly from user code.  This could happen
641 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
642 		 * kernel or IST stack.
643 		 */
644 		store_idt(&idt);
645 
646 		/* Usable even on Xen PV -- it's just slow. */
647 		native_store_gdt(&gdt);
648 
649 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
650 			 idt.address, idt.size, gdt.address, gdt.size);
651 
652 		store_ldt(ldtr);
653 		show_ldttss(&gdt, "LDTR", ldtr);
654 
655 		store_tr(tr);
656 		show_ldttss(&gdt, "TR", tr);
657 	}
658 
659 	dump_pagetable(address);
660 }
661 
662 static noinline void
663 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
664 	    unsigned long address)
665 {
666 	struct task_struct *tsk;
667 	unsigned long flags;
668 	int sig;
669 
670 	flags = oops_begin();
671 	tsk = current;
672 	sig = SIGKILL;
673 
674 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
675 	       tsk->comm, address);
676 	dump_pagetable(address);
677 
678 	if (__die("Bad pagetable", regs, error_code))
679 		sig = 0;
680 
681 	oops_end(flags, regs, sig);
682 }
683 
684 static void set_signal_archinfo(unsigned long address,
685 				unsigned long error_code)
686 {
687 	struct task_struct *tsk = current;
688 
689 	/*
690 	 * To avoid leaking information about the kernel page
691 	 * table layout, pretend that user-mode accesses to
692 	 * kernel addresses are always protection faults.
693 	 *
694 	 * NB: This means that failed vsyscalls with vsyscall=none
695 	 * will have the PROT bit.  This doesn't leak any
696 	 * information and does not appear to cause any problems.
697 	 */
698 	if (address >= TASK_SIZE_MAX)
699 		error_code |= X86_PF_PROT;
700 
701 	tsk->thread.trap_nr = X86_TRAP_PF;
702 	tsk->thread.error_code = error_code | X86_PF_USER;
703 	tsk->thread.cr2 = address;
704 }
705 
706 static noinline void
707 no_context(struct pt_regs *regs, unsigned long error_code,
708 	   unsigned long address, int signal, int si_code)
709 {
710 	struct task_struct *tsk = current;
711 	unsigned long flags;
712 	int sig;
713 
714 	if (user_mode(regs)) {
715 		/*
716 		 * This is an implicit supervisor-mode access from user
717 		 * mode.  Bypass all the kernel-mode recovery code and just
718 		 * OOPS.
719 		 */
720 		goto oops;
721 	}
722 
723 	/* Are we prepared to handle this kernel fault? */
724 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
725 		/*
726 		 * Any interrupt that takes a fault gets the fixup. This makes
727 		 * the below recursive fault logic only apply to a faults from
728 		 * task context.
729 		 */
730 		if (in_interrupt())
731 			return;
732 
733 		/*
734 		 * Per the above we're !in_interrupt(), aka. task context.
735 		 *
736 		 * In this case we need to make sure we're not recursively
737 		 * faulting through the emulate_vsyscall() logic.
738 		 */
739 		if (current->thread.sig_on_uaccess_err && signal) {
740 			set_signal_archinfo(address, error_code);
741 
742 			/* XXX: hwpoison faults will set the wrong code. */
743 			force_sig_fault(signal, si_code, (void __user *)address);
744 		}
745 
746 		/*
747 		 * Barring that, we can do the fixup and be happy.
748 		 */
749 		return;
750 	}
751 
752 #ifdef CONFIG_VMAP_STACK
753 	/*
754 	 * Stack overflow?  During boot, we can fault near the initial
755 	 * stack in the direct map, but that's not an overflow -- check
756 	 * that we're in vmalloc space to avoid this.
757 	 */
758 	if (is_vmalloc_addr((void *)address) &&
759 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
760 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
761 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
762 		/*
763 		 * We're likely to be running with very little stack space
764 		 * left.  It's plausible that we'd hit this condition but
765 		 * double-fault even before we get this far, in which case
766 		 * we're fine: the double-fault handler will deal with it.
767 		 *
768 		 * We don't want to make it all the way into the oops code
769 		 * and then double-fault, though, because we're likely to
770 		 * break the console driver and lose most of the stack dump.
771 		 */
772 		asm volatile ("movq %[stack], %%rsp\n\t"
773 			      "call handle_stack_overflow\n\t"
774 			      "1: jmp 1b"
775 			      : ASM_CALL_CONSTRAINT
776 			      : "D" ("kernel stack overflow (page fault)"),
777 				"S" (regs), "d" (address),
778 				[stack] "rm" (stack));
779 		unreachable();
780 	}
781 #endif
782 
783 	/*
784 	 * 32-bit:
785 	 *
786 	 *   Valid to do another page fault here, because if this fault
787 	 *   had been triggered by is_prefetch fixup_exception would have
788 	 *   handled it.
789 	 *
790 	 * 64-bit:
791 	 *
792 	 *   Hall of shame of CPU/BIOS bugs.
793 	 */
794 	if (is_prefetch(regs, error_code, address))
795 		return;
796 
797 	if (is_errata93(regs, address))
798 		return;
799 
800 	/*
801 	 * Buggy firmware could access regions which might page fault, try to
802 	 * recover from such faults.
803 	 */
804 	if (IS_ENABLED(CONFIG_EFI))
805 		efi_recover_from_page_fault(address);
806 
807 oops:
808 	/*
809 	 * Oops. The kernel tried to access some bad page. We'll have to
810 	 * terminate things with extreme prejudice:
811 	 */
812 	flags = oops_begin();
813 
814 	show_fault_oops(regs, error_code, address);
815 
816 	if (task_stack_end_corrupted(tsk))
817 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
818 
819 	sig = SIGKILL;
820 	if (__die("Oops", regs, error_code))
821 		sig = 0;
822 
823 	/* Executive summary in case the body of the oops scrolled away */
824 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
825 
826 	oops_end(flags, regs, sig);
827 }
828 
829 /*
830  * Print out info about fatal segfaults, if the show_unhandled_signals
831  * sysctl is set:
832  */
833 static inline void
834 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
835 		unsigned long address, struct task_struct *tsk)
836 {
837 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
838 
839 	if (!unhandled_signal(tsk, SIGSEGV))
840 		return;
841 
842 	if (!printk_ratelimit())
843 		return;
844 
845 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
846 		loglvl, tsk->comm, task_pid_nr(tsk), address,
847 		(void *)regs->ip, (void *)regs->sp, error_code);
848 
849 	print_vma_addr(KERN_CONT " in ", regs->ip);
850 
851 	printk(KERN_CONT "\n");
852 
853 	show_opcodes(regs, loglvl);
854 }
855 
856 /*
857  * The (legacy) vsyscall page is the long page in the kernel portion
858  * of the address space that has user-accessible permissions.
859  */
860 static bool is_vsyscall_vaddr(unsigned long vaddr)
861 {
862 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
863 }
864 
865 static void
866 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
867 		       unsigned long address, u32 pkey, int si_code)
868 {
869 	struct task_struct *tsk = current;
870 
871 	/* User mode accesses just cause a SIGSEGV */
872 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
873 		/*
874 		 * It's possible to have interrupts off here:
875 		 */
876 		local_irq_enable();
877 
878 		/*
879 		 * Valid to do another page fault here because this one came
880 		 * from user space:
881 		 */
882 		if (is_prefetch(regs, error_code, address))
883 			return;
884 
885 		if (is_errata100(regs, address))
886 			return;
887 
888 		/*
889 		 * To avoid leaking information about the kernel page table
890 		 * layout, pretend that user-mode accesses to kernel addresses
891 		 * are always protection faults.
892 		 */
893 		if (address >= TASK_SIZE_MAX)
894 			error_code |= X86_PF_PROT;
895 
896 		if (likely(show_unhandled_signals))
897 			show_signal_msg(regs, error_code, address, tsk);
898 
899 		set_signal_archinfo(address, error_code);
900 
901 		if (si_code == SEGV_PKUERR)
902 			force_sig_pkuerr((void __user *)address, pkey);
903 
904 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
905 
906 		return;
907 	}
908 
909 	if (is_f00f_bug(regs, address))
910 		return;
911 
912 	no_context(regs, error_code, address, SIGSEGV, si_code);
913 }
914 
915 static noinline void
916 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
917 		     unsigned long address)
918 {
919 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
920 }
921 
922 static void
923 __bad_area(struct pt_regs *regs, unsigned long error_code,
924 	   unsigned long address, u32 pkey, int si_code)
925 {
926 	struct mm_struct *mm = current->mm;
927 	/*
928 	 * Something tried to access memory that isn't in our memory map..
929 	 * Fix it, but check if it's kernel or user first..
930 	 */
931 	up_read(&mm->mmap_sem);
932 
933 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
934 }
935 
936 static noinline void
937 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
938 {
939 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
940 }
941 
942 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
943 		struct vm_area_struct *vma)
944 {
945 	/* This code is always called on the current mm */
946 	bool foreign = false;
947 
948 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
949 		return false;
950 	if (error_code & X86_PF_PK)
951 		return true;
952 	/* this checks permission keys on the VMA: */
953 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
954 				       (error_code & X86_PF_INSTR), foreign))
955 		return true;
956 	return false;
957 }
958 
959 static noinline void
960 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
961 		      unsigned long address, struct vm_area_struct *vma)
962 {
963 	/*
964 	 * This OSPKE check is not strictly necessary at runtime.
965 	 * But, doing it this way allows compiler optimizations
966 	 * if pkeys are compiled out.
967 	 */
968 	if (bad_area_access_from_pkeys(error_code, vma)) {
969 		/*
970 		 * A protection key fault means that the PKRU value did not allow
971 		 * access to some PTE.  Userspace can figure out what PKRU was
972 		 * from the XSAVE state.  This function captures the pkey from
973 		 * the vma and passes it to userspace so userspace can discover
974 		 * which protection key was set on the PTE.
975 		 *
976 		 * If we get here, we know that the hardware signaled a X86_PF_PK
977 		 * fault and that there was a VMA once we got in the fault
978 		 * handler.  It does *not* guarantee that the VMA we find here
979 		 * was the one that we faulted on.
980 		 *
981 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
982 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
983 		 * 3. T1   : faults...
984 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
985 		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
986 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
987 		 *	     faulted on a pte with its pkey=4.
988 		 */
989 		u32 pkey = vma_pkey(vma);
990 
991 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
992 	} else {
993 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
994 	}
995 }
996 
997 static void
998 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
999 	  vm_fault_t fault)
1000 {
1001 	/* Kernel mode? Handle exceptions or die: */
1002 	if (!(error_code & X86_PF_USER)) {
1003 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1004 		return;
1005 	}
1006 
1007 	/* User-space => ok to do another page fault: */
1008 	if (is_prefetch(regs, error_code, address))
1009 		return;
1010 
1011 	set_signal_archinfo(address, error_code);
1012 
1013 #ifdef CONFIG_MEMORY_FAILURE
1014 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1015 		struct task_struct *tsk = current;
1016 		unsigned lsb = 0;
1017 
1018 		pr_err(
1019 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1020 			tsk->comm, tsk->pid, address);
1021 		if (fault & VM_FAULT_HWPOISON_LARGE)
1022 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1023 		if (fault & VM_FAULT_HWPOISON)
1024 			lsb = PAGE_SHIFT;
1025 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1026 		return;
1027 	}
1028 #endif
1029 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1030 }
1031 
1032 static noinline void
1033 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1034 	       unsigned long address, vm_fault_t fault)
1035 {
1036 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1037 		no_context(regs, error_code, address, 0, 0);
1038 		return;
1039 	}
1040 
1041 	if (fault & VM_FAULT_OOM) {
1042 		/* Kernel mode? Handle exceptions or die: */
1043 		if (!(error_code & X86_PF_USER)) {
1044 			no_context(regs, error_code, address,
1045 				   SIGSEGV, SEGV_MAPERR);
1046 			return;
1047 		}
1048 
1049 		/*
1050 		 * We ran out of memory, call the OOM killer, and return the
1051 		 * userspace (which will retry the fault, or kill us if we got
1052 		 * oom-killed):
1053 		 */
1054 		pagefault_out_of_memory();
1055 	} else {
1056 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1057 			     VM_FAULT_HWPOISON_LARGE))
1058 			do_sigbus(regs, error_code, address, fault);
1059 		else if (fault & VM_FAULT_SIGSEGV)
1060 			bad_area_nosemaphore(regs, error_code, address);
1061 		else
1062 			BUG();
1063 	}
1064 }
1065 
1066 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1067 {
1068 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1069 		return 0;
1070 
1071 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1072 		return 0;
1073 
1074 	return 1;
1075 }
1076 
1077 /*
1078  * Handle a spurious fault caused by a stale TLB entry.
1079  *
1080  * This allows us to lazily refresh the TLB when increasing the
1081  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1082  * eagerly is very expensive since that implies doing a full
1083  * cross-processor TLB flush, even if no stale TLB entries exist
1084  * on other processors.
1085  *
1086  * Spurious faults may only occur if the TLB contains an entry with
1087  * fewer permission than the page table entry.  Non-present (P = 0)
1088  * and reserved bit (R = 1) faults are never spurious.
1089  *
1090  * There are no security implications to leaving a stale TLB when
1091  * increasing the permissions on a page.
1092  *
1093  * Returns non-zero if a spurious fault was handled, zero otherwise.
1094  *
1095  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1096  * (Optional Invalidation).
1097  */
1098 static noinline int
1099 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1100 {
1101 	pgd_t *pgd;
1102 	p4d_t *p4d;
1103 	pud_t *pud;
1104 	pmd_t *pmd;
1105 	pte_t *pte;
1106 	int ret;
1107 
1108 	/*
1109 	 * Only writes to RO or instruction fetches from NX may cause
1110 	 * spurious faults.
1111 	 *
1112 	 * These could be from user or supervisor accesses but the TLB
1113 	 * is only lazily flushed after a kernel mapping protection
1114 	 * change, so user accesses are not expected to cause spurious
1115 	 * faults.
1116 	 */
1117 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1118 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1119 		return 0;
1120 
1121 	pgd = init_mm.pgd + pgd_index(address);
1122 	if (!pgd_present(*pgd))
1123 		return 0;
1124 
1125 	p4d = p4d_offset(pgd, address);
1126 	if (!p4d_present(*p4d))
1127 		return 0;
1128 
1129 	if (p4d_large(*p4d))
1130 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1131 
1132 	pud = pud_offset(p4d, address);
1133 	if (!pud_present(*pud))
1134 		return 0;
1135 
1136 	if (pud_large(*pud))
1137 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1138 
1139 	pmd = pmd_offset(pud, address);
1140 	if (!pmd_present(*pmd))
1141 		return 0;
1142 
1143 	if (pmd_large(*pmd))
1144 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1145 
1146 	pte = pte_offset_kernel(pmd, address);
1147 	if (!pte_present(*pte))
1148 		return 0;
1149 
1150 	ret = spurious_kernel_fault_check(error_code, pte);
1151 	if (!ret)
1152 		return 0;
1153 
1154 	/*
1155 	 * Make sure we have permissions in PMD.
1156 	 * If not, then there's a bug in the page tables:
1157 	 */
1158 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1159 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1160 
1161 	return ret;
1162 }
1163 NOKPROBE_SYMBOL(spurious_kernel_fault);
1164 
1165 int show_unhandled_signals = 1;
1166 
1167 static inline int
1168 access_error(unsigned long error_code, struct vm_area_struct *vma)
1169 {
1170 	/* This is only called for the current mm, so: */
1171 	bool foreign = false;
1172 
1173 	/*
1174 	 * Read or write was blocked by protection keys.  This is
1175 	 * always an unconditional error and can never result in
1176 	 * a follow-up action to resolve the fault, like a COW.
1177 	 */
1178 	if (error_code & X86_PF_PK)
1179 		return 1;
1180 
1181 	/*
1182 	 * Make sure to check the VMA so that we do not perform
1183 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1184 	 * page.
1185 	 */
1186 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1187 				       (error_code & X86_PF_INSTR), foreign))
1188 		return 1;
1189 
1190 	if (error_code & X86_PF_WRITE) {
1191 		/* write, present and write, not present: */
1192 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1193 			return 1;
1194 		return 0;
1195 	}
1196 
1197 	/* read, present: */
1198 	if (unlikely(error_code & X86_PF_PROT))
1199 		return 1;
1200 
1201 	/* read, not present: */
1202 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1203 		return 1;
1204 
1205 	return 0;
1206 }
1207 
1208 static int fault_in_kernel_space(unsigned long address)
1209 {
1210 	/*
1211 	 * On 64-bit systems, the vsyscall page is at an address above
1212 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1213 	 * address space.
1214 	 */
1215 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1216 		return false;
1217 
1218 	return address >= TASK_SIZE_MAX;
1219 }
1220 
1221 /*
1222  * Called for all faults where 'address' is part of the kernel address
1223  * space.  Might get called for faults that originate from *code* that
1224  * ran in userspace or the kernel.
1225  */
1226 static void
1227 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1228 		   unsigned long address)
1229 {
1230 	/*
1231 	 * Protection keys exceptions only happen on user pages.  We
1232 	 * have no user pages in the kernel portion of the address
1233 	 * space, so do not expect them here.
1234 	 */
1235 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1236 
1237 	/*
1238 	 * We can fault-in kernel-space virtual memory on-demand. The
1239 	 * 'reference' page table is init_mm.pgd.
1240 	 *
1241 	 * NOTE! We MUST NOT take any locks for this case. We may
1242 	 * be in an interrupt or a critical region, and should
1243 	 * only copy the information from the master page table,
1244 	 * nothing more.
1245 	 *
1246 	 * Before doing this on-demand faulting, ensure that the
1247 	 * fault is not any of the following:
1248 	 * 1. A fault on a PTE with a reserved bit set.
1249 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1250 	 *    fault kernel memory due to user-mode accesses).
1251 	 * 3. A fault caused by a page-level protection violation.
1252 	 *    (A demand fault would be on a non-present page which
1253 	 *     would have X86_PF_PROT==0).
1254 	 */
1255 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1256 		if (vmalloc_fault(address) >= 0)
1257 			return;
1258 	}
1259 
1260 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1261 	if (spurious_kernel_fault(hw_error_code, address))
1262 		return;
1263 
1264 	/* kprobes don't want to hook the spurious faults: */
1265 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1266 		return;
1267 
1268 	/*
1269 	 * Note, despite being a "bad area", there are quite a few
1270 	 * acceptable reasons to get here, such as erratum fixups
1271 	 * and handling kernel code that can fault, like get_user().
1272 	 *
1273 	 * Don't take the mm semaphore here. If we fixup a prefetch
1274 	 * fault we could otherwise deadlock:
1275 	 */
1276 	bad_area_nosemaphore(regs, hw_error_code, address);
1277 }
1278 NOKPROBE_SYMBOL(do_kern_addr_fault);
1279 
1280 /* Handle faults in the user portion of the address space */
1281 static inline
1282 void do_user_addr_fault(struct pt_regs *regs,
1283 			unsigned long hw_error_code,
1284 			unsigned long address)
1285 {
1286 	struct vm_area_struct *vma;
1287 	struct task_struct *tsk;
1288 	struct mm_struct *mm;
1289 	vm_fault_t fault, major = 0;
1290 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1291 
1292 	tsk = current;
1293 	mm = tsk->mm;
1294 
1295 	/* kprobes don't want to hook the spurious faults: */
1296 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1297 		return;
1298 
1299 	/*
1300 	 * Reserved bits are never expected to be set on
1301 	 * entries in the user portion of the page tables.
1302 	 */
1303 	if (unlikely(hw_error_code & X86_PF_RSVD))
1304 		pgtable_bad(regs, hw_error_code, address);
1305 
1306 	/*
1307 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1308 	 * pages in the user address space.  The odd case here is WRUSS,
1309 	 * which, according to the preliminary documentation, does not respect
1310 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1311 	 * enforcement appears to be consistent with the USER bit.
1312 	 */
1313 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1314 		     !(hw_error_code & X86_PF_USER) &&
1315 		     !(regs->flags & X86_EFLAGS_AC)))
1316 	{
1317 		bad_area_nosemaphore(regs, hw_error_code, address);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * If we're in an interrupt, have no user context or are running
1323 	 * in a region with pagefaults disabled then we must not take the fault
1324 	 */
1325 	if (unlikely(faulthandler_disabled() || !mm)) {
1326 		bad_area_nosemaphore(regs, hw_error_code, address);
1327 		return;
1328 	}
1329 
1330 	/*
1331 	 * It's safe to allow irq's after cr2 has been saved and the
1332 	 * vmalloc fault has been handled.
1333 	 *
1334 	 * User-mode registers count as a user access even for any
1335 	 * potential system fault or CPU buglet:
1336 	 */
1337 	if (user_mode(regs)) {
1338 		local_irq_enable();
1339 		flags |= FAULT_FLAG_USER;
1340 	} else {
1341 		if (regs->flags & X86_EFLAGS_IF)
1342 			local_irq_enable();
1343 	}
1344 
1345 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1346 
1347 	if (hw_error_code & X86_PF_WRITE)
1348 		flags |= FAULT_FLAG_WRITE;
1349 	if (hw_error_code & X86_PF_INSTR)
1350 		flags |= FAULT_FLAG_INSTRUCTION;
1351 
1352 #ifdef CONFIG_X86_64
1353 	/*
1354 	 * Faults in the vsyscall page might need emulation.  The
1355 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1356 	 * considered to be part of the user address space.
1357 	 *
1358 	 * The vsyscall page does not have a "real" VMA, so do this
1359 	 * emulation before we go searching for VMAs.
1360 	 *
1361 	 * PKRU never rejects instruction fetches, so we don't need
1362 	 * to consider the PF_PK bit.
1363 	 */
1364 	if (is_vsyscall_vaddr(address)) {
1365 		if (emulate_vsyscall(hw_error_code, regs, address))
1366 			return;
1367 	}
1368 #endif
1369 
1370 	/*
1371 	 * Kernel-mode access to the user address space should only occur
1372 	 * on well-defined single instructions listed in the exception
1373 	 * tables.  But, an erroneous kernel fault occurring outside one of
1374 	 * those areas which also holds mmap_sem might deadlock attempting
1375 	 * to validate the fault against the address space.
1376 	 *
1377 	 * Only do the expensive exception table search when we might be at
1378 	 * risk of a deadlock.  This happens if we
1379 	 * 1. Failed to acquire mmap_sem, and
1380 	 * 2. The access did not originate in userspace.
1381 	 */
1382 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1383 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1384 			/*
1385 			 * Fault from code in kernel from
1386 			 * which we do not expect faults.
1387 			 */
1388 			bad_area_nosemaphore(regs, hw_error_code, address);
1389 			return;
1390 		}
1391 retry:
1392 		down_read(&mm->mmap_sem);
1393 	} else {
1394 		/*
1395 		 * The above down_read_trylock() might have succeeded in
1396 		 * which case we'll have missed the might_sleep() from
1397 		 * down_read():
1398 		 */
1399 		might_sleep();
1400 	}
1401 
1402 	vma = find_vma(mm, address);
1403 	if (unlikely(!vma)) {
1404 		bad_area(regs, hw_error_code, address);
1405 		return;
1406 	}
1407 	if (likely(vma->vm_start <= address))
1408 		goto good_area;
1409 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1410 		bad_area(regs, hw_error_code, address);
1411 		return;
1412 	}
1413 	if (unlikely(expand_stack(vma, address))) {
1414 		bad_area(regs, hw_error_code, address);
1415 		return;
1416 	}
1417 
1418 	/*
1419 	 * Ok, we have a good vm_area for this memory access, so
1420 	 * we can handle it..
1421 	 */
1422 good_area:
1423 	if (unlikely(access_error(hw_error_code, vma))) {
1424 		bad_area_access_error(regs, hw_error_code, address, vma);
1425 		return;
1426 	}
1427 
1428 	/*
1429 	 * If for any reason at all we couldn't handle the fault,
1430 	 * make sure we exit gracefully rather than endlessly redo
1431 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1432 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1433 	 *
1434 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1435 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1436 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1437 	 * (potentially after handling any pending signal during the return to
1438 	 * userland). The return to userland is identified whenever
1439 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1440 	 */
1441 	fault = handle_mm_fault(vma, address, flags);
1442 	major |= fault & VM_FAULT_MAJOR;
1443 
1444 	/*
1445 	 * If we need to retry the mmap_sem has already been released,
1446 	 * and if there is a fatal signal pending there is no guarantee
1447 	 * that we made any progress. Handle this case first.
1448 	 */
1449 	if (unlikely(fault & VM_FAULT_RETRY)) {
1450 		/* Retry at most once */
1451 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1452 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1453 			flags |= FAULT_FLAG_TRIED;
1454 			if (!fatal_signal_pending(tsk))
1455 				goto retry;
1456 		}
1457 
1458 		/* User mode? Just return to handle the fatal exception */
1459 		if (flags & FAULT_FLAG_USER)
1460 			return;
1461 
1462 		/* Not returning to user mode? Handle exceptions or die: */
1463 		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1464 		return;
1465 	}
1466 
1467 	up_read(&mm->mmap_sem);
1468 	if (unlikely(fault & VM_FAULT_ERROR)) {
1469 		mm_fault_error(regs, hw_error_code, address, fault);
1470 		return;
1471 	}
1472 
1473 	/*
1474 	 * Major/minor page fault accounting. If any of the events
1475 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1476 	 */
1477 	if (major) {
1478 		tsk->maj_flt++;
1479 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1480 	} else {
1481 		tsk->min_flt++;
1482 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1483 	}
1484 
1485 	check_v8086_mode(regs, address, tsk);
1486 }
1487 NOKPROBE_SYMBOL(do_user_addr_fault);
1488 
1489 /*
1490  * Explicitly marked noinline such that the function tracer sees this as the
1491  * page_fault entry point.
1492  */
1493 static noinline void
1494 __do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1495 		unsigned long address)
1496 {
1497 	prefetchw(&current->mm->mmap_sem);
1498 
1499 	if (unlikely(kmmio_fault(regs, address)))
1500 		return;
1501 
1502 	/* Was the fault on kernel-controlled part of the address space? */
1503 	if (unlikely(fault_in_kernel_space(address)))
1504 		do_kern_addr_fault(regs, hw_error_code, address);
1505 	else
1506 		do_user_addr_fault(regs, hw_error_code, address);
1507 }
1508 NOKPROBE_SYMBOL(__do_page_fault);
1509 
1510 static __always_inline void
1511 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1512 			 unsigned long address)
1513 {
1514 	if (!trace_pagefault_enabled())
1515 		return;
1516 
1517 	if (user_mode(regs))
1518 		trace_page_fault_user(address, regs, error_code);
1519 	else
1520 		trace_page_fault_kernel(address, regs, error_code);
1521 }
1522 
1523 dotraplinkage void
1524 do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
1525 {
1526 	enum ctx_state prev_state;
1527 
1528 	prev_state = exception_enter();
1529 	trace_page_fault_entries(regs, error_code, address);
1530 	__do_page_fault(regs, error_code, address);
1531 	exception_exit(prev_state);
1532 }
1533 NOKPROBE_SYMBOL(do_page_fault);
1534