xref: /openbmc/linux/arch/x86/mm/fault.c (revision 019132ff3daf36c97a4006655dfd00ee42f2b590)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8 #include <linux/module.h>		/* search_exception_table	*/
9 #include <linux/bootmem.h>		/* max_low_pfn			*/
10 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12 #include <linux/perf_event.h>		/* perf_sw_event		*/
13 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14 #include <linux/prefetch.h>		/* prefetchw			*/
15 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
17 
18 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
19 #include <asm/traps.h>			/* dotraplinkage, ...		*/
20 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
21 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
22 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
23 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
24 #include <asm/vm86.h>			/* struct vm86			*/
25 #include <asm/mmu_context.h>		/* vma_pkey()			*/
26 
27 #define CREATE_TRACE_POINTS
28 #include <asm/trace/exceptions.h>
29 
30 /*
31  * Page fault error code bits:
32  *
33  *   bit 0 ==	 0: no page found	1: protection fault
34  *   bit 1 ==	 0: read access		1: write access
35  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
36  *   bit 3 ==				1: use of reserved bit detected
37  *   bit 4 ==				1: fault was an instruction fetch
38  *   bit 5 ==				1: protection keys block access
39  */
40 enum x86_pf_error_code {
41 
42 	PF_PROT		=		1 << 0,
43 	PF_WRITE	=		1 << 1,
44 	PF_USER		=		1 << 2,
45 	PF_RSVD		=		1 << 3,
46 	PF_INSTR	=		1 << 4,
47 	PF_PK		=		1 << 5,
48 };
49 
50 /*
51  * Returns 0 if mmiotrace is disabled, or if the fault is not
52  * handled by mmiotrace:
53  */
54 static nokprobe_inline int
55 kmmio_fault(struct pt_regs *regs, unsigned long addr)
56 {
57 	if (unlikely(is_kmmio_active()))
58 		if (kmmio_handler(regs, addr) == 1)
59 			return -1;
60 	return 0;
61 }
62 
63 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
64 {
65 	int ret = 0;
66 
67 	/* kprobe_running() needs smp_processor_id() */
68 	if (kprobes_built_in() && !user_mode(regs)) {
69 		preempt_disable();
70 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 			ret = 1;
72 		preempt_enable();
73 	}
74 
75 	return ret;
76 }
77 
78 /*
79  * Prefetch quirks:
80  *
81  * 32-bit mode:
82  *
83  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84  *   Check that here and ignore it.
85  *
86  * 64-bit mode:
87  *
88  *   Sometimes the CPU reports invalid exceptions on prefetch.
89  *   Check that here and ignore it.
90  *
91  * Opcode checker based on code by Richard Brunner.
92  */
93 static inline int
94 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 		      unsigned char opcode, int *prefetch)
96 {
97 	unsigned char instr_hi = opcode & 0xf0;
98 	unsigned char instr_lo = opcode & 0x0f;
99 
100 	switch (instr_hi) {
101 	case 0x20:
102 	case 0x30:
103 		/*
104 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 		 * In X86_64 long mode, the CPU will signal invalid
106 		 * opcode if some of these prefixes are present so
107 		 * X86_64 will never get here anyway
108 		 */
109 		return ((instr_lo & 7) == 0x6);
110 #ifdef CONFIG_X86_64
111 	case 0x40:
112 		/*
113 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 		 * Need to figure out under what instruction mode the
115 		 * instruction was issued. Could check the LDT for lm,
116 		 * but for now it's good enough to assume that long
117 		 * mode only uses well known segments or kernel.
118 		 */
119 		return (!user_mode(regs) || user_64bit_mode(regs));
120 #endif
121 	case 0x60:
122 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
123 		return (instr_lo & 0xC) == 0x4;
124 	case 0xF0:
125 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 		return !instr_lo || (instr_lo>>1) == 1;
127 	case 0x00:
128 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
129 		if (probe_kernel_address(instr, opcode))
130 			return 0;
131 
132 		*prefetch = (instr_lo == 0xF) &&
133 			(opcode == 0x0D || opcode == 0x18);
134 		return 0;
135 	default:
136 		return 0;
137 	}
138 }
139 
140 static int
141 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
142 {
143 	unsigned char *max_instr;
144 	unsigned char *instr;
145 	int prefetch = 0;
146 
147 	/*
148 	 * If it was a exec (instruction fetch) fault on NX page, then
149 	 * do not ignore the fault:
150 	 */
151 	if (error_code & PF_INSTR)
152 		return 0;
153 
154 	instr = (void *)convert_ip_to_linear(current, regs);
155 	max_instr = instr + 15;
156 
157 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
158 		return 0;
159 
160 	while (instr < max_instr) {
161 		unsigned char opcode;
162 
163 		if (probe_kernel_address(instr, opcode))
164 			break;
165 
166 		instr++;
167 
168 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
169 			break;
170 	}
171 	return prefetch;
172 }
173 
174 /*
175  * A protection key fault means that the PKRU value did not allow
176  * access to some PTE.  Userspace can figure out what PKRU was
177  * from the XSAVE state, and this function fills out a field in
178  * siginfo so userspace can discover which protection key was set
179  * on the PTE.
180  *
181  * If we get here, we know that the hardware signaled a PF_PK
182  * fault and that there was a VMA once we got in the fault
183  * handler.  It does *not* guarantee that the VMA we find here
184  * was the one that we faulted on.
185  *
186  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
187  * 2. T1   : set PKRU to deny access to pkey=4, touches page
188  * 3. T1   : faults...
189  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190  * 5. T1   : enters fault handler, takes mmap_sem, etc...
191  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
192  *	     faulted on a pte with its pkey=4.
193  */
194 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 		struct vm_area_struct *vma)
196 {
197 	/* This is effectively an #ifdef */
198 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 		return;
200 
201 	/* Fault not from Protection Keys: nothing to do */
202 	if (si_code != SEGV_PKUERR)
203 		return;
204 	/*
205 	 * force_sig_info_fault() is called from a number of
206 	 * contexts, some of which have a VMA and some of which
207 	 * do not.  The PF_PK handing happens after we have a
208 	 * valid VMA, so we should never reach this without a
209 	 * valid VMA.
210 	 */
211 	if (!vma) {
212 		WARN_ONCE(1, "PKU fault with no VMA passed in");
213 		info->si_pkey = 0;
214 		return;
215 	}
216 	/*
217 	 * si_pkey should be thought of as a strong hint, but not
218 	 * absolutely guranteed to be 100% accurate because of
219 	 * the race explained above.
220 	 */
221 	info->si_pkey = vma_pkey(vma);
222 }
223 
224 static void
225 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 		     struct task_struct *tsk, struct vm_area_struct *vma,
227 		     int fault)
228 {
229 	unsigned lsb = 0;
230 	siginfo_t info;
231 
232 	info.si_signo	= si_signo;
233 	info.si_errno	= 0;
234 	info.si_code	= si_code;
235 	info.si_addr	= (void __user *)address;
236 	if (fault & VM_FAULT_HWPOISON_LARGE)
237 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 	if (fault & VM_FAULT_HWPOISON)
239 		lsb = PAGE_SHIFT;
240 	info.si_addr_lsb = lsb;
241 
242 	fill_sig_info_pkey(si_code, &info, vma);
243 
244 	force_sig_info(si_signo, &info, tsk);
245 }
246 
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
249 
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252 {
253 	unsigned index = pgd_index(address);
254 	pgd_t *pgd_k;
255 	pud_t *pud, *pud_k;
256 	pmd_t *pmd, *pmd_k;
257 
258 	pgd += index;
259 	pgd_k = init_mm.pgd + index;
260 
261 	if (!pgd_present(*pgd_k))
262 		return NULL;
263 
264 	/*
265 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 	 * and redundant with the set_pmd() on non-PAE. As would
267 	 * set_pud.
268 	 */
269 	pud = pud_offset(pgd, address);
270 	pud_k = pud_offset(pgd_k, address);
271 	if (!pud_present(*pud_k))
272 		return NULL;
273 
274 	pmd = pmd_offset(pud, address);
275 	pmd_k = pmd_offset(pud_k, address);
276 	if (!pmd_present(*pmd_k))
277 		return NULL;
278 
279 	if (!pmd_present(*pmd))
280 		set_pmd(pmd, *pmd_k);
281 	else
282 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
283 
284 	return pmd_k;
285 }
286 
287 void vmalloc_sync_all(void)
288 {
289 	unsigned long address;
290 
291 	if (SHARED_KERNEL_PMD)
292 		return;
293 
294 	for (address = VMALLOC_START & PMD_MASK;
295 	     address >= TASK_SIZE && address < FIXADDR_TOP;
296 	     address += PMD_SIZE) {
297 		struct page *page;
298 
299 		spin_lock(&pgd_lock);
300 		list_for_each_entry(page, &pgd_list, lru) {
301 			spinlock_t *pgt_lock;
302 			pmd_t *ret;
303 
304 			/* the pgt_lock only for Xen */
305 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
306 
307 			spin_lock(pgt_lock);
308 			ret = vmalloc_sync_one(page_address(page), address);
309 			spin_unlock(pgt_lock);
310 
311 			if (!ret)
312 				break;
313 		}
314 		spin_unlock(&pgd_lock);
315 	}
316 }
317 
318 /*
319  * 32-bit:
320  *
321  *   Handle a fault on the vmalloc or module mapping area
322  */
323 static noinline int vmalloc_fault(unsigned long address)
324 {
325 	unsigned long pgd_paddr;
326 	pmd_t *pmd_k;
327 	pte_t *pte_k;
328 
329 	/* Make sure we are in vmalloc area: */
330 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 		return -1;
332 
333 	WARN_ON_ONCE(in_nmi());
334 
335 	/*
336 	 * Synchronize this task's top level page-table
337 	 * with the 'reference' page table.
338 	 *
339 	 * Do _not_ use "current" here. We might be inside
340 	 * an interrupt in the middle of a task switch..
341 	 */
342 	pgd_paddr = read_cr3();
343 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 	if (!pmd_k)
345 		return -1;
346 
347 	pte_k = pte_offset_kernel(pmd_k, address);
348 	if (!pte_present(*pte_k))
349 		return -1;
350 
351 	return 0;
352 }
353 NOKPROBE_SYMBOL(vmalloc_fault);
354 
355 /*
356  * Did it hit the DOS screen memory VA from vm86 mode?
357  */
358 static inline void
359 check_v8086_mode(struct pt_regs *regs, unsigned long address,
360 		 struct task_struct *tsk)
361 {
362 #ifdef CONFIG_VM86
363 	unsigned long bit;
364 
365 	if (!v8086_mode(regs) || !tsk->thread.vm86)
366 		return;
367 
368 	bit = (address - 0xA0000) >> PAGE_SHIFT;
369 	if (bit < 32)
370 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
371 #endif
372 }
373 
374 static bool low_pfn(unsigned long pfn)
375 {
376 	return pfn < max_low_pfn;
377 }
378 
379 static void dump_pagetable(unsigned long address)
380 {
381 	pgd_t *base = __va(read_cr3());
382 	pgd_t *pgd = &base[pgd_index(address)];
383 	pmd_t *pmd;
384 	pte_t *pte;
385 
386 #ifdef CONFIG_X86_PAE
387 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
388 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
389 		goto out;
390 #endif
391 	pmd = pmd_offset(pud_offset(pgd, address), address);
392 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
393 
394 	/*
395 	 * We must not directly access the pte in the highpte
396 	 * case if the page table is located in highmem.
397 	 * And let's rather not kmap-atomic the pte, just in case
398 	 * it's allocated already:
399 	 */
400 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
401 		goto out;
402 
403 	pte = pte_offset_kernel(pmd, address);
404 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
405 out:
406 	printk("\n");
407 }
408 
409 #else /* CONFIG_X86_64: */
410 
411 void vmalloc_sync_all(void)
412 {
413 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
414 }
415 
416 /*
417  * 64-bit:
418  *
419  *   Handle a fault on the vmalloc area
420  *
421  * This assumes no large pages in there.
422  */
423 static noinline int vmalloc_fault(unsigned long address)
424 {
425 	pgd_t *pgd, *pgd_ref;
426 	pud_t *pud, *pud_ref;
427 	pmd_t *pmd, *pmd_ref;
428 	pte_t *pte, *pte_ref;
429 
430 	/* Make sure we are in vmalloc area: */
431 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
432 		return -1;
433 
434 	WARN_ON_ONCE(in_nmi());
435 
436 	/*
437 	 * Copy kernel mappings over when needed. This can also
438 	 * happen within a race in page table update. In the later
439 	 * case just flush:
440 	 */
441 	pgd = pgd_offset(current->active_mm, address);
442 	pgd_ref = pgd_offset_k(address);
443 	if (pgd_none(*pgd_ref))
444 		return -1;
445 
446 	if (pgd_none(*pgd)) {
447 		set_pgd(pgd, *pgd_ref);
448 		arch_flush_lazy_mmu_mode();
449 	} else {
450 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
451 	}
452 
453 	/*
454 	 * Below here mismatches are bugs because these lower tables
455 	 * are shared:
456 	 */
457 
458 	pud = pud_offset(pgd, address);
459 	pud_ref = pud_offset(pgd_ref, address);
460 	if (pud_none(*pud_ref))
461 		return -1;
462 
463 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
464 		BUG();
465 
466 	pmd = pmd_offset(pud, address);
467 	pmd_ref = pmd_offset(pud_ref, address);
468 	if (pmd_none(*pmd_ref))
469 		return -1;
470 
471 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
472 		BUG();
473 
474 	pte_ref = pte_offset_kernel(pmd_ref, address);
475 	if (!pte_present(*pte_ref))
476 		return -1;
477 
478 	pte = pte_offset_kernel(pmd, address);
479 
480 	/*
481 	 * Don't use pte_page here, because the mappings can point
482 	 * outside mem_map, and the NUMA hash lookup cannot handle
483 	 * that:
484 	 */
485 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
486 		BUG();
487 
488 	return 0;
489 }
490 NOKPROBE_SYMBOL(vmalloc_fault);
491 
492 #ifdef CONFIG_CPU_SUP_AMD
493 static const char errata93_warning[] =
494 KERN_ERR
495 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
496 "******* Working around it, but it may cause SEGVs or burn power.\n"
497 "******* Please consider a BIOS update.\n"
498 "******* Disabling USB legacy in the BIOS may also help.\n";
499 #endif
500 
501 /*
502  * No vm86 mode in 64-bit mode:
503  */
504 static inline void
505 check_v8086_mode(struct pt_regs *regs, unsigned long address,
506 		 struct task_struct *tsk)
507 {
508 }
509 
510 static int bad_address(void *p)
511 {
512 	unsigned long dummy;
513 
514 	return probe_kernel_address((unsigned long *)p, dummy);
515 }
516 
517 static void dump_pagetable(unsigned long address)
518 {
519 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
520 	pgd_t *pgd = base + pgd_index(address);
521 	pud_t *pud;
522 	pmd_t *pmd;
523 	pte_t *pte;
524 
525 	if (bad_address(pgd))
526 		goto bad;
527 
528 	printk("PGD %lx ", pgd_val(*pgd));
529 
530 	if (!pgd_present(*pgd))
531 		goto out;
532 
533 	pud = pud_offset(pgd, address);
534 	if (bad_address(pud))
535 		goto bad;
536 
537 	printk("PUD %lx ", pud_val(*pud));
538 	if (!pud_present(*pud) || pud_large(*pud))
539 		goto out;
540 
541 	pmd = pmd_offset(pud, address);
542 	if (bad_address(pmd))
543 		goto bad;
544 
545 	printk("PMD %lx ", pmd_val(*pmd));
546 	if (!pmd_present(*pmd) || pmd_large(*pmd))
547 		goto out;
548 
549 	pte = pte_offset_kernel(pmd, address);
550 	if (bad_address(pte))
551 		goto bad;
552 
553 	printk("PTE %lx", pte_val(*pte));
554 out:
555 	printk("\n");
556 	return;
557 bad:
558 	printk("BAD\n");
559 }
560 
561 #endif /* CONFIG_X86_64 */
562 
563 /*
564  * Workaround for K8 erratum #93 & buggy BIOS.
565  *
566  * BIOS SMM functions are required to use a specific workaround
567  * to avoid corruption of the 64bit RIP register on C stepping K8.
568  *
569  * A lot of BIOS that didn't get tested properly miss this.
570  *
571  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
572  * Try to work around it here.
573  *
574  * Note we only handle faults in kernel here.
575  * Does nothing on 32-bit.
576  */
577 static int is_errata93(struct pt_regs *regs, unsigned long address)
578 {
579 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
580 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
581 	    || boot_cpu_data.x86 != 0xf)
582 		return 0;
583 
584 	if (address != regs->ip)
585 		return 0;
586 
587 	if ((address >> 32) != 0)
588 		return 0;
589 
590 	address |= 0xffffffffUL << 32;
591 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
592 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
593 		printk_once(errata93_warning);
594 		regs->ip = address;
595 		return 1;
596 	}
597 #endif
598 	return 0;
599 }
600 
601 /*
602  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
603  * to illegal addresses >4GB.
604  *
605  * We catch this in the page fault handler because these addresses
606  * are not reachable. Just detect this case and return.  Any code
607  * segment in LDT is compatibility mode.
608  */
609 static int is_errata100(struct pt_regs *regs, unsigned long address)
610 {
611 #ifdef CONFIG_X86_64
612 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
613 		return 1;
614 #endif
615 	return 0;
616 }
617 
618 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
619 {
620 #ifdef CONFIG_X86_F00F_BUG
621 	unsigned long nr;
622 
623 	/*
624 	 * Pentium F0 0F C7 C8 bug workaround:
625 	 */
626 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
627 		nr = (address - idt_descr.address) >> 3;
628 
629 		if (nr == 6) {
630 			do_invalid_op(regs, 0);
631 			return 1;
632 		}
633 	}
634 #endif
635 	return 0;
636 }
637 
638 static const char nx_warning[] = KERN_CRIT
639 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
640 static const char smep_warning[] = KERN_CRIT
641 "unable to execute userspace code (SMEP?) (uid: %d)\n";
642 
643 static void
644 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
645 		unsigned long address)
646 {
647 	if (!oops_may_print())
648 		return;
649 
650 	if (error_code & PF_INSTR) {
651 		unsigned int level;
652 		pgd_t *pgd;
653 		pte_t *pte;
654 
655 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
656 		pgd += pgd_index(address);
657 
658 		pte = lookup_address_in_pgd(pgd, address, &level);
659 
660 		if (pte && pte_present(*pte) && !pte_exec(*pte))
661 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
662 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
663 				(pgd_flags(*pgd) & _PAGE_USER) &&
664 				(__read_cr4() & X86_CR4_SMEP))
665 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
666 	}
667 
668 	printk(KERN_ALERT "BUG: unable to handle kernel ");
669 	if (address < PAGE_SIZE)
670 		printk(KERN_CONT "NULL pointer dereference");
671 	else
672 		printk(KERN_CONT "paging request");
673 
674 	printk(KERN_CONT " at %p\n", (void *) address);
675 	printk(KERN_ALERT "IP:");
676 	printk_address(regs->ip);
677 
678 	dump_pagetable(address);
679 }
680 
681 static noinline void
682 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
683 	    unsigned long address)
684 {
685 	struct task_struct *tsk;
686 	unsigned long flags;
687 	int sig;
688 
689 	flags = oops_begin();
690 	tsk = current;
691 	sig = SIGKILL;
692 
693 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
694 	       tsk->comm, address);
695 	dump_pagetable(address);
696 
697 	tsk->thread.cr2		= address;
698 	tsk->thread.trap_nr	= X86_TRAP_PF;
699 	tsk->thread.error_code	= error_code;
700 
701 	if (__die("Bad pagetable", regs, error_code))
702 		sig = 0;
703 
704 	oops_end(flags, regs, sig);
705 }
706 
707 static noinline void
708 no_context(struct pt_regs *regs, unsigned long error_code,
709 	   unsigned long address, int signal, int si_code)
710 {
711 	struct task_struct *tsk = current;
712 	unsigned long flags;
713 	int sig;
714 	/* No context means no VMA to pass down */
715 	struct vm_area_struct *vma = NULL;
716 
717 	/* Are we prepared to handle this kernel fault? */
718 	if (fixup_exception(regs)) {
719 		/*
720 		 * Any interrupt that takes a fault gets the fixup. This makes
721 		 * the below recursive fault logic only apply to a faults from
722 		 * task context.
723 		 */
724 		if (in_interrupt())
725 			return;
726 
727 		/*
728 		 * Per the above we're !in_interrupt(), aka. task context.
729 		 *
730 		 * In this case we need to make sure we're not recursively
731 		 * faulting through the emulate_vsyscall() logic.
732 		 */
733 		if (current_thread_info()->sig_on_uaccess_error && signal) {
734 			tsk->thread.trap_nr = X86_TRAP_PF;
735 			tsk->thread.error_code = error_code | PF_USER;
736 			tsk->thread.cr2 = address;
737 
738 			/* XXX: hwpoison faults will set the wrong code. */
739 			force_sig_info_fault(signal, si_code, address,
740 					     tsk, vma, 0);
741 		}
742 
743 		/*
744 		 * Barring that, we can do the fixup and be happy.
745 		 */
746 		return;
747 	}
748 
749 	/*
750 	 * 32-bit:
751 	 *
752 	 *   Valid to do another page fault here, because if this fault
753 	 *   had been triggered by is_prefetch fixup_exception would have
754 	 *   handled it.
755 	 *
756 	 * 64-bit:
757 	 *
758 	 *   Hall of shame of CPU/BIOS bugs.
759 	 */
760 	if (is_prefetch(regs, error_code, address))
761 		return;
762 
763 	if (is_errata93(regs, address))
764 		return;
765 
766 	/*
767 	 * Oops. The kernel tried to access some bad page. We'll have to
768 	 * terminate things with extreme prejudice:
769 	 */
770 	flags = oops_begin();
771 
772 	show_fault_oops(regs, error_code, address);
773 
774 	if (task_stack_end_corrupted(tsk))
775 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
776 
777 	tsk->thread.cr2		= address;
778 	tsk->thread.trap_nr	= X86_TRAP_PF;
779 	tsk->thread.error_code	= error_code;
780 
781 	sig = SIGKILL;
782 	if (__die("Oops", regs, error_code))
783 		sig = 0;
784 
785 	/* Executive summary in case the body of the oops scrolled away */
786 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
787 
788 	oops_end(flags, regs, sig);
789 }
790 
791 /*
792  * Print out info about fatal segfaults, if the show_unhandled_signals
793  * sysctl is set:
794  */
795 static inline void
796 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
797 		unsigned long address, struct task_struct *tsk)
798 {
799 	if (!unhandled_signal(tsk, SIGSEGV))
800 		return;
801 
802 	if (!printk_ratelimit())
803 		return;
804 
805 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
806 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
807 		tsk->comm, task_pid_nr(tsk), address,
808 		(void *)regs->ip, (void *)regs->sp, error_code);
809 
810 	print_vma_addr(KERN_CONT " in ", regs->ip);
811 
812 	printk(KERN_CONT "\n");
813 }
814 
815 static void
816 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
817 		       unsigned long address, struct vm_area_struct *vma,
818 		       int si_code)
819 {
820 	struct task_struct *tsk = current;
821 
822 	/* User mode accesses just cause a SIGSEGV */
823 	if (error_code & PF_USER) {
824 		/*
825 		 * It's possible to have interrupts off here:
826 		 */
827 		local_irq_enable();
828 
829 		/*
830 		 * Valid to do another page fault here because this one came
831 		 * from user space:
832 		 */
833 		if (is_prefetch(regs, error_code, address))
834 			return;
835 
836 		if (is_errata100(regs, address))
837 			return;
838 
839 #ifdef CONFIG_X86_64
840 		/*
841 		 * Instruction fetch faults in the vsyscall page might need
842 		 * emulation.
843 		 */
844 		if (unlikely((error_code & PF_INSTR) &&
845 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
846 			if (emulate_vsyscall(regs, address))
847 				return;
848 		}
849 #endif
850 		/* Kernel addresses are always protection faults: */
851 		if (address >= TASK_SIZE)
852 			error_code |= PF_PROT;
853 
854 		if (likely(show_unhandled_signals))
855 			show_signal_msg(regs, error_code, address, tsk);
856 
857 		tsk->thread.cr2		= address;
858 		tsk->thread.error_code	= error_code;
859 		tsk->thread.trap_nr	= X86_TRAP_PF;
860 
861 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
862 
863 		return;
864 	}
865 
866 	if (is_f00f_bug(regs, address))
867 		return;
868 
869 	no_context(regs, error_code, address, SIGSEGV, si_code);
870 }
871 
872 static noinline void
873 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
874 		     unsigned long address, struct vm_area_struct *vma)
875 {
876 	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
877 }
878 
879 static void
880 __bad_area(struct pt_regs *regs, unsigned long error_code,
881 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
882 {
883 	struct mm_struct *mm = current->mm;
884 
885 	/*
886 	 * Something tried to access memory that isn't in our memory map..
887 	 * Fix it, but check if it's kernel or user first..
888 	 */
889 	up_read(&mm->mmap_sem);
890 
891 	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
892 }
893 
894 static noinline void
895 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
896 {
897 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
898 }
899 
900 static noinline void
901 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
902 		      unsigned long address, struct vm_area_struct *vma)
903 {
904 	/*
905 	 * This OSPKE check is not strictly necessary at runtime.
906 	 * But, doing it this way allows compiler optimizations
907 	 * if pkeys are compiled out.
908 	 */
909 	if (boot_cpu_has(X86_FEATURE_OSPKE) && (error_code & PF_PK))
910 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
911 	else
912 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
913 }
914 
915 static void
916 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
917 	  struct vm_area_struct *vma, unsigned int fault)
918 {
919 	struct task_struct *tsk = current;
920 	int code = BUS_ADRERR;
921 
922 	/* Kernel mode? Handle exceptions or die: */
923 	if (!(error_code & PF_USER)) {
924 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
925 		return;
926 	}
927 
928 	/* User-space => ok to do another page fault: */
929 	if (is_prefetch(regs, error_code, address))
930 		return;
931 
932 	tsk->thread.cr2		= address;
933 	tsk->thread.error_code	= error_code;
934 	tsk->thread.trap_nr	= X86_TRAP_PF;
935 
936 #ifdef CONFIG_MEMORY_FAILURE
937 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
938 		printk(KERN_ERR
939 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
940 			tsk->comm, tsk->pid, address);
941 		code = BUS_MCEERR_AR;
942 	}
943 #endif
944 	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
945 }
946 
947 static noinline void
948 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
949 	       unsigned long address, struct vm_area_struct *vma,
950 	       unsigned int fault)
951 {
952 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
953 		no_context(regs, error_code, address, 0, 0);
954 		return;
955 	}
956 
957 	if (fault & VM_FAULT_OOM) {
958 		/* Kernel mode? Handle exceptions or die: */
959 		if (!(error_code & PF_USER)) {
960 			no_context(regs, error_code, address,
961 				   SIGSEGV, SEGV_MAPERR);
962 			return;
963 		}
964 
965 		/*
966 		 * We ran out of memory, call the OOM killer, and return the
967 		 * userspace (which will retry the fault, or kill us if we got
968 		 * oom-killed):
969 		 */
970 		pagefault_out_of_memory();
971 	} else {
972 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
973 			     VM_FAULT_HWPOISON_LARGE))
974 			do_sigbus(regs, error_code, address, vma, fault);
975 		else if (fault & VM_FAULT_SIGSEGV)
976 			bad_area_nosemaphore(regs, error_code, address, vma);
977 		else
978 			BUG();
979 	}
980 }
981 
982 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
983 {
984 	if ((error_code & PF_WRITE) && !pte_write(*pte))
985 		return 0;
986 
987 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
988 		return 0;
989 	/*
990 	 * Note: We do not do lazy flushing on protection key
991 	 * changes, so no spurious fault will ever set PF_PK.
992 	 */
993 	if ((error_code & PF_PK))
994 		return 1;
995 
996 	return 1;
997 }
998 
999 /*
1000  * Handle a spurious fault caused by a stale TLB entry.
1001  *
1002  * This allows us to lazily refresh the TLB when increasing the
1003  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1004  * eagerly is very expensive since that implies doing a full
1005  * cross-processor TLB flush, even if no stale TLB entries exist
1006  * on other processors.
1007  *
1008  * Spurious faults may only occur if the TLB contains an entry with
1009  * fewer permission than the page table entry.  Non-present (P = 0)
1010  * and reserved bit (R = 1) faults are never spurious.
1011  *
1012  * There are no security implications to leaving a stale TLB when
1013  * increasing the permissions on a page.
1014  *
1015  * Returns non-zero if a spurious fault was handled, zero otherwise.
1016  *
1017  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1018  * (Optional Invalidation).
1019  */
1020 static noinline int
1021 spurious_fault(unsigned long error_code, unsigned long address)
1022 {
1023 	pgd_t *pgd;
1024 	pud_t *pud;
1025 	pmd_t *pmd;
1026 	pte_t *pte;
1027 	int ret;
1028 
1029 	/*
1030 	 * Only writes to RO or instruction fetches from NX may cause
1031 	 * spurious faults.
1032 	 *
1033 	 * These could be from user or supervisor accesses but the TLB
1034 	 * is only lazily flushed after a kernel mapping protection
1035 	 * change, so user accesses are not expected to cause spurious
1036 	 * faults.
1037 	 */
1038 	if (error_code != (PF_WRITE | PF_PROT)
1039 	    && error_code != (PF_INSTR | PF_PROT))
1040 		return 0;
1041 
1042 	pgd = init_mm.pgd + pgd_index(address);
1043 	if (!pgd_present(*pgd))
1044 		return 0;
1045 
1046 	pud = pud_offset(pgd, address);
1047 	if (!pud_present(*pud))
1048 		return 0;
1049 
1050 	if (pud_large(*pud))
1051 		return spurious_fault_check(error_code, (pte_t *) pud);
1052 
1053 	pmd = pmd_offset(pud, address);
1054 	if (!pmd_present(*pmd))
1055 		return 0;
1056 
1057 	if (pmd_large(*pmd))
1058 		return spurious_fault_check(error_code, (pte_t *) pmd);
1059 
1060 	pte = pte_offset_kernel(pmd, address);
1061 	if (!pte_present(*pte))
1062 		return 0;
1063 
1064 	ret = spurious_fault_check(error_code, pte);
1065 	if (!ret)
1066 		return 0;
1067 
1068 	/*
1069 	 * Make sure we have permissions in PMD.
1070 	 * If not, then there's a bug in the page tables:
1071 	 */
1072 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1073 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1074 
1075 	return ret;
1076 }
1077 NOKPROBE_SYMBOL(spurious_fault);
1078 
1079 int show_unhandled_signals = 1;
1080 
1081 static inline int
1082 access_error(unsigned long error_code, struct vm_area_struct *vma)
1083 {
1084 	if (error_code & PF_WRITE) {
1085 		/* write, present and write, not present: */
1086 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1087 			return 1;
1088 		return 0;
1089 	}
1090 
1091 	/* read, present: */
1092 	if (unlikely(error_code & PF_PROT))
1093 		return 1;
1094 
1095 	/* read, not present: */
1096 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1097 		return 1;
1098 
1099 	return 0;
1100 }
1101 
1102 static int fault_in_kernel_space(unsigned long address)
1103 {
1104 	return address >= TASK_SIZE_MAX;
1105 }
1106 
1107 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1108 {
1109 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1110 		return false;
1111 
1112 	if (!static_cpu_has(X86_FEATURE_SMAP))
1113 		return false;
1114 
1115 	if (error_code & PF_USER)
1116 		return false;
1117 
1118 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1119 		return false;
1120 
1121 	return true;
1122 }
1123 
1124 /*
1125  * This routine handles page faults.  It determines the address,
1126  * and the problem, and then passes it off to one of the appropriate
1127  * routines.
1128  *
1129  * This function must have noinline because both callers
1130  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1131  * guarantees there's a function trace entry.
1132  */
1133 static noinline void
1134 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1135 		unsigned long address)
1136 {
1137 	struct vm_area_struct *vma;
1138 	struct task_struct *tsk;
1139 	struct mm_struct *mm;
1140 	int fault, major = 0;
1141 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1142 
1143 	tsk = current;
1144 	mm = tsk->mm;
1145 
1146 	/*
1147 	 * Detect and handle instructions that would cause a page fault for
1148 	 * both a tracked kernel page and a userspace page.
1149 	 */
1150 	if (kmemcheck_active(regs))
1151 		kmemcheck_hide(regs);
1152 	prefetchw(&mm->mmap_sem);
1153 
1154 	if (unlikely(kmmio_fault(regs, address)))
1155 		return;
1156 
1157 	/*
1158 	 * We fault-in kernel-space virtual memory on-demand. The
1159 	 * 'reference' page table is init_mm.pgd.
1160 	 *
1161 	 * NOTE! We MUST NOT take any locks for this case. We may
1162 	 * be in an interrupt or a critical region, and should
1163 	 * only copy the information from the master page table,
1164 	 * nothing more.
1165 	 *
1166 	 * This verifies that the fault happens in kernel space
1167 	 * (error_code & 4) == 0, and that the fault was not a
1168 	 * protection error (error_code & 9) == 0.
1169 	 */
1170 	if (unlikely(fault_in_kernel_space(address))) {
1171 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1172 			if (vmalloc_fault(address) >= 0)
1173 				return;
1174 
1175 			if (kmemcheck_fault(regs, address, error_code))
1176 				return;
1177 		}
1178 
1179 		/* Can handle a stale RO->RW TLB: */
1180 		if (spurious_fault(error_code, address))
1181 			return;
1182 
1183 		/* kprobes don't want to hook the spurious faults: */
1184 		if (kprobes_fault(regs))
1185 			return;
1186 		/*
1187 		 * Don't take the mm semaphore here. If we fixup a prefetch
1188 		 * fault we could otherwise deadlock:
1189 		 */
1190 		bad_area_nosemaphore(regs, error_code, address, NULL);
1191 
1192 		return;
1193 	}
1194 
1195 	/* kprobes don't want to hook the spurious faults: */
1196 	if (unlikely(kprobes_fault(regs)))
1197 		return;
1198 
1199 	if (unlikely(error_code & PF_RSVD))
1200 		pgtable_bad(regs, error_code, address);
1201 
1202 	if (unlikely(smap_violation(error_code, regs))) {
1203 		bad_area_nosemaphore(regs, error_code, address, NULL);
1204 		return;
1205 	}
1206 
1207 	/*
1208 	 * If we're in an interrupt, have no user context or are running
1209 	 * in a region with pagefaults disabled then we must not take the fault
1210 	 */
1211 	if (unlikely(faulthandler_disabled() || !mm)) {
1212 		bad_area_nosemaphore(regs, error_code, address, NULL);
1213 		return;
1214 	}
1215 
1216 	/*
1217 	 * It's safe to allow irq's after cr2 has been saved and the
1218 	 * vmalloc fault has been handled.
1219 	 *
1220 	 * User-mode registers count as a user access even for any
1221 	 * potential system fault or CPU buglet:
1222 	 */
1223 	if (user_mode(regs)) {
1224 		local_irq_enable();
1225 		error_code |= PF_USER;
1226 		flags |= FAULT_FLAG_USER;
1227 	} else {
1228 		if (regs->flags & X86_EFLAGS_IF)
1229 			local_irq_enable();
1230 	}
1231 
1232 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1233 
1234 	if (error_code & PF_WRITE)
1235 		flags |= FAULT_FLAG_WRITE;
1236 
1237 	/*
1238 	 * When running in the kernel we expect faults to occur only to
1239 	 * addresses in user space.  All other faults represent errors in
1240 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1241 	 * case of an erroneous fault occurring in a code path which already
1242 	 * holds mmap_sem we will deadlock attempting to validate the fault
1243 	 * against the address space.  Luckily the kernel only validly
1244 	 * references user space from well defined areas of code, which are
1245 	 * listed in the exceptions table.
1246 	 *
1247 	 * As the vast majority of faults will be valid we will only perform
1248 	 * the source reference check when there is a possibility of a
1249 	 * deadlock. Attempt to lock the address space, if we cannot we then
1250 	 * validate the source. If this is invalid we can skip the address
1251 	 * space check, thus avoiding the deadlock:
1252 	 */
1253 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1254 		if ((error_code & PF_USER) == 0 &&
1255 		    !search_exception_tables(regs->ip)) {
1256 			bad_area_nosemaphore(regs, error_code, address, NULL);
1257 			return;
1258 		}
1259 retry:
1260 		down_read(&mm->mmap_sem);
1261 	} else {
1262 		/*
1263 		 * The above down_read_trylock() might have succeeded in
1264 		 * which case we'll have missed the might_sleep() from
1265 		 * down_read():
1266 		 */
1267 		might_sleep();
1268 	}
1269 
1270 	vma = find_vma(mm, address);
1271 	if (unlikely(!vma)) {
1272 		bad_area(regs, error_code, address);
1273 		return;
1274 	}
1275 	if (likely(vma->vm_start <= address))
1276 		goto good_area;
1277 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1278 		bad_area(regs, error_code, address);
1279 		return;
1280 	}
1281 	if (error_code & PF_USER) {
1282 		/*
1283 		 * Accessing the stack below %sp is always a bug.
1284 		 * The large cushion allows instructions like enter
1285 		 * and pusha to work. ("enter $65535, $31" pushes
1286 		 * 32 pointers and then decrements %sp by 65535.)
1287 		 */
1288 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1289 			bad_area(regs, error_code, address);
1290 			return;
1291 		}
1292 	}
1293 	if (unlikely(expand_stack(vma, address))) {
1294 		bad_area(regs, error_code, address);
1295 		return;
1296 	}
1297 
1298 	/*
1299 	 * Ok, we have a good vm_area for this memory access, so
1300 	 * we can handle it..
1301 	 */
1302 good_area:
1303 	if (unlikely(access_error(error_code, vma))) {
1304 		bad_area_access_error(regs, error_code, address, vma);
1305 		return;
1306 	}
1307 
1308 	/*
1309 	 * If for any reason at all we couldn't handle the fault,
1310 	 * make sure we exit gracefully rather than endlessly redo
1311 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1312 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1313 	 */
1314 	fault = handle_mm_fault(mm, vma, address, flags);
1315 	major |= fault & VM_FAULT_MAJOR;
1316 
1317 	/*
1318 	 * If we need to retry the mmap_sem has already been released,
1319 	 * and if there is a fatal signal pending there is no guarantee
1320 	 * that we made any progress. Handle this case first.
1321 	 */
1322 	if (unlikely(fault & VM_FAULT_RETRY)) {
1323 		/* Retry at most once */
1324 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1325 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1326 			flags |= FAULT_FLAG_TRIED;
1327 			if (!fatal_signal_pending(tsk))
1328 				goto retry;
1329 		}
1330 
1331 		/* User mode? Just return to handle the fatal exception */
1332 		if (flags & FAULT_FLAG_USER)
1333 			return;
1334 
1335 		/* Not returning to user mode? Handle exceptions or die: */
1336 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1337 		return;
1338 	}
1339 
1340 	up_read(&mm->mmap_sem);
1341 	if (unlikely(fault & VM_FAULT_ERROR)) {
1342 		mm_fault_error(regs, error_code, address, vma, fault);
1343 		return;
1344 	}
1345 
1346 	/*
1347 	 * Major/minor page fault accounting. If any of the events
1348 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1349 	 */
1350 	if (major) {
1351 		tsk->maj_flt++;
1352 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1353 	} else {
1354 		tsk->min_flt++;
1355 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1356 	}
1357 
1358 	check_v8086_mode(regs, address, tsk);
1359 }
1360 NOKPROBE_SYMBOL(__do_page_fault);
1361 
1362 dotraplinkage void notrace
1363 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1364 {
1365 	unsigned long address = read_cr2(); /* Get the faulting address */
1366 	enum ctx_state prev_state;
1367 
1368 	/*
1369 	 * We must have this function tagged with __kprobes, notrace and call
1370 	 * read_cr2() before calling anything else. To avoid calling any kind
1371 	 * of tracing machinery before we've observed the CR2 value.
1372 	 *
1373 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1374 	 */
1375 
1376 	prev_state = exception_enter();
1377 	__do_page_fault(regs, error_code, address);
1378 	exception_exit(prev_state);
1379 }
1380 NOKPROBE_SYMBOL(do_page_fault);
1381 
1382 #ifdef CONFIG_TRACING
1383 static nokprobe_inline void
1384 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1385 			 unsigned long error_code)
1386 {
1387 	if (user_mode(regs))
1388 		trace_page_fault_user(address, regs, error_code);
1389 	else
1390 		trace_page_fault_kernel(address, regs, error_code);
1391 }
1392 
1393 dotraplinkage void notrace
1394 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1395 {
1396 	/*
1397 	 * The exception_enter and tracepoint processing could
1398 	 * trigger another page faults (user space callchain
1399 	 * reading) and destroy the original cr2 value, so read
1400 	 * the faulting address now.
1401 	 */
1402 	unsigned long address = read_cr2();
1403 	enum ctx_state prev_state;
1404 
1405 	prev_state = exception_enter();
1406 	trace_page_fault_entries(address, regs, error_code);
1407 	__do_page_fault(regs, error_code, address);
1408 	exception_exit(prev_state);
1409 }
1410 NOKPROBE_SYMBOL(trace_do_page_fault);
1411 #endif /* CONFIG_TRACING */
1412