xref: /openbmc/linux/arch/x86/math-emu/errors.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*---------------------------------------------------------------------------+
2  |  errors.c                                                                 |
3  |                                                                           |
4  |  The error handling functions for wm-FPU-emu                              |
5  |                                                                           |
6  | Copyright (C) 1992,1993,1994,1996                                         |
7  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
8  |                  E-mail   billm@jacobi.maths.monash.edu.au                |
9  |                                                                           |
10  |                                                                           |
11  +---------------------------------------------------------------------------*/
12 
13 /*---------------------------------------------------------------------------+
14  | Note:                                                                     |
15  |    The file contains code which accesses user memory.                     |
16  |    Emulator static data may change when user memory is accessed, due to   |
17  |    other processes using the emulator while swapping is in progress.      |
18  +---------------------------------------------------------------------------*/
19 
20 #include <linux/signal.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "fpu_emu.h"
25 #include "fpu_system.h"
26 #include "exception.h"
27 #include "status_w.h"
28 #include "control_w.h"
29 #include "reg_constant.h"
30 #include "version.h"
31 
32 /* */
33 #undef PRINT_MESSAGES
34 /* */
35 
36 
37 #if 0
38 void Un_impl(void)
39 {
40   u_char byte1, FPU_modrm;
41   unsigned long address = FPU_ORIG_EIP;
42 
43   RE_ENTRANT_CHECK_OFF;
44   /* No need to check access_ok(), we have previously fetched these bytes. */
45   printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *) address);
46   if ( FPU_CS == __USER_CS )
47     {
48       while ( 1 )
49 	{
50 	  FPU_get_user(byte1, (u_char __user *) address);
51 	  if ( (byte1 & 0xf8) == 0xd8 ) break;
52 	  printk("[%02x]", byte1);
53 	  address++;
54 	}
55       printk("%02x ", byte1);
56       FPU_get_user(FPU_modrm, 1 + (u_char __user *) address);
57 
58       if (FPU_modrm >= 0300)
59 	printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7);
60       else
61 	printk("/%d\n", (FPU_modrm >> 3) & 7);
62     }
63   else
64     {
65       printk("cs selector = %04x\n", FPU_CS);
66     }
67 
68   RE_ENTRANT_CHECK_ON;
69 
70   EXCEPTION(EX_Invalid);
71 
72 }
73 #endif  /*  0  */
74 
75 
76 /*
77    Called for opcodes which are illegal and which are known to result in a
78    SIGILL with a real 80486.
79    */
80 void FPU_illegal(void)
81 {
82   math_abort(FPU_info,SIGILL);
83 }
84 
85 
86 
87 void FPU_printall(void)
88 {
89   int i;
90   static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty",
91                               "DeNorm", "Inf", "NaN" };
92   u_char byte1, FPU_modrm;
93   unsigned long address = FPU_ORIG_EIP;
94 
95   RE_ENTRANT_CHECK_OFF;
96   /* No need to check access_ok(), we have previously fetched these bytes. */
97   printk("At %p:", (void *) address);
98   if ( FPU_CS == __USER_CS )
99     {
100 #define MAX_PRINTED_BYTES 20
101       for ( i = 0; i < MAX_PRINTED_BYTES; i++ )
102 	{
103 	  FPU_get_user(byte1, (u_char __user *) address);
104 	  if ( (byte1 & 0xf8) == 0xd8 )
105 	    {
106 	      printk(" %02x", byte1);
107 	      break;
108 	    }
109 	  printk(" [%02x]", byte1);
110 	  address++;
111 	}
112       if ( i == MAX_PRINTED_BYTES )
113 	printk(" [more..]\n");
114       else
115 	{
116 	  FPU_get_user(FPU_modrm, 1 + (u_char __user *) address);
117 
118 	  if (FPU_modrm >= 0300)
119 	    printk(" %02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7);
120 	  else
121 	    printk(" /%d, mod=%d rm=%d\n",
122 		   (FPU_modrm >> 3) & 7, (FPU_modrm >> 6) & 3, FPU_modrm & 7);
123 	}
124     }
125   else
126     {
127       printk("%04x\n", FPU_CS);
128     }
129 
130   partial_status = status_word();
131 
132 #ifdef DEBUGGING
133 if ( partial_status & SW_Backward )    printk("SW: backward compatibility\n");
134 if ( partial_status & SW_C3 )          printk("SW: condition bit 3\n");
135 if ( partial_status & SW_C2 )          printk("SW: condition bit 2\n");
136 if ( partial_status & SW_C1 )          printk("SW: condition bit 1\n");
137 if ( partial_status & SW_C0 )          printk("SW: condition bit 0\n");
138 if ( partial_status & SW_Summary )     printk("SW: exception summary\n");
139 if ( partial_status & SW_Stack_Fault ) printk("SW: stack fault\n");
140 if ( partial_status & SW_Precision )   printk("SW: loss of precision\n");
141 if ( partial_status & SW_Underflow )   printk("SW: underflow\n");
142 if ( partial_status & SW_Overflow )    printk("SW: overflow\n");
143 if ( partial_status & SW_Zero_Div )    printk("SW: divide by zero\n");
144 if ( partial_status & SW_Denorm_Op )   printk("SW: denormalized operand\n");
145 if ( partial_status & SW_Invalid )     printk("SW: invalid operation\n");
146 #endif /* DEBUGGING */
147 
148   printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n",
149 	 partial_status & 0x8000 ? 1 : 0,   /* busy */
150 	 (partial_status & 0x3800) >> 11,   /* stack top pointer */
151 	 partial_status & 0x80 ? 1 : 0,     /* Error summary status */
152 	 partial_status & 0x40 ? 1 : 0,     /* Stack flag */
153 	 partial_status & SW_C3?1:0, partial_status & SW_C2?1:0, /* cc */
154 	 partial_status & SW_C1?1:0, partial_status & SW_C0?1:0, /* cc */
155 	 partial_status & SW_Precision?1:0, partial_status & SW_Underflow?1:0,
156 	 partial_status & SW_Overflow?1:0, partial_status & SW_Zero_Div?1:0,
157 	 partial_status & SW_Denorm_Op?1:0, partial_status & SW_Invalid?1:0);
158 
159 printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d     ef=%d%d%d%d%d%d\n",
160 	 control_word & 0x1000 ? 1 : 0,
161 	 (control_word & 0x800) >> 11, (control_word & 0x400) >> 10,
162 	 (control_word & 0x200) >> 9, (control_word & 0x100) >> 8,
163 	 control_word & 0x80 ? 1 : 0,
164 	 control_word & SW_Precision?1:0, control_word & SW_Underflow?1:0,
165 	 control_word & SW_Overflow?1:0, control_word & SW_Zero_Div?1:0,
166 	 control_word & SW_Denorm_Op?1:0, control_word & SW_Invalid?1:0);
167 
168   for ( i = 0; i < 8; i++ )
169     {
170       FPU_REG *r = &st(i);
171       u_char tagi = FPU_gettagi(i);
172       switch (tagi)
173 	{
174 	case TAG_Empty:
175 	  continue;
176 	  break;
177 	case TAG_Zero:
178 	case TAG_Special:
179 	  tagi = FPU_Special(r);
180 	case TAG_Valid:
181 	  printk("st(%d)  %c .%04lx %04lx %04lx %04lx e%+-6d ", i,
182 		 getsign(r) ? '-' : '+',
183 		 (long)(r->sigh >> 16),
184 		 (long)(r->sigh & 0xFFFF),
185 		 (long)(r->sigl >> 16),
186 		 (long)(r->sigl & 0xFFFF),
187 		 exponent(r) - EXP_BIAS + 1);
188 	  break;
189 	default:
190 	  printk("Whoops! Error in errors.c: tag%d is %d ", i, tagi);
191 	  continue;
192 	  break;
193 	}
194       printk("%s\n", tag_desc[(int) (unsigned) tagi]);
195     }
196 
197   RE_ENTRANT_CHECK_ON;
198 
199 }
200 
201 static struct {
202   int type;
203   const char *name;
204 } exception_names[] = {
205   { EX_StackOver, "stack overflow" },
206   { EX_StackUnder, "stack underflow" },
207   { EX_Precision, "loss of precision" },
208   { EX_Underflow, "underflow" },
209   { EX_Overflow, "overflow" },
210   { EX_ZeroDiv, "divide by zero" },
211   { EX_Denormal, "denormalized operand" },
212   { EX_Invalid, "invalid operation" },
213   { EX_INTERNAL, "INTERNAL BUG in "FPU_VERSION },
214   { 0, NULL }
215 };
216 
217 /*
218  EX_INTERNAL is always given with a code which indicates where the
219  error was detected.
220 
221  Internal error types:
222        0x14   in fpu_etc.c
223        0x1nn  in a *.c file:
224               0x101  in reg_add_sub.c
225               0x102  in reg_mul.c
226               0x104  in poly_atan.c
227               0x105  in reg_mul.c
228               0x107  in fpu_trig.c
229 	      0x108  in reg_compare.c
230 	      0x109  in reg_compare.c
231 	      0x110  in reg_add_sub.c
232 	      0x111  in fpe_entry.c
233 	      0x112  in fpu_trig.c
234 	      0x113  in errors.c
235 	      0x115  in fpu_trig.c
236 	      0x116  in fpu_trig.c
237 	      0x117  in fpu_trig.c
238 	      0x118  in fpu_trig.c
239 	      0x119  in fpu_trig.c
240 	      0x120  in poly_atan.c
241 	      0x121  in reg_compare.c
242 	      0x122  in reg_compare.c
243 	      0x123  in reg_compare.c
244 	      0x125  in fpu_trig.c
245 	      0x126  in fpu_entry.c
246 	      0x127  in poly_2xm1.c
247 	      0x128  in fpu_entry.c
248 	      0x129  in fpu_entry.c
249 	      0x130  in get_address.c
250 	      0x131  in get_address.c
251 	      0x132  in get_address.c
252 	      0x133  in get_address.c
253 	      0x140  in load_store.c
254 	      0x141  in load_store.c
255               0x150  in poly_sin.c
256               0x151  in poly_sin.c
257 	      0x160  in reg_ld_str.c
258 	      0x161  in reg_ld_str.c
259 	      0x162  in reg_ld_str.c
260 	      0x163  in reg_ld_str.c
261 	      0x164  in reg_ld_str.c
262 	      0x170  in fpu_tags.c
263 	      0x171  in fpu_tags.c
264 	      0x172  in fpu_tags.c
265 	      0x180  in reg_convert.c
266        0x2nn  in an *.S file:
267               0x201  in reg_u_add.S
268               0x202  in reg_u_div.S
269               0x203  in reg_u_div.S
270               0x204  in reg_u_div.S
271               0x205  in reg_u_mul.S
272               0x206  in reg_u_sub.S
273               0x207  in wm_sqrt.S
274 	      0x208  in reg_div.S
275               0x209  in reg_u_sub.S
276               0x210  in reg_u_sub.S
277               0x211  in reg_u_sub.S
278               0x212  in reg_u_sub.S
279 	      0x213  in wm_sqrt.S
280 	      0x214  in wm_sqrt.S
281 	      0x215  in wm_sqrt.S
282 	      0x220  in reg_norm.S
283 	      0x221  in reg_norm.S
284 	      0x230  in reg_round.S
285 	      0x231  in reg_round.S
286 	      0x232  in reg_round.S
287 	      0x233  in reg_round.S
288 	      0x234  in reg_round.S
289 	      0x235  in reg_round.S
290 	      0x236  in reg_round.S
291 	      0x240  in div_Xsig.S
292 	      0x241  in div_Xsig.S
293 	      0x242  in div_Xsig.S
294  */
295 
296 asmlinkage void FPU_exception(int n)
297 {
298   int i, int_type;
299 
300   int_type = 0;         /* Needed only to stop compiler warnings */
301   if ( n & EX_INTERNAL )
302     {
303       int_type = n - EX_INTERNAL;
304       n = EX_INTERNAL;
305       /* Set lots of exception bits! */
306       partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward);
307     }
308   else
309     {
310       /* Extract only the bits which we use to set the status word */
311       n &= (SW_Exc_Mask);
312       /* Set the corresponding exception bit */
313       partial_status |= n;
314       /* Set summary bits iff exception isn't masked */
315       if ( partial_status & ~control_word & CW_Exceptions )
316 	partial_status |= (SW_Summary | SW_Backward);
317       if ( n & (SW_Stack_Fault | EX_Precision) )
318 	{
319 	  if ( !(n & SW_C1) )
320 	    /* This bit distinguishes over- from underflow for a stack fault,
321 	       and roundup from round-down for precision loss. */
322 	    partial_status &= ~SW_C1;
323 	}
324     }
325 
326   RE_ENTRANT_CHECK_OFF;
327   if ( (~control_word & n & CW_Exceptions) || (n == EX_INTERNAL) )
328     {
329 #ifdef PRINT_MESSAGES
330       /* My message from the sponsor */
331       printk(FPU_VERSION" "__DATE__" (C) W. Metzenthen.\n");
332 #endif /* PRINT_MESSAGES */
333 
334       /* Get a name string for error reporting */
335       for (i=0; exception_names[i].type; i++)
336 	if ( (exception_names[i].type & n) == exception_names[i].type )
337 	  break;
338 
339       if (exception_names[i].type)
340 	{
341 #ifdef PRINT_MESSAGES
342 	  printk("FP Exception: %s!\n", exception_names[i].name);
343 #endif /* PRINT_MESSAGES */
344 	}
345       else
346 	printk("FPU emulator: Unknown Exception: 0x%04x!\n", n);
347 
348       if ( n == EX_INTERNAL )
349 	{
350 	  printk("FPU emulator: Internal error type 0x%04x\n", int_type);
351 	  FPU_printall();
352 	}
353 #ifdef PRINT_MESSAGES
354       else
355 	FPU_printall();
356 #endif /* PRINT_MESSAGES */
357 
358       /*
359        * The 80486 generates an interrupt on the next non-control FPU
360        * instruction. So we need some means of flagging it.
361        * We use the ES (Error Summary) bit for this.
362        */
363     }
364   RE_ENTRANT_CHECK_ON;
365 
366 #ifdef __DEBUG__
367   math_abort(FPU_info,SIGFPE);
368 #endif /* __DEBUG__ */
369 
370 }
371 
372 
373 /* Real operation attempted on a NaN. */
374 /* Returns < 0 if the exception is unmasked */
375 int real_1op_NaN(FPU_REG *a)
376 {
377   int signalling, isNaN;
378 
379   isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000);
380 
381   /* The default result for the case of two "equal" NaNs (signs may
382      differ) is chosen to reproduce 80486 behaviour */
383   signalling = isNaN && !(a->sigh & 0x40000000);
384 
385   if ( !signalling )
386     {
387       if ( !isNaN )  /* pseudo-NaN, or other unsupported? */
388 	{
389 	  if ( control_word & CW_Invalid )
390 	    {
391 	      /* Masked response */
392 	      reg_copy(&CONST_QNaN, a);
393 	    }
394 	  EXCEPTION(EX_Invalid);
395 	  return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
396 	}
397       return TAG_Special;
398     }
399 
400   if ( control_word & CW_Invalid )
401     {
402       /* The masked response */
403       if ( !(a->sigh & 0x80000000) )  /* pseudo-NaN ? */
404 	{
405 	  reg_copy(&CONST_QNaN, a);
406 	}
407       /* ensure a Quiet NaN */
408       a->sigh |= 0x40000000;
409     }
410 
411   EXCEPTION(EX_Invalid);
412 
413   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
414 }
415 
416 
417 /* Real operation attempted on two operands, one a NaN. */
418 /* Returns < 0 if the exception is unmasked */
419 int real_2op_NaN(FPU_REG const *b, u_char tagb,
420 		 int deststnr,
421 		 FPU_REG const *defaultNaN)
422 {
423   FPU_REG *dest = &st(deststnr);
424   FPU_REG const *a = dest;
425   u_char taga = FPU_gettagi(deststnr);
426   FPU_REG const *x;
427   int signalling, unsupported;
428 
429   if ( taga == TAG_Special )
430     taga = FPU_Special(a);
431   if ( tagb == TAG_Special )
432     tagb = FPU_Special(b);
433 
434   /* TW_NaN is also used for unsupported data types. */
435   unsupported = ((taga == TW_NaN)
436 		 && !((exponent(a) == EXP_OVER) && (a->sigh & 0x80000000)))
437     || ((tagb == TW_NaN)
438 	&& !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000)));
439   if ( unsupported )
440     {
441       if ( control_word & CW_Invalid )
442 	{
443 	  /* Masked response */
444 	  FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
445 	}
446       EXCEPTION(EX_Invalid);
447       return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
448     }
449 
450   if (taga == TW_NaN)
451     {
452       x = a;
453       if (tagb == TW_NaN)
454 	{
455 	  signalling = !(a->sigh & b->sigh & 0x40000000);
456 	  if ( significand(b) > significand(a) )
457 	    x = b;
458 	  else if ( significand(b) == significand(a) )
459 	    {
460 	      /* The default result for the case of two "equal" NaNs (signs may
461 		 differ) is chosen to reproduce 80486 behaviour */
462 	      x = defaultNaN;
463 	    }
464 	}
465       else
466 	{
467 	  /* return the quiet version of the NaN in a */
468 	  signalling = !(a->sigh & 0x40000000);
469 	}
470     }
471   else
472 #ifdef PARANOID
473     if (tagb == TW_NaN)
474 #endif /* PARANOID */
475     {
476       signalling = !(b->sigh & 0x40000000);
477       x = b;
478     }
479 #ifdef PARANOID
480   else
481     {
482       signalling = 0;
483       EXCEPTION(EX_INTERNAL|0x113);
484       x = &CONST_QNaN;
485     }
486 #endif /* PARANOID */
487 
488   if ( (!signalling) || (control_word & CW_Invalid) )
489     {
490       if ( ! x )
491 	x = b;
492 
493       if ( !(x->sigh & 0x80000000) )  /* pseudo-NaN ? */
494 	x = &CONST_QNaN;
495 
496       FPU_copy_to_regi(x, TAG_Special, deststnr);
497 
498       if ( !signalling )
499 	return TAG_Special;
500 
501       /* ensure a Quiet NaN */
502       dest->sigh |= 0x40000000;
503     }
504 
505   EXCEPTION(EX_Invalid);
506 
507   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
508 }
509 
510 
511 /* Invalid arith operation on Valid registers */
512 /* Returns < 0 if the exception is unmasked */
513 asmlinkage int arith_invalid(int deststnr)
514 {
515 
516   EXCEPTION(EX_Invalid);
517 
518   if ( control_word & CW_Invalid )
519     {
520       /* The masked response */
521       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
522     }
523 
524   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid;
525 
526 }
527 
528 
529 /* Divide a finite number by zero */
530 asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign)
531 {
532   FPU_REG *dest = &st(deststnr);
533   int tag = TAG_Valid;
534 
535   if ( control_word & CW_ZeroDiv )
536     {
537       /* The masked response */
538       FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr);
539       setsign(dest, sign);
540       tag = TAG_Special;
541     }
542 
543   EXCEPTION(EX_ZeroDiv);
544 
545   return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag;
546 
547 }
548 
549 
550 /* This may be called often, so keep it lean */
551 int set_precision_flag(int flags)
552 {
553   if ( control_word & CW_Precision )
554     {
555       partial_status &= ~(SW_C1 & flags);
556       partial_status |= flags;   /* The masked response */
557       return 0;
558     }
559   else
560     {
561       EXCEPTION(flags);
562       return 1;
563     }
564 }
565 
566 
567 /* This may be called often, so keep it lean */
568 asmlinkage void set_precision_flag_up(void)
569 {
570   if ( control_word & CW_Precision )
571     partial_status |= (SW_Precision | SW_C1);   /* The masked response */
572   else
573     EXCEPTION(EX_Precision | SW_C1);
574 }
575 
576 
577 /* This may be called often, so keep it lean */
578 asmlinkage void set_precision_flag_down(void)
579 {
580   if ( control_word & CW_Precision )
581     {   /* The masked response */
582       partial_status &= ~SW_C1;
583       partial_status |= SW_Precision;
584     }
585   else
586     EXCEPTION(EX_Precision);
587 }
588 
589 
590 asmlinkage int denormal_operand(void)
591 {
592   if ( control_word & CW_Denormal )
593     {   /* The masked response */
594       partial_status |= SW_Denorm_Op;
595       return TAG_Special;
596     }
597   else
598     {
599       EXCEPTION(EX_Denormal);
600       return TAG_Special | FPU_Exception;
601     }
602 }
603 
604 
605 asmlinkage int arith_overflow(FPU_REG *dest)
606 {
607   int tag = TAG_Valid;
608 
609   if ( control_word & CW_Overflow )
610     {
611       /* The masked response */
612 /* ###### The response here depends upon the rounding mode */
613       reg_copy(&CONST_INF, dest);
614       tag = TAG_Special;
615     }
616   else
617     {
618       /* Subtract the magic number from the exponent */
619       addexponent(dest, (-3 * (1 << 13)));
620     }
621 
622   EXCEPTION(EX_Overflow);
623   if ( control_word & CW_Overflow )
624     {
625       /* The overflow exception is masked. */
626       /* By definition, precision is lost.
627 	 The roundup bit (C1) is also set because we have
628 	 "rounded" upwards to Infinity. */
629       EXCEPTION(EX_Precision | SW_C1);
630       return tag;
631     }
632 
633   return tag;
634 
635 }
636 
637 
638 asmlinkage int arith_underflow(FPU_REG *dest)
639 {
640   int tag = TAG_Valid;
641 
642   if ( control_word & CW_Underflow )
643     {
644       /* The masked response */
645       if ( exponent16(dest) <= EXP_UNDER - 63 )
646 	{
647 	  reg_copy(&CONST_Z, dest);
648 	  partial_status &= ~SW_C1;       /* Round down. */
649 	  tag = TAG_Zero;
650 	}
651       else
652 	{
653 	  stdexp(dest);
654 	}
655     }
656   else
657     {
658       /* Add the magic number to the exponent. */
659       addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias);
660     }
661 
662   EXCEPTION(EX_Underflow);
663   if ( control_word & CW_Underflow )
664     {
665       /* The underflow exception is masked. */
666       EXCEPTION(EX_Precision);
667       return tag;
668     }
669 
670   return tag;
671 
672 }
673 
674 
675 void FPU_stack_overflow(void)
676 {
677 
678  if ( control_word & CW_Invalid )
679     {
680       /* The masked response */
681       top--;
682       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
683     }
684 
685   EXCEPTION(EX_StackOver);
686 
687   return;
688 
689 }
690 
691 
692 void FPU_stack_underflow(void)
693 {
694 
695  if ( control_word & CW_Invalid )
696     {
697       /* The masked response */
698       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
699     }
700 
701   EXCEPTION(EX_StackUnder);
702 
703   return;
704 
705 }
706 
707 
708 void FPU_stack_underflow_i(int i)
709 {
710 
711  if ( control_word & CW_Invalid )
712     {
713       /* The masked response */
714       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
715     }
716 
717   EXCEPTION(EX_StackUnder);
718 
719   return;
720 
721 }
722 
723 
724 void FPU_stack_underflow_pop(int i)
725 {
726 
727  if ( control_word & CW_Invalid )
728     {
729       /* The masked response */
730       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
731       FPU_pop();
732     }
733 
734   EXCEPTION(EX_StackUnder);
735 
736   return;
737 
738 }
739 
740