1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* 197 * Restoring the host value for MSRs that are only consumed when running in 198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 199 * returns to userspace, i.e. the kernel can run with the guest's value. 200 */ 201 #define KVM_MAX_NR_USER_RETURN_MSRS 16 202 203 struct kvm_user_return_msrs { 204 struct user_return_notifier urn; 205 bool registered; 206 struct kvm_user_return_msr_values { 207 u64 host; 208 u64 curr; 209 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 210 }; 211 212 u32 __read_mostly kvm_nr_uret_msrs; 213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 215 static struct kvm_user_return_msrs __percpu *user_return_msrs; 216 217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 221 222 u64 __read_mostly host_efer; 223 EXPORT_SYMBOL_GPL(host_efer); 224 225 bool __read_mostly allow_smaller_maxphyaddr = 0; 226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 227 228 bool __read_mostly enable_apicv = true; 229 EXPORT_SYMBOL_GPL(enable_apicv); 230 231 u64 __read_mostly host_xss; 232 EXPORT_SYMBOL_GPL(host_xss); 233 234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 235 KVM_GENERIC_VM_STATS(), 236 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 237 STATS_DESC_COUNTER(VM, mmu_pte_write), 238 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 239 STATS_DESC_COUNTER(VM, mmu_flooded), 240 STATS_DESC_COUNTER(VM, mmu_recycled), 241 STATS_DESC_COUNTER(VM, mmu_cache_miss), 242 STATS_DESC_ICOUNTER(VM, mmu_unsync), 243 STATS_DESC_ICOUNTER(VM, pages_4k), 244 STATS_DESC_ICOUNTER(VM, pages_2m), 245 STATS_DESC_ICOUNTER(VM, pages_1g), 246 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 247 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 248 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 249 }; 250 251 const struct kvm_stats_header kvm_vm_stats_header = { 252 .name_size = KVM_STATS_NAME_SIZE, 253 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 254 .id_offset = sizeof(struct kvm_stats_header), 255 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 256 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 257 sizeof(kvm_vm_stats_desc), 258 }; 259 260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 261 KVM_GENERIC_VCPU_STATS(), 262 STATS_DESC_COUNTER(VCPU, pf_taken), 263 STATS_DESC_COUNTER(VCPU, pf_fixed), 264 STATS_DESC_COUNTER(VCPU, pf_emulate), 265 STATS_DESC_COUNTER(VCPU, pf_spurious), 266 STATS_DESC_COUNTER(VCPU, pf_fast), 267 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 268 STATS_DESC_COUNTER(VCPU, pf_guest), 269 STATS_DESC_COUNTER(VCPU, tlb_flush), 270 STATS_DESC_COUNTER(VCPU, invlpg), 271 STATS_DESC_COUNTER(VCPU, exits), 272 STATS_DESC_COUNTER(VCPU, io_exits), 273 STATS_DESC_COUNTER(VCPU, mmio_exits), 274 STATS_DESC_COUNTER(VCPU, signal_exits), 275 STATS_DESC_COUNTER(VCPU, irq_window_exits), 276 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 277 STATS_DESC_COUNTER(VCPU, l1d_flush), 278 STATS_DESC_COUNTER(VCPU, halt_exits), 279 STATS_DESC_COUNTER(VCPU, request_irq_exits), 280 STATS_DESC_COUNTER(VCPU, irq_exits), 281 STATS_DESC_COUNTER(VCPU, host_state_reload), 282 STATS_DESC_COUNTER(VCPU, fpu_reload), 283 STATS_DESC_COUNTER(VCPU, insn_emulation), 284 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 285 STATS_DESC_COUNTER(VCPU, hypercalls), 286 STATS_DESC_COUNTER(VCPU, irq_injections), 287 STATS_DESC_COUNTER(VCPU, nmi_injections), 288 STATS_DESC_COUNTER(VCPU, req_event), 289 STATS_DESC_COUNTER(VCPU, nested_run), 290 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 291 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 292 STATS_DESC_COUNTER(VCPU, preemption_reported), 293 STATS_DESC_COUNTER(VCPU, preemption_other), 294 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 295 STATS_DESC_COUNTER(VCPU, notify_window_exits), 296 }; 297 298 const struct kvm_stats_header kvm_vcpu_stats_header = { 299 .name_size = KVM_STATS_NAME_SIZE, 300 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 301 .id_offset = sizeof(struct kvm_stats_header), 302 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 303 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 304 sizeof(kvm_vcpu_stats_desc), 305 }; 306 307 u64 __read_mostly host_xcr0; 308 309 static struct kmem_cache *x86_emulator_cache; 310 311 /* 312 * When called, it means the previous get/set msr reached an invalid msr. 313 * Return true if we want to ignore/silent this failed msr access. 314 */ 315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 316 { 317 const char *op = write ? "wrmsr" : "rdmsr"; 318 319 if (ignore_msrs) { 320 if (report_ignored_msrs) 321 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 322 op, msr, data); 323 /* Mask the error */ 324 return true; 325 } else { 326 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 327 op, msr, data); 328 return false; 329 } 330 } 331 332 static struct kmem_cache *kvm_alloc_emulator_cache(void) 333 { 334 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 335 unsigned int size = sizeof(struct x86_emulate_ctxt); 336 337 return kmem_cache_create_usercopy("x86_emulator", size, 338 __alignof__(struct x86_emulate_ctxt), 339 SLAB_ACCOUNT, useroffset, 340 size - useroffset, NULL); 341 } 342 343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 344 345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 346 { 347 int i; 348 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 349 vcpu->arch.apf.gfns[i] = ~0; 350 } 351 352 static void kvm_on_user_return(struct user_return_notifier *urn) 353 { 354 unsigned slot; 355 struct kvm_user_return_msrs *msrs 356 = container_of(urn, struct kvm_user_return_msrs, urn); 357 struct kvm_user_return_msr_values *values; 358 unsigned long flags; 359 360 /* 361 * Disabling irqs at this point since the following code could be 362 * interrupted and executed through kvm_arch_hardware_disable() 363 */ 364 local_irq_save(flags); 365 if (msrs->registered) { 366 msrs->registered = false; 367 user_return_notifier_unregister(urn); 368 } 369 local_irq_restore(flags); 370 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 371 values = &msrs->values[slot]; 372 if (values->host != values->curr) { 373 wrmsrl(kvm_uret_msrs_list[slot], values->host); 374 values->curr = values->host; 375 } 376 } 377 } 378 379 static int kvm_probe_user_return_msr(u32 msr) 380 { 381 u64 val; 382 int ret; 383 384 preempt_disable(); 385 ret = rdmsrl_safe(msr, &val); 386 if (ret) 387 goto out; 388 ret = wrmsrl_safe(msr, val); 389 out: 390 preempt_enable(); 391 return ret; 392 } 393 394 int kvm_add_user_return_msr(u32 msr) 395 { 396 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 397 398 if (kvm_probe_user_return_msr(msr)) 399 return -1; 400 401 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 402 return kvm_nr_uret_msrs++; 403 } 404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 405 406 int kvm_find_user_return_msr(u32 msr) 407 { 408 int i; 409 410 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 411 if (kvm_uret_msrs_list[i] == msr) 412 return i; 413 } 414 return -1; 415 } 416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 417 418 static void kvm_user_return_msr_cpu_online(void) 419 { 420 unsigned int cpu = smp_processor_id(); 421 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 422 u64 value; 423 int i; 424 425 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 426 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 427 msrs->values[i].host = value; 428 msrs->values[i].curr = value; 429 } 430 } 431 432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 433 { 434 unsigned int cpu = smp_processor_id(); 435 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 436 int err; 437 438 value = (value & mask) | (msrs->values[slot].host & ~mask); 439 if (value == msrs->values[slot].curr) 440 return 0; 441 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 442 if (err) 443 return 1; 444 445 msrs->values[slot].curr = value; 446 if (!msrs->registered) { 447 msrs->urn.on_user_return = kvm_on_user_return; 448 user_return_notifier_register(&msrs->urn); 449 msrs->registered = true; 450 } 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 454 455 static void drop_user_return_notifiers(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 459 460 if (msrs->registered) 461 kvm_on_user_return(&msrs->urn); 462 } 463 464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 465 { 466 return vcpu->arch.apic_base; 467 } 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 496 /* 497 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 498 * 499 * Hardware virtualization extension instructions may fault if a reboot turns 500 * off virtualization while processes are running. Usually after catching the 501 * fault we just panic; during reboot instead the instruction is ignored. 502 */ 503 noinstr void kvm_spurious_fault(void) 504 { 505 /* Fault while not rebooting. We want the trace. */ 506 BUG_ON(!kvm_rebooting); 507 } 508 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 509 510 #define EXCPT_BENIGN 0 511 #define EXCPT_CONTRIBUTORY 1 512 #define EXCPT_PF 2 513 514 static int exception_class(int vector) 515 { 516 switch (vector) { 517 case PF_VECTOR: 518 return EXCPT_PF; 519 case DE_VECTOR: 520 case TS_VECTOR: 521 case NP_VECTOR: 522 case SS_VECTOR: 523 case GP_VECTOR: 524 return EXCPT_CONTRIBUTORY; 525 default: 526 break; 527 } 528 return EXCPT_BENIGN; 529 } 530 531 #define EXCPT_FAULT 0 532 #define EXCPT_TRAP 1 533 #define EXCPT_ABORT 2 534 #define EXCPT_INTERRUPT 3 535 #define EXCPT_DB 4 536 537 static int exception_type(int vector) 538 { 539 unsigned int mask; 540 541 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 542 return EXCPT_INTERRUPT; 543 544 mask = 1 << vector; 545 546 /* 547 * #DBs can be trap-like or fault-like, the caller must check other CPU 548 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 549 */ 550 if (mask & (1 << DB_VECTOR)) 551 return EXCPT_DB; 552 553 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 554 return EXCPT_TRAP; 555 556 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 557 return EXCPT_ABORT; 558 559 /* Reserved exceptions will result in fault */ 560 return EXCPT_FAULT; 561 } 562 563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 564 struct kvm_queued_exception *ex) 565 { 566 if (!ex->has_payload) 567 return; 568 569 switch (ex->vector) { 570 case DB_VECTOR: 571 /* 572 * "Certain debug exceptions may clear bit 0-3. The 573 * remaining contents of the DR6 register are never 574 * cleared by the processor". 575 */ 576 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 577 /* 578 * In order to reflect the #DB exception payload in guest 579 * dr6, three components need to be considered: active low 580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 581 * DR6_BS and DR6_BT) 582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 583 * In the target guest dr6: 584 * FIXED_1 bits should always be set. 585 * Active low bits should be cleared if 1-setting in payload. 586 * Active high bits should be set if 1-setting in payload. 587 * 588 * Note, the payload is compatible with the pending debug 589 * exceptions/exit qualification under VMX, that active_low bits 590 * are active high in payload. 591 * So they need to be flipped for DR6. 592 */ 593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 594 vcpu->arch.dr6 |= ex->payload; 595 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 596 597 /* 598 * The #DB payload is defined as compatible with the 'pending 599 * debug exceptions' field under VMX, not DR6. While bit 12 is 600 * defined in the 'pending debug exceptions' field (enabled 601 * breakpoint), it is reserved and must be zero in DR6. 602 */ 603 vcpu->arch.dr6 &= ~BIT(12); 604 break; 605 case PF_VECTOR: 606 vcpu->arch.cr2 = ex->payload; 607 break; 608 } 609 610 ex->has_payload = false; 611 ex->payload = 0; 612 } 613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 614 615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 616 bool has_error_code, u32 error_code, 617 bool has_payload, unsigned long payload) 618 { 619 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 620 621 ex->vector = vector; 622 ex->injected = false; 623 ex->pending = true; 624 ex->has_error_code = has_error_code; 625 ex->error_code = error_code; 626 ex->has_payload = has_payload; 627 ex->payload = payload; 628 } 629 630 /* Forcibly leave the nested mode in cases like a vCPU reset */ 631 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 632 { 633 kvm_x86_ops.nested_ops->leave_nested(vcpu); 634 } 635 636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 637 unsigned nr, bool has_error, u32 error_code, 638 bool has_payload, unsigned long payload, bool reinject) 639 { 640 u32 prev_nr; 641 int class1, class2; 642 643 kvm_make_request(KVM_REQ_EVENT, vcpu); 644 645 /* 646 * If the exception is destined for L2 and isn't being reinjected, 647 * morph it to a VM-Exit if L1 wants to intercept the exception. A 648 * previously injected exception is not checked because it was checked 649 * when it was original queued, and re-checking is incorrect if _L1_ 650 * injected the exception, in which case it's exempt from interception. 651 */ 652 if (!reinject && is_guest_mode(vcpu) && 653 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 654 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 655 has_payload, payload); 656 return; 657 } 658 659 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 660 queue: 661 if (reinject) { 662 /* 663 * On VM-Entry, an exception can be pending if and only 664 * if event injection was blocked by nested_run_pending. 665 * In that case, however, vcpu_enter_guest() requests an 666 * immediate exit, and the guest shouldn't proceed far 667 * enough to need reinjection. 668 */ 669 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 670 vcpu->arch.exception.injected = true; 671 if (WARN_ON_ONCE(has_payload)) { 672 /* 673 * A reinjected event has already 674 * delivered its payload. 675 */ 676 has_payload = false; 677 payload = 0; 678 } 679 } else { 680 vcpu->arch.exception.pending = true; 681 vcpu->arch.exception.injected = false; 682 } 683 vcpu->arch.exception.has_error_code = has_error; 684 vcpu->arch.exception.vector = nr; 685 vcpu->arch.exception.error_code = error_code; 686 vcpu->arch.exception.has_payload = has_payload; 687 vcpu->arch.exception.payload = payload; 688 if (!is_guest_mode(vcpu)) 689 kvm_deliver_exception_payload(vcpu, 690 &vcpu->arch.exception); 691 return; 692 } 693 694 /* to check exception */ 695 prev_nr = vcpu->arch.exception.vector; 696 if (prev_nr == DF_VECTOR) { 697 /* triple fault -> shutdown */ 698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 699 return; 700 } 701 class1 = exception_class(prev_nr); 702 class2 = exception_class(nr); 703 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 704 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 705 /* 706 * Synthesize #DF. Clear the previously injected or pending 707 * exception so as not to incorrectly trigger shutdown. 708 */ 709 vcpu->arch.exception.injected = false; 710 vcpu->arch.exception.pending = false; 711 712 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 713 } else { 714 /* replace previous exception with a new one in a hope 715 that instruction re-execution will regenerate lost 716 exception */ 717 goto queue; 718 } 719 } 720 721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 724 } 725 EXPORT_SYMBOL_GPL(kvm_queue_exception); 726 727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 730 } 731 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 732 733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 734 unsigned long payload) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 739 740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 741 u32 error_code, unsigned long payload) 742 { 743 kvm_multiple_exception(vcpu, nr, true, error_code, 744 true, payload, false); 745 } 746 747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 748 { 749 if (err) 750 kvm_inject_gp(vcpu, 0); 751 else 752 return kvm_skip_emulated_instruction(vcpu); 753 754 return 1; 755 } 756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 757 758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 759 { 760 if (err) { 761 kvm_inject_gp(vcpu, 0); 762 return 1; 763 } 764 765 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 766 EMULTYPE_COMPLETE_USER_EXIT); 767 } 768 769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 770 { 771 ++vcpu->stat.pf_guest; 772 773 /* 774 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 775 * whether or not L1 wants to intercept "regular" #PF. 776 */ 777 if (is_guest_mode(vcpu) && fault->async_page_fault) 778 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 779 true, fault->error_code, 780 true, fault->address); 781 else 782 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 783 fault->address); 784 } 785 786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 787 struct x86_exception *fault) 788 { 789 struct kvm_mmu *fault_mmu; 790 WARN_ON_ONCE(fault->vector != PF_VECTOR); 791 792 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 793 vcpu->arch.walk_mmu; 794 795 /* 796 * Invalidate the TLB entry for the faulting address, if it exists, 797 * else the access will fault indefinitely (and to emulate hardware). 798 */ 799 if ((fault->error_code & PFERR_PRESENT_MASK) && 800 !(fault->error_code & PFERR_RSVD_MASK)) 801 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 802 fault_mmu->root.hpa); 803 804 fault_mmu->inject_page_fault(vcpu, fault); 805 } 806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 807 808 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 809 { 810 atomic_inc(&vcpu->arch.nmi_queued); 811 kvm_make_request(KVM_REQ_NMI, vcpu); 812 } 813 814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 817 } 818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 819 820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 823 } 824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 825 826 /* 827 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 828 * a #GP and return false. 829 */ 830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 831 { 832 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 833 return true; 834 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 835 return false; 836 } 837 838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 839 { 840 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 841 return true; 842 843 kvm_queue_exception(vcpu, UD_VECTOR); 844 return false; 845 } 846 EXPORT_SYMBOL_GPL(kvm_require_dr); 847 848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 849 { 850 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 851 } 852 853 /* 854 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 855 */ 856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 857 { 858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 859 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 860 gpa_t real_gpa; 861 int i; 862 int ret; 863 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 864 865 /* 866 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 867 * to an L1 GPA. 868 */ 869 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 870 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 871 if (real_gpa == INVALID_GPA) 872 return 0; 873 874 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 875 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 876 cr3 & GENMASK(11, 5), sizeof(pdpte)); 877 if (ret < 0) 878 return 0; 879 880 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 881 if ((pdpte[i] & PT_PRESENT_MASK) && 882 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 883 return 0; 884 } 885 } 886 887 /* 888 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 889 * Shadow page roots need to be reconstructed instead. 890 */ 891 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 892 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 893 894 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 895 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 896 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 897 vcpu->arch.pdptrs_from_userspace = false; 898 899 return 1; 900 } 901 EXPORT_SYMBOL_GPL(load_pdptrs); 902 903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 904 { 905 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 906 kvm_clear_async_pf_completion_queue(vcpu); 907 kvm_async_pf_hash_reset(vcpu); 908 909 /* 910 * Clearing CR0.PG is defined to flush the TLB from the guest's 911 * perspective. 912 */ 913 if (!(cr0 & X86_CR0_PG)) 914 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 915 } 916 917 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 918 kvm_mmu_reset_context(vcpu); 919 920 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 921 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 922 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 923 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 924 } 925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 926 927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 928 { 929 unsigned long old_cr0 = kvm_read_cr0(vcpu); 930 931 cr0 |= X86_CR0_ET; 932 933 #ifdef CONFIG_X86_64 934 if (cr0 & 0xffffffff00000000UL) 935 return 1; 936 #endif 937 938 cr0 &= ~CR0_RESERVED_BITS; 939 940 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 941 return 1; 942 943 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 944 return 1; 945 946 #ifdef CONFIG_X86_64 947 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 948 (cr0 & X86_CR0_PG)) { 949 int cs_db, cs_l; 950 951 if (!is_pae(vcpu)) 952 return 1; 953 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 954 if (cs_l) 955 return 1; 956 } 957 #endif 958 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 959 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 960 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 961 return 1; 962 963 if (!(cr0 & X86_CR0_PG) && 964 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 965 return 1; 966 967 static_call(kvm_x86_set_cr0)(vcpu, cr0); 968 969 kvm_post_set_cr0(vcpu, old_cr0, cr0); 970 971 return 0; 972 } 973 EXPORT_SYMBOL_GPL(kvm_set_cr0); 974 975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 976 { 977 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 978 } 979 EXPORT_SYMBOL_GPL(kvm_lmsw); 980 981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.guest_state_protected) 984 return; 985 986 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 987 988 if (vcpu->arch.xcr0 != host_xcr0) 989 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 990 991 if (vcpu->arch.xsaves_enabled && 992 vcpu->arch.ia32_xss != host_xss) 993 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 994 } 995 996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 997 if (static_cpu_has(X86_FEATURE_PKU) && 998 vcpu->arch.pkru != vcpu->arch.host_pkru && 999 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1000 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1001 write_pkru(vcpu->arch.pkru); 1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1005 1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1007 { 1008 if (vcpu->arch.guest_state_protected) 1009 return; 1010 1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1012 if (static_cpu_has(X86_FEATURE_PKU) && 1013 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1014 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1015 vcpu->arch.pkru = rdpkru(); 1016 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1017 write_pkru(vcpu->arch.host_pkru); 1018 } 1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1020 1021 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, host_xss); 1029 } 1030 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1033 1034 #ifdef CONFIG_X86_64 1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1036 { 1037 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1038 } 1039 #endif 1040 1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1042 { 1043 u64 xcr0 = xcr; 1044 u64 old_xcr0 = vcpu->arch.xcr0; 1045 u64 valid_bits; 1046 1047 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1048 if (index != XCR_XFEATURE_ENABLED_MASK) 1049 return 1; 1050 if (!(xcr0 & XFEATURE_MASK_FP)) 1051 return 1; 1052 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1053 return 1; 1054 1055 /* 1056 * Do not allow the guest to set bits that we do not support 1057 * saving. However, xcr0 bit 0 is always set, even if the 1058 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1059 */ 1060 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1061 if (xcr0 & ~valid_bits) 1062 return 1; 1063 1064 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1065 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1066 return 1; 1067 1068 if (xcr0 & XFEATURE_MASK_AVX512) { 1069 if (!(xcr0 & XFEATURE_MASK_YMM)) 1070 return 1; 1071 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1072 return 1; 1073 } 1074 1075 if ((xcr0 & XFEATURE_MASK_XTILE) && 1076 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1077 return 1; 1078 1079 vcpu->arch.xcr0 = xcr0; 1080 1081 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1082 kvm_update_cpuid_runtime(vcpu); 1083 return 0; 1084 } 1085 1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1087 { 1088 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1089 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1090 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1091 kvm_inject_gp(vcpu, 0); 1092 return 1; 1093 } 1094 1095 return kvm_skip_emulated_instruction(vcpu); 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1098 1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1100 { 1101 if (cr4 & cr4_reserved_bits) 1102 return false; 1103 1104 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1105 return false; 1106 1107 return true; 1108 } 1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1110 1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 return __kvm_is_valid_cr4(vcpu, cr4) && 1114 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1115 } 1116 1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1118 { 1119 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1120 kvm_mmu_reset_context(vcpu); 1121 1122 /* 1123 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1124 * according to the SDM; however, stale prev_roots could be reused 1125 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1126 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1127 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1128 * so fall through. 1129 */ 1130 if (!tdp_enabled && 1131 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1132 kvm_mmu_unload(vcpu); 1133 1134 /* 1135 * The TLB has to be flushed for all PCIDs if any of the following 1136 * (architecturally required) changes happen: 1137 * - CR4.PCIDE is changed from 1 to 0 1138 * - CR4.PGE is toggled 1139 * 1140 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1141 */ 1142 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1143 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for the current PCID if any of the 1148 * following (architecturally required) changes happen: 1149 * - CR4.SMEP is changed from 0 to 1 1150 * - CR4.PAE is toggled 1151 */ 1152 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1153 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1158 1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1160 { 1161 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1162 1163 if (!kvm_is_valid_cr4(vcpu, cr4)) 1164 return 1; 1165 1166 if (is_long_mode(vcpu)) { 1167 if (!(cr4 & X86_CR4_PAE)) 1168 return 1; 1169 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1170 return 1; 1171 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1172 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1173 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1174 return 1; 1175 1176 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1178 return 1; 1179 1180 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1181 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1182 return 1; 1183 } 1184 1185 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1186 1187 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1188 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1192 1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1194 { 1195 struct kvm_mmu *mmu = vcpu->arch.mmu; 1196 unsigned long roots_to_free = 0; 1197 int i; 1198 1199 /* 1200 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1201 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1202 * also via the emulator. KVM's TDP page tables are not in the scope of 1203 * the invalidation, but the guest's TLB entries need to be flushed as 1204 * the CPU may have cached entries in its TLB for the target PCID. 1205 */ 1206 if (unlikely(tdp_enabled)) { 1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1208 return; 1209 } 1210 1211 /* 1212 * If neither the current CR3 nor any of the prev_roots use the given 1213 * PCID, then nothing needs to be done here because a resync will 1214 * happen anyway before switching to any other CR3. 1215 */ 1216 if (kvm_get_active_pcid(vcpu) == pcid) { 1217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1219 } 1220 1221 /* 1222 * If PCID is disabled, there is no need to free prev_roots even if the 1223 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1224 * with PCIDE=0. 1225 */ 1226 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1227 return; 1228 1229 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1230 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1231 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1232 1233 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1234 } 1235 1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1237 { 1238 bool skip_tlb_flush = false; 1239 unsigned long pcid = 0; 1240 #ifdef CONFIG_X86_64 1241 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1242 1243 if (pcid_enabled) { 1244 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1245 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1246 pcid = cr3 & X86_CR3_PCID_MASK; 1247 } 1248 #endif 1249 1250 /* PDPTRs are always reloaded for PAE paging. */ 1251 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1252 goto handle_tlb_flush; 1253 1254 /* 1255 * Do not condition the GPA check on long mode, this helper is used to 1256 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1257 * the current vCPU mode is accurate. 1258 */ 1259 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1260 return 1; 1261 1262 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1263 return 1; 1264 1265 if (cr3 != kvm_read_cr3(vcpu)) 1266 kvm_mmu_new_pgd(vcpu, cr3); 1267 1268 vcpu->arch.cr3 = cr3; 1269 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1270 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1271 1272 handle_tlb_flush: 1273 /* 1274 * A load of CR3 that flushes the TLB flushes only the current PCID, 1275 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1276 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1277 * and it's impossible to use a non-zero PCID when PCID is disabled, 1278 * i.e. only PCID=0 can be relevant. 1279 */ 1280 if (!skip_tlb_flush) 1281 kvm_invalidate_pcid(vcpu, pcid); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1286 1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1288 { 1289 if (cr8 & CR8_RESERVED_BITS) 1290 return 1; 1291 if (lapic_in_kernel(vcpu)) 1292 kvm_lapic_set_tpr(vcpu, cr8); 1293 else 1294 vcpu->arch.cr8 = cr8; 1295 return 0; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1298 1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1300 { 1301 if (lapic_in_kernel(vcpu)) 1302 return kvm_lapic_get_cr8(vcpu); 1303 else 1304 return vcpu->arch.cr8; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1307 1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1309 { 1310 int i; 1311 1312 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1313 for (i = 0; i < KVM_NR_DB_REGS; i++) 1314 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1315 } 1316 } 1317 1318 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1319 { 1320 unsigned long dr7; 1321 1322 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1323 dr7 = vcpu->arch.guest_debug_dr7; 1324 else 1325 dr7 = vcpu->arch.dr7; 1326 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1327 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1328 if (dr7 & DR7_BP_EN_MASK) 1329 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1332 1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1334 { 1335 u64 fixed = DR6_FIXED_1; 1336 1337 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1338 fixed |= DR6_RTM; 1339 1340 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1341 fixed |= DR6_BUS_LOCK; 1342 return fixed; 1343 } 1344 1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1346 { 1347 size_t size = ARRAY_SIZE(vcpu->arch.db); 1348 1349 switch (dr) { 1350 case 0 ... 3: 1351 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1352 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1353 vcpu->arch.eff_db[dr] = val; 1354 break; 1355 case 4: 1356 case 6: 1357 if (!kvm_dr6_valid(val)) 1358 return 1; /* #GP */ 1359 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1360 break; 1361 case 5: 1362 default: /* 7 */ 1363 if (!kvm_dr7_valid(val)) 1364 return 1; /* #GP */ 1365 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1366 kvm_update_dr7(vcpu); 1367 break; 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_set_dr); 1373 1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1375 { 1376 size_t size = ARRAY_SIZE(vcpu->arch.db); 1377 1378 switch (dr) { 1379 case 0 ... 3: 1380 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1381 break; 1382 case 4: 1383 case 6: 1384 *val = vcpu->arch.dr6; 1385 break; 1386 case 5: 1387 default: /* 7 */ 1388 *val = vcpu->arch.dr7; 1389 break; 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_get_dr); 1393 1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1395 { 1396 u32 ecx = kvm_rcx_read(vcpu); 1397 u64 data; 1398 1399 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1400 kvm_inject_gp(vcpu, 0); 1401 return 1; 1402 } 1403 1404 kvm_rax_write(vcpu, (u32)data); 1405 kvm_rdx_write(vcpu, data >> 32); 1406 return kvm_skip_emulated_instruction(vcpu); 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1409 1410 /* 1411 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1412 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1413 * 1414 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1415 * extract the supported MSRs from the related const lists. 1416 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1417 * capabilities of the host cpu. This capabilities test skips MSRs that are 1418 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1419 * may depend on host virtualization features rather than host cpu features. 1420 */ 1421 1422 static const u32 msrs_to_save_all[] = { 1423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1424 MSR_STAR, 1425 #ifdef CONFIG_X86_64 1426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1427 #endif 1428 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1429 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1430 MSR_IA32_SPEC_CTRL, 1431 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1432 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1433 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1434 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1435 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1436 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1437 MSR_IA32_UMWAIT_CONTROL, 1438 1439 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1440 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1441 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1442 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1443 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1444 1445 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1446 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1448 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1450 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1454 1455 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1456 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1457 1458 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1459 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1460 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1461 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1462 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1463 1464 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1465 }; 1466 1467 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1468 static unsigned num_msrs_to_save; 1469 1470 static const u32 emulated_msrs_all[] = { 1471 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1472 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1473 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1474 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1475 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1476 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1477 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1478 HV_X64_MSR_RESET, 1479 HV_X64_MSR_VP_INDEX, 1480 HV_X64_MSR_VP_RUNTIME, 1481 HV_X64_MSR_SCONTROL, 1482 HV_X64_MSR_STIMER0_CONFIG, 1483 HV_X64_MSR_VP_ASSIST_PAGE, 1484 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1485 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1486 HV_X64_MSR_SYNDBG_OPTIONS, 1487 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1488 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1489 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1490 1491 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1492 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1493 1494 MSR_IA32_TSC_ADJUST, 1495 MSR_IA32_TSC_DEADLINE, 1496 MSR_IA32_ARCH_CAPABILITIES, 1497 MSR_IA32_PERF_CAPABILITIES, 1498 MSR_IA32_MISC_ENABLE, 1499 MSR_IA32_MCG_STATUS, 1500 MSR_IA32_MCG_CTL, 1501 MSR_IA32_MCG_EXT_CTL, 1502 MSR_IA32_SMBASE, 1503 MSR_SMI_COUNT, 1504 MSR_PLATFORM_INFO, 1505 MSR_MISC_FEATURES_ENABLES, 1506 MSR_AMD64_VIRT_SPEC_CTRL, 1507 MSR_AMD64_TSC_RATIO, 1508 MSR_IA32_POWER_CTL, 1509 MSR_IA32_UCODE_REV, 1510 1511 /* 1512 * The following list leaves out MSRs whose values are determined 1513 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1514 * We always support the "true" VMX control MSRs, even if the host 1515 * processor does not, so I am putting these registers here rather 1516 * than in msrs_to_save_all. 1517 */ 1518 MSR_IA32_VMX_BASIC, 1519 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1520 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1521 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1522 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1523 MSR_IA32_VMX_MISC, 1524 MSR_IA32_VMX_CR0_FIXED0, 1525 MSR_IA32_VMX_CR4_FIXED0, 1526 MSR_IA32_VMX_VMCS_ENUM, 1527 MSR_IA32_VMX_PROCBASED_CTLS2, 1528 MSR_IA32_VMX_EPT_VPID_CAP, 1529 MSR_IA32_VMX_VMFUNC, 1530 1531 MSR_K7_HWCR, 1532 MSR_KVM_POLL_CONTROL, 1533 }; 1534 1535 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1536 static unsigned num_emulated_msrs; 1537 1538 /* 1539 * List of msr numbers which are used to expose MSR-based features that 1540 * can be used by a hypervisor to validate requested CPU features. 1541 */ 1542 static const u32 msr_based_features_all[] = { 1543 MSR_IA32_VMX_BASIC, 1544 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1545 MSR_IA32_VMX_PINBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1547 MSR_IA32_VMX_PROCBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1549 MSR_IA32_VMX_EXIT_CTLS, 1550 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1551 MSR_IA32_VMX_ENTRY_CTLS, 1552 MSR_IA32_VMX_MISC, 1553 MSR_IA32_VMX_CR0_FIXED0, 1554 MSR_IA32_VMX_CR0_FIXED1, 1555 MSR_IA32_VMX_CR4_FIXED0, 1556 MSR_IA32_VMX_CR4_FIXED1, 1557 MSR_IA32_VMX_VMCS_ENUM, 1558 MSR_IA32_VMX_PROCBASED_CTLS2, 1559 MSR_IA32_VMX_EPT_VPID_CAP, 1560 MSR_IA32_VMX_VMFUNC, 1561 1562 MSR_AMD64_DE_CFG, 1563 MSR_IA32_UCODE_REV, 1564 MSR_IA32_ARCH_CAPABILITIES, 1565 MSR_IA32_PERF_CAPABILITIES, 1566 }; 1567 1568 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1569 static unsigned int num_msr_based_features; 1570 1571 /* 1572 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1573 * does not yet virtualize. These include: 1574 * 10 - MISC_PACKAGE_CTRLS 1575 * 11 - ENERGY_FILTERING_CTL 1576 * 12 - DOITM 1577 * 18 - FB_CLEAR_CTRL 1578 * 21 - XAPIC_DISABLE_STATUS 1579 * 23 - OVERCLOCKING_STATUS 1580 */ 1581 1582 #define KVM_SUPPORTED_ARCH_CAP \ 1583 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1584 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1585 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1586 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1587 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1588 1589 static u64 kvm_get_arch_capabilities(void) 1590 { 1591 u64 data = 0; 1592 1593 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1594 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1595 data &= KVM_SUPPORTED_ARCH_CAP; 1596 } 1597 1598 /* 1599 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1600 * the nested hypervisor runs with NX huge pages. If it is not, 1601 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1602 * L1 guests, so it need not worry about its own (L2) guests. 1603 */ 1604 data |= ARCH_CAP_PSCHANGE_MC_NO; 1605 1606 /* 1607 * If we're doing cache flushes (either "always" or "cond") 1608 * we will do one whenever the guest does a vmlaunch/vmresume. 1609 * If an outer hypervisor is doing the cache flush for us 1610 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1611 * capability to the guest too, and if EPT is disabled we're not 1612 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1613 * require a nested hypervisor to do a flush of its own. 1614 */ 1615 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1616 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1617 1618 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1619 data |= ARCH_CAP_RDCL_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1621 data |= ARCH_CAP_SSB_NO; 1622 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1623 data |= ARCH_CAP_MDS_NO; 1624 1625 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1626 /* 1627 * If RTM=0 because the kernel has disabled TSX, the host might 1628 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1629 * and therefore knows that there cannot be TAA) but keep 1630 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1631 * and we want to allow migrating those guests to tsx=off hosts. 1632 */ 1633 data &= ~ARCH_CAP_TAA_NO; 1634 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1635 data |= ARCH_CAP_TAA_NO; 1636 } else { 1637 /* 1638 * Nothing to do here; we emulate TSX_CTRL if present on the 1639 * host so the guest can choose between disabling TSX or 1640 * using VERW to clear CPU buffers. 1641 */ 1642 } 1643 1644 return data; 1645 } 1646 1647 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1648 { 1649 switch (msr->index) { 1650 case MSR_IA32_ARCH_CAPABILITIES: 1651 msr->data = kvm_get_arch_capabilities(); 1652 break; 1653 case MSR_IA32_PERF_CAPABILITIES: 1654 msr->data = kvm_caps.supported_perf_cap; 1655 break; 1656 case MSR_IA32_UCODE_REV: 1657 rdmsrl_safe(msr->index, &msr->data); 1658 break; 1659 default: 1660 return static_call(kvm_x86_get_msr_feature)(msr); 1661 } 1662 return 0; 1663 } 1664 1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1666 { 1667 struct kvm_msr_entry msr; 1668 int r; 1669 1670 msr.index = index; 1671 r = kvm_get_msr_feature(&msr); 1672 1673 if (r == KVM_MSR_RET_INVALID) { 1674 /* Unconditionally clear the output for simplicity */ 1675 *data = 0; 1676 if (kvm_msr_ignored_check(index, 0, false)) 1677 r = 0; 1678 } 1679 1680 if (r) 1681 return r; 1682 1683 *data = msr.data; 1684 1685 return 0; 1686 } 1687 1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1689 { 1690 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1691 return false; 1692 1693 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1694 return false; 1695 1696 if (efer & (EFER_LME | EFER_LMA) && 1697 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1698 return false; 1699 1700 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1701 return false; 1702 1703 return true; 1704 1705 } 1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1707 { 1708 if (efer & efer_reserved_bits) 1709 return false; 1710 1711 return __kvm_valid_efer(vcpu, efer); 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1714 1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1716 { 1717 u64 old_efer = vcpu->arch.efer; 1718 u64 efer = msr_info->data; 1719 int r; 1720 1721 if (efer & efer_reserved_bits) 1722 return 1; 1723 1724 if (!msr_info->host_initiated) { 1725 if (!__kvm_valid_efer(vcpu, efer)) 1726 return 1; 1727 1728 if (is_paging(vcpu) && 1729 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1730 return 1; 1731 } 1732 1733 efer &= ~EFER_LMA; 1734 efer |= vcpu->arch.efer & EFER_LMA; 1735 1736 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1737 if (r) { 1738 WARN_ON(r > 0); 1739 return r; 1740 } 1741 1742 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1743 kvm_mmu_reset_context(vcpu); 1744 1745 return 0; 1746 } 1747 1748 void kvm_enable_efer_bits(u64 mask) 1749 { 1750 efer_reserved_bits &= ~mask; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1753 1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1755 { 1756 struct kvm_x86_msr_filter *msr_filter; 1757 struct msr_bitmap_range *ranges; 1758 struct kvm *kvm = vcpu->kvm; 1759 bool allowed; 1760 int idx; 1761 u32 i; 1762 1763 /* x2APIC MSRs do not support filtering. */ 1764 if (index >= 0x800 && index <= 0x8ff) 1765 return true; 1766 1767 idx = srcu_read_lock(&kvm->srcu); 1768 1769 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1770 if (!msr_filter) { 1771 allowed = true; 1772 goto out; 1773 } 1774 1775 allowed = msr_filter->default_allow; 1776 ranges = msr_filter->ranges; 1777 1778 for (i = 0; i < msr_filter->count; i++) { 1779 u32 start = ranges[i].base; 1780 u32 end = start + ranges[i].nmsrs; 1781 u32 flags = ranges[i].flags; 1782 unsigned long *bitmap = ranges[i].bitmap; 1783 1784 if ((index >= start) && (index < end) && (flags & type)) { 1785 allowed = !!test_bit(index - start, bitmap); 1786 break; 1787 } 1788 } 1789 1790 out: 1791 srcu_read_unlock(&kvm->srcu, idx); 1792 1793 return allowed; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1796 1797 /* 1798 * Write @data into the MSR specified by @index. Select MSR specific fault 1799 * checks are bypassed if @host_initiated is %true. 1800 * Returns 0 on success, non-0 otherwise. 1801 * Assumes vcpu_load() was already called. 1802 */ 1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1804 bool host_initiated) 1805 { 1806 struct msr_data msr; 1807 1808 switch (index) { 1809 case MSR_FS_BASE: 1810 case MSR_GS_BASE: 1811 case MSR_KERNEL_GS_BASE: 1812 case MSR_CSTAR: 1813 case MSR_LSTAR: 1814 if (is_noncanonical_address(data, vcpu)) 1815 return 1; 1816 break; 1817 case MSR_IA32_SYSENTER_EIP: 1818 case MSR_IA32_SYSENTER_ESP: 1819 /* 1820 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1821 * non-canonical address is written on Intel but not on 1822 * AMD (which ignores the top 32-bits, because it does 1823 * not implement 64-bit SYSENTER). 1824 * 1825 * 64-bit code should hence be able to write a non-canonical 1826 * value on AMD. Making the address canonical ensures that 1827 * vmentry does not fail on Intel after writing a non-canonical 1828 * value, and that something deterministic happens if the guest 1829 * invokes 64-bit SYSENTER. 1830 */ 1831 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1832 break; 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 1842 /* 1843 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1844 * incomplete and conflicting architectural behavior. Current 1845 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1846 * reserved and always read as zeros. Enforce Intel's reserved 1847 * bits check if and only if the guest CPU is Intel, and clear 1848 * the bits in all other cases. This ensures cross-vendor 1849 * migration will provide consistent behavior for the guest. 1850 */ 1851 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1852 return 1; 1853 1854 data = (u32)data; 1855 break; 1856 } 1857 1858 msr.data = data; 1859 msr.index = index; 1860 msr.host_initiated = host_initiated; 1861 1862 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1863 } 1864 1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1866 u32 index, u64 data, bool host_initiated) 1867 { 1868 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1869 1870 if (ret == KVM_MSR_RET_INVALID) 1871 if (kvm_msr_ignored_check(index, data, true)) 1872 ret = 0; 1873 1874 return ret; 1875 } 1876 1877 /* 1878 * Read the MSR specified by @index into @data. Select MSR specific fault 1879 * checks are bypassed if @host_initiated is %true. 1880 * Returns 0 on success, non-0 otherwise. 1881 * Assumes vcpu_load() was already called. 1882 */ 1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1884 bool host_initiated) 1885 { 1886 struct msr_data msr; 1887 int ret; 1888 1889 switch (index) { 1890 case MSR_TSC_AUX: 1891 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1892 return 1; 1893 1894 if (!host_initiated && 1895 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1897 return 1; 1898 break; 1899 } 1900 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1905 if (!ret) 1906 *data = msr.data; 1907 return ret; 1908 } 1909 1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1911 u32 index, u64 *data, bool host_initiated) 1912 { 1913 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1914 1915 if (ret == KVM_MSR_RET_INVALID) { 1916 /* Unconditionally clear *data for simplicity */ 1917 *data = 0; 1918 if (kvm_msr_ignored_check(index, 0, false)) 1919 ret = 0; 1920 } 1921 1922 return ret; 1923 } 1924 1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1926 { 1927 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1928 return KVM_MSR_RET_FILTERED; 1929 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1930 } 1931 1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1933 { 1934 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1935 return KVM_MSR_RET_FILTERED; 1936 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1937 } 1938 1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1940 { 1941 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1942 } 1943 EXPORT_SYMBOL_GPL(kvm_get_msr); 1944 1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1946 { 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr); 1950 1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1952 { 1953 if (!vcpu->run->msr.error) { 1954 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1955 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1956 } 1957 } 1958 1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1960 { 1961 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1962 } 1963 1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1965 { 1966 complete_userspace_rdmsr(vcpu); 1967 return complete_emulated_msr_access(vcpu); 1968 } 1969 1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1971 { 1972 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1973 } 1974 1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1976 { 1977 complete_userspace_rdmsr(vcpu); 1978 return complete_fast_msr_access(vcpu); 1979 } 1980 1981 static u64 kvm_msr_reason(int r) 1982 { 1983 switch (r) { 1984 case KVM_MSR_RET_INVALID: 1985 return KVM_MSR_EXIT_REASON_UNKNOWN; 1986 case KVM_MSR_RET_FILTERED: 1987 return KVM_MSR_EXIT_REASON_FILTER; 1988 default: 1989 return KVM_MSR_EXIT_REASON_INVAL; 1990 } 1991 } 1992 1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1994 u32 exit_reason, u64 data, 1995 int (*completion)(struct kvm_vcpu *vcpu), 1996 int r) 1997 { 1998 u64 msr_reason = kvm_msr_reason(r); 1999 2000 /* Check if the user wanted to know about this MSR fault */ 2001 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2002 return 0; 2003 2004 vcpu->run->exit_reason = exit_reason; 2005 vcpu->run->msr.error = 0; 2006 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2007 vcpu->run->msr.reason = msr_reason; 2008 vcpu->run->msr.index = index; 2009 vcpu->run->msr.data = data; 2010 vcpu->arch.complete_userspace_io = completion; 2011 2012 return 1; 2013 } 2014 2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 u32 ecx = kvm_rcx_read(vcpu); 2018 u64 data; 2019 int r; 2020 2021 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2022 2023 if (!r) { 2024 trace_kvm_msr_read(ecx, data); 2025 2026 kvm_rax_write(vcpu, data & -1u); 2027 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2028 } else { 2029 /* MSR read failed? See if we should ask user space */ 2030 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2031 complete_fast_rdmsr, r)) 2032 return 0; 2033 trace_kvm_msr_read_ex(ecx); 2034 } 2035 2036 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2039 2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2041 { 2042 u32 ecx = kvm_rcx_read(vcpu); 2043 u64 data = kvm_read_edx_eax(vcpu); 2044 int r; 2045 2046 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2047 2048 if (!r) { 2049 trace_kvm_msr_write(ecx, data); 2050 } else { 2051 /* MSR write failed? See if we should ask user space */ 2052 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2053 complete_fast_msr_access, r)) 2054 return 0; 2055 /* Signal all other negative errors to userspace */ 2056 if (r < 0) 2057 return r; 2058 trace_kvm_msr_write_ex(ecx, data); 2059 } 2060 2061 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2064 2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2066 { 2067 return kvm_skip_emulated_instruction(vcpu); 2068 } 2069 2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2071 { 2072 /* Treat an INVD instruction as a NOP and just skip it. */ 2073 return kvm_emulate_as_nop(vcpu); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2076 2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2078 { 2079 kvm_queue_exception(vcpu, UD_VECTOR); 2080 return 1; 2081 } 2082 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2083 2084 2085 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2086 { 2087 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2088 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2089 return kvm_handle_invalid_op(vcpu); 2090 2091 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2092 return kvm_emulate_as_nop(vcpu); 2093 } 2094 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2095 { 2096 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2097 } 2098 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2099 2100 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2101 { 2102 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2103 } 2104 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2105 2106 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2107 { 2108 xfer_to_guest_mode_prepare(); 2109 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2110 xfer_to_guest_mode_work_pending(); 2111 } 2112 2113 /* 2114 * The fast path for frequent and performance sensitive wrmsr emulation, 2115 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2116 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2117 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2118 * other cases which must be called after interrupts are enabled on the host. 2119 */ 2120 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2121 { 2122 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2123 return 1; 2124 2125 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2126 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2127 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2128 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2129 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2130 2131 return 1; 2132 } 2133 2134 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2135 { 2136 if (!kvm_can_use_hv_timer(vcpu)) 2137 return 1; 2138 2139 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2140 return 0; 2141 } 2142 2143 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2144 { 2145 u32 msr = kvm_rcx_read(vcpu); 2146 u64 data; 2147 fastpath_t ret = EXIT_FASTPATH_NONE; 2148 2149 switch (msr) { 2150 case APIC_BASE_MSR + (APIC_ICR >> 4): 2151 data = kvm_read_edx_eax(vcpu); 2152 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2153 kvm_skip_emulated_instruction(vcpu); 2154 ret = EXIT_FASTPATH_EXIT_HANDLED; 2155 } 2156 break; 2157 case MSR_IA32_TSC_DEADLINE: 2158 data = kvm_read_edx_eax(vcpu); 2159 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2160 kvm_skip_emulated_instruction(vcpu); 2161 ret = EXIT_FASTPATH_REENTER_GUEST; 2162 } 2163 break; 2164 default: 2165 break; 2166 } 2167 2168 if (ret != EXIT_FASTPATH_NONE) 2169 trace_kvm_msr_write(msr, data); 2170 2171 return ret; 2172 } 2173 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2174 2175 /* 2176 * Adapt set_msr() to msr_io()'s calling convention 2177 */ 2178 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2179 { 2180 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2181 } 2182 2183 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2184 { 2185 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2186 } 2187 2188 #ifdef CONFIG_X86_64 2189 struct pvclock_clock { 2190 int vclock_mode; 2191 u64 cycle_last; 2192 u64 mask; 2193 u32 mult; 2194 u32 shift; 2195 u64 base_cycles; 2196 u64 offset; 2197 }; 2198 2199 struct pvclock_gtod_data { 2200 seqcount_t seq; 2201 2202 struct pvclock_clock clock; /* extract of a clocksource struct */ 2203 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2204 2205 ktime_t offs_boot; 2206 u64 wall_time_sec; 2207 }; 2208 2209 static struct pvclock_gtod_data pvclock_gtod_data; 2210 2211 static void update_pvclock_gtod(struct timekeeper *tk) 2212 { 2213 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2214 2215 write_seqcount_begin(&vdata->seq); 2216 2217 /* copy pvclock gtod data */ 2218 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2219 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2220 vdata->clock.mask = tk->tkr_mono.mask; 2221 vdata->clock.mult = tk->tkr_mono.mult; 2222 vdata->clock.shift = tk->tkr_mono.shift; 2223 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2224 vdata->clock.offset = tk->tkr_mono.base; 2225 2226 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2227 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2228 vdata->raw_clock.mask = tk->tkr_raw.mask; 2229 vdata->raw_clock.mult = tk->tkr_raw.mult; 2230 vdata->raw_clock.shift = tk->tkr_raw.shift; 2231 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2232 vdata->raw_clock.offset = tk->tkr_raw.base; 2233 2234 vdata->wall_time_sec = tk->xtime_sec; 2235 2236 vdata->offs_boot = tk->offs_boot; 2237 2238 write_seqcount_end(&vdata->seq); 2239 } 2240 2241 static s64 get_kvmclock_base_ns(void) 2242 { 2243 /* Count up from boot time, but with the frequency of the raw clock. */ 2244 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2245 } 2246 #else 2247 static s64 get_kvmclock_base_ns(void) 2248 { 2249 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2250 return ktime_get_boottime_ns(); 2251 } 2252 #endif 2253 2254 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2255 { 2256 int version; 2257 int r; 2258 struct pvclock_wall_clock wc; 2259 u32 wc_sec_hi; 2260 u64 wall_nsec; 2261 2262 if (!wall_clock) 2263 return; 2264 2265 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2266 if (r) 2267 return; 2268 2269 if (version & 1) 2270 ++version; /* first time write, random junk */ 2271 2272 ++version; 2273 2274 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2275 return; 2276 2277 /* 2278 * The guest calculates current wall clock time by adding 2279 * system time (updated by kvm_guest_time_update below) to the 2280 * wall clock specified here. We do the reverse here. 2281 */ 2282 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2283 2284 wc.nsec = do_div(wall_nsec, 1000000000); 2285 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2286 wc.version = version; 2287 2288 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2289 2290 if (sec_hi_ofs) { 2291 wc_sec_hi = wall_nsec >> 32; 2292 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2293 &wc_sec_hi, sizeof(wc_sec_hi)); 2294 } 2295 2296 version++; 2297 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2298 } 2299 2300 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2301 bool old_msr, bool host_initiated) 2302 { 2303 struct kvm_arch *ka = &vcpu->kvm->arch; 2304 2305 if (vcpu->vcpu_id == 0 && !host_initiated) { 2306 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2307 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2308 2309 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2310 } 2311 2312 vcpu->arch.time = system_time; 2313 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2314 2315 /* we verify if the enable bit is set... */ 2316 if (system_time & 1) 2317 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2318 sizeof(struct pvclock_vcpu_time_info)); 2319 else 2320 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2321 2322 return; 2323 } 2324 2325 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2326 { 2327 do_shl32_div32(dividend, divisor); 2328 return dividend; 2329 } 2330 2331 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2332 s8 *pshift, u32 *pmultiplier) 2333 { 2334 uint64_t scaled64; 2335 int32_t shift = 0; 2336 uint64_t tps64; 2337 uint32_t tps32; 2338 2339 tps64 = base_hz; 2340 scaled64 = scaled_hz; 2341 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2342 tps64 >>= 1; 2343 shift--; 2344 } 2345 2346 tps32 = (uint32_t)tps64; 2347 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2348 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2349 scaled64 >>= 1; 2350 else 2351 tps32 <<= 1; 2352 shift++; 2353 } 2354 2355 *pshift = shift; 2356 *pmultiplier = div_frac(scaled64, tps32); 2357 } 2358 2359 #ifdef CONFIG_X86_64 2360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2361 #endif 2362 2363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2364 static unsigned long max_tsc_khz; 2365 2366 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2367 { 2368 u64 v = (u64)khz * (1000000 + ppm); 2369 do_div(v, 1000000); 2370 return v; 2371 } 2372 2373 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2374 2375 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2376 { 2377 u64 ratio; 2378 2379 /* Guest TSC same frequency as host TSC? */ 2380 if (!scale) { 2381 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2382 return 0; 2383 } 2384 2385 /* TSC scaling supported? */ 2386 if (!kvm_caps.has_tsc_control) { 2387 if (user_tsc_khz > tsc_khz) { 2388 vcpu->arch.tsc_catchup = 1; 2389 vcpu->arch.tsc_always_catchup = 1; 2390 return 0; 2391 } else { 2392 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2393 return -1; 2394 } 2395 } 2396 2397 /* TSC scaling required - calculate ratio */ 2398 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2399 user_tsc_khz, tsc_khz); 2400 2401 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2402 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2403 user_tsc_khz); 2404 return -1; 2405 } 2406 2407 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2408 return 0; 2409 } 2410 2411 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2412 { 2413 u32 thresh_lo, thresh_hi; 2414 int use_scaling = 0; 2415 2416 /* tsc_khz can be zero if TSC calibration fails */ 2417 if (user_tsc_khz == 0) { 2418 /* set tsc_scaling_ratio to a safe value */ 2419 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2420 return -1; 2421 } 2422 2423 /* Compute a scale to convert nanoseconds in TSC cycles */ 2424 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2425 &vcpu->arch.virtual_tsc_shift, 2426 &vcpu->arch.virtual_tsc_mult); 2427 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2428 2429 /* 2430 * Compute the variation in TSC rate which is acceptable 2431 * within the range of tolerance and decide if the 2432 * rate being applied is within that bounds of the hardware 2433 * rate. If so, no scaling or compensation need be done. 2434 */ 2435 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2436 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2437 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2438 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2439 user_tsc_khz, thresh_lo, thresh_hi); 2440 use_scaling = 1; 2441 } 2442 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2443 } 2444 2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2446 { 2447 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2448 vcpu->arch.virtual_tsc_mult, 2449 vcpu->arch.virtual_tsc_shift); 2450 tsc += vcpu->arch.this_tsc_write; 2451 return tsc; 2452 } 2453 2454 #ifdef CONFIG_X86_64 2455 static inline int gtod_is_based_on_tsc(int mode) 2456 { 2457 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2458 } 2459 #endif 2460 2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2462 { 2463 #ifdef CONFIG_X86_64 2464 bool vcpus_matched; 2465 struct kvm_arch *ka = &vcpu->kvm->arch; 2466 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2467 2468 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2469 atomic_read(&vcpu->kvm->online_vcpus)); 2470 2471 /* 2472 * Once the masterclock is enabled, always perform request in 2473 * order to update it. 2474 * 2475 * In order to enable masterclock, the host clocksource must be TSC 2476 * and the vcpus need to have matched TSCs. When that happens, 2477 * perform request to enable masterclock. 2478 */ 2479 if (ka->use_master_clock || 2480 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2481 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2482 2483 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2484 atomic_read(&vcpu->kvm->online_vcpus), 2485 ka->use_master_clock, gtod->clock.vclock_mode); 2486 #endif 2487 } 2488 2489 /* 2490 * Multiply tsc by a fixed point number represented by ratio. 2491 * 2492 * The most significant 64-N bits (mult) of ratio represent the 2493 * integral part of the fixed point number; the remaining N bits 2494 * (frac) represent the fractional part, ie. ratio represents a fixed 2495 * point number (mult + frac * 2^(-N)). 2496 * 2497 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2498 */ 2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2500 { 2501 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2502 } 2503 2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2505 { 2506 u64 _tsc = tsc; 2507 2508 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2509 _tsc = __scale_tsc(ratio, tsc); 2510 2511 return _tsc; 2512 } 2513 2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2515 { 2516 u64 tsc; 2517 2518 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2519 2520 return target_tsc - tsc; 2521 } 2522 2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2524 { 2525 return vcpu->arch.l1_tsc_offset + 2526 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2527 } 2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2529 2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2531 { 2532 u64 nested_offset; 2533 2534 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2535 nested_offset = l1_offset; 2536 else 2537 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2538 kvm_caps.tsc_scaling_ratio_frac_bits); 2539 2540 nested_offset += l2_offset; 2541 return nested_offset; 2542 } 2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2544 2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2546 { 2547 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2548 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2549 kvm_caps.tsc_scaling_ratio_frac_bits); 2550 2551 return l1_multiplier; 2552 } 2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2554 2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2556 { 2557 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2558 vcpu->arch.l1_tsc_offset, 2559 l1_offset); 2560 2561 vcpu->arch.l1_tsc_offset = l1_offset; 2562 2563 /* 2564 * If we are here because L1 chose not to trap WRMSR to TSC then 2565 * according to the spec this should set L1's TSC (as opposed to 2566 * setting L1's offset for L2). 2567 */ 2568 if (is_guest_mode(vcpu)) 2569 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2570 l1_offset, 2571 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2572 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2573 else 2574 vcpu->arch.tsc_offset = l1_offset; 2575 2576 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2577 } 2578 2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2580 { 2581 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2582 2583 /* Userspace is changing the multiplier while L2 is active */ 2584 if (is_guest_mode(vcpu)) 2585 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2586 l1_multiplier, 2587 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2588 else 2589 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2590 2591 if (kvm_caps.has_tsc_control) 2592 static_call(kvm_x86_write_tsc_multiplier)( 2593 vcpu, vcpu->arch.tsc_scaling_ratio); 2594 } 2595 2596 static inline bool kvm_check_tsc_unstable(void) 2597 { 2598 #ifdef CONFIG_X86_64 2599 /* 2600 * TSC is marked unstable when we're running on Hyper-V, 2601 * 'TSC page' clocksource is good. 2602 */ 2603 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2604 return false; 2605 #endif 2606 return check_tsc_unstable(); 2607 } 2608 2609 /* 2610 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2611 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2612 * participates in. 2613 */ 2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2615 u64 ns, bool matched) 2616 { 2617 struct kvm *kvm = vcpu->kvm; 2618 2619 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2620 2621 /* 2622 * We also track th most recent recorded KHZ, write and time to 2623 * allow the matching interval to be extended at each write. 2624 */ 2625 kvm->arch.last_tsc_nsec = ns; 2626 kvm->arch.last_tsc_write = tsc; 2627 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2628 kvm->arch.last_tsc_offset = offset; 2629 2630 vcpu->arch.last_guest_tsc = tsc; 2631 2632 kvm_vcpu_write_tsc_offset(vcpu, offset); 2633 2634 if (!matched) { 2635 /* 2636 * We split periods of matched TSC writes into generations. 2637 * For each generation, we track the original measured 2638 * nanosecond time, offset, and write, so if TSCs are in 2639 * sync, we can match exact offset, and if not, we can match 2640 * exact software computation in compute_guest_tsc() 2641 * 2642 * These values are tracked in kvm->arch.cur_xxx variables. 2643 */ 2644 kvm->arch.cur_tsc_generation++; 2645 kvm->arch.cur_tsc_nsec = ns; 2646 kvm->arch.cur_tsc_write = tsc; 2647 kvm->arch.cur_tsc_offset = offset; 2648 kvm->arch.nr_vcpus_matched_tsc = 0; 2649 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2650 kvm->arch.nr_vcpus_matched_tsc++; 2651 } 2652 2653 /* Keep track of which generation this VCPU has synchronized to */ 2654 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2655 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2656 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2657 2658 kvm_track_tsc_matching(vcpu); 2659 } 2660 2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2662 { 2663 struct kvm *kvm = vcpu->kvm; 2664 u64 offset, ns, elapsed; 2665 unsigned long flags; 2666 bool matched = false; 2667 bool synchronizing = false; 2668 2669 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2670 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2671 ns = get_kvmclock_base_ns(); 2672 elapsed = ns - kvm->arch.last_tsc_nsec; 2673 2674 if (vcpu->arch.virtual_tsc_khz) { 2675 if (data == 0) { 2676 /* 2677 * detection of vcpu initialization -- need to sync 2678 * with other vCPUs. This particularly helps to keep 2679 * kvm_clock stable after CPU hotplug 2680 */ 2681 synchronizing = true; 2682 } else { 2683 u64 tsc_exp = kvm->arch.last_tsc_write + 2684 nsec_to_cycles(vcpu, elapsed); 2685 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2686 /* 2687 * Special case: TSC write with a small delta (1 second) 2688 * of virtual cycle time against real time is 2689 * interpreted as an attempt to synchronize the CPU. 2690 */ 2691 synchronizing = data < tsc_exp + tsc_hz && 2692 data + tsc_hz > tsc_exp; 2693 } 2694 } 2695 2696 /* 2697 * For a reliable TSC, we can match TSC offsets, and for an unstable 2698 * TSC, we add elapsed time in this computation. We could let the 2699 * compensation code attempt to catch up if we fall behind, but 2700 * it's better to try to match offsets from the beginning. 2701 */ 2702 if (synchronizing && 2703 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2704 if (!kvm_check_tsc_unstable()) { 2705 offset = kvm->arch.cur_tsc_offset; 2706 } else { 2707 u64 delta = nsec_to_cycles(vcpu, elapsed); 2708 data += delta; 2709 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2710 } 2711 matched = true; 2712 } 2713 2714 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2715 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2716 } 2717 2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2719 s64 adjustment) 2720 { 2721 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2722 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2723 } 2724 2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2726 { 2727 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2728 WARN_ON(adjustment < 0); 2729 adjustment = kvm_scale_tsc((u64) adjustment, 2730 vcpu->arch.l1_tsc_scaling_ratio); 2731 adjust_tsc_offset_guest(vcpu, adjustment); 2732 } 2733 2734 #ifdef CONFIG_X86_64 2735 2736 static u64 read_tsc(void) 2737 { 2738 u64 ret = (u64)rdtsc_ordered(); 2739 u64 last = pvclock_gtod_data.clock.cycle_last; 2740 2741 if (likely(ret >= last)) 2742 return ret; 2743 2744 /* 2745 * GCC likes to generate cmov here, but this branch is extremely 2746 * predictable (it's just a function of time and the likely is 2747 * very likely) and there's a data dependence, so force GCC 2748 * to generate a branch instead. I don't barrier() because 2749 * we don't actually need a barrier, and if this function 2750 * ever gets inlined it will generate worse code. 2751 */ 2752 asm volatile (""); 2753 return last; 2754 } 2755 2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2757 int *mode) 2758 { 2759 long v; 2760 u64 tsc_pg_val; 2761 2762 switch (clock->vclock_mode) { 2763 case VDSO_CLOCKMODE_HVCLOCK: 2764 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2765 tsc_timestamp); 2766 if (tsc_pg_val != U64_MAX) { 2767 /* TSC page valid */ 2768 *mode = VDSO_CLOCKMODE_HVCLOCK; 2769 v = (tsc_pg_val - clock->cycle_last) & 2770 clock->mask; 2771 } else { 2772 /* TSC page invalid */ 2773 *mode = VDSO_CLOCKMODE_NONE; 2774 } 2775 break; 2776 case VDSO_CLOCKMODE_TSC: 2777 *mode = VDSO_CLOCKMODE_TSC; 2778 *tsc_timestamp = read_tsc(); 2779 v = (*tsc_timestamp - clock->cycle_last) & 2780 clock->mask; 2781 break; 2782 default: 2783 *mode = VDSO_CLOCKMODE_NONE; 2784 } 2785 2786 if (*mode == VDSO_CLOCKMODE_NONE) 2787 *tsc_timestamp = v = 0; 2788 2789 return v * clock->mult; 2790 } 2791 2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2793 { 2794 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2795 unsigned long seq; 2796 int mode; 2797 u64 ns; 2798 2799 do { 2800 seq = read_seqcount_begin(>od->seq); 2801 ns = gtod->raw_clock.base_cycles; 2802 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2803 ns >>= gtod->raw_clock.shift; 2804 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2805 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2806 *t = ns; 2807 2808 return mode; 2809 } 2810 2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2812 { 2813 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2814 unsigned long seq; 2815 int mode; 2816 u64 ns; 2817 2818 do { 2819 seq = read_seqcount_begin(>od->seq); 2820 ts->tv_sec = gtod->wall_time_sec; 2821 ns = gtod->clock.base_cycles; 2822 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2823 ns >>= gtod->clock.shift; 2824 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2825 2826 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2827 ts->tv_nsec = ns; 2828 2829 return mode; 2830 } 2831 2832 /* returns true if host is using TSC based clocksource */ 2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2834 { 2835 /* checked again under seqlock below */ 2836 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2837 return false; 2838 2839 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2840 tsc_timestamp)); 2841 } 2842 2843 /* returns true if host is using TSC based clocksource */ 2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2845 u64 *tsc_timestamp) 2846 { 2847 /* checked again under seqlock below */ 2848 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2849 return false; 2850 2851 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2852 } 2853 #endif 2854 2855 /* 2856 * 2857 * Assuming a stable TSC across physical CPUS, and a stable TSC 2858 * across virtual CPUs, the following condition is possible. 2859 * Each numbered line represents an event visible to both 2860 * CPUs at the next numbered event. 2861 * 2862 * "timespecX" represents host monotonic time. "tscX" represents 2863 * RDTSC value. 2864 * 2865 * VCPU0 on CPU0 | VCPU1 on CPU1 2866 * 2867 * 1. read timespec0,tsc0 2868 * 2. | timespec1 = timespec0 + N 2869 * | tsc1 = tsc0 + M 2870 * 3. transition to guest | transition to guest 2871 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2872 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2873 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2874 * 2875 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2876 * 2877 * - ret0 < ret1 2878 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2879 * ... 2880 * - 0 < N - M => M < N 2881 * 2882 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2883 * always the case (the difference between two distinct xtime instances 2884 * might be smaller then the difference between corresponding TSC reads, 2885 * when updating guest vcpus pvclock areas). 2886 * 2887 * To avoid that problem, do not allow visibility of distinct 2888 * system_timestamp/tsc_timestamp values simultaneously: use a master 2889 * copy of host monotonic time values. Update that master copy 2890 * in lockstep. 2891 * 2892 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2893 * 2894 */ 2895 2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2897 { 2898 #ifdef CONFIG_X86_64 2899 struct kvm_arch *ka = &kvm->arch; 2900 int vclock_mode; 2901 bool host_tsc_clocksource, vcpus_matched; 2902 2903 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2904 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2905 atomic_read(&kvm->online_vcpus)); 2906 2907 /* 2908 * If the host uses TSC clock, then passthrough TSC as stable 2909 * to the guest. 2910 */ 2911 host_tsc_clocksource = kvm_get_time_and_clockread( 2912 &ka->master_kernel_ns, 2913 &ka->master_cycle_now); 2914 2915 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2916 && !ka->backwards_tsc_observed 2917 && !ka->boot_vcpu_runs_old_kvmclock; 2918 2919 if (ka->use_master_clock) 2920 atomic_set(&kvm_guest_has_master_clock, 1); 2921 2922 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2923 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2924 vcpus_matched); 2925 #endif 2926 } 2927 2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2929 { 2930 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2931 } 2932 2933 static void __kvm_start_pvclock_update(struct kvm *kvm) 2934 { 2935 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2936 write_seqcount_begin(&kvm->arch.pvclock_sc); 2937 } 2938 2939 static void kvm_start_pvclock_update(struct kvm *kvm) 2940 { 2941 kvm_make_mclock_inprogress_request(kvm); 2942 2943 /* no guest entries from this point */ 2944 __kvm_start_pvclock_update(kvm); 2945 } 2946 2947 static void kvm_end_pvclock_update(struct kvm *kvm) 2948 { 2949 struct kvm_arch *ka = &kvm->arch; 2950 struct kvm_vcpu *vcpu; 2951 unsigned long i; 2952 2953 write_seqcount_end(&ka->pvclock_sc); 2954 raw_spin_unlock_irq(&ka->tsc_write_lock); 2955 kvm_for_each_vcpu(i, vcpu, kvm) 2956 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2957 2958 /* guest entries allowed */ 2959 kvm_for_each_vcpu(i, vcpu, kvm) 2960 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2961 } 2962 2963 static void kvm_update_masterclock(struct kvm *kvm) 2964 { 2965 kvm_hv_request_tsc_page_update(kvm); 2966 kvm_start_pvclock_update(kvm); 2967 pvclock_update_vm_gtod_copy(kvm); 2968 kvm_end_pvclock_update(kvm); 2969 } 2970 2971 /* 2972 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2973 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2974 * can change during boot even if the TSC is constant, as it's possible for KVM 2975 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2976 * notification when calibration completes, but practically speaking calibration 2977 * will complete before userspace is alive enough to create VMs. 2978 */ 2979 static unsigned long get_cpu_tsc_khz(void) 2980 { 2981 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2982 return tsc_khz; 2983 else 2984 return __this_cpu_read(cpu_tsc_khz); 2985 } 2986 2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2989 { 2990 struct kvm_arch *ka = &kvm->arch; 2991 struct pvclock_vcpu_time_info hv_clock; 2992 2993 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2994 get_cpu(); 2995 2996 data->flags = 0; 2997 if (ka->use_master_clock && 2998 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 2999 #ifdef CONFIG_X86_64 3000 struct timespec64 ts; 3001 3002 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3003 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3004 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3005 } else 3006 #endif 3007 data->host_tsc = rdtsc(); 3008 3009 data->flags |= KVM_CLOCK_TSC_STABLE; 3010 hv_clock.tsc_timestamp = ka->master_cycle_now; 3011 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3012 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3013 &hv_clock.tsc_shift, 3014 &hv_clock.tsc_to_system_mul); 3015 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3016 } else { 3017 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3018 } 3019 3020 put_cpu(); 3021 } 3022 3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3024 { 3025 struct kvm_arch *ka = &kvm->arch; 3026 unsigned seq; 3027 3028 do { 3029 seq = read_seqcount_begin(&ka->pvclock_sc); 3030 __get_kvmclock(kvm, data); 3031 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3032 } 3033 3034 u64 get_kvmclock_ns(struct kvm *kvm) 3035 { 3036 struct kvm_clock_data data; 3037 3038 get_kvmclock(kvm, &data); 3039 return data.clock; 3040 } 3041 3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3043 struct gfn_to_pfn_cache *gpc, 3044 unsigned int offset) 3045 { 3046 struct kvm_vcpu_arch *vcpu = &v->arch; 3047 struct pvclock_vcpu_time_info *guest_hv_clock; 3048 unsigned long flags; 3049 3050 read_lock_irqsave(&gpc->lock, flags); 3051 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3052 read_unlock_irqrestore(&gpc->lock, flags); 3053 3054 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3055 return; 3056 3057 read_lock_irqsave(&gpc->lock, flags); 3058 } 3059 3060 guest_hv_clock = (void *)(gpc->khva + offset); 3061 3062 /* 3063 * This VCPU is paused, but it's legal for a guest to read another 3064 * VCPU's kvmclock, so we really have to follow the specification where 3065 * it says that version is odd if data is being modified, and even after 3066 * it is consistent. 3067 */ 3068 3069 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3070 smp_wmb(); 3071 3072 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3073 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3074 3075 if (vcpu->pvclock_set_guest_stopped_request) { 3076 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3077 vcpu->pvclock_set_guest_stopped_request = false; 3078 } 3079 3080 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3081 smp_wmb(); 3082 3083 guest_hv_clock->version = ++vcpu->hv_clock.version; 3084 3085 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3086 read_unlock_irqrestore(&gpc->lock, flags); 3087 3088 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3089 } 3090 3091 static int kvm_guest_time_update(struct kvm_vcpu *v) 3092 { 3093 unsigned long flags, tgt_tsc_khz; 3094 unsigned seq; 3095 struct kvm_vcpu_arch *vcpu = &v->arch; 3096 struct kvm_arch *ka = &v->kvm->arch; 3097 s64 kernel_ns; 3098 u64 tsc_timestamp, host_tsc; 3099 u8 pvclock_flags; 3100 bool use_master_clock; 3101 3102 kernel_ns = 0; 3103 host_tsc = 0; 3104 3105 /* 3106 * If the host uses TSC clock, then passthrough TSC as stable 3107 * to the guest. 3108 */ 3109 do { 3110 seq = read_seqcount_begin(&ka->pvclock_sc); 3111 use_master_clock = ka->use_master_clock; 3112 if (use_master_clock) { 3113 host_tsc = ka->master_cycle_now; 3114 kernel_ns = ka->master_kernel_ns; 3115 } 3116 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3117 3118 /* Keep irq disabled to prevent changes to the clock */ 3119 local_irq_save(flags); 3120 tgt_tsc_khz = get_cpu_tsc_khz(); 3121 if (unlikely(tgt_tsc_khz == 0)) { 3122 local_irq_restore(flags); 3123 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3124 return 1; 3125 } 3126 if (!use_master_clock) { 3127 host_tsc = rdtsc(); 3128 kernel_ns = get_kvmclock_base_ns(); 3129 } 3130 3131 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3132 3133 /* 3134 * We may have to catch up the TSC to match elapsed wall clock 3135 * time for two reasons, even if kvmclock is used. 3136 * 1) CPU could have been running below the maximum TSC rate 3137 * 2) Broken TSC compensation resets the base at each VCPU 3138 * entry to avoid unknown leaps of TSC even when running 3139 * again on the same CPU. This may cause apparent elapsed 3140 * time to disappear, and the guest to stand still or run 3141 * very slowly. 3142 */ 3143 if (vcpu->tsc_catchup) { 3144 u64 tsc = compute_guest_tsc(v, kernel_ns); 3145 if (tsc > tsc_timestamp) { 3146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3147 tsc_timestamp = tsc; 3148 } 3149 } 3150 3151 local_irq_restore(flags); 3152 3153 /* With all the info we got, fill in the values */ 3154 3155 if (kvm_caps.has_tsc_control) 3156 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3157 v->arch.l1_tsc_scaling_ratio); 3158 3159 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3160 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3161 &vcpu->hv_clock.tsc_shift, 3162 &vcpu->hv_clock.tsc_to_system_mul); 3163 vcpu->hw_tsc_khz = tgt_tsc_khz; 3164 } 3165 3166 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3167 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3168 vcpu->last_guest_tsc = tsc_timestamp; 3169 3170 /* If the host uses TSC clocksource, then it is stable */ 3171 pvclock_flags = 0; 3172 if (use_master_clock) 3173 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3174 3175 vcpu->hv_clock.flags = pvclock_flags; 3176 3177 if (vcpu->pv_time.active) 3178 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3179 if (vcpu->xen.vcpu_info_cache.active) 3180 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3181 offsetof(struct compat_vcpu_info, time)); 3182 if (vcpu->xen.vcpu_time_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3184 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3185 return 0; 3186 } 3187 3188 /* 3189 * kvmclock updates which are isolated to a given vcpu, such as 3190 * vcpu->cpu migration, should not allow system_timestamp from 3191 * the rest of the vcpus to remain static. Otherwise ntp frequency 3192 * correction applies to one vcpu's system_timestamp but not 3193 * the others. 3194 * 3195 * So in those cases, request a kvmclock update for all vcpus. 3196 * We need to rate-limit these requests though, as they can 3197 * considerably slow guests that have a large number of vcpus. 3198 * The time for a remote vcpu to update its kvmclock is bound 3199 * by the delay we use to rate-limit the updates. 3200 */ 3201 3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3203 3204 static void kvmclock_update_fn(struct work_struct *work) 3205 { 3206 unsigned long i; 3207 struct delayed_work *dwork = to_delayed_work(work); 3208 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3209 kvmclock_update_work); 3210 struct kvm *kvm = container_of(ka, struct kvm, arch); 3211 struct kvm_vcpu *vcpu; 3212 3213 kvm_for_each_vcpu(i, vcpu, kvm) { 3214 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3215 kvm_vcpu_kick(vcpu); 3216 } 3217 } 3218 3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3220 { 3221 struct kvm *kvm = v->kvm; 3222 3223 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3224 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3225 KVMCLOCK_UPDATE_DELAY); 3226 } 3227 3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3229 3230 static void kvmclock_sync_fn(struct work_struct *work) 3231 { 3232 struct delayed_work *dwork = to_delayed_work(work); 3233 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3234 kvmclock_sync_work); 3235 struct kvm *kvm = container_of(ka, struct kvm, arch); 3236 3237 if (!kvmclock_periodic_sync) 3238 return; 3239 3240 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3241 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3242 KVMCLOCK_SYNC_PERIOD); 3243 } 3244 3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3246 static bool is_mci_control_msr(u32 msr) 3247 { 3248 return (msr & 3) == 0; 3249 } 3250 static bool is_mci_status_msr(u32 msr) 3251 { 3252 return (msr & 3) == 1; 3253 } 3254 3255 /* 3256 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3257 */ 3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3259 { 3260 /* McStatusWrEn enabled? */ 3261 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3262 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3263 3264 return false; 3265 } 3266 3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3268 { 3269 u64 mcg_cap = vcpu->arch.mcg_cap; 3270 unsigned bank_num = mcg_cap & 0xff; 3271 u32 msr = msr_info->index; 3272 u64 data = msr_info->data; 3273 u32 offset, last_msr; 3274 3275 switch (msr) { 3276 case MSR_IA32_MCG_STATUS: 3277 vcpu->arch.mcg_status = data; 3278 break; 3279 case MSR_IA32_MCG_CTL: 3280 if (!(mcg_cap & MCG_CTL_P) && 3281 (data || !msr_info->host_initiated)) 3282 return 1; 3283 if (data != 0 && data != ~(u64)0) 3284 return 1; 3285 vcpu->arch.mcg_ctl = data; 3286 break; 3287 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3288 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3289 if (msr > last_msr) 3290 return 1; 3291 3292 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3293 return 1; 3294 /* An attempt to write a 1 to a reserved bit raises #GP */ 3295 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3296 return 1; 3297 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3298 last_msr + 1 - MSR_IA32_MC0_CTL2); 3299 vcpu->arch.mci_ctl2_banks[offset] = data; 3300 break; 3301 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3302 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3303 if (msr > last_msr) 3304 return 1; 3305 3306 /* 3307 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3308 * values are architecturally undefined. But, some Linux 3309 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3310 * issue on AMD K8s, allow bit 10 to be clear when setting all 3311 * other bits in order to avoid an uncaught #GP in the guest. 3312 * 3313 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3314 * single-bit ECC data errors. 3315 */ 3316 if (is_mci_control_msr(msr) && 3317 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3318 return 1; 3319 3320 /* 3321 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3322 * AMD-based CPUs allow non-zero values, but if and only if 3323 * HWCR[McStatusWrEn] is set. 3324 */ 3325 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3326 data != 0 && !can_set_mci_status(vcpu)) 3327 return 1; 3328 3329 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3330 last_msr + 1 - MSR_IA32_MC0_CTL); 3331 vcpu->arch.mce_banks[offset] = data; 3332 break; 3333 default: 3334 return 1; 3335 } 3336 return 0; 3337 } 3338 3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3340 { 3341 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3342 3343 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3344 } 3345 3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3347 { 3348 gpa_t gpa = data & ~0x3f; 3349 3350 /* Bits 4:5 are reserved, Should be zero */ 3351 if (data & 0x30) 3352 return 1; 3353 3354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3355 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3356 return 1; 3357 3358 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3359 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3360 return 1; 3361 3362 if (!lapic_in_kernel(vcpu)) 3363 return data ? 1 : 0; 3364 3365 vcpu->arch.apf.msr_en_val = data; 3366 3367 if (!kvm_pv_async_pf_enabled(vcpu)) { 3368 kvm_clear_async_pf_completion_queue(vcpu); 3369 kvm_async_pf_hash_reset(vcpu); 3370 return 0; 3371 } 3372 3373 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3374 sizeof(u64))) 3375 return 1; 3376 3377 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3378 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3379 3380 kvm_async_pf_wakeup_all(vcpu); 3381 3382 return 0; 3383 } 3384 3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3386 { 3387 /* Bits 8-63 are reserved */ 3388 if (data >> 8) 3389 return 1; 3390 3391 if (!lapic_in_kernel(vcpu)) 3392 return 1; 3393 3394 vcpu->arch.apf.msr_int_val = data; 3395 3396 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3397 3398 return 0; 3399 } 3400 3401 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3402 { 3403 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3404 vcpu->arch.time = 0; 3405 } 3406 3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3408 { 3409 ++vcpu->stat.tlb_flush; 3410 static_call(kvm_x86_flush_tlb_all)(vcpu); 3411 3412 /* Flushing all ASIDs flushes the current ASID... */ 3413 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3414 } 3415 3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3417 { 3418 ++vcpu->stat.tlb_flush; 3419 3420 if (!tdp_enabled) { 3421 /* 3422 * A TLB flush on behalf of the guest is equivalent to 3423 * INVPCID(all), toggling CR4.PGE, etc., which requires 3424 * a forced sync of the shadow page tables. Ensure all the 3425 * roots are synced and the guest TLB in hardware is clean. 3426 */ 3427 kvm_mmu_sync_roots(vcpu); 3428 kvm_mmu_sync_prev_roots(vcpu); 3429 } 3430 3431 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3432 3433 /* 3434 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3435 * grained flushing. 3436 */ 3437 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3438 } 3439 3440 3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3442 { 3443 ++vcpu->stat.tlb_flush; 3444 static_call(kvm_x86_flush_tlb_current)(vcpu); 3445 } 3446 3447 /* 3448 * Service "local" TLB flush requests, which are specific to the current MMU 3449 * context. In addition to the generic event handling in vcpu_enter_guest(), 3450 * TLB flushes that are targeted at an MMU context also need to be serviced 3451 * prior before nested VM-Enter/VM-Exit. 3452 */ 3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3454 { 3455 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3456 kvm_vcpu_flush_tlb_current(vcpu); 3457 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3459 kvm_vcpu_flush_tlb_guest(vcpu); 3460 } 3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3462 3463 static void record_steal_time(struct kvm_vcpu *vcpu) 3464 { 3465 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3466 struct kvm_steal_time __user *st; 3467 struct kvm_memslots *slots; 3468 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3469 u64 steal; 3470 u32 version; 3471 3472 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3473 kvm_xen_runstate_set_running(vcpu); 3474 return; 3475 } 3476 3477 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3478 return; 3479 3480 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3481 return; 3482 3483 slots = kvm_memslots(vcpu->kvm); 3484 3485 if (unlikely(slots->generation != ghc->generation || 3486 gpa != ghc->gpa || 3487 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3488 /* We rely on the fact that it fits in a single page. */ 3489 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3490 3491 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3492 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3493 return; 3494 } 3495 3496 st = (struct kvm_steal_time __user *)ghc->hva; 3497 /* 3498 * Doing a TLB flush here, on the guest's behalf, can avoid 3499 * expensive IPIs. 3500 */ 3501 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3502 u8 st_preempted = 0; 3503 int err = -EFAULT; 3504 3505 if (!user_access_begin(st, sizeof(*st))) 3506 return; 3507 3508 asm volatile("1: xchgb %0, %2\n" 3509 "xor %1, %1\n" 3510 "2:\n" 3511 _ASM_EXTABLE_UA(1b, 2b) 3512 : "+q" (st_preempted), 3513 "+&r" (err), 3514 "+m" (st->preempted)); 3515 if (err) 3516 goto out; 3517 3518 user_access_end(); 3519 3520 vcpu->arch.st.preempted = 0; 3521 3522 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3523 st_preempted & KVM_VCPU_FLUSH_TLB); 3524 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3525 kvm_vcpu_flush_tlb_guest(vcpu); 3526 3527 if (!user_access_begin(st, sizeof(*st))) 3528 goto dirty; 3529 } else { 3530 if (!user_access_begin(st, sizeof(*st))) 3531 return; 3532 3533 unsafe_put_user(0, &st->preempted, out); 3534 vcpu->arch.st.preempted = 0; 3535 } 3536 3537 unsafe_get_user(version, &st->version, out); 3538 if (version & 1) 3539 version += 1; /* first time write, random junk */ 3540 3541 version += 1; 3542 unsafe_put_user(version, &st->version, out); 3543 3544 smp_wmb(); 3545 3546 unsafe_get_user(steal, &st->steal, out); 3547 steal += current->sched_info.run_delay - 3548 vcpu->arch.st.last_steal; 3549 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3550 unsafe_put_user(steal, &st->steal, out); 3551 3552 version += 1; 3553 unsafe_put_user(version, &st->version, out); 3554 3555 out: 3556 user_access_end(); 3557 dirty: 3558 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3559 } 3560 3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3562 { 3563 bool pr = false; 3564 u32 msr = msr_info->index; 3565 u64 data = msr_info->data; 3566 3567 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3568 return kvm_xen_write_hypercall_page(vcpu, data); 3569 3570 switch (msr) { 3571 case MSR_AMD64_NB_CFG: 3572 case MSR_IA32_UCODE_WRITE: 3573 case MSR_VM_HSAVE_PA: 3574 case MSR_AMD64_PATCH_LOADER: 3575 case MSR_AMD64_BU_CFG2: 3576 case MSR_AMD64_DC_CFG: 3577 case MSR_F15H_EX_CFG: 3578 break; 3579 3580 case MSR_IA32_UCODE_REV: 3581 if (msr_info->host_initiated) 3582 vcpu->arch.microcode_version = data; 3583 break; 3584 case MSR_IA32_ARCH_CAPABILITIES: 3585 if (!msr_info->host_initiated) 3586 return 1; 3587 vcpu->arch.arch_capabilities = data; 3588 break; 3589 case MSR_IA32_PERF_CAPABILITIES: 3590 if (!msr_info->host_initiated) 3591 return 1; 3592 if (data & ~kvm_caps.supported_perf_cap) 3593 return 1; 3594 3595 vcpu->arch.perf_capabilities = data; 3596 kvm_pmu_refresh(vcpu); 3597 return 0; 3598 case MSR_EFER: 3599 return set_efer(vcpu, msr_info); 3600 case MSR_K7_HWCR: 3601 data &= ~(u64)0x40; /* ignore flush filter disable */ 3602 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3603 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3604 3605 /* Handle McStatusWrEn */ 3606 if (data == BIT_ULL(18)) { 3607 vcpu->arch.msr_hwcr = data; 3608 } else if (data != 0) { 3609 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3610 data); 3611 return 1; 3612 } 3613 break; 3614 case MSR_FAM10H_MMIO_CONF_BASE: 3615 if (data != 0) { 3616 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3617 "0x%llx\n", data); 3618 return 1; 3619 } 3620 break; 3621 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3622 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3623 return kvm_mtrr_set_msr(vcpu, msr, data); 3624 case MSR_IA32_APICBASE: 3625 return kvm_set_apic_base(vcpu, msr_info); 3626 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3627 return kvm_x2apic_msr_write(vcpu, msr, data); 3628 case MSR_IA32_TSC_DEADLINE: 3629 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3630 break; 3631 case MSR_IA32_TSC_ADJUST: 3632 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3633 if (!msr_info->host_initiated) { 3634 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3635 adjust_tsc_offset_guest(vcpu, adj); 3636 /* Before back to guest, tsc_timestamp must be adjusted 3637 * as well, otherwise guest's percpu pvclock time could jump. 3638 */ 3639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3640 } 3641 vcpu->arch.ia32_tsc_adjust_msr = data; 3642 } 3643 break; 3644 case MSR_IA32_MISC_ENABLE: { 3645 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3646 3647 if (!msr_info->host_initiated) { 3648 /* RO bits */ 3649 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3650 return 1; 3651 3652 /* R bits, i.e. writes are ignored, but don't fault. */ 3653 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3654 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3655 } 3656 3657 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3658 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3659 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3660 return 1; 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 kvm_update_cpuid_runtime(vcpu); 3663 } else { 3664 vcpu->arch.ia32_misc_enable_msr = data; 3665 } 3666 break; 3667 } 3668 case MSR_IA32_SMBASE: 3669 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3670 return 1; 3671 vcpu->arch.smbase = data; 3672 break; 3673 case MSR_IA32_POWER_CTL: 3674 vcpu->arch.msr_ia32_power_ctl = data; 3675 break; 3676 case MSR_IA32_TSC: 3677 if (msr_info->host_initiated) { 3678 kvm_synchronize_tsc(vcpu, data); 3679 } else { 3680 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3681 adjust_tsc_offset_guest(vcpu, adj); 3682 vcpu->arch.ia32_tsc_adjust_msr += adj; 3683 } 3684 break; 3685 case MSR_IA32_XSS: 3686 if (!msr_info->host_initiated && 3687 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3688 return 1; 3689 /* 3690 * KVM supports exposing PT to the guest, but does not support 3691 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3692 * XSAVES/XRSTORS to save/restore PT MSRs. 3693 */ 3694 if (data & ~kvm_caps.supported_xss) 3695 return 1; 3696 vcpu->arch.ia32_xss = data; 3697 kvm_update_cpuid_runtime(vcpu); 3698 break; 3699 case MSR_SMI_COUNT: 3700 if (!msr_info->host_initiated) 3701 return 1; 3702 vcpu->arch.smi_count = data; 3703 break; 3704 case MSR_KVM_WALL_CLOCK_NEW: 3705 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3706 return 1; 3707 3708 vcpu->kvm->arch.wall_clock = data; 3709 kvm_write_wall_clock(vcpu->kvm, data, 0); 3710 break; 3711 case MSR_KVM_WALL_CLOCK: 3712 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3713 return 1; 3714 3715 vcpu->kvm->arch.wall_clock = data; 3716 kvm_write_wall_clock(vcpu->kvm, data, 0); 3717 break; 3718 case MSR_KVM_SYSTEM_TIME_NEW: 3719 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3720 return 1; 3721 3722 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3723 break; 3724 case MSR_KVM_SYSTEM_TIME: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3726 return 1; 3727 3728 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3729 break; 3730 case MSR_KVM_ASYNC_PF_EN: 3731 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3732 return 1; 3733 3734 if (kvm_pv_enable_async_pf(vcpu, data)) 3735 return 1; 3736 break; 3737 case MSR_KVM_ASYNC_PF_INT: 3738 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3739 return 1; 3740 3741 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3742 return 1; 3743 break; 3744 case MSR_KVM_ASYNC_PF_ACK: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3746 return 1; 3747 if (data & 0x1) { 3748 vcpu->arch.apf.pageready_pending = false; 3749 kvm_check_async_pf_completion(vcpu); 3750 } 3751 break; 3752 case MSR_KVM_STEAL_TIME: 3753 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3754 return 1; 3755 3756 if (unlikely(!sched_info_on())) 3757 return 1; 3758 3759 if (data & KVM_STEAL_RESERVED_MASK) 3760 return 1; 3761 3762 vcpu->arch.st.msr_val = data; 3763 3764 if (!(data & KVM_MSR_ENABLED)) 3765 break; 3766 3767 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3768 3769 break; 3770 case MSR_KVM_PV_EOI_EN: 3771 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3772 return 1; 3773 3774 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3775 return 1; 3776 break; 3777 3778 case MSR_KVM_POLL_CONTROL: 3779 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3780 return 1; 3781 3782 /* only enable bit supported */ 3783 if (data & (-1ULL << 1)) 3784 return 1; 3785 3786 vcpu->arch.msr_kvm_poll_control = data; 3787 break; 3788 3789 case MSR_IA32_MCG_CTL: 3790 case MSR_IA32_MCG_STATUS: 3791 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3792 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3793 return set_msr_mce(vcpu, msr_info); 3794 3795 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3796 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3797 pr = true; 3798 fallthrough; 3799 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3800 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3801 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3802 return kvm_pmu_set_msr(vcpu, msr_info); 3803 3804 if (pr || data != 0) 3805 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3806 "0x%x data 0x%llx\n", msr, data); 3807 break; 3808 case MSR_K7_CLK_CTL: 3809 /* 3810 * Ignore all writes to this no longer documented MSR. 3811 * Writes are only relevant for old K7 processors, 3812 * all pre-dating SVM, but a recommended workaround from 3813 * AMD for these chips. It is possible to specify the 3814 * affected processor models on the command line, hence 3815 * the need to ignore the workaround. 3816 */ 3817 break; 3818 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3819 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3820 case HV_X64_MSR_SYNDBG_OPTIONS: 3821 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3822 case HV_X64_MSR_CRASH_CTL: 3823 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3824 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3825 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3826 case HV_X64_MSR_TSC_EMULATION_STATUS: 3827 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3828 return kvm_hv_set_msr_common(vcpu, msr, data, 3829 msr_info->host_initiated); 3830 case MSR_IA32_BBL_CR_CTL3: 3831 /* Drop writes to this legacy MSR -- see rdmsr 3832 * counterpart for further detail. 3833 */ 3834 if (report_ignored_msrs) 3835 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3836 msr, data); 3837 break; 3838 case MSR_AMD64_OSVW_ID_LENGTH: 3839 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3840 return 1; 3841 vcpu->arch.osvw.length = data; 3842 break; 3843 case MSR_AMD64_OSVW_STATUS: 3844 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3845 return 1; 3846 vcpu->arch.osvw.status = data; 3847 break; 3848 case MSR_PLATFORM_INFO: 3849 if (!msr_info->host_initiated || 3850 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3851 cpuid_fault_enabled(vcpu))) 3852 return 1; 3853 vcpu->arch.msr_platform_info = data; 3854 break; 3855 case MSR_MISC_FEATURES_ENABLES: 3856 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3857 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3858 !supports_cpuid_fault(vcpu))) 3859 return 1; 3860 vcpu->arch.msr_misc_features_enables = data; 3861 break; 3862 #ifdef CONFIG_X86_64 3863 case MSR_IA32_XFD: 3864 if (!msr_info->host_initiated && 3865 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3866 return 1; 3867 3868 if (data & ~kvm_guest_supported_xfd(vcpu)) 3869 return 1; 3870 3871 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3872 break; 3873 case MSR_IA32_XFD_ERR: 3874 if (!msr_info->host_initiated && 3875 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3876 return 1; 3877 3878 if (data & ~kvm_guest_supported_xfd(vcpu)) 3879 return 1; 3880 3881 vcpu->arch.guest_fpu.xfd_err = data; 3882 break; 3883 #endif 3884 case MSR_IA32_PEBS_ENABLE: 3885 case MSR_IA32_DS_AREA: 3886 case MSR_PEBS_DATA_CFG: 3887 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3888 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3889 return kvm_pmu_set_msr(vcpu, msr_info); 3890 /* 3891 * Userspace is allowed to write '0' to MSRs that KVM reports 3892 * as to-be-saved, even if an MSRs isn't fully supported. 3893 */ 3894 return !msr_info->host_initiated || data; 3895 default: 3896 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3897 return kvm_pmu_set_msr(vcpu, msr_info); 3898 return KVM_MSR_RET_INVALID; 3899 } 3900 return 0; 3901 } 3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3903 3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3905 { 3906 u64 data; 3907 u64 mcg_cap = vcpu->arch.mcg_cap; 3908 unsigned bank_num = mcg_cap & 0xff; 3909 u32 offset, last_msr; 3910 3911 switch (msr) { 3912 case MSR_IA32_P5_MC_ADDR: 3913 case MSR_IA32_P5_MC_TYPE: 3914 data = 0; 3915 break; 3916 case MSR_IA32_MCG_CAP: 3917 data = vcpu->arch.mcg_cap; 3918 break; 3919 case MSR_IA32_MCG_CTL: 3920 if (!(mcg_cap & MCG_CTL_P) && !host) 3921 return 1; 3922 data = vcpu->arch.mcg_ctl; 3923 break; 3924 case MSR_IA32_MCG_STATUS: 3925 data = vcpu->arch.mcg_status; 3926 break; 3927 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3928 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3929 if (msr > last_msr) 3930 return 1; 3931 3932 if (!(mcg_cap & MCG_CMCI_P) && !host) 3933 return 1; 3934 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3935 last_msr + 1 - MSR_IA32_MC0_CTL2); 3936 data = vcpu->arch.mci_ctl2_banks[offset]; 3937 break; 3938 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3939 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3940 if (msr > last_msr) 3941 return 1; 3942 3943 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3944 last_msr + 1 - MSR_IA32_MC0_CTL); 3945 data = vcpu->arch.mce_banks[offset]; 3946 break; 3947 default: 3948 return 1; 3949 } 3950 *pdata = data; 3951 return 0; 3952 } 3953 3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3955 { 3956 switch (msr_info->index) { 3957 case MSR_IA32_PLATFORM_ID: 3958 case MSR_IA32_EBL_CR_POWERON: 3959 case MSR_IA32_LASTBRANCHFROMIP: 3960 case MSR_IA32_LASTBRANCHTOIP: 3961 case MSR_IA32_LASTINTFROMIP: 3962 case MSR_IA32_LASTINTTOIP: 3963 case MSR_AMD64_SYSCFG: 3964 case MSR_K8_TSEG_ADDR: 3965 case MSR_K8_TSEG_MASK: 3966 case MSR_VM_HSAVE_PA: 3967 case MSR_K8_INT_PENDING_MSG: 3968 case MSR_AMD64_NB_CFG: 3969 case MSR_FAM10H_MMIO_CONF_BASE: 3970 case MSR_AMD64_BU_CFG2: 3971 case MSR_IA32_PERF_CTL: 3972 case MSR_AMD64_DC_CFG: 3973 case MSR_F15H_EX_CFG: 3974 /* 3975 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3976 * limit) MSRs. Just return 0, as we do not want to expose the host 3977 * data here. Do not conditionalize this on CPUID, as KVM does not do 3978 * so for existing CPU-specific MSRs. 3979 */ 3980 case MSR_RAPL_POWER_UNIT: 3981 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3982 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3983 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3984 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3985 msr_info->data = 0; 3986 break; 3987 case MSR_IA32_PEBS_ENABLE: 3988 case MSR_IA32_DS_AREA: 3989 case MSR_PEBS_DATA_CFG: 3990 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3991 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3992 return kvm_pmu_get_msr(vcpu, msr_info); 3993 /* 3994 * Userspace is allowed to read MSRs that KVM reports as 3995 * to-be-saved, even if an MSR isn't fully supported. 3996 */ 3997 if (!msr_info->host_initiated) 3998 return 1; 3999 msr_info->data = 0; 4000 break; 4001 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4002 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4003 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4004 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4005 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4006 return kvm_pmu_get_msr(vcpu, msr_info); 4007 msr_info->data = 0; 4008 break; 4009 case MSR_IA32_UCODE_REV: 4010 msr_info->data = vcpu->arch.microcode_version; 4011 break; 4012 case MSR_IA32_ARCH_CAPABILITIES: 4013 if (!msr_info->host_initiated && 4014 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4015 return 1; 4016 msr_info->data = vcpu->arch.arch_capabilities; 4017 break; 4018 case MSR_IA32_PERF_CAPABILITIES: 4019 if (!msr_info->host_initiated && 4020 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4021 return 1; 4022 msr_info->data = vcpu->arch.perf_capabilities; 4023 break; 4024 case MSR_IA32_POWER_CTL: 4025 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4026 break; 4027 case MSR_IA32_TSC: { 4028 /* 4029 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4030 * even when not intercepted. AMD manual doesn't explicitly 4031 * state this but appears to behave the same. 4032 * 4033 * On userspace reads and writes, however, we unconditionally 4034 * return L1's TSC value to ensure backwards-compatible 4035 * behavior for migration. 4036 */ 4037 u64 offset, ratio; 4038 4039 if (msr_info->host_initiated) { 4040 offset = vcpu->arch.l1_tsc_offset; 4041 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4042 } else { 4043 offset = vcpu->arch.tsc_offset; 4044 ratio = vcpu->arch.tsc_scaling_ratio; 4045 } 4046 4047 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4048 break; 4049 } 4050 case MSR_MTRRcap: 4051 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4052 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4053 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4054 case 0xcd: /* fsb frequency */ 4055 msr_info->data = 3; 4056 break; 4057 /* 4058 * MSR_EBC_FREQUENCY_ID 4059 * Conservative value valid for even the basic CPU models. 4060 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4061 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4062 * and 266MHz for model 3, or 4. Set Core Clock 4063 * Frequency to System Bus Frequency Ratio to 1 (bits 4064 * 31:24) even though these are only valid for CPU 4065 * models > 2, however guests may end up dividing or 4066 * multiplying by zero otherwise. 4067 */ 4068 case MSR_EBC_FREQUENCY_ID: 4069 msr_info->data = 1 << 24; 4070 break; 4071 case MSR_IA32_APICBASE: 4072 msr_info->data = kvm_get_apic_base(vcpu); 4073 break; 4074 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4075 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4076 case MSR_IA32_TSC_DEADLINE: 4077 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4078 break; 4079 case MSR_IA32_TSC_ADJUST: 4080 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4081 break; 4082 case MSR_IA32_MISC_ENABLE: 4083 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4084 break; 4085 case MSR_IA32_SMBASE: 4086 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4087 return 1; 4088 msr_info->data = vcpu->arch.smbase; 4089 break; 4090 case MSR_SMI_COUNT: 4091 msr_info->data = vcpu->arch.smi_count; 4092 break; 4093 case MSR_IA32_PERF_STATUS: 4094 /* TSC increment by tick */ 4095 msr_info->data = 1000ULL; 4096 /* CPU multiplier */ 4097 msr_info->data |= (((uint64_t)4ULL) << 40); 4098 break; 4099 case MSR_EFER: 4100 msr_info->data = vcpu->arch.efer; 4101 break; 4102 case MSR_KVM_WALL_CLOCK: 4103 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4104 return 1; 4105 4106 msr_info->data = vcpu->kvm->arch.wall_clock; 4107 break; 4108 case MSR_KVM_WALL_CLOCK_NEW: 4109 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4110 return 1; 4111 4112 msr_info->data = vcpu->kvm->arch.wall_clock; 4113 break; 4114 case MSR_KVM_SYSTEM_TIME: 4115 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4116 return 1; 4117 4118 msr_info->data = vcpu->arch.time; 4119 break; 4120 case MSR_KVM_SYSTEM_TIME_NEW: 4121 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4122 return 1; 4123 4124 msr_info->data = vcpu->arch.time; 4125 break; 4126 case MSR_KVM_ASYNC_PF_EN: 4127 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4128 return 1; 4129 4130 msr_info->data = vcpu->arch.apf.msr_en_val; 4131 break; 4132 case MSR_KVM_ASYNC_PF_INT: 4133 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4134 return 1; 4135 4136 msr_info->data = vcpu->arch.apf.msr_int_val; 4137 break; 4138 case MSR_KVM_ASYNC_PF_ACK: 4139 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4140 return 1; 4141 4142 msr_info->data = 0; 4143 break; 4144 case MSR_KVM_STEAL_TIME: 4145 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4146 return 1; 4147 4148 msr_info->data = vcpu->arch.st.msr_val; 4149 break; 4150 case MSR_KVM_PV_EOI_EN: 4151 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4152 return 1; 4153 4154 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4155 break; 4156 case MSR_KVM_POLL_CONTROL: 4157 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4158 return 1; 4159 4160 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4161 break; 4162 case MSR_IA32_P5_MC_ADDR: 4163 case MSR_IA32_P5_MC_TYPE: 4164 case MSR_IA32_MCG_CAP: 4165 case MSR_IA32_MCG_CTL: 4166 case MSR_IA32_MCG_STATUS: 4167 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4168 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4169 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4170 msr_info->host_initiated); 4171 case MSR_IA32_XSS: 4172 if (!msr_info->host_initiated && 4173 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4174 return 1; 4175 msr_info->data = vcpu->arch.ia32_xss; 4176 break; 4177 case MSR_K7_CLK_CTL: 4178 /* 4179 * Provide expected ramp-up count for K7. All other 4180 * are set to zero, indicating minimum divisors for 4181 * every field. 4182 * 4183 * This prevents guest kernels on AMD host with CPU 4184 * type 6, model 8 and higher from exploding due to 4185 * the rdmsr failing. 4186 */ 4187 msr_info->data = 0x20000000; 4188 break; 4189 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4190 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4191 case HV_X64_MSR_SYNDBG_OPTIONS: 4192 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4193 case HV_X64_MSR_CRASH_CTL: 4194 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4195 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4197 case HV_X64_MSR_TSC_EMULATION_STATUS: 4198 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4199 return kvm_hv_get_msr_common(vcpu, 4200 msr_info->index, &msr_info->data, 4201 msr_info->host_initiated); 4202 case MSR_IA32_BBL_CR_CTL3: 4203 /* This legacy MSR exists but isn't fully documented in current 4204 * silicon. It is however accessed by winxp in very narrow 4205 * scenarios where it sets bit #19, itself documented as 4206 * a "reserved" bit. Best effort attempt to source coherent 4207 * read data here should the balance of the register be 4208 * interpreted by the guest: 4209 * 4210 * L2 cache control register 3: 64GB range, 256KB size, 4211 * enabled, latency 0x1, configured 4212 */ 4213 msr_info->data = 0xbe702111; 4214 break; 4215 case MSR_AMD64_OSVW_ID_LENGTH: 4216 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4217 return 1; 4218 msr_info->data = vcpu->arch.osvw.length; 4219 break; 4220 case MSR_AMD64_OSVW_STATUS: 4221 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4222 return 1; 4223 msr_info->data = vcpu->arch.osvw.status; 4224 break; 4225 case MSR_PLATFORM_INFO: 4226 if (!msr_info->host_initiated && 4227 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4228 return 1; 4229 msr_info->data = vcpu->arch.msr_platform_info; 4230 break; 4231 case MSR_MISC_FEATURES_ENABLES: 4232 msr_info->data = vcpu->arch.msr_misc_features_enables; 4233 break; 4234 case MSR_K7_HWCR: 4235 msr_info->data = vcpu->arch.msr_hwcr; 4236 break; 4237 #ifdef CONFIG_X86_64 4238 case MSR_IA32_XFD: 4239 if (!msr_info->host_initiated && 4240 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4241 return 1; 4242 4243 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4244 break; 4245 case MSR_IA32_XFD_ERR: 4246 if (!msr_info->host_initiated && 4247 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4248 return 1; 4249 4250 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4251 break; 4252 #endif 4253 default: 4254 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4255 return kvm_pmu_get_msr(vcpu, msr_info); 4256 return KVM_MSR_RET_INVALID; 4257 } 4258 return 0; 4259 } 4260 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4261 4262 /* 4263 * Read or write a bunch of msrs. All parameters are kernel addresses. 4264 * 4265 * @return number of msrs set successfully. 4266 */ 4267 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4268 struct kvm_msr_entry *entries, 4269 int (*do_msr)(struct kvm_vcpu *vcpu, 4270 unsigned index, u64 *data)) 4271 { 4272 int i; 4273 4274 for (i = 0; i < msrs->nmsrs; ++i) 4275 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4276 break; 4277 4278 return i; 4279 } 4280 4281 /* 4282 * Read or write a bunch of msrs. Parameters are user addresses. 4283 * 4284 * @return number of msrs set successfully. 4285 */ 4286 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4287 int (*do_msr)(struct kvm_vcpu *vcpu, 4288 unsigned index, u64 *data), 4289 int writeback) 4290 { 4291 struct kvm_msrs msrs; 4292 struct kvm_msr_entry *entries; 4293 int r, n; 4294 unsigned size; 4295 4296 r = -EFAULT; 4297 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4298 goto out; 4299 4300 r = -E2BIG; 4301 if (msrs.nmsrs >= MAX_IO_MSRS) 4302 goto out; 4303 4304 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4305 entries = memdup_user(user_msrs->entries, size); 4306 if (IS_ERR(entries)) { 4307 r = PTR_ERR(entries); 4308 goto out; 4309 } 4310 4311 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4312 if (r < 0) 4313 goto out_free; 4314 4315 r = -EFAULT; 4316 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4317 goto out_free; 4318 4319 r = n; 4320 4321 out_free: 4322 kfree(entries); 4323 out: 4324 return r; 4325 } 4326 4327 static inline bool kvm_can_mwait_in_guest(void) 4328 { 4329 return boot_cpu_has(X86_FEATURE_MWAIT) && 4330 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4331 boot_cpu_has(X86_FEATURE_ARAT); 4332 } 4333 4334 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4335 struct kvm_cpuid2 __user *cpuid_arg) 4336 { 4337 struct kvm_cpuid2 cpuid; 4338 int r; 4339 4340 r = -EFAULT; 4341 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4342 return r; 4343 4344 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4345 if (r) 4346 return r; 4347 4348 r = -EFAULT; 4349 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4350 return r; 4351 4352 return 0; 4353 } 4354 4355 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4356 { 4357 int r = 0; 4358 4359 switch (ext) { 4360 case KVM_CAP_IRQCHIP: 4361 case KVM_CAP_HLT: 4362 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4363 case KVM_CAP_SET_TSS_ADDR: 4364 case KVM_CAP_EXT_CPUID: 4365 case KVM_CAP_EXT_EMUL_CPUID: 4366 case KVM_CAP_CLOCKSOURCE: 4367 case KVM_CAP_PIT: 4368 case KVM_CAP_NOP_IO_DELAY: 4369 case KVM_CAP_MP_STATE: 4370 case KVM_CAP_SYNC_MMU: 4371 case KVM_CAP_USER_NMI: 4372 case KVM_CAP_REINJECT_CONTROL: 4373 case KVM_CAP_IRQ_INJECT_STATUS: 4374 case KVM_CAP_IOEVENTFD: 4375 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4376 case KVM_CAP_PIT2: 4377 case KVM_CAP_PIT_STATE2: 4378 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4379 case KVM_CAP_VCPU_EVENTS: 4380 case KVM_CAP_HYPERV: 4381 case KVM_CAP_HYPERV_VAPIC: 4382 case KVM_CAP_HYPERV_SPIN: 4383 case KVM_CAP_HYPERV_SYNIC: 4384 case KVM_CAP_HYPERV_SYNIC2: 4385 case KVM_CAP_HYPERV_VP_INDEX: 4386 case KVM_CAP_HYPERV_EVENTFD: 4387 case KVM_CAP_HYPERV_TLBFLUSH: 4388 case KVM_CAP_HYPERV_SEND_IPI: 4389 case KVM_CAP_HYPERV_CPUID: 4390 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4391 case KVM_CAP_SYS_HYPERV_CPUID: 4392 case KVM_CAP_PCI_SEGMENT: 4393 case KVM_CAP_DEBUGREGS: 4394 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4395 case KVM_CAP_XSAVE: 4396 case KVM_CAP_ASYNC_PF: 4397 case KVM_CAP_ASYNC_PF_INT: 4398 case KVM_CAP_GET_TSC_KHZ: 4399 case KVM_CAP_KVMCLOCK_CTRL: 4400 case KVM_CAP_READONLY_MEM: 4401 case KVM_CAP_HYPERV_TIME: 4402 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4403 case KVM_CAP_TSC_DEADLINE_TIMER: 4404 case KVM_CAP_DISABLE_QUIRKS: 4405 case KVM_CAP_SET_BOOT_CPU_ID: 4406 case KVM_CAP_SPLIT_IRQCHIP: 4407 case KVM_CAP_IMMEDIATE_EXIT: 4408 case KVM_CAP_PMU_EVENT_FILTER: 4409 case KVM_CAP_GET_MSR_FEATURES: 4410 case KVM_CAP_MSR_PLATFORM_INFO: 4411 case KVM_CAP_EXCEPTION_PAYLOAD: 4412 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4413 case KVM_CAP_SET_GUEST_DEBUG: 4414 case KVM_CAP_LAST_CPU: 4415 case KVM_CAP_X86_USER_SPACE_MSR: 4416 case KVM_CAP_X86_MSR_FILTER: 4417 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4418 #ifdef CONFIG_X86_SGX_KVM 4419 case KVM_CAP_SGX_ATTRIBUTE: 4420 #endif 4421 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4422 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4423 case KVM_CAP_SREGS2: 4424 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4425 case KVM_CAP_VCPU_ATTRIBUTES: 4426 case KVM_CAP_SYS_ATTRIBUTES: 4427 case KVM_CAP_VAPIC: 4428 case KVM_CAP_ENABLE_CAP: 4429 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4430 r = 1; 4431 break; 4432 case KVM_CAP_EXIT_HYPERCALL: 4433 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4434 break; 4435 case KVM_CAP_SET_GUEST_DEBUG2: 4436 return KVM_GUESTDBG_VALID_MASK; 4437 #ifdef CONFIG_KVM_XEN 4438 case KVM_CAP_XEN_HVM: 4439 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4440 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4441 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4442 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4443 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4444 if (sched_info_on()) 4445 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4446 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4447 break; 4448 #endif 4449 case KVM_CAP_SYNC_REGS: 4450 r = KVM_SYNC_X86_VALID_FIELDS; 4451 break; 4452 case KVM_CAP_ADJUST_CLOCK: 4453 r = KVM_CLOCK_VALID_FLAGS; 4454 break; 4455 case KVM_CAP_X86_DISABLE_EXITS: 4456 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4457 KVM_X86_DISABLE_EXITS_CSTATE; 4458 if(kvm_can_mwait_in_guest()) 4459 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4460 break; 4461 case KVM_CAP_X86_SMM: 4462 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4463 break; 4464 4465 /* SMBASE is usually relocated above 1M on modern chipsets, 4466 * and SMM handlers might indeed rely on 4G segment limits, 4467 * so do not report SMM to be available if real mode is 4468 * emulated via vm86 mode. Still, do not go to great lengths 4469 * to avoid userspace's usage of the feature, because it is a 4470 * fringe case that is not enabled except via specific settings 4471 * of the module parameters. 4472 */ 4473 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4474 break; 4475 case KVM_CAP_NR_VCPUS: 4476 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4477 break; 4478 case KVM_CAP_MAX_VCPUS: 4479 r = KVM_MAX_VCPUS; 4480 break; 4481 case KVM_CAP_MAX_VCPU_ID: 4482 r = KVM_MAX_VCPU_IDS; 4483 break; 4484 case KVM_CAP_PV_MMU: /* obsolete */ 4485 r = 0; 4486 break; 4487 case KVM_CAP_MCE: 4488 r = KVM_MAX_MCE_BANKS; 4489 break; 4490 case KVM_CAP_XCRS: 4491 r = boot_cpu_has(X86_FEATURE_XSAVE); 4492 break; 4493 case KVM_CAP_TSC_CONTROL: 4494 case KVM_CAP_VM_TSC_CONTROL: 4495 r = kvm_caps.has_tsc_control; 4496 break; 4497 case KVM_CAP_X2APIC_API: 4498 r = KVM_X2APIC_API_VALID_FLAGS; 4499 break; 4500 case KVM_CAP_NESTED_STATE: 4501 r = kvm_x86_ops.nested_ops->get_state ? 4502 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4503 break; 4504 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4505 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4506 break; 4507 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4508 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4509 break; 4510 case KVM_CAP_SMALLER_MAXPHYADDR: 4511 r = (int) allow_smaller_maxphyaddr; 4512 break; 4513 case KVM_CAP_STEAL_TIME: 4514 r = sched_info_on(); 4515 break; 4516 case KVM_CAP_X86_BUS_LOCK_EXIT: 4517 if (kvm_caps.has_bus_lock_exit) 4518 r = KVM_BUS_LOCK_DETECTION_OFF | 4519 KVM_BUS_LOCK_DETECTION_EXIT; 4520 else 4521 r = 0; 4522 break; 4523 case KVM_CAP_XSAVE2: { 4524 u64 guest_perm = xstate_get_guest_group_perm(); 4525 4526 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4527 if (r < sizeof(struct kvm_xsave)) 4528 r = sizeof(struct kvm_xsave); 4529 break; 4530 } 4531 case KVM_CAP_PMU_CAPABILITY: 4532 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4533 break; 4534 case KVM_CAP_DISABLE_QUIRKS2: 4535 r = KVM_X86_VALID_QUIRKS; 4536 break; 4537 case KVM_CAP_X86_NOTIFY_VMEXIT: 4538 r = kvm_caps.has_notify_vmexit; 4539 break; 4540 default: 4541 break; 4542 } 4543 return r; 4544 } 4545 4546 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4547 { 4548 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4549 4550 if ((u64)(unsigned long)uaddr != attr->addr) 4551 return ERR_PTR_USR(-EFAULT); 4552 return uaddr; 4553 } 4554 4555 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4556 { 4557 u64 __user *uaddr = kvm_get_attr_addr(attr); 4558 4559 if (attr->group) 4560 return -ENXIO; 4561 4562 if (IS_ERR(uaddr)) 4563 return PTR_ERR(uaddr); 4564 4565 switch (attr->attr) { 4566 case KVM_X86_XCOMP_GUEST_SUPP: 4567 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4568 return -EFAULT; 4569 return 0; 4570 default: 4571 return -ENXIO; 4572 break; 4573 } 4574 } 4575 4576 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4577 { 4578 if (attr->group) 4579 return -ENXIO; 4580 4581 switch (attr->attr) { 4582 case KVM_X86_XCOMP_GUEST_SUPP: 4583 return 0; 4584 default: 4585 return -ENXIO; 4586 } 4587 } 4588 4589 long kvm_arch_dev_ioctl(struct file *filp, 4590 unsigned int ioctl, unsigned long arg) 4591 { 4592 void __user *argp = (void __user *)arg; 4593 long r; 4594 4595 switch (ioctl) { 4596 case KVM_GET_MSR_INDEX_LIST: { 4597 struct kvm_msr_list __user *user_msr_list = argp; 4598 struct kvm_msr_list msr_list; 4599 unsigned n; 4600 4601 r = -EFAULT; 4602 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4603 goto out; 4604 n = msr_list.nmsrs; 4605 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4606 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4607 goto out; 4608 r = -E2BIG; 4609 if (n < msr_list.nmsrs) 4610 goto out; 4611 r = -EFAULT; 4612 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4613 num_msrs_to_save * sizeof(u32))) 4614 goto out; 4615 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4616 &emulated_msrs, 4617 num_emulated_msrs * sizeof(u32))) 4618 goto out; 4619 r = 0; 4620 break; 4621 } 4622 case KVM_GET_SUPPORTED_CPUID: 4623 case KVM_GET_EMULATED_CPUID: { 4624 struct kvm_cpuid2 __user *cpuid_arg = argp; 4625 struct kvm_cpuid2 cpuid; 4626 4627 r = -EFAULT; 4628 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4629 goto out; 4630 4631 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4632 ioctl); 4633 if (r) 4634 goto out; 4635 4636 r = -EFAULT; 4637 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4638 goto out; 4639 r = 0; 4640 break; 4641 } 4642 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4643 r = -EFAULT; 4644 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4645 sizeof(kvm_caps.supported_mce_cap))) 4646 goto out; 4647 r = 0; 4648 break; 4649 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4650 struct kvm_msr_list __user *user_msr_list = argp; 4651 struct kvm_msr_list msr_list; 4652 unsigned int n; 4653 4654 r = -EFAULT; 4655 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4656 goto out; 4657 n = msr_list.nmsrs; 4658 msr_list.nmsrs = num_msr_based_features; 4659 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4660 goto out; 4661 r = -E2BIG; 4662 if (n < msr_list.nmsrs) 4663 goto out; 4664 r = -EFAULT; 4665 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4666 num_msr_based_features * sizeof(u32))) 4667 goto out; 4668 r = 0; 4669 break; 4670 } 4671 case KVM_GET_MSRS: 4672 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4673 break; 4674 case KVM_GET_SUPPORTED_HV_CPUID: 4675 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4676 break; 4677 case KVM_GET_DEVICE_ATTR: { 4678 struct kvm_device_attr attr; 4679 r = -EFAULT; 4680 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4681 break; 4682 r = kvm_x86_dev_get_attr(&attr); 4683 break; 4684 } 4685 case KVM_HAS_DEVICE_ATTR: { 4686 struct kvm_device_attr attr; 4687 r = -EFAULT; 4688 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4689 break; 4690 r = kvm_x86_dev_has_attr(&attr); 4691 break; 4692 } 4693 default: 4694 r = -EINVAL; 4695 break; 4696 } 4697 out: 4698 return r; 4699 } 4700 4701 static void wbinvd_ipi(void *garbage) 4702 { 4703 wbinvd(); 4704 } 4705 4706 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4707 { 4708 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4709 } 4710 4711 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4712 { 4713 /* Address WBINVD may be executed by guest */ 4714 if (need_emulate_wbinvd(vcpu)) { 4715 if (static_call(kvm_x86_has_wbinvd_exit)()) 4716 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4717 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4718 smp_call_function_single(vcpu->cpu, 4719 wbinvd_ipi, NULL, 1); 4720 } 4721 4722 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4723 4724 /* Save host pkru register if supported */ 4725 vcpu->arch.host_pkru = read_pkru(); 4726 4727 /* Apply any externally detected TSC adjustments (due to suspend) */ 4728 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4729 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4730 vcpu->arch.tsc_offset_adjustment = 0; 4731 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4732 } 4733 4734 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4735 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4736 rdtsc() - vcpu->arch.last_host_tsc; 4737 if (tsc_delta < 0) 4738 mark_tsc_unstable("KVM discovered backwards TSC"); 4739 4740 if (kvm_check_tsc_unstable()) { 4741 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4742 vcpu->arch.last_guest_tsc); 4743 kvm_vcpu_write_tsc_offset(vcpu, offset); 4744 vcpu->arch.tsc_catchup = 1; 4745 } 4746 4747 if (kvm_lapic_hv_timer_in_use(vcpu)) 4748 kvm_lapic_restart_hv_timer(vcpu); 4749 4750 /* 4751 * On a host with synchronized TSC, there is no need to update 4752 * kvmclock on vcpu->cpu migration 4753 */ 4754 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4755 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4756 if (vcpu->cpu != cpu) 4757 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4758 vcpu->cpu = cpu; 4759 } 4760 4761 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4762 } 4763 4764 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4765 { 4766 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4767 struct kvm_steal_time __user *st; 4768 struct kvm_memslots *slots; 4769 static const u8 preempted = KVM_VCPU_PREEMPTED; 4770 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4771 4772 /* 4773 * The vCPU can be marked preempted if and only if the VM-Exit was on 4774 * an instruction boundary and will not trigger guest emulation of any 4775 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4776 * when this is true, for example allowing the vCPU to be marked 4777 * preempted if and only if the VM-Exit was due to a host interrupt. 4778 */ 4779 if (!vcpu->arch.at_instruction_boundary) { 4780 vcpu->stat.preemption_other++; 4781 return; 4782 } 4783 4784 vcpu->stat.preemption_reported++; 4785 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4786 return; 4787 4788 if (vcpu->arch.st.preempted) 4789 return; 4790 4791 /* This happens on process exit */ 4792 if (unlikely(current->mm != vcpu->kvm->mm)) 4793 return; 4794 4795 slots = kvm_memslots(vcpu->kvm); 4796 4797 if (unlikely(slots->generation != ghc->generation || 4798 gpa != ghc->gpa || 4799 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4800 return; 4801 4802 st = (struct kvm_steal_time __user *)ghc->hva; 4803 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4804 4805 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4806 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4807 4808 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4809 } 4810 4811 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4812 { 4813 int idx; 4814 4815 if (vcpu->preempted) { 4816 if (!vcpu->arch.guest_state_protected) 4817 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4818 4819 /* 4820 * Take the srcu lock as memslots will be accessed to check the gfn 4821 * cache generation against the memslots generation. 4822 */ 4823 idx = srcu_read_lock(&vcpu->kvm->srcu); 4824 if (kvm_xen_msr_enabled(vcpu->kvm)) 4825 kvm_xen_runstate_set_preempted(vcpu); 4826 else 4827 kvm_steal_time_set_preempted(vcpu); 4828 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4829 } 4830 4831 static_call(kvm_x86_vcpu_put)(vcpu); 4832 vcpu->arch.last_host_tsc = rdtsc(); 4833 } 4834 4835 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4836 struct kvm_lapic_state *s) 4837 { 4838 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4839 4840 return kvm_apic_get_state(vcpu, s); 4841 } 4842 4843 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4844 struct kvm_lapic_state *s) 4845 { 4846 int r; 4847 4848 r = kvm_apic_set_state(vcpu, s); 4849 if (r) 4850 return r; 4851 update_cr8_intercept(vcpu); 4852 4853 return 0; 4854 } 4855 4856 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4857 { 4858 /* 4859 * We can accept userspace's request for interrupt injection 4860 * as long as we have a place to store the interrupt number. 4861 * The actual injection will happen when the CPU is able to 4862 * deliver the interrupt. 4863 */ 4864 if (kvm_cpu_has_extint(vcpu)) 4865 return false; 4866 4867 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4868 return (!lapic_in_kernel(vcpu) || 4869 kvm_apic_accept_pic_intr(vcpu)); 4870 } 4871 4872 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4873 { 4874 /* 4875 * Do not cause an interrupt window exit if an exception 4876 * is pending or an event needs reinjection; userspace 4877 * might want to inject the interrupt manually using KVM_SET_REGS 4878 * or KVM_SET_SREGS. For that to work, we must be at an 4879 * instruction boundary and with no events half-injected. 4880 */ 4881 return (kvm_arch_interrupt_allowed(vcpu) && 4882 kvm_cpu_accept_dm_intr(vcpu) && 4883 !kvm_event_needs_reinjection(vcpu) && 4884 !kvm_is_exception_pending(vcpu)); 4885 } 4886 4887 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4888 struct kvm_interrupt *irq) 4889 { 4890 if (irq->irq >= KVM_NR_INTERRUPTS) 4891 return -EINVAL; 4892 4893 if (!irqchip_in_kernel(vcpu->kvm)) { 4894 kvm_queue_interrupt(vcpu, irq->irq, false); 4895 kvm_make_request(KVM_REQ_EVENT, vcpu); 4896 return 0; 4897 } 4898 4899 /* 4900 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4901 * fail for in-kernel 8259. 4902 */ 4903 if (pic_in_kernel(vcpu->kvm)) 4904 return -ENXIO; 4905 4906 if (vcpu->arch.pending_external_vector != -1) 4907 return -EEXIST; 4908 4909 vcpu->arch.pending_external_vector = irq->irq; 4910 kvm_make_request(KVM_REQ_EVENT, vcpu); 4911 return 0; 4912 } 4913 4914 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4915 { 4916 kvm_inject_nmi(vcpu); 4917 4918 return 0; 4919 } 4920 4921 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4922 struct kvm_tpr_access_ctl *tac) 4923 { 4924 if (tac->flags) 4925 return -EINVAL; 4926 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4927 return 0; 4928 } 4929 4930 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4931 u64 mcg_cap) 4932 { 4933 int r; 4934 unsigned bank_num = mcg_cap & 0xff, bank; 4935 4936 r = -EINVAL; 4937 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4938 goto out; 4939 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4940 goto out; 4941 r = 0; 4942 vcpu->arch.mcg_cap = mcg_cap; 4943 /* Init IA32_MCG_CTL to all 1s */ 4944 if (mcg_cap & MCG_CTL_P) 4945 vcpu->arch.mcg_ctl = ~(u64)0; 4946 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4947 for (bank = 0; bank < bank_num; bank++) { 4948 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4949 if (mcg_cap & MCG_CMCI_P) 4950 vcpu->arch.mci_ctl2_banks[bank] = 0; 4951 } 4952 4953 kvm_apic_after_set_mcg_cap(vcpu); 4954 4955 static_call(kvm_x86_setup_mce)(vcpu); 4956 out: 4957 return r; 4958 } 4959 4960 /* 4961 * Validate this is an UCNA (uncorrectable no action) error by checking the 4962 * MCG_STATUS and MCi_STATUS registers: 4963 * - none of the bits for Machine Check Exceptions are set 4964 * - both the VAL (valid) and UC (uncorrectable) bits are set 4965 * MCI_STATUS_PCC - Processor Context Corrupted 4966 * MCI_STATUS_S - Signaled as a Machine Check Exception 4967 * MCI_STATUS_AR - Software recoverable Action Required 4968 */ 4969 static bool is_ucna(struct kvm_x86_mce *mce) 4970 { 4971 return !mce->mcg_status && 4972 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4973 (mce->status & MCI_STATUS_VAL) && 4974 (mce->status & MCI_STATUS_UC); 4975 } 4976 4977 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4978 { 4979 u64 mcg_cap = vcpu->arch.mcg_cap; 4980 4981 banks[1] = mce->status; 4982 banks[2] = mce->addr; 4983 banks[3] = mce->misc; 4984 vcpu->arch.mcg_status = mce->mcg_status; 4985 4986 if (!(mcg_cap & MCG_CMCI_P) || 4987 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4988 return 0; 4989 4990 if (lapic_in_kernel(vcpu)) 4991 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4992 4993 return 0; 4994 } 4995 4996 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4997 struct kvm_x86_mce *mce) 4998 { 4999 u64 mcg_cap = vcpu->arch.mcg_cap; 5000 unsigned bank_num = mcg_cap & 0xff; 5001 u64 *banks = vcpu->arch.mce_banks; 5002 5003 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5004 return -EINVAL; 5005 5006 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5007 5008 if (is_ucna(mce)) 5009 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5010 5011 /* 5012 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5013 * reporting is disabled 5014 */ 5015 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5016 vcpu->arch.mcg_ctl != ~(u64)0) 5017 return 0; 5018 /* 5019 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5020 * reporting is disabled for the bank 5021 */ 5022 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5023 return 0; 5024 if (mce->status & MCI_STATUS_UC) { 5025 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5026 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5027 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5028 return 0; 5029 } 5030 if (banks[1] & MCI_STATUS_VAL) 5031 mce->status |= MCI_STATUS_OVER; 5032 banks[2] = mce->addr; 5033 banks[3] = mce->misc; 5034 vcpu->arch.mcg_status = mce->mcg_status; 5035 banks[1] = mce->status; 5036 kvm_queue_exception(vcpu, MC_VECTOR); 5037 } else if (!(banks[1] & MCI_STATUS_VAL) 5038 || !(banks[1] & MCI_STATUS_UC)) { 5039 if (banks[1] & MCI_STATUS_VAL) 5040 mce->status |= MCI_STATUS_OVER; 5041 banks[2] = mce->addr; 5042 banks[3] = mce->misc; 5043 banks[1] = mce->status; 5044 } else 5045 banks[1] |= MCI_STATUS_OVER; 5046 return 0; 5047 } 5048 5049 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5050 struct kvm_vcpu_events *events) 5051 { 5052 struct kvm_queued_exception *ex; 5053 5054 process_nmi(vcpu); 5055 5056 #ifdef CONFIG_KVM_SMM 5057 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5058 process_smi(vcpu); 5059 #endif 5060 5061 /* 5062 * KVM's ABI only allows for one exception to be migrated. Luckily, 5063 * the only time there can be two queued exceptions is if there's a 5064 * non-exiting _injected_ exception, and a pending exiting exception. 5065 * In that case, ignore the VM-Exiting exception as it's an extension 5066 * of the injected exception. 5067 */ 5068 if (vcpu->arch.exception_vmexit.pending && 5069 !vcpu->arch.exception.pending && 5070 !vcpu->arch.exception.injected) 5071 ex = &vcpu->arch.exception_vmexit; 5072 else 5073 ex = &vcpu->arch.exception; 5074 5075 /* 5076 * In guest mode, payload delivery should be deferred if the exception 5077 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5078 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5079 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5080 * propagate the payload and so it cannot be safely deferred. Deliver 5081 * the payload if the capability hasn't been requested. 5082 */ 5083 if (!vcpu->kvm->arch.exception_payload_enabled && 5084 ex->pending && ex->has_payload) 5085 kvm_deliver_exception_payload(vcpu, ex); 5086 5087 memset(events, 0, sizeof(*events)); 5088 5089 /* 5090 * The API doesn't provide the instruction length for software 5091 * exceptions, so don't report them. As long as the guest RIP 5092 * isn't advanced, we should expect to encounter the exception 5093 * again. 5094 */ 5095 if (!kvm_exception_is_soft(ex->vector)) { 5096 events->exception.injected = ex->injected; 5097 events->exception.pending = ex->pending; 5098 /* 5099 * For ABI compatibility, deliberately conflate 5100 * pending and injected exceptions when 5101 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5102 */ 5103 if (!vcpu->kvm->arch.exception_payload_enabled) 5104 events->exception.injected |= ex->pending; 5105 } 5106 events->exception.nr = ex->vector; 5107 events->exception.has_error_code = ex->has_error_code; 5108 events->exception.error_code = ex->error_code; 5109 events->exception_has_payload = ex->has_payload; 5110 events->exception_payload = ex->payload; 5111 5112 events->interrupt.injected = 5113 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5114 events->interrupt.nr = vcpu->arch.interrupt.nr; 5115 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5116 5117 events->nmi.injected = vcpu->arch.nmi_injected; 5118 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5119 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5120 5121 /* events->sipi_vector is never valid when reporting to user space */ 5122 5123 #ifdef CONFIG_KVM_SMM 5124 events->smi.smm = is_smm(vcpu); 5125 events->smi.pending = vcpu->arch.smi_pending; 5126 events->smi.smm_inside_nmi = 5127 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5128 #endif 5129 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5130 5131 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5132 | KVM_VCPUEVENT_VALID_SHADOW 5133 | KVM_VCPUEVENT_VALID_SMM); 5134 if (vcpu->kvm->arch.exception_payload_enabled) 5135 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5136 if (vcpu->kvm->arch.triple_fault_event) { 5137 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5138 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5139 } 5140 } 5141 5142 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5143 struct kvm_vcpu_events *events) 5144 { 5145 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5146 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5147 | KVM_VCPUEVENT_VALID_SHADOW 5148 | KVM_VCPUEVENT_VALID_SMM 5149 | KVM_VCPUEVENT_VALID_PAYLOAD 5150 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5151 return -EINVAL; 5152 5153 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5154 if (!vcpu->kvm->arch.exception_payload_enabled) 5155 return -EINVAL; 5156 if (events->exception.pending) 5157 events->exception.injected = 0; 5158 else 5159 events->exception_has_payload = 0; 5160 } else { 5161 events->exception.pending = 0; 5162 events->exception_has_payload = 0; 5163 } 5164 5165 if ((events->exception.injected || events->exception.pending) && 5166 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5167 return -EINVAL; 5168 5169 /* INITs are latched while in SMM */ 5170 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5171 (events->smi.smm || events->smi.pending) && 5172 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5173 return -EINVAL; 5174 5175 process_nmi(vcpu); 5176 5177 /* 5178 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5179 * morph the exception to a VM-Exit if appropriate. Do this only for 5180 * pending exceptions, already-injected exceptions are not subject to 5181 * intercpetion. Note, userspace that conflates pending and injected 5182 * is hosed, and will incorrectly convert an injected exception into a 5183 * pending exception, which in turn may cause a spurious VM-Exit. 5184 */ 5185 vcpu->arch.exception_from_userspace = events->exception.pending; 5186 5187 vcpu->arch.exception_vmexit.pending = false; 5188 5189 vcpu->arch.exception.injected = events->exception.injected; 5190 vcpu->arch.exception.pending = events->exception.pending; 5191 vcpu->arch.exception.vector = events->exception.nr; 5192 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5193 vcpu->arch.exception.error_code = events->exception.error_code; 5194 vcpu->arch.exception.has_payload = events->exception_has_payload; 5195 vcpu->arch.exception.payload = events->exception_payload; 5196 5197 vcpu->arch.interrupt.injected = events->interrupt.injected; 5198 vcpu->arch.interrupt.nr = events->interrupt.nr; 5199 vcpu->arch.interrupt.soft = events->interrupt.soft; 5200 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5201 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5202 events->interrupt.shadow); 5203 5204 vcpu->arch.nmi_injected = events->nmi.injected; 5205 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5206 vcpu->arch.nmi_pending = events->nmi.pending; 5207 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5208 5209 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5210 lapic_in_kernel(vcpu)) 5211 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5212 5213 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5214 #ifdef CONFIG_KVM_SMM 5215 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5216 kvm_leave_nested(vcpu); 5217 kvm_smm_changed(vcpu, events->smi.smm); 5218 } 5219 5220 vcpu->arch.smi_pending = events->smi.pending; 5221 5222 if (events->smi.smm) { 5223 if (events->smi.smm_inside_nmi) 5224 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5225 else 5226 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5227 } 5228 5229 #else 5230 if (events->smi.smm || events->smi.pending || 5231 events->smi.smm_inside_nmi) 5232 return -EINVAL; 5233 #endif 5234 5235 if (lapic_in_kernel(vcpu)) { 5236 if (events->smi.latched_init) 5237 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5238 else 5239 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5240 } 5241 } 5242 5243 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5244 if (!vcpu->kvm->arch.triple_fault_event) 5245 return -EINVAL; 5246 if (events->triple_fault.pending) 5247 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5248 else 5249 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5250 } 5251 5252 kvm_make_request(KVM_REQ_EVENT, vcpu); 5253 5254 return 0; 5255 } 5256 5257 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5258 struct kvm_debugregs *dbgregs) 5259 { 5260 unsigned long val; 5261 5262 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5263 kvm_get_dr(vcpu, 6, &val); 5264 dbgregs->dr6 = val; 5265 dbgregs->dr7 = vcpu->arch.dr7; 5266 dbgregs->flags = 0; 5267 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5268 } 5269 5270 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5271 struct kvm_debugregs *dbgregs) 5272 { 5273 if (dbgregs->flags) 5274 return -EINVAL; 5275 5276 if (!kvm_dr6_valid(dbgregs->dr6)) 5277 return -EINVAL; 5278 if (!kvm_dr7_valid(dbgregs->dr7)) 5279 return -EINVAL; 5280 5281 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5282 kvm_update_dr0123(vcpu); 5283 vcpu->arch.dr6 = dbgregs->dr6; 5284 vcpu->arch.dr7 = dbgregs->dr7; 5285 kvm_update_dr7(vcpu); 5286 5287 return 0; 5288 } 5289 5290 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5291 struct kvm_xsave *guest_xsave) 5292 { 5293 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5294 return; 5295 5296 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5297 guest_xsave->region, 5298 sizeof(guest_xsave->region), 5299 vcpu->arch.pkru); 5300 } 5301 5302 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5303 u8 *state, unsigned int size) 5304 { 5305 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5306 return; 5307 5308 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5309 state, size, vcpu->arch.pkru); 5310 } 5311 5312 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5313 struct kvm_xsave *guest_xsave) 5314 { 5315 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5316 return 0; 5317 5318 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5319 guest_xsave->region, 5320 kvm_caps.supported_xcr0, 5321 &vcpu->arch.pkru); 5322 } 5323 5324 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5325 struct kvm_xcrs *guest_xcrs) 5326 { 5327 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5328 guest_xcrs->nr_xcrs = 0; 5329 return; 5330 } 5331 5332 guest_xcrs->nr_xcrs = 1; 5333 guest_xcrs->flags = 0; 5334 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5335 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5336 } 5337 5338 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5339 struct kvm_xcrs *guest_xcrs) 5340 { 5341 int i, r = 0; 5342 5343 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5344 return -EINVAL; 5345 5346 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5347 return -EINVAL; 5348 5349 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5350 /* Only support XCR0 currently */ 5351 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5352 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5353 guest_xcrs->xcrs[i].value); 5354 break; 5355 } 5356 if (r) 5357 r = -EINVAL; 5358 return r; 5359 } 5360 5361 /* 5362 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5363 * stopped by the hypervisor. This function will be called from the host only. 5364 * EINVAL is returned when the host attempts to set the flag for a guest that 5365 * does not support pv clocks. 5366 */ 5367 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5368 { 5369 if (!vcpu->arch.pv_time.active) 5370 return -EINVAL; 5371 vcpu->arch.pvclock_set_guest_stopped_request = true; 5372 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5373 return 0; 5374 } 5375 5376 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5377 struct kvm_device_attr *attr) 5378 { 5379 int r; 5380 5381 switch (attr->attr) { 5382 case KVM_VCPU_TSC_OFFSET: 5383 r = 0; 5384 break; 5385 default: 5386 r = -ENXIO; 5387 } 5388 5389 return r; 5390 } 5391 5392 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5393 struct kvm_device_attr *attr) 5394 { 5395 u64 __user *uaddr = kvm_get_attr_addr(attr); 5396 int r; 5397 5398 if (IS_ERR(uaddr)) 5399 return PTR_ERR(uaddr); 5400 5401 switch (attr->attr) { 5402 case KVM_VCPU_TSC_OFFSET: 5403 r = -EFAULT; 5404 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5405 break; 5406 r = 0; 5407 break; 5408 default: 5409 r = -ENXIO; 5410 } 5411 5412 return r; 5413 } 5414 5415 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5416 struct kvm_device_attr *attr) 5417 { 5418 u64 __user *uaddr = kvm_get_attr_addr(attr); 5419 struct kvm *kvm = vcpu->kvm; 5420 int r; 5421 5422 if (IS_ERR(uaddr)) 5423 return PTR_ERR(uaddr); 5424 5425 switch (attr->attr) { 5426 case KVM_VCPU_TSC_OFFSET: { 5427 u64 offset, tsc, ns; 5428 unsigned long flags; 5429 bool matched; 5430 5431 r = -EFAULT; 5432 if (get_user(offset, uaddr)) 5433 break; 5434 5435 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5436 5437 matched = (vcpu->arch.virtual_tsc_khz && 5438 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5439 kvm->arch.last_tsc_offset == offset); 5440 5441 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5442 ns = get_kvmclock_base_ns(); 5443 5444 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5445 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5446 5447 r = 0; 5448 break; 5449 } 5450 default: 5451 r = -ENXIO; 5452 } 5453 5454 return r; 5455 } 5456 5457 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5458 unsigned int ioctl, 5459 void __user *argp) 5460 { 5461 struct kvm_device_attr attr; 5462 int r; 5463 5464 if (copy_from_user(&attr, argp, sizeof(attr))) 5465 return -EFAULT; 5466 5467 if (attr.group != KVM_VCPU_TSC_CTRL) 5468 return -ENXIO; 5469 5470 switch (ioctl) { 5471 case KVM_HAS_DEVICE_ATTR: 5472 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5473 break; 5474 case KVM_GET_DEVICE_ATTR: 5475 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5476 break; 5477 case KVM_SET_DEVICE_ATTR: 5478 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5479 break; 5480 } 5481 5482 return r; 5483 } 5484 5485 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5486 struct kvm_enable_cap *cap) 5487 { 5488 int r; 5489 uint16_t vmcs_version; 5490 void __user *user_ptr; 5491 5492 if (cap->flags) 5493 return -EINVAL; 5494 5495 switch (cap->cap) { 5496 case KVM_CAP_HYPERV_SYNIC2: 5497 if (cap->args[0]) 5498 return -EINVAL; 5499 fallthrough; 5500 5501 case KVM_CAP_HYPERV_SYNIC: 5502 if (!irqchip_in_kernel(vcpu->kvm)) 5503 return -EINVAL; 5504 return kvm_hv_activate_synic(vcpu, cap->cap == 5505 KVM_CAP_HYPERV_SYNIC2); 5506 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5507 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5508 return -ENOTTY; 5509 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5510 if (!r) { 5511 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5512 if (copy_to_user(user_ptr, &vmcs_version, 5513 sizeof(vmcs_version))) 5514 r = -EFAULT; 5515 } 5516 return r; 5517 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5518 if (!kvm_x86_ops.enable_l2_tlb_flush) 5519 return -ENOTTY; 5520 5521 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5522 5523 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5524 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5525 5526 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5527 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5528 if (vcpu->arch.pv_cpuid.enforce) 5529 kvm_update_pv_runtime(vcpu); 5530 5531 return 0; 5532 default: 5533 return -EINVAL; 5534 } 5535 } 5536 5537 long kvm_arch_vcpu_ioctl(struct file *filp, 5538 unsigned int ioctl, unsigned long arg) 5539 { 5540 struct kvm_vcpu *vcpu = filp->private_data; 5541 void __user *argp = (void __user *)arg; 5542 int r; 5543 union { 5544 struct kvm_sregs2 *sregs2; 5545 struct kvm_lapic_state *lapic; 5546 struct kvm_xsave *xsave; 5547 struct kvm_xcrs *xcrs; 5548 void *buffer; 5549 } u; 5550 5551 vcpu_load(vcpu); 5552 5553 u.buffer = NULL; 5554 switch (ioctl) { 5555 case KVM_GET_LAPIC: { 5556 r = -EINVAL; 5557 if (!lapic_in_kernel(vcpu)) 5558 goto out; 5559 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5560 GFP_KERNEL_ACCOUNT); 5561 5562 r = -ENOMEM; 5563 if (!u.lapic) 5564 goto out; 5565 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5566 if (r) 5567 goto out; 5568 r = -EFAULT; 5569 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5570 goto out; 5571 r = 0; 5572 break; 5573 } 5574 case KVM_SET_LAPIC: { 5575 r = -EINVAL; 5576 if (!lapic_in_kernel(vcpu)) 5577 goto out; 5578 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5579 if (IS_ERR(u.lapic)) { 5580 r = PTR_ERR(u.lapic); 5581 goto out_nofree; 5582 } 5583 5584 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5585 break; 5586 } 5587 case KVM_INTERRUPT: { 5588 struct kvm_interrupt irq; 5589 5590 r = -EFAULT; 5591 if (copy_from_user(&irq, argp, sizeof(irq))) 5592 goto out; 5593 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5594 break; 5595 } 5596 case KVM_NMI: { 5597 r = kvm_vcpu_ioctl_nmi(vcpu); 5598 break; 5599 } 5600 case KVM_SMI: { 5601 r = kvm_inject_smi(vcpu); 5602 break; 5603 } 5604 case KVM_SET_CPUID: { 5605 struct kvm_cpuid __user *cpuid_arg = argp; 5606 struct kvm_cpuid cpuid; 5607 5608 r = -EFAULT; 5609 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5610 goto out; 5611 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5612 break; 5613 } 5614 case KVM_SET_CPUID2: { 5615 struct kvm_cpuid2 __user *cpuid_arg = argp; 5616 struct kvm_cpuid2 cpuid; 5617 5618 r = -EFAULT; 5619 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5620 goto out; 5621 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5622 cpuid_arg->entries); 5623 break; 5624 } 5625 case KVM_GET_CPUID2: { 5626 struct kvm_cpuid2 __user *cpuid_arg = argp; 5627 struct kvm_cpuid2 cpuid; 5628 5629 r = -EFAULT; 5630 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5631 goto out; 5632 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5633 cpuid_arg->entries); 5634 if (r) 5635 goto out; 5636 r = -EFAULT; 5637 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5638 goto out; 5639 r = 0; 5640 break; 5641 } 5642 case KVM_GET_MSRS: { 5643 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5644 r = msr_io(vcpu, argp, do_get_msr, 1); 5645 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5646 break; 5647 } 5648 case KVM_SET_MSRS: { 5649 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5650 r = msr_io(vcpu, argp, do_set_msr, 0); 5651 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5652 break; 5653 } 5654 case KVM_TPR_ACCESS_REPORTING: { 5655 struct kvm_tpr_access_ctl tac; 5656 5657 r = -EFAULT; 5658 if (copy_from_user(&tac, argp, sizeof(tac))) 5659 goto out; 5660 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5661 if (r) 5662 goto out; 5663 r = -EFAULT; 5664 if (copy_to_user(argp, &tac, sizeof(tac))) 5665 goto out; 5666 r = 0; 5667 break; 5668 }; 5669 case KVM_SET_VAPIC_ADDR: { 5670 struct kvm_vapic_addr va; 5671 int idx; 5672 5673 r = -EINVAL; 5674 if (!lapic_in_kernel(vcpu)) 5675 goto out; 5676 r = -EFAULT; 5677 if (copy_from_user(&va, argp, sizeof(va))) 5678 goto out; 5679 idx = srcu_read_lock(&vcpu->kvm->srcu); 5680 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5681 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5682 break; 5683 } 5684 case KVM_X86_SETUP_MCE: { 5685 u64 mcg_cap; 5686 5687 r = -EFAULT; 5688 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5689 goto out; 5690 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5691 break; 5692 } 5693 case KVM_X86_SET_MCE: { 5694 struct kvm_x86_mce mce; 5695 5696 r = -EFAULT; 5697 if (copy_from_user(&mce, argp, sizeof(mce))) 5698 goto out; 5699 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5700 break; 5701 } 5702 case KVM_GET_VCPU_EVENTS: { 5703 struct kvm_vcpu_events events; 5704 5705 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5706 5707 r = -EFAULT; 5708 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5709 break; 5710 r = 0; 5711 break; 5712 } 5713 case KVM_SET_VCPU_EVENTS: { 5714 struct kvm_vcpu_events events; 5715 5716 r = -EFAULT; 5717 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5718 break; 5719 5720 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5721 break; 5722 } 5723 case KVM_GET_DEBUGREGS: { 5724 struct kvm_debugregs dbgregs; 5725 5726 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5727 5728 r = -EFAULT; 5729 if (copy_to_user(argp, &dbgregs, 5730 sizeof(struct kvm_debugregs))) 5731 break; 5732 r = 0; 5733 break; 5734 } 5735 case KVM_SET_DEBUGREGS: { 5736 struct kvm_debugregs dbgregs; 5737 5738 r = -EFAULT; 5739 if (copy_from_user(&dbgregs, argp, 5740 sizeof(struct kvm_debugregs))) 5741 break; 5742 5743 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5744 break; 5745 } 5746 case KVM_GET_XSAVE: { 5747 r = -EINVAL; 5748 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5749 break; 5750 5751 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5752 r = -ENOMEM; 5753 if (!u.xsave) 5754 break; 5755 5756 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5757 5758 r = -EFAULT; 5759 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5760 break; 5761 r = 0; 5762 break; 5763 } 5764 case KVM_SET_XSAVE: { 5765 int size = vcpu->arch.guest_fpu.uabi_size; 5766 5767 u.xsave = memdup_user(argp, size); 5768 if (IS_ERR(u.xsave)) { 5769 r = PTR_ERR(u.xsave); 5770 goto out_nofree; 5771 } 5772 5773 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5774 break; 5775 } 5776 5777 case KVM_GET_XSAVE2: { 5778 int size = vcpu->arch.guest_fpu.uabi_size; 5779 5780 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5781 r = -ENOMEM; 5782 if (!u.xsave) 5783 break; 5784 5785 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5786 5787 r = -EFAULT; 5788 if (copy_to_user(argp, u.xsave, size)) 5789 break; 5790 5791 r = 0; 5792 break; 5793 } 5794 5795 case KVM_GET_XCRS: { 5796 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5797 r = -ENOMEM; 5798 if (!u.xcrs) 5799 break; 5800 5801 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5802 5803 r = -EFAULT; 5804 if (copy_to_user(argp, u.xcrs, 5805 sizeof(struct kvm_xcrs))) 5806 break; 5807 r = 0; 5808 break; 5809 } 5810 case KVM_SET_XCRS: { 5811 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5812 if (IS_ERR(u.xcrs)) { 5813 r = PTR_ERR(u.xcrs); 5814 goto out_nofree; 5815 } 5816 5817 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5818 break; 5819 } 5820 case KVM_SET_TSC_KHZ: { 5821 u32 user_tsc_khz; 5822 5823 r = -EINVAL; 5824 user_tsc_khz = (u32)arg; 5825 5826 if (kvm_caps.has_tsc_control && 5827 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5828 goto out; 5829 5830 if (user_tsc_khz == 0) 5831 user_tsc_khz = tsc_khz; 5832 5833 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5834 r = 0; 5835 5836 goto out; 5837 } 5838 case KVM_GET_TSC_KHZ: { 5839 r = vcpu->arch.virtual_tsc_khz; 5840 goto out; 5841 } 5842 case KVM_KVMCLOCK_CTRL: { 5843 r = kvm_set_guest_paused(vcpu); 5844 goto out; 5845 } 5846 case KVM_ENABLE_CAP: { 5847 struct kvm_enable_cap cap; 5848 5849 r = -EFAULT; 5850 if (copy_from_user(&cap, argp, sizeof(cap))) 5851 goto out; 5852 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5853 break; 5854 } 5855 case KVM_GET_NESTED_STATE: { 5856 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5857 u32 user_data_size; 5858 5859 r = -EINVAL; 5860 if (!kvm_x86_ops.nested_ops->get_state) 5861 break; 5862 5863 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5864 r = -EFAULT; 5865 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5866 break; 5867 5868 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5869 user_data_size); 5870 if (r < 0) 5871 break; 5872 5873 if (r > user_data_size) { 5874 if (put_user(r, &user_kvm_nested_state->size)) 5875 r = -EFAULT; 5876 else 5877 r = -E2BIG; 5878 break; 5879 } 5880 5881 r = 0; 5882 break; 5883 } 5884 case KVM_SET_NESTED_STATE: { 5885 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5886 struct kvm_nested_state kvm_state; 5887 int idx; 5888 5889 r = -EINVAL; 5890 if (!kvm_x86_ops.nested_ops->set_state) 5891 break; 5892 5893 r = -EFAULT; 5894 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5895 break; 5896 5897 r = -EINVAL; 5898 if (kvm_state.size < sizeof(kvm_state)) 5899 break; 5900 5901 if (kvm_state.flags & 5902 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5903 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5904 | KVM_STATE_NESTED_GIF_SET)) 5905 break; 5906 5907 /* nested_run_pending implies guest_mode. */ 5908 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5909 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5910 break; 5911 5912 idx = srcu_read_lock(&vcpu->kvm->srcu); 5913 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5914 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5915 break; 5916 } 5917 case KVM_GET_SUPPORTED_HV_CPUID: 5918 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5919 break; 5920 #ifdef CONFIG_KVM_XEN 5921 case KVM_XEN_VCPU_GET_ATTR: { 5922 struct kvm_xen_vcpu_attr xva; 5923 5924 r = -EFAULT; 5925 if (copy_from_user(&xva, argp, sizeof(xva))) 5926 goto out; 5927 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5928 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5929 r = -EFAULT; 5930 break; 5931 } 5932 case KVM_XEN_VCPU_SET_ATTR: { 5933 struct kvm_xen_vcpu_attr xva; 5934 5935 r = -EFAULT; 5936 if (copy_from_user(&xva, argp, sizeof(xva))) 5937 goto out; 5938 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5939 break; 5940 } 5941 #endif 5942 case KVM_GET_SREGS2: { 5943 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5944 r = -ENOMEM; 5945 if (!u.sregs2) 5946 goto out; 5947 __get_sregs2(vcpu, u.sregs2); 5948 r = -EFAULT; 5949 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5950 goto out; 5951 r = 0; 5952 break; 5953 } 5954 case KVM_SET_SREGS2: { 5955 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5956 if (IS_ERR(u.sregs2)) { 5957 r = PTR_ERR(u.sregs2); 5958 u.sregs2 = NULL; 5959 goto out; 5960 } 5961 r = __set_sregs2(vcpu, u.sregs2); 5962 break; 5963 } 5964 case KVM_HAS_DEVICE_ATTR: 5965 case KVM_GET_DEVICE_ATTR: 5966 case KVM_SET_DEVICE_ATTR: 5967 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5968 break; 5969 default: 5970 r = -EINVAL; 5971 } 5972 out: 5973 kfree(u.buffer); 5974 out_nofree: 5975 vcpu_put(vcpu); 5976 return r; 5977 } 5978 5979 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5980 { 5981 return VM_FAULT_SIGBUS; 5982 } 5983 5984 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5985 { 5986 int ret; 5987 5988 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5989 return -EINVAL; 5990 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5991 return ret; 5992 } 5993 5994 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5995 u64 ident_addr) 5996 { 5997 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5998 } 5999 6000 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6001 unsigned long kvm_nr_mmu_pages) 6002 { 6003 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6004 return -EINVAL; 6005 6006 mutex_lock(&kvm->slots_lock); 6007 6008 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6009 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6010 6011 mutex_unlock(&kvm->slots_lock); 6012 return 0; 6013 } 6014 6015 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6016 { 6017 return kvm->arch.n_max_mmu_pages; 6018 } 6019 6020 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6021 { 6022 struct kvm_pic *pic = kvm->arch.vpic; 6023 int r; 6024 6025 r = 0; 6026 switch (chip->chip_id) { 6027 case KVM_IRQCHIP_PIC_MASTER: 6028 memcpy(&chip->chip.pic, &pic->pics[0], 6029 sizeof(struct kvm_pic_state)); 6030 break; 6031 case KVM_IRQCHIP_PIC_SLAVE: 6032 memcpy(&chip->chip.pic, &pic->pics[1], 6033 sizeof(struct kvm_pic_state)); 6034 break; 6035 case KVM_IRQCHIP_IOAPIC: 6036 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6037 break; 6038 default: 6039 r = -EINVAL; 6040 break; 6041 } 6042 return r; 6043 } 6044 6045 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6046 { 6047 struct kvm_pic *pic = kvm->arch.vpic; 6048 int r; 6049 6050 r = 0; 6051 switch (chip->chip_id) { 6052 case KVM_IRQCHIP_PIC_MASTER: 6053 spin_lock(&pic->lock); 6054 memcpy(&pic->pics[0], &chip->chip.pic, 6055 sizeof(struct kvm_pic_state)); 6056 spin_unlock(&pic->lock); 6057 break; 6058 case KVM_IRQCHIP_PIC_SLAVE: 6059 spin_lock(&pic->lock); 6060 memcpy(&pic->pics[1], &chip->chip.pic, 6061 sizeof(struct kvm_pic_state)); 6062 spin_unlock(&pic->lock); 6063 break; 6064 case KVM_IRQCHIP_IOAPIC: 6065 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6066 break; 6067 default: 6068 r = -EINVAL; 6069 break; 6070 } 6071 kvm_pic_update_irq(pic); 6072 return r; 6073 } 6074 6075 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6076 { 6077 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6078 6079 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6080 6081 mutex_lock(&kps->lock); 6082 memcpy(ps, &kps->channels, sizeof(*ps)); 6083 mutex_unlock(&kps->lock); 6084 return 0; 6085 } 6086 6087 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6088 { 6089 int i; 6090 struct kvm_pit *pit = kvm->arch.vpit; 6091 6092 mutex_lock(&pit->pit_state.lock); 6093 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6094 for (i = 0; i < 3; i++) 6095 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6096 mutex_unlock(&pit->pit_state.lock); 6097 return 0; 6098 } 6099 6100 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6101 { 6102 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6103 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6104 sizeof(ps->channels)); 6105 ps->flags = kvm->arch.vpit->pit_state.flags; 6106 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6107 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6108 return 0; 6109 } 6110 6111 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6112 { 6113 int start = 0; 6114 int i; 6115 u32 prev_legacy, cur_legacy; 6116 struct kvm_pit *pit = kvm->arch.vpit; 6117 6118 mutex_lock(&pit->pit_state.lock); 6119 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6120 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6121 if (!prev_legacy && cur_legacy) 6122 start = 1; 6123 memcpy(&pit->pit_state.channels, &ps->channels, 6124 sizeof(pit->pit_state.channels)); 6125 pit->pit_state.flags = ps->flags; 6126 for (i = 0; i < 3; i++) 6127 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6128 start && i == 0); 6129 mutex_unlock(&pit->pit_state.lock); 6130 return 0; 6131 } 6132 6133 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6134 struct kvm_reinject_control *control) 6135 { 6136 struct kvm_pit *pit = kvm->arch.vpit; 6137 6138 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6139 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6140 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6141 */ 6142 mutex_lock(&pit->pit_state.lock); 6143 kvm_pit_set_reinject(pit, control->pit_reinject); 6144 mutex_unlock(&pit->pit_state.lock); 6145 6146 return 0; 6147 } 6148 6149 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6150 { 6151 6152 /* 6153 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6154 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6155 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6156 * VM-Exit. 6157 */ 6158 struct kvm_vcpu *vcpu; 6159 unsigned long i; 6160 6161 kvm_for_each_vcpu(i, vcpu, kvm) 6162 kvm_vcpu_kick(vcpu); 6163 } 6164 6165 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6166 bool line_status) 6167 { 6168 if (!irqchip_in_kernel(kvm)) 6169 return -ENXIO; 6170 6171 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6172 irq_event->irq, irq_event->level, 6173 line_status); 6174 return 0; 6175 } 6176 6177 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6178 struct kvm_enable_cap *cap) 6179 { 6180 int r; 6181 6182 if (cap->flags) 6183 return -EINVAL; 6184 6185 switch (cap->cap) { 6186 case KVM_CAP_DISABLE_QUIRKS2: 6187 r = -EINVAL; 6188 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6189 break; 6190 fallthrough; 6191 case KVM_CAP_DISABLE_QUIRKS: 6192 kvm->arch.disabled_quirks = cap->args[0]; 6193 r = 0; 6194 break; 6195 case KVM_CAP_SPLIT_IRQCHIP: { 6196 mutex_lock(&kvm->lock); 6197 r = -EINVAL; 6198 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6199 goto split_irqchip_unlock; 6200 r = -EEXIST; 6201 if (irqchip_in_kernel(kvm)) 6202 goto split_irqchip_unlock; 6203 if (kvm->created_vcpus) 6204 goto split_irqchip_unlock; 6205 r = kvm_setup_empty_irq_routing(kvm); 6206 if (r) 6207 goto split_irqchip_unlock; 6208 /* Pairs with irqchip_in_kernel. */ 6209 smp_wmb(); 6210 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6211 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6212 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6213 r = 0; 6214 split_irqchip_unlock: 6215 mutex_unlock(&kvm->lock); 6216 break; 6217 } 6218 case KVM_CAP_X2APIC_API: 6219 r = -EINVAL; 6220 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6221 break; 6222 6223 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6224 kvm->arch.x2apic_format = true; 6225 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6226 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6227 6228 r = 0; 6229 break; 6230 case KVM_CAP_X86_DISABLE_EXITS: 6231 r = -EINVAL; 6232 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6233 break; 6234 6235 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6236 kvm_can_mwait_in_guest()) 6237 kvm->arch.mwait_in_guest = true; 6238 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6239 kvm->arch.hlt_in_guest = true; 6240 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6241 kvm->arch.pause_in_guest = true; 6242 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6243 kvm->arch.cstate_in_guest = true; 6244 r = 0; 6245 break; 6246 case KVM_CAP_MSR_PLATFORM_INFO: 6247 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6248 r = 0; 6249 break; 6250 case KVM_CAP_EXCEPTION_PAYLOAD: 6251 kvm->arch.exception_payload_enabled = cap->args[0]; 6252 r = 0; 6253 break; 6254 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6255 kvm->arch.triple_fault_event = cap->args[0]; 6256 r = 0; 6257 break; 6258 case KVM_CAP_X86_USER_SPACE_MSR: 6259 r = -EINVAL; 6260 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6261 break; 6262 kvm->arch.user_space_msr_mask = cap->args[0]; 6263 r = 0; 6264 break; 6265 case KVM_CAP_X86_BUS_LOCK_EXIT: 6266 r = -EINVAL; 6267 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6268 break; 6269 6270 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6271 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6272 break; 6273 6274 if (kvm_caps.has_bus_lock_exit && 6275 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6276 kvm->arch.bus_lock_detection_enabled = true; 6277 r = 0; 6278 break; 6279 #ifdef CONFIG_X86_SGX_KVM 6280 case KVM_CAP_SGX_ATTRIBUTE: { 6281 unsigned long allowed_attributes = 0; 6282 6283 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6284 if (r) 6285 break; 6286 6287 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6288 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6289 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6290 kvm->arch.sgx_provisioning_allowed = true; 6291 else 6292 r = -EINVAL; 6293 break; 6294 } 6295 #endif 6296 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6297 r = -EINVAL; 6298 if (!kvm_x86_ops.vm_copy_enc_context_from) 6299 break; 6300 6301 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6302 break; 6303 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6304 r = -EINVAL; 6305 if (!kvm_x86_ops.vm_move_enc_context_from) 6306 break; 6307 6308 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6309 break; 6310 case KVM_CAP_EXIT_HYPERCALL: 6311 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6312 r = -EINVAL; 6313 break; 6314 } 6315 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6316 r = 0; 6317 break; 6318 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6319 r = -EINVAL; 6320 if (cap->args[0] & ~1) 6321 break; 6322 kvm->arch.exit_on_emulation_error = cap->args[0]; 6323 r = 0; 6324 break; 6325 case KVM_CAP_PMU_CAPABILITY: 6326 r = -EINVAL; 6327 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6328 break; 6329 6330 mutex_lock(&kvm->lock); 6331 if (!kvm->created_vcpus) { 6332 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6333 r = 0; 6334 } 6335 mutex_unlock(&kvm->lock); 6336 break; 6337 case KVM_CAP_MAX_VCPU_ID: 6338 r = -EINVAL; 6339 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6340 break; 6341 6342 mutex_lock(&kvm->lock); 6343 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6344 r = 0; 6345 } else if (!kvm->arch.max_vcpu_ids) { 6346 kvm->arch.max_vcpu_ids = cap->args[0]; 6347 r = 0; 6348 } 6349 mutex_unlock(&kvm->lock); 6350 break; 6351 case KVM_CAP_X86_NOTIFY_VMEXIT: 6352 r = -EINVAL; 6353 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6354 break; 6355 if (!kvm_caps.has_notify_vmexit) 6356 break; 6357 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6358 break; 6359 mutex_lock(&kvm->lock); 6360 if (!kvm->created_vcpus) { 6361 kvm->arch.notify_window = cap->args[0] >> 32; 6362 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6363 r = 0; 6364 } 6365 mutex_unlock(&kvm->lock); 6366 break; 6367 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6368 r = -EINVAL; 6369 6370 /* 6371 * Since the risk of disabling NX hugepages is a guest crashing 6372 * the system, ensure the userspace process has permission to 6373 * reboot the system. 6374 * 6375 * Note that unlike the reboot() syscall, the process must have 6376 * this capability in the root namespace because exposing 6377 * /dev/kvm into a container does not limit the scope of the 6378 * iTLB multihit bug to that container. In other words, 6379 * this must use capable(), not ns_capable(). 6380 */ 6381 if (!capable(CAP_SYS_BOOT)) { 6382 r = -EPERM; 6383 break; 6384 } 6385 6386 if (cap->args[0]) 6387 break; 6388 6389 mutex_lock(&kvm->lock); 6390 if (!kvm->created_vcpus) { 6391 kvm->arch.disable_nx_huge_pages = true; 6392 r = 0; 6393 } 6394 mutex_unlock(&kvm->lock); 6395 break; 6396 default: 6397 r = -EINVAL; 6398 break; 6399 } 6400 return r; 6401 } 6402 6403 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6404 { 6405 struct kvm_x86_msr_filter *msr_filter; 6406 6407 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6408 if (!msr_filter) 6409 return NULL; 6410 6411 msr_filter->default_allow = default_allow; 6412 return msr_filter; 6413 } 6414 6415 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6416 { 6417 u32 i; 6418 6419 if (!msr_filter) 6420 return; 6421 6422 for (i = 0; i < msr_filter->count; i++) 6423 kfree(msr_filter->ranges[i].bitmap); 6424 6425 kfree(msr_filter); 6426 } 6427 6428 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6429 struct kvm_msr_filter_range *user_range) 6430 { 6431 unsigned long *bitmap = NULL; 6432 size_t bitmap_size; 6433 6434 if (!user_range->nmsrs) 6435 return 0; 6436 6437 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6438 return -EINVAL; 6439 6440 if (!user_range->flags) 6441 return -EINVAL; 6442 6443 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6444 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6445 return -EINVAL; 6446 6447 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6448 if (IS_ERR(bitmap)) 6449 return PTR_ERR(bitmap); 6450 6451 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6452 .flags = user_range->flags, 6453 .base = user_range->base, 6454 .nmsrs = user_range->nmsrs, 6455 .bitmap = bitmap, 6456 }; 6457 6458 msr_filter->count++; 6459 return 0; 6460 } 6461 6462 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6463 struct kvm_msr_filter *filter) 6464 { 6465 struct kvm_x86_msr_filter *new_filter, *old_filter; 6466 bool default_allow; 6467 bool empty = true; 6468 int r = 0; 6469 u32 i; 6470 6471 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6472 return -EINVAL; 6473 6474 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6475 empty &= !filter->ranges[i].nmsrs; 6476 6477 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6478 if (empty && !default_allow) 6479 return -EINVAL; 6480 6481 new_filter = kvm_alloc_msr_filter(default_allow); 6482 if (!new_filter) 6483 return -ENOMEM; 6484 6485 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6486 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6487 if (r) { 6488 kvm_free_msr_filter(new_filter); 6489 return r; 6490 } 6491 } 6492 6493 mutex_lock(&kvm->lock); 6494 6495 /* The per-VM filter is protected by kvm->lock... */ 6496 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6497 6498 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6499 synchronize_srcu(&kvm->srcu); 6500 6501 kvm_free_msr_filter(old_filter); 6502 6503 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6504 mutex_unlock(&kvm->lock); 6505 6506 return 0; 6507 } 6508 6509 #ifdef CONFIG_KVM_COMPAT 6510 /* for KVM_X86_SET_MSR_FILTER */ 6511 struct kvm_msr_filter_range_compat { 6512 __u32 flags; 6513 __u32 nmsrs; 6514 __u32 base; 6515 __u32 bitmap; 6516 }; 6517 6518 struct kvm_msr_filter_compat { 6519 __u32 flags; 6520 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6521 }; 6522 6523 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6524 6525 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6526 unsigned long arg) 6527 { 6528 void __user *argp = (void __user *)arg; 6529 struct kvm *kvm = filp->private_data; 6530 long r = -ENOTTY; 6531 6532 switch (ioctl) { 6533 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6534 struct kvm_msr_filter __user *user_msr_filter = argp; 6535 struct kvm_msr_filter_compat filter_compat; 6536 struct kvm_msr_filter filter; 6537 int i; 6538 6539 if (copy_from_user(&filter_compat, user_msr_filter, 6540 sizeof(filter_compat))) 6541 return -EFAULT; 6542 6543 filter.flags = filter_compat.flags; 6544 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6545 struct kvm_msr_filter_range_compat *cr; 6546 6547 cr = &filter_compat.ranges[i]; 6548 filter.ranges[i] = (struct kvm_msr_filter_range) { 6549 .flags = cr->flags, 6550 .nmsrs = cr->nmsrs, 6551 .base = cr->base, 6552 .bitmap = (__u8 *)(ulong)cr->bitmap, 6553 }; 6554 } 6555 6556 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6557 break; 6558 } 6559 } 6560 6561 return r; 6562 } 6563 #endif 6564 6565 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6566 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6567 { 6568 struct kvm_vcpu *vcpu; 6569 unsigned long i; 6570 int ret = 0; 6571 6572 mutex_lock(&kvm->lock); 6573 kvm_for_each_vcpu(i, vcpu, kvm) { 6574 if (!vcpu->arch.pv_time.active) 6575 continue; 6576 6577 ret = kvm_set_guest_paused(vcpu); 6578 if (ret) { 6579 kvm_err("Failed to pause guest VCPU%d: %d\n", 6580 vcpu->vcpu_id, ret); 6581 break; 6582 } 6583 } 6584 mutex_unlock(&kvm->lock); 6585 6586 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6587 } 6588 6589 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6590 { 6591 switch (state) { 6592 case PM_HIBERNATION_PREPARE: 6593 case PM_SUSPEND_PREPARE: 6594 return kvm_arch_suspend_notifier(kvm); 6595 } 6596 6597 return NOTIFY_DONE; 6598 } 6599 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6600 6601 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6602 { 6603 struct kvm_clock_data data = { 0 }; 6604 6605 get_kvmclock(kvm, &data); 6606 if (copy_to_user(argp, &data, sizeof(data))) 6607 return -EFAULT; 6608 6609 return 0; 6610 } 6611 6612 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6613 { 6614 struct kvm_arch *ka = &kvm->arch; 6615 struct kvm_clock_data data; 6616 u64 now_raw_ns; 6617 6618 if (copy_from_user(&data, argp, sizeof(data))) 6619 return -EFAULT; 6620 6621 /* 6622 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6623 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6624 */ 6625 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6626 return -EINVAL; 6627 6628 kvm_hv_request_tsc_page_update(kvm); 6629 kvm_start_pvclock_update(kvm); 6630 pvclock_update_vm_gtod_copy(kvm); 6631 6632 /* 6633 * This pairs with kvm_guest_time_update(): when masterclock is 6634 * in use, we use master_kernel_ns + kvmclock_offset to set 6635 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6636 * is slightly ahead) here we risk going negative on unsigned 6637 * 'system_time' when 'data.clock' is very small. 6638 */ 6639 if (data.flags & KVM_CLOCK_REALTIME) { 6640 u64 now_real_ns = ktime_get_real_ns(); 6641 6642 /* 6643 * Avoid stepping the kvmclock backwards. 6644 */ 6645 if (now_real_ns > data.realtime) 6646 data.clock += now_real_ns - data.realtime; 6647 } 6648 6649 if (ka->use_master_clock) 6650 now_raw_ns = ka->master_kernel_ns; 6651 else 6652 now_raw_ns = get_kvmclock_base_ns(); 6653 ka->kvmclock_offset = data.clock - now_raw_ns; 6654 kvm_end_pvclock_update(kvm); 6655 return 0; 6656 } 6657 6658 long kvm_arch_vm_ioctl(struct file *filp, 6659 unsigned int ioctl, unsigned long arg) 6660 { 6661 struct kvm *kvm = filp->private_data; 6662 void __user *argp = (void __user *)arg; 6663 int r = -ENOTTY; 6664 /* 6665 * This union makes it completely explicit to gcc-3.x 6666 * that these two variables' stack usage should be 6667 * combined, not added together. 6668 */ 6669 union { 6670 struct kvm_pit_state ps; 6671 struct kvm_pit_state2 ps2; 6672 struct kvm_pit_config pit_config; 6673 } u; 6674 6675 switch (ioctl) { 6676 case KVM_SET_TSS_ADDR: 6677 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6678 break; 6679 case KVM_SET_IDENTITY_MAP_ADDR: { 6680 u64 ident_addr; 6681 6682 mutex_lock(&kvm->lock); 6683 r = -EINVAL; 6684 if (kvm->created_vcpus) 6685 goto set_identity_unlock; 6686 r = -EFAULT; 6687 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6688 goto set_identity_unlock; 6689 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6690 set_identity_unlock: 6691 mutex_unlock(&kvm->lock); 6692 break; 6693 } 6694 case KVM_SET_NR_MMU_PAGES: 6695 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6696 break; 6697 case KVM_GET_NR_MMU_PAGES: 6698 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6699 break; 6700 case KVM_CREATE_IRQCHIP: { 6701 mutex_lock(&kvm->lock); 6702 6703 r = -EEXIST; 6704 if (irqchip_in_kernel(kvm)) 6705 goto create_irqchip_unlock; 6706 6707 r = -EINVAL; 6708 if (kvm->created_vcpus) 6709 goto create_irqchip_unlock; 6710 6711 r = kvm_pic_init(kvm); 6712 if (r) 6713 goto create_irqchip_unlock; 6714 6715 r = kvm_ioapic_init(kvm); 6716 if (r) { 6717 kvm_pic_destroy(kvm); 6718 goto create_irqchip_unlock; 6719 } 6720 6721 r = kvm_setup_default_irq_routing(kvm); 6722 if (r) { 6723 kvm_ioapic_destroy(kvm); 6724 kvm_pic_destroy(kvm); 6725 goto create_irqchip_unlock; 6726 } 6727 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6728 smp_wmb(); 6729 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6730 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6731 create_irqchip_unlock: 6732 mutex_unlock(&kvm->lock); 6733 break; 6734 } 6735 case KVM_CREATE_PIT: 6736 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6737 goto create_pit; 6738 case KVM_CREATE_PIT2: 6739 r = -EFAULT; 6740 if (copy_from_user(&u.pit_config, argp, 6741 sizeof(struct kvm_pit_config))) 6742 goto out; 6743 create_pit: 6744 mutex_lock(&kvm->lock); 6745 r = -EEXIST; 6746 if (kvm->arch.vpit) 6747 goto create_pit_unlock; 6748 r = -ENOMEM; 6749 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6750 if (kvm->arch.vpit) 6751 r = 0; 6752 create_pit_unlock: 6753 mutex_unlock(&kvm->lock); 6754 break; 6755 case KVM_GET_IRQCHIP: { 6756 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6757 struct kvm_irqchip *chip; 6758 6759 chip = memdup_user(argp, sizeof(*chip)); 6760 if (IS_ERR(chip)) { 6761 r = PTR_ERR(chip); 6762 goto out; 6763 } 6764 6765 r = -ENXIO; 6766 if (!irqchip_kernel(kvm)) 6767 goto get_irqchip_out; 6768 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6769 if (r) 6770 goto get_irqchip_out; 6771 r = -EFAULT; 6772 if (copy_to_user(argp, chip, sizeof(*chip))) 6773 goto get_irqchip_out; 6774 r = 0; 6775 get_irqchip_out: 6776 kfree(chip); 6777 break; 6778 } 6779 case KVM_SET_IRQCHIP: { 6780 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6781 struct kvm_irqchip *chip; 6782 6783 chip = memdup_user(argp, sizeof(*chip)); 6784 if (IS_ERR(chip)) { 6785 r = PTR_ERR(chip); 6786 goto out; 6787 } 6788 6789 r = -ENXIO; 6790 if (!irqchip_kernel(kvm)) 6791 goto set_irqchip_out; 6792 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6793 set_irqchip_out: 6794 kfree(chip); 6795 break; 6796 } 6797 case KVM_GET_PIT: { 6798 r = -EFAULT; 6799 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6800 goto out; 6801 r = -ENXIO; 6802 if (!kvm->arch.vpit) 6803 goto out; 6804 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6805 if (r) 6806 goto out; 6807 r = -EFAULT; 6808 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6809 goto out; 6810 r = 0; 6811 break; 6812 } 6813 case KVM_SET_PIT: { 6814 r = -EFAULT; 6815 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6816 goto out; 6817 mutex_lock(&kvm->lock); 6818 r = -ENXIO; 6819 if (!kvm->arch.vpit) 6820 goto set_pit_out; 6821 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6822 set_pit_out: 6823 mutex_unlock(&kvm->lock); 6824 break; 6825 } 6826 case KVM_GET_PIT2: { 6827 r = -ENXIO; 6828 if (!kvm->arch.vpit) 6829 goto out; 6830 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6831 if (r) 6832 goto out; 6833 r = -EFAULT; 6834 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6835 goto out; 6836 r = 0; 6837 break; 6838 } 6839 case KVM_SET_PIT2: { 6840 r = -EFAULT; 6841 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6842 goto out; 6843 mutex_lock(&kvm->lock); 6844 r = -ENXIO; 6845 if (!kvm->arch.vpit) 6846 goto set_pit2_out; 6847 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6848 set_pit2_out: 6849 mutex_unlock(&kvm->lock); 6850 break; 6851 } 6852 case KVM_REINJECT_CONTROL: { 6853 struct kvm_reinject_control control; 6854 r = -EFAULT; 6855 if (copy_from_user(&control, argp, sizeof(control))) 6856 goto out; 6857 r = -ENXIO; 6858 if (!kvm->arch.vpit) 6859 goto out; 6860 r = kvm_vm_ioctl_reinject(kvm, &control); 6861 break; 6862 } 6863 case KVM_SET_BOOT_CPU_ID: 6864 r = 0; 6865 mutex_lock(&kvm->lock); 6866 if (kvm->created_vcpus) 6867 r = -EBUSY; 6868 else 6869 kvm->arch.bsp_vcpu_id = arg; 6870 mutex_unlock(&kvm->lock); 6871 break; 6872 #ifdef CONFIG_KVM_XEN 6873 case KVM_XEN_HVM_CONFIG: { 6874 struct kvm_xen_hvm_config xhc; 6875 r = -EFAULT; 6876 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6877 goto out; 6878 r = kvm_xen_hvm_config(kvm, &xhc); 6879 break; 6880 } 6881 case KVM_XEN_HVM_GET_ATTR: { 6882 struct kvm_xen_hvm_attr xha; 6883 6884 r = -EFAULT; 6885 if (copy_from_user(&xha, argp, sizeof(xha))) 6886 goto out; 6887 r = kvm_xen_hvm_get_attr(kvm, &xha); 6888 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6889 r = -EFAULT; 6890 break; 6891 } 6892 case KVM_XEN_HVM_SET_ATTR: { 6893 struct kvm_xen_hvm_attr xha; 6894 6895 r = -EFAULT; 6896 if (copy_from_user(&xha, argp, sizeof(xha))) 6897 goto out; 6898 r = kvm_xen_hvm_set_attr(kvm, &xha); 6899 break; 6900 } 6901 case KVM_XEN_HVM_EVTCHN_SEND: { 6902 struct kvm_irq_routing_xen_evtchn uxe; 6903 6904 r = -EFAULT; 6905 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6906 goto out; 6907 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6908 break; 6909 } 6910 #endif 6911 case KVM_SET_CLOCK: 6912 r = kvm_vm_ioctl_set_clock(kvm, argp); 6913 break; 6914 case KVM_GET_CLOCK: 6915 r = kvm_vm_ioctl_get_clock(kvm, argp); 6916 break; 6917 case KVM_SET_TSC_KHZ: { 6918 u32 user_tsc_khz; 6919 6920 r = -EINVAL; 6921 user_tsc_khz = (u32)arg; 6922 6923 if (kvm_caps.has_tsc_control && 6924 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6925 goto out; 6926 6927 if (user_tsc_khz == 0) 6928 user_tsc_khz = tsc_khz; 6929 6930 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6931 r = 0; 6932 6933 goto out; 6934 } 6935 case KVM_GET_TSC_KHZ: { 6936 r = READ_ONCE(kvm->arch.default_tsc_khz); 6937 goto out; 6938 } 6939 case KVM_MEMORY_ENCRYPT_OP: { 6940 r = -ENOTTY; 6941 if (!kvm_x86_ops.mem_enc_ioctl) 6942 goto out; 6943 6944 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6945 break; 6946 } 6947 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6948 struct kvm_enc_region region; 6949 6950 r = -EFAULT; 6951 if (copy_from_user(®ion, argp, sizeof(region))) 6952 goto out; 6953 6954 r = -ENOTTY; 6955 if (!kvm_x86_ops.mem_enc_register_region) 6956 goto out; 6957 6958 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6959 break; 6960 } 6961 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6962 struct kvm_enc_region region; 6963 6964 r = -EFAULT; 6965 if (copy_from_user(®ion, argp, sizeof(region))) 6966 goto out; 6967 6968 r = -ENOTTY; 6969 if (!kvm_x86_ops.mem_enc_unregister_region) 6970 goto out; 6971 6972 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6973 break; 6974 } 6975 case KVM_HYPERV_EVENTFD: { 6976 struct kvm_hyperv_eventfd hvevfd; 6977 6978 r = -EFAULT; 6979 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6980 goto out; 6981 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6982 break; 6983 } 6984 case KVM_SET_PMU_EVENT_FILTER: 6985 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6986 break; 6987 case KVM_X86_SET_MSR_FILTER: { 6988 struct kvm_msr_filter __user *user_msr_filter = argp; 6989 struct kvm_msr_filter filter; 6990 6991 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6992 return -EFAULT; 6993 6994 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6995 break; 6996 } 6997 default: 6998 r = -ENOTTY; 6999 } 7000 out: 7001 return r; 7002 } 7003 7004 static void kvm_init_msr_list(void) 7005 { 7006 u32 dummy[2]; 7007 unsigned i; 7008 7009 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7010 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7011 7012 num_msrs_to_save = 0; 7013 num_emulated_msrs = 0; 7014 num_msr_based_features = 0; 7015 7016 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7017 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7018 continue; 7019 7020 /* 7021 * Even MSRs that are valid in the host may not be exposed 7022 * to the guests in some cases. 7023 */ 7024 switch (msrs_to_save_all[i]) { 7025 case MSR_IA32_BNDCFGS: 7026 if (!kvm_mpx_supported()) 7027 continue; 7028 break; 7029 case MSR_TSC_AUX: 7030 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7031 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7032 continue; 7033 break; 7034 case MSR_IA32_UMWAIT_CONTROL: 7035 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7036 continue; 7037 break; 7038 case MSR_IA32_RTIT_CTL: 7039 case MSR_IA32_RTIT_STATUS: 7040 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7041 continue; 7042 break; 7043 case MSR_IA32_RTIT_CR3_MATCH: 7044 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7045 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7046 continue; 7047 break; 7048 case MSR_IA32_RTIT_OUTPUT_BASE: 7049 case MSR_IA32_RTIT_OUTPUT_MASK: 7050 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7051 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7052 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7053 continue; 7054 break; 7055 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7056 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7057 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7058 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7059 continue; 7060 break; 7061 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7062 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7063 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7064 continue; 7065 break; 7066 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7067 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7068 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7069 continue; 7070 break; 7071 case MSR_IA32_XFD: 7072 case MSR_IA32_XFD_ERR: 7073 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7074 continue; 7075 break; 7076 default: 7077 break; 7078 } 7079 7080 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7081 } 7082 7083 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7084 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7085 continue; 7086 7087 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7088 } 7089 7090 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7091 struct kvm_msr_entry msr; 7092 7093 msr.index = msr_based_features_all[i]; 7094 if (kvm_get_msr_feature(&msr)) 7095 continue; 7096 7097 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7098 } 7099 } 7100 7101 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7102 const void *v) 7103 { 7104 int handled = 0; 7105 int n; 7106 7107 do { 7108 n = min(len, 8); 7109 if (!(lapic_in_kernel(vcpu) && 7110 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7111 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7112 break; 7113 handled += n; 7114 addr += n; 7115 len -= n; 7116 v += n; 7117 } while (len); 7118 7119 return handled; 7120 } 7121 7122 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7123 { 7124 int handled = 0; 7125 int n; 7126 7127 do { 7128 n = min(len, 8); 7129 if (!(lapic_in_kernel(vcpu) && 7130 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7131 addr, n, v)) 7132 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7133 break; 7134 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7135 handled += n; 7136 addr += n; 7137 len -= n; 7138 v += n; 7139 } while (len); 7140 7141 return handled; 7142 } 7143 7144 void kvm_set_segment(struct kvm_vcpu *vcpu, 7145 struct kvm_segment *var, int seg) 7146 { 7147 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7148 } 7149 7150 void kvm_get_segment(struct kvm_vcpu *vcpu, 7151 struct kvm_segment *var, int seg) 7152 { 7153 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7154 } 7155 7156 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7157 struct x86_exception *exception) 7158 { 7159 struct kvm_mmu *mmu = vcpu->arch.mmu; 7160 gpa_t t_gpa; 7161 7162 BUG_ON(!mmu_is_nested(vcpu)); 7163 7164 /* NPT walks are always user-walks */ 7165 access |= PFERR_USER_MASK; 7166 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7167 7168 return t_gpa; 7169 } 7170 7171 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7172 struct x86_exception *exception) 7173 { 7174 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7175 7176 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7177 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7178 } 7179 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7180 7181 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7182 struct x86_exception *exception) 7183 { 7184 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7185 7186 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7187 access |= PFERR_WRITE_MASK; 7188 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7189 } 7190 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7191 7192 /* uses this to access any guest's mapped memory without checking CPL */ 7193 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7194 struct x86_exception *exception) 7195 { 7196 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7197 7198 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7199 } 7200 7201 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7202 struct kvm_vcpu *vcpu, u64 access, 7203 struct x86_exception *exception) 7204 { 7205 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7206 void *data = val; 7207 int r = X86EMUL_CONTINUE; 7208 7209 while (bytes) { 7210 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7211 unsigned offset = addr & (PAGE_SIZE-1); 7212 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7213 int ret; 7214 7215 if (gpa == INVALID_GPA) 7216 return X86EMUL_PROPAGATE_FAULT; 7217 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7218 offset, toread); 7219 if (ret < 0) { 7220 r = X86EMUL_IO_NEEDED; 7221 goto out; 7222 } 7223 7224 bytes -= toread; 7225 data += toread; 7226 addr += toread; 7227 } 7228 out: 7229 return r; 7230 } 7231 7232 /* used for instruction fetching */ 7233 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7234 gva_t addr, void *val, unsigned int bytes, 7235 struct x86_exception *exception) 7236 { 7237 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7238 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7239 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7240 unsigned offset; 7241 int ret; 7242 7243 /* Inline kvm_read_guest_virt_helper for speed. */ 7244 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7245 exception); 7246 if (unlikely(gpa == INVALID_GPA)) 7247 return X86EMUL_PROPAGATE_FAULT; 7248 7249 offset = addr & (PAGE_SIZE-1); 7250 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7251 bytes = (unsigned)PAGE_SIZE - offset; 7252 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7253 offset, bytes); 7254 if (unlikely(ret < 0)) 7255 return X86EMUL_IO_NEEDED; 7256 7257 return X86EMUL_CONTINUE; 7258 } 7259 7260 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7261 gva_t addr, void *val, unsigned int bytes, 7262 struct x86_exception *exception) 7263 { 7264 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7265 7266 /* 7267 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7268 * is returned, but our callers are not ready for that and they blindly 7269 * call kvm_inject_page_fault. Ensure that they at least do not leak 7270 * uninitialized kernel stack memory into cr2 and error code. 7271 */ 7272 memset(exception, 0, sizeof(*exception)); 7273 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7274 exception); 7275 } 7276 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7277 7278 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7279 gva_t addr, void *val, unsigned int bytes, 7280 struct x86_exception *exception, bool system) 7281 { 7282 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7283 u64 access = 0; 7284 7285 if (system) 7286 access |= PFERR_IMPLICIT_ACCESS; 7287 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7288 access |= PFERR_USER_MASK; 7289 7290 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7291 } 7292 7293 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7294 struct kvm_vcpu *vcpu, u64 access, 7295 struct x86_exception *exception) 7296 { 7297 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7298 void *data = val; 7299 int r = X86EMUL_CONTINUE; 7300 7301 while (bytes) { 7302 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7303 unsigned offset = addr & (PAGE_SIZE-1); 7304 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7305 int ret; 7306 7307 if (gpa == INVALID_GPA) 7308 return X86EMUL_PROPAGATE_FAULT; 7309 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7310 if (ret < 0) { 7311 r = X86EMUL_IO_NEEDED; 7312 goto out; 7313 } 7314 7315 bytes -= towrite; 7316 data += towrite; 7317 addr += towrite; 7318 } 7319 out: 7320 return r; 7321 } 7322 7323 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7324 unsigned int bytes, struct x86_exception *exception, 7325 bool system) 7326 { 7327 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7328 u64 access = PFERR_WRITE_MASK; 7329 7330 if (system) 7331 access |= PFERR_IMPLICIT_ACCESS; 7332 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7333 access |= PFERR_USER_MASK; 7334 7335 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7336 access, exception); 7337 } 7338 7339 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7340 unsigned int bytes, struct x86_exception *exception) 7341 { 7342 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7343 vcpu->arch.l1tf_flush_l1d = true; 7344 7345 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7346 PFERR_WRITE_MASK, exception); 7347 } 7348 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7349 7350 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7351 void *insn, int insn_len) 7352 { 7353 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7354 insn, insn_len); 7355 } 7356 7357 int handle_ud(struct kvm_vcpu *vcpu) 7358 { 7359 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7360 int fep_flags = READ_ONCE(force_emulation_prefix); 7361 int emul_type = EMULTYPE_TRAP_UD; 7362 char sig[5]; /* ud2; .ascii "kvm" */ 7363 struct x86_exception e; 7364 7365 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7366 return 1; 7367 7368 if (fep_flags && 7369 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7370 sig, sizeof(sig), &e) == 0 && 7371 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7372 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7373 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7374 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7375 emul_type = EMULTYPE_TRAP_UD_FORCED; 7376 } 7377 7378 return kvm_emulate_instruction(vcpu, emul_type); 7379 } 7380 EXPORT_SYMBOL_GPL(handle_ud); 7381 7382 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7383 gpa_t gpa, bool write) 7384 { 7385 /* For APIC access vmexit */ 7386 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7387 return 1; 7388 7389 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7390 trace_vcpu_match_mmio(gva, gpa, write, true); 7391 return 1; 7392 } 7393 7394 return 0; 7395 } 7396 7397 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7398 gpa_t *gpa, struct x86_exception *exception, 7399 bool write) 7400 { 7401 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7402 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7403 | (write ? PFERR_WRITE_MASK : 0); 7404 7405 /* 7406 * currently PKRU is only applied to ept enabled guest so 7407 * there is no pkey in EPT page table for L1 guest or EPT 7408 * shadow page table for L2 guest. 7409 */ 7410 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7411 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7412 vcpu->arch.mmio_access, 0, access))) { 7413 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7414 (gva & (PAGE_SIZE - 1)); 7415 trace_vcpu_match_mmio(gva, *gpa, write, false); 7416 return 1; 7417 } 7418 7419 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7420 7421 if (*gpa == INVALID_GPA) 7422 return -1; 7423 7424 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7425 } 7426 7427 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7428 const void *val, int bytes) 7429 { 7430 int ret; 7431 7432 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7433 if (ret < 0) 7434 return 0; 7435 kvm_page_track_write(vcpu, gpa, val, bytes); 7436 return 1; 7437 } 7438 7439 struct read_write_emulator_ops { 7440 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7441 int bytes); 7442 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7443 void *val, int bytes); 7444 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7445 int bytes, void *val); 7446 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7447 void *val, int bytes); 7448 bool write; 7449 }; 7450 7451 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7452 { 7453 if (vcpu->mmio_read_completed) { 7454 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7455 vcpu->mmio_fragments[0].gpa, val); 7456 vcpu->mmio_read_completed = 0; 7457 return 1; 7458 } 7459 7460 return 0; 7461 } 7462 7463 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7464 void *val, int bytes) 7465 { 7466 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7467 } 7468 7469 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7470 void *val, int bytes) 7471 { 7472 return emulator_write_phys(vcpu, gpa, val, bytes); 7473 } 7474 7475 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7476 { 7477 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7478 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7479 } 7480 7481 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7482 void *val, int bytes) 7483 { 7484 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7485 return X86EMUL_IO_NEEDED; 7486 } 7487 7488 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7489 void *val, int bytes) 7490 { 7491 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7492 7493 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7494 return X86EMUL_CONTINUE; 7495 } 7496 7497 static const struct read_write_emulator_ops read_emultor = { 7498 .read_write_prepare = read_prepare, 7499 .read_write_emulate = read_emulate, 7500 .read_write_mmio = vcpu_mmio_read, 7501 .read_write_exit_mmio = read_exit_mmio, 7502 }; 7503 7504 static const struct read_write_emulator_ops write_emultor = { 7505 .read_write_emulate = write_emulate, 7506 .read_write_mmio = write_mmio, 7507 .read_write_exit_mmio = write_exit_mmio, 7508 .write = true, 7509 }; 7510 7511 static int emulator_read_write_onepage(unsigned long addr, void *val, 7512 unsigned int bytes, 7513 struct x86_exception *exception, 7514 struct kvm_vcpu *vcpu, 7515 const struct read_write_emulator_ops *ops) 7516 { 7517 gpa_t gpa; 7518 int handled, ret; 7519 bool write = ops->write; 7520 struct kvm_mmio_fragment *frag; 7521 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7522 7523 /* 7524 * If the exit was due to a NPF we may already have a GPA. 7525 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7526 * Note, this cannot be used on string operations since string 7527 * operation using rep will only have the initial GPA from the NPF 7528 * occurred. 7529 */ 7530 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7531 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7532 gpa = ctxt->gpa_val; 7533 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7534 } else { 7535 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7536 if (ret < 0) 7537 return X86EMUL_PROPAGATE_FAULT; 7538 } 7539 7540 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7541 return X86EMUL_CONTINUE; 7542 7543 /* 7544 * Is this MMIO handled locally? 7545 */ 7546 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7547 if (handled == bytes) 7548 return X86EMUL_CONTINUE; 7549 7550 gpa += handled; 7551 bytes -= handled; 7552 val += handled; 7553 7554 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7555 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7556 frag->gpa = gpa; 7557 frag->data = val; 7558 frag->len = bytes; 7559 return X86EMUL_CONTINUE; 7560 } 7561 7562 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7563 unsigned long addr, 7564 void *val, unsigned int bytes, 7565 struct x86_exception *exception, 7566 const struct read_write_emulator_ops *ops) 7567 { 7568 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7569 gpa_t gpa; 7570 int rc; 7571 7572 if (ops->read_write_prepare && 7573 ops->read_write_prepare(vcpu, val, bytes)) 7574 return X86EMUL_CONTINUE; 7575 7576 vcpu->mmio_nr_fragments = 0; 7577 7578 /* Crossing a page boundary? */ 7579 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7580 int now; 7581 7582 now = -addr & ~PAGE_MASK; 7583 rc = emulator_read_write_onepage(addr, val, now, exception, 7584 vcpu, ops); 7585 7586 if (rc != X86EMUL_CONTINUE) 7587 return rc; 7588 addr += now; 7589 if (ctxt->mode != X86EMUL_MODE_PROT64) 7590 addr = (u32)addr; 7591 val += now; 7592 bytes -= now; 7593 } 7594 7595 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7596 vcpu, ops); 7597 if (rc != X86EMUL_CONTINUE) 7598 return rc; 7599 7600 if (!vcpu->mmio_nr_fragments) 7601 return rc; 7602 7603 gpa = vcpu->mmio_fragments[0].gpa; 7604 7605 vcpu->mmio_needed = 1; 7606 vcpu->mmio_cur_fragment = 0; 7607 7608 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7609 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7610 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7611 vcpu->run->mmio.phys_addr = gpa; 7612 7613 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7614 } 7615 7616 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7617 unsigned long addr, 7618 void *val, 7619 unsigned int bytes, 7620 struct x86_exception *exception) 7621 { 7622 return emulator_read_write(ctxt, addr, val, bytes, 7623 exception, &read_emultor); 7624 } 7625 7626 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7627 unsigned long addr, 7628 const void *val, 7629 unsigned int bytes, 7630 struct x86_exception *exception) 7631 { 7632 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7633 exception, &write_emultor); 7634 } 7635 7636 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7637 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7638 7639 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7640 unsigned long addr, 7641 const void *old, 7642 const void *new, 7643 unsigned int bytes, 7644 struct x86_exception *exception) 7645 { 7646 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7647 u64 page_line_mask; 7648 unsigned long hva; 7649 gpa_t gpa; 7650 int r; 7651 7652 /* guests cmpxchg8b have to be emulated atomically */ 7653 if (bytes > 8 || (bytes & (bytes - 1))) 7654 goto emul_write; 7655 7656 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7657 7658 if (gpa == INVALID_GPA || 7659 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7660 goto emul_write; 7661 7662 /* 7663 * Emulate the atomic as a straight write to avoid #AC if SLD is 7664 * enabled in the host and the access splits a cache line. 7665 */ 7666 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7667 page_line_mask = ~(cache_line_size() - 1); 7668 else 7669 page_line_mask = PAGE_MASK; 7670 7671 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7672 goto emul_write; 7673 7674 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7675 if (kvm_is_error_hva(hva)) 7676 goto emul_write; 7677 7678 hva += offset_in_page(gpa); 7679 7680 switch (bytes) { 7681 case 1: 7682 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7683 break; 7684 case 2: 7685 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7686 break; 7687 case 4: 7688 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7689 break; 7690 case 8: 7691 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7692 break; 7693 default: 7694 BUG(); 7695 } 7696 7697 if (r < 0) 7698 return X86EMUL_UNHANDLEABLE; 7699 if (r) 7700 return X86EMUL_CMPXCHG_FAILED; 7701 7702 kvm_page_track_write(vcpu, gpa, new, bytes); 7703 7704 return X86EMUL_CONTINUE; 7705 7706 emul_write: 7707 pr_warn_once("emulating exchange as write\n"); 7708 7709 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7710 } 7711 7712 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7713 unsigned short port, void *data, 7714 unsigned int count, bool in) 7715 { 7716 unsigned i; 7717 int r; 7718 7719 WARN_ON_ONCE(vcpu->arch.pio.count); 7720 for (i = 0; i < count; i++) { 7721 if (in) 7722 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7723 else 7724 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7725 7726 if (r) { 7727 if (i == 0) 7728 goto userspace_io; 7729 7730 /* 7731 * Userspace must have unregistered the device while PIO 7732 * was running. Drop writes / read as 0. 7733 */ 7734 if (in) 7735 memset(data, 0, size * (count - i)); 7736 break; 7737 } 7738 7739 data += size; 7740 } 7741 return 1; 7742 7743 userspace_io: 7744 vcpu->arch.pio.port = port; 7745 vcpu->arch.pio.in = in; 7746 vcpu->arch.pio.count = count; 7747 vcpu->arch.pio.size = size; 7748 7749 if (in) 7750 memset(vcpu->arch.pio_data, 0, size * count); 7751 else 7752 memcpy(vcpu->arch.pio_data, data, size * count); 7753 7754 vcpu->run->exit_reason = KVM_EXIT_IO; 7755 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7756 vcpu->run->io.size = size; 7757 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7758 vcpu->run->io.count = count; 7759 vcpu->run->io.port = port; 7760 return 0; 7761 } 7762 7763 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7764 unsigned short port, void *val, unsigned int count) 7765 { 7766 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7767 if (r) 7768 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7769 7770 return r; 7771 } 7772 7773 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7774 { 7775 int size = vcpu->arch.pio.size; 7776 unsigned int count = vcpu->arch.pio.count; 7777 memcpy(val, vcpu->arch.pio_data, size * count); 7778 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7779 vcpu->arch.pio.count = 0; 7780 } 7781 7782 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7783 int size, unsigned short port, void *val, 7784 unsigned int count) 7785 { 7786 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7787 if (vcpu->arch.pio.count) { 7788 /* 7789 * Complete a previous iteration that required userspace I/O. 7790 * Note, @count isn't guaranteed to match pio.count as userspace 7791 * can modify ECX before rerunning the vCPU. Ignore any such 7792 * shenanigans as KVM doesn't support modifying the rep count, 7793 * and the emulator ensures @count doesn't overflow the buffer. 7794 */ 7795 complete_emulator_pio_in(vcpu, val); 7796 return 1; 7797 } 7798 7799 return emulator_pio_in(vcpu, size, port, val, count); 7800 } 7801 7802 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7803 unsigned short port, const void *val, 7804 unsigned int count) 7805 { 7806 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7807 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7808 } 7809 7810 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7811 int size, unsigned short port, 7812 const void *val, unsigned int count) 7813 { 7814 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7815 } 7816 7817 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7818 { 7819 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7820 } 7821 7822 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7823 { 7824 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7825 } 7826 7827 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7828 { 7829 if (!need_emulate_wbinvd(vcpu)) 7830 return X86EMUL_CONTINUE; 7831 7832 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7833 int cpu = get_cpu(); 7834 7835 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7836 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7837 wbinvd_ipi, NULL, 1); 7838 put_cpu(); 7839 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7840 } else 7841 wbinvd(); 7842 return X86EMUL_CONTINUE; 7843 } 7844 7845 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7846 { 7847 kvm_emulate_wbinvd_noskip(vcpu); 7848 return kvm_skip_emulated_instruction(vcpu); 7849 } 7850 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7851 7852 7853 7854 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7855 { 7856 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7857 } 7858 7859 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7860 unsigned long *dest) 7861 { 7862 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7863 } 7864 7865 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7866 unsigned long value) 7867 { 7868 7869 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7870 } 7871 7872 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7873 { 7874 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7875 } 7876 7877 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7878 { 7879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7880 unsigned long value; 7881 7882 switch (cr) { 7883 case 0: 7884 value = kvm_read_cr0(vcpu); 7885 break; 7886 case 2: 7887 value = vcpu->arch.cr2; 7888 break; 7889 case 3: 7890 value = kvm_read_cr3(vcpu); 7891 break; 7892 case 4: 7893 value = kvm_read_cr4(vcpu); 7894 break; 7895 case 8: 7896 value = kvm_get_cr8(vcpu); 7897 break; 7898 default: 7899 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7900 return 0; 7901 } 7902 7903 return value; 7904 } 7905 7906 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7907 { 7908 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7909 int res = 0; 7910 7911 switch (cr) { 7912 case 0: 7913 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7914 break; 7915 case 2: 7916 vcpu->arch.cr2 = val; 7917 break; 7918 case 3: 7919 res = kvm_set_cr3(vcpu, val); 7920 break; 7921 case 4: 7922 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7923 break; 7924 case 8: 7925 res = kvm_set_cr8(vcpu, val); 7926 break; 7927 default: 7928 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7929 res = -1; 7930 } 7931 7932 return res; 7933 } 7934 7935 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7936 { 7937 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7938 } 7939 7940 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7941 { 7942 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7943 } 7944 7945 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7946 { 7947 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7948 } 7949 7950 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7951 { 7952 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7953 } 7954 7955 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7956 { 7957 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7958 } 7959 7960 static unsigned long emulator_get_cached_segment_base( 7961 struct x86_emulate_ctxt *ctxt, int seg) 7962 { 7963 return get_segment_base(emul_to_vcpu(ctxt), seg); 7964 } 7965 7966 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7967 struct desc_struct *desc, u32 *base3, 7968 int seg) 7969 { 7970 struct kvm_segment var; 7971 7972 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7973 *selector = var.selector; 7974 7975 if (var.unusable) { 7976 memset(desc, 0, sizeof(*desc)); 7977 if (base3) 7978 *base3 = 0; 7979 return false; 7980 } 7981 7982 if (var.g) 7983 var.limit >>= 12; 7984 set_desc_limit(desc, var.limit); 7985 set_desc_base(desc, (unsigned long)var.base); 7986 #ifdef CONFIG_X86_64 7987 if (base3) 7988 *base3 = var.base >> 32; 7989 #endif 7990 desc->type = var.type; 7991 desc->s = var.s; 7992 desc->dpl = var.dpl; 7993 desc->p = var.present; 7994 desc->avl = var.avl; 7995 desc->l = var.l; 7996 desc->d = var.db; 7997 desc->g = var.g; 7998 7999 return true; 8000 } 8001 8002 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8003 struct desc_struct *desc, u32 base3, 8004 int seg) 8005 { 8006 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8007 struct kvm_segment var; 8008 8009 var.selector = selector; 8010 var.base = get_desc_base(desc); 8011 #ifdef CONFIG_X86_64 8012 var.base |= ((u64)base3) << 32; 8013 #endif 8014 var.limit = get_desc_limit(desc); 8015 if (desc->g) 8016 var.limit = (var.limit << 12) | 0xfff; 8017 var.type = desc->type; 8018 var.dpl = desc->dpl; 8019 var.db = desc->d; 8020 var.s = desc->s; 8021 var.l = desc->l; 8022 var.g = desc->g; 8023 var.avl = desc->avl; 8024 var.present = desc->p; 8025 var.unusable = !var.present; 8026 var.padding = 0; 8027 8028 kvm_set_segment(vcpu, &var, seg); 8029 return; 8030 } 8031 8032 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8033 u32 msr_index, u64 *pdata) 8034 { 8035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8036 int r; 8037 8038 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8039 if (r < 0) 8040 return X86EMUL_UNHANDLEABLE; 8041 8042 if (r) { 8043 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8044 complete_emulated_rdmsr, r)) 8045 return X86EMUL_IO_NEEDED; 8046 8047 trace_kvm_msr_read_ex(msr_index); 8048 return X86EMUL_PROPAGATE_FAULT; 8049 } 8050 8051 trace_kvm_msr_read(msr_index, *pdata); 8052 return X86EMUL_CONTINUE; 8053 } 8054 8055 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8056 u32 msr_index, u64 data) 8057 { 8058 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8059 int r; 8060 8061 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8062 if (r < 0) 8063 return X86EMUL_UNHANDLEABLE; 8064 8065 if (r) { 8066 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8067 complete_emulated_msr_access, r)) 8068 return X86EMUL_IO_NEEDED; 8069 8070 trace_kvm_msr_write_ex(msr_index, data); 8071 return X86EMUL_PROPAGATE_FAULT; 8072 } 8073 8074 trace_kvm_msr_write(msr_index, data); 8075 return X86EMUL_CONTINUE; 8076 } 8077 8078 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8079 u32 msr_index, u64 *pdata) 8080 { 8081 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8082 } 8083 8084 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8085 u32 pmc) 8086 { 8087 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8088 return 0; 8089 return -EINVAL; 8090 } 8091 8092 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8093 u32 pmc, u64 *pdata) 8094 { 8095 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8096 } 8097 8098 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8099 { 8100 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8101 } 8102 8103 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8104 struct x86_instruction_info *info, 8105 enum x86_intercept_stage stage) 8106 { 8107 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8108 &ctxt->exception); 8109 } 8110 8111 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8112 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8113 bool exact_only) 8114 { 8115 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8116 } 8117 8118 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8119 { 8120 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8121 } 8122 8123 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8124 { 8125 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8126 } 8127 8128 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8129 { 8130 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8131 } 8132 8133 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8134 { 8135 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8136 } 8137 8138 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8139 { 8140 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8141 } 8142 8143 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8144 { 8145 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8146 } 8147 8148 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8149 { 8150 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8151 } 8152 8153 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8154 { 8155 return emul_to_vcpu(ctxt)->arch.hflags; 8156 } 8157 8158 #ifndef CONFIG_KVM_SMM 8159 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8160 { 8161 WARN_ON_ONCE(1); 8162 return X86EMUL_UNHANDLEABLE; 8163 } 8164 #endif 8165 8166 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8167 { 8168 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8169 } 8170 8171 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8172 { 8173 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8174 } 8175 8176 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8177 { 8178 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8179 8180 if (!kvm->vm_bugged) 8181 kvm_vm_bugged(kvm); 8182 } 8183 8184 static const struct x86_emulate_ops emulate_ops = { 8185 .vm_bugged = emulator_vm_bugged, 8186 .read_gpr = emulator_read_gpr, 8187 .write_gpr = emulator_write_gpr, 8188 .read_std = emulator_read_std, 8189 .write_std = emulator_write_std, 8190 .fetch = kvm_fetch_guest_virt, 8191 .read_emulated = emulator_read_emulated, 8192 .write_emulated = emulator_write_emulated, 8193 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8194 .invlpg = emulator_invlpg, 8195 .pio_in_emulated = emulator_pio_in_emulated, 8196 .pio_out_emulated = emulator_pio_out_emulated, 8197 .get_segment = emulator_get_segment, 8198 .set_segment = emulator_set_segment, 8199 .get_cached_segment_base = emulator_get_cached_segment_base, 8200 .get_gdt = emulator_get_gdt, 8201 .get_idt = emulator_get_idt, 8202 .set_gdt = emulator_set_gdt, 8203 .set_idt = emulator_set_idt, 8204 .get_cr = emulator_get_cr, 8205 .set_cr = emulator_set_cr, 8206 .cpl = emulator_get_cpl, 8207 .get_dr = emulator_get_dr, 8208 .set_dr = emulator_set_dr, 8209 .set_msr_with_filter = emulator_set_msr_with_filter, 8210 .get_msr_with_filter = emulator_get_msr_with_filter, 8211 .get_msr = emulator_get_msr, 8212 .check_pmc = emulator_check_pmc, 8213 .read_pmc = emulator_read_pmc, 8214 .halt = emulator_halt, 8215 .wbinvd = emulator_wbinvd, 8216 .fix_hypercall = emulator_fix_hypercall, 8217 .intercept = emulator_intercept, 8218 .get_cpuid = emulator_get_cpuid, 8219 .guest_has_long_mode = emulator_guest_has_long_mode, 8220 .guest_has_movbe = emulator_guest_has_movbe, 8221 .guest_has_fxsr = emulator_guest_has_fxsr, 8222 .guest_has_rdpid = emulator_guest_has_rdpid, 8223 .set_nmi_mask = emulator_set_nmi_mask, 8224 .get_hflags = emulator_get_hflags, 8225 .leave_smm = emulator_leave_smm, 8226 .triple_fault = emulator_triple_fault, 8227 .set_xcr = emulator_set_xcr, 8228 }; 8229 8230 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8231 { 8232 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8233 /* 8234 * an sti; sti; sequence only disable interrupts for the first 8235 * instruction. So, if the last instruction, be it emulated or 8236 * not, left the system with the INT_STI flag enabled, it 8237 * means that the last instruction is an sti. We should not 8238 * leave the flag on in this case. The same goes for mov ss 8239 */ 8240 if (int_shadow & mask) 8241 mask = 0; 8242 if (unlikely(int_shadow || mask)) { 8243 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8244 if (!mask) 8245 kvm_make_request(KVM_REQ_EVENT, vcpu); 8246 } 8247 } 8248 8249 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8250 { 8251 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8252 8253 if (ctxt->exception.vector == PF_VECTOR) 8254 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8255 else if (ctxt->exception.error_code_valid) 8256 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8257 ctxt->exception.error_code); 8258 else 8259 kvm_queue_exception(vcpu, ctxt->exception.vector); 8260 } 8261 8262 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8263 { 8264 struct x86_emulate_ctxt *ctxt; 8265 8266 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8267 if (!ctxt) { 8268 pr_err("failed to allocate vcpu's emulator\n"); 8269 return NULL; 8270 } 8271 8272 ctxt->vcpu = vcpu; 8273 ctxt->ops = &emulate_ops; 8274 vcpu->arch.emulate_ctxt = ctxt; 8275 8276 return ctxt; 8277 } 8278 8279 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8280 { 8281 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8282 int cs_db, cs_l; 8283 8284 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8285 8286 ctxt->gpa_available = false; 8287 ctxt->eflags = kvm_get_rflags(vcpu); 8288 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8289 8290 ctxt->eip = kvm_rip_read(vcpu); 8291 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8292 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8293 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8294 cs_db ? X86EMUL_MODE_PROT32 : 8295 X86EMUL_MODE_PROT16; 8296 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8297 8298 ctxt->interruptibility = 0; 8299 ctxt->have_exception = false; 8300 ctxt->exception.vector = -1; 8301 ctxt->perm_ok = false; 8302 8303 init_decode_cache(ctxt); 8304 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8305 } 8306 8307 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8308 { 8309 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8310 int ret; 8311 8312 init_emulate_ctxt(vcpu); 8313 8314 ctxt->op_bytes = 2; 8315 ctxt->ad_bytes = 2; 8316 ctxt->_eip = ctxt->eip + inc_eip; 8317 ret = emulate_int_real(ctxt, irq); 8318 8319 if (ret != X86EMUL_CONTINUE) { 8320 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8321 } else { 8322 ctxt->eip = ctxt->_eip; 8323 kvm_rip_write(vcpu, ctxt->eip); 8324 kvm_set_rflags(vcpu, ctxt->eflags); 8325 } 8326 } 8327 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8328 8329 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8330 u8 ndata, u8 *insn_bytes, u8 insn_size) 8331 { 8332 struct kvm_run *run = vcpu->run; 8333 u64 info[5]; 8334 u8 info_start; 8335 8336 /* 8337 * Zero the whole array used to retrieve the exit info, as casting to 8338 * u32 for select entries will leave some chunks uninitialized. 8339 */ 8340 memset(&info, 0, sizeof(info)); 8341 8342 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8343 &info[2], (u32 *)&info[3], 8344 (u32 *)&info[4]); 8345 8346 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8347 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8348 8349 /* 8350 * There's currently space for 13 entries, but 5 are used for the exit 8351 * reason and info. Restrict to 4 to reduce the maintenance burden 8352 * when expanding kvm_run.emulation_failure in the future. 8353 */ 8354 if (WARN_ON_ONCE(ndata > 4)) 8355 ndata = 4; 8356 8357 /* Always include the flags as a 'data' entry. */ 8358 info_start = 1; 8359 run->emulation_failure.flags = 0; 8360 8361 if (insn_size) { 8362 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8363 sizeof(run->emulation_failure.insn_bytes) != 16)); 8364 info_start += 2; 8365 run->emulation_failure.flags |= 8366 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8367 run->emulation_failure.insn_size = insn_size; 8368 memset(run->emulation_failure.insn_bytes, 0x90, 8369 sizeof(run->emulation_failure.insn_bytes)); 8370 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8371 } 8372 8373 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8374 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8375 ndata * sizeof(data[0])); 8376 8377 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8378 } 8379 8380 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8381 { 8382 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8383 8384 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8385 ctxt->fetch.end - ctxt->fetch.data); 8386 } 8387 8388 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8389 u8 ndata) 8390 { 8391 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8392 } 8393 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8394 8395 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8396 { 8397 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8398 } 8399 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8400 8401 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8402 { 8403 struct kvm *kvm = vcpu->kvm; 8404 8405 ++vcpu->stat.insn_emulation_fail; 8406 trace_kvm_emulate_insn_failed(vcpu); 8407 8408 if (emulation_type & EMULTYPE_VMWARE_GP) { 8409 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8410 return 1; 8411 } 8412 8413 if (kvm->arch.exit_on_emulation_error || 8414 (emulation_type & EMULTYPE_SKIP)) { 8415 prepare_emulation_ctxt_failure_exit(vcpu); 8416 return 0; 8417 } 8418 8419 kvm_queue_exception(vcpu, UD_VECTOR); 8420 8421 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8422 prepare_emulation_ctxt_failure_exit(vcpu); 8423 return 0; 8424 } 8425 8426 return 1; 8427 } 8428 8429 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8430 bool write_fault_to_shadow_pgtable, 8431 int emulation_type) 8432 { 8433 gpa_t gpa = cr2_or_gpa; 8434 kvm_pfn_t pfn; 8435 8436 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8437 return false; 8438 8439 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8440 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8441 return false; 8442 8443 if (!vcpu->arch.mmu->root_role.direct) { 8444 /* 8445 * Write permission should be allowed since only 8446 * write access need to be emulated. 8447 */ 8448 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8449 8450 /* 8451 * If the mapping is invalid in guest, let cpu retry 8452 * it to generate fault. 8453 */ 8454 if (gpa == INVALID_GPA) 8455 return true; 8456 } 8457 8458 /* 8459 * Do not retry the unhandleable instruction if it faults on the 8460 * readonly host memory, otherwise it will goto a infinite loop: 8461 * retry instruction -> write #PF -> emulation fail -> retry 8462 * instruction -> ... 8463 */ 8464 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8465 8466 /* 8467 * If the instruction failed on the error pfn, it can not be fixed, 8468 * report the error to userspace. 8469 */ 8470 if (is_error_noslot_pfn(pfn)) 8471 return false; 8472 8473 kvm_release_pfn_clean(pfn); 8474 8475 /* The instructions are well-emulated on direct mmu. */ 8476 if (vcpu->arch.mmu->root_role.direct) { 8477 unsigned int indirect_shadow_pages; 8478 8479 write_lock(&vcpu->kvm->mmu_lock); 8480 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8481 write_unlock(&vcpu->kvm->mmu_lock); 8482 8483 if (indirect_shadow_pages) 8484 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8485 8486 return true; 8487 } 8488 8489 /* 8490 * if emulation was due to access to shadowed page table 8491 * and it failed try to unshadow page and re-enter the 8492 * guest to let CPU execute the instruction. 8493 */ 8494 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8495 8496 /* 8497 * If the access faults on its page table, it can not 8498 * be fixed by unprotecting shadow page and it should 8499 * be reported to userspace. 8500 */ 8501 return !write_fault_to_shadow_pgtable; 8502 } 8503 8504 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8505 gpa_t cr2_or_gpa, int emulation_type) 8506 { 8507 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8508 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8509 8510 last_retry_eip = vcpu->arch.last_retry_eip; 8511 last_retry_addr = vcpu->arch.last_retry_addr; 8512 8513 /* 8514 * If the emulation is caused by #PF and it is non-page_table 8515 * writing instruction, it means the VM-EXIT is caused by shadow 8516 * page protected, we can zap the shadow page and retry this 8517 * instruction directly. 8518 * 8519 * Note: if the guest uses a non-page-table modifying instruction 8520 * on the PDE that points to the instruction, then we will unmap 8521 * the instruction and go to an infinite loop. So, we cache the 8522 * last retried eip and the last fault address, if we meet the eip 8523 * and the address again, we can break out of the potential infinite 8524 * loop. 8525 */ 8526 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8527 8528 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8529 return false; 8530 8531 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8532 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8533 return false; 8534 8535 if (x86_page_table_writing_insn(ctxt)) 8536 return false; 8537 8538 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8539 return false; 8540 8541 vcpu->arch.last_retry_eip = ctxt->eip; 8542 vcpu->arch.last_retry_addr = cr2_or_gpa; 8543 8544 if (!vcpu->arch.mmu->root_role.direct) 8545 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8546 8547 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8548 8549 return true; 8550 } 8551 8552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8553 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8554 8555 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8556 unsigned long *db) 8557 { 8558 u32 dr6 = 0; 8559 int i; 8560 u32 enable, rwlen; 8561 8562 enable = dr7; 8563 rwlen = dr7 >> 16; 8564 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8565 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8566 dr6 |= (1 << i); 8567 return dr6; 8568 } 8569 8570 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8571 { 8572 struct kvm_run *kvm_run = vcpu->run; 8573 8574 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8575 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8576 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8577 kvm_run->debug.arch.exception = DB_VECTOR; 8578 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8579 return 0; 8580 } 8581 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8582 return 1; 8583 } 8584 8585 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8586 { 8587 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8588 int r; 8589 8590 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8591 if (unlikely(!r)) 8592 return 0; 8593 8594 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8595 8596 /* 8597 * rflags is the old, "raw" value of the flags. The new value has 8598 * not been saved yet. 8599 * 8600 * This is correct even for TF set by the guest, because "the 8601 * processor will not generate this exception after the instruction 8602 * that sets the TF flag". 8603 */ 8604 if (unlikely(rflags & X86_EFLAGS_TF)) 8605 r = kvm_vcpu_do_singlestep(vcpu); 8606 return r; 8607 } 8608 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8609 8610 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8611 { 8612 u32 shadow; 8613 8614 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8615 return true; 8616 8617 /* 8618 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8619 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8620 * to avoid the relatively expensive CPUID lookup. 8621 */ 8622 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8623 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8624 guest_cpuid_is_intel(vcpu); 8625 } 8626 8627 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8628 int emulation_type, int *r) 8629 { 8630 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8631 8632 /* 8633 * Do not check for code breakpoints if hardware has already done the 8634 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8635 * the instruction has passed all exception checks, and all intercepted 8636 * exceptions that trigger emulation have lower priority than code 8637 * breakpoints, i.e. the fact that the intercepted exception occurred 8638 * means any code breakpoints have already been serviced. 8639 * 8640 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8641 * hardware has checked the RIP of the magic prefix, but not the RIP of 8642 * the instruction being emulated. The intent of forced emulation is 8643 * to behave as if KVM intercepted the instruction without an exception 8644 * and without a prefix. 8645 */ 8646 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8647 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8648 return false; 8649 8650 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8651 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8652 struct kvm_run *kvm_run = vcpu->run; 8653 unsigned long eip = kvm_get_linear_rip(vcpu); 8654 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8655 vcpu->arch.guest_debug_dr7, 8656 vcpu->arch.eff_db); 8657 8658 if (dr6 != 0) { 8659 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8660 kvm_run->debug.arch.pc = eip; 8661 kvm_run->debug.arch.exception = DB_VECTOR; 8662 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8663 *r = 0; 8664 return true; 8665 } 8666 } 8667 8668 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8669 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8670 unsigned long eip = kvm_get_linear_rip(vcpu); 8671 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8672 vcpu->arch.dr7, 8673 vcpu->arch.db); 8674 8675 if (dr6 != 0) { 8676 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8677 *r = 1; 8678 return true; 8679 } 8680 } 8681 8682 return false; 8683 } 8684 8685 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8686 { 8687 switch (ctxt->opcode_len) { 8688 case 1: 8689 switch (ctxt->b) { 8690 case 0xe4: /* IN */ 8691 case 0xe5: 8692 case 0xec: 8693 case 0xed: 8694 case 0xe6: /* OUT */ 8695 case 0xe7: 8696 case 0xee: 8697 case 0xef: 8698 case 0x6c: /* INS */ 8699 case 0x6d: 8700 case 0x6e: /* OUTS */ 8701 case 0x6f: 8702 return true; 8703 } 8704 break; 8705 case 2: 8706 switch (ctxt->b) { 8707 case 0x33: /* RDPMC */ 8708 return true; 8709 } 8710 break; 8711 } 8712 8713 return false; 8714 } 8715 8716 /* 8717 * Decode an instruction for emulation. The caller is responsible for handling 8718 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8719 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8720 * code breakpoints have higher priority and thus have already been done by 8721 * hardware. 8722 * 8723 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8724 * response to a machine check. 8725 */ 8726 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8727 void *insn, int insn_len) 8728 { 8729 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8730 int r; 8731 8732 init_emulate_ctxt(vcpu); 8733 8734 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8735 8736 trace_kvm_emulate_insn_start(vcpu); 8737 ++vcpu->stat.insn_emulation; 8738 8739 return r; 8740 } 8741 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8742 8743 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8744 int emulation_type, void *insn, int insn_len) 8745 { 8746 int r; 8747 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8748 bool writeback = true; 8749 bool write_fault_to_spt; 8750 8751 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8752 return 1; 8753 8754 vcpu->arch.l1tf_flush_l1d = true; 8755 8756 /* 8757 * Clear write_fault_to_shadow_pgtable here to ensure it is 8758 * never reused. 8759 */ 8760 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8761 vcpu->arch.write_fault_to_shadow_pgtable = false; 8762 8763 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8764 kvm_clear_exception_queue(vcpu); 8765 8766 /* 8767 * Return immediately if RIP hits a code breakpoint, such #DBs 8768 * are fault-like and are higher priority than any faults on 8769 * the code fetch itself. 8770 */ 8771 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8772 return r; 8773 8774 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8775 insn, insn_len); 8776 if (r != EMULATION_OK) { 8777 if ((emulation_type & EMULTYPE_TRAP_UD) || 8778 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8779 kvm_queue_exception(vcpu, UD_VECTOR); 8780 return 1; 8781 } 8782 if (reexecute_instruction(vcpu, cr2_or_gpa, 8783 write_fault_to_spt, 8784 emulation_type)) 8785 return 1; 8786 8787 if (ctxt->have_exception && 8788 !(emulation_type & EMULTYPE_SKIP)) { 8789 /* 8790 * #UD should result in just EMULATION_FAILED, and trap-like 8791 * exception should not be encountered during decode. 8792 */ 8793 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8794 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8795 inject_emulated_exception(vcpu); 8796 return 1; 8797 } 8798 return handle_emulation_failure(vcpu, emulation_type); 8799 } 8800 } 8801 8802 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8803 !is_vmware_backdoor_opcode(ctxt)) { 8804 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8805 return 1; 8806 } 8807 8808 /* 8809 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8810 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8811 * The caller is responsible for updating interruptibility state and 8812 * injecting single-step #DBs. 8813 */ 8814 if (emulation_type & EMULTYPE_SKIP) { 8815 if (ctxt->mode != X86EMUL_MODE_PROT64) 8816 ctxt->eip = (u32)ctxt->_eip; 8817 else 8818 ctxt->eip = ctxt->_eip; 8819 8820 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8821 r = 1; 8822 goto writeback; 8823 } 8824 8825 kvm_rip_write(vcpu, ctxt->eip); 8826 if (ctxt->eflags & X86_EFLAGS_RF) 8827 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8828 return 1; 8829 } 8830 8831 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8832 return 1; 8833 8834 /* this is needed for vmware backdoor interface to work since it 8835 changes registers values during IO operation */ 8836 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8837 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8838 emulator_invalidate_register_cache(ctxt); 8839 } 8840 8841 restart: 8842 if (emulation_type & EMULTYPE_PF) { 8843 /* Save the faulting GPA (cr2) in the address field */ 8844 ctxt->exception.address = cr2_or_gpa; 8845 8846 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8847 if (vcpu->arch.mmu->root_role.direct) { 8848 ctxt->gpa_available = true; 8849 ctxt->gpa_val = cr2_or_gpa; 8850 } 8851 } else { 8852 /* Sanitize the address out of an abundance of paranoia. */ 8853 ctxt->exception.address = 0; 8854 } 8855 8856 r = x86_emulate_insn(ctxt); 8857 8858 if (r == EMULATION_INTERCEPTED) 8859 return 1; 8860 8861 if (r == EMULATION_FAILED) { 8862 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8863 emulation_type)) 8864 return 1; 8865 8866 return handle_emulation_failure(vcpu, emulation_type); 8867 } 8868 8869 if (ctxt->have_exception) { 8870 r = 1; 8871 inject_emulated_exception(vcpu); 8872 } else if (vcpu->arch.pio.count) { 8873 if (!vcpu->arch.pio.in) { 8874 /* FIXME: return into emulator if single-stepping. */ 8875 vcpu->arch.pio.count = 0; 8876 } else { 8877 writeback = false; 8878 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8879 } 8880 r = 0; 8881 } else if (vcpu->mmio_needed) { 8882 ++vcpu->stat.mmio_exits; 8883 8884 if (!vcpu->mmio_is_write) 8885 writeback = false; 8886 r = 0; 8887 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8888 } else if (vcpu->arch.complete_userspace_io) { 8889 writeback = false; 8890 r = 0; 8891 } else if (r == EMULATION_RESTART) 8892 goto restart; 8893 else 8894 r = 1; 8895 8896 writeback: 8897 if (writeback) { 8898 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8899 toggle_interruptibility(vcpu, ctxt->interruptibility); 8900 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8901 8902 /* 8903 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8904 * only supports code breakpoints and general detect #DB, both 8905 * of which are fault-like. 8906 */ 8907 if (!ctxt->have_exception || 8908 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8909 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8910 if (ctxt->is_branch) 8911 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8912 kvm_rip_write(vcpu, ctxt->eip); 8913 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8914 r = kvm_vcpu_do_singlestep(vcpu); 8915 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8916 __kvm_set_rflags(vcpu, ctxt->eflags); 8917 } 8918 8919 /* 8920 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8921 * do nothing, and it will be requested again as soon as 8922 * the shadow expires. But we still need to check here, 8923 * because POPF has no interrupt shadow. 8924 */ 8925 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8926 kvm_make_request(KVM_REQ_EVENT, vcpu); 8927 } else 8928 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8929 8930 return r; 8931 } 8932 8933 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8934 { 8935 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8936 } 8937 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8938 8939 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8940 void *insn, int insn_len) 8941 { 8942 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8943 } 8944 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8945 8946 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8947 { 8948 vcpu->arch.pio.count = 0; 8949 return 1; 8950 } 8951 8952 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8953 { 8954 vcpu->arch.pio.count = 0; 8955 8956 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8957 return 1; 8958 8959 return kvm_skip_emulated_instruction(vcpu); 8960 } 8961 8962 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8963 unsigned short port) 8964 { 8965 unsigned long val = kvm_rax_read(vcpu); 8966 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8967 8968 if (ret) 8969 return ret; 8970 8971 /* 8972 * Workaround userspace that relies on old KVM behavior of %rip being 8973 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8974 */ 8975 if (port == 0x7e && 8976 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8977 vcpu->arch.complete_userspace_io = 8978 complete_fast_pio_out_port_0x7e; 8979 kvm_skip_emulated_instruction(vcpu); 8980 } else { 8981 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8982 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8983 } 8984 return 0; 8985 } 8986 8987 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8988 { 8989 unsigned long val; 8990 8991 /* We should only ever be called with arch.pio.count equal to 1 */ 8992 BUG_ON(vcpu->arch.pio.count != 1); 8993 8994 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8995 vcpu->arch.pio.count = 0; 8996 return 1; 8997 } 8998 8999 /* For size less than 4 we merge, else we zero extend */ 9000 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9001 9002 complete_emulator_pio_in(vcpu, &val); 9003 kvm_rax_write(vcpu, val); 9004 9005 return kvm_skip_emulated_instruction(vcpu); 9006 } 9007 9008 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9009 unsigned short port) 9010 { 9011 unsigned long val; 9012 int ret; 9013 9014 /* For size less than 4 we merge, else we zero extend */ 9015 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9016 9017 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9018 if (ret) { 9019 kvm_rax_write(vcpu, val); 9020 return ret; 9021 } 9022 9023 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9024 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9025 9026 return 0; 9027 } 9028 9029 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9030 { 9031 int ret; 9032 9033 if (in) 9034 ret = kvm_fast_pio_in(vcpu, size, port); 9035 else 9036 ret = kvm_fast_pio_out(vcpu, size, port); 9037 return ret && kvm_skip_emulated_instruction(vcpu); 9038 } 9039 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9040 9041 static int kvmclock_cpu_down_prep(unsigned int cpu) 9042 { 9043 __this_cpu_write(cpu_tsc_khz, 0); 9044 return 0; 9045 } 9046 9047 static void tsc_khz_changed(void *data) 9048 { 9049 struct cpufreq_freqs *freq = data; 9050 unsigned long khz = 0; 9051 9052 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9053 9054 if (data) 9055 khz = freq->new; 9056 else 9057 khz = cpufreq_quick_get(raw_smp_processor_id()); 9058 if (!khz) 9059 khz = tsc_khz; 9060 __this_cpu_write(cpu_tsc_khz, khz); 9061 } 9062 9063 #ifdef CONFIG_X86_64 9064 static void kvm_hyperv_tsc_notifier(void) 9065 { 9066 struct kvm *kvm; 9067 int cpu; 9068 9069 mutex_lock(&kvm_lock); 9070 list_for_each_entry(kvm, &vm_list, vm_list) 9071 kvm_make_mclock_inprogress_request(kvm); 9072 9073 /* no guest entries from this point */ 9074 hyperv_stop_tsc_emulation(); 9075 9076 /* TSC frequency always matches when on Hyper-V */ 9077 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9078 for_each_present_cpu(cpu) 9079 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9080 } 9081 kvm_caps.max_guest_tsc_khz = tsc_khz; 9082 9083 list_for_each_entry(kvm, &vm_list, vm_list) { 9084 __kvm_start_pvclock_update(kvm); 9085 pvclock_update_vm_gtod_copy(kvm); 9086 kvm_end_pvclock_update(kvm); 9087 } 9088 9089 mutex_unlock(&kvm_lock); 9090 } 9091 #endif 9092 9093 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9094 { 9095 struct kvm *kvm; 9096 struct kvm_vcpu *vcpu; 9097 int send_ipi = 0; 9098 unsigned long i; 9099 9100 /* 9101 * We allow guests to temporarily run on slowing clocks, 9102 * provided we notify them after, or to run on accelerating 9103 * clocks, provided we notify them before. Thus time never 9104 * goes backwards. 9105 * 9106 * However, we have a problem. We can't atomically update 9107 * the frequency of a given CPU from this function; it is 9108 * merely a notifier, which can be called from any CPU. 9109 * Changing the TSC frequency at arbitrary points in time 9110 * requires a recomputation of local variables related to 9111 * the TSC for each VCPU. We must flag these local variables 9112 * to be updated and be sure the update takes place with the 9113 * new frequency before any guests proceed. 9114 * 9115 * Unfortunately, the combination of hotplug CPU and frequency 9116 * change creates an intractable locking scenario; the order 9117 * of when these callouts happen is undefined with respect to 9118 * CPU hotplug, and they can race with each other. As such, 9119 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9120 * undefined; you can actually have a CPU frequency change take 9121 * place in between the computation of X and the setting of the 9122 * variable. To protect against this problem, all updates of 9123 * the per_cpu tsc_khz variable are done in an interrupt 9124 * protected IPI, and all callers wishing to update the value 9125 * must wait for a synchronous IPI to complete (which is trivial 9126 * if the caller is on the CPU already). This establishes the 9127 * necessary total order on variable updates. 9128 * 9129 * Note that because a guest time update may take place 9130 * anytime after the setting of the VCPU's request bit, the 9131 * correct TSC value must be set before the request. However, 9132 * to ensure the update actually makes it to any guest which 9133 * starts running in hardware virtualization between the set 9134 * and the acquisition of the spinlock, we must also ping the 9135 * CPU after setting the request bit. 9136 * 9137 */ 9138 9139 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9140 9141 mutex_lock(&kvm_lock); 9142 list_for_each_entry(kvm, &vm_list, vm_list) { 9143 kvm_for_each_vcpu(i, vcpu, kvm) { 9144 if (vcpu->cpu != cpu) 9145 continue; 9146 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9147 if (vcpu->cpu != raw_smp_processor_id()) 9148 send_ipi = 1; 9149 } 9150 } 9151 mutex_unlock(&kvm_lock); 9152 9153 if (freq->old < freq->new && send_ipi) { 9154 /* 9155 * We upscale the frequency. Must make the guest 9156 * doesn't see old kvmclock values while running with 9157 * the new frequency, otherwise we risk the guest sees 9158 * time go backwards. 9159 * 9160 * In case we update the frequency for another cpu 9161 * (which might be in guest context) send an interrupt 9162 * to kick the cpu out of guest context. Next time 9163 * guest context is entered kvmclock will be updated, 9164 * so the guest will not see stale values. 9165 */ 9166 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9167 } 9168 } 9169 9170 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9171 void *data) 9172 { 9173 struct cpufreq_freqs *freq = data; 9174 int cpu; 9175 9176 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9177 return 0; 9178 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9179 return 0; 9180 9181 for_each_cpu(cpu, freq->policy->cpus) 9182 __kvmclock_cpufreq_notifier(freq, cpu); 9183 9184 return 0; 9185 } 9186 9187 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9188 .notifier_call = kvmclock_cpufreq_notifier 9189 }; 9190 9191 static int kvmclock_cpu_online(unsigned int cpu) 9192 { 9193 tsc_khz_changed(NULL); 9194 return 0; 9195 } 9196 9197 static void kvm_timer_init(void) 9198 { 9199 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9200 max_tsc_khz = tsc_khz; 9201 9202 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9203 struct cpufreq_policy *policy; 9204 int cpu; 9205 9206 cpu = get_cpu(); 9207 policy = cpufreq_cpu_get(cpu); 9208 if (policy) { 9209 if (policy->cpuinfo.max_freq) 9210 max_tsc_khz = policy->cpuinfo.max_freq; 9211 cpufreq_cpu_put(policy); 9212 } 9213 put_cpu(); 9214 } 9215 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9216 CPUFREQ_TRANSITION_NOTIFIER); 9217 9218 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9219 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9220 } 9221 } 9222 9223 #ifdef CONFIG_X86_64 9224 static void pvclock_gtod_update_fn(struct work_struct *work) 9225 { 9226 struct kvm *kvm; 9227 struct kvm_vcpu *vcpu; 9228 unsigned long i; 9229 9230 mutex_lock(&kvm_lock); 9231 list_for_each_entry(kvm, &vm_list, vm_list) 9232 kvm_for_each_vcpu(i, vcpu, kvm) 9233 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9234 atomic_set(&kvm_guest_has_master_clock, 0); 9235 mutex_unlock(&kvm_lock); 9236 } 9237 9238 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9239 9240 /* 9241 * Indirection to move queue_work() out of the tk_core.seq write held 9242 * region to prevent possible deadlocks against time accessors which 9243 * are invoked with work related locks held. 9244 */ 9245 static void pvclock_irq_work_fn(struct irq_work *w) 9246 { 9247 queue_work(system_long_wq, &pvclock_gtod_work); 9248 } 9249 9250 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9251 9252 /* 9253 * Notification about pvclock gtod data update. 9254 */ 9255 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9256 void *priv) 9257 { 9258 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9259 struct timekeeper *tk = priv; 9260 9261 update_pvclock_gtod(tk); 9262 9263 /* 9264 * Disable master clock if host does not trust, or does not use, 9265 * TSC based clocksource. Delegate queue_work() to irq_work as 9266 * this is invoked with tk_core.seq write held. 9267 */ 9268 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9269 atomic_read(&kvm_guest_has_master_clock) != 0) 9270 irq_work_queue(&pvclock_irq_work); 9271 return 0; 9272 } 9273 9274 static struct notifier_block pvclock_gtod_notifier = { 9275 .notifier_call = pvclock_gtod_notify, 9276 }; 9277 #endif 9278 9279 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9280 { 9281 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9282 9283 #define __KVM_X86_OP(func) \ 9284 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9285 #define KVM_X86_OP(func) \ 9286 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9287 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9288 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9289 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9290 (void *)__static_call_return0); 9291 #include <asm/kvm-x86-ops.h> 9292 #undef __KVM_X86_OP 9293 9294 kvm_pmu_ops_update(ops->pmu_ops); 9295 } 9296 9297 static int kvm_x86_check_processor_compatibility(void) 9298 { 9299 int cpu = smp_processor_id(); 9300 struct cpuinfo_x86 *c = &cpu_data(cpu); 9301 9302 /* 9303 * Compatibility checks are done when loading KVM and when enabling 9304 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9305 * compatible, i.e. KVM should never perform a compatibility check on 9306 * an offline CPU. 9307 */ 9308 WARN_ON(!cpu_online(cpu)); 9309 9310 if (__cr4_reserved_bits(cpu_has, c) != 9311 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9312 return -EIO; 9313 9314 return static_call(kvm_x86_check_processor_compatibility)(); 9315 } 9316 9317 static void kvm_x86_check_cpu_compat(void *ret) 9318 { 9319 *(int *)ret = kvm_x86_check_processor_compatibility(); 9320 } 9321 9322 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9323 { 9324 u64 host_pat; 9325 int r, cpu; 9326 9327 if (kvm_x86_ops.hardware_enable) { 9328 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9329 return -EEXIST; 9330 } 9331 9332 /* 9333 * KVM explicitly assumes that the guest has an FPU and 9334 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9335 * vCPU's FPU state as a fxregs_state struct. 9336 */ 9337 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9338 pr_err("inadequate fpu\n"); 9339 return -EOPNOTSUPP; 9340 } 9341 9342 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9343 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9344 return -EOPNOTSUPP; 9345 } 9346 9347 /* 9348 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9349 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9350 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9351 * with an exception. PAT[0] is set to WB on RESET and also by the 9352 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9353 */ 9354 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9355 (host_pat & GENMASK(2, 0)) != 6) { 9356 pr_err("host PAT[0] is not WB\n"); 9357 return -EIO; 9358 } 9359 9360 x86_emulator_cache = kvm_alloc_emulator_cache(); 9361 if (!x86_emulator_cache) { 9362 pr_err("failed to allocate cache for x86 emulator\n"); 9363 return -ENOMEM; 9364 } 9365 9366 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9367 if (!user_return_msrs) { 9368 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9369 r = -ENOMEM; 9370 goto out_free_x86_emulator_cache; 9371 } 9372 kvm_nr_uret_msrs = 0; 9373 9374 r = kvm_mmu_vendor_module_init(); 9375 if (r) 9376 goto out_free_percpu; 9377 9378 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9379 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9380 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9381 } 9382 9383 rdmsrl_safe(MSR_EFER, &host_efer); 9384 9385 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9386 rdmsrl(MSR_IA32_XSS, host_xss); 9387 9388 kvm_init_pmu_capability(); 9389 9390 r = ops->hardware_setup(); 9391 if (r != 0) 9392 goto out_mmu_exit; 9393 9394 kvm_ops_update(ops); 9395 9396 for_each_online_cpu(cpu) { 9397 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9398 if (r < 0) 9399 goto out_unwind_ops; 9400 } 9401 9402 /* 9403 * Point of no return! DO NOT add error paths below this point unless 9404 * absolutely necessary, as most operations from this point forward 9405 * require unwinding. 9406 */ 9407 kvm_timer_init(); 9408 9409 if (pi_inject_timer == -1) 9410 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9411 #ifdef CONFIG_X86_64 9412 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9413 9414 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9415 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9416 #endif 9417 9418 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9419 9420 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9421 kvm_caps.supported_xss = 0; 9422 9423 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9424 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9425 #undef __kvm_cpu_cap_has 9426 9427 if (kvm_caps.has_tsc_control) { 9428 /* 9429 * Make sure the user can only configure tsc_khz values that 9430 * fit into a signed integer. 9431 * A min value is not calculated because it will always 9432 * be 1 on all machines. 9433 */ 9434 u64 max = min(0x7fffffffULL, 9435 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9436 kvm_caps.max_guest_tsc_khz = max; 9437 } 9438 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9439 kvm_init_msr_list(); 9440 return 0; 9441 9442 out_unwind_ops: 9443 kvm_x86_ops.hardware_enable = NULL; 9444 static_call(kvm_x86_hardware_unsetup)(); 9445 out_mmu_exit: 9446 kvm_mmu_vendor_module_exit(); 9447 out_free_percpu: 9448 free_percpu(user_return_msrs); 9449 out_free_x86_emulator_cache: 9450 kmem_cache_destroy(x86_emulator_cache); 9451 return r; 9452 } 9453 9454 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9455 { 9456 int r; 9457 9458 mutex_lock(&vendor_module_lock); 9459 r = __kvm_x86_vendor_init(ops); 9460 mutex_unlock(&vendor_module_lock); 9461 9462 return r; 9463 } 9464 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9465 9466 void kvm_x86_vendor_exit(void) 9467 { 9468 kvm_unregister_perf_callbacks(); 9469 9470 #ifdef CONFIG_X86_64 9471 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9472 clear_hv_tscchange_cb(); 9473 #endif 9474 kvm_lapic_exit(); 9475 9476 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9477 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9478 CPUFREQ_TRANSITION_NOTIFIER); 9479 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9480 } 9481 #ifdef CONFIG_X86_64 9482 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9483 irq_work_sync(&pvclock_irq_work); 9484 cancel_work_sync(&pvclock_gtod_work); 9485 #endif 9486 static_call(kvm_x86_hardware_unsetup)(); 9487 kvm_mmu_vendor_module_exit(); 9488 free_percpu(user_return_msrs); 9489 kmem_cache_destroy(x86_emulator_cache); 9490 #ifdef CONFIG_KVM_XEN 9491 static_key_deferred_flush(&kvm_xen_enabled); 9492 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9493 #endif 9494 mutex_lock(&vendor_module_lock); 9495 kvm_x86_ops.hardware_enable = NULL; 9496 mutex_unlock(&vendor_module_lock); 9497 } 9498 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9499 9500 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9501 { 9502 /* 9503 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9504 * local APIC is in-kernel, the run loop will detect the non-runnable 9505 * state and halt the vCPU. Exit to userspace if the local APIC is 9506 * managed by userspace, in which case userspace is responsible for 9507 * handling wake events. 9508 */ 9509 ++vcpu->stat.halt_exits; 9510 if (lapic_in_kernel(vcpu)) { 9511 vcpu->arch.mp_state = state; 9512 return 1; 9513 } else { 9514 vcpu->run->exit_reason = reason; 9515 return 0; 9516 } 9517 } 9518 9519 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9520 { 9521 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9522 } 9523 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9524 9525 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9526 { 9527 int ret = kvm_skip_emulated_instruction(vcpu); 9528 /* 9529 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9530 * KVM_EXIT_DEBUG here. 9531 */ 9532 return kvm_emulate_halt_noskip(vcpu) && ret; 9533 } 9534 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9535 9536 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9537 { 9538 int ret = kvm_skip_emulated_instruction(vcpu); 9539 9540 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9541 KVM_EXIT_AP_RESET_HOLD) && ret; 9542 } 9543 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9544 9545 #ifdef CONFIG_X86_64 9546 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9547 unsigned long clock_type) 9548 { 9549 struct kvm_clock_pairing clock_pairing; 9550 struct timespec64 ts; 9551 u64 cycle; 9552 int ret; 9553 9554 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9555 return -KVM_EOPNOTSUPP; 9556 9557 /* 9558 * When tsc is in permanent catchup mode guests won't be able to use 9559 * pvclock_read_retry loop to get consistent view of pvclock 9560 */ 9561 if (vcpu->arch.tsc_always_catchup) 9562 return -KVM_EOPNOTSUPP; 9563 9564 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9565 return -KVM_EOPNOTSUPP; 9566 9567 clock_pairing.sec = ts.tv_sec; 9568 clock_pairing.nsec = ts.tv_nsec; 9569 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9570 clock_pairing.flags = 0; 9571 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9572 9573 ret = 0; 9574 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9575 sizeof(struct kvm_clock_pairing))) 9576 ret = -KVM_EFAULT; 9577 9578 return ret; 9579 } 9580 #endif 9581 9582 /* 9583 * kvm_pv_kick_cpu_op: Kick a vcpu. 9584 * 9585 * @apicid - apicid of vcpu to be kicked. 9586 */ 9587 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9588 { 9589 /* 9590 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9591 * common code, e.g. for tracing. Defer initialization to the compiler. 9592 */ 9593 struct kvm_lapic_irq lapic_irq = { 9594 .delivery_mode = APIC_DM_REMRD, 9595 .dest_mode = APIC_DEST_PHYSICAL, 9596 .shorthand = APIC_DEST_NOSHORT, 9597 .dest_id = apicid, 9598 }; 9599 9600 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9601 } 9602 9603 bool kvm_apicv_activated(struct kvm *kvm) 9604 { 9605 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9606 } 9607 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9608 9609 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9610 { 9611 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9612 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9613 9614 return (vm_reasons | vcpu_reasons) == 0; 9615 } 9616 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9617 9618 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9619 enum kvm_apicv_inhibit reason, bool set) 9620 { 9621 if (set) 9622 __set_bit(reason, inhibits); 9623 else 9624 __clear_bit(reason, inhibits); 9625 9626 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9627 } 9628 9629 static void kvm_apicv_init(struct kvm *kvm) 9630 { 9631 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9632 9633 init_rwsem(&kvm->arch.apicv_update_lock); 9634 9635 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9636 9637 if (!enable_apicv) 9638 set_or_clear_apicv_inhibit(inhibits, 9639 APICV_INHIBIT_REASON_DISABLE, true); 9640 } 9641 9642 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9643 { 9644 struct kvm_vcpu *target = NULL; 9645 struct kvm_apic_map *map; 9646 9647 vcpu->stat.directed_yield_attempted++; 9648 9649 if (single_task_running()) 9650 goto no_yield; 9651 9652 rcu_read_lock(); 9653 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9654 9655 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9656 target = map->phys_map[dest_id]->vcpu; 9657 9658 rcu_read_unlock(); 9659 9660 if (!target || !READ_ONCE(target->ready)) 9661 goto no_yield; 9662 9663 /* Ignore requests to yield to self */ 9664 if (vcpu == target) 9665 goto no_yield; 9666 9667 if (kvm_vcpu_yield_to(target) <= 0) 9668 goto no_yield; 9669 9670 vcpu->stat.directed_yield_successful++; 9671 9672 no_yield: 9673 return; 9674 } 9675 9676 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9677 { 9678 u64 ret = vcpu->run->hypercall.ret; 9679 9680 if (!is_64_bit_mode(vcpu)) 9681 ret = (u32)ret; 9682 kvm_rax_write(vcpu, ret); 9683 ++vcpu->stat.hypercalls; 9684 return kvm_skip_emulated_instruction(vcpu); 9685 } 9686 9687 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9688 { 9689 unsigned long nr, a0, a1, a2, a3, ret; 9690 int op_64_bit; 9691 9692 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9693 return kvm_xen_hypercall(vcpu); 9694 9695 if (kvm_hv_hypercall_enabled(vcpu)) 9696 return kvm_hv_hypercall(vcpu); 9697 9698 nr = kvm_rax_read(vcpu); 9699 a0 = kvm_rbx_read(vcpu); 9700 a1 = kvm_rcx_read(vcpu); 9701 a2 = kvm_rdx_read(vcpu); 9702 a3 = kvm_rsi_read(vcpu); 9703 9704 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9705 9706 op_64_bit = is_64_bit_hypercall(vcpu); 9707 if (!op_64_bit) { 9708 nr &= 0xFFFFFFFF; 9709 a0 &= 0xFFFFFFFF; 9710 a1 &= 0xFFFFFFFF; 9711 a2 &= 0xFFFFFFFF; 9712 a3 &= 0xFFFFFFFF; 9713 } 9714 9715 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9716 ret = -KVM_EPERM; 9717 goto out; 9718 } 9719 9720 ret = -KVM_ENOSYS; 9721 9722 switch (nr) { 9723 case KVM_HC_VAPIC_POLL_IRQ: 9724 ret = 0; 9725 break; 9726 case KVM_HC_KICK_CPU: 9727 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9728 break; 9729 9730 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9731 kvm_sched_yield(vcpu, a1); 9732 ret = 0; 9733 break; 9734 #ifdef CONFIG_X86_64 9735 case KVM_HC_CLOCK_PAIRING: 9736 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9737 break; 9738 #endif 9739 case KVM_HC_SEND_IPI: 9740 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9741 break; 9742 9743 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9744 break; 9745 case KVM_HC_SCHED_YIELD: 9746 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9747 break; 9748 9749 kvm_sched_yield(vcpu, a0); 9750 ret = 0; 9751 break; 9752 case KVM_HC_MAP_GPA_RANGE: { 9753 u64 gpa = a0, npages = a1, attrs = a2; 9754 9755 ret = -KVM_ENOSYS; 9756 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9757 break; 9758 9759 if (!PAGE_ALIGNED(gpa) || !npages || 9760 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9761 ret = -KVM_EINVAL; 9762 break; 9763 } 9764 9765 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9766 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9767 vcpu->run->hypercall.args[0] = gpa; 9768 vcpu->run->hypercall.args[1] = npages; 9769 vcpu->run->hypercall.args[2] = attrs; 9770 vcpu->run->hypercall.longmode = op_64_bit; 9771 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9772 return 0; 9773 } 9774 default: 9775 ret = -KVM_ENOSYS; 9776 break; 9777 } 9778 out: 9779 if (!op_64_bit) 9780 ret = (u32)ret; 9781 kvm_rax_write(vcpu, ret); 9782 9783 ++vcpu->stat.hypercalls; 9784 return kvm_skip_emulated_instruction(vcpu); 9785 } 9786 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9787 9788 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9789 { 9790 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9791 char instruction[3]; 9792 unsigned long rip = kvm_rip_read(vcpu); 9793 9794 /* 9795 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9796 * the pieces. 9797 */ 9798 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9799 ctxt->exception.error_code_valid = false; 9800 ctxt->exception.vector = UD_VECTOR; 9801 ctxt->have_exception = true; 9802 return X86EMUL_PROPAGATE_FAULT; 9803 } 9804 9805 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9806 9807 return emulator_write_emulated(ctxt, rip, instruction, 3, 9808 &ctxt->exception); 9809 } 9810 9811 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9812 { 9813 return vcpu->run->request_interrupt_window && 9814 likely(!pic_in_kernel(vcpu->kvm)); 9815 } 9816 9817 /* Called within kvm->srcu read side. */ 9818 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9819 { 9820 struct kvm_run *kvm_run = vcpu->run; 9821 9822 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9823 kvm_run->cr8 = kvm_get_cr8(vcpu); 9824 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9825 9826 kvm_run->ready_for_interrupt_injection = 9827 pic_in_kernel(vcpu->kvm) || 9828 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9829 9830 if (is_smm(vcpu)) 9831 kvm_run->flags |= KVM_RUN_X86_SMM; 9832 } 9833 9834 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9835 { 9836 int max_irr, tpr; 9837 9838 if (!kvm_x86_ops.update_cr8_intercept) 9839 return; 9840 9841 if (!lapic_in_kernel(vcpu)) 9842 return; 9843 9844 if (vcpu->arch.apic->apicv_active) 9845 return; 9846 9847 if (!vcpu->arch.apic->vapic_addr) 9848 max_irr = kvm_lapic_find_highest_irr(vcpu); 9849 else 9850 max_irr = -1; 9851 9852 if (max_irr != -1) 9853 max_irr >>= 4; 9854 9855 tpr = kvm_lapic_get_cr8(vcpu); 9856 9857 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9858 } 9859 9860 9861 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9862 { 9863 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9864 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9865 return 1; 9866 } 9867 9868 return kvm_x86_ops.nested_ops->check_events(vcpu); 9869 } 9870 9871 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9872 { 9873 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9874 vcpu->arch.exception.has_error_code, 9875 vcpu->arch.exception.error_code, 9876 vcpu->arch.exception.injected); 9877 9878 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9879 vcpu->arch.exception.error_code = false; 9880 static_call(kvm_x86_inject_exception)(vcpu); 9881 } 9882 9883 /* 9884 * Check for any event (interrupt or exception) that is ready to be injected, 9885 * and if there is at least one event, inject the event with the highest 9886 * priority. This handles both "pending" events, i.e. events that have never 9887 * been injected into the guest, and "injected" events, i.e. events that were 9888 * injected as part of a previous VM-Enter, but weren't successfully delivered 9889 * and need to be re-injected. 9890 * 9891 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9892 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9893 * be able to inject exceptions in the "middle" of an instruction, and so must 9894 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9895 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9896 * boundaries is necessary and correct. 9897 * 9898 * For simplicity, KVM uses a single path to inject all events (except events 9899 * that are injected directly from L1 to L2) and doesn't explicitly track 9900 * instruction boundaries for asynchronous events. However, because VM-Exits 9901 * that can occur during instruction execution typically result in KVM skipping 9902 * the instruction or injecting an exception, e.g. instruction and exception 9903 * intercepts, and because pending exceptions have higher priority than pending 9904 * interrupts, KVM still honors instruction boundaries in most scenarios. 9905 * 9906 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9907 * the instruction or inject an exception, then KVM can incorrecty inject a new 9908 * asynchrounous event if the event became pending after the CPU fetched the 9909 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9910 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9911 * injected on the restarted instruction instead of being deferred until the 9912 * instruction completes. 9913 * 9914 * In practice, this virtualization hole is unlikely to be observed by the 9915 * guest, and even less likely to cause functional problems. To detect the 9916 * hole, the guest would have to trigger an event on a side effect of an early 9917 * phase of instruction execution, e.g. on the instruction fetch from memory. 9918 * And for it to be a functional problem, the guest would need to depend on the 9919 * ordering between that side effect, the instruction completing, _and_ the 9920 * delivery of the asynchronous event. 9921 */ 9922 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9923 bool *req_immediate_exit) 9924 { 9925 bool can_inject; 9926 int r; 9927 9928 /* 9929 * Process nested events first, as nested VM-Exit supercedes event 9930 * re-injection. If there's an event queued for re-injection, it will 9931 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9932 */ 9933 if (is_guest_mode(vcpu)) 9934 r = kvm_check_nested_events(vcpu); 9935 else 9936 r = 0; 9937 9938 /* 9939 * Re-inject exceptions and events *especially* if immediate entry+exit 9940 * to/from L2 is needed, as any event that has already been injected 9941 * into L2 needs to complete its lifecycle before injecting a new event. 9942 * 9943 * Don't re-inject an NMI or interrupt if there is a pending exception. 9944 * This collision arises if an exception occurred while vectoring the 9945 * injected event, KVM intercepted said exception, and KVM ultimately 9946 * determined the fault belongs to the guest and queues the exception 9947 * for injection back into the guest. 9948 * 9949 * "Injected" interrupts can also collide with pending exceptions if 9950 * userspace ignores the "ready for injection" flag and blindly queues 9951 * an interrupt. In that case, prioritizing the exception is correct, 9952 * as the exception "occurred" before the exit to userspace. Trap-like 9953 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9954 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9955 * priority, they're only generated (pended) during instruction 9956 * execution, and interrupts are recognized at instruction boundaries. 9957 * Thus a pending fault-like exception means the fault occurred on the 9958 * *previous* instruction and must be serviced prior to recognizing any 9959 * new events in order to fully complete the previous instruction. 9960 */ 9961 if (vcpu->arch.exception.injected) 9962 kvm_inject_exception(vcpu); 9963 else if (kvm_is_exception_pending(vcpu)) 9964 ; /* see above */ 9965 else if (vcpu->arch.nmi_injected) 9966 static_call(kvm_x86_inject_nmi)(vcpu); 9967 else if (vcpu->arch.interrupt.injected) 9968 static_call(kvm_x86_inject_irq)(vcpu, true); 9969 9970 /* 9971 * Exceptions that morph to VM-Exits are handled above, and pending 9972 * exceptions on top of injected exceptions that do not VM-Exit should 9973 * either morph to #DF or, sadly, override the injected exception. 9974 */ 9975 WARN_ON_ONCE(vcpu->arch.exception.injected && 9976 vcpu->arch.exception.pending); 9977 9978 /* 9979 * Bail if immediate entry+exit to/from the guest is needed to complete 9980 * nested VM-Enter or event re-injection so that a different pending 9981 * event can be serviced (or if KVM needs to exit to userspace). 9982 * 9983 * Otherwise, continue processing events even if VM-Exit occurred. The 9984 * VM-Exit will have cleared exceptions that were meant for L2, but 9985 * there may now be events that can be injected into L1. 9986 */ 9987 if (r < 0) 9988 goto out; 9989 9990 /* 9991 * A pending exception VM-Exit should either result in nested VM-Exit 9992 * or force an immediate re-entry and exit to/from L2, and exception 9993 * VM-Exits cannot be injected (flag should _never_ be set). 9994 */ 9995 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9996 vcpu->arch.exception_vmexit.pending); 9997 9998 /* 9999 * New events, other than exceptions, cannot be injected if KVM needs 10000 * to re-inject a previous event. See above comments on re-injecting 10001 * for why pending exceptions get priority. 10002 */ 10003 can_inject = !kvm_event_needs_reinjection(vcpu); 10004 10005 if (vcpu->arch.exception.pending) { 10006 /* 10007 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10008 * value pushed on the stack. Trap-like exception and all #DBs 10009 * leave RF as-is (KVM follows Intel's behavior in this regard; 10010 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10011 * 10012 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10013 * describe the behavior of General Detect #DBs, which are 10014 * fault-like. They do _not_ set RF, a la code breakpoints. 10015 */ 10016 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10017 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10018 X86_EFLAGS_RF); 10019 10020 if (vcpu->arch.exception.vector == DB_VECTOR) { 10021 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10022 if (vcpu->arch.dr7 & DR7_GD) { 10023 vcpu->arch.dr7 &= ~DR7_GD; 10024 kvm_update_dr7(vcpu); 10025 } 10026 } 10027 10028 kvm_inject_exception(vcpu); 10029 10030 vcpu->arch.exception.pending = false; 10031 vcpu->arch.exception.injected = true; 10032 10033 can_inject = false; 10034 } 10035 10036 /* Don't inject interrupts if the user asked to avoid doing so */ 10037 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10038 return 0; 10039 10040 /* 10041 * Finally, inject interrupt events. If an event cannot be injected 10042 * due to architectural conditions (e.g. IF=0) a window-open exit 10043 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10044 * and can architecturally be injected, but we cannot do it right now: 10045 * an interrupt could have arrived just now and we have to inject it 10046 * as a vmexit, or there could already an event in the queue, which is 10047 * indicated by can_inject. In that case we request an immediate exit 10048 * in order to make progress and get back here for another iteration. 10049 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10050 */ 10051 #ifdef CONFIG_KVM_SMM 10052 if (vcpu->arch.smi_pending) { 10053 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10054 if (r < 0) 10055 goto out; 10056 if (r) { 10057 vcpu->arch.smi_pending = false; 10058 ++vcpu->arch.smi_count; 10059 enter_smm(vcpu); 10060 can_inject = false; 10061 } else 10062 static_call(kvm_x86_enable_smi_window)(vcpu); 10063 } 10064 #endif 10065 10066 if (vcpu->arch.nmi_pending) { 10067 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10068 if (r < 0) 10069 goto out; 10070 if (r) { 10071 --vcpu->arch.nmi_pending; 10072 vcpu->arch.nmi_injected = true; 10073 static_call(kvm_x86_inject_nmi)(vcpu); 10074 can_inject = false; 10075 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10076 } 10077 if (vcpu->arch.nmi_pending) 10078 static_call(kvm_x86_enable_nmi_window)(vcpu); 10079 } 10080 10081 if (kvm_cpu_has_injectable_intr(vcpu)) { 10082 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10083 if (r < 0) 10084 goto out; 10085 if (r) { 10086 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10087 static_call(kvm_x86_inject_irq)(vcpu, false); 10088 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10089 } 10090 if (kvm_cpu_has_injectable_intr(vcpu)) 10091 static_call(kvm_x86_enable_irq_window)(vcpu); 10092 } 10093 10094 if (is_guest_mode(vcpu) && 10095 kvm_x86_ops.nested_ops->has_events && 10096 kvm_x86_ops.nested_ops->has_events(vcpu)) 10097 *req_immediate_exit = true; 10098 10099 /* 10100 * KVM must never queue a new exception while injecting an event; KVM 10101 * is done emulating and should only propagate the to-be-injected event 10102 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10103 * infinite loop as KVM will bail from VM-Enter to inject the pending 10104 * exception and start the cycle all over. 10105 * 10106 * Exempt triple faults as they have special handling and won't put the 10107 * vCPU into an infinite loop. Triple fault can be queued when running 10108 * VMX without unrestricted guest, as that requires KVM to emulate Real 10109 * Mode events (see kvm_inject_realmode_interrupt()). 10110 */ 10111 WARN_ON_ONCE(vcpu->arch.exception.pending || 10112 vcpu->arch.exception_vmexit.pending); 10113 return 0; 10114 10115 out: 10116 if (r == -EBUSY) { 10117 *req_immediate_exit = true; 10118 r = 0; 10119 } 10120 return r; 10121 } 10122 10123 static void process_nmi(struct kvm_vcpu *vcpu) 10124 { 10125 unsigned limit = 2; 10126 10127 /* 10128 * x86 is limited to one NMI running, and one NMI pending after it. 10129 * If an NMI is already in progress, limit further NMIs to just one. 10130 * Otherwise, allow two (and we'll inject the first one immediately). 10131 */ 10132 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10133 limit = 1; 10134 10135 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10136 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10137 kvm_make_request(KVM_REQ_EVENT, vcpu); 10138 } 10139 10140 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10141 unsigned long *vcpu_bitmap) 10142 { 10143 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10144 } 10145 10146 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10147 { 10148 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10149 } 10150 10151 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10152 { 10153 struct kvm_lapic *apic = vcpu->arch.apic; 10154 bool activate; 10155 10156 if (!lapic_in_kernel(vcpu)) 10157 return; 10158 10159 down_read(&vcpu->kvm->arch.apicv_update_lock); 10160 preempt_disable(); 10161 10162 /* Do not activate APICV when APIC is disabled */ 10163 activate = kvm_vcpu_apicv_activated(vcpu) && 10164 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10165 10166 if (apic->apicv_active == activate) 10167 goto out; 10168 10169 apic->apicv_active = activate; 10170 kvm_apic_update_apicv(vcpu); 10171 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10172 10173 /* 10174 * When APICv gets disabled, we may still have injected interrupts 10175 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10176 * still active when the interrupt got accepted. Make sure 10177 * kvm_check_and_inject_events() is called to check for that. 10178 */ 10179 if (!apic->apicv_active) 10180 kvm_make_request(KVM_REQ_EVENT, vcpu); 10181 10182 out: 10183 preempt_enable(); 10184 up_read(&vcpu->kvm->arch.apicv_update_lock); 10185 } 10186 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10187 10188 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10189 { 10190 if (!lapic_in_kernel(vcpu)) 10191 return; 10192 10193 /* 10194 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10195 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10196 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10197 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10198 * this case so that KVM can the AVIC doorbell to inject interrupts to 10199 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10200 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10201 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10202 * access page is sticky. 10203 */ 10204 if (apic_x2apic_mode(vcpu->arch.apic) && 10205 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10206 kvm_inhibit_apic_access_page(vcpu); 10207 10208 __kvm_vcpu_update_apicv(vcpu); 10209 } 10210 10211 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10212 enum kvm_apicv_inhibit reason, bool set) 10213 { 10214 unsigned long old, new; 10215 10216 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10217 10218 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10219 return; 10220 10221 old = new = kvm->arch.apicv_inhibit_reasons; 10222 10223 set_or_clear_apicv_inhibit(&new, reason, set); 10224 10225 if (!!old != !!new) { 10226 /* 10227 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10228 * false positives in the sanity check WARN in svm_vcpu_run(). 10229 * This task will wait for all vCPUs to ack the kick IRQ before 10230 * updating apicv_inhibit_reasons, and all other vCPUs will 10231 * block on acquiring apicv_update_lock so that vCPUs can't 10232 * redo svm_vcpu_run() without seeing the new inhibit state. 10233 * 10234 * Note, holding apicv_update_lock and taking it in the read 10235 * side (handling the request) also prevents other vCPUs from 10236 * servicing the request with a stale apicv_inhibit_reasons. 10237 */ 10238 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10239 kvm->arch.apicv_inhibit_reasons = new; 10240 if (new) { 10241 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10242 int idx = srcu_read_lock(&kvm->srcu); 10243 10244 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10245 srcu_read_unlock(&kvm->srcu, idx); 10246 } 10247 } else { 10248 kvm->arch.apicv_inhibit_reasons = new; 10249 } 10250 } 10251 10252 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10253 enum kvm_apicv_inhibit reason, bool set) 10254 { 10255 if (!enable_apicv) 10256 return; 10257 10258 down_write(&kvm->arch.apicv_update_lock); 10259 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10260 up_write(&kvm->arch.apicv_update_lock); 10261 } 10262 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10263 10264 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10265 { 10266 if (!kvm_apic_present(vcpu)) 10267 return; 10268 10269 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10270 10271 if (irqchip_split(vcpu->kvm)) 10272 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10273 else { 10274 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10275 if (ioapic_in_kernel(vcpu->kvm)) 10276 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10277 } 10278 10279 if (is_guest_mode(vcpu)) 10280 vcpu->arch.load_eoi_exitmap_pending = true; 10281 else 10282 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10283 } 10284 10285 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10286 { 10287 u64 eoi_exit_bitmap[4]; 10288 10289 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10290 return; 10291 10292 if (to_hv_vcpu(vcpu)) { 10293 bitmap_or((ulong *)eoi_exit_bitmap, 10294 vcpu->arch.ioapic_handled_vectors, 10295 to_hv_synic(vcpu)->vec_bitmap, 256); 10296 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10297 return; 10298 } 10299 10300 static_call_cond(kvm_x86_load_eoi_exitmap)( 10301 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10302 } 10303 10304 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10305 unsigned long start, unsigned long end) 10306 { 10307 unsigned long apic_address; 10308 10309 /* 10310 * The physical address of apic access page is stored in the VMCS. 10311 * Update it when it becomes invalid. 10312 */ 10313 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10314 if (start <= apic_address && apic_address < end) 10315 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10316 } 10317 10318 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10319 { 10320 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10321 } 10322 10323 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10324 { 10325 if (!lapic_in_kernel(vcpu)) 10326 return; 10327 10328 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10329 } 10330 10331 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10332 { 10333 smp_send_reschedule(vcpu->cpu); 10334 } 10335 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10336 10337 /* 10338 * Called within kvm->srcu read side. 10339 * Returns 1 to let vcpu_run() continue the guest execution loop without 10340 * exiting to the userspace. Otherwise, the value will be returned to the 10341 * userspace. 10342 */ 10343 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10344 { 10345 int r; 10346 bool req_int_win = 10347 dm_request_for_irq_injection(vcpu) && 10348 kvm_cpu_accept_dm_intr(vcpu); 10349 fastpath_t exit_fastpath; 10350 10351 bool req_immediate_exit = false; 10352 10353 if (kvm_request_pending(vcpu)) { 10354 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10355 r = -EIO; 10356 goto out; 10357 } 10358 10359 if (kvm_dirty_ring_check_request(vcpu)) { 10360 r = 0; 10361 goto out; 10362 } 10363 10364 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10365 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10366 r = 0; 10367 goto out; 10368 } 10369 } 10370 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10371 kvm_mmu_free_obsolete_roots(vcpu); 10372 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10373 __kvm_migrate_timers(vcpu); 10374 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10375 kvm_update_masterclock(vcpu->kvm); 10376 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10377 kvm_gen_kvmclock_update(vcpu); 10378 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10379 r = kvm_guest_time_update(vcpu); 10380 if (unlikely(r)) 10381 goto out; 10382 } 10383 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10384 kvm_mmu_sync_roots(vcpu); 10385 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10386 kvm_mmu_load_pgd(vcpu); 10387 10388 /* 10389 * Note, the order matters here, as flushing "all" TLB entries 10390 * also flushes the "current" TLB entries, i.e. servicing the 10391 * flush "all" will clear any request to flush "current". 10392 */ 10393 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10394 kvm_vcpu_flush_tlb_all(vcpu); 10395 10396 kvm_service_local_tlb_flush_requests(vcpu); 10397 10398 /* 10399 * Fall back to a "full" guest flush if Hyper-V's precise 10400 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10401 * the flushes are considered "remote" and not "local" because 10402 * the requests can be initiated from other vCPUs. 10403 */ 10404 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10405 kvm_hv_vcpu_flush_tlb(vcpu)) 10406 kvm_vcpu_flush_tlb_guest(vcpu); 10407 10408 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10409 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10410 r = 0; 10411 goto out; 10412 } 10413 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10414 if (is_guest_mode(vcpu)) 10415 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10416 10417 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10418 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10419 vcpu->mmio_needed = 0; 10420 r = 0; 10421 goto out; 10422 } 10423 } 10424 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10425 /* Page is swapped out. Do synthetic halt */ 10426 vcpu->arch.apf.halted = true; 10427 r = 1; 10428 goto out; 10429 } 10430 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10431 record_steal_time(vcpu); 10432 #ifdef CONFIG_KVM_SMM 10433 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10434 process_smi(vcpu); 10435 #endif 10436 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10437 process_nmi(vcpu); 10438 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10439 kvm_pmu_handle_event(vcpu); 10440 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10441 kvm_pmu_deliver_pmi(vcpu); 10442 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10443 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10444 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10445 vcpu->arch.ioapic_handled_vectors)) { 10446 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10447 vcpu->run->eoi.vector = 10448 vcpu->arch.pending_ioapic_eoi; 10449 r = 0; 10450 goto out; 10451 } 10452 } 10453 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10454 vcpu_scan_ioapic(vcpu); 10455 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10456 vcpu_load_eoi_exitmap(vcpu); 10457 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10458 kvm_vcpu_reload_apic_access_page(vcpu); 10459 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10460 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10461 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10462 vcpu->run->system_event.ndata = 0; 10463 r = 0; 10464 goto out; 10465 } 10466 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10467 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10468 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10469 vcpu->run->system_event.ndata = 0; 10470 r = 0; 10471 goto out; 10472 } 10473 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10474 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10475 10476 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10477 vcpu->run->hyperv = hv_vcpu->exit; 10478 r = 0; 10479 goto out; 10480 } 10481 10482 /* 10483 * KVM_REQ_HV_STIMER has to be processed after 10484 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10485 * depend on the guest clock being up-to-date 10486 */ 10487 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10488 kvm_hv_process_stimers(vcpu); 10489 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10490 kvm_vcpu_update_apicv(vcpu); 10491 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10492 kvm_check_async_pf_completion(vcpu); 10493 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10494 static_call(kvm_x86_msr_filter_changed)(vcpu); 10495 10496 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10497 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10498 } 10499 10500 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10501 kvm_xen_has_interrupt(vcpu)) { 10502 ++vcpu->stat.req_event; 10503 r = kvm_apic_accept_events(vcpu); 10504 if (r < 0) { 10505 r = 0; 10506 goto out; 10507 } 10508 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10509 r = 1; 10510 goto out; 10511 } 10512 10513 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10514 if (r < 0) { 10515 r = 0; 10516 goto out; 10517 } 10518 if (req_int_win) 10519 static_call(kvm_x86_enable_irq_window)(vcpu); 10520 10521 if (kvm_lapic_enabled(vcpu)) { 10522 update_cr8_intercept(vcpu); 10523 kvm_lapic_sync_to_vapic(vcpu); 10524 } 10525 } 10526 10527 r = kvm_mmu_reload(vcpu); 10528 if (unlikely(r)) { 10529 goto cancel_injection; 10530 } 10531 10532 preempt_disable(); 10533 10534 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10535 10536 /* 10537 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10538 * IPI are then delayed after guest entry, which ensures that they 10539 * result in virtual interrupt delivery. 10540 */ 10541 local_irq_disable(); 10542 10543 /* Store vcpu->apicv_active before vcpu->mode. */ 10544 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10545 10546 kvm_vcpu_srcu_read_unlock(vcpu); 10547 10548 /* 10549 * 1) We should set ->mode before checking ->requests. Please see 10550 * the comment in kvm_vcpu_exiting_guest_mode(). 10551 * 10552 * 2) For APICv, we should set ->mode before checking PID.ON. This 10553 * pairs with the memory barrier implicit in pi_test_and_set_on 10554 * (see vmx_deliver_posted_interrupt). 10555 * 10556 * 3) This also orders the write to mode from any reads to the page 10557 * tables done while the VCPU is running. Please see the comment 10558 * in kvm_flush_remote_tlbs. 10559 */ 10560 smp_mb__after_srcu_read_unlock(); 10561 10562 /* 10563 * Process pending posted interrupts to handle the case where the 10564 * notification IRQ arrived in the host, or was never sent (because the 10565 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10566 * status, KVM doesn't update assigned devices when APICv is inhibited, 10567 * i.e. they can post interrupts even if APICv is temporarily disabled. 10568 */ 10569 if (kvm_lapic_enabled(vcpu)) 10570 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10571 10572 if (kvm_vcpu_exit_request(vcpu)) { 10573 vcpu->mode = OUTSIDE_GUEST_MODE; 10574 smp_wmb(); 10575 local_irq_enable(); 10576 preempt_enable(); 10577 kvm_vcpu_srcu_read_lock(vcpu); 10578 r = 1; 10579 goto cancel_injection; 10580 } 10581 10582 if (req_immediate_exit) { 10583 kvm_make_request(KVM_REQ_EVENT, vcpu); 10584 static_call(kvm_x86_request_immediate_exit)(vcpu); 10585 } 10586 10587 fpregs_assert_state_consistent(); 10588 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10589 switch_fpu_return(); 10590 10591 if (vcpu->arch.guest_fpu.xfd_err) 10592 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10593 10594 if (unlikely(vcpu->arch.switch_db_regs)) { 10595 set_debugreg(0, 7); 10596 set_debugreg(vcpu->arch.eff_db[0], 0); 10597 set_debugreg(vcpu->arch.eff_db[1], 1); 10598 set_debugreg(vcpu->arch.eff_db[2], 2); 10599 set_debugreg(vcpu->arch.eff_db[3], 3); 10600 } else if (unlikely(hw_breakpoint_active())) { 10601 set_debugreg(0, 7); 10602 } 10603 10604 guest_timing_enter_irqoff(); 10605 10606 for (;;) { 10607 /* 10608 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10609 * update must kick and wait for all vCPUs before toggling the 10610 * per-VM state, and responsing vCPUs must wait for the update 10611 * to complete before servicing KVM_REQ_APICV_UPDATE. 10612 */ 10613 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10614 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10615 10616 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10617 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10618 break; 10619 10620 if (kvm_lapic_enabled(vcpu)) 10621 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10622 10623 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10624 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10625 break; 10626 } 10627 } 10628 10629 /* 10630 * Do this here before restoring debug registers on the host. And 10631 * since we do this before handling the vmexit, a DR access vmexit 10632 * can (a) read the correct value of the debug registers, (b) set 10633 * KVM_DEBUGREG_WONT_EXIT again. 10634 */ 10635 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10636 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10637 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10638 kvm_update_dr0123(vcpu); 10639 kvm_update_dr7(vcpu); 10640 } 10641 10642 /* 10643 * If the guest has used debug registers, at least dr7 10644 * will be disabled while returning to the host. 10645 * If we don't have active breakpoints in the host, we don't 10646 * care about the messed up debug address registers. But if 10647 * we have some of them active, restore the old state. 10648 */ 10649 if (hw_breakpoint_active()) 10650 hw_breakpoint_restore(); 10651 10652 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10653 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10654 10655 vcpu->mode = OUTSIDE_GUEST_MODE; 10656 smp_wmb(); 10657 10658 /* 10659 * Sync xfd before calling handle_exit_irqoff() which may 10660 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10661 * in #NM irqoff handler). 10662 */ 10663 if (vcpu->arch.xfd_no_write_intercept) 10664 fpu_sync_guest_vmexit_xfd_state(); 10665 10666 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10667 10668 if (vcpu->arch.guest_fpu.xfd_err) 10669 wrmsrl(MSR_IA32_XFD_ERR, 0); 10670 10671 /* 10672 * Consume any pending interrupts, including the possible source of 10673 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10674 * An instruction is required after local_irq_enable() to fully unblock 10675 * interrupts on processors that implement an interrupt shadow, the 10676 * stat.exits increment will do nicely. 10677 */ 10678 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10679 local_irq_enable(); 10680 ++vcpu->stat.exits; 10681 local_irq_disable(); 10682 kvm_after_interrupt(vcpu); 10683 10684 /* 10685 * Wait until after servicing IRQs to account guest time so that any 10686 * ticks that occurred while running the guest are properly accounted 10687 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10688 * of accounting via context tracking, but the loss of accuracy is 10689 * acceptable for all known use cases. 10690 */ 10691 guest_timing_exit_irqoff(); 10692 10693 local_irq_enable(); 10694 preempt_enable(); 10695 10696 kvm_vcpu_srcu_read_lock(vcpu); 10697 10698 /* 10699 * Profile KVM exit RIPs: 10700 */ 10701 if (unlikely(prof_on == KVM_PROFILING)) { 10702 unsigned long rip = kvm_rip_read(vcpu); 10703 profile_hit(KVM_PROFILING, (void *)rip); 10704 } 10705 10706 if (unlikely(vcpu->arch.tsc_always_catchup)) 10707 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10708 10709 if (vcpu->arch.apic_attention) 10710 kvm_lapic_sync_from_vapic(vcpu); 10711 10712 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10713 return r; 10714 10715 cancel_injection: 10716 if (req_immediate_exit) 10717 kvm_make_request(KVM_REQ_EVENT, vcpu); 10718 static_call(kvm_x86_cancel_injection)(vcpu); 10719 if (unlikely(vcpu->arch.apic_attention)) 10720 kvm_lapic_sync_from_vapic(vcpu); 10721 out: 10722 return r; 10723 } 10724 10725 /* Called within kvm->srcu read side. */ 10726 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10727 { 10728 bool hv_timer; 10729 10730 if (!kvm_arch_vcpu_runnable(vcpu)) { 10731 /* 10732 * Switch to the software timer before halt-polling/blocking as 10733 * the guest's timer may be a break event for the vCPU, and the 10734 * hypervisor timer runs only when the CPU is in guest mode. 10735 * Switch before halt-polling so that KVM recognizes an expired 10736 * timer before blocking. 10737 */ 10738 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10739 if (hv_timer) 10740 kvm_lapic_switch_to_sw_timer(vcpu); 10741 10742 kvm_vcpu_srcu_read_unlock(vcpu); 10743 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10744 kvm_vcpu_halt(vcpu); 10745 else 10746 kvm_vcpu_block(vcpu); 10747 kvm_vcpu_srcu_read_lock(vcpu); 10748 10749 if (hv_timer) 10750 kvm_lapic_switch_to_hv_timer(vcpu); 10751 10752 /* 10753 * If the vCPU is not runnable, a signal or another host event 10754 * of some kind is pending; service it without changing the 10755 * vCPU's activity state. 10756 */ 10757 if (!kvm_arch_vcpu_runnable(vcpu)) 10758 return 1; 10759 } 10760 10761 /* 10762 * Evaluate nested events before exiting the halted state. This allows 10763 * the halt state to be recorded properly in the VMCS12's activity 10764 * state field (AMD does not have a similar field and a VM-Exit always 10765 * causes a spurious wakeup from HLT). 10766 */ 10767 if (is_guest_mode(vcpu)) { 10768 if (kvm_check_nested_events(vcpu) < 0) 10769 return 0; 10770 } 10771 10772 if (kvm_apic_accept_events(vcpu) < 0) 10773 return 0; 10774 switch(vcpu->arch.mp_state) { 10775 case KVM_MP_STATE_HALTED: 10776 case KVM_MP_STATE_AP_RESET_HOLD: 10777 vcpu->arch.pv.pv_unhalted = false; 10778 vcpu->arch.mp_state = 10779 KVM_MP_STATE_RUNNABLE; 10780 fallthrough; 10781 case KVM_MP_STATE_RUNNABLE: 10782 vcpu->arch.apf.halted = false; 10783 break; 10784 case KVM_MP_STATE_INIT_RECEIVED: 10785 break; 10786 default: 10787 WARN_ON_ONCE(1); 10788 break; 10789 } 10790 return 1; 10791 } 10792 10793 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10794 { 10795 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10796 !vcpu->arch.apf.halted); 10797 } 10798 10799 /* Called within kvm->srcu read side. */ 10800 static int vcpu_run(struct kvm_vcpu *vcpu) 10801 { 10802 int r; 10803 10804 vcpu->arch.l1tf_flush_l1d = true; 10805 10806 for (;;) { 10807 /* 10808 * If another guest vCPU requests a PV TLB flush in the middle 10809 * of instruction emulation, the rest of the emulation could 10810 * use a stale page translation. Assume that any code after 10811 * this point can start executing an instruction. 10812 */ 10813 vcpu->arch.at_instruction_boundary = false; 10814 if (kvm_vcpu_running(vcpu)) { 10815 r = vcpu_enter_guest(vcpu); 10816 } else { 10817 r = vcpu_block(vcpu); 10818 } 10819 10820 if (r <= 0) 10821 break; 10822 10823 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10824 if (kvm_xen_has_pending_events(vcpu)) 10825 kvm_xen_inject_pending_events(vcpu); 10826 10827 if (kvm_cpu_has_pending_timer(vcpu)) 10828 kvm_inject_pending_timer_irqs(vcpu); 10829 10830 if (dm_request_for_irq_injection(vcpu) && 10831 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10832 r = 0; 10833 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10834 ++vcpu->stat.request_irq_exits; 10835 break; 10836 } 10837 10838 if (__xfer_to_guest_mode_work_pending()) { 10839 kvm_vcpu_srcu_read_unlock(vcpu); 10840 r = xfer_to_guest_mode_handle_work(vcpu); 10841 kvm_vcpu_srcu_read_lock(vcpu); 10842 if (r) 10843 return r; 10844 } 10845 } 10846 10847 return r; 10848 } 10849 10850 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10851 { 10852 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10853 } 10854 10855 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10856 { 10857 BUG_ON(!vcpu->arch.pio.count); 10858 10859 return complete_emulated_io(vcpu); 10860 } 10861 10862 /* 10863 * Implements the following, as a state machine: 10864 * 10865 * read: 10866 * for each fragment 10867 * for each mmio piece in the fragment 10868 * write gpa, len 10869 * exit 10870 * copy data 10871 * execute insn 10872 * 10873 * write: 10874 * for each fragment 10875 * for each mmio piece in the fragment 10876 * write gpa, len 10877 * copy data 10878 * exit 10879 */ 10880 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10881 { 10882 struct kvm_run *run = vcpu->run; 10883 struct kvm_mmio_fragment *frag; 10884 unsigned len; 10885 10886 BUG_ON(!vcpu->mmio_needed); 10887 10888 /* Complete previous fragment */ 10889 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10890 len = min(8u, frag->len); 10891 if (!vcpu->mmio_is_write) 10892 memcpy(frag->data, run->mmio.data, len); 10893 10894 if (frag->len <= 8) { 10895 /* Switch to the next fragment. */ 10896 frag++; 10897 vcpu->mmio_cur_fragment++; 10898 } else { 10899 /* Go forward to the next mmio piece. */ 10900 frag->data += len; 10901 frag->gpa += len; 10902 frag->len -= len; 10903 } 10904 10905 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10906 vcpu->mmio_needed = 0; 10907 10908 /* FIXME: return into emulator if single-stepping. */ 10909 if (vcpu->mmio_is_write) 10910 return 1; 10911 vcpu->mmio_read_completed = 1; 10912 return complete_emulated_io(vcpu); 10913 } 10914 10915 run->exit_reason = KVM_EXIT_MMIO; 10916 run->mmio.phys_addr = frag->gpa; 10917 if (vcpu->mmio_is_write) 10918 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10919 run->mmio.len = min(8u, frag->len); 10920 run->mmio.is_write = vcpu->mmio_is_write; 10921 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10922 return 0; 10923 } 10924 10925 /* Swap (qemu) user FPU context for the guest FPU context. */ 10926 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10927 { 10928 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10929 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10930 trace_kvm_fpu(1); 10931 } 10932 10933 /* When vcpu_run ends, restore user space FPU context. */ 10934 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10935 { 10936 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10937 ++vcpu->stat.fpu_reload; 10938 trace_kvm_fpu(0); 10939 } 10940 10941 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10942 { 10943 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10944 struct kvm_run *kvm_run = vcpu->run; 10945 int r; 10946 10947 vcpu_load(vcpu); 10948 kvm_sigset_activate(vcpu); 10949 kvm_run->flags = 0; 10950 kvm_load_guest_fpu(vcpu); 10951 10952 kvm_vcpu_srcu_read_lock(vcpu); 10953 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10954 if (kvm_run->immediate_exit) { 10955 r = -EINTR; 10956 goto out; 10957 } 10958 /* 10959 * It should be impossible for the hypervisor timer to be in 10960 * use before KVM has ever run the vCPU. 10961 */ 10962 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10963 10964 kvm_vcpu_srcu_read_unlock(vcpu); 10965 kvm_vcpu_block(vcpu); 10966 kvm_vcpu_srcu_read_lock(vcpu); 10967 10968 if (kvm_apic_accept_events(vcpu) < 0) { 10969 r = 0; 10970 goto out; 10971 } 10972 r = -EAGAIN; 10973 if (signal_pending(current)) { 10974 r = -EINTR; 10975 kvm_run->exit_reason = KVM_EXIT_INTR; 10976 ++vcpu->stat.signal_exits; 10977 } 10978 goto out; 10979 } 10980 10981 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10982 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10983 r = -EINVAL; 10984 goto out; 10985 } 10986 10987 if (kvm_run->kvm_dirty_regs) { 10988 r = sync_regs(vcpu); 10989 if (r != 0) 10990 goto out; 10991 } 10992 10993 /* re-sync apic's tpr */ 10994 if (!lapic_in_kernel(vcpu)) { 10995 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10996 r = -EINVAL; 10997 goto out; 10998 } 10999 } 11000 11001 /* 11002 * If userspace set a pending exception and L2 is active, convert it to 11003 * a pending VM-Exit if L1 wants to intercept the exception. 11004 */ 11005 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11006 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11007 ex->error_code)) { 11008 kvm_queue_exception_vmexit(vcpu, ex->vector, 11009 ex->has_error_code, ex->error_code, 11010 ex->has_payload, ex->payload); 11011 ex->injected = false; 11012 ex->pending = false; 11013 } 11014 vcpu->arch.exception_from_userspace = false; 11015 11016 if (unlikely(vcpu->arch.complete_userspace_io)) { 11017 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11018 vcpu->arch.complete_userspace_io = NULL; 11019 r = cui(vcpu); 11020 if (r <= 0) 11021 goto out; 11022 } else { 11023 WARN_ON_ONCE(vcpu->arch.pio.count); 11024 WARN_ON_ONCE(vcpu->mmio_needed); 11025 } 11026 11027 if (kvm_run->immediate_exit) { 11028 r = -EINTR; 11029 goto out; 11030 } 11031 11032 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11033 if (r <= 0) 11034 goto out; 11035 11036 r = vcpu_run(vcpu); 11037 11038 out: 11039 kvm_put_guest_fpu(vcpu); 11040 if (kvm_run->kvm_valid_regs) 11041 store_regs(vcpu); 11042 post_kvm_run_save(vcpu); 11043 kvm_vcpu_srcu_read_unlock(vcpu); 11044 11045 kvm_sigset_deactivate(vcpu); 11046 vcpu_put(vcpu); 11047 return r; 11048 } 11049 11050 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11051 { 11052 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11053 /* 11054 * We are here if userspace calls get_regs() in the middle of 11055 * instruction emulation. Registers state needs to be copied 11056 * back from emulation context to vcpu. Userspace shouldn't do 11057 * that usually, but some bad designed PV devices (vmware 11058 * backdoor interface) need this to work 11059 */ 11060 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11061 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11062 } 11063 regs->rax = kvm_rax_read(vcpu); 11064 regs->rbx = kvm_rbx_read(vcpu); 11065 regs->rcx = kvm_rcx_read(vcpu); 11066 regs->rdx = kvm_rdx_read(vcpu); 11067 regs->rsi = kvm_rsi_read(vcpu); 11068 regs->rdi = kvm_rdi_read(vcpu); 11069 regs->rsp = kvm_rsp_read(vcpu); 11070 regs->rbp = kvm_rbp_read(vcpu); 11071 #ifdef CONFIG_X86_64 11072 regs->r8 = kvm_r8_read(vcpu); 11073 regs->r9 = kvm_r9_read(vcpu); 11074 regs->r10 = kvm_r10_read(vcpu); 11075 regs->r11 = kvm_r11_read(vcpu); 11076 regs->r12 = kvm_r12_read(vcpu); 11077 regs->r13 = kvm_r13_read(vcpu); 11078 regs->r14 = kvm_r14_read(vcpu); 11079 regs->r15 = kvm_r15_read(vcpu); 11080 #endif 11081 11082 regs->rip = kvm_rip_read(vcpu); 11083 regs->rflags = kvm_get_rflags(vcpu); 11084 } 11085 11086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11087 { 11088 vcpu_load(vcpu); 11089 __get_regs(vcpu, regs); 11090 vcpu_put(vcpu); 11091 return 0; 11092 } 11093 11094 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11095 { 11096 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11097 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11098 11099 kvm_rax_write(vcpu, regs->rax); 11100 kvm_rbx_write(vcpu, regs->rbx); 11101 kvm_rcx_write(vcpu, regs->rcx); 11102 kvm_rdx_write(vcpu, regs->rdx); 11103 kvm_rsi_write(vcpu, regs->rsi); 11104 kvm_rdi_write(vcpu, regs->rdi); 11105 kvm_rsp_write(vcpu, regs->rsp); 11106 kvm_rbp_write(vcpu, regs->rbp); 11107 #ifdef CONFIG_X86_64 11108 kvm_r8_write(vcpu, regs->r8); 11109 kvm_r9_write(vcpu, regs->r9); 11110 kvm_r10_write(vcpu, regs->r10); 11111 kvm_r11_write(vcpu, regs->r11); 11112 kvm_r12_write(vcpu, regs->r12); 11113 kvm_r13_write(vcpu, regs->r13); 11114 kvm_r14_write(vcpu, regs->r14); 11115 kvm_r15_write(vcpu, regs->r15); 11116 #endif 11117 11118 kvm_rip_write(vcpu, regs->rip); 11119 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11120 11121 vcpu->arch.exception.pending = false; 11122 vcpu->arch.exception_vmexit.pending = false; 11123 11124 kvm_make_request(KVM_REQ_EVENT, vcpu); 11125 } 11126 11127 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11128 { 11129 vcpu_load(vcpu); 11130 __set_regs(vcpu, regs); 11131 vcpu_put(vcpu); 11132 return 0; 11133 } 11134 11135 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11136 { 11137 struct desc_ptr dt; 11138 11139 if (vcpu->arch.guest_state_protected) 11140 goto skip_protected_regs; 11141 11142 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11143 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11144 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11145 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11146 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11147 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11148 11149 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11150 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11151 11152 static_call(kvm_x86_get_idt)(vcpu, &dt); 11153 sregs->idt.limit = dt.size; 11154 sregs->idt.base = dt.address; 11155 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11156 sregs->gdt.limit = dt.size; 11157 sregs->gdt.base = dt.address; 11158 11159 sregs->cr2 = vcpu->arch.cr2; 11160 sregs->cr3 = kvm_read_cr3(vcpu); 11161 11162 skip_protected_regs: 11163 sregs->cr0 = kvm_read_cr0(vcpu); 11164 sregs->cr4 = kvm_read_cr4(vcpu); 11165 sregs->cr8 = kvm_get_cr8(vcpu); 11166 sregs->efer = vcpu->arch.efer; 11167 sregs->apic_base = kvm_get_apic_base(vcpu); 11168 } 11169 11170 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11171 { 11172 __get_sregs_common(vcpu, sregs); 11173 11174 if (vcpu->arch.guest_state_protected) 11175 return; 11176 11177 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11178 set_bit(vcpu->arch.interrupt.nr, 11179 (unsigned long *)sregs->interrupt_bitmap); 11180 } 11181 11182 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11183 { 11184 int i; 11185 11186 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11187 11188 if (vcpu->arch.guest_state_protected) 11189 return; 11190 11191 if (is_pae_paging(vcpu)) { 11192 for (i = 0 ; i < 4 ; i++) 11193 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11194 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11195 } 11196 } 11197 11198 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11199 struct kvm_sregs *sregs) 11200 { 11201 vcpu_load(vcpu); 11202 __get_sregs(vcpu, sregs); 11203 vcpu_put(vcpu); 11204 return 0; 11205 } 11206 11207 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11208 struct kvm_mp_state *mp_state) 11209 { 11210 int r; 11211 11212 vcpu_load(vcpu); 11213 if (kvm_mpx_supported()) 11214 kvm_load_guest_fpu(vcpu); 11215 11216 r = kvm_apic_accept_events(vcpu); 11217 if (r < 0) 11218 goto out; 11219 r = 0; 11220 11221 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11222 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11223 vcpu->arch.pv.pv_unhalted) 11224 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11225 else 11226 mp_state->mp_state = vcpu->arch.mp_state; 11227 11228 out: 11229 if (kvm_mpx_supported()) 11230 kvm_put_guest_fpu(vcpu); 11231 vcpu_put(vcpu); 11232 return r; 11233 } 11234 11235 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11236 struct kvm_mp_state *mp_state) 11237 { 11238 int ret = -EINVAL; 11239 11240 vcpu_load(vcpu); 11241 11242 switch (mp_state->mp_state) { 11243 case KVM_MP_STATE_UNINITIALIZED: 11244 case KVM_MP_STATE_HALTED: 11245 case KVM_MP_STATE_AP_RESET_HOLD: 11246 case KVM_MP_STATE_INIT_RECEIVED: 11247 case KVM_MP_STATE_SIPI_RECEIVED: 11248 if (!lapic_in_kernel(vcpu)) 11249 goto out; 11250 break; 11251 11252 case KVM_MP_STATE_RUNNABLE: 11253 break; 11254 11255 default: 11256 goto out; 11257 } 11258 11259 /* 11260 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11261 * forcing the guest into INIT/SIPI if those events are supposed to be 11262 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11263 * if an SMI is pending as well. 11264 */ 11265 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11266 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11267 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11268 goto out; 11269 11270 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11271 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11272 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11273 } else 11274 vcpu->arch.mp_state = mp_state->mp_state; 11275 kvm_make_request(KVM_REQ_EVENT, vcpu); 11276 11277 ret = 0; 11278 out: 11279 vcpu_put(vcpu); 11280 return ret; 11281 } 11282 11283 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11284 int reason, bool has_error_code, u32 error_code) 11285 { 11286 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11287 int ret; 11288 11289 init_emulate_ctxt(vcpu); 11290 11291 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11292 has_error_code, error_code); 11293 if (ret) { 11294 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11295 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11296 vcpu->run->internal.ndata = 0; 11297 return 0; 11298 } 11299 11300 kvm_rip_write(vcpu, ctxt->eip); 11301 kvm_set_rflags(vcpu, ctxt->eflags); 11302 return 1; 11303 } 11304 EXPORT_SYMBOL_GPL(kvm_task_switch); 11305 11306 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11307 { 11308 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11309 /* 11310 * When EFER.LME and CR0.PG are set, the processor is in 11311 * 64-bit mode (though maybe in a 32-bit code segment). 11312 * CR4.PAE and EFER.LMA must be set. 11313 */ 11314 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11315 return false; 11316 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11317 return false; 11318 } else { 11319 /* 11320 * Not in 64-bit mode: EFER.LMA is clear and the code 11321 * segment cannot be 64-bit. 11322 */ 11323 if (sregs->efer & EFER_LMA || sregs->cs.l) 11324 return false; 11325 } 11326 11327 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11328 } 11329 11330 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11331 int *mmu_reset_needed, bool update_pdptrs) 11332 { 11333 struct msr_data apic_base_msr; 11334 int idx; 11335 struct desc_ptr dt; 11336 11337 if (!kvm_is_valid_sregs(vcpu, sregs)) 11338 return -EINVAL; 11339 11340 apic_base_msr.data = sregs->apic_base; 11341 apic_base_msr.host_initiated = true; 11342 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11343 return -EINVAL; 11344 11345 if (vcpu->arch.guest_state_protected) 11346 return 0; 11347 11348 dt.size = sregs->idt.limit; 11349 dt.address = sregs->idt.base; 11350 static_call(kvm_x86_set_idt)(vcpu, &dt); 11351 dt.size = sregs->gdt.limit; 11352 dt.address = sregs->gdt.base; 11353 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11354 11355 vcpu->arch.cr2 = sregs->cr2; 11356 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11357 vcpu->arch.cr3 = sregs->cr3; 11358 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11359 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11360 11361 kvm_set_cr8(vcpu, sregs->cr8); 11362 11363 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11364 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11365 11366 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11367 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11368 vcpu->arch.cr0 = sregs->cr0; 11369 11370 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11371 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11372 11373 if (update_pdptrs) { 11374 idx = srcu_read_lock(&vcpu->kvm->srcu); 11375 if (is_pae_paging(vcpu)) { 11376 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11377 *mmu_reset_needed = 1; 11378 } 11379 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11380 } 11381 11382 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11383 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11384 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11385 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11386 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11387 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11388 11389 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11390 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11391 11392 update_cr8_intercept(vcpu); 11393 11394 /* Older userspace won't unhalt the vcpu on reset. */ 11395 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11396 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11397 !is_protmode(vcpu)) 11398 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11399 11400 return 0; 11401 } 11402 11403 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11404 { 11405 int pending_vec, max_bits; 11406 int mmu_reset_needed = 0; 11407 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11408 11409 if (ret) 11410 return ret; 11411 11412 if (mmu_reset_needed) 11413 kvm_mmu_reset_context(vcpu); 11414 11415 max_bits = KVM_NR_INTERRUPTS; 11416 pending_vec = find_first_bit( 11417 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11418 11419 if (pending_vec < max_bits) { 11420 kvm_queue_interrupt(vcpu, pending_vec, false); 11421 pr_debug("Set back pending irq %d\n", pending_vec); 11422 kvm_make_request(KVM_REQ_EVENT, vcpu); 11423 } 11424 return 0; 11425 } 11426 11427 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11428 { 11429 int mmu_reset_needed = 0; 11430 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11431 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11432 !(sregs2->efer & EFER_LMA); 11433 int i, ret; 11434 11435 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11436 return -EINVAL; 11437 11438 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11439 return -EINVAL; 11440 11441 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11442 &mmu_reset_needed, !valid_pdptrs); 11443 if (ret) 11444 return ret; 11445 11446 if (valid_pdptrs) { 11447 for (i = 0; i < 4 ; i++) 11448 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11449 11450 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11451 mmu_reset_needed = 1; 11452 vcpu->arch.pdptrs_from_userspace = true; 11453 } 11454 if (mmu_reset_needed) 11455 kvm_mmu_reset_context(vcpu); 11456 return 0; 11457 } 11458 11459 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11460 struct kvm_sregs *sregs) 11461 { 11462 int ret; 11463 11464 vcpu_load(vcpu); 11465 ret = __set_sregs(vcpu, sregs); 11466 vcpu_put(vcpu); 11467 return ret; 11468 } 11469 11470 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11471 { 11472 bool set = false; 11473 struct kvm_vcpu *vcpu; 11474 unsigned long i; 11475 11476 if (!enable_apicv) 11477 return; 11478 11479 down_write(&kvm->arch.apicv_update_lock); 11480 11481 kvm_for_each_vcpu(i, vcpu, kvm) { 11482 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11483 set = true; 11484 break; 11485 } 11486 } 11487 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11488 up_write(&kvm->arch.apicv_update_lock); 11489 } 11490 11491 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11492 struct kvm_guest_debug *dbg) 11493 { 11494 unsigned long rflags; 11495 int i, r; 11496 11497 if (vcpu->arch.guest_state_protected) 11498 return -EINVAL; 11499 11500 vcpu_load(vcpu); 11501 11502 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11503 r = -EBUSY; 11504 if (kvm_is_exception_pending(vcpu)) 11505 goto out; 11506 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11507 kvm_queue_exception(vcpu, DB_VECTOR); 11508 else 11509 kvm_queue_exception(vcpu, BP_VECTOR); 11510 } 11511 11512 /* 11513 * Read rflags as long as potentially injected trace flags are still 11514 * filtered out. 11515 */ 11516 rflags = kvm_get_rflags(vcpu); 11517 11518 vcpu->guest_debug = dbg->control; 11519 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11520 vcpu->guest_debug = 0; 11521 11522 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11523 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11524 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11525 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11526 } else { 11527 for (i = 0; i < KVM_NR_DB_REGS; i++) 11528 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11529 } 11530 kvm_update_dr7(vcpu); 11531 11532 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11533 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11534 11535 /* 11536 * Trigger an rflags update that will inject or remove the trace 11537 * flags. 11538 */ 11539 kvm_set_rflags(vcpu, rflags); 11540 11541 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11542 11543 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11544 11545 r = 0; 11546 11547 out: 11548 vcpu_put(vcpu); 11549 return r; 11550 } 11551 11552 /* 11553 * Translate a guest virtual address to a guest physical address. 11554 */ 11555 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11556 struct kvm_translation *tr) 11557 { 11558 unsigned long vaddr = tr->linear_address; 11559 gpa_t gpa; 11560 int idx; 11561 11562 vcpu_load(vcpu); 11563 11564 idx = srcu_read_lock(&vcpu->kvm->srcu); 11565 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11566 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11567 tr->physical_address = gpa; 11568 tr->valid = gpa != INVALID_GPA; 11569 tr->writeable = 1; 11570 tr->usermode = 0; 11571 11572 vcpu_put(vcpu); 11573 return 0; 11574 } 11575 11576 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11577 { 11578 struct fxregs_state *fxsave; 11579 11580 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11581 return 0; 11582 11583 vcpu_load(vcpu); 11584 11585 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11586 memcpy(fpu->fpr, fxsave->st_space, 128); 11587 fpu->fcw = fxsave->cwd; 11588 fpu->fsw = fxsave->swd; 11589 fpu->ftwx = fxsave->twd; 11590 fpu->last_opcode = fxsave->fop; 11591 fpu->last_ip = fxsave->rip; 11592 fpu->last_dp = fxsave->rdp; 11593 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11594 11595 vcpu_put(vcpu); 11596 return 0; 11597 } 11598 11599 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11600 { 11601 struct fxregs_state *fxsave; 11602 11603 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11604 return 0; 11605 11606 vcpu_load(vcpu); 11607 11608 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11609 11610 memcpy(fxsave->st_space, fpu->fpr, 128); 11611 fxsave->cwd = fpu->fcw; 11612 fxsave->swd = fpu->fsw; 11613 fxsave->twd = fpu->ftwx; 11614 fxsave->fop = fpu->last_opcode; 11615 fxsave->rip = fpu->last_ip; 11616 fxsave->rdp = fpu->last_dp; 11617 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11618 11619 vcpu_put(vcpu); 11620 return 0; 11621 } 11622 11623 static void store_regs(struct kvm_vcpu *vcpu) 11624 { 11625 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11626 11627 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11628 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11629 11630 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11631 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11632 11633 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11634 kvm_vcpu_ioctl_x86_get_vcpu_events( 11635 vcpu, &vcpu->run->s.regs.events); 11636 } 11637 11638 static int sync_regs(struct kvm_vcpu *vcpu) 11639 { 11640 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11641 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11642 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11643 } 11644 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11645 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11646 return -EINVAL; 11647 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11648 } 11649 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11650 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11651 vcpu, &vcpu->run->s.regs.events)) 11652 return -EINVAL; 11653 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11654 } 11655 11656 return 0; 11657 } 11658 11659 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11660 { 11661 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11662 pr_warn_once("SMP vm created on host with unstable TSC; " 11663 "guest TSC will not be reliable\n"); 11664 11665 if (!kvm->arch.max_vcpu_ids) 11666 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11667 11668 if (id >= kvm->arch.max_vcpu_ids) 11669 return -EINVAL; 11670 11671 return static_call(kvm_x86_vcpu_precreate)(kvm); 11672 } 11673 11674 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11675 { 11676 struct page *page; 11677 int r; 11678 11679 vcpu->arch.last_vmentry_cpu = -1; 11680 vcpu->arch.regs_avail = ~0; 11681 vcpu->arch.regs_dirty = ~0; 11682 11683 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11684 11685 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11686 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11687 else 11688 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11689 11690 r = kvm_mmu_create(vcpu); 11691 if (r < 0) 11692 return r; 11693 11694 if (irqchip_in_kernel(vcpu->kvm)) { 11695 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11696 if (r < 0) 11697 goto fail_mmu_destroy; 11698 11699 /* 11700 * Defer evaluating inhibits until the vCPU is first run, as 11701 * this vCPU will not get notified of any changes until this 11702 * vCPU is visible to other vCPUs (marked online and added to 11703 * the set of vCPUs). Opportunistically mark APICv active as 11704 * VMX in particularly is highly unlikely to have inhibits. 11705 * Ignore the current per-VM APICv state so that vCPU creation 11706 * is guaranteed to run with a deterministic value, the request 11707 * will ensure the vCPU gets the correct state before VM-Entry. 11708 */ 11709 if (enable_apicv) { 11710 vcpu->arch.apic->apicv_active = true; 11711 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11712 } 11713 } else 11714 static_branch_inc(&kvm_has_noapic_vcpu); 11715 11716 r = -ENOMEM; 11717 11718 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11719 if (!page) 11720 goto fail_free_lapic; 11721 vcpu->arch.pio_data = page_address(page); 11722 11723 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11724 GFP_KERNEL_ACCOUNT); 11725 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11726 GFP_KERNEL_ACCOUNT); 11727 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11728 goto fail_free_mce_banks; 11729 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11730 11731 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11732 GFP_KERNEL_ACCOUNT)) 11733 goto fail_free_mce_banks; 11734 11735 if (!alloc_emulate_ctxt(vcpu)) 11736 goto free_wbinvd_dirty_mask; 11737 11738 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11739 pr_err("failed to allocate vcpu's fpu\n"); 11740 goto free_emulate_ctxt; 11741 } 11742 11743 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11744 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11745 11746 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11747 11748 kvm_async_pf_hash_reset(vcpu); 11749 11750 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11751 kvm_pmu_init(vcpu); 11752 11753 vcpu->arch.pending_external_vector = -1; 11754 vcpu->arch.preempted_in_kernel = false; 11755 11756 #if IS_ENABLED(CONFIG_HYPERV) 11757 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11758 #endif 11759 11760 r = static_call(kvm_x86_vcpu_create)(vcpu); 11761 if (r) 11762 goto free_guest_fpu; 11763 11764 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11765 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11766 kvm_xen_init_vcpu(vcpu); 11767 kvm_vcpu_mtrr_init(vcpu); 11768 vcpu_load(vcpu); 11769 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11770 kvm_vcpu_reset(vcpu, false); 11771 kvm_init_mmu(vcpu); 11772 vcpu_put(vcpu); 11773 return 0; 11774 11775 free_guest_fpu: 11776 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11777 free_emulate_ctxt: 11778 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11779 free_wbinvd_dirty_mask: 11780 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11781 fail_free_mce_banks: 11782 kfree(vcpu->arch.mce_banks); 11783 kfree(vcpu->arch.mci_ctl2_banks); 11784 free_page((unsigned long)vcpu->arch.pio_data); 11785 fail_free_lapic: 11786 kvm_free_lapic(vcpu); 11787 fail_mmu_destroy: 11788 kvm_mmu_destroy(vcpu); 11789 return r; 11790 } 11791 11792 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11793 { 11794 struct kvm *kvm = vcpu->kvm; 11795 11796 if (mutex_lock_killable(&vcpu->mutex)) 11797 return; 11798 vcpu_load(vcpu); 11799 kvm_synchronize_tsc(vcpu, 0); 11800 vcpu_put(vcpu); 11801 11802 /* poll control enabled by default */ 11803 vcpu->arch.msr_kvm_poll_control = 1; 11804 11805 mutex_unlock(&vcpu->mutex); 11806 11807 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11808 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11809 KVMCLOCK_SYNC_PERIOD); 11810 } 11811 11812 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11813 { 11814 int idx; 11815 11816 kvmclock_reset(vcpu); 11817 11818 static_call(kvm_x86_vcpu_free)(vcpu); 11819 11820 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11821 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11822 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11823 11824 kvm_xen_destroy_vcpu(vcpu); 11825 kvm_hv_vcpu_uninit(vcpu); 11826 kvm_pmu_destroy(vcpu); 11827 kfree(vcpu->arch.mce_banks); 11828 kfree(vcpu->arch.mci_ctl2_banks); 11829 kvm_free_lapic(vcpu); 11830 idx = srcu_read_lock(&vcpu->kvm->srcu); 11831 kvm_mmu_destroy(vcpu); 11832 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11833 free_page((unsigned long)vcpu->arch.pio_data); 11834 kvfree(vcpu->arch.cpuid_entries); 11835 if (!lapic_in_kernel(vcpu)) 11836 static_branch_dec(&kvm_has_noapic_vcpu); 11837 } 11838 11839 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11840 { 11841 struct kvm_cpuid_entry2 *cpuid_0x1; 11842 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11843 unsigned long new_cr0; 11844 11845 /* 11846 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11847 * to handle side effects. RESET emulation hits those flows and relies 11848 * on emulated/virtualized registers, including those that are loaded 11849 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11850 * to detect improper or missing initialization. 11851 */ 11852 WARN_ON_ONCE(!init_event && 11853 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11854 11855 /* 11856 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11857 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11858 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11859 * bits), i.e. virtualization is disabled. 11860 */ 11861 if (is_guest_mode(vcpu)) 11862 kvm_leave_nested(vcpu); 11863 11864 kvm_lapic_reset(vcpu, init_event); 11865 11866 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11867 vcpu->arch.hflags = 0; 11868 11869 vcpu->arch.smi_pending = 0; 11870 vcpu->arch.smi_count = 0; 11871 atomic_set(&vcpu->arch.nmi_queued, 0); 11872 vcpu->arch.nmi_pending = 0; 11873 vcpu->arch.nmi_injected = false; 11874 kvm_clear_interrupt_queue(vcpu); 11875 kvm_clear_exception_queue(vcpu); 11876 11877 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11878 kvm_update_dr0123(vcpu); 11879 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11880 vcpu->arch.dr7 = DR7_FIXED_1; 11881 kvm_update_dr7(vcpu); 11882 11883 vcpu->arch.cr2 = 0; 11884 11885 kvm_make_request(KVM_REQ_EVENT, vcpu); 11886 vcpu->arch.apf.msr_en_val = 0; 11887 vcpu->arch.apf.msr_int_val = 0; 11888 vcpu->arch.st.msr_val = 0; 11889 11890 kvmclock_reset(vcpu); 11891 11892 kvm_clear_async_pf_completion_queue(vcpu); 11893 kvm_async_pf_hash_reset(vcpu); 11894 vcpu->arch.apf.halted = false; 11895 11896 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11897 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11898 11899 /* 11900 * All paths that lead to INIT are required to load the guest's 11901 * FPU state (because most paths are buried in KVM_RUN). 11902 */ 11903 if (init_event) 11904 kvm_put_guest_fpu(vcpu); 11905 11906 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11907 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11908 11909 if (init_event) 11910 kvm_load_guest_fpu(vcpu); 11911 } 11912 11913 if (!init_event) { 11914 kvm_pmu_reset(vcpu); 11915 vcpu->arch.smbase = 0x30000; 11916 11917 vcpu->arch.msr_misc_features_enables = 0; 11918 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11919 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11920 11921 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11922 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11923 } 11924 11925 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11926 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11927 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11928 11929 /* 11930 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11931 * if no CPUID match is found. Note, it's impossible to get a match at 11932 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11933 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11934 * on RESET. But, go through the motions in case that's ever remedied. 11935 */ 11936 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11937 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11938 11939 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11940 11941 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11942 kvm_rip_write(vcpu, 0xfff0); 11943 11944 vcpu->arch.cr3 = 0; 11945 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11946 11947 /* 11948 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11949 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11950 * (or qualify) that with a footnote stating that CD/NW are preserved. 11951 */ 11952 new_cr0 = X86_CR0_ET; 11953 if (init_event) 11954 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11955 else 11956 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11957 11958 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11959 static_call(kvm_x86_set_cr4)(vcpu, 0); 11960 static_call(kvm_x86_set_efer)(vcpu, 0); 11961 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11962 11963 /* 11964 * On the standard CR0/CR4/EFER modification paths, there are several 11965 * complex conditions determining whether the MMU has to be reset and/or 11966 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11967 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11968 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11969 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11970 */ 11971 if (old_cr0 & X86_CR0_PG) { 11972 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11973 kvm_mmu_reset_context(vcpu); 11974 } 11975 11976 /* 11977 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11978 * APM states the TLBs are untouched by INIT, but it also states that 11979 * the TLBs are flushed on "External initialization of the processor." 11980 * Flush the guest TLB regardless of vendor, there is no meaningful 11981 * benefit in relying on the guest to flush the TLB immediately after 11982 * INIT. A spurious TLB flush is benign and likely negligible from a 11983 * performance perspective. 11984 */ 11985 if (init_event) 11986 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11987 } 11988 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11989 11990 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11991 { 11992 struct kvm_segment cs; 11993 11994 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11995 cs.selector = vector << 8; 11996 cs.base = vector << 12; 11997 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11998 kvm_rip_write(vcpu, 0); 11999 } 12000 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12001 12002 int kvm_arch_hardware_enable(void) 12003 { 12004 struct kvm *kvm; 12005 struct kvm_vcpu *vcpu; 12006 unsigned long i; 12007 int ret; 12008 u64 local_tsc; 12009 u64 max_tsc = 0; 12010 bool stable, backwards_tsc = false; 12011 12012 kvm_user_return_msr_cpu_online(); 12013 12014 ret = kvm_x86_check_processor_compatibility(); 12015 if (ret) 12016 return ret; 12017 12018 ret = static_call(kvm_x86_hardware_enable)(); 12019 if (ret != 0) 12020 return ret; 12021 12022 local_tsc = rdtsc(); 12023 stable = !kvm_check_tsc_unstable(); 12024 list_for_each_entry(kvm, &vm_list, vm_list) { 12025 kvm_for_each_vcpu(i, vcpu, kvm) { 12026 if (!stable && vcpu->cpu == smp_processor_id()) 12027 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12028 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12029 backwards_tsc = true; 12030 if (vcpu->arch.last_host_tsc > max_tsc) 12031 max_tsc = vcpu->arch.last_host_tsc; 12032 } 12033 } 12034 } 12035 12036 /* 12037 * Sometimes, even reliable TSCs go backwards. This happens on 12038 * platforms that reset TSC during suspend or hibernate actions, but 12039 * maintain synchronization. We must compensate. Fortunately, we can 12040 * detect that condition here, which happens early in CPU bringup, 12041 * before any KVM threads can be running. Unfortunately, we can't 12042 * bring the TSCs fully up to date with real time, as we aren't yet far 12043 * enough into CPU bringup that we know how much real time has actually 12044 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12045 * variables that haven't been updated yet. 12046 * 12047 * So we simply find the maximum observed TSC above, then record the 12048 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12049 * the adjustment will be applied. Note that we accumulate 12050 * adjustments, in case multiple suspend cycles happen before some VCPU 12051 * gets a chance to run again. In the event that no KVM threads get a 12052 * chance to run, we will miss the entire elapsed period, as we'll have 12053 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12054 * loose cycle time. This isn't too big a deal, since the loss will be 12055 * uniform across all VCPUs (not to mention the scenario is extremely 12056 * unlikely). It is possible that a second hibernate recovery happens 12057 * much faster than a first, causing the observed TSC here to be 12058 * smaller; this would require additional padding adjustment, which is 12059 * why we set last_host_tsc to the local tsc observed here. 12060 * 12061 * N.B. - this code below runs only on platforms with reliable TSC, 12062 * as that is the only way backwards_tsc is set above. Also note 12063 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12064 * have the same delta_cyc adjustment applied if backwards_tsc 12065 * is detected. Note further, this adjustment is only done once, 12066 * as we reset last_host_tsc on all VCPUs to stop this from being 12067 * called multiple times (one for each physical CPU bringup). 12068 * 12069 * Platforms with unreliable TSCs don't have to deal with this, they 12070 * will be compensated by the logic in vcpu_load, which sets the TSC to 12071 * catchup mode. This will catchup all VCPUs to real time, but cannot 12072 * guarantee that they stay in perfect synchronization. 12073 */ 12074 if (backwards_tsc) { 12075 u64 delta_cyc = max_tsc - local_tsc; 12076 list_for_each_entry(kvm, &vm_list, vm_list) { 12077 kvm->arch.backwards_tsc_observed = true; 12078 kvm_for_each_vcpu(i, vcpu, kvm) { 12079 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12080 vcpu->arch.last_host_tsc = local_tsc; 12081 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12082 } 12083 12084 /* 12085 * We have to disable TSC offset matching.. if you were 12086 * booting a VM while issuing an S4 host suspend.... 12087 * you may have some problem. Solving this issue is 12088 * left as an exercise to the reader. 12089 */ 12090 kvm->arch.last_tsc_nsec = 0; 12091 kvm->arch.last_tsc_write = 0; 12092 } 12093 12094 } 12095 return 0; 12096 } 12097 12098 void kvm_arch_hardware_disable(void) 12099 { 12100 static_call(kvm_x86_hardware_disable)(); 12101 drop_user_return_notifiers(); 12102 } 12103 12104 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12105 { 12106 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12107 } 12108 12109 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12110 { 12111 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12112 } 12113 12114 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12115 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12116 12117 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12118 { 12119 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12120 12121 vcpu->arch.l1tf_flush_l1d = true; 12122 if (pmu->version && unlikely(pmu->event_count)) { 12123 pmu->need_cleanup = true; 12124 kvm_make_request(KVM_REQ_PMU, vcpu); 12125 } 12126 static_call(kvm_x86_sched_in)(vcpu, cpu); 12127 } 12128 12129 void kvm_arch_free_vm(struct kvm *kvm) 12130 { 12131 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12132 __kvm_arch_free_vm(kvm); 12133 } 12134 12135 12136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12137 { 12138 int ret; 12139 unsigned long flags; 12140 12141 if (type) 12142 return -EINVAL; 12143 12144 ret = kvm_page_track_init(kvm); 12145 if (ret) 12146 goto out; 12147 12148 ret = kvm_mmu_init_vm(kvm); 12149 if (ret) 12150 goto out_page_track; 12151 12152 ret = static_call(kvm_x86_vm_init)(kvm); 12153 if (ret) 12154 goto out_uninit_mmu; 12155 12156 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12157 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12158 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12159 12160 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12161 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12162 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12163 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12164 &kvm->arch.irq_sources_bitmap); 12165 12166 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12167 mutex_init(&kvm->arch.apic_map_lock); 12168 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12169 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12170 12171 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12172 pvclock_update_vm_gtod_copy(kvm); 12173 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12174 12175 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12176 kvm->arch.guest_can_read_msr_platform_info = true; 12177 kvm->arch.enable_pmu = enable_pmu; 12178 12179 #if IS_ENABLED(CONFIG_HYPERV) 12180 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12181 kvm->arch.hv_root_tdp = INVALID_PAGE; 12182 #endif 12183 12184 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12185 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12186 12187 kvm_apicv_init(kvm); 12188 kvm_hv_init_vm(kvm); 12189 kvm_xen_init_vm(kvm); 12190 12191 return 0; 12192 12193 out_uninit_mmu: 12194 kvm_mmu_uninit_vm(kvm); 12195 out_page_track: 12196 kvm_page_track_cleanup(kvm); 12197 out: 12198 return ret; 12199 } 12200 12201 int kvm_arch_post_init_vm(struct kvm *kvm) 12202 { 12203 return kvm_mmu_post_init_vm(kvm); 12204 } 12205 12206 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12207 { 12208 vcpu_load(vcpu); 12209 kvm_mmu_unload(vcpu); 12210 vcpu_put(vcpu); 12211 } 12212 12213 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12214 { 12215 unsigned long i; 12216 struct kvm_vcpu *vcpu; 12217 12218 kvm_for_each_vcpu(i, vcpu, kvm) { 12219 kvm_clear_async_pf_completion_queue(vcpu); 12220 kvm_unload_vcpu_mmu(vcpu); 12221 } 12222 } 12223 12224 void kvm_arch_sync_events(struct kvm *kvm) 12225 { 12226 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12227 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12228 kvm_free_pit(kvm); 12229 } 12230 12231 /** 12232 * __x86_set_memory_region: Setup KVM internal memory slot 12233 * 12234 * @kvm: the kvm pointer to the VM. 12235 * @id: the slot ID to setup. 12236 * @gpa: the GPA to install the slot (unused when @size == 0). 12237 * @size: the size of the slot. Set to zero to uninstall a slot. 12238 * 12239 * This function helps to setup a KVM internal memory slot. Specify 12240 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12241 * slot. The return code can be one of the following: 12242 * 12243 * HVA: on success (uninstall will return a bogus HVA) 12244 * -errno: on error 12245 * 12246 * The caller should always use IS_ERR() to check the return value 12247 * before use. Note, the KVM internal memory slots are guaranteed to 12248 * remain valid and unchanged until the VM is destroyed, i.e., the 12249 * GPA->HVA translation will not change. However, the HVA is a user 12250 * address, i.e. its accessibility is not guaranteed, and must be 12251 * accessed via __copy_{to,from}_user(). 12252 */ 12253 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12254 u32 size) 12255 { 12256 int i, r; 12257 unsigned long hva, old_npages; 12258 struct kvm_memslots *slots = kvm_memslots(kvm); 12259 struct kvm_memory_slot *slot; 12260 12261 /* Called with kvm->slots_lock held. */ 12262 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12263 return ERR_PTR_USR(-EINVAL); 12264 12265 slot = id_to_memslot(slots, id); 12266 if (size) { 12267 if (slot && slot->npages) 12268 return ERR_PTR_USR(-EEXIST); 12269 12270 /* 12271 * MAP_SHARED to prevent internal slot pages from being moved 12272 * by fork()/COW. 12273 */ 12274 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12275 MAP_SHARED | MAP_ANONYMOUS, 0); 12276 if (IS_ERR((void *)hva)) 12277 return (void __user *)hva; 12278 } else { 12279 if (!slot || !slot->npages) 12280 return NULL; 12281 12282 old_npages = slot->npages; 12283 hva = slot->userspace_addr; 12284 } 12285 12286 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12287 struct kvm_userspace_memory_region m; 12288 12289 m.slot = id | (i << 16); 12290 m.flags = 0; 12291 m.guest_phys_addr = gpa; 12292 m.userspace_addr = hva; 12293 m.memory_size = size; 12294 r = __kvm_set_memory_region(kvm, &m); 12295 if (r < 0) 12296 return ERR_PTR_USR(r); 12297 } 12298 12299 if (!size) 12300 vm_munmap(hva, old_npages * PAGE_SIZE); 12301 12302 return (void __user *)hva; 12303 } 12304 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12305 12306 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12307 { 12308 kvm_mmu_pre_destroy_vm(kvm); 12309 } 12310 12311 void kvm_arch_destroy_vm(struct kvm *kvm) 12312 { 12313 if (current->mm == kvm->mm) { 12314 /* 12315 * Free memory regions allocated on behalf of userspace, 12316 * unless the memory map has changed due to process exit 12317 * or fd copying. 12318 */ 12319 mutex_lock(&kvm->slots_lock); 12320 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12321 0, 0); 12322 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12323 0, 0); 12324 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12325 mutex_unlock(&kvm->slots_lock); 12326 } 12327 kvm_unload_vcpu_mmus(kvm); 12328 static_call_cond(kvm_x86_vm_destroy)(kvm); 12329 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12330 kvm_pic_destroy(kvm); 12331 kvm_ioapic_destroy(kvm); 12332 kvm_destroy_vcpus(kvm); 12333 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12334 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12335 kvm_mmu_uninit_vm(kvm); 12336 kvm_page_track_cleanup(kvm); 12337 kvm_xen_destroy_vm(kvm); 12338 kvm_hv_destroy_vm(kvm); 12339 } 12340 12341 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12342 { 12343 int i; 12344 12345 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12346 kvfree(slot->arch.rmap[i]); 12347 slot->arch.rmap[i] = NULL; 12348 } 12349 } 12350 12351 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12352 { 12353 int i; 12354 12355 memslot_rmap_free(slot); 12356 12357 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12358 kvfree(slot->arch.lpage_info[i - 1]); 12359 slot->arch.lpage_info[i - 1] = NULL; 12360 } 12361 12362 kvm_page_track_free_memslot(slot); 12363 } 12364 12365 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12366 { 12367 const int sz = sizeof(*slot->arch.rmap[0]); 12368 int i; 12369 12370 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12371 int level = i + 1; 12372 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12373 12374 if (slot->arch.rmap[i]) 12375 continue; 12376 12377 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12378 if (!slot->arch.rmap[i]) { 12379 memslot_rmap_free(slot); 12380 return -ENOMEM; 12381 } 12382 } 12383 12384 return 0; 12385 } 12386 12387 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12388 struct kvm_memory_slot *slot) 12389 { 12390 unsigned long npages = slot->npages; 12391 int i, r; 12392 12393 /* 12394 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12395 * old arrays will be freed by __kvm_set_memory_region() if installing 12396 * the new memslot is successful. 12397 */ 12398 memset(&slot->arch, 0, sizeof(slot->arch)); 12399 12400 if (kvm_memslots_have_rmaps(kvm)) { 12401 r = memslot_rmap_alloc(slot, npages); 12402 if (r) 12403 return r; 12404 } 12405 12406 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12407 struct kvm_lpage_info *linfo; 12408 unsigned long ugfn; 12409 int lpages; 12410 int level = i + 1; 12411 12412 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12413 12414 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12415 if (!linfo) 12416 goto out_free; 12417 12418 slot->arch.lpage_info[i - 1] = linfo; 12419 12420 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12421 linfo[0].disallow_lpage = 1; 12422 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12423 linfo[lpages - 1].disallow_lpage = 1; 12424 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12425 /* 12426 * If the gfn and userspace address are not aligned wrt each 12427 * other, disable large page support for this slot. 12428 */ 12429 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12430 unsigned long j; 12431 12432 for (j = 0; j < lpages; ++j) 12433 linfo[j].disallow_lpage = 1; 12434 } 12435 } 12436 12437 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12438 goto out_free; 12439 12440 return 0; 12441 12442 out_free: 12443 memslot_rmap_free(slot); 12444 12445 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12446 kvfree(slot->arch.lpage_info[i - 1]); 12447 slot->arch.lpage_info[i - 1] = NULL; 12448 } 12449 return -ENOMEM; 12450 } 12451 12452 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12453 { 12454 struct kvm_vcpu *vcpu; 12455 unsigned long i; 12456 12457 /* 12458 * memslots->generation has been incremented. 12459 * mmio generation may have reached its maximum value. 12460 */ 12461 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12462 12463 /* Force re-initialization of steal_time cache */ 12464 kvm_for_each_vcpu(i, vcpu, kvm) 12465 kvm_vcpu_kick(vcpu); 12466 } 12467 12468 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12469 const struct kvm_memory_slot *old, 12470 struct kvm_memory_slot *new, 12471 enum kvm_mr_change change) 12472 { 12473 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12474 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12475 return -EINVAL; 12476 12477 return kvm_alloc_memslot_metadata(kvm, new); 12478 } 12479 12480 if (change == KVM_MR_FLAGS_ONLY) 12481 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12482 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12483 return -EIO; 12484 12485 return 0; 12486 } 12487 12488 12489 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12490 { 12491 int nr_slots; 12492 12493 if (!kvm_x86_ops.cpu_dirty_log_size) 12494 return; 12495 12496 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12497 if ((enable && nr_slots == 1) || !nr_slots) 12498 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12499 } 12500 12501 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12502 struct kvm_memory_slot *old, 12503 const struct kvm_memory_slot *new, 12504 enum kvm_mr_change change) 12505 { 12506 u32 old_flags = old ? old->flags : 0; 12507 u32 new_flags = new ? new->flags : 0; 12508 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12509 12510 /* 12511 * Update CPU dirty logging if dirty logging is being toggled. This 12512 * applies to all operations. 12513 */ 12514 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12515 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12516 12517 /* 12518 * Nothing more to do for RO slots (which can't be dirtied and can't be 12519 * made writable) or CREATE/MOVE/DELETE of a slot. 12520 * 12521 * For a memslot with dirty logging disabled: 12522 * CREATE: No dirty mappings will already exist. 12523 * MOVE/DELETE: The old mappings will already have been cleaned up by 12524 * kvm_arch_flush_shadow_memslot() 12525 * 12526 * For a memslot with dirty logging enabled: 12527 * CREATE: No shadow pages exist, thus nothing to write-protect 12528 * and no dirty bits to clear. 12529 * MOVE/DELETE: The old mappings will already have been cleaned up by 12530 * kvm_arch_flush_shadow_memslot(). 12531 */ 12532 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12533 return; 12534 12535 /* 12536 * READONLY and non-flags changes were filtered out above, and the only 12537 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12538 * logging isn't being toggled on or off. 12539 */ 12540 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12541 return; 12542 12543 if (!log_dirty_pages) { 12544 /* 12545 * Dirty logging tracks sptes in 4k granularity, meaning that 12546 * large sptes have to be split. If live migration succeeds, 12547 * the guest in the source machine will be destroyed and large 12548 * sptes will be created in the destination. However, if the 12549 * guest continues to run in the source machine (for example if 12550 * live migration fails), small sptes will remain around and 12551 * cause bad performance. 12552 * 12553 * Scan sptes if dirty logging has been stopped, dropping those 12554 * which can be collapsed into a single large-page spte. Later 12555 * page faults will create the large-page sptes. 12556 */ 12557 kvm_mmu_zap_collapsible_sptes(kvm, new); 12558 } else { 12559 /* 12560 * Initially-all-set does not require write protecting any page, 12561 * because they're all assumed to be dirty. 12562 */ 12563 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12564 return; 12565 12566 if (READ_ONCE(eager_page_split)) 12567 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12568 12569 if (kvm_x86_ops.cpu_dirty_log_size) { 12570 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12571 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12572 } else { 12573 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12574 } 12575 12576 /* 12577 * Unconditionally flush the TLBs after enabling dirty logging. 12578 * A flush is almost always going to be necessary (see below), 12579 * and unconditionally flushing allows the helpers to omit 12580 * the subtly complex checks when removing write access. 12581 * 12582 * Do the flush outside of mmu_lock to reduce the amount of 12583 * time mmu_lock is held. Flushing after dropping mmu_lock is 12584 * safe as KVM only needs to guarantee the slot is fully 12585 * write-protected before returning to userspace, i.e. before 12586 * userspace can consume the dirty status. 12587 * 12588 * Flushing outside of mmu_lock requires KVM to be careful when 12589 * making decisions based on writable status of an SPTE, e.g. a 12590 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12591 * 12592 * Specifically, KVM also write-protects guest page tables to 12593 * monitor changes when using shadow paging, and must guarantee 12594 * no CPUs can write to those page before mmu_lock is dropped. 12595 * Because CPUs may have stale TLB entries at this point, a 12596 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12597 * 12598 * KVM also allows making SPTES writable outside of mmu_lock, 12599 * e.g. to allow dirty logging without taking mmu_lock. 12600 * 12601 * To handle these scenarios, KVM uses a separate software-only 12602 * bit (MMU-writable) to track if a SPTE is !writable due to 12603 * a guest page table being write-protected (KVM clears the 12604 * MMU-writable flag when write-protecting for shadow paging). 12605 * 12606 * The use of MMU-writable is also the primary motivation for 12607 * the unconditional flush. Because KVM must guarantee that a 12608 * CPU doesn't contain stale, writable TLB entries for a 12609 * !MMU-writable SPTE, KVM must flush if it encounters any 12610 * MMU-writable SPTE regardless of whether the actual hardware 12611 * writable bit was set. I.e. KVM is almost guaranteed to need 12612 * to flush, while unconditionally flushing allows the "remove 12613 * write access" helpers to ignore MMU-writable entirely. 12614 * 12615 * See is_writable_pte() for more details (the case involving 12616 * access-tracked SPTEs is particularly relevant). 12617 */ 12618 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12619 } 12620 } 12621 12622 void kvm_arch_commit_memory_region(struct kvm *kvm, 12623 struct kvm_memory_slot *old, 12624 const struct kvm_memory_slot *new, 12625 enum kvm_mr_change change) 12626 { 12627 if (!kvm->arch.n_requested_mmu_pages && 12628 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12629 unsigned long nr_mmu_pages; 12630 12631 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12632 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12633 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12634 } 12635 12636 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12637 12638 /* Free the arrays associated with the old memslot. */ 12639 if (change == KVM_MR_MOVE) 12640 kvm_arch_free_memslot(kvm, old); 12641 } 12642 12643 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12644 { 12645 kvm_mmu_zap_all(kvm); 12646 } 12647 12648 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12649 struct kvm_memory_slot *slot) 12650 { 12651 kvm_page_track_flush_slot(kvm, slot); 12652 } 12653 12654 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12655 { 12656 return (is_guest_mode(vcpu) && 12657 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12658 } 12659 12660 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12661 { 12662 if (!list_empty_careful(&vcpu->async_pf.done)) 12663 return true; 12664 12665 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12666 kvm_apic_init_sipi_allowed(vcpu)) 12667 return true; 12668 12669 if (vcpu->arch.pv.pv_unhalted) 12670 return true; 12671 12672 if (kvm_is_exception_pending(vcpu)) 12673 return true; 12674 12675 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12676 (vcpu->arch.nmi_pending && 12677 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12678 return true; 12679 12680 #ifdef CONFIG_KVM_SMM 12681 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12682 (vcpu->arch.smi_pending && 12683 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12684 return true; 12685 #endif 12686 12687 if (kvm_arch_interrupt_allowed(vcpu) && 12688 (kvm_cpu_has_interrupt(vcpu) || 12689 kvm_guest_apic_has_interrupt(vcpu))) 12690 return true; 12691 12692 if (kvm_hv_has_stimer_pending(vcpu)) 12693 return true; 12694 12695 if (is_guest_mode(vcpu) && 12696 kvm_x86_ops.nested_ops->has_events && 12697 kvm_x86_ops.nested_ops->has_events(vcpu)) 12698 return true; 12699 12700 if (kvm_xen_has_pending_events(vcpu)) 12701 return true; 12702 12703 return false; 12704 } 12705 12706 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12707 { 12708 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12709 } 12710 12711 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12712 { 12713 if (kvm_vcpu_apicv_active(vcpu) && 12714 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12715 return true; 12716 12717 return false; 12718 } 12719 12720 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12721 { 12722 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12723 return true; 12724 12725 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12726 #ifdef CONFIG_KVM_SMM 12727 kvm_test_request(KVM_REQ_SMI, vcpu) || 12728 #endif 12729 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12730 return true; 12731 12732 return kvm_arch_dy_has_pending_interrupt(vcpu); 12733 } 12734 12735 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12736 { 12737 if (vcpu->arch.guest_state_protected) 12738 return true; 12739 12740 return vcpu->arch.preempted_in_kernel; 12741 } 12742 12743 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12744 { 12745 return kvm_rip_read(vcpu); 12746 } 12747 12748 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12749 { 12750 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12751 } 12752 12753 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12754 { 12755 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12756 } 12757 12758 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12759 { 12760 /* Can't read the RIP when guest state is protected, just return 0 */ 12761 if (vcpu->arch.guest_state_protected) 12762 return 0; 12763 12764 if (is_64_bit_mode(vcpu)) 12765 return kvm_rip_read(vcpu); 12766 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12767 kvm_rip_read(vcpu)); 12768 } 12769 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12770 12771 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12772 { 12773 return kvm_get_linear_rip(vcpu) == linear_rip; 12774 } 12775 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12776 12777 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12778 { 12779 unsigned long rflags; 12780 12781 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12782 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12783 rflags &= ~X86_EFLAGS_TF; 12784 return rflags; 12785 } 12786 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12787 12788 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12789 { 12790 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12791 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12792 rflags |= X86_EFLAGS_TF; 12793 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12794 } 12795 12796 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12797 { 12798 __kvm_set_rflags(vcpu, rflags); 12799 kvm_make_request(KVM_REQ_EVENT, vcpu); 12800 } 12801 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12802 12803 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12804 { 12805 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12806 12807 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12808 } 12809 12810 static inline u32 kvm_async_pf_next_probe(u32 key) 12811 { 12812 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12813 } 12814 12815 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12816 { 12817 u32 key = kvm_async_pf_hash_fn(gfn); 12818 12819 while (vcpu->arch.apf.gfns[key] != ~0) 12820 key = kvm_async_pf_next_probe(key); 12821 12822 vcpu->arch.apf.gfns[key] = gfn; 12823 } 12824 12825 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12826 { 12827 int i; 12828 u32 key = kvm_async_pf_hash_fn(gfn); 12829 12830 for (i = 0; i < ASYNC_PF_PER_VCPU && 12831 (vcpu->arch.apf.gfns[key] != gfn && 12832 vcpu->arch.apf.gfns[key] != ~0); i++) 12833 key = kvm_async_pf_next_probe(key); 12834 12835 return key; 12836 } 12837 12838 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12839 { 12840 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12841 } 12842 12843 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12844 { 12845 u32 i, j, k; 12846 12847 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12848 12849 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12850 return; 12851 12852 while (true) { 12853 vcpu->arch.apf.gfns[i] = ~0; 12854 do { 12855 j = kvm_async_pf_next_probe(j); 12856 if (vcpu->arch.apf.gfns[j] == ~0) 12857 return; 12858 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12859 /* 12860 * k lies cyclically in ]i,j] 12861 * | i.k.j | 12862 * |....j i.k.| or |.k..j i...| 12863 */ 12864 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12865 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12866 i = j; 12867 } 12868 } 12869 12870 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12871 { 12872 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12873 12874 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12875 sizeof(reason)); 12876 } 12877 12878 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12879 { 12880 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12881 12882 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12883 &token, offset, sizeof(token)); 12884 } 12885 12886 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12887 { 12888 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12889 u32 val; 12890 12891 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12892 &val, offset, sizeof(val))) 12893 return false; 12894 12895 return !val; 12896 } 12897 12898 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12899 { 12900 12901 if (!kvm_pv_async_pf_enabled(vcpu)) 12902 return false; 12903 12904 if (vcpu->arch.apf.send_user_only && 12905 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12906 return false; 12907 12908 if (is_guest_mode(vcpu)) { 12909 /* 12910 * L1 needs to opt into the special #PF vmexits that are 12911 * used to deliver async page faults. 12912 */ 12913 return vcpu->arch.apf.delivery_as_pf_vmexit; 12914 } else { 12915 /* 12916 * Play it safe in case the guest temporarily disables paging. 12917 * The real mode IDT in particular is unlikely to have a #PF 12918 * exception setup. 12919 */ 12920 return is_paging(vcpu); 12921 } 12922 } 12923 12924 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12925 { 12926 if (unlikely(!lapic_in_kernel(vcpu) || 12927 kvm_event_needs_reinjection(vcpu) || 12928 kvm_is_exception_pending(vcpu))) 12929 return false; 12930 12931 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12932 return false; 12933 12934 /* 12935 * If interrupts are off we cannot even use an artificial 12936 * halt state. 12937 */ 12938 return kvm_arch_interrupt_allowed(vcpu); 12939 } 12940 12941 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12942 struct kvm_async_pf *work) 12943 { 12944 struct x86_exception fault; 12945 12946 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12947 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12948 12949 if (kvm_can_deliver_async_pf(vcpu) && 12950 !apf_put_user_notpresent(vcpu)) { 12951 fault.vector = PF_VECTOR; 12952 fault.error_code_valid = true; 12953 fault.error_code = 0; 12954 fault.nested_page_fault = false; 12955 fault.address = work->arch.token; 12956 fault.async_page_fault = true; 12957 kvm_inject_page_fault(vcpu, &fault); 12958 return true; 12959 } else { 12960 /* 12961 * It is not possible to deliver a paravirtualized asynchronous 12962 * page fault, but putting the guest in an artificial halt state 12963 * can be beneficial nevertheless: if an interrupt arrives, we 12964 * can deliver it timely and perhaps the guest will schedule 12965 * another process. When the instruction that triggered a page 12966 * fault is retried, hopefully the page will be ready in the host. 12967 */ 12968 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12969 return false; 12970 } 12971 } 12972 12973 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12974 struct kvm_async_pf *work) 12975 { 12976 struct kvm_lapic_irq irq = { 12977 .delivery_mode = APIC_DM_FIXED, 12978 .vector = vcpu->arch.apf.vec 12979 }; 12980 12981 if (work->wakeup_all) 12982 work->arch.token = ~0; /* broadcast wakeup */ 12983 else 12984 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12985 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12986 12987 if ((work->wakeup_all || work->notpresent_injected) && 12988 kvm_pv_async_pf_enabled(vcpu) && 12989 !apf_put_user_ready(vcpu, work->arch.token)) { 12990 vcpu->arch.apf.pageready_pending = true; 12991 kvm_apic_set_irq(vcpu, &irq, NULL); 12992 } 12993 12994 vcpu->arch.apf.halted = false; 12995 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12996 } 12997 12998 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12999 { 13000 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13001 if (!vcpu->arch.apf.pageready_pending) 13002 kvm_vcpu_kick(vcpu); 13003 } 13004 13005 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13006 { 13007 if (!kvm_pv_async_pf_enabled(vcpu)) 13008 return true; 13009 else 13010 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13011 } 13012 13013 void kvm_arch_start_assignment(struct kvm *kvm) 13014 { 13015 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13016 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13017 } 13018 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13019 13020 void kvm_arch_end_assignment(struct kvm *kvm) 13021 { 13022 atomic_dec(&kvm->arch.assigned_device_count); 13023 } 13024 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13025 13026 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13027 { 13028 return arch_atomic_read(&kvm->arch.assigned_device_count); 13029 } 13030 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13031 13032 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13033 { 13034 atomic_inc(&kvm->arch.noncoherent_dma_count); 13035 } 13036 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13037 13038 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13039 { 13040 atomic_dec(&kvm->arch.noncoherent_dma_count); 13041 } 13042 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13043 13044 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13045 { 13046 return atomic_read(&kvm->arch.noncoherent_dma_count); 13047 } 13048 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13049 13050 bool kvm_arch_has_irq_bypass(void) 13051 { 13052 return true; 13053 } 13054 13055 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13056 struct irq_bypass_producer *prod) 13057 { 13058 struct kvm_kernel_irqfd *irqfd = 13059 container_of(cons, struct kvm_kernel_irqfd, consumer); 13060 int ret; 13061 13062 irqfd->producer = prod; 13063 kvm_arch_start_assignment(irqfd->kvm); 13064 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13065 prod->irq, irqfd->gsi, 1); 13066 13067 if (ret) 13068 kvm_arch_end_assignment(irqfd->kvm); 13069 13070 return ret; 13071 } 13072 13073 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13074 struct irq_bypass_producer *prod) 13075 { 13076 int ret; 13077 struct kvm_kernel_irqfd *irqfd = 13078 container_of(cons, struct kvm_kernel_irqfd, consumer); 13079 13080 WARN_ON(irqfd->producer != prod); 13081 irqfd->producer = NULL; 13082 13083 /* 13084 * When producer of consumer is unregistered, we change back to 13085 * remapped mode, so we can re-use the current implementation 13086 * when the irq is masked/disabled or the consumer side (KVM 13087 * int this case doesn't want to receive the interrupts. 13088 */ 13089 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13090 if (ret) 13091 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13092 " fails: %d\n", irqfd->consumer.token, ret); 13093 13094 kvm_arch_end_assignment(irqfd->kvm); 13095 } 13096 13097 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13098 uint32_t guest_irq, bool set) 13099 { 13100 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13101 } 13102 13103 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13104 struct kvm_kernel_irq_routing_entry *new) 13105 { 13106 if (new->type != KVM_IRQ_ROUTING_MSI) 13107 return true; 13108 13109 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13110 } 13111 13112 bool kvm_vector_hashing_enabled(void) 13113 { 13114 return vector_hashing; 13115 } 13116 13117 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13118 { 13119 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13120 } 13121 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13122 13123 13124 int kvm_spec_ctrl_test_value(u64 value) 13125 { 13126 /* 13127 * test that setting IA32_SPEC_CTRL to given value 13128 * is allowed by the host processor 13129 */ 13130 13131 u64 saved_value; 13132 unsigned long flags; 13133 int ret = 0; 13134 13135 local_irq_save(flags); 13136 13137 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13138 ret = 1; 13139 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13140 ret = 1; 13141 else 13142 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13143 13144 local_irq_restore(flags); 13145 13146 return ret; 13147 } 13148 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13149 13150 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13151 { 13152 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13153 struct x86_exception fault; 13154 u64 access = error_code & 13155 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13156 13157 if (!(error_code & PFERR_PRESENT_MASK) || 13158 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13159 /* 13160 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13161 * tables probably do not match the TLB. Just proceed 13162 * with the error code that the processor gave. 13163 */ 13164 fault.vector = PF_VECTOR; 13165 fault.error_code_valid = true; 13166 fault.error_code = error_code; 13167 fault.nested_page_fault = false; 13168 fault.address = gva; 13169 fault.async_page_fault = false; 13170 } 13171 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13172 } 13173 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13174 13175 /* 13176 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13177 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13178 * indicates whether exit to userspace is needed. 13179 */ 13180 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13181 struct x86_exception *e) 13182 { 13183 if (r == X86EMUL_PROPAGATE_FAULT) { 13184 if (KVM_BUG_ON(!e, vcpu->kvm)) 13185 return -EIO; 13186 13187 kvm_inject_emulated_page_fault(vcpu, e); 13188 return 1; 13189 } 13190 13191 /* 13192 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13193 * while handling a VMX instruction KVM could've handled the request 13194 * correctly by exiting to userspace and performing I/O but there 13195 * doesn't seem to be a real use-case behind such requests, just return 13196 * KVM_EXIT_INTERNAL_ERROR for now. 13197 */ 13198 kvm_prepare_emulation_failure_exit(vcpu); 13199 13200 return 0; 13201 } 13202 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13203 13204 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13205 { 13206 bool pcid_enabled; 13207 struct x86_exception e; 13208 struct { 13209 u64 pcid; 13210 u64 gla; 13211 } operand; 13212 int r; 13213 13214 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13215 if (r != X86EMUL_CONTINUE) 13216 return kvm_handle_memory_failure(vcpu, r, &e); 13217 13218 if (operand.pcid >> 12 != 0) { 13219 kvm_inject_gp(vcpu, 0); 13220 return 1; 13221 } 13222 13223 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13224 13225 switch (type) { 13226 case INVPCID_TYPE_INDIV_ADDR: 13227 if ((!pcid_enabled && (operand.pcid != 0)) || 13228 is_noncanonical_address(operand.gla, vcpu)) { 13229 kvm_inject_gp(vcpu, 0); 13230 return 1; 13231 } 13232 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13233 return kvm_skip_emulated_instruction(vcpu); 13234 13235 case INVPCID_TYPE_SINGLE_CTXT: 13236 if (!pcid_enabled && (operand.pcid != 0)) { 13237 kvm_inject_gp(vcpu, 0); 13238 return 1; 13239 } 13240 13241 kvm_invalidate_pcid(vcpu, operand.pcid); 13242 return kvm_skip_emulated_instruction(vcpu); 13243 13244 case INVPCID_TYPE_ALL_NON_GLOBAL: 13245 /* 13246 * Currently, KVM doesn't mark global entries in the shadow 13247 * page tables, so a non-global flush just degenerates to a 13248 * global flush. If needed, we could optimize this later by 13249 * keeping track of global entries in shadow page tables. 13250 */ 13251 13252 fallthrough; 13253 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13254 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13255 return kvm_skip_emulated_instruction(vcpu); 13256 13257 default: 13258 kvm_inject_gp(vcpu, 0); 13259 return 1; 13260 } 13261 } 13262 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13263 13264 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13265 { 13266 struct kvm_run *run = vcpu->run; 13267 struct kvm_mmio_fragment *frag; 13268 unsigned int len; 13269 13270 BUG_ON(!vcpu->mmio_needed); 13271 13272 /* Complete previous fragment */ 13273 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13274 len = min(8u, frag->len); 13275 if (!vcpu->mmio_is_write) 13276 memcpy(frag->data, run->mmio.data, len); 13277 13278 if (frag->len <= 8) { 13279 /* Switch to the next fragment. */ 13280 frag++; 13281 vcpu->mmio_cur_fragment++; 13282 } else { 13283 /* Go forward to the next mmio piece. */ 13284 frag->data += len; 13285 frag->gpa += len; 13286 frag->len -= len; 13287 } 13288 13289 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13290 vcpu->mmio_needed = 0; 13291 13292 // VMG change, at this point, we're always done 13293 // RIP has already been advanced 13294 return 1; 13295 } 13296 13297 // More MMIO is needed 13298 run->mmio.phys_addr = frag->gpa; 13299 run->mmio.len = min(8u, frag->len); 13300 run->mmio.is_write = vcpu->mmio_is_write; 13301 if (run->mmio.is_write) 13302 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13303 run->exit_reason = KVM_EXIT_MMIO; 13304 13305 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13306 13307 return 0; 13308 } 13309 13310 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13311 void *data) 13312 { 13313 int handled; 13314 struct kvm_mmio_fragment *frag; 13315 13316 if (!data) 13317 return -EINVAL; 13318 13319 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13320 if (handled == bytes) 13321 return 1; 13322 13323 bytes -= handled; 13324 gpa += handled; 13325 data += handled; 13326 13327 /*TODO: Check if need to increment number of frags */ 13328 frag = vcpu->mmio_fragments; 13329 vcpu->mmio_nr_fragments = 1; 13330 frag->len = bytes; 13331 frag->gpa = gpa; 13332 frag->data = data; 13333 13334 vcpu->mmio_needed = 1; 13335 vcpu->mmio_cur_fragment = 0; 13336 13337 vcpu->run->mmio.phys_addr = gpa; 13338 vcpu->run->mmio.len = min(8u, frag->len); 13339 vcpu->run->mmio.is_write = 1; 13340 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13341 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13342 13343 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13344 13345 return 0; 13346 } 13347 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13348 13349 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13350 void *data) 13351 { 13352 int handled; 13353 struct kvm_mmio_fragment *frag; 13354 13355 if (!data) 13356 return -EINVAL; 13357 13358 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13359 if (handled == bytes) 13360 return 1; 13361 13362 bytes -= handled; 13363 gpa += handled; 13364 data += handled; 13365 13366 /*TODO: Check if need to increment number of frags */ 13367 frag = vcpu->mmio_fragments; 13368 vcpu->mmio_nr_fragments = 1; 13369 frag->len = bytes; 13370 frag->gpa = gpa; 13371 frag->data = data; 13372 13373 vcpu->mmio_needed = 1; 13374 vcpu->mmio_cur_fragment = 0; 13375 13376 vcpu->run->mmio.phys_addr = gpa; 13377 vcpu->run->mmio.len = min(8u, frag->len); 13378 vcpu->run->mmio.is_write = 0; 13379 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13380 13381 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13382 13383 return 0; 13384 } 13385 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13386 13387 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13388 { 13389 vcpu->arch.sev_pio_count -= count; 13390 vcpu->arch.sev_pio_data += count * size; 13391 } 13392 13393 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13394 unsigned int port); 13395 13396 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13397 { 13398 int size = vcpu->arch.pio.size; 13399 int port = vcpu->arch.pio.port; 13400 13401 vcpu->arch.pio.count = 0; 13402 if (vcpu->arch.sev_pio_count) 13403 return kvm_sev_es_outs(vcpu, size, port); 13404 return 1; 13405 } 13406 13407 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13408 unsigned int port) 13409 { 13410 for (;;) { 13411 unsigned int count = 13412 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13413 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13414 13415 /* memcpy done already by emulator_pio_out. */ 13416 advance_sev_es_emulated_pio(vcpu, count, size); 13417 if (!ret) 13418 break; 13419 13420 /* Emulation done by the kernel. */ 13421 if (!vcpu->arch.sev_pio_count) 13422 return 1; 13423 } 13424 13425 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13426 return 0; 13427 } 13428 13429 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13430 unsigned int port); 13431 13432 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13433 { 13434 unsigned count = vcpu->arch.pio.count; 13435 int size = vcpu->arch.pio.size; 13436 int port = vcpu->arch.pio.port; 13437 13438 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13439 advance_sev_es_emulated_pio(vcpu, count, size); 13440 if (vcpu->arch.sev_pio_count) 13441 return kvm_sev_es_ins(vcpu, size, port); 13442 return 1; 13443 } 13444 13445 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13446 unsigned int port) 13447 { 13448 for (;;) { 13449 unsigned int count = 13450 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13451 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13452 break; 13453 13454 /* Emulation done by the kernel. */ 13455 advance_sev_es_emulated_pio(vcpu, count, size); 13456 if (!vcpu->arch.sev_pio_count) 13457 return 1; 13458 } 13459 13460 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13461 return 0; 13462 } 13463 13464 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13465 unsigned int port, void *data, unsigned int count, 13466 int in) 13467 { 13468 vcpu->arch.sev_pio_data = data; 13469 vcpu->arch.sev_pio_count = count; 13470 return in ? kvm_sev_es_ins(vcpu, size, port) 13471 : kvm_sev_es_outs(vcpu, size, port); 13472 } 13473 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13474 13475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13504 13505 static int __init kvm_x86_init(void) 13506 { 13507 kvm_mmu_x86_module_init(); 13508 return 0; 13509 } 13510 module_init(kvm_x86_init); 13511 13512 static void __exit kvm_x86_exit(void) 13513 { 13514 /* 13515 * If module_init() is implemented, module_exit() must also be 13516 * implemented to allow module unload. 13517 */ 13518 } 13519 module_exit(kvm_x86_exit); 13520