xref: /openbmc/linux/arch/x86/kvm/x86.c (revision ee661d8ea94e11b3452cd27c301241f2cfa95fca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 
64 #include <trace/events/kvm.h>
65 
66 #include <asm/debugreg.h>
67 #include <asm/msr.h>
68 #include <asm/desc.h>
69 #include <asm/mce.h>
70 #include <asm/pkru.h>
71 #include <linux/kernel_stat.h>
72 #include <asm/fpu/api.h>
73 #include <asm/fpu/xcr.h>
74 #include <asm/fpu/xstate.h>
75 #include <asm/pvclock.h>
76 #include <asm/div64.h>
77 #include <asm/irq_remapping.h>
78 #include <asm/mshyperv.h>
79 #include <asm/hypervisor.h>
80 #include <asm/tlbflush.h>
81 #include <asm/intel_pt.h>
82 #include <asm/emulate_prefix.h>
83 #include <asm/sgx.h>
84 #include <clocksource/hyperv_timer.h>
85 
86 #define CREATE_TRACE_POINTS
87 #include "trace.h"
88 
89 #define MAX_IO_MSRS 256
90 #define KVM_MAX_MCE_BANKS 32
91 
92 struct kvm_caps kvm_caps __read_mostly = {
93 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
94 };
95 EXPORT_SYMBOL_GPL(kvm_caps);
96 
97 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
98 
99 #define emul_to_vcpu(ctxt) \
100 	((struct kvm_vcpu *)(ctxt)->vcpu)
101 
102 /* EFER defaults:
103  * - enable syscall per default because its emulated by KVM
104  * - enable LME and LMA per default on 64 bit KVM
105  */
106 #ifdef CONFIG_X86_64
107 static
108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
109 #else
110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
111 #endif
112 
113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
114 
115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
116 
117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
118 
119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
120                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
121 
122 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
123 static void process_nmi(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 static DEFINE_MUTEX(vendor_module_lock);
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134 
135 #define KVM_X86_OP(func)					     \
136 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
137 				*(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143 
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146 
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150 
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153 
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156 
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160 
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /*
197  * Restoring the host value for MSRs that are only consumed when running in
198  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
199  * returns to userspace, i.e. the kernel can run with the guest's value.
200  */
201 #define KVM_MAX_NR_USER_RETURN_MSRS 16
202 
203 struct kvm_user_return_msrs {
204 	struct user_return_notifier urn;
205 	bool registered;
206 	struct kvm_user_return_msr_values {
207 		u64 host;
208 		u64 curr;
209 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
210 };
211 
212 u32 __read_mostly kvm_nr_uret_msrs;
213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
215 static struct kvm_user_return_msrs __percpu *user_return_msrs;
216 
217 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
218 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
219 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
220 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
221 
222 u64 __read_mostly host_efer;
223 EXPORT_SYMBOL_GPL(host_efer);
224 
225 bool __read_mostly allow_smaller_maxphyaddr = 0;
226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
227 
228 bool __read_mostly enable_apicv = true;
229 EXPORT_SYMBOL_GPL(enable_apicv);
230 
231 u64 __read_mostly host_xss;
232 EXPORT_SYMBOL_GPL(host_xss);
233 
234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
235 	KVM_GENERIC_VM_STATS(),
236 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_pte_write),
238 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
239 	STATS_DESC_COUNTER(VM, mmu_flooded),
240 	STATS_DESC_COUNTER(VM, mmu_recycled),
241 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
242 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
243 	STATS_DESC_ICOUNTER(VM, pages_4k),
244 	STATS_DESC_ICOUNTER(VM, pages_2m),
245 	STATS_DESC_ICOUNTER(VM, pages_1g),
246 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
247 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
248 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
249 };
250 
251 const struct kvm_stats_header kvm_vm_stats_header = {
252 	.name_size = KVM_STATS_NAME_SIZE,
253 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
254 	.id_offset = sizeof(struct kvm_stats_header),
255 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
256 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
257 		       sizeof(kvm_vm_stats_desc),
258 };
259 
260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
261 	KVM_GENERIC_VCPU_STATS(),
262 	STATS_DESC_COUNTER(VCPU, pf_taken),
263 	STATS_DESC_COUNTER(VCPU, pf_fixed),
264 	STATS_DESC_COUNTER(VCPU, pf_emulate),
265 	STATS_DESC_COUNTER(VCPU, pf_spurious),
266 	STATS_DESC_COUNTER(VCPU, pf_fast),
267 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
268 	STATS_DESC_COUNTER(VCPU, pf_guest),
269 	STATS_DESC_COUNTER(VCPU, tlb_flush),
270 	STATS_DESC_COUNTER(VCPU, invlpg),
271 	STATS_DESC_COUNTER(VCPU, exits),
272 	STATS_DESC_COUNTER(VCPU, io_exits),
273 	STATS_DESC_COUNTER(VCPU, mmio_exits),
274 	STATS_DESC_COUNTER(VCPU, signal_exits),
275 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
276 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
277 	STATS_DESC_COUNTER(VCPU, l1d_flush),
278 	STATS_DESC_COUNTER(VCPU, halt_exits),
279 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
280 	STATS_DESC_COUNTER(VCPU, irq_exits),
281 	STATS_DESC_COUNTER(VCPU, host_state_reload),
282 	STATS_DESC_COUNTER(VCPU, fpu_reload),
283 	STATS_DESC_COUNTER(VCPU, insn_emulation),
284 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
285 	STATS_DESC_COUNTER(VCPU, hypercalls),
286 	STATS_DESC_COUNTER(VCPU, irq_injections),
287 	STATS_DESC_COUNTER(VCPU, nmi_injections),
288 	STATS_DESC_COUNTER(VCPU, req_event),
289 	STATS_DESC_COUNTER(VCPU, nested_run),
290 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
291 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
292 	STATS_DESC_COUNTER(VCPU, preemption_reported),
293 	STATS_DESC_COUNTER(VCPU, preemption_other),
294 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
295 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
296 };
297 
298 const struct kvm_stats_header kvm_vcpu_stats_header = {
299 	.name_size = KVM_STATS_NAME_SIZE,
300 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
301 	.id_offset = sizeof(struct kvm_stats_header),
302 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
303 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
304 		       sizeof(kvm_vcpu_stats_desc),
305 };
306 
307 u64 __read_mostly host_xcr0;
308 
309 static struct kmem_cache *x86_emulator_cache;
310 
311 /*
312  * When called, it means the previous get/set msr reached an invalid msr.
313  * Return true if we want to ignore/silent this failed msr access.
314  */
315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
316 {
317 	const char *op = write ? "wrmsr" : "rdmsr";
318 
319 	if (ignore_msrs) {
320 		if (report_ignored_msrs)
321 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		/* Mask the error */
324 		return true;
325 	} else {
326 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
327 				      op, msr, data);
328 		return false;
329 	}
330 }
331 
332 static struct kmem_cache *kvm_alloc_emulator_cache(void)
333 {
334 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
335 	unsigned int size = sizeof(struct x86_emulate_ctxt);
336 
337 	return kmem_cache_create_usercopy("x86_emulator", size,
338 					  __alignof__(struct x86_emulate_ctxt),
339 					  SLAB_ACCOUNT, useroffset,
340 					  size - useroffset, NULL);
341 }
342 
343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
344 
345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
346 {
347 	int i;
348 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
349 		vcpu->arch.apf.gfns[i] = ~0;
350 }
351 
352 static void kvm_on_user_return(struct user_return_notifier *urn)
353 {
354 	unsigned slot;
355 	struct kvm_user_return_msrs *msrs
356 		= container_of(urn, struct kvm_user_return_msrs, urn);
357 	struct kvm_user_return_msr_values *values;
358 	unsigned long flags;
359 
360 	/*
361 	 * Disabling irqs at this point since the following code could be
362 	 * interrupted and executed through kvm_arch_hardware_disable()
363 	 */
364 	local_irq_save(flags);
365 	if (msrs->registered) {
366 		msrs->registered = false;
367 		user_return_notifier_unregister(urn);
368 	}
369 	local_irq_restore(flags);
370 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
371 		values = &msrs->values[slot];
372 		if (values->host != values->curr) {
373 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
374 			values->curr = values->host;
375 		}
376 	}
377 }
378 
379 static int kvm_probe_user_return_msr(u32 msr)
380 {
381 	u64 val;
382 	int ret;
383 
384 	preempt_disable();
385 	ret = rdmsrl_safe(msr, &val);
386 	if (ret)
387 		goto out;
388 	ret = wrmsrl_safe(msr, val);
389 out:
390 	preempt_enable();
391 	return ret;
392 }
393 
394 int kvm_add_user_return_msr(u32 msr)
395 {
396 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
397 
398 	if (kvm_probe_user_return_msr(msr))
399 		return -1;
400 
401 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
402 	return kvm_nr_uret_msrs++;
403 }
404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
405 
406 int kvm_find_user_return_msr(u32 msr)
407 {
408 	int i;
409 
410 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
411 		if (kvm_uret_msrs_list[i] == msr)
412 			return i;
413 	}
414 	return -1;
415 }
416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
417 
418 static void kvm_user_return_msr_cpu_online(void)
419 {
420 	unsigned int cpu = smp_processor_id();
421 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
422 	u64 value;
423 	int i;
424 
425 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
426 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
427 		msrs->values[i].host = value;
428 		msrs->values[i].curr = value;
429 	}
430 }
431 
432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
433 {
434 	unsigned int cpu = smp_processor_id();
435 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
436 	int err;
437 
438 	value = (value & mask) | (msrs->values[slot].host & ~mask);
439 	if (value == msrs->values[slot].curr)
440 		return 0;
441 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
442 	if (err)
443 		return 1;
444 
445 	msrs->values[slot].curr = value;
446 	if (!msrs->registered) {
447 		msrs->urn.on_user_return = kvm_on_user_return;
448 		user_return_notifier_register(&msrs->urn);
449 		msrs->registered = true;
450 	}
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
454 
455 static void drop_user_return_notifiers(void)
456 {
457 	unsigned int cpu = smp_processor_id();
458 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
459 
460 	if (msrs->registered)
461 		kvm_on_user_return(&msrs->urn);
462 }
463 
464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
465 {
466 	return vcpu->arch.apic_base;
467 }
468 
469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474 
475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481 
482 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 		return 1;
484 	if (!msr_info->host_initiated) {
485 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 			return 1;
487 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 			return 1;
489 	}
490 
491 	kvm_lapic_set_base(vcpu, msr_info->data);
492 	kvm_recalculate_apic_map(vcpu->kvm);
493 	return 0;
494 }
495 
496 /*
497  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
498  *
499  * Hardware virtualization extension instructions may fault if a reboot turns
500  * off virtualization while processes are running.  Usually after catching the
501  * fault we just panic; during reboot instead the instruction is ignored.
502  */
503 noinstr void kvm_spurious_fault(void)
504 {
505 	/* Fault while not rebooting.  We want the trace. */
506 	BUG_ON(!kvm_rebooting);
507 }
508 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
509 
510 #define EXCPT_BENIGN		0
511 #define EXCPT_CONTRIBUTORY	1
512 #define EXCPT_PF		2
513 
514 static int exception_class(int vector)
515 {
516 	switch (vector) {
517 	case PF_VECTOR:
518 		return EXCPT_PF;
519 	case DE_VECTOR:
520 	case TS_VECTOR:
521 	case NP_VECTOR:
522 	case SS_VECTOR:
523 	case GP_VECTOR:
524 		return EXCPT_CONTRIBUTORY;
525 	default:
526 		break;
527 	}
528 	return EXCPT_BENIGN;
529 }
530 
531 #define EXCPT_FAULT		0
532 #define EXCPT_TRAP		1
533 #define EXCPT_ABORT		2
534 #define EXCPT_INTERRUPT		3
535 #define EXCPT_DB		4
536 
537 static int exception_type(int vector)
538 {
539 	unsigned int mask;
540 
541 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
542 		return EXCPT_INTERRUPT;
543 
544 	mask = 1 << vector;
545 
546 	/*
547 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
548 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
549 	 */
550 	if (mask & (1 << DB_VECTOR))
551 		return EXCPT_DB;
552 
553 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
554 		return EXCPT_TRAP;
555 
556 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
557 		return EXCPT_ABORT;
558 
559 	/* Reserved exceptions will result in fault */
560 	return EXCPT_FAULT;
561 }
562 
563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
564 				   struct kvm_queued_exception *ex)
565 {
566 	if (!ex->has_payload)
567 		return;
568 
569 	switch (ex->vector) {
570 	case DB_VECTOR:
571 		/*
572 		 * "Certain debug exceptions may clear bit 0-3.  The
573 		 * remaining contents of the DR6 register are never
574 		 * cleared by the processor".
575 		 */
576 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
577 		/*
578 		 * In order to reflect the #DB exception payload in guest
579 		 * dr6, three components need to be considered: active low
580 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
581 		 * DR6_BS and DR6_BT)
582 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
583 		 * In the target guest dr6:
584 		 * FIXED_1 bits should always be set.
585 		 * Active low bits should be cleared if 1-setting in payload.
586 		 * Active high bits should be set if 1-setting in payload.
587 		 *
588 		 * Note, the payload is compatible with the pending debug
589 		 * exceptions/exit qualification under VMX, that active_low bits
590 		 * are active high in payload.
591 		 * So they need to be flipped for DR6.
592 		 */
593 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
594 		vcpu->arch.dr6 |= ex->payload;
595 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
596 
597 		/*
598 		 * The #DB payload is defined as compatible with the 'pending
599 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
600 		 * defined in the 'pending debug exceptions' field (enabled
601 		 * breakpoint), it is reserved and must be zero in DR6.
602 		 */
603 		vcpu->arch.dr6 &= ~BIT(12);
604 		break;
605 	case PF_VECTOR:
606 		vcpu->arch.cr2 = ex->payload;
607 		break;
608 	}
609 
610 	ex->has_payload = false;
611 	ex->payload = 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
614 
615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
616 				       bool has_error_code, u32 error_code,
617 				       bool has_payload, unsigned long payload)
618 {
619 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
620 
621 	ex->vector = vector;
622 	ex->injected = false;
623 	ex->pending = true;
624 	ex->has_error_code = has_error_code;
625 	ex->error_code = error_code;
626 	ex->has_payload = has_payload;
627 	ex->payload = payload;
628 }
629 
630 /* Forcibly leave the nested mode in cases like a vCPU reset */
631 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
632 {
633 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
634 }
635 
636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
637 		unsigned nr, bool has_error, u32 error_code,
638 	        bool has_payload, unsigned long payload, bool reinject)
639 {
640 	u32 prev_nr;
641 	int class1, class2;
642 
643 	kvm_make_request(KVM_REQ_EVENT, vcpu);
644 
645 	/*
646 	 * If the exception is destined for L2 and isn't being reinjected,
647 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
648 	 * previously injected exception is not checked because it was checked
649 	 * when it was original queued, and re-checking is incorrect if _L1_
650 	 * injected the exception, in which case it's exempt from interception.
651 	 */
652 	if (!reinject && is_guest_mode(vcpu) &&
653 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
654 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
655 					   has_payload, payload);
656 		return;
657 	}
658 
659 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
660 	queue:
661 		if (reinject) {
662 			/*
663 			 * On VM-Entry, an exception can be pending if and only
664 			 * if event injection was blocked by nested_run_pending.
665 			 * In that case, however, vcpu_enter_guest() requests an
666 			 * immediate exit, and the guest shouldn't proceed far
667 			 * enough to need reinjection.
668 			 */
669 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
670 			vcpu->arch.exception.injected = true;
671 			if (WARN_ON_ONCE(has_payload)) {
672 				/*
673 				 * A reinjected event has already
674 				 * delivered its payload.
675 				 */
676 				has_payload = false;
677 				payload = 0;
678 			}
679 		} else {
680 			vcpu->arch.exception.pending = true;
681 			vcpu->arch.exception.injected = false;
682 		}
683 		vcpu->arch.exception.has_error_code = has_error;
684 		vcpu->arch.exception.vector = nr;
685 		vcpu->arch.exception.error_code = error_code;
686 		vcpu->arch.exception.has_payload = has_payload;
687 		vcpu->arch.exception.payload = payload;
688 		if (!is_guest_mode(vcpu))
689 			kvm_deliver_exception_payload(vcpu,
690 						      &vcpu->arch.exception);
691 		return;
692 	}
693 
694 	/* to check exception */
695 	prev_nr = vcpu->arch.exception.vector;
696 	if (prev_nr == DF_VECTOR) {
697 		/* triple fault -> shutdown */
698 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
699 		return;
700 	}
701 	class1 = exception_class(prev_nr);
702 	class2 = exception_class(nr);
703 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
704 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
705 		/*
706 		 * Synthesize #DF.  Clear the previously injected or pending
707 		 * exception so as not to incorrectly trigger shutdown.
708 		 */
709 		vcpu->arch.exception.injected = false;
710 		vcpu->arch.exception.pending = false;
711 
712 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
713 	} else {
714 		/* replace previous exception with a new one in a hope
715 		   that instruction re-execution will regenerate lost
716 		   exception */
717 		goto queue;
718 	}
719 }
720 
721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
722 {
723 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
724 }
725 EXPORT_SYMBOL_GPL(kvm_queue_exception);
726 
727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
730 }
731 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
732 
733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
734 			   unsigned long payload)
735 {
736 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
737 }
738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
739 
740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
741 				    u32 error_code, unsigned long payload)
742 {
743 	kvm_multiple_exception(vcpu, nr, true, error_code,
744 			       true, payload, false);
745 }
746 
747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
748 {
749 	if (err)
750 		kvm_inject_gp(vcpu, 0);
751 	else
752 		return kvm_skip_emulated_instruction(vcpu);
753 
754 	return 1;
755 }
756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
757 
758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
759 {
760 	if (err) {
761 		kvm_inject_gp(vcpu, 0);
762 		return 1;
763 	}
764 
765 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
766 				       EMULTYPE_COMPLETE_USER_EXIT);
767 }
768 
769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
770 {
771 	++vcpu->stat.pf_guest;
772 
773 	/*
774 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
775 	 * whether or not L1 wants to intercept "regular" #PF.
776 	 */
777 	if (is_guest_mode(vcpu) && fault->async_page_fault)
778 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
779 					   true, fault->error_code,
780 					   true, fault->address);
781 	else
782 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
783 					fault->address);
784 }
785 
786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
787 				    struct x86_exception *fault)
788 {
789 	struct kvm_mmu *fault_mmu;
790 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
791 
792 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
793 					       vcpu->arch.walk_mmu;
794 
795 	/*
796 	 * Invalidate the TLB entry for the faulting address, if it exists,
797 	 * else the access will fault indefinitely (and to emulate hardware).
798 	 */
799 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
800 	    !(fault->error_code & PFERR_RSVD_MASK))
801 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
802 				       fault_mmu->root.hpa);
803 
804 	fault_mmu->inject_page_fault(vcpu, fault);
805 }
806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
807 
808 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
809 {
810 	atomic_inc(&vcpu->arch.nmi_queued);
811 	kvm_make_request(KVM_REQ_NMI, vcpu);
812 }
813 
814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
815 {
816 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
817 }
818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
819 
820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
823 }
824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
825 
826 /*
827  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
828  * a #GP and return false.
829  */
830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
831 {
832 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
833 		return true;
834 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
835 	return false;
836 }
837 
838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
839 {
840 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
841 		return true;
842 
843 	kvm_queue_exception(vcpu, UD_VECTOR);
844 	return false;
845 }
846 EXPORT_SYMBOL_GPL(kvm_require_dr);
847 
848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
849 {
850 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
851 }
852 
853 /*
854  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
855  */
856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
857 {
858 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
859 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
860 	gpa_t real_gpa;
861 	int i;
862 	int ret;
863 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
864 
865 	/*
866 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
867 	 * to an L1 GPA.
868 	 */
869 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
870 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
871 	if (real_gpa == INVALID_GPA)
872 		return 0;
873 
874 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
875 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
876 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
877 	if (ret < 0)
878 		return 0;
879 
880 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
881 		if ((pdpte[i] & PT_PRESENT_MASK) &&
882 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
883 			return 0;
884 		}
885 	}
886 
887 	/*
888 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
889 	 * Shadow page roots need to be reconstructed instead.
890 	 */
891 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
892 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
893 
894 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
895 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
896 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
897 	vcpu->arch.pdptrs_from_userspace = false;
898 
899 	return 1;
900 }
901 EXPORT_SYMBOL_GPL(load_pdptrs);
902 
903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
904 {
905 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
906 		kvm_clear_async_pf_completion_queue(vcpu);
907 		kvm_async_pf_hash_reset(vcpu);
908 
909 		/*
910 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
911 		 * perspective.
912 		 */
913 		if (!(cr0 & X86_CR0_PG))
914 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
915 	}
916 
917 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
918 		kvm_mmu_reset_context(vcpu);
919 
920 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
921 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
922 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
923 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
924 }
925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
926 
927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
928 {
929 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
930 
931 	cr0 |= X86_CR0_ET;
932 
933 #ifdef CONFIG_X86_64
934 	if (cr0 & 0xffffffff00000000UL)
935 		return 1;
936 #endif
937 
938 	cr0 &= ~CR0_RESERVED_BITS;
939 
940 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
941 		return 1;
942 
943 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
944 		return 1;
945 
946 #ifdef CONFIG_X86_64
947 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
948 	    (cr0 & X86_CR0_PG)) {
949 		int cs_db, cs_l;
950 
951 		if (!is_pae(vcpu))
952 			return 1;
953 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
954 		if (cs_l)
955 			return 1;
956 	}
957 #endif
958 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
959 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
960 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
961 		return 1;
962 
963 	if (!(cr0 & X86_CR0_PG) &&
964 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
965 		return 1;
966 
967 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
968 
969 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
970 
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_set_cr0);
974 
975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
976 {
977 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
978 }
979 EXPORT_SYMBOL_GPL(kvm_lmsw);
980 
981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
982 {
983 	if (vcpu->arch.guest_state_protected)
984 		return;
985 
986 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
987 
988 		if (vcpu->arch.xcr0 != host_xcr0)
989 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
990 
991 		if (vcpu->arch.xsaves_enabled &&
992 		    vcpu->arch.ia32_xss != host_xss)
993 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
994 	}
995 
996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
997 	if (static_cpu_has(X86_FEATURE_PKU) &&
998 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
999 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1000 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1001 		write_pkru(vcpu->arch.pkru);
1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1005 
1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1007 {
1008 	if (vcpu->arch.guest_state_protected)
1009 		return;
1010 
1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1012 	if (static_cpu_has(X86_FEATURE_PKU) &&
1013 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1014 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1015 		vcpu->arch.pkru = rdpkru();
1016 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1017 			write_pkru(vcpu->arch.host_pkru);
1018 	}
1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1020 
1021 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1022 
1023 		if (vcpu->arch.xcr0 != host_xcr0)
1024 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1025 
1026 		if (vcpu->arch.xsaves_enabled &&
1027 		    vcpu->arch.ia32_xss != host_xss)
1028 			wrmsrl(MSR_IA32_XSS, host_xss);
1029 	}
1030 
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1033 
1034 #ifdef CONFIG_X86_64
1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1036 {
1037 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1038 }
1039 #endif
1040 
1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1042 {
1043 	u64 xcr0 = xcr;
1044 	u64 old_xcr0 = vcpu->arch.xcr0;
1045 	u64 valid_bits;
1046 
1047 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1048 	if (index != XCR_XFEATURE_ENABLED_MASK)
1049 		return 1;
1050 	if (!(xcr0 & XFEATURE_MASK_FP))
1051 		return 1;
1052 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1053 		return 1;
1054 
1055 	/*
1056 	 * Do not allow the guest to set bits that we do not support
1057 	 * saving.  However, xcr0 bit 0 is always set, even if the
1058 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1059 	 */
1060 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1061 	if (xcr0 & ~valid_bits)
1062 		return 1;
1063 
1064 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1065 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1066 		return 1;
1067 
1068 	if (xcr0 & XFEATURE_MASK_AVX512) {
1069 		if (!(xcr0 & XFEATURE_MASK_YMM))
1070 			return 1;
1071 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1072 			return 1;
1073 	}
1074 
1075 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1076 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1077 		return 1;
1078 
1079 	vcpu->arch.xcr0 = xcr0;
1080 
1081 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1082 		kvm_update_cpuid_runtime(vcpu);
1083 	return 0;
1084 }
1085 
1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1087 {
1088 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1089 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1090 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1091 		kvm_inject_gp(vcpu, 0);
1092 		return 1;
1093 	}
1094 
1095 	return kvm_skip_emulated_instruction(vcpu);
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1098 
1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1100 {
1101 	if (cr4 & cr4_reserved_bits)
1102 		return false;
1103 
1104 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1105 		return false;
1106 
1107 	return true;
1108 }
1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1110 
1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1112 {
1113 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1114 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1115 }
1116 
1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1118 {
1119 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1120 		kvm_mmu_reset_context(vcpu);
1121 
1122 	/*
1123 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1124 	 * according to the SDM; however, stale prev_roots could be reused
1125 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1126 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1127 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1128 	 * so fall through.
1129 	 */
1130 	if (!tdp_enabled &&
1131 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1132 		kvm_mmu_unload(vcpu);
1133 
1134 	/*
1135 	 * The TLB has to be flushed for all PCIDs if any of the following
1136 	 * (architecturally required) changes happen:
1137 	 * - CR4.PCIDE is changed from 1 to 0
1138 	 * - CR4.PGE is toggled
1139 	 *
1140 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1141 	 */
1142 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1143 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1144 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1145 
1146 	/*
1147 	 * The TLB has to be flushed for the current PCID if any of the
1148 	 * following (architecturally required) changes happen:
1149 	 * - CR4.SMEP is changed from 0 to 1
1150 	 * - CR4.PAE is toggled
1151 	 */
1152 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1153 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1154 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1155 
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1158 
1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1160 {
1161 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1162 
1163 	if (!kvm_is_valid_cr4(vcpu, cr4))
1164 		return 1;
1165 
1166 	if (is_long_mode(vcpu)) {
1167 		if (!(cr4 & X86_CR4_PAE))
1168 			return 1;
1169 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1170 			return 1;
1171 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1172 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1173 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1174 		return 1;
1175 
1176 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1177 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1178 			return 1;
1179 
1180 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1181 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1182 			return 1;
1183 	}
1184 
1185 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1186 
1187 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1192 
1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1194 {
1195 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1196 	unsigned long roots_to_free = 0;
1197 	int i;
1198 
1199 	/*
1200 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1201 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1202 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1203 	 * the invalidation, but the guest's TLB entries need to be flushed as
1204 	 * the CPU may have cached entries in its TLB for the target PCID.
1205 	 */
1206 	if (unlikely(tdp_enabled)) {
1207 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * If neither the current CR3 nor any of the prev_roots use the given
1213 	 * PCID, then nothing needs to be done here because a resync will
1214 	 * happen anyway before switching to any other CR3.
1215 	 */
1216 	if (kvm_get_active_pcid(vcpu) == pcid) {
1217 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1218 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219 	}
1220 
1221 	/*
1222 	 * If PCID is disabled, there is no need to free prev_roots even if the
1223 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1224 	 * with PCIDE=0.
1225 	 */
1226 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1227 		return;
1228 
1229 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1230 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1231 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1232 
1233 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1234 }
1235 
1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1237 {
1238 	bool skip_tlb_flush = false;
1239 	unsigned long pcid = 0;
1240 #ifdef CONFIG_X86_64
1241 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1242 
1243 	if (pcid_enabled) {
1244 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1245 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1246 		pcid = cr3 & X86_CR3_PCID_MASK;
1247 	}
1248 #endif
1249 
1250 	/* PDPTRs are always reloaded for PAE paging. */
1251 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1252 		goto handle_tlb_flush;
1253 
1254 	/*
1255 	 * Do not condition the GPA check on long mode, this helper is used to
1256 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1257 	 * the current vCPU mode is accurate.
1258 	 */
1259 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1260 		return 1;
1261 
1262 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1263 		return 1;
1264 
1265 	if (cr3 != kvm_read_cr3(vcpu))
1266 		kvm_mmu_new_pgd(vcpu, cr3);
1267 
1268 	vcpu->arch.cr3 = cr3;
1269 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1270 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1271 
1272 handle_tlb_flush:
1273 	/*
1274 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1275 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1276 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1277 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1278 	 * i.e. only PCID=0 can be relevant.
1279 	 */
1280 	if (!skip_tlb_flush)
1281 		kvm_invalidate_pcid(vcpu, pcid);
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1286 
1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1288 {
1289 	if (cr8 & CR8_RESERVED_BITS)
1290 		return 1;
1291 	if (lapic_in_kernel(vcpu))
1292 		kvm_lapic_set_tpr(vcpu, cr8);
1293 	else
1294 		vcpu->arch.cr8 = cr8;
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1298 
1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1300 {
1301 	if (lapic_in_kernel(vcpu))
1302 		return kvm_lapic_get_cr8(vcpu);
1303 	else
1304 		return vcpu->arch.cr8;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1307 
1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1309 {
1310 	int i;
1311 
1312 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1313 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1314 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1315 	}
1316 }
1317 
1318 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1319 {
1320 	unsigned long dr7;
1321 
1322 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1323 		dr7 = vcpu->arch.guest_debug_dr7;
1324 	else
1325 		dr7 = vcpu->arch.dr7;
1326 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1327 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1328 	if (dr7 & DR7_BP_EN_MASK)
1329 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1332 
1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1334 {
1335 	u64 fixed = DR6_FIXED_1;
1336 
1337 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1338 		fixed |= DR6_RTM;
1339 
1340 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1341 		fixed |= DR6_BUS_LOCK;
1342 	return fixed;
1343 }
1344 
1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1346 {
1347 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1348 
1349 	switch (dr) {
1350 	case 0 ... 3:
1351 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1352 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1353 			vcpu->arch.eff_db[dr] = val;
1354 		break;
1355 	case 4:
1356 	case 6:
1357 		if (!kvm_dr6_valid(val))
1358 			return 1; /* #GP */
1359 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1360 		break;
1361 	case 5:
1362 	default: /* 7 */
1363 		if (!kvm_dr7_valid(val))
1364 			return 1; /* #GP */
1365 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1366 		kvm_update_dr7(vcpu);
1367 		break;
1368 	}
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_set_dr);
1373 
1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1375 {
1376 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1377 
1378 	switch (dr) {
1379 	case 0 ... 3:
1380 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1381 		break;
1382 	case 4:
1383 	case 6:
1384 		*val = vcpu->arch.dr6;
1385 		break;
1386 	case 5:
1387 	default: /* 7 */
1388 		*val = vcpu->arch.dr7;
1389 		break;
1390 	}
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_get_dr);
1393 
1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1395 {
1396 	u32 ecx = kvm_rcx_read(vcpu);
1397 	u64 data;
1398 
1399 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1400 		kvm_inject_gp(vcpu, 0);
1401 		return 1;
1402 	}
1403 
1404 	kvm_rax_write(vcpu, (u32)data);
1405 	kvm_rdx_write(vcpu, data >> 32);
1406 	return kvm_skip_emulated_instruction(vcpu);
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1409 
1410 /*
1411  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1412  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1413  *
1414  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1415  * extract the supported MSRs from the related const lists.
1416  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1417  * capabilities of the host cpu. This capabilities test skips MSRs that are
1418  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1419  * may depend on host virtualization features rather than host cpu features.
1420  */
1421 
1422 static const u32 msrs_to_save_all[] = {
1423 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1424 	MSR_STAR,
1425 #ifdef CONFIG_X86_64
1426 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1427 #endif
1428 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1429 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1430 	MSR_IA32_SPEC_CTRL,
1431 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1432 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1433 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1434 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1435 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1436 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1437 	MSR_IA32_UMWAIT_CONTROL,
1438 
1439 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1440 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1441 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1442 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1443 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1444 
1445 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1446 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1447 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1448 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1449 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1450 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1453 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1454 
1455 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1456 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1457 
1458 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1459 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1460 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1461 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1462 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1463 
1464 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1465 };
1466 
1467 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1468 static unsigned num_msrs_to_save;
1469 
1470 static const u32 emulated_msrs_all[] = {
1471 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1472 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1473 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1474 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1475 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1476 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1477 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1478 	HV_X64_MSR_RESET,
1479 	HV_X64_MSR_VP_INDEX,
1480 	HV_X64_MSR_VP_RUNTIME,
1481 	HV_X64_MSR_SCONTROL,
1482 	HV_X64_MSR_STIMER0_CONFIG,
1483 	HV_X64_MSR_VP_ASSIST_PAGE,
1484 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1485 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1486 	HV_X64_MSR_SYNDBG_OPTIONS,
1487 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1488 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1489 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1490 
1491 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1492 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1493 
1494 	MSR_IA32_TSC_ADJUST,
1495 	MSR_IA32_TSC_DEADLINE,
1496 	MSR_IA32_ARCH_CAPABILITIES,
1497 	MSR_IA32_PERF_CAPABILITIES,
1498 	MSR_IA32_MISC_ENABLE,
1499 	MSR_IA32_MCG_STATUS,
1500 	MSR_IA32_MCG_CTL,
1501 	MSR_IA32_MCG_EXT_CTL,
1502 	MSR_IA32_SMBASE,
1503 	MSR_SMI_COUNT,
1504 	MSR_PLATFORM_INFO,
1505 	MSR_MISC_FEATURES_ENABLES,
1506 	MSR_AMD64_VIRT_SPEC_CTRL,
1507 	MSR_AMD64_TSC_RATIO,
1508 	MSR_IA32_POWER_CTL,
1509 	MSR_IA32_UCODE_REV,
1510 
1511 	/*
1512 	 * The following list leaves out MSRs whose values are determined
1513 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1514 	 * We always support the "true" VMX control MSRs, even if the host
1515 	 * processor does not, so I am putting these registers here rather
1516 	 * than in msrs_to_save_all.
1517 	 */
1518 	MSR_IA32_VMX_BASIC,
1519 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1520 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1521 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1522 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1523 	MSR_IA32_VMX_MISC,
1524 	MSR_IA32_VMX_CR0_FIXED0,
1525 	MSR_IA32_VMX_CR4_FIXED0,
1526 	MSR_IA32_VMX_VMCS_ENUM,
1527 	MSR_IA32_VMX_PROCBASED_CTLS2,
1528 	MSR_IA32_VMX_EPT_VPID_CAP,
1529 	MSR_IA32_VMX_VMFUNC,
1530 
1531 	MSR_K7_HWCR,
1532 	MSR_KVM_POLL_CONTROL,
1533 };
1534 
1535 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1536 static unsigned num_emulated_msrs;
1537 
1538 /*
1539  * List of msr numbers which are used to expose MSR-based features that
1540  * can be used by a hypervisor to validate requested CPU features.
1541  */
1542 static const u32 msr_based_features_all[] = {
1543 	MSR_IA32_VMX_BASIC,
1544 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1545 	MSR_IA32_VMX_PINBASED_CTLS,
1546 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1547 	MSR_IA32_VMX_PROCBASED_CTLS,
1548 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1549 	MSR_IA32_VMX_EXIT_CTLS,
1550 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1551 	MSR_IA32_VMX_ENTRY_CTLS,
1552 	MSR_IA32_VMX_MISC,
1553 	MSR_IA32_VMX_CR0_FIXED0,
1554 	MSR_IA32_VMX_CR0_FIXED1,
1555 	MSR_IA32_VMX_CR4_FIXED0,
1556 	MSR_IA32_VMX_CR4_FIXED1,
1557 	MSR_IA32_VMX_VMCS_ENUM,
1558 	MSR_IA32_VMX_PROCBASED_CTLS2,
1559 	MSR_IA32_VMX_EPT_VPID_CAP,
1560 	MSR_IA32_VMX_VMFUNC,
1561 
1562 	MSR_AMD64_DE_CFG,
1563 	MSR_IA32_UCODE_REV,
1564 	MSR_IA32_ARCH_CAPABILITIES,
1565 	MSR_IA32_PERF_CAPABILITIES,
1566 };
1567 
1568 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1569 static unsigned int num_msr_based_features;
1570 
1571 /*
1572  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1573  * does not yet virtualize. These include:
1574  *   10 - MISC_PACKAGE_CTRLS
1575  *   11 - ENERGY_FILTERING_CTL
1576  *   12 - DOITM
1577  *   18 - FB_CLEAR_CTRL
1578  *   21 - XAPIC_DISABLE_STATUS
1579  *   23 - OVERCLOCKING_STATUS
1580  */
1581 
1582 #define KVM_SUPPORTED_ARCH_CAP \
1583 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1584 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1585 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1586 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1587 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1588 
1589 static u64 kvm_get_arch_capabilities(void)
1590 {
1591 	u64 data = 0;
1592 
1593 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1594 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1595 		data &= KVM_SUPPORTED_ARCH_CAP;
1596 	}
1597 
1598 	/*
1599 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1601 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 	 * L1 guests, so it need not worry about its own (L2) guests.
1603 	 */
1604 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1605 
1606 	/*
1607 	 * If we're doing cache flushes (either "always" or "cond")
1608 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 	 * If an outer hypervisor is doing the cache flush for us
1610 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1611 	 * capability to the guest too, and if EPT is disabled we're not
1612 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 	 * require a nested hypervisor to do a flush of its own.
1614 	 */
1615 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617 
1618 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 		data |= ARCH_CAP_RDCL_NO;
1620 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 		data |= ARCH_CAP_SSB_NO;
1622 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 		data |= ARCH_CAP_MDS_NO;
1624 
1625 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1626 		/*
1627 		 * If RTM=0 because the kernel has disabled TSX, the host might
1628 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1629 		 * and therefore knows that there cannot be TAA) but keep
1630 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1631 		 * and we want to allow migrating those guests to tsx=off hosts.
1632 		 */
1633 		data &= ~ARCH_CAP_TAA_NO;
1634 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1635 		data |= ARCH_CAP_TAA_NO;
1636 	} else {
1637 		/*
1638 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1639 		 * host so the guest can choose between disabling TSX or
1640 		 * using VERW to clear CPU buffers.
1641 		 */
1642 	}
1643 
1644 	return data;
1645 }
1646 
1647 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1648 {
1649 	switch (msr->index) {
1650 	case MSR_IA32_ARCH_CAPABILITIES:
1651 		msr->data = kvm_get_arch_capabilities();
1652 		break;
1653 	case MSR_IA32_PERF_CAPABILITIES:
1654 		msr->data = kvm_caps.supported_perf_cap;
1655 		break;
1656 	case MSR_IA32_UCODE_REV:
1657 		rdmsrl_safe(msr->index, &msr->data);
1658 		break;
1659 	default:
1660 		return static_call(kvm_x86_get_msr_feature)(msr);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1666 {
1667 	struct kvm_msr_entry msr;
1668 	int r;
1669 
1670 	msr.index = index;
1671 	r = kvm_get_msr_feature(&msr);
1672 
1673 	if (r == KVM_MSR_RET_INVALID) {
1674 		/* Unconditionally clear the output for simplicity */
1675 		*data = 0;
1676 		if (kvm_msr_ignored_check(index, 0, false))
1677 			r = 0;
1678 	}
1679 
1680 	if (r)
1681 		return r;
1682 
1683 	*data = msr.data;
1684 
1685 	return 0;
1686 }
1687 
1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1691 		return false;
1692 
1693 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1694 		return false;
1695 
1696 	if (efer & (EFER_LME | EFER_LMA) &&
1697 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1698 		return false;
1699 
1700 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1701 		return false;
1702 
1703 	return true;
1704 
1705 }
1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1707 {
1708 	if (efer & efer_reserved_bits)
1709 		return false;
1710 
1711 	return __kvm_valid_efer(vcpu, efer);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1714 
1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1716 {
1717 	u64 old_efer = vcpu->arch.efer;
1718 	u64 efer = msr_info->data;
1719 	int r;
1720 
1721 	if (efer & efer_reserved_bits)
1722 		return 1;
1723 
1724 	if (!msr_info->host_initiated) {
1725 		if (!__kvm_valid_efer(vcpu, efer))
1726 			return 1;
1727 
1728 		if (is_paging(vcpu) &&
1729 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1730 			return 1;
1731 	}
1732 
1733 	efer &= ~EFER_LMA;
1734 	efer |= vcpu->arch.efer & EFER_LMA;
1735 
1736 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1737 	if (r) {
1738 		WARN_ON(r > 0);
1739 		return r;
1740 	}
1741 
1742 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1743 		kvm_mmu_reset_context(vcpu);
1744 
1745 	return 0;
1746 }
1747 
1748 void kvm_enable_efer_bits(u64 mask)
1749 {
1750        efer_reserved_bits &= ~mask;
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1753 
1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1755 {
1756 	struct kvm_x86_msr_filter *msr_filter;
1757 	struct msr_bitmap_range *ranges;
1758 	struct kvm *kvm = vcpu->kvm;
1759 	bool allowed;
1760 	int idx;
1761 	u32 i;
1762 
1763 	/* x2APIC MSRs do not support filtering. */
1764 	if (index >= 0x800 && index <= 0x8ff)
1765 		return true;
1766 
1767 	idx = srcu_read_lock(&kvm->srcu);
1768 
1769 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1770 	if (!msr_filter) {
1771 		allowed = true;
1772 		goto out;
1773 	}
1774 
1775 	allowed = msr_filter->default_allow;
1776 	ranges = msr_filter->ranges;
1777 
1778 	for (i = 0; i < msr_filter->count; i++) {
1779 		u32 start = ranges[i].base;
1780 		u32 end = start + ranges[i].nmsrs;
1781 		u32 flags = ranges[i].flags;
1782 		unsigned long *bitmap = ranges[i].bitmap;
1783 
1784 		if ((index >= start) && (index < end) && (flags & type)) {
1785 			allowed = !!test_bit(index - start, bitmap);
1786 			break;
1787 		}
1788 	}
1789 
1790 out:
1791 	srcu_read_unlock(&kvm->srcu, idx);
1792 
1793 	return allowed;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1796 
1797 /*
1798  * Write @data into the MSR specified by @index.  Select MSR specific fault
1799  * checks are bypassed if @host_initiated is %true.
1800  * Returns 0 on success, non-0 otherwise.
1801  * Assumes vcpu_load() was already called.
1802  */
1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1804 			 bool host_initiated)
1805 {
1806 	struct msr_data msr;
1807 
1808 	switch (index) {
1809 	case MSR_FS_BASE:
1810 	case MSR_GS_BASE:
1811 	case MSR_KERNEL_GS_BASE:
1812 	case MSR_CSTAR:
1813 	case MSR_LSTAR:
1814 		if (is_noncanonical_address(data, vcpu))
1815 			return 1;
1816 		break;
1817 	case MSR_IA32_SYSENTER_EIP:
1818 	case MSR_IA32_SYSENTER_ESP:
1819 		/*
1820 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1821 		 * non-canonical address is written on Intel but not on
1822 		 * AMD (which ignores the top 32-bits, because it does
1823 		 * not implement 64-bit SYSENTER).
1824 		 *
1825 		 * 64-bit code should hence be able to write a non-canonical
1826 		 * value on AMD.  Making the address canonical ensures that
1827 		 * vmentry does not fail on Intel after writing a non-canonical
1828 		 * value, and that something deterministic happens if the guest
1829 		 * invokes 64-bit SYSENTER.
1830 		 */
1831 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1832 		break;
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 
1842 		/*
1843 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1844 		 * incomplete and conflicting architectural behavior.  Current
1845 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1846 		 * reserved and always read as zeros.  Enforce Intel's reserved
1847 		 * bits check if and only if the guest CPU is Intel, and clear
1848 		 * the bits in all other cases.  This ensures cross-vendor
1849 		 * migration will provide consistent behavior for the guest.
1850 		 */
1851 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1852 			return 1;
1853 
1854 		data = (u32)data;
1855 		break;
1856 	}
1857 
1858 	msr.data = data;
1859 	msr.index = index;
1860 	msr.host_initiated = host_initiated;
1861 
1862 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1863 }
1864 
1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1866 				     u32 index, u64 data, bool host_initiated)
1867 {
1868 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1869 
1870 	if (ret == KVM_MSR_RET_INVALID)
1871 		if (kvm_msr_ignored_check(index, data, true))
1872 			ret = 0;
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Read the MSR specified by @index into @data.  Select MSR specific fault
1879  * checks are bypassed if @host_initiated is %true.
1880  * Returns 0 on success, non-0 otherwise.
1881  * Assumes vcpu_load() was already called.
1882  */
1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1884 		  bool host_initiated)
1885 {
1886 	struct msr_data msr;
1887 	int ret;
1888 
1889 	switch (index) {
1890 	case MSR_TSC_AUX:
1891 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1892 			return 1;
1893 
1894 		if (!host_initiated &&
1895 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1896 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1897 			return 1;
1898 		break;
1899 	}
1900 
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1905 	if (!ret)
1906 		*data = msr.data;
1907 	return ret;
1908 }
1909 
1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1911 				     u32 index, u64 *data, bool host_initiated)
1912 {
1913 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1914 
1915 	if (ret == KVM_MSR_RET_INVALID) {
1916 		/* Unconditionally clear *data for simplicity */
1917 		*data = 0;
1918 		if (kvm_msr_ignored_check(index, 0, false))
1919 			ret = 0;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1928 		return KVM_MSR_RET_FILTERED;
1929 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 
1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1933 {
1934 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1935 		return KVM_MSR_RET_FILTERED;
1936 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 
1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1940 {
1941 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_get_msr);
1944 
1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1946 {
1947 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_set_msr);
1950 
1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 	if (!vcpu->run->msr.error) {
1954 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1955 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1956 	}
1957 }
1958 
1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1960 {
1961 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1962 }
1963 
1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1965 {
1966 	complete_userspace_rdmsr(vcpu);
1967 	return complete_emulated_msr_access(vcpu);
1968 }
1969 
1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1971 {
1972 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1973 }
1974 
1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1976 {
1977 	complete_userspace_rdmsr(vcpu);
1978 	return complete_fast_msr_access(vcpu);
1979 }
1980 
1981 static u64 kvm_msr_reason(int r)
1982 {
1983 	switch (r) {
1984 	case KVM_MSR_RET_INVALID:
1985 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1986 	case KVM_MSR_RET_FILTERED:
1987 		return KVM_MSR_EXIT_REASON_FILTER;
1988 	default:
1989 		return KVM_MSR_EXIT_REASON_INVAL;
1990 	}
1991 }
1992 
1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1994 			      u32 exit_reason, u64 data,
1995 			      int (*completion)(struct kvm_vcpu *vcpu),
1996 			      int r)
1997 {
1998 	u64 msr_reason = kvm_msr_reason(r);
1999 
2000 	/* Check if the user wanted to know about this MSR fault */
2001 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2002 		return 0;
2003 
2004 	vcpu->run->exit_reason = exit_reason;
2005 	vcpu->run->msr.error = 0;
2006 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2007 	vcpu->run->msr.reason = msr_reason;
2008 	vcpu->run->msr.index = index;
2009 	vcpu->run->msr.data = data;
2010 	vcpu->arch.complete_userspace_io = completion;
2011 
2012 	return 1;
2013 }
2014 
2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	u32 ecx = kvm_rcx_read(vcpu);
2018 	u64 data;
2019 	int r;
2020 
2021 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2022 
2023 	if (!r) {
2024 		trace_kvm_msr_read(ecx, data);
2025 
2026 		kvm_rax_write(vcpu, data & -1u);
2027 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2028 	} else {
2029 		/* MSR read failed? See if we should ask user space */
2030 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2031 				       complete_fast_rdmsr, r))
2032 			return 0;
2033 		trace_kvm_msr_read_ex(ecx);
2034 	}
2035 
2036 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2039 
2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2041 {
2042 	u32 ecx = kvm_rcx_read(vcpu);
2043 	u64 data = kvm_read_edx_eax(vcpu);
2044 	int r;
2045 
2046 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2047 
2048 	if (!r) {
2049 		trace_kvm_msr_write(ecx, data);
2050 	} else {
2051 		/* MSR write failed? See if we should ask user space */
2052 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2053 				       complete_fast_msr_access, r))
2054 			return 0;
2055 		/* Signal all other negative errors to userspace */
2056 		if (r < 0)
2057 			return r;
2058 		trace_kvm_msr_write_ex(ecx, data);
2059 	}
2060 
2061 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2064 
2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2066 {
2067 	return kvm_skip_emulated_instruction(vcpu);
2068 }
2069 
2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2071 {
2072 	/* Treat an INVD instruction as a NOP and just skip it. */
2073 	return kvm_emulate_as_nop(vcpu);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2076 
2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2078 {
2079 	kvm_queue_exception(vcpu, UD_VECTOR);
2080 	return 1;
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2083 
2084 
2085 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2086 {
2087 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2088 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2089 		return kvm_handle_invalid_op(vcpu);
2090 
2091 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2092 	return kvm_emulate_as_nop(vcpu);
2093 }
2094 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2095 {
2096 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2099 
2100 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2101 {
2102 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2103 }
2104 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2105 
2106 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2107 {
2108 	xfer_to_guest_mode_prepare();
2109 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2110 		xfer_to_guest_mode_work_pending();
2111 }
2112 
2113 /*
2114  * The fast path for frequent and performance sensitive wrmsr emulation,
2115  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2116  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2117  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2118  * other cases which must be called after interrupts are enabled on the host.
2119  */
2120 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2121 {
2122 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2123 		return 1;
2124 
2125 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2126 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2127 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2128 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2129 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2130 
2131 	return 1;
2132 }
2133 
2134 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2135 {
2136 	if (!kvm_can_use_hv_timer(vcpu))
2137 		return 1;
2138 
2139 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2140 	return 0;
2141 }
2142 
2143 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2144 {
2145 	u32 msr = kvm_rcx_read(vcpu);
2146 	u64 data;
2147 	fastpath_t ret = EXIT_FASTPATH_NONE;
2148 
2149 	switch (msr) {
2150 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 		data = kvm_read_edx_eax(vcpu);
2152 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2153 			kvm_skip_emulated_instruction(vcpu);
2154 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2155 		}
2156 		break;
2157 	case MSR_IA32_TSC_DEADLINE:
2158 		data = kvm_read_edx_eax(vcpu);
2159 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2160 			kvm_skip_emulated_instruction(vcpu);
2161 			ret = EXIT_FASTPATH_REENTER_GUEST;
2162 		}
2163 		break;
2164 	default:
2165 		break;
2166 	}
2167 
2168 	if (ret != EXIT_FASTPATH_NONE)
2169 		trace_kvm_msr_write(msr, data);
2170 
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2174 
2175 /*
2176  * Adapt set_msr() to msr_io()'s calling convention
2177  */
2178 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2179 {
2180 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2181 }
2182 
2183 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2184 {
2185 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2186 }
2187 
2188 #ifdef CONFIG_X86_64
2189 struct pvclock_clock {
2190 	int vclock_mode;
2191 	u64 cycle_last;
2192 	u64 mask;
2193 	u32 mult;
2194 	u32 shift;
2195 	u64 base_cycles;
2196 	u64 offset;
2197 };
2198 
2199 struct pvclock_gtod_data {
2200 	seqcount_t	seq;
2201 
2202 	struct pvclock_clock clock; /* extract of a clocksource struct */
2203 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2204 
2205 	ktime_t		offs_boot;
2206 	u64		wall_time_sec;
2207 };
2208 
2209 static struct pvclock_gtod_data pvclock_gtod_data;
2210 
2211 static void update_pvclock_gtod(struct timekeeper *tk)
2212 {
2213 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2214 
2215 	write_seqcount_begin(&vdata->seq);
2216 
2217 	/* copy pvclock gtod data */
2218 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2219 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2220 	vdata->clock.mask		= tk->tkr_mono.mask;
2221 	vdata->clock.mult		= tk->tkr_mono.mult;
2222 	vdata->clock.shift		= tk->tkr_mono.shift;
2223 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2224 	vdata->clock.offset		= tk->tkr_mono.base;
2225 
2226 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2227 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2228 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2229 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2230 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2231 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2232 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2233 
2234 	vdata->wall_time_sec            = tk->xtime_sec;
2235 
2236 	vdata->offs_boot		= tk->offs_boot;
2237 
2238 	write_seqcount_end(&vdata->seq);
2239 }
2240 
2241 static s64 get_kvmclock_base_ns(void)
2242 {
2243 	/* Count up from boot time, but with the frequency of the raw clock.  */
2244 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2245 }
2246 #else
2247 static s64 get_kvmclock_base_ns(void)
2248 {
2249 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2250 	return ktime_get_boottime_ns();
2251 }
2252 #endif
2253 
2254 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2255 {
2256 	int version;
2257 	int r;
2258 	struct pvclock_wall_clock wc;
2259 	u32 wc_sec_hi;
2260 	u64 wall_nsec;
2261 
2262 	if (!wall_clock)
2263 		return;
2264 
2265 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2266 	if (r)
2267 		return;
2268 
2269 	if (version & 1)
2270 		++version;  /* first time write, random junk */
2271 
2272 	++version;
2273 
2274 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2275 		return;
2276 
2277 	/*
2278 	 * The guest calculates current wall clock time by adding
2279 	 * system time (updated by kvm_guest_time_update below) to the
2280 	 * wall clock specified here.  We do the reverse here.
2281 	 */
2282 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2283 
2284 	wc.nsec = do_div(wall_nsec, 1000000000);
2285 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2286 	wc.version = version;
2287 
2288 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2289 
2290 	if (sec_hi_ofs) {
2291 		wc_sec_hi = wall_nsec >> 32;
2292 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2293 				&wc_sec_hi, sizeof(wc_sec_hi));
2294 	}
2295 
2296 	version++;
2297 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2298 }
2299 
2300 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2301 				  bool old_msr, bool host_initiated)
2302 {
2303 	struct kvm_arch *ka = &vcpu->kvm->arch;
2304 
2305 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2306 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2307 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2308 
2309 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2310 	}
2311 
2312 	vcpu->arch.time = system_time;
2313 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2314 
2315 	/* we verify if the enable bit is set... */
2316 	if (system_time & 1)
2317 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2318 				 sizeof(struct pvclock_vcpu_time_info));
2319 	else
2320 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2321 
2322 	return;
2323 }
2324 
2325 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2326 {
2327 	do_shl32_div32(dividend, divisor);
2328 	return dividend;
2329 }
2330 
2331 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2332 			       s8 *pshift, u32 *pmultiplier)
2333 {
2334 	uint64_t scaled64;
2335 	int32_t  shift = 0;
2336 	uint64_t tps64;
2337 	uint32_t tps32;
2338 
2339 	tps64 = base_hz;
2340 	scaled64 = scaled_hz;
2341 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2342 		tps64 >>= 1;
2343 		shift--;
2344 	}
2345 
2346 	tps32 = (uint32_t)tps64;
2347 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2348 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2349 			scaled64 >>= 1;
2350 		else
2351 			tps32 <<= 1;
2352 		shift++;
2353 	}
2354 
2355 	*pshift = shift;
2356 	*pmultiplier = div_frac(scaled64, tps32);
2357 }
2358 
2359 #ifdef CONFIG_X86_64
2360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2361 #endif
2362 
2363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2364 static unsigned long max_tsc_khz;
2365 
2366 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2367 {
2368 	u64 v = (u64)khz * (1000000 + ppm);
2369 	do_div(v, 1000000);
2370 	return v;
2371 }
2372 
2373 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2374 
2375 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2376 {
2377 	u64 ratio;
2378 
2379 	/* Guest TSC same frequency as host TSC? */
2380 	if (!scale) {
2381 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2382 		return 0;
2383 	}
2384 
2385 	/* TSC scaling supported? */
2386 	if (!kvm_caps.has_tsc_control) {
2387 		if (user_tsc_khz > tsc_khz) {
2388 			vcpu->arch.tsc_catchup = 1;
2389 			vcpu->arch.tsc_always_catchup = 1;
2390 			return 0;
2391 		} else {
2392 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2393 			return -1;
2394 		}
2395 	}
2396 
2397 	/* TSC scaling required  - calculate ratio */
2398 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2399 				user_tsc_khz, tsc_khz);
2400 
2401 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2402 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2403 			            user_tsc_khz);
2404 		return -1;
2405 	}
2406 
2407 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2408 	return 0;
2409 }
2410 
2411 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2412 {
2413 	u32 thresh_lo, thresh_hi;
2414 	int use_scaling = 0;
2415 
2416 	/* tsc_khz can be zero if TSC calibration fails */
2417 	if (user_tsc_khz == 0) {
2418 		/* set tsc_scaling_ratio to a safe value */
2419 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2420 		return -1;
2421 	}
2422 
2423 	/* Compute a scale to convert nanoseconds in TSC cycles */
2424 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2425 			   &vcpu->arch.virtual_tsc_shift,
2426 			   &vcpu->arch.virtual_tsc_mult);
2427 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2428 
2429 	/*
2430 	 * Compute the variation in TSC rate which is acceptable
2431 	 * within the range of tolerance and decide if the
2432 	 * rate being applied is within that bounds of the hardware
2433 	 * rate.  If so, no scaling or compensation need be done.
2434 	 */
2435 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2436 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2437 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2438 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2439 			 user_tsc_khz, thresh_lo, thresh_hi);
2440 		use_scaling = 1;
2441 	}
2442 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2443 }
2444 
2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2446 {
2447 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2448 				      vcpu->arch.virtual_tsc_mult,
2449 				      vcpu->arch.virtual_tsc_shift);
2450 	tsc += vcpu->arch.this_tsc_write;
2451 	return tsc;
2452 }
2453 
2454 #ifdef CONFIG_X86_64
2455 static inline int gtod_is_based_on_tsc(int mode)
2456 {
2457 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2458 }
2459 #endif
2460 
2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2462 {
2463 #ifdef CONFIG_X86_64
2464 	bool vcpus_matched;
2465 	struct kvm_arch *ka = &vcpu->kvm->arch;
2466 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2467 
2468 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2469 			 atomic_read(&vcpu->kvm->online_vcpus));
2470 
2471 	/*
2472 	 * Once the masterclock is enabled, always perform request in
2473 	 * order to update it.
2474 	 *
2475 	 * In order to enable masterclock, the host clocksource must be TSC
2476 	 * and the vcpus need to have matched TSCs.  When that happens,
2477 	 * perform request to enable masterclock.
2478 	 */
2479 	if (ka->use_master_clock ||
2480 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2481 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2482 
2483 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2484 			    atomic_read(&vcpu->kvm->online_vcpus),
2485 		            ka->use_master_clock, gtod->clock.vclock_mode);
2486 #endif
2487 }
2488 
2489 /*
2490  * Multiply tsc by a fixed point number represented by ratio.
2491  *
2492  * The most significant 64-N bits (mult) of ratio represent the
2493  * integral part of the fixed point number; the remaining N bits
2494  * (frac) represent the fractional part, ie. ratio represents a fixed
2495  * point number (mult + frac * 2^(-N)).
2496  *
2497  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2498  */
2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2500 {
2501 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2502 }
2503 
2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2505 {
2506 	u64 _tsc = tsc;
2507 
2508 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2509 		_tsc = __scale_tsc(ratio, tsc);
2510 
2511 	return _tsc;
2512 }
2513 
2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2515 {
2516 	u64 tsc;
2517 
2518 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2519 
2520 	return target_tsc - tsc;
2521 }
2522 
2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2524 {
2525 	return vcpu->arch.l1_tsc_offset +
2526 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2529 
2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2531 {
2532 	u64 nested_offset;
2533 
2534 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2535 		nested_offset = l1_offset;
2536 	else
2537 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2538 						kvm_caps.tsc_scaling_ratio_frac_bits);
2539 
2540 	nested_offset += l2_offset;
2541 	return nested_offset;
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2544 
2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2546 {
2547 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2548 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2549 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2550 
2551 	return l1_multiplier;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2554 
2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2556 {
2557 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2558 				   vcpu->arch.l1_tsc_offset,
2559 				   l1_offset);
2560 
2561 	vcpu->arch.l1_tsc_offset = l1_offset;
2562 
2563 	/*
2564 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2565 	 * according to the spec this should set L1's TSC (as opposed to
2566 	 * setting L1's offset for L2).
2567 	 */
2568 	if (is_guest_mode(vcpu))
2569 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2570 			l1_offset,
2571 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2572 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2573 	else
2574 		vcpu->arch.tsc_offset = l1_offset;
2575 
2576 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2577 }
2578 
2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2580 {
2581 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2582 
2583 	/* Userspace is changing the multiplier while L2 is active */
2584 	if (is_guest_mode(vcpu))
2585 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2586 			l1_multiplier,
2587 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2588 	else
2589 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2590 
2591 	if (kvm_caps.has_tsc_control)
2592 		static_call(kvm_x86_write_tsc_multiplier)(
2593 			vcpu, vcpu->arch.tsc_scaling_ratio);
2594 }
2595 
2596 static inline bool kvm_check_tsc_unstable(void)
2597 {
2598 #ifdef CONFIG_X86_64
2599 	/*
2600 	 * TSC is marked unstable when we're running on Hyper-V,
2601 	 * 'TSC page' clocksource is good.
2602 	 */
2603 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2604 		return false;
2605 #endif
2606 	return check_tsc_unstable();
2607 }
2608 
2609 /*
2610  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2611  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2612  * participates in.
2613  */
2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2615 				  u64 ns, bool matched)
2616 {
2617 	struct kvm *kvm = vcpu->kvm;
2618 
2619 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2620 
2621 	/*
2622 	 * We also track th most recent recorded KHZ, write and time to
2623 	 * allow the matching interval to be extended at each write.
2624 	 */
2625 	kvm->arch.last_tsc_nsec = ns;
2626 	kvm->arch.last_tsc_write = tsc;
2627 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2628 	kvm->arch.last_tsc_offset = offset;
2629 
2630 	vcpu->arch.last_guest_tsc = tsc;
2631 
2632 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2633 
2634 	if (!matched) {
2635 		/*
2636 		 * We split periods of matched TSC writes into generations.
2637 		 * For each generation, we track the original measured
2638 		 * nanosecond time, offset, and write, so if TSCs are in
2639 		 * sync, we can match exact offset, and if not, we can match
2640 		 * exact software computation in compute_guest_tsc()
2641 		 *
2642 		 * These values are tracked in kvm->arch.cur_xxx variables.
2643 		 */
2644 		kvm->arch.cur_tsc_generation++;
2645 		kvm->arch.cur_tsc_nsec = ns;
2646 		kvm->arch.cur_tsc_write = tsc;
2647 		kvm->arch.cur_tsc_offset = offset;
2648 		kvm->arch.nr_vcpus_matched_tsc = 0;
2649 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2650 		kvm->arch.nr_vcpus_matched_tsc++;
2651 	}
2652 
2653 	/* Keep track of which generation this VCPU has synchronized to */
2654 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2655 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2656 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2657 
2658 	kvm_track_tsc_matching(vcpu);
2659 }
2660 
2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2662 {
2663 	struct kvm *kvm = vcpu->kvm;
2664 	u64 offset, ns, elapsed;
2665 	unsigned long flags;
2666 	bool matched = false;
2667 	bool synchronizing = false;
2668 
2669 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2670 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2671 	ns = get_kvmclock_base_ns();
2672 	elapsed = ns - kvm->arch.last_tsc_nsec;
2673 
2674 	if (vcpu->arch.virtual_tsc_khz) {
2675 		if (data == 0) {
2676 			/*
2677 			 * detection of vcpu initialization -- need to sync
2678 			 * with other vCPUs. This particularly helps to keep
2679 			 * kvm_clock stable after CPU hotplug
2680 			 */
2681 			synchronizing = true;
2682 		} else {
2683 			u64 tsc_exp = kvm->arch.last_tsc_write +
2684 						nsec_to_cycles(vcpu, elapsed);
2685 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2686 			/*
2687 			 * Special case: TSC write with a small delta (1 second)
2688 			 * of virtual cycle time against real time is
2689 			 * interpreted as an attempt to synchronize the CPU.
2690 			 */
2691 			synchronizing = data < tsc_exp + tsc_hz &&
2692 					data + tsc_hz > tsc_exp;
2693 		}
2694 	}
2695 
2696 	/*
2697 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2698 	 * TSC, we add elapsed time in this computation.  We could let the
2699 	 * compensation code attempt to catch up if we fall behind, but
2700 	 * it's better to try to match offsets from the beginning.
2701          */
2702 	if (synchronizing &&
2703 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2704 		if (!kvm_check_tsc_unstable()) {
2705 			offset = kvm->arch.cur_tsc_offset;
2706 		} else {
2707 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2708 			data += delta;
2709 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2710 		}
2711 		matched = true;
2712 	}
2713 
2714 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2715 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2716 }
2717 
2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2719 					   s64 adjustment)
2720 {
2721 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2722 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2723 }
2724 
2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2726 {
2727 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2728 		WARN_ON(adjustment < 0);
2729 	adjustment = kvm_scale_tsc((u64) adjustment,
2730 				   vcpu->arch.l1_tsc_scaling_ratio);
2731 	adjust_tsc_offset_guest(vcpu, adjustment);
2732 }
2733 
2734 #ifdef CONFIG_X86_64
2735 
2736 static u64 read_tsc(void)
2737 {
2738 	u64 ret = (u64)rdtsc_ordered();
2739 	u64 last = pvclock_gtod_data.clock.cycle_last;
2740 
2741 	if (likely(ret >= last))
2742 		return ret;
2743 
2744 	/*
2745 	 * GCC likes to generate cmov here, but this branch is extremely
2746 	 * predictable (it's just a function of time and the likely is
2747 	 * very likely) and there's a data dependence, so force GCC
2748 	 * to generate a branch instead.  I don't barrier() because
2749 	 * we don't actually need a barrier, and if this function
2750 	 * ever gets inlined it will generate worse code.
2751 	 */
2752 	asm volatile ("");
2753 	return last;
2754 }
2755 
2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2757 			  int *mode)
2758 {
2759 	long v;
2760 	u64 tsc_pg_val;
2761 
2762 	switch (clock->vclock_mode) {
2763 	case VDSO_CLOCKMODE_HVCLOCK:
2764 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2765 						  tsc_timestamp);
2766 		if (tsc_pg_val != U64_MAX) {
2767 			/* TSC page valid */
2768 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2769 			v = (tsc_pg_val - clock->cycle_last) &
2770 				clock->mask;
2771 		} else {
2772 			/* TSC page invalid */
2773 			*mode = VDSO_CLOCKMODE_NONE;
2774 		}
2775 		break;
2776 	case VDSO_CLOCKMODE_TSC:
2777 		*mode = VDSO_CLOCKMODE_TSC;
2778 		*tsc_timestamp = read_tsc();
2779 		v = (*tsc_timestamp - clock->cycle_last) &
2780 			clock->mask;
2781 		break;
2782 	default:
2783 		*mode = VDSO_CLOCKMODE_NONE;
2784 	}
2785 
2786 	if (*mode == VDSO_CLOCKMODE_NONE)
2787 		*tsc_timestamp = v = 0;
2788 
2789 	return v * clock->mult;
2790 }
2791 
2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2793 {
2794 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2795 	unsigned long seq;
2796 	int mode;
2797 	u64 ns;
2798 
2799 	do {
2800 		seq = read_seqcount_begin(&gtod->seq);
2801 		ns = gtod->raw_clock.base_cycles;
2802 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2803 		ns >>= gtod->raw_clock.shift;
2804 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2805 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2806 	*t = ns;
2807 
2808 	return mode;
2809 }
2810 
2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2812 {
2813 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2814 	unsigned long seq;
2815 	int mode;
2816 	u64 ns;
2817 
2818 	do {
2819 		seq = read_seqcount_begin(&gtod->seq);
2820 		ts->tv_sec = gtod->wall_time_sec;
2821 		ns = gtod->clock.base_cycles;
2822 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2823 		ns >>= gtod->clock.shift;
2824 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2825 
2826 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2827 	ts->tv_nsec = ns;
2828 
2829 	return mode;
2830 }
2831 
2832 /* returns true if host is using TSC based clocksource */
2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2834 {
2835 	/* checked again under seqlock below */
2836 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2837 		return false;
2838 
2839 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2840 						      tsc_timestamp));
2841 }
2842 
2843 /* returns true if host is using TSC based clocksource */
2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2845 					   u64 *tsc_timestamp)
2846 {
2847 	/* checked again under seqlock below */
2848 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2849 		return false;
2850 
2851 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2852 }
2853 #endif
2854 
2855 /*
2856  *
2857  * Assuming a stable TSC across physical CPUS, and a stable TSC
2858  * across virtual CPUs, the following condition is possible.
2859  * Each numbered line represents an event visible to both
2860  * CPUs at the next numbered event.
2861  *
2862  * "timespecX" represents host monotonic time. "tscX" represents
2863  * RDTSC value.
2864  *
2865  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2866  *
2867  * 1.  read timespec0,tsc0
2868  * 2.					| timespec1 = timespec0 + N
2869  * 					| tsc1 = tsc0 + M
2870  * 3. transition to guest		| transition to guest
2871  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2872  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2873  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2874  *
2875  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2876  *
2877  * 	- ret0 < ret1
2878  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2879  *		...
2880  *	- 0 < N - M => M < N
2881  *
2882  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2883  * always the case (the difference between two distinct xtime instances
2884  * might be smaller then the difference between corresponding TSC reads,
2885  * when updating guest vcpus pvclock areas).
2886  *
2887  * To avoid that problem, do not allow visibility of distinct
2888  * system_timestamp/tsc_timestamp values simultaneously: use a master
2889  * copy of host monotonic time values. Update that master copy
2890  * in lockstep.
2891  *
2892  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2893  *
2894  */
2895 
2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2897 {
2898 #ifdef CONFIG_X86_64
2899 	struct kvm_arch *ka = &kvm->arch;
2900 	int vclock_mode;
2901 	bool host_tsc_clocksource, vcpus_matched;
2902 
2903 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2904 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2905 			atomic_read(&kvm->online_vcpus));
2906 
2907 	/*
2908 	 * If the host uses TSC clock, then passthrough TSC as stable
2909 	 * to the guest.
2910 	 */
2911 	host_tsc_clocksource = kvm_get_time_and_clockread(
2912 					&ka->master_kernel_ns,
2913 					&ka->master_cycle_now);
2914 
2915 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2916 				&& !ka->backwards_tsc_observed
2917 				&& !ka->boot_vcpu_runs_old_kvmclock;
2918 
2919 	if (ka->use_master_clock)
2920 		atomic_set(&kvm_guest_has_master_clock, 1);
2921 
2922 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2923 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2924 					vcpus_matched);
2925 #endif
2926 }
2927 
2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2929 {
2930 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2931 }
2932 
2933 static void __kvm_start_pvclock_update(struct kvm *kvm)
2934 {
2935 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2936 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2937 }
2938 
2939 static void kvm_start_pvclock_update(struct kvm *kvm)
2940 {
2941 	kvm_make_mclock_inprogress_request(kvm);
2942 
2943 	/* no guest entries from this point */
2944 	__kvm_start_pvclock_update(kvm);
2945 }
2946 
2947 static void kvm_end_pvclock_update(struct kvm *kvm)
2948 {
2949 	struct kvm_arch *ka = &kvm->arch;
2950 	struct kvm_vcpu *vcpu;
2951 	unsigned long i;
2952 
2953 	write_seqcount_end(&ka->pvclock_sc);
2954 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2955 	kvm_for_each_vcpu(i, vcpu, kvm)
2956 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2957 
2958 	/* guest entries allowed */
2959 	kvm_for_each_vcpu(i, vcpu, kvm)
2960 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2961 }
2962 
2963 static void kvm_update_masterclock(struct kvm *kvm)
2964 {
2965 	kvm_hv_request_tsc_page_update(kvm);
2966 	kvm_start_pvclock_update(kvm);
2967 	pvclock_update_vm_gtod_copy(kvm);
2968 	kvm_end_pvclock_update(kvm);
2969 }
2970 
2971 /*
2972  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2973  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2974  * can change during boot even if the TSC is constant, as it's possible for KVM
2975  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2976  * notification when calibration completes, but practically speaking calibration
2977  * will complete before userspace is alive enough to create VMs.
2978  */
2979 static unsigned long get_cpu_tsc_khz(void)
2980 {
2981 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2982 		return tsc_khz;
2983 	else
2984 		return __this_cpu_read(cpu_tsc_khz);
2985 }
2986 
2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2989 {
2990 	struct kvm_arch *ka = &kvm->arch;
2991 	struct pvclock_vcpu_time_info hv_clock;
2992 
2993 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2994 	get_cpu();
2995 
2996 	data->flags = 0;
2997 	if (ka->use_master_clock &&
2998 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
2999 #ifdef CONFIG_X86_64
3000 		struct timespec64 ts;
3001 
3002 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3003 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3004 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3005 		} else
3006 #endif
3007 		data->host_tsc = rdtsc();
3008 
3009 		data->flags |= KVM_CLOCK_TSC_STABLE;
3010 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3011 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3012 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3013 				   &hv_clock.tsc_shift,
3014 				   &hv_clock.tsc_to_system_mul);
3015 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3016 	} else {
3017 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3018 	}
3019 
3020 	put_cpu();
3021 }
3022 
3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3024 {
3025 	struct kvm_arch *ka = &kvm->arch;
3026 	unsigned seq;
3027 
3028 	do {
3029 		seq = read_seqcount_begin(&ka->pvclock_sc);
3030 		__get_kvmclock(kvm, data);
3031 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3032 }
3033 
3034 u64 get_kvmclock_ns(struct kvm *kvm)
3035 {
3036 	struct kvm_clock_data data;
3037 
3038 	get_kvmclock(kvm, &data);
3039 	return data.clock;
3040 }
3041 
3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3043 				    struct gfn_to_pfn_cache *gpc,
3044 				    unsigned int offset)
3045 {
3046 	struct kvm_vcpu_arch *vcpu = &v->arch;
3047 	struct pvclock_vcpu_time_info *guest_hv_clock;
3048 	unsigned long flags;
3049 
3050 	read_lock_irqsave(&gpc->lock, flags);
3051 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3052 		read_unlock_irqrestore(&gpc->lock, flags);
3053 
3054 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3055 			return;
3056 
3057 		read_lock_irqsave(&gpc->lock, flags);
3058 	}
3059 
3060 	guest_hv_clock = (void *)(gpc->khva + offset);
3061 
3062 	/*
3063 	 * This VCPU is paused, but it's legal for a guest to read another
3064 	 * VCPU's kvmclock, so we really have to follow the specification where
3065 	 * it says that version is odd if data is being modified, and even after
3066 	 * it is consistent.
3067 	 */
3068 
3069 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3070 	smp_wmb();
3071 
3072 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3073 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3074 
3075 	if (vcpu->pvclock_set_guest_stopped_request) {
3076 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3077 		vcpu->pvclock_set_guest_stopped_request = false;
3078 	}
3079 
3080 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3081 	smp_wmb();
3082 
3083 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3084 
3085 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3086 	read_unlock_irqrestore(&gpc->lock, flags);
3087 
3088 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3089 }
3090 
3091 static int kvm_guest_time_update(struct kvm_vcpu *v)
3092 {
3093 	unsigned long flags, tgt_tsc_khz;
3094 	unsigned seq;
3095 	struct kvm_vcpu_arch *vcpu = &v->arch;
3096 	struct kvm_arch *ka = &v->kvm->arch;
3097 	s64 kernel_ns;
3098 	u64 tsc_timestamp, host_tsc;
3099 	u8 pvclock_flags;
3100 	bool use_master_clock;
3101 
3102 	kernel_ns = 0;
3103 	host_tsc = 0;
3104 
3105 	/*
3106 	 * If the host uses TSC clock, then passthrough TSC as stable
3107 	 * to the guest.
3108 	 */
3109 	do {
3110 		seq = read_seqcount_begin(&ka->pvclock_sc);
3111 		use_master_clock = ka->use_master_clock;
3112 		if (use_master_clock) {
3113 			host_tsc = ka->master_cycle_now;
3114 			kernel_ns = ka->master_kernel_ns;
3115 		}
3116 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3117 
3118 	/* Keep irq disabled to prevent changes to the clock */
3119 	local_irq_save(flags);
3120 	tgt_tsc_khz = get_cpu_tsc_khz();
3121 	if (unlikely(tgt_tsc_khz == 0)) {
3122 		local_irq_restore(flags);
3123 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3124 		return 1;
3125 	}
3126 	if (!use_master_clock) {
3127 		host_tsc = rdtsc();
3128 		kernel_ns = get_kvmclock_base_ns();
3129 	}
3130 
3131 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3132 
3133 	/*
3134 	 * We may have to catch up the TSC to match elapsed wall clock
3135 	 * time for two reasons, even if kvmclock is used.
3136 	 *   1) CPU could have been running below the maximum TSC rate
3137 	 *   2) Broken TSC compensation resets the base at each VCPU
3138 	 *      entry to avoid unknown leaps of TSC even when running
3139 	 *      again on the same CPU.  This may cause apparent elapsed
3140 	 *      time to disappear, and the guest to stand still or run
3141 	 *	very slowly.
3142 	 */
3143 	if (vcpu->tsc_catchup) {
3144 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3145 		if (tsc > tsc_timestamp) {
3146 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3147 			tsc_timestamp = tsc;
3148 		}
3149 	}
3150 
3151 	local_irq_restore(flags);
3152 
3153 	/* With all the info we got, fill in the values */
3154 
3155 	if (kvm_caps.has_tsc_control)
3156 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3157 					    v->arch.l1_tsc_scaling_ratio);
3158 
3159 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3160 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3161 				   &vcpu->hv_clock.tsc_shift,
3162 				   &vcpu->hv_clock.tsc_to_system_mul);
3163 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3164 	}
3165 
3166 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3167 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3168 	vcpu->last_guest_tsc = tsc_timestamp;
3169 
3170 	/* If the host uses TSC clocksource, then it is stable */
3171 	pvclock_flags = 0;
3172 	if (use_master_clock)
3173 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3174 
3175 	vcpu->hv_clock.flags = pvclock_flags;
3176 
3177 	if (vcpu->pv_time.active)
3178 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3179 	if (vcpu->xen.vcpu_info_cache.active)
3180 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3181 					offsetof(struct compat_vcpu_info, time));
3182 	if (vcpu->xen.vcpu_time_info_cache.active)
3183 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3184 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3185 	return 0;
3186 }
3187 
3188 /*
3189  * kvmclock updates which are isolated to a given vcpu, such as
3190  * vcpu->cpu migration, should not allow system_timestamp from
3191  * the rest of the vcpus to remain static. Otherwise ntp frequency
3192  * correction applies to one vcpu's system_timestamp but not
3193  * the others.
3194  *
3195  * So in those cases, request a kvmclock update for all vcpus.
3196  * We need to rate-limit these requests though, as they can
3197  * considerably slow guests that have a large number of vcpus.
3198  * The time for a remote vcpu to update its kvmclock is bound
3199  * by the delay we use to rate-limit the updates.
3200  */
3201 
3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3203 
3204 static void kvmclock_update_fn(struct work_struct *work)
3205 {
3206 	unsigned long i;
3207 	struct delayed_work *dwork = to_delayed_work(work);
3208 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3209 					   kvmclock_update_work);
3210 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3211 	struct kvm_vcpu *vcpu;
3212 
3213 	kvm_for_each_vcpu(i, vcpu, kvm) {
3214 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3215 		kvm_vcpu_kick(vcpu);
3216 	}
3217 }
3218 
3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3220 {
3221 	struct kvm *kvm = v->kvm;
3222 
3223 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3224 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3225 					KVMCLOCK_UPDATE_DELAY);
3226 }
3227 
3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3229 
3230 static void kvmclock_sync_fn(struct work_struct *work)
3231 {
3232 	struct delayed_work *dwork = to_delayed_work(work);
3233 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3234 					   kvmclock_sync_work);
3235 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3236 
3237 	if (!kvmclock_periodic_sync)
3238 		return;
3239 
3240 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3241 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3242 					KVMCLOCK_SYNC_PERIOD);
3243 }
3244 
3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3246 static bool is_mci_control_msr(u32 msr)
3247 {
3248 	return (msr & 3) == 0;
3249 }
3250 static bool is_mci_status_msr(u32 msr)
3251 {
3252 	return (msr & 3) == 1;
3253 }
3254 
3255 /*
3256  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3257  */
3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3259 {
3260 	/* McStatusWrEn enabled? */
3261 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3262 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3263 
3264 	return false;
3265 }
3266 
3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3268 {
3269 	u64 mcg_cap = vcpu->arch.mcg_cap;
3270 	unsigned bank_num = mcg_cap & 0xff;
3271 	u32 msr = msr_info->index;
3272 	u64 data = msr_info->data;
3273 	u32 offset, last_msr;
3274 
3275 	switch (msr) {
3276 	case MSR_IA32_MCG_STATUS:
3277 		vcpu->arch.mcg_status = data;
3278 		break;
3279 	case MSR_IA32_MCG_CTL:
3280 		if (!(mcg_cap & MCG_CTL_P) &&
3281 		    (data || !msr_info->host_initiated))
3282 			return 1;
3283 		if (data != 0 && data != ~(u64)0)
3284 			return 1;
3285 		vcpu->arch.mcg_ctl = data;
3286 		break;
3287 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3288 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3289 		if (msr > last_msr)
3290 			return 1;
3291 
3292 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3293 			return 1;
3294 		/* An attempt to write a 1 to a reserved bit raises #GP */
3295 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3296 			return 1;
3297 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3298 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3299 		vcpu->arch.mci_ctl2_banks[offset] = data;
3300 		break;
3301 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3302 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3303 		if (msr > last_msr)
3304 			return 1;
3305 
3306 		/*
3307 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3308 		 * values are architecturally undefined.  But, some Linux
3309 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3310 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3311 		 * other bits in order to avoid an uncaught #GP in the guest.
3312 		 *
3313 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3314 		 * single-bit ECC data errors.
3315 		 */
3316 		if (is_mci_control_msr(msr) &&
3317 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3318 			return 1;
3319 
3320 		/*
3321 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3322 		 * AMD-based CPUs allow non-zero values, but if and only if
3323 		 * HWCR[McStatusWrEn] is set.
3324 		 */
3325 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3326 		    data != 0 && !can_set_mci_status(vcpu))
3327 			return 1;
3328 
3329 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3330 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3331 		vcpu->arch.mce_banks[offset] = data;
3332 		break;
3333 	default:
3334 		return 1;
3335 	}
3336 	return 0;
3337 }
3338 
3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3340 {
3341 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3342 
3343 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3344 }
3345 
3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3347 {
3348 	gpa_t gpa = data & ~0x3f;
3349 
3350 	/* Bits 4:5 are reserved, Should be zero */
3351 	if (data & 0x30)
3352 		return 1;
3353 
3354 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3355 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3356 		return 1;
3357 
3358 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3359 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3360 		return 1;
3361 
3362 	if (!lapic_in_kernel(vcpu))
3363 		return data ? 1 : 0;
3364 
3365 	vcpu->arch.apf.msr_en_val = data;
3366 
3367 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3368 		kvm_clear_async_pf_completion_queue(vcpu);
3369 		kvm_async_pf_hash_reset(vcpu);
3370 		return 0;
3371 	}
3372 
3373 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3374 					sizeof(u64)))
3375 		return 1;
3376 
3377 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3378 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3379 
3380 	kvm_async_pf_wakeup_all(vcpu);
3381 
3382 	return 0;
3383 }
3384 
3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3386 {
3387 	/* Bits 8-63 are reserved */
3388 	if (data >> 8)
3389 		return 1;
3390 
3391 	if (!lapic_in_kernel(vcpu))
3392 		return 1;
3393 
3394 	vcpu->arch.apf.msr_int_val = data;
3395 
3396 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3397 
3398 	return 0;
3399 }
3400 
3401 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3402 {
3403 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3404 	vcpu->arch.time = 0;
3405 }
3406 
3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3408 {
3409 	++vcpu->stat.tlb_flush;
3410 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3411 
3412 	/* Flushing all ASIDs flushes the current ASID... */
3413 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3414 }
3415 
3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3417 {
3418 	++vcpu->stat.tlb_flush;
3419 
3420 	if (!tdp_enabled) {
3421 		/*
3422 		 * A TLB flush on behalf of the guest is equivalent to
3423 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3424 		 * a forced sync of the shadow page tables.  Ensure all the
3425 		 * roots are synced and the guest TLB in hardware is clean.
3426 		 */
3427 		kvm_mmu_sync_roots(vcpu);
3428 		kvm_mmu_sync_prev_roots(vcpu);
3429 	}
3430 
3431 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3432 
3433 	/*
3434 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3435 	 * grained flushing.
3436 	 */
3437 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3438 }
3439 
3440 
3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3442 {
3443 	++vcpu->stat.tlb_flush;
3444 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3445 }
3446 
3447 /*
3448  * Service "local" TLB flush requests, which are specific to the current MMU
3449  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3450  * TLB flushes that are targeted at an MMU context also need to be serviced
3451  * prior before nested VM-Enter/VM-Exit.
3452  */
3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3454 {
3455 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3456 		kvm_vcpu_flush_tlb_current(vcpu);
3457 
3458 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3459 		kvm_vcpu_flush_tlb_guest(vcpu);
3460 }
3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3462 
3463 static void record_steal_time(struct kvm_vcpu *vcpu)
3464 {
3465 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3466 	struct kvm_steal_time __user *st;
3467 	struct kvm_memslots *slots;
3468 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3469 	u64 steal;
3470 	u32 version;
3471 
3472 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3473 		kvm_xen_runstate_set_running(vcpu);
3474 		return;
3475 	}
3476 
3477 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3478 		return;
3479 
3480 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3481 		return;
3482 
3483 	slots = kvm_memslots(vcpu->kvm);
3484 
3485 	if (unlikely(slots->generation != ghc->generation ||
3486 		     gpa != ghc->gpa ||
3487 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3488 		/* We rely on the fact that it fits in a single page. */
3489 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3490 
3491 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3492 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3493 			return;
3494 	}
3495 
3496 	st = (struct kvm_steal_time __user *)ghc->hva;
3497 	/*
3498 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3499 	 * expensive IPIs.
3500 	 */
3501 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3502 		u8 st_preempted = 0;
3503 		int err = -EFAULT;
3504 
3505 		if (!user_access_begin(st, sizeof(*st)))
3506 			return;
3507 
3508 		asm volatile("1: xchgb %0, %2\n"
3509 			     "xor %1, %1\n"
3510 			     "2:\n"
3511 			     _ASM_EXTABLE_UA(1b, 2b)
3512 			     : "+q" (st_preempted),
3513 			       "+&r" (err),
3514 			       "+m" (st->preempted));
3515 		if (err)
3516 			goto out;
3517 
3518 		user_access_end();
3519 
3520 		vcpu->arch.st.preempted = 0;
3521 
3522 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3523 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3524 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3525 			kvm_vcpu_flush_tlb_guest(vcpu);
3526 
3527 		if (!user_access_begin(st, sizeof(*st)))
3528 			goto dirty;
3529 	} else {
3530 		if (!user_access_begin(st, sizeof(*st)))
3531 			return;
3532 
3533 		unsafe_put_user(0, &st->preempted, out);
3534 		vcpu->arch.st.preempted = 0;
3535 	}
3536 
3537 	unsafe_get_user(version, &st->version, out);
3538 	if (version & 1)
3539 		version += 1;  /* first time write, random junk */
3540 
3541 	version += 1;
3542 	unsafe_put_user(version, &st->version, out);
3543 
3544 	smp_wmb();
3545 
3546 	unsafe_get_user(steal, &st->steal, out);
3547 	steal += current->sched_info.run_delay -
3548 		vcpu->arch.st.last_steal;
3549 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3550 	unsafe_put_user(steal, &st->steal, out);
3551 
3552 	version += 1;
3553 	unsafe_put_user(version, &st->version, out);
3554 
3555  out:
3556 	user_access_end();
3557  dirty:
3558 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3559 }
3560 
3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3562 {
3563 	bool pr = false;
3564 	u32 msr = msr_info->index;
3565 	u64 data = msr_info->data;
3566 
3567 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3568 		return kvm_xen_write_hypercall_page(vcpu, data);
3569 
3570 	switch (msr) {
3571 	case MSR_AMD64_NB_CFG:
3572 	case MSR_IA32_UCODE_WRITE:
3573 	case MSR_VM_HSAVE_PA:
3574 	case MSR_AMD64_PATCH_LOADER:
3575 	case MSR_AMD64_BU_CFG2:
3576 	case MSR_AMD64_DC_CFG:
3577 	case MSR_F15H_EX_CFG:
3578 		break;
3579 
3580 	case MSR_IA32_UCODE_REV:
3581 		if (msr_info->host_initiated)
3582 			vcpu->arch.microcode_version = data;
3583 		break;
3584 	case MSR_IA32_ARCH_CAPABILITIES:
3585 		if (!msr_info->host_initiated)
3586 			return 1;
3587 		vcpu->arch.arch_capabilities = data;
3588 		break;
3589 	case MSR_IA32_PERF_CAPABILITIES:
3590 		if (!msr_info->host_initiated)
3591 			return 1;
3592 		if (data & ~kvm_caps.supported_perf_cap)
3593 			return 1;
3594 
3595 		vcpu->arch.perf_capabilities = data;
3596 		kvm_pmu_refresh(vcpu);
3597 		return 0;
3598 	case MSR_EFER:
3599 		return set_efer(vcpu, msr_info);
3600 	case MSR_K7_HWCR:
3601 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3602 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3603 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3604 
3605 		/* Handle McStatusWrEn */
3606 		if (data == BIT_ULL(18)) {
3607 			vcpu->arch.msr_hwcr = data;
3608 		} else if (data != 0) {
3609 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3610 				    data);
3611 			return 1;
3612 		}
3613 		break;
3614 	case MSR_FAM10H_MMIO_CONF_BASE:
3615 		if (data != 0) {
3616 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3617 				    "0x%llx\n", data);
3618 			return 1;
3619 		}
3620 		break;
3621 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3622 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3623 		return kvm_mtrr_set_msr(vcpu, msr, data);
3624 	case MSR_IA32_APICBASE:
3625 		return kvm_set_apic_base(vcpu, msr_info);
3626 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3627 		return kvm_x2apic_msr_write(vcpu, msr, data);
3628 	case MSR_IA32_TSC_DEADLINE:
3629 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3630 		break;
3631 	case MSR_IA32_TSC_ADJUST:
3632 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3633 			if (!msr_info->host_initiated) {
3634 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3635 				adjust_tsc_offset_guest(vcpu, adj);
3636 				/* Before back to guest, tsc_timestamp must be adjusted
3637 				 * as well, otherwise guest's percpu pvclock time could jump.
3638 				 */
3639 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3640 			}
3641 			vcpu->arch.ia32_tsc_adjust_msr = data;
3642 		}
3643 		break;
3644 	case MSR_IA32_MISC_ENABLE: {
3645 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3646 
3647 		if (!msr_info->host_initiated) {
3648 			/* RO bits */
3649 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3650 				return 1;
3651 
3652 			/* R bits, i.e. writes are ignored, but don't fault. */
3653 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3654 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3655 		}
3656 
3657 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3658 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3659 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3660 				return 1;
3661 			vcpu->arch.ia32_misc_enable_msr = data;
3662 			kvm_update_cpuid_runtime(vcpu);
3663 		} else {
3664 			vcpu->arch.ia32_misc_enable_msr = data;
3665 		}
3666 		break;
3667 	}
3668 	case MSR_IA32_SMBASE:
3669 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3670 			return 1;
3671 		vcpu->arch.smbase = data;
3672 		break;
3673 	case MSR_IA32_POWER_CTL:
3674 		vcpu->arch.msr_ia32_power_ctl = data;
3675 		break;
3676 	case MSR_IA32_TSC:
3677 		if (msr_info->host_initiated) {
3678 			kvm_synchronize_tsc(vcpu, data);
3679 		} else {
3680 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3681 			adjust_tsc_offset_guest(vcpu, adj);
3682 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3683 		}
3684 		break;
3685 	case MSR_IA32_XSS:
3686 		if (!msr_info->host_initiated &&
3687 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3688 			return 1;
3689 		/*
3690 		 * KVM supports exposing PT to the guest, but does not support
3691 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3692 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3693 		 */
3694 		if (data & ~kvm_caps.supported_xss)
3695 			return 1;
3696 		vcpu->arch.ia32_xss = data;
3697 		kvm_update_cpuid_runtime(vcpu);
3698 		break;
3699 	case MSR_SMI_COUNT:
3700 		if (!msr_info->host_initiated)
3701 			return 1;
3702 		vcpu->arch.smi_count = data;
3703 		break;
3704 	case MSR_KVM_WALL_CLOCK_NEW:
3705 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3706 			return 1;
3707 
3708 		vcpu->kvm->arch.wall_clock = data;
3709 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3710 		break;
3711 	case MSR_KVM_WALL_CLOCK:
3712 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3713 			return 1;
3714 
3715 		vcpu->kvm->arch.wall_clock = data;
3716 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3717 		break;
3718 	case MSR_KVM_SYSTEM_TIME_NEW:
3719 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3720 			return 1;
3721 
3722 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3723 		break;
3724 	case MSR_KVM_SYSTEM_TIME:
3725 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3726 			return 1;
3727 
3728 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3729 		break;
3730 	case MSR_KVM_ASYNC_PF_EN:
3731 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3732 			return 1;
3733 
3734 		if (kvm_pv_enable_async_pf(vcpu, data))
3735 			return 1;
3736 		break;
3737 	case MSR_KVM_ASYNC_PF_INT:
3738 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3739 			return 1;
3740 
3741 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3742 			return 1;
3743 		break;
3744 	case MSR_KVM_ASYNC_PF_ACK:
3745 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3746 			return 1;
3747 		if (data & 0x1) {
3748 			vcpu->arch.apf.pageready_pending = false;
3749 			kvm_check_async_pf_completion(vcpu);
3750 		}
3751 		break;
3752 	case MSR_KVM_STEAL_TIME:
3753 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3754 			return 1;
3755 
3756 		if (unlikely(!sched_info_on()))
3757 			return 1;
3758 
3759 		if (data & KVM_STEAL_RESERVED_MASK)
3760 			return 1;
3761 
3762 		vcpu->arch.st.msr_val = data;
3763 
3764 		if (!(data & KVM_MSR_ENABLED))
3765 			break;
3766 
3767 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3768 
3769 		break;
3770 	case MSR_KVM_PV_EOI_EN:
3771 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3772 			return 1;
3773 
3774 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3775 			return 1;
3776 		break;
3777 
3778 	case MSR_KVM_POLL_CONTROL:
3779 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3780 			return 1;
3781 
3782 		/* only enable bit supported */
3783 		if (data & (-1ULL << 1))
3784 			return 1;
3785 
3786 		vcpu->arch.msr_kvm_poll_control = data;
3787 		break;
3788 
3789 	case MSR_IA32_MCG_CTL:
3790 	case MSR_IA32_MCG_STATUS:
3791 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3792 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3793 		return set_msr_mce(vcpu, msr_info);
3794 
3795 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3796 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3797 		pr = true;
3798 		fallthrough;
3799 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3800 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3801 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3802 			return kvm_pmu_set_msr(vcpu, msr_info);
3803 
3804 		if (pr || data != 0)
3805 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3806 				    "0x%x data 0x%llx\n", msr, data);
3807 		break;
3808 	case MSR_K7_CLK_CTL:
3809 		/*
3810 		 * Ignore all writes to this no longer documented MSR.
3811 		 * Writes are only relevant for old K7 processors,
3812 		 * all pre-dating SVM, but a recommended workaround from
3813 		 * AMD for these chips. It is possible to specify the
3814 		 * affected processor models on the command line, hence
3815 		 * the need to ignore the workaround.
3816 		 */
3817 		break;
3818 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3819 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3820 	case HV_X64_MSR_SYNDBG_OPTIONS:
3821 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3822 	case HV_X64_MSR_CRASH_CTL:
3823 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3824 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3825 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3826 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3827 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3828 		return kvm_hv_set_msr_common(vcpu, msr, data,
3829 					     msr_info->host_initiated);
3830 	case MSR_IA32_BBL_CR_CTL3:
3831 		/* Drop writes to this legacy MSR -- see rdmsr
3832 		 * counterpart for further detail.
3833 		 */
3834 		if (report_ignored_msrs)
3835 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3836 				msr, data);
3837 		break;
3838 	case MSR_AMD64_OSVW_ID_LENGTH:
3839 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3840 			return 1;
3841 		vcpu->arch.osvw.length = data;
3842 		break;
3843 	case MSR_AMD64_OSVW_STATUS:
3844 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3845 			return 1;
3846 		vcpu->arch.osvw.status = data;
3847 		break;
3848 	case MSR_PLATFORM_INFO:
3849 		if (!msr_info->host_initiated ||
3850 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3851 		     cpuid_fault_enabled(vcpu)))
3852 			return 1;
3853 		vcpu->arch.msr_platform_info = data;
3854 		break;
3855 	case MSR_MISC_FEATURES_ENABLES:
3856 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3857 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3858 		     !supports_cpuid_fault(vcpu)))
3859 			return 1;
3860 		vcpu->arch.msr_misc_features_enables = data;
3861 		break;
3862 #ifdef CONFIG_X86_64
3863 	case MSR_IA32_XFD:
3864 		if (!msr_info->host_initiated &&
3865 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3866 			return 1;
3867 
3868 		if (data & ~kvm_guest_supported_xfd(vcpu))
3869 			return 1;
3870 
3871 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3872 		break;
3873 	case MSR_IA32_XFD_ERR:
3874 		if (!msr_info->host_initiated &&
3875 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3876 			return 1;
3877 
3878 		if (data & ~kvm_guest_supported_xfd(vcpu))
3879 			return 1;
3880 
3881 		vcpu->arch.guest_fpu.xfd_err = data;
3882 		break;
3883 #endif
3884 	case MSR_IA32_PEBS_ENABLE:
3885 	case MSR_IA32_DS_AREA:
3886 	case MSR_PEBS_DATA_CFG:
3887 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3888 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3889 			return kvm_pmu_set_msr(vcpu, msr_info);
3890 		/*
3891 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3892 		 * as to-be-saved, even if an MSRs isn't fully supported.
3893 		 */
3894 		return !msr_info->host_initiated || data;
3895 	default:
3896 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3897 			return kvm_pmu_set_msr(vcpu, msr_info);
3898 		return KVM_MSR_RET_INVALID;
3899 	}
3900 	return 0;
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3903 
3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3905 {
3906 	u64 data;
3907 	u64 mcg_cap = vcpu->arch.mcg_cap;
3908 	unsigned bank_num = mcg_cap & 0xff;
3909 	u32 offset, last_msr;
3910 
3911 	switch (msr) {
3912 	case MSR_IA32_P5_MC_ADDR:
3913 	case MSR_IA32_P5_MC_TYPE:
3914 		data = 0;
3915 		break;
3916 	case MSR_IA32_MCG_CAP:
3917 		data = vcpu->arch.mcg_cap;
3918 		break;
3919 	case MSR_IA32_MCG_CTL:
3920 		if (!(mcg_cap & MCG_CTL_P) && !host)
3921 			return 1;
3922 		data = vcpu->arch.mcg_ctl;
3923 		break;
3924 	case MSR_IA32_MCG_STATUS:
3925 		data = vcpu->arch.mcg_status;
3926 		break;
3927 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3928 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3929 		if (msr > last_msr)
3930 			return 1;
3931 
3932 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3933 			return 1;
3934 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3935 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3936 		data = vcpu->arch.mci_ctl2_banks[offset];
3937 		break;
3938 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3939 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3940 		if (msr > last_msr)
3941 			return 1;
3942 
3943 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3944 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3945 		data = vcpu->arch.mce_banks[offset];
3946 		break;
3947 	default:
3948 		return 1;
3949 	}
3950 	*pdata = data;
3951 	return 0;
3952 }
3953 
3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3955 {
3956 	switch (msr_info->index) {
3957 	case MSR_IA32_PLATFORM_ID:
3958 	case MSR_IA32_EBL_CR_POWERON:
3959 	case MSR_IA32_LASTBRANCHFROMIP:
3960 	case MSR_IA32_LASTBRANCHTOIP:
3961 	case MSR_IA32_LASTINTFROMIP:
3962 	case MSR_IA32_LASTINTTOIP:
3963 	case MSR_AMD64_SYSCFG:
3964 	case MSR_K8_TSEG_ADDR:
3965 	case MSR_K8_TSEG_MASK:
3966 	case MSR_VM_HSAVE_PA:
3967 	case MSR_K8_INT_PENDING_MSG:
3968 	case MSR_AMD64_NB_CFG:
3969 	case MSR_FAM10H_MMIO_CONF_BASE:
3970 	case MSR_AMD64_BU_CFG2:
3971 	case MSR_IA32_PERF_CTL:
3972 	case MSR_AMD64_DC_CFG:
3973 	case MSR_F15H_EX_CFG:
3974 	/*
3975 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3976 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3977 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3978 	 * so for existing CPU-specific MSRs.
3979 	 */
3980 	case MSR_RAPL_POWER_UNIT:
3981 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3982 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3983 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3984 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3985 		msr_info->data = 0;
3986 		break;
3987 	case MSR_IA32_PEBS_ENABLE:
3988 	case MSR_IA32_DS_AREA:
3989 	case MSR_PEBS_DATA_CFG:
3990 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3991 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3992 			return kvm_pmu_get_msr(vcpu, msr_info);
3993 		/*
3994 		 * Userspace is allowed to read MSRs that KVM reports as
3995 		 * to-be-saved, even if an MSR isn't fully supported.
3996 		 */
3997 		if (!msr_info->host_initiated)
3998 			return 1;
3999 		msr_info->data = 0;
4000 		break;
4001 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4002 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4003 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4004 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4005 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4006 			return kvm_pmu_get_msr(vcpu, msr_info);
4007 		msr_info->data = 0;
4008 		break;
4009 	case MSR_IA32_UCODE_REV:
4010 		msr_info->data = vcpu->arch.microcode_version;
4011 		break;
4012 	case MSR_IA32_ARCH_CAPABILITIES:
4013 		if (!msr_info->host_initiated &&
4014 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4015 			return 1;
4016 		msr_info->data = vcpu->arch.arch_capabilities;
4017 		break;
4018 	case MSR_IA32_PERF_CAPABILITIES:
4019 		if (!msr_info->host_initiated &&
4020 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4021 			return 1;
4022 		msr_info->data = vcpu->arch.perf_capabilities;
4023 		break;
4024 	case MSR_IA32_POWER_CTL:
4025 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4026 		break;
4027 	case MSR_IA32_TSC: {
4028 		/*
4029 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4030 		 * even when not intercepted. AMD manual doesn't explicitly
4031 		 * state this but appears to behave the same.
4032 		 *
4033 		 * On userspace reads and writes, however, we unconditionally
4034 		 * return L1's TSC value to ensure backwards-compatible
4035 		 * behavior for migration.
4036 		 */
4037 		u64 offset, ratio;
4038 
4039 		if (msr_info->host_initiated) {
4040 			offset = vcpu->arch.l1_tsc_offset;
4041 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4042 		} else {
4043 			offset = vcpu->arch.tsc_offset;
4044 			ratio = vcpu->arch.tsc_scaling_ratio;
4045 		}
4046 
4047 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4048 		break;
4049 	}
4050 	case MSR_MTRRcap:
4051 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4052 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4053 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4054 	case 0xcd: /* fsb frequency */
4055 		msr_info->data = 3;
4056 		break;
4057 		/*
4058 		 * MSR_EBC_FREQUENCY_ID
4059 		 * Conservative value valid for even the basic CPU models.
4060 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4061 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4062 		 * and 266MHz for model 3, or 4. Set Core Clock
4063 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4064 		 * 31:24) even though these are only valid for CPU
4065 		 * models > 2, however guests may end up dividing or
4066 		 * multiplying by zero otherwise.
4067 		 */
4068 	case MSR_EBC_FREQUENCY_ID:
4069 		msr_info->data = 1 << 24;
4070 		break;
4071 	case MSR_IA32_APICBASE:
4072 		msr_info->data = kvm_get_apic_base(vcpu);
4073 		break;
4074 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4075 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4076 	case MSR_IA32_TSC_DEADLINE:
4077 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4078 		break;
4079 	case MSR_IA32_TSC_ADJUST:
4080 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4081 		break;
4082 	case MSR_IA32_MISC_ENABLE:
4083 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4084 		break;
4085 	case MSR_IA32_SMBASE:
4086 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4087 			return 1;
4088 		msr_info->data = vcpu->arch.smbase;
4089 		break;
4090 	case MSR_SMI_COUNT:
4091 		msr_info->data = vcpu->arch.smi_count;
4092 		break;
4093 	case MSR_IA32_PERF_STATUS:
4094 		/* TSC increment by tick */
4095 		msr_info->data = 1000ULL;
4096 		/* CPU multiplier */
4097 		msr_info->data |= (((uint64_t)4ULL) << 40);
4098 		break;
4099 	case MSR_EFER:
4100 		msr_info->data = vcpu->arch.efer;
4101 		break;
4102 	case MSR_KVM_WALL_CLOCK:
4103 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4104 			return 1;
4105 
4106 		msr_info->data = vcpu->kvm->arch.wall_clock;
4107 		break;
4108 	case MSR_KVM_WALL_CLOCK_NEW:
4109 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4110 			return 1;
4111 
4112 		msr_info->data = vcpu->kvm->arch.wall_clock;
4113 		break;
4114 	case MSR_KVM_SYSTEM_TIME:
4115 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4116 			return 1;
4117 
4118 		msr_info->data = vcpu->arch.time;
4119 		break;
4120 	case MSR_KVM_SYSTEM_TIME_NEW:
4121 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4122 			return 1;
4123 
4124 		msr_info->data = vcpu->arch.time;
4125 		break;
4126 	case MSR_KVM_ASYNC_PF_EN:
4127 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4128 			return 1;
4129 
4130 		msr_info->data = vcpu->arch.apf.msr_en_val;
4131 		break;
4132 	case MSR_KVM_ASYNC_PF_INT:
4133 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4134 			return 1;
4135 
4136 		msr_info->data = vcpu->arch.apf.msr_int_val;
4137 		break;
4138 	case MSR_KVM_ASYNC_PF_ACK:
4139 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4140 			return 1;
4141 
4142 		msr_info->data = 0;
4143 		break;
4144 	case MSR_KVM_STEAL_TIME:
4145 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4146 			return 1;
4147 
4148 		msr_info->data = vcpu->arch.st.msr_val;
4149 		break;
4150 	case MSR_KVM_PV_EOI_EN:
4151 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4152 			return 1;
4153 
4154 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4155 		break;
4156 	case MSR_KVM_POLL_CONTROL:
4157 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4158 			return 1;
4159 
4160 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4161 		break;
4162 	case MSR_IA32_P5_MC_ADDR:
4163 	case MSR_IA32_P5_MC_TYPE:
4164 	case MSR_IA32_MCG_CAP:
4165 	case MSR_IA32_MCG_CTL:
4166 	case MSR_IA32_MCG_STATUS:
4167 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4168 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4169 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4170 				   msr_info->host_initiated);
4171 	case MSR_IA32_XSS:
4172 		if (!msr_info->host_initiated &&
4173 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4174 			return 1;
4175 		msr_info->data = vcpu->arch.ia32_xss;
4176 		break;
4177 	case MSR_K7_CLK_CTL:
4178 		/*
4179 		 * Provide expected ramp-up count for K7. All other
4180 		 * are set to zero, indicating minimum divisors for
4181 		 * every field.
4182 		 *
4183 		 * This prevents guest kernels on AMD host with CPU
4184 		 * type 6, model 8 and higher from exploding due to
4185 		 * the rdmsr failing.
4186 		 */
4187 		msr_info->data = 0x20000000;
4188 		break;
4189 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4190 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4191 	case HV_X64_MSR_SYNDBG_OPTIONS:
4192 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4193 	case HV_X64_MSR_CRASH_CTL:
4194 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4195 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4196 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4197 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4198 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4199 		return kvm_hv_get_msr_common(vcpu,
4200 					     msr_info->index, &msr_info->data,
4201 					     msr_info->host_initiated);
4202 	case MSR_IA32_BBL_CR_CTL3:
4203 		/* This legacy MSR exists but isn't fully documented in current
4204 		 * silicon.  It is however accessed by winxp in very narrow
4205 		 * scenarios where it sets bit #19, itself documented as
4206 		 * a "reserved" bit.  Best effort attempt to source coherent
4207 		 * read data here should the balance of the register be
4208 		 * interpreted by the guest:
4209 		 *
4210 		 * L2 cache control register 3: 64GB range, 256KB size,
4211 		 * enabled, latency 0x1, configured
4212 		 */
4213 		msr_info->data = 0xbe702111;
4214 		break;
4215 	case MSR_AMD64_OSVW_ID_LENGTH:
4216 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4217 			return 1;
4218 		msr_info->data = vcpu->arch.osvw.length;
4219 		break;
4220 	case MSR_AMD64_OSVW_STATUS:
4221 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4222 			return 1;
4223 		msr_info->data = vcpu->arch.osvw.status;
4224 		break;
4225 	case MSR_PLATFORM_INFO:
4226 		if (!msr_info->host_initiated &&
4227 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4228 			return 1;
4229 		msr_info->data = vcpu->arch.msr_platform_info;
4230 		break;
4231 	case MSR_MISC_FEATURES_ENABLES:
4232 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4233 		break;
4234 	case MSR_K7_HWCR:
4235 		msr_info->data = vcpu->arch.msr_hwcr;
4236 		break;
4237 #ifdef CONFIG_X86_64
4238 	case MSR_IA32_XFD:
4239 		if (!msr_info->host_initiated &&
4240 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4241 			return 1;
4242 
4243 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4244 		break;
4245 	case MSR_IA32_XFD_ERR:
4246 		if (!msr_info->host_initiated &&
4247 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4248 			return 1;
4249 
4250 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4251 		break;
4252 #endif
4253 	default:
4254 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4255 			return kvm_pmu_get_msr(vcpu, msr_info);
4256 		return KVM_MSR_RET_INVALID;
4257 	}
4258 	return 0;
4259 }
4260 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4261 
4262 /*
4263  * Read or write a bunch of msrs. All parameters are kernel addresses.
4264  *
4265  * @return number of msrs set successfully.
4266  */
4267 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4268 		    struct kvm_msr_entry *entries,
4269 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4270 				  unsigned index, u64 *data))
4271 {
4272 	int i;
4273 
4274 	for (i = 0; i < msrs->nmsrs; ++i)
4275 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4276 			break;
4277 
4278 	return i;
4279 }
4280 
4281 /*
4282  * Read or write a bunch of msrs. Parameters are user addresses.
4283  *
4284  * @return number of msrs set successfully.
4285  */
4286 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4287 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4288 				unsigned index, u64 *data),
4289 		  int writeback)
4290 {
4291 	struct kvm_msrs msrs;
4292 	struct kvm_msr_entry *entries;
4293 	int r, n;
4294 	unsigned size;
4295 
4296 	r = -EFAULT;
4297 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4298 		goto out;
4299 
4300 	r = -E2BIG;
4301 	if (msrs.nmsrs >= MAX_IO_MSRS)
4302 		goto out;
4303 
4304 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4305 	entries = memdup_user(user_msrs->entries, size);
4306 	if (IS_ERR(entries)) {
4307 		r = PTR_ERR(entries);
4308 		goto out;
4309 	}
4310 
4311 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4312 	if (r < 0)
4313 		goto out_free;
4314 
4315 	r = -EFAULT;
4316 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4317 		goto out_free;
4318 
4319 	r = n;
4320 
4321 out_free:
4322 	kfree(entries);
4323 out:
4324 	return r;
4325 }
4326 
4327 static inline bool kvm_can_mwait_in_guest(void)
4328 {
4329 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4330 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4331 		boot_cpu_has(X86_FEATURE_ARAT);
4332 }
4333 
4334 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4335 					    struct kvm_cpuid2 __user *cpuid_arg)
4336 {
4337 	struct kvm_cpuid2 cpuid;
4338 	int r;
4339 
4340 	r = -EFAULT;
4341 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4342 		return r;
4343 
4344 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4345 	if (r)
4346 		return r;
4347 
4348 	r = -EFAULT;
4349 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4350 		return r;
4351 
4352 	return 0;
4353 }
4354 
4355 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4356 {
4357 	int r = 0;
4358 
4359 	switch (ext) {
4360 	case KVM_CAP_IRQCHIP:
4361 	case KVM_CAP_HLT:
4362 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4363 	case KVM_CAP_SET_TSS_ADDR:
4364 	case KVM_CAP_EXT_CPUID:
4365 	case KVM_CAP_EXT_EMUL_CPUID:
4366 	case KVM_CAP_CLOCKSOURCE:
4367 	case KVM_CAP_PIT:
4368 	case KVM_CAP_NOP_IO_DELAY:
4369 	case KVM_CAP_MP_STATE:
4370 	case KVM_CAP_SYNC_MMU:
4371 	case KVM_CAP_USER_NMI:
4372 	case KVM_CAP_REINJECT_CONTROL:
4373 	case KVM_CAP_IRQ_INJECT_STATUS:
4374 	case KVM_CAP_IOEVENTFD:
4375 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4376 	case KVM_CAP_PIT2:
4377 	case KVM_CAP_PIT_STATE2:
4378 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4379 	case KVM_CAP_VCPU_EVENTS:
4380 	case KVM_CAP_HYPERV:
4381 	case KVM_CAP_HYPERV_VAPIC:
4382 	case KVM_CAP_HYPERV_SPIN:
4383 	case KVM_CAP_HYPERV_SYNIC:
4384 	case KVM_CAP_HYPERV_SYNIC2:
4385 	case KVM_CAP_HYPERV_VP_INDEX:
4386 	case KVM_CAP_HYPERV_EVENTFD:
4387 	case KVM_CAP_HYPERV_TLBFLUSH:
4388 	case KVM_CAP_HYPERV_SEND_IPI:
4389 	case KVM_CAP_HYPERV_CPUID:
4390 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4391 	case KVM_CAP_SYS_HYPERV_CPUID:
4392 	case KVM_CAP_PCI_SEGMENT:
4393 	case KVM_CAP_DEBUGREGS:
4394 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4395 	case KVM_CAP_XSAVE:
4396 	case KVM_CAP_ASYNC_PF:
4397 	case KVM_CAP_ASYNC_PF_INT:
4398 	case KVM_CAP_GET_TSC_KHZ:
4399 	case KVM_CAP_KVMCLOCK_CTRL:
4400 	case KVM_CAP_READONLY_MEM:
4401 	case KVM_CAP_HYPERV_TIME:
4402 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4403 	case KVM_CAP_TSC_DEADLINE_TIMER:
4404 	case KVM_CAP_DISABLE_QUIRKS:
4405 	case KVM_CAP_SET_BOOT_CPU_ID:
4406  	case KVM_CAP_SPLIT_IRQCHIP:
4407 	case KVM_CAP_IMMEDIATE_EXIT:
4408 	case KVM_CAP_PMU_EVENT_FILTER:
4409 	case KVM_CAP_GET_MSR_FEATURES:
4410 	case KVM_CAP_MSR_PLATFORM_INFO:
4411 	case KVM_CAP_EXCEPTION_PAYLOAD:
4412 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4413 	case KVM_CAP_SET_GUEST_DEBUG:
4414 	case KVM_CAP_LAST_CPU:
4415 	case KVM_CAP_X86_USER_SPACE_MSR:
4416 	case KVM_CAP_X86_MSR_FILTER:
4417 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4418 #ifdef CONFIG_X86_SGX_KVM
4419 	case KVM_CAP_SGX_ATTRIBUTE:
4420 #endif
4421 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4422 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4423 	case KVM_CAP_SREGS2:
4424 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4425 	case KVM_CAP_VCPU_ATTRIBUTES:
4426 	case KVM_CAP_SYS_ATTRIBUTES:
4427 	case KVM_CAP_VAPIC:
4428 	case KVM_CAP_ENABLE_CAP:
4429 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4430 		r = 1;
4431 		break;
4432 	case KVM_CAP_EXIT_HYPERCALL:
4433 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4434 		break;
4435 	case KVM_CAP_SET_GUEST_DEBUG2:
4436 		return KVM_GUESTDBG_VALID_MASK;
4437 #ifdef CONFIG_KVM_XEN
4438 	case KVM_CAP_XEN_HVM:
4439 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4440 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4441 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4442 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4443 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4444 		if (sched_info_on())
4445 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4446 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4447 		break;
4448 #endif
4449 	case KVM_CAP_SYNC_REGS:
4450 		r = KVM_SYNC_X86_VALID_FIELDS;
4451 		break;
4452 	case KVM_CAP_ADJUST_CLOCK:
4453 		r = KVM_CLOCK_VALID_FLAGS;
4454 		break;
4455 	case KVM_CAP_X86_DISABLE_EXITS:
4456 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4457 		      KVM_X86_DISABLE_EXITS_CSTATE;
4458 		if(kvm_can_mwait_in_guest())
4459 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4460 		break;
4461 	case KVM_CAP_X86_SMM:
4462 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4463 			break;
4464 
4465 		/* SMBASE is usually relocated above 1M on modern chipsets,
4466 		 * and SMM handlers might indeed rely on 4G segment limits,
4467 		 * so do not report SMM to be available if real mode is
4468 		 * emulated via vm86 mode.  Still, do not go to great lengths
4469 		 * to avoid userspace's usage of the feature, because it is a
4470 		 * fringe case that is not enabled except via specific settings
4471 		 * of the module parameters.
4472 		 */
4473 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4474 		break;
4475 	case KVM_CAP_NR_VCPUS:
4476 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4477 		break;
4478 	case KVM_CAP_MAX_VCPUS:
4479 		r = KVM_MAX_VCPUS;
4480 		break;
4481 	case KVM_CAP_MAX_VCPU_ID:
4482 		r = KVM_MAX_VCPU_IDS;
4483 		break;
4484 	case KVM_CAP_PV_MMU:	/* obsolete */
4485 		r = 0;
4486 		break;
4487 	case KVM_CAP_MCE:
4488 		r = KVM_MAX_MCE_BANKS;
4489 		break;
4490 	case KVM_CAP_XCRS:
4491 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4492 		break;
4493 	case KVM_CAP_TSC_CONTROL:
4494 	case KVM_CAP_VM_TSC_CONTROL:
4495 		r = kvm_caps.has_tsc_control;
4496 		break;
4497 	case KVM_CAP_X2APIC_API:
4498 		r = KVM_X2APIC_API_VALID_FLAGS;
4499 		break;
4500 	case KVM_CAP_NESTED_STATE:
4501 		r = kvm_x86_ops.nested_ops->get_state ?
4502 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4503 		break;
4504 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4505 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4506 		break;
4507 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4508 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4509 		break;
4510 	case KVM_CAP_SMALLER_MAXPHYADDR:
4511 		r = (int) allow_smaller_maxphyaddr;
4512 		break;
4513 	case KVM_CAP_STEAL_TIME:
4514 		r = sched_info_on();
4515 		break;
4516 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4517 		if (kvm_caps.has_bus_lock_exit)
4518 			r = KVM_BUS_LOCK_DETECTION_OFF |
4519 			    KVM_BUS_LOCK_DETECTION_EXIT;
4520 		else
4521 			r = 0;
4522 		break;
4523 	case KVM_CAP_XSAVE2: {
4524 		u64 guest_perm = xstate_get_guest_group_perm();
4525 
4526 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4527 		if (r < sizeof(struct kvm_xsave))
4528 			r = sizeof(struct kvm_xsave);
4529 		break;
4530 	}
4531 	case KVM_CAP_PMU_CAPABILITY:
4532 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4533 		break;
4534 	case KVM_CAP_DISABLE_QUIRKS2:
4535 		r = KVM_X86_VALID_QUIRKS;
4536 		break;
4537 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4538 		r = kvm_caps.has_notify_vmexit;
4539 		break;
4540 	default:
4541 		break;
4542 	}
4543 	return r;
4544 }
4545 
4546 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4547 {
4548 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4549 
4550 	if ((u64)(unsigned long)uaddr != attr->addr)
4551 		return ERR_PTR_USR(-EFAULT);
4552 	return uaddr;
4553 }
4554 
4555 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4556 {
4557 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4558 
4559 	if (attr->group)
4560 		return -ENXIO;
4561 
4562 	if (IS_ERR(uaddr))
4563 		return PTR_ERR(uaddr);
4564 
4565 	switch (attr->attr) {
4566 	case KVM_X86_XCOMP_GUEST_SUPP:
4567 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4568 			return -EFAULT;
4569 		return 0;
4570 	default:
4571 		return -ENXIO;
4572 		break;
4573 	}
4574 }
4575 
4576 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4577 {
4578 	if (attr->group)
4579 		return -ENXIO;
4580 
4581 	switch (attr->attr) {
4582 	case KVM_X86_XCOMP_GUEST_SUPP:
4583 		return 0;
4584 	default:
4585 		return -ENXIO;
4586 	}
4587 }
4588 
4589 long kvm_arch_dev_ioctl(struct file *filp,
4590 			unsigned int ioctl, unsigned long arg)
4591 {
4592 	void __user *argp = (void __user *)arg;
4593 	long r;
4594 
4595 	switch (ioctl) {
4596 	case KVM_GET_MSR_INDEX_LIST: {
4597 		struct kvm_msr_list __user *user_msr_list = argp;
4598 		struct kvm_msr_list msr_list;
4599 		unsigned n;
4600 
4601 		r = -EFAULT;
4602 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4603 			goto out;
4604 		n = msr_list.nmsrs;
4605 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4606 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4607 			goto out;
4608 		r = -E2BIG;
4609 		if (n < msr_list.nmsrs)
4610 			goto out;
4611 		r = -EFAULT;
4612 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4613 				 num_msrs_to_save * sizeof(u32)))
4614 			goto out;
4615 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4616 				 &emulated_msrs,
4617 				 num_emulated_msrs * sizeof(u32)))
4618 			goto out;
4619 		r = 0;
4620 		break;
4621 	}
4622 	case KVM_GET_SUPPORTED_CPUID:
4623 	case KVM_GET_EMULATED_CPUID: {
4624 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4625 		struct kvm_cpuid2 cpuid;
4626 
4627 		r = -EFAULT;
4628 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4629 			goto out;
4630 
4631 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4632 					    ioctl);
4633 		if (r)
4634 			goto out;
4635 
4636 		r = -EFAULT;
4637 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4638 			goto out;
4639 		r = 0;
4640 		break;
4641 	}
4642 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4643 		r = -EFAULT;
4644 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4645 				 sizeof(kvm_caps.supported_mce_cap)))
4646 			goto out;
4647 		r = 0;
4648 		break;
4649 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4650 		struct kvm_msr_list __user *user_msr_list = argp;
4651 		struct kvm_msr_list msr_list;
4652 		unsigned int n;
4653 
4654 		r = -EFAULT;
4655 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4656 			goto out;
4657 		n = msr_list.nmsrs;
4658 		msr_list.nmsrs = num_msr_based_features;
4659 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4660 			goto out;
4661 		r = -E2BIG;
4662 		if (n < msr_list.nmsrs)
4663 			goto out;
4664 		r = -EFAULT;
4665 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4666 				 num_msr_based_features * sizeof(u32)))
4667 			goto out;
4668 		r = 0;
4669 		break;
4670 	}
4671 	case KVM_GET_MSRS:
4672 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4673 		break;
4674 	case KVM_GET_SUPPORTED_HV_CPUID:
4675 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4676 		break;
4677 	case KVM_GET_DEVICE_ATTR: {
4678 		struct kvm_device_attr attr;
4679 		r = -EFAULT;
4680 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4681 			break;
4682 		r = kvm_x86_dev_get_attr(&attr);
4683 		break;
4684 	}
4685 	case KVM_HAS_DEVICE_ATTR: {
4686 		struct kvm_device_attr attr;
4687 		r = -EFAULT;
4688 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4689 			break;
4690 		r = kvm_x86_dev_has_attr(&attr);
4691 		break;
4692 	}
4693 	default:
4694 		r = -EINVAL;
4695 		break;
4696 	}
4697 out:
4698 	return r;
4699 }
4700 
4701 static void wbinvd_ipi(void *garbage)
4702 {
4703 	wbinvd();
4704 }
4705 
4706 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4707 {
4708 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4709 }
4710 
4711 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4712 {
4713 	/* Address WBINVD may be executed by guest */
4714 	if (need_emulate_wbinvd(vcpu)) {
4715 		if (static_call(kvm_x86_has_wbinvd_exit)())
4716 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4717 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4718 			smp_call_function_single(vcpu->cpu,
4719 					wbinvd_ipi, NULL, 1);
4720 	}
4721 
4722 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4723 
4724 	/* Save host pkru register if supported */
4725 	vcpu->arch.host_pkru = read_pkru();
4726 
4727 	/* Apply any externally detected TSC adjustments (due to suspend) */
4728 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4729 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4730 		vcpu->arch.tsc_offset_adjustment = 0;
4731 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4732 	}
4733 
4734 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4735 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4736 				rdtsc() - vcpu->arch.last_host_tsc;
4737 		if (tsc_delta < 0)
4738 			mark_tsc_unstable("KVM discovered backwards TSC");
4739 
4740 		if (kvm_check_tsc_unstable()) {
4741 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4742 						vcpu->arch.last_guest_tsc);
4743 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4744 			vcpu->arch.tsc_catchup = 1;
4745 		}
4746 
4747 		if (kvm_lapic_hv_timer_in_use(vcpu))
4748 			kvm_lapic_restart_hv_timer(vcpu);
4749 
4750 		/*
4751 		 * On a host with synchronized TSC, there is no need to update
4752 		 * kvmclock on vcpu->cpu migration
4753 		 */
4754 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4755 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4756 		if (vcpu->cpu != cpu)
4757 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4758 		vcpu->cpu = cpu;
4759 	}
4760 
4761 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4762 }
4763 
4764 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4765 {
4766 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4767 	struct kvm_steal_time __user *st;
4768 	struct kvm_memslots *slots;
4769 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4770 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4771 
4772 	/*
4773 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4774 	 * an instruction boundary and will not trigger guest emulation of any
4775 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4776 	 * when this is true, for example allowing the vCPU to be marked
4777 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4778 	 */
4779 	if (!vcpu->arch.at_instruction_boundary) {
4780 		vcpu->stat.preemption_other++;
4781 		return;
4782 	}
4783 
4784 	vcpu->stat.preemption_reported++;
4785 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4786 		return;
4787 
4788 	if (vcpu->arch.st.preempted)
4789 		return;
4790 
4791 	/* This happens on process exit */
4792 	if (unlikely(current->mm != vcpu->kvm->mm))
4793 		return;
4794 
4795 	slots = kvm_memslots(vcpu->kvm);
4796 
4797 	if (unlikely(slots->generation != ghc->generation ||
4798 		     gpa != ghc->gpa ||
4799 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4800 		return;
4801 
4802 	st = (struct kvm_steal_time __user *)ghc->hva;
4803 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4804 
4805 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4806 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4807 
4808 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4809 }
4810 
4811 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4812 {
4813 	int idx;
4814 
4815 	if (vcpu->preempted) {
4816 		if (!vcpu->arch.guest_state_protected)
4817 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4818 
4819 		/*
4820 		 * Take the srcu lock as memslots will be accessed to check the gfn
4821 		 * cache generation against the memslots generation.
4822 		 */
4823 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4824 		if (kvm_xen_msr_enabled(vcpu->kvm))
4825 			kvm_xen_runstate_set_preempted(vcpu);
4826 		else
4827 			kvm_steal_time_set_preempted(vcpu);
4828 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4829 	}
4830 
4831 	static_call(kvm_x86_vcpu_put)(vcpu);
4832 	vcpu->arch.last_host_tsc = rdtsc();
4833 }
4834 
4835 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4836 				    struct kvm_lapic_state *s)
4837 {
4838 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4839 
4840 	return kvm_apic_get_state(vcpu, s);
4841 }
4842 
4843 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4844 				    struct kvm_lapic_state *s)
4845 {
4846 	int r;
4847 
4848 	r = kvm_apic_set_state(vcpu, s);
4849 	if (r)
4850 		return r;
4851 	update_cr8_intercept(vcpu);
4852 
4853 	return 0;
4854 }
4855 
4856 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4857 {
4858 	/*
4859 	 * We can accept userspace's request for interrupt injection
4860 	 * as long as we have a place to store the interrupt number.
4861 	 * The actual injection will happen when the CPU is able to
4862 	 * deliver the interrupt.
4863 	 */
4864 	if (kvm_cpu_has_extint(vcpu))
4865 		return false;
4866 
4867 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4868 	return (!lapic_in_kernel(vcpu) ||
4869 		kvm_apic_accept_pic_intr(vcpu));
4870 }
4871 
4872 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4873 {
4874 	/*
4875 	 * Do not cause an interrupt window exit if an exception
4876 	 * is pending or an event needs reinjection; userspace
4877 	 * might want to inject the interrupt manually using KVM_SET_REGS
4878 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4879 	 * instruction boundary and with no events half-injected.
4880 	 */
4881 	return (kvm_arch_interrupt_allowed(vcpu) &&
4882 		kvm_cpu_accept_dm_intr(vcpu) &&
4883 		!kvm_event_needs_reinjection(vcpu) &&
4884 		!kvm_is_exception_pending(vcpu));
4885 }
4886 
4887 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4888 				    struct kvm_interrupt *irq)
4889 {
4890 	if (irq->irq >= KVM_NR_INTERRUPTS)
4891 		return -EINVAL;
4892 
4893 	if (!irqchip_in_kernel(vcpu->kvm)) {
4894 		kvm_queue_interrupt(vcpu, irq->irq, false);
4895 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4896 		return 0;
4897 	}
4898 
4899 	/*
4900 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4901 	 * fail for in-kernel 8259.
4902 	 */
4903 	if (pic_in_kernel(vcpu->kvm))
4904 		return -ENXIO;
4905 
4906 	if (vcpu->arch.pending_external_vector != -1)
4907 		return -EEXIST;
4908 
4909 	vcpu->arch.pending_external_vector = irq->irq;
4910 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4911 	return 0;
4912 }
4913 
4914 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4915 {
4916 	kvm_inject_nmi(vcpu);
4917 
4918 	return 0;
4919 }
4920 
4921 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4922 					   struct kvm_tpr_access_ctl *tac)
4923 {
4924 	if (tac->flags)
4925 		return -EINVAL;
4926 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4927 	return 0;
4928 }
4929 
4930 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4931 					u64 mcg_cap)
4932 {
4933 	int r;
4934 	unsigned bank_num = mcg_cap & 0xff, bank;
4935 
4936 	r = -EINVAL;
4937 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4938 		goto out;
4939 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4940 		goto out;
4941 	r = 0;
4942 	vcpu->arch.mcg_cap = mcg_cap;
4943 	/* Init IA32_MCG_CTL to all 1s */
4944 	if (mcg_cap & MCG_CTL_P)
4945 		vcpu->arch.mcg_ctl = ~(u64)0;
4946 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4947 	for (bank = 0; bank < bank_num; bank++) {
4948 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4949 		if (mcg_cap & MCG_CMCI_P)
4950 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4951 	}
4952 
4953 	kvm_apic_after_set_mcg_cap(vcpu);
4954 
4955 	static_call(kvm_x86_setup_mce)(vcpu);
4956 out:
4957 	return r;
4958 }
4959 
4960 /*
4961  * Validate this is an UCNA (uncorrectable no action) error by checking the
4962  * MCG_STATUS and MCi_STATUS registers:
4963  * - none of the bits for Machine Check Exceptions are set
4964  * - both the VAL (valid) and UC (uncorrectable) bits are set
4965  * MCI_STATUS_PCC - Processor Context Corrupted
4966  * MCI_STATUS_S - Signaled as a Machine Check Exception
4967  * MCI_STATUS_AR - Software recoverable Action Required
4968  */
4969 static bool is_ucna(struct kvm_x86_mce *mce)
4970 {
4971 	return	!mce->mcg_status &&
4972 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4973 		(mce->status & MCI_STATUS_VAL) &&
4974 		(mce->status & MCI_STATUS_UC);
4975 }
4976 
4977 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4978 {
4979 	u64 mcg_cap = vcpu->arch.mcg_cap;
4980 
4981 	banks[1] = mce->status;
4982 	banks[2] = mce->addr;
4983 	banks[3] = mce->misc;
4984 	vcpu->arch.mcg_status = mce->mcg_status;
4985 
4986 	if (!(mcg_cap & MCG_CMCI_P) ||
4987 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4988 		return 0;
4989 
4990 	if (lapic_in_kernel(vcpu))
4991 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4992 
4993 	return 0;
4994 }
4995 
4996 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4997 				      struct kvm_x86_mce *mce)
4998 {
4999 	u64 mcg_cap = vcpu->arch.mcg_cap;
5000 	unsigned bank_num = mcg_cap & 0xff;
5001 	u64 *banks = vcpu->arch.mce_banks;
5002 
5003 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5004 		return -EINVAL;
5005 
5006 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5007 
5008 	if (is_ucna(mce))
5009 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5010 
5011 	/*
5012 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5013 	 * reporting is disabled
5014 	 */
5015 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5016 	    vcpu->arch.mcg_ctl != ~(u64)0)
5017 		return 0;
5018 	/*
5019 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5020 	 * reporting is disabled for the bank
5021 	 */
5022 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5023 		return 0;
5024 	if (mce->status & MCI_STATUS_UC) {
5025 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5026 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5027 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5028 			return 0;
5029 		}
5030 		if (banks[1] & MCI_STATUS_VAL)
5031 			mce->status |= MCI_STATUS_OVER;
5032 		banks[2] = mce->addr;
5033 		banks[3] = mce->misc;
5034 		vcpu->arch.mcg_status = mce->mcg_status;
5035 		banks[1] = mce->status;
5036 		kvm_queue_exception(vcpu, MC_VECTOR);
5037 	} else if (!(banks[1] & MCI_STATUS_VAL)
5038 		   || !(banks[1] & MCI_STATUS_UC)) {
5039 		if (banks[1] & MCI_STATUS_VAL)
5040 			mce->status |= MCI_STATUS_OVER;
5041 		banks[2] = mce->addr;
5042 		banks[3] = mce->misc;
5043 		banks[1] = mce->status;
5044 	} else
5045 		banks[1] |= MCI_STATUS_OVER;
5046 	return 0;
5047 }
5048 
5049 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5050 					       struct kvm_vcpu_events *events)
5051 {
5052 	struct kvm_queued_exception *ex;
5053 
5054 	process_nmi(vcpu);
5055 
5056 #ifdef CONFIG_KVM_SMM
5057 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5058 		process_smi(vcpu);
5059 #endif
5060 
5061 	/*
5062 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5063 	 * the only time there can be two queued exceptions is if there's a
5064 	 * non-exiting _injected_ exception, and a pending exiting exception.
5065 	 * In that case, ignore the VM-Exiting exception as it's an extension
5066 	 * of the injected exception.
5067 	 */
5068 	if (vcpu->arch.exception_vmexit.pending &&
5069 	    !vcpu->arch.exception.pending &&
5070 	    !vcpu->arch.exception.injected)
5071 		ex = &vcpu->arch.exception_vmexit;
5072 	else
5073 		ex = &vcpu->arch.exception;
5074 
5075 	/*
5076 	 * In guest mode, payload delivery should be deferred if the exception
5077 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5078 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5079 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5080 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5081 	 * the payload if the capability hasn't been requested.
5082 	 */
5083 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5084 	    ex->pending && ex->has_payload)
5085 		kvm_deliver_exception_payload(vcpu, ex);
5086 
5087 	memset(events, 0, sizeof(*events));
5088 
5089 	/*
5090 	 * The API doesn't provide the instruction length for software
5091 	 * exceptions, so don't report them. As long as the guest RIP
5092 	 * isn't advanced, we should expect to encounter the exception
5093 	 * again.
5094 	 */
5095 	if (!kvm_exception_is_soft(ex->vector)) {
5096 		events->exception.injected = ex->injected;
5097 		events->exception.pending = ex->pending;
5098 		/*
5099 		 * For ABI compatibility, deliberately conflate
5100 		 * pending and injected exceptions when
5101 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5102 		 */
5103 		if (!vcpu->kvm->arch.exception_payload_enabled)
5104 			events->exception.injected |= ex->pending;
5105 	}
5106 	events->exception.nr = ex->vector;
5107 	events->exception.has_error_code = ex->has_error_code;
5108 	events->exception.error_code = ex->error_code;
5109 	events->exception_has_payload = ex->has_payload;
5110 	events->exception_payload = ex->payload;
5111 
5112 	events->interrupt.injected =
5113 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5114 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5115 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5116 
5117 	events->nmi.injected = vcpu->arch.nmi_injected;
5118 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5119 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5120 
5121 	/* events->sipi_vector is never valid when reporting to user space */
5122 
5123 #ifdef CONFIG_KVM_SMM
5124 	events->smi.smm = is_smm(vcpu);
5125 	events->smi.pending = vcpu->arch.smi_pending;
5126 	events->smi.smm_inside_nmi =
5127 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5128 #endif
5129 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5130 
5131 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5132 			 | KVM_VCPUEVENT_VALID_SHADOW
5133 			 | KVM_VCPUEVENT_VALID_SMM);
5134 	if (vcpu->kvm->arch.exception_payload_enabled)
5135 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5136 	if (vcpu->kvm->arch.triple_fault_event) {
5137 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5138 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5139 	}
5140 }
5141 
5142 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5143 					      struct kvm_vcpu_events *events)
5144 {
5145 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5146 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5147 			      | KVM_VCPUEVENT_VALID_SHADOW
5148 			      | KVM_VCPUEVENT_VALID_SMM
5149 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5150 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5151 		return -EINVAL;
5152 
5153 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5154 		if (!vcpu->kvm->arch.exception_payload_enabled)
5155 			return -EINVAL;
5156 		if (events->exception.pending)
5157 			events->exception.injected = 0;
5158 		else
5159 			events->exception_has_payload = 0;
5160 	} else {
5161 		events->exception.pending = 0;
5162 		events->exception_has_payload = 0;
5163 	}
5164 
5165 	if ((events->exception.injected || events->exception.pending) &&
5166 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5167 		return -EINVAL;
5168 
5169 	/* INITs are latched while in SMM */
5170 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5171 	    (events->smi.smm || events->smi.pending) &&
5172 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5173 		return -EINVAL;
5174 
5175 	process_nmi(vcpu);
5176 
5177 	/*
5178 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5179 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5180 	 * pending exceptions, already-injected exceptions are not subject to
5181 	 * intercpetion.  Note, userspace that conflates pending and injected
5182 	 * is hosed, and will incorrectly convert an injected exception into a
5183 	 * pending exception, which in turn may cause a spurious VM-Exit.
5184 	 */
5185 	vcpu->arch.exception_from_userspace = events->exception.pending;
5186 
5187 	vcpu->arch.exception_vmexit.pending = false;
5188 
5189 	vcpu->arch.exception.injected = events->exception.injected;
5190 	vcpu->arch.exception.pending = events->exception.pending;
5191 	vcpu->arch.exception.vector = events->exception.nr;
5192 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5193 	vcpu->arch.exception.error_code = events->exception.error_code;
5194 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5195 	vcpu->arch.exception.payload = events->exception_payload;
5196 
5197 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5198 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5199 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5200 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5201 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5202 						events->interrupt.shadow);
5203 
5204 	vcpu->arch.nmi_injected = events->nmi.injected;
5205 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5206 		vcpu->arch.nmi_pending = events->nmi.pending;
5207 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5208 
5209 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5210 	    lapic_in_kernel(vcpu))
5211 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5212 
5213 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5214 #ifdef CONFIG_KVM_SMM
5215 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5216 			kvm_leave_nested(vcpu);
5217 			kvm_smm_changed(vcpu, events->smi.smm);
5218 		}
5219 
5220 		vcpu->arch.smi_pending = events->smi.pending;
5221 
5222 		if (events->smi.smm) {
5223 			if (events->smi.smm_inside_nmi)
5224 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5225 			else
5226 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5227 		}
5228 
5229 #else
5230 		if (events->smi.smm || events->smi.pending ||
5231 		    events->smi.smm_inside_nmi)
5232 			return -EINVAL;
5233 #endif
5234 
5235 		if (lapic_in_kernel(vcpu)) {
5236 			if (events->smi.latched_init)
5237 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5238 			else
5239 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5240 		}
5241 	}
5242 
5243 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5244 		if (!vcpu->kvm->arch.triple_fault_event)
5245 			return -EINVAL;
5246 		if (events->triple_fault.pending)
5247 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5248 		else
5249 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5250 	}
5251 
5252 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5253 
5254 	return 0;
5255 }
5256 
5257 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5258 					     struct kvm_debugregs *dbgregs)
5259 {
5260 	unsigned long val;
5261 
5262 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5263 	kvm_get_dr(vcpu, 6, &val);
5264 	dbgregs->dr6 = val;
5265 	dbgregs->dr7 = vcpu->arch.dr7;
5266 	dbgregs->flags = 0;
5267 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5268 }
5269 
5270 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5271 					    struct kvm_debugregs *dbgregs)
5272 {
5273 	if (dbgregs->flags)
5274 		return -EINVAL;
5275 
5276 	if (!kvm_dr6_valid(dbgregs->dr6))
5277 		return -EINVAL;
5278 	if (!kvm_dr7_valid(dbgregs->dr7))
5279 		return -EINVAL;
5280 
5281 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5282 	kvm_update_dr0123(vcpu);
5283 	vcpu->arch.dr6 = dbgregs->dr6;
5284 	vcpu->arch.dr7 = dbgregs->dr7;
5285 	kvm_update_dr7(vcpu);
5286 
5287 	return 0;
5288 }
5289 
5290 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5291 					 struct kvm_xsave *guest_xsave)
5292 {
5293 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5294 		return;
5295 
5296 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5297 				       guest_xsave->region,
5298 				       sizeof(guest_xsave->region),
5299 				       vcpu->arch.pkru);
5300 }
5301 
5302 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5303 					  u8 *state, unsigned int size)
5304 {
5305 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5306 		return;
5307 
5308 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5309 				       state, size, vcpu->arch.pkru);
5310 }
5311 
5312 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5313 					struct kvm_xsave *guest_xsave)
5314 {
5315 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5316 		return 0;
5317 
5318 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5319 					      guest_xsave->region,
5320 					      kvm_caps.supported_xcr0,
5321 					      &vcpu->arch.pkru);
5322 }
5323 
5324 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5325 					struct kvm_xcrs *guest_xcrs)
5326 {
5327 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5328 		guest_xcrs->nr_xcrs = 0;
5329 		return;
5330 	}
5331 
5332 	guest_xcrs->nr_xcrs = 1;
5333 	guest_xcrs->flags = 0;
5334 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5335 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5336 }
5337 
5338 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5339 				       struct kvm_xcrs *guest_xcrs)
5340 {
5341 	int i, r = 0;
5342 
5343 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5344 		return -EINVAL;
5345 
5346 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5347 		return -EINVAL;
5348 
5349 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5350 		/* Only support XCR0 currently */
5351 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5352 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5353 				guest_xcrs->xcrs[i].value);
5354 			break;
5355 		}
5356 	if (r)
5357 		r = -EINVAL;
5358 	return r;
5359 }
5360 
5361 /*
5362  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5363  * stopped by the hypervisor.  This function will be called from the host only.
5364  * EINVAL is returned when the host attempts to set the flag for a guest that
5365  * does not support pv clocks.
5366  */
5367 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5368 {
5369 	if (!vcpu->arch.pv_time.active)
5370 		return -EINVAL;
5371 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5372 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5373 	return 0;
5374 }
5375 
5376 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5377 				 struct kvm_device_attr *attr)
5378 {
5379 	int r;
5380 
5381 	switch (attr->attr) {
5382 	case KVM_VCPU_TSC_OFFSET:
5383 		r = 0;
5384 		break;
5385 	default:
5386 		r = -ENXIO;
5387 	}
5388 
5389 	return r;
5390 }
5391 
5392 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5393 				 struct kvm_device_attr *attr)
5394 {
5395 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5396 	int r;
5397 
5398 	if (IS_ERR(uaddr))
5399 		return PTR_ERR(uaddr);
5400 
5401 	switch (attr->attr) {
5402 	case KVM_VCPU_TSC_OFFSET:
5403 		r = -EFAULT;
5404 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5405 			break;
5406 		r = 0;
5407 		break;
5408 	default:
5409 		r = -ENXIO;
5410 	}
5411 
5412 	return r;
5413 }
5414 
5415 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5416 				 struct kvm_device_attr *attr)
5417 {
5418 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5419 	struct kvm *kvm = vcpu->kvm;
5420 	int r;
5421 
5422 	if (IS_ERR(uaddr))
5423 		return PTR_ERR(uaddr);
5424 
5425 	switch (attr->attr) {
5426 	case KVM_VCPU_TSC_OFFSET: {
5427 		u64 offset, tsc, ns;
5428 		unsigned long flags;
5429 		bool matched;
5430 
5431 		r = -EFAULT;
5432 		if (get_user(offset, uaddr))
5433 			break;
5434 
5435 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5436 
5437 		matched = (vcpu->arch.virtual_tsc_khz &&
5438 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5439 			   kvm->arch.last_tsc_offset == offset);
5440 
5441 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5442 		ns = get_kvmclock_base_ns();
5443 
5444 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5445 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5446 
5447 		r = 0;
5448 		break;
5449 	}
5450 	default:
5451 		r = -ENXIO;
5452 	}
5453 
5454 	return r;
5455 }
5456 
5457 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5458 				      unsigned int ioctl,
5459 				      void __user *argp)
5460 {
5461 	struct kvm_device_attr attr;
5462 	int r;
5463 
5464 	if (copy_from_user(&attr, argp, sizeof(attr)))
5465 		return -EFAULT;
5466 
5467 	if (attr.group != KVM_VCPU_TSC_CTRL)
5468 		return -ENXIO;
5469 
5470 	switch (ioctl) {
5471 	case KVM_HAS_DEVICE_ATTR:
5472 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5473 		break;
5474 	case KVM_GET_DEVICE_ATTR:
5475 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5476 		break;
5477 	case KVM_SET_DEVICE_ATTR:
5478 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5479 		break;
5480 	}
5481 
5482 	return r;
5483 }
5484 
5485 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5486 				     struct kvm_enable_cap *cap)
5487 {
5488 	int r;
5489 	uint16_t vmcs_version;
5490 	void __user *user_ptr;
5491 
5492 	if (cap->flags)
5493 		return -EINVAL;
5494 
5495 	switch (cap->cap) {
5496 	case KVM_CAP_HYPERV_SYNIC2:
5497 		if (cap->args[0])
5498 			return -EINVAL;
5499 		fallthrough;
5500 
5501 	case KVM_CAP_HYPERV_SYNIC:
5502 		if (!irqchip_in_kernel(vcpu->kvm))
5503 			return -EINVAL;
5504 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5505 					     KVM_CAP_HYPERV_SYNIC2);
5506 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5507 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5508 			return -ENOTTY;
5509 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5510 		if (!r) {
5511 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5512 			if (copy_to_user(user_ptr, &vmcs_version,
5513 					 sizeof(vmcs_version)))
5514 				r = -EFAULT;
5515 		}
5516 		return r;
5517 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5518 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5519 			return -ENOTTY;
5520 
5521 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5522 
5523 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5524 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5525 
5526 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5527 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5528 		if (vcpu->arch.pv_cpuid.enforce)
5529 			kvm_update_pv_runtime(vcpu);
5530 
5531 		return 0;
5532 	default:
5533 		return -EINVAL;
5534 	}
5535 }
5536 
5537 long kvm_arch_vcpu_ioctl(struct file *filp,
5538 			 unsigned int ioctl, unsigned long arg)
5539 {
5540 	struct kvm_vcpu *vcpu = filp->private_data;
5541 	void __user *argp = (void __user *)arg;
5542 	int r;
5543 	union {
5544 		struct kvm_sregs2 *sregs2;
5545 		struct kvm_lapic_state *lapic;
5546 		struct kvm_xsave *xsave;
5547 		struct kvm_xcrs *xcrs;
5548 		void *buffer;
5549 	} u;
5550 
5551 	vcpu_load(vcpu);
5552 
5553 	u.buffer = NULL;
5554 	switch (ioctl) {
5555 	case KVM_GET_LAPIC: {
5556 		r = -EINVAL;
5557 		if (!lapic_in_kernel(vcpu))
5558 			goto out;
5559 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5560 				GFP_KERNEL_ACCOUNT);
5561 
5562 		r = -ENOMEM;
5563 		if (!u.lapic)
5564 			goto out;
5565 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5566 		if (r)
5567 			goto out;
5568 		r = -EFAULT;
5569 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5570 			goto out;
5571 		r = 0;
5572 		break;
5573 	}
5574 	case KVM_SET_LAPIC: {
5575 		r = -EINVAL;
5576 		if (!lapic_in_kernel(vcpu))
5577 			goto out;
5578 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5579 		if (IS_ERR(u.lapic)) {
5580 			r = PTR_ERR(u.lapic);
5581 			goto out_nofree;
5582 		}
5583 
5584 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5585 		break;
5586 	}
5587 	case KVM_INTERRUPT: {
5588 		struct kvm_interrupt irq;
5589 
5590 		r = -EFAULT;
5591 		if (copy_from_user(&irq, argp, sizeof(irq)))
5592 			goto out;
5593 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5594 		break;
5595 	}
5596 	case KVM_NMI: {
5597 		r = kvm_vcpu_ioctl_nmi(vcpu);
5598 		break;
5599 	}
5600 	case KVM_SMI: {
5601 		r = kvm_inject_smi(vcpu);
5602 		break;
5603 	}
5604 	case KVM_SET_CPUID: {
5605 		struct kvm_cpuid __user *cpuid_arg = argp;
5606 		struct kvm_cpuid cpuid;
5607 
5608 		r = -EFAULT;
5609 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5610 			goto out;
5611 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5612 		break;
5613 	}
5614 	case KVM_SET_CPUID2: {
5615 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5616 		struct kvm_cpuid2 cpuid;
5617 
5618 		r = -EFAULT;
5619 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5620 			goto out;
5621 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5622 					      cpuid_arg->entries);
5623 		break;
5624 	}
5625 	case KVM_GET_CPUID2: {
5626 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5627 		struct kvm_cpuid2 cpuid;
5628 
5629 		r = -EFAULT;
5630 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5631 			goto out;
5632 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5633 					      cpuid_arg->entries);
5634 		if (r)
5635 			goto out;
5636 		r = -EFAULT;
5637 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5638 			goto out;
5639 		r = 0;
5640 		break;
5641 	}
5642 	case KVM_GET_MSRS: {
5643 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5644 		r = msr_io(vcpu, argp, do_get_msr, 1);
5645 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5646 		break;
5647 	}
5648 	case KVM_SET_MSRS: {
5649 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5650 		r = msr_io(vcpu, argp, do_set_msr, 0);
5651 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5652 		break;
5653 	}
5654 	case KVM_TPR_ACCESS_REPORTING: {
5655 		struct kvm_tpr_access_ctl tac;
5656 
5657 		r = -EFAULT;
5658 		if (copy_from_user(&tac, argp, sizeof(tac)))
5659 			goto out;
5660 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5661 		if (r)
5662 			goto out;
5663 		r = -EFAULT;
5664 		if (copy_to_user(argp, &tac, sizeof(tac)))
5665 			goto out;
5666 		r = 0;
5667 		break;
5668 	};
5669 	case KVM_SET_VAPIC_ADDR: {
5670 		struct kvm_vapic_addr va;
5671 		int idx;
5672 
5673 		r = -EINVAL;
5674 		if (!lapic_in_kernel(vcpu))
5675 			goto out;
5676 		r = -EFAULT;
5677 		if (copy_from_user(&va, argp, sizeof(va)))
5678 			goto out;
5679 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5680 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5681 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5682 		break;
5683 	}
5684 	case KVM_X86_SETUP_MCE: {
5685 		u64 mcg_cap;
5686 
5687 		r = -EFAULT;
5688 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5689 			goto out;
5690 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5691 		break;
5692 	}
5693 	case KVM_X86_SET_MCE: {
5694 		struct kvm_x86_mce mce;
5695 
5696 		r = -EFAULT;
5697 		if (copy_from_user(&mce, argp, sizeof(mce)))
5698 			goto out;
5699 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5700 		break;
5701 	}
5702 	case KVM_GET_VCPU_EVENTS: {
5703 		struct kvm_vcpu_events events;
5704 
5705 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5706 
5707 		r = -EFAULT;
5708 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5709 			break;
5710 		r = 0;
5711 		break;
5712 	}
5713 	case KVM_SET_VCPU_EVENTS: {
5714 		struct kvm_vcpu_events events;
5715 
5716 		r = -EFAULT;
5717 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5718 			break;
5719 
5720 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5721 		break;
5722 	}
5723 	case KVM_GET_DEBUGREGS: {
5724 		struct kvm_debugregs dbgregs;
5725 
5726 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5727 
5728 		r = -EFAULT;
5729 		if (copy_to_user(argp, &dbgregs,
5730 				 sizeof(struct kvm_debugregs)))
5731 			break;
5732 		r = 0;
5733 		break;
5734 	}
5735 	case KVM_SET_DEBUGREGS: {
5736 		struct kvm_debugregs dbgregs;
5737 
5738 		r = -EFAULT;
5739 		if (copy_from_user(&dbgregs, argp,
5740 				   sizeof(struct kvm_debugregs)))
5741 			break;
5742 
5743 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5744 		break;
5745 	}
5746 	case KVM_GET_XSAVE: {
5747 		r = -EINVAL;
5748 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5749 			break;
5750 
5751 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5752 		r = -ENOMEM;
5753 		if (!u.xsave)
5754 			break;
5755 
5756 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5757 
5758 		r = -EFAULT;
5759 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5760 			break;
5761 		r = 0;
5762 		break;
5763 	}
5764 	case KVM_SET_XSAVE: {
5765 		int size = vcpu->arch.guest_fpu.uabi_size;
5766 
5767 		u.xsave = memdup_user(argp, size);
5768 		if (IS_ERR(u.xsave)) {
5769 			r = PTR_ERR(u.xsave);
5770 			goto out_nofree;
5771 		}
5772 
5773 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5774 		break;
5775 	}
5776 
5777 	case KVM_GET_XSAVE2: {
5778 		int size = vcpu->arch.guest_fpu.uabi_size;
5779 
5780 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5781 		r = -ENOMEM;
5782 		if (!u.xsave)
5783 			break;
5784 
5785 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5786 
5787 		r = -EFAULT;
5788 		if (copy_to_user(argp, u.xsave, size))
5789 			break;
5790 
5791 		r = 0;
5792 		break;
5793 	}
5794 
5795 	case KVM_GET_XCRS: {
5796 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5797 		r = -ENOMEM;
5798 		if (!u.xcrs)
5799 			break;
5800 
5801 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5802 
5803 		r = -EFAULT;
5804 		if (copy_to_user(argp, u.xcrs,
5805 				 sizeof(struct kvm_xcrs)))
5806 			break;
5807 		r = 0;
5808 		break;
5809 	}
5810 	case KVM_SET_XCRS: {
5811 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5812 		if (IS_ERR(u.xcrs)) {
5813 			r = PTR_ERR(u.xcrs);
5814 			goto out_nofree;
5815 		}
5816 
5817 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5818 		break;
5819 	}
5820 	case KVM_SET_TSC_KHZ: {
5821 		u32 user_tsc_khz;
5822 
5823 		r = -EINVAL;
5824 		user_tsc_khz = (u32)arg;
5825 
5826 		if (kvm_caps.has_tsc_control &&
5827 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5828 			goto out;
5829 
5830 		if (user_tsc_khz == 0)
5831 			user_tsc_khz = tsc_khz;
5832 
5833 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5834 			r = 0;
5835 
5836 		goto out;
5837 	}
5838 	case KVM_GET_TSC_KHZ: {
5839 		r = vcpu->arch.virtual_tsc_khz;
5840 		goto out;
5841 	}
5842 	case KVM_KVMCLOCK_CTRL: {
5843 		r = kvm_set_guest_paused(vcpu);
5844 		goto out;
5845 	}
5846 	case KVM_ENABLE_CAP: {
5847 		struct kvm_enable_cap cap;
5848 
5849 		r = -EFAULT;
5850 		if (copy_from_user(&cap, argp, sizeof(cap)))
5851 			goto out;
5852 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5853 		break;
5854 	}
5855 	case KVM_GET_NESTED_STATE: {
5856 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5857 		u32 user_data_size;
5858 
5859 		r = -EINVAL;
5860 		if (!kvm_x86_ops.nested_ops->get_state)
5861 			break;
5862 
5863 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5864 		r = -EFAULT;
5865 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5866 			break;
5867 
5868 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5869 						     user_data_size);
5870 		if (r < 0)
5871 			break;
5872 
5873 		if (r > user_data_size) {
5874 			if (put_user(r, &user_kvm_nested_state->size))
5875 				r = -EFAULT;
5876 			else
5877 				r = -E2BIG;
5878 			break;
5879 		}
5880 
5881 		r = 0;
5882 		break;
5883 	}
5884 	case KVM_SET_NESTED_STATE: {
5885 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5886 		struct kvm_nested_state kvm_state;
5887 		int idx;
5888 
5889 		r = -EINVAL;
5890 		if (!kvm_x86_ops.nested_ops->set_state)
5891 			break;
5892 
5893 		r = -EFAULT;
5894 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5895 			break;
5896 
5897 		r = -EINVAL;
5898 		if (kvm_state.size < sizeof(kvm_state))
5899 			break;
5900 
5901 		if (kvm_state.flags &
5902 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5903 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5904 		      | KVM_STATE_NESTED_GIF_SET))
5905 			break;
5906 
5907 		/* nested_run_pending implies guest_mode.  */
5908 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5909 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5910 			break;
5911 
5912 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5913 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5914 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5915 		break;
5916 	}
5917 	case KVM_GET_SUPPORTED_HV_CPUID:
5918 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5919 		break;
5920 #ifdef CONFIG_KVM_XEN
5921 	case KVM_XEN_VCPU_GET_ATTR: {
5922 		struct kvm_xen_vcpu_attr xva;
5923 
5924 		r = -EFAULT;
5925 		if (copy_from_user(&xva, argp, sizeof(xva)))
5926 			goto out;
5927 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5928 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5929 			r = -EFAULT;
5930 		break;
5931 	}
5932 	case KVM_XEN_VCPU_SET_ATTR: {
5933 		struct kvm_xen_vcpu_attr xva;
5934 
5935 		r = -EFAULT;
5936 		if (copy_from_user(&xva, argp, sizeof(xva)))
5937 			goto out;
5938 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5939 		break;
5940 	}
5941 #endif
5942 	case KVM_GET_SREGS2: {
5943 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5944 		r = -ENOMEM;
5945 		if (!u.sregs2)
5946 			goto out;
5947 		__get_sregs2(vcpu, u.sregs2);
5948 		r = -EFAULT;
5949 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5950 			goto out;
5951 		r = 0;
5952 		break;
5953 	}
5954 	case KVM_SET_SREGS2: {
5955 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5956 		if (IS_ERR(u.sregs2)) {
5957 			r = PTR_ERR(u.sregs2);
5958 			u.sregs2 = NULL;
5959 			goto out;
5960 		}
5961 		r = __set_sregs2(vcpu, u.sregs2);
5962 		break;
5963 	}
5964 	case KVM_HAS_DEVICE_ATTR:
5965 	case KVM_GET_DEVICE_ATTR:
5966 	case KVM_SET_DEVICE_ATTR:
5967 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5968 		break;
5969 	default:
5970 		r = -EINVAL;
5971 	}
5972 out:
5973 	kfree(u.buffer);
5974 out_nofree:
5975 	vcpu_put(vcpu);
5976 	return r;
5977 }
5978 
5979 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5980 {
5981 	return VM_FAULT_SIGBUS;
5982 }
5983 
5984 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5985 {
5986 	int ret;
5987 
5988 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5989 		return -EINVAL;
5990 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5991 	return ret;
5992 }
5993 
5994 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5995 					      u64 ident_addr)
5996 {
5997 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5998 }
5999 
6000 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6001 					 unsigned long kvm_nr_mmu_pages)
6002 {
6003 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6004 		return -EINVAL;
6005 
6006 	mutex_lock(&kvm->slots_lock);
6007 
6008 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6009 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6010 
6011 	mutex_unlock(&kvm->slots_lock);
6012 	return 0;
6013 }
6014 
6015 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6016 {
6017 	return kvm->arch.n_max_mmu_pages;
6018 }
6019 
6020 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6021 {
6022 	struct kvm_pic *pic = kvm->arch.vpic;
6023 	int r;
6024 
6025 	r = 0;
6026 	switch (chip->chip_id) {
6027 	case KVM_IRQCHIP_PIC_MASTER:
6028 		memcpy(&chip->chip.pic, &pic->pics[0],
6029 			sizeof(struct kvm_pic_state));
6030 		break;
6031 	case KVM_IRQCHIP_PIC_SLAVE:
6032 		memcpy(&chip->chip.pic, &pic->pics[1],
6033 			sizeof(struct kvm_pic_state));
6034 		break;
6035 	case KVM_IRQCHIP_IOAPIC:
6036 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6037 		break;
6038 	default:
6039 		r = -EINVAL;
6040 		break;
6041 	}
6042 	return r;
6043 }
6044 
6045 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6046 {
6047 	struct kvm_pic *pic = kvm->arch.vpic;
6048 	int r;
6049 
6050 	r = 0;
6051 	switch (chip->chip_id) {
6052 	case KVM_IRQCHIP_PIC_MASTER:
6053 		spin_lock(&pic->lock);
6054 		memcpy(&pic->pics[0], &chip->chip.pic,
6055 			sizeof(struct kvm_pic_state));
6056 		spin_unlock(&pic->lock);
6057 		break;
6058 	case KVM_IRQCHIP_PIC_SLAVE:
6059 		spin_lock(&pic->lock);
6060 		memcpy(&pic->pics[1], &chip->chip.pic,
6061 			sizeof(struct kvm_pic_state));
6062 		spin_unlock(&pic->lock);
6063 		break;
6064 	case KVM_IRQCHIP_IOAPIC:
6065 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6066 		break;
6067 	default:
6068 		r = -EINVAL;
6069 		break;
6070 	}
6071 	kvm_pic_update_irq(pic);
6072 	return r;
6073 }
6074 
6075 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6076 {
6077 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6078 
6079 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6080 
6081 	mutex_lock(&kps->lock);
6082 	memcpy(ps, &kps->channels, sizeof(*ps));
6083 	mutex_unlock(&kps->lock);
6084 	return 0;
6085 }
6086 
6087 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6088 {
6089 	int i;
6090 	struct kvm_pit *pit = kvm->arch.vpit;
6091 
6092 	mutex_lock(&pit->pit_state.lock);
6093 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6094 	for (i = 0; i < 3; i++)
6095 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6096 	mutex_unlock(&pit->pit_state.lock);
6097 	return 0;
6098 }
6099 
6100 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6101 {
6102 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6103 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6104 		sizeof(ps->channels));
6105 	ps->flags = kvm->arch.vpit->pit_state.flags;
6106 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6107 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6108 	return 0;
6109 }
6110 
6111 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6112 {
6113 	int start = 0;
6114 	int i;
6115 	u32 prev_legacy, cur_legacy;
6116 	struct kvm_pit *pit = kvm->arch.vpit;
6117 
6118 	mutex_lock(&pit->pit_state.lock);
6119 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6120 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6121 	if (!prev_legacy && cur_legacy)
6122 		start = 1;
6123 	memcpy(&pit->pit_state.channels, &ps->channels,
6124 	       sizeof(pit->pit_state.channels));
6125 	pit->pit_state.flags = ps->flags;
6126 	for (i = 0; i < 3; i++)
6127 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6128 				   start && i == 0);
6129 	mutex_unlock(&pit->pit_state.lock);
6130 	return 0;
6131 }
6132 
6133 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6134 				 struct kvm_reinject_control *control)
6135 {
6136 	struct kvm_pit *pit = kvm->arch.vpit;
6137 
6138 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6139 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6140 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6141 	 */
6142 	mutex_lock(&pit->pit_state.lock);
6143 	kvm_pit_set_reinject(pit, control->pit_reinject);
6144 	mutex_unlock(&pit->pit_state.lock);
6145 
6146 	return 0;
6147 }
6148 
6149 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6150 {
6151 
6152 	/*
6153 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6154 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6155 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6156 	 * VM-Exit.
6157 	 */
6158 	struct kvm_vcpu *vcpu;
6159 	unsigned long i;
6160 
6161 	kvm_for_each_vcpu(i, vcpu, kvm)
6162 		kvm_vcpu_kick(vcpu);
6163 }
6164 
6165 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6166 			bool line_status)
6167 {
6168 	if (!irqchip_in_kernel(kvm))
6169 		return -ENXIO;
6170 
6171 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6172 					irq_event->irq, irq_event->level,
6173 					line_status);
6174 	return 0;
6175 }
6176 
6177 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6178 			    struct kvm_enable_cap *cap)
6179 {
6180 	int r;
6181 
6182 	if (cap->flags)
6183 		return -EINVAL;
6184 
6185 	switch (cap->cap) {
6186 	case KVM_CAP_DISABLE_QUIRKS2:
6187 		r = -EINVAL;
6188 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6189 			break;
6190 		fallthrough;
6191 	case KVM_CAP_DISABLE_QUIRKS:
6192 		kvm->arch.disabled_quirks = cap->args[0];
6193 		r = 0;
6194 		break;
6195 	case KVM_CAP_SPLIT_IRQCHIP: {
6196 		mutex_lock(&kvm->lock);
6197 		r = -EINVAL;
6198 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6199 			goto split_irqchip_unlock;
6200 		r = -EEXIST;
6201 		if (irqchip_in_kernel(kvm))
6202 			goto split_irqchip_unlock;
6203 		if (kvm->created_vcpus)
6204 			goto split_irqchip_unlock;
6205 		r = kvm_setup_empty_irq_routing(kvm);
6206 		if (r)
6207 			goto split_irqchip_unlock;
6208 		/* Pairs with irqchip_in_kernel. */
6209 		smp_wmb();
6210 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6211 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6212 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6213 		r = 0;
6214 split_irqchip_unlock:
6215 		mutex_unlock(&kvm->lock);
6216 		break;
6217 	}
6218 	case KVM_CAP_X2APIC_API:
6219 		r = -EINVAL;
6220 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6221 			break;
6222 
6223 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6224 			kvm->arch.x2apic_format = true;
6225 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6226 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6227 
6228 		r = 0;
6229 		break;
6230 	case KVM_CAP_X86_DISABLE_EXITS:
6231 		r = -EINVAL;
6232 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6233 			break;
6234 
6235 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6236 			kvm_can_mwait_in_guest())
6237 			kvm->arch.mwait_in_guest = true;
6238 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6239 			kvm->arch.hlt_in_guest = true;
6240 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6241 			kvm->arch.pause_in_guest = true;
6242 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6243 			kvm->arch.cstate_in_guest = true;
6244 		r = 0;
6245 		break;
6246 	case KVM_CAP_MSR_PLATFORM_INFO:
6247 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6248 		r = 0;
6249 		break;
6250 	case KVM_CAP_EXCEPTION_PAYLOAD:
6251 		kvm->arch.exception_payload_enabled = cap->args[0];
6252 		r = 0;
6253 		break;
6254 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6255 		kvm->arch.triple_fault_event = cap->args[0];
6256 		r = 0;
6257 		break;
6258 	case KVM_CAP_X86_USER_SPACE_MSR:
6259 		r = -EINVAL;
6260 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6261 			break;
6262 		kvm->arch.user_space_msr_mask = cap->args[0];
6263 		r = 0;
6264 		break;
6265 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6266 		r = -EINVAL;
6267 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6268 			break;
6269 
6270 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6271 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6272 			break;
6273 
6274 		if (kvm_caps.has_bus_lock_exit &&
6275 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6276 			kvm->arch.bus_lock_detection_enabled = true;
6277 		r = 0;
6278 		break;
6279 #ifdef CONFIG_X86_SGX_KVM
6280 	case KVM_CAP_SGX_ATTRIBUTE: {
6281 		unsigned long allowed_attributes = 0;
6282 
6283 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6284 		if (r)
6285 			break;
6286 
6287 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6288 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6289 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6290 			kvm->arch.sgx_provisioning_allowed = true;
6291 		else
6292 			r = -EINVAL;
6293 		break;
6294 	}
6295 #endif
6296 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6297 		r = -EINVAL;
6298 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6299 			break;
6300 
6301 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6302 		break;
6303 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6304 		r = -EINVAL;
6305 		if (!kvm_x86_ops.vm_move_enc_context_from)
6306 			break;
6307 
6308 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6309 		break;
6310 	case KVM_CAP_EXIT_HYPERCALL:
6311 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6312 			r = -EINVAL;
6313 			break;
6314 		}
6315 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6316 		r = 0;
6317 		break;
6318 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6319 		r = -EINVAL;
6320 		if (cap->args[0] & ~1)
6321 			break;
6322 		kvm->arch.exit_on_emulation_error = cap->args[0];
6323 		r = 0;
6324 		break;
6325 	case KVM_CAP_PMU_CAPABILITY:
6326 		r = -EINVAL;
6327 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6328 			break;
6329 
6330 		mutex_lock(&kvm->lock);
6331 		if (!kvm->created_vcpus) {
6332 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6333 			r = 0;
6334 		}
6335 		mutex_unlock(&kvm->lock);
6336 		break;
6337 	case KVM_CAP_MAX_VCPU_ID:
6338 		r = -EINVAL;
6339 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6340 			break;
6341 
6342 		mutex_lock(&kvm->lock);
6343 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6344 			r = 0;
6345 		} else if (!kvm->arch.max_vcpu_ids) {
6346 			kvm->arch.max_vcpu_ids = cap->args[0];
6347 			r = 0;
6348 		}
6349 		mutex_unlock(&kvm->lock);
6350 		break;
6351 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6352 		r = -EINVAL;
6353 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6354 			break;
6355 		if (!kvm_caps.has_notify_vmexit)
6356 			break;
6357 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6358 			break;
6359 		mutex_lock(&kvm->lock);
6360 		if (!kvm->created_vcpus) {
6361 			kvm->arch.notify_window = cap->args[0] >> 32;
6362 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6363 			r = 0;
6364 		}
6365 		mutex_unlock(&kvm->lock);
6366 		break;
6367 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6368 		r = -EINVAL;
6369 
6370 		/*
6371 		 * Since the risk of disabling NX hugepages is a guest crashing
6372 		 * the system, ensure the userspace process has permission to
6373 		 * reboot the system.
6374 		 *
6375 		 * Note that unlike the reboot() syscall, the process must have
6376 		 * this capability in the root namespace because exposing
6377 		 * /dev/kvm into a container does not limit the scope of the
6378 		 * iTLB multihit bug to that container. In other words,
6379 		 * this must use capable(), not ns_capable().
6380 		 */
6381 		if (!capable(CAP_SYS_BOOT)) {
6382 			r = -EPERM;
6383 			break;
6384 		}
6385 
6386 		if (cap->args[0])
6387 			break;
6388 
6389 		mutex_lock(&kvm->lock);
6390 		if (!kvm->created_vcpus) {
6391 			kvm->arch.disable_nx_huge_pages = true;
6392 			r = 0;
6393 		}
6394 		mutex_unlock(&kvm->lock);
6395 		break;
6396 	default:
6397 		r = -EINVAL;
6398 		break;
6399 	}
6400 	return r;
6401 }
6402 
6403 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6404 {
6405 	struct kvm_x86_msr_filter *msr_filter;
6406 
6407 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6408 	if (!msr_filter)
6409 		return NULL;
6410 
6411 	msr_filter->default_allow = default_allow;
6412 	return msr_filter;
6413 }
6414 
6415 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6416 {
6417 	u32 i;
6418 
6419 	if (!msr_filter)
6420 		return;
6421 
6422 	for (i = 0; i < msr_filter->count; i++)
6423 		kfree(msr_filter->ranges[i].bitmap);
6424 
6425 	kfree(msr_filter);
6426 }
6427 
6428 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6429 			      struct kvm_msr_filter_range *user_range)
6430 {
6431 	unsigned long *bitmap = NULL;
6432 	size_t bitmap_size;
6433 
6434 	if (!user_range->nmsrs)
6435 		return 0;
6436 
6437 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6438 		return -EINVAL;
6439 
6440 	if (!user_range->flags)
6441 		return -EINVAL;
6442 
6443 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6444 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6445 		return -EINVAL;
6446 
6447 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6448 	if (IS_ERR(bitmap))
6449 		return PTR_ERR(bitmap);
6450 
6451 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6452 		.flags = user_range->flags,
6453 		.base = user_range->base,
6454 		.nmsrs = user_range->nmsrs,
6455 		.bitmap = bitmap,
6456 	};
6457 
6458 	msr_filter->count++;
6459 	return 0;
6460 }
6461 
6462 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6463 				       struct kvm_msr_filter *filter)
6464 {
6465 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6466 	bool default_allow;
6467 	bool empty = true;
6468 	int r = 0;
6469 	u32 i;
6470 
6471 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6472 		return -EINVAL;
6473 
6474 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6475 		empty &= !filter->ranges[i].nmsrs;
6476 
6477 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6478 	if (empty && !default_allow)
6479 		return -EINVAL;
6480 
6481 	new_filter = kvm_alloc_msr_filter(default_allow);
6482 	if (!new_filter)
6483 		return -ENOMEM;
6484 
6485 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6486 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6487 		if (r) {
6488 			kvm_free_msr_filter(new_filter);
6489 			return r;
6490 		}
6491 	}
6492 
6493 	mutex_lock(&kvm->lock);
6494 
6495 	/* The per-VM filter is protected by kvm->lock... */
6496 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6497 
6498 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6499 	synchronize_srcu(&kvm->srcu);
6500 
6501 	kvm_free_msr_filter(old_filter);
6502 
6503 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6504 	mutex_unlock(&kvm->lock);
6505 
6506 	return 0;
6507 }
6508 
6509 #ifdef CONFIG_KVM_COMPAT
6510 /* for KVM_X86_SET_MSR_FILTER */
6511 struct kvm_msr_filter_range_compat {
6512 	__u32 flags;
6513 	__u32 nmsrs;
6514 	__u32 base;
6515 	__u32 bitmap;
6516 };
6517 
6518 struct kvm_msr_filter_compat {
6519 	__u32 flags;
6520 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6521 };
6522 
6523 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6524 
6525 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6526 			      unsigned long arg)
6527 {
6528 	void __user *argp = (void __user *)arg;
6529 	struct kvm *kvm = filp->private_data;
6530 	long r = -ENOTTY;
6531 
6532 	switch (ioctl) {
6533 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6534 		struct kvm_msr_filter __user *user_msr_filter = argp;
6535 		struct kvm_msr_filter_compat filter_compat;
6536 		struct kvm_msr_filter filter;
6537 		int i;
6538 
6539 		if (copy_from_user(&filter_compat, user_msr_filter,
6540 				   sizeof(filter_compat)))
6541 			return -EFAULT;
6542 
6543 		filter.flags = filter_compat.flags;
6544 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6545 			struct kvm_msr_filter_range_compat *cr;
6546 
6547 			cr = &filter_compat.ranges[i];
6548 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6549 				.flags = cr->flags,
6550 				.nmsrs = cr->nmsrs,
6551 				.base = cr->base,
6552 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6553 			};
6554 		}
6555 
6556 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6557 		break;
6558 	}
6559 	}
6560 
6561 	return r;
6562 }
6563 #endif
6564 
6565 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6566 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6567 {
6568 	struct kvm_vcpu *vcpu;
6569 	unsigned long i;
6570 	int ret = 0;
6571 
6572 	mutex_lock(&kvm->lock);
6573 	kvm_for_each_vcpu(i, vcpu, kvm) {
6574 		if (!vcpu->arch.pv_time.active)
6575 			continue;
6576 
6577 		ret = kvm_set_guest_paused(vcpu);
6578 		if (ret) {
6579 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6580 				vcpu->vcpu_id, ret);
6581 			break;
6582 		}
6583 	}
6584 	mutex_unlock(&kvm->lock);
6585 
6586 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6587 }
6588 
6589 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6590 {
6591 	switch (state) {
6592 	case PM_HIBERNATION_PREPARE:
6593 	case PM_SUSPEND_PREPARE:
6594 		return kvm_arch_suspend_notifier(kvm);
6595 	}
6596 
6597 	return NOTIFY_DONE;
6598 }
6599 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6600 
6601 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6602 {
6603 	struct kvm_clock_data data = { 0 };
6604 
6605 	get_kvmclock(kvm, &data);
6606 	if (copy_to_user(argp, &data, sizeof(data)))
6607 		return -EFAULT;
6608 
6609 	return 0;
6610 }
6611 
6612 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6613 {
6614 	struct kvm_arch *ka = &kvm->arch;
6615 	struct kvm_clock_data data;
6616 	u64 now_raw_ns;
6617 
6618 	if (copy_from_user(&data, argp, sizeof(data)))
6619 		return -EFAULT;
6620 
6621 	/*
6622 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6623 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6624 	 */
6625 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6626 		return -EINVAL;
6627 
6628 	kvm_hv_request_tsc_page_update(kvm);
6629 	kvm_start_pvclock_update(kvm);
6630 	pvclock_update_vm_gtod_copy(kvm);
6631 
6632 	/*
6633 	 * This pairs with kvm_guest_time_update(): when masterclock is
6634 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6635 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6636 	 * is slightly ahead) here we risk going negative on unsigned
6637 	 * 'system_time' when 'data.clock' is very small.
6638 	 */
6639 	if (data.flags & KVM_CLOCK_REALTIME) {
6640 		u64 now_real_ns = ktime_get_real_ns();
6641 
6642 		/*
6643 		 * Avoid stepping the kvmclock backwards.
6644 		 */
6645 		if (now_real_ns > data.realtime)
6646 			data.clock += now_real_ns - data.realtime;
6647 	}
6648 
6649 	if (ka->use_master_clock)
6650 		now_raw_ns = ka->master_kernel_ns;
6651 	else
6652 		now_raw_ns = get_kvmclock_base_ns();
6653 	ka->kvmclock_offset = data.clock - now_raw_ns;
6654 	kvm_end_pvclock_update(kvm);
6655 	return 0;
6656 }
6657 
6658 long kvm_arch_vm_ioctl(struct file *filp,
6659 		       unsigned int ioctl, unsigned long arg)
6660 {
6661 	struct kvm *kvm = filp->private_data;
6662 	void __user *argp = (void __user *)arg;
6663 	int r = -ENOTTY;
6664 	/*
6665 	 * This union makes it completely explicit to gcc-3.x
6666 	 * that these two variables' stack usage should be
6667 	 * combined, not added together.
6668 	 */
6669 	union {
6670 		struct kvm_pit_state ps;
6671 		struct kvm_pit_state2 ps2;
6672 		struct kvm_pit_config pit_config;
6673 	} u;
6674 
6675 	switch (ioctl) {
6676 	case KVM_SET_TSS_ADDR:
6677 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6678 		break;
6679 	case KVM_SET_IDENTITY_MAP_ADDR: {
6680 		u64 ident_addr;
6681 
6682 		mutex_lock(&kvm->lock);
6683 		r = -EINVAL;
6684 		if (kvm->created_vcpus)
6685 			goto set_identity_unlock;
6686 		r = -EFAULT;
6687 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6688 			goto set_identity_unlock;
6689 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6690 set_identity_unlock:
6691 		mutex_unlock(&kvm->lock);
6692 		break;
6693 	}
6694 	case KVM_SET_NR_MMU_PAGES:
6695 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6696 		break;
6697 	case KVM_GET_NR_MMU_PAGES:
6698 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6699 		break;
6700 	case KVM_CREATE_IRQCHIP: {
6701 		mutex_lock(&kvm->lock);
6702 
6703 		r = -EEXIST;
6704 		if (irqchip_in_kernel(kvm))
6705 			goto create_irqchip_unlock;
6706 
6707 		r = -EINVAL;
6708 		if (kvm->created_vcpus)
6709 			goto create_irqchip_unlock;
6710 
6711 		r = kvm_pic_init(kvm);
6712 		if (r)
6713 			goto create_irqchip_unlock;
6714 
6715 		r = kvm_ioapic_init(kvm);
6716 		if (r) {
6717 			kvm_pic_destroy(kvm);
6718 			goto create_irqchip_unlock;
6719 		}
6720 
6721 		r = kvm_setup_default_irq_routing(kvm);
6722 		if (r) {
6723 			kvm_ioapic_destroy(kvm);
6724 			kvm_pic_destroy(kvm);
6725 			goto create_irqchip_unlock;
6726 		}
6727 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6728 		smp_wmb();
6729 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6730 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6731 	create_irqchip_unlock:
6732 		mutex_unlock(&kvm->lock);
6733 		break;
6734 	}
6735 	case KVM_CREATE_PIT:
6736 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6737 		goto create_pit;
6738 	case KVM_CREATE_PIT2:
6739 		r = -EFAULT;
6740 		if (copy_from_user(&u.pit_config, argp,
6741 				   sizeof(struct kvm_pit_config)))
6742 			goto out;
6743 	create_pit:
6744 		mutex_lock(&kvm->lock);
6745 		r = -EEXIST;
6746 		if (kvm->arch.vpit)
6747 			goto create_pit_unlock;
6748 		r = -ENOMEM;
6749 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6750 		if (kvm->arch.vpit)
6751 			r = 0;
6752 	create_pit_unlock:
6753 		mutex_unlock(&kvm->lock);
6754 		break;
6755 	case KVM_GET_IRQCHIP: {
6756 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6757 		struct kvm_irqchip *chip;
6758 
6759 		chip = memdup_user(argp, sizeof(*chip));
6760 		if (IS_ERR(chip)) {
6761 			r = PTR_ERR(chip);
6762 			goto out;
6763 		}
6764 
6765 		r = -ENXIO;
6766 		if (!irqchip_kernel(kvm))
6767 			goto get_irqchip_out;
6768 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6769 		if (r)
6770 			goto get_irqchip_out;
6771 		r = -EFAULT;
6772 		if (copy_to_user(argp, chip, sizeof(*chip)))
6773 			goto get_irqchip_out;
6774 		r = 0;
6775 	get_irqchip_out:
6776 		kfree(chip);
6777 		break;
6778 	}
6779 	case KVM_SET_IRQCHIP: {
6780 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6781 		struct kvm_irqchip *chip;
6782 
6783 		chip = memdup_user(argp, sizeof(*chip));
6784 		if (IS_ERR(chip)) {
6785 			r = PTR_ERR(chip);
6786 			goto out;
6787 		}
6788 
6789 		r = -ENXIO;
6790 		if (!irqchip_kernel(kvm))
6791 			goto set_irqchip_out;
6792 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6793 	set_irqchip_out:
6794 		kfree(chip);
6795 		break;
6796 	}
6797 	case KVM_GET_PIT: {
6798 		r = -EFAULT;
6799 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6800 			goto out;
6801 		r = -ENXIO;
6802 		if (!kvm->arch.vpit)
6803 			goto out;
6804 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6805 		if (r)
6806 			goto out;
6807 		r = -EFAULT;
6808 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6809 			goto out;
6810 		r = 0;
6811 		break;
6812 	}
6813 	case KVM_SET_PIT: {
6814 		r = -EFAULT;
6815 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6816 			goto out;
6817 		mutex_lock(&kvm->lock);
6818 		r = -ENXIO;
6819 		if (!kvm->arch.vpit)
6820 			goto set_pit_out;
6821 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6822 set_pit_out:
6823 		mutex_unlock(&kvm->lock);
6824 		break;
6825 	}
6826 	case KVM_GET_PIT2: {
6827 		r = -ENXIO;
6828 		if (!kvm->arch.vpit)
6829 			goto out;
6830 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6831 		if (r)
6832 			goto out;
6833 		r = -EFAULT;
6834 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6835 			goto out;
6836 		r = 0;
6837 		break;
6838 	}
6839 	case KVM_SET_PIT2: {
6840 		r = -EFAULT;
6841 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6842 			goto out;
6843 		mutex_lock(&kvm->lock);
6844 		r = -ENXIO;
6845 		if (!kvm->arch.vpit)
6846 			goto set_pit2_out;
6847 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6848 set_pit2_out:
6849 		mutex_unlock(&kvm->lock);
6850 		break;
6851 	}
6852 	case KVM_REINJECT_CONTROL: {
6853 		struct kvm_reinject_control control;
6854 		r =  -EFAULT;
6855 		if (copy_from_user(&control, argp, sizeof(control)))
6856 			goto out;
6857 		r = -ENXIO;
6858 		if (!kvm->arch.vpit)
6859 			goto out;
6860 		r = kvm_vm_ioctl_reinject(kvm, &control);
6861 		break;
6862 	}
6863 	case KVM_SET_BOOT_CPU_ID:
6864 		r = 0;
6865 		mutex_lock(&kvm->lock);
6866 		if (kvm->created_vcpus)
6867 			r = -EBUSY;
6868 		else
6869 			kvm->arch.bsp_vcpu_id = arg;
6870 		mutex_unlock(&kvm->lock);
6871 		break;
6872 #ifdef CONFIG_KVM_XEN
6873 	case KVM_XEN_HVM_CONFIG: {
6874 		struct kvm_xen_hvm_config xhc;
6875 		r = -EFAULT;
6876 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6877 			goto out;
6878 		r = kvm_xen_hvm_config(kvm, &xhc);
6879 		break;
6880 	}
6881 	case KVM_XEN_HVM_GET_ATTR: {
6882 		struct kvm_xen_hvm_attr xha;
6883 
6884 		r = -EFAULT;
6885 		if (copy_from_user(&xha, argp, sizeof(xha)))
6886 			goto out;
6887 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6888 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6889 			r = -EFAULT;
6890 		break;
6891 	}
6892 	case KVM_XEN_HVM_SET_ATTR: {
6893 		struct kvm_xen_hvm_attr xha;
6894 
6895 		r = -EFAULT;
6896 		if (copy_from_user(&xha, argp, sizeof(xha)))
6897 			goto out;
6898 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6899 		break;
6900 	}
6901 	case KVM_XEN_HVM_EVTCHN_SEND: {
6902 		struct kvm_irq_routing_xen_evtchn uxe;
6903 
6904 		r = -EFAULT;
6905 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6906 			goto out;
6907 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6908 		break;
6909 	}
6910 #endif
6911 	case KVM_SET_CLOCK:
6912 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6913 		break;
6914 	case KVM_GET_CLOCK:
6915 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6916 		break;
6917 	case KVM_SET_TSC_KHZ: {
6918 		u32 user_tsc_khz;
6919 
6920 		r = -EINVAL;
6921 		user_tsc_khz = (u32)arg;
6922 
6923 		if (kvm_caps.has_tsc_control &&
6924 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6925 			goto out;
6926 
6927 		if (user_tsc_khz == 0)
6928 			user_tsc_khz = tsc_khz;
6929 
6930 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6931 		r = 0;
6932 
6933 		goto out;
6934 	}
6935 	case KVM_GET_TSC_KHZ: {
6936 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6937 		goto out;
6938 	}
6939 	case KVM_MEMORY_ENCRYPT_OP: {
6940 		r = -ENOTTY;
6941 		if (!kvm_x86_ops.mem_enc_ioctl)
6942 			goto out;
6943 
6944 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6945 		break;
6946 	}
6947 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6948 		struct kvm_enc_region region;
6949 
6950 		r = -EFAULT;
6951 		if (copy_from_user(&region, argp, sizeof(region)))
6952 			goto out;
6953 
6954 		r = -ENOTTY;
6955 		if (!kvm_x86_ops.mem_enc_register_region)
6956 			goto out;
6957 
6958 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6959 		break;
6960 	}
6961 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6962 		struct kvm_enc_region region;
6963 
6964 		r = -EFAULT;
6965 		if (copy_from_user(&region, argp, sizeof(region)))
6966 			goto out;
6967 
6968 		r = -ENOTTY;
6969 		if (!kvm_x86_ops.mem_enc_unregister_region)
6970 			goto out;
6971 
6972 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6973 		break;
6974 	}
6975 	case KVM_HYPERV_EVENTFD: {
6976 		struct kvm_hyperv_eventfd hvevfd;
6977 
6978 		r = -EFAULT;
6979 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6980 			goto out;
6981 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6982 		break;
6983 	}
6984 	case KVM_SET_PMU_EVENT_FILTER:
6985 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6986 		break;
6987 	case KVM_X86_SET_MSR_FILTER: {
6988 		struct kvm_msr_filter __user *user_msr_filter = argp;
6989 		struct kvm_msr_filter filter;
6990 
6991 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6992 			return -EFAULT;
6993 
6994 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6995 		break;
6996 	}
6997 	default:
6998 		r = -ENOTTY;
6999 	}
7000 out:
7001 	return r;
7002 }
7003 
7004 static void kvm_init_msr_list(void)
7005 {
7006 	u32 dummy[2];
7007 	unsigned i;
7008 
7009 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7010 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
7011 
7012 	num_msrs_to_save = 0;
7013 	num_emulated_msrs = 0;
7014 	num_msr_based_features = 0;
7015 
7016 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7017 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7018 			continue;
7019 
7020 		/*
7021 		 * Even MSRs that are valid in the host may not be exposed
7022 		 * to the guests in some cases.
7023 		 */
7024 		switch (msrs_to_save_all[i]) {
7025 		case MSR_IA32_BNDCFGS:
7026 			if (!kvm_mpx_supported())
7027 				continue;
7028 			break;
7029 		case MSR_TSC_AUX:
7030 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7031 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7032 				continue;
7033 			break;
7034 		case MSR_IA32_UMWAIT_CONTROL:
7035 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7036 				continue;
7037 			break;
7038 		case MSR_IA32_RTIT_CTL:
7039 		case MSR_IA32_RTIT_STATUS:
7040 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7041 				continue;
7042 			break;
7043 		case MSR_IA32_RTIT_CR3_MATCH:
7044 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7045 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7046 				continue;
7047 			break;
7048 		case MSR_IA32_RTIT_OUTPUT_BASE:
7049 		case MSR_IA32_RTIT_OUTPUT_MASK:
7050 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7051 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7052 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7053 				continue;
7054 			break;
7055 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7056 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7057 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7058 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7059 				continue;
7060 			break;
7061 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7062 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7063 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7064 				continue;
7065 			break;
7066 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7067 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7068 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7069 				continue;
7070 			break;
7071 		case MSR_IA32_XFD:
7072 		case MSR_IA32_XFD_ERR:
7073 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7074 				continue;
7075 			break;
7076 		default:
7077 			break;
7078 		}
7079 
7080 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7081 	}
7082 
7083 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7084 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7085 			continue;
7086 
7087 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7088 	}
7089 
7090 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7091 		struct kvm_msr_entry msr;
7092 
7093 		msr.index = msr_based_features_all[i];
7094 		if (kvm_get_msr_feature(&msr))
7095 			continue;
7096 
7097 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7098 	}
7099 }
7100 
7101 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7102 			   const void *v)
7103 {
7104 	int handled = 0;
7105 	int n;
7106 
7107 	do {
7108 		n = min(len, 8);
7109 		if (!(lapic_in_kernel(vcpu) &&
7110 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7111 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7112 			break;
7113 		handled += n;
7114 		addr += n;
7115 		len -= n;
7116 		v += n;
7117 	} while (len);
7118 
7119 	return handled;
7120 }
7121 
7122 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7123 {
7124 	int handled = 0;
7125 	int n;
7126 
7127 	do {
7128 		n = min(len, 8);
7129 		if (!(lapic_in_kernel(vcpu) &&
7130 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7131 					 addr, n, v))
7132 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7133 			break;
7134 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7135 		handled += n;
7136 		addr += n;
7137 		len -= n;
7138 		v += n;
7139 	} while (len);
7140 
7141 	return handled;
7142 }
7143 
7144 void kvm_set_segment(struct kvm_vcpu *vcpu,
7145 		     struct kvm_segment *var, int seg)
7146 {
7147 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7148 }
7149 
7150 void kvm_get_segment(struct kvm_vcpu *vcpu,
7151 		     struct kvm_segment *var, int seg)
7152 {
7153 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7154 }
7155 
7156 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7157 			   struct x86_exception *exception)
7158 {
7159 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7160 	gpa_t t_gpa;
7161 
7162 	BUG_ON(!mmu_is_nested(vcpu));
7163 
7164 	/* NPT walks are always user-walks */
7165 	access |= PFERR_USER_MASK;
7166 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7167 
7168 	return t_gpa;
7169 }
7170 
7171 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7172 			      struct x86_exception *exception)
7173 {
7174 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7175 
7176 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7177 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7178 }
7179 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7180 
7181 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7182 			       struct x86_exception *exception)
7183 {
7184 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7185 
7186 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7187 	access |= PFERR_WRITE_MASK;
7188 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7189 }
7190 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7191 
7192 /* uses this to access any guest's mapped memory without checking CPL */
7193 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7194 				struct x86_exception *exception)
7195 {
7196 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7197 
7198 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7199 }
7200 
7201 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7202 				      struct kvm_vcpu *vcpu, u64 access,
7203 				      struct x86_exception *exception)
7204 {
7205 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7206 	void *data = val;
7207 	int r = X86EMUL_CONTINUE;
7208 
7209 	while (bytes) {
7210 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7211 		unsigned offset = addr & (PAGE_SIZE-1);
7212 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7213 		int ret;
7214 
7215 		if (gpa == INVALID_GPA)
7216 			return X86EMUL_PROPAGATE_FAULT;
7217 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7218 					       offset, toread);
7219 		if (ret < 0) {
7220 			r = X86EMUL_IO_NEEDED;
7221 			goto out;
7222 		}
7223 
7224 		bytes -= toread;
7225 		data += toread;
7226 		addr += toread;
7227 	}
7228 out:
7229 	return r;
7230 }
7231 
7232 /* used for instruction fetching */
7233 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7234 				gva_t addr, void *val, unsigned int bytes,
7235 				struct x86_exception *exception)
7236 {
7237 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7238 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7239 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7240 	unsigned offset;
7241 	int ret;
7242 
7243 	/* Inline kvm_read_guest_virt_helper for speed.  */
7244 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7245 				    exception);
7246 	if (unlikely(gpa == INVALID_GPA))
7247 		return X86EMUL_PROPAGATE_FAULT;
7248 
7249 	offset = addr & (PAGE_SIZE-1);
7250 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7251 		bytes = (unsigned)PAGE_SIZE - offset;
7252 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7253 				       offset, bytes);
7254 	if (unlikely(ret < 0))
7255 		return X86EMUL_IO_NEEDED;
7256 
7257 	return X86EMUL_CONTINUE;
7258 }
7259 
7260 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7261 			       gva_t addr, void *val, unsigned int bytes,
7262 			       struct x86_exception *exception)
7263 {
7264 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7265 
7266 	/*
7267 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7268 	 * is returned, but our callers are not ready for that and they blindly
7269 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7270 	 * uninitialized kernel stack memory into cr2 and error code.
7271 	 */
7272 	memset(exception, 0, sizeof(*exception));
7273 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7274 					  exception);
7275 }
7276 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7277 
7278 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7279 			     gva_t addr, void *val, unsigned int bytes,
7280 			     struct x86_exception *exception, bool system)
7281 {
7282 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7283 	u64 access = 0;
7284 
7285 	if (system)
7286 		access |= PFERR_IMPLICIT_ACCESS;
7287 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7288 		access |= PFERR_USER_MASK;
7289 
7290 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7291 }
7292 
7293 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7294 				      struct kvm_vcpu *vcpu, u64 access,
7295 				      struct x86_exception *exception)
7296 {
7297 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7298 	void *data = val;
7299 	int r = X86EMUL_CONTINUE;
7300 
7301 	while (bytes) {
7302 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7303 		unsigned offset = addr & (PAGE_SIZE-1);
7304 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7305 		int ret;
7306 
7307 		if (gpa == INVALID_GPA)
7308 			return X86EMUL_PROPAGATE_FAULT;
7309 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7310 		if (ret < 0) {
7311 			r = X86EMUL_IO_NEEDED;
7312 			goto out;
7313 		}
7314 
7315 		bytes -= towrite;
7316 		data += towrite;
7317 		addr += towrite;
7318 	}
7319 out:
7320 	return r;
7321 }
7322 
7323 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7324 			      unsigned int bytes, struct x86_exception *exception,
7325 			      bool system)
7326 {
7327 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7328 	u64 access = PFERR_WRITE_MASK;
7329 
7330 	if (system)
7331 		access |= PFERR_IMPLICIT_ACCESS;
7332 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7333 		access |= PFERR_USER_MASK;
7334 
7335 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7336 					   access, exception);
7337 }
7338 
7339 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7340 				unsigned int bytes, struct x86_exception *exception)
7341 {
7342 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7343 	vcpu->arch.l1tf_flush_l1d = true;
7344 
7345 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7346 					   PFERR_WRITE_MASK, exception);
7347 }
7348 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7349 
7350 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7351 				void *insn, int insn_len)
7352 {
7353 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7354 							    insn, insn_len);
7355 }
7356 
7357 int handle_ud(struct kvm_vcpu *vcpu)
7358 {
7359 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7360 	int fep_flags = READ_ONCE(force_emulation_prefix);
7361 	int emul_type = EMULTYPE_TRAP_UD;
7362 	char sig[5]; /* ud2; .ascii "kvm" */
7363 	struct x86_exception e;
7364 
7365 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7366 		return 1;
7367 
7368 	if (fep_flags &&
7369 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7370 				sig, sizeof(sig), &e) == 0 &&
7371 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7372 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7373 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7374 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7375 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7376 	}
7377 
7378 	return kvm_emulate_instruction(vcpu, emul_type);
7379 }
7380 EXPORT_SYMBOL_GPL(handle_ud);
7381 
7382 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7383 			    gpa_t gpa, bool write)
7384 {
7385 	/* For APIC access vmexit */
7386 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7387 		return 1;
7388 
7389 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7390 		trace_vcpu_match_mmio(gva, gpa, write, true);
7391 		return 1;
7392 	}
7393 
7394 	return 0;
7395 }
7396 
7397 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7398 				gpa_t *gpa, struct x86_exception *exception,
7399 				bool write)
7400 {
7401 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7402 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7403 		| (write ? PFERR_WRITE_MASK : 0);
7404 
7405 	/*
7406 	 * currently PKRU is only applied to ept enabled guest so
7407 	 * there is no pkey in EPT page table for L1 guest or EPT
7408 	 * shadow page table for L2 guest.
7409 	 */
7410 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7411 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7412 			      vcpu->arch.mmio_access, 0, access))) {
7413 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7414 					(gva & (PAGE_SIZE - 1));
7415 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7416 		return 1;
7417 	}
7418 
7419 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7420 
7421 	if (*gpa == INVALID_GPA)
7422 		return -1;
7423 
7424 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7425 }
7426 
7427 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7428 			const void *val, int bytes)
7429 {
7430 	int ret;
7431 
7432 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7433 	if (ret < 0)
7434 		return 0;
7435 	kvm_page_track_write(vcpu, gpa, val, bytes);
7436 	return 1;
7437 }
7438 
7439 struct read_write_emulator_ops {
7440 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7441 				  int bytes);
7442 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7443 				  void *val, int bytes);
7444 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7445 			       int bytes, void *val);
7446 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7447 				    void *val, int bytes);
7448 	bool write;
7449 };
7450 
7451 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7452 {
7453 	if (vcpu->mmio_read_completed) {
7454 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7455 			       vcpu->mmio_fragments[0].gpa, val);
7456 		vcpu->mmio_read_completed = 0;
7457 		return 1;
7458 	}
7459 
7460 	return 0;
7461 }
7462 
7463 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7464 			void *val, int bytes)
7465 {
7466 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7467 }
7468 
7469 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7470 			 void *val, int bytes)
7471 {
7472 	return emulator_write_phys(vcpu, gpa, val, bytes);
7473 }
7474 
7475 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7476 {
7477 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7478 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7479 }
7480 
7481 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7482 			  void *val, int bytes)
7483 {
7484 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7485 	return X86EMUL_IO_NEEDED;
7486 }
7487 
7488 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7489 			   void *val, int bytes)
7490 {
7491 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7492 
7493 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7494 	return X86EMUL_CONTINUE;
7495 }
7496 
7497 static const struct read_write_emulator_ops read_emultor = {
7498 	.read_write_prepare = read_prepare,
7499 	.read_write_emulate = read_emulate,
7500 	.read_write_mmio = vcpu_mmio_read,
7501 	.read_write_exit_mmio = read_exit_mmio,
7502 };
7503 
7504 static const struct read_write_emulator_ops write_emultor = {
7505 	.read_write_emulate = write_emulate,
7506 	.read_write_mmio = write_mmio,
7507 	.read_write_exit_mmio = write_exit_mmio,
7508 	.write = true,
7509 };
7510 
7511 static int emulator_read_write_onepage(unsigned long addr, void *val,
7512 				       unsigned int bytes,
7513 				       struct x86_exception *exception,
7514 				       struct kvm_vcpu *vcpu,
7515 				       const struct read_write_emulator_ops *ops)
7516 {
7517 	gpa_t gpa;
7518 	int handled, ret;
7519 	bool write = ops->write;
7520 	struct kvm_mmio_fragment *frag;
7521 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7522 
7523 	/*
7524 	 * If the exit was due to a NPF we may already have a GPA.
7525 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7526 	 * Note, this cannot be used on string operations since string
7527 	 * operation using rep will only have the initial GPA from the NPF
7528 	 * occurred.
7529 	 */
7530 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7531 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7532 		gpa = ctxt->gpa_val;
7533 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7534 	} else {
7535 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7536 		if (ret < 0)
7537 			return X86EMUL_PROPAGATE_FAULT;
7538 	}
7539 
7540 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7541 		return X86EMUL_CONTINUE;
7542 
7543 	/*
7544 	 * Is this MMIO handled locally?
7545 	 */
7546 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7547 	if (handled == bytes)
7548 		return X86EMUL_CONTINUE;
7549 
7550 	gpa += handled;
7551 	bytes -= handled;
7552 	val += handled;
7553 
7554 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7555 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7556 	frag->gpa = gpa;
7557 	frag->data = val;
7558 	frag->len = bytes;
7559 	return X86EMUL_CONTINUE;
7560 }
7561 
7562 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7563 			unsigned long addr,
7564 			void *val, unsigned int bytes,
7565 			struct x86_exception *exception,
7566 			const struct read_write_emulator_ops *ops)
7567 {
7568 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7569 	gpa_t gpa;
7570 	int rc;
7571 
7572 	if (ops->read_write_prepare &&
7573 		  ops->read_write_prepare(vcpu, val, bytes))
7574 		return X86EMUL_CONTINUE;
7575 
7576 	vcpu->mmio_nr_fragments = 0;
7577 
7578 	/* Crossing a page boundary? */
7579 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7580 		int now;
7581 
7582 		now = -addr & ~PAGE_MASK;
7583 		rc = emulator_read_write_onepage(addr, val, now, exception,
7584 						 vcpu, ops);
7585 
7586 		if (rc != X86EMUL_CONTINUE)
7587 			return rc;
7588 		addr += now;
7589 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7590 			addr = (u32)addr;
7591 		val += now;
7592 		bytes -= now;
7593 	}
7594 
7595 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7596 					 vcpu, ops);
7597 	if (rc != X86EMUL_CONTINUE)
7598 		return rc;
7599 
7600 	if (!vcpu->mmio_nr_fragments)
7601 		return rc;
7602 
7603 	gpa = vcpu->mmio_fragments[0].gpa;
7604 
7605 	vcpu->mmio_needed = 1;
7606 	vcpu->mmio_cur_fragment = 0;
7607 
7608 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7609 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7610 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7611 	vcpu->run->mmio.phys_addr = gpa;
7612 
7613 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7614 }
7615 
7616 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7617 				  unsigned long addr,
7618 				  void *val,
7619 				  unsigned int bytes,
7620 				  struct x86_exception *exception)
7621 {
7622 	return emulator_read_write(ctxt, addr, val, bytes,
7623 				   exception, &read_emultor);
7624 }
7625 
7626 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7627 			    unsigned long addr,
7628 			    const void *val,
7629 			    unsigned int bytes,
7630 			    struct x86_exception *exception)
7631 {
7632 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7633 				   exception, &write_emultor);
7634 }
7635 
7636 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7637 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7638 
7639 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7640 				     unsigned long addr,
7641 				     const void *old,
7642 				     const void *new,
7643 				     unsigned int bytes,
7644 				     struct x86_exception *exception)
7645 {
7646 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7647 	u64 page_line_mask;
7648 	unsigned long hva;
7649 	gpa_t gpa;
7650 	int r;
7651 
7652 	/* guests cmpxchg8b have to be emulated atomically */
7653 	if (bytes > 8 || (bytes & (bytes - 1)))
7654 		goto emul_write;
7655 
7656 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7657 
7658 	if (gpa == INVALID_GPA ||
7659 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7660 		goto emul_write;
7661 
7662 	/*
7663 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7664 	 * enabled in the host and the access splits a cache line.
7665 	 */
7666 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7667 		page_line_mask = ~(cache_line_size() - 1);
7668 	else
7669 		page_line_mask = PAGE_MASK;
7670 
7671 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7672 		goto emul_write;
7673 
7674 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7675 	if (kvm_is_error_hva(hva))
7676 		goto emul_write;
7677 
7678 	hva += offset_in_page(gpa);
7679 
7680 	switch (bytes) {
7681 	case 1:
7682 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7683 		break;
7684 	case 2:
7685 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7686 		break;
7687 	case 4:
7688 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7689 		break;
7690 	case 8:
7691 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7692 		break;
7693 	default:
7694 		BUG();
7695 	}
7696 
7697 	if (r < 0)
7698 		return X86EMUL_UNHANDLEABLE;
7699 	if (r)
7700 		return X86EMUL_CMPXCHG_FAILED;
7701 
7702 	kvm_page_track_write(vcpu, gpa, new, bytes);
7703 
7704 	return X86EMUL_CONTINUE;
7705 
7706 emul_write:
7707 	pr_warn_once("emulating exchange as write\n");
7708 
7709 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7710 }
7711 
7712 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7713 			       unsigned short port, void *data,
7714 			       unsigned int count, bool in)
7715 {
7716 	unsigned i;
7717 	int r;
7718 
7719 	WARN_ON_ONCE(vcpu->arch.pio.count);
7720 	for (i = 0; i < count; i++) {
7721 		if (in)
7722 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7723 		else
7724 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7725 
7726 		if (r) {
7727 			if (i == 0)
7728 				goto userspace_io;
7729 
7730 			/*
7731 			 * Userspace must have unregistered the device while PIO
7732 			 * was running.  Drop writes / read as 0.
7733 			 */
7734 			if (in)
7735 				memset(data, 0, size * (count - i));
7736 			break;
7737 		}
7738 
7739 		data += size;
7740 	}
7741 	return 1;
7742 
7743 userspace_io:
7744 	vcpu->arch.pio.port = port;
7745 	vcpu->arch.pio.in = in;
7746 	vcpu->arch.pio.count = count;
7747 	vcpu->arch.pio.size = size;
7748 
7749 	if (in)
7750 		memset(vcpu->arch.pio_data, 0, size * count);
7751 	else
7752 		memcpy(vcpu->arch.pio_data, data, size * count);
7753 
7754 	vcpu->run->exit_reason = KVM_EXIT_IO;
7755 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7756 	vcpu->run->io.size = size;
7757 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7758 	vcpu->run->io.count = count;
7759 	vcpu->run->io.port = port;
7760 	return 0;
7761 }
7762 
7763 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7764       			   unsigned short port, void *val, unsigned int count)
7765 {
7766 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7767 	if (r)
7768 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7769 
7770 	return r;
7771 }
7772 
7773 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7774 {
7775 	int size = vcpu->arch.pio.size;
7776 	unsigned int count = vcpu->arch.pio.count;
7777 	memcpy(val, vcpu->arch.pio_data, size * count);
7778 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7779 	vcpu->arch.pio.count = 0;
7780 }
7781 
7782 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7783 				    int size, unsigned short port, void *val,
7784 				    unsigned int count)
7785 {
7786 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7787 	if (vcpu->arch.pio.count) {
7788 		/*
7789 		 * Complete a previous iteration that required userspace I/O.
7790 		 * Note, @count isn't guaranteed to match pio.count as userspace
7791 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7792 		 * shenanigans as KVM doesn't support modifying the rep count,
7793 		 * and the emulator ensures @count doesn't overflow the buffer.
7794 		 */
7795 		complete_emulator_pio_in(vcpu, val);
7796 		return 1;
7797 	}
7798 
7799 	return emulator_pio_in(vcpu, size, port, val, count);
7800 }
7801 
7802 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7803 			    unsigned short port, const void *val,
7804 			    unsigned int count)
7805 {
7806 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7807 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7808 }
7809 
7810 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7811 				     int size, unsigned short port,
7812 				     const void *val, unsigned int count)
7813 {
7814 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7815 }
7816 
7817 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7818 {
7819 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7820 }
7821 
7822 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7823 {
7824 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7825 }
7826 
7827 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7828 {
7829 	if (!need_emulate_wbinvd(vcpu))
7830 		return X86EMUL_CONTINUE;
7831 
7832 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7833 		int cpu = get_cpu();
7834 
7835 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7836 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7837 				wbinvd_ipi, NULL, 1);
7838 		put_cpu();
7839 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7840 	} else
7841 		wbinvd();
7842 	return X86EMUL_CONTINUE;
7843 }
7844 
7845 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7846 {
7847 	kvm_emulate_wbinvd_noskip(vcpu);
7848 	return kvm_skip_emulated_instruction(vcpu);
7849 }
7850 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7851 
7852 
7853 
7854 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7855 {
7856 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7857 }
7858 
7859 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7860 			    unsigned long *dest)
7861 {
7862 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7863 }
7864 
7865 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7866 			   unsigned long value)
7867 {
7868 
7869 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7870 }
7871 
7872 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7873 {
7874 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7875 }
7876 
7877 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7878 {
7879 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7880 	unsigned long value;
7881 
7882 	switch (cr) {
7883 	case 0:
7884 		value = kvm_read_cr0(vcpu);
7885 		break;
7886 	case 2:
7887 		value = vcpu->arch.cr2;
7888 		break;
7889 	case 3:
7890 		value = kvm_read_cr3(vcpu);
7891 		break;
7892 	case 4:
7893 		value = kvm_read_cr4(vcpu);
7894 		break;
7895 	case 8:
7896 		value = kvm_get_cr8(vcpu);
7897 		break;
7898 	default:
7899 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7900 		return 0;
7901 	}
7902 
7903 	return value;
7904 }
7905 
7906 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7907 {
7908 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7909 	int res = 0;
7910 
7911 	switch (cr) {
7912 	case 0:
7913 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7914 		break;
7915 	case 2:
7916 		vcpu->arch.cr2 = val;
7917 		break;
7918 	case 3:
7919 		res = kvm_set_cr3(vcpu, val);
7920 		break;
7921 	case 4:
7922 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7923 		break;
7924 	case 8:
7925 		res = kvm_set_cr8(vcpu, val);
7926 		break;
7927 	default:
7928 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7929 		res = -1;
7930 	}
7931 
7932 	return res;
7933 }
7934 
7935 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7936 {
7937 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7938 }
7939 
7940 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7941 {
7942 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7943 }
7944 
7945 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7946 {
7947 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7948 }
7949 
7950 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7951 {
7952 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7953 }
7954 
7955 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7956 {
7957 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7958 }
7959 
7960 static unsigned long emulator_get_cached_segment_base(
7961 	struct x86_emulate_ctxt *ctxt, int seg)
7962 {
7963 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7964 }
7965 
7966 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7967 				 struct desc_struct *desc, u32 *base3,
7968 				 int seg)
7969 {
7970 	struct kvm_segment var;
7971 
7972 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7973 	*selector = var.selector;
7974 
7975 	if (var.unusable) {
7976 		memset(desc, 0, sizeof(*desc));
7977 		if (base3)
7978 			*base3 = 0;
7979 		return false;
7980 	}
7981 
7982 	if (var.g)
7983 		var.limit >>= 12;
7984 	set_desc_limit(desc, var.limit);
7985 	set_desc_base(desc, (unsigned long)var.base);
7986 #ifdef CONFIG_X86_64
7987 	if (base3)
7988 		*base3 = var.base >> 32;
7989 #endif
7990 	desc->type = var.type;
7991 	desc->s = var.s;
7992 	desc->dpl = var.dpl;
7993 	desc->p = var.present;
7994 	desc->avl = var.avl;
7995 	desc->l = var.l;
7996 	desc->d = var.db;
7997 	desc->g = var.g;
7998 
7999 	return true;
8000 }
8001 
8002 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8003 				 struct desc_struct *desc, u32 base3,
8004 				 int seg)
8005 {
8006 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8007 	struct kvm_segment var;
8008 
8009 	var.selector = selector;
8010 	var.base = get_desc_base(desc);
8011 #ifdef CONFIG_X86_64
8012 	var.base |= ((u64)base3) << 32;
8013 #endif
8014 	var.limit = get_desc_limit(desc);
8015 	if (desc->g)
8016 		var.limit = (var.limit << 12) | 0xfff;
8017 	var.type = desc->type;
8018 	var.dpl = desc->dpl;
8019 	var.db = desc->d;
8020 	var.s = desc->s;
8021 	var.l = desc->l;
8022 	var.g = desc->g;
8023 	var.avl = desc->avl;
8024 	var.present = desc->p;
8025 	var.unusable = !var.present;
8026 	var.padding = 0;
8027 
8028 	kvm_set_segment(vcpu, &var, seg);
8029 	return;
8030 }
8031 
8032 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8033 					u32 msr_index, u64 *pdata)
8034 {
8035 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8036 	int r;
8037 
8038 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8039 	if (r < 0)
8040 		return X86EMUL_UNHANDLEABLE;
8041 
8042 	if (r) {
8043 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8044 				       complete_emulated_rdmsr, r))
8045 			return X86EMUL_IO_NEEDED;
8046 
8047 		trace_kvm_msr_read_ex(msr_index);
8048 		return X86EMUL_PROPAGATE_FAULT;
8049 	}
8050 
8051 	trace_kvm_msr_read(msr_index, *pdata);
8052 	return X86EMUL_CONTINUE;
8053 }
8054 
8055 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8056 					u32 msr_index, u64 data)
8057 {
8058 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8059 	int r;
8060 
8061 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8062 	if (r < 0)
8063 		return X86EMUL_UNHANDLEABLE;
8064 
8065 	if (r) {
8066 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8067 				       complete_emulated_msr_access, r))
8068 			return X86EMUL_IO_NEEDED;
8069 
8070 		trace_kvm_msr_write_ex(msr_index, data);
8071 		return X86EMUL_PROPAGATE_FAULT;
8072 	}
8073 
8074 	trace_kvm_msr_write(msr_index, data);
8075 	return X86EMUL_CONTINUE;
8076 }
8077 
8078 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8079 			    u32 msr_index, u64 *pdata)
8080 {
8081 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8082 }
8083 
8084 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8085 			      u32 pmc)
8086 {
8087 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8088 		return 0;
8089 	return -EINVAL;
8090 }
8091 
8092 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8093 			     u32 pmc, u64 *pdata)
8094 {
8095 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8096 }
8097 
8098 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8099 {
8100 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8101 }
8102 
8103 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8104 			      struct x86_instruction_info *info,
8105 			      enum x86_intercept_stage stage)
8106 {
8107 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8108 					    &ctxt->exception);
8109 }
8110 
8111 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8112 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8113 			      bool exact_only)
8114 {
8115 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8116 }
8117 
8118 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8119 {
8120 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8121 }
8122 
8123 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8124 {
8125 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8126 }
8127 
8128 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8129 {
8130 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8131 }
8132 
8133 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8134 {
8135 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8136 }
8137 
8138 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8139 {
8140 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8141 }
8142 
8143 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8144 {
8145 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8146 }
8147 
8148 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8149 {
8150 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8151 }
8152 
8153 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8154 {
8155 	return emul_to_vcpu(ctxt)->arch.hflags;
8156 }
8157 
8158 #ifndef CONFIG_KVM_SMM
8159 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8160 {
8161 	WARN_ON_ONCE(1);
8162 	return X86EMUL_UNHANDLEABLE;
8163 }
8164 #endif
8165 
8166 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8167 {
8168 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8169 }
8170 
8171 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8172 {
8173 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8174 }
8175 
8176 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8177 {
8178 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8179 
8180 	if (!kvm->vm_bugged)
8181 		kvm_vm_bugged(kvm);
8182 }
8183 
8184 static const struct x86_emulate_ops emulate_ops = {
8185 	.vm_bugged           = emulator_vm_bugged,
8186 	.read_gpr            = emulator_read_gpr,
8187 	.write_gpr           = emulator_write_gpr,
8188 	.read_std            = emulator_read_std,
8189 	.write_std           = emulator_write_std,
8190 	.fetch               = kvm_fetch_guest_virt,
8191 	.read_emulated       = emulator_read_emulated,
8192 	.write_emulated      = emulator_write_emulated,
8193 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8194 	.invlpg              = emulator_invlpg,
8195 	.pio_in_emulated     = emulator_pio_in_emulated,
8196 	.pio_out_emulated    = emulator_pio_out_emulated,
8197 	.get_segment         = emulator_get_segment,
8198 	.set_segment         = emulator_set_segment,
8199 	.get_cached_segment_base = emulator_get_cached_segment_base,
8200 	.get_gdt             = emulator_get_gdt,
8201 	.get_idt	     = emulator_get_idt,
8202 	.set_gdt             = emulator_set_gdt,
8203 	.set_idt	     = emulator_set_idt,
8204 	.get_cr              = emulator_get_cr,
8205 	.set_cr              = emulator_set_cr,
8206 	.cpl                 = emulator_get_cpl,
8207 	.get_dr              = emulator_get_dr,
8208 	.set_dr              = emulator_set_dr,
8209 	.set_msr_with_filter = emulator_set_msr_with_filter,
8210 	.get_msr_with_filter = emulator_get_msr_with_filter,
8211 	.get_msr             = emulator_get_msr,
8212 	.check_pmc	     = emulator_check_pmc,
8213 	.read_pmc            = emulator_read_pmc,
8214 	.halt                = emulator_halt,
8215 	.wbinvd              = emulator_wbinvd,
8216 	.fix_hypercall       = emulator_fix_hypercall,
8217 	.intercept           = emulator_intercept,
8218 	.get_cpuid           = emulator_get_cpuid,
8219 	.guest_has_long_mode = emulator_guest_has_long_mode,
8220 	.guest_has_movbe     = emulator_guest_has_movbe,
8221 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8222 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8223 	.set_nmi_mask        = emulator_set_nmi_mask,
8224 	.get_hflags          = emulator_get_hflags,
8225 	.leave_smm           = emulator_leave_smm,
8226 	.triple_fault        = emulator_triple_fault,
8227 	.set_xcr             = emulator_set_xcr,
8228 };
8229 
8230 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8231 {
8232 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8233 	/*
8234 	 * an sti; sti; sequence only disable interrupts for the first
8235 	 * instruction. So, if the last instruction, be it emulated or
8236 	 * not, left the system with the INT_STI flag enabled, it
8237 	 * means that the last instruction is an sti. We should not
8238 	 * leave the flag on in this case. The same goes for mov ss
8239 	 */
8240 	if (int_shadow & mask)
8241 		mask = 0;
8242 	if (unlikely(int_shadow || mask)) {
8243 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8244 		if (!mask)
8245 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8246 	}
8247 }
8248 
8249 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8250 {
8251 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8252 
8253 	if (ctxt->exception.vector == PF_VECTOR)
8254 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8255 	else if (ctxt->exception.error_code_valid)
8256 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8257 				      ctxt->exception.error_code);
8258 	else
8259 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8260 }
8261 
8262 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8263 {
8264 	struct x86_emulate_ctxt *ctxt;
8265 
8266 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8267 	if (!ctxt) {
8268 		pr_err("failed to allocate vcpu's emulator\n");
8269 		return NULL;
8270 	}
8271 
8272 	ctxt->vcpu = vcpu;
8273 	ctxt->ops = &emulate_ops;
8274 	vcpu->arch.emulate_ctxt = ctxt;
8275 
8276 	return ctxt;
8277 }
8278 
8279 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8280 {
8281 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8282 	int cs_db, cs_l;
8283 
8284 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8285 
8286 	ctxt->gpa_available = false;
8287 	ctxt->eflags = kvm_get_rflags(vcpu);
8288 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8289 
8290 	ctxt->eip = kvm_rip_read(vcpu);
8291 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8292 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8293 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8294 		     cs_db				? X86EMUL_MODE_PROT32 :
8295 							  X86EMUL_MODE_PROT16;
8296 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8297 
8298 	ctxt->interruptibility = 0;
8299 	ctxt->have_exception = false;
8300 	ctxt->exception.vector = -1;
8301 	ctxt->perm_ok = false;
8302 
8303 	init_decode_cache(ctxt);
8304 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8305 }
8306 
8307 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8308 {
8309 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8310 	int ret;
8311 
8312 	init_emulate_ctxt(vcpu);
8313 
8314 	ctxt->op_bytes = 2;
8315 	ctxt->ad_bytes = 2;
8316 	ctxt->_eip = ctxt->eip + inc_eip;
8317 	ret = emulate_int_real(ctxt, irq);
8318 
8319 	if (ret != X86EMUL_CONTINUE) {
8320 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8321 	} else {
8322 		ctxt->eip = ctxt->_eip;
8323 		kvm_rip_write(vcpu, ctxt->eip);
8324 		kvm_set_rflags(vcpu, ctxt->eflags);
8325 	}
8326 }
8327 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8328 
8329 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8330 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8331 {
8332 	struct kvm_run *run = vcpu->run;
8333 	u64 info[5];
8334 	u8 info_start;
8335 
8336 	/*
8337 	 * Zero the whole array used to retrieve the exit info, as casting to
8338 	 * u32 for select entries will leave some chunks uninitialized.
8339 	 */
8340 	memset(&info, 0, sizeof(info));
8341 
8342 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8343 					   &info[2], (u32 *)&info[3],
8344 					   (u32 *)&info[4]);
8345 
8346 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8347 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8348 
8349 	/*
8350 	 * There's currently space for 13 entries, but 5 are used for the exit
8351 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8352 	 * when expanding kvm_run.emulation_failure in the future.
8353 	 */
8354 	if (WARN_ON_ONCE(ndata > 4))
8355 		ndata = 4;
8356 
8357 	/* Always include the flags as a 'data' entry. */
8358 	info_start = 1;
8359 	run->emulation_failure.flags = 0;
8360 
8361 	if (insn_size) {
8362 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8363 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8364 		info_start += 2;
8365 		run->emulation_failure.flags |=
8366 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8367 		run->emulation_failure.insn_size = insn_size;
8368 		memset(run->emulation_failure.insn_bytes, 0x90,
8369 		       sizeof(run->emulation_failure.insn_bytes));
8370 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8371 	}
8372 
8373 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8374 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8375 	       ndata * sizeof(data[0]));
8376 
8377 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8378 }
8379 
8380 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8381 {
8382 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8383 
8384 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8385 				       ctxt->fetch.end - ctxt->fetch.data);
8386 }
8387 
8388 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8389 					  u8 ndata)
8390 {
8391 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8392 }
8393 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8394 
8395 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8396 {
8397 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8398 }
8399 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8400 
8401 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8402 {
8403 	struct kvm *kvm = vcpu->kvm;
8404 
8405 	++vcpu->stat.insn_emulation_fail;
8406 	trace_kvm_emulate_insn_failed(vcpu);
8407 
8408 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8409 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8410 		return 1;
8411 	}
8412 
8413 	if (kvm->arch.exit_on_emulation_error ||
8414 	    (emulation_type & EMULTYPE_SKIP)) {
8415 		prepare_emulation_ctxt_failure_exit(vcpu);
8416 		return 0;
8417 	}
8418 
8419 	kvm_queue_exception(vcpu, UD_VECTOR);
8420 
8421 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8422 		prepare_emulation_ctxt_failure_exit(vcpu);
8423 		return 0;
8424 	}
8425 
8426 	return 1;
8427 }
8428 
8429 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8430 				  bool write_fault_to_shadow_pgtable,
8431 				  int emulation_type)
8432 {
8433 	gpa_t gpa = cr2_or_gpa;
8434 	kvm_pfn_t pfn;
8435 
8436 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8437 		return false;
8438 
8439 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8440 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8441 		return false;
8442 
8443 	if (!vcpu->arch.mmu->root_role.direct) {
8444 		/*
8445 		 * Write permission should be allowed since only
8446 		 * write access need to be emulated.
8447 		 */
8448 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8449 
8450 		/*
8451 		 * If the mapping is invalid in guest, let cpu retry
8452 		 * it to generate fault.
8453 		 */
8454 		if (gpa == INVALID_GPA)
8455 			return true;
8456 	}
8457 
8458 	/*
8459 	 * Do not retry the unhandleable instruction if it faults on the
8460 	 * readonly host memory, otherwise it will goto a infinite loop:
8461 	 * retry instruction -> write #PF -> emulation fail -> retry
8462 	 * instruction -> ...
8463 	 */
8464 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8465 
8466 	/*
8467 	 * If the instruction failed on the error pfn, it can not be fixed,
8468 	 * report the error to userspace.
8469 	 */
8470 	if (is_error_noslot_pfn(pfn))
8471 		return false;
8472 
8473 	kvm_release_pfn_clean(pfn);
8474 
8475 	/* The instructions are well-emulated on direct mmu. */
8476 	if (vcpu->arch.mmu->root_role.direct) {
8477 		unsigned int indirect_shadow_pages;
8478 
8479 		write_lock(&vcpu->kvm->mmu_lock);
8480 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8481 		write_unlock(&vcpu->kvm->mmu_lock);
8482 
8483 		if (indirect_shadow_pages)
8484 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8485 
8486 		return true;
8487 	}
8488 
8489 	/*
8490 	 * if emulation was due to access to shadowed page table
8491 	 * and it failed try to unshadow page and re-enter the
8492 	 * guest to let CPU execute the instruction.
8493 	 */
8494 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8495 
8496 	/*
8497 	 * If the access faults on its page table, it can not
8498 	 * be fixed by unprotecting shadow page and it should
8499 	 * be reported to userspace.
8500 	 */
8501 	return !write_fault_to_shadow_pgtable;
8502 }
8503 
8504 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8505 			      gpa_t cr2_or_gpa,  int emulation_type)
8506 {
8507 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8508 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8509 
8510 	last_retry_eip = vcpu->arch.last_retry_eip;
8511 	last_retry_addr = vcpu->arch.last_retry_addr;
8512 
8513 	/*
8514 	 * If the emulation is caused by #PF and it is non-page_table
8515 	 * writing instruction, it means the VM-EXIT is caused by shadow
8516 	 * page protected, we can zap the shadow page and retry this
8517 	 * instruction directly.
8518 	 *
8519 	 * Note: if the guest uses a non-page-table modifying instruction
8520 	 * on the PDE that points to the instruction, then we will unmap
8521 	 * the instruction and go to an infinite loop. So, we cache the
8522 	 * last retried eip and the last fault address, if we meet the eip
8523 	 * and the address again, we can break out of the potential infinite
8524 	 * loop.
8525 	 */
8526 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8527 
8528 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8529 		return false;
8530 
8531 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8532 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8533 		return false;
8534 
8535 	if (x86_page_table_writing_insn(ctxt))
8536 		return false;
8537 
8538 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8539 		return false;
8540 
8541 	vcpu->arch.last_retry_eip = ctxt->eip;
8542 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8543 
8544 	if (!vcpu->arch.mmu->root_role.direct)
8545 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8546 
8547 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8548 
8549 	return true;
8550 }
8551 
8552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8553 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8554 
8555 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8556 				unsigned long *db)
8557 {
8558 	u32 dr6 = 0;
8559 	int i;
8560 	u32 enable, rwlen;
8561 
8562 	enable = dr7;
8563 	rwlen = dr7 >> 16;
8564 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8565 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8566 			dr6 |= (1 << i);
8567 	return dr6;
8568 }
8569 
8570 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8571 {
8572 	struct kvm_run *kvm_run = vcpu->run;
8573 
8574 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8575 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8576 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8577 		kvm_run->debug.arch.exception = DB_VECTOR;
8578 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8579 		return 0;
8580 	}
8581 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8582 	return 1;
8583 }
8584 
8585 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8586 {
8587 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8588 	int r;
8589 
8590 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8591 	if (unlikely(!r))
8592 		return 0;
8593 
8594 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8595 
8596 	/*
8597 	 * rflags is the old, "raw" value of the flags.  The new value has
8598 	 * not been saved yet.
8599 	 *
8600 	 * This is correct even for TF set by the guest, because "the
8601 	 * processor will not generate this exception after the instruction
8602 	 * that sets the TF flag".
8603 	 */
8604 	if (unlikely(rflags & X86_EFLAGS_TF))
8605 		r = kvm_vcpu_do_singlestep(vcpu);
8606 	return r;
8607 }
8608 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8609 
8610 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8611 {
8612 	u32 shadow;
8613 
8614 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8615 		return true;
8616 
8617 	/*
8618 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8619 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8620 	 * to avoid the relatively expensive CPUID lookup.
8621 	 */
8622 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8623 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8624 	       guest_cpuid_is_intel(vcpu);
8625 }
8626 
8627 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8628 					   int emulation_type, int *r)
8629 {
8630 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8631 
8632 	/*
8633 	 * Do not check for code breakpoints if hardware has already done the
8634 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8635 	 * the instruction has passed all exception checks, and all intercepted
8636 	 * exceptions that trigger emulation have lower priority than code
8637 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8638 	 * means any code breakpoints have already been serviced.
8639 	 *
8640 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8641 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8642 	 * the instruction being emulated.  The intent of forced emulation is
8643 	 * to behave as if KVM intercepted the instruction without an exception
8644 	 * and without a prefix.
8645 	 */
8646 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8647 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8648 		return false;
8649 
8650 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8651 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8652 		struct kvm_run *kvm_run = vcpu->run;
8653 		unsigned long eip = kvm_get_linear_rip(vcpu);
8654 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8655 					   vcpu->arch.guest_debug_dr7,
8656 					   vcpu->arch.eff_db);
8657 
8658 		if (dr6 != 0) {
8659 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8660 			kvm_run->debug.arch.pc = eip;
8661 			kvm_run->debug.arch.exception = DB_VECTOR;
8662 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8663 			*r = 0;
8664 			return true;
8665 		}
8666 	}
8667 
8668 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8669 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8670 		unsigned long eip = kvm_get_linear_rip(vcpu);
8671 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8672 					   vcpu->arch.dr7,
8673 					   vcpu->arch.db);
8674 
8675 		if (dr6 != 0) {
8676 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8677 			*r = 1;
8678 			return true;
8679 		}
8680 	}
8681 
8682 	return false;
8683 }
8684 
8685 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8686 {
8687 	switch (ctxt->opcode_len) {
8688 	case 1:
8689 		switch (ctxt->b) {
8690 		case 0xe4:	/* IN */
8691 		case 0xe5:
8692 		case 0xec:
8693 		case 0xed:
8694 		case 0xe6:	/* OUT */
8695 		case 0xe7:
8696 		case 0xee:
8697 		case 0xef:
8698 		case 0x6c:	/* INS */
8699 		case 0x6d:
8700 		case 0x6e:	/* OUTS */
8701 		case 0x6f:
8702 			return true;
8703 		}
8704 		break;
8705 	case 2:
8706 		switch (ctxt->b) {
8707 		case 0x33:	/* RDPMC */
8708 			return true;
8709 		}
8710 		break;
8711 	}
8712 
8713 	return false;
8714 }
8715 
8716 /*
8717  * Decode an instruction for emulation.  The caller is responsible for handling
8718  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8719  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8720  * code breakpoints have higher priority and thus have already been done by
8721  * hardware.
8722  *
8723  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8724  *     response to a machine check.
8725  */
8726 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8727 				    void *insn, int insn_len)
8728 {
8729 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8730 	int r;
8731 
8732 	init_emulate_ctxt(vcpu);
8733 
8734 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8735 
8736 	trace_kvm_emulate_insn_start(vcpu);
8737 	++vcpu->stat.insn_emulation;
8738 
8739 	return r;
8740 }
8741 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8742 
8743 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8744 			    int emulation_type, void *insn, int insn_len)
8745 {
8746 	int r;
8747 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8748 	bool writeback = true;
8749 	bool write_fault_to_spt;
8750 
8751 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8752 		return 1;
8753 
8754 	vcpu->arch.l1tf_flush_l1d = true;
8755 
8756 	/*
8757 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8758 	 * never reused.
8759 	 */
8760 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8761 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8762 
8763 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8764 		kvm_clear_exception_queue(vcpu);
8765 
8766 		/*
8767 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8768 		 * are fault-like and are higher priority than any faults on
8769 		 * the code fetch itself.
8770 		 */
8771 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8772 			return r;
8773 
8774 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8775 						    insn, insn_len);
8776 		if (r != EMULATION_OK)  {
8777 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8778 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8779 				kvm_queue_exception(vcpu, UD_VECTOR);
8780 				return 1;
8781 			}
8782 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8783 						  write_fault_to_spt,
8784 						  emulation_type))
8785 				return 1;
8786 
8787 			if (ctxt->have_exception &&
8788 			    !(emulation_type & EMULTYPE_SKIP)) {
8789 				/*
8790 				 * #UD should result in just EMULATION_FAILED, and trap-like
8791 				 * exception should not be encountered during decode.
8792 				 */
8793 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8794 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8795 				inject_emulated_exception(vcpu);
8796 				return 1;
8797 			}
8798 			return handle_emulation_failure(vcpu, emulation_type);
8799 		}
8800 	}
8801 
8802 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8803 	    !is_vmware_backdoor_opcode(ctxt)) {
8804 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8805 		return 1;
8806 	}
8807 
8808 	/*
8809 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8810 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8811 	 * The caller is responsible for updating interruptibility state and
8812 	 * injecting single-step #DBs.
8813 	 */
8814 	if (emulation_type & EMULTYPE_SKIP) {
8815 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8816 			ctxt->eip = (u32)ctxt->_eip;
8817 		else
8818 			ctxt->eip = ctxt->_eip;
8819 
8820 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8821 			r = 1;
8822 			goto writeback;
8823 		}
8824 
8825 		kvm_rip_write(vcpu, ctxt->eip);
8826 		if (ctxt->eflags & X86_EFLAGS_RF)
8827 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8828 		return 1;
8829 	}
8830 
8831 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8832 		return 1;
8833 
8834 	/* this is needed for vmware backdoor interface to work since it
8835 	   changes registers values  during IO operation */
8836 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8837 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8838 		emulator_invalidate_register_cache(ctxt);
8839 	}
8840 
8841 restart:
8842 	if (emulation_type & EMULTYPE_PF) {
8843 		/* Save the faulting GPA (cr2) in the address field */
8844 		ctxt->exception.address = cr2_or_gpa;
8845 
8846 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8847 		if (vcpu->arch.mmu->root_role.direct) {
8848 			ctxt->gpa_available = true;
8849 			ctxt->gpa_val = cr2_or_gpa;
8850 		}
8851 	} else {
8852 		/* Sanitize the address out of an abundance of paranoia. */
8853 		ctxt->exception.address = 0;
8854 	}
8855 
8856 	r = x86_emulate_insn(ctxt);
8857 
8858 	if (r == EMULATION_INTERCEPTED)
8859 		return 1;
8860 
8861 	if (r == EMULATION_FAILED) {
8862 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8863 					emulation_type))
8864 			return 1;
8865 
8866 		return handle_emulation_failure(vcpu, emulation_type);
8867 	}
8868 
8869 	if (ctxt->have_exception) {
8870 		r = 1;
8871 		inject_emulated_exception(vcpu);
8872 	} else if (vcpu->arch.pio.count) {
8873 		if (!vcpu->arch.pio.in) {
8874 			/* FIXME: return into emulator if single-stepping.  */
8875 			vcpu->arch.pio.count = 0;
8876 		} else {
8877 			writeback = false;
8878 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8879 		}
8880 		r = 0;
8881 	} else if (vcpu->mmio_needed) {
8882 		++vcpu->stat.mmio_exits;
8883 
8884 		if (!vcpu->mmio_is_write)
8885 			writeback = false;
8886 		r = 0;
8887 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8888 	} else if (vcpu->arch.complete_userspace_io) {
8889 		writeback = false;
8890 		r = 0;
8891 	} else if (r == EMULATION_RESTART)
8892 		goto restart;
8893 	else
8894 		r = 1;
8895 
8896 writeback:
8897 	if (writeback) {
8898 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8899 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8900 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8901 
8902 		/*
8903 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8904 		 * only supports code breakpoints and general detect #DB, both
8905 		 * of which are fault-like.
8906 		 */
8907 		if (!ctxt->have_exception ||
8908 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8909 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8910 			if (ctxt->is_branch)
8911 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8912 			kvm_rip_write(vcpu, ctxt->eip);
8913 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8914 				r = kvm_vcpu_do_singlestep(vcpu);
8915 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8916 			__kvm_set_rflags(vcpu, ctxt->eflags);
8917 		}
8918 
8919 		/*
8920 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8921 		 * do nothing, and it will be requested again as soon as
8922 		 * the shadow expires.  But we still need to check here,
8923 		 * because POPF has no interrupt shadow.
8924 		 */
8925 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8926 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8927 	} else
8928 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8929 
8930 	return r;
8931 }
8932 
8933 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8934 {
8935 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8936 }
8937 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8938 
8939 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8940 					void *insn, int insn_len)
8941 {
8942 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8943 }
8944 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8945 
8946 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8947 {
8948 	vcpu->arch.pio.count = 0;
8949 	return 1;
8950 }
8951 
8952 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8953 {
8954 	vcpu->arch.pio.count = 0;
8955 
8956 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8957 		return 1;
8958 
8959 	return kvm_skip_emulated_instruction(vcpu);
8960 }
8961 
8962 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8963 			    unsigned short port)
8964 {
8965 	unsigned long val = kvm_rax_read(vcpu);
8966 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8967 
8968 	if (ret)
8969 		return ret;
8970 
8971 	/*
8972 	 * Workaround userspace that relies on old KVM behavior of %rip being
8973 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8974 	 */
8975 	if (port == 0x7e &&
8976 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8977 		vcpu->arch.complete_userspace_io =
8978 			complete_fast_pio_out_port_0x7e;
8979 		kvm_skip_emulated_instruction(vcpu);
8980 	} else {
8981 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8982 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8983 	}
8984 	return 0;
8985 }
8986 
8987 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8988 {
8989 	unsigned long val;
8990 
8991 	/* We should only ever be called with arch.pio.count equal to 1 */
8992 	BUG_ON(vcpu->arch.pio.count != 1);
8993 
8994 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8995 		vcpu->arch.pio.count = 0;
8996 		return 1;
8997 	}
8998 
8999 	/* For size less than 4 we merge, else we zero extend */
9000 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9001 
9002 	complete_emulator_pio_in(vcpu, &val);
9003 	kvm_rax_write(vcpu, val);
9004 
9005 	return kvm_skip_emulated_instruction(vcpu);
9006 }
9007 
9008 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9009 			   unsigned short port)
9010 {
9011 	unsigned long val;
9012 	int ret;
9013 
9014 	/* For size less than 4 we merge, else we zero extend */
9015 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9016 
9017 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9018 	if (ret) {
9019 		kvm_rax_write(vcpu, val);
9020 		return ret;
9021 	}
9022 
9023 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9024 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9025 
9026 	return 0;
9027 }
9028 
9029 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9030 {
9031 	int ret;
9032 
9033 	if (in)
9034 		ret = kvm_fast_pio_in(vcpu, size, port);
9035 	else
9036 		ret = kvm_fast_pio_out(vcpu, size, port);
9037 	return ret && kvm_skip_emulated_instruction(vcpu);
9038 }
9039 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9040 
9041 static int kvmclock_cpu_down_prep(unsigned int cpu)
9042 {
9043 	__this_cpu_write(cpu_tsc_khz, 0);
9044 	return 0;
9045 }
9046 
9047 static void tsc_khz_changed(void *data)
9048 {
9049 	struct cpufreq_freqs *freq = data;
9050 	unsigned long khz = 0;
9051 
9052 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9053 
9054 	if (data)
9055 		khz = freq->new;
9056 	else
9057 		khz = cpufreq_quick_get(raw_smp_processor_id());
9058 	if (!khz)
9059 		khz = tsc_khz;
9060 	__this_cpu_write(cpu_tsc_khz, khz);
9061 }
9062 
9063 #ifdef CONFIG_X86_64
9064 static void kvm_hyperv_tsc_notifier(void)
9065 {
9066 	struct kvm *kvm;
9067 	int cpu;
9068 
9069 	mutex_lock(&kvm_lock);
9070 	list_for_each_entry(kvm, &vm_list, vm_list)
9071 		kvm_make_mclock_inprogress_request(kvm);
9072 
9073 	/* no guest entries from this point */
9074 	hyperv_stop_tsc_emulation();
9075 
9076 	/* TSC frequency always matches when on Hyper-V */
9077 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9078 		for_each_present_cpu(cpu)
9079 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9080 	}
9081 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9082 
9083 	list_for_each_entry(kvm, &vm_list, vm_list) {
9084 		__kvm_start_pvclock_update(kvm);
9085 		pvclock_update_vm_gtod_copy(kvm);
9086 		kvm_end_pvclock_update(kvm);
9087 	}
9088 
9089 	mutex_unlock(&kvm_lock);
9090 }
9091 #endif
9092 
9093 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9094 {
9095 	struct kvm *kvm;
9096 	struct kvm_vcpu *vcpu;
9097 	int send_ipi = 0;
9098 	unsigned long i;
9099 
9100 	/*
9101 	 * We allow guests to temporarily run on slowing clocks,
9102 	 * provided we notify them after, or to run on accelerating
9103 	 * clocks, provided we notify them before.  Thus time never
9104 	 * goes backwards.
9105 	 *
9106 	 * However, we have a problem.  We can't atomically update
9107 	 * the frequency of a given CPU from this function; it is
9108 	 * merely a notifier, which can be called from any CPU.
9109 	 * Changing the TSC frequency at arbitrary points in time
9110 	 * requires a recomputation of local variables related to
9111 	 * the TSC for each VCPU.  We must flag these local variables
9112 	 * to be updated and be sure the update takes place with the
9113 	 * new frequency before any guests proceed.
9114 	 *
9115 	 * Unfortunately, the combination of hotplug CPU and frequency
9116 	 * change creates an intractable locking scenario; the order
9117 	 * of when these callouts happen is undefined with respect to
9118 	 * CPU hotplug, and they can race with each other.  As such,
9119 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9120 	 * undefined; you can actually have a CPU frequency change take
9121 	 * place in between the computation of X and the setting of the
9122 	 * variable.  To protect against this problem, all updates of
9123 	 * the per_cpu tsc_khz variable are done in an interrupt
9124 	 * protected IPI, and all callers wishing to update the value
9125 	 * must wait for a synchronous IPI to complete (which is trivial
9126 	 * if the caller is on the CPU already).  This establishes the
9127 	 * necessary total order on variable updates.
9128 	 *
9129 	 * Note that because a guest time update may take place
9130 	 * anytime after the setting of the VCPU's request bit, the
9131 	 * correct TSC value must be set before the request.  However,
9132 	 * to ensure the update actually makes it to any guest which
9133 	 * starts running in hardware virtualization between the set
9134 	 * and the acquisition of the spinlock, we must also ping the
9135 	 * CPU after setting the request bit.
9136 	 *
9137 	 */
9138 
9139 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9140 
9141 	mutex_lock(&kvm_lock);
9142 	list_for_each_entry(kvm, &vm_list, vm_list) {
9143 		kvm_for_each_vcpu(i, vcpu, kvm) {
9144 			if (vcpu->cpu != cpu)
9145 				continue;
9146 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9147 			if (vcpu->cpu != raw_smp_processor_id())
9148 				send_ipi = 1;
9149 		}
9150 	}
9151 	mutex_unlock(&kvm_lock);
9152 
9153 	if (freq->old < freq->new && send_ipi) {
9154 		/*
9155 		 * We upscale the frequency.  Must make the guest
9156 		 * doesn't see old kvmclock values while running with
9157 		 * the new frequency, otherwise we risk the guest sees
9158 		 * time go backwards.
9159 		 *
9160 		 * In case we update the frequency for another cpu
9161 		 * (which might be in guest context) send an interrupt
9162 		 * to kick the cpu out of guest context.  Next time
9163 		 * guest context is entered kvmclock will be updated,
9164 		 * so the guest will not see stale values.
9165 		 */
9166 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9167 	}
9168 }
9169 
9170 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9171 				     void *data)
9172 {
9173 	struct cpufreq_freqs *freq = data;
9174 	int cpu;
9175 
9176 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9177 		return 0;
9178 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9179 		return 0;
9180 
9181 	for_each_cpu(cpu, freq->policy->cpus)
9182 		__kvmclock_cpufreq_notifier(freq, cpu);
9183 
9184 	return 0;
9185 }
9186 
9187 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9188 	.notifier_call  = kvmclock_cpufreq_notifier
9189 };
9190 
9191 static int kvmclock_cpu_online(unsigned int cpu)
9192 {
9193 	tsc_khz_changed(NULL);
9194 	return 0;
9195 }
9196 
9197 static void kvm_timer_init(void)
9198 {
9199 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9200 		max_tsc_khz = tsc_khz;
9201 
9202 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9203 			struct cpufreq_policy *policy;
9204 			int cpu;
9205 
9206 			cpu = get_cpu();
9207 			policy = cpufreq_cpu_get(cpu);
9208 			if (policy) {
9209 				if (policy->cpuinfo.max_freq)
9210 					max_tsc_khz = policy->cpuinfo.max_freq;
9211 				cpufreq_cpu_put(policy);
9212 			}
9213 			put_cpu();
9214 		}
9215 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9216 					  CPUFREQ_TRANSITION_NOTIFIER);
9217 
9218 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9219 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9220 	}
9221 }
9222 
9223 #ifdef CONFIG_X86_64
9224 static void pvclock_gtod_update_fn(struct work_struct *work)
9225 {
9226 	struct kvm *kvm;
9227 	struct kvm_vcpu *vcpu;
9228 	unsigned long i;
9229 
9230 	mutex_lock(&kvm_lock);
9231 	list_for_each_entry(kvm, &vm_list, vm_list)
9232 		kvm_for_each_vcpu(i, vcpu, kvm)
9233 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9234 	atomic_set(&kvm_guest_has_master_clock, 0);
9235 	mutex_unlock(&kvm_lock);
9236 }
9237 
9238 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9239 
9240 /*
9241  * Indirection to move queue_work() out of the tk_core.seq write held
9242  * region to prevent possible deadlocks against time accessors which
9243  * are invoked with work related locks held.
9244  */
9245 static void pvclock_irq_work_fn(struct irq_work *w)
9246 {
9247 	queue_work(system_long_wq, &pvclock_gtod_work);
9248 }
9249 
9250 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9251 
9252 /*
9253  * Notification about pvclock gtod data update.
9254  */
9255 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9256 			       void *priv)
9257 {
9258 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9259 	struct timekeeper *tk = priv;
9260 
9261 	update_pvclock_gtod(tk);
9262 
9263 	/*
9264 	 * Disable master clock if host does not trust, or does not use,
9265 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9266 	 * this is invoked with tk_core.seq write held.
9267 	 */
9268 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9269 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9270 		irq_work_queue(&pvclock_irq_work);
9271 	return 0;
9272 }
9273 
9274 static struct notifier_block pvclock_gtod_notifier = {
9275 	.notifier_call = pvclock_gtod_notify,
9276 };
9277 #endif
9278 
9279 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9280 {
9281 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9282 
9283 #define __KVM_X86_OP(func) \
9284 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9285 #define KVM_X86_OP(func) \
9286 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9287 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9288 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9289 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9290 					   (void *)__static_call_return0);
9291 #include <asm/kvm-x86-ops.h>
9292 #undef __KVM_X86_OP
9293 
9294 	kvm_pmu_ops_update(ops->pmu_ops);
9295 }
9296 
9297 static int kvm_x86_check_processor_compatibility(void)
9298 {
9299 	int cpu = smp_processor_id();
9300 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9301 
9302 	/*
9303 	 * Compatibility checks are done when loading KVM and when enabling
9304 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9305 	 * compatible, i.e. KVM should never perform a compatibility check on
9306 	 * an offline CPU.
9307 	 */
9308 	WARN_ON(!cpu_online(cpu));
9309 
9310 	if (__cr4_reserved_bits(cpu_has, c) !=
9311 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9312 		return -EIO;
9313 
9314 	return static_call(kvm_x86_check_processor_compatibility)();
9315 }
9316 
9317 static void kvm_x86_check_cpu_compat(void *ret)
9318 {
9319 	*(int *)ret = kvm_x86_check_processor_compatibility();
9320 }
9321 
9322 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9323 {
9324 	u64 host_pat;
9325 	int r, cpu;
9326 
9327 	if (kvm_x86_ops.hardware_enable) {
9328 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9329 		return -EEXIST;
9330 	}
9331 
9332 	/*
9333 	 * KVM explicitly assumes that the guest has an FPU and
9334 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9335 	 * vCPU's FPU state as a fxregs_state struct.
9336 	 */
9337 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9338 		pr_err("inadequate fpu\n");
9339 		return -EOPNOTSUPP;
9340 	}
9341 
9342 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9343 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9344 		return -EOPNOTSUPP;
9345 	}
9346 
9347 	/*
9348 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9349 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9350 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9351 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9352 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9353 	 */
9354 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9355 	    (host_pat & GENMASK(2, 0)) != 6) {
9356 		pr_err("host PAT[0] is not WB\n");
9357 		return -EIO;
9358 	}
9359 
9360 	x86_emulator_cache = kvm_alloc_emulator_cache();
9361 	if (!x86_emulator_cache) {
9362 		pr_err("failed to allocate cache for x86 emulator\n");
9363 		return -ENOMEM;
9364 	}
9365 
9366 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9367 	if (!user_return_msrs) {
9368 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9369 		r = -ENOMEM;
9370 		goto out_free_x86_emulator_cache;
9371 	}
9372 	kvm_nr_uret_msrs = 0;
9373 
9374 	r = kvm_mmu_vendor_module_init();
9375 	if (r)
9376 		goto out_free_percpu;
9377 
9378 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9379 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9380 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9381 	}
9382 
9383 	rdmsrl_safe(MSR_EFER, &host_efer);
9384 
9385 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9386 		rdmsrl(MSR_IA32_XSS, host_xss);
9387 
9388 	kvm_init_pmu_capability();
9389 
9390 	r = ops->hardware_setup();
9391 	if (r != 0)
9392 		goto out_mmu_exit;
9393 
9394 	kvm_ops_update(ops);
9395 
9396 	for_each_online_cpu(cpu) {
9397 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9398 		if (r < 0)
9399 			goto out_unwind_ops;
9400 	}
9401 
9402 	/*
9403 	 * Point of no return!  DO NOT add error paths below this point unless
9404 	 * absolutely necessary, as most operations from this point forward
9405 	 * require unwinding.
9406 	 */
9407 	kvm_timer_init();
9408 
9409 	if (pi_inject_timer == -1)
9410 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9411 #ifdef CONFIG_X86_64
9412 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9413 
9414 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9415 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9416 #endif
9417 
9418 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9419 
9420 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9421 		kvm_caps.supported_xss = 0;
9422 
9423 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9424 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9425 #undef __kvm_cpu_cap_has
9426 
9427 	if (kvm_caps.has_tsc_control) {
9428 		/*
9429 		 * Make sure the user can only configure tsc_khz values that
9430 		 * fit into a signed integer.
9431 		 * A min value is not calculated because it will always
9432 		 * be 1 on all machines.
9433 		 */
9434 		u64 max = min(0x7fffffffULL,
9435 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9436 		kvm_caps.max_guest_tsc_khz = max;
9437 	}
9438 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9439 	kvm_init_msr_list();
9440 	return 0;
9441 
9442 out_unwind_ops:
9443 	kvm_x86_ops.hardware_enable = NULL;
9444 	static_call(kvm_x86_hardware_unsetup)();
9445 out_mmu_exit:
9446 	kvm_mmu_vendor_module_exit();
9447 out_free_percpu:
9448 	free_percpu(user_return_msrs);
9449 out_free_x86_emulator_cache:
9450 	kmem_cache_destroy(x86_emulator_cache);
9451 	return r;
9452 }
9453 
9454 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9455 {
9456 	int r;
9457 
9458 	mutex_lock(&vendor_module_lock);
9459 	r = __kvm_x86_vendor_init(ops);
9460 	mutex_unlock(&vendor_module_lock);
9461 
9462 	return r;
9463 }
9464 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9465 
9466 void kvm_x86_vendor_exit(void)
9467 {
9468 	kvm_unregister_perf_callbacks();
9469 
9470 #ifdef CONFIG_X86_64
9471 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9472 		clear_hv_tscchange_cb();
9473 #endif
9474 	kvm_lapic_exit();
9475 
9476 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9477 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9478 					    CPUFREQ_TRANSITION_NOTIFIER);
9479 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9480 	}
9481 #ifdef CONFIG_X86_64
9482 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9483 	irq_work_sync(&pvclock_irq_work);
9484 	cancel_work_sync(&pvclock_gtod_work);
9485 #endif
9486 	static_call(kvm_x86_hardware_unsetup)();
9487 	kvm_mmu_vendor_module_exit();
9488 	free_percpu(user_return_msrs);
9489 	kmem_cache_destroy(x86_emulator_cache);
9490 #ifdef CONFIG_KVM_XEN
9491 	static_key_deferred_flush(&kvm_xen_enabled);
9492 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9493 #endif
9494 	mutex_lock(&vendor_module_lock);
9495 	kvm_x86_ops.hardware_enable = NULL;
9496 	mutex_unlock(&vendor_module_lock);
9497 }
9498 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9499 
9500 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9501 {
9502 	/*
9503 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9504 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9505 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9506 	 * managed by userspace, in which case userspace is responsible for
9507 	 * handling wake events.
9508 	 */
9509 	++vcpu->stat.halt_exits;
9510 	if (lapic_in_kernel(vcpu)) {
9511 		vcpu->arch.mp_state = state;
9512 		return 1;
9513 	} else {
9514 		vcpu->run->exit_reason = reason;
9515 		return 0;
9516 	}
9517 }
9518 
9519 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9520 {
9521 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9522 }
9523 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9524 
9525 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9526 {
9527 	int ret = kvm_skip_emulated_instruction(vcpu);
9528 	/*
9529 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9530 	 * KVM_EXIT_DEBUG here.
9531 	 */
9532 	return kvm_emulate_halt_noskip(vcpu) && ret;
9533 }
9534 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9535 
9536 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9537 {
9538 	int ret = kvm_skip_emulated_instruction(vcpu);
9539 
9540 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9541 					KVM_EXIT_AP_RESET_HOLD) && ret;
9542 }
9543 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9544 
9545 #ifdef CONFIG_X86_64
9546 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9547 			        unsigned long clock_type)
9548 {
9549 	struct kvm_clock_pairing clock_pairing;
9550 	struct timespec64 ts;
9551 	u64 cycle;
9552 	int ret;
9553 
9554 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9555 		return -KVM_EOPNOTSUPP;
9556 
9557 	/*
9558 	 * When tsc is in permanent catchup mode guests won't be able to use
9559 	 * pvclock_read_retry loop to get consistent view of pvclock
9560 	 */
9561 	if (vcpu->arch.tsc_always_catchup)
9562 		return -KVM_EOPNOTSUPP;
9563 
9564 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9565 		return -KVM_EOPNOTSUPP;
9566 
9567 	clock_pairing.sec = ts.tv_sec;
9568 	clock_pairing.nsec = ts.tv_nsec;
9569 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9570 	clock_pairing.flags = 0;
9571 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9572 
9573 	ret = 0;
9574 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9575 			    sizeof(struct kvm_clock_pairing)))
9576 		ret = -KVM_EFAULT;
9577 
9578 	return ret;
9579 }
9580 #endif
9581 
9582 /*
9583  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9584  *
9585  * @apicid - apicid of vcpu to be kicked.
9586  */
9587 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9588 {
9589 	/*
9590 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9591 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9592 	 */
9593 	struct kvm_lapic_irq lapic_irq = {
9594 		.delivery_mode = APIC_DM_REMRD,
9595 		.dest_mode = APIC_DEST_PHYSICAL,
9596 		.shorthand = APIC_DEST_NOSHORT,
9597 		.dest_id = apicid,
9598 	};
9599 
9600 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9601 }
9602 
9603 bool kvm_apicv_activated(struct kvm *kvm)
9604 {
9605 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9606 }
9607 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9608 
9609 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9610 {
9611 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9612 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9613 
9614 	return (vm_reasons | vcpu_reasons) == 0;
9615 }
9616 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9617 
9618 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9619 				       enum kvm_apicv_inhibit reason, bool set)
9620 {
9621 	if (set)
9622 		__set_bit(reason, inhibits);
9623 	else
9624 		__clear_bit(reason, inhibits);
9625 
9626 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9627 }
9628 
9629 static void kvm_apicv_init(struct kvm *kvm)
9630 {
9631 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9632 
9633 	init_rwsem(&kvm->arch.apicv_update_lock);
9634 
9635 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9636 
9637 	if (!enable_apicv)
9638 		set_or_clear_apicv_inhibit(inhibits,
9639 					   APICV_INHIBIT_REASON_DISABLE, true);
9640 }
9641 
9642 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9643 {
9644 	struct kvm_vcpu *target = NULL;
9645 	struct kvm_apic_map *map;
9646 
9647 	vcpu->stat.directed_yield_attempted++;
9648 
9649 	if (single_task_running())
9650 		goto no_yield;
9651 
9652 	rcu_read_lock();
9653 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9654 
9655 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9656 		target = map->phys_map[dest_id]->vcpu;
9657 
9658 	rcu_read_unlock();
9659 
9660 	if (!target || !READ_ONCE(target->ready))
9661 		goto no_yield;
9662 
9663 	/* Ignore requests to yield to self */
9664 	if (vcpu == target)
9665 		goto no_yield;
9666 
9667 	if (kvm_vcpu_yield_to(target) <= 0)
9668 		goto no_yield;
9669 
9670 	vcpu->stat.directed_yield_successful++;
9671 
9672 no_yield:
9673 	return;
9674 }
9675 
9676 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9677 {
9678 	u64 ret = vcpu->run->hypercall.ret;
9679 
9680 	if (!is_64_bit_mode(vcpu))
9681 		ret = (u32)ret;
9682 	kvm_rax_write(vcpu, ret);
9683 	++vcpu->stat.hypercalls;
9684 	return kvm_skip_emulated_instruction(vcpu);
9685 }
9686 
9687 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9688 {
9689 	unsigned long nr, a0, a1, a2, a3, ret;
9690 	int op_64_bit;
9691 
9692 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9693 		return kvm_xen_hypercall(vcpu);
9694 
9695 	if (kvm_hv_hypercall_enabled(vcpu))
9696 		return kvm_hv_hypercall(vcpu);
9697 
9698 	nr = kvm_rax_read(vcpu);
9699 	a0 = kvm_rbx_read(vcpu);
9700 	a1 = kvm_rcx_read(vcpu);
9701 	a2 = kvm_rdx_read(vcpu);
9702 	a3 = kvm_rsi_read(vcpu);
9703 
9704 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9705 
9706 	op_64_bit = is_64_bit_hypercall(vcpu);
9707 	if (!op_64_bit) {
9708 		nr &= 0xFFFFFFFF;
9709 		a0 &= 0xFFFFFFFF;
9710 		a1 &= 0xFFFFFFFF;
9711 		a2 &= 0xFFFFFFFF;
9712 		a3 &= 0xFFFFFFFF;
9713 	}
9714 
9715 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9716 		ret = -KVM_EPERM;
9717 		goto out;
9718 	}
9719 
9720 	ret = -KVM_ENOSYS;
9721 
9722 	switch (nr) {
9723 	case KVM_HC_VAPIC_POLL_IRQ:
9724 		ret = 0;
9725 		break;
9726 	case KVM_HC_KICK_CPU:
9727 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9728 			break;
9729 
9730 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9731 		kvm_sched_yield(vcpu, a1);
9732 		ret = 0;
9733 		break;
9734 #ifdef CONFIG_X86_64
9735 	case KVM_HC_CLOCK_PAIRING:
9736 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9737 		break;
9738 #endif
9739 	case KVM_HC_SEND_IPI:
9740 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9741 			break;
9742 
9743 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9744 		break;
9745 	case KVM_HC_SCHED_YIELD:
9746 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9747 			break;
9748 
9749 		kvm_sched_yield(vcpu, a0);
9750 		ret = 0;
9751 		break;
9752 	case KVM_HC_MAP_GPA_RANGE: {
9753 		u64 gpa = a0, npages = a1, attrs = a2;
9754 
9755 		ret = -KVM_ENOSYS;
9756 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9757 			break;
9758 
9759 		if (!PAGE_ALIGNED(gpa) || !npages ||
9760 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9761 			ret = -KVM_EINVAL;
9762 			break;
9763 		}
9764 
9765 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9766 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9767 		vcpu->run->hypercall.args[0]  = gpa;
9768 		vcpu->run->hypercall.args[1]  = npages;
9769 		vcpu->run->hypercall.args[2]  = attrs;
9770 		vcpu->run->hypercall.longmode = op_64_bit;
9771 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9772 		return 0;
9773 	}
9774 	default:
9775 		ret = -KVM_ENOSYS;
9776 		break;
9777 	}
9778 out:
9779 	if (!op_64_bit)
9780 		ret = (u32)ret;
9781 	kvm_rax_write(vcpu, ret);
9782 
9783 	++vcpu->stat.hypercalls;
9784 	return kvm_skip_emulated_instruction(vcpu);
9785 }
9786 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9787 
9788 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9789 {
9790 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9791 	char instruction[3];
9792 	unsigned long rip = kvm_rip_read(vcpu);
9793 
9794 	/*
9795 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9796 	 * the pieces.
9797 	 */
9798 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9799 		ctxt->exception.error_code_valid = false;
9800 		ctxt->exception.vector = UD_VECTOR;
9801 		ctxt->have_exception = true;
9802 		return X86EMUL_PROPAGATE_FAULT;
9803 	}
9804 
9805 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9806 
9807 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9808 		&ctxt->exception);
9809 }
9810 
9811 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9812 {
9813 	return vcpu->run->request_interrupt_window &&
9814 		likely(!pic_in_kernel(vcpu->kvm));
9815 }
9816 
9817 /* Called within kvm->srcu read side.  */
9818 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9819 {
9820 	struct kvm_run *kvm_run = vcpu->run;
9821 
9822 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9823 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9824 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9825 
9826 	kvm_run->ready_for_interrupt_injection =
9827 		pic_in_kernel(vcpu->kvm) ||
9828 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9829 
9830 	if (is_smm(vcpu))
9831 		kvm_run->flags |= KVM_RUN_X86_SMM;
9832 }
9833 
9834 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9835 {
9836 	int max_irr, tpr;
9837 
9838 	if (!kvm_x86_ops.update_cr8_intercept)
9839 		return;
9840 
9841 	if (!lapic_in_kernel(vcpu))
9842 		return;
9843 
9844 	if (vcpu->arch.apic->apicv_active)
9845 		return;
9846 
9847 	if (!vcpu->arch.apic->vapic_addr)
9848 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9849 	else
9850 		max_irr = -1;
9851 
9852 	if (max_irr != -1)
9853 		max_irr >>= 4;
9854 
9855 	tpr = kvm_lapic_get_cr8(vcpu);
9856 
9857 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9858 }
9859 
9860 
9861 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9862 {
9863 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9864 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9865 		return 1;
9866 	}
9867 
9868 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9869 }
9870 
9871 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9872 {
9873 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9874 				vcpu->arch.exception.has_error_code,
9875 				vcpu->arch.exception.error_code,
9876 				vcpu->arch.exception.injected);
9877 
9878 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9879 		vcpu->arch.exception.error_code = false;
9880 	static_call(kvm_x86_inject_exception)(vcpu);
9881 }
9882 
9883 /*
9884  * Check for any event (interrupt or exception) that is ready to be injected,
9885  * and if there is at least one event, inject the event with the highest
9886  * priority.  This handles both "pending" events, i.e. events that have never
9887  * been injected into the guest, and "injected" events, i.e. events that were
9888  * injected as part of a previous VM-Enter, but weren't successfully delivered
9889  * and need to be re-injected.
9890  *
9891  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9892  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9893  * be able to inject exceptions in the "middle" of an instruction, and so must
9894  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9895  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9896  * boundaries is necessary and correct.
9897  *
9898  * For simplicity, KVM uses a single path to inject all events (except events
9899  * that are injected directly from L1 to L2) and doesn't explicitly track
9900  * instruction boundaries for asynchronous events.  However, because VM-Exits
9901  * that can occur during instruction execution typically result in KVM skipping
9902  * the instruction or injecting an exception, e.g. instruction and exception
9903  * intercepts, and because pending exceptions have higher priority than pending
9904  * interrupts, KVM still honors instruction boundaries in most scenarios.
9905  *
9906  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9907  * the instruction or inject an exception, then KVM can incorrecty inject a new
9908  * asynchrounous event if the event became pending after the CPU fetched the
9909  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9910  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9911  * injected on the restarted instruction instead of being deferred until the
9912  * instruction completes.
9913  *
9914  * In practice, this virtualization hole is unlikely to be observed by the
9915  * guest, and even less likely to cause functional problems.  To detect the
9916  * hole, the guest would have to trigger an event on a side effect of an early
9917  * phase of instruction execution, e.g. on the instruction fetch from memory.
9918  * And for it to be a functional problem, the guest would need to depend on the
9919  * ordering between that side effect, the instruction completing, _and_ the
9920  * delivery of the asynchronous event.
9921  */
9922 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9923 				       bool *req_immediate_exit)
9924 {
9925 	bool can_inject;
9926 	int r;
9927 
9928 	/*
9929 	 * Process nested events first, as nested VM-Exit supercedes event
9930 	 * re-injection.  If there's an event queued for re-injection, it will
9931 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9932 	 */
9933 	if (is_guest_mode(vcpu))
9934 		r = kvm_check_nested_events(vcpu);
9935 	else
9936 		r = 0;
9937 
9938 	/*
9939 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9940 	 * to/from L2 is needed, as any event that has already been injected
9941 	 * into L2 needs to complete its lifecycle before injecting a new event.
9942 	 *
9943 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9944 	 * This collision arises if an exception occurred while vectoring the
9945 	 * injected event, KVM intercepted said exception, and KVM ultimately
9946 	 * determined the fault belongs to the guest and queues the exception
9947 	 * for injection back into the guest.
9948 	 *
9949 	 * "Injected" interrupts can also collide with pending exceptions if
9950 	 * userspace ignores the "ready for injection" flag and blindly queues
9951 	 * an interrupt.  In that case, prioritizing the exception is correct,
9952 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9953 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9954 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9955 	 * priority, they're only generated (pended) during instruction
9956 	 * execution, and interrupts are recognized at instruction boundaries.
9957 	 * Thus a pending fault-like exception means the fault occurred on the
9958 	 * *previous* instruction and must be serviced prior to recognizing any
9959 	 * new events in order to fully complete the previous instruction.
9960 	 */
9961 	if (vcpu->arch.exception.injected)
9962 		kvm_inject_exception(vcpu);
9963 	else if (kvm_is_exception_pending(vcpu))
9964 		; /* see above */
9965 	else if (vcpu->arch.nmi_injected)
9966 		static_call(kvm_x86_inject_nmi)(vcpu);
9967 	else if (vcpu->arch.interrupt.injected)
9968 		static_call(kvm_x86_inject_irq)(vcpu, true);
9969 
9970 	/*
9971 	 * Exceptions that morph to VM-Exits are handled above, and pending
9972 	 * exceptions on top of injected exceptions that do not VM-Exit should
9973 	 * either morph to #DF or, sadly, override the injected exception.
9974 	 */
9975 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9976 		     vcpu->arch.exception.pending);
9977 
9978 	/*
9979 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9980 	 * nested VM-Enter or event re-injection so that a different pending
9981 	 * event can be serviced (or if KVM needs to exit to userspace).
9982 	 *
9983 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9984 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9985 	 * there may now be events that can be injected into L1.
9986 	 */
9987 	if (r < 0)
9988 		goto out;
9989 
9990 	/*
9991 	 * A pending exception VM-Exit should either result in nested VM-Exit
9992 	 * or force an immediate re-entry and exit to/from L2, and exception
9993 	 * VM-Exits cannot be injected (flag should _never_ be set).
9994 	 */
9995 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9996 		     vcpu->arch.exception_vmexit.pending);
9997 
9998 	/*
9999 	 * New events, other than exceptions, cannot be injected if KVM needs
10000 	 * to re-inject a previous event.  See above comments on re-injecting
10001 	 * for why pending exceptions get priority.
10002 	 */
10003 	can_inject = !kvm_event_needs_reinjection(vcpu);
10004 
10005 	if (vcpu->arch.exception.pending) {
10006 		/*
10007 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10008 		 * value pushed on the stack.  Trap-like exception and all #DBs
10009 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10010 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10011 		 *
10012 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10013 		 * describe the behavior of General Detect #DBs, which are
10014 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10015 		 */
10016 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10017 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10018 					     X86_EFLAGS_RF);
10019 
10020 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10021 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10022 			if (vcpu->arch.dr7 & DR7_GD) {
10023 				vcpu->arch.dr7 &= ~DR7_GD;
10024 				kvm_update_dr7(vcpu);
10025 			}
10026 		}
10027 
10028 		kvm_inject_exception(vcpu);
10029 
10030 		vcpu->arch.exception.pending = false;
10031 		vcpu->arch.exception.injected = true;
10032 
10033 		can_inject = false;
10034 	}
10035 
10036 	/* Don't inject interrupts if the user asked to avoid doing so */
10037 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10038 		return 0;
10039 
10040 	/*
10041 	 * Finally, inject interrupt events.  If an event cannot be injected
10042 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10043 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10044 	 * and can architecturally be injected, but we cannot do it right now:
10045 	 * an interrupt could have arrived just now and we have to inject it
10046 	 * as a vmexit, or there could already an event in the queue, which is
10047 	 * indicated by can_inject.  In that case we request an immediate exit
10048 	 * in order to make progress and get back here for another iteration.
10049 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10050 	 */
10051 #ifdef CONFIG_KVM_SMM
10052 	if (vcpu->arch.smi_pending) {
10053 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10054 		if (r < 0)
10055 			goto out;
10056 		if (r) {
10057 			vcpu->arch.smi_pending = false;
10058 			++vcpu->arch.smi_count;
10059 			enter_smm(vcpu);
10060 			can_inject = false;
10061 		} else
10062 			static_call(kvm_x86_enable_smi_window)(vcpu);
10063 	}
10064 #endif
10065 
10066 	if (vcpu->arch.nmi_pending) {
10067 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10068 		if (r < 0)
10069 			goto out;
10070 		if (r) {
10071 			--vcpu->arch.nmi_pending;
10072 			vcpu->arch.nmi_injected = true;
10073 			static_call(kvm_x86_inject_nmi)(vcpu);
10074 			can_inject = false;
10075 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10076 		}
10077 		if (vcpu->arch.nmi_pending)
10078 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10079 	}
10080 
10081 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10082 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10083 		if (r < 0)
10084 			goto out;
10085 		if (r) {
10086 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10087 			static_call(kvm_x86_inject_irq)(vcpu, false);
10088 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10089 		}
10090 		if (kvm_cpu_has_injectable_intr(vcpu))
10091 			static_call(kvm_x86_enable_irq_window)(vcpu);
10092 	}
10093 
10094 	if (is_guest_mode(vcpu) &&
10095 	    kvm_x86_ops.nested_ops->has_events &&
10096 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10097 		*req_immediate_exit = true;
10098 
10099 	/*
10100 	 * KVM must never queue a new exception while injecting an event; KVM
10101 	 * is done emulating and should only propagate the to-be-injected event
10102 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10103 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10104 	 * exception and start the cycle all over.
10105 	 *
10106 	 * Exempt triple faults as they have special handling and won't put the
10107 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10108 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10109 	 * Mode events (see kvm_inject_realmode_interrupt()).
10110 	 */
10111 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10112 		     vcpu->arch.exception_vmexit.pending);
10113 	return 0;
10114 
10115 out:
10116 	if (r == -EBUSY) {
10117 		*req_immediate_exit = true;
10118 		r = 0;
10119 	}
10120 	return r;
10121 }
10122 
10123 static void process_nmi(struct kvm_vcpu *vcpu)
10124 {
10125 	unsigned limit = 2;
10126 
10127 	/*
10128 	 * x86 is limited to one NMI running, and one NMI pending after it.
10129 	 * If an NMI is already in progress, limit further NMIs to just one.
10130 	 * Otherwise, allow two (and we'll inject the first one immediately).
10131 	 */
10132 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10133 		limit = 1;
10134 
10135 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10136 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10137 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10138 }
10139 
10140 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10141 				       unsigned long *vcpu_bitmap)
10142 {
10143 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10144 }
10145 
10146 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10147 {
10148 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10149 }
10150 
10151 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10152 {
10153 	struct kvm_lapic *apic = vcpu->arch.apic;
10154 	bool activate;
10155 
10156 	if (!lapic_in_kernel(vcpu))
10157 		return;
10158 
10159 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10160 	preempt_disable();
10161 
10162 	/* Do not activate APICV when APIC is disabled */
10163 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10164 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10165 
10166 	if (apic->apicv_active == activate)
10167 		goto out;
10168 
10169 	apic->apicv_active = activate;
10170 	kvm_apic_update_apicv(vcpu);
10171 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10172 
10173 	/*
10174 	 * When APICv gets disabled, we may still have injected interrupts
10175 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10176 	 * still active when the interrupt got accepted. Make sure
10177 	 * kvm_check_and_inject_events() is called to check for that.
10178 	 */
10179 	if (!apic->apicv_active)
10180 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10181 
10182 out:
10183 	preempt_enable();
10184 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10185 }
10186 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10187 
10188 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10189 {
10190 	if (!lapic_in_kernel(vcpu))
10191 		return;
10192 
10193 	/*
10194 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10195 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10196 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10197 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10198 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10199 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10200 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10201 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10202 	 * access page is sticky.
10203 	 */
10204 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10205 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10206 		kvm_inhibit_apic_access_page(vcpu);
10207 
10208 	__kvm_vcpu_update_apicv(vcpu);
10209 }
10210 
10211 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10212 				      enum kvm_apicv_inhibit reason, bool set)
10213 {
10214 	unsigned long old, new;
10215 
10216 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10217 
10218 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10219 		return;
10220 
10221 	old = new = kvm->arch.apicv_inhibit_reasons;
10222 
10223 	set_or_clear_apicv_inhibit(&new, reason, set);
10224 
10225 	if (!!old != !!new) {
10226 		/*
10227 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10228 		 * false positives in the sanity check WARN in svm_vcpu_run().
10229 		 * This task will wait for all vCPUs to ack the kick IRQ before
10230 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10231 		 * block on acquiring apicv_update_lock so that vCPUs can't
10232 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10233 		 *
10234 		 * Note, holding apicv_update_lock and taking it in the read
10235 		 * side (handling the request) also prevents other vCPUs from
10236 		 * servicing the request with a stale apicv_inhibit_reasons.
10237 		 */
10238 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10239 		kvm->arch.apicv_inhibit_reasons = new;
10240 		if (new) {
10241 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10242 			int idx = srcu_read_lock(&kvm->srcu);
10243 
10244 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10245 			srcu_read_unlock(&kvm->srcu, idx);
10246 		}
10247 	} else {
10248 		kvm->arch.apicv_inhibit_reasons = new;
10249 	}
10250 }
10251 
10252 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10253 				    enum kvm_apicv_inhibit reason, bool set)
10254 {
10255 	if (!enable_apicv)
10256 		return;
10257 
10258 	down_write(&kvm->arch.apicv_update_lock);
10259 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10260 	up_write(&kvm->arch.apicv_update_lock);
10261 }
10262 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10263 
10264 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10265 {
10266 	if (!kvm_apic_present(vcpu))
10267 		return;
10268 
10269 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10270 
10271 	if (irqchip_split(vcpu->kvm))
10272 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10273 	else {
10274 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10275 		if (ioapic_in_kernel(vcpu->kvm))
10276 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10277 	}
10278 
10279 	if (is_guest_mode(vcpu))
10280 		vcpu->arch.load_eoi_exitmap_pending = true;
10281 	else
10282 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10283 }
10284 
10285 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10286 {
10287 	u64 eoi_exit_bitmap[4];
10288 
10289 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10290 		return;
10291 
10292 	if (to_hv_vcpu(vcpu)) {
10293 		bitmap_or((ulong *)eoi_exit_bitmap,
10294 			  vcpu->arch.ioapic_handled_vectors,
10295 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10296 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10297 		return;
10298 	}
10299 
10300 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10301 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10302 }
10303 
10304 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10305 					    unsigned long start, unsigned long end)
10306 {
10307 	unsigned long apic_address;
10308 
10309 	/*
10310 	 * The physical address of apic access page is stored in the VMCS.
10311 	 * Update it when it becomes invalid.
10312 	 */
10313 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10314 	if (start <= apic_address && apic_address < end)
10315 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10316 }
10317 
10318 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10319 {
10320 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10321 }
10322 
10323 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10324 {
10325 	if (!lapic_in_kernel(vcpu))
10326 		return;
10327 
10328 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10329 }
10330 
10331 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10332 {
10333 	smp_send_reschedule(vcpu->cpu);
10334 }
10335 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10336 
10337 /*
10338  * Called within kvm->srcu read side.
10339  * Returns 1 to let vcpu_run() continue the guest execution loop without
10340  * exiting to the userspace.  Otherwise, the value will be returned to the
10341  * userspace.
10342  */
10343 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10344 {
10345 	int r;
10346 	bool req_int_win =
10347 		dm_request_for_irq_injection(vcpu) &&
10348 		kvm_cpu_accept_dm_intr(vcpu);
10349 	fastpath_t exit_fastpath;
10350 
10351 	bool req_immediate_exit = false;
10352 
10353 	if (kvm_request_pending(vcpu)) {
10354 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10355 			r = -EIO;
10356 			goto out;
10357 		}
10358 
10359 		if (kvm_dirty_ring_check_request(vcpu)) {
10360 			r = 0;
10361 			goto out;
10362 		}
10363 
10364 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10365 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10366 				r = 0;
10367 				goto out;
10368 			}
10369 		}
10370 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10371 			kvm_mmu_free_obsolete_roots(vcpu);
10372 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10373 			__kvm_migrate_timers(vcpu);
10374 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10375 			kvm_update_masterclock(vcpu->kvm);
10376 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10377 			kvm_gen_kvmclock_update(vcpu);
10378 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10379 			r = kvm_guest_time_update(vcpu);
10380 			if (unlikely(r))
10381 				goto out;
10382 		}
10383 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10384 			kvm_mmu_sync_roots(vcpu);
10385 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10386 			kvm_mmu_load_pgd(vcpu);
10387 
10388 		/*
10389 		 * Note, the order matters here, as flushing "all" TLB entries
10390 		 * also flushes the "current" TLB entries, i.e. servicing the
10391 		 * flush "all" will clear any request to flush "current".
10392 		 */
10393 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10394 			kvm_vcpu_flush_tlb_all(vcpu);
10395 
10396 		kvm_service_local_tlb_flush_requests(vcpu);
10397 
10398 		/*
10399 		 * Fall back to a "full" guest flush if Hyper-V's precise
10400 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10401 		 * the flushes are considered "remote" and not "local" because
10402 		 * the requests can be initiated from other vCPUs.
10403 		 */
10404 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10405 		    kvm_hv_vcpu_flush_tlb(vcpu))
10406 			kvm_vcpu_flush_tlb_guest(vcpu);
10407 
10408 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10409 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10410 			r = 0;
10411 			goto out;
10412 		}
10413 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10414 			if (is_guest_mode(vcpu))
10415 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10416 
10417 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10418 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10419 				vcpu->mmio_needed = 0;
10420 				r = 0;
10421 				goto out;
10422 			}
10423 		}
10424 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10425 			/* Page is swapped out. Do synthetic halt */
10426 			vcpu->arch.apf.halted = true;
10427 			r = 1;
10428 			goto out;
10429 		}
10430 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10431 			record_steal_time(vcpu);
10432 #ifdef CONFIG_KVM_SMM
10433 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10434 			process_smi(vcpu);
10435 #endif
10436 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10437 			process_nmi(vcpu);
10438 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10439 			kvm_pmu_handle_event(vcpu);
10440 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10441 			kvm_pmu_deliver_pmi(vcpu);
10442 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10443 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10444 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10445 				     vcpu->arch.ioapic_handled_vectors)) {
10446 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10447 				vcpu->run->eoi.vector =
10448 						vcpu->arch.pending_ioapic_eoi;
10449 				r = 0;
10450 				goto out;
10451 			}
10452 		}
10453 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10454 			vcpu_scan_ioapic(vcpu);
10455 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10456 			vcpu_load_eoi_exitmap(vcpu);
10457 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10458 			kvm_vcpu_reload_apic_access_page(vcpu);
10459 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10460 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10461 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10462 			vcpu->run->system_event.ndata = 0;
10463 			r = 0;
10464 			goto out;
10465 		}
10466 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10467 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10468 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10469 			vcpu->run->system_event.ndata = 0;
10470 			r = 0;
10471 			goto out;
10472 		}
10473 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10474 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10475 
10476 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10477 			vcpu->run->hyperv = hv_vcpu->exit;
10478 			r = 0;
10479 			goto out;
10480 		}
10481 
10482 		/*
10483 		 * KVM_REQ_HV_STIMER has to be processed after
10484 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10485 		 * depend on the guest clock being up-to-date
10486 		 */
10487 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10488 			kvm_hv_process_stimers(vcpu);
10489 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10490 			kvm_vcpu_update_apicv(vcpu);
10491 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10492 			kvm_check_async_pf_completion(vcpu);
10493 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10494 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10495 
10496 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10497 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10498 	}
10499 
10500 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10501 	    kvm_xen_has_interrupt(vcpu)) {
10502 		++vcpu->stat.req_event;
10503 		r = kvm_apic_accept_events(vcpu);
10504 		if (r < 0) {
10505 			r = 0;
10506 			goto out;
10507 		}
10508 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10509 			r = 1;
10510 			goto out;
10511 		}
10512 
10513 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10514 		if (r < 0) {
10515 			r = 0;
10516 			goto out;
10517 		}
10518 		if (req_int_win)
10519 			static_call(kvm_x86_enable_irq_window)(vcpu);
10520 
10521 		if (kvm_lapic_enabled(vcpu)) {
10522 			update_cr8_intercept(vcpu);
10523 			kvm_lapic_sync_to_vapic(vcpu);
10524 		}
10525 	}
10526 
10527 	r = kvm_mmu_reload(vcpu);
10528 	if (unlikely(r)) {
10529 		goto cancel_injection;
10530 	}
10531 
10532 	preempt_disable();
10533 
10534 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10535 
10536 	/*
10537 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10538 	 * IPI are then delayed after guest entry, which ensures that they
10539 	 * result in virtual interrupt delivery.
10540 	 */
10541 	local_irq_disable();
10542 
10543 	/* Store vcpu->apicv_active before vcpu->mode.  */
10544 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10545 
10546 	kvm_vcpu_srcu_read_unlock(vcpu);
10547 
10548 	/*
10549 	 * 1) We should set ->mode before checking ->requests.  Please see
10550 	 * the comment in kvm_vcpu_exiting_guest_mode().
10551 	 *
10552 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10553 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10554 	 * (see vmx_deliver_posted_interrupt).
10555 	 *
10556 	 * 3) This also orders the write to mode from any reads to the page
10557 	 * tables done while the VCPU is running.  Please see the comment
10558 	 * in kvm_flush_remote_tlbs.
10559 	 */
10560 	smp_mb__after_srcu_read_unlock();
10561 
10562 	/*
10563 	 * Process pending posted interrupts to handle the case where the
10564 	 * notification IRQ arrived in the host, or was never sent (because the
10565 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10566 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10567 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10568 	 */
10569 	if (kvm_lapic_enabled(vcpu))
10570 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10571 
10572 	if (kvm_vcpu_exit_request(vcpu)) {
10573 		vcpu->mode = OUTSIDE_GUEST_MODE;
10574 		smp_wmb();
10575 		local_irq_enable();
10576 		preempt_enable();
10577 		kvm_vcpu_srcu_read_lock(vcpu);
10578 		r = 1;
10579 		goto cancel_injection;
10580 	}
10581 
10582 	if (req_immediate_exit) {
10583 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10584 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10585 	}
10586 
10587 	fpregs_assert_state_consistent();
10588 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10589 		switch_fpu_return();
10590 
10591 	if (vcpu->arch.guest_fpu.xfd_err)
10592 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10593 
10594 	if (unlikely(vcpu->arch.switch_db_regs)) {
10595 		set_debugreg(0, 7);
10596 		set_debugreg(vcpu->arch.eff_db[0], 0);
10597 		set_debugreg(vcpu->arch.eff_db[1], 1);
10598 		set_debugreg(vcpu->arch.eff_db[2], 2);
10599 		set_debugreg(vcpu->arch.eff_db[3], 3);
10600 	} else if (unlikely(hw_breakpoint_active())) {
10601 		set_debugreg(0, 7);
10602 	}
10603 
10604 	guest_timing_enter_irqoff();
10605 
10606 	for (;;) {
10607 		/*
10608 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10609 		 * update must kick and wait for all vCPUs before toggling the
10610 		 * per-VM state, and responsing vCPUs must wait for the update
10611 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10612 		 */
10613 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10614 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10615 
10616 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10617 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10618 			break;
10619 
10620 		if (kvm_lapic_enabled(vcpu))
10621 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10622 
10623 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10624 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10625 			break;
10626 		}
10627 	}
10628 
10629 	/*
10630 	 * Do this here before restoring debug registers on the host.  And
10631 	 * since we do this before handling the vmexit, a DR access vmexit
10632 	 * can (a) read the correct value of the debug registers, (b) set
10633 	 * KVM_DEBUGREG_WONT_EXIT again.
10634 	 */
10635 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10636 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10637 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10638 		kvm_update_dr0123(vcpu);
10639 		kvm_update_dr7(vcpu);
10640 	}
10641 
10642 	/*
10643 	 * If the guest has used debug registers, at least dr7
10644 	 * will be disabled while returning to the host.
10645 	 * If we don't have active breakpoints in the host, we don't
10646 	 * care about the messed up debug address registers. But if
10647 	 * we have some of them active, restore the old state.
10648 	 */
10649 	if (hw_breakpoint_active())
10650 		hw_breakpoint_restore();
10651 
10652 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10653 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10654 
10655 	vcpu->mode = OUTSIDE_GUEST_MODE;
10656 	smp_wmb();
10657 
10658 	/*
10659 	 * Sync xfd before calling handle_exit_irqoff() which may
10660 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10661 	 * in #NM irqoff handler).
10662 	 */
10663 	if (vcpu->arch.xfd_no_write_intercept)
10664 		fpu_sync_guest_vmexit_xfd_state();
10665 
10666 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10667 
10668 	if (vcpu->arch.guest_fpu.xfd_err)
10669 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10670 
10671 	/*
10672 	 * Consume any pending interrupts, including the possible source of
10673 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10674 	 * An instruction is required after local_irq_enable() to fully unblock
10675 	 * interrupts on processors that implement an interrupt shadow, the
10676 	 * stat.exits increment will do nicely.
10677 	 */
10678 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10679 	local_irq_enable();
10680 	++vcpu->stat.exits;
10681 	local_irq_disable();
10682 	kvm_after_interrupt(vcpu);
10683 
10684 	/*
10685 	 * Wait until after servicing IRQs to account guest time so that any
10686 	 * ticks that occurred while running the guest are properly accounted
10687 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10688 	 * of accounting via context tracking, but the loss of accuracy is
10689 	 * acceptable for all known use cases.
10690 	 */
10691 	guest_timing_exit_irqoff();
10692 
10693 	local_irq_enable();
10694 	preempt_enable();
10695 
10696 	kvm_vcpu_srcu_read_lock(vcpu);
10697 
10698 	/*
10699 	 * Profile KVM exit RIPs:
10700 	 */
10701 	if (unlikely(prof_on == KVM_PROFILING)) {
10702 		unsigned long rip = kvm_rip_read(vcpu);
10703 		profile_hit(KVM_PROFILING, (void *)rip);
10704 	}
10705 
10706 	if (unlikely(vcpu->arch.tsc_always_catchup))
10707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10708 
10709 	if (vcpu->arch.apic_attention)
10710 		kvm_lapic_sync_from_vapic(vcpu);
10711 
10712 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10713 	return r;
10714 
10715 cancel_injection:
10716 	if (req_immediate_exit)
10717 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10718 	static_call(kvm_x86_cancel_injection)(vcpu);
10719 	if (unlikely(vcpu->arch.apic_attention))
10720 		kvm_lapic_sync_from_vapic(vcpu);
10721 out:
10722 	return r;
10723 }
10724 
10725 /* Called within kvm->srcu read side.  */
10726 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10727 {
10728 	bool hv_timer;
10729 
10730 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10731 		/*
10732 		 * Switch to the software timer before halt-polling/blocking as
10733 		 * the guest's timer may be a break event for the vCPU, and the
10734 		 * hypervisor timer runs only when the CPU is in guest mode.
10735 		 * Switch before halt-polling so that KVM recognizes an expired
10736 		 * timer before blocking.
10737 		 */
10738 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10739 		if (hv_timer)
10740 			kvm_lapic_switch_to_sw_timer(vcpu);
10741 
10742 		kvm_vcpu_srcu_read_unlock(vcpu);
10743 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10744 			kvm_vcpu_halt(vcpu);
10745 		else
10746 			kvm_vcpu_block(vcpu);
10747 		kvm_vcpu_srcu_read_lock(vcpu);
10748 
10749 		if (hv_timer)
10750 			kvm_lapic_switch_to_hv_timer(vcpu);
10751 
10752 		/*
10753 		 * If the vCPU is not runnable, a signal or another host event
10754 		 * of some kind is pending; service it without changing the
10755 		 * vCPU's activity state.
10756 		 */
10757 		if (!kvm_arch_vcpu_runnable(vcpu))
10758 			return 1;
10759 	}
10760 
10761 	/*
10762 	 * Evaluate nested events before exiting the halted state.  This allows
10763 	 * the halt state to be recorded properly in the VMCS12's activity
10764 	 * state field (AMD does not have a similar field and a VM-Exit always
10765 	 * causes a spurious wakeup from HLT).
10766 	 */
10767 	if (is_guest_mode(vcpu)) {
10768 		if (kvm_check_nested_events(vcpu) < 0)
10769 			return 0;
10770 	}
10771 
10772 	if (kvm_apic_accept_events(vcpu) < 0)
10773 		return 0;
10774 	switch(vcpu->arch.mp_state) {
10775 	case KVM_MP_STATE_HALTED:
10776 	case KVM_MP_STATE_AP_RESET_HOLD:
10777 		vcpu->arch.pv.pv_unhalted = false;
10778 		vcpu->arch.mp_state =
10779 			KVM_MP_STATE_RUNNABLE;
10780 		fallthrough;
10781 	case KVM_MP_STATE_RUNNABLE:
10782 		vcpu->arch.apf.halted = false;
10783 		break;
10784 	case KVM_MP_STATE_INIT_RECEIVED:
10785 		break;
10786 	default:
10787 		WARN_ON_ONCE(1);
10788 		break;
10789 	}
10790 	return 1;
10791 }
10792 
10793 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10794 {
10795 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10796 		!vcpu->arch.apf.halted);
10797 }
10798 
10799 /* Called within kvm->srcu read side.  */
10800 static int vcpu_run(struct kvm_vcpu *vcpu)
10801 {
10802 	int r;
10803 
10804 	vcpu->arch.l1tf_flush_l1d = true;
10805 
10806 	for (;;) {
10807 		/*
10808 		 * If another guest vCPU requests a PV TLB flush in the middle
10809 		 * of instruction emulation, the rest of the emulation could
10810 		 * use a stale page translation. Assume that any code after
10811 		 * this point can start executing an instruction.
10812 		 */
10813 		vcpu->arch.at_instruction_boundary = false;
10814 		if (kvm_vcpu_running(vcpu)) {
10815 			r = vcpu_enter_guest(vcpu);
10816 		} else {
10817 			r = vcpu_block(vcpu);
10818 		}
10819 
10820 		if (r <= 0)
10821 			break;
10822 
10823 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10824 		if (kvm_xen_has_pending_events(vcpu))
10825 			kvm_xen_inject_pending_events(vcpu);
10826 
10827 		if (kvm_cpu_has_pending_timer(vcpu))
10828 			kvm_inject_pending_timer_irqs(vcpu);
10829 
10830 		if (dm_request_for_irq_injection(vcpu) &&
10831 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10832 			r = 0;
10833 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10834 			++vcpu->stat.request_irq_exits;
10835 			break;
10836 		}
10837 
10838 		if (__xfer_to_guest_mode_work_pending()) {
10839 			kvm_vcpu_srcu_read_unlock(vcpu);
10840 			r = xfer_to_guest_mode_handle_work(vcpu);
10841 			kvm_vcpu_srcu_read_lock(vcpu);
10842 			if (r)
10843 				return r;
10844 		}
10845 	}
10846 
10847 	return r;
10848 }
10849 
10850 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10851 {
10852 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10853 }
10854 
10855 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10856 {
10857 	BUG_ON(!vcpu->arch.pio.count);
10858 
10859 	return complete_emulated_io(vcpu);
10860 }
10861 
10862 /*
10863  * Implements the following, as a state machine:
10864  *
10865  * read:
10866  *   for each fragment
10867  *     for each mmio piece in the fragment
10868  *       write gpa, len
10869  *       exit
10870  *       copy data
10871  *   execute insn
10872  *
10873  * write:
10874  *   for each fragment
10875  *     for each mmio piece in the fragment
10876  *       write gpa, len
10877  *       copy data
10878  *       exit
10879  */
10880 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10881 {
10882 	struct kvm_run *run = vcpu->run;
10883 	struct kvm_mmio_fragment *frag;
10884 	unsigned len;
10885 
10886 	BUG_ON(!vcpu->mmio_needed);
10887 
10888 	/* Complete previous fragment */
10889 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10890 	len = min(8u, frag->len);
10891 	if (!vcpu->mmio_is_write)
10892 		memcpy(frag->data, run->mmio.data, len);
10893 
10894 	if (frag->len <= 8) {
10895 		/* Switch to the next fragment. */
10896 		frag++;
10897 		vcpu->mmio_cur_fragment++;
10898 	} else {
10899 		/* Go forward to the next mmio piece. */
10900 		frag->data += len;
10901 		frag->gpa += len;
10902 		frag->len -= len;
10903 	}
10904 
10905 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10906 		vcpu->mmio_needed = 0;
10907 
10908 		/* FIXME: return into emulator if single-stepping.  */
10909 		if (vcpu->mmio_is_write)
10910 			return 1;
10911 		vcpu->mmio_read_completed = 1;
10912 		return complete_emulated_io(vcpu);
10913 	}
10914 
10915 	run->exit_reason = KVM_EXIT_MMIO;
10916 	run->mmio.phys_addr = frag->gpa;
10917 	if (vcpu->mmio_is_write)
10918 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10919 	run->mmio.len = min(8u, frag->len);
10920 	run->mmio.is_write = vcpu->mmio_is_write;
10921 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10922 	return 0;
10923 }
10924 
10925 /* Swap (qemu) user FPU context for the guest FPU context. */
10926 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10927 {
10928 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10929 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10930 	trace_kvm_fpu(1);
10931 }
10932 
10933 /* When vcpu_run ends, restore user space FPU context. */
10934 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10935 {
10936 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10937 	++vcpu->stat.fpu_reload;
10938 	trace_kvm_fpu(0);
10939 }
10940 
10941 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10942 {
10943 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10944 	struct kvm_run *kvm_run = vcpu->run;
10945 	int r;
10946 
10947 	vcpu_load(vcpu);
10948 	kvm_sigset_activate(vcpu);
10949 	kvm_run->flags = 0;
10950 	kvm_load_guest_fpu(vcpu);
10951 
10952 	kvm_vcpu_srcu_read_lock(vcpu);
10953 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10954 		if (kvm_run->immediate_exit) {
10955 			r = -EINTR;
10956 			goto out;
10957 		}
10958 		/*
10959 		 * It should be impossible for the hypervisor timer to be in
10960 		 * use before KVM has ever run the vCPU.
10961 		 */
10962 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10963 
10964 		kvm_vcpu_srcu_read_unlock(vcpu);
10965 		kvm_vcpu_block(vcpu);
10966 		kvm_vcpu_srcu_read_lock(vcpu);
10967 
10968 		if (kvm_apic_accept_events(vcpu) < 0) {
10969 			r = 0;
10970 			goto out;
10971 		}
10972 		r = -EAGAIN;
10973 		if (signal_pending(current)) {
10974 			r = -EINTR;
10975 			kvm_run->exit_reason = KVM_EXIT_INTR;
10976 			++vcpu->stat.signal_exits;
10977 		}
10978 		goto out;
10979 	}
10980 
10981 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10982 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10983 		r = -EINVAL;
10984 		goto out;
10985 	}
10986 
10987 	if (kvm_run->kvm_dirty_regs) {
10988 		r = sync_regs(vcpu);
10989 		if (r != 0)
10990 			goto out;
10991 	}
10992 
10993 	/* re-sync apic's tpr */
10994 	if (!lapic_in_kernel(vcpu)) {
10995 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10996 			r = -EINVAL;
10997 			goto out;
10998 		}
10999 	}
11000 
11001 	/*
11002 	 * If userspace set a pending exception and L2 is active, convert it to
11003 	 * a pending VM-Exit if L1 wants to intercept the exception.
11004 	 */
11005 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11006 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11007 							ex->error_code)) {
11008 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11009 					   ex->has_error_code, ex->error_code,
11010 					   ex->has_payload, ex->payload);
11011 		ex->injected = false;
11012 		ex->pending = false;
11013 	}
11014 	vcpu->arch.exception_from_userspace = false;
11015 
11016 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11017 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11018 		vcpu->arch.complete_userspace_io = NULL;
11019 		r = cui(vcpu);
11020 		if (r <= 0)
11021 			goto out;
11022 	} else {
11023 		WARN_ON_ONCE(vcpu->arch.pio.count);
11024 		WARN_ON_ONCE(vcpu->mmio_needed);
11025 	}
11026 
11027 	if (kvm_run->immediate_exit) {
11028 		r = -EINTR;
11029 		goto out;
11030 	}
11031 
11032 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11033 	if (r <= 0)
11034 		goto out;
11035 
11036 	r = vcpu_run(vcpu);
11037 
11038 out:
11039 	kvm_put_guest_fpu(vcpu);
11040 	if (kvm_run->kvm_valid_regs)
11041 		store_regs(vcpu);
11042 	post_kvm_run_save(vcpu);
11043 	kvm_vcpu_srcu_read_unlock(vcpu);
11044 
11045 	kvm_sigset_deactivate(vcpu);
11046 	vcpu_put(vcpu);
11047 	return r;
11048 }
11049 
11050 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11051 {
11052 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11053 		/*
11054 		 * We are here if userspace calls get_regs() in the middle of
11055 		 * instruction emulation. Registers state needs to be copied
11056 		 * back from emulation context to vcpu. Userspace shouldn't do
11057 		 * that usually, but some bad designed PV devices (vmware
11058 		 * backdoor interface) need this to work
11059 		 */
11060 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11061 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11062 	}
11063 	regs->rax = kvm_rax_read(vcpu);
11064 	regs->rbx = kvm_rbx_read(vcpu);
11065 	regs->rcx = kvm_rcx_read(vcpu);
11066 	regs->rdx = kvm_rdx_read(vcpu);
11067 	regs->rsi = kvm_rsi_read(vcpu);
11068 	regs->rdi = kvm_rdi_read(vcpu);
11069 	regs->rsp = kvm_rsp_read(vcpu);
11070 	regs->rbp = kvm_rbp_read(vcpu);
11071 #ifdef CONFIG_X86_64
11072 	regs->r8 = kvm_r8_read(vcpu);
11073 	regs->r9 = kvm_r9_read(vcpu);
11074 	regs->r10 = kvm_r10_read(vcpu);
11075 	regs->r11 = kvm_r11_read(vcpu);
11076 	regs->r12 = kvm_r12_read(vcpu);
11077 	regs->r13 = kvm_r13_read(vcpu);
11078 	regs->r14 = kvm_r14_read(vcpu);
11079 	regs->r15 = kvm_r15_read(vcpu);
11080 #endif
11081 
11082 	regs->rip = kvm_rip_read(vcpu);
11083 	regs->rflags = kvm_get_rflags(vcpu);
11084 }
11085 
11086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11087 {
11088 	vcpu_load(vcpu);
11089 	__get_regs(vcpu, regs);
11090 	vcpu_put(vcpu);
11091 	return 0;
11092 }
11093 
11094 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11095 {
11096 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11097 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11098 
11099 	kvm_rax_write(vcpu, regs->rax);
11100 	kvm_rbx_write(vcpu, regs->rbx);
11101 	kvm_rcx_write(vcpu, regs->rcx);
11102 	kvm_rdx_write(vcpu, regs->rdx);
11103 	kvm_rsi_write(vcpu, regs->rsi);
11104 	kvm_rdi_write(vcpu, regs->rdi);
11105 	kvm_rsp_write(vcpu, regs->rsp);
11106 	kvm_rbp_write(vcpu, regs->rbp);
11107 #ifdef CONFIG_X86_64
11108 	kvm_r8_write(vcpu, regs->r8);
11109 	kvm_r9_write(vcpu, regs->r9);
11110 	kvm_r10_write(vcpu, regs->r10);
11111 	kvm_r11_write(vcpu, regs->r11);
11112 	kvm_r12_write(vcpu, regs->r12);
11113 	kvm_r13_write(vcpu, regs->r13);
11114 	kvm_r14_write(vcpu, regs->r14);
11115 	kvm_r15_write(vcpu, regs->r15);
11116 #endif
11117 
11118 	kvm_rip_write(vcpu, regs->rip);
11119 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11120 
11121 	vcpu->arch.exception.pending = false;
11122 	vcpu->arch.exception_vmexit.pending = false;
11123 
11124 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11125 }
11126 
11127 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11128 {
11129 	vcpu_load(vcpu);
11130 	__set_regs(vcpu, regs);
11131 	vcpu_put(vcpu);
11132 	return 0;
11133 }
11134 
11135 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11136 {
11137 	struct desc_ptr dt;
11138 
11139 	if (vcpu->arch.guest_state_protected)
11140 		goto skip_protected_regs;
11141 
11142 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11143 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11144 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11145 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11146 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11147 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11148 
11149 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11150 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11151 
11152 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11153 	sregs->idt.limit = dt.size;
11154 	sregs->idt.base = dt.address;
11155 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11156 	sregs->gdt.limit = dt.size;
11157 	sregs->gdt.base = dt.address;
11158 
11159 	sregs->cr2 = vcpu->arch.cr2;
11160 	sregs->cr3 = kvm_read_cr3(vcpu);
11161 
11162 skip_protected_regs:
11163 	sregs->cr0 = kvm_read_cr0(vcpu);
11164 	sregs->cr4 = kvm_read_cr4(vcpu);
11165 	sregs->cr8 = kvm_get_cr8(vcpu);
11166 	sregs->efer = vcpu->arch.efer;
11167 	sregs->apic_base = kvm_get_apic_base(vcpu);
11168 }
11169 
11170 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11171 {
11172 	__get_sregs_common(vcpu, sregs);
11173 
11174 	if (vcpu->arch.guest_state_protected)
11175 		return;
11176 
11177 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11178 		set_bit(vcpu->arch.interrupt.nr,
11179 			(unsigned long *)sregs->interrupt_bitmap);
11180 }
11181 
11182 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11183 {
11184 	int i;
11185 
11186 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11187 
11188 	if (vcpu->arch.guest_state_protected)
11189 		return;
11190 
11191 	if (is_pae_paging(vcpu)) {
11192 		for (i = 0 ; i < 4 ; i++)
11193 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11194 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11195 	}
11196 }
11197 
11198 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11199 				  struct kvm_sregs *sregs)
11200 {
11201 	vcpu_load(vcpu);
11202 	__get_sregs(vcpu, sregs);
11203 	vcpu_put(vcpu);
11204 	return 0;
11205 }
11206 
11207 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11208 				    struct kvm_mp_state *mp_state)
11209 {
11210 	int r;
11211 
11212 	vcpu_load(vcpu);
11213 	if (kvm_mpx_supported())
11214 		kvm_load_guest_fpu(vcpu);
11215 
11216 	r = kvm_apic_accept_events(vcpu);
11217 	if (r < 0)
11218 		goto out;
11219 	r = 0;
11220 
11221 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11222 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11223 	    vcpu->arch.pv.pv_unhalted)
11224 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11225 	else
11226 		mp_state->mp_state = vcpu->arch.mp_state;
11227 
11228 out:
11229 	if (kvm_mpx_supported())
11230 		kvm_put_guest_fpu(vcpu);
11231 	vcpu_put(vcpu);
11232 	return r;
11233 }
11234 
11235 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11236 				    struct kvm_mp_state *mp_state)
11237 {
11238 	int ret = -EINVAL;
11239 
11240 	vcpu_load(vcpu);
11241 
11242 	switch (mp_state->mp_state) {
11243 	case KVM_MP_STATE_UNINITIALIZED:
11244 	case KVM_MP_STATE_HALTED:
11245 	case KVM_MP_STATE_AP_RESET_HOLD:
11246 	case KVM_MP_STATE_INIT_RECEIVED:
11247 	case KVM_MP_STATE_SIPI_RECEIVED:
11248 		if (!lapic_in_kernel(vcpu))
11249 			goto out;
11250 		break;
11251 
11252 	case KVM_MP_STATE_RUNNABLE:
11253 		break;
11254 
11255 	default:
11256 		goto out;
11257 	}
11258 
11259 	/*
11260 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11261 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11262 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11263 	 * if an SMI is pending as well.
11264 	 */
11265 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11266 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11267 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11268 		goto out;
11269 
11270 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11271 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11272 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11273 	} else
11274 		vcpu->arch.mp_state = mp_state->mp_state;
11275 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11276 
11277 	ret = 0;
11278 out:
11279 	vcpu_put(vcpu);
11280 	return ret;
11281 }
11282 
11283 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11284 		    int reason, bool has_error_code, u32 error_code)
11285 {
11286 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11287 	int ret;
11288 
11289 	init_emulate_ctxt(vcpu);
11290 
11291 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11292 				   has_error_code, error_code);
11293 	if (ret) {
11294 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11295 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11296 		vcpu->run->internal.ndata = 0;
11297 		return 0;
11298 	}
11299 
11300 	kvm_rip_write(vcpu, ctxt->eip);
11301 	kvm_set_rflags(vcpu, ctxt->eflags);
11302 	return 1;
11303 }
11304 EXPORT_SYMBOL_GPL(kvm_task_switch);
11305 
11306 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11307 {
11308 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11309 		/*
11310 		 * When EFER.LME and CR0.PG are set, the processor is in
11311 		 * 64-bit mode (though maybe in a 32-bit code segment).
11312 		 * CR4.PAE and EFER.LMA must be set.
11313 		 */
11314 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11315 			return false;
11316 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11317 			return false;
11318 	} else {
11319 		/*
11320 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11321 		 * segment cannot be 64-bit.
11322 		 */
11323 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11324 			return false;
11325 	}
11326 
11327 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11328 }
11329 
11330 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11331 		int *mmu_reset_needed, bool update_pdptrs)
11332 {
11333 	struct msr_data apic_base_msr;
11334 	int idx;
11335 	struct desc_ptr dt;
11336 
11337 	if (!kvm_is_valid_sregs(vcpu, sregs))
11338 		return -EINVAL;
11339 
11340 	apic_base_msr.data = sregs->apic_base;
11341 	apic_base_msr.host_initiated = true;
11342 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11343 		return -EINVAL;
11344 
11345 	if (vcpu->arch.guest_state_protected)
11346 		return 0;
11347 
11348 	dt.size = sregs->idt.limit;
11349 	dt.address = sregs->idt.base;
11350 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11351 	dt.size = sregs->gdt.limit;
11352 	dt.address = sregs->gdt.base;
11353 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11354 
11355 	vcpu->arch.cr2 = sregs->cr2;
11356 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11357 	vcpu->arch.cr3 = sregs->cr3;
11358 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11359 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11360 
11361 	kvm_set_cr8(vcpu, sregs->cr8);
11362 
11363 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11364 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11365 
11366 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11367 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11368 	vcpu->arch.cr0 = sregs->cr0;
11369 
11370 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11371 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11372 
11373 	if (update_pdptrs) {
11374 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11375 		if (is_pae_paging(vcpu)) {
11376 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11377 			*mmu_reset_needed = 1;
11378 		}
11379 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11380 	}
11381 
11382 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11383 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11384 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11385 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11386 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11387 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11388 
11389 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11390 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11391 
11392 	update_cr8_intercept(vcpu);
11393 
11394 	/* Older userspace won't unhalt the vcpu on reset. */
11395 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11396 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11397 	    !is_protmode(vcpu))
11398 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11399 
11400 	return 0;
11401 }
11402 
11403 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11404 {
11405 	int pending_vec, max_bits;
11406 	int mmu_reset_needed = 0;
11407 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11408 
11409 	if (ret)
11410 		return ret;
11411 
11412 	if (mmu_reset_needed)
11413 		kvm_mmu_reset_context(vcpu);
11414 
11415 	max_bits = KVM_NR_INTERRUPTS;
11416 	pending_vec = find_first_bit(
11417 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11418 
11419 	if (pending_vec < max_bits) {
11420 		kvm_queue_interrupt(vcpu, pending_vec, false);
11421 		pr_debug("Set back pending irq %d\n", pending_vec);
11422 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11423 	}
11424 	return 0;
11425 }
11426 
11427 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11428 {
11429 	int mmu_reset_needed = 0;
11430 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11431 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11432 		!(sregs2->efer & EFER_LMA);
11433 	int i, ret;
11434 
11435 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11436 		return -EINVAL;
11437 
11438 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11439 		return -EINVAL;
11440 
11441 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11442 				 &mmu_reset_needed, !valid_pdptrs);
11443 	if (ret)
11444 		return ret;
11445 
11446 	if (valid_pdptrs) {
11447 		for (i = 0; i < 4 ; i++)
11448 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11449 
11450 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11451 		mmu_reset_needed = 1;
11452 		vcpu->arch.pdptrs_from_userspace = true;
11453 	}
11454 	if (mmu_reset_needed)
11455 		kvm_mmu_reset_context(vcpu);
11456 	return 0;
11457 }
11458 
11459 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11460 				  struct kvm_sregs *sregs)
11461 {
11462 	int ret;
11463 
11464 	vcpu_load(vcpu);
11465 	ret = __set_sregs(vcpu, sregs);
11466 	vcpu_put(vcpu);
11467 	return ret;
11468 }
11469 
11470 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11471 {
11472 	bool set = false;
11473 	struct kvm_vcpu *vcpu;
11474 	unsigned long i;
11475 
11476 	if (!enable_apicv)
11477 		return;
11478 
11479 	down_write(&kvm->arch.apicv_update_lock);
11480 
11481 	kvm_for_each_vcpu(i, vcpu, kvm) {
11482 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11483 			set = true;
11484 			break;
11485 		}
11486 	}
11487 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11488 	up_write(&kvm->arch.apicv_update_lock);
11489 }
11490 
11491 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11492 					struct kvm_guest_debug *dbg)
11493 {
11494 	unsigned long rflags;
11495 	int i, r;
11496 
11497 	if (vcpu->arch.guest_state_protected)
11498 		return -EINVAL;
11499 
11500 	vcpu_load(vcpu);
11501 
11502 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11503 		r = -EBUSY;
11504 		if (kvm_is_exception_pending(vcpu))
11505 			goto out;
11506 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11507 			kvm_queue_exception(vcpu, DB_VECTOR);
11508 		else
11509 			kvm_queue_exception(vcpu, BP_VECTOR);
11510 	}
11511 
11512 	/*
11513 	 * Read rflags as long as potentially injected trace flags are still
11514 	 * filtered out.
11515 	 */
11516 	rflags = kvm_get_rflags(vcpu);
11517 
11518 	vcpu->guest_debug = dbg->control;
11519 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11520 		vcpu->guest_debug = 0;
11521 
11522 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11523 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11524 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11525 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11526 	} else {
11527 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11528 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11529 	}
11530 	kvm_update_dr7(vcpu);
11531 
11532 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11533 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11534 
11535 	/*
11536 	 * Trigger an rflags update that will inject or remove the trace
11537 	 * flags.
11538 	 */
11539 	kvm_set_rflags(vcpu, rflags);
11540 
11541 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11542 
11543 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11544 
11545 	r = 0;
11546 
11547 out:
11548 	vcpu_put(vcpu);
11549 	return r;
11550 }
11551 
11552 /*
11553  * Translate a guest virtual address to a guest physical address.
11554  */
11555 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11556 				    struct kvm_translation *tr)
11557 {
11558 	unsigned long vaddr = tr->linear_address;
11559 	gpa_t gpa;
11560 	int idx;
11561 
11562 	vcpu_load(vcpu);
11563 
11564 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11565 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11566 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11567 	tr->physical_address = gpa;
11568 	tr->valid = gpa != INVALID_GPA;
11569 	tr->writeable = 1;
11570 	tr->usermode = 0;
11571 
11572 	vcpu_put(vcpu);
11573 	return 0;
11574 }
11575 
11576 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11577 {
11578 	struct fxregs_state *fxsave;
11579 
11580 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11581 		return 0;
11582 
11583 	vcpu_load(vcpu);
11584 
11585 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11586 	memcpy(fpu->fpr, fxsave->st_space, 128);
11587 	fpu->fcw = fxsave->cwd;
11588 	fpu->fsw = fxsave->swd;
11589 	fpu->ftwx = fxsave->twd;
11590 	fpu->last_opcode = fxsave->fop;
11591 	fpu->last_ip = fxsave->rip;
11592 	fpu->last_dp = fxsave->rdp;
11593 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11594 
11595 	vcpu_put(vcpu);
11596 	return 0;
11597 }
11598 
11599 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11600 {
11601 	struct fxregs_state *fxsave;
11602 
11603 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11604 		return 0;
11605 
11606 	vcpu_load(vcpu);
11607 
11608 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11609 
11610 	memcpy(fxsave->st_space, fpu->fpr, 128);
11611 	fxsave->cwd = fpu->fcw;
11612 	fxsave->swd = fpu->fsw;
11613 	fxsave->twd = fpu->ftwx;
11614 	fxsave->fop = fpu->last_opcode;
11615 	fxsave->rip = fpu->last_ip;
11616 	fxsave->rdp = fpu->last_dp;
11617 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11618 
11619 	vcpu_put(vcpu);
11620 	return 0;
11621 }
11622 
11623 static void store_regs(struct kvm_vcpu *vcpu)
11624 {
11625 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11626 
11627 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11628 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11629 
11630 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11631 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11632 
11633 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11634 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11635 				vcpu, &vcpu->run->s.regs.events);
11636 }
11637 
11638 static int sync_regs(struct kvm_vcpu *vcpu)
11639 {
11640 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11641 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11642 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11643 	}
11644 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11645 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11646 			return -EINVAL;
11647 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11648 	}
11649 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11650 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11651 				vcpu, &vcpu->run->s.regs.events))
11652 			return -EINVAL;
11653 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11654 	}
11655 
11656 	return 0;
11657 }
11658 
11659 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11660 {
11661 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11662 		pr_warn_once("SMP vm created on host with unstable TSC; "
11663 			     "guest TSC will not be reliable\n");
11664 
11665 	if (!kvm->arch.max_vcpu_ids)
11666 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11667 
11668 	if (id >= kvm->arch.max_vcpu_ids)
11669 		return -EINVAL;
11670 
11671 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11672 }
11673 
11674 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11675 {
11676 	struct page *page;
11677 	int r;
11678 
11679 	vcpu->arch.last_vmentry_cpu = -1;
11680 	vcpu->arch.regs_avail = ~0;
11681 	vcpu->arch.regs_dirty = ~0;
11682 
11683 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11684 
11685 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11686 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11687 	else
11688 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11689 
11690 	r = kvm_mmu_create(vcpu);
11691 	if (r < 0)
11692 		return r;
11693 
11694 	if (irqchip_in_kernel(vcpu->kvm)) {
11695 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11696 		if (r < 0)
11697 			goto fail_mmu_destroy;
11698 
11699 		/*
11700 		 * Defer evaluating inhibits until the vCPU is first run, as
11701 		 * this vCPU will not get notified of any changes until this
11702 		 * vCPU is visible to other vCPUs (marked online and added to
11703 		 * the set of vCPUs).  Opportunistically mark APICv active as
11704 		 * VMX in particularly is highly unlikely to have inhibits.
11705 		 * Ignore the current per-VM APICv state so that vCPU creation
11706 		 * is guaranteed to run with a deterministic value, the request
11707 		 * will ensure the vCPU gets the correct state before VM-Entry.
11708 		 */
11709 		if (enable_apicv) {
11710 			vcpu->arch.apic->apicv_active = true;
11711 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11712 		}
11713 	} else
11714 		static_branch_inc(&kvm_has_noapic_vcpu);
11715 
11716 	r = -ENOMEM;
11717 
11718 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11719 	if (!page)
11720 		goto fail_free_lapic;
11721 	vcpu->arch.pio_data = page_address(page);
11722 
11723 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11724 				       GFP_KERNEL_ACCOUNT);
11725 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11726 					    GFP_KERNEL_ACCOUNT);
11727 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11728 		goto fail_free_mce_banks;
11729 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11730 
11731 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11732 				GFP_KERNEL_ACCOUNT))
11733 		goto fail_free_mce_banks;
11734 
11735 	if (!alloc_emulate_ctxt(vcpu))
11736 		goto free_wbinvd_dirty_mask;
11737 
11738 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11739 		pr_err("failed to allocate vcpu's fpu\n");
11740 		goto free_emulate_ctxt;
11741 	}
11742 
11743 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11744 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11745 
11746 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11747 
11748 	kvm_async_pf_hash_reset(vcpu);
11749 
11750 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11751 	kvm_pmu_init(vcpu);
11752 
11753 	vcpu->arch.pending_external_vector = -1;
11754 	vcpu->arch.preempted_in_kernel = false;
11755 
11756 #if IS_ENABLED(CONFIG_HYPERV)
11757 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11758 #endif
11759 
11760 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11761 	if (r)
11762 		goto free_guest_fpu;
11763 
11764 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11765 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11766 	kvm_xen_init_vcpu(vcpu);
11767 	kvm_vcpu_mtrr_init(vcpu);
11768 	vcpu_load(vcpu);
11769 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11770 	kvm_vcpu_reset(vcpu, false);
11771 	kvm_init_mmu(vcpu);
11772 	vcpu_put(vcpu);
11773 	return 0;
11774 
11775 free_guest_fpu:
11776 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11777 free_emulate_ctxt:
11778 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11779 free_wbinvd_dirty_mask:
11780 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11781 fail_free_mce_banks:
11782 	kfree(vcpu->arch.mce_banks);
11783 	kfree(vcpu->arch.mci_ctl2_banks);
11784 	free_page((unsigned long)vcpu->arch.pio_data);
11785 fail_free_lapic:
11786 	kvm_free_lapic(vcpu);
11787 fail_mmu_destroy:
11788 	kvm_mmu_destroy(vcpu);
11789 	return r;
11790 }
11791 
11792 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11793 {
11794 	struct kvm *kvm = vcpu->kvm;
11795 
11796 	if (mutex_lock_killable(&vcpu->mutex))
11797 		return;
11798 	vcpu_load(vcpu);
11799 	kvm_synchronize_tsc(vcpu, 0);
11800 	vcpu_put(vcpu);
11801 
11802 	/* poll control enabled by default */
11803 	vcpu->arch.msr_kvm_poll_control = 1;
11804 
11805 	mutex_unlock(&vcpu->mutex);
11806 
11807 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11808 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11809 						KVMCLOCK_SYNC_PERIOD);
11810 }
11811 
11812 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11813 {
11814 	int idx;
11815 
11816 	kvmclock_reset(vcpu);
11817 
11818 	static_call(kvm_x86_vcpu_free)(vcpu);
11819 
11820 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11821 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11822 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11823 
11824 	kvm_xen_destroy_vcpu(vcpu);
11825 	kvm_hv_vcpu_uninit(vcpu);
11826 	kvm_pmu_destroy(vcpu);
11827 	kfree(vcpu->arch.mce_banks);
11828 	kfree(vcpu->arch.mci_ctl2_banks);
11829 	kvm_free_lapic(vcpu);
11830 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11831 	kvm_mmu_destroy(vcpu);
11832 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11833 	free_page((unsigned long)vcpu->arch.pio_data);
11834 	kvfree(vcpu->arch.cpuid_entries);
11835 	if (!lapic_in_kernel(vcpu))
11836 		static_branch_dec(&kvm_has_noapic_vcpu);
11837 }
11838 
11839 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11840 {
11841 	struct kvm_cpuid_entry2 *cpuid_0x1;
11842 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11843 	unsigned long new_cr0;
11844 
11845 	/*
11846 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11847 	 * to handle side effects.  RESET emulation hits those flows and relies
11848 	 * on emulated/virtualized registers, including those that are loaded
11849 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11850 	 * to detect improper or missing initialization.
11851 	 */
11852 	WARN_ON_ONCE(!init_event &&
11853 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11854 
11855 	/*
11856 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11857 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11858 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11859 	 * bits), i.e. virtualization is disabled.
11860 	 */
11861 	if (is_guest_mode(vcpu))
11862 		kvm_leave_nested(vcpu);
11863 
11864 	kvm_lapic_reset(vcpu, init_event);
11865 
11866 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11867 	vcpu->arch.hflags = 0;
11868 
11869 	vcpu->arch.smi_pending = 0;
11870 	vcpu->arch.smi_count = 0;
11871 	atomic_set(&vcpu->arch.nmi_queued, 0);
11872 	vcpu->arch.nmi_pending = 0;
11873 	vcpu->arch.nmi_injected = false;
11874 	kvm_clear_interrupt_queue(vcpu);
11875 	kvm_clear_exception_queue(vcpu);
11876 
11877 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11878 	kvm_update_dr0123(vcpu);
11879 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11880 	vcpu->arch.dr7 = DR7_FIXED_1;
11881 	kvm_update_dr7(vcpu);
11882 
11883 	vcpu->arch.cr2 = 0;
11884 
11885 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11886 	vcpu->arch.apf.msr_en_val = 0;
11887 	vcpu->arch.apf.msr_int_val = 0;
11888 	vcpu->arch.st.msr_val = 0;
11889 
11890 	kvmclock_reset(vcpu);
11891 
11892 	kvm_clear_async_pf_completion_queue(vcpu);
11893 	kvm_async_pf_hash_reset(vcpu);
11894 	vcpu->arch.apf.halted = false;
11895 
11896 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11897 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11898 
11899 		/*
11900 		 * All paths that lead to INIT are required to load the guest's
11901 		 * FPU state (because most paths are buried in KVM_RUN).
11902 		 */
11903 		if (init_event)
11904 			kvm_put_guest_fpu(vcpu);
11905 
11906 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11907 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11908 
11909 		if (init_event)
11910 			kvm_load_guest_fpu(vcpu);
11911 	}
11912 
11913 	if (!init_event) {
11914 		kvm_pmu_reset(vcpu);
11915 		vcpu->arch.smbase = 0x30000;
11916 
11917 		vcpu->arch.msr_misc_features_enables = 0;
11918 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11919 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11920 
11921 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11922 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11923 	}
11924 
11925 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11926 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11927 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11928 
11929 	/*
11930 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11931 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11932 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11933 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11934 	 * on RESET.  But, go through the motions in case that's ever remedied.
11935 	 */
11936 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11937 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11938 
11939 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11940 
11941 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11942 	kvm_rip_write(vcpu, 0xfff0);
11943 
11944 	vcpu->arch.cr3 = 0;
11945 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11946 
11947 	/*
11948 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11949 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11950 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11951 	 */
11952 	new_cr0 = X86_CR0_ET;
11953 	if (init_event)
11954 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11955 	else
11956 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11957 
11958 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11959 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11960 	static_call(kvm_x86_set_efer)(vcpu, 0);
11961 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11962 
11963 	/*
11964 	 * On the standard CR0/CR4/EFER modification paths, there are several
11965 	 * complex conditions determining whether the MMU has to be reset and/or
11966 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11967 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11968 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11969 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11970 	 */
11971 	if (old_cr0 & X86_CR0_PG) {
11972 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11973 		kvm_mmu_reset_context(vcpu);
11974 	}
11975 
11976 	/*
11977 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11978 	 * APM states the TLBs are untouched by INIT, but it also states that
11979 	 * the TLBs are flushed on "External initialization of the processor."
11980 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11981 	 * benefit in relying on the guest to flush the TLB immediately after
11982 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11983 	 * performance perspective.
11984 	 */
11985 	if (init_event)
11986 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11987 }
11988 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11989 
11990 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11991 {
11992 	struct kvm_segment cs;
11993 
11994 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11995 	cs.selector = vector << 8;
11996 	cs.base = vector << 12;
11997 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11998 	kvm_rip_write(vcpu, 0);
11999 }
12000 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12001 
12002 int kvm_arch_hardware_enable(void)
12003 {
12004 	struct kvm *kvm;
12005 	struct kvm_vcpu *vcpu;
12006 	unsigned long i;
12007 	int ret;
12008 	u64 local_tsc;
12009 	u64 max_tsc = 0;
12010 	bool stable, backwards_tsc = false;
12011 
12012 	kvm_user_return_msr_cpu_online();
12013 
12014 	ret = kvm_x86_check_processor_compatibility();
12015 	if (ret)
12016 		return ret;
12017 
12018 	ret = static_call(kvm_x86_hardware_enable)();
12019 	if (ret != 0)
12020 		return ret;
12021 
12022 	local_tsc = rdtsc();
12023 	stable = !kvm_check_tsc_unstable();
12024 	list_for_each_entry(kvm, &vm_list, vm_list) {
12025 		kvm_for_each_vcpu(i, vcpu, kvm) {
12026 			if (!stable && vcpu->cpu == smp_processor_id())
12027 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12028 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12029 				backwards_tsc = true;
12030 				if (vcpu->arch.last_host_tsc > max_tsc)
12031 					max_tsc = vcpu->arch.last_host_tsc;
12032 			}
12033 		}
12034 	}
12035 
12036 	/*
12037 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12038 	 * platforms that reset TSC during suspend or hibernate actions, but
12039 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12040 	 * detect that condition here, which happens early in CPU bringup,
12041 	 * before any KVM threads can be running.  Unfortunately, we can't
12042 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12043 	 * enough into CPU bringup that we know how much real time has actually
12044 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12045 	 * variables that haven't been updated yet.
12046 	 *
12047 	 * So we simply find the maximum observed TSC above, then record the
12048 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12049 	 * the adjustment will be applied.  Note that we accumulate
12050 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12051 	 * gets a chance to run again.  In the event that no KVM threads get a
12052 	 * chance to run, we will miss the entire elapsed period, as we'll have
12053 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12054 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12055 	 * uniform across all VCPUs (not to mention the scenario is extremely
12056 	 * unlikely). It is possible that a second hibernate recovery happens
12057 	 * much faster than a first, causing the observed TSC here to be
12058 	 * smaller; this would require additional padding adjustment, which is
12059 	 * why we set last_host_tsc to the local tsc observed here.
12060 	 *
12061 	 * N.B. - this code below runs only on platforms with reliable TSC,
12062 	 * as that is the only way backwards_tsc is set above.  Also note
12063 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12064 	 * have the same delta_cyc adjustment applied if backwards_tsc
12065 	 * is detected.  Note further, this adjustment is only done once,
12066 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12067 	 * called multiple times (one for each physical CPU bringup).
12068 	 *
12069 	 * Platforms with unreliable TSCs don't have to deal with this, they
12070 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12071 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12072 	 * guarantee that they stay in perfect synchronization.
12073 	 */
12074 	if (backwards_tsc) {
12075 		u64 delta_cyc = max_tsc - local_tsc;
12076 		list_for_each_entry(kvm, &vm_list, vm_list) {
12077 			kvm->arch.backwards_tsc_observed = true;
12078 			kvm_for_each_vcpu(i, vcpu, kvm) {
12079 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12080 				vcpu->arch.last_host_tsc = local_tsc;
12081 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12082 			}
12083 
12084 			/*
12085 			 * We have to disable TSC offset matching.. if you were
12086 			 * booting a VM while issuing an S4 host suspend....
12087 			 * you may have some problem.  Solving this issue is
12088 			 * left as an exercise to the reader.
12089 			 */
12090 			kvm->arch.last_tsc_nsec = 0;
12091 			kvm->arch.last_tsc_write = 0;
12092 		}
12093 
12094 	}
12095 	return 0;
12096 }
12097 
12098 void kvm_arch_hardware_disable(void)
12099 {
12100 	static_call(kvm_x86_hardware_disable)();
12101 	drop_user_return_notifiers();
12102 }
12103 
12104 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12105 {
12106 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12107 }
12108 
12109 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12110 {
12111 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12112 }
12113 
12114 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12115 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12116 
12117 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12118 {
12119 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12120 
12121 	vcpu->arch.l1tf_flush_l1d = true;
12122 	if (pmu->version && unlikely(pmu->event_count)) {
12123 		pmu->need_cleanup = true;
12124 		kvm_make_request(KVM_REQ_PMU, vcpu);
12125 	}
12126 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12127 }
12128 
12129 void kvm_arch_free_vm(struct kvm *kvm)
12130 {
12131 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12132 	__kvm_arch_free_vm(kvm);
12133 }
12134 
12135 
12136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12137 {
12138 	int ret;
12139 	unsigned long flags;
12140 
12141 	if (type)
12142 		return -EINVAL;
12143 
12144 	ret = kvm_page_track_init(kvm);
12145 	if (ret)
12146 		goto out;
12147 
12148 	ret = kvm_mmu_init_vm(kvm);
12149 	if (ret)
12150 		goto out_page_track;
12151 
12152 	ret = static_call(kvm_x86_vm_init)(kvm);
12153 	if (ret)
12154 		goto out_uninit_mmu;
12155 
12156 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12157 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12158 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12159 
12160 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12161 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12162 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12163 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12164 		&kvm->arch.irq_sources_bitmap);
12165 
12166 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12167 	mutex_init(&kvm->arch.apic_map_lock);
12168 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12169 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12170 
12171 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12172 	pvclock_update_vm_gtod_copy(kvm);
12173 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12174 
12175 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12176 	kvm->arch.guest_can_read_msr_platform_info = true;
12177 	kvm->arch.enable_pmu = enable_pmu;
12178 
12179 #if IS_ENABLED(CONFIG_HYPERV)
12180 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12181 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12182 #endif
12183 
12184 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12185 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12186 
12187 	kvm_apicv_init(kvm);
12188 	kvm_hv_init_vm(kvm);
12189 	kvm_xen_init_vm(kvm);
12190 
12191 	return 0;
12192 
12193 out_uninit_mmu:
12194 	kvm_mmu_uninit_vm(kvm);
12195 out_page_track:
12196 	kvm_page_track_cleanup(kvm);
12197 out:
12198 	return ret;
12199 }
12200 
12201 int kvm_arch_post_init_vm(struct kvm *kvm)
12202 {
12203 	return kvm_mmu_post_init_vm(kvm);
12204 }
12205 
12206 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12207 {
12208 	vcpu_load(vcpu);
12209 	kvm_mmu_unload(vcpu);
12210 	vcpu_put(vcpu);
12211 }
12212 
12213 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12214 {
12215 	unsigned long i;
12216 	struct kvm_vcpu *vcpu;
12217 
12218 	kvm_for_each_vcpu(i, vcpu, kvm) {
12219 		kvm_clear_async_pf_completion_queue(vcpu);
12220 		kvm_unload_vcpu_mmu(vcpu);
12221 	}
12222 }
12223 
12224 void kvm_arch_sync_events(struct kvm *kvm)
12225 {
12226 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12227 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12228 	kvm_free_pit(kvm);
12229 }
12230 
12231 /**
12232  * __x86_set_memory_region: Setup KVM internal memory slot
12233  *
12234  * @kvm: the kvm pointer to the VM.
12235  * @id: the slot ID to setup.
12236  * @gpa: the GPA to install the slot (unused when @size == 0).
12237  * @size: the size of the slot. Set to zero to uninstall a slot.
12238  *
12239  * This function helps to setup a KVM internal memory slot.  Specify
12240  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12241  * slot.  The return code can be one of the following:
12242  *
12243  *   HVA:           on success (uninstall will return a bogus HVA)
12244  *   -errno:        on error
12245  *
12246  * The caller should always use IS_ERR() to check the return value
12247  * before use.  Note, the KVM internal memory slots are guaranteed to
12248  * remain valid and unchanged until the VM is destroyed, i.e., the
12249  * GPA->HVA translation will not change.  However, the HVA is a user
12250  * address, i.e. its accessibility is not guaranteed, and must be
12251  * accessed via __copy_{to,from}_user().
12252  */
12253 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12254 				      u32 size)
12255 {
12256 	int i, r;
12257 	unsigned long hva, old_npages;
12258 	struct kvm_memslots *slots = kvm_memslots(kvm);
12259 	struct kvm_memory_slot *slot;
12260 
12261 	/* Called with kvm->slots_lock held.  */
12262 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12263 		return ERR_PTR_USR(-EINVAL);
12264 
12265 	slot = id_to_memslot(slots, id);
12266 	if (size) {
12267 		if (slot && slot->npages)
12268 			return ERR_PTR_USR(-EEXIST);
12269 
12270 		/*
12271 		 * MAP_SHARED to prevent internal slot pages from being moved
12272 		 * by fork()/COW.
12273 		 */
12274 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12275 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12276 		if (IS_ERR((void *)hva))
12277 			return (void __user *)hva;
12278 	} else {
12279 		if (!slot || !slot->npages)
12280 			return NULL;
12281 
12282 		old_npages = slot->npages;
12283 		hva = slot->userspace_addr;
12284 	}
12285 
12286 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12287 		struct kvm_userspace_memory_region m;
12288 
12289 		m.slot = id | (i << 16);
12290 		m.flags = 0;
12291 		m.guest_phys_addr = gpa;
12292 		m.userspace_addr = hva;
12293 		m.memory_size = size;
12294 		r = __kvm_set_memory_region(kvm, &m);
12295 		if (r < 0)
12296 			return ERR_PTR_USR(r);
12297 	}
12298 
12299 	if (!size)
12300 		vm_munmap(hva, old_npages * PAGE_SIZE);
12301 
12302 	return (void __user *)hva;
12303 }
12304 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12305 
12306 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12307 {
12308 	kvm_mmu_pre_destroy_vm(kvm);
12309 }
12310 
12311 void kvm_arch_destroy_vm(struct kvm *kvm)
12312 {
12313 	if (current->mm == kvm->mm) {
12314 		/*
12315 		 * Free memory regions allocated on behalf of userspace,
12316 		 * unless the memory map has changed due to process exit
12317 		 * or fd copying.
12318 		 */
12319 		mutex_lock(&kvm->slots_lock);
12320 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12321 					0, 0);
12322 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12323 					0, 0);
12324 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12325 		mutex_unlock(&kvm->slots_lock);
12326 	}
12327 	kvm_unload_vcpu_mmus(kvm);
12328 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12329 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12330 	kvm_pic_destroy(kvm);
12331 	kvm_ioapic_destroy(kvm);
12332 	kvm_destroy_vcpus(kvm);
12333 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12334 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12335 	kvm_mmu_uninit_vm(kvm);
12336 	kvm_page_track_cleanup(kvm);
12337 	kvm_xen_destroy_vm(kvm);
12338 	kvm_hv_destroy_vm(kvm);
12339 }
12340 
12341 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12342 {
12343 	int i;
12344 
12345 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12346 		kvfree(slot->arch.rmap[i]);
12347 		slot->arch.rmap[i] = NULL;
12348 	}
12349 }
12350 
12351 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12352 {
12353 	int i;
12354 
12355 	memslot_rmap_free(slot);
12356 
12357 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12358 		kvfree(slot->arch.lpage_info[i - 1]);
12359 		slot->arch.lpage_info[i - 1] = NULL;
12360 	}
12361 
12362 	kvm_page_track_free_memslot(slot);
12363 }
12364 
12365 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12366 {
12367 	const int sz = sizeof(*slot->arch.rmap[0]);
12368 	int i;
12369 
12370 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12371 		int level = i + 1;
12372 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12373 
12374 		if (slot->arch.rmap[i])
12375 			continue;
12376 
12377 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12378 		if (!slot->arch.rmap[i]) {
12379 			memslot_rmap_free(slot);
12380 			return -ENOMEM;
12381 		}
12382 	}
12383 
12384 	return 0;
12385 }
12386 
12387 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12388 				      struct kvm_memory_slot *slot)
12389 {
12390 	unsigned long npages = slot->npages;
12391 	int i, r;
12392 
12393 	/*
12394 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12395 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12396 	 * the new memslot is successful.
12397 	 */
12398 	memset(&slot->arch, 0, sizeof(slot->arch));
12399 
12400 	if (kvm_memslots_have_rmaps(kvm)) {
12401 		r = memslot_rmap_alloc(slot, npages);
12402 		if (r)
12403 			return r;
12404 	}
12405 
12406 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12407 		struct kvm_lpage_info *linfo;
12408 		unsigned long ugfn;
12409 		int lpages;
12410 		int level = i + 1;
12411 
12412 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12413 
12414 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12415 		if (!linfo)
12416 			goto out_free;
12417 
12418 		slot->arch.lpage_info[i - 1] = linfo;
12419 
12420 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12421 			linfo[0].disallow_lpage = 1;
12422 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12423 			linfo[lpages - 1].disallow_lpage = 1;
12424 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12425 		/*
12426 		 * If the gfn and userspace address are not aligned wrt each
12427 		 * other, disable large page support for this slot.
12428 		 */
12429 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12430 			unsigned long j;
12431 
12432 			for (j = 0; j < lpages; ++j)
12433 				linfo[j].disallow_lpage = 1;
12434 		}
12435 	}
12436 
12437 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12438 		goto out_free;
12439 
12440 	return 0;
12441 
12442 out_free:
12443 	memslot_rmap_free(slot);
12444 
12445 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12446 		kvfree(slot->arch.lpage_info[i - 1]);
12447 		slot->arch.lpage_info[i - 1] = NULL;
12448 	}
12449 	return -ENOMEM;
12450 }
12451 
12452 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12453 {
12454 	struct kvm_vcpu *vcpu;
12455 	unsigned long i;
12456 
12457 	/*
12458 	 * memslots->generation has been incremented.
12459 	 * mmio generation may have reached its maximum value.
12460 	 */
12461 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12462 
12463 	/* Force re-initialization of steal_time cache */
12464 	kvm_for_each_vcpu(i, vcpu, kvm)
12465 		kvm_vcpu_kick(vcpu);
12466 }
12467 
12468 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12469 				   const struct kvm_memory_slot *old,
12470 				   struct kvm_memory_slot *new,
12471 				   enum kvm_mr_change change)
12472 {
12473 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12474 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12475 			return -EINVAL;
12476 
12477 		return kvm_alloc_memslot_metadata(kvm, new);
12478 	}
12479 
12480 	if (change == KVM_MR_FLAGS_ONLY)
12481 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12482 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12483 		return -EIO;
12484 
12485 	return 0;
12486 }
12487 
12488 
12489 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12490 {
12491 	int nr_slots;
12492 
12493 	if (!kvm_x86_ops.cpu_dirty_log_size)
12494 		return;
12495 
12496 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12497 	if ((enable && nr_slots == 1) || !nr_slots)
12498 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12499 }
12500 
12501 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12502 				     struct kvm_memory_slot *old,
12503 				     const struct kvm_memory_slot *new,
12504 				     enum kvm_mr_change change)
12505 {
12506 	u32 old_flags = old ? old->flags : 0;
12507 	u32 new_flags = new ? new->flags : 0;
12508 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12509 
12510 	/*
12511 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12512 	 * applies to all operations.
12513 	 */
12514 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12515 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12516 
12517 	/*
12518 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12519 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12520 	 *
12521 	 * For a memslot with dirty logging disabled:
12522 	 * CREATE:      No dirty mappings will already exist.
12523 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12524 	 *		kvm_arch_flush_shadow_memslot()
12525 	 *
12526 	 * For a memslot with dirty logging enabled:
12527 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12528 	 *		and no dirty bits to clear.
12529 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12530 	 *		kvm_arch_flush_shadow_memslot().
12531 	 */
12532 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12533 		return;
12534 
12535 	/*
12536 	 * READONLY and non-flags changes were filtered out above, and the only
12537 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12538 	 * logging isn't being toggled on or off.
12539 	 */
12540 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12541 		return;
12542 
12543 	if (!log_dirty_pages) {
12544 		/*
12545 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12546 		 * large sptes have to be split.  If live migration succeeds,
12547 		 * the guest in the source machine will be destroyed and large
12548 		 * sptes will be created in the destination.  However, if the
12549 		 * guest continues to run in the source machine (for example if
12550 		 * live migration fails), small sptes will remain around and
12551 		 * cause bad performance.
12552 		 *
12553 		 * Scan sptes if dirty logging has been stopped, dropping those
12554 		 * which can be collapsed into a single large-page spte.  Later
12555 		 * page faults will create the large-page sptes.
12556 		 */
12557 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12558 	} else {
12559 		/*
12560 		 * Initially-all-set does not require write protecting any page,
12561 		 * because they're all assumed to be dirty.
12562 		 */
12563 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12564 			return;
12565 
12566 		if (READ_ONCE(eager_page_split))
12567 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12568 
12569 		if (kvm_x86_ops.cpu_dirty_log_size) {
12570 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12571 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12572 		} else {
12573 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12574 		}
12575 
12576 		/*
12577 		 * Unconditionally flush the TLBs after enabling dirty logging.
12578 		 * A flush is almost always going to be necessary (see below),
12579 		 * and unconditionally flushing allows the helpers to omit
12580 		 * the subtly complex checks when removing write access.
12581 		 *
12582 		 * Do the flush outside of mmu_lock to reduce the amount of
12583 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12584 		 * safe as KVM only needs to guarantee the slot is fully
12585 		 * write-protected before returning to userspace, i.e. before
12586 		 * userspace can consume the dirty status.
12587 		 *
12588 		 * Flushing outside of mmu_lock requires KVM to be careful when
12589 		 * making decisions based on writable status of an SPTE, e.g. a
12590 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12591 		 *
12592 		 * Specifically, KVM also write-protects guest page tables to
12593 		 * monitor changes when using shadow paging, and must guarantee
12594 		 * no CPUs can write to those page before mmu_lock is dropped.
12595 		 * Because CPUs may have stale TLB entries at this point, a
12596 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12597 		 *
12598 		 * KVM also allows making SPTES writable outside of mmu_lock,
12599 		 * e.g. to allow dirty logging without taking mmu_lock.
12600 		 *
12601 		 * To handle these scenarios, KVM uses a separate software-only
12602 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12603 		 * a guest page table being write-protected (KVM clears the
12604 		 * MMU-writable flag when write-protecting for shadow paging).
12605 		 *
12606 		 * The use of MMU-writable is also the primary motivation for
12607 		 * the unconditional flush.  Because KVM must guarantee that a
12608 		 * CPU doesn't contain stale, writable TLB entries for a
12609 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12610 		 * MMU-writable SPTE regardless of whether the actual hardware
12611 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12612 		 * to flush, while unconditionally flushing allows the "remove
12613 		 * write access" helpers to ignore MMU-writable entirely.
12614 		 *
12615 		 * See is_writable_pte() for more details (the case involving
12616 		 * access-tracked SPTEs is particularly relevant).
12617 		 */
12618 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12619 	}
12620 }
12621 
12622 void kvm_arch_commit_memory_region(struct kvm *kvm,
12623 				struct kvm_memory_slot *old,
12624 				const struct kvm_memory_slot *new,
12625 				enum kvm_mr_change change)
12626 {
12627 	if (!kvm->arch.n_requested_mmu_pages &&
12628 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12629 		unsigned long nr_mmu_pages;
12630 
12631 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12632 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12633 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12634 	}
12635 
12636 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12637 
12638 	/* Free the arrays associated with the old memslot. */
12639 	if (change == KVM_MR_MOVE)
12640 		kvm_arch_free_memslot(kvm, old);
12641 }
12642 
12643 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12644 {
12645 	kvm_mmu_zap_all(kvm);
12646 }
12647 
12648 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12649 				   struct kvm_memory_slot *slot)
12650 {
12651 	kvm_page_track_flush_slot(kvm, slot);
12652 }
12653 
12654 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12655 {
12656 	return (is_guest_mode(vcpu) &&
12657 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12658 }
12659 
12660 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12661 {
12662 	if (!list_empty_careful(&vcpu->async_pf.done))
12663 		return true;
12664 
12665 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12666 	    kvm_apic_init_sipi_allowed(vcpu))
12667 		return true;
12668 
12669 	if (vcpu->arch.pv.pv_unhalted)
12670 		return true;
12671 
12672 	if (kvm_is_exception_pending(vcpu))
12673 		return true;
12674 
12675 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12676 	    (vcpu->arch.nmi_pending &&
12677 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12678 		return true;
12679 
12680 #ifdef CONFIG_KVM_SMM
12681 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12682 	    (vcpu->arch.smi_pending &&
12683 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12684 		return true;
12685 #endif
12686 
12687 	if (kvm_arch_interrupt_allowed(vcpu) &&
12688 	    (kvm_cpu_has_interrupt(vcpu) ||
12689 	    kvm_guest_apic_has_interrupt(vcpu)))
12690 		return true;
12691 
12692 	if (kvm_hv_has_stimer_pending(vcpu))
12693 		return true;
12694 
12695 	if (is_guest_mode(vcpu) &&
12696 	    kvm_x86_ops.nested_ops->has_events &&
12697 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12698 		return true;
12699 
12700 	if (kvm_xen_has_pending_events(vcpu))
12701 		return true;
12702 
12703 	return false;
12704 }
12705 
12706 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12707 {
12708 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12709 }
12710 
12711 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12712 {
12713 	if (kvm_vcpu_apicv_active(vcpu) &&
12714 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12715 		return true;
12716 
12717 	return false;
12718 }
12719 
12720 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12721 {
12722 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12723 		return true;
12724 
12725 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12726 #ifdef CONFIG_KVM_SMM
12727 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12728 #endif
12729 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12730 		return true;
12731 
12732 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12733 }
12734 
12735 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12736 {
12737 	if (vcpu->arch.guest_state_protected)
12738 		return true;
12739 
12740 	return vcpu->arch.preempted_in_kernel;
12741 }
12742 
12743 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12744 {
12745 	return kvm_rip_read(vcpu);
12746 }
12747 
12748 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12749 {
12750 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12751 }
12752 
12753 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12754 {
12755 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12756 }
12757 
12758 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12759 {
12760 	/* Can't read the RIP when guest state is protected, just return 0 */
12761 	if (vcpu->arch.guest_state_protected)
12762 		return 0;
12763 
12764 	if (is_64_bit_mode(vcpu))
12765 		return kvm_rip_read(vcpu);
12766 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12767 		     kvm_rip_read(vcpu));
12768 }
12769 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12770 
12771 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12772 {
12773 	return kvm_get_linear_rip(vcpu) == linear_rip;
12774 }
12775 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12776 
12777 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12778 {
12779 	unsigned long rflags;
12780 
12781 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12782 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12783 		rflags &= ~X86_EFLAGS_TF;
12784 	return rflags;
12785 }
12786 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12787 
12788 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12789 {
12790 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12791 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12792 		rflags |= X86_EFLAGS_TF;
12793 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12794 }
12795 
12796 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12797 {
12798 	__kvm_set_rflags(vcpu, rflags);
12799 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12800 }
12801 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12802 
12803 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12804 {
12805 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12806 
12807 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12808 }
12809 
12810 static inline u32 kvm_async_pf_next_probe(u32 key)
12811 {
12812 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12813 }
12814 
12815 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12816 {
12817 	u32 key = kvm_async_pf_hash_fn(gfn);
12818 
12819 	while (vcpu->arch.apf.gfns[key] != ~0)
12820 		key = kvm_async_pf_next_probe(key);
12821 
12822 	vcpu->arch.apf.gfns[key] = gfn;
12823 }
12824 
12825 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12826 {
12827 	int i;
12828 	u32 key = kvm_async_pf_hash_fn(gfn);
12829 
12830 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12831 		     (vcpu->arch.apf.gfns[key] != gfn &&
12832 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12833 		key = kvm_async_pf_next_probe(key);
12834 
12835 	return key;
12836 }
12837 
12838 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12839 {
12840 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12841 }
12842 
12843 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12844 {
12845 	u32 i, j, k;
12846 
12847 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12848 
12849 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12850 		return;
12851 
12852 	while (true) {
12853 		vcpu->arch.apf.gfns[i] = ~0;
12854 		do {
12855 			j = kvm_async_pf_next_probe(j);
12856 			if (vcpu->arch.apf.gfns[j] == ~0)
12857 				return;
12858 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12859 			/*
12860 			 * k lies cyclically in ]i,j]
12861 			 * |    i.k.j |
12862 			 * |....j i.k.| or  |.k..j i...|
12863 			 */
12864 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12865 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12866 		i = j;
12867 	}
12868 }
12869 
12870 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12871 {
12872 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12873 
12874 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12875 				      sizeof(reason));
12876 }
12877 
12878 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12879 {
12880 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12881 
12882 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12883 					     &token, offset, sizeof(token));
12884 }
12885 
12886 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12887 {
12888 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12889 	u32 val;
12890 
12891 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12892 					 &val, offset, sizeof(val)))
12893 		return false;
12894 
12895 	return !val;
12896 }
12897 
12898 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12899 {
12900 
12901 	if (!kvm_pv_async_pf_enabled(vcpu))
12902 		return false;
12903 
12904 	if (vcpu->arch.apf.send_user_only &&
12905 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12906 		return false;
12907 
12908 	if (is_guest_mode(vcpu)) {
12909 		/*
12910 		 * L1 needs to opt into the special #PF vmexits that are
12911 		 * used to deliver async page faults.
12912 		 */
12913 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12914 	} else {
12915 		/*
12916 		 * Play it safe in case the guest temporarily disables paging.
12917 		 * The real mode IDT in particular is unlikely to have a #PF
12918 		 * exception setup.
12919 		 */
12920 		return is_paging(vcpu);
12921 	}
12922 }
12923 
12924 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12925 {
12926 	if (unlikely(!lapic_in_kernel(vcpu) ||
12927 		     kvm_event_needs_reinjection(vcpu) ||
12928 		     kvm_is_exception_pending(vcpu)))
12929 		return false;
12930 
12931 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12932 		return false;
12933 
12934 	/*
12935 	 * If interrupts are off we cannot even use an artificial
12936 	 * halt state.
12937 	 */
12938 	return kvm_arch_interrupt_allowed(vcpu);
12939 }
12940 
12941 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12942 				     struct kvm_async_pf *work)
12943 {
12944 	struct x86_exception fault;
12945 
12946 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12947 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12948 
12949 	if (kvm_can_deliver_async_pf(vcpu) &&
12950 	    !apf_put_user_notpresent(vcpu)) {
12951 		fault.vector = PF_VECTOR;
12952 		fault.error_code_valid = true;
12953 		fault.error_code = 0;
12954 		fault.nested_page_fault = false;
12955 		fault.address = work->arch.token;
12956 		fault.async_page_fault = true;
12957 		kvm_inject_page_fault(vcpu, &fault);
12958 		return true;
12959 	} else {
12960 		/*
12961 		 * It is not possible to deliver a paravirtualized asynchronous
12962 		 * page fault, but putting the guest in an artificial halt state
12963 		 * can be beneficial nevertheless: if an interrupt arrives, we
12964 		 * can deliver it timely and perhaps the guest will schedule
12965 		 * another process.  When the instruction that triggered a page
12966 		 * fault is retried, hopefully the page will be ready in the host.
12967 		 */
12968 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12969 		return false;
12970 	}
12971 }
12972 
12973 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12974 				 struct kvm_async_pf *work)
12975 {
12976 	struct kvm_lapic_irq irq = {
12977 		.delivery_mode = APIC_DM_FIXED,
12978 		.vector = vcpu->arch.apf.vec
12979 	};
12980 
12981 	if (work->wakeup_all)
12982 		work->arch.token = ~0; /* broadcast wakeup */
12983 	else
12984 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12985 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12986 
12987 	if ((work->wakeup_all || work->notpresent_injected) &&
12988 	    kvm_pv_async_pf_enabled(vcpu) &&
12989 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12990 		vcpu->arch.apf.pageready_pending = true;
12991 		kvm_apic_set_irq(vcpu, &irq, NULL);
12992 	}
12993 
12994 	vcpu->arch.apf.halted = false;
12995 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12996 }
12997 
12998 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12999 {
13000 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13001 	if (!vcpu->arch.apf.pageready_pending)
13002 		kvm_vcpu_kick(vcpu);
13003 }
13004 
13005 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13006 {
13007 	if (!kvm_pv_async_pf_enabled(vcpu))
13008 		return true;
13009 	else
13010 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13011 }
13012 
13013 void kvm_arch_start_assignment(struct kvm *kvm)
13014 {
13015 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13016 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13017 }
13018 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13019 
13020 void kvm_arch_end_assignment(struct kvm *kvm)
13021 {
13022 	atomic_dec(&kvm->arch.assigned_device_count);
13023 }
13024 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13025 
13026 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13027 {
13028 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13029 }
13030 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13031 
13032 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13033 {
13034 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13035 }
13036 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13037 
13038 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13039 {
13040 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13041 }
13042 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13043 
13044 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13045 {
13046 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13047 }
13048 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13049 
13050 bool kvm_arch_has_irq_bypass(void)
13051 {
13052 	return true;
13053 }
13054 
13055 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13056 				      struct irq_bypass_producer *prod)
13057 {
13058 	struct kvm_kernel_irqfd *irqfd =
13059 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13060 	int ret;
13061 
13062 	irqfd->producer = prod;
13063 	kvm_arch_start_assignment(irqfd->kvm);
13064 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13065 					 prod->irq, irqfd->gsi, 1);
13066 
13067 	if (ret)
13068 		kvm_arch_end_assignment(irqfd->kvm);
13069 
13070 	return ret;
13071 }
13072 
13073 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13074 				      struct irq_bypass_producer *prod)
13075 {
13076 	int ret;
13077 	struct kvm_kernel_irqfd *irqfd =
13078 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13079 
13080 	WARN_ON(irqfd->producer != prod);
13081 	irqfd->producer = NULL;
13082 
13083 	/*
13084 	 * When producer of consumer is unregistered, we change back to
13085 	 * remapped mode, so we can re-use the current implementation
13086 	 * when the irq is masked/disabled or the consumer side (KVM
13087 	 * int this case doesn't want to receive the interrupts.
13088 	*/
13089 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13090 	if (ret)
13091 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13092 		       " fails: %d\n", irqfd->consumer.token, ret);
13093 
13094 	kvm_arch_end_assignment(irqfd->kvm);
13095 }
13096 
13097 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13098 				   uint32_t guest_irq, bool set)
13099 {
13100 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13101 }
13102 
13103 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13104 				  struct kvm_kernel_irq_routing_entry *new)
13105 {
13106 	if (new->type != KVM_IRQ_ROUTING_MSI)
13107 		return true;
13108 
13109 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13110 }
13111 
13112 bool kvm_vector_hashing_enabled(void)
13113 {
13114 	return vector_hashing;
13115 }
13116 
13117 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13118 {
13119 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13120 }
13121 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13122 
13123 
13124 int kvm_spec_ctrl_test_value(u64 value)
13125 {
13126 	/*
13127 	 * test that setting IA32_SPEC_CTRL to given value
13128 	 * is allowed by the host processor
13129 	 */
13130 
13131 	u64 saved_value;
13132 	unsigned long flags;
13133 	int ret = 0;
13134 
13135 	local_irq_save(flags);
13136 
13137 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13138 		ret = 1;
13139 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13140 		ret = 1;
13141 	else
13142 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13143 
13144 	local_irq_restore(flags);
13145 
13146 	return ret;
13147 }
13148 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13149 
13150 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13151 {
13152 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13153 	struct x86_exception fault;
13154 	u64 access = error_code &
13155 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13156 
13157 	if (!(error_code & PFERR_PRESENT_MASK) ||
13158 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13159 		/*
13160 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13161 		 * tables probably do not match the TLB.  Just proceed
13162 		 * with the error code that the processor gave.
13163 		 */
13164 		fault.vector = PF_VECTOR;
13165 		fault.error_code_valid = true;
13166 		fault.error_code = error_code;
13167 		fault.nested_page_fault = false;
13168 		fault.address = gva;
13169 		fault.async_page_fault = false;
13170 	}
13171 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13172 }
13173 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13174 
13175 /*
13176  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13177  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13178  * indicates whether exit to userspace is needed.
13179  */
13180 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13181 			      struct x86_exception *e)
13182 {
13183 	if (r == X86EMUL_PROPAGATE_FAULT) {
13184 		if (KVM_BUG_ON(!e, vcpu->kvm))
13185 			return -EIO;
13186 
13187 		kvm_inject_emulated_page_fault(vcpu, e);
13188 		return 1;
13189 	}
13190 
13191 	/*
13192 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13193 	 * while handling a VMX instruction KVM could've handled the request
13194 	 * correctly by exiting to userspace and performing I/O but there
13195 	 * doesn't seem to be a real use-case behind such requests, just return
13196 	 * KVM_EXIT_INTERNAL_ERROR for now.
13197 	 */
13198 	kvm_prepare_emulation_failure_exit(vcpu);
13199 
13200 	return 0;
13201 }
13202 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13203 
13204 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13205 {
13206 	bool pcid_enabled;
13207 	struct x86_exception e;
13208 	struct {
13209 		u64 pcid;
13210 		u64 gla;
13211 	} operand;
13212 	int r;
13213 
13214 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13215 	if (r != X86EMUL_CONTINUE)
13216 		return kvm_handle_memory_failure(vcpu, r, &e);
13217 
13218 	if (operand.pcid >> 12 != 0) {
13219 		kvm_inject_gp(vcpu, 0);
13220 		return 1;
13221 	}
13222 
13223 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13224 
13225 	switch (type) {
13226 	case INVPCID_TYPE_INDIV_ADDR:
13227 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13228 		    is_noncanonical_address(operand.gla, vcpu)) {
13229 			kvm_inject_gp(vcpu, 0);
13230 			return 1;
13231 		}
13232 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13233 		return kvm_skip_emulated_instruction(vcpu);
13234 
13235 	case INVPCID_TYPE_SINGLE_CTXT:
13236 		if (!pcid_enabled && (operand.pcid != 0)) {
13237 			kvm_inject_gp(vcpu, 0);
13238 			return 1;
13239 		}
13240 
13241 		kvm_invalidate_pcid(vcpu, operand.pcid);
13242 		return kvm_skip_emulated_instruction(vcpu);
13243 
13244 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13245 		/*
13246 		 * Currently, KVM doesn't mark global entries in the shadow
13247 		 * page tables, so a non-global flush just degenerates to a
13248 		 * global flush. If needed, we could optimize this later by
13249 		 * keeping track of global entries in shadow page tables.
13250 		 */
13251 
13252 		fallthrough;
13253 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13254 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13255 		return kvm_skip_emulated_instruction(vcpu);
13256 
13257 	default:
13258 		kvm_inject_gp(vcpu, 0);
13259 		return 1;
13260 	}
13261 }
13262 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13263 
13264 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13265 {
13266 	struct kvm_run *run = vcpu->run;
13267 	struct kvm_mmio_fragment *frag;
13268 	unsigned int len;
13269 
13270 	BUG_ON(!vcpu->mmio_needed);
13271 
13272 	/* Complete previous fragment */
13273 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13274 	len = min(8u, frag->len);
13275 	if (!vcpu->mmio_is_write)
13276 		memcpy(frag->data, run->mmio.data, len);
13277 
13278 	if (frag->len <= 8) {
13279 		/* Switch to the next fragment. */
13280 		frag++;
13281 		vcpu->mmio_cur_fragment++;
13282 	} else {
13283 		/* Go forward to the next mmio piece. */
13284 		frag->data += len;
13285 		frag->gpa += len;
13286 		frag->len -= len;
13287 	}
13288 
13289 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13290 		vcpu->mmio_needed = 0;
13291 
13292 		// VMG change, at this point, we're always done
13293 		// RIP has already been advanced
13294 		return 1;
13295 	}
13296 
13297 	// More MMIO is needed
13298 	run->mmio.phys_addr = frag->gpa;
13299 	run->mmio.len = min(8u, frag->len);
13300 	run->mmio.is_write = vcpu->mmio_is_write;
13301 	if (run->mmio.is_write)
13302 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13303 	run->exit_reason = KVM_EXIT_MMIO;
13304 
13305 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13306 
13307 	return 0;
13308 }
13309 
13310 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13311 			  void *data)
13312 {
13313 	int handled;
13314 	struct kvm_mmio_fragment *frag;
13315 
13316 	if (!data)
13317 		return -EINVAL;
13318 
13319 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13320 	if (handled == bytes)
13321 		return 1;
13322 
13323 	bytes -= handled;
13324 	gpa += handled;
13325 	data += handled;
13326 
13327 	/*TODO: Check if need to increment number of frags */
13328 	frag = vcpu->mmio_fragments;
13329 	vcpu->mmio_nr_fragments = 1;
13330 	frag->len = bytes;
13331 	frag->gpa = gpa;
13332 	frag->data = data;
13333 
13334 	vcpu->mmio_needed = 1;
13335 	vcpu->mmio_cur_fragment = 0;
13336 
13337 	vcpu->run->mmio.phys_addr = gpa;
13338 	vcpu->run->mmio.len = min(8u, frag->len);
13339 	vcpu->run->mmio.is_write = 1;
13340 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13341 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13342 
13343 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13344 
13345 	return 0;
13346 }
13347 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13348 
13349 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13350 			 void *data)
13351 {
13352 	int handled;
13353 	struct kvm_mmio_fragment *frag;
13354 
13355 	if (!data)
13356 		return -EINVAL;
13357 
13358 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13359 	if (handled == bytes)
13360 		return 1;
13361 
13362 	bytes -= handled;
13363 	gpa += handled;
13364 	data += handled;
13365 
13366 	/*TODO: Check if need to increment number of frags */
13367 	frag = vcpu->mmio_fragments;
13368 	vcpu->mmio_nr_fragments = 1;
13369 	frag->len = bytes;
13370 	frag->gpa = gpa;
13371 	frag->data = data;
13372 
13373 	vcpu->mmio_needed = 1;
13374 	vcpu->mmio_cur_fragment = 0;
13375 
13376 	vcpu->run->mmio.phys_addr = gpa;
13377 	vcpu->run->mmio.len = min(8u, frag->len);
13378 	vcpu->run->mmio.is_write = 0;
13379 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13380 
13381 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13382 
13383 	return 0;
13384 }
13385 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13386 
13387 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13388 {
13389 	vcpu->arch.sev_pio_count -= count;
13390 	vcpu->arch.sev_pio_data += count * size;
13391 }
13392 
13393 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13394 			   unsigned int port);
13395 
13396 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13397 {
13398 	int size = vcpu->arch.pio.size;
13399 	int port = vcpu->arch.pio.port;
13400 
13401 	vcpu->arch.pio.count = 0;
13402 	if (vcpu->arch.sev_pio_count)
13403 		return kvm_sev_es_outs(vcpu, size, port);
13404 	return 1;
13405 }
13406 
13407 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13408 			   unsigned int port)
13409 {
13410 	for (;;) {
13411 		unsigned int count =
13412 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13413 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13414 
13415 		/* memcpy done already by emulator_pio_out.  */
13416 		advance_sev_es_emulated_pio(vcpu, count, size);
13417 		if (!ret)
13418 			break;
13419 
13420 		/* Emulation done by the kernel.  */
13421 		if (!vcpu->arch.sev_pio_count)
13422 			return 1;
13423 	}
13424 
13425 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13426 	return 0;
13427 }
13428 
13429 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13430 			  unsigned int port);
13431 
13432 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13433 {
13434 	unsigned count = vcpu->arch.pio.count;
13435 	int size = vcpu->arch.pio.size;
13436 	int port = vcpu->arch.pio.port;
13437 
13438 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13439 	advance_sev_es_emulated_pio(vcpu, count, size);
13440 	if (vcpu->arch.sev_pio_count)
13441 		return kvm_sev_es_ins(vcpu, size, port);
13442 	return 1;
13443 }
13444 
13445 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13446 			  unsigned int port)
13447 {
13448 	for (;;) {
13449 		unsigned int count =
13450 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13451 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13452 			break;
13453 
13454 		/* Emulation done by the kernel.  */
13455 		advance_sev_es_emulated_pio(vcpu, count, size);
13456 		if (!vcpu->arch.sev_pio_count)
13457 			return 1;
13458 	}
13459 
13460 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13461 	return 0;
13462 }
13463 
13464 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13465 			 unsigned int port, void *data,  unsigned int count,
13466 			 int in)
13467 {
13468 	vcpu->arch.sev_pio_data = data;
13469 	vcpu->arch.sev_pio_count = count;
13470 	return in ? kvm_sev_es_ins(vcpu, size, port)
13471 		  : kvm_sev_es_outs(vcpu, size, port);
13472 }
13473 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13474 
13475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13504 
13505 static int __init kvm_x86_init(void)
13506 {
13507 	kvm_mmu_x86_module_init();
13508 	return 0;
13509 }
13510 module_init(kvm_x86_init);
13511 
13512 static void __exit kvm_x86_exit(void)
13513 {
13514 	/*
13515 	 * If module_init() is implemented, module_exit() must also be
13516 	 * implemented to allow module unload.
13517 	 */
13518 }
13519 module_exit(kvm_x86_exit);
13520