xref: /openbmc/linux/arch/x86/kvm/x86.c (revision e76ae52747a82a548742107b4100e90da41a624d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 
64 #include <trace/events/kvm.h>
65 
66 #include <asm/debugreg.h>
67 #include <asm/msr.h>
68 #include <asm/desc.h>
69 #include <asm/mce.h>
70 #include <asm/pkru.h>
71 #include <linux/kernel_stat.h>
72 #include <asm/fpu/api.h>
73 #include <asm/fpu/xcr.h>
74 #include <asm/fpu/xstate.h>
75 #include <asm/pvclock.h>
76 #include <asm/div64.h>
77 #include <asm/irq_remapping.h>
78 #include <asm/mshyperv.h>
79 #include <asm/hypervisor.h>
80 #include <asm/tlbflush.h>
81 #include <asm/intel_pt.h>
82 #include <asm/emulate_prefix.h>
83 #include <asm/sgx.h>
84 #include <clocksource/hyperv_timer.h>
85 
86 #define CREATE_TRACE_POINTS
87 #include "trace.h"
88 
89 #define MAX_IO_MSRS 256
90 #define KVM_MAX_MCE_BANKS 32
91 
92 struct kvm_caps kvm_caps __read_mostly = {
93 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
94 };
95 EXPORT_SYMBOL_GPL(kvm_caps);
96 
97 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
98 
99 #define emul_to_vcpu(ctxt) \
100 	((struct kvm_vcpu *)(ctxt)->vcpu)
101 
102 /* EFER defaults:
103  * - enable syscall per default because its emulated by KVM
104  * - enable LME and LMA per default on 64 bit KVM
105  */
106 #ifdef CONFIG_X86_64
107 static
108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
109 #else
110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
111 #endif
112 
113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
114 
115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
116 
117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
118 
119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
120                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
121 
122 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
123 static void process_nmi(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 static DEFINE_MUTEX(vendor_module_lock);
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134 
135 #define KVM_X86_OP(func)					     \
136 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
137 				*(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143 
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146 
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150 
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153 
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156 
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160 
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /*
197  * Restoring the host value for MSRs that are only consumed when running in
198  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
199  * returns to userspace, i.e. the kernel can run with the guest's value.
200  */
201 #define KVM_MAX_NR_USER_RETURN_MSRS 16
202 
203 struct kvm_user_return_msrs {
204 	struct user_return_notifier urn;
205 	bool registered;
206 	struct kvm_user_return_msr_values {
207 		u64 host;
208 		u64 curr;
209 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
210 };
211 
212 u32 __read_mostly kvm_nr_uret_msrs;
213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
215 static struct kvm_user_return_msrs __percpu *user_return_msrs;
216 
217 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
218 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
219 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
220 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
221 
222 u64 __read_mostly host_efer;
223 EXPORT_SYMBOL_GPL(host_efer);
224 
225 bool __read_mostly allow_smaller_maxphyaddr = 0;
226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
227 
228 bool __read_mostly enable_apicv = true;
229 EXPORT_SYMBOL_GPL(enable_apicv);
230 
231 u64 __read_mostly host_xss;
232 EXPORT_SYMBOL_GPL(host_xss);
233 
234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
235 	KVM_GENERIC_VM_STATS(),
236 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_pte_write),
238 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
239 	STATS_DESC_COUNTER(VM, mmu_flooded),
240 	STATS_DESC_COUNTER(VM, mmu_recycled),
241 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
242 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
243 	STATS_DESC_ICOUNTER(VM, pages_4k),
244 	STATS_DESC_ICOUNTER(VM, pages_2m),
245 	STATS_DESC_ICOUNTER(VM, pages_1g),
246 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
247 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
248 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
249 };
250 
251 const struct kvm_stats_header kvm_vm_stats_header = {
252 	.name_size = KVM_STATS_NAME_SIZE,
253 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
254 	.id_offset = sizeof(struct kvm_stats_header),
255 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
256 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
257 		       sizeof(kvm_vm_stats_desc),
258 };
259 
260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
261 	KVM_GENERIC_VCPU_STATS(),
262 	STATS_DESC_COUNTER(VCPU, pf_taken),
263 	STATS_DESC_COUNTER(VCPU, pf_fixed),
264 	STATS_DESC_COUNTER(VCPU, pf_emulate),
265 	STATS_DESC_COUNTER(VCPU, pf_spurious),
266 	STATS_DESC_COUNTER(VCPU, pf_fast),
267 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
268 	STATS_DESC_COUNTER(VCPU, pf_guest),
269 	STATS_DESC_COUNTER(VCPU, tlb_flush),
270 	STATS_DESC_COUNTER(VCPU, invlpg),
271 	STATS_DESC_COUNTER(VCPU, exits),
272 	STATS_DESC_COUNTER(VCPU, io_exits),
273 	STATS_DESC_COUNTER(VCPU, mmio_exits),
274 	STATS_DESC_COUNTER(VCPU, signal_exits),
275 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
276 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
277 	STATS_DESC_COUNTER(VCPU, l1d_flush),
278 	STATS_DESC_COUNTER(VCPU, halt_exits),
279 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
280 	STATS_DESC_COUNTER(VCPU, irq_exits),
281 	STATS_DESC_COUNTER(VCPU, host_state_reload),
282 	STATS_DESC_COUNTER(VCPU, fpu_reload),
283 	STATS_DESC_COUNTER(VCPU, insn_emulation),
284 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
285 	STATS_DESC_COUNTER(VCPU, hypercalls),
286 	STATS_DESC_COUNTER(VCPU, irq_injections),
287 	STATS_DESC_COUNTER(VCPU, nmi_injections),
288 	STATS_DESC_COUNTER(VCPU, req_event),
289 	STATS_DESC_COUNTER(VCPU, nested_run),
290 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
291 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
292 	STATS_DESC_COUNTER(VCPU, preemption_reported),
293 	STATS_DESC_COUNTER(VCPU, preemption_other),
294 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
295 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
296 };
297 
298 const struct kvm_stats_header kvm_vcpu_stats_header = {
299 	.name_size = KVM_STATS_NAME_SIZE,
300 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
301 	.id_offset = sizeof(struct kvm_stats_header),
302 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
303 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
304 		       sizeof(kvm_vcpu_stats_desc),
305 };
306 
307 u64 __read_mostly host_xcr0;
308 
309 static struct kmem_cache *x86_emulator_cache;
310 
311 /*
312  * When called, it means the previous get/set msr reached an invalid msr.
313  * Return true if we want to ignore/silent this failed msr access.
314  */
315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
316 {
317 	const char *op = write ? "wrmsr" : "rdmsr";
318 
319 	if (ignore_msrs) {
320 		if (report_ignored_msrs)
321 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		/* Mask the error */
324 		return true;
325 	} else {
326 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
327 				      op, msr, data);
328 		return false;
329 	}
330 }
331 
332 static struct kmem_cache *kvm_alloc_emulator_cache(void)
333 {
334 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
335 	unsigned int size = sizeof(struct x86_emulate_ctxt);
336 
337 	return kmem_cache_create_usercopy("x86_emulator", size,
338 					  __alignof__(struct x86_emulate_ctxt),
339 					  SLAB_ACCOUNT, useroffset,
340 					  size - useroffset, NULL);
341 }
342 
343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
344 
345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
346 {
347 	int i;
348 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
349 		vcpu->arch.apf.gfns[i] = ~0;
350 }
351 
352 static void kvm_on_user_return(struct user_return_notifier *urn)
353 {
354 	unsigned slot;
355 	struct kvm_user_return_msrs *msrs
356 		= container_of(urn, struct kvm_user_return_msrs, urn);
357 	struct kvm_user_return_msr_values *values;
358 	unsigned long flags;
359 
360 	/*
361 	 * Disabling irqs at this point since the following code could be
362 	 * interrupted and executed through kvm_arch_hardware_disable()
363 	 */
364 	local_irq_save(flags);
365 	if (msrs->registered) {
366 		msrs->registered = false;
367 		user_return_notifier_unregister(urn);
368 	}
369 	local_irq_restore(flags);
370 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
371 		values = &msrs->values[slot];
372 		if (values->host != values->curr) {
373 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
374 			values->curr = values->host;
375 		}
376 	}
377 }
378 
379 static int kvm_probe_user_return_msr(u32 msr)
380 {
381 	u64 val;
382 	int ret;
383 
384 	preempt_disable();
385 	ret = rdmsrl_safe(msr, &val);
386 	if (ret)
387 		goto out;
388 	ret = wrmsrl_safe(msr, val);
389 out:
390 	preempt_enable();
391 	return ret;
392 }
393 
394 int kvm_add_user_return_msr(u32 msr)
395 {
396 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
397 
398 	if (kvm_probe_user_return_msr(msr))
399 		return -1;
400 
401 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
402 	return kvm_nr_uret_msrs++;
403 }
404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
405 
406 int kvm_find_user_return_msr(u32 msr)
407 {
408 	int i;
409 
410 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
411 		if (kvm_uret_msrs_list[i] == msr)
412 			return i;
413 	}
414 	return -1;
415 }
416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
417 
418 static void kvm_user_return_msr_cpu_online(void)
419 {
420 	unsigned int cpu = smp_processor_id();
421 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
422 	u64 value;
423 	int i;
424 
425 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
426 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
427 		msrs->values[i].host = value;
428 		msrs->values[i].curr = value;
429 	}
430 }
431 
432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
433 {
434 	unsigned int cpu = smp_processor_id();
435 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
436 	int err;
437 
438 	value = (value & mask) | (msrs->values[slot].host & ~mask);
439 	if (value == msrs->values[slot].curr)
440 		return 0;
441 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
442 	if (err)
443 		return 1;
444 
445 	msrs->values[slot].curr = value;
446 	if (!msrs->registered) {
447 		msrs->urn.on_user_return = kvm_on_user_return;
448 		user_return_notifier_register(&msrs->urn);
449 		msrs->registered = true;
450 	}
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
454 
455 static void drop_user_return_notifiers(void)
456 {
457 	unsigned int cpu = smp_processor_id();
458 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
459 
460 	if (msrs->registered)
461 		kvm_on_user_return(&msrs->urn);
462 }
463 
464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
465 {
466 	return vcpu->arch.apic_base;
467 }
468 
469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474 
475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481 
482 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 		return 1;
484 	if (!msr_info->host_initiated) {
485 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 			return 1;
487 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 			return 1;
489 	}
490 
491 	kvm_lapic_set_base(vcpu, msr_info->data);
492 	kvm_recalculate_apic_map(vcpu->kvm);
493 	return 0;
494 }
495 
496 /*
497  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
498  *
499  * Hardware virtualization extension instructions may fault if a reboot turns
500  * off virtualization while processes are running.  Usually after catching the
501  * fault we just panic; during reboot instead the instruction is ignored.
502  */
503 noinstr void kvm_spurious_fault(void)
504 {
505 	/* Fault while not rebooting.  We want the trace. */
506 	BUG_ON(!kvm_rebooting);
507 }
508 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
509 
510 #define EXCPT_BENIGN		0
511 #define EXCPT_CONTRIBUTORY	1
512 #define EXCPT_PF		2
513 
514 static int exception_class(int vector)
515 {
516 	switch (vector) {
517 	case PF_VECTOR:
518 		return EXCPT_PF;
519 	case DE_VECTOR:
520 	case TS_VECTOR:
521 	case NP_VECTOR:
522 	case SS_VECTOR:
523 	case GP_VECTOR:
524 		return EXCPT_CONTRIBUTORY;
525 	default:
526 		break;
527 	}
528 	return EXCPT_BENIGN;
529 }
530 
531 #define EXCPT_FAULT		0
532 #define EXCPT_TRAP		1
533 #define EXCPT_ABORT		2
534 #define EXCPT_INTERRUPT		3
535 #define EXCPT_DB		4
536 
537 static int exception_type(int vector)
538 {
539 	unsigned int mask;
540 
541 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
542 		return EXCPT_INTERRUPT;
543 
544 	mask = 1 << vector;
545 
546 	/*
547 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
548 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
549 	 */
550 	if (mask & (1 << DB_VECTOR))
551 		return EXCPT_DB;
552 
553 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
554 		return EXCPT_TRAP;
555 
556 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
557 		return EXCPT_ABORT;
558 
559 	/* Reserved exceptions will result in fault */
560 	return EXCPT_FAULT;
561 }
562 
563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
564 				   struct kvm_queued_exception *ex)
565 {
566 	if (!ex->has_payload)
567 		return;
568 
569 	switch (ex->vector) {
570 	case DB_VECTOR:
571 		/*
572 		 * "Certain debug exceptions may clear bit 0-3.  The
573 		 * remaining contents of the DR6 register are never
574 		 * cleared by the processor".
575 		 */
576 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
577 		/*
578 		 * In order to reflect the #DB exception payload in guest
579 		 * dr6, three components need to be considered: active low
580 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
581 		 * DR6_BS and DR6_BT)
582 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
583 		 * In the target guest dr6:
584 		 * FIXED_1 bits should always be set.
585 		 * Active low bits should be cleared if 1-setting in payload.
586 		 * Active high bits should be set if 1-setting in payload.
587 		 *
588 		 * Note, the payload is compatible with the pending debug
589 		 * exceptions/exit qualification under VMX, that active_low bits
590 		 * are active high in payload.
591 		 * So they need to be flipped for DR6.
592 		 */
593 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
594 		vcpu->arch.dr6 |= ex->payload;
595 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
596 
597 		/*
598 		 * The #DB payload is defined as compatible with the 'pending
599 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
600 		 * defined in the 'pending debug exceptions' field (enabled
601 		 * breakpoint), it is reserved and must be zero in DR6.
602 		 */
603 		vcpu->arch.dr6 &= ~BIT(12);
604 		break;
605 	case PF_VECTOR:
606 		vcpu->arch.cr2 = ex->payload;
607 		break;
608 	}
609 
610 	ex->has_payload = false;
611 	ex->payload = 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
614 
615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
616 				       bool has_error_code, u32 error_code,
617 				       bool has_payload, unsigned long payload)
618 {
619 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
620 
621 	ex->vector = vector;
622 	ex->injected = false;
623 	ex->pending = true;
624 	ex->has_error_code = has_error_code;
625 	ex->error_code = error_code;
626 	ex->has_payload = has_payload;
627 	ex->payload = payload;
628 }
629 
630 /* Forcibly leave the nested mode in cases like a vCPU reset */
631 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
632 {
633 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
634 }
635 
636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
637 		unsigned nr, bool has_error, u32 error_code,
638 	        bool has_payload, unsigned long payload, bool reinject)
639 {
640 	u32 prev_nr;
641 	int class1, class2;
642 
643 	kvm_make_request(KVM_REQ_EVENT, vcpu);
644 
645 	/*
646 	 * If the exception is destined for L2 and isn't being reinjected,
647 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
648 	 * previously injected exception is not checked because it was checked
649 	 * when it was original queued, and re-checking is incorrect if _L1_
650 	 * injected the exception, in which case it's exempt from interception.
651 	 */
652 	if (!reinject && is_guest_mode(vcpu) &&
653 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
654 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
655 					   has_payload, payload);
656 		return;
657 	}
658 
659 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
660 	queue:
661 		if (reinject) {
662 			/*
663 			 * On VM-Entry, an exception can be pending if and only
664 			 * if event injection was blocked by nested_run_pending.
665 			 * In that case, however, vcpu_enter_guest() requests an
666 			 * immediate exit, and the guest shouldn't proceed far
667 			 * enough to need reinjection.
668 			 */
669 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
670 			vcpu->arch.exception.injected = true;
671 			if (WARN_ON_ONCE(has_payload)) {
672 				/*
673 				 * A reinjected event has already
674 				 * delivered its payload.
675 				 */
676 				has_payload = false;
677 				payload = 0;
678 			}
679 		} else {
680 			vcpu->arch.exception.pending = true;
681 			vcpu->arch.exception.injected = false;
682 		}
683 		vcpu->arch.exception.has_error_code = has_error;
684 		vcpu->arch.exception.vector = nr;
685 		vcpu->arch.exception.error_code = error_code;
686 		vcpu->arch.exception.has_payload = has_payload;
687 		vcpu->arch.exception.payload = payload;
688 		if (!is_guest_mode(vcpu))
689 			kvm_deliver_exception_payload(vcpu,
690 						      &vcpu->arch.exception);
691 		return;
692 	}
693 
694 	/* to check exception */
695 	prev_nr = vcpu->arch.exception.vector;
696 	if (prev_nr == DF_VECTOR) {
697 		/* triple fault -> shutdown */
698 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
699 		return;
700 	}
701 	class1 = exception_class(prev_nr);
702 	class2 = exception_class(nr);
703 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
704 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
705 		/*
706 		 * Synthesize #DF.  Clear the previously injected or pending
707 		 * exception so as not to incorrectly trigger shutdown.
708 		 */
709 		vcpu->arch.exception.injected = false;
710 		vcpu->arch.exception.pending = false;
711 
712 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
713 	} else {
714 		/* replace previous exception with a new one in a hope
715 		   that instruction re-execution will regenerate lost
716 		   exception */
717 		goto queue;
718 	}
719 }
720 
721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
722 {
723 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
724 }
725 EXPORT_SYMBOL_GPL(kvm_queue_exception);
726 
727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
730 }
731 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
732 
733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
734 			   unsigned long payload)
735 {
736 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
737 }
738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
739 
740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
741 				    u32 error_code, unsigned long payload)
742 {
743 	kvm_multiple_exception(vcpu, nr, true, error_code,
744 			       true, payload, false);
745 }
746 
747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
748 {
749 	if (err)
750 		kvm_inject_gp(vcpu, 0);
751 	else
752 		return kvm_skip_emulated_instruction(vcpu);
753 
754 	return 1;
755 }
756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
757 
758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
759 {
760 	if (err) {
761 		kvm_inject_gp(vcpu, 0);
762 		return 1;
763 	}
764 
765 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
766 				       EMULTYPE_COMPLETE_USER_EXIT);
767 }
768 
769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
770 {
771 	++vcpu->stat.pf_guest;
772 
773 	/*
774 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
775 	 * whether or not L1 wants to intercept "regular" #PF.
776 	 */
777 	if (is_guest_mode(vcpu) && fault->async_page_fault)
778 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
779 					   true, fault->error_code,
780 					   true, fault->address);
781 	else
782 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
783 					fault->address);
784 }
785 
786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
787 				    struct x86_exception *fault)
788 {
789 	struct kvm_mmu *fault_mmu;
790 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
791 
792 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
793 					       vcpu->arch.walk_mmu;
794 
795 	/*
796 	 * Invalidate the TLB entry for the faulting address, if it exists,
797 	 * else the access will fault indefinitely (and to emulate hardware).
798 	 */
799 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
800 	    !(fault->error_code & PFERR_RSVD_MASK))
801 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
802 				       fault_mmu->root.hpa);
803 
804 	fault_mmu->inject_page_fault(vcpu, fault);
805 }
806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
807 
808 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
809 {
810 	atomic_inc(&vcpu->arch.nmi_queued);
811 	kvm_make_request(KVM_REQ_NMI, vcpu);
812 }
813 
814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
815 {
816 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
817 }
818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
819 
820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
823 }
824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
825 
826 /*
827  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
828  * a #GP and return false.
829  */
830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
831 {
832 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
833 		return true;
834 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
835 	return false;
836 }
837 
838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
839 {
840 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
841 		return true;
842 
843 	kvm_queue_exception(vcpu, UD_VECTOR);
844 	return false;
845 }
846 EXPORT_SYMBOL_GPL(kvm_require_dr);
847 
848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
849 {
850 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
851 }
852 
853 /*
854  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
855  */
856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
857 {
858 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
859 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
860 	gpa_t real_gpa;
861 	int i;
862 	int ret;
863 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
864 
865 	/*
866 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
867 	 * to an L1 GPA.
868 	 */
869 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
870 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
871 	if (real_gpa == INVALID_GPA)
872 		return 0;
873 
874 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
875 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
876 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
877 	if (ret < 0)
878 		return 0;
879 
880 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
881 		if ((pdpte[i] & PT_PRESENT_MASK) &&
882 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
883 			return 0;
884 		}
885 	}
886 
887 	/*
888 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
889 	 * Shadow page roots need to be reconstructed instead.
890 	 */
891 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
892 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
893 
894 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
895 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
896 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
897 	vcpu->arch.pdptrs_from_userspace = false;
898 
899 	return 1;
900 }
901 EXPORT_SYMBOL_GPL(load_pdptrs);
902 
903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
904 {
905 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
906 		kvm_clear_async_pf_completion_queue(vcpu);
907 		kvm_async_pf_hash_reset(vcpu);
908 
909 		/*
910 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
911 		 * perspective.
912 		 */
913 		if (!(cr0 & X86_CR0_PG))
914 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
915 	}
916 
917 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
918 		kvm_mmu_reset_context(vcpu);
919 
920 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
921 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
922 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
923 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
924 }
925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
926 
927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
928 {
929 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
930 
931 	cr0 |= X86_CR0_ET;
932 
933 #ifdef CONFIG_X86_64
934 	if (cr0 & 0xffffffff00000000UL)
935 		return 1;
936 #endif
937 
938 	cr0 &= ~CR0_RESERVED_BITS;
939 
940 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
941 		return 1;
942 
943 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
944 		return 1;
945 
946 #ifdef CONFIG_X86_64
947 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
948 	    (cr0 & X86_CR0_PG)) {
949 		int cs_db, cs_l;
950 
951 		if (!is_pae(vcpu))
952 			return 1;
953 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
954 		if (cs_l)
955 			return 1;
956 	}
957 #endif
958 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
959 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
960 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
961 		return 1;
962 
963 	if (!(cr0 & X86_CR0_PG) &&
964 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
965 		return 1;
966 
967 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
968 
969 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
970 
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_set_cr0);
974 
975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
976 {
977 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
978 }
979 EXPORT_SYMBOL_GPL(kvm_lmsw);
980 
981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
982 {
983 	if (vcpu->arch.guest_state_protected)
984 		return;
985 
986 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
987 
988 		if (vcpu->arch.xcr0 != host_xcr0)
989 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
990 
991 		if (vcpu->arch.xsaves_enabled &&
992 		    vcpu->arch.ia32_xss != host_xss)
993 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
994 	}
995 
996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
997 	if (static_cpu_has(X86_FEATURE_PKU) &&
998 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
999 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1000 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1001 		write_pkru(vcpu->arch.pkru);
1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1005 
1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1007 {
1008 	if (vcpu->arch.guest_state_protected)
1009 		return;
1010 
1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1012 	if (static_cpu_has(X86_FEATURE_PKU) &&
1013 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1014 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1015 		vcpu->arch.pkru = rdpkru();
1016 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1017 			write_pkru(vcpu->arch.host_pkru);
1018 	}
1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1020 
1021 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1022 
1023 		if (vcpu->arch.xcr0 != host_xcr0)
1024 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1025 
1026 		if (vcpu->arch.xsaves_enabled &&
1027 		    vcpu->arch.ia32_xss != host_xss)
1028 			wrmsrl(MSR_IA32_XSS, host_xss);
1029 	}
1030 
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1033 
1034 #ifdef CONFIG_X86_64
1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1036 {
1037 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1038 }
1039 #endif
1040 
1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1042 {
1043 	u64 xcr0 = xcr;
1044 	u64 old_xcr0 = vcpu->arch.xcr0;
1045 	u64 valid_bits;
1046 
1047 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1048 	if (index != XCR_XFEATURE_ENABLED_MASK)
1049 		return 1;
1050 	if (!(xcr0 & XFEATURE_MASK_FP))
1051 		return 1;
1052 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1053 		return 1;
1054 
1055 	/*
1056 	 * Do not allow the guest to set bits that we do not support
1057 	 * saving.  However, xcr0 bit 0 is always set, even if the
1058 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1059 	 */
1060 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1061 	if (xcr0 & ~valid_bits)
1062 		return 1;
1063 
1064 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1065 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1066 		return 1;
1067 
1068 	if (xcr0 & XFEATURE_MASK_AVX512) {
1069 		if (!(xcr0 & XFEATURE_MASK_YMM))
1070 			return 1;
1071 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1072 			return 1;
1073 	}
1074 
1075 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1076 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1077 		return 1;
1078 
1079 	vcpu->arch.xcr0 = xcr0;
1080 
1081 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1082 		kvm_update_cpuid_runtime(vcpu);
1083 	return 0;
1084 }
1085 
1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1087 {
1088 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1089 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1090 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1091 		kvm_inject_gp(vcpu, 0);
1092 		return 1;
1093 	}
1094 
1095 	return kvm_skip_emulated_instruction(vcpu);
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1098 
1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1100 {
1101 	if (cr4 & cr4_reserved_bits)
1102 		return false;
1103 
1104 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1105 		return false;
1106 
1107 	return true;
1108 }
1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1110 
1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1112 {
1113 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1114 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1115 }
1116 
1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1118 {
1119 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1120 		kvm_mmu_reset_context(vcpu);
1121 
1122 	/*
1123 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1124 	 * according to the SDM; however, stale prev_roots could be reused
1125 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1126 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1127 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1128 	 * so fall through.
1129 	 */
1130 	if (!tdp_enabled &&
1131 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1132 		kvm_mmu_unload(vcpu);
1133 
1134 	/*
1135 	 * The TLB has to be flushed for all PCIDs if any of the following
1136 	 * (architecturally required) changes happen:
1137 	 * - CR4.PCIDE is changed from 1 to 0
1138 	 * - CR4.PGE is toggled
1139 	 *
1140 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1141 	 */
1142 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1143 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1144 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1145 
1146 	/*
1147 	 * The TLB has to be flushed for the current PCID if any of the
1148 	 * following (architecturally required) changes happen:
1149 	 * - CR4.SMEP is changed from 0 to 1
1150 	 * - CR4.PAE is toggled
1151 	 */
1152 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1153 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1154 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1155 
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1158 
1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1160 {
1161 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1162 
1163 	if (!kvm_is_valid_cr4(vcpu, cr4))
1164 		return 1;
1165 
1166 	if (is_long_mode(vcpu)) {
1167 		if (!(cr4 & X86_CR4_PAE))
1168 			return 1;
1169 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1170 			return 1;
1171 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1172 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1173 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1174 		return 1;
1175 
1176 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1177 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1178 			return 1;
1179 
1180 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1181 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1182 			return 1;
1183 	}
1184 
1185 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1186 
1187 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1192 
1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1194 {
1195 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1196 	unsigned long roots_to_free = 0;
1197 	int i;
1198 
1199 	/*
1200 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1201 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1202 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1203 	 * the invalidation, but the guest's TLB entries need to be flushed as
1204 	 * the CPU may have cached entries in its TLB for the target PCID.
1205 	 */
1206 	if (unlikely(tdp_enabled)) {
1207 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * If neither the current CR3 nor any of the prev_roots use the given
1213 	 * PCID, then nothing needs to be done here because a resync will
1214 	 * happen anyway before switching to any other CR3.
1215 	 */
1216 	if (kvm_get_active_pcid(vcpu) == pcid) {
1217 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1218 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219 	}
1220 
1221 	/*
1222 	 * If PCID is disabled, there is no need to free prev_roots even if the
1223 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1224 	 * with PCIDE=0.
1225 	 */
1226 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1227 		return;
1228 
1229 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1230 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1231 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1232 
1233 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1234 }
1235 
1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1237 {
1238 	bool skip_tlb_flush = false;
1239 	unsigned long pcid = 0;
1240 #ifdef CONFIG_X86_64
1241 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1242 
1243 	if (pcid_enabled) {
1244 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1245 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1246 		pcid = cr3 & X86_CR3_PCID_MASK;
1247 	}
1248 #endif
1249 
1250 	/* PDPTRs are always reloaded for PAE paging. */
1251 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1252 		goto handle_tlb_flush;
1253 
1254 	/*
1255 	 * Do not condition the GPA check on long mode, this helper is used to
1256 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1257 	 * the current vCPU mode is accurate.
1258 	 */
1259 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1260 		return 1;
1261 
1262 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1263 		return 1;
1264 
1265 	if (cr3 != kvm_read_cr3(vcpu))
1266 		kvm_mmu_new_pgd(vcpu, cr3);
1267 
1268 	vcpu->arch.cr3 = cr3;
1269 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1270 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1271 
1272 handle_tlb_flush:
1273 	/*
1274 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1275 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1276 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1277 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1278 	 * i.e. only PCID=0 can be relevant.
1279 	 */
1280 	if (!skip_tlb_flush)
1281 		kvm_invalidate_pcid(vcpu, pcid);
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1286 
1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1288 {
1289 	if (cr8 & CR8_RESERVED_BITS)
1290 		return 1;
1291 	if (lapic_in_kernel(vcpu))
1292 		kvm_lapic_set_tpr(vcpu, cr8);
1293 	else
1294 		vcpu->arch.cr8 = cr8;
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1298 
1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1300 {
1301 	if (lapic_in_kernel(vcpu))
1302 		return kvm_lapic_get_cr8(vcpu);
1303 	else
1304 		return vcpu->arch.cr8;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1307 
1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1309 {
1310 	int i;
1311 
1312 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1313 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1314 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1315 	}
1316 }
1317 
1318 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1319 {
1320 	unsigned long dr7;
1321 
1322 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1323 		dr7 = vcpu->arch.guest_debug_dr7;
1324 	else
1325 		dr7 = vcpu->arch.dr7;
1326 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1327 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1328 	if (dr7 & DR7_BP_EN_MASK)
1329 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1332 
1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1334 {
1335 	u64 fixed = DR6_FIXED_1;
1336 
1337 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1338 		fixed |= DR6_RTM;
1339 
1340 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1341 		fixed |= DR6_BUS_LOCK;
1342 	return fixed;
1343 }
1344 
1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1346 {
1347 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1348 
1349 	switch (dr) {
1350 	case 0 ... 3:
1351 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1352 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1353 			vcpu->arch.eff_db[dr] = val;
1354 		break;
1355 	case 4:
1356 	case 6:
1357 		if (!kvm_dr6_valid(val))
1358 			return 1; /* #GP */
1359 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1360 		break;
1361 	case 5:
1362 	default: /* 7 */
1363 		if (!kvm_dr7_valid(val))
1364 			return 1; /* #GP */
1365 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1366 		kvm_update_dr7(vcpu);
1367 		break;
1368 	}
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_set_dr);
1373 
1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1375 {
1376 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1377 
1378 	switch (dr) {
1379 	case 0 ... 3:
1380 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1381 		break;
1382 	case 4:
1383 	case 6:
1384 		*val = vcpu->arch.dr6;
1385 		break;
1386 	case 5:
1387 	default: /* 7 */
1388 		*val = vcpu->arch.dr7;
1389 		break;
1390 	}
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_get_dr);
1393 
1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1395 {
1396 	u32 ecx = kvm_rcx_read(vcpu);
1397 	u64 data;
1398 
1399 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1400 		kvm_inject_gp(vcpu, 0);
1401 		return 1;
1402 	}
1403 
1404 	kvm_rax_write(vcpu, (u32)data);
1405 	kvm_rdx_write(vcpu, data >> 32);
1406 	return kvm_skip_emulated_instruction(vcpu);
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1409 
1410 /*
1411  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1412  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1413  *
1414  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1415  * extract the supported MSRs from the related const lists.
1416  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1417  * capabilities of the host cpu. This capabilities test skips MSRs that are
1418  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1419  * may depend on host virtualization features rather than host cpu features.
1420  */
1421 
1422 static const u32 msrs_to_save_all[] = {
1423 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1424 	MSR_STAR,
1425 #ifdef CONFIG_X86_64
1426 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1427 #endif
1428 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1429 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1430 	MSR_IA32_SPEC_CTRL,
1431 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1432 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1433 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1434 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1435 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1436 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1437 	MSR_IA32_UMWAIT_CONTROL,
1438 
1439 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1440 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1441 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1442 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1443 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1444 
1445 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1446 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1447 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1448 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1449 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1450 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1453 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1454 
1455 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1456 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1457 
1458 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1459 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1460 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1461 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1462 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1463 
1464 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1465 };
1466 
1467 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1468 static unsigned num_msrs_to_save;
1469 
1470 static const u32 emulated_msrs_all[] = {
1471 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1472 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1473 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1474 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1475 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1476 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1477 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1478 	HV_X64_MSR_RESET,
1479 	HV_X64_MSR_VP_INDEX,
1480 	HV_X64_MSR_VP_RUNTIME,
1481 	HV_X64_MSR_SCONTROL,
1482 	HV_X64_MSR_STIMER0_CONFIG,
1483 	HV_X64_MSR_VP_ASSIST_PAGE,
1484 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1485 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1486 	HV_X64_MSR_SYNDBG_OPTIONS,
1487 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1488 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1489 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1490 
1491 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1492 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1493 
1494 	MSR_IA32_TSC_ADJUST,
1495 	MSR_IA32_TSC_DEADLINE,
1496 	MSR_IA32_ARCH_CAPABILITIES,
1497 	MSR_IA32_PERF_CAPABILITIES,
1498 	MSR_IA32_MISC_ENABLE,
1499 	MSR_IA32_MCG_STATUS,
1500 	MSR_IA32_MCG_CTL,
1501 	MSR_IA32_MCG_EXT_CTL,
1502 	MSR_IA32_SMBASE,
1503 	MSR_SMI_COUNT,
1504 	MSR_PLATFORM_INFO,
1505 	MSR_MISC_FEATURES_ENABLES,
1506 	MSR_AMD64_VIRT_SPEC_CTRL,
1507 	MSR_AMD64_TSC_RATIO,
1508 	MSR_IA32_POWER_CTL,
1509 	MSR_IA32_UCODE_REV,
1510 
1511 	/*
1512 	 * The following list leaves out MSRs whose values are determined
1513 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1514 	 * We always support the "true" VMX control MSRs, even if the host
1515 	 * processor does not, so I am putting these registers here rather
1516 	 * than in msrs_to_save_all.
1517 	 */
1518 	MSR_IA32_VMX_BASIC,
1519 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1520 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1521 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1522 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1523 	MSR_IA32_VMX_MISC,
1524 	MSR_IA32_VMX_CR0_FIXED0,
1525 	MSR_IA32_VMX_CR4_FIXED0,
1526 	MSR_IA32_VMX_VMCS_ENUM,
1527 	MSR_IA32_VMX_PROCBASED_CTLS2,
1528 	MSR_IA32_VMX_EPT_VPID_CAP,
1529 	MSR_IA32_VMX_VMFUNC,
1530 
1531 	MSR_K7_HWCR,
1532 	MSR_KVM_POLL_CONTROL,
1533 };
1534 
1535 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1536 static unsigned num_emulated_msrs;
1537 
1538 /*
1539  * List of msr numbers which are used to expose MSR-based features that
1540  * can be used by a hypervisor to validate requested CPU features.
1541  */
1542 static const u32 msr_based_features_all[] = {
1543 	MSR_IA32_VMX_BASIC,
1544 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1545 	MSR_IA32_VMX_PINBASED_CTLS,
1546 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1547 	MSR_IA32_VMX_PROCBASED_CTLS,
1548 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1549 	MSR_IA32_VMX_EXIT_CTLS,
1550 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1551 	MSR_IA32_VMX_ENTRY_CTLS,
1552 	MSR_IA32_VMX_MISC,
1553 	MSR_IA32_VMX_CR0_FIXED0,
1554 	MSR_IA32_VMX_CR0_FIXED1,
1555 	MSR_IA32_VMX_CR4_FIXED0,
1556 	MSR_IA32_VMX_CR4_FIXED1,
1557 	MSR_IA32_VMX_VMCS_ENUM,
1558 	MSR_IA32_VMX_PROCBASED_CTLS2,
1559 	MSR_IA32_VMX_EPT_VPID_CAP,
1560 	MSR_IA32_VMX_VMFUNC,
1561 
1562 	MSR_AMD64_DE_CFG,
1563 	MSR_IA32_UCODE_REV,
1564 	MSR_IA32_ARCH_CAPABILITIES,
1565 	MSR_IA32_PERF_CAPABILITIES,
1566 };
1567 
1568 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1569 static unsigned int num_msr_based_features;
1570 
1571 /*
1572  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1573  * does not yet virtualize. These include:
1574  *   10 - MISC_PACKAGE_CTRLS
1575  *   11 - ENERGY_FILTERING_CTL
1576  *   12 - DOITM
1577  *   18 - FB_CLEAR_CTRL
1578  *   21 - XAPIC_DISABLE_STATUS
1579  *   23 - OVERCLOCKING_STATUS
1580  */
1581 
1582 #define KVM_SUPPORTED_ARCH_CAP \
1583 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1584 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1585 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1586 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1587 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1588 
1589 static u64 kvm_get_arch_capabilities(void)
1590 {
1591 	u64 data = 0;
1592 
1593 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1594 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1595 		data &= KVM_SUPPORTED_ARCH_CAP;
1596 	}
1597 
1598 	/*
1599 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1601 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 	 * L1 guests, so it need not worry about its own (L2) guests.
1603 	 */
1604 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1605 
1606 	/*
1607 	 * If we're doing cache flushes (either "always" or "cond")
1608 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 	 * If an outer hypervisor is doing the cache flush for us
1610 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1611 	 * capability to the guest too, and if EPT is disabled we're not
1612 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 	 * require a nested hypervisor to do a flush of its own.
1614 	 */
1615 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617 
1618 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 		data |= ARCH_CAP_RDCL_NO;
1620 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 		data |= ARCH_CAP_SSB_NO;
1622 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 		data |= ARCH_CAP_MDS_NO;
1624 
1625 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1626 		/*
1627 		 * If RTM=0 because the kernel has disabled TSX, the host might
1628 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1629 		 * and therefore knows that there cannot be TAA) but keep
1630 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1631 		 * and we want to allow migrating those guests to tsx=off hosts.
1632 		 */
1633 		data &= ~ARCH_CAP_TAA_NO;
1634 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1635 		data |= ARCH_CAP_TAA_NO;
1636 	} else {
1637 		/*
1638 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1639 		 * host so the guest can choose between disabling TSX or
1640 		 * using VERW to clear CPU buffers.
1641 		 */
1642 	}
1643 
1644 	return data;
1645 }
1646 
1647 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1648 {
1649 	switch (msr->index) {
1650 	case MSR_IA32_ARCH_CAPABILITIES:
1651 		msr->data = kvm_get_arch_capabilities();
1652 		break;
1653 	case MSR_IA32_PERF_CAPABILITIES:
1654 		msr->data = kvm_caps.supported_perf_cap;
1655 		break;
1656 	case MSR_IA32_UCODE_REV:
1657 		rdmsrl_safe(msr->index, &msr->data);
1658 		break;
1659 	default:
1660 		return static_call(kvm_x86_get_msr_feature)(msr);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1666 {
1667 	struct kvm_msr_entry msr;
1668 	int r;
1669 
1670 	msr.index = index;
1671 	r = kvm_get_msr_feature(&msr);
1672 
1673 	if (r == KVM_MSR_RET_INVALID) {
1674 		/* Unconditionally clear the output for simplicity */
1675 		*data = 0;
1676 		if (kvm_msr_ignored_check(index, 0, false))
1677 			r = 0;
1678 	}
1679 
1680 	if (r)
1681 		return r;
1682 
1683 	*data = msr.data;
1684 
1685 	return 0;
1686 }
1687 
1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1691 		return false;
1692 
1693 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1694 		return false;
1695 
1696 	if (efer & (EFER_LME | EFER_LMA) &&
1697 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1698 		return false;
1699 
1700 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1701 		return false;
1702 
1703 	return true;
1704 
1705 }
1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1707 {
1708 	if (efer & efer_reserved_bits)
1709 		return false;
1710 
1711 	return __kvm_valid_efer(vcpu, efer);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1714 
1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1716 {
1717 	u64 old_efer = vcpu->arch.efer;
1718 	u64 efer = msr_info->data;
1719 	int r;
1720 
1721 	if (efer & efer_reserved_bits)
1722 		return 1;
1723 
1724 	if (!msr_info->host_initiated) {
1725 		if (!__kvm_valid_efer(vcpu, efer))
1726 			return 1;
1727 
1728 		if (is_paging(vcpu) &&
1729 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1730 			return 1;
1731 	}
1732 
1733 	efer &= ~EFER_LMA;
1734 	efer |= vcpu->arch.efer & EFER_LMA;
1735 
1736 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1737 	if (r) {
1738 		WARN_ON(r > 0);
1739 		return r;
1740 	}
1741 
1742 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1743 		kvm_mmu_reset_context(vcpu);
1744 
1745 	return 0;
1746 }
1747 
1748 void kvm_enable_efer_bits(u64 mask)
1749 {
1750        efer_reserved_bits &= ~mask;
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1753 
1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1755 {
1756 	struct kvm_x86_msr_filter *msr_filter;
1757 	struct msr_bitmap_range *ranges;
1758 	struct kvm *kvm = vcpu->kvm;
1759 	bool allowed;
1760 	int idx;
1761 	u32 i;
1762 
1763 	/* x2APIC MSRs do not support filtering. */
1764 	if (index >= 0x800 && index <= 0x8ff)
1765 		return true;
1766 
1767 	idx = srcu_read_lock(&kvm->srcu);
1768 
1769 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1770 	if (!msr_filter) {
1771 		allowed = true;
1772 		goto out;
1773 	}
1774 
1775 	allowed = msr_filter->default_allow;
1776 	ranges = msr_filter->ranges;
1777 
1778 	for (i = 0; i < msr_filter->count; i++) {
1779 		u32 start = ranges[i].base;
1780 		u32 end = start + ranges[i].nmsrs;
1781 		u32 flags = ranges[i].flags;
1782 		unsigned long *bitmap = ranges[i].bitmap;
1783 
1784 		if ((index >= start) && (index < end) && (flags & type)) {
1785 			allowed = !!test_bit(index - start, bitmap);
1786 			break;
1787 		}
1788 	}
1789 
1790 out:
1791 	srcu_read_unlock(&kvm->srcu, idx);
1792 
1793 	return allowed;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1796 
1797 /*
1798  * Write @data into the MSR specified by @index.  Select MSR specific fault
1799  * checks are bypassed if @host_initiated is %true.
1800  * Returns 0 on success, non-0 otherwise.
1801  * Assumes vcpu_load() was already called.
1802  */
1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1804 			 bool host_initiated)
1805 {
1806 	struct msr_data msr;
1807 
1808 	switch (index) {
1809 	case MSR_FS_BASE:
1810 	case MSR_GS_BASE:
1811 	case MSR_KERNEL_GS_BASE:
1812 	case MSR_CSTAR:
1813 	case MSR_LSTAR:
1814 		if (is_noncanonical_address(data, vcpu))
1815 			return 1;
1816 		break;
1817 	case MSR_IA32_SYSENTER_EIP:
1818 	case MSR_IA32_SYSENTER_ESP:
1819 		/*
1820 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1821 		 * non-canonical address is written on Intel but not on
1822 		 * AMD (which ignores the top 32-bits, because it does
1823 		 * not implement 64-bit SYSENTER).
1824 		 *
1825 		 * 64-bit code should hence be able to write a non-canonical
1826 		 * value on AMD.  Making the address canonical ensures that
1827 		 * vmentry does not fail on Intel after writing a non-canonical
1828 		 * value, and that something deterministic happens if the guest
1829 		 * invokes 64-bit SYSENTER.
1830 		 */
1831 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1832 		break;
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 
1842 		/*
1843 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1844 		 * incomplete and conflicting architectural behavior.  Current
1845 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1846 		 * reserved and always read as zeros.  Enforce Intel's reserved
1847 		 * bits check if and only if the guest CPU is Intel, and clear
1848 		 * the bits in all other cases.  This ensures cross-vendor
1849 		 * migration will provide consistent behavior for the guest.
1850 		 */
1851 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1852 			return 1;
1853 
1854 		data = (u32)data;
1855 		break;
1856 	}
1857 
1858 	msr.data = data;
1859 	msr.index = index;
1860 	msr.host_initiated = host_initiated;
1861 
1862 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1863 }
1864 
1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1866 				     u32 index, u64 data, bool host_initiated)
1867 {
1868 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1869 
1870 	if (ret == KVM_MSR_RET_INVALID)
1871 		if (kvm_msr_ignored_check(index, data, true))
1872 			ret = 0;
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Read the MSR specified by @index into @data.  Select MSR specific fault
1879  * checks are bypassed if @host_initiated is %true.
1880  * Returns 0 on success, non-0 otherwise.
1881  * Assumes vcpu_load() was already called.
1882  */
1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1884 		  bool host_initiated)
1885 {
1886 	struct msr_data msr;
1887 	int ret;
1888 
1889 	switch (index) {
1890 	case MSR_TSC_AUX:
1891 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1892 			return 1;
1893 
1894 		if (!host_initiated &&
1895 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1896 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1897 			return 1;
1898 		break;
1899 	}
1900 
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1905 	if (!ret)
1906 		*data = msr.data;
1907 	return ret;
1908 }
1909 
1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1911 				     u32 index, u64 *data, bool host_initiated)
1912 {
1913 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1914 
1915 	if (ret == KVM_MSR_RET_INVALID) {
1916 		/* Unconditionally clear *data for simplicity */
1917 		*data = 0;
1918 		if (kvm_msr_ignored_check(index, 0, false))
1919 			ret = 0;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1928 		return KVM_MSR_RET_FILTERED;
1929 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 
1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1933 {
1934 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1935 		return KVM_MSR_RET_FILTERED;
1936 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 
1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1940 {
1941 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_get_msr);
1944 
1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1946 {
1947 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_set_msr);
1950 
1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 	if (!vcpu->run->msr.error) {
1954 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1955 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1956 	}
1957 }
1958 
1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1960 {
1961 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1962 }
1963 
1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1965 {
1966 	complete_userspace_rdmsr(vcpu);
1967 	return complete_emulated_msr_access(vcpu);
1968 }
1969 
1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1971 {
1972 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1973 }
1974 
1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1976 {
1977 	complete_userspace_rdmsr(vcpu);
1978 	return complete_fast_msr_access(vcpu);
1979 }
1980 
1981 static u64 kvm_msr_reason(int r)
1982 {
1983 	switch (r) {
1984 	case KVM_MSR_RET_INVALID:
1985 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1986 	case KVM_MSR_RET_FILTERED:
1987 		return KVM_MSR_EXIT_REASON_FILTER;
1988 	default:
1989 		return KVM_MSR_EXIT_REASON_INVAL;
1990 	}
1991 }
1992 
1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1994 			      u32 exit_reason, u64 data,
1995 			      int (*completion)(struct kvm_vcpu *vcpu),
1996 			      int r)
1997 {
1998 	u64 msr_reason = kvm_msr_reason(r);
1999 
2000 	/* Check if the user wanted to know about this MSR fault */
2001 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2002 		return 0;
2003 
2004 	vcpu->run->exit_reason = exit_reason;
2005 	vcpu->run->msr.error = 0;
2006 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2007 	vcpu->run->msr.reason = msr_reason;
2008 	vcpu->run->msr.index = index;
2009 	vcpu->run->msr.data = data;
2010 	vcpu->arch.complete_userspace_io = completion;
2011 
2012 	return 1;
2013 }
2014 
2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	u32 ecx = kvm_rcx_read(vcpu);
2018 	u64 data;
2019 	int r;
2020 
2021 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2022 
2023 	if (!r) {
2024 		trace_kvm_msr_read(ecx, data);
2025 
2026 		kvm_rax_write(vcpu, data & -1u);
2027 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2028 	} else {
2029 		/* MSR read failed? See if we should ask user space */
2030 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2031 				       complete_fast_rdmsr, r))
2032 			return 0;
2033 		trace_kvm_msr_read_ex(ecx);
2034 	}
2035 
2036 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2039 
2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2041 {
2042 	u32 ecx = kvm_rcx_read(vcpu);
2043 	u64 data = kvm_read_edx_eax(vcpu);
2044 	int r;
2045 
2046 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2047 
2048 	if (!r) {
2049 		trace_kvm_msr_write(ecx, data);
2050 	} else {
2051 		/* MSR write failed? See if we should ask user space */
2052 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2053 				       complete_fast_msr_access, r))
2054 			return 0;
2055 		/* Signal all other negative errors to userspace */
2056 		if (r < 0)
2057 			return r;
2058 		trace_kvm_msr_write_ex(ecx, data);
2059 	}
2060 
2061 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2064 
2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2066 {
2067 	return kvm_skip_emulated_instruction(vcpu);
2068 }
2069 
2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2071 {
2072 	/* Treat an INVD instruction as a NOP and just skip it. */
2073 	return kvm_emulate_as_nop(vcpu);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2076 
2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2078 {
2079 	kvm_queue_exception(vcpu, UD_VECTOR);
2080 	return 1;
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2083 
2084 
2085 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2086 {
2087 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2088 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2089 		return kvm_handle_invalid_op(vcpu);
2090 
2091 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2092 	return kvm_emulate_as_nop(vcpu);
2093 }
2094 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2095 {
2096 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2099 
2100 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2101 {
2102 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2103 }
2104 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2105 
2106 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2107 {
2108 	xfer_to_guest_mode_prepare();
2109 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2110 		xfer_to_guest_mode_work_pending();
2111 }
2112 
2113 /*
2114  * The fast path for frequent and performance sensitive wrmsr emulation,
2115  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2116  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2117  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2118  * other cases which must be called after interrupts are enabled on the host.
2119  */
2120 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2121 {
2122 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2123 		return 1;
2124 
2125 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2126 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2127 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2128 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2129 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2130 
2131 	return 1;
2132 }
2133 
2134 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2135 {
2136 	if (!kvm_can_use_hv_timer(vcpu))
2137 		return 1;
2138 
2139 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2140 	return 0;
2141 }
2142 
2143 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2144 {
2145 	u32 msr = kvm_rcx_read(vcpu);
2146 	u64 data;
2147 	fastpath_t ret = EXIT_FASTPATH_NONE;
2148 
2149 	switch (msr) {
2150 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 		data = kvm_read_edx_eax(vcpu);
2152 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2153 			kvm_skip_emulated_instruction(vcpu);
2154 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2155 		}
2156 		break;
2157 	case MSR_IA32_TSC_DEADLINE:
2158 		data = kvm_read_edx_eax(vcpu);
2159 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2160 			kvm_skip_emulated_instruction(vcpu);
2161 			ret = EXIT_FASTPATH_REENTER_GUEST;
2162 		}
2163 		break;
2164 	default:
2165 		break;
2166 	}
2167 
2168 	if (ret != EXIT_FASTPATH_NONE)
2169 		trace_kvm_msr_write(msr, data);
2170 
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2174 
2175 /*
2176  * Adapt set_msr() to msr_io()'s calling convention
2177  */
2178 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2179 {
2180 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2181 }
2182 
2183 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2184 {
2185 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2186 }
2187 
2188 #ifdef CONFIG_X86_64
2189 struct pvclock_clock {
2190 	int vclock_mode;
2191 	u64 cycle_last;
2192 	u64 mask;
2193 	u32 mult;
2194 	u32 shift;
2195 	u64 base_cycles;
2196 	u64 offset;
2197 };
2198 
2199 struct pvclock_gtod_data {
2200 	seqcount_t	seq;
2201 
2202 	struct pvclock_clock clock; /* extract of a clocksource struct */
2203 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2204 
2205 	ktime_t		offs_boot;
2206 	u64		wall_time_sec;
2207 };
2208 
2209 static struct pvclock_gtod_data pvclock_gtod_data;
2210 
2211 static void update_pvclock_gtod(struct timekeeper *tk)
2212 {
2213 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2214 
2215 	write_seqcount_begin(&vdata->seq);
2216 
2217 	/* copy pvclock gtod data */
2218 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2219 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2220 	vdata->clock.mask		= tk->tkr_mono.mask;
2221 	vdata->clock.mult		= tk->tkr_mono.mult;
2222 	vdata->clock.shift		= tk->tkr_mono.shift;
2223 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2224 	vdata->clock.offset		= tk->tkr_mono.base;
2225 
2226 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2227 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2228 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2229 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2230 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2231 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2232 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2233 
2234 	vdata->wall_time_sec            = tk->xtime_sec;
2235 
2236 	vdata->offs_boot		= tk->offs_boot;
2237 
2238 	write_seqcount_end(&vdata->seq);
2239 }
2240 
2241 static s64 get_kvmclock_base_ns(void)
2242 {
2243 	/* Count up from boot time, but with the frequency of the raw clock.  */
2244 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2245 }
2246 #else
2247 static s64 get_kvmclock_base_ns(void)
2248 {
2249 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2250 	return ktime_get_boottime_ns();
2251 }
2252 #endif
2253 
2254 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2255 {
2256 	int version;
2257 	int r;
2258 	struct pvclock_wall_clock wc;
2259 	u32 wc_sec_hi;
2260 	u64 wall_nsec;
2261 
2262 	if (!wall_clock)
2263 		return;
2264 
2265 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2266 	if (r)
2267 		return;
2268 
2269 	if (version & 1)
2270 		++version;  /* first time write, random junk */
2271 
2272 	++version;
2273 
2274 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2275 		return;
2276 
2277 	/*
2278 	 * The guest calculates current wall clock time by adding
2279 	 * system time (updated by kvm_guest_time_update below) to the
2280 	 * wall clock specified here.  We do the reverse here.
2281 	 */
2282 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2283 
2284 	wc.nsec = do_div(wall_nsec, 1000000000);
2285 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2286 	wc.version = version;
2287 
2288 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2289 
2290 	if (sec_hi_ofs) {
2291 		wc_sec_hi = wall_nsec >> 32;
2292 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2293 				&wc_sec_hi, sizeof(wc_sec_hi));
2294 	}
2295 
2296 	version++;
2297 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2298 }
2299 
2300 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2301 				  bool old_msr, bool host_initiated)
2302 {
2303 	struct kvm_arch *ka = &vcpu->kvm->arch;
2304 
2305 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2306 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2307 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2308 
2309 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2310 	}
2311 
2312 	vcpu->arch.time = system_time;
2313 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2314 
2315 	/* we verify if the enable bit is set... */
2316 	if (system_time & 1)
2317 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2318 				 sizeof(struct pvclock_vcpu_time_info));
2319 	else
2320 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2321 
2322 	return;
2323 }
2324 
2325 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2326 {
2327 	do_shl32_div32(dividend, divisor);
2328 	return dividend;
2329 }
2330 
2331 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2332 			       s8 *pshift, u32 *pmultiplier)
2333 {
2334 	uint64_t scaled64;
2335 	int32_t  shift = 0;
2336 	uint64_t tps64;
2337 	uint32_t tps32;
2338 
2339 	tps64 = base_hz;
2340 	scaled64 = scaled_hz;
2341 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2342 		tps64 >>= 1;
2343 		shift--;
2344 	}
2345 
2346 	tps32 = (uint32_t)tps64;
2347 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2348 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2349 			scaled64 >>= 1;
2350 		else
2351 			tps32 <<= 1;
2352 		shift++;
2353 	}
2354 
2355 	*pshift = shift;
2356 	*pmultiplier = div_frac(scaled64, tps32);
2357 }
2358 
2359 #ifdef CONFIG_X86_64
2360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2361 #endif
2362 
2363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2364 static unsigned long max_tsc_khz;
2365 
2366 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2367 {
2368 	u64 v = (u64)khz * (1000000 + ppm);
2369 	do_div(v, 1000000);
2370 	return v;
2371 }
2372 
2373 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2374 
2375 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2376 {
2377 	u64 ratio;
2378 
2379 	/* Guest TSC same frequency as host TSC? */
2380 	if (!scale) {
2381 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2382 		return 0;
2383 	}
2384 
2385 	/* TSC scaling supported? */
2386 	if (!kvm_caps.has_tsc_control) {
2387 		if (user_tsc_khz > tsc_khz) {
2388 			vcpu->arch.tsc_catchup = 1;
2389 			vcpu->arch.tsc_always_catchup = 1;
2390 			return 0;
2391 		} else {
2392 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2393 			return -1;
2394 		}
2395 	}
2396 
2397 	/* TSC scaling required  - calculate ratio */
2398 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2399 				user_tsc_khz, tsc_khz);
2400 
2401 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2402 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2403 			            user_tsc_khz);
2404 		return -1;
2405 	}
2406 
2407 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2408 	return 0;
2409 }
2410 
2411 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2412 {
2413 	u32 thresh_lo, thresh_hi;
2414 	int use_scaling = 0;
2415 
2416 	/* tsc_khz can be zero if TSC calibration fails */
2417 	if (user_tsc_khz == 0) {
2418 		/* set tsc_scaling_ratio to a safe value */
2419 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2420 		return -1;
2421 	}
2422 
2423 	/* Compute a scale to convert nanoseconds in TSC cycles */
2424 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2425 			   &vcpu->arch.virtual_tsc_shift,
2426 			   &vcpu->arch.virtual_tsc_mult);
2427 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2428 
2429 	/*
2430 	 * Compute the variation in TSC rate which is acceptable
2431 	 * within the range of tolerance and decide if the
2432 	 * rate being applied is within that bounds of the hardware
2433 	 * rate.  If so, no scaling or compensation need be done.
2434 	 */
2435 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2436 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2437 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2438 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2439 			 user_tsc_khz, thresh_lo, thresh_hi);
2440 		use_scaling = 1;
2441 	}
2442 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2443 }
2444 
2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2446 {
2447 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2448 				      vcpu->arch.virtual_tsc_mult,
2449 				      vcpu->arch.virtual_tsc_shift);
2450 	tsc += vcpu->arch.this_tsc_write;
2451 	return tsc;
2452 }
2453 
2454 #ifdef CONFIG_X86_64
2455 static inline int gtod_is_based_on_tsc(int mode)
2456 {
2457 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2458 }
2459 #endif
2460 
2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2462 {
2463 #ifdef CONFIG_X86_64
2464 	bool vcpus_matched;
2465 	struct kvm_arch *ka = &vcpu->kvm->arch;
2466 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2467 
2468 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2469 			 atomic_read(&vcpu->kvm->online_vcpus));
2470 
2471 	/*
2472 	 * Once the masterclock is enabled, always perform request in
2473 	 * order to update it.
2474 	 *
2475 	 * In order to enable masterclock, the host clocksource must be TSC
2476 	 * and the vcpus need to have matched TSCs.  When that happens,
2477 	 * perform request to enable masterclock.
2478 	 */
2479 	if (ka->use_master_clock ||
2480 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2481 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2482 
2483 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2484 			    atomic_read(&vcpu->kvm->online_vcpus),
2485 		            ka->use_master_clock, gtod->clock.vclock_mode);
2486 #endif
2487 }
2488 
2489 /*
2490  * Multiply tsc by a fixed point number represented by ratio.
2491  *
2492  * The most significant 64-N bits (mult) of ratio represent the
2493  * integral part of the fixed point number; the remaining N bits
2494  * (frac) represent the fractional part, ie. ratio represents a fixed
2495  * point number (mult + frac * 2^(-N)).
2496  *
2497  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2498  */
2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2500 {
2501 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2502 }
2503 
2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2505 {
2506 	u64 _tsc = tsc;
2507 
2508 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2509 		_tsc = __scale_tsc(ratio, tsc);
2510 
2511 	return _tsc;
2512 }
2513 
2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2515 {
2516 	u64 tsc;
2517 
2518 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2519 
2520 	return target_tsc - tsc;
2521 }
2522 
2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2524 {
2525 	return vcpu->arch.l1_tsc_offset +
2526 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2529 
2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2531 {
2532 	u64 nested_offset;
2533 
2534 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2535 		nested_offset = l1_offset;
2536 	else
2537 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2538 						kvm_caps.tsc_scaling_ratio_frac_bits);
2539 
2540 	nested_offset += l2_offset;
2541 	return nested_offset;
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2544 
2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2546 {
2547 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2548 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2549 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2550 
2551 	return l1_multiplier;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2554 
2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2556 {
2557 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2558 				   vcpu->arch.l1_tsc_offset,
2559 				   l1_offset);
2560 
2561 	vcpu->arch.l1_tsc_offset = l1_offset;
2562 
2563 	/*
2564 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2565 	 * according to the spec this should set L1's TSC (as opposed to
2566 	 * setting L1's offset for L2).
2567 	 */
2568 	if (is_guest_mode(vcpu))
2569 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2570 			l1_offset,
2571 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2572 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2573 	else
2574 		vcpu->arch.tsc_offset = l1_offset;
2575 
2576 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2577 }
2578 
2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2580 {
2581 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2582 
2583 	/* Userspace is changing the multiplier while L2 is active */
2584 	if (is_guest_mode(vcpu))
2585 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2586 			l1_multiplier,
2587 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2588 	else
2589 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2590 
2591 	if (kvm_caps.has_tsc_control)
2592 		static_call(kvm_x86_write_tsc_multiplier)(
2593 			vcpu, vcpu->arch.tsc_scaling_ratio);
2594 }
2595 
2596 static inline bool kvm_check_tsc_unstable(void)
2597 {
2598 #ifdef CONFIG_X86_64
2599 	/*
2600 	 * TSC is marked unstable when we're running on Hyper-V,
2601 	 * 'TSC page' clocksource is good.
2602 	 */
2603 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2604 		return false;
2605 #endif
2606 	return check_tsc_unstable();
2607 }
2608 
2609 /*
2610  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2611  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2612  * participates in.
2613  */
2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2615 				  u64 ns, bool matched)
2616 {
2617 	struct kvm *kvm = vcpu->kvm;
2618 
2619 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2620 
2621 	/*
2622 	 * We also track th most recent recorded KHZ, write and time to
2623 	 * allow the matching interval to be extended at each write.
2624 	 */
2625 	kvm->arch.last_tsc_nsec = ns;
2626 	kvm->arch.last_tsc_write = tsc;
2627 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2628 	kvm->arch.last_tsc_offset = offset;
2629 
2630 	vcpu->arch.last_guest_tsc = tsc;
2631 
2632 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2633 
2634 	if (!matched) {
2635 		/*
2636 		 * We split periods of matched TSC writes into generations.
2637 		 * For each generation, we track the original measured
2638 		 * nanosecond time, offset, and write, so if TSCs are in
2639 		 * sync, we can match exact offset, and if not, we can match
2640 		 * exact software computation in compute_guest_tsc()
2641 		 *
2642 		 * These values are tracked in kvm->arch.cur_xxx variables.
2643 		 */
2644 		kvm->arch.cur_tsc_generation++;
2645 		kvm->arch.cur_tsc_nsec = ns;
2646 		kvm->arch.cur_tsc_write = tsc;
2647 		kvm->arch.cur_tsc_offset = offset;
2648 		kvm->arch.nr_vcpus_matched_tsc = 0;
2649 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2650 		kvm->arch.nr_vcpus_matched_tsc++;
2651 	}
2652 
2653 	/* Keep track of which generation this VCPU has synchronized to */
2654 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2655 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2656 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2657 
2658 	kvm_track_tsc_matching(vcpu);
2659 }
2660 
2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2662 {
2663 	struct kvm *kvm = vcpu->kvm;
2664 	u64 offset, ns, elapsed;
2665 	unsigned long flags;
2666 	bool matched = false;
2667 	bool synchronizing = false;
2668 
2669 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2670 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2671 	ns = get_kvmclock_base_ns();
2672 	elapsed = ns - kvm->arch.last_tsc_nsec;
2673 
2674 	if (vcpu->arch.virtual_tsc_khz) {
2675 		if (data == 0) {
2676 			/*
2677 			 * detection of vcpu initialization -- need to sync
2678 			 * with other vCPUs. This particularly helps to keep
2679 			 * kvm_clock stable after CPU hotplug
2680 			 */
2681 			synchronizing = true;
2682 		} else {
2683 			u64 tsc_exp = kvm->arch.last_tsc_write +
2684 						nsec_to_cycles(vcpu, elapsed);
2685 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2686 			/*
2687 			 * Special case: TSC write with a small delta (1 second)
2688 			 * of virtual cycle time against real time is
2689 			 * interpreted as an attempt to synchronize the CPU.
2690 			 */
2691 			synchronizing = data < tsc_exp + tsc_hz &&
2692 					data + tsc_hz > tsc_exp;
2693 		}
2694 	}
2695 
2696 	/*
2697 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2698 	 * TSC, we add elapsed time in this computation.  We could let the
2699 	 * compensation code attempt to catch up if we fall behind, but
2700 	 * it's better to try to match offsets from the beginning.
2701          */
2702 	if (synchronizing &&
2703 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2704 		if (!kvm_check_tsc_unstable()) {
2705 			offset = kvm->arch.cur_tsc_offset;
2706 		} else {
2707 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2708 			data += delta;
2709 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2710 		}
2711 		matched = true;
2712 	}
2713 
2714 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2715 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2716 }
2717 
2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2719 					   s64 adjustment)
2720 {
2721 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2722 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2723 }
2724 
2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2726 {
2727 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2728 		WARN_ON(adjustment < 0);
2729 	adjustment = kvm_scale_tsc((u64) adjustment,
2730 				   vcpu->arch.l1_tsc_scaling_ratio);
2731 	adjust_tsc_offset_guest(vcpu, adjustment);
2732 }
2733 
2734 #ifdef CONFIG_X86_64
2735 
2736 static u64 read_tsc(void)
2737 {
2738 	u64 ret = (u64)rdtsc_ordered();
2739 	u64 last = pvclock_gtod_data.clock.cycle_last;
2740 
2741 	if (likely(ret >= last))
2742 		return ret;
2743 
2744 	/*
2745 	 * GCC likes to generate cmov here, but this branch is extremely
2746 	 * predictable (it's just a function of time and the likely is
2747 	 * very likely) and there's a data dependence, so force GCC
2748 	 * to generate a branch instead.  I don't barrier() because
2749 	 * we don't actually need a barrier, and if this function
2750 	 * ever gets inlined it will generate worse code.
2751 	 */
2752 	asm volatile ("");
2753 	return last;
2754 }
2755 
2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2757 			  int *mode)
2758 {
2759 	long v;
2760 	u64 tsc_pg_val;
2761 
2762 	switch (clock->vclock_mode) {
2763 	case VDSO_CLOCKMODE_HVCLOCK:
2764 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2765 						  tsc_timestamp);
2766 		if (tsc_pg_val != U64_MAX) {
2767 			/* TSC page valid */
2768 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2769 			v = (tsc_pg_val - clock->cycle_last) &
2770 				clock->mask;
2771 		} else {
2772 			/* TSC page invalid */
2773 			*mode = VDSO_CLOCKMODE_NONE;
2774 		}
2775 		break;
2776 	case VDSO_CLOCKMODE_TSC:
2777 		*mode = VDSO_CLOCKMODE_TSC;
2778 		*tsc_timestamp = read_tsc();
2779 		v = (*tsc_timestamp - clock->cycle_last) &
2780 			clock->mask;
2781 		break;
2782 	default:
2783 		*mode = VDSO_CLOCKMODE_NONE;
2784 	}
2785 
2786 	if (*mode == VDSO_CLOCKMODE_NONE)
2787 		*tsc_timestamp = v = 0;
2788 
2789 	return v * clock->mult;
2790 }
2791 
2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2793 {
2794 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2795 	unsigned long seq;
2796 	int mode;
2797 	u64 ns;
2798 
2799 	do {
2800 		seq = read_seqcount_begin(&gtod->seq);
2801 		ns = gtod->raw_clock.base_cycles;
2802 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2803 		ns >>= gtod->raw_clock.shift;
2804 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2805 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2806 	*t = ns;
2807 
2808 	return mode;
2809 }
2810 
2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2812 {
2813 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2814 	unsigned long seq;
2815 	int mode;
2816 	u64 ns;
2817 
2818 	do {
2819 		seq = read_seqcount_begin(&gtod->seq);
2820 		ts->tv_sec = gtod->wall_time_sec;
2821 		ns = gtod->clock.base_cycles;
2822 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2823 		ns >>= gtod->clock.shift;
2824 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2825 
2826 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2827 	ts->tv_nsec = ns;
2828 
2829 	return mode;
2830 }
2831 
2832 /* returns true if host is using TSC based clocksource */
2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2834 {
2835 	/* checked again under seqlock below */
2836 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2837 		return false;
2838 
2839 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2840 						      tsc_timestamp));
2841 }
2842 
2843 /* returns true if host is using TSC based clocksource */
2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2845 					   u64 *tsc_timestamp)
2846 {
2847 	/* checked again under seqlock below */
2848 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2849 		return false;
2850 
2851 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2852 }
2853 #endif
2854 
2855 /*
2856  *
2857  * Assuming a stable TSC across physical CPUS, and a stable TSC
2858  * across virtual CPUs, the following condition is possible.
2859  * Each numbered line represents an event visible to both
2860  * CPUs at the next numbered event.
2861  *
2862  * "timespecX" represents host monotonic time. "tscX" represents
2863  * RDTSC value.
2864  *
2865  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2866  *
2867  * 1.  read timespec0,tsc0
2868  * 2.					| timespec1 = timespec0 + N
2869  * 					| tsc1 = tsc0 + M
2870  * 3. transition to guest		| transition to guest
2871  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2872  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2873  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2874  *
2875  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2876  *
2877  * 	- ret0 < ret1
2878  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2879  *		...
2880  *	- 0 < N - M => M < N
2881  *
2882  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2883  * always the case (the difference between two distinct xtime instances
2884  * might be smaller then the difference between corresponding TSC reads,
2885  * when updating guest vcpus pvclock areas).
2886  *
2887  * To avoid that problem, do not allow visibility of distinct
2888  * system_timestamp/tsc_timestamp values simultaneously: use a master
2889  * copy of host monotonic time values. Update that master copy
2890  * in lockstep.
2891  *
2892  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2893  *
2894  */
2895 
2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2897 {
2898 #ifdef CONFIG_X86_64
2899 	struct kvm_arch *ka = &kvm->arch;
2900 	int vclock_mode;
2901 	bool host_tsc_clocksource, vcpus_matched;
2902 
2903 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2904 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2905 			atomic_read(&kvm->online_vcpus));
2906 
2907 	/*
2908 	 * If the host uses TSC clock, then passthrough TSC as stable
2909 	 * to the guest.
2910 	 */
2911 	host_tsc_clocksource = kvm_get_time_and_clockread(
2912 					&ka->master_kernel_ns,
2913 					&ka->master_cycle_now);
2914 
2915 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2916 				&& !ka->backwards_tsc_observed
2917 				&& !ka->boot_vcpu_runs_old_kvmclock;
2918 
2919 	if (ka->use_master_clock)
2920 		atomic_set(&kvm_guest_has_master_clock, 1);
2921 
2922 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2923 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2924 					vcpus_matched);
2925 #endif
2926 }
2927 
2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2929 {
2930 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2931 }
2932 
2933 static void __kvm_start_pvclock_update(struct kvm *kvm)
2934 {
2935 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2936 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2937 }
2938 
2939 static void kvm_start_pvclock_update(struct kvm *kvm)
2940 {
2941 	kvm_make_mclock_inprogress_request(kvm);
2942 
2943 	/* no guest entries from this point */
2944 	__kvm_start_pvclock_update(kvm);
2945 }
2946 
2947 static void kvm_end_pvclock_update(struct kvm *kvm)
2948 {
2949 	struct kvm_arch *ka = &kvm->arch;
2950 	struct kvm_vcpu *vcpu;
2951 	unsigned long i;
2952 
2953 	write_seqcount_end(&ka->pvclock_sc);
2954 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2955 	kvm_for_each_vcpu(i, vcpu, kvm)
2956 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2957 
2958 	/* guest entries allowed */
2959 	kvm_for_each_vcpu(i, vcpu, kvm)
2960 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2961 }
2962 
2963 static void kvm_update_masterclock(struct kvm *kvm)
2964 {
2965 	kvm_hv_request_tsc_page_update(kvm);
2966 	kvm_start_pvclock_update(kvm);
2967 	pvclock_update_vm_gtod_copy(kvm);
2968 	kvm_end_pvclock_update(kvm);
2969 }
2970 
2971 /*
2972  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2973  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2974  * can change during boot even if the TSC is constant, as it's possible for KVM
2975  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2976  * notification when calibration completes, but practically speaking calibration
2977  * will complete before userspace is alive enough to create VMs.
2978  */
2979 static unsigned long get_cpu_tsc_khz(void)
2980 {
2981 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2982 		return tsc_khz;
2983 	else
2984 		return __this_cpu_read(cpu_tsc_khz);
2985 }
2986 
2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2989 {
2990 	struct kvm_arch *ka = &kvm->arch;
2991 	struct pvclock_vcpu_time_info hv_clock;
2992 
2993 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2994 	get_cpu();
2995 
2996 	data->flags = 0;
2997 	if (ka->use_master_clock &&
2998 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
2999 #ifdef CONFIG_X86_64
3000 		struct timespec64 ts;
3001 
3002 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3003 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3004 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3005 		} else
3006 #endif
3007 		data->host_tsc = rdtsc();
3008 
3009 		data->flags |= KVM_CLOCK_TSC_STABLE;
3010 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3011 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3012 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3013 				   &hv_clock.tsc_shift,
3014 				   &hv_clock.tsc_to_system_mul);
3015 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3016 	} else {
3017 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3018 	}
3019 
3020 	put_cpu();
3021 }
3022 
3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3024 {
3025 	struct kvm_arch *ka = &kvm->arch;
3026 	unsigned seq;
3027 
3028 	do {
3029 		seq = read_seqcount_begin(&ka->pvclock_sc);
3030 		__get_kvmclock(kvm, data);
3031 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3032 }
3033 
3034 u64 get_kvmclock_ns(struct kvm *kvm)
3035 {
3036 	struct kvm_clock_data data;
3037 
3038 	get_kvmclock(kvm, &data);
3039 	return data.clock;
3040 }
3041 
3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3043 				    struct gfn_to_pfn_cache *gpc,
3044 				    unsigned int offset)
3045 {
3046 	struct kvm_vcpu_arch *vcpu = &v->arch;
3047 	struct pvclock_vcpu_time_info *guest_hv_clock;
3048 	unsigned long flags;
3049 
3050 	read_lock_irqsave(&gpc->lock, flags);
3051 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3052 		read_unlock_irqrestore(&gpc->lock, flags);
3053 
3054 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3055 			return;
3056 
3057 		read_lock_irqsave(&gpc->lock, flags);
3058 	}
3059 
3060 	guest_hv_clock = (void *)(gpc->khva + offset);
3061 
3062 	/*
3063 	 * This VCPU is paused, but it's legal for a guest to read another
3064 	 * VCPU's kvmclock, so we really have to follow the specification where
3065 	 * it says that version is odd if data is being modified, and even after
3066 	 * it is consistent.
3067 	 */
3068 
3069 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3070 	smp_wmb();
3071 
3072 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3073 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3074 
3075 	if (vcpu->pvclock_set_guest_stopped_request) {
3076 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3077 		vcpu->pvclock_set_guest_stopped_request = false;
3078 	}
3079 
3080 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3081 	smp_wmb();
3082 
3083 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3084 
3085 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3086 	read_unlock_irqrestore(&gpc->lock, flags);
3087 
3088 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3089 }
3090 
3091 static int kvm_guest_time_update(struct kvm_vcpu *v)
3092 {
3093 	unsigned long flags, tgt_tsc_khz;
3094 	unsigned seq;
3095 	struct kvm_vcpu_arch *vcpu = &v->arch;
3096 	struct kvm_arch *ka = &v->kvm->arch;
3097 	s64 kernel_ns;
3098 	u64 tsc_timestamp, host_tsc;
3099 	u8 pvclock_flags;
3100 	bool use_master_clock;
3101 
3102 	kernel_ns = 0;
3103 	host_tsc = 0;
3104 
3105 	/*
3106 	 * If the host uses TSC clock, then passthrough TSC as stable
3107 	 * to the guest.
3108 	 */
3109 	do {
3110 		seq = read_seqcount_begin(&ka->pvclock_sc);
3111 		use_master_clock = ka->use_master_clock;
3112 		if (use_master_clock) {
3113 			host_tsc = ka->master_cycle_now;
3114 			kernel_ns = ka->master_kernel_ns;
3115 		}
3116 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3117 
3118 	/* Keep irq disabled to prevent changes to the clock */
3119 	local_irq_save(flags);
3120 	tgt_tsc_khz = get_cpu_tsc_khz();
3121 	if (unlikely(tgt_tsc_khz == 0)) {
3122 		local_irq_restore(flags);
3123 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3124 		return 1;
3125 	}
3126 	if (!use_master_clock) {
3127 		host_tsc = rdtsc();
3128 		kernel_ns = get_kvmclock_base_ns();
3129 	}
3130 
3131 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3132 
3133 	/*
3134 	 * We may have to catch up the TSC to match elapsed wall clock
3135 	 * time for two reasons, even if kvmclock is used.
3136 	 *   1) CPU could have been running below the maximum TSC rate
3137 	 *   2) Broken TSC compensation resets the base at each VCPU
3138 	 *      entry to avoid unknown leaps of TSC even when running
3139 	 *      again on the same CPU.  This may cause apparent elapsed
3140 	 *      time to disappear, and the guest to stand still or run
3141 	 *	very slowly.
3142 	 */
3143 	if (vcpu->tsc_catchup) {
3144 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3145 		if (tsc > tsc_timestamp) {
3146 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3147 			tsc_timestamp = tsc;
3148 		}
3149 	}
3150 
3151 	local_irq_restore(flags);
3152 
3153 	/* With all the info we got, fill in the values */
3154 
3155 	if (kvm_caps.has_tsc_control)
3156 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3157 					    v->arch.l1_tsc_scaling_ratio);
3158 
3159 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3160 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3161 				   &vcpu->hv_clock.tsc_shift,
3162 				   &vcpu->hv_clock.tsc_to_system_mul);
3163 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3164 	}
3165 
3166 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3167 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3168 	vcpu->last_guest_tsc = tsc_timestamp;
3169 
3170 	/* If the host uses TSC clocksource, then it is stable */
3171 	pvclock_flags = 0;
3172 	if (use_master_clock)
3173 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3174 
3175 	vcpu->hv_clock.flags = pvclock_flags;
3176 
3177 	if (vcpu->pv_time.active)
3178 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3179 	if (vcpu->xen.vcpu_info_cache.active)
3180 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3181 					offsetof(struct compat_vcpu_info, time));
3182 	if (vcpu->xen.vcpu_time_info_cache.active)
3183 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3184 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3185 	return 0;
3186 }
3187 
3188 /*
3189  * kvmclock updates which are isolated to a given vcpu, such as
3190  * vcpu->cpu migration, should not allow system_timestamp from
3191  * the rest of the vcpus to remain static. Otherwise ntp frequency
3192  * correction applies to one vcpu's system_timestamp but not
3193  * the others.
3194  *
3195  * So in those cases, request a kvmclock update for all vcpus.
3196  * We need to rate-limit these requests though, as they can
3197  * considerably slow guests that have a large number of vcpus.
3198  * The time for a remote vcpu to update its kvmclock is bound
3199  * by the delay we use to rate-limit the updates.
3200  */
3201 
3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3203 
3204 static void kvmclock_update_fn(struct work_struct *work)
3205 {
3206 	unsigned long i;
3207 	struct delayed_work *dwork = to_delayed_work(work);
3208 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3209 					   kvmclock_update_work);
3210 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3211 	struct kvm_vcpu *vcpu;
3212 
3213 	kvm_for_each_vcpu(i, vcpu, kvm) {
3214 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3215 		kvm_vcpu_kick(vcpu);
3216 	}
3217 }
3218 
3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3220 {
3221 	struct kvm *kvm = v->kvm;
3222 
3223 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3224 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3225 					KVMCLOCK_UPDATE_DELAY);
3226 }
3227 
3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3229 
3230 static void kvmclock_sync_fn(struct work_struct *work)
3231 {
3232 	struct delayed_work *dwork = to_delayed_work(work);
3233 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3234 					   kvmclock_sync_work);
3235 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3236 
3237 	if (!kvmclock_periodic_sync)
3238 		return;
3239 
3240 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3241 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3242 					KVMCLOCK_SYNC_PERIOD);
3243 }
3244 
3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3246 static bool is_mci_control_msr(u32 msr)
3247 {
3248 	return (msr & 3) == 0;
3249 }
3250 static bool is_mci_status_msr(u32 msr)
3251 {
3252 	return (msr & 3) == 1;
3253 }
3254 
3255 /*
3256  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3257  */
3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3259 {
3260 	/* McStatusWrEn enabled? */
3261 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3262 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3263 
3264 	return false;
3265 }
3266 
3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3268 {
3269 	u64 mcg_cap = vcpu->arch.mcg_cap;
3270 	unsigned bank_num = mcg_cap & 0xff;
3271 	u32 msr = msr_info->index;
3272 	u64 data = msr_info->data;
3273 	u32 offset, last_msr;
3274 
3275 	switch (msr) {
3276 	case MSR_IA32_MCG_STATUS:
3277 		vcpu->arch.mcg_status = data;
3278 		break;
3279 	case MSR_IA32_MCG_CTL:
3280 		if (!(mcg_cap & MCG_CTL_P) &&
3281 		    (data || !msr_info->host_initiated))
3282 			return 1;
3283 		if (data != 0 && data != ~(u64)0)
3284 			return 1;
3285 		vcpu->arch.mcg_ctl = data;
3286 		break;
3287 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3288 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3289 		if (msr > last_msr)
3290 			return 1;
3291 
3292 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3293 			return 1;
3294 		/* An attempt to write a 1 to a reserved bit raises #GP */
3295 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3296 			return 1;
3297 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3298 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3299 		vcpu->arch.mci_ctl2_banks[offset] = data;
3300 		break;
3301 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3302 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3303 		if (msr > last_msr)
3304 			return 1;
3305 
3306 		/*
3307 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3308 		 * values are architecturally undefined.  But, some Linux
3309 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3310 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3311 		 * other bits in order to avoid an uncaught #GP in the guest.
3312 		 *
3313 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3314 		 * single-bit ECC data errors.
3315 		 */
3316 		if (is_mci_control_msr(msr) &&
3317 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3318 			return 1;
3319 
3320 		/*
3321 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3322 		 * AMD-based CPUs allow non-zero values, but if and only if
3323 		 * HWCR[McStatusWrEn] is set.
3324 		 */
3325 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3326 		    data != 0 && !can_set_mci_status(vcpu))
3327 			return 1;
3328 
3329 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3330 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3331 		vcpu->arch.mce_banks[offset] = data;
3332 		break;
3333 	default:
3334 		return 1;
3335 	}
3336 	return 0;
3337 }
3338 
3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3340 {
3341 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3342 
3343 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3344 }
3345 
3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3347 {
3348 	gpa_t gpa = data & ~0x3f;
3349 
3350 	/* Bits 4:5 are reserved, Should be zero */
3351 	if (data & 0x30)
3352 		return 1;
3353 
3354 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3355 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3356 		return 1;
3357 
3358 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3359 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3360 		return 1;
3361 
3362 	if (!lapic_in_kernel(vcpu))
3363 		return data ? 1 : 0;
3364 
3365 	vcpu->arch.apf.msr_en_val = data;
3366 
3367 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3368 		kvm_clear_async_pf_completion_queue(vcpu);
3369 		kvm_async_pf_hash_reset(vcpu);
3370 		return 0;
3371 	}
3372 
3373 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3374 					sizeof(u64)))
3375 		return 1;
3376 
3377 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3378 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3379 
3380 	kvm_async_pf_wakeup_all(vcpu);
3381 
3382 	return 0;
3383 }
3384 
3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3386 {
3387 	/* Bits 8-63 are reserved */
3388 	if (data >> 8)
3389 		return 1;
3390 
3391 	if (!lapic_in_kernel(vcpu))
3392 		return 1;
3393 
3394 	vcpu->arch.apf.msr_int_val = data;
3395 
3396 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3397 
3398 	return 0;
3399 }
3400 
3401 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3402 {
3403 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3404 	vcpu->arch.time = 0;
3405 }
3406 
3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3408 {
3409 	++vcpu->stat.tlb_flush;
3410 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3411 
3412 	/* Flushing all ASIDs flushes the current ASID... */
3413 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3414 }
3415 
3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3417 {
3418 	++vcpu->stat.tlb_flush;
3419 
3420 	if (!tdp_enabled) {
3421 		/*
3422 		 * A TLB flush on behalf of the guest is equivalent to
3423 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3424 		 * a forced sync of the shadow page tables.  Ensure all the
3425 		 * roots are synced and the guest TLB in hardware is clean.
3426 		 */
3427 		kvm_mmu_sync_roots(vcpu);
3428 		kvm_mmu_sync_prev_roots(vcpu);
3429 	}
3430 
3431 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3432 
3433 	/*
3434 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3435 	 * grained flushing.
3436 	 */
3437 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3438 }
3439 
3440 
3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3442 {
3443 	++vcpu->stat.tlb_flush;
3444 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3445 }
3446 
3447 /*
3448  * Service "local" TLB flush requests, which are specific to the current MMU
3449  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3450  * TLB flushes that are targeted at an MMU context also need to be serviced
3451  * prior before nested VM-Enter/VM-Exit.
3452  */
3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3454 {
3455 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3456 		kvm_vcpu_flush_tlb_current(vcpu);
3457 
3458 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3459 		kvm_vcpu_flush_tlb_guest(vcpu);
3460 }
3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3462 
3463 static void record_steal_time(struct kvm_vcpu *vcpu)
3464 {
3465 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3466 	struct kvm_steal_time __user *st;
3467 	struct kvm_memslots *slots;
3468 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3469 	u64 steal;
3470 	u32 version;
3471 
3472 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3473 		kvm_xen_runstate_set_running(vcpu);
3474 		return;
3475 	}
3476 
3477 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3478 		return;
3479 
3480 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3481 		return;
3482 
3483 	slots = kvm_memslots(vcpu->kvm);
3484 
3485 	if (unlikely(slots->generation != ghc->generation ||
3486 		     gpa != ghc->gpa ||
3487 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3488 		/* We rely on the fact that it fits in a single page. */
3489 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3490 
3491 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3492 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3493 			return;
3494 	}
3495 
3496 	st = (struct kvm_steal_time __user *)ghc->hva;
3497 	/*
3498 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3499 	 * expensive IPIs.
3500 	 */
3501 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3502 		u8 st_preempted = 0;
3503 		int err = -EFAULT;
3504 
3505 		if (!user_access_begin(st, sizeof(*st)))
3506 			return;
3507 
3508 		asm volatile("1: xchgb %0, %2\n"
3509 			     "xor %1, %1\n"
3510 			     "2:\n"
3511 			     _ASM_EXTABLE_UA(1b, 2b)
3512 			     : "+q" (st_preempted),
3513 			       "+&r" (err),
3514 			       "+m" (st->preempted));
3515 		if (err)
3516 			goto out;
3517 
3518 		user_access_end();
3519 
3520 		vcpu->arch.st.preempted = 0;
3521 
3522 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3523 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3524 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3525 			kvm_vcpu_flush_tlb_guest(vcpu);
3526 
3527 		if (!user_access_begin(st, sizeof(*st)))
3528 			goto dirty;
3529 	} else {
3530 		if (!user_access_begin(st, sizeof(*st)))
3531 			return;
3532 
3533 		unsafe_put_user(0, &st->preempted, out);
3534 		vcpu->arch.st.preempted = 0;
3535 	}
3536 
3537 	unsafe_get_user(version, &st->version, out);
3538 	if (version & 1)
3539 		version += 1;  /* first time write, random junk */
3540 
3541 	version += 1;
3542 	unsafe_put_user(version, &st->version, out);
3543 
3544 	smp_wmb();
3545 
3546 	unsafe_get_user(steal, &st->steal, out);
3547 	steal += current->sched_info.run_delay -
3548 		vcpu->arch.st.last_steal;
3549 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3550 	unsafe_put_user(steal, &st->steal, out);
3551 
3552 	version += 1;
3553 	unsafe_put_user(version, &st->version, out);
3554 
3555  out:
3556 	user_access_end();
3557  dirty:
3558 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3559 }
3560 
3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3562 {
3563 	u32 msr = msr_info->index;
3564 	u64 data = msr_info->data;
3565 
3566 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3567 		return kvm_xen_write_hypercall_page(vcpu, data);
3568 
3569 	switch (msr) {
3570 	case MSR_AMD64_NB_CFG:
3571 	case MSR_IA32_UCODE_WRITE:
3572 	case MSR_VM_HSAVE_PA:
3573 	case MSR_AMD64_PATCH_LOADER:
3574 	case MSR_AMD64_BU_CFG2:
3575 	case MSR_AMD64_DC_CFG:
3576 	case MSR_F15H_EX_CFG:
3577 		break;
3578 
3579 	case MSR_IA32_UCODE_REV:
3580 		if (msr_info->host_initiated)
3581 			vcpu->arch.microcode_version = data;
3582 		break;
3583 	case MSR_IA32_ARCH_CAPABILITIES:
3584 		if (!msr_info->host_initiated)
3585 			return 1;
3586 		vcpu->arch.arch_capabilities = data;
3587 		break;
3588 	case MSR_IA32_PERF_CAPABILITIES:
3589 		if (!msr_info->host_initiated)
3590 			return 1;
3591 		if (data & ~kvm_caps.supported_perf_cap)
3592 			return 1;
3593 
3594 		vcpu->arch.perf_capabilities = data;
3595 		kvm_pmu_refresh(vcpu);
3596 		return 0;
3597 	case MSR_EFER:
3598 		return set_efer(vcpu, msr_info);
3599 	case MSR_K7_HWCR:
3600 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3601 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3602 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3603 
3604 		/* Handle McStatusWrEn */
3605 		if (data == BIT_ULL(18)) {
3606 			vcpu->arch.msr_hwcr = data;
3607 		} else if (data != 0) {
3608 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3609 			return 1;
3610 		}
3611 		break;
3612 	case MSR_FAM10H_MMIO_CONF_BASE:
3613 		if (data != 0) {
3614 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3615 			return 1;
3616 		}
3617 		break;
3618 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3619 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3620 		return kvm_mtrr_set_msr(vcpu, msr, data);
3621 	case MSR_IA32_APICBASE:
3622 		return kvm_set_apic_base(vcpu, msr_info);
3623 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3624 		return kvm_x2apic_msr_write(vcpu, msr, data);
3625 	case MSR_IA32_TSC_DEADLINE:
3626 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3627 		break;
3628 	case MSR_IA32_TSC_ADJUST:
3629 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3630 			if (!msr_info->host_initiated) {
3631 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3632 				adjust_tsc_offset_guest(vcpu, adj);
3633 				/* Before back to guest, tsc_timestamp must be adjusted
3634 				 * as well, otherwise guest's percpu pvclock time could jump.
3635 				 */
3636 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3637 			}
3638 			vcpu->arch.ia32_tsc_adjust_msr = data;
3639 		}
3640 		break;
3641 	case MSR_IA32_MISC_ENABLE: {
3642 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3643 
3644 		if (!msr_info->host_initiated) {
3645 			/* RO bits */
3646 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3647 				return 1;
3648 
3649 			/* R bits, i.e. writes are ignored, but don't fault. */
3650 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3651 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3652 		}
3653 
3654 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3655 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3656 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3657 				return 1;
3658 			vcpu->arch.ia32_misc_enable_msr = data;
3659 			kvm_update_cpuid_runtime(vcpu);
3660 		} else {
3661 			vcpu->arch.ia32_misc_enable_msr = data;
3662 		}
3663 		break;
3664 	}
3665 	case MSR_IA32_SMBASE:
3666 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3667 			return 1;
3668 		vcpu->arch.smbase = data;
3669 		break;
3670 	case MSR_IA32_POWER_CTL:
3671 		vcpu->arch.msr_ia32_power_ctl = data;
3672 		break;
3673 	case MSR_IA32_TSC:
3674 		if (msr_info->host_initiated) {
3675 			kvm_synchronize_tsc(vcpu, data);
3676 		} else {
3677 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3678 			adjust_tsc_offset_guest(vcpu, adj);
3679 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3680 		}
3681 		break;
3682 	case MSR_IA32_XSS:
3683 		if (!msr_info->host_initiated &&
3684 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3685 			return 1;
3686 		/*
3687 		 * KVM supports exposing PT to the guest, but does not support
3688 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3689 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3690 		 */
3691 		if (data & ~kvm_caps.supported_xss)
3692 			return 1;
3693 		vcpu->arch.ia32_xss = data;
3694 		kvm_update_cpuid_runtime(vcpu);
3695 		break;
3696 	case MSR_SMI_COUNT:
3697 		if (!msr_info->host_initiated)
3698 			return 1;
3699 		vcpu->arch.smi_count = data;
3700 		break;
3701 	case MSR_KVM_WALL_CLOCK_NEW:
3702 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3703 			return 1;
3704 
3705 		vcpu->kvm->arch.wall_clock = data;
3706 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3707 		break;
3708 	case MSR_KVM_WALL_CLOCK:
3709 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3710 			return 1;
3711 
3712 		vcpu->kvm->arch.wall_clock = data;
3713 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3714 		break;
3715 	case MSR_KVM_SYSTEM_TIME_NEW:
3716 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3717 			return 1;
3718 
3719 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3720 		break;
3721 	case MSR_KVM_SYSTEM_TIME:
3722 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3723 			return 1;
3724 
3725 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3726 		break;
3727 	case MSR_KVM_ASYNC_PF_EN:
3728 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3729 			return 1;
3730 
3731 		if (kvm_pv_enable_async_pf(vcpu, data))
3732 			return 1;
3733 		break;
3734 	case MSR_KVM_ASYNC_PF_INT:
3735 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3736 			return 1;
3737 
3738 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3739 			return 1;
3740 		break;
3741 	case MSR_KVM_ASYNC_PF_ACK:
3742 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3743 			return 1;
3744 		if (data & 0x1) {
3745 			vcpu->arch.apf.pageready_pending = false;
3746 			kvm_check_async_pf_completion(vcpu);
3747 		}
3748 		break;
3749 	case MSR_KVM_STEAL_TIME:
3750 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3751 			return 1;
3752 
3753 		if (unlikely(!sched_info_on()))
3754 			return 1;
3755 
3756 		if (data & KVM_STEAL_RESERVED_MASK)
3757 			return 1;
3758 
3759 		vcpu->arch.st.msr_val = data;
3760 
3761 		if (!(data & KVM_MSR_ENABLED))
3762 			break;
3763 
3764 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3765 
3766 		break;
3767 	case MSR_KVM_PV_EOI_EN:
3768 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3769 			return 1;
3770 
3771 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3772 			return 1;
3773 		break;
3774 
3775 	case MSR_KVM_POLL_CONTROL:
3776 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3777 			return 1;
3778 
3779 		/* only enable bit supported */
3780 		if (data & (-1ULL << 1))
3781 			return 1;
3782 
3783 		vcpu->arch.msr_kvm_poll_control = data;
3784 		break;
3785 
3786 	case MSR_IA32_MCG_CTL:
3787 	case MSR_IA32_MCG_STATUS:
3788 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3789 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3790 		return set_msr_mce(vcpu, msr_info);
3791 
3792 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3793 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3794 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3795 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3796 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3797 			return kvm_pmu_set_msr(vcpu, msr_info);
3798 
3799 		if (data)
3800 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3801 		break;
3802 	case MSR_K7_CLK_CTL:
3803 		/*
3804 		 * Ignore all writes to this no longer documented MSR.
3805 		 * Writes are only relevant for old K7 processors,
3806 		 * all pre-dating SVM, but a recommended workaround from
3807 		 * AMD for these chips. It is possible to specify the
3808 		 * affected processor models on the command line, hence
3809 		 * the need to ignore the workaround.
3810 		 */
3811 		break;
3812 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3813 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3814 	case HV_X64_MSR_SYNDBG_OPTIONS:
3815 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3816 	case HV_X64_MSR_CRASH_CTL:
3817 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3818 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3819 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3820 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3821 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3822 		return kvm_hv_set_msr_common(vcpu, msr, data,
3823 					     msr_info->host_initiated);
3824 	case MSR_IA32_BBL_CR_CTL3:
3825 		/* Drop writes to this legacy MSR -- see rdmsr
3826 		 * counterpart for further detail.
3827 		 */
3828 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3829 		break;
3830 	case MSR_AMD64_OSVW_ID_LENGTH:
3831 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3832 			return 1;
3833 		vcpu->arch.osvw.length = data;
3834 		break;
3835 	case MSR_AMD64_OSVW_STATUS:
3836 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3837 			return 1;
3838 		vcpu->arch.osvw.status = data;
3839 		break;
3840 	case MSR_PLATFORM_INFO:
3841 		if (!msr_info->host_initiated ||
3842 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3843 		     cpuid_fault_enabled(vcpu)))
3844 			return 1;
3845 		vcpu->arch.msr_platform_info = data;
3846 		break;
3847 	case MSR_MISC_FEATURES_ENABLES:
3848 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3849 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3850 		     !supports_cpuid_fault(vcpu)))
3851 			return 1;
3852 		vcpu->arch.msr_misc_features_enables = data;
3853 		break;
3854 #ifdef CONFIG_X86_64
3855 	case MSR_IA32_XFD:
3856 		if (!msr_info->host_initiated &&
3857 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3858 			return 1;
3859 
3860 		if (data & ~kvm_guest_supported_xfd(vcpu))
3861 			return 1;
3862 
3863 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3864 		break;
3865 	case MSR_IA32_XFD_ERR:
3866 		if (!msr_info->host_initiated &&
3867 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3868 			return 1;
3869 
3870 		if (data & ~kvm_guest_supported_xfd(vcpu))
3871 			return 1;
3872 
3873 		vcpu->arch.guest_fpu.xfd_err = data;
3874 		break;
3875 #endif
3876 	case MSR_IA32_PEBS_ENABLE:
3877 	case MSR_IA32_DS_AREA:
3878 	case MSR_PEBS_DATA_CFG:
3879 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3880 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3881 			return kvm_pmu_set_msr(vcpu, msr_info);
3882 		/*
3883 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3884 		 * as to-be-saved, even if an MSRs isn't fully supported.
3885 		 */
3886 		return !msr_info->host_initiated || data;
3887 	default:
3888 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3889 			return kvm_pmu_set_msr(vcpu, msr_info);
3890 		return KVM_MSR_RET_INVALID;
3891 	}
3892 	return 0;
3893 }
3894 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3895 
3896 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3897 {
3898 	u64 data;
3899 	u64 mcg_cap = vcpu->arch.mcg_cap;
3900 	unsigned bank_num = mcg_cap & 0xff;
3901 	u32 offset, last_msr;
3902 
3903 	switch (msr) {
3904 	case MSR_IA32_P5_MC_ADDR:
3905 	case MSR_IA32_P5_MC_TYPE:
3906 		data = 0;
3907 		break;
3908 	case MSR_IA32_MCG_CAP:
3909 		data = vcpu->arch.mcg_cap;
3910 		break;
3911 	case MSR_IA32_MCG_CTL:
3912 		if (!(mcg_cap & MCG_CTL_P) && !host)
3913 			return 1;
3914 		data = vcpu->arch.mcg_ctl;
3915 		break;
3916 	case MSR_IA32_MCG_STATUS:
3917 		data = vcpu->arch.mcg_status;
3918 		break;
3919 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3920 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3921 		if (msr > last_msr)
3922 			return 1;
3923 
3924 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3925 			return 1;
3926 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3927 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3928 		data = vcpu->arch.mci_ctl2_banks[offset];
3929 		break;
3930 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3931 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3932 		if (msr > last_msr)
3933 			return 1;
3934 
3935 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3936 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3937 		data = vcpu->arch.mce_banks[offset];
3938 		break;
3939 	default:
3940 		return 1;
3941 	}
3942 	*pdata = data;
3943 	return 0;
3944 }
3945 
3946 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3947 {
3948 	switch (msr_info->index) {
3949 	case MSR_IA32_PLATFORM_ID:
3950 	case MSR_IA32_EBL_CR_POWERON:
3951 	case MSR_IA32_LASTBRANCHFROMIP:
3952 	case MSR_IA32_LASTBRANCHTOIP:
3953 	case MSR_IA32_LASTINTFROMIP:
3954 	case MSR_IA32_LASTINTTOIP:
3955 	case MSR_AMD64_SYSCFG:
3956 	case MSR_K8_TSEG_ADDR:
3957 	case MSR_K8_TSEG_MASK:
3958 	case MSR_VM_HSAVE_PA:
3959 	case MSR_K8_INT_PENDING_MSG:
3960 	case MSR_AMD64_NB_CFG:
3961 	case MSR_FAM10H_MMIO_CONF_BASE:
3962 	case MSR_AMD64_BU_CFG2:
3963 	case MSR_IA32_PERF_CTL:
3964 	case MSR_AMD64_DC_CFG:
3965 	case MSR_F15H_EX_CFG:
3966 	/*
3967 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3968 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3969 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3970 	 * so for existing CPU-specific MSRs.
3971 	 */
3972 	case MSR_RAPL_POWER_UNIT:
3973 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3974 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3975 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3976 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3977 		msr_info->data = 0;
3978 		break;
3979 	case MSR_IA32_PEBS_ENABLE:
3980 	case MSR_IA32_DS_AREA:
3981 	case MSR_PEBS_DATA_CFG:
3982 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3983 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3984 			return kvm_pmu_get_msr(vcpu, msr_info);
3985 		/*
3986 		 * Userspace is allowed to read MSRs that KVM reports as
3987 		 * to-be-saved, even if an MSR isn't fully supported.
3988 		 */
3989 		if (!msr_info->host_initiated)
3990 			return 1;
3991 		msr_info->data = 0;
3992 		break;
3993 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3994 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3995 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3996 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3997 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3998 			return kvm_pmu_get_msr(vcpu, msr_info);
3999 		msr_info->data = 0;
4000 		break;
4001 	case MSR_IA32_UCODE_REV:
4002 		msr_info->data = vcpu->arch.microcode_version;
4003 		break;
4004 	case MSR_IA32_ARCH_CAPABILITIES:
4005 		if (!msr_info->host_initiated &&
4006 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4007 			return 1;
4008 		msr_info->data = vcpu->arch.arch_capabilities;
4009 		break;
4010 	case MSR_IA32_PERF_CAPABILITIES:
4011 		if (!msr_info->host_initiated &&
4012 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4013 			return 1;
4014 		msr_info->data = vcpu->arch.perf_capabilities;
4015 		break;
4016 	case MSR_IA32_POWER_CTL:
4017 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4018 		break;
4019 	case MSR_IA32_TSC: {
4020 		/*
4021 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4022 		 * even when not intercepted. AMD manual doesn't explicitly
4023 		 * state this but appears to behave the same.
4024 		 *
4025 		 * On userspace reads and writes, however, we unconditionally
4026 		 * return L1's TSC value to ensure backwards-compatible
4027 		 * behavior for migration.
4028 		 */
4029 		u64 offset, ratio;
4030 
4031 		if (msr_info->host_initiated) {
4032 			offset = vcpu->arch.l1_tsc_offset;
4033 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4034 		} else {
4035 			offset = vcpu->arch.tsc_offset;
4036 			ratio = vcpu->arch.tsc_scaling_ratio;
4037 		}
4038 
4039 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4040 		break;
4041 	}
4042 	case MSR_MTRRcap:
4043 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4044 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4045 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4046 	case 0xcd: /* fsb frequency */
4047 		msr_info->data = 3;
4048 		break;
4049 		/*
4050 		 * MSR_EBC_FREQUENCY_ID
4051 		 * Conservative value valid for even the basic CPU models.
4052 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4053 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4054 		 * and 266MHz for model 3, or 4. Set Core Clock
4055 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4056 		 * 31:24) even though these are only valid for CPU
4057 		 * models > 2, however guests may end up dividing or
4058 		 * multiplying by zero otherwise.
4059 		 */
4060 	case MSR_EBC_FREQUENCY_ID:
4061 		msr_info->data = 1 << 24;
4062 		break;
4063 	case MSR_IA32_APICBASE:
4064 		msr_info->data = kvm_get_apic_base(vcpu);
4065 		break;
4066 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4067 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4068 	case MSR_IA32_TSC_DEADLINE:
4069 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4070 		break;
4071 	case MSR_IA32_TSC_ADJUST:
4072 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4073 		break;
4074 	case MSR_IA32_MISC_ENABLE:
4075 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4076 		break;
4077 	case MSR_IA32_SMBASE:
4078 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4079 			return 1;
4080 		msr_info->data = vcpu->arch.smbase;
4081 		break;
4082 	case MSR_SMI_COUNT:
4083 		msr_info->data = vcpu->arch.smi_count;
4084 		break;
4085 	case MSR_IA32_PERF_STATUS:
4086 		/* TSC increment by tick */
4087 		msr_info->data = 1000ULL;
4088 		/* CPU multiplier */
4089 		msr_info->data |= (((uint64_t)4ULL) << 40);
4090 		break;
4091 	case MSR_EFER:
4092 		msr_info->data = vcpu->arch.efer;
4093 		break;
4094 	case MSR_KVM_WALL_CLOCK:
4095 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4096 			return 1;
4097 
4098 		msr_info->data = vcpu->kvm->arch.wall_clock;
4099 		break;
4100 	case MSR_KVM_WALL_CLOCK_NEW:
4101 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4102 			return 1;
4103 
4104 		msr_info->data = vcpu->kvm->arch.wall_clock;
4105 		break;
4106 	case MSR_KVM_SYSTEM_TIME:
4107 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4108 			return 1;
4109 
4110 		msr_info->data = vcpu->arch.time;
4111 		break;
4112 	case MSR_KVM_SYSTEM_TIME_NEW:
4113 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4114 			return 1;
4115 
4116 		msr_info->data = vcpu->arch.time;
4117 		break;
4118 	case MSR_KVM_ASYNC_PF_EN:
4119 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4120 			return 1;
4121 
4122 		msr_info->data = vcpu->arch.apf.msr_en_val;
4123 		break;
4124 	case MSR_KVM_ASYNC_PF_INT:
4125 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4126 			return 1;
4127 
4128 		msr_info->data = vcpu->arch.apf.msr_int_val;
4129 		break;
4130 	case MSR_KVM_ASYNC_PF_ACK:
4131 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4132 			return 1;
4133 
4134 		msr_info->data = 0;
4135 		break;
4136 	case MSR_KVM_STEAL_TIME:
4137 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4138 			return 1;
4139 
4140 		msr_info->data = vcpu->arch.st.msr_val;
4141 		break;
4142 	case MSR_KVM_PV_EOI_EN:
4143 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4144 			return 1;
4145 
4146 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4147 		break;
4148 	case MSR_KVM_POLL_CONTROL:
4149 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4150 			return 1;
4151 
4152 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4153 		break;
4154 	case MSR_IA32_P5_MC_ADDR:
4155 	case MSR_IA32_P5_MC_TYPE:
4156 	case MSR_IA32_MCG_CAP:
4157 	case MSR_IA32_MCG_CTL:
4158 	case MSR_IA32_MCG_STATUS:
4159 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4160 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4161 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4162 				   msr_info->host_initiated);
4163 	case MSR_IA32_XSS:
4164 		if (!msr_info->host_initiated &&
4165 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4166 			return 1;
4167 		msr_info->data = vcpu->arch.ia32_xss;
4168 		break;
4169 	case MSR_K7_CLK_CTL:
4170 		/*
4171 		 * Provide expected ramp-up count for K7. All other
4172 		 * are set to zero, indicating minimum divisors for
4173 		 * every field.
4174 		 *
4175 		 * This prevents guest kernels on AMD host with CPU
4176 		 * type 6, model 8 and higher from exploding due to
4177 		 * the rdmsr failing.
4178 		 */
4179 		msr_info->data = 0x20000000;
4180 		break;
4181 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4182 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4183 	case HV_X64_MSR_SYNDBG_OPTIONS:
4184 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4185 	case HV_X64_MSR_CRASH_CTL:
4186 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4187 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4188 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4189 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4190 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4191 		return kvm_hv_get_msr_common(vcpu,
4192 					     msr_info->index, &msr_info->data,
4193 					     msr_info->host_initiated);
4194 	case MSR_IA32_BBL_CR_CTL3:
4195 		/* This legacy MSR exists but isn't fully documented in current
4196 		 * silicon.  It is however accessed by winxp in very narrow
4197 		 * scenarios where it sets bit #19, itself documented as
4198 		 * a "reserved" bit.  Best effort attempt to source coherent
4199 		 * read data here should the balance of the register be
4200 		 * interpreted by the guest:
4201 		 *
4202 		 * L2 cache control register 3: 64GB range, 256KB size,
4203 		 * enabled, latency 0x1, configured
4204 		 */
4205 		msr_info->data = 0xbe702111;
4206 		break;
4207 	case MSR_AMD64_OSVW_ID_LENGTH:
4208 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4209 			return 1;
4210 		msr_info->data = vcpu->arch.osvw.length;
4211 		break;
4212 	case MSR_AMD64_OSVW_STATUS:
4213 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4214 			return 1;
4215 		msr_info->data = vcpu->arch.osvw.status;
4216 		break;
4217 	case MSR_PLATFORM_INFO:
4218 		if (!msr_info->host_initiated &&
4219 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4220 			return 1;
4221 		msr_info->data = vcpu->arch.msr_platform_info;
4222 		break;
4223 	case MSR_MISC_FEATURES_ENABLES:
4224 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4225 		break;
4226 	case MSR_K7_HWCR:
4227 		msr_info->data = vcpu->arch.msr_hwcr;
4228 		break;
4229 #ifdef CONFIG_X86_64
4230 	case MSR_IA32_XFD:
4231 		if (!msr_info->host_initiated &&
4232 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4233 			return 1;
4234 
4235 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4236 		break;
4237 	case MSR_IA32_XFD_ERR:
4238 		if (!msr_info->host_initiated &&
4239 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4240 			return 1;
4241 
4242 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4243 		break;
4244 #endif
4245 	default:
4246 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4247 			return kvm_pmu_get_msr(vcpu, msr_info);
4248 		return KVM_MSR_RET_INVALID;
4249 	}
4250 	return 0;
4251 }
4252 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4253 
4254 /*
4255  * Read or write a bunch of msrs. All parameters are kernel addresses.
4256  *
4257  * @return number of msrs set successfully.
4258  */
4259 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4260 		    struct kvm_msr_entry *entries,
4261 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4262 				  unsigned index, u64 *data))
4263 {
4264 	int i;
4265 
4266 	for (i = 0; i < msrs->nmsrs; ++i)
4267 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4268 			break;
4269 
4270 	return i;
4271 }
4272 
4273 /*
4274  * Read or write a bunch of msrs. Parameters are user addresses.
4275  *
4276  * @return number of msrs set successfully.
4277  */
4278 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4279 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4280 				unsigned index, u64 *data),
4281 		  int writeback)
4282 {
4283 	struct kvm_msrs msrs;
4284 	struct kvm_msr_entry *entries;
4285 	int r, n;
4286 	unsigned size;
4287 
4288 	r = -EFAULT;
4289 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4290 		goto out;
4291 
4292 	r = -E2BIG;
4293 	if (msrs.nmsrs >= MAX_IO_MSRS)
4294 		goto out;
4295 
4296 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4297 	entries = memdup_user(user_msrs->entries, size);
4298 	if (IS_ERR(entries)) {
4299 		r = PTR_ERR(entries);
4300 		goto out;
4301 	}
4302 
4303 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4304 	if (r < 0)
4305 		goto out_free;
4306 
4307 	r = -EFAULT;
4308 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4309 		goto out_free;
4310 
4311 	r = n;
4312 
4313 out_free:
4314 	kfree(entries);
4315 out:
4316 	return r;
4317 }
4318 
4319 static inline bool kvm_can_mwait_in_guest(void)
4320 {
4321 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4322 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4323 		boot_cpu_has(X86_FEATURE_ARAT);
4324 }
4325 
4326 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4327 					    struct kvm_cpuid2 __user *cpuid_arg)
4328 {
4329 	struct kvm_cpuid2 cpuid;
4330 	int r;
4331 
4332 	r = -EFAULT;
4333 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4334 		return r;
4335 
4336 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4337 	if (r)
4338 		return r;
4339 
4340 	r = -EFAULT;
4341 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4342 		return r;
4343 
4344 	return 0;
4345 }
4346 
4347 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4348 {
4349 	int r = 0;
4350 
4351 	switch (ext) {
4352 	case KVM_CAP_IRQCHIP:
4353 	case KVM_CAP_HLT:
4354 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4355 	case KVM_CAP_SET_TSS_ADDR:
4356 	case KVM_CAP_EXT_CPUID:
4357 	case KVM_CAP_EXT_EMUL_CPUID:
4358 	case KVM_CAP_CLOCKSOURCE:
4359 	case KVM_CAP_PIT:
4360 	case KVM_CAP_NOP_IO_DELAY:
4361 	case KVM_CAP_MP_STATE:
4362 	case KVM_CAP_SYNC_MMU:
4363 	case KVM_CAP_USER_NMI:
4364 	case KVM_CAP_REINJECT_CONTROL:
4365 	case KVM_CAP_IRQ_INJECT_STATUS:
4366 	case KVM_CAP_IOEVENTFD:
4367 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4368 	case KVM_CAP_PIT2:
4369 	case KVM_CAP_PIT_STATE2:
4370 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4371 	case KVM_CAP_VCPU_EVENTS:
4372 	case KVM_CAP_HYPERV:
4373 	case KVM_CAP_HYPERV_VAPIC:
4374 	case KVM_CAP_HYPERV_SPIN:
4375 	case KVM_CAP_HYPERV_SYNIC:
4376 	case KVM_CAP_HYPERV_SYNIC2:
4377 	case KVM_CAP_HYPERV_VP_INDEX:
4378 	case KVM_CAP_HYPERV_EVENTFD:
4379 	case KVM_CAP_HYPERV_TLBFLUSH:
4380 	case KVM_CAP_HYPERV_SEND_IPI:
4381 	case KVM_CAP_HYPERV_CPUID:
4382 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4383 	case KVM_CAP_SYS_HYPERV_CPUID:
4384 	case KVM_CAP_PCI_SEGMENT:
4385 	case KVM_CAP_DEBUGREGS:
4386 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4387 	case KVM_CAP_XSAVE:
4388 	case KVM_CAP_ASYNC_PF:
4389 	case KVM_CAP_ASYNC_PF_INT:
4390 	case KVM_CAP_GET_TSC_KHZ:
4391 	case KVM_CAP_KVMCLOCK_CTRL:
4392 	case KVM_CAP_READONLY_MEM:
4393 	case KVM_CAP_HYPERV_TIME:
4394 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4395 	case KVM_CAP_TSC_DEADLINE_TIMER:
4396 	case KVM_CAP_DISABLE_QUIRKS:
4397 	case KVM_CAP_SET_BOOT_CPU_ID:
4398  	case KVM_CAP_SPLIT_IRQCHIP:
4399 	case KVM_CAP_IMMEDIATE_EXIT:
4400 	case KVM_CAP_PMU_EVENT_FILTER:
4401 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4402 	case KVM_CAP_GET_MSR_FEATURES:
4403 	case KVM_CAP_MSR_PLATFORM_INFO:
4404 	case KVM_CAP_EXCEPTION_PAYLOAD:
4405 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4406 	case KVM_CAP_SET_GUEST_DEBUG:
4407 	case KVM_CAP_LAST_CPU:
4408 	case KVM_CAP_X86_USER_SPACE_MSR:
4409 	case KVM_CAP_X86_MSR_FILTER:
4410 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4411 #ifdef CONFIG_X86_SGX_KVM
4412 	case KVM_CAP_SGX_ATTRIBUTE:
4413 #endif
4414 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4415 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4416 	case KVM_CAP_SREGS2:
4417 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4418 	case KVM_CAP_VCPU_ATTRIBUTES:
4419 	case KVM_CAP_SYS_ATTRIBUTES:
4420 	case KVM_CAP_VAPIC:
4421 	case KVM_CAP_ENABLE_CAP:
4422 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4423 		r = 1;
4424 		break;
4425 	case KVM_CAP_EXIT_HYPERCALL:
4426 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4427 		break;
4428 	case KVM_CAP_SET_GUEST_DEBUG2:
4429 		return KVM_GUESTDBG_VALID_MASK;
4430 #ifdef CONFIG_KVM_XEN
4431 	case KVM_CAP_XEN_HVM:
4432 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4433 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4434 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4435 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4436 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4437 		if (sched_info_on())
4438 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4439 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4440 		break;
4441 #endif
4442 	case KVM_CAP_SYNC_REGS:
4443 		r = KVM_SYNC_X86_VALID_FIELDS;
4444 		break;
4445 	case KVM_CAP_ADJUST_CLOCK:
4446 		r = KVM_CLOCK_VALID_FLAGS;
4447 		break;
4448 	case KVM_CAP_X86_DISABLE_EXITS:
4449 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4450 		      KVM_X86_DISABLE_EXITS_CSTATE;
4451 		if(kvm_can_mwait_in_guest())
4452 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4453 		break;
4454 	case KVM_CAP_X86_SMM:
4455 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4456 			break;
4457 
4458 		/* SMBASE is usually relocated above 1M on modern chipsets,
4459 		 * and SMM handlers might indeed rely on 4G segment limits,
4460 		 * so do not report SMM to be available if real mode is
4461 		 * emulated via vm86 mode.  Still, do not go to great lengths
4462 		 * to avoid userspace's usage of the feature, because it is a
4463 		 * fringe case that is not enabled except via specific settings
4464 		 * of the module parameters.
4465 		 */
4466 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4467 		break;
4468 	case KVM_CAP_NR_VCPUS:
4469 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4470 		break;
4471 	case KVM_CAP_MAX_VCPUS:
4472 		r = KVM_MAX_VCPUS;
4473 		break;
4474 	case KVM_CAP_MAX_VCPU_ID:
4475 		r = KVM_MAX_VCPU_IDS;
4476 		break;
4477 	case KVM_CAP_PV_MMU:	/* obsolete */
4478 		r = 0;
4479 		break;
4480 	case KVM_CAP_MCE:
4481 		r = KVM_MAX_MCE_BANKS;
4482 		break;
4483 	case KVM_CAP_XCRS:
4484 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4485 		break;
4486 	case KVM_CAP_TSC_CONTROL:
4487 	case KVM_CAP_VM_TSC_CONTROL:
4488 		r = kvm_caps.has_tsc_control;
4489 		break;
4490 	case KVM_CAP_X2APIC_API:
4491 		r = KVM_X2APIC_API_VALID_FLAGS;
4492 		break;
4493 	case KVM_CAP_NESTED_STATE:
4494 		r = kvm_x86_ops.nested_ops->get_state ?
4495 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4496 		break;
4497 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4498 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4499 		break;
4500 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4501 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4502 		break;
4503 	case KVM_CAP_SMALLER_MAXPHYADDR:
4504 		r = (int) allow_smaller_maxphyaddr;
4505 		break;
4506 	case KVM_CAP_STEAL_TIME:
4507 		r = sched_info_on();
4508 		break;
4509 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4510 		if (kvm_caps.has_bus_lock_exit)
4511 			r = KVM_BUS_LOCK_DETECTION_OFF |
4512 			    KVM_BUS_LOCK_DETECTION_EXIT;
4513 		else
4514 			r = 0;
4515 		break;
4516 	case KVM_CAP_XSAVE2: {
4517 		u64 guest_perm = xstate_get_guest_group_perm();
4518 
4519 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4520 		if (r < sizeof(struct kvm_xsave))
4521 			r = sizeof(struct kvm_xsave);
4522 		break;
4523 	}
4524 	case KVM_CAP_PMU_CAPABILITY:
4525 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4526 		break;
4527 	case KVM_CAP_DISABLE_QUIRKS2:
4528 		r = KVM_X86_VALID_QUIRKS;
4529 		break;
4530 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4531 		r = kvm_caps.has_notify_vmexit;
4532 		break;
4533 	default:
4534 		break;
4535 	}
4536 	return r;
4537 }
4538 
4539 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4540 {
4541 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4542 
4543 	if ((u64)(unsigned long)uaddr != attr->addr)
4544 		return ERR_PTR_USR(-EFAULT);
4545 	return uaddr;
4546 }
4547 
4548 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4549 {
4550 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4551 
4552 	if (attr->group)
4553 		return -ENXIO;
4554 
4555 	if (IS_ERR(uaddr))
4556 		return PTR_ERR(uaddr);
4557 
4558 	switch (attr->attr) {
4559 	case KVM_X86_XCOMP_GUEST_SUPP:
4560 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4561 			return -EFAULT;
4562 		return 0;
4563 	default:
4564 		return -ENXIO;
4565 		break;
4566 	}
4567 }
4568 
4569 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4570 {
4571 	if (attr->group)
4572 		return -ENXIO;
4573 
4574 	switch (attr->attr) {
4575 	case KVM_X86_XCOMP_GUEST_SUPP:
4576 		return 0;
4577 	default:
4578 		return -ENXIO;
4579 	}
4580 }
4581 
4582 long kvm_arch_dev_ioctl(struct file *filp,
4583 			unsigned int ioctl, unsigned long arg)
4584 {
4585 	void __user *argp = (void __user *)arg;
4586 	long r;
4587 
4588 	switch (ioctl) {
4589 	case KVM_GET_MSR_INDEX_LIST: {
4590 		struct kvm_msr_list __user *user_msr_list = argp;
4591 		struct kvm_msr_list msr_list;
4592 		unsigned n;
4593 
4594 		r = -EFAULT;
4595 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4596 			goto out;
4597 		n = msr_list.nmsrs;
4598 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4599 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4600 			goto out;
4601 		r = -E2BIG;
4602 		if (n < msr_list.nmsrs)
4603 			goto out;
4604 		r = -EFAULT;
4605 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4606 				 num_msrs_to_save * sizeof(u32)))
4607 			goto out;
4608 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4609 				 &emulated_msrs,
4610 				 num_emulated_msrs * sizeof(u32)))
4611 			goto out;
4612 		r = 0;
4613 		break;
4614 	}
4615 	case KVM_GET_SUPPORTED_CPUID:
4616 	case KVM_GET_EMULATED_CPUID: {
4617 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4618 		struct kvm_cpuid2 cpuid;
4619 
4620 		r = -EFAULT;
4621 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4622 			goto out;
4623 
4624 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4625 					    ioctl);
4626 		if (r)
4627 			goto out;
4628 
4629 		r = -EFAULT;
4630 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4631 			goto out;
4632 		r = 0;
4633 		break;
4634 	}
4635 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4636 		r = -EFAULT;
4637 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4638 				 sizeof(kvm_caps.supported_mce_cap)))
4639 			goto out;
4640 		r = 0;
4641 		break;
4642 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4643 		struct kvm_msr_list __user *user_msr_list = argp;
4644 		struct kvm_msr_list msr_list;
4645 		unsigned int n;
4646 
4647 		r = -EFAULT;
4648 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4649 			goto out;
4650 		n = msr_list.nmsrs;
4651 		msr_list.nmsrs = num_msr_based_features;
4652 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4653 			goto out;
4654 		r = -E2BIG;
4655 		if (n < msr_list.nmsrs)
4656 			goto out;
4657 		r = -EFAULT;
4658 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4659 				 num_msr_based_features * sizeof(u32)))
4660 			goto out;
4661 		r = 0;
4662 		break;
4663 	}
4664 	case KVM_GET_MSRS:
4665 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4666 		break;
4667 	case KVM_GET_SUPPORTED_HV_CPUID:
4668 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4669 		break;
4670 	case KVM_GET_DEVICE_ATTR: {
4671 		struct kvm_device_attr attr;
4672 		r = -EFAULT;
4673 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4674 			break;
4675 		r = kvm_x86_dev_get_attr(&attr);
4676 		break;
4677 	}
4678 	case KVM_HAS_DEVICE_ATTR: {
4679 		struct kvm_device_attr attr;
4680 		r = -EFAULT;
4681 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4682 			break;
4683 		r = kvm_x86_dev_has_attr(&attr);
4684 		break;
4685 	}
4686 	default:
4687 		r = -EINVAL;
4688 		break;
4689 	}
4690 out:
4691 	return r;
4692 }
4693 
4694 static void wbinvd_ipi(void *garbage)
4695 {
4696 	wbinvd();
4697 }
4698 
4699 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4700 {
4701 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4702 }
4703 
4704 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4705 {
4706 	/* Address WBINVD may be executed by guest */
4707 	if (need_emulate_wbinvd(vcpu)) {
4708 		if (static_call(kvm_x86_has_wbinvd_exit)())
4709 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4710 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4711 			smp_call_function_single(vcpu->cpu,
4712 					wbinvd_ipi, NULL, 1);
4713 	}
4714 
4715 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4716 
4717 	/* Save host pkru register if supported */
4718 	vcpu->arch.host_pkru = read_pkru();
4719 
4720 	/* Apply any externally detected TSC adjustments (due to suspend) */
4721 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4722 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4723 		vcpu->arch.tsc_offset_adjustment = 0;
4724 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4725 	}
4726 
4727 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4728 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4729 				rdtsc() - vcpu->arch.last_host_tsc;
4730 		if (tsc_delta < 0)
4731 			mark_tsc_unstable("KVM discovered backwards TSC");
4732 
4733 		if (kvm_check_tsc_unstable()) {
4734 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4735 						vcpu->arch.last_guest_tsc);
4736 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4737 			vcpu->arch.tsc_catchup = 1;
4738 		}
4739 
4740 		if (kvm_lapic_hv_timer_in_use(vcpu))
4741 			kvm_lapic_restart_hv_timer(vcpu);
4742 
4743 		/*
4744 		 * On a host with synchronized TSC, there is no need to update
4745 		 * kvmclock on vcpu->cpu migration
4746 		 */
4747 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4748 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4749 		if (vcpu->cpu != cpu)
4750 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4751 		vcpu->cpu = cpu;
4752 	}
4753 
4754 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4755 }
4756 
4757 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4758 {
4759 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4760 	struct kvm_steal_time __user *st;
4761 	struct kvm_memslots *slots;
4762 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4763 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4764 
4765 	/*
4766 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4767 	 * an instruction boundary and will not trigger guest emulation of any
4768 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4769 	 * when this is true, for example allowing the vCPU to be marked
4770 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4771 	 */
4772 	if (!vcpu->arch.at_instruction_boundary) {
4773 		vcpu->stat.preemption_other++;
4774 		return;
4775 	}
4776 
4777 	vcpu->stat.preemption_reported++;
4778 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4779 		return;
4780 
4781 	if (vcpu->arch.st.preempted)
4782 		return;
4783 
4784 	/* This happens on process exit */
4785 	if (unlikely(current->mm != vcpu->kvm->mm))
4786 		return;
4787 
4788 	slots = kvm_memslots(vcpu->kvm);
4789 
4790 	if (unlikely(slots->generation != ghc->generation ||
4791 		     gpa != ghc->gpa ||
4792 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4793 		return;
4794 
4795 	st = (struct kvm_steal_time __user *)ghc->hva;
4796 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4797 
4798 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4799 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4800 
4801 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4802 }
4803 
4804 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4805 {
4806 	int idx;
4807 
4808 	if (vcpu->preempted) {
4809 		if (!vcpu->arch.guest_state_protected)
4810 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4811 
4812 		/*
4813 		 * Take the srcu lock as memslots will be accessed to check the gfn
4814 		 * cache generation against the memslots generation.
4815 		 */
4816 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4817 		if (kvm_xen_msr_enabled(vcpu->kvm))
4818 			kvm_xen_runstate_set_preempted(vcpu);
4819 		else
4820 			kvm_steal_time_set_preempted(vcpu);
4821 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4822 	}
4823 
4824 	static_call(kvm_x86_vcpu_put)(vcpu);
4825 	vcpu->arch.last_host_tsc = rdtsc();
4826 }
4827 
4828 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4829 				    struct kvm_lapic_state *s)
4830 {
4831 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4832 
4833 	return kvm_apic_get_state(vcpu, s);
4834 }
4835 
4836 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4837 				    struct kvm_lapic_state *s)
4838 {
4839 	int r;
4840 
4841 	r = kvm_apic_set_state(vcpu, s);
4842 	if (r)
4843 		return r;
4844 	update_cr8_intercept(vcpu);
4845 
4846 	return 0;
4847 }
4848 
4849 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4850 {
4851 	/*
4852 	 * We can accept userspace's request for interrupt injection
4853 	 * as long as we have a place to store the interrupt number.
4854 	 * The actual injection will happen when the CPU is able to
4855 	 * deliver the interrupt.
4856 	 */
4857 	if (kvm_cpu_has_extint(vcpu))
4858 		return false;
4859 
4860 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4861 	return (!lapic_in_kernel(vcpu) ||
4862 		kvm_apic_accept_pic_intr(vcpu));
4863 }
4864 
4865 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4866 {
4867 	/*
4868 	 * Do not cause an interrupt window exit if an exception
4869 	 * is pending or an event needs reinjection; userspace
4870 	 * might want to inject the interrupt manually using KVM_SET_REGS
4871 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4872 	 * instruction boundary and with no events half-injected.
4873 	 */
4874 	return (kvm_arch_interrupt_allowed(vcpu) &&
4875 		kvm_cpu_accept_dm_intr(vcpu) &&
4876 		!kvm_event_needs_reinjection(vcpu) &&
4877 		!kvm_is_exception_pending(vcpu));
4878 }
4879 
4880 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4881 				    struct kvm_interrupt *irq)
4882 {
4883 	if (irq->irq >= KVM_NR_INTERRUPTS)
4884 		return -EINVAL;
4885 
4886 	if (!irqchip_in_kernel(vcpu->kvm)) {
4887 		kvm_queue_interrupt(vcpu, irq->irq, false);
4888 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4889 		return 0;
4890 	}
4891 
4892 	/*
4893 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4894 	 * fail for in-kernel 8259.
4895 	 */
4896 	if (pic_in_kernel(vcpu->kvm))
4897 		return -ENXIO;
4898 
4899 	if (vcpu->arch.pending_external_vector != -1)
4900 		return -EEXIST;
4901 
4902 	vcpu->arch.pending_external_vector = irq->irq;
4903 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4904 	return 0;
4905 }
4906 
4907 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4908 {
4909 	kvm_inject_nmi(vcpu);
4910 
4911 	return 0;
4912 }
4913 
4914 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4915 					   struct kvm_tpr_access_ctl *tac)
4916 {
4917 	if (tac->flags)
4918 		return -EINVAL;
4919 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4920 	return 0;
4921 }
4922 
4923 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4924 					u64 mcg_cap)
4925 {
4926 	int r;
4927 	unsigned bank_num = mcg_cap & 0xff, bank;
4928 
4929 	r = -EINVAL;
4930 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4931 		goto out;
4932 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4933 		goto out;
4934 	r = 0;
4935 	vcpu->arch.mcg_cap = mcg_cap;
4936 	/* Init IA32_MCG_CTL to all 1s */
4937 	if (mcg_cap & MCG_CTL_P)
4938 		vcpu->arch.mcg_ctl = ~(u64)0;
4939 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4940 	for (bank = 0; bank < bank_num; bank++) {
4941 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4942 		if (mcg_cap & MCG_CMCI_P)
4943 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4944 	}
4945 
4946 	kvm_apic_after_set_mcg_cap(vcpu);
4947 
4948 	static_call(kvm_x86_setup_mce)(vcpu);
4949 out:
4950 	return r;
4951 }
4952 
4953 /*
4954  * Validate this is an UCNA (uncorrectable no action) error by checking the
4955  * MCG_STATUS and MCi_STATUS registers:
4956  * - none of the bits for Machine Check Exceptions are set
4957  * - both the VAL (valid) and UC (uncorrectable) bits are set
4958  * MCI_STATUS_PCC - Processor Context Corrupted
4959  * MCI_STATUS_S - Signaled as a Machine Check Exception
4960  * MCI_STATUS_AR - Software recoverable Action Required
4961  */
4962 static bool is_ucna(struct kvm_x86_mce *mce)
4963 {
4964 	return	!mce->mcg_status &&
4965 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4966 		(mce->status & MCI_STATUS_VAL) &&
4967 		(mce->status & MCI_STATUS_UC);
4968 }
4969 
4970 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4971 {
4972 	u64 mcg_cap = vcpu->arch.mcg_cap;
4973 
4974 	banks[1] = mce->status;
4975 	banks[2] = mce->addr;
4976 	banks[3] = mce->misc;
4977 	vcpu->arch.mcg_status = mce->mcg_status;
4978 
4979 	if (!(mcg_cap & MCG_CMCI_P) ||
4980 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4981 		return 0;
4982 
4983 	if (lapic_in_kernel(vcpu))
4984 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4985 
4986 	return 0;
4987 }
4988 
4989 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4990 				      struct kvm_x86_mce *mce)
4991 {
4992 	u64 mcg_cap = vcpu->arch.mcg_cap;
4993 	unsigned bank_num = mcg_cap & 0xff;
4994 	u64 *banks = vcpu->arch.mce_banks;
4995 
4996 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4997 		return -EINVAL;
4998 
4999 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5000 
5001 	if (is_ucna(mce))
5002 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5003 
5004 	/*
5005 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5006 	 * reporting is disabled
5007 	 */
5008 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5009 	    vcpu->arch.mcg_ctl != ~(u64)0)
5010 		return 0;
5011 	/*
5012 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5013 	 * reporting is disabled for the bank
5014 	 */
5015 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5016 		return 0;
5017 	if (mce->status & MCI_STATUS_UC) {
5018 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5019 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5020 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5021 			return 0;
5022 		}
5023 		if (banks[1] & MCI_STATUS_VAL)
5024 			mce->status |= MCI_STATUS_OVER;
5025 		banks[2] = mce->addr;
5026 		banks[3] = mce->misc;
5027 		vcpu->arch.mcg_status = mce->mcg_status;
5028 		banks[1] = mce->status;
5029 		kvm_queue_exception(vcpu, MC_VECTOR);
5030 	} else if (!(banks[1] & MCI_STATUS_VAL)
5031 		   || !(banks[1] & MCI_STATUS_UC)) {
5032 		if (banks[1] & MCI_STATUS_VAL)
5033 			mce->status |= MCI_STATUS_OVER;
5034 		banks[2] = mce->addr;
5035 		banks[3] = mce->misc;
5036 		banks[1] = mce->status;
5037 	} else
5038 		banks[1] |= MCI_STATUS_OVER;
5039 	return 0;
5040 }
5041 
5042 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5043 					       struct kvm_vcpu_events *events)
5044 {
5045 	struct kvm_queued_exception *ex;
5046 
5047 	process_nmi(vcpu);
5048 
5049 #ifdef CONFIG_KVM_SMM
5050 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5051 		process_smi(vcpu);
5052 #endif
5053 
5054 	/*
5055 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5056 	 * the only time there can be two queued exceptions is if there's a
5057 	 * non-exiting _injected_ exception, and a pending exiting exception.
5058 	 * In that case, ignore the VM-Exiting exception as it's an extension
5059 	 * of the injected exception.
5060 	 */
5061 	if (vcpu->arch.exception_vmexit.pending &&
5062 	    !vcpu->arch.exception.pending &&
5063 	    !vcpu->arch.exception.injected)
5064 		ex = &vcpu->arch.exception_vmexit;
5065 	else
5066 		ex = &vcpu->arch.exception;
5067 
5068 	/*
5069 	 * In guest mode, payload delivery should be deferred if the exception
5070 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5071 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5072 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5073 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5074 	 * the payload if the capability hasn't been requested.
5075 	 */
5076 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5077 	    ex->pending && ex->has_payload)
5078 		kvm_deliver_exception_payload(vcpu, ex);
5079 
5080 	memset(events, 0, sizeof(*events));
5081 
5082 	/*
5083 	 * The API doesn't provide the instruction length for software
5084 	 * exceptions, so don't report them. As long as the guest RIP
5085 	 * isn't advanced, we should expect to encounter the exception
5086 	 * again.
5087 	 */
5088 	if (!kvm_exception_is_soft(ex->vector)) {
5089 		events->exception.injected = ex->injected;
5090 		events->exception.pending = ex->pending;
5091 		/*
5092 		 * For ABI compatibility, deliberately conflate
5093 		 * pending and injected exceptions when
5094 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5095 		 */
5096 		if (!vcpu->kvm->arch.exception_payload_enabled)
5097 			events->exception.injected |= ex->pending;
5098 	}
5099 	events->exception.nr = ex->vector;
5100 	events->exception.has_error_code = ex->has_error_code;
5101 	events->exception.error_code = ex->error_code;
5102 	events->exception_has_payload = ex->has_payload;
5103 	events->exception_payload = ex->payload;
5104 
5105 	events->interrupt.injected =
5106 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5107 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5108 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5109 
5110 	events->nmi.injected = vcpu->arch.nmi_injected;
5111 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5112 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5113 
5114 	/* events->sipi_vector is never valid when reporting to user space */
5115 
5116 #ifdef CONFIG_KVM_SMM
5117 	events->smi.smm = is_smm(vcpu);
5118 	events->smi.pending = vcpu->arch.smi_pending;
5119 	events->smi.smm_inside_nmi =
5120 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5121 #endif
5122 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5123 
5124 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5125 			 | KVM_VCPUEVENT_VALID_SHADOW
5126 			 | KVM_VCPUEVENT_VALID_SMM);
5127 	if (vcpu->kvm->arch.exception_payload_enabled)
5128 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5129 	if (vcpu->kvm->arch.triple_fault_event) {
5130 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5131 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5132 	}
5133 }
5134 
5135 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5136 					      struct kvm_vcpu_events *events)
5137 {
5138 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5139 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5140 			      | KVM_VCPUEVENT_VALID_SHADOW
5141 			      | KVM_VCPUEVENT_VALID_SMM
5142 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5143 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5144 		return -EINVAL;
5145 
5146 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5147 		if (!vcpu->kvm->arch.exception_payload_enabled)
5148 			return -EINVAL;
5149 		if (events->exception.pending)
5150 			events->exception.injected = 0;
5151 		else
5152 			events->exception_has_payload = 0;
5153 	} else {
5154 		events->exception.pending = 0;
5155 		events->exception_has_payload = 0;
5156 	}
5157 
5158 	if ((events->exception.injected || events->exception.pending) &&
5159 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5160 		return -EINVAL;
5161 
5162 	/* INITs are latched while in SMM */
5163 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5164 	    (events->smi.smm || events->smi.pending) &&
5165 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5166 		return -EINVAL;
5167 
5168 	process_nmi(vcpu);
5169 
5170 	/*
5171 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5172 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5173 	 * pending exceptions, already-injected exceptions are not subject to
5174 	 * intercpetion.  Note, userspace that conflates pending and injected
5175 	 * is hosed, and will incorrectly convert an injected exception into a
5176 	 * pending exception, which in turn may cause a spurious VM-Exit.
5177 	 */
5178 	vcpu->arch.exception_from_userspace = events->exception.pending;
5179 
5180 	vcpu->arch.exception_vmexit.pending = false;
5181 
5182 	vcpu->arch.exception.injected = events->exception.injected;
5183 	vcpu->arch.exception.pending = events->exception.pending;
5184 	vcpu->arch.exception.vector = events->exception.nr;
5185 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5186 	vcpu->arch.exception.error_code = events->exception.error_code;
5187 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5188 	vcpu->arch.exception.payload = events->exception_payload;
5189 
5190 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5191 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5192 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5193 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5194 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5195 						events->interrupt.shadow);
5196 
5197 	vcpu->arch.nmi_injected = events->nmi.injected;
5198 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5199 		vcpu->arch.nmi_pending = events->nmi.pending;
5200 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5201 
5202 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5203 	    lapic_in_kernel(vcpu))
5204 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5205 
5206 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5207 #ifdef CONFIG_KVM_SMM
5208 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5209 			kvm_leave_nested(vcpu);
5210 			kvm_smm_changed(vcpu, events->smi.smm);
5211 		}
5212 
5213 		vcpu->arch.smi_pending = events->smi.pending;
5214 
5215 		if (events->smi.smm) {
5216 			if (events->smi.smm_inside_nmi)
5217 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5218 			else
5219 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5220 		}
5221 
5222 #else
5223 		if (events->smi.smm || events->smi.pending ||
5224 		    events->smi.smm_inside_nmi)
5225 			return -EINVAL;
5226 #endif
5227 
5228 		if (lapic_in_kernel(vcpu)) {
5229 			if (events->smi.latched_init)
5230 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5231 			else
5232 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5233 		}
5234 	}
5235 
5236 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5237 		if (!vcpu->kvm->arch.triple_fault_event)
5238 			return -EINVAL;
5239 		if (events->triple_fault.pending)
5240 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5241 		else
5242 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5243 	}
5244 
5245 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5246 
5247 	return 0;
5248 }
5249 
5250 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5251 					     struct kvm_debugregs *dbgregs)
5252 {
5253 	unsigned long val;
5254 
5255 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5256 	kvm_get_dr(vcpu, 6, &val);
5257 	dbgregs->dr6 = val;
5258 	dbgregs->dr7 = vcpu->arch.dr7;
5259 	dbgregs->flags = 0;
5260 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5261 }
5262 
5263 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5264 					    struct kvm_debugregs *dbgregs)
5265 {
5266 	if (dbgregs->flags)
5267 		return -EINVAL;
5268 
5269 	if (!kvm_dr6_valid(dbgregs->dr6))
5270 		return -EINVAL;
5271 	if (!kvm_dr7_valid(dbgregs->dr7))
5272 		return -EINVAL;
5273 
5274 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5275 	kvm_update_dr0123(vcpu);
5276 	vcpu->arch.dr6 = dbgregs->dr6;
5277 	vcpu->arch.dr7 = dbgregs->dr7;
5278 	kvm_update_dr7(vcpu);
5279 
5280 	return 0;
5281 }
5282 
5283 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5284 					 struct kvm_xsave *guest_xsave)
5285 {
5286 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5287 		return;
5288 
5289 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5290 				       guest_xsave->region,
5291 				       sizeof(guest_xsave->region),
5292 				       vcpu->arch.pkru);
5293 }
5294 
5295 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5296 					  u8 *state, unsigned int size)
5297 {
5298 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5299 		return;
5300 
5301 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5302 				       state, size, vcpu->arch.pkru);
5303 }
5304 
5305 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5306 					struct kvm_xsave *guest_xsave)
5307 {
5308 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5309 		return 0;
5310 
5311 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5312 					      guest_xsave->region,
5313 					      kvm_caps.supported_xcr0,
5314 					      &vcpu->arch.pkru);
5315 }
5316 
5317 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5318 					struct kvm_xcrs *guest_xcrs)
5319 {
5320 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5321 		guest_xcrs->nr_xcrs = 0;
5322 		return;
5323 	}
5324 
5325 	guest_xcrs->nr_xcrs = 1;
5326 	guest_xcrs->flags = 0;
5327 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5328 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5329 }
5330 
5331 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5332 				       struct kvm_xcrs *guest_xcrs)
5333 {
5334 	int i, r = 0;
5335 
5336 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5337 		return -EINVAL;
5338 
5339 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5340 		return -EINVAL;
5341 
5342 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5343 		/* Only support XCR0 currently */
5344 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5345 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5346 				guest_xcrs->xcrs[i].value);
5347 			break;
5348 		}
5349 	if (r)
5350 		r = -EINVAL;
5351 	return r;
5352 }
5353 
5354 /*
5355  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5356  * stopped by the hypervisor.  This function will be called from the host only.
5357  * EINVAL is returned when the host attempts to set the flag for a guest that
5358  * does not support pv clocks.
5359  */
5360 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5361 {
5362 	if (!vcpu->arch.pv_time.active)
5363 		return -EINVAL;
5364 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5365 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5366 	return 0;
5367 }
5368 
5369 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5370 				 struct kvm_device_attr *attr)
5371 {
5372 	int r;
5373 
5374 	switch (attr->attr) {
5375 	case KVM_VCPU_TSC_OFFSET:
5376 		r = 0;
5377 		break;
5378 	default:
5379 		r = -ENXIO;
5380 	}
5381 
5382 	return r;
5383 }
5384 
5385 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5386 				 struct kvm_device_attr *attr)
5387 {
5388 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5389 	int r;
5390 
5391 	if (IS_ERR(uaddr))
5392 		return PTR_ERR(uaddr);
5393 
5394 	switch (attr->attr) {
5395 	case KVM_VCPU_TSC_OFFSET:
5396 		r = -EFAULT;
5397 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5398 			break;
5399 		r = 0;
5400 		break;
5401 	default:
5402 		r = -ENXIO;
5403 	}
5404 
5405 	return r;
5406 }
5407 
5408 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5409 				 struct kvm_device_attr *attr)
5410 {
5411 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5412 	struct kvm *kvm = vcpu->kvm;
5413 	int r;
5414 
5415 	if (IS_ERR(uaddr))
5416 		return PTR_ERR(uaddr);
5417 
5418 	switch (attr->attr) {
5419 	case KVM_VCPU_TSC_OFFSET: {
5420 		u64 offset, tsc, ns;
5421 		unsigned long flags;
5422 		bool matched;
5423 
5424 		r = -EFAULT;
5425 		if (get_user(offset, uaddr))
5426 			break;
5427 
5428 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5429 
5430 		matched = (vcpu->arch.virtual_tsc_khz &&
5431 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5432 			   kvm->arch.last_tsc_offset == offset);
5433 
5434 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5435 		ns = get_kvmclock_base_ns();
5436 
5437 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5438 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5439 
5440 		r = 0;
5441 		break;
5442 	}
5443 	default:
5444 		r = -ENXIO;
5445 	}
5446 
5447 	return r;
5448 }
5449 
5450 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5451 				      unsigned int ioctl,
5452 				      void __user *argp)
5453 {
5454 	struct kvm_device_attr attr;
5455 	int r;
5456 
5457 	if (copy_from_user(&attr, argp, sizeof(attr)))
5458 		return -EFAULT;
5459 
5460 	if (attr.group != KVM_VCPU_TSC_CTRL)
5461 		return -ENXIO;
5462 
5463 	switch (ioctl) {
5464 	case KVM_HAS_DEVICE_ATTR:
5465 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5466 		break;
5467 	case KVM_GET_DEVICE_ATTR:
5468 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5469 		break;
5470 	case KVM_SET_DEVICE_ATTR:
5471 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5472 		break;
5473 	}
5474 
5475 	return r;
5476 }
5477 
5478 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5479 				     struct kvm_enable_cap *cap)
5480 {
5481 	int r;
5482 	uint16_t vmcs_version;
5483 	void __user *user_ptr;
5484 
5485 	if (cap->flags)
5486 		return -EINVAL;
5487 
5488 	switch (cap->cap) {
5489 	case KVM_CAP_HYPERV_SYNIC2:
5490 		if (cap->args[0])
5491 			return -EINVAL;
5492 		fallthrough;
5493 
5494 	case KVM_CAP_HYPERV_SYNIC:
5495 		if (!irqchip_in_kernel(vcpu->kvm))
5496 			return -EINVAL;
5497 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5498 					     KVM_CAP_HYPERV_SYNIC2);
5499 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5500 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5501 			return -ENOTTY;
5502 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5503 		if (!r) {
5504 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5505 			if (copy_to_user(user_ptr, &vmcs_version,
5506 					 sizeof(vmcs_version)))
5507 				r = -EFAULT;
5508 		}
5509 		return r;
5510 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5511 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5512 			return -ENOTTY;
5513 
5514 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5515 
5516 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5517 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5518 
5519 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5520 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5521 		if (vcpu->arch.pv_cpuid.enforce)
5522 			kvm_update_pv_runtime(vcpu);
5523 
5524 		return 0;
5525 	default:
5526 		return -EINVAL;
5527 	}
5528 }
5529 
5530 long kvm_arch_vcpu_ioctl(struct file *filp,
5531 			 unsigned int ioctl, unsigned long arg)
5532 {
5533 	struct kvm_vcpu *vcpu = filp->private_data;
5534 	void __user *argp = (void __user *)arg;
5535 	int r;
5536 	union {
5537 		struct kvm_sregs2 *sregs2;
5538 		struct kvm_lapic_state *lapic;
5539 		struct kvm_xsave *xsave;
5540 		struct kvm_xcrs *xcrs;
5541 		void *buffer;
5542 	} u;
5543 
5544 	vcpu_load(vcpu);
5545 
5546 	u.buffer = NULL;
5547 	switch (ioctl) {
5548 	case KVM_GET_LAPIC: {
5549 		r = -EINVAL;
5550 		if (!lapic_in_kernel(vcpu))
5551 			goto out;
5552 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5553 				GFP_KERNEL_ACCOUNT);
5554 
5555 		r = -ENOMEM;
5556 		if (!u.lapic)
5557 			goto out;
5558 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5559 		if (r)
5560 			goto out;
5561 		r = -EFAULT;
5562 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5563 			goto out;
5564 		r = 0;
5565 		break;
5566 	}
5567 	case KVM_SET_LAPIC: {
5568 		r = -EINVAL;
5569 		if (!lapic_in_kernel(vcpu))
5570 			goto out;
5571 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5572 		if (IS_ERR(u.lapic)) {
5573 			r = PTR_ERR(u.lapic);
5574 			goto out_nofree;
5575 		}
5576 
5577 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5578 		break;
5579 	}
5580 	case KVM_INTERRUPT: {
5581 		struct kvm_interrupt irq;
5582 
5583 		r = -EFAULT;
5584 		if (copy_from_user(&irq, argp, sizeof(irq)))
5585 			goto out;
5586 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5587 		break;
5588 	}
5589 	case KVM_NMI: {
5590 		r = kvm_vcpu_ioctl_nmi(vcpu);
5591 		break;
5592 	}
5593 	case KVM_SMI: {
5594 		r = kvm_inject_smi(vcpu);
5595 		break;
5596 	}
5597 	case KVM_SET_CPUID: {
5598 		struct kvm_cpuid __user *cpuid_arg = argp;
5599 		struct kvm_cpuid cpuid;
5600 
5601 		r = -EFAULT;
5602 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5603 			goto out;
5604 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5605 		break;
5606 	}
5607 	case KVM_SET_CPUID2: {
5608 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5609 		struct kvm_cpuid2 cpuid;
5610 
5611 		r = -EFAULT;
5612 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5613 			goto out;
5614 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5615 					      cpuid_arg->entries);
5616 		break;
5617 	}
5618 	case KVM_GET_CPUID2: {
5619 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5620 		struct kvm_cpuid2 cpuid;
5621 
5622 		r = -EFAULT;
5623 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5624 			goto out;
5625 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5626 					      cpuid_arg->entries);
5627 		if (r)
5628 			goto out;
5629 		r = -EFAULT;
5630 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5631 			goto out;
5632 		r = 0;
5633 		break;
5634 	}
5635 	case KVM_GET_MSRS: {
5636 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5637 		r = msr_io(vcpu, argp, do_get_msr, 1);
5638 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5639 		break;
5640 	}
5641 	case KVM_SET_MSRS: {
5642 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5643 		r = msr_io(vcpu, argp, do_set_msr, 0);
5644 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5645 		break;
5646 	}
5647 	case KVM_TPR_ACCESS_REPORTING: {
5648 		struct kvm_tpr_access_ctl tac;
5649 
5650 		r = -EFAULT;
5651 		if (copy_from_user(&tac, argp, sizeof(tac)))
5652 			goto out;
5653 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5654 		if (r)
5655 			goto out;
5656 		r = -EFAULT;
5657 		if (copy_to_user(argp, &tac, sizeof(tac)))
5658 			goto out;
5659 		r = 0;
5660 		break;
5661 	};
5662 	case KVM_SET_VAPIC_ADDR: {
5663 		struct kvm_vapic_addr va;
5664 		int idx;
5665 
5666 		r = -EINVAL;
5667 		if (!lapic_in_kernel(vcpu))
5668 			goto out;
5669 		r = -EFAULT;
5670 		if (copy_from_user(&va, argp, sizeof(va)))
5671 			goto out;
5672 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5673 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5674 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5675 		break;
5676 	}
5677 	case KVM_X86_SETUP_MCE: {
5678 		u64 mcg_cap;
5679 
5680 		r = -EFAULT;
5681 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5682 			goto out;
5683 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5684 		break;
5685 	}
5686 	case KVM_X86_SET_MCE: {
5687 		struct kvm_x86_mce mce;
5688 
5689 		r = -EFAULT;
5690 		if (copy_from_user(&mce, argp, sizeof(mce)))
5691 			goto out;
5692 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5693 		break;
5694 	}
5695 	case KVM_GET_VCPU_EVENTS: {
5696 		struct kvm_vcpu_events events;
5697 
5698 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5699 
5700 		r = -EFAULT;
5701 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5702 			break;
5703 		r = 0;
5704 		break;
5705 	}
5706 	case KVM_SET_VCPU_EVENTS: {
5707 		struct kvm_vcpu_events events;
5708 
5709 		r = -EFAULT;
5710 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5711 			break;
5712 
5713 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5714 		break;
5715 	}
5716 	case KVM_GET_DEBUGREGS: {
5717 		struct kvm_debugregs dbgregs;
5718 
5719 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5720 
5721 		r = -EFAULT;
5722 		if (copy_to_user(argp, &dbgregs,
5723 				 sizeof(struct kvm_debugregs)))
5724 			break;
5725 		r = 0;
5726 		break;
5727 	}
5728 	case KVM_SET_DEBUGREGS: {
5729 		struct kvm_debugregs dbgregs;
5730 
5731 		r = -EFAULT;
5732 		if (copy_from_user(&dbgregs, argp,
5733 				   sizeof(struct kvm_debugregs)))
5734 			break;
5735 
5736 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5737 		break;
5738 	}
5739 	case KVM_GET_XSAVE: {
5740 		r = -EINVAL;
5741 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5742 			break;
5743 
5744 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5745 		r = -ENOMEM;
5746 		if (!u.xsave)
5747 			break;
5748 
5749 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5750 
5751 		r = -EFAULT;
5752 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5753 			break;
5754 		r = 0;
5755 		break;
5756 	}
5757 	case KVM_SET_XSAVE: {
5758 		int size = vcpu->arch.guest_fpu.uabi_size;
5759 
5760 		u.xsave = memdup_user(argp, size);
5761 		if (IS_ERR(u.xsave)) {
5762 			r = PTR_ERR(u.xsave);
5763 			goto out_nofree;
5764 		}
5765 
5766 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5767 		break;
5768 	}
5769 
5770 	case KVM_GET_XSAVE2: {
5771 		int size = vcpu->arch.guest_fpu.uabi_size;
5772 
5773 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5774 		r = -ENOMEM;
5775 		if (!u.xsave)
5776 			break;
5777 
5778 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5779 
5780 		r = -EFAULT;
5781 		if (copy_to_user(argp, u.xsave, size))
5782 			break;
5783 
5784 		r = 0;
5785 		break;
5786 	}
5787 
5788 	case KVM_GET_XCRS: {
5789 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5790 		r = -ENOMEM;
5791 		if (!u.xcrs)
5792 			break;
5793 
5794 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5795 
5796 		r = -EFAULT;
5797 		if (copy_to_user(argp, u.xcrs,
5798 				 sizeof(struct kvm_xcrs)))
5799 			break;
5800 		r = 0;
5801 		break;
5802 	}
5803 	case KVM_SET_XCRS: {
5804 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5805 		if (IS_ERR(u.xcrs)) {
5806 			r = PTR_ERR(u.xcrs);
5807 			goto out_nofree;
5808 		}
5809 
5810 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5811 		break;
5812 	}
5813 	case KVM_SET_TSC_KHZ: {
5814 		u32 user_tsc_khz;
5815 
5816 		r = -EINVAL;
5817 		user_tsc_khz = (u32)arg;
5818 
5819 		if (kvm_caps.has_tsc_control &&
5820 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5821 			goto out;
5822 
5823 		if (user_tsc_khz == 0)
5824 			user_tsc_khz = tsc_khz;
5825 
5826 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5827 			r = 0;
5828 
5829 		goto out;
5830 	}
5831 	case KVM_GET_TSC_KHZ: {
5832 		r = vcpu->arch.virtual_tsc_khz;
5833 		goto out;
5834 	}
5835 	case KVM_KVMCLOCK_CTRL: {
5836 		r = kvm_set_guest_paused(vcpu);
5837 		goto out;
5838 	}
5839 	case KVM_ENABLE_CAP: {
5840 		struct kvm_enable_cap cap;
5841 
5842 		r = -EFAULT;
5843 		if (copy_from_user(&cap, argp, sizeof(cap)))
5844 			goto out;
5845 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5846 		break;
5847 	}
5848 	case KVM_GET_NESTED_STATE: {
5849 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5850 		u32 user_data_size;
5851 
5852 		r = -EINVAL;
5853 		if (!kvm_x86_ops.nested_ops->get_state)
5854 			break;
5855 
5856 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5857 		r = -EFAULT;
5858 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5859 			break;
5860 
5861 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5862 						     user_data_size);
5863 		if (r < 0)
5864 			break;
5865 
5866 		if (r > user_data_size) {
5867 			if (put_user(r, &user_kvm_nested_state->size))
5868 				r = -EFAULT;
5869 			else
5870 				r = -E2BIG;
5871 			break;
5872 		}
5873 
5874 		r = 0;
5875 		break;
5876 	}
5877 	case KVM_SET_NESTED_STATE: {
5878 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5879 		struct kvm_nested_state kvm_state;
5880 		int idx;
5881 
5882 		r = -EINVAL;
5883 		if (!kvm_x86_ops.nested_ops->set_state)
5884 			break;
5885 
5886 		r = -EFAULT;
5887 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5888 			break;
5889 
5890 		r = -EINVAL;
5891 		if (kvm_state.size < sizeof(kvm_state))
5892 			break;
5893 
5894 		if (kvm_state.flags &
5895 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5896 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5897 		      | KVM_STATE_NESTED_GIF_SET))
5898 			break;
5899 
5900 		/* nested_run_pending implies guest_mode.  */
5901 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5902 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5903 			break;
5904 
5905 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5906 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5907 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5908 		break;
5909 	}
5910 	case KVM_GET_SUPPORTED_HV_CPUID:
5911 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5912 		break;
5913 #ifdef CONFIG_KVM_XEN
5914 	case KVM_XEN_VCPU_GET_ATTR: {
5915 		struct kvm_xen_vcpu_attr xva;
5916 
5917 		r = -EFAULT;
5918 		if (copy_from_user(&xva, argp, sizeof(xva)))
5919 			goto out;
5920 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5921 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5922 			r = -EFAULT;
5923 		break;
5924 	}
5925 	case KVM_XEN_VCPU_SET_ATTR: {
5926 		struct kvm_xen_vcpu_attr xva;
5927 
5928 		r = -EFAULT;
5929 		if (copy_from_user(&xva, argp, sizeof(xva)))
5930 			goto out;
5931 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5932 		break;
5933 	}
5934 #endif
5935 	case KVM_GET_SREGS2: {
5936 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5937 		r = -ENOMEM;
5938 		if (!u.sregs2)
5939 			goto out;
5940 		__get_sregs2(vcpu, u.sregs2);
5941 		r = -EFAULT;
5942 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5943 			goto out;
5944 		r = 0;
5945 		break;
5946 	}
5947 	case KVM_SET_SREGS2: {
5948 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5949 		if (IS_ERR(u.sregs2)) {
5950 			r = PTR_ERR(u.sregs2);
5951 			u.sregs2 = NULL;
5952 			goto out;
5953 		}
5954 		r = __set_sregs2(vcpu, u.sregs2);
5955 		break;
5956 	}
5957 	case KVM_HAS_DEVICE_ATTR:
5958 	case KVM_GET_DEVICE_ATTR:
5959 	case KVM_SET_DEVICE_ATTR:
5960 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5961 		break;
5962 	default:
5963 		r = -EINVAL;
5964 	}
5965 out:
5966 	kfree(u.buffer);
5967 out_nofree:
5968 	vcpu_put(vcpu);
5969 	return r;
5970 }
5971 
5972 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5973 {
5974 	return VM_FAULT_SIGBUS;
5975 }
5976 
5977 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5978 {
5979 	int ret;
5980 
5981 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5982 		return -EINVAL;
5983 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5984 	return ret;
5985 }
5986 
5987 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5988 					      u64 ident_addr)
5989 {
5990 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5991 }
5992 
5993 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5994 					 unsigned long kvm_nr_mmu_pages)
5995 {
5996 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5997 		return -EINVAL;
5998 
5999 	mutex_lock(&kvm->slots_lock);
6000 
6001 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6002 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6003 
6004 	mutex_unlock(&kvm->slots_lock);
6005 	return 0;
6006 }
6007 
6008 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6009 {
6010 	return kvm->arch.n_max_mmu_pages;
6011 }
6012 
6013 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6014 {
6015 	struct kvm_pic *pic = kvm->arch.vpic;
6016 	int r;
6017 
6018 	r = 0;
6019 	switch (chip->chip_id) {
6020 	case KVM_IRQCHIP_PIC_MASTER:
6021 		memcpy(&chip->chip.pic, &pic->pics[0],
6022 			sizeof(struct kvm_pic_state));
6023 		break;
6024 	case KVM_IRQCHIP_PIC_SLAVE:
6025 		memcpy(&chip->chip.pic, &pic->pics[1],
6026 			sizeof(struct kvm_pic_state));
6027 		break;
6028 	case KVM_IRQCHIP_IOAPIC:
6029 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6030 		break;
6031 	default:
6032 		r = -EINVAL;
6033 		break;
6034 	}
6035 	return r;
6036 }
6037 
6038 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6039 {
6040 	struct kvm_pic *pic = kvm->arch.vpic;
6041 	int r;
6042 
6043 	r = 0;
6044 	switch (chip->chip_id) {
6045 	case KVM_IRQCHIP_PIC_MASTER:
6046 		spin_lock(&pic->lock);
6047 		memcpy(&pic->pics[0], &chip->chip.pic,
6048 			sizeof(struct kvm_pic_state));
6049 		spin_unlock(&pic->lock);
6050 		break;
6051 	case KVM_IRQCHIP_PIC_SLAVE:
6052 		spin_lock(&pic->lock);
6053 		memcpy(&pic->pics[1], &chip->chip.pic,
6054 			sizeof(struct kvm_pic_state));
6055 		spin_unlock(&pic->lock);
6056 		break;
6057 	case KVM_IRQCHIP_IOAPIC:
6058 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6059 		break;
6060 	default:
6061 		r = -EINVAL;
6062 		break;
6063 	}
6064 	kvm_pic_update_irq(pic);
6065 	return r;
6066 }
6067 
6068 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6069 {
6070 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6071 
6072 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6073 
6074 	mutex_lock(&kps->lock);
6075 	memcpy(ps, &kps->channels, sizeof(*ps));
6076 	mutex_unlock(&kps->lock);
6077 	return 0;
6078 }
6079 
6080 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6081 {
6082 	int i;
6083 	struct kvm_pit *pit = kvm->arch.vpit;
6084 
6085 	mutex_lock(&pit->pit_state.lock);
6086 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6087 	for (i = 0; i < 3; i++)
6088 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6089 	mutex_unlock(&pit->pit_state.lock);
6090 	return 0;
6091 }
6092 
6093 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6094 {
6095 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6096 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6097 		sizeof(ps->channels));
6098 	ps->flags = kvm->arch.vpit->pit_state.flags;
6099 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6100 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6101 	return 0;
6102 }
6103 
6104 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6105 {
6106 	int start = 0;
6107 	int i;
6108 	u32 prev_legacy, cur_legacy;
6109 	struct kvm_pit *pit = kvm->arch.vpit;
6110 
6111 	mutex_lock(&pit->pit_state.lock);
6112 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6113 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6114 	if (!prev_legacy && cur_legacy)
6115 		start = 1;
6116 	memcpy(&pit->pit_state.channels, &ps->channels,
6117 	       sizeof(pit->pit_state.channels));
6118 	pit->pit_state.flags = ps->flags;
6119 	for (i = 0; i < 3; i++)
6120 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6121 				   start && i == 0);
6122 	mutex_unlock(&pit->pit_state.lock);
6123 	return 0;
6124 }
6125 
6126 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6127 				 struct kvm_reinject_control *control)
6128 {
6129 	struct kvm_pit *pit = kvm->arch.vpit;
6130 
6131 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6132 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6133 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6134 	 */
6135 	mutex_lock(&pit->pit_state.lock);
6136 	kvm_pit_set_reinject(pit, control->pit_reinject);
6137 	mutex_unlock(&pit->pit_state.lock);
6138 
6139 	return 0;
6140 }
6141 
6142 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6143 {
6144 
6145 	/*
6146 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6147 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6148 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6149 	 * VM-Exit.
6150 	 */
6151 	struct kvm_vcpu *vcpu;
6152 	unsigned long i;
6153 
6154 	kvm_for_each_vcpu(i, vcpu, kvm)
6155 		kvm_vcpu_kick(vcpu);
6156 }
6157 
6158 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6159 			bool line_status)
6160 {
6161 	if (!irqchip_in_kernel(kvm))
6162 		return -ENXIO;
6163 
6164 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6165 					irq_event->irq, irq_event->level,
6166 					line_status);
6167 	return 0;
6168 }
6169 
6170 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6171 			    struct kvm_enable_cap *cap)
6172 {
6173 	int r;
6174 
6175 	if (cap->flags)
6176 		return -EINVAL;
6177 
6178 	switch (cap->cap) {
6179 	case KVM_CAP_DISABLE_QUIRKS2:
6180 		r = -EINVAL;
6181 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6182 			break;
6183 		fallthrough;
6184 	case KVM_CAP_DISABLE_QUIRKS:
6185 		kvm->arch.disabled_quirks = cap->args[0];
6186 		r = 0;
6187 		break;
6188 	case KVM_CAP_SPLIT_IRQCHIP: {
6189 		mutex_lock(&kvm->lock);
6190 		r = -EINVAL;
6191 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6192 			goto split_irqchip_unlock;
6193 		r = -EEXIST;
6194 		if (irqchip_in_kernel(kvm))
6195 			goto split_irqchip_unlock;
6196 		if (kvm->created_vcpus)
6197 			goto split_irqchip_unlock;
6198 		r = kvm_setup_empty_irq_routing(kvm);
6199 		if (r)
6200 			goto split_irqchip_unlock;
6201 		/* Pairs with irqchip_in_kernel. */
6202 		smp_wmb();
6203 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6204 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6205 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6206 		r = 0;
6207 split_irqchip_unlock:
6208 		mutex_unlock(&kvm->lock);
6209 		break;
6210 	}
6211 	case KVM_CAP_X2APIC_API:
6212 		r = -EINVAL;
6213 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6214 			break;
6215 
6216 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6217 			kvm->arch.x2apic_format = true;
6218 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6219 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6220 
6221 		r = 0;
6222 		break;
6223 	case KVM_CAP_X86_DISABLE_EXITS:
6224 		r = -EINVAL;
6225 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6226 			break;
6227 
6228 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6229 			kvm_can_mwait_in_guest())
6230 			kvm->arch.mwait_in_guest = true;
6231 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6232 			kvm->arch.hlt_in_guest = true;
6233 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6234 			kvm->arch.pause_in_guest = true;
6235 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6236 			kvm->arch.cstate_in_guest = true;
6237 		r = 0;
6238 		break;
6239 	case KVM_CAP_MSR_PLATFORM_INFO:
6240 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6241 		r = 0;
6242 		break;
6243 	case KVM_CAP_EXCEPTION_PAYLOAD:
6244 		kvm->arch.exception_payload_enabled = cap->args[0];
6245 		r = 0;
6246 		break;
6247 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6248 		kvm->arch.triple_fault_event = cap->args[0];
6249 		r = 0;
6250 		break;
6251 	case KVM_CAP_X86_USER_SPACE_MSR:
6252 		r = -EINVAL;
6253 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6254 			break;
6255 		kvm->arch.user_space_msr_mask = cap->args[0];
6256 		r = 0;
6257 		break;
6258 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6259 		r = -EINVAL;
6260 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6261 			break;
6262 
6263 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6264 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6265 			break;
6266 
6267 		if (kvm_caps.has_bus_lock_exit &&
6268 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6269 			kvm->arch.bus_lock_detection_enabled = true;
6270 		r = 0;
6271 		break;
6272 #ifdef CONFIG_X86_SGX_KVM
6273 	case KVM_CAP_SGX_ATTRIBUTE: {
6274 		unsigned long allowed_attributes = 0;
6275 
6276 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6277 		if (r)
6278 			break;
6279 
6280 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6281 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6282 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6283 			kvm->arch.sgx_provisioning_allowed = true;
6284 		else
6285 			r = -EINVAL;
6286 		break;
6287 	}
6288 #endif
6289 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6290 		r = -EINVAL;
6291 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6292 			break;
6293 
6294 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6295 		break;
6296 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6297 		r = -EINVAL;
6298 		if (!kvm_x86_ops.vm_move_enc_context_from)
6299 			break;
6300 
6301 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6302 		break;
6303 	case KVM_CAP_EXIT_HYPERCALL:
6304 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6305 			r = -EINVAL;
6306 			break;
6307 		}
6308 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6309 		r = 0;
6310 		break;
6311 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6312 		r = -EINVAL;
6313 		if (cap->args[0] & ~1)
6314 			break;
6315 		kvm->arch.exit_on_emulation_error = cap->args[0];
6316 		r = 0;
6317 		break;
6318 	case KVM_CAP_PMU_CAPABILITY:
6319 		r = -EINVAL;
6320 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6321 			break;
6322 
6323 		mutex_lock(&kvm->lock);
6324 		if (!kvm->created_vcpus) {
6325 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6326 			r = 0;
6327 		}
6328 		mutex_unlock(&kvm->lock);
6329 		break;
6330 	case KVM_CAP_MAX_VCPU_ID:
6331 		r = -EINVAL;
6332 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6333 			break;
6334 
6335 		mutex_lock(&kvm->lock);
6336 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6337 			r = 0;
6338 		} else if (!kvm->arch.max_vcpu_ids) {
6339 			kvm->arch.max_vcpu_ids = cap->args[0];
6340 			r = 0;
6341 		}
6342 		mutex_unlock(&kvm->lock);
6343 		break;
6344 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6345 		r = -EINVAL;
6346 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6347 			break;
6348 		if (!kvm_caps.has_notify_vmexit)
6349 			break;
6350 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6351 			break;
6352 		mutex_lock(&kvm->lock);
6353 		if (!kvm->created_vcpus) {
6354 			kvm->arch.notify_window = cap->args[0] >> 32;
6355 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6356 			r = 0;
6357 		}
6358 		mutex_unlock(&kvm->lock);
6359 		break;
6360 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6361 		r = -EINVAL;
6362 
6363 		/*
6364 		 * Since the risk of disabling NX hugepages is a guest crashing
6365 		 * the system, ensure the userspace process has permission to
6366 		 * reboot the system.
6367 		 *
6368 		 * Note that unlike the reboot() syscall, the process must have
6369 		 * this capability in the root namespace because exposing
6370 		 * /dev/kvm into a container does not limit the scope of the
6371 		 * iTLB multihit bug to that container. In other words,
6372 		 * this must use capable(), not ns_capable().
6373 		 */
6374 		if (!capable(CAP_SYS_BOOT)) {
6375 			r = -EPERM;
6376 			break;
6377 		}
6378 
6379 		if (cap->args[0])
6380 			break;
6381 
6382 		mutex_lock(&kvm->lock);
6383 		if (!kvm->created_vcpus) {
6384 			kvm->arch.disable_nx_huge_pages = true;
6385 			r = 0;
6386 		}
6387 		mutex_unlock(&kvm->lock);
6388 		break;
6389 	default:
6390 		r = -EINVAL;
6391 		break;
6392 	}
6393 	return r;
6394 }
6395 
6396 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6397 {
6398 	struct kvm_x86_msr_filter *msr_filter;
6399 
6400 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6401 	if (!msr_filter)
6402 		return NULL;
6403 
6404 	msr_filter->default_allow = default_allow;
6405 	return msr_filter;
6406 }
6407 
6408 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6409 {
6410 	u32 i;
6411 
6412 	if (!msr_filter)
6413 		return;
6414 
6415 	for (i = 0; i < msr_filter->count; i++)
6416 		kfree(msr_filter->ranges[i].bitmap);
6417 
6418 	kfree(msr_filter);
6419 }
6420 
6421 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6422 			      struct kvm_msr_filter_range *user_range)
6423 {
6424 	unsigned long *bitmap = NULL;
6425 	size_t bitmap_size;
6426 
6427 	if (!user_range->nmsrs)
6428 		return 0;
6429 
6430 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6431 		return -EINVAL;
6432 
6433 	if (!user_range->flags)
6434 		return -EINVAL;
6435 
6436 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6437 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6438 		return -EINVAL;
6439 
6440 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6441 	if (IS_ERR(bitmap))
6442 		return PTR_ERR(bitmap);
6443 
6444 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6445 		.flags = user_range->flags,
6446 		.base = user_range->base,
6447 		.nmsrs = user_range->nmsrs,
6448 		.bitmap = bitmap,
6449 	};
6450 
6451 	msr_filter->count++;
6452 	return 0;
6453 }
6454 
6455 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6456 				       struct kvm_msr_filter *filter)
6457 {
6458 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6459 	bool default_allow;
6460 	bool empty = true;
6461 	int r = 0;
6462 	u32 i;
6463 
6464 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6465 		return -EINVAL;
6466 
6467 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6468 		empty &= !filter->ranges[i].nmsrs;
6469 
6470 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6471 	if (empty && !default_allow)
6472 		return -EINVAL;
6473 
6474 	new_filter = kvm_alloc_msr_filter(default_allow);
6475 	if (!new_filter)
6476 		return -ENOMEM;
6477 
6478 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6479 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6480 		if (r) {
6481 			kvm_free_msr_filter(new_filter);
6482 			return r;
6483 		}
6484 	}
6485 
6486 	mutex_lock(&kvm->lock);
6487 
6488 	/* The per-VM filter is protected by kvm->lock... */
6489 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6490 
6491 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6492 	synchronize_srcu(&kvm->srcu);
6493 
6494 	kvm_free_msr_filter(old_filter);
6495 
6496 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6497 	mutex_unlock(&kvm->lock);
6498 
6499 	return 0;
6500 }
6501 
6502 #ifdef CONFIG_KVM_COMPAT
6503 /* for KVM_X86_SET_MSR_FILTER */
6504 struct kvm_msr_filter_range_compat {
6505 	__u32 flags;
6506 	__u32 nmsrs;
6507 	__u32 base;
6508 	__u32 bitmap;
6509 };
6510 
6511 struct kvm_msr_filter_compat {
6512 	__u32 flags;
6513 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6514 };
6515 
6516 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6517 
6518 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6519 			      unsigned long arg)
6520 {
6521 	void __user *argp = (void __user *)arg;
6522 	struct kvm *kvm = filp->private_data;
6523 	long r = -ENOTTY;
6524 
6525 	switch (ioctl) {
6526 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6527 		struct kvm_msr_filter __user *user_msr_filter = argp;
6528 		struct kvm_msr_filter_compat filter_compat;
6529 		struct kvm_msr_filter filter;
6530 		int i;
6531 
6532 		if (copy_from_user(&filter_compat, user_msr_filter,
6533 				   sizeof(filter_compat)))
6534 			return -EFAULT;
6535 
6536 		filter.flags = filter_compat.flags;
6537 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6538 			struct kvm_msr_filter_range_compat *cr;
6539 
6540 			cr = &filter_compat.ranges[i];
6541 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6542 				.flags = cr->flags,
6543 				.nmsrs = cr->nmsrs,
6544 				.base = cr->base,
6545 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6546 			};
6547 		}
6548 
6549 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6550 		break;
6551 	}
6552 	}
6553 
6554 	return r;
6555 }
6556 #endif
6557 
6558 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6559 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6560 {
6561 	struct kvm_vcpu *vcpu;
6562 	unsigned long i;
6563 	int ret = 0;
6564 
6565 	mutex_lock(&kvm->lock);
6566 	kvm_for_each_vcpu(i, vcpu, kvm) {
6567 		if (!vcpu->arch.pv_time.active)
6568 			continue;
6569 
6570 		ret = kvm_set_guest_paused(vcpu);
6571 		if (ret) {
6572 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6573 				vcpu->vcpu_id, ret);
6574 			break;
6575 		}
6576 	}
6577 	mutex_unlock(&kvm->lock);
6578 
6579 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6580 }
6581 
6582 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6583 {
6584 	switch (state) {
6585 	case PM_HIBERNATION_PREPARE:
6586 	case PM_SUSPEND_PREPARE:
6587 		return kvm_arch_suspend_notifier(kvm);
6588 	}
6589 
6590 	return NOTIFY_DONE;
6591 }
6592 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6593 
6594 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6595 {
6596 	struct kvm_clock_data data = { 0 };
6597 
6598 	get_kvmclock(kvm, &data);
6599 	if (copy_to_user(argp, &data, sizeof(data)))
6600 		return -EFAULT;
6601 
6602 	return 0;
6603 }
6604 
6605 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6606 {
6607 	struct kvm_arch *ka = &kvm->arch;
6608 	struct kvm_clock_data data;
6609 	u64 now_raw_ns;
6610 
6611 	if (copy_from_user(&data, argp, sizeof(data)))
6612 		return -EFAULT;
6613 
6614 	/*
6615 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6616 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6617 	 */
6618 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6619 		return -EINVAL;
6620 
6621 	kvm_hv_request_tsc_page_update(kvm);
6622 	kvm_start_pvclock_update(kvm);
6623 	pvclock_update_vm_gtod_copy(kvm);
6624 
6625 	/*
6626 	 * This pairs with kvm_guest_time_update(): when masterclock is
6627 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6628 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6629 	 * is slightly ahead) here we risk going negative on unsigned
6630 	 * 'system_time' when 'data.clock' is very small.
6631 	 */
6632 	if (data.flags & KVM_CLOCK_REALTIME) {
6633 		u64 now_real_ns = ktime_get_real_ns();
6634 
6635 		/*
6636 		 * Avoid stepping the kvmclock backwards.
6637 		 */
6638 		if (now_real_ns > data.realtime)
6639 			data.clock += now_real_ns - data.realtime;
6640 	}
6641 
6642 	if (ka->use_master_clock)
6643 		now_raw_ns = ka->master_kernel_ns;
6644 	else
6645 		now_raw_ns = get_kvmclock_base_ns();
6646 	ka->kvmclock_offset = data.clock - now_raw_ns;
6647 	kvm_end_pvclock_update(kvm);
6648 	return 0;
6649 }
6650 
6651 long kvm_arch_vm_ioctl(struct file *filp,
6652 		       unsigned int ioctl, unsigned long arg)
6653 {
6654 	struct kvm *kvm = filp->private_data;
6655 	void __user *argp = (void __user *)arg;
6656 	int r = -ENOTTY;
6657 	/*
6658 	 * This union makes it completely explicit to gcc-3.x
6659 	 * that these two variables' stack usage should be
6660 	 * combined, not added together.
6661 	 */
6662 	union {
6663 		struct kvm_pit_state ps;
6664 		struct kvm_pit_state2 ps2;
6665 		struct kvm_pit_config pit_config;
6666 	} u;
6667 
6668 	switch (ioctl) {
6669 	case KVM_SET_TSS_ADDR:
6670 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6671 		break;
6672 	case KVM_SET_IDENTITY_MAP_ADDR: {
6673 		u64 ident_addr;
6674 
6675 		mutex_lock(&kvm->lock);
6676 		r = -EINVAL;
6677 		if (kvm->created_vcpus)
6678 			goto set_identity_unlock;
6679 		r = -EFAULT;
6680 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6681 			goto set_identity_unlock;
6682 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6683 set_identity_unlock:
6684 		mutex_unlock(&kvm->lock);
6685 		break;
6686 	}
6687 	case KVM_SET_NR_MMU_PAGES:
6688 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6689 		break;
6690 	case KVM_GET_NR_MMU_PAGES:
6691 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6692 		break;
6693 	case KVM_CREATE_IRQCHIP: {
6694 		mutex_lock(&kvm->lock);
6695 
6696 		r = -EEXIST;
6697 		if (irqchip_in_kernel(kvm))
6698 			goto create_irqchip_unlock;
6699 
6700 		r = -EINVAL;
6701 		if (kvm->created_vcpus)
6702 			goto create_irqchip_unlock;
6703 
6704 		r = kvm_pic_init(kvm);
6705 		if (r)
6706 			goto create_irqchip_unlock;
6707 
6708 		r = kvm_ioapic_init(kvm);
6709 		if (r) {
6710 			kvm_pic_destroy(kvm);
6711 			goto create_irqchip_unlock;
6712 		}
6713 
6714 		r = kvm_setup_default_irq_routing(kvm);
6715 		if (r) {
6716 			kvm_ioapic_destroy(kvm);
6717 			kvm_pic_destroy(kvm);
6718 			goto create_irqchip_unlock;
6719 		}
6720 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6721 		smp_wmb();
6722 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6723 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6724 	create_irqchip_unlock:
6725 		mutex_unlock(&kvm->lock);
6726 		break;
6727 	}
6728 	case KVM_CREATE_PIT:
6729 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6730 		goto create_pit;
6731 	case KVM_CREATE_PIT2:
6732 		r = -EFAULT;
6733 		if (copy_from_user(&u.pit_config, argp,
6734 				   sizeof(struct kvm_pit_config)))
6735 			goto out;
6736 	create_pit:
6737 		mutex_lock(&kvm->lock);
6738 		r = -EEXIST;
6739 		if (kvm->arch.vpit)
6740 			goto create_pit_unlock;
6741 		r = -ENOMEM;
6742 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6743 		if (kvm->arch.vpit)
6744 			r = 0;
6745 	create_pit_unlock:
6746 		mutex_unlock(&kvm->lock);
6747 		break;
6748 	case KVM_GET_IRQCHIP: {
6749 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6750 		struct kvm_irqchip *chip;
6751 
6752 		chip = memdup_user(argp, sizeof(*chip));
6753 		if (IS_ERR(chip)) {
6754 			r = PTR_ERR(chip);
6755 			goto out;
6756 		}
6757 
6758 		r = -ENXIO;
6759 		if (!irqchip_kernel(kvm))
6760 			goto get_irqchip_out;
6761 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6762 		if (r)
6763 			goto get_irqchip_out;
6764 		r = -EFAULT;
6765 		if (copy_to_user(argp, chip, sizeof(*chip)))
6766 			goto get_irqchip_out;
6767 		r = 0;
6768 	get_irqchip_out:
6769 		kfree(chip);
6770 		break;
6771 	}
6772 	case KVM_SET_IRQCHIP: {
6773 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6774 		struct kvm_irqchip *chip;
6775 
6776 		chip = memdup_user(argp, sizeof(*chip));
6777 		if (IS_ERR(chip)) {
6778 			r = PTR_ERR(chip);
6779 			goto out;
6780 		}
6781 
6782 		r = -ENXIO;
6783 		if (!irqchip_kernel(kvm))
6784 			goto set_irqchip_out;
6785 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6786 	set_irqchip_out:
6787 		kfree(chip);
6788 		break;
6789 	}
6790 	case KVM_GET_PIT: {
6791 		r = -EFAULT;
6792 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6793 			goto out;
6794 		r = -ENXIO;
6795 		if (!kvm->arch.vpit)
6796 			goto out;
6797 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6798 		if (r)
6799 			goto out;
6800 		r = -EFAULT;
6801 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6802 			goto out;
6803 		r = 0;
6804 		break;
6805 	}
6806 	case KVM_SET_PIT: {
6807 		r = -EFAULT;
6808 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6809 			goto out;
6810 		mutex_lock(&kvm->lock);
6811 		r = -ENXIO;
6812 		if (!kvm->arch.vpit)
6813 			goto set_pit_out;
6814 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6815 set_pit_out:
6816 		mutex_unlock(&kvm->lock);
6817 		break;
6818 	}
6819 	case KVM_GET_PIT2: {
6820 		r = -ENXIO;
6821 		if (!kvm->arch.vpit)
6822 			goto out;
6823 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6824 		if (r)
6825 			goto out;
6826 		r = -EFAULT;
6827 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6828 			goto out;
6829 		r = 0;
6830 		break;
6831 	}
6832 	case KVM_SET_PIT2: {
6833 		r = -EFAULT;
6834 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6835 			goto out;
6836 		mutex_lock(&kvm->lock);
6837 		r = -ENXIO;
6838 		if (!kvm->arch.vpit)
6839 			goto set_pit2_out;
6840 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6841 set_pit2_out:
6842 		mutex_unlock(&kvm->lock);
6843 		break;
6844 	}
6845 	case KVM_REINJECT_CONTROL: {
6846 		struct kvm_reinject_control control;
6847 		r =  -EFAULT;
6848 		if (copy_from_user(&control, argp, sizeof(control)))
6849 			goto out;
6850 		r = -ENXIO;
6851 		if (!kvm->arch.vpit)
6852 			goto out;
6853 		r = kvm_vm_ioctl_reinject(kvm, &control);
6854 		break;
6855 	}
6856 	case KVM_SET_BOOT_CPU_ID:
6857 		r = 0;
6858 		mutex_lock(&kvm->lock);
6859 		if (kvm->created_vcpus)
6860 			r = -EBUSY;
6861 		else
6862 			kvm->arch.bsp_vcpu_id = arg;
6863 		mutex_unlock(&kvm->lock);
6864 		break;
6865 #ifdef CONFIG_KVM_XEN
6866 	case KVM_XEN_HVM_CONFIG: {
6867 		struct kvm_xen_hvm_config xhc;
6868 		r = -EFAULT;
6869 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6870 			goto out;
6871 		r = kvm_xen_hvm_config(kvm, &xhc);
6872 		break;
6873 	}
6874 	case KVM_XEN_HVM_GET_ATTR: {
6875 		struct kvm_xen_hvm_attr xha;
6876 
6877 		r = -EFAULT;
6878 		if (copy_from_user(&xha, argp, sizeof(xha)))
6879 			goto out;
6880 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6881 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6882 			r = -EFAULT;
6883 		break;
6884 	}
6885 	case KVM_XEN_HVM_SET_ATTR: {
6886 		struct kvm_xen_hvm_attr xha;
6887 
6888 		r = -EFAULT;
6889 		if (copy_from_user(&xha, argp, sizeof(xha)))
6890 			goto out;
6891 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6892 		break;
6893 	}
6894 	case KVM_XEN_HVM_EVTCHN_SEND: {
6895 		struct kvm_irq_routing_xen_evtchn uxe;
6896 
6897 		r = -EFAULT;
6898 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6899 			goto out;
6900 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6901 		break;
6902 	}
6903 #endif
6904 	case KVM_SET_CLOCK:
6905 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6906 		break;
6907 	case KVM_GET_CLOCK:
6908 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6909 		break;
6910 	case KVM_SET_TSC_KHZ: {
6911 		u32 user_tsc_khz;
6912 
6913 		r = -EINVAL;
6914 		user_tsc_khz = (u32)arg;
6915 
6916 		if (kvm_caps.has_tsc_control &&
6917 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6918 			goto out;
6919 
6920 		if (user_tsc_khz == 0)
6921 			user_tsc_khz = tsc_khz;
6922 
6923 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6924 		r = 0;
6925 
6926 		goto out;
6927 	}
6928 	case KVM_GET_TSC_KHZ: {
6929 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6930 		goto out;
6931 	}
6932 	case KVM_MEMORY_ENCRYPT_OP: {
6933 		r = -ENOTTY;
6934 		if (!kvm_x86_ops.mem_enc_ioctl)
6935 			goto out;
6936 
6937 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6938 		break;
6939 	}
6940 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6941 		struct kvm_enc_region region;
6942 
6943 		r = -EFAULT;
6944 		if (copy_from_user(&region, argp, sizeof(region)))
6945 			goto out;
6946 
6947 		r = -ENOTTY;
6948 		if (!kvm_x86_ops.mem_enc_register_region)
6949 			goto out;
6950 
6951 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6952 		break;
6953 	}
6954 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6955 		struct kvm_enc_region region;
6956 
6957 		r = -EFAULT;
6958 		if (copy_from_user(&region, argp, sizeof(region)))
6959 			goto out;
6960 
6961 		r = -ENOTTY;
6962 		if (!kvm_x86_ops.mem_enc_unregister_region)
6963 			goto out;
6964 
6965 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6966 		break;
6967 	}
6968 	case KVM_HYPERV_EVENTFD: {
6969 		struct kvm_hyperv_eventfd hvevfd;
6970 
6971 		r = -EFAULT;
6972 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6973 			goto out;
6974 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6975 		break;
6976 	}
6977 	case KVM_SET_PMU_EVENT_FILTER:
6978 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6979 		break;
6980 	case KVM_X86_SET_MSR_FILTER: {
6981 		struct kvm_msr_filter __user *user_msr_filter = argp;
6982 		struct kvm_msr_filter filter;
6983 
6984 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6985 			return -EFAULT;
6986 
6987 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6988 		break;
6989 	}
6990 	default:
6991 		r = -ENOTTY;
6992 	}
6993 out:
6994 	return r;
6995 }
6996 
6997 static void kvm_init_msr_list(void)
6998 {
6999 	u32 dummy[2];
7000 	unsigned i;
7001 
7002 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7003 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
7004 
7005 	num_msrs_to_save = 0;
7006 	num_emulated_msrs = 0;
7007 	num_msr_based_features = 0;
7008 
7009 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7010 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7011 			continue;
7012 
7013 		/*
7014 		 * Even MSRs that are valid in the host may not be exposed
7015 		 * to the guests in some cases.
7016 		 */
7017 		switch (msrs_to_save_all[i]) {
7018 		case MSR_IA32_BNDCFGS:
7019 			if (!kvm_mpx_supported())
7020 				continue;
7021 			break;
7022 		case MSR_TSC_AUX:
7023 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7024 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7025 				continue;
7026 			break;
7027 		case MSR_IA32_UMWAIT_CONTROL:
7028 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7029 				continue;
7030 			break;
7031 		case MSR_IA32_RTIT_CTL:
7032 		case MSR_IA32_RTIT_STATUS:
7033 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7034 				continue;
7035 			break;
7036 		case MSR_IA32_RTIT_CR3_MATCH:
7037 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7038 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7039 				continue;
7040 			break;
7041 		case MSR_IA32_RTIT_OUTPUT_BASE:
7042 		case MSR_IA32_RTIT_OUTPUT_MASK:
7043 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7044 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7045 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7046 				continue;
7047 			break;
7048 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7049 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7050 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7051 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7052 				continue;
7053 			break;
7054 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7055 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7056 			    kvm_pmu_cap.num_counters_gp)
7057 				continue;
7058 			break;
7059 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7060 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7061 			    kvm_pmu_cap.num_counters_gp)
7062 				continue;
7063 			break;
7064 		case MSR_IA32_XFD:
7065 		case MSR_IA32_XFD_ERR:
7066 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7067 				continue;
7068 			break;
7069 		default:
7070 			break;
7071 		}
7072 
7073 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7074 	}
7075 
7076 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7077 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7078 			continue;
7079 
7080 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7081 	}
7082 
7083 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7084 		struct kvm_msr_entry msr;
7085 
7086 		msr.index = msr_based_features_all[i];
7087 		if (kvm_get_msr_feature(&msr))
7088 			continue;
7089 
7090 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7091 	}
7092 }
7093 
7094 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7095 			   const void *v)
7096 {
7097 	int handled = 0;
7098 	int n;
7099 
7100 	do {
7101 		n = min(len, 8);
7102 		if (!(lapic_in_kernel(vcpu) &&
7103 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7104 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7105 			break;
7106 		handled += n;
7107 		addr += n;
7108 		len -= n;
7109 		v += n;
7110 	} while (len);
7111 
7112 	return handled;
7113 }
7114 
7115 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7116 {
7117 	int handled = 0;
7118 	int n;
7119 
7120 	do {
7121 		n = min(len, 8);
7122 		if (!(lapic_in_kernel(vcpu) &&
7123 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7124 					 addr, n, v))
7125 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7126 			break;
7127 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7128 		handled += n;
7129 		addr += n;
7130 		len -= n;
7131 		v += n;
7132 	} while (len);
7133 
7134 	return handled;
7135 }
7136 
7137 void kvm_set_segment(struct kvm_vcpu *vcpu,
7138 		     struct kvm_segment *var, int seg)
7139 {
7140 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7141 }
7142 
7143 void kvm_get_segment(struct kvm_vcpu *vcpu,
7144 		     struct kvm_segment *var, int seg)
7145 {
7146 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7147 }
7148 
7149 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7150 			   struct x86_exception *exception)
7151 {
7152 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7153 	gpa_t t_gpa;
7154 
7155 	BUG_ON(!mmu_is_nested(vcpu));
7156 
7157 	/* NPT walks are always user-walks */
7158 	access |= PFERR_USER_MASK;
7159 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7160 
7161 	return t_gpa;
7162 }
7163 
7164 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7165 			      struct x86_exception *exception)
7166 {
7167 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7168 
7169 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7170 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7171 }
7172 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7173 
7174 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7175 			       struct x86_exception *exception)
7176 {
7177 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7178 
7179 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7180 	access |= PFERR_WRITE_MASK;
7181 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7182 }
7183 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7184 
7185 /* uses this to access any guest's mapped memory without checking CPL */
7186 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7187 				struct x86_exception *exception)
7188 {
7189 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7190 
7191 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7192 }
7193 
7194 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7195 				      struct kvm_vcpu *vcpu, u64 access,
7196 				      struct x86_exception *exception)
7197 {
7198 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7199 	void *data = val;
7200 	int r = X86EMUL_CONTINUE;
7201 
7202 	while (bytes) {
7203 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7204 		unsigned offset = addr & (PAGE_SIZE-1);
7205 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7206 		int ret;
7207 
7208 		if (gpa == INVALID_GPA)
7209 			return X86EMUL_PROPAGATE_FAULT;
7210 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7211 					       offset, toread);
7212 		if (ret < 0) {
7213 			r = X86EMUL_IO_NEEDED;
7214 			goto out;
7215 		}
7216 
7217 		bytes -= toread;
7218 		data += toread;
7219 		addr += toread;
7220 	}
7221 out:
7222 	return r;
7223 }
7224 
7225 /* used for instruction fetching */
7226 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7227 				gva_t addr, void *val, unsigned int bytes,
7228 				struct x86_exception *exception)
7229 {
7230 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7231 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7232 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7233 	unsigned offset;
7234 	int ret;
7235 
7236 	/* Inline kvm_read_guest_virt_helper for speed.  */
7237 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7238 				    exception);
7239 	if (unlikely(gpa == INVALID_GPA))
7240 		return X86EMUL_PROPAGATE_FAULT;
7241 
7242 	offset = addr & (PAGE_SIZE-1);
7243 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7244 		bytes = (unsigned)PAGE_SIZE - offset;
7245 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7246 				       offset, bytes);
7247 	if (unlikely(ret < 0))
7248 		return X86EMUL_IO_NEEDED;
7249 
7250 	return X86EMUL_CONTINUE;
7251 }
7252 
7253 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7254 			       gva_t addr, void *val, unsigned int bytes,
7255 			       struct x86_exception *exception)
7256 {
7257 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7258 
7259 	/*
7260 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7261 	 * is returned, but our callers are not ready for that and they blindly
7262 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7263 	 * uninitialized kernel stack memory into cr2 and error code.
7264 	 */
7265 	memset(exception, 0, sizeof(*exception));
7266 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7267 					  exception);
7268 }
7269 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7270 
7271 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7272 			     gva_t addr, void *val, unsigned int bytes,
7273 			     struct x86_exception *exception, bool system)
7274 {
7275 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7276 	u64 access = 0;
7277 
7278 	if (system)
7279 		access |= PFERR_IMPLICIT_ACCESS;
7280 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7281 		access |= PFERR_USER_MASK;
7282 
7283 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7284 }
7285 
7286 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7287 				      struct kvm_vcpu *vcpu, u64 access,
7288 				      struct x86_exception *exception)
7289 {
7290 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7291 	void *data = val;
7292 	int r = X86EMUL_CONTINUE;
7293 
7294 	while (bytes) {
7295 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7296 		unsigned offset = addr & (PAGE_SIZE-1);
7297 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7298 		int ret;
7299 
7300 		if (gpa == INVALID_GPA)
7301 			return X86EMUL_PROPAGATE_FAULT;
7302 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7303 		if (ret < 0) {
7304 			r = X86EMUL_IO_NEEDED;
7305 			goto out;
7306 		}
7307 
7308 		bytes -= towrite;
7309 		data += towrite;
7310 		addr += towrite;
7311 	}
7312 out:
7313 	return r;
7314 }
7315 
7316 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7317 			      unsigned int bytes, struct x86_exception *exception,
7318 			      bool system)
7319 {
7320 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7321 	u64 access = PFERR_WRITE_MASK;
7322 
7323 	if (system)
7324 		access |= PFERR_IMPLICIT_ACCESS;
7325 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7326 		access |= PFERR_USER_MASK;
7327 
7328 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7329 					   access, exception);
7330 }
7331 
7332 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7333 				unsigned int bytes, struct x86_exception *exception)
7334 {
7335 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7336 	vcpu->arch.l1tf_flush_l1d = true;
7337 
7338 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7339 					   PFERR_WRITE_MASK, exception);
7340 }
7341 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7342 
7343 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7344 				void *insn, int insn_len)
7345 {
7346 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7347 							    insn, insn_len);
7348 }
7349 
7350 int handle_ud(struct kvm_vcpu *vcpu)
7351 {
7352 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7353 	int fep_flags = READ_ONCE(force_emulation_prefix);
7354 	int emul_type = EMULTYPE_TRAP_UD;
7355 	char sig[5]; /* ud2; .ascii "kvm" */
7356 	struct x86_exception e;
7357 
7358 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7359 		return 1;
7360 
7361 	if (fep_flags &&
7362 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7363 				sig, sizeof(sig), &e) == 0 &&
7364 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7365 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7366 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7367 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7368 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7369 	}
7370 
7371 	return kvm_emulate_instruction(vcpu, emul_type);
7372 }
7373 EXPORT_SYMBOL_GPL(handle_ud);
7374 
7375 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7376 			    gpa_t gpa, bool write)
7377 {
7378 	/* For APIC access vmexit */
7379 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7380 		return 1;
7381 
7382 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7383 		trace_vcpu_match_mmio(gva, gpa, write, true);
7384 		return 1;
7385 	}
7386 
7387 	return 0;
7388 }
7389 
7390 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7391 				gpa_t *gpa, struct x86_exception *exception,
7392 				bool write)
7393 {
7394 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7395 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7396 		| (write ? PFERR_WRITE_MASK : 0);
7397 
7398 	/*
7399 	 * currently PKRU is only applied to ept enabled guest so
7400 	 * there is no pkey in EPT page table for L1 guest or EPT
7401 	 * shadow page table for L2 guest.
7402 	 */
7403 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7404 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7405 			      vcpu->arch.mmio_access, 0, access))) {
7406 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7407 					(gva & (PAGE_SIZE - 1));
7408 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7409 		return 1;
7410 	}
7411 
7412 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7413 
7414 	if (*gpa == INVALID_GPA)
7415 		return -1;
7416 
7417 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7418 }
7419 
7420 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7421 			const void *val, int bytes)
7422 {
7423 	int ret;
7424 
7425 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7426 	if (ret < 0)
7427 		return 0;
7428 	kvm_page_track_write(vcpu, gpa, val, bytes);
7429 	return 1;
7430 }
7431 
7432 struct read_write_emulator_ops {
7433 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7434 				  int bytes);
7435 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7436 				  void *val, int bytes);
7437 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7438 			       int bytes, void *val);
7439 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7440 				    void *val, int bytes);
7441 	bool write;
7442 };
7443 
7444 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7445 {
7446 	if (vcpu->mmio_read_completed) {
7447 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7448 			       vcpu->mmio_fragments[0].gpa, val);
7449 		vcpu->mmio_read_completed = 0;
7450 		return 1;
7451 	}
7452 
7453 	return 0;
7454 }
7455 
7456 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7457 			void *val, int bytes)
7458 {
7459 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7460 }
7461 
7462 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7463 			 void *val, int bytes)
7464 {
7465 	return emulator_write_phys(vcpu, gpa, val, bytes);
7466 }
7467 
7468 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7469 {
7470 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7471 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7472 }
7473 
7474 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7475 			  void *val, int bytes)
7476 {
7477 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7478 	return X86EMUL_IO_NEEDED;
7479 }
7480 
7481 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7482 			   void *val, int bytes)
7483 {
7484 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7485 
7486 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7487 	return X86EMUL_CONTINUE;
7488 }
7489 
7490 static const struct read_write_emulator_ops read_emultor = {
7491 	.read_write_prepare = read_prepare,
7492 	.read_write_emulate = read_emulate,
7493 	.read_write_mmio = vcpu_mmio_read,
7494 	.read_write_exit_mmio = read_exit_mmio,
7495 };
7496 
7497 static const struct read_write_emulator_ops write_emultor = {
7498 	.read_write_emulate = write_emulate,
7499 	.read_write_mmio = write_mmio,
7500 	.read_write_exit_mmio = write_exit_mmio,
7501 	.write = true,
7502 };
7503 
7504 static int emulator_read_write_onepage(unsigned long addr, void *val,
7505 				       unsigned int bytes,
7506 				       struct x86_exception *exception,
7507 				       struct kvm_vcpu *vcpu,
7508 				       const struct read_write_emulator_ops *ops)
7509 {
7510 	gpa_t gpa;
7511 	int handled, ret;
7512 	bool write = ops->write;
7513 	struct kvm_mmio_fragment *frag;
7514 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7515 
7516 	/*
7517 	 * If the exit was due to a NPF we may already have a GPA.
7518 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7519 	 * Note, this cannot be used on string operations since string
7520 	 * operation using rep will only have the initial GPA from the NPF
7521 	 * occurred.
7522 	 */
7523 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7524 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7525 		gpa = ctxt->gpa_val;
7526 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7527 	} else {
7528 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7529 		if (ret < 0)
7530 			return X86EMUL_PROPAGATE_FAULT;
7531 	}
7532 
7533 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7534 		return X86EMUL_CONTINUE;
7535 
7536 	/*
7537 	 * Is this MMIO handled locally?
7538 	 */
7539 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7540 	if (handled == bytes)
7541 		return X86EMUL_CONTINUE;
7542 
7543 	gpa += handled;
7544 	bytes -= handled;
7545 	val += handled;
7546 
7547 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7548 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7549 	frag->gpa = gpa;
7550 	frag->data = val;
7551 	frag->len = bytes;
7552 	return X86EMUL_CONTINUE;
7553 }
7554 
7555 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7556 			unsigned long addr,
7557 			void *val, unsigned int bytes,
7558 			struct x86_exception *exception,
7559 			const struct read_write_emulator_ops *ops)
7560 {
7561 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7562 	gpa_t gpa;
7563 	int rc;
7564 
7565 	if (ops->read_write_prepare &&
7566 		  ops->read_write_prepare(vcpu, val, bytes))
7567 		return X86EMUL_CONTINUE;
7568 
7569 	vcpu->mmio_nr_fragments = 0;
7570 
7571 	/* Crossing a page boundary? */
7572 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7573 		int now;
7574 
7575 		now = -addr & ~PAGE_MASK;
7576 		rc = emulator_read_write_onepage(addr, val, now, exception,
7577 						 vcpu, ops);
7578 
7579 		if (rc != X86EMUL_CONTINUE)
7580 			return rc;
7581 		addr += now;
7582 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7583 			addr = (u32)addr;
7584 		val += now;
7585 		bytes -= now;
7586 	}
7587 
7588 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7589 					 vcpu, ops);
7590 	if (rc != X86EMUL_CONTINUE)
7591 		return rc;
7592 
7593 	if (!vcpu->mmio_nr_fragments)
7594 		return rc;
7595 
7596 	gpa = vcpu->mmio_fragments[0].gpa;
7597 
7598 	vcpu->mmio_needed = 1;
7599 	vcpu->mmio_cur_fragment = 0;
7600 
7601 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7602 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7603 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7604 	vcpu->run->mmio.phys_addr = gpa;
7605 
7606 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7607 }
7608 
7609 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7610 				  unsigned long addr,
7611 				  void *val,
7612 				  unsigned int bytes,
7613 				  struct x86_exception *exception)
7614 {
7615 	return emulator_read_write(ctxt, addr, val, bytes,
7616 				   exception, &read_emultor);
7617 }
7618 
7619 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7620 			    unsigned long addr,
7621 			    const void *val,
7622 			    unsigned int bytes,
7623 			    struct x86_exception *exception)
7624 {
7625 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7626 				   exception, &write_emultor);
7627 }
7628 
7629 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7630 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7631 
7632 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7633 				     unsigned long addr,
7634 				     const void *old,
7635 				     const void *new,
7636 				     unsigned int bytes,
7637 				     struct x86_exception *exception)
7638 {
7639 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7640 	u64 page_line_mask;
7641 	unsigned long hva;
7642 	gpa_t gpa;
7643 	int r;
7644 
7645 	/* guests cmpxchg8b have to be emulated atomically */
7646 	if (bytes > 8 || (bytes & (bytes - 1)))
7647 		goto emul_write;
7648 
7649 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7650 
7651 	if (gpa == INVALID_GPA ||
7652 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7653 		goto emul_write;
7654 
7655 	/*
7656 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7657 	 * enabled in the host and the access splits a cache line.
7658 	 */
7659 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7660 		page_line_mask = ~(cache_line_size() - 1);
7661 	else
7662 		page_line_mask = PAGE_MASK;
7663 
7664 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7665 		goto emul_write;
7666 
7667 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7668 	if (kvm_is_error_hva(hva))
7669 		goto emul_write;
7670 
7671 	hva += offset_in_page(gpa);
7672 
7673 	switch (bytes) {
7674 	case 1:
7675 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7676 		break;
7677 	case 2:
7678 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7679 		break;
7680 	case 4:
7681 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7682 		break;
7683 	case 8:
7684 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7685 		break;
7686 	default:
7687 		BUG();
7688 	}
7689 
7690 	if (r < 0)
7691 		return X86EMUL_UNHANDLEABLE;
7692 	if (r)
7693 		return X86EMUL_CMPXCHG_FAILED;
7694 
7695 	kvm_page_track_write(vcpu, gpa, new, bytes);
7696 
7697 	return X86EMUL_CONTINUE;
7698 
7699 emul_write:
7700 	pr_warn_once("emulating exchange as write\n");
7701 
7702 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7703 }
7704 
7705 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7706 			       unsigned short port, void *data,
7707 			       unsigned int count, bool in)
7708 {
7709 	unsigned i;
7710 	int r;
7711 
7712 	WARN_ON_ONCE(vcpu->arch.pio.count);
7713 	for (i = 0; i < count; i++) {
7714 		if (in)
7715 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7716 		else
7717 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7718 
7719 		if (r) {
7720 			if (i == 0)
7721 				goto userspace_io;
7722 
7723 			/*
7724 			 * Userspace must have unregistered the device while PIO
7725 			 * was running.  Drop writes / read as 0.
7726 			 */
7727 			if (in)
7728 				memset(data, 0, size * (count - i));
7729 			break;
7730 		}
7731 
7732 		data += size;
7733 	}
7734 	return 1;
7735 
7736 userspace_io:
7737 	vcpu->arch.pio.port = port;
7738 	vcpu->arch.pio.in = in;
7739 	vcpu->arch.pio.count = count;
7740 	vcpu->arch.pio.size = size;
7741 
7742 	if (in)
7743 		memset(vcpu->arch.pio_data, 0, size * count);
7744 	else
7745 		memcpy(vcpu->arch.pio_data, data, size * count);
7746 
7747 	vcpu->run->exit_reason = KVM_EXIT_IO;
7748 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7749 	vcpu->run->io.size = size;
7750 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7751 	vcpu->run->io.count = count;
7752 	vcpu->run->io.port = port;
7753 	return 0;
7754 }
7755 
7756 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7757       			   unsigned short port, void *val, unsigned int count)
7758 {
7759 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7760 	if (r)
7761 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7762 
7763 	return r;
7764 }
7765 
7766 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7767 {
7768 	int size = vcpu->arch.pio.size;
7769 	unsigned int count = vcpu->arch.pio.count;
7770 	memcpy(val, vcpu->arch.pio_data, size * count);
7771 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7772 	vcpu->arch.pio.count = 0;
7773 }
7774 
7775 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7776 				    int size, unsigned short port, void *val,
7777 				    unsigned int count)
7778 {
7779 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7780 	if (vcpu->arch.pio.count) {
7781 		/*
7782 		 * Complete a previous iteration that required userspace I/O.
7783 		 * Note, @count isn't guaranteed to match pio.count as userspace
7784 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7785 		 * shenanigans as KVM doesn't support modifying the rep count,
7786 		 * and the emulator ensures @count doesn't overflow the buffer.
7787 		 */
7788 		complete_emulator_pio_in(vcpu, val);
7789 		return 1;
7790 	}
7791 
7792 	return emulator_pio_in(vcpu, size, port, val, count);
7793 }
7794 
7795 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7796 			    unsigned short port, const void *val,
7797 			    unsigned int count)
7798 {
7799 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7800 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7801 }
7802 
7803 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7804 				     int size, unsigned short port,
7805 				     const void *val, unsigned int count)
7806 {
7807 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7808 }
7809 
7810 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7811 {
7812 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7813 }
7814 
7815 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7816 {
7817 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7818 }
7819 
7820 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7821 {
7822 	if (!need_emulate_wbinvd(vcpu))
7823 		return X86EMUL_CONTINUE;
7824 
7825 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7826 		int cpu = get_cpu();
7827 
7828 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7829 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7830 				wbinvd_ipi, NULL, 1);
7831 		put_cpu();
7832 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7833 	} else
7834 		wbinvd();
7835 	return X86EMUL_CONTINUE;
7836 }
7837 
7838 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7839 {
7840 	kvm_emulate_wbinvd_noskip(vcpu);
7841 	return kvm_skip_emulated_instruction(vcpu);
7842 }
7843 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7844 
7845 
7846 
7847 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7848 {
7849 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7850 }
7851 
7852 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7853 			    unsigned long *dest)
7854 {
7855 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7856 }
7857 
7858 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7859 			   unsigned long value)
7860 {
7861 
7862 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7863 }
7864 
7865 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7866 {
7867 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7868 }
7869 
7870 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7871 {
7872 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7873 	unsigned long value;
7874 
7875 	switch (cr) {
7876 	case 0:
7877 		value = kvm_read_cr0(vcpu);
7878 		break;
7879 	case 2:
7880 		value = vcpu->arch.cr2;
7881 		break;
7882 	case 3:
7883 		value = kvm_read_cr3(vcpu);
7884 		break;
7885 	case 4:
7886 		value = kvm_read_cr4(vcpu);
7887 		break;
7888 	case 8:
7889 		value = kvm_get_cr8(vcpu);
7890 		break;
7891 	default:
7892 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7893 		return 0;
7894 	}
7895 
7896 	return value;
7897 }
7898 
7899 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7900 {
7901 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7902 	int res = 0;
7903 
7904 	switch (cr) {
7905 	case 0:
7906 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7907 		break;
7908 	case 2:
7909 		vcpu->arch.cr2 = val;
7910 		break;
7911 	case 3:
7912 		res = kvm_set_cr3(vcpu, val);
7913 		break;
7914 	case 4:
7915 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7916 		break;
7917 	case 8:
7918 		res = kvm_set_cr8(vcpu, val);
7919 		break;
7920 	default:
7921 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7922 		res = -1;
7923 	}
7924 
7925 	return res;
7926 }
7927 
7928 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7929 {
7930 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7931 }
7932 
7933 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7934 {
7935 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7936 }
7937 
7938 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7939 {
7940 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7941 }
7942 
7943 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7944 {
7945 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7946 }
7947 
7948 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7949 {
7950 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7951 }
7952 
7953 static unsigned long emulator_get_cached_segment_base(
7954 	struct x86_emulate_ctxt *ctxt, int seg)
7955 {
7956 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7957 }
7958 
7959 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7960 				 struct desc_struct *desc, u32 *base3,
7961 				 int seg)
7962 {
7963 	struct kvm_segment var;
7964 
7965 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7966 	*selector = var.selector;
7967 
7968 	if (var.unusable) {
7969 		memset(desc, 0, sizeof(*desc));
7970 		if (base3)
7971 			*base3 = 0;
7972 		return false;
7973 	}
7974 
7975 	if (var.g)
7976 		var.limit >>= 12;
7977 	set_desc_limit(desc, var.limit);
7978 	set_desc_base(desc, (unsigned long)var.base);
7979 #ifdef CONFIG_X86_64
7980 	if (base3)
7981 		*base3 = var.base >> 32;
7982 #endif
7983 	desc->type = var.type;
7984 	desc->s = var.s;
7985 	desc->dpl = var.dpl;
7986 	desc->p = var.present;
7987 	desc->avl = var.avl;
7988 	desc->l = var.l;
7989 	desc->d = var.db;
7990 	desc->g = var.g;
7991 
7992 	return true;
7993 }
7994 
7995 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7996 				 struct desc_struct *desc, u32 base3,
7997 				 int seg)
7998 {
7999 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8000 	struct kvm_segment var;
8001 
8002 	var.selector = selector;
8003 	var.base = get_desc_base(desc);
8004 #ifdef CONFIG_X86_64
8005 	var.base |= ((u64)base3) << 32;
8006 #endif
8007 	var.limit = get_desc_limit(desc);
8008 	if (desc->g)
8009 		var.limit = (var.limit << 12) | 0xfff;
8010 	var.type = desc->type;
8011 	var.dpl = desc->dpl;
8012 	var.db = desc->d;
8013 	var.s = desc->s;
8014 	var.l = desc->l;
8015 	var.g = desc->g;
8016 	var.avl = desc->avl;
8017 	var.present = desc->p;
8018 	var.unusable = !var.present;
8019 	var.padding = 0;
8020 
8021 	kvm_set_segment(vcpu, &var, seg);
8022 	return;
8023 }
8024 
8025 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8026 					u32 msr_index, u64 *pdata)
8027 {
8028 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8029 	int r;
8030 
8031 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8032 	if (r < 0)
8033 		return X86EMUL_UNHANDLEABLE;
8034 
8035 	if (r) {
8036 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8037 				       complete_emulated_rdmsr, r))
8038 			return X86EMUL_IO_NEEDED;
8039 
8040 		trace_kvm_msr_read_ex(msr_index);
8041 		return X86EMUL_PROPAGATE_FAULT;
8042 	}
8043 
8044 	trace_kvm_msr_read(msr_index, *pdata);
8045 	return X86EMUL_CONTINUE;
8046 }
8047 
8048 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8049 					u32 msr_index, u64 data)
8050 {
8051 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8052 	int r;
8053 
8054 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8055 	if (r < 0)
8056 		return X86EMUL_UNHANDLEABLE;
8057 
8058 	if (r) {
8059 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8060 				       complete_emulated_msr_access, r))
8061 			return X86EMUL_IO_NEEDED;
8062 
8063 		trace_kvm_msr_write_ex(msr_index, data);
8064 		return X86EMUL_PROPAGATE_FAULT;
8065 	}
8066 
8067 	trace_kvm_msr_write(msr_index, data);
8068 	return X86EMUL_CONTINUE;
8069 }
8070 
8071 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8072 			    u32 msr_index, u64 *pdata)
8073 {
8074 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8075 }
8076 
8077 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8078 			      u32 pmc)
8079 {
8080 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8081 		return 0;
8082 	return -EINVAL;
8083 }
8084 
8085 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8086 			     u32 pmc, u64 *pdata)
8087 {
8088 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8089 }
8090 
8091 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8092 {
8093 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8094 }
8095 
8096 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8097 			      struct x86_instruction_info *info,
8098 			      enum x86_intercept_stage stage)
8099 {
8100 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8101 					    &ctxt->exception);
8102 }
8103 
8104 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8105 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8106 			      bool exact_only)
8107 {
8108 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8109 }
8110 
8111 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8112 {
8113 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8114 }
8115 
8116 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8117 {
8118 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8119 }
8120 
8121 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8122 {
8123 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8124 }
8125 
8126 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8127 {
8128 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8129 }
8130 
8131 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8132 {
8133 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8134 }
8135 
8136 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8137 {
8138 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8139 }
8140 
8141 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8142 {
8143 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8144 }
8145 
8146 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8147 {
8148 	return emul_to_vcpu(ctxt)->arch.hflags;
8149 }
8150 
8151 #ifndef CONFIG_KVM_SMM
8152 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8153 {
8154 	WARN_ON_ONCE(1);
8155 	return X86EMUL_UNHANDLEABLE;
8156 }
8157 #endif
8158 
8159 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8160 {
8161 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8162 }
8163 
8164 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8165 {
8166 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8167 }
8168 
8169 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8170 {
8171 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8172 
8173 	if (!kvm->vm_bugged)
8174 		kvm_vm_bugged(kvm);
8175 }
8176 
8177 static const struct x86_emulate_ops emulate_ops = {
8178 	.vm_bugged           = emulator_vm_bugged,
8179 	.read_gpr            = emulator_read_gpr,
8180 	.write_gpr           = emulator_write_gpr,
8181 	.read_std            = emulator_read_std,
8182 	.write_std           = emulator_write_std,
8183 	.fetch               = kvm_fetch_guest_virt,
8184 	.read_emulated       = emulator_read_emulated,
8185 	.write_emulated      = emulator_write_emulated,
8186 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8187 	.invlpg              = emulator_invlpg,
8188 	.pio_in_emulated     = emulator_pio_in_emulated,
8189 	.pio_out_emulated    = emulator_pio_out_emulated,
8190 	.get_segment         = emulator_get_segment,
8191 	.set_segment         = emulator_set_segment,
8192 	.get_cached_segment_base = emulator_get_cached_segment_base,
8193 	.get_gdt             = emulator_get_gdt,
8194 	.get_idt	     = emulator_get_idt,
8195 	.set_gdt             = emulator_set_gdt,
8196 	.set_idt	     = emulator_set_idt,
8197 	.get_cr              = emulator_get_cr,
8198 	.set_cr              = emulator_set_cr,
8199 	.cpl                 = emulator_get_cpl,
8200 	.get_dr              = emulator_get_dr,
8201 	.set_dr              = emulator_set_dr,
8202 	.set_msr_with_filter = emulator_set_msr_with_filter,
8203 	.get_msr_with_filter = emulator_get_msr_with_filter,
8204 	.get_msr             = emulator_get_msr,
8205 	.check_pmc	     = emulator_check_pmc,
8206 	.read_pmc            = emulator_read_pmc,
8207 	.halt                = emulator_halt,
8208 	.wbinvd              = emulator_wbinvd,
8209 	.fix_hypercall       = emulator_fix_hypercall,
8210 	.intercept           = emulator_intercept,
8211 	.get_cpuid           = emulator_get_cpuid,
8212 	.guest_has_long_mode = emulator_guest_has_long_mode,
8213 	.guest_has_movbe     = emulator_guest_has_movbe,
8214 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8215 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8216 	.set_nmi_mask        = emulator_set_nmi_mask,
8217 	.get_hflags          = emulator_get_hflags,
8218 	.leave_smm           = emulator_leave_smm,
8219 	.triple_fault        = emulator_triple_fault,
8220 	.set_xcr             = emulator_set_xcr,
8221 };
8222 
8223 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8224 {
8225 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8226 	/*
8227 	 * an sti; sti; sequence only disable interrupts for the first
8228 	 * instruction. So, if the last instruction, be it emulated or
8229 	 * not, left the system with the INT_STI flag enabled, it
8230 	 * means that the last instruction is an sti. We should not
8231 	 * leave the flag on in this case. The same goes for mov ss
8232 	 */
8233 	if (int_shadow & mask)
8234 		mask = 0;
8235 	if (unlikely(int_shadow || mask)) {
8236 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8237 		if (!mask)
8238 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8239 	}
8240 }
8241 
8242 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8243 {
8244 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8245 
8246 	if (ctxt->exception.vector == PF_VECTOR)
8247 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8248 	else if (ctxt->exception.error_code_valid)
8249 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8250 				      ctxt->exception.error_code);
8251 	else
8252 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8253 }
8254 
8255 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8256 {
8257 	struct x86_emulate_ctxt *ctxt;
8258 
8259 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8260 	if (!ctxt) {
8261 		pr_err("failed to allocate vcpu's emulator\n");
8262 		return NULL;
8263 	}
8264 
8265 	ctxt->vcpu = vcpu;
8266 	ctxt->ops = &emulate_ops;
8267 	vcpu->arch.emulate_ctxt = ctxt;
8268 
8269 	return ctxt;
8270 }
8271 
8272 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8273 {
8274 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8275 	int cs_db, cs_l;
8276 
8277 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8278 
8279 	ctxt->gpa_available = false;
8280 	ctxt->eflags = kvm_get_rflags(vcpu);
8281 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8282 
8283 	ctxt->eip = kvm_rip_read(vcpu);
8284 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8285 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8286 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8287 		     cs_db				? X86EMUL_MODE_PROT32 :
8288 							  X86EMUL_MODE_PROT16;
8289 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8290 
8291 	ctxt->interruptibility = 0;
8292 	ctxt->have_exception = false;
8293 	ctxt->exception.vector = -1;
8294 	ctxt->perm_ok = false;
8295 
8296 	init_decode_cache(ctxt);
8297 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8298 }
8299 
8300 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8301 {
8302 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8303 	int ret;
8304 
8305 	init_emulate_ctxt(vcpu);
8306 
8307 	ctxt->op_bytes = 2;
8308 	ctxt->ad_bytes = 2;
8309 	ctxt->_eip = ctxt->eip + inc_eip;
8310 	ret = emulate_int_real(ctxt, irq);
8311 
8312 	if (ret != X86EMUL_CONTINUE) {
8313 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8314 	} else {
8315 		ctxt->eip = ctxt->_eip;
8316 		kvm_rip_write(vcpu, ctxt->eip);
8317 		kvm_set_rflags(vcpu, ctxt->eflags);
8318 	}
8319 }
8320 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8321 
8322 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8323 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8324 {
8325 	struct kvm_run *run = vcpu->run;
8326 	u64 info[5];
8327 	u8 info_start;
8328 
8329 	/*
8330 	 * Zero the whole array used to retrieve the exit info, as casting to
8331 	 * u32 for select entries will leave some chunks uninitialized.
8332 	 */
8333 	memset(&info, 0, sizeof(info));
8334 
8335 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8336 					   &info[2], (u32 *)&info[3],
8337 					   (u32 *)&info[4]);
8338 
8339 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8340 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8341 
8342 	/*
8343 	 * There's currently space for 13 entries, but 5 are used for the exit
8344 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8345 	 * when expanding kvm_run.emulation_failure in the future.
8346 	 */
8347 	if (WARN_ON_ONCE(ndata > 4))
8348 		ndata = 4;
8349 
8350 	/* Always include the flags as a 'data' entry. */
8351 	info_start = 1;
8352 	run->emulation_failure.flags = 0;
8353 
8354 	if (insn_size) {
8355 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8356 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8357 		info_start += 2;
8358 		run->emulation_failure.flags |=
8359 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8360 		run->emulation_failure.insn_size = insn_size;
8361 		memset(run->emulation_failure.insn_bytes, 0x90,
8362 		       sizeof(run->emulation_failure.insn_bytes));
8363 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8364 	}
8365 
8366 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8367 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8368 	       ndata * sizeof(data[0]));
8369 
8370 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8371 }
8372 
8373 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8374 {
8375 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8376 
8377 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8378 				       ctxt->fetch.end - ctxt->fetch.data);
8379 }
8380 
8381 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8382 					  u8 ndata)
8383 {
8384 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8385 }
8386 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8387 
8388 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8389 {
8390 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8391 }
8392 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8393 
8394 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8395 {
8396 	struct kvm *kvm = vcpu->kvm;
8397 
8398 	++vcpu->stat.insn_emulation_fail;
8399 	trace_kvm_emulate_insn_failed(vcpu);
8400 
8401 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8402 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8403 		return 1;
8404 	}
8405 
8406 	if (kvm->arch.exit_on_emulation_error ||
8407 	    (emulation_type & EMULTYPE_SKIP)) {
8408 		prepare_emulation_ctxt_failure_exit(vcpu);
8409 		return 0;
8410 	}
8411 
8412 	kvm_queue_exception(vcpu, UD_VECTOR);
8413 
8414 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8415 		prepare_emulation_ctxt_failure_exit(vcpu);
8416 		return 0;
8417 	}
8418 
8419 	return 1;
8420 }
8421 
8422 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8423 				  bool write_fault_to_shadow_pgtable,
8424 				  int emulation_type)
8425 {
8426 	gpa_t gpa = cr2_or_gpa;
8427 	kvm_pfn_t pfn;
8428 
8429 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8430 		return false;
8431 
8432 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8433 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8434 		return false;
8435 
8436 	if (!vcpu->arch.mmu->root_role.direct) {
8437 		/*
8438 		 * Write permission should be allowed since only
8439 		 * write access need to be emulated.
8440 		 */
8441 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8442 
8443 		/*
8444 		 * If the mapping is invalid in guest, let cpu retry
8445 		 * it to generate fault.
8446 		 */
8447 		if (gpa == INVALID_GPA)
8448 			return true;
8449 	}
8450 
8451 	/*
8452 	 * Do not retry the unhandleable instruction if it faults on the
8453 	 * readonly host memory, otherwise it will goto a infinite loop:
8454 	 * retry instruction -> write #PF -> emulation fail -> retry
8455 	 * instruction -> ...
8456 	 */
8457 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8458 
8459 	/*
8460 	 * If the instruction failed on the error pfn, it can not be fixed,
8461 	 * report the error to userspace.
8462 	 */
8463 	if (is_error_noslot_pfn(pfn))
8464 		return false;
8465 
8466 	kvm_release_pfn_clean(pfn);
8467 
8468 	/* The instructions are well-emulated on direct mmu. */
8469 	if (vcpu->arch.mmu->root_role.direct) {
8470 		unsigned int indirect_shadow_pages;
8471 
8472 		write_lock(&vcpu->kvm->mmu_lock);
8473 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8474 		write_unlock(&vcpu->kvm->mmu_lock);
8475 
8476 		if (indirect_shadow_pages)
8477 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8478 
8479 		return true;
8480 	}
8481 
8482 	/*
8483 	 * if emulation was due to access to shadowed page table
8484 	 * and it failed try to unshadow page and re-enter the
8485 	 * guest to let CPU execute the instruction.
8486 	 */
8487 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8488 
8489 	/*
8490 	 * If the access faults on its page table, it can not
8491 	 * be fixed by unprotecting shadow page and it should
8492 	 * be reported to userspace.
8493 	 */
8494 	return !write_fault_to_shadow_pgtable;
8495 }
8496 
8497 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8498 			      gpa_t cr2_or_gpa,  int emulation_type)
8499 {
8500 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8501 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8502 
8503 	last_retry_eip = vcpu->arch.last_retry_eip;
8504 	last_retry_addr = vcpu->arch.last_retry_addr;
8505 
8506 	/*
8507 	 * If the emulation is caused by #PF and it is non-page_table
8508 	 * writing instruction, it means the VM-EXIT is caused by shadow
8509 	 * page protected, we can zap the shadow page and retry this
8510 	 * instruction directly.
8511 	 *
8512 	 * Note: if the guest uses a non-page-table modifying instruction
8513 	 * on the PDE that points to the instruction, then we will unmap
8514 	 * the instruction and go to an infinite loop. So, we cache the
8515 	 * last retried eip and the last fault address, if we meet the eip
8516 	 * and the address again, we can break out of the potential infinite
8517 	 * loop.
8518 	 */
8519 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8520 
8521 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8522 		return false;
8523 
8524 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8525 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8526 		return false;
8527 
8528 	if (x86_page_table_writing_insn(ctxt))
8529 		return false;
8530 
8531 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8532 		return false;
8533 
8534 	vcpu->arch.last_retry_eip = ctxt->eip;
8535 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8536 
8537 	if (!vcpu->arch.mmu->root_role.direct)
8538 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8539 
8540 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8541 
8542 	return true;
8543 }
8544 
8545 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8546 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8547 
8548 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8549 				unsigned long *db)
8550 {
8551 	u32 dr6 = 0;
8552 	int i;
8553 	u32 enable, rwlen;
8554 
8555 	enable = dr7;
8556 	rwlen = dr7 >> 16;
8557 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8558 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8559 			dr6 |= (1 << i);
8560 	return dr6;
8561 }
8562 
8563 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8564 {
8565 	struct kvm_run *kvm_run = vcpu->run;
8566 
8567 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8568 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8569 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8570 		kvm_run->debug.arch.exception = DB_VECTOR;
8571 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8572 		return 0;
8573 	}
8574 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8575 	return 1;
8576 }
8577 
8578 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8579 {
8580 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8581 	int r;
8582 
8583 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8584 	if (unlikely(!r))
8585 		return 0;
8586 
8587 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8588 
8589 	/*
8590 	 * rflags is the old, "raw" value of the flags.  The new value has
8591 	 * not been saved yet.
8592 	 *
8593 	 * This is correct even for TF set by the guest, because "the
8594 	 * processor will not generate this exception after the instruction
8595 	 * that sets the TF flag".
8596 	 */
8597 	if (unlikely(rflags & X86_EFLAGS_TF))
8598 		r = kvm_vcpu_do_singlestep(vcpu);
8599 	return r;
8600 }
8601 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8602 
8603 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8604 {
8605 	u32 shadow;
8606 
8607 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8608 		return true;
8609 
8610 	/*
8611 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8612 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8613 	 * to avoid the relatively expensive CPUID lookup.
8614 	 */
8615 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8616 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8617 	       guest_cpuid_is_intel(vcpu);
8618 }
8619 
8620 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8621 					   int emulation_type, int *r)
8622 {
8623 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8624 
8625 	/*
8626 	 * Do not check for code breakpoints if hardware has already done the
8627 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8628 	 * the instruction has passed all exception checks, and all intercepted
8629 	 * exceptions that trigger emulation have lower priority than code
8630 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8631 	 * means any code breakpoints have already been serviced.
8632 	 *
8633 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8634 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8635 	 * the instruction being emulated.  The intent of forced emulation is
8636 	 * to behave as if KVM intercepted the instruction without an exception
8637 	 * and without a prefix.
8638 	 */
8639 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8640 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8641 		return false;
8642 
8643 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8644 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8645 		struct kvm_run *kvm_run = vcpu->run;
8646 		unsigned long eip = kvm_get_linear_rip(vcpu);
8647 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8648 					   vcpu->arch.guest_debug_dr7,
8649 					   vcpu->arch.eff_db);
8650 
8651 		if (dr6 != 0) {
8652 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8653 			kvm_run->debug.arch.pc = eip;
8654 			kvm_run->debug.arch.exception = DB_VECTOR;
8655 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8656 			*r = 0;
8657 			return true;
8658 		}
8659 	}
8660 
8661 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8662 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8663 		unsigned long eip = kvm_get_linear_rip(vcpu);
8664 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8665 					   vcpu->arch.dr7,
8666 					   vcpu->arch.db);
8667 
8668 		if (dr6 != 0) {
8669 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8670 			*r = 1;
8671 			return true;
8672 		}
8673 	}
8674 
8675 	return false;
8676 }
8677 
8678 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8679 {
8680 	switch (ctxt->opcode_len) {
8681 	case 1:
8682 		switch (ctxt->b) {
8683 		case 0xe4:	/* IN */
8684 		case 0xe5:
8685 		case 0xec:
8686 		case 0xed:
8687 		case 0xe6:	/* OUT */
8688 		case 0xe7:
8689 		case 0xee:
8690 		case 0xef:
8691 		case 0x6c:	/* INS */
8692 		case 0x6d:
8693 		case 0x6e:	/* OUTS */
8694 		case 0x6f:
8695 			return true;
8696 		}
8697 		break;
8698 	case 2:
8699 		switch (ctxt->b) {
8700 		case 0x33:	/* RDPMC */
8701 			return true;
8702 		}
8703 		break;
8704 	}
8705 
8706 	return false;
8707 }
8708 
8709 /*
8710  * Decode an instruction for emulation.  The caller is responsible for handling
8711  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8712  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8713  * code breakpoints have higher priority and thus have already been done by
8714  * hardware.
8715  *
8716  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8717  *     response to a machine check.
8718  */
8719 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8720 				    void *insn, int insn_len)
8721 {
8722 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8723 	int r;
8724 
8725 	init_emulate_ctxt(vcpu);
8726 
8727 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8728 
8729 	trace_kvm_emulate_insn_start(vcpu);
8730 	++vcpu->stat.insn_emulation;
8731 
8732 	return r;
8733 }
8734 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8735 
8736 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8737 			    int emulation_type, void *insn, int insn_len)
8738 {
8739 	int r;
8740 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8741 	bool writeback = true;
8742 	bool write_fault_to_spt;
8743 
8744 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8745 		return 1;
8746 
8747 	vcpu->arch.l1tf_flush_l1d = true;
8748 
8749 	/*
8750 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8751 	 * never reused.
8752 	 */
8753 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8754 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8755 
8756 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8757 		kvm_clear_exception_queue(vcpu);
8758 
8759 		/*
8760 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8761 		 * are fault-like and are higher priority than any faults on
8762 		 * the code fetch itself.
8763 		 */
8764 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8765 			return r;
8766 
8767 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8768 						    insn, insn_len);
8769 		if (r != EMULATION_OK)  {
8770 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8771 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8772 				kvm_queue_exception(vcpu, UD_VECTOR);
8773 				return 1;
8774 			}
8775 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8776 						  write_fault_to_spt,
8777 						  emulation_type))
8778 				return 1;
8779 
8780 			if (ctxt->have_exception &&
8781 			    !(emulation_type & EMULTYPE_SKIP)) {
8782 				/*
8783 				 * #UD should result in just EMULATION_FAILED, and trap-like
8784 				 * exception should not be encountered during decode.
8785 				 */
8786 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8787 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8788 				inject_emulated_exception(vcpu);
8789 				return 1;
8790 			}
8791 			return handle_emulation_failure(vcpu, emulation_type);
8792 		}
8793 	}
8794 
8795 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8796 	    !is_vmware_backdoor_opcode(ctxt)) {
8797 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8798 		return 1;
8799 	}
8800 
8801 	/*
8802 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8803 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8804 	 * The caller is responsible for updating interruptibility state and
8805 	 * injecting single-step #DBs.
8806 	 */
8807 	if (emulation_type & EMULTYPE_SKIP) {
8808 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8809 			ctxt->eip = (u32)ctxt->_eip;
8810 		else
8811 			ctxt->eip = ctxt->_eip;
8812 
8813 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8814 			r = 1;
8815 			goto writeback;
8816 		}
8817 
8818 		kvm_rip_write(vcpu, ctxt->eip);
8819 		if (ctxt->eflags & X86_EFLAGS_RF)
8820 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8821 		return 1;
8822 	}
8823 
8824 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8825 		return 1;
8826 
8827 	/* this is needed for vmware backdoor interface to work since it
8828 	   changes registers values  during IO operation */
8829 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8830 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8831 		emulator_invalidate_register_cache(ctxt);
8832 	}
8833 
8834 restart:
8835 	if (emulation_type & EMULTYPE_PF) {
8836 		/* Save the faulting GPA (cr2) in the address field */
8837 		ctxt->exception.address = cr2_or_gpa;
8838 
8839 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8840 		if (vcpu->arch.mmu->root_role.direct) {
8841 			ctxt->gpa_available = true;
8842 			ctxt->gpa_val = cr2_or_gpa;
8843 		}
8844 	} else {
8845 		/* Sanitize the address out of an abundance of paranoia. */
8846 		ctxt->exception.address = 0;
8847 	}
8848 
8849 	r = x86_emulate_insn(ctxt);
8850 
8851 	if (r == EMULATION_INTERCEPTED)
8852 		return 1;
8853 
8854 	if (r == EMULATION_FAILED) {
8855 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8856 					emulation_type))
8857 			return 1;
8858 
8859 		return handle_emulation_failure(vcpu, emulation_type);
8860 	}
8861 
8862 	if (ctxt->have_exception) {
8863 		r = 1;
8864 		inject_emulated_exception(vcpu);
8865 	} else if (vcpu->arch.pio.count) {
8866 		if (!vcpu->arch.pio.in) {
8867 			/* FIXME: return into emulator if single-stepping.  */
8868 			vcpu->arch.pio.count = 0;
8869 		} else {
8870 			writeback = false;
8871 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8872 		}
8873 		r = 0;
8874 	} else if (vcpu->mmio_needed) {
8875 		++vcpu->stat.mmio_exits;
8876 
8877 		if (!vcpu->mmio_is_write)
8878 			writeback = false;
8879 		r = 0;
8880 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8881 	} else if (vcpu->arch.complete_userspace_io) {
8882 		writeback = false;
8883 		r = 0;
8884 	} else if (r == EMULATION_RESTART)
8885 		goto restart;
8886 	else
8887 		r = 1;
8888 
8889 writeback:
8890 	if (writeback) {
8891 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8892 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8893 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8894 
8895 		/*
8896 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8897 		 * only supports code breakpoints and general detect #DB, both
8898 		 * of which are fault-like.
8899 		 */
8900 		if (!ctxt->have_exception ||
8901 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8902 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8903 			if (ctxt->is_branch)
8904 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8905 			kvm_rip_write(vcpu, ctxt->eip);
8906 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8907 				r = kvm_vcpu_do_singlestep(vcpu);
8908 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8909 			__kvm_set_rflags(vcpu, ctxt->eflags);
8910 		}
8911 
8912 		/*
8913 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8914 		 * do nothing, and it will be requested again as soon as
8915 		 * the shadow expires.  But we still need to check here,
8916 		 * because POPF has no interrupt shadow.
8917 		 */
8918 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8919 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8920 	} else
8921 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8922 
8923 	return r;
8924 }
8925 
8926 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8927 {
8928 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8929 }
8930 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8931 
8932 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8933 					void *insn, int insn_len)
8934 {
8935 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8936 }
8937 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8938 
8939 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8940 {
8941 	vcpu->arch.pio.count = 0;
8942 	return 1;
8943 }
8944 
8945 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8946 {
8947 	vcpu->arch.pio.count = 0;
8948 
8949 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8950 		return 1;
8951 
8952 	return kvm_skip_emulated_instruction(vcpu);
8953 }
8954 
8955 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8956 			    unsigned short port)
8957 {
8958 	unsigned long val = kvm_rax_read(vcpu);
8959 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8960 
8961 	if (ret)
8962 		return ret;
8963 
8964 	/*
8965 	 * Workaround userspace that relies on old KVM behavior of %rip being
8966 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8967 	 */
8968 	if (port == 0x7e &&
8969 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8970 		vcpu->arch.complete_userspace_io =
8971 			complete_fast_pio_out_port_0x7e;
8972 		kvm_skip_emulated_instruction(vcpu);
8973 	} else {
8974 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8975 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8976 	}
8977 	return 0;
8978 }
8979 
8980 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8981 {
8982 	unsigned long val;
8983 
8984 	/* We should only ever be called with arch.pio.count equal to 1 */
8985 	BUG_ON(vcpu->arch.pio.count != 1);
8986 
8987 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8988 		vcpu->arch.pio.count = 0;
8989 		return 1;
8990 	}
8991 
8992 	/* For size less than 4 we merge, else we zero extend */
8993 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8994 
8995 	complete_emulator_pio_in(vcpu, &val);
8996 	kvm_rax_write(vcpu, val);
8997 
8998 	return kvm_skip_emulated_instruction(vcpu);
8999 }
9000 
9001 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9002 			   unsigned short port)
9003 {
9004 	unsigned long val;
9005 	int ret;
9006 
9007 	/* For size less than 4 we merge, else we zero extend */
9008 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9009 
9010 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9011 	if (ret) {
9012 		kvm_rax_write(vcpu, val);
9013 		return ret;
9014 	}
9015 
9016 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9017 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9018 
9019 	return 0;
9020 }
9021 
9022 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9023 {
9024 	int ret;
9025 
9026 	if (in)
9027 		ret = kvm_fast_pio_in(vcpu, size, port);
9028 	else
9029 		ret = kvm_fast_pio_out(vcpu, size, port);
9030 	return ret && kvm_skip_emulated_instruction(vcpu);
9031 }
9032 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9033 
9034 static int kvmclock_cpu_down_prep(unsigned int cpu)
9035 {
9036 	__this_cpu_write(cpu_tsc_khz, 0);
9037 	return 0;
9038 }
9039 
9040 static void tsc_khz_changed(void *data)
9041 {
9042 	struct cpufreq_freqs *freq = data;
9043 	unsigned long khz = 0;
9044 
9045 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9046 
9047 	if (data)
9048 		khz = freq->new;
9049 	else
9050 		khz = cpufreq_quick_get(raw_smp_processor_id());
9051 	if (!khz)
9052 		khz = tsc_khz;
9053 	__this_cpu_write(cpu_tsc_khz, khz);
9054 }
9055 
9056 #ifdef CONFIG_X86_64
9057 static void kvm_hyperv_tsc_notifier(void)
9058 {
9059 	struct kvm *kvm;
9060 	int cpu;
9061 
9062 	mutex_lock(&kvm_lock);
9063 	list_for_each_entry(kvm, &vm_list, vm_list)
9064 		kvm_make_mclock_inprogress_request(kvm);
9065 
9066 	/* no guest entries from this point */
9067 	hyperv_stop_tsc_emulation();
9068 
9069 	/* TSC frequency always matches when on Hyper-V */
9070 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9071 		for_each_present_cpu(cpu)
9072 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9073 	}
9074 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9075 
9076 	list_for_each_entry(kvm, &vm_list, vm_list) {
9077 		__kvm_start_pvclock_update(kvm);
9078 		pvclock_update_vm_gtod_copy(kvm);
9079 		kvm_end_pvclock_update(kvm);
9080 	}
9081 
9082 	mutex_unlock(&kvm_lock);
9083 }
9084 #endif
9085 
9086 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9087 {
9088 	struct kvm *kvm;
9089 	struct kvm_vcpu *vcpu;
9090 	int send_ipi = 0;
9091 	unsigned long i;
9092 
9093 	/*
9094 	 * We allow guests to temporarily run on slowing clocks,
9095 	 * provided we notify them after, or to run on accelerating
9096 	 * clocks, provided we notify them before.  Thus time never
9097 	 * goes backwards.
9098 	 *
9099 	 * However, we have a problem.  We can't atomically update
9100 	 * the frequency of a given CPU from this function; it is
9101 	 * merely a notifier, which can be called from any CPU.
9102 	 * Changing the TSC frequency at arbitrary points in time
9103 	 * requires a recomputation of local variables related to
9104 	 * the TSC for each VCPU.  We must flag these local variables
9105 	 * to be updated and be sure the update takes place with the
9106 	 * new frequency before any guests proceed.
9107 	 *
9108 	 * Unfortunately, the combination of hotplug CPU and frequency
9109 	 * change creates an intractable locking scenario; the order
9110 	 * of when these callouts happen is undefined with respect to
9111 	 * CPU hotplug, and they can race with each other.  As such,
9112 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9113 	 * undefined; you can actually have a CPU frequency change take
9114 	 * place in between the computation of X and the setting of the
9115 	 * variable.  To protect against this problem, all updates of
9116 	 * the per_cpu tsc_khz variable are done in an interrupt
9117 	 * protected IPI, and all callers wishing to update the value
9118 	 * must wait for a synchronous IPI to complete (which is trivial
9119 	 * if the caller is on the CPU already).  This establishes the
9120 	 * necessary total order on variable updates.
9121 	 *
9122 	 * Note that because a guest time update may take place
9123 	 * anytime after the setting of the VCPU's request bit, the
9124 	 * correct TSC value must be set before the request.  However,
9125 	 * to ensure the update actually makes it to any guest which
9126 	 * starts running in hardware virtualization between the set
9127 	 * and the acquisition of the spinlock, we must also ping the
9128 	 * CPU after setting the request bit.
9129 	 *
9130 	 */
9131 
9132 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9133 
9134 	mutex_lock(&kvm_lock);
9135 	list_for_each_entry(kvm, &vm_list, vm_list) {
9136 		kvm_for_each_vcpu(i, vcpu, kvm) {
9137 			if (vcpu->cpu != cpu)
9138 				continue;
9139 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9140 			if (vcpu->cpu != raw_smp_processor_id())
9141 				send_ipi = 1;
9142 		}
9143 	}
9144 	mutex_unlock(&kvm_lock);
9145 
9146 	if (freq->old < freq->new && send_ipi) {
9147 		/*
9148 		 * We upscale the frequency.  Must make the guest
9149 		 * doesn't see old kvmclock values while running with
9150 		 * the new frequency, otherwise we risk the guest sees
9151 		 * time go backwards.
9152 		 *
9153 		 * In case we update the frequency for another cpu
9154 		 * (which might be in guest context) send an interrupt
9155 		 * to kick the cpu out of guest context.  Next time
9156 		 * guest context is entered kvmclock will be updated,
9157 		 * so the guest will not see stale values.
9158 		 */
9159 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9160 	}
9161 }
9162 
9163 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9164 				     void *data)
9165 {
9166 	struct cpufreq_freqs *freq = data;
9167 	int cpu;
9168 
9169 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9170 		return 0;
9171 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9172 		return 0;
9173 
9174 	for_each_cpu(cpu, freq->policy->cpus)
9175 		__kvmclock_cpufreq_notifier(freq, cpu);
9176 
9177 	return 0;
9178 }
9179 
9180 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9181 	.notifier_call  = kvmclock_cpufreq_notifier
9182 };
9183 
9184 static int kvmclock_cpu_online(unsigned int cpu)
9185 {
9186 	tsc_khz_changed(NULL);
9187 	return 0;
9188 }
9189 
9190 static void kvm_timer_init(void)
9191 {
9192 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9193 		max_tsc_khz = tsc_khz;
9194 
9195 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9196 			struct cpufreq_policy *policy;
9197 			int cpu;
9198 
9199 			cpu = get_cpu();
9200 			policy = cpufreq_cpu_get(cpu);
9201 			if (policy) {
9202 				if (policy->cpuinfo.max_freq)
9203 					max_tsc_khz = policy->cpuinfo.max_freq;
9204 				cpufreq_cpu_put(policy);
9205 			}
9206 			put_cpu();
9207 		}
9208 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9209 					  CPUFREQ_TRANSITION_NOTIFIER);
9210 
9211 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9212 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9213 	}
9214 }
9215 
9216 #ifdef CONFIG_X86_64
9217 static void pvclock_gtod_update_fn(struct work_struct *work)
9218 {
9219 	struct kvm *kvm;
9220 	struct kvm_vcpu *vcpu;
9221 	unsigned long i;
9222 
9223 	mutex_lock(&kvm_lock);
9224 	list_for_each_entry(kvm, &vm_list, vm_list)
9225 		kvm_for_each_vcpu(i, vcpu, kvm)
9226 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9227 	atomic_set(&kvm_guest_has_master_clock, 0);
9228 	mutex_unlock(&kvm_lock);
9229 }
9230 
9231 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9232 
9233 /*
9234  * Indirection to move queue_work() out of the tk_core.seq write held
9235  * region to prevent possible deadlocks against time accessors which
9236  * are invoked with work related locks held.
9237  */
9238 static void pvclock_irq_work_fn(struct irq_work *w)
9239 {
9240 	queue_work(system_long_wq, &pvclock_gtod_work);
9241 }
9242 
9243 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9244 
9245 /*
9246  * Notification about pvclock gtod data update.
9247  */
9248 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9249 			       void *priv)
9250 {
9251 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9252 	struct timekeeper *tk = priv;
9253 
9254 	update_pvclock_gtod(tk);
9255 
9256 	/*
9257 	 * Disable master clock if host does not trust, or does not use,
9258 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9259 	 * this is invoked with tk_core.seq write held.
9260 	 */
9261 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9262 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9263 		irq_work_queue(&pvclock_irq_work);
9264 	return 0;
9265 }
9266 
9267 static struct notifier_block pvclock_gtod_notifier = {
9268 	.notifier_call = pvclock_gtod_notify,
9269 };
9270 #endif
9271 
9272 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9273 {
9274 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9275 
9276 #define __KVM_X86_OP(func) \
9277 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9278 #define KVM_X86_OP(func) \
9279 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9280 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9281 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9282 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9283 					   (void *)__static_call_return0);
9284 #include <asm/kvm-x86-ops.h>
9285 #undef __KVM_X86_OP
9286 
9287 	kvm_pmu_ops_update(ops->pmu_ops);
9288 }
9289 
9290 static int kvm_x86_check_processor_compatibility(void)
9291 {
9292 	int cpu = smp_processor_id();
9293 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9294 
9295 	/*
9296 	 * Compatibility checks are done when loading KVM and when enabling
9297 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9298 	 * compatible, i.e. KVM should never perform a compatibility check on
9299 	 * an offline CPU.
9300 	 */
9301 	WARN_ON(!cpu_online(cpu));
9302 
9303 	if (__cr4_reserved_bits(cpu_has, c) !=
9304 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9305 		return -EIO;
9306 
9307 	return static_call(kvm_x86_check_processor_compatibility)();
9308 }
9309 
9310 static void kvm_x86_check_cpu_compat(void *ret)
9311 {
9312 	*(int *)ret = kvm_x86_check_processor_compatibility();
9313 }
9314 
9315 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9316 {
9317 	u64 host_pat;
9318 	int r, cpu;
9319 
9320 	if (kvm_x86_ops.hardware_enable) {
9321 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9322 		return -EEXIST;
9323 	}
9324 
9325 	/*
9326 	 * KVM explicitly assumes that the guest has an FPU and
9327 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9328 	 * vCPU's FPU state as a fxregs_state struct.
9329 	 */
9330 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9331 		pr_err("inadequate fpu\n");
9332 		return -EOPNOTSUPP;
9333 	}
9334 
9335 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9336 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9337 		return -EOPNOTSUPP;
9338 	}
9339 
9340 	/*
9341 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9342 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9343 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9344 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9345 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9346 	 */
9347 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9348 	    (host_pat & GENMASK(2, 0)) != 6) {
9349 		pr_err("host PAT[0] is not WB\n");
9350 		return -EIO;
9351 	}
9352 
9353 	x86_emulator_cache = kvm_alloc_emulator_cache();
9354 	if (!x86_emulator_cache) {
9355 		pr_err("failed to allocate cache for x86 emulator\n");
9356 		return -ENOMEM;
9357 	}
9358 
9359 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9360 	if (!user_return_msrs) {
9361 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9362 		r = -ENOMEM;
9363 		goto out_free_x86_emulator_cache;
9364 	}
9365 	kvm_nr_uret_msrs = 0;
9366 
9367 	r = kvm_mmu_vendor_module_init();
9368 	if (r)
9369 		goto out_free_percpu;
9370 
9371 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9372 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9373 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9374 	}
9375 
9376 	rdmsrl_safe(MSR_EFER, &host_efer);
9377 
9378 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9379 		rdmsrl(MSR_IA32_XSS, host_xss);
9380 
9381 	kvm_init_pmu_capability(ops->pmu_ops);
9382 
9383 	r = ops->hardware_setup();
9384 	if (r != 0)
9385 		goto out_mmu_exit;
9386 
9387 	kvm_ops_update(ops);
9388 
9389 	for_each_online_cpu(cpu) {
9390 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9391 		if (r < 0)
9392 			goto out_unwind_ops;
9393 	}
9394 
9395 	/*
9396 	 * Point of no return!  DO NOT add error paths below this point unless
9397 	 * absolutely necessary, as most operations from this point forward
9398 	 * require unwinding.
9399 	 */
9400 	kvm_timer_init();
9401 
9402 	if (pi_inject_timer == -1)
9403 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9404 #ifdef CONFIG_X86_64
9405 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9406 
9407 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9408 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9409 #endif
9410 
9411 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9412 
9413 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9414 		kvm_caps.supported_xss = 0;
9415 
9416 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9417 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9418 #undef __kvm_cpu_cap_has
9419 
9420 	if (kvm_caps.has_tsc_control) {
9421 		/*
9422 		 * Make sure the user can only configure tsc_khz values that
9423 		 * fit into a signed integer.
9424 		 * A min value is not calculated because it will always
9425 		 * be 1 on all machines.
9426 		 */
9427 		u64 max = min(0x7fffffffULL,
9428 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9429 		kvm_caps.max_guest_tsc_khz = max;
9430 	}
9431 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9432 	kvm_init_msr_list();
9433 	return 0;
9434 
9435 out_unwind_ops:
9436 	kvm_x86_ops.hardware_enable = NULL;
9437 	static_call(kvm_x86_hardware_unsetup)();
9438 out_mmu_exit:
9439 	kvm_mmu_vendor_module_exit();
9440 out_free_percpu:
9441 	free_percpu(user_return_msrs);
9442 out_free_x86_emulator_cache:
9443 	kmem_cache_destroy(x86_emulator_cache);
9444 	return r;
9445 }
9446 
9447 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9448 {
9449 	int r;
9450 
9451 	mutex_lock(&vendor_module_lock);
9452 	r = __kvm_x86_vendor_init(ops);
9453 	mutex_unlock(&vendor_module_lock);
9454 
9455 	return r;
9456 }
9457 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9458 
9459 void kvm_x86_vendor_exit(void)
9460 {
9461 	kvm_unregister_perf_callbacks();
9462 
9463 #ifdef CONFIG_X86_64
9464 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9465 		clear_hv_tscchange_cb();
9466 #endif
9467 	kvm_lapic_exit();
9468 
9469 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9470 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9471 					    CPUFREQ_TRANSITION_NOTIFIER);
9472 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9473 	}
9474 #ifdef CONFIG_X86_64
9475 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9476 	irq_work_sync(&pvclock_irq_work);
9477 	cancel_work_sync(&pvclock_gtod_work);
9478 #endif
9479 	static_call(kvm_x86_hardware_unsetup)();
9480 	kvm_mmu_vendor_module_exit();
9481 	free_percpu(user_return_msrs);
9482 	kmem_cache_destroy(x86_emulator_cache);
9483 #ifdef CONFIG_KVM_XEN
9484 	static_key_deferred_flush(&kvm_xen_enabled);
9485 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9486 #endif
9487 	mutex_lock(&vendor_module_lock);
9488 	kvm_x86_ops.hardware_enable = NULL;
9489 	mutex_unlock(&vendor_module_lock);
9490 }
9491 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9492 
9493 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9494 {
9495 	/*
9496 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9497 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9498 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9499 	 * managed by userspace, in which case userspace is responsible for
9500 	 * handling wake events.
9501 	 */
9502 	++vcpu->stat.halt_exits;
9503 	if (lapic_in_kernel(vcpu)) {
9504 		vcpu->arch.mp_state = state;
9505 		return 1;
9506 	} else {
9507 		vcpu->run->exit_reason = reason;
9508 		return 0;
9509 	}
9510 }
9511 
9512 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9513 {
9514 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9515 }
9516 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9517 
9518 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9519 {
9520 	int ret = kvm_skip_emulated_instruction(vcpu);
9521 	/*
9522 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9523 	 * KVM_EXIT_DEBUG here.
9524 	 */
9525 	return kvm_emulate_halt_noskip(vcpu) && ret;
9526 }
9527 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9528 
9529 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9530 {
9531 	int ret = kvm_skip_emulated_instruction(vcpu);
9532 
9533 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9534 					KVM_EXIT_AP_RESET_HOLD) && ret;
9535 }
9536 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9537 
9538 #ifdef CONFIG_X86_64
9539 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9540 			        unsigned long clock_type)
9541 {
9542 	struct kvm_clock_pairing clock_pairing;
9543 	struct timespec64 ts;
9544 	u64 cycle;
9545 	int ret;
9546 
9547 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9548 		return -KVM_EOPNOTSUPP;
9549 
9550 	/*
9551 	 * When tsc is in permanent catchup mode guests won't be able to use
9552 	 * pvclock_read_retry loop to get consistent view of pvclock
9553 	 */
9554 	if (vcpu->arch.tsc_always_catchup)
9555 		return -KVM_EOPNOTSUPP;
9556 
9557 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9558 		return -KVM_EOPNOTSUPP;
9559 
9560 	clock_pairing.sec = ts.tv_sec;
9561 	clock_pairing.nsec = ts.tv_nsec;
9562 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9563 	clock_pairing.flags = 0;
9564 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9565 
9566 	ret = 0;
9567 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9568 			    sizeof(struct kvm_clock_pairing)))
9569 		ret = -KVM_EFAULT;
9570 
9571 	return ret;
9572 }
9573 #endif
9574 
9575 /*
9576  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9577  *
9578  * @apicid - apicid of vcpu to be kicked.
9579  */
9580 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9581 {
9582 	/*
9583 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9584 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9585 	 */
9586 	struct kvm_lapic_irq lapic_irq = {
9587 		.delivery_mode = APIC_DM_REMRD,
9588 		.dest_mode = APIC_DEST_PHYSICAL,
9589 		.shorthand = APIC_DEST_NOSHORT,
9590 		.dest_id = apicid,
9591 	};
9592 
9593 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9594 }
9595 
9596 bool kvm_apicv_activated(struct kvm *kvm)
9597 {
9598 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9599 }
9600 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9601 
9602 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9603 {
9604 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9605 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9606 
9607 	return (vm_reasons | vcpu_reasons) == 0;
9608 }
9609 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9610 
9611 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9612 				       enum kvm_apicv_inhibit reason, bool set)
9613 {
9614 	if (set)
9615 		__set_bit(reason, inhibits);
9616 	else
9617 		__clear_bit(reason, inhibits);
9618 
9619 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9620 }
9621 
9622 static void kvm_apicv_init(struct kvm *kvm)
9623 {
9624 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9625 
9626 	init_rwsem(&kvm->arch.apicv_update_lock);
9627 
9628 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9629 
9630 	if (!enable_apicv)
9631 		set_or_clear_apicv_inhibit(inhibits,
9632 					   APICV_INHIBIT_REASON_DISABLE, true);
9633 }
9634 
9635 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9636 {
9637 	struct kvm_vcpu *target = NULL;
9638 	struct kvm_apic_map *map;
9639 
9640 	vcpu->stat.directed_yield_attempted++;
9641 
9642 	if (single_task_running())
9643 		goto no_yield;
9644 
9645 	rcu_read_lock();
9646 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9647 
9648 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9649 		target = map->phys_map[dest_id]->vcpu;
9650 
9651 	rcu_read_unlock();
9652 
9653 	if (!target || !READ_ONCE(target->ready))
9654 		goto no_yield;
9655 
9656 	/* Ignore requests to yield to self */
9657 	if (vcpu == target)
9658 		goto no_yield;
9659 
9660 	if (kvm_vcpu_yield_to(target) <= 0)
9661 		goto no_yield;
9662 
9663 	vcpu->stat.directed_yield_successful++;
9664 
9665 no_yield:
9666 	return;
9667 }
9668 
9669 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9670 {
9671 	u64 ret = vcpu->run->hypercall.ret;
9672 
9673 	if (!is_64_bit_mode(vcpu))
9674 		ret = (u32)ret;
9675 	kvm_rax_write(vcpu, ret);
9676 	++vcpu->stat.hypercalls;
9677 	return kvm_skip_emulated_instruction(vcpu);
9678 }
9679 
9680 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9681 {
9682 	unsigned long nr, a0, a1, a2, a3, ret;
9683 	int op_64_bit;
9684 
9685 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9686 		return kvm_xen_hypercall(vcpu);
9687 
9688 	if (kvm_hv_hypercall_enabled(vcpu))
9689 		return kvm_hv_hypercall(vcpu);
9690 
9691 	nr = kvm_rax_read(vcpu);
9692 	a0 = kvm_rbx_read(vcpu);
9693 	a1 = kvm_rcx_read(vcpu);
9694 	a2 = kvm_rdx_read(vcpu);
9695 	a3 = kvm_rsi_read(vcpu);
9696 
9697 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9698 
9699 	op_64_bit = is_64_bit_hypercall(vcpu);
9700 	if (!op_64_bit) {
9701 		nr &= 0xFFFFFFFF;
9702 		a0 &= 0xFFFFFFFF;
9703 		a1 &= 0xFFFFFFFF;
9704 		a2 &= 0xFFFFFFFF;
9705 		a3 &= 0xFFFFFFFF;
9706 	}
9707 
9708 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9709 		ret = -KVM_EPERM;
9710 		goto out;
9711 	}
9712 
9713 	ret = -KVM_ENOSYS;
9714 
9715 	switch (nr) {
9716 	case KVM_HC_VAPIC_POLL_IRQ:
9717 		ret = 0;
9718 		break;
9719 	case KVM_HC_KICK_CPU:
9720 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9721 			break;
9722 
9723 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9724 		kvm_sched_yield(vcpu, a1);
9725 		ret = 0;
9726 		break;
9727 #ifdef CONFIG_X86_64
9728 	case KVM_HC_CLOCK_PAIRING:
9729 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9730 		break;
9731 #endif
9732 	case KVM_HC_SEND_IPI:
9733 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9734 			break;
9735 
9736 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9737 		break;
9738 	case KVM_HC_SCHED_YIELD:
9739 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9740 			break;
9741 
9742 		kvm_sched_yield(vcpu, a0);
9743 		ret = 0;
9744 		break;
9745 	case KVM_HC_MAP_GPA_RANGE: {
9746 		u64 gpa = a0, npages = a1, attrs = a2;
9747 
9748 		ret = -KVM_ENOSYS;
9749 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9750 			break;
9751 
9752 		if (!PAGE_ALIGNED(gpa) || !npages ||
9753 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9754 			ret = -KVM_EINVAL;
9755 			break;
9756 		}
9757 
9758 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9759 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9760 		vcpu->run->hypercall.args[0]  = gpa;
9761 		vcpu->run->hypercall.args[1]  = npages;
9762 		vcpu->run->hypercall.args[2]  = attrs;
9763 		vcpu->run->hypercall.longmode = op_64_bit;
9764 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9765 		return 0;
9766 	}
9767 	default:
9768 		ret = -KVM_ENOSYS;
9769 		break;
9770 	}
9771 out:
9772 	if (!op_64_bit)
9773 		ret = (u32)ret;
9774 	kvm_rax_write(vcpu, ret);
9775 
9776 	++vcpu->stat.hypercalls;
9777 	return kvm_skip_emulated_instruction(vcpu);
9778 }
9779 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9780 
9781 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9782 {
9783 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9784 	char instruction[3];
9785 	unsigned long rip = kvm_rip_read(vcpu);
9786 
9787 	/*
9788 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9789 	 * the pieces.
9790 	 */
9791 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9792 		ctxt->exception.error_code_valid = false;
9793 		ctxt->exception.vector = UD_VECTOR;
9794 		ctxt->have_exception = true;
9795 		return X86EMUL_PROPAGATE_FAULT;
9796 	}
9797 
9798 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9799 
9800 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9801 		&ctxt->exception);
9802 }
9803 
9804 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9805 {
9806 	return vcpu->run->request_interrupt_window &&
9807 		likely(!pic_in_kernel(vcpu->kvm));
9808 }
9809 
9810 /* Called within kvm->srcu read side.  */
9811 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9812 {
9813 	struct kvm_run *kvm_run = vcpu->run;
9814 
9815 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9816 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9817 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9818 
9819 	kvm_run->ready_for_interrupt_injection =
9820 		pic_in_kernel(vcpu->kvm) ||
9821 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9822 
9823 	if (is_smm(vcpu))
9824 		kvm_run->flags |= KVM_RUN_X86_SMM;
9825 }
9826 
9827 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9828 {
9829 	int max_irr, tpr;
9830 
9831 	if (!kvm_x86_ops.update_cr8_intercept)
9832 		return;
9833 
9834 	if (!lapic_in_kernel(vcpu))
9835 		return;
9836 
9837 	if (vcpu->arch.apic->apicv_active)
9838 		return;
9839 
9840 	if (!vcpu->arch.apic->vapic_addr)
9841 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9842 	else
9843 		max_irr = -1;
9844 
9845 	if (max_irr != -1)
9846 		max_irr >>= 4;
9847 
9848 	tpr = kvm_lapic_get_cr8(vcpu);
9849 
9850 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9851 }
9852 
9853 
9854 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9855 {
9856 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9857 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9858 		return 1;
9859 	}
9860 
9861 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9862 }
9863 
9864 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9865 {
9866 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9867 				vcpu->arch.exception.has_error_code,
9868 				vcpu->arch.exception.error_code,
9869 				vcpu->arch.exception.injected);
9870 
9871 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9872 		vcpu->arch.exception.error_code = false;
9873 	static_call(kvm_x86_inject_exception)(vcpu);
9874 }
9875 
9876 /*
9877  * Check for any event (interrupt or exception) that is ready to be injected,
9878  * and if there is at least one event, inject the event with the highest
9879  * priority.  This handles both "pending" events, i.e. events that have never
9880  * been injected into the guest, and "injected" events, i.e. events that were
9881  * injected as part of a previous VM-Enter, but weren't successfully delivered
9882  * and need to be re-injected.
9883  *
9884  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9885  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9886  * be able to inject exceptions in the "middle" of an instruction, and so must
9887  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9888  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9889  * boundaries is necessary and correct.
9890  *
9891  * For simplicity, KVM uses a single path to inject all events (except events
9892  * that are injected directly from L1 to L2) and doesn't explicitly track
9893  * instruction boundaries for asynchronous events.  However, because VM-Exits
9894  * that can occur during instruction execution typically result in KVM skipping
9895  * the instruction or injecting an exception, e.g. instruction and exception
9896  * intercepts, and because pending exceptions have higher priority than pending
9897  * interrupts, KVM still honors instruction boundaries in most scenarios.
9898  *
9899  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9900  * the instruction or inject an exception, then KVM can incorrecty inject a new
9901  * asynchrounous event if the event became pending after the CPU fetched the
9902  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9903  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9904  * injected on the restarted instruction instead of being deferred until the
9905  * instruction completes.
9906  *
9907  * In practice, this virtualization hole is unlikely to be observed by the
9908  * guest, and even less likely to cause functional problems.  To detect the
9909  * hole, the guest would have to trigger an event on a side effect of an early
9910  * phase of instruction execution, e.g. on the instruction fetch from memory.
9911  * And for it to be a functional problem, the guest would need to depend on the
9912  * ordering between that side effect, the instruction completing, _and_ the
9913  * delivery of the asynchronous event.
9914  */
9915 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9916 				       bool *req_immediate_exit)
9917 {
9918 	bool can_inject;
9919 	int r;
9920 
9921 	/*
9922 	 * Process nested events first, as nested VM-Exit supercedes event
9923 	 * re-injection.  If there's an event queued for re-injection, it will
9924 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9925 	 */
9926 	if (is_guest_mode(vcpu))
9927 		r = kvm_check_nested_events(vcpu);
9928 	else
9929 		r = 0;
9930 
9931 	/*
9932 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9933 	 * to/from L2 is needed, as any event that has already been injected
9934 	 * into L2 needs to complete its lifecycle before injecting a new event.
9935 	 *
9936 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9937 	 * This collision arises if an exception occurred while vectoring the
9938 	 * injected event, KVM intercepted said exception, and KVM ultimately
9939 	 * determined the fault belongs to the guest and queues the exception
9940 	 * for injection back into the guest.
9941 	 *
9942 	 * "Injected" interrupts can also collide with pending exceptions if
9943 	 * userspace ignores the "ready for injection" flag and blindly queues
9944 	 * an interrupt.  In that case, prioritizing the exception is correct,
9945 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9946 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9947 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9948 	 * priority, they're only generated (pended) during instruction
9949 	 * execution, and interrupts are recognized at instruction boundaries.
9950 	 * Thus a pending fault-like exception means the fault occurred on the
9951 	 * *previous* instruction and must be serviced prior to recognizing any
9952 	 * new events in order to fully complete the previous instruction.
9953 	 */
9954 	if (vcpu->arch.exception.injected)
9955 		kvm_inject_exception(vcpu);
9956 	else if (kvm_is_exception_pending(vcpu))
9957 		; /* see above */
9958 	else if (vcpu->arch.nmi_injected)
9959 		static_call(kvm_x86_inject_nmi)(vcpu);
9960 	else if (vcpu->arch.interrupt.injected)
9961 		static_call(kvm_x86_inject_irq)(vcpu, true);
9962 
9963 	/*
9964 	 * Exceptions that morph to VM-Exits are handled above, and pending
9965 	 * exceptions on top of injected exceptions that do not VM-Exit should
9966 	 * either morph to #DF or, sadly, override the injected exception.
9967 	 */
9968 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9969 		     vcpu->arch.exception.pending);
9970 
9971 	/*
9972 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9973 	 * nested VM-Enter or event re-injection so that a different pending
9974 	 * event can be serviced (or if KVM needs to exit to userspace).
9975 	 *
9976 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9977 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9978 	 * there may now be events that can be injected into L1.
9979 	 */
9980 	if (r < 0)
9981 		goto out;
9982 
9983 	/*
9984 	 * A pending exception VM-Exit should either result in nested VM-Exit
9985 	 * or force an immediate re-entry and exit to/from L2, and exception
9986 	 * VM-Exits cannot be injected (flag should _never_ be set).
9987 	 */
9988 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9989 		     vcpu->arch.exception_vmexit.pending);
9990 
9991 	/*
9992 	 * New events, other than exceptions, cannot be injected if KVM needs
9993 	 * to re-inject a previous event.  See above comments on re-injecting
9994 	 * for why pending exceptions get priority.
9995 	 */
9996 	can_inject = !kvm_event_needs_reinjection(vcpu);
9997 
9998 	if (vcpu->arch.exception.pending) {
9999 		/*
10000 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10001 		 * value pushed on the stack.  Trap-like exception and all #DBs
10002 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10003 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10004 		 *
10005 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10006 		 * describe the behavior of General Detect #DBs, which are
10007 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10008 		 */
10009 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10010 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10011 					     X86_EFLAGS_RF);
10012 
10013 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10014 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10015 			if (vcpu->arch.dr7 & DR7_GD) {
10016 				vcpu->arch.dr7 &= ~DR7_GD;
10017 				kvm_update_dr7(vcpu);
10018 			}
10019 		}
10020 
10021 		kvm_inject_exception(vcpu);
10022 
10023 		vcpu->arch.exception.pending = false;
10024 		vcpu->arch.exception.injected = true;
10025 
10026 		can_inject = false;
10027 	}
10028 
10029 	/* Don't inject interrupts if the user asked to avoid doing so */
10030 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10031 		return 0;
10032 
10033 	/*
10034 	 * Finally, inject interrupt events.  If an event cannot be injected
10035 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10036 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10037 	 * and can architecturally be injected, but we cannot do it right now:
10038 	 * an interrupt could have arrived just now and we have to inject it
10039 	 * as a vmexit, or there could already an event in the queue, which is
10040 	 * indicated by can_inject.  In that case we request an immediate exit
10041 	 * in order to make progress and get back here for another iteration.
10042 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10043 	 */
10044 #ifdef CONFIG_KVM_SMM
10045 	if (vcpu->arch.smi_pending) {
10046 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10047 		if (r < 0)
10048 			goto out;
10049 		if (r) {
10050 			vcpu->arch.smi_pending = false;
10051 			++vcpu->arch.smi_count;
10052 			enter_smm(vcpu);
10053 			can_inject = false;
10054 		} else
10055 			static_call(kvm_x86_enable_smi_window)(vcpu);
10056 	}
10057 #endif
10058 
10059 	if (vcpu->arch.nmi_pending) {
10060 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10061 		if (r < 0)
10062 			goto out;
10063 		if (r) {
10064 			--vcpu->arch.nmi_pending;
10065 			vcpu->arch.nmi_injected = true;
10066 			static_call(kvm_x86_inject_nmi)(vcpu);
10067 			can_inject = false;
10068 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10069 		}
10070 		if (vcpu->arch.nmi_pending)
10071 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10072 	}
10073 
10074 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10075 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10076 		if (r < 0)
10077 			goto out;
10078 		if (r) {
10079 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10080 			static_call(kvm_x86_inject_irq)(vcpu, false);
10081 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10082 		}
10083 		if (kvm_cpu_has_injectable_intr(vcpu))
10084 			static_call(kvm_x86_enable_irq_window)(vcpu);
10085 	}
10086 
10087 	if (is_guest_mode(vcpu) &&
10088 	    kvm_x86_ops.nested_ops->has_events &&
10089 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10090 		*req_immediate_exit = true;
10091 
10092 	/*
10093 	 * KVM must never queue a new exception while injecting an event; KVM
10094 	 * is done emulating and should only propagate the to-be-injected event
10095 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10096 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10097 	 * exception and start the cycle all over.
10098 	 *
10099 	 * Exempt triple faults as they have special handling and won't put the
10100 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10101 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10102 	 * Mode events (see kvm_inject_realmode_interrupt()).
10103 	 */
10104 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10105 		     vcpu->arch.exception_vmexit.pending);
10106 	return 0;
10107 
10108 out:
10109 	if (r == -EBUSY) {
10110 		*req_immediate_exit = true;
10111 		r = 0;
10112 	}
10113 	return r;
10114 }
10115 
10116 static void process_nmi(struct kvm_vcpu *vcpu)
10117 {
10118 	unsigned limit = 2;
10119 
10120 	/*
10121 	 * x86 is limited to one NMI running, and one NMI pending after it.
10122 	 * If an NMI is already in progress, limit further NMIs to just one.
10123 	 * Otherwise, allow two (and we'll inject the first one immediately).
10124 	 */
10125 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10126 		limit = 1;
10127 
10128 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10129 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10130 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10131 }
10132 
10133 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10134 				       unsigned long *vcpu_bitmap)
10135 {
10136 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10137 }
10138 
10139 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10140 {
10141 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10142 }
10143 
10144 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10145 {
10146 	struct kvm_lapic *apic = vcpu->arch.apic;
10147 	bool activate;
10148 
10149 	if (!lapic_in_kernel(vcpu))
10150 		return;
10151 
10152 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10153 	preempt_disable();
10154 
10155 	/* Do not activate APICV when APIC is disabled */
10156 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10157 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10158 
10159 	if (apic->apicv_active == activate)
10160 		goto out;
10161 
10162 	apic->apicv_active = activate;
10163 	kvm_apic_update_apicv(vcpu);
10164 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10165 
10166 	/*
10167 	 * When APICv gets disabled, we may still have injected interrupts
10168 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10169 	 * still active when the interrupt got accepted. Make sure
10170 	 * kvm_check_and_inject_events() is called to check for that.
10171 	 */
10172 	if (!apic->apicv_active)
10173 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10174 
10175 out:
10176 	preempt_enable();
10177 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10178 }
10179 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10180 
10181 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10182 {
10183 	if (!lapic_in_kernel(vcpu))
10184 		return;
10185 
10186 	/*
10187 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10188 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10189 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10190 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10191 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10192 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10193 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10194 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10195 	 * access page is sticky.
10196 	 */
10197 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10198 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10199 		kvm_inhibit_apic_access_page(vcpu);
10200 
10201 	__kvm_vcpu_update_apicv(vcpu);
10202 }
10203 
10204 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10205 				      enum kvm_apicv_inhibit reason, bool set)
10206 {
10207 	unsigned long old, new;
10208 
10209 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10210 
10211 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10212 		return;
10213 
10214 	old = new = kvm->arch.apicv_inhibit_reasons;
10215 
10216 	set_or_clear_apicv_inhibit(&new, reason, set);
10217 
10218 	if (!!old != !!new) {
10219 		/*
10220 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10221 		 * false positives in the sanity check WARN in svm_vcpu_run().
10222 		 * This task will wait for all vCPUs to ack the kick IRQ before
10223 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10224 		 * block on acquiring apicv_update_lock so that vCPUs can't
10225 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10226 		 *
10227 		 * Note, holding apicv_update_lock and taking it in the read
10228 		 * side (handling the request) also prevents other vCPUs from
10229 		 * servicing the request with a stale apicv_inhibit_reasons.
10230 		 */
10231 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10232 		kvm->arch.apicv_inhibit_reasons = new;
10233 		if (new) {
10234 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10235 			int idx = srcu_read_lock(&kvm->srcu);
10236 
10237 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10238 			srcu_read_unlock(&kvm->srcu, idx);
10239 		}
10240 	} else {
10241 		kvm->arch.apicv_inhibit_reasons = new;
10242 	}
10243 }
10244 
10245 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10246 				    enum kvm_apicv_inhibit reason, bool set)
10247 {
10248 	if (!enable_apicv)
10249 		return;
10250 
10251 	down_write(&kvm->arch.apicv_update_lock);
10252 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10253 	up_write(&kvm->arch.apicv_update_lock);
10254 }
10255 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10256 
10257 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10258 {
10259 	if (!kvm_apic_present(vcpu))
10260 		return;
10261 
10262 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10263 
10264 	if (irqchip_split(vcpu->kvm))
10265 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10266 	else {
10267 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10268 		if (ioapic_in_kernel(vcpu->kvm))
10269 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10270 	}
10271 
10272 	if (is_guest_mode(vcpu))
10273 		vcpu->arch.load_eoi_exitmap_pending = true;
10274 	else
10275 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10276 }
10277 
10278 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10279 {
10280 	u64 eoi_exit_bitmap[4];
10281 
10282 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10283 		return;
10284 
10285 	if (to_hv_vcpu(vcpu)) {
10286 		bitmap_or((ulong *)eoi_exit_bitmap,
10287 			  vcpu->arch.ioapic_handled_vectors,
10288 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10289 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10290 		return;
10291 	}
10292 
10293 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10294 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10295 }
10296 
10297 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10298 					    unsigned long start, unsigned long end)
10299 {
10300 	unsigned long apic_address;
10301 
10302 	/*
10303 	 * The physical address of apic access page is stored in the VMCS.
10304 	 * Update it when it becomes invalid.
10305 	 */
10306 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10307 	if (start <= apic_address && apic_address < end)
10308 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10309 }
10310 
10311 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10312 {
10313 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10314 }
10315 
10316 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10317 {
10318 	if (!lapic_in_kernel(vcpu))
10319 		return;
10320 
10321 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10322 }
10323 
10324 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10325 {
10326 	smp_send_reschedule(vcpu->cpu);
10327 }
10328 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10329 
10330 /*
10331  * Called within kvm->srcu read side.
10332  * Returns 1 to let vcpu_run() continue the guest execution loop without
10333  * exiting to the userspace.  Otherwise, the value will be returned to the
10334  * userspace.
10335  */
10336 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10337 {
10338 	int r;
10339 	bool req_int_win =
10340 		dm_request_for_irq_injection(vcpu) &&
10341 		kvm_cpu_accept_dm_intr(vcpu);
10342 	fastpath_t exit_fastpath;
10343 
10344 	bool req_immediate_exit = false;
10345 
10346 	if (kvm_request_pending(vcpu)) {
10347 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10348 			r = -EIO;
10349 			goto out;
10350 		}
10351 
10352 		if (kvm_dirty_ring_check_request(vcpu)) {
10353 			r = 0;
10354 			goto out;
10355 		}
10356 
10357 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10358 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10359 				r = 0;
10360 				goto out;
10361 			}
10362 		}
10363 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10364 			kvm_mmu_free_obsolete_roots(vcpu);
10365 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10366 			__kvm_migrate_timers(vcpu);
10367 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10368 			kvm_update_masterclock(vcpu->kvm);
10369 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10370 			kvm_gen_kvmclock_update(vcpu);
10371 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10372 			r = kvm_guest_time_update(vcpu);
10373 			if (unlikely(r))
10374 				goto out;
10375 		}
10376 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10377 			kvm_mmu_sync_roots(vcpu);
10378 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10379 			kvm_mmu_load_pgd(vcpu);
10380 
10381 		/*
10382 		 * Note, the order matters here, as flushing "all" TLB entries
10383 		 * also flushes the "current" TLB entries, i.e. servicing the
10384 		 * flush "all" will clear any request to flush "current".
10385 		 */
10386 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10387 			kvm_vcpu_flush_tlb_all(vcpu);
10388 
10389 		kvm_service_local_tlb_flush_requests(vcpu);
10390 
10391 		/*
10392 		 * Fall back to a "full" guest flush if Hyper-V's precise
10393 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10394 		 * the flushes are considered "remote" and not "local" because
10395 		 * the requests can be initiated from other vCPUs.
10396 		 */
10397 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10398 		    kvm_hv_vcpu_flush_tlb(vcpu))
10399 			kvm_vcpu_flush_tlb_guest(vcpu);
10400 
10401 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10402 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10403 			r = 0;
10404 			goto out;
10405 		}
10406 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10407 			if (is_guest_mode(vcpu))
10408 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10409 
10410 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10411 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10412 				vcpu->mmio_needed = 0;
10413 				r = 0;
10414 				goto out;
10415 			}
10416 		}
10417 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10418 			/* Page is swapped out. Do synthetic halt */
10419 			vcpu->arch.apf.halted = true;
10420 			r = 1;
10421 			goto out;
10422 		}
10423 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10424 			record_steal_time(vcpu);
10425 #ifdef CONFIG_KVM_SMM
10426 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10427 			process_smi(vcpu);
10428 #endif
10429 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10430 			process_nmi(vcpu);
10431 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10432 			kvm_pmu_handle_event(vcpu);
10433 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10434 			kvm_pmu_deliver_pmi(vcpu);
10435 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10436 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10437 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10438 				     vcpu->arch.ioapic_handled_vectors)) {
10439 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10440 				vcpu->run->eoi.vector =
10441 						vcpu->arch.pending_ioapic_eoi;
10442 				r = 0;
10443 				goto out;
10444 			}
10445 		}
10446 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10447 			vcpu_scan_ioapic(vcpu);
10448 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10449 			vcpu_load_eoi_exitmap(vcpu);
10450 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10451 			kvm_vcpu_reload_apic_access_page(vcpu);
10452 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10453 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10454 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10455 			vcpu->run->system_event.ndata = 0;
10456 			r = 0;
10457 			goto out;
10458 		}
10459 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10460 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10461 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10462 			vcpu->run->system_event.ndata = 0;
10463 			r = 0;
10464 			goto out;
10465 		}
10466 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10467 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10468 
10469 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10470 			vcpu->run->hyperv = hv_vcpu->exit;
10471 			r = 0;
10472 			goto out;
10473 		}
10474 
10475 		/*
10476 		 * KVM_REQ_HV_STIMER has to be processed after
10477 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10478 		 * depend on the guest clock being up-to-date
10479 		 */
10480 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10481 			kvm_hv_process_stimers(vcpu);
10482 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10483 			kvm_vcpu_update_apicv(vcpu);
10484 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10485 			kvm_check_async_pf_completion(vcpu);
10486 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10487 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10488 
10489 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10490 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10491 	}
10492 
10493 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10494 	    kvm_xen_has_interrupt(vcpu)) {
10495 		++vcpu->stat.req_event;
10496 		r = kvm_apic_accept_events(vcpu);
10497 		if (r < 0) {
10498 			r = 0;
10499 			goto out;
10500 		}
10501 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10502 			r = 1;
10503 			goto out;
10504 		}
10505 
10506 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10507 		if (r < 0) {
10508 			r = 0;
10509 			goto out;
10510 		}
10511 		if (req_int_win)
10512 			static_call(kvm_x86_enable_irq_window)(vcpu);
10513 
10514 		if (kvm_lapic_enabled(vcpu)) {
10515 			update_cr8_intercept(vcpu);
10516 			kvm_lapic_sync_to_vapic(vcpu);
10517 		}
10518 	}
10519 
10520 	r = kvm_mmu_reload(vcpu);
10521 	if (unlikely(r)) {
10522 		goto cancel_injection;
10523 	}
10524 
10525 	preempt_disable();
10526 
10527 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10528 
10529 	/*
10530 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10531 	 * IPI are then delayed after guest entry, which ensures that they
10532 	 * result in virtual interrupt delivery.
10533 	 */
10534 	local_irq_disable();
10535 
10536 	/* Store vcpu->apicv_active before vcpu->mode.  */
10537 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10538 
10539 	kvm_vcpu_srcu_read_unlock(vcpu);
10540 
10541 	/*
10542 	 * 1) We should set ->mode before checking ->requests.  Please see
10543 	 * the comment in kvm_vcpu_exiting_guest_mode().
10544 	 *
10545 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10546 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10547 	 * (see vmx_deliver_posted_interrupt).
10548 	 *
10549 	 * 3) This also orders the write to mode from any reads to the page
10550 	 * tables done while the VCPU is running.  Please see the comment
10551 	 * in kvm_flush_remote_tlbs.
10552 	 */
10553 	smp_mb__after_srcu_read_unlock();
10554 
10555 	/*
10556 	 * Process pending posted interrupts to handle the case where the
10557 	 * notification IRQ arrived in the host, or was never sent (because the
10558 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10559 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10560 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10561 	 */
10562 	if (kvm_lapic_enabled(vcpu))
10563 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10564 
10565 	if (kvm_vcpu_exit_request(vcpu)) {
10566 		vcpu->mode = OUTSIDE_GUEST_MODE;
10567 		smp_wmb();
10568 		local_irq_enable();
10569 		preempt_enable();
10570 		kvm_vcpu_srcu_read_lock(vcpu);
10571 		r = 1;
10572 		goto cancel_injection;
10573 	}
10574 
10575 	if (req_immediate_exit) {
10576 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10577 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10578 	}
10579 
10580 	fpregs_assert_state_consistent();
10581 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10582 		switch_fpu_return();
10583 
10584 	if (vcpu->arch.guest_fpu.xfd_err)
10585 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10586 
10587 	if (unlikely(vcpu->arch.switch_db_regs)) {
10588 		set_debugreg(0, 7);
10589 		set_debugreg(vcpu->arch.eff_db[0], 0);
10590 		set_debugreg(vcpu->arch.eff_db[1], 1);
10591 		set_debugreg(vcpu->arch.eff_db[2], 2);
10592 		set_debugreg(vcpu->arch.eff_db[3], 3);
10593 	} else if (unlikely(hw_breakpoint_active())) {
10594 		set_debugreg(0, 7);
10595 	}
10596 
10597 	guest_timing_enter_irqoff();
10598 
10599 	for (;;) {
10600 		/*
10601 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10602 		 * update must kick and wait for all vCPUs before toggling the
10603 		 * per-VM state, and responsing vCPUs must wait for the update
10604 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10605 		 */
10606 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10607 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10608 
10609 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10610 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10611 			break;
10612 
10613 		if (kvm_lapic_enabled(vcpu))
10614 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10615 
10616 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10617 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10618 			break;
10619 		}
10620 	}
10621 
10622 	/*
10623 	 * Do this here before restoring debug registers on the host.  And
10624 	 * since we do this before handling the vmexit, a DR access vmexit
10625 	 * can (a) read the correct value of the debug registers, (b) set
10626 	 * KVM_DEBUGREG_WONT_EXIT again.
10627 	 */
10628 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10629 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10630 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10631 		kvm_update_dr0123(vcpu);
10632 		kvm_update_dr7(vcpu);
10633 	}
10634 
10635 	/*
10636 	 * If the guest has used debug registers, at least dr7
10637 	 * will be disabled while returning to the host.
10638 	 * If we don't have active breakpoints in the host, we don't
10639 	 * care about the messed up debug address registers. But if
10640 	 * we have some of them active, restore the old state.
10641 	 */
10642 	if (hw_breakpoint_active())
10643 		hw_breakpoint_restore();
10644 
10645 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10646 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10647 
10648 	vcpu->mode = OUTSIDE_GUEST_MODE;
10649 	smp_wmb();
10650 
10651 	/*
10652 	 * Sync xfd before calling handle_exit_irqoff() which may
10653 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10654 	 * in #NM irqoff handler).
10655 	 */
10656 	if (vcpu->arch.xfd_no_write_intercept)
10657 		fpu_sync_guest_vmexit_xfd_state();
10658 
10659 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10660 
10661 	if (vcpu->arch.guest_fpu.xfd_err)
10662 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10663 
10664 	/*
10665 	 * Consume any pending interrupts, including the possible source of
10666 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10667 	 * An instruction is required after local_irq_enable() to fully unblock
10668 	 * interrupts on processors that implement an interrupt shadow, the
10669 	 * stat.exits increment will do nicely.
10670 	 */
10671 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10672 	local_irq_enable();
10673 	++vcpu->stat.exits;
10674 	local_irq_disable();
10675 	kvm_after_interrupt(vcpu);
10676 
10677 	/*
10678 	 * Wait until after servicing IRQs to account guest time so that any
10679 	 * ticks that occurred while running the guest are properly accounted
10680 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10681 	 * of accounting via context tracking, but the loss of accuracy is
10682 	 * acceptable for all known use cases.
10683 	 */
10684 	guest_timing_exit_irqoff();
10685 
10686 	local_irq_enable();
10687 	preempt_enable();
10688 
10689 	kvm_vcpu_srcu_read_lock(vcpu);
10690 
10691 	/*
10692 	 * Profile KVM exit RIPs:
10693 	 */
10694 	if (unlikely(prof_on == KVM_PROFILING)) {
10695 		unsigned long rip = kvm_rip_read(vcpu);
10696 		profile_hit(KVM_PROFILING, (void *)rip);
10697 	}
10698 
10699 	if (unlikely(vcpu->arch.tsc_always_catchup))
10700 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10701 
10702 	if (vcpu->arch.apic_attention)
10703 		kvm_lapic_sync_from_vapic(vcpu);
10704 
10705 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10706 	return r;
10707 
10708 cancel_injection:
10709 	if (req_immediate_exit)
10710 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10711 	static_call(kvm_x86_cancel_injection)(vcpu);
10712 	if (unlikely(vcpu->arch.apic_attention))
10713 		kvm_lapic_sync_from_vapic(vcpu);
10714 out:
10715 	return r;
10716 }
10717 
10718 /* Called within kvm->srcu read side.  */
10719 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10720 {
10721 	bool hv_timer;
10722 
10723 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10724 		/*
10725 		 * Switch to the software timer before halt-polling/blocking as
10726 		 * the guest's timer may be a break event for the vCPU, and the
10727 		 * hypervisor timer runs only when the CPU is in guest mode.
10728 		 * Switch before halt-polling so that KVM recognizes an expired
10729 		 * timer before blocking.
10730 		 */
10731 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10732 		if (hv_timer)
10733 			kvm_lapic_switch_to_sw_timer(vcpu);
10734 
10735 		kvm_vcpu_srcu_read_unlock(vcpu);
10736 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10737 			kvm_vcpu_halt(vcpu);
10738 		else
10739 			kvm_vcpu_block(vcpu);
10740 		kvm_vcpu_srcu_read_lock(vcpu);
10741 
10742 		if (hv_timer)
10743 			kvm_lapic_switch_to_hv_timer(vcpu);
10744 
10745 		/*
10746 		 * If the vCPU is not runnable, a signal or another host event
10747 		 * of some kind is pending; service it without changing the
10748 		 * vCPU's activity state.
10749 		 */
10750 		if (!kvm_arch_vcpu_runnable(vcpu))
10751 			return 1;
10752 	}
10753 
10754 	/*
10755 	 * Evaluate nested events before exiting the halted state.  This allows
10756 	 * the halt state to be recorded properly in the VMCS12's activity
10757 	 * state field (AMD does not have a similar field and a VM-Exit always
10758 	 * causes a spurious wakeup from HLT).
10759 	 */
10760 	if (is_guest_mode(vcpu)) {
10761 		if (kvm_check_nested_events(vcpu) < 0)
10762 			return 0;
10763 	}
10764 
10765 	if (kvm_apic_accept_events(vcpu) < 0)
10766 		return 0;
10767 	switch(vcpu->arch.mp_state) {
10768 	case KVM_MP_STATE_HALTED:
10769 	case KVM_MP_STATE_AP_RESET_HOLD:
10770 		vcpu->arch.pv.pv_unhalted = false;
10771 		vcpu->arch.mp_state =
10772 			KVM_MP_STATE_RUNNABLE;
10773 		fallthrough;
10774 	case KVM_MP_STATE_RUNNABLE:
10775 		vcpu->arch.apf.halted = false;
10776 		break;
10777 	case KVM_MP_STATE_INIT_RECEIVED:
10778 		break;
10779 	default:
10780 		WARN_ON_ONCE(1);
10781 		break;
10782 	}
10783 	return 1;
10784 }
10785 
10786 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10787 {
10788 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10789 		!vcpu->arch.apf.halted);
10790 }
10791 
10792 /* Called within kvm->srcu read side.  */
10793 static int vcpu_run(struct kvm_vcpu *vcpu)
10794 {
10795 	int r;
10796 
10797 	vcpu->arch.l1tf_flush_l1d = true;
10798 
10799 	for (;;) {
10800 		/*
10801 		 * If another guest vCPU requests a PV TLB flush in the middle
10802 		 * of instruction emulation, the rest of the emulation could
10803 		 * use a stale page translation. Assume that any code after
10804 		 * this point can start executing an instruction.
10805 		 */
10806 		vcpu->arch.at_instruction_boundary = false;
10807 		if (kvm_vcpu_running(vcpu)) {
10808 			r = vcpu_enter_guest(vcpu);
10809 		} else {
10810 			r = vcpu_block(vcpu);
10811 		}
10812 
10813 		if (r <= 0)
10814 			break;
10815 
10816 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10817 		if (kvm_xen_has_pending_events(vcpu))
10818 			kvm_xen_inject_pending_events(vcpu);
10819 
10820 		if (kvm_cpu_has_pending_timer(vcpu))
10821 			kvm_inject_pending_timer_irqs(vcpu);
10822 
10823 		if (dm_request_for_irq_injection(vcpu) &&
10824 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10825 			r = 0;
10826 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10827 			++vcpu->stat.request_irq_exits;
10828 			break;
10829 		}
10830 
10831 		if (__xfer_to_guest_mode_work_pending()) {
10832 			kvm_vcpu_srcu_read_unlock(vcpu);
10833 			r = xfer_to_guest_mode_handle_work(vcpu);
10834 			kvm_vcpu_srcu_read_lock(vcpu);
10835 			if (r)
10836 				return r;
10837 		}
10838 	}
10839 
10840 	return r;
10841 }
10842 
10843 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10844 {
10845 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10846 }
10847 
10848 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10849 {
10850 	BUG_ON(!vcpu->arch.pio.count);
10851 
10852 	return complete_emulated_io(vcpu);
10853 }
10854 
10855 /*
10856  * Implements the following, as a state machine:
10857  *
10858  * read:
10859  *   for each fragment
10860  *     for each mmio piece in the fragment
10861  *       write gpa, len
10862  *       exit
10863  *       copy data
10864  *   execute insn
10865  *
10866  * write:
10867  *   for each fragment
10868  *     for each mmio piece in the fragment
10869  *       write gpa, len
10870  *       copy data
10871  *       exit
10872  */
10873 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10874 {
10875 	struct kvm_run *run = vcpu->run;
10876 	struct kvm_mmio_fragment *frag;
10877 	unsigned len;
10878 
10879 	BUG_ON(!vcpu->mmio_needed);
10880 
10881 	/* Complete previous fragment */
10882 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10883 	len = min(8u, frag->len);
10884 	if (!vcpu->mmio_is_write)
10885 		memcpy(frag->data, run->mmio.data, len);
10886 
10887 	if (frag->len <= 8) {
10888 		/* Switch to the next fragment. */
10889 		frag++;
10890 		vcpu->mmio_cur_fragment++;
10891 	} else {
10892 		/* Go forward to the next mmio piece. */
10893 		frag->data += len;
10894 		frag->gpa += len;
10895 		frag->len -= len;
10896 	}
10897 
10898 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10899 		vcpu->mmio_needed = 0;
10900 
10901 		/* FIXME: return into emulator if single-stepping.  */
10902 		if (vcpu->mmio_is_write)
10903 			return 1;
10904 		vcpu->mmio_read_completed = 1;
10905 		return complete_emulated_io(vcpu);
10906 	}
10907 
10908 	run->exit_reason = KVM_EXIT_MMIO;
10909 	run->mmio.phys_addr = frag->gpa;
10910 	if (vcpu->mmio_is_write)
10911 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10912 	run->mmio.len = min(8u, frag->len);
10913 	run->mmio.is_write = vcpu->mmio_is_write;
10914 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10915 	return 0;
10916 }
10917 
10918 /* Swap (qemu) user FPU context for the guest FPU context. */
10919 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10920 {
10921 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10922 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10923 	trace_kvm_fpu(1);
10924 }
10925 
10926 /* When vcpu_run ends, restore user space FPU context. */
10927 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10928 {
10929 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10930 	++vcpu->stat.fpu_reload;
10931 	trace_kvm_fpu(0);
10932 }
10933 
10934 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10935 {
10936 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10937 	struct kvm_run *kvm_run = vcpu->run;
10938 	int r;
10939 
10940 	vcpu_load(vcpu);
10941 	kvm_sigset_activate(vcpu);
10942 	kvm_run->flags = 0;
10943 	kvm_load_guest_fpu(vcpu);
10944 
10945 	kvm_vcpu_srcu_read_lock(vcpu);
10946 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10947 		if (kvm_run->immediate_exit) {
10948 			r = -EINTR;
10949 			goto out;
10950 		}
10951 		/*
10952 		 * It should be impossible for the hypervisor timer to be in
10953 		 * use before KVM has ever run the vCPU.
10954 		 */
10955 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10956 
10957 		kvm_vcpu_srcu_read_unlock(vcpu);
10958 		kvm_vcpu_block(vcpu);
10959 		kvm_vcpu_srcu_read_lock(vcpu);
10960 
10961 		if (kvm_apic_accept_events(vcpu) < 0) {
10962 			r = 0;
10963 			goto out;
10964 		}
10965 		r = -EAGAIN;
10966 		if (signal_pending(current)) {
10967 			r = -EINTR;
10968 			kvm_run->exit_reason = KVM_EXIT_INTR;
10969 			++vcpu->stat.signal_exits;
10970 		}
10971 		goto out;
10972 	}
10973 
10974 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10975 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10976 		r = -EINVAL;
10977 		goto out;
10978 	}
10979 
10980 	if (kvm_run->kvm_dirty_regs) {
10981 		r = sync_regs(vcpu);
10982 		if (r != 0)
10983 			goto out;
10984 	}
10985 
10986 	/* re-sync apic's tpr */
10987 	if (!lapic_in_kernel(vcpu)) {
10988 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10989 			r = -EINVAL;
10990 			goto out;
10991 		}
10992 	}
10993 
10994 	/*
10995 	 * If userspace set a pending exception and L2 is active, convert it to
10996 	 * a pending VM-Exit if L1 wants to intercept the exception.
10997 	 */
10998 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
10999 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11000 							ex->error_code)) {
11001 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11002 					   ex->has_error_code, ex->error_code,
11003 					   ex->has_payload, ex->payload);
11004 		ex->injected = false;
11005 		ex->pending = false;
11006 	}
11007 	vcpu->arch.exception_from_userspace = false;
11008 
11009 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11010 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11011 		vcpu->arch.complete_userspace_io = NULL;
11012 		r = cui(vcpu);
11013 		if (r <= 0)
11014 			goto out;
11015 	} else {
11016 		WARN_ON_ONCE(vcpu->arch.pio.count);
11017 		WARN_ON_ONCE(vcpu->mmio_needed);
11018 	}
11019 
11020 	if (kvm_run->immediate_exit) {
11021 		r = -EINTR;
11022 		goto out;
11023 	}
11024 
11025 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11026 	if (r <= 0)
11027 		goto out;
11028 
11029 	r = vcpu_run(vcpu);
11030 
11031 out:
11032 	kvm_put_guest_fpu(vcpu);
11033 	if (kvm_run->kvm_valid_regs)
11034 		store_regs(vcpu);
11035 	post_kvm_run_save(vcpu);
11036 	kvm_vcpu_srcu_read_unlock(vcpu);
11037 
11038 	kvm_sigset_deactivate(vcpu);
11039 	vcpu_put(vcpu);
11040 	return r;
11041 }
11042 
11043 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11044 {
11045 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11046 		/*
11047 		 * We are here if userspace calls get_regs() in the middle of
11048 		 * instruction emulation. Registers state needs to be copied
11049 		 * back from emulation context to vcpu. Userspace shouldn't do
11050 		 * that usually, but some bad designed PV devices (vmware
11051 		 * backdoor interface) need this to work
11052 		 */
11053 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11054 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11055 	}
11056 	regs->rax = kvm_rax_read(vcpu);
11057 	regs->rbx = kvm_rbx_read(vcpu);
11058 	regs->rcx = kvm_rcx_read(vcpu);
11059 	regs->rdx = kvm_rdx_read(vcpu);
11060 	regs->rsi = kvm_rsi_read(vcpu);
11061 	regs->rdi = kvm_rdi_read(vcpu);
11062 	regs->rsp = kvm_rsp_read(vcpu);
11063 	regs->rbp = kvm_rbp_read(vcpu);
11064 #ifdef CONFIG_X86_64
11065 	regs->r8 = kvm_r8_read(vcpu);
11066 	regs->r9 = kvm_r9_read(vcpu);
11067 	regs->r10 = kvm_r10_read(vcpu);
11068 	regs->r11 = kvm_r11_read(vcpu);
11069 	regs->r12 = kvm_r12_read(vcpu);
11070 	regs->r13 = kvm_r13_read(vcpu);
11071 	regs->r14 = kvm_r14_read(vcpu);
11072 	regs->r15 = kvm_r15_read(vcpu);
11073 #endif
11074 
11075 	regs->rip = kvm_rip_read(vcpu);
11076 	regs->rflags = kvm_get_rflags(vcpu);
11077 }
11078 
11079 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11080 {
11081 	vcpu_load(vcpu);
11082 	__get_regs(vcpu, regs);
11083 	vcpu_put(vcpu);
11084 	return 0;
11085 }
11086 
11087 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11088 {
11089 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11090 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11091 
11092 	kvm_rax_write(vcpu, regs->rax);
11093 	kvm_rbx_write(vcpu, regs->rbx);
11094 	kvm_rcx_write(vcpu, regs->rcx);
11095 	kvm_rdx_write(vcpu, regs->rdx);
11096 	kvm_rsi_write(vcpu, regs->rsi);
11097 	kvm_rdi_write(vcpu, regs->rdi);
11098 	kvm_rsp_write(vcpu, regs->rsp);
11099 	kvm_rbp_write(vcpu, regs->rbp);
11100 #ifdef CONFIG_X86_64
11101 	kvm_r8_write(vcpu, regs->r8);
11102 	kvm_r9_write(vcpu, regs->r9);
11103 	kvm_r10_write(vcpu, regs->r10);
11104 	kvm_r11_write(vcpu, regs->r11);
11105 	kvm_r12_write(vcpu, regs->r12);
11106 	kvm_r13_write(vcpu, regs->r13);
11107 	kvm_r14_write(vcpu, regs->r14);
11108 	kvm_r15_write(vcpu, regs->r15);
11109 #endif
11110 
11111 	kvm_rip_write(vcpu, regs->rip);
11112 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11113 
11114 	vcpu->arch.exception.pending = false;
11115 	vcpu->arch.exception_vmexit.pending = false;
11116 
11117 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11118 }
11119 
11120 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11121 {
11122 	vcpu_load(vcpu);
11123 	__set_regs(vcpu, regs);
11124 	vcpu_put(vcpu);
11125 	return 0;
11126 }
11127 
11128 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11129 {
11130 	struct desc_ptr dt;
11131 
11132 	if (vcpu->arch.guest_state_protected)
11133 		goto skip_protected_regs;
11134 
11135 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11136 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11137 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11138 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11139 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11140 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11141 
11142 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11143 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11144 
11145 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11146 	sregs->idt.limit = dt.size;
11147 	sregs->idt.base = dt.address;
11148 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11149 	sregs->gdt.limit = dt.size;
11150 	sregs->gdt.base = dt.address;
11151 
11152 	sregs->cr2 = vcpu->arch.cr2;
11153 	sregs->cr3 = kvm_read_cr3(vcpu);
11154 
11155 skip_protected_regs:
11156 	sregs->cr0 = kvm_read_cr0(vcpu);
11157 	sregs->cr4 = kvm_read_cr4(vcpu);
11158 	sregs->cr8 = kvm_get_cr8(vcpu);
11159 	sregs->efer = vcpu->arch.efer;
11160 	sregs->apic_base = kvm_get_apic_base(vcpu);
11161 }
11162 
11163 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11164 {
11165 	__get_sregs_common(vcpu, sregs);
11166 
11167 	if (vcpu->arch.guest_state_protected)
11168 		return;
11169 
11170 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11171 		set_bit(vcpu->arch.interrupt.nr,
11172 			(unsigned long *)sregs->interrupt_bitmap);
11173 }
11174 
11175 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11176 {
11177 	int i;
11178 
11179 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11180 
11181 	if (vcpu->arch.guest_state_protected)
11182 		return;
11183 
11184 	if (is_pae_paging(vcpu)) {
11185 		for (i = 0 ; i < 4 ; i++)
11186 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11187 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11188 	}
11189 }
11190 
11191 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11192 				  struct kvm_sregs *sregs)
11193 {
11194 	vcpu_load(vcpu);
11195 	__get_sregs(vcpu, sregs);
11196 	vcpu_put(vcpu);
11197 	return 0;
11198 }
11199 
11200 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11201 				    struct kvm_mp_state *mp_state)
11202 {
11203 	int r;
11204 
11205 	vcpu_load(vcpu);
11206 	if (kvm_mpx_supported())
11207 		kvm_load_guest_fpu(vcpu);
11208 
11209 	r = kvm_apic_accept_events(vcpu);
11210 	if (r < 0)
11211 		goto out;
11212 	r = 0;
11213 
11214 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11215 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11216 	    vcpu->arch.pv.pv_unhalted)
11217 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11218 	else
11219 		mp_state->mp_state = vcpu->arch.mp_state;
11220 
11221 out:
11222 	if (kvm_mpx_supported())
11223 		kvm_put_guest_fpu(vcpu);
11224 	vcpu_put(vcpu);
11225 	return r;
11226 }
11227 
11228 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11229 				    struct kvm_mp_state *mp_state)
11230 {
11231 	int ret = -EINVAL;
11232 
11233 	vcpu_load(vcpu);
11234 
11235 	switch (mp_state->mp_state) {
11236 	case KVM_MP_STATE_UNINITIALIZED:
11237 	case KVM_MP_STATE_HALTED:
11238 	case KVM_MP_STATE_AP_RESET_HOLD:
11239 	case KVM_MP_STATE_INIT_RECEIVED:
11240 	case KVM_MP_STATE_SIPI_RECEIVED:
11241 		if (!lapic_in_kernel(vcpu))
11242 			goto out;
11243 		break;
11244 
11245 	case KVM_MP_STATE_RUNNABLE:
11246 		break;
11247 
11248 	default:
11249 		goto out;
11250 	}
11251 
11252 	/*
11253 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11254 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11255 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11256 	 * if an SMI is pending as well.
11257 	 */
11258 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11259 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11260 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11261 		goto out;
11262 
11263 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11264 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11265 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11266 	} else
11267 		vcpu->arch.mp_state = mp_state->mp_state;
11268 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11269 
11270 	ret = 0;
11271 out:
11272 	vcpu_put(vcpu);
11273 	return ret;
11274 }
11275 
11276 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11277 		    int reason, bool has_error_code, u32 error_code)
11278 {
11279 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11280 	int ret;
11281 
11282 	init_emulate_ctxt(vcpu);
11283 
11284 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11285 				   has_error_code, error_code);
11286 	if (ret) {
11287 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11288 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11289 		vcpu->run->internal.ndata = 0;
11290 		return 0;
11291 	}
11292 
11293 	kvm_rip_write(vcpu, ctxt->eip);
11294 	kvm_set_rflags(vcpu, ctxt->eflags);
11295 	return 1;
11296 }
11297 EXPORT_SYMBOL_GPL(kvm_task_switch);
11298 
11299 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11300 {
11301 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11302 		/*
11303 		 * When EFER.LME and CR0.PG are set, the processor is in
11304 		 * 64-bit mode (though maybe in a 32-bit code segment).
11305 		 * CR4.PAE and EFER.LMA must be set.
11306 		 */
11307 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11308 			return false;
11309 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11310 			return false;
11311 	} else {
11312 		/*
11313 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11314 		 * segment cannot be 64-bit.
11315 		 */
11316 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11317 			return false;
11318 	}
11319 
11320 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11321 }
11322 
11323 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11324 		int *mmu_reset_needed, bool update_pdptrs)
11325 {
11326 	struct msr_data apic_base_msr;
11327 	int idx;
11328 	struct desc_ptr dt;
11329 
11330 	if (!kvm_is_valid_sregs(vcpu, sregs))
11331 		return -EINVAL;
11332 
11333 	apic_base_msr.data = sregs->apic_base;
11334 	apic_base_msr.host_initiated = true;
11335 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11336 		return -EINVAL;
11337 
11338 	if (vcpu->arch.guest_state_protected)
11339 		return 0;
11340 
11341 	dt.size = sregs->idt.limit;
11342 	dt.address = sregs->idt.base;
11343 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11344 	dt.size = sregs->gdt.limit;
11345 	dt.address = sregs->gdt.base;
11346 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11347 
11348 	vcpu->arch.cr2 = sregs->cr2;
11349 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11350 	vcpu->arch.cr3 = sregs->cr3;
11351 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11352 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11353 
11354 	kvm_set_cr8(vcpu, sregs->cr8);
11355 
11356 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11357 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11358 
11359 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11360 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11361 	vcpu->arch.cr0 = sregs->cr0;
11362 
11363 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11364 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11365 
11366 	if (update_pdptrs) {
11367 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11368 		if (is_pae_paging(vcpu)) {
11369 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11370 			*mmu_reset_needed = 1;
11371 		}
11372 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11373 	}
11374 
11375 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11376 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11377 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11378 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11379 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11380 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11381 
11382 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11383 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11384 
11385 	update_cr8_intercept(vcpu);
11386 
11387 	/* Older userspace won't unhalt the vcpu on reset. */
11388 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11389 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11390 	    !is_protmode(vcpu))
11391 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11392 
11393 	return 0;
11394 }
11395 
11396 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11397 {
11398 	int pending_vec, max_bits;
11399 	int mmu_reset_needed = 0;
11400 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11401 
11402 	if (ret)
11403 		return ret;
11404 
11405 	if (mmu_reset_needed)
11406 		kvm_mmu_reset_context(vcpu);
11407 
11408 	max_bits = KVM_NR_INTERRUPTS;
11409 	pending_vec = find_first_bit(
11410 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11411 
11412 	if (pending_vec < max_bits) {
11413 		kvm_queue_interrupt(vcpu, pending_vec, false);
11414 		pr_debug("Set back pending irq %d\n", pending_vec);
11415 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11416 	}
11417 	return 0;
11418 }
11419 
11420 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11421 {
11422 	int mmu_reset_needed = 0;
11423 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11424 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11425 		!(sregs2->efer & EFER_LMA);
11426 	int i, ret;
11427 
11428 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11429 		return -EINVAL;
11430 
11431 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11432 		return -EINVAL;
11433 
11434 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11435 				 &mmu_reset_needed, !valid_pdptrs);
11436 	if (ret)
11437 		return ret;
11438 
11439 	if (valid_pdptrs) {
11440 		for (i = 0; i < 4 ; i++)
11441 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11442 
11443 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11444 		mmu_reset_needed = 1;
11445 		vcpu->arch.pdptrs_from_userspace = true;
11446 	}
11447 	if (mmu_reset_needed)
11448 		kvm_mmu_reset_context(vcpu);
11449 	return 0;
11450 }
11451 
11452 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11453 				  struct kvm_sregs *sregs)
11454 {
11455 	int ret;
11456 
11457 	vcpu_load(vcpu);
11458 	ret = __set_sregs(vcpu, sregs);
11459 	vcpu_put(vcpu);
11460 	return ret;
11461 }
11462 
11463 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11464 {
11465 	bool set = false;
11466 	struct kvm_vcpu *vcpu;
11467 	unsigned long i;
11468 
11469 	if (!enable_apicv)
11470 		return;
11471 
11472 	down_write(&kvm->arch.apicv_update_lock);
11473 
11474 	kvm_for_each_vcpu(i, vcpu, kvm) {
11475 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11476 			set = true;
11477 			break;
11478 		}
11479 	}
11480 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11481 	up_write(&kvm->arch.apicv_update_lock);
11482 }
11483 
11484 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11485 					struct kvm_guest_debug *dbg)
11486 {
11487 	unsigned long rflags;
11488 	int i, r;
11489 
11490 	if (vcpu->arch.guest_state_protected)
11491 		return -EINVAL;
11492 
11493 	vcpu_load(vcpu);
11494 
11495 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11496 		r = -EBUSY;
11497 		if (kvm_is_exception_pending(vcpu))
11498 			goto out;
11499 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11500 			kvm_queue_exception(vcpu, DB_VECTOR);
11501 		else
11502 			kvm_queue_exception(vcpu, BP_VECTOR);
11503 	}
11504 
11505 	/*
11506 	 * Read rflags as long as potentially injected trace flags are still
11507 	 * filtered out.
11508 	 */
11509 	rflags = kvm_get_rflags(vcpu);
11510 
11511 	vcpu->guest_debug = dbg->control;
11512 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11513 		vcpu->guest_debug = 0;
11514 
11515 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11516 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11517 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11518 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11519 	} else {
11520 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11521 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11522 	}
11523 	kvm_update_dr7(vcpu);
11524 
11525 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11526 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11527 
11528 	/*
11529 	 * Trigger an rflags update that will inject or remove the trace
11530 	 * flags.
11531 	 */
11532 	kvm_set_rflags(vcpu, rflags);
11533 
11534 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11535 
11536 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11537 
11538 	r = 0;
11539 
11540 out:
11541 	vcpu_put(vcpu);
11542 	return r;
11543 }
11544 
11545 /*
11546  * Translate a guest virtual address to a guest physical address.
11547  */
11548 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11549 				    struct kvm_translation *tr)
11550 {
11551 	unsigned long vaddr = tr->linear_address;
11552 	gpa_t gpa;
11553 	int idx;
11554 
11555 	vcpu_load(vcpu);
11556 
11557 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11558 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11559 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11560 	tr->physical_address = gpa;
11561 	tr->valid = gpa != INVALID_GPA;
11562 	tr->writeable = 1;
11563 	tr->usermode = 0;
11564 
11565 	vcpu_put(vcpu);
11566 	return 0;
11567 }
11568 
11569 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11570 {
11571 	struct fxregs_state *fxsave;
11572 
11573 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11574 		return 0;
11575 
11576 	vcpu_load(vcpu);
11577 
11578 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11579 	memcpy(fpu->fpr, fxsave->st_space, 128);
11580 	fpu->fcw = fxsave->cwd;
11581 	fpu->fsw = fxsave->swd;
11582 	fpu->ftwx = fxsave->twd;
11583 	fpu->last_opcode = fxsave->fop;
11584 	fpu->last_ip = fxsave->rip;
11585 	fpu->last_dp = fxsave->rdp;
11586 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11587 
11588 	vcpu_put(vcpu);
11589 	return 0;
11590 }
11591 
11592 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11593 {
11594 	struct fxregs_state *fxsave;
11595 
11596 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11597 		return 0;
11598 
11599 	vcpu_load(vcpu);
11600 
11601 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11602 
11603 	memcpy(fxsave->st_space, fpu->fpr, 128);
11604 	fxsave->cwd = fpu->fcw;
11605 	fxsave->swd = fpu->fsw;
11606 	fxsave->twd = fpu->ftwx;
11607 	fxsave->fop = fpu->last_opcode;
11608 	fxsave->rip = fpu->last_ip;
11609 	fxsave->rdp = fpu->last_dp;
11610 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11611 
11612 	vcpu_put(vcpu);
11613 	return 0;
11614 }
11615 
11616 static void store_regs(struct kvm_vcpu *vcpu)
11617 {
11618 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11619 
11620 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11621 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11622 
11623 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11624 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11625 
11626 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11627 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11628 				vcpu, &vcpu->run->s.regs.events);
11629 }
11630 
11631 static int sync_regs(struct kvm_vcpu *vcpu)
11632 {
11633 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11634 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11635 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11636 	}
11637 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11638 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11639 			return -EINVAL;
11640 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11641 	}
11642 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11643 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11644 				vcpu, &vcpu->run->s.regs.events))
11645 			return -EINVAL;
11646 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11647 	}
11648 
11649 	return 0;
11650 }
11651 
11652 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11653 {
11654 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11655 		pr_warn_once("SMP vm created on host with unstable TSC; "
11656 			     "guest TSC will not be reliable\n");
11657 
11658 	if (!kvm->arch.max_vcpu_ids)
11659 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11660 
11661 	if (id >= kvm->arch.max_vcpu_ids)
11662 		return -EINVAL;
11663 
11664 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11665 }
11666 
11667 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11668 {
11669 	struct page *page;
11670 	int r;
11671 
11672 	vcpu->arch.last_vmentry_cpu = -1;
11673 	vcpu->arch.regs_avail = ~0;
11674 	vcpu->arch.regs_dirty = ~0;
11675 
11676 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11677 
11678 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11679 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11680 	else
11681 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11682 
11683 	r = kvm_mmu_create(vcpu);
11684 	if (r < 0)
11685 		return r;
11686 
11687 	if (irqchip_in_kernel(vcpu->kvm)) {
11688 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11689 		if (r < 0)
11690 			goto fail_mmu_destroy;
11691 
11692 		/*
11693 		 * Defer evaluating inhibits until the vCPU is first run, as
11694 		 * this vCPU will not get notified of any changes until this
11695 		 * vCPU is visible to other vCPUs (marked online and added to
11696 		 * the set of vCPUs).  Opportunistically mark APICv active as
11697 		 * VMX in particularly is highly unlikely to have inhibits.
11698 		 * Ignore the current per-VM APICv state so that vCPU creation
11699 		 * is guaranteed to run with a deterministic value, the request
11700 		 * will ensure the vCPU gets the correct state before VM-Entry.
11701 		 */
11702 		if (enable_apicv) {
11703 			vcpu->arch.apic->apicv_active = true;
11704 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11705 		}
11706 	} else
11707 		static_branch_inc(&kvm_has_noapic_vcpu);
11708 
11709 	r = -ENOMEM;
11710 
11711 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11712 	if (!page)
11713 		goto fail_free_lapic;
11714 	vcpu->arch.pio_data = page_address(page);
11715 
11716 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11717 				       GFP_KERNEL_ACCOUNT);
11718 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11719 					    GFP_KERNEL_ACCOUNT);
11720 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11721 		goto fail_free_mce_banks;
11722 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11723 
11724 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11725 				GFP_KERNEL_ACCOUNT))
11726 		goto fail_free_mce_banks;
11727 
11728 	if (!alloc_emulate_ctxt(vcpu))
11729 		goto free_wbinvd_dirty_mask;
11730 
11731 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11732 		pr_err("failed to allocate vcpu's fpu\n");
11733 		goto free_emulate_ctxt;
11734 	}
11735 
11736 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11737 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11738 
11739 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11740 
11741 	kvm_async_pf_hash_reset(vcpu);
11742 
11743 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11744 	kvm_pmu_init(vcpu);
11745 
11746 	vcpu->arch.pending_external_vector = -1;
11747 	vcpu->arch.preempted_in_kernel = false;
11748 
11749 #if IS_ENABLED(CONFIG_HYPERV)
11750 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11751 #endif
11752 
11753 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11754 	if (r)
11755 		goto free_guest_fpu;
11756 
11757 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11758 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11759 	kvm_xen_init_vcpu(vcpu);
11760 	kvm_vcpu_mtrr_init(vcpu);
11761 	vcpu_load(vcpu);
11762 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11763 	kvm_vcpu_reset(vcpu, false);
11764 	kvm_init_mmu(vcpu);
11765 	vcpu_put(vcpu);
11766 	return 0;
11767 
11768 free_guest_fpu:
11769 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11770 free_emulate_ctxt:
11771 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11772 free_wbinvd_dirty_mask:
11773 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11774 fail_free_mce_banks:
11775 	kfree(vcpu->arch.mce_banks);
11776 	kfree(vcpu->arch.mci_ctl2_banks);
11777 	free_page((unsigned long)vcpu->arch.pio_data);
11778 fail_free_lapic:
11779 	kvm_free_lapic(vcpu);
11780 fail_mmu_destroy:
11781 	kvm_mmu_destroy(vcpu);
11782 	return r;
11783 }
11784 
11785 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11786 {
11787 	struct kvm *kvm = vcpu->kvm;
11788 
11789 	if (mutex_lock_killable(&vcpu->mutex))
11790 		return;
11791 	vcpu_load(vcpu);
11792 	kvm_synchronize_tsc(vcpu, 0);
11793 	vcpu_put(vcpu);
11794 
11795 	/* poll control enabled by default */
11796 	vcpu->arch.msr_kvm_poll_control = 1;
11797 
11798 	mutex_unlock(&vcpu->mutex);
11799 
11800 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11801 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11802 						KVMCLOCK_SYNC_PERIOD);
11803 }
11804 
11805 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11806 {
11807 	int idx;
11808 
11809 	kvmclock_reset(vcpu);
11810 
11811 	static_call(kvm_x86_vcpu_free)(vcpu);
11812 
11813 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11814 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11815 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11816 
11817 	kvm_xen_destroy_vcpu(vcpu);
11818 	kvm_hv_vcpu_uninit(vcpu);
11819 	kvm_pmu_destroy(vcpu);
11820 	kfree(vcpu->arch.mce_banks);
11821 	kfree(vcpu->arch.mci_ctl2_banks);
11822 	kvm_free_lapic(vcpu);
11823 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11824 	kvm_mmu_destroy(vcpu);
11825 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11826 	free_page((unsigned long)vcpu->arch.pio_data);
11827 	kvfree(vcpu->arch.cpuid_entries);
11828 	if (!lapic_in_kernel(vcpu))
11829 		static_branch_dec(&kvm_has_noapic_vcpu);
11830 }
11831 
11832 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11833 {
11834 	struct kvm_cpuid_entry2 *cpuid_0x1;
11835 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11836 	unsigned long new_cr0;
11837 
11838 	/*
11839 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11840 	 * to handle side effects.  RESET emulation hits those flows and relies
11841 	 * on emulated/virtualized registers, including those that are loaded
11842 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11843 	 * to detect improper or missing initialization.
11844 	 */
11845 	WARN_ON_ONCE(!init_event &&
11846 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11847 
11848 	/*
11849 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11850 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11851 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11852 	 * bits), i.e. virtualization is disabled.
11853 	 */
11854 	if (is_guest_mode(vcpu))
11855 		kvm_leave_nested(vcpu);
11856 
11857 	kvm_lapic_reset(vcpu, init_event);
11858 
11859 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11860 	vcpu->arch.hflags = 0;
11861 
11862 	vcpu->arch.smi_pending = 0;
11863 	vcpu->arch.smi_count = 0;
11864 	atomic_set(&vcpu->arch.nmi_queued, 0);
11865 	vcpu->arch.nmi_pending = 0;
11866 	vcpu->arch.nmi_injected = false;
11867 	kvm_clear_interrupt_queue(vcpu);
11868 	kvm_clear_exception_queue(vcpu);
11869 
11870 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11871 	kvm_update_dr0123(vcpu);
11872 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11873 	vcpu->arch.dr7 = DR7_FIXED_1;
11874 	kvm_update_dr7(vcpu);
11875 
11876 	vcpu->arch.cr2 = 0;
11877 
11878 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11879 	vcpu->arch.apf.msr_en_val = 0;
11880 	vcpu->arch.apf.msr_int_val = 0;
11881 	vcpu->arch.st.msr_val = 0;
11882 
11883 	kvmclock_reset(vcpu);
11884 
11885 	kvm_clear_async_pf_completion_queue(vcpu);
11886 	kvm_async_pf_hash_reset(vcpu);
11887 	vcpu->arch.apf.halted = false;
11888 
11889 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11890 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11891 
11892 		/*
11893 		 * All paths that lead to INIT are required to load the guest's
11894 		 * FPU state (because most paths are buried in KVM_RUN).
11895 		 */
11896 		if (init_event)
11897 			kvm_put_guest_fpu(vcpu);
11898 
11899 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11900 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11901 
11902 		if (init_event)
11903 			kvm_load_guest_fpu(vcpu);
11904 	}
11905 
11906 	if (!init_event) {
11907 		kvm_pmu_reset(vcpu);
11908 		vcpu->arch.smbase = 0x30000;
11909 
11910 		vcpu->arch.msr_misc_features_enables = 0;
11911 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11912 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11913 
11914 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11915 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11916 	}
11917 
11918 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11919 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11920 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11921 
11922 	/*
11923 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11924 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11925 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11926 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11927 	 * on RESET.  But, go through the motions in case that's ever remedied.
11928 	 */
11929 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11930 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11931 
11932 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11933 
11934 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11935 	kvm_rip_write(vcpu, 0xfff0);
11936 
11937 	vcpu->arch.cr3 = 0;
11938 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11939 
11940 	/*
11941 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11942 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11943 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11944 	 */
11945 	new_cr0 = X86_CR0_ET;
11946 	if (init_event)
11947 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11948 	else
11949 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11950 
11951 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11952 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11953 	static_call(kvm_x86_set_efer)(vcpu, 0);
11954 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11955 
11956 	/*
11957 	 * On the standard CR0/CR4/EFER modification paths, there are several
11958 	 * complex conditions determining whether the MMU has to be reset and/or
11959 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11960 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11961 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11962 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11963 	 */
11964 	if (old_cr0 & X86_CR0_PG) {
11965 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11966 		kvm_mmu_reset_context(vcpu);
11967 	}
11968 
11969 	/*
11970 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11971 	 * APM states the TLBs are untouched by INIT, but it also states that
11972 	 * the TLBs are flushed on "External initialization of the processor."
11973 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11974 	 * benefit in relying on the guest to flush the TLB immediately after
11975 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11976 	 * performance perspective.
11977 	 */
11978 	if (init_event)
11979 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11980 }
11981 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11982 
11983 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11984 {
11985 	struct kvm_segment cs;
11986 
11987 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11988 	cs.selector = vector << 8;
11989 	cs.base = vector << 12;
11990 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11991 	kvm_rip_write(vcpu, 0);
11992 }
11993 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11994 
11995 int kvm_arch_hardware_enable(void)
11996 {
11997 	struct kvm *kvm;
11998 	struct kvm_vcpu *vcpu;
11999 	unsigned long i;
12000 	int ret;
12001 	u64 local_tsc;
12002 	u64 max_tsc = 0;
12003 	bool stable, backwards_tsc = false;
12004 
12005 	kvm_user_return_msr_cpu_online();
12006 
12007 	ret = kvm_x86_check_processor_compatibility();
12008 	if (ret)
12009 		return ret;
12010 
12011 	ret = static_call(kvm_x86_hardware_enable)();
12012 	if (ret != 0)
12013 		return ret;
12014 
12015 	local_tsc = rdtsc();
12016 	stable = !kvm_check_tsc_unstable();
12017 	list_for_each_entry(kvm, &vm_list, vm_list) {
12018 		kvm_for_each_vcpu(i, vcpu, kvm) {
12019 			if (!stable && vcpu->cpu == smp_processor_id())
12020 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12021 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12022 				backwards_tsc = true;
12023 				if (vcpu->arch.last_host_tsc > max_tsc)
12024 					max_tsc = vcpu->arch.last_host_tsc;
12025 			}
12026 		}
12027 	}
12028 
12029 	/*
12030 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12031 	 * platforms that reset TSC during suspend or hibernate actions, but
12032 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12033 	 * detect that condition here, which happens early in CPU bringup,
12034 	 * before any KVM threads can be running.  Unfortunately, we can't
12035 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12036 	 * enough into CPU bringup that we know how much real time has actually
12037 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12038 	 * variables that haven't been updated yet.
12039 	 *
12040 	 * So we simply find the maximum observed TSC above, then record the
12041 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12042 	 * the adjustment will be applied.  Note that we accumulate
12043 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12044 	 * gets a chance to run again.  In the event that no KVM threads get a
12045 	 * chance to run, we will miss the entire elapsed period, as we'll have
12046 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12047 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12048 	 * uniform across all VCPUs (not to mention the scenario is extremely
12049 	 * unlikely). It is possible that a second hibernate recovery happens
12050 	 * much faster than a first, causing the observed TSC here to be
12051 	 * smaller; this would require additional padding adjustment, which is
12052 	 * why we set last_host_tsc to the local tsc observed here.
12053 	 *
12054 	 * N.B. - this code below runs only on platforms with reliable TSC,
12055 	 * as that is the only way backwards_tsc is set above.  Also note
12056 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12057 	 * have the same delta_cyc adjustment applied if backwards_tsc
12058 	 * is detected.  Note further, this adjustment is only done once,
12059 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12060 	 * called multiple times (one for each physical CPU bringup).
12061 	 *
12062 	 * Platforms with unreliable TSCs don't have to deal with this, they
12063 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12064 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12065 	 * guarantee that they stay in perfect synchronization.
12066 	 */
12067 	if (backwards_tsc) {
12068 		u64 delta_cyc = max_tsc - local_tsc;
12069 		list_for_each_entry(kvm, &vm_list, vm_list) {
12070 			kvm->arch.backwards_tsc_observed = true;
12071 			kvm_for_each_vcpu(i, vcpu, kvm) {
12072 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12073 				vcpu->arch.last_host_tsc = local_tsc;
12074 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12075 			}
12076 
12077 			/*
12078 			 * We have to disable TSC offset matching.. if you were
12079 			 * booting a VM while issuing an S4 host suspend....
12080 			 * you may have some problem.  Solving this issue is
12081 			 * left as an exercise to the reader.
12082 			 */
12083 			kvm->arch.last_tsc_nsec = 0;
12084 			kvm->arch.last_tsc_write = 0;
12085 		}
12086 
12087 	}
12088 	return 0;
12089 }
12090 
12091 void kvm_arch_hardware_disable(void)
12092 {
12093 	static_call(kvm_x86_hardware_disable)();
12094 	drop_user_return_notifiers();
12095 }
12096 
12097 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12098 {
12099 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12100 }
12101 
12102 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12103 {
12104 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12105 }
12106 
12107 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12108 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12109 
12110 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12111 {
12112 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12113 
12114 	vcpu->arch.l1tf_flush_l1d = true;
12115 	if (pmu->version && unlikely(pmu->event_count)) {
12116 		pmu->need_cleanup = true;
12117 		kvm_make_request(KVM_REQ_PMU, vcpu);
12118 	}
12119 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12120 }
12121 
12122 void kvm_arch_free_vm(struct kvm *kvm)
12123 {
12124 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12125 	__kvm_arch_free_vm(kvm);
12126 }
12127 
12128 
12129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12130 {
12131 	int ret;
12132 	unsigned long flags;
12133 
12134 	if (type)
12135 		return -EINVAL;
12136 
12137 	ret = kvm_page_track_init(kvm);
12138 	if (ret)
12139 		goto out;
12140 
12141 	ret = kvm_mmu_init_vm(kvm);
12142 	if (ret)
12143 		goto out_page_track;
12144 
12145 	ret = static_call(kvm_x86_vm_init)(kvm);
12146 	if (ret)
12147 		goto out_uninit_mmu;
12148 
12149 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12150 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12151 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12152 
12153 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12154 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12155 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12156 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12157 		&kvm->arch.irq_sources_bitmap);
12158 
12159 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12160 	mutex_init(&kvm->arch.apic_map_lock);
12161 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12162 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12163 
12164 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12165 	pvclock_update_vm_gtod_copy(kvm);
12166 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12167 
12168 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12169 	kvm->arch.guest_can_read_msr_platform_info = true;
12170 	kvm->arch.enable_pmu = enable_pmu;
12171 
12172 #if IS_ENABLED(CONFIG_HYPERV)
12173 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12174 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12175 #endif
12176 
12177 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12178 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12179 
12180 	kvm_apicv_init(kvm);
12181 	kvm_hv_init_vm(kvm);
12182 	kvm_xen_init_vm(kvm);
12183 
12184 	return 0;
12185 
12186 out_uninit_mmu:
12187 	kvm_mmu_uninit_vm(kvm);
12188 out_page_track:
12189 	kvm_page_track_cleanup(kvm);
12190 out:
12191 	return ret;
12192 }
12193 
12194 int kvm_arch_post_init_vm(struct kvm *kvm)
12195 {
12196 	return kvm_mmu_post_init_vm(kvm);
12197 }
12198 
12199 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12200 {
12201 	vcpu_load(vcpu);
12202 	kvm_mmu_unload(vcpu);
12203 	vcpu_put(vcpu);
12204 }
12205 
12206 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12207 {
12208 	unsigned long i;
12209 	struct kvm_vcpu *vcpu;
12210 
12211 	kvm_for_each_vcpu(i, vcpu, kvm) {
12212 		kvm_clear_async_pf_completion_queue(vcpu);
12213 		kvm_unload_vcpu_mmu(vcpu);
12214 	}
12215 }
12216 
12217 void kvm_arch_sync_events(struct kvm *kvm)
12218 {
12219 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12220 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12221 	kvm_free_pit(kvm);
12222 }
12223 
12224 /**
12225  * __x86_set_memory_region: Setup KVM internal memory slot
12226  *
12227  * @kvm: the kvm pointer to the VM.
12228  * @id: the slot ID to setup.
12229  * @gpa: the GPA to install the slot (unused when @size == 0).
12230  * @size: the size of the slot. Set to zero to uninstall a slot.
12231  *
12232  * This function helps to setup a KVM internal memory slot.  Specify
12233  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12234  * slot.  The return code can be one of the following:
12235  *
12236  *   HVA:           on success (uninstall will return a bogus HVA)
12237  *   -errno:        on error
12238  *
12239  * The caller should always use IS_ERR() to check the return value
12240  * before use.  Note, the KVM internal memory slots are guaranteed to
12241  * remain valid and unchanged until the VM is destroyed, i.e., the
12242  * GPA->HVA translation will not change.  However, the HVA is a user
12243  * address, i.e. its accessibility is not guaranteed, and must be
12244  * accessed via __copy_{to,from}_user().
12245  */
12246 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12247 				      u32 size)
12248 {
12249 	int i, r;
12250 	unsigned long hva, old_npages;
12251 	struct kvm_memslots *slots = kvm_memslots(kvm);
12252 	struct kvm_memory_slot *slot;
12253 
12254 	/* Called with kvm->slots_lock held.  */
12255 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12256 		return ERR_PTR_USR(-EINVAL);
12257 
12258 	slot = id_to_memslot(slots, id);
12259 	if (size) {
12260 		if (slot && slot->npages)
12261 			return ERR_PTR_USR(-EEXIST);
12262 
12263 		/*
12264 		 * MAP_SHARED to prevent internal slot pages from being moved
12265 		 * by fork()/COW.
12266 		 */
12267 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12268 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12269 		if (IS_ERR((void *)hva))
12270 			return (void __user *)hva;
12271 	} else {
12272 		if (!slot || !slot->npages)
12273 			return NULL;
12274 
12275 		old_npages = slot->npages;
12276 		hva = slot->userspace_addr;
12277 	}
12278 
12279 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12280 		struct kvm_userspace_memory_region m;
12281 
12282 		m.slot = id | (i << 16);
12283 		m.flags = 0;
12284 		m.guest_phys_addr = gpa;
12285 		m.userspace_addr = hva;
12286 		m.memory_size = size;
12287 		r = __kvm_set_memory_region(kvm, &m);
12288 		if (r < 0)
12289 			return ERR_PTR_USR(r);
12290 	}
12291 
12292 	if (!size)
12293 		vm_munmap(hva, old_npages * PAGE_SIZE);
12294 
12295 	return (void __user *)hva;
12296 }
12297 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12298 
12299 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12300 {
12301 	kvm_mmu_pre_destroy_vm(kvm);
12302 }
12303 
12304 void kvm_arch_destroy_vm(struct kvm *kvm)
12305 {
12306 	if (current->mm == kvm->mm) {
12307 		/*
12308 		 * Free memory regions allocated on behalf of userspace,
12309 		 * unless the memory map has changed due to process exit
12310 		 * or fd copying.
12311 		 */
12312 		mutex_lock(&kvm->slots_lock);
12313 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12314 					0, 0);
12315 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12316 					0, 0);
12317 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12318 		mutex_unlock(&kvm->slots_lock);
12319 	}
12320 	kvm_unload_vcpu_mmus(kvm);
12321 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12322 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12323 	kvm_pic_destroy(kvm);
12324 	kvm_ioapic_destroy(kvm);
12325 	kvm_destroy_vcpus(kvm);
12326 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12327 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12328 	kvm_mmu_uninit_vm(kvm);
12329 	kvm_page_track_cleanup(kvm);
12330 	kvm_xen_destroy_vm(kvm);
12331 	kvm_hv_destroy_vm(kvm);
12332 }
12333 
12334 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12335 {
12336 	int i;
12337 
12338 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12339 		kvfree(slot->arch.rmap[i]);
12340 		slot->arch.rmap[i] = NULL;
12341 	}
12342 }
12343 
12344 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12345 {
12346 	int i;
12347 
12348 	memslot_rmap_free(slot);
12349 
12350 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12351 		kvfree(slot->arch.lpage_info[i - 1]);
12352 		slot->arch.lpage_info[i - 1] = NULL;
12353 	}
12354 
12355 	kvm_page_track_free_memslot(slot);
12356 }
12357 
12358 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12359 {
12360 	const int sz = sizeof(*slot->arch.rmap[0]);
12361 	int i;
12362 
12363 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12364 		int level = i + 1;
12365 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12366 
12367 		if (slot->arch.rmap[i])
12368 			continue;
12369 
12370 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12371 		if (!slot->arch.rmap[i]) {
12372 			memslot_rmap_free(slot);
12373 			return -ENOMEM;
12374 		}
12375 	}
12376 
12377 	return 0;
12378 }
12379 
12380 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12381 				      struct kvm_memory_slot *slot)
12382 {
12383 	unsigned long npages = slot->npages;
12384 	int i, r;
12385 
12386 	/*
12387 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12388 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12389 	 * the new memslot is successful.
12390 	 */
12391 	memset(&slot->arch, 0, sizeof(slot->arch));
12392 
12393 	if (kvm_memslots_have_rmaps(kvm)) {
12394 		r = memslot_rmap_alloc(slot, npages);
12395 		if (r)
12396 			return r;
12397 	}
12398 
12399 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12400 		struct kvm_lpage_info *linfo;
12401 		unsigned long ugfn;
12402 		int lpages;
12403 		int level = i + 1;
12404 
12405 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12406 
12407 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12408 		if (!linfo)
12409 			goto out_free;
12410 
12411 		slot->arch.lpage_info[i - 1] = linfo;
12412 
12413 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12414 			linfo[0].disallow_lpage = 1;
12415 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12416 			linfo[lpages - 1].disallow_lpage = 1;
12417 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12418 		/*
12419 		 * If the gfn and userspace address are not aligned wrt each
12420 		 * other, disable large page support for this slot.
12421 		 */
12422 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12423 			unsigned long j;
12424 
12425 			for (j = 0; j < lpages; ++j)
12426 				linfo[j].disallow_lpage = 1;
12427 		}
12428 	}
12429 
12430 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12431 		goto out_free;
12432 
12433 	return 0;
12434 
12435 out_free:
12436 	memslot_rmap_free(slot);
12437 
12438 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12439 		kvfree(slot->arch.lpage_info[i - 1]);
12440 		slot->arch.lpage_info[i - 1] = NULL;
12441 	}
12442 	return -ENOMEM;
12443 }
12444 
12445 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12446 {
12447 	struct kvm_vcpu *vcpu;
12448 	unsigned long i;
12449 
12450 	/*
12451 	 * memslots->generation has been incremented.
12452 	 * mmio generation may have reached its maximum value.
12453 	 */
12454 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12455 
12456 	/* Force re-initialization of steal_time cache */
12457 	kvm_for_each_vcpu(i, vcpu, kvm)
12458 		kvm_vcpu_kick(vcpu);
12459 }
12460 
12461 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12462 				   const struct kvm_memory_slot *old,
12463 				   struct kvm_memory_slot *new,
12464 				   enum kvm_mr_change change)
12465 {
12466 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12467 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12468 			return -EINVAL;
12469 
12470 		return kvm_alloc_memslot_metadata(kvm, new);
12471 	}
12472 
12473 	if (change == KVM_MR_FLAGS_ONLY)
12474 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12475 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12476 		return -EIO;
12477 
12478 	return 0;
12479 }
12480 
12481 
12482 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12483 {
12484 	struct kvm_arch *ka = &kvm->arch;
12485 
12486 	if (!kvm_x86_ops.cpu_dirty_log_size)
12487 		return;
12488 
12489 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12490 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12491 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12492 
12493 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12494 }
12495 
12496 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12497 				     struct kvm_memory_slot *old,
12498 				     const struct kvm_memory_slot *new,
12499 				     enum kvm_mr_change change)
12500 {
12501 	u32 old_flags = old ? old->flags : 0;
12502 	u32 new_flags = new ? new->flags : 0;
12503 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12504 
12505 	/*
12506 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12507 	 * applies to all operations.
12508 	 */
12509 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12510 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12511 
12512 	/*
12513 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12514 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12515 	 *
12516 	 * For a memslot with dirty logging disabled:
12517 	 * CREATE:      No dirty mappings will already exist.
12518 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12519 	 *		kvm_arch_flush_shadow_memslot()
12520 	 *
12521 	 * For a memslot with dirty logging enabled:
12522 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12523 	 *		and no dirty bits to clear.
12524 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12525 	 *		kvm_arch_flush_shadow_memslot().
12526 	 */
12527 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12528 		return;
12529 
12530 	/*
12531 	 * READONLY and non-flags changes were filtered out above, and the only
12532 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12533 	 * logging isn't being toggled on or off.
12534 	 */
12535 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12536 		return;
12537 
12538 	if (!log_dirty_pages) {
12539 		/*
12540 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12541 		 * large sptes have to be split.  If live migration succeeds,
12542 		 * the guest in the source machine will be destroyed and large
12543 		 * sptes will be created in the destination.  However, if the
12544 		 * guest continues to run in the source machine (for example if
12545 		 * live migration fails), small sptes will remain around and
12546 		 * cause bad performance.
12547 		 *
12548 		 * Scan sptes if dirty logging has been stopped, dropping those
12549 		 * which can be collapsed into a single large-page spte.  Later
12550 		 * page faults will create the large-page sptes.
12551 		 */
12552 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12553 	} else {
12554 		/*
12555 		 * Initially-all-set does not require write protecting any page,
12556 		 * because they're all assumed to be dirty.
12557 		 */
12558 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12559 			return;
12560 
12561 		if (READ_ONCE(eager_page_split))
12562 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12563 
12564 		if (kvm_x86_ops.cpu_dirty_log_size) {
12565 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12566 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12567 		} else {
12568 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12569 		}
12570 
12571 		/*
12572 		 * Unconditionally flush the TLBs after enabling dirty logging.
12573 		 * A flush is almost always going to be necessary (see below),
12574 		 * and unconditionally flushing allows the helpers to omit
12575 		 * the subtly complex checks when removing write access.
12576 		 *
12577 		 * Do the flush outside of mmu_lock to reduce the amount of
12578 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12579 		 * safe as KVM only needs to guarantee the slot is fully
12580 		 * write-protected before returning to userspace, i.e. before
12581 		 * userspace can consume the dirty status.
12582 		 *
12583 		 * Flushing outside of mmu_lock requires KVM to be careful when
12584 		 * making decisions based on writable status of an SPTE, e.g. a
12585 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12586 		 *
12587 		 * Specifically, KVM also write-protects guest page tables to
12588 		 * monitor changes when using shadow paging, and must guarantee
12589 		 * no CPUs can write to those page before mmu_lock is dropped.
12590 		 * Because CPUs may have stale TLB entries at this point, a
12591 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12592 		 *
12593 		 * KVM also allows making SPTES writable outside of mmu_lock,
12594 		 * e.g. to allow dirty logging without taking mmu_lock.
12595 		 *
12596 		 * To handle these scenarios, KVM uses a separate software-only
12597 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12598 		 * a guest page table being write-protected (KVM clears the
12599 		 * MMU-writable flag when write-protecting for shadow paging).
12600 		 *
12601 		 * The use of MMU-writable is also the primary motivation for
12602 		 * the unconditional flush.  Because KVM must guarantee that a
12603 		 * CPU doesn't contain stale, writable TLB entries for a
12604 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12605 		 * MMU-writable SPTE regardless of whether the actual hardware
12606 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12607 		 * to flush, while unconditionally flushing allows the "remove
12608 		 * write access" helpers to ignore MMU-writable entirely.
12609 		 *
12610 		 * See is_writable_pte() for more details (the case involving
12611 		 * access-tracked SPTEs is particularly relevant).
12612 		 */
12613 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12614 	}
12615 }
12616 
12617 void kvm_arch_commit_memory_region(struct kvm *kvm,
12618 				struct kvm_memory_slot *old,
12619 				const struct kvm_memory_slot *new,
12620 				enum kvm_mr_change change)
12621 {
12622 	if (!kvm->arch.n_requested_mmu_pages &&
12623 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12624 		unsigned long nr_mmu_pages;
12625 
12626 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12627 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12628 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12629 	}
12630 
12631 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12632 
12633 	/* Free the arrays associated with the old memslot. */
12634 	if (change == KVM_MR_MOVE)
12635 		kvm_arch_free_memslot(kvm, old);
12636 }
12637 
12638 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12639 {
12640 	kvm_mmu_zap_all(kvm);
12641 }
12642 
12643 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12644 				   struct kvm_memory_slot *slot)
12645 {
12646 	kvm_page_track_flush_slot(kvm, slot);
12647 }
12648 
12649 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12650 {
12651 	return (is_guest_mode(vcpu) &&
12652 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12653 }
12654 
12655 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12656 {
12657 	if (!list_empty_careful(&vcpu->async_pf.done))
12658 		return true;
12659 
12660 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12661 	    kvm_apic_init_sipi_allowed(vcpu))
12662 		return true;
12663 
12664 	if (vcpu->arch.pv.pv_unhalted)
12665 		return true;
12666 
12667 	if (kvm_is_exception_pending(vcpu))
12668 		return true;
12669 
12670 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12671 	    (vcpu->arch.nmi_pending &&
12672 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12673 		return true;
12674 
12675 #ifdef CONFIG_KVM_SMM
12676 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12677 	    (vcpu->arch.smi_pending &&
12678 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12679 		return true;
12680 #endif
12681 
12682 	if (kvm_arch_interrupt_allowed(vcpu) &&
12683 	    (kvm_cpu_has_interrupt(vcpu) ||
12684 	    kvm_guest_apic_has_interrupt(vcpu)))
12685 		return true;
12686 
12687 	if (kvm_hv_has_stimer_pending(vcpu))
12688 		return true;
12689 
12690 	if (is_guest_mode(vcpu) &&
12691 	    kvm_x86_ops.nested_ops->has_events &&
12692 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12693 		return true;
12694 
12695 	if (kvm_xen_has_pending_events(vcpu))
12696 		return true;
12697 
12698 	return false;
12699 }
12700 
12701 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12702 {
12703 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12704 }
12705 
12706 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12707 {
12708 	if (kvm_vcpu_apicv_active(vcpu) &&
12709 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12710 		return true;
12711 
12712 	return false;
12713 }
12714 
12715 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12716 {
12717 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12718 		return true;
12719 
12720 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12721 #ifdef CONFIG_KVM_SMM
12722 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12723 #endif
12724 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12725 		return true;
12726 
12727 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12728 }
12729 
12730 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12731 {
12732 	if (vcpu->arch.guest_state_protected)
12733 		return true;
12734 
12735 	return vcpu->arch.preempted_in_kernel;
12736 }
12737 
12738 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12739 {
12740 	return kvm_rip_read(vcpu);
12741 }
12742 
12743 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12744 {
12745 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12746 }
12747 
12748 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12749 {
12750 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12751 }
12752 
12753 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12754 {
12755 	/* Can't read the RIP when guest state is protected, just return 0 */
12756 	if (vcpu->arch.guest_state_protected)
12757 		return 0;
12758 
12759 	if (is_64_bit_mode(vcpu))
12760 		return kvm_rip_read(vcpu);
12761 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12762 		     kvm_rip_read(vcpu));
12763 }
12764 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12765 
12766 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12767 {
12768 	return kvm_get_linear_rip(vcpu) == linear_rip;
12769 }
12770 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12771 
12772 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12773 {
12774 	unsigned long rflags;
12775 
12776 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12777 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12778 		rflags &= ~X86_EFLAGS_TF;
12779 	return rflags;
12780 }
12781 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12782 
12783 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12784 {
12785 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12786 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12787 		rflags |= X86_EFLAGS_TF;
12788 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12789 }
12790 
12791 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12792 {
12793 	__kvm_set_rflags(vcpu, rflags);
12794 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12795 }
12796 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12797 
12798 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12799 {
12800 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12801 
12802 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12803 }
12804 
12805 static inline u32 kvm_async_pf_next_probe(u32 key)
12806 {
12807 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12808 }
12809 
12810 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12811 {
12812 	u32 key = kvm_async_pf_hash_fn(gfn);
12813 
12814 	while (vcpu->arch.apf.gfns[key] != ~0)
12815 		key = kvm_async_pf_next_probe(key);
12816 
12817 	vcpu->arch.apf.gfns[key] = gfn;
12818 }
12819 
12820 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12821 {
12822 	int i;
12823 	u32 key = kvm_async_pf_hash_fn(gfn);
12824 
12825 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12826 		     (vcpu->arch.apf.gfns[key] != gfn &&
12827 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12828 		key = kvm_async_pf_next_probe(key);
12829 
12830 	return key;
12831 }
12832 
12833 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12834 {
12835 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12836 }
12837 
12838 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12839 {
12840 	u32 i, j, k;
12841 
12842 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12843 
12844 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12845 		return;
12846 
12847 	while (true) {
12848 		vcpu->arch.apf.gfns[i] = ~0;
12849 		do {
12850 			j = kvm_async_pf_next_probe(j);
12851 			if (vcpu->arch.apf.gfns[j] == ~0)
12852 				return;
12853 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12854 			/*
12855 			 * k lies cyclically in ]i,j]
12856 			 * |    i.k.j |
12857 			 * |....j i.k.| or  |.k..j i...|
12858 			 */
12859 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12860 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12861 		i = j;
12862 	}
12863 }
12864 
12865 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12866 {
12867 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12868 
12869 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12870 				      sizeof(reason));
12871 }
12872 
12873 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12874 {
12875 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12876 
12877 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12878 					     &token, offset, sizeof(token));
12879 }
12880 
12881 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12882 {
12883 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12884 	u32 val;
12885 
12886 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12887 					 &val, offset, sizeof(val)))
12888 		return false;
12889 
12890 	return !val;
12891 }
12892 
12893 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12894 {
12895 
12896 	if (!kvm_pv_async_pf_enabled(vcpu))
12897 		return false;
12898 
12899 	if (vcpu->arch.apf.send_user_only &&
12900 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12901 		return false;
12902 
12903 	if (is_guest_mode(vcpu)) {
12904 		/*
12905 		 * L1 needs to opt into the special #PF vmexits that are
12906 		 * used to deliver async page faults.
12907 		 */
12908 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12909 	} else {
12910 		/*
12911 		 * Play it safe in case the guest temporarily disables paging.
12912 		 * The real mode IDT in particular is unlikely to have a #PF
12913 		 * exception setup.
12914 		 */
12915 		return is_paging(vcpu);
12916 	}
12917 }
12918 
12919 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12920 {
12921 	if (unlikely(!lapic_in_kernel(vcpu) ||
12922 		     kvm_event_needs_reinjection(vcpu) ||
12923 		     kvm_is_exception_pending(vcpu)))
12924 		return false;
12925 
12926 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12927 		return false;
12928 
12929 	/*
12930 	 * If interrupts are off we cannot even use an artificial
12931 	 * halt state.
12932 	 */
12933 	return kvm_arch_interrupt_allowed(vcpu);
12934 }
12935 
12936 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12937 				     struct kvm_async_pf *work)
12938 {
12939 	struct x86_exception fault;
12940 
12941 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12942 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12943 
12944 	if (kvm_can_deliver_async_pf(vcpu) &&
12945 	    !apf_put_user_notpresent(vcpu)) {
12946 		fault.vector = PF_VECTOR;
12947 		fault.error_code_valid = true;
12948 		fault.error_code = 0;
12949 		fault.nested_page_fault = false;
12950 		fault.address = work->arch.token;
12951 		fault.async_page_fault = true;
12952 		kvm_inject_page_fault(vcpu, &fault);
12953 		return true;
12954 	} else {
12955 		/*
12956 		 * It is not possible to deliver a paravirtualized asynchronous
12957 		 * page fault, but putting the guest in an artificial halt state
12958 		 * can be beneficial nevertheless: if an interrupt arrives, we
12959 		 * can deliver it timely and perhaps the guest will schedule
12960 		 * another process.  When the instruction that triggered a page
12961 		 * fault is retried, hopefully the page will be ready in the host.
12962 		 */
12963 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12964 		return false;
12965 	}
12966 }
12967 
12968 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12969 				 struct kvm_async_pf *work)
12970 {
12971 	struct kvm_lapic_irq irq = {
12972 		.delivery_mode = APIC_DM_FIXED,
12973 		.vector = vcpu->arch.apf.vec
12974 	};
12975 
12976 	if (work->wakeup_all)
12977 		work->arch.token = ~0; /* broadcast wakeup */
12978 	else
12979 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12980 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12981 
12982 	if ((work->wakeup_all || work->notpresent_injected) &&
12983 	    kvm_pv_async_pf_enabled(vcpu) &&
12984 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12985 		vcpu->arch.apf.pageready_pending = true;
12986 		kvm_apic_set_irq(vcpu, &irq, NULL);
12987 	}
12988 
12989 	vcpu->arch.apf.halted = false;
12990 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12991 }
12992 
12993 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12994 {
12995 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12996 	if (!vcpu->arch.apf.pageready_pending)
12997 		kvm_vcpu_kick(vcpu);
12998 }
12999 
13000 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13001 {
13002 	if (!kvm_pv_async_pf_enabled(vcpu))
13003 		return true;
13004 	else
13005 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13006 }
13007 
13008 void kvm_arch_start_assignment(struct kvm *kvm)
13009 {
13010 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13011 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13012 }
13013 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13014 
13015 void kvm_arch_end_assignment(struct kvm *kvm)
13016 {
13017 	atomic_dec(&kvm->arch.assigned_device_count);
13018 }
13019 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13020 
13021 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13022 {
13023 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13024 }
13025 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13026 
13027 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13028 {
13029 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13030 }
13031 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13032 
13033 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13034 {
13035 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13036 }
13037 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13038 
13039 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13040 {
13041 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13042 }
13043 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13044 
13045 bool kvm_arch_has_irq_bypass(void)
13046 {
13047 	return true;
13048 }
13049 
13050 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13051 				      struct irq_bypass_producer *prod)
13052 {
13053 	struct kvm_kernel_irqfd *irqfd =
13054 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13055 	int ret;
13056 
13057 	irqfd->producer = prod;
13058 	kvm_arch_start_assignment(irqfd->kvm);
13059 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13060 					 prod->irq, irqfd->gsi, 1);
13061 
13062 	if (ret)
13063 		kvm_arch_end_assignment(irqfd->kvm);
13064 
13065 	return ret;
13066 }
13067 
13068 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13069 				      struct irq_bypass_producer *prod)
13070 {
13071 	int ret;
13072 	struct kvm_kernel_irqfd *irqfd =
13073 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13074 
13075 	WARN_ON(irqfd->producer != prod);
13076 	irqfd->producer = NULL;
13077 
13078 	/*
13079 	 * When producer of consumer is unregistered, we change back to
13080 	 * remapped mode, so we can re-use the current implementation
13081 	 * when the irq is masked/disabled or the consumer side (KVM
13082 	 * int this case doesn't want to receive the interrupts.
13083 	*/
13084 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13085 	if (ret)
13086 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13087 		       " fails: %d\n", irqfd->consumer.token, ret);
13088 
13089 	kvm_arch_end_assignment(irqfd->kvm);
13090 }
13091 
13092 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13093 				   uint32_t guest_irq, bool set)
13094 {
13095 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13096 }
13097 
13098 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13099 				  struct kvm_kernel_irq_routing_entry *new)
13100 {
13101 	if (new->type != KVM_IRQ_ROUTING_MSI)
13102 		return true;
13103 
13104 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13105 }
13106 
13107 bool kvm_vector_hashing_enabled(void)
13108 {
13109 	return vector_hashing;
13110 }
13111 
13112 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13113 {
13114 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13115 }
13116 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13117 
13118 
13119 int kvm_spec_ctrl_test_value(u64 value)
13120 {
13121 	/*
13122 	 * test that setting IA32_SPEC_CTRL to given value
13123 	 * is allowed by the host processor
13124 	 */
13125 
13126 	u64 saved_value;
13127 	unsigned long flags;
13128 	int ret = 0;
13129 
13130 	local_irq_save(flags);
13131 
13132 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13133 		ret = 1;
13134 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13135 		ret = 1;
13136 	else
13137 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13138 
13139 	local_irq_restore(flags);
13140 
13141 	return ret;
13142 }
13143 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13144 
13145 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13146 {
13147 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13148 	struct x86_exception fault;
13149 	u64 access = error_code &
13150 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13151 
13152 	if (!(error_code & PFERR_PRESENT_MASK) ||
13153 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13154 		/*
13155 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13156 		 * tables probably do not match the TLB.  Just proceed
13157 		 * with the error code that the processor gave.
13158 		 */
13159 		fault.vector = PF_VECTOR;
13160 		fault.error_code_valid = true;
13161 		fault.error_code = error_code;
13162 		fault.nested_page_fault = false;
13163 		fault.address = gva;
13164 		fault.async_page_fault = false;
13165 	}
13166 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13167 }
13168 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13169 
13170 /*
13171  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13172  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13173  * indicates whether exit to userspace is needed.
13174  */
13175 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13176 			      struct x86_exception *e)
13177 {
13178 	if (r == X86EMUL_PROPAGATE_FAULT) {
13179 		if (KVM_BUG_ON(!e, vcpu->kvm))
13180 			return -EIO;
13181 
13182 		kvm_inject_emulated_page_fault(vcpu, e);
13183 		return 1;
13184 	}
13185 
13186 	/*
13187 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13188 	 * while handling a VMX instruction KVM could've handled the request
13189 	 * correctly by exiting to userspace and performing I/O but there
13190 	 * doesn't seem to be a real use-case behind such requests, just return
13191 	 * KVM_EXIT_INTERNAL_ERROR for now.
13192 	 */
13193 	kvm_prepare_emulation_failure_exit(vcpu);
13194 
13195 	return 0;
13196 }
13197 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13198 
13199 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13200 {
13201 	bool pcid_enabled;
13202 	struct x86_exception e;
13203 	struct {
13204 		u64 pcid;
13205 		u64 gla;
13206 	} operand;
13207 	int r;
13208 
13209 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13210 	if (r != X86EMUL_CONTINUE)
13211 		return kvm_handle_memory_failure(vcpu, r, &e);
13212 
13213 	if (operand.pcid >> 12 != 0) {
13214 		kvm_inject_gp(vcpu, 0);
13215 		return 1;
13216 	}
13217 
13218 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13219 
13220 	switch (type) {
13221 	case INVPCID_TYPE_INDIV_ADDR:
13222 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13223 		    is_noncanonical_address(operand.gla, vcpu)) {
13224 			kvm_inject_gp(vcpu, 0);
13225 			return 1;
13226 		}
13227 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13228 		return kvm_skip_emulated_instruction(vcpu);
13229 
13230 	case INVPCID_TYPE_SINGLE_CTXT:
13231 		if (!pcid_enabled && (operand.pcid != 0)) {
13232 			kvm_inject_gp(vcpu, 0);
13233 			return 1;
13234 		}
13235 
13236 		kvm_invalidate_pcid(vcpu, operand.pcid);
13237 		return kvm_skip_emulated_instruction(vcpu);
13238 
13239 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13240 		/*
13241 		 * Currently, KVM doesn't mark global entries in the shadow
13242 		 * page tables, so a non-global flush just degenerates to a
13243 		 * global flush. If needed, we could optimize this later by
13244 		 * keeping track of global entries in shadow page tables.
13245 		 */
13246 
13247 		fallthrough;
13248 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13249 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13250 		return kvm_skip_emulated_instruction(vcpu);
13251 
13252 	default:
13253 		kvm_inject_gp(vcpu, 0);
13254 		return 1;
13255 	}
13256 }
13257 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13258 
13259 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13260 {
13261 	struct kvm_run *run = vcpu->run;
13262 	struct kvm_mmio_fragment *frag;
13263 	unsigned int len;
13264 
13265 	BUG_ON(!vcpu->mmio_needed);
13266 
13267 	/* Complete previous fragment */
13268 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13269 	len = min(8u, frag->len);
13270 	if (!vcpu->mmio_is_write)
13271 		memcpy(frag->data, run->mmio.data, len);
13272 
13273 	if (frag->len <= 8) {
13274 		/* Switch to the next fragment. */
13275 		frag++;
13276 		vcpu->mmio_cur_fragment++;
13277 	} else {
13278 		/* Go forward to the next mmio piece. */
13279 		frag->data += len;
13280 		frag->gpa += len;
13281 		frag->len -= len;
13282 	}
13283 
13284 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13285 		vcpu->mmio_needed = 0;
13286 
13287 		// VMG change, at this point, we're always done
13288 		// RIP has already been advanced
13289 		return 1;
13290 	}
13291 
13292 	// More MMIO is needed
13293 	run->mmio.phys_addr = frag->gpa;
13294 	run->mmio.len = min(8u, frag->len);
13295 	run->mmio.is_write = vcpu->mmio_is_write;
13296 	if (run->mmio.is_write)
13297 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13298 	run->exit_reason = KVM_EXIT_MMIO;
13299 
13300 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13301 
13302 	return 0;
13303 }
13304 
13305 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13306 			  void *data)
13307 {
13308 	int handled;
13309 	struct kvm_mmio_fragment *frag;
13310 
13311 	if (!data)
13312 		return -EINVAL;
13313 
13314 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13315 	if (handled == bytes)
13316 		return 1;
13317 
13318 	bytes -= handled;
13319 	gpa += handled;
13320 	data += handled;
13321 
13322 	/*TODO: Check if need to increment number of frags */
13323 	frag = vcpu->mmio_fragments;
13324 	vcpu->mmio_nr_fragments = 1;
13325 	frag->len = bytes;
13326 	frag->gpa = gpa;
13327 	frag->data = data;
13328 
13329 	vcpu->mmio_needed = 1;
13330 	vcpu->mmio_cur_fragment = 0;
13331 
13332 	vcpu->run->mmio.phys_addr = gpa;
13333 	vcpu->run->mmio.len = min(8u, frag->len);
13334 	vcpu->run->mmio.is_write = 1;
13335 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13336 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13337 
13338 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13339 
13340 	return 0;
13341 }
13342 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13343 
13344 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13345 			 void *data)
13346 {
13347 	int handled;
13348 	struct kvm_mmio_fragment *frag;
13349 
13350 	if (!data)
13351 		return -EINVAL;
13352 
13353 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13354 	if (handled == bytes)
13355 		return 1;
13356 
13357 	bytes -= handled;
13358 	gpa += handled;
13359 	data += handled;
13360 
13361 	/*TODO: Check if need to increment number of frags */
13362 	frag = vcpu->mmio_fragments;
13363 	vcpu->mmio_nr_fragments = 1;
13364 	frag->len = bytes;
13365 	frag->gpa = gpa;
13366 	frag->data = data;
13367 
13368 	vcpu->mmio_needed = 1;
13369 	vcpu->mmio_cur_fragment = 0;
13370 
13371 	vcpu->run->mmio.phys_addr = gpa;
13372 	vcpu->run->mmio.len = min(8u, frag->len);
13373 	vcpu->run->mmio.is_write = 0;
13374 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13375 
13376 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13377 
13378 	return 0;
13379 }
13380 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13381 
13382 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13383 {
13384 	vcpu->arch.sev_pio_count -= count;
13385 	vcpu->arch.sev_pio_data += count * size;
13386 }
13387 
13388 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13389 			   unsigned int port);
13390 
13391 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13392 {
13393 	int size = vcpu->arch.pio.size;
13394 	int port = vcpu->arch.pio.port;
13395 
13396 	vcpu->arch.pio.count = 0;
13397 	if (vcpu->arch.sev_pio_count)
13398 		return kvm_sev_es_outs(vcpu, size, port);
13399 	return 1;
13400 }
13401 
13402 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13403 			   unsigned int port)
13404 {
13405 	for (;;) {
13406 		unsigned int count =
13407 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13408 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13409 
13410 		/* memcpy done already by emulator_pio_out.  */
13411 		advance_sev_es_emulated_pio(vcpu, count, size);
13412 		if (!ret)
13413 			break;
13414 
13415 		/* Emulation done by the kernel.  */
13416 		if (!vcpu->arch.sev_pio_count)
13417 			return 1;
13418 	}
13419 
13420 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13421 	return 0;
13422 }
13423 
13424 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13425 			  unsigned int port);
13426 
13427 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13428 {
13429 	unsigned count = vcpu->arch.pio.count;
13430 	int size = vcpu->arch.pio.size;
13431 	int port = vcpu->arch.pio.port;
13432 
13433 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13434 	advance_sev_es_emulated_pio(vcpu, count, size);
13435 	if (vcpu->arch.sev_pio_count)
13436 		return kvm_sev_es_ins(vcpu, size, port);
13437 	return 1;
13438 }
13439 
13440 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13441 			  unsigned int port)
13442 {
13443 	for (;;) {
13444 		unsigned int count =
13445 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13446 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13447 			break;
13448 
13449 		/* Emulation done by the kernel.  */
13450 		advance_sev_es_emulated_pio(vcpu, count, size);
13451 		if (!vcpu->arch.sev_pio_count)
13452 			return 1;
13453 	}
13454 
13455 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13456 	return 0;
13457 }
13458 
13459 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13460 			 unsigned int port, void *data,  unsigned int count,
13461 			 int in)
13462 {
13463 	vcpu->arch.sev_pio_data = data;
13464 	vcpu->arch.sev_pio_count = count;
13465 	return in ? kvm_sev_es_ins(vcpu, size, port)
13466 		  : kvm_sev_es_outs(vcpu, size, port);
13467 }
13468 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13469 
13470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13499 
13500 static int __init kvm_x86_init(void)
13501 {
13502 	kvm_mmu_x86_module_init();
13503 	return 0;
13504 }
13505 module_init(kvm_x86_init);
13506 
13507 static void __exit kvm_x86_exit(void)
13508 {
13509 	/*
13510 	 * If module_init() is implemented, module_exit() must also be
13511 	 * implemented to allow module unload.
13512 	 */
13513 }
13514 module_exit(kvm_x86_exit);
13515