1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* 197 * Restoring the host value for MSRs that are only consumed when running in 198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 199 * returns to userspace, i.e. the kernel can run with the guest's value. 200 */ 201 #define KVM_MAX_NR_USER_RETURN_MSRS 16 202 203 struct kvm_user_return_msrs { 204 struct user_return_notifier urn; 205 bool registered; 206 struct kvm_user_return_msr_values { 207 u64 host; 208 u64 curr; 209 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 210 }; 211 212 u32 __read_mostly kvm_nr_uret_msrs; 213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 215 static struct kvm_user_return_msrs __percpu *user_return_msrs; 216 217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 221 222 u64 __read_mostly host_efer; 223 EXPORT_SYMBOL_GPL(host_efer); 224 225 bool __read_mostly allow_smaller_maxphyaddr = 0; 226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 227 228 bool __read_mostly enable_apicv = true; 229 EXPORT_SYMBOL_GPL(enable_apicv); 230 231 u64 __read_mostly host_xss; 232 EXPORT_SYMBOL_GPL(host_xss); 233 234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 235 KVM_GENERIC_VM_STATS(), 236 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 237 STATS_DESC_COUNTER(VM, mmu_pte_write), 238 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 239 STATS_DESC_COUNTER(VM, mmu_flooded), 240 STATS_DESC_COUNTER(VM, mmu_recycled), 241 STATS_DESC_COUNTER(VM, mmu_cache_miss), 242 STATS_DESC_ICOUNTER(VM, mmu_unsync), 243 STATS_DESC_ICOUNTER(VM, pages_4k), 244 STATS_DESC_ICOUNTER(VM, pages_2m), 245 STATS_DESC_ICOUNTER(VM, pages_1g), 246 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 247 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 248 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 249 }; 250 251 const struct kvm_stats_header kvm_vm_stats_header = { 252 .name_size = KVM_STATS_NAME_SIZE, 253 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 254 .id_offset = sizeof(struct kvm_stats_header), 255 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 256 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 257 sizeof(kvm_vm_stats_desc), 258 }; 259 260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 261 KVM_GENERIC_VCPU_STATS(), 262 STATS_DESC_COUNTER(VCPU, pf_taken), 263 STATS_DESC_COUNTER(VCPU, pf_fixed), 264 STATS_DESC_COUNTER(VCPU, pf_emulate), 265 STATS_DESC_COUNTER(VCPU, pf_spurious), 266 STATS_DESC_COUNTER(VCPU, pf_fast), 267 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 268 STATS_DESC_COUNTER(VCPU, pf_guest), 269 STATS_DESC_COUNTER(VCPU, tlb_flush), 270 STATS_DESC_COUNTER(VCPU, invlpg), 271 STATS_DESC_COUNTER(VCPU, exits), 272 STATS_DESC_COUNTER(VCPU, io_exits), 273 STATS_DESC_COUNTER(VCPU, mmio_exits), 274 STATS_DESC_COUNTER(VCPU, signal_exits), 275 STATS_DESC_COUNTER(VCPU, irq_window_exits), 276 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 277 STATS_DESC_COUNTER(VCPU, l1d_flush), 278 STATS_DESC_COUNTER(VCPU, halt_exits), 279 STATS_DESC_COUNTER(VCPU, request_irq_exits), 280 STATS_DESC_COUNTER(VCPU, irq_exits), 281 STATS_DESC_COUNTER(VCPU, host_state_reload), 282 STATS_DESC_COUNTER(VCPU, fpu_reload), 283 STATS_DESC_COUNTER(VCPU, insn_emulation), 284 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 285 STATS_DESC_COUNTER(VCPU, hypercalls), 286 STATS_DESC_COUNTER(VCPU, irq_injections), 287 STATS_DESC_COUNTER(VCPU, nmi_injections), 288 STATS_DESC_COUNTER(VCPU, req_event), 289 STATS_DESC_COUNTER(VCPU, nested_run), 290 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 291 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 292 STATS_DESC_COUNTER(VCPU, preemption_reported), 293 STATS_DESC_COUNTER(VCPU, preemption_other), 294 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 295 STATS_DESC_COUNTER(VCPU, notify_window_exits), 296 }; 297 298 const struct kvm_stats_header kvm_vcpu_stats_header = { 299 .name_size = KVM_STATS_NAME_SIZE, 300 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 301 .id_offset = sizeof(struct kvm_stats_header), 302 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 303 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 304 sizeof(kvm_vcpu_stats_desc), 305 }; 306 307 u64 __read_mostly host_xcr0; 308 309 static struct kmem_cache *x86_emulator_cache; 310 311 /* 312 * When called, it means the previous get/set msr reached an invalid msr. 313 * Return true if we want to ignore/silent this failed msr access. 314 */ 315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 316 { 317 const char *op = write ? "wrmsr" : "rdmsr"; 318 319 if (ignore_msrs) { 320 if (report_ignored_msrs) 321 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 322 op, msr, data); 323 /* Mask the error */ 324 return true; 325 } else { 326 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 327 op, msr, data); 328 return false; 329 } 330 } 331 332 static struct kmem_cache *kvm_alloc_emulator_cache(void) 333 { 334 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 335 unsigned int size = sizeof(struct x86_emulate_ctxt); 336 337 return kmem_cache_create_usercopy("x86_emulator", size, 338 __alignof__(struct x86_emulate_ctxt), 339 SLAB_ACCOUNT, useroffset, 340 size - useroffset, NULL); 341 } 342 343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 344 345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 346 { 347 int i; 348 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 349 vcpu->arch.apf.gfns[i] = ~0; 350 } 351 352 static void kvm_on_user_return(struct user_return_notifier *urn) 353 { 354 unsigned slot; 355 struct kvm_user_return_msrs *msrs 356 = container_of(urn, struct kvm_user_return_msrs, urn); 357 struct kvm_user_return_msr_values *values; 358 unsigned long flags; 359 360 /* 361 * Disabling irqs at this point since the following code could be 362 * interrupted and executed through kvm_arch_hardware_disable() 363 */ 364 local_irq_save(flags); 365 if (msrs->registered) { 366 msrs->registered = false; 367 user_return_notifier_unregister(urn); 368 } 369 local_irq_restore(flags); 370 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 371 values = &msrs->values[slot]; 372 if (values->host != values->curr) { 373 wrmsrl(kvm_uret_msrs_list[slot], values->host); 374 values->curr = values->host; 375 } 376 } 377 } 378 379 static int kvm_probe_user_return_msr(u32 msr) 380 { 381 u64 val; 382 int ret; 383 384 preempt_disable(); 385 ret = rdmsrl_safe(msr, &val); 386 if (ret) 387 goto out; 388 ret = wrmsrl_safe(msr, val); 389 out: 390 preempt_enable(); 391 return ret; 392 } 393 394 int kvm_add_user_return_msr(u32 msr) 395 { 396 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 397 398 if (kvm_probe_user_return_msr(msr)) 399 return -1; 400 401 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 402 return kvm_nr_uret_msrs++; 403 } 404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 405 406 int kvm_find_user_return_msr(u32 msr) 407 { 408 int i; 409 410 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 411 if (kvm_uret_msrs_list[i] == msr) 412 return i; 413 } 414 return -1; 415 } 416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 417 418 static void kvm_user_return_msr_cpu_online(void) 419 { 420 unsigned int cpu = smp_processor_id(); 421 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 422 u64 value; 423 int i; 424 425 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 426 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 427 msrs->values[i].host = value; 428 msrs->values[i].curr = value; 429 } 430 } 431 432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 433 { 434 unsigned int cpu = smp_processor_id(); 435 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 436 int err; 437 438 value = (value & mask) | (msrs->values[slot].host & ~mask); 439 if (value == msrs->values[slot].curr) 440 return 0; 441 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 442 if (err) 443 return 1; 444 445 msrs->values[slot].curr = value; 446 if (!msrs->registered) { 447 msrs->urn.on_user_return = kvm_on_user_return; 448 user_return_notifier_register(&msrs->urn); 449 msrs->registered = true; 450 } 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 454 455 static void drop_user_return_notifiers(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 459 460 if (msrs->registered) 461 kvm_on_user_return(&msrs->urn); 462 } 463 464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 465 { 466 return vcpu->arch.apic_base; 467 } 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 496 /* 497 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 498 * 499 * Hardware virtualization extension instructions may fault if a reboot turns 500 * off virtualization while processes are running. Usually after catching the 501 * fault we just panic; during reboot instead the instruction is ignored. 502 */ 503 noinstr void kvm_spurious_fault(void) 504 { 505 /* Fault while not rebooting. We want the trace. */ 506 BUG_ON(!kvm_rebooting); 507 } 508 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 509 510 #define EXCPT_BENIGN 0 511 #define EXCPT_CONTRIBUTORY 1 512 #define EXCPT_PF 2 513 514 static int exception_class(int vector) 515 { 516 switch (vector) { 517 case PF_VECTOR: 518 return EXCPT_PF; 519 case DE_VECTOR: 520 case TS_VECTOR: 521 case NP_VECTOR: 522 case SS_VECTOR: 523 case GP_VECTOR: 524 return EXCPT_CONTRIBUTORY; 525 default: 526 break; 527 } 528 return EXCPT_BENIGN; 529 } 530 531 #define EXCPT_FAULT 0 532 #define EXCPT_TRAP 1 533 #define EXCPT_ABORT 2 534 #define EXCPT_INTERRUPT 3 535 #define EXCPT_DB 4 536 537 static int exception_type(int vector) 538 { 539 unsigned int mask; 540 541 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 542 return EXCPT_INTERRUPT; 543 544 mask = 1 << vector; 545 546 /* 547 * #DBs can be trap-like or fault-like, the caller must check other CPU 548 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 549 */ 550 if (mask & (1 << DB_VECTOR)) 551 return EXCPT_DB; 552 553 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 554 return EXCPT_TRAP; 555 556 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 557 return EXCPT_ABORT; 558 559 /* Reserved exceptions will result in fault */ 560 return EXCPT_FAULT; 561 } 562 563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 564 struct kvm_queued_exception *ex) 565 { 566 if (!ex->has_payload) 567 return; 568 569 switch (ex->vector) { 570 case DB_VECTOR: 571 /* 572 * "Certain debug exceptions may clear bit 0-3. The 573 * remaining contents of the DR6 register are never 574 * cleared by the processor". 575 */ 576 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 577 /* 578 * In order to reflect the #DB exception payload in guest 579 * dr6, three components need to be considered: active low 580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 581 * DR6_BS and DR6_BT) 582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 583 * In the target guest dr6: 584 * FIXED_1 bits should always be set. 585 * Active low bits should be cleared if 1-setting in payload. 586 * Active high bits should be set if 1-setting in payload. 587 * 588 * Note, the payload is compatible with the pending debug 589 * exceptions/exit qualification under VMX, that active_low bits 590 * are active high in payload. 591 * So they need to be flipped for DR6. 592 */ 593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 594 vcpu->arch.dr6 |= ex->payload; 595 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 596 597 /* 598 * The #DB payload is defined as compatible with the 'pending 599 * debug exceptions' field under VMX, not DR6. While bit 12 is 600 * defined in the 'pending debug exceptions' field (enabled 601 * breakpoint), it is reserved and must be zero in DR6. 602 */ 603 vcpu->arch.dr6 &= ~BIT(12); 604 break; 605 case PF_VECTOR: 606 vcpu->arch.cr2 = ex->payload; 607 break; 608 } 609 610 ex->has_payload = false; 611 ex->payload = 0; 612 } 613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 614 615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 616 bool has_error_code, u32 error_code, 617 bool has_payload, unsigned long payload) 618 { 619 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 620 621 ex->vector = vector; 622 ex->injected = false; 623 ex->pending = true; 624 ex->has_error_code = has_error_code; 625 ex->error_code = error_code; 626 ex->has_payload = has_payload; 627 ex->payload = payload; 628 } 629 630 /* Forcibly leave the nested mode in cases like a vCPU reset */ 631 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 632 { 633 kvm_x86_ops.nested_ops->leave_nested(vcpu); 634 } 635 636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 637 unsigned nr, bool has_error, u32 error_code, 638 bool has_payload, unsigned long payload, bool reinject) 639 { 640 u32 prev_nr; 641 int class1, class2; 642 643 kvm_make_request(KVM_REQ_EVENT, vcpu); 644 645 /* 646 * If the exception is destined for L2 and isn't being reinjected, 647 * morph it to a VM-Exit if L1 wants to intercept the exception. A 648 * previously injected exception is not checked because it was checked 649 * when it was original queued, and re-checking is incorrect if _L1_ 650 * injected the exception, in which case it's exempt from interception. 651 */ 652 if (!reinject && is_guest_mode(vcpu) && 653 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 654 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 655 has_payload, payload); 656 return; 657 } 658 659 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 660 queue: 661 if (reinject) { 662 /* 663 * On VM-Entry, an exception can be pending if and only 664 * if event injection was blocked by nested_run_pending. 665 * In that case, however, vcpu_enter_guest() requests an 666 * immediate exit, and the guest shouldn't proceed far 667 * enough to need reinjection. 668 */ 669 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 670 vcpu->arch.exception.injected = true; 671 if (WARN_ON_ONCE(has_payload)) { 672 /* 673 * A reinjected event has already 674 * delivered its payload. 675 */ 676 has_payload = false; 677 payload = 0; 678 } 679 } else { 680 vcpu->arch.exception.pending = true; 681 vcpu->arch.exception.injected = false; 682 } 683 vcpu->arch.exception.has_error_code = has_error; 684 vcpu->arch.exception.vector = nr; 685 vcpu->arch.exception.error_code = error_code; 686 vcpu->arch.exception.has_payload = has_payload; 687 vcpu->arch.exception.payload = payload; 688 if (!is_guest_mode(vcpu)) 689 kvm_deliver_exception_payload(vcpu, 690 &vcpu->arch.exception); 691 return; 692 } 693 694 /* to check exception */ 695 prev_nr = vcpu->arch.exception.vector; 696 if (prev_nr == DF_VECTOR) { 697 /* triple fault -> shutdown */ 698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 699 return; 700 } 701 class1 = exception_class(prev_nr); 702 class2 = exception_class(nr); 703 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 704 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 705 /* 706 * Synthesize #DF. Clear the previously injected or pending 707 * exception so as not to incorrectly trigger shutdown. 708 */ 709 vcpu->arch.exception.injected = false; 710 vcpu->arch.exception.pending = false; 711 712 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 713 } else { 714 /* replace previous exception with a new one in a hope 715 that instruction re-execution will regenerate lost 716 exception */ 717 goto queue; 718 } 719 } 720 721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 724 } 725 EXPORT_SYMBOL_GPL(kvm_queue_exception); 726 727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 730 } 731 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 732 733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 734 unsigned long payload) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 739 740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 741 u32 error_code, unsigned long payload) 742 { 743 kvm_multiple_exception(vcpu, nr, true, error_code, 744 true, payload, false); 745 } 746 747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 748 { 749 if (err) 750 kvm_inject_gp(vcpu, 0); 751 else 752 return kvm_skip_emulated_instruction(vcpu); 753 754 return 1; 755 } 756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 757 758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 759 { 760 if (err) { 761 kvm_inject_gp(vcpu, 0); 762 return 1; 763 } 764 765 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 766 EMULTYPE_COMPLETE_USER_EXIT); 767 } 768 769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 770 { 771 ++vcpu->stat.pf_guest; 772 773 /* 774 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 775 * whether or not L1 wants to intercept "regular" #PF. 776 */ 777 if (is_guest_mode(vcpu) && fault->async_page_fault) 778 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 779 true, fault->error_code, 780 true, fault->address); 781 else 782 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 783 fault->address); 784 } 785 786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 787 struct x86_exception *fault) 788 { 789 struct kvm_mmu *fault_mmu; 790 WARN_ON_ONCE(fault->vector != PF_VECTOR); 791 792 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 793 vcpu->arch.walk_mmu; 794 795 /* 796 * Invalidate the TLB entry for the faulting address, if it exists, 797 * else the access will fault indefinitely (and to emulate hardware). 798 */ 799 if ((fault->error_code & PFERR_PRESENT_MASK) && 800 !(fault->error_code & PFERR_RSVD_MASK)) 801 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 802 fault_mmu->root.hpa); 803 804 fault_mmu->inject_page_fault(vcpu, fault); 805 } 806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 807 808 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 809 { 810 atomic_inc(&vcpu->arch.nmi_queued); 811 kvm_make_request(KVM_REQ_NMI, vcpu); 812 } 813 814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 817 } 818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 819 820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 823 } 824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 825 826 /* 827 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 828 * a #GP and return false. 829 */ 830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 831 { 832 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 833 return true; 834 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 835 return false; 836 } 837 838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 839 { 840 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 841 return true; 842 843 kvm_queue_exception(vcpu, UD_VECTOR); 844 return false; 845 } 846 EXPORT_SYMBOL_GPL(kvm_require_dr); 847 848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 849 { 850 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 851 } 852 853 /* 854 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 855 */ 856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 857 { 858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 859 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 860 gpa_t real_gpa; 861 int i; 862 int ret; 863 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 864 865 /* 866 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 867 * to an L1 GPA. 868 */ 869 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 870 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 871 if (real_gpa == INVALID_GPA) 872 return 0; 873 874 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 875 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 876 cr3 & GENMASK(11, 5), sizeof(pdpte)); 877 if (ret < 0) 878 return 0; 879 880 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 881 if ((pdpte[i] & PT_PRESENT_MASK) && 882 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 883 return 0; 884 } 885 } 886 887 /* 888 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 889 * Shadow page roots need to be reconstructed instead. 890 */ 891 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 892 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 893 894 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 895 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 896 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 897 vcpu->arch.pdptrs_from_userspace = false; 898 899 return 1; 900 } 901 EXPORT_SYMBOL_GPL(load_pdptrs); 902 903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 904 { 905 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 906 kvm_clear_async_pf_completion_queue(vcpu); 907 kvm_async_pf_hash_reset(vcpu); 908 909 /* 910 * Clearing CR0.PG is defined to flush the TLB from the guest's 911 * perspective. 912 */ 913 if (!(cr0 & X86_CR0_PG)) 914 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 915 } 916 917 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 918 kvm_mmu_reset_context(vcpu); 919 920 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 921 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 922 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 923 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 924 } 925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 926 927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 928 { 929 unsigned long old_cr0 = kvm_read_cr0(vcpu); 930 931 cr0 |= X86_CR0_ET; 932 933 #ifdef CONFIG_X86_64 934 if (cr0 & 0xffffffff00000000UL) 935 return 1; 936 #endif 937 938 cr0 &= ~CR0_RESERVED_BITS; 939 940 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 941 return 1; 942 943 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 944 return 1; 945 946 #ifdef CONFIG_X86_64 947 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 948 (cr0 & X86_CR0_PG)) { 949 int cs_db, cs_l; 950 951 if (!is_pae(vcpu)) 952 return 1; 953 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 954 if (cs_l) 955 return 1; 956 } 957 #endif 958 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 959 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 960 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 961 return 1; 962 963 if (!(cr0 & X86_CR0_PG) && 964 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 965 return 1; 966 967 static_call(kvm_x86_set_cr0)(vcpu, cr0); 968 969 kvm_post_set_cr0(vcpu, old_cr0, cr0); 970 971 return 0; 972 } 973 EXPORT_SYMBOL_GPL(kvm_set_cr0); 974 975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 976 { 977 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 978 } 979 EXPORT_SYMBOL_GPL(kvm_lmsw); 980 981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.guest_state_protected) 984 return; 985 986 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 987 988 if (vcpu->arch.xcr0 != host_xcr0) 989 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 990 991 if (vcpu->arch.xsaves_enabled && 992 vcpu->arch.ia32_xss != host_xss) 993 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 994 } 995 996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 997 if (static_cpu_has(X86_FEATURE_PKU) && 998 vcpu->arch.pkru != vcpu->arch.host_pkru && 999 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1000 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1001 write_pkru(vcpu->arch.pkru); 1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1005 1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1007 { 1008 if (vcpu->arch.guest_state_protected) 1009 return; 1010 1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1012 if (static_cpu_has(X86_FEATURE_PKU) && 1013 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1014 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1015 vcpu->arch.pkru = rdpkru(); 1016 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1017 write_pkru(vcpu->arch.host_pkru); 1018 } 1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1020 1021 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, host_xss); 1029 } 1030 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1033 1034 #ifdef CONFIG_X86_64 1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1036 { 1037 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1038 } 1039 #endif 1040 1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1042 { 1043 u64 xcr0 = xcr; 1044 u64 old_xcr0 = vcpu->arch.xcr0; 1045 u64 valid_bits; 1046 1047 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1048 if (index != XCR_XFEATURE_ENABLED_MASK) 1049 return 1; 1050 if (!(xcr0 & XFEATURE_MASK_FP)) 1051 return 1; 1052 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1053 return 1; 1054 1055 /* 1056 * Do not allow the guest to set bits that we do not support 1057 * saving. However, xcr0 bit 0 is always set, even if the 1058 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1059 */ 1060 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1061 if (xcr0 & ~valid_bits) 1062 return 1; 1063 1064 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1065 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1066 return 1; 1067 1068 if (xcr0 & XFEATURE_MASK_AVX512) { 1069 if (!(xcr0 & XFEATURE_MASK_YMM)) 1070 return 1; 1071 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1072 return 1; 1073 } 1074 1075 if ((xcr0 & XFEATURE_MASK_XTILE) && 1076 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1077 return 1; 1078 1079 vcpu->arch.xcr0 = xcr0; 1080 1081 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1082 kvm_update_cpuid_runtime(vcpu); 1083 return 0; 1084 } 1085 1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1087 { 1088 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1089 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1090 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1091 kvm_inject_gp(vcpu, 0); 1092 return 1; 1093 } 1094 1095 return kvm_skip_emulated_instruction(vcpu); 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1098 1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1100 { 1101 if (cr4 & cr4_reserved_bits) 1102 return false; 1103 1104 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1105 return false; 1106 1107 return true; 1108 } 1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1110 1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 return __kvm_is_valid_cr4(vcpu, cr4) && 1114 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1115 } 1116 1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1118 { 1119 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1120 kvm_mmu_reset_context(vcpu); 1121 1122 /* 1123 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1124 * according to the SDM; however, stale prev_roots could be reused 1125 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1126 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1127 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1128 * so fall through. 1129 */ 1130 if (!tdp_enabled && 1131 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1132 kvm_mmu_unload(vcpu); 1133 1134 /* 1135 * The TLB has to be flushed for all PCIDs if any of the following 1136 * (architecturally required) changes happen: 1137 * - CR4.PCIDE is changed from 1 to 0 1138 * - CR4.PGE is toggled 1139 * 1140 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1141 */ 1142 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1143 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for the current PCID if any of the 1148 * following (architecturally required) changes happen: 1149 * - CR4.SMEP is changed from 0 to 1 1150 * - CR4.PAE is toggled 1151 */ 1152 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1153 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1158 1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1160 { 1161 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1162 1163 if (!kvm_is_valid_cr4(vcpu, cr4)) 1164 return 1; 1165 1166 if (is_long_mode(vcpu)) { 1167 if (!(cr4 & X86_CR4_PAE)) 1168 return 1; 1169 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1170 return 1; 1171 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1172 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1173 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1174 return 1; 1175 1176 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1178 return 1; 1179 1180 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1181 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1182 return 1; 1183 } 1184 1185 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1186 1187 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1188 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1192 1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1194 { 1195 struct kvm_mmu *mmu = vcpu->arch.mmu; 1196 unsigned long roots_to_free = 0; 1197 int i; 1198 1199 /* 1200 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1201 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1202 * also via the emulator. KVM's TDP page tables are not in the scope of 1203 * the invalidation, but the guest's TLB entries need to be flushed as 1204 * the CPU may have cached entries in its TLB for the target PCID. 1205 */ 1206 if (unlikely(tdp_enabled)) { 1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1208 return; 1209 } 1210 1211 /* 1212 * If neither the current CR3 nor any of the prev_roots use the given 1213 * PCID, then nothing needs to be done here because a resync will 1214 * happen anyway before switching to any other CR3. 1215 */ 1216 if (kvm_get_active_pcid(vcpu) == pcid) { 1217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1219 } 1220 1221 /* 1222 * If PCID is disabled, there is no need to free prev_roots even if the 1223 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1224 * with PCIDE=0. 1225 */ 1226 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1227 return; 1228 1229 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1230 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1231 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1232 1233 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1234 } 1235 1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1237 { 1238 bool skip_tlb_flush = false; 1239 unsigned long pcid = 0; 1240 #ifdef CONFIG_X86_64 1241 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1242 1243 if (pcid_enabled) { 1244 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1245 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1246 pcid = cr3 & X86_CR3_PCID_MASK; 1247 } 1248 #endif 1249 1250 /* PDPTRs are always reloaded for PAE paging. */ 1251 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1252 goto handle_tlb_flush; 1253 1254 /* 1255 * Do not condition the GPA check on long mode, this helper is used to 1256 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1257 * the current vCPU mode is accurate. 1258 */ 1259 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1260 return 1; 1261 1262 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1263 return 1; 1264 1265 if (cr3 != kvm_read_cr3(vcpu)) 1266 kvm_mmu_new_pgd(vcpu, cr3); 1267 1268 vcpu->arch.cr3 = cr3; 1269 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1270 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1271 1272 handle_tlb_flush: 1273 /* 1274 * A load of CR3 that flushes the TLB flushes only the current PCID, 1275 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1276 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1277 * and it's impossible to use a non-zero PCID when PCID is disabled, 1278 * i.e. only PCID=0 can be relevant. 1279 */ 1280 if (!skip_tlb_flush) 1281 kvm_invalidate_pcid(vcpu, pcid); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1286 1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1288 { 1289 if (cr8 & CR8_RESERVED_BITS) 1290 return 1; 1291 if (lapic_in_kernel(vcpu)) 1292 kvm_lapic_set_tpr(vcpu, cr8); 1293 else 1294 vcpu->arch.cr8 = cr8; 1295 return 0; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1298 1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1300 { 1301 if (lapic_in_kernel(vcpu)) 1302 return kvm_lapic_get_cr8(vcpu); 1303 else 1304 return vcpu->arch.cr8; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1307 1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1309 { 1310 int i; 1311 1312 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1313 for (i = 0; i < KVM_NR_DB_REGS; i++) 1314 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1315 } 1316 } 1317 1318 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1319 { 1320 unsigned long dr7; 1321 1322 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1323 dr7 = vcpu->arch.guest_debug_dr7; 1324 else 1325 dr7 = vcpu->arch.dr7; 1326 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1327 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1328 if (dr7 & DR7_BP_EN_MASK) 1329 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1332 1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1334 { 1335 u64 fixed = DR6_FIXED_1; 1336 1337 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1338 fixed |= DR6_RTM; 1339 1340 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1341 fixed |= DR6_BUS_LOCK; 1342 return fixed; 1343 } 1344 1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1346 { 1347 size_t size = ARRAY_SIZE(vcpu->arch.db); 1348 1349 switch (dr) { 1350 case 0 ... 3: 1351 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1352 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1353 vcpu->arch.eff_db[dr] = val; 1354 break; 1355 case 4: 1356 case 6: 1357 if (!kvm_dr6_valid(val)) 1358 return 1; /* #GP */ 1359 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1360 break; 1361 case 5: 1362 default: /* 7 */ 1363 if (!kvm_dr7_valid(val)) 1364 return 1; /* #GP */ 1365 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1366 kvm_update_dr7(vcpu); 1367 break; 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_set_dr); 1373 1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1375 { 1376 size_t size = ARRAY_SIZE(vcpu->arch.db); 1377 1378 switch (dr) { 1379 case 0 ... 3: 1380 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1381 break; 1382 case 4: 1383 case 6: 1384 *val = vcpu->arch.dr6; 1385 break; 1386 case 5: 1387 default: /* 7 */ 1388 *val = vcpu->arch.dr7; 1389 break; 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_get_dr); 1393 1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1395 { 1396 u32 ecx = kvm_rcx_read(vcpu); 1397 u64 data; 1398 1399 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1400 kvm_inject_gp(vcpu, 0); 1401 return 1; 1402 } 1403 1404 kvm_rax_write(vcpu, (u32)data); 1405 kvm_rdx_write(vcpu, data >> 32); 1406 return kvm_skip_emulated_instruction(vcpu); 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1409 1410 /* 1411 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1412 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1413 * 1414 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1415 * extract the supported MSRs from the related const lists. 1416 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1417 * capabilities of the host cpu. This capabilities test skips MSRs that are 1418 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1419 * may depend on host virtualization features rather than host cpu features. 1420 */ 1421 1422 static const u32 msrs_to_save_all[] = { 1423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1424 MSR_STAR, 1425 #ifdef CONFIG_X86_64 1426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1427 #endif 1428 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1429 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1430 MSR_IA32_SPEC_CTRL, 1431 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1432 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1433 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1434 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1435 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1436 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1437 MSR_IA32_UMWAIT_CONTROL, 1438 1439 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1440 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1441 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1442 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1443 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1444 1445 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1446 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1448 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1450 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1454 1455 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1456 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1457 1458 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1459 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1460 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1461 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1462 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1463 1464 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1465 }; 1466 1467 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1468 static unsigned num_msrs_to_save; 1469 1470 static const u32 emulated_msrs_all[] = { 1471 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1472 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1473 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1474 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1475 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1476 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1477 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1478 HV_X64_MSR_RESET, 1479 HV_X64_MSR_VP_INDEX, 1480 HV_X64_MSR_VP_RUNTIME, 1481 HV_X64_MSR_SCONTROL, 1482 HV_X64_MSR_STIMER0_CONFIG, 1483 HV_X64_MSR_VP_ASSIST_PAGE, 1484 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1485 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1486 HV_X64_MSR_SYNDBG_OPTIONS, 1487 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1488 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1489 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1490 1491 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1492 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1493 1494 MSR_IA32_TSC_ADJUST, 1495 MSR_IA32_TSC_DEADLINE, 1496 MSR_IA32_ARCH_CAPABILITIES, 1497 MSR_IA32_PERF_CAPABILITIES, 1498 MSR_IA32_MISC_ENABLE, 1499 MSR_IA32_MCG_STATUS, 1500 MSR_IA32_MCG_CTL, 1501 MSR_IA32_MCG_EXT_CTL, 1502 MSR_IA32_SMBASE, 1503 MSR_SMI_COUNT, 1504 MSR_PLATFORM_INFO, 1505 MSR_MISC_FEATURES_ENABLES, 1506 MSR_AMD64_VIRT_SPEC_CTRL, 1507 MSR_AMD64_TSC_RATIO, 1508 MSR_IA32_POWER_CTL, 1509 MSR_IA32_UCODE_REV, 1510 1511 /* 1512 * The following list leaves out MSRs whose values are determined 1513 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1514 * We always support the "true" VMX control MSRs, even if the host 1515 * processor does not, so I am putting these registers here rather 1516 * than in msrs_to_save_all. 1517 */ 1518 MSR_IA32_VMX_BASIC, 1519 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1520 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1521 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1522 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1523 MSR_IA32_VMX_MISC, 1524 MSR_IA32_VMX_CR0_FIXED0, 1525 MSR_IA32_VMX_CR4_FIXED0, 1526 MSR_IA32_VMX_VMCS_ENUM, 1527 MSR_IA32_VMX_PROCBASED_CTLS2, 1528 MSR_IA32_VMX_EPT_VPID_CAP, 1529 MSR_IA32_VMX_VMFUNC, 1530 1531 MSR_K7_HWCR, 1532 MSR_KVM_POLL_CONTROL, 1533 }; 1534 1535 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1536 static unsigned num_emulated_msrs; 1537 1538 /* 1539 * List of msr numbers which are used to expose MSR-based features that 1540 * can be used by a hypervisor to validate requested CPU features. 1541 */ 1542 static const u32 msr_based_features_all[] = { 1543 MSR_IA32_VMX_BASIC, 1544 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1545 MSR_IA32_VMX_PINBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1547 MSR_IA32_VMX_PROCBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1549 MSR_IA32_VMX_EXIT_CTLS, 1550 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1551 MSR_IA32_VMX_ENTRY_CTLS, 1552 MSR_IA32_VMX_MISC, 1553 MSR_IA32_VMX_CR0_FIXED0, 1554 MSR_IA32_VMX_CR0_FIXED1, 1555 MSR_IA32_VMX_CR4_FIXED0, 1556 MSR_IA32_VMX_CR4_FIXED1, 1557 MSR_IA32_VMX_VMCS_ENUM, 1558 MSR_IA32_VMX_PROCBASED_CTLS2, 1559 MSR_IA32_VMX_EPT_VPID_CAP, 1560 MSR_IA32_VMX_VMFUNC, 1561 1562 MSR_AMD64_DE_CFG, 1563 MSR_IA32_UCODE_REV, 1564 MSR_IA32_ARCH_CAPABILITIES, 1565 MSR_IA32_PERF_CAPABILITIES, 1566 }; 1567 1568 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1569 static unsigned int num_msr_based_features; 1570 1571 /* 1572 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1573 * does not yet virtualize. These include: 1574 * 10 - MISC_PACKAGE_CTRLS 1575 * 11 - ENERGY_FILTERING_CTL 1576 * 12 - DOITM 1577 * 18 - FB_CLEAR_CTRL 1578 * 21 - XAPIC_DISABLE_STATUS 1579 * 23 - OVERCLOCKING_STATUS 1580 */ 1581 1582 #define KVM_SUPPORTED_ARCH_CAP \ 1583 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1584 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1585 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1586 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1587 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1588 1589 static u64 kvm_get_arch_capabilities(void) 1590 { 1591 u64 data = 0; 1592 1593 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1594 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1595 data &= KVM_SUPPORTED_ARCH_CAP; 1596 } 1597 1598 /* 1599 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1600 * the nested hypervisor runs with NX huge pages. If it is not, 1601 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1602 * L1 guests, so it need not worry about its own (L2) guests. 1603 */ 1604 data |= ARCH_CAP_PSCHANGE_MC_NO; 1605 1606 /* 1607 * If we're doing cache flushes (either "always" or "cond") 1608 * we will do one whenever the guest does a vmlaunch/vmresume. 1609 * If an outer hypervisor is doing the cache flush for us 1610 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1611 * capability to the guest too, and if EPT is disabled we're not 1612 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1613 * require a nested hypervisor to do a flush of its own. 1614 */ 1615 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1616 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1617 1618 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1619 data |= ARCH_CAP_RDCL_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1621 data |= ARCH_CAP_SSB_NO; 1622 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1623 data |= ARCH_CAP_MDS_NO; 1624 1625 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1626 /* 1627 * If RTM=0 because the kernel has disabled TSX, the host might 1628 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1629 * and therefore knows that there cannot be TAA) but keep 1630 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1631 * and we want to allow migrating those guests to tsx=off hosts. 1632 */ 1633 data &= ~ARCH_CAP_TAA_NO; 1634 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1635 data |= ARCH_CAP_TAA_NO; 1636 } else { 1637 /* 1638 * Nothing to do here; we emulate TSX_CTRL if present on the 1639 * host so the guest can choose between disabling TSX or 1640 * using VERW to clear CPU buffers. 1641 */ 1642 } 1643 1644 return data; 1645 } 1646 1647 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1648 { 1649 switch (msr->index) { 1650 case MSR_IA32_ARCH_CAPABILITIES: 1651 msr->data = kvm_get_arch_capabilities(); 1652 break; 1653 case MSR_IA32_PERF_CAPABILITIES: 1654 msr->data = kvm_caps.supported_perf_cap; 1655 break; 1656 case MSR_IA32_UCODE_REV: 1657 rdmsrl_safe(msr->index, &msr->data); 1658 break; 1659 default: 1660 return static_call(kvm_x86_get_msr_feature)(msr); 1661 } 1662 return 0; 1663 } 1664 1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1666 { 1667 struct kvm_msr_entry msr; 1668 int r; 1669 1670 msr.index = index; 1671 r = kvm_get_msr_feature(&msr); 1672 1673 if (r == KVM_MSR_RET_INVALID) { 1674 /* Unconditionally clear the output for simplicity */ 1675 *data = 0; 1676 if (kvm_msr_ignored_check(index, 0, false)) 1677 r = 0; 1678 } 1679 1680 if (r) 1681 return r; 1682 1683 *data = msr.data; 1684 1685 return 0; 1686 } 1687 1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1689 { 1690 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1691 return false; 1692 1693 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1694 return false; 1695 1696 if (efer & (EFER_LME | EFER_LMA) && 1697 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1698 return false; 1699 1700 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1701 return false; 1702 1703 return true; 1704 1705 } 1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1707 { 1708 if (efer & efer_reserved_bits) 1709 return false; 1710 1711 return __kvm_valid_efer(vcpu, efer); 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1714 1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1716 { 1717 u64 old_efer = vcpu->arch.efer; 1718 u64 efer = msr_info->data; 1719 int r; 1720 1721 if (efer & efer_reserved_bits) 1722 return 1; 1723 1724 if (!msr_info->host_initiated) { 1725 if (!__kvm_valid_efer(vcpu, efer)) 1726 return 1; 1727 1728 if (is_paging(vcpu) && 1729 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1730 return 1; 1731 } 1732 1733 efer &= ~EFER_LMA; 1734 efer |= vcpu->arch.efer & EFER_LMA; 1735 1736 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1737 if (r) { 1738 WARN_ON(r > 0); 1739 return r; 1740 } 1741 1742 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1743 kvm_mmu_reset_context(vcpu); 1744 1745 return 0; 1746 } 1747 1748 void kvm_enable_efer_bits(u64 mask) 1749 { 1750 efer_reserved_bits &= ~mask; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1753 1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1755 { 1756 struct kvm_x86_msr_filter *msr_filter; 1757 struct msr_bitmap_range *ranges; 1758 struct kvm *kvm = vcpu->kvm; 1759 bool allowed; 1760 int idx; 1761 u32 i; 1762 1763 /* x2APIC MSRs do not support filtering. */ 1764 if (index >= 0x800 && index <= 0x8ff) 1765 return true; 1766 1767 idx = srcu_read_lock(&kvm->srcu); 1768 1769 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1770 if (!msr_filter) { 1771 allowed = true; 1772 goto out; 1773 } 1774 1775 allowed = msr_filter->default_allow; 1776 ranges = msr_filter->ranges; 1777 1778 for (i = 0; i < msr_filter->count; i++) { 1779 u32 start = ranges[i].base; 1780 u32 end = start + ranges[i].nmsrs; 1781 u32 flags = ranges[i].flags; 1782 unsigned long *bitmap = ranges[i].bitmap; 1783 1784 if ((index >= start) && (index < end) && (flags & type)) { 1785 allowed = !!test_bit(index - start, bitmap); 1786 break; 1787 } 1788 } 1789 1790 out: 1791 srcu_read_unlock(&kvm->srcu, idx); 1792 1793 return allowed; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1796 1797 /* 1798 * Write @data into the MSR specified by @index. Select MSR specific fault 1799 * checks are bypassed if @host_initiated is %true. 1800 * Returns 0 on success, non-0 otherwise. 1801 * Assumes vcpu_load() was already called. 1802 */ 1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1804 bool host_initiated) 1805 { 1806 struct msr_data msr; 1807 1808 switch (index) { 1809 case MSR_FS_BASE: 1810 case MSR_GS_BASE: 1811 case MSR_KERNEL_GS_BASE: 1812 case MSR_CSTAR: 1813 case MSR_LSTAR: 1814 if (is_noncanonical_address(data, vcpu)) 1815 return 1; 1816 break; 1817 case MSR_IA32_SYSENTER_EIP: 1818 case MSR_IA32_SYSENTER_ESP: 1819 /* 1820 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1821 * non-canonical address is written on Intel but not on 1822 * AMD (which ignores the top 32-bits, because it does 1823 * not implement 64-bit SYSENTER). 1824 * 1825 * 64-bit code should hence be able to write a non-canonical 1826 * value on AMD. Making the address canonical ensures that 1827 * vmentry does not fail on Intel after writing a non-canonical 1828 * value, and that something deterministic happens if the guest 1829 * invokes 64-bit SYSENTER. 1830 */ 1831 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1832 break; 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 1842 /* 1843 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1844 * incomplete and conflicting architectural behavior. Current 1845 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1846 * reserved and always read as zeros. Enforce Intel's reserved 1847 * bits check if and only if the guest CPU is Intel, and clear 1848 * the bits in all other cases. This ensures cross-vendor 1849 * migration will provide consistent behavior for the guest. 1850 */ 1851 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1852 return 1; 1853 1854 data = (u32)data; 1855 break; 1856 } 1857 1858 msr.data = data; 1859 msr.index = index; 1860 msr.host_initiated = host_initiated; 1861 1862 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1863 } 1864 1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1866 u32 index, u64 data, bool host_initiated) 1867 { 1868 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1869 1870 if (ret == KVM_MSR_RET_INVALID) 1871 if (kvm_msr_ignored_check(index, data, true)) 1872 ret = 0; 1873 1874 return ret; 1875 } 1876 1877 /* 1878 * Read the MSR specified by @index into @data. Select MSR specific fault 1879 * checks are bypassed if @host_initiated is %true. 1880 * Returns 0 on success, non-0 otherwise. 1881 * Assumes vcpu_load() was already called. 1882 */ 1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1884 bool host_initiated) 1885 { 1886 struct msr_data msr; 1887 int ret; 1888 1889 switch (index) { 1890 case MSR_TSC_AUX: 1891 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1892 return 1; 1893 1894 if (!host_initiated && 1895 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1897 return 1; 1898 break; 1899 } 1900 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1905 if (!ret) 1906 *data = msr.data; 1907 return ret; 1908 } 1909 1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1911 u32 index, u64 *data, bool host_initiated) 1912 { 1913 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1914 1915 if (ret == KVM_MSR_RET_INVALID) { 1916 /* Unconditionally clear *data for simplicity */ 1917 *data = 0; 1918 if (kvm_msr_ignored_check(index, 0, false)) 1919 ret = 0; 1920 } 1921 1922 return ret; 1923 } 1924 1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1926 { 1927 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1928 return KVM_MSR_RET_FILTERED; 1929 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1930 } 1931 1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1933 { 1934 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1935 return KVM_MSR_RET_FILTERED; 1936 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1937 } 1938 1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1940 { 1941 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1942 } 1943 EXPORT_SYMBOL_GPL(kvm_get_msr); 1944 1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1946 { 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr); 1950 1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1952 { 1953 if (!vcpu->run->msr.error) { 1954 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1955 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1956 } 1957 } 1958 1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1960 { 1961 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1962 } 1963 1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1965 { 1966 complete_userspace_rdmsr(vcpu); 1967 return complete_emulated_msr_access(vcpu); 1968 } 1969 1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1971 { 1972 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1973 } 1974 1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1976 { 1977 complete_userspace_rdmsr(vcpu); 1978 return complete_fast_msr_access(vcpu); 1979 } 1980 1981 static u64 kvm_msr_reason(int r) 1982 { 1983 switch (r) { 1984 case KVM_MSR_RET_INVALID: 1985 return KVM_MSR_EXIT_REASON_UNKNOWN; 1986 case KVM_MSR_RET_FILTERED: 1987 return KVM_MSR_EXIT_REASON_FILTER; 1988 default: 1989 return KVM_MSR_EXIT_REASON_INVAL; 1990 } 1991 } 1992 1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1994 u32 exit_reason, u64 data, 1995 int (*completion)(struct kvm_vcpu *vcpu), 1996 int r) 1997 { 1998 u64 msr_reason = kvm_msr_reason(r); 1999 2000 /* Check if the user wanted to know about this MSR fault */ 2001 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2002 return 0; 2003 2004 vcpu->run->exit_reason = exit_reason; 2005 vcpu->run->msr.error = 0; 2006 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2007 vcpu->run->msr.reason = msr_reason; 2008 vcpu->run->msr.index = index; 2009 vcpu->run->msr.data = data; 2010 vcpu->arch.complete_userspace_io = completion; 2011 2012 return 1; 2013 } 2014 2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 u32 ecx = kvm_rcx_read(vcpu); 2018 u64 data; 2019 int r; 2020 2021 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2022 2023 if (!r) { 2024 trace_kvm_msr_read(ecx, data); 2025 2026 kvm_rax_write(vcpu, data & -1u); 2027 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2028 } else { 2029 /* MSR read failed? See if we should ask user space */ 2030 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2031 complete_fast_rdmsr, r)) 2032 return 0; 2033 trace_kvm_msr_read_ex(ecx); 2034 } 2035 2036 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2039 2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2041 { 2042 u32 ecx = kvm_rcx_read(vcpu); 2043 u64 data = kvm_read_edx_eax(vcpu); 2044 int r; 2045 2046 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2047 2048 if (!r) { 2049 trace_kvm_msr_write(ecx, data); 2050 } else { 2051 /* MSR write failed? See if we should ask user space */ 2052 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2053 complete_fast_msr_access, r)) 2054 return 0; 2055 /* Signal all other negative errors to userspace */ 2056 if (r < 0) 2057 return r; 2058 trace_kvm_msr_write_ex(ecx, data); 2059 } 2060 2061 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2064 2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2066 { 2067 return kvm_skip_emulated_instruction(vcpu); 2068 } 2069 2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2071 { 2072 /* Treat an INVD instruction as a NOP and just skip it. */ 2073 return kvm_emulate_as_nop(vcpu); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2076 2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2078 { 2079 kvm_queue_exception(vcpu, UD_VECTOR); 2080 return 1; 2081 } 2082 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2083 2084 2085 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2086 { 2087 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2088 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2089 return kvm_handle_invalid_op(vcpu); 2090 2091 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2092 return kvm_emulate_as_nop(vcpu); 2093 } 2094 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2095 { 2096 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2097 } 2098 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2099 2100 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2101 { 2102 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2103 } 2104 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2105 2106 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2107 { 2108 xfer_to_guest_mode_prepare(); 2109 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2110 xfer_to_guest_mode_work_pending(); 2111 } 2112 2113 /* 2114 * The fast path for frequent and performance sensitive wrmsr emulation, 2115 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2116 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2117 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2118 * other cases which must be called after interrupts are enabled on the host. 2119 */ 2120 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2121 { 2122 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2123 return 1; 2124 2125 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2126 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2127 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2128 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2129 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2130 2131 return 1; 2132 } 2133 2134 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2135 { 2136 if (!kvm_can_use_hv_timer(vcpu)) 2137 return 1; 2138 2139 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2140 return 0; 2141 } 2142 2143 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2144 { 2145 u32 msr = kvm_rcx_read(vcpu); 2146 u64 data; 2147 fastpath_t ret = EXIT_FASTPATH_NONE; 2148 2149 switch (msr) { 2150 case APIC_BASE_MSR + (APIC_ICR >> 4): 2151 data = kvm_read_edx_eax(vcpu); 2152 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2153 kvm_skip_emulated_instruction(vcpu); 2154 ret = EXIT_FASTPATH_EXIT_HANDLED; 2155 } 2156 break; 2157 case MSR_IA32_TSC_DEADLINE: 2158 data = kvm_read_edx_eax(vcpu); 2159 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2160 kvm_skip_emulated_instruction(vcpu); 2161 ret = EXIT_FASTPATH_REENTER_GUEST; 2162 } 2163 break; 2164 default: 2165 break; 2166 } 2167 2168 if (ret != EXIT_FASTPATH_NONE) 2169 trace_kvm_msr_write(msr, data); 2170 2171 return ret; 2172 } 2173 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2174 2175 /* 2176 * Adapt set_msr() to msr_io()'s calling convention 2177 */ 2178 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2179 { 2180 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2181 } 2182 2183 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2184 { 2185 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2186 } 2187 2188 #ifdef CONFIG_X86_64 2189 struct pvclock_clock { 2190 int vclock_mode; 2191 u64 cycle_last; 2192 u64 mask; 2193 u32 mult; 2194 u32 shift; 2195 u64 base_cycles; 2196 u64 offset; 2197 }; 2198 2199 struct pvclock_gtod_data { 2200 seqcount_t seq; 2201 2202 struct pvclock_clock clock; /* extract of a clocksource struct */ 2203 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2204 2205 ktime_t offs_boot; 2206 u64 wall_time_sec; 2207 }; 2208 2209 static struct pvclock_gtod_data pvclock_gtod_data; 2210 2211 static void update_pvclock_gtod(struct timekeeper *tk) 2212 { 2213 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2214 2215 write_seqcount_begin(&vdata->seq); 2216 2217 /* copy pvclock gtod data */ 2218 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2219 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2220 vdata->clock.mask = tk->tkr_mono.mask; 2221 vdata->clock.mult = tk->tkr_mono.mult; 2222 vdata->clock.shift = tk->tkr_mono.shift; 2223 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2224 vdata->clock.offset = tk->tkr_mono.base; 2225 2226 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2227 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2228 vdata->raw_clock.mask = tk->tkr_raw.mask; 2229 vdata->raw_clock.mult = tk->tkr_raw.mult; 2230 vdata->raw_clock.shift = tk->tkr_raw.shift; 2231 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2232 vdata->raw_clock.offset = tk->tkr_raw.base; 2233 2234 vdata->wall_time_sec = tk->xtime_sec; 2235 2236 vdata->offs_boot = tk->offs_boot; 2237 2238 write_seqcount_end(&vdata->seq); 2239 } 2240 2241 static s64 get_kvmclock_base_ns(void) 2242 { 2243 /* Count up from boot time, but with the frequency of the raw clock. */ 2244 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2245 } 2246 #else 2247 static s64 get_kvmclock_base_ns(void) 2248 { 2249 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2250 return ktime_get_boottime_ns(); 2251 } 2252 #endif 2253 2254 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2255 { 2256 int version; 2257 int r; 2258 struct pvclock_wall_clock wc; 2259 u32 wc_sec_hi; 2260 u64 wall_nsec; 2261 2262 if (!wall_clock) 2263 return; 2264 2265 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2266 if (r) 2267 return; 2268 2269 if (version & 1) 2270 ++version; /* first time write, random junk */ 2271 2272 ++version; 2273 2274 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2275 return; 2276 2277 /* 2278 * The guest calculates current wall clock time by adding 2279 * system time (updated by kvm_guest_time_update below) to the 2280 * wall clock specified here. We do the reverse here. 2281 */ 2282 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2283 2284 wc.nsec = do_div(wall_nsec, 1000000000); 2285 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2286 wc.version = version; 2287 2288 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2289 2290 if (sec_hi_ofs) { 2291 wc_sec_hi = wall_nsec >> 32; 2292 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2293 &wc_sec_hi, sizeof(wc_sec_hi)); 2294 } 2295 2296 version++; 2297 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2298 } 2299 2300 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2301 bool old_msr, bool host_initiated) 2302 { 2303 struct kvm_arch *ka = &vcpu->kvm->arch; 2304 2305 if (vcpu->vcpu_id == 0 && !host_initiated) { 2306 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2307 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2308 2309 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2310 } 2311 2312 vcpu->arch.time = system_time; 2313 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2314 2315 /* we verify if the enable bit is set... */ 2316 if (system_time & 1) 2317 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2318 sizeof(struct pvclock_vcpu_time_info)); 2319 else 2320 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2321 2322 return; 2323 } 2324 2325 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2326 { 2327 do_shl32_div32(dividend, divisor); 2328 return dividend; 2329 } 2330 2331 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2332 s8 *pshift, u32 *pmultiplier) 2333 { 2334 uint64_t scaled64; 2335 int32_t shift = 0; 2336 uint64_t tps64; 2337 uint32_t tps32; 2338 2339 tps64 = base_hz; 2340 scaled64 = scaled_hz; 2341 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2342 tps64 >>= 1; 2343 shift--; 2344 } 2345 2346 tps32 = (uint32_t)tps64; 2347 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2348 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2349 scaled64 >>= 1; 2350 else 2351 tps32 <<= 1; 2352 shift++; 2353 } 2354 2355 *pshift = shift; 2356 *pmultiplier = div_frac(scaled64, tps32); 2357 } 2358 2359 #ifdef CONFIG_X86_64 2360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2361 #endif 2362 2363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2364 static unsigned long max_tsc_khz; 2365 2366 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2367 { 2368 u64 v = (u64)khz * (1000000 + ppm); 2369 do_div(v, 1000000); 2370 return v; 2371 } 2372 2373 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2374 2375 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2376 { 2377 u64 ratio; 2378 2379 /* Guest TSC same frequency as host TSC? */ 2380 if (!scale) { 2381 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2382 return 0; 2383 } 2384 2385 /* TSC scaling supported? */ 2386 if (!kvm_caps.has_tsc_control) { 2387 if (user_tsc_khz > tsc_khz) { 2388 vcpu->arch.tsc_catchup = 1; 2389 vcpu->arch.tsc_always_catchup = 1; 2390 return 0; 2391 } else { 2392 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2393 return -1; 2394 } 2395 } 2396 2397 /* TSC scaling required - calculate ratio */ 2398 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2399 user_tsc_khz, tsc_khz); 2400 2401 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2402 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2403 user_tsc_khz); 2404 return -1; 2405 } 2406 2407 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2408 return 0; 2409 } 2410 2411 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2412 { 2413 u32 thresh_lo, thresh_hi; 2414 int use_scaling = 0; 2415 2416 /* tsc_khz can be zero if TSC calibration fails */ 2417 if (user_tsc_khz == 0) { 2418 /* set tsc_scaling_ratio to a safe value */ 2419 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2420 return -1; 2421 } 2422 2423 /* Compute a scale to convert nanoseconds in TSC cycles */ 2424 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2425 &vcpu->arch.virtual_tsc_shift, 2426 &vcpu->arch.virtual_tsc_mult); 2427 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2428 2429 /* 2430 * Compute the variation in TSC rate which is acceptable 2431 * within the range of tolerance and decide if the 2432 * rate being applied is within that bounds of the hardware 2433 * rate. If so, no scaling or compensation need be done. 2434 */ 2435 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2436 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2437 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2438 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2439 user_tsc_khz, thresh_lo, thresh_hi); 2440 use_scaling = 1; 2441 } 2442 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2443 } 2444 2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2446 { 2447 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2448 vcpu->arch.virtual_tsc_mult, 2449 vcpu->arch.virtual_tsc_shift); 2450 tsc += vcpu->arch.this_tsc_write; 2451 return tsc; 2452 } 2453 2454 #ifdef CONFIG_X86_64 2455 static inline int gtod_is_based_on_tsc(int mode) 2456 { 2457 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2458 } 2459 #endif 2460 2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2462 { 2463 #ifdef CONFIG_X86_64 2464 bool vcpus_matched; 2465 struct kvm_arch *ka = &vcpu->kvm->arch; 2466 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2467 2468 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2469 atomic_read(&vcpu->kvm->online_vcpus)); 2470 2471 /* 2472 * Once the masterclock is enabled, always perform request in 2473 * order to update it. 2474 * 2475 * In order to enable masterclock, the host clocksource must be TSC 2476 * and the vcpus need to have matched TSCs. When that happens, 2477 * perform request to enable masterclock. 2478 */ 2479 if (ka->use_master_clock || 2480 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2481 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2482 2483 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2484 atomic_read(&vcpu->kvm->online_vcpus), 2485 ka->use_master_clock, gtod->clock.vclock_mode); 2486 #endif 2487 } 2488 2489 /* 2490 * Multiply tsc by a fixed point number represented by ratio. 2491 * 2492 * The most significant 64-N bits (mult) of ratio represent the 2493 * integral part of the fixed point number; the remaining N bits 2494 * (frac) represent the fractional part, ie. ratio represents a fixed 2495 * point number (mult + frac * 2^(-N)). 2496 * 2497 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2498 */ 2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2500 { 2501 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2502 } 2503 2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2505 { 2506 u64 _tsc = tsc; 2507 2508 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2509 _tsc = __scale_tsc(ratio, tsc); 2510 2511 return _tsc; 2512 } 2513 2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2515 { 2516 u64 tsc; 2517 2518 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2519 2520 return target_tsc - tsc; 2521 } 2522 2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2524 { 2525 return vcpu->arch.l1_tsc_offset + 2526 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2527 } 2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2529 2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2531 { 2532 u64 nested_offset; 2533 2534 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2535 nested_offset = l1_offset; 2536 else 2537 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2538 kvm_caps.tsc_scaling_ratio_frac_bits); 2539 2540 nested_offset += l2_offset; 2541 return nested_offset; 2542 } 2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2544 2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2546 { 2547 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2548 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2549 kvm_caps.tsc_scaling_ratio_frac_bits); 2550 2551 return l1_multiplier; 2552 } 2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2554 2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2556 { 2557 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2558 vcpu->arch.l1_tsc_offset, 2559 l1_offset); 2560 2561 vcpu->arch.l1_tsc_offset = l1_offset; 2562 2563 /* 2564 * If we are here because L1 chose not to trap WRMSR to TSC then 2565 * according to the spec this should set L1's TSC (as opposed to 2566 * setting L1's offset for L2). 2567 */ 2568 if (is_guest_mode(vcpu)) 2569 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2570 l1_offset, 2571 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2572 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2573 else 2574 vcpu->arch.tsc_offset = l1_offset; 2575 2576 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2577 } 2578 2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2580 { 2581 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2582 2583 /* Userspace is changing the multiplier while L2 is active */ 2584 if (is_guest_mode(vcpu)) 2585 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2586 l1_multiplier, 2587 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2588 else 2589 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2590 2591 if (kvm_caps.has_tsc_control) 2592 static_call(kvm_x86_write_tsc_multiplier)( 2593 vcpu, vcpu->arch.tsc_scaling_ratio); 2594 } 2595 2596 static inline bool kvm_check_tsc_unstable(void) 2597 { 2598 #ifdef CONFIG_X86_64 2599 /* 2600 * TSC is marked unstable when we're running on Hyper-V, 2601 * 'TSC page' clocksource is good. 2602 */ 2603 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2604 return false; 2605 #endif 2606 return check_tsc_unstable(); 2607 } 2608 2609 /* 2610 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2611 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2612 * participates in. 2613 */ 2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2615 u64 ns, bool matched) 2616 { 2617 struct kvm *kvm = vcpu->kvm; 2618 2619 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2620 2621 /* 2622 * We also track th most recent recorded KHZ, write and time to 2623 * allow the matching interval to be extended at each write. 2624 */ 2625 kvm->arch.last_tsc_nsec = ns; 2626 kvm->arch.last_tsc_write = tsc; 2627 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2628 kvm->arch.last_tsc_offset = offset; 2629 2630 vcpu->arch.last_guest_tsc = tsc; 2631 2632 kvm_vcpu_write_tsc_offset(vcpu, offset); 2633 2634 if (!matched) { 2635 /* 2636 * We split periods of matched TSC writes into generations. 2637 * For each generation, we track the original measured 2638 * nanosecond time, offset, and write, so if TSCs are in 2639 * sync, we can match exact offset, and if not, we can match 2640 * exact software computation in compute_guest_tsc() 2641 * 2642 * These values are tracked in kvm->arch.cur_xxx variables. 2643 */ 2644 kvm->arch.cur_tsc_generation++; 2645 kvm->arch.cur_tsc_nsec = ns; 2646 kvm->arch.cur_tsc_write = tsc; 2647 kvm->arch.cur_tsc_offset = offset; 2648 kvm->arch.nr_vcpus_matched_tsc = 0; 2649 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2650 kvm->arch.nr_vcpus_matched_tsc++; 2651 } 2652 2653 /* Keep track of which generation this VCPU has synchronized to */ 2654 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2655 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2656 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2657 2658 kvm_track_tsc_matching(vcpu); 2659 } 2660 2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2662 { 2663 struct kvm *kvm = vcpu->kvm; 2664 u64 offset, ns, elapsed; 2665 unsigned long flags; 2666 bool matched = false; 2667 bool synchronizing = false; 2668 2669 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2670 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2671 ns = get_kvmclock_base_ns(); 2672 elapsed = ns - kvm->arch.last_tsc_nsec; 2673 2674 if (vcpu->arch.virtual_tsc_khz) { 2675 if (data == 0) { 2676 /* 2677 * detection of vcpu initialization -- need to sync 2678 * with other vCPUs. This particularly helps to keep 2679 * kvm_clock stable after CPU hotplug 2680 */ 2681 synchronizing = true; 2682 } else { 2683 u64 tsc_exp = kvm->arch.last_tsc_write + 2684 nsec_to_cycles(vcpu, elapsed); 2685 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2686 /* 2687 * Special case: TSC write with a small delta (1 second) 2688 * of virtual cycle time against real time is 2689 * interpreted as an attempt to synchronize the CPU. 2690 */ 2691 synchronizing = data < tsc_exp + tsc_hz && 2692 data + tsc_hz > tsc_exp; 2693 } 2694 } 2695 2696 /* 2697 * For a reliable TSC, we can match TSC offsets, and for an unstable 2698 * TSC, we add elapsed time in this computation. We could let the 2699 * compensation code attempt to catch up if we fall behind, but 2700 * it's better to try to match offsets from the beginning. 2701 */ 2702 if (synchronizing && 2703 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2704 if (!kvm_check_tsc_unstable()) { 2705 offset = kvm->arch.cur_tsc_offset; 2706 } else { 2707 u64 delta = nsec_to_cycles(vcpu, elapsed); 2708 data += delta; 2709 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2710 } 2711 matched = true; 2712 } 2713 2714 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2715 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2716 } 2717 2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2719 s64 adjustment) 2720 { 2721 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2722 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2723 } 2724 2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2726 { 2727 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2728 WARN_ON(adjustment < 0); 2729 adjustment = kvm_scale_tsc((u64) adjustment, 2730 vcpu->arch.l1_tsc_scaling_ratio); 2731 adjust_tsc_offset_guest(vcpu, adjustment); 2732 } 2733 2734 #ifdef CONFIG_X86_64 2735 2736 static u64 read_tsc(void) 2737 { 2738 u64 ret = (u64)rdtsc_ordered(); 2739 u64 last = pvclock_gtod_data.clock.cycle_last; 2740 2741 if (likely(ret >= last)) 2742 return ret; 2743 2744 /* 2745 * GCC likes to generate cmov here, but this branch is extremely 2746 * predictable (it's just a function of time and the likely is 2747 * very likely) and there's a data dependence, so force GCC 2748 * to generate a branch instead. I don't barrier() because 2749 * we don't actually need a barrier, and if this function 2750 * ever gets inlined it will generate worse code. 2751 */ 2752 asm volatile (""); 2753 return last; 2754 } 2755 2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2757 int *mode) 2758 { 2759 long v; 2760 u64 tsc_pg_val; 2761 2762 switch (clock->vclock_mode) { 2763 case VDSO_CLOCKMODE_HVCLOCK: 2764 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2765 tsc_timestamp); 2766 if (tsc_pg_val != U64_MAX) { 2767 /* TSC page valid */ 2768 *mode = VDSO_CLOCKMODE_HVCLOCK; 2769 v = (tsc_pg_val - clock->cycle_last) & 2770 clock->mask; 2771 } else { 2772 /* TSC page invalid */ 2773 *mode = VDSO_CLOCKMODE_NONE; 2774 } 2775 break; 2776 case VDSO_CLOCKMODE_TSC: 2777 *mode = VDSO_CLOCKMODE_TSC; 2778 *tsc_timestamp = read_tsc(); 2779 v = (*tsc_timestamp - clock->cycle_last) & 2780 clock->mask; 2781 break; 2782 default: 2783 *mode = VDSO_CLOCKMODE_NONE; 2784 } 2785 2786 if (*mode == VDSO_CLOCKMODE_NONE) 2787 *tsc_timestamp = v = 0; 2788 2789 return v * clock->mult; 2790 } 2791 2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2793 { 2794 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2795 unsigned long seq; 2796 int mode; 2797 u64 ns; 2798 2799 do { 2800 seq = read_seqcount_begin(>od->seq); 2801 ns = gtod->raw_clock.base_cycles; 2802 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2803 ns >>= gtod->raw_clock.shift; 2804 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2805 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2806 *t = ns; 2807 2808 return mode; 2809 } 2810 2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2812 { 2813 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2814 unsigned long seq; 2815 int mode; 2816 u64 ns; 2817 2818 do { 2819 seq = read_seqcount_begin(>od->seq); 2820 ts->tv_sec = gtod->wall_time_sec; 2821 ns = gtod->clock.base_cycles; 2822 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2823 ns >>= gtod->clock.shift; 2824 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2825 2826 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2827 ts->tv_nsec = ns; 2828 2829 return mode; 2830 } 2831 2832 /* returns true if host is using TSC based clocksource */ 2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2834 { 2835 /* checked again under seqlock below */ 2836 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2837 return false; 2838 2839 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2840 tsc_timestamp)); 2841 } 2842 2843 /* returns true if host is using TSC based clocksource */ 2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2845 u64 *tsc_timestamp) 2846 { 2847 /* checked again under seqlock below */ 2848 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2849 return false; 2850 2851 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2852 } 2853 #endif 2854 2855 /* 2856 * 2857 * Assuming a stable TSC across physical CPUS, and a stable TSC 2858 * across virtual CPUs, the following condition is possible. 2859 * Each numbered line represents an event visible to both 2860 * CPUs at the next numbered event. 2861 * 2862 * "timespecX" represents host monotonic time. "tscX" represents 2863 * RDTSC value. 2864 * 2865 * VCPU0 on CPU0 | VCPU1 on CPU1 2866 * 2867 * 1. read timespec0,tsc0 2868 * 2. | timespec1 = timespec0 + N 2869 * | tsc1 = tsc0 + M 2870 * 3. transition to guest | transition to guest 2871 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2872 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2873 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2874 * 2875 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2876 * 2877 * - ret0 < ret1 2878 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2879 * ... 2880 * - 0 < N - M => M < N 2881 * 2882 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2883 * always the case (the difference between two distinct xtime instances 2884 * might be smaller then the difference between corresponding TSC reads, 2885 * when updating guest vcpus pvclock areas). 2886 * 2887 * To avoid that problem, do not allow visibility of distinct 2888 * system_timestamp/tsc_timestamp values simultaneously: use a master 2889 * copy of host monotonic time values. Update that master copy 2890 * in lockstep. 2891 * 2892 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2893 * 2894 */ 2895 2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2897 { 2898 #ifdef CONFIG_X86_64 2899 struct kvm_arch *ka = &kvm->arch; 2900 int vclock_mode; 2901 bool host_tsc_clocksource, vcpus_matched; 2902 2903 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2904 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2905 atomic_read(&kvm->online_vcpus)); 2906 2907 /* 2908 * If the host uses TSC clock, then passthrough TSC as stable 2909 * to the guest. 2910 */ 2911 host_tsc_clocksource = kvm_get_time_and_clockread( 2912 &ka->master_kernel_ns, 2913 &ka->master_cycle_now); 2914 2915 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2916 && !ka->backwards_tsc_observed 2917 && !ka->boot_vcpu_runs_old_kvmclock; 2918 2919 if (ka->use_master_clock) 2920 atomic_set(&kvm_guest_has_master_clock, 1); 2921 2922 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2923 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2924 vcpus_matched); 2925 #endif 2926 } 2927 2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2929 { 2930 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2931 } 2932 2933 static void __kvm_start_pvclock_update(struct kvm *kvm) 2934 { 2935 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2936 write_seqcount_begin(&kvm->arch.pvclock_sc); 2937 } 2938 2939 static void kvm_start_pvclock_update(struct kvm *kvm) 2940 { 2941 kvm_make_mclock_inprogress_request(kvm); 2942 2943 /* no guest entries from this point */ 2944 __kvm_start_pvclock_update(kvm); 2945 } 2946 2947 static void kvm_end_pvclock_update(struct kvm *kvm) 2948 { 2949 struct kvm_arch *ka = &kvm->arch; 2950 struct kvm_vcpu *vcpu; 2951 unsigned long i; 2952 2953 write_seqcount_end(&ka->pvclock_sc); 2954 raw_spin_unlock_irq(&ka->tsc_write_lock); 2955 kvm_for_each_vcpu(i, vcpu, kvm) 2956 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2957 2958 /* guest entries allowed */ 2959 kvm_for_each_vcpu(i, vcpu, kvm) 2960 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2961 } 2962 2963 static void kvm_update_masterclock(struct kvm *kvm) 2964 { 2965 kvm_hv_request_tsc_page_update(kvm); 2966 kvm_start_pvclock_update(kvm); 2967 pvclock_update_vm_gtod_copy(kvm); 2968 kvm_end_pvclock_update(kvm); 2969 } 2970 2971 /* 2972 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2973 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2974 * can change during boot even if the TSC is constant, as it's possible for KVM 2975 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2976 * notification when calibration completes, but practically speaking calibration 2977 * will complete before userspace is alive enough to create VMs. 2978 */ 2979 static unsigned long get_cpu_tsc_khz(void) 2980 { 2981 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2982 return tsc_khz; 2983 else 2984 return __this_cpu_read(cpu_tsc_khz); 2985 } 2986 2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2989 { 2990 struct kvm_arch *ka = &kvm->arch; 2991 struct pvclock_vcpu_time_info hv_clock; 2992 2993 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2994 get_cpu(); 2995 2996 data->flags = 0; 2997 if (ka->use_master_clock && 2998 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 2999 #ifdef CONFIG_X86_64 3000 struct timespec64 ts; 3001 3002 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3003 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3004 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3005 } else 3006 #endif 3007 data->host_tsc = rdtsc(); 3008 3009 data->flags |= KVM_CLOCK_TSC_STABLE; 3010 hv_clock.tsc_timestamp = ka->master_cycle_now; 3011 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3012 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3013 &hv_clock.tsc_shift, 3014 &hv_clock.tsc_to_system_mul); 3015 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3016 } else { 3017 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3018 } 3019 3020 put_cpu(); 3021 } 3022 3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3024 { 3025 struct kvm_arch *ka = &kvm->arch; 3026 unsigned seq; 3027 3028 do { 3029 seq = read_seqcount_begin(&ka->pvclock_sc); 3030 __get_kvmclock(kvm, data); 3031 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3032 } 3033 3034 u64 get_kvmclock_ns(struct kvm *kvm) 3035 { 3036 struct kvm_clock_data data; 3037 3038 get_kvmclock(kvm, &data); 3039 return data.clock; 3040 } 3041 3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3043 struct gfn_to_pfn_cache *gpc, 3044 unsigned int offset) 3045 { 3046 struct kvm_vcpu_arch *vcpu = &v->arch; 3047 struct pvclock_vcpu_time_info *guest_hv_clock; 3048 unsigned long flags; 3049 3050 read_lock_irqsave(&gpc->lock, flags); 3051 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3052 read_unlock_irqrestore(&gpc->lock, flags); 3053 3054 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3055 return; 3056 3057 read_lock_irqsave(&gpc->lock, flags); 3058 } 3059 3060 guest_hv_clock = (void *)(gpc->khva + offset); 3061 3062 /* 3063 * This VCPU is paused, but it's legal for a guest to read another 3064 * VCPU's kvmclock, so we really have to follow the specification where 3065 * it says that version is odd if data is being modified, and even after 3066 * it is consistent. 3067 */ 3068 3069 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3070 smp_wmb(); 3071 3072 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3073 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3074 3075 if (vcpu->pvclock_set_guest_stopped_request) { 3076 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3077 vcpu->pvclock_set_guest_stopped_request = false; 3078 } 3079 3080 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3081 smp_wmb(); 3082 3083 guest_hv_clock->version = ++vcpu->hv_clock.version; 3084 3085 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3086 read_unlock_irqrestore(&gpc->lock, flags); 3087 3088 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3089 } 3090 3091 static int kvm_guest_time_update(struct kvm_vcpu *v) 3092 { 3093 unsigned long flags, tgt_tsc_khz; 3094 unsigned seq; 3095 struct kvm_vcpu_arch *vcpu = &v->arch; 3096 struct kvm_arch *ka = &v->kvm->arch; 3097 s64 kernel_ns; 3098 u64 tsc_timestamp, host_tsc; 3099 u8 pvclock_flags; 3100 bool use_master_clock; 3101 3102 kernel_ns = 0; 3103 host_tsc = 0; 3104 3105 /* 3106 * If the host uses TSC clock, then passthrough TSC as stable 3107 * to the guest. 3108 */ 3109 do { 3110 seq = read_seqcount_begin(&ka->pvclock_sc); 3111 use_master_clock = ka->use_master_clock; 3112 if (use_master_clock) { 3113 host_tsc = ka->master_cycle_now; 3114 kernel_ns = ka->master_kernel_ns; 3115 } 3116 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3117 3118 /* Keep irq disabled to prevent changes to the clock */ 3119 local_irq_save(flags); 3120 tgt_tsc_khz = get_cpu_tsc_khz(); 3121 if (unlikely(tgt_tsc_khz == 0)) { 3122 local_irq_restore(flags); 3123 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3124 return 1; 3125 } 3126 if (!use_master_clock) { 3127 host_tsc = rdtsc(); 3128 kernel_ns = get_kvmclock_base_ns(); 3129 } 3130 3131 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3132 3133 /* 3134 * We may have to catch up the TSC to match elapsed wall clock 3135 * time for two reasons, even if kvmclock is used. 3136 * 1) CPU could have been running below the maximum TSC rate 3137 * 2) Broken TSC compensation resets the base at each VCPU 3138 * entry to avoid unknown leaps of TSC even when running 3139 * again on the same CPU. This may cause apparent elapsed 3140 * time to disappear, and the guest to stand still or run 3141 * very slowly. 3142 */ 3143 if (vcpu->tsc_catchup) { 3144 u64 tsc = compute_guest_tsc(v, kernel_ns); 3145 if (tsc > tsc_timestamp) { 3146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3147 tsc_timestamp = tsc; 3148 } 3149 } 3150 3151 local_irq_restore(flags); 3152 3153 /* With all the info we got, fill in the values */ 3154 3155 if (kvm_caps.has_tsc_control) 3156 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3157 v->arch.l1_tsc_scaling_ratio); 3158 3159 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3160 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3161 &vcpu->hv_clock.tsc_shift, 3162 &vcpu->hv_clock.tsc_to_system_mul); 3163 vcpu->hw_tsc_khz = tgt_tsc_khz; 3164 } 3165 3166 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3167 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3168 vcpu->last_guest_tsc = tsc_timestamp; 3169 3170 /* If the host uses TSC clocksource, then it is stable */ 3171 pvclock_flags = 0; 3172 if (use_master_clock) 3173 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3174 3175 vcpu->hv_clock.flags = pvclock_flags; 3176 3177 if (vcpu->pv_time.active) 3178 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3179 if (vcpu->xen.vcpu_info_cache.active) 3180 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3181 offsetof(struct compat_vcpu_info, time)); 3182 if (vcpu->xen.vcpu_time_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3184 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3185 return 0; 3186 } 3187 3188 /* 3189 * kvmclock updates which are isolated to a given vcpu, such as 3190 * vcpu->cpu migration, should not allow system_timestamp from 3191 * the rest of the vcpus to remain static. Otherwise ntp frequency 3192 * correction applies to one vcpu's system_timestamp but not 3193 * the others. 3194 * 3195 * So in those cases, request a kvmclock update for all vcpus. 3196 * We need to rate-limit these requests though, as they can 3197 * considerably slow guests that have a large number of vcpus. 3198 * The time for a remote vcpu to update its kvmclock is bound 3199 * by the delay we use to rate-limit the updates. 3200 */ 3201 3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3203 3204 static void kvmclock_update_fn(struct work_struct *work) 3205 { 3206 unsigned long i; 3207 struct delayed_work *dwork = to_delayed_work(work); 3208 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3209 kvmclock_update_work); 3210 struct kvm *kvm = container_of(ka, struct kvm, arch); 3211 struct kvm_vcpu *vcpu; 3212 3213 kvm_for_each_vcpu(i, vcpu, kvm) { 3214 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3215 kvm_vcpu_kick(vcpu); 3216 } 3217 } 3218 3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3220 { 3221 struct kvm *kvm = v->kvm; 3222 3223 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3224 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3225 KVMCLOCK_UPDATE_DELAY); 3226 } 3227 3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3229 3230 static void kvmclock_sync_fn(struct work_struct *work) 3231 { 3232 struct delayed_work *dwork = to_delayed_work(work); 3233 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3234 kvmclock_sync_work); 3235 struct kvm *kvm = container_of(ka, struct kvm, arch); 3236 3237 if (!kvmclock_periodic_sync) 3238 return; 3239 3240 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3241 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3242 KVMCLOCK_SYNC_PERIOD); 3243 } 3244 3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3246 static bool is_mci_control_msr(u32 msr) 3247 { 3248 return (msr & 3) == 0; 3249 } 3250 static bool is_mci_status_msr(u32 msr) 3251 { 3252 return (msr & 3) == 1; 3253 } 3254 3255 /* 3256 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3257 */ 3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3259 { 3260 /* McStatusWrEn enabled? */ 3261 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3262 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3263 3264 return false; 3265 } 3266 3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3268 { 3269 u64 mcg_cap = vcpu->arch.mcg_cap; 3270 unsigned bank_num = mcg_cap & 0xff; 3271 u32 msr = msr_info->index; 3272 u64 data = msr_info->data; 3273 u32 offset, last_msr; 3274 3275 switch (msr) { 3276 case MSR_IA32_MCG_STATUS: 3277 vcpu->arch.mcg_status = data; 3278 break; 3279 case MSR_IA32_MCG_CTL: 3280 if (!(mcg_cap & MCG_CTL_P) && 3281 (data || !msr_info->host_initiated)) 3282 return 1; 3283 if (data != 0 && data != ~(u64)0) 3284 return 1; 3285 vcpu->arch.mcg_ctl = data; 3286 break; 3287 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3288 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3289 if (msr > last_msr) 3290 return 1; 3291 3292 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3293 return 1; 3294 /* An attempt to write a 1 to a reserved bit raises #GP */ 3295 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3296 return 1; 3297 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3298 last_msr + 1 - MSR_IA32_MC0_CTL2); 3299 vcpu->arch.mci_ctl2_banks[offset] = data; 3300 break; 3301 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3302 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3303 if (msr > last_msr) 3304 return 1; 3305 3306 /* 3307 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3308 * values are architecturally undefined. But, some Linux 3309 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3310 * issue on AMD K8s, allow bit 10 to be clear when setting all 3311 * other bits in order to avoid an uncaught #GP in the guest. 3312 * 3313 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3314 * single-bit ECC data errors. 3315 */ 3316 if (is_mci_control_msr(msr) && 3317 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3318 return 1; 3319 3320 /* 3321 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3322 * AMD-based CPUs allow non-zero values, but if and only if 3323 * HWCR[McStatusWrEn] is set. 3324 */ 3325 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3326 data != 0 && !can_set_mci_status(vcpu)) 3327 return 1; 3328 3329 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3330 last_msr + 1 - MSR_IA32_MC0_CTL); 3331 vcpu->arch.mce_banks[offset] = data; 3332 break; 3333 default: 3334 return 1; 3335 } 3336 return 0; 3337 } 3338 3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3340 { 3341 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3342 3343 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3344 } 3345 3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3347 { 3348 gpa_t gpa = data & ~0x3f; 3349 3350 /* Bits 4:5 are reserved, Should be zero */ 3351 if (data & 0x30) 3352 return 1; 3353 3354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3355 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3356 return 1; 3357 3358 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3359 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3360 return 1; 3361 3362 if (!lapic_in_kernel(vcpu)) 3363 return data ? 1 : 0; 3364 3365 vcpu->arch.apf.msr_en_val = data; 3366 3367 if (!kvm_pv_async_pf_enabled(vcpu)) { 3368 kvm_clear_async_pf_completion_queue(vcpu); 3369 kvm_async_pf_hash_reset(vcpu); 3370 return 0; 3371 } 3372 3373 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3374 sizeof(u64))) 3375 return 1; 3376 3377 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3378 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3379 3380 kvm_async_pf_wakeup_all(vcpu); 3381 3382 return 0; 3383 } 3384 3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3386 { 3387 /* Bits 8-63 are reserved */ 3388 if (data >> 8) 3389 return 1; 3390 3391 if (!lapic_in_kernel(vcpu)) 3392 return 1; 3393 3394 vcpu->arch.apf.msr_int_val = data; 3395 3396 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3397 3398 return 0; 3399 } 3400 3401 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3402 { 3403 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3404 vcpu->arch.time = 0; 3405 } 3406 3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3408 { 3409 ++vcpu->stat.tlb_flush; 3410 static_call(kvm_x86_flush_tlb_all)(vcpu); 3411 3412 /* Flushing all ASIDs flushes the current ASID... */ 3413 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3414 } 3415 3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3417 { 3418 ++vcpu->stat.tlb_flush; 3419 3420 if (!tdp_enabled) { 3421 /* 3422 * A TLB flush on behalf of the guest is equivalent to 3423 * INVPCID(all), toggling CR4.PGE, etc., which requires 3424 * a forced sync of the shadow page tables. Ensure all the 3425 * roots are synced and the guest TLB in hardware is clean. 3426 */ 3427 kvm_mmu_sync_roots(vcpu); 3428 kvm_mmu_sync_prev_roots(vcpu); 3429 } 3430 3431 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3432 3433 /* 3434 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3435 * grained flushing. 3436 */ 3437 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3438 } 3439 3440 3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3442 { 3443 ++vcpu->stat.tlb_flush; 3444 static_call(kvm_x86_flush_tlb_current)(vcpu); 3445 } 3446 3447 /* 3448 * Service "local" TLB flush requests, which are specific to the current MMU 3449 * context. In addition to the generic event handling in vcpu_enter_guest(), 3450 * TLB flushes that are targeted at an MMU context also need to be serviced 3451 * prior before nested VM-Enter/VM-Exit. 3452 */ 3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3454 { 3455 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3456 kvm_vcpu_flush_tlb_current(vcpu); 3457 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3459 kvm_vcpu_flush_tlb_guest(vcpu); 3460 } 3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3462 3463 static void record_steal_time(struct kvm_vcpu *vcpu) 3464 { 3465 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3466 struct kvm_steal_time __user *st; 3467 struct kvm_memslots *slots; 3468 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3469 u64 steal; 3470 u32 version; 3471 3472 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3473 kvm_xen_runstate_set_running(vcpu); 3474 return; 3475 } 3476 3477 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3478 return; 3479 3480 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3481 return; 3482 3483 slots = kvm_memslots(vcpu->kvm); 3484 3485 if (unlikely(slots->generation != ghc->generation || 3486 gpa != ghc->gpa || 3487 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3488 /* We rely on the fact that it fits in a single page. */ 3489 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3490 3491 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3492 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3493 return; 3494 } 3495 3496 st = (struct kvm_steal_time __user *)ghc->hva; 3497 /* 3498 * Doing a TLB flush here, on the guest's behalf, can avoid 3499 * expensive IPIs. 3500 */ 3501 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3502 u8 st_preempted = 0; 3503 int err = -EFAULT; 3504 3505 if (!user_access_begin(st, sizeof(*st))) 3506 return; 3507 3508 asm volatile("1: xchgb %0, %2\n" 3509 "xor %1, %1\n" 3510 "2:\n" 3511 _ASM_EXTABLE_UA(1b, 2b) 3512 : "+q" (st_preempted), 3513 "+&r" (err), 3514 "+m" (st->preempted)); 3515 if (err) 3516 goto out; 3517 3518 user_access_end(); 3519 3520 vcpu->arch.st.preempted = 0; 3521 3522 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3523 st_preempted & KVM_VCPU_FLUSH_TLB); 3524 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3525 kvm_vcpu_flush_tlb_guest(vcpu); 3526 3527 if (!user_access_begin(st, sizeof(*st))) 3528 goto dirty; 3529 } else { 3530 if (!user_access_begin(st, sizeof(*st))) 3531 return; 3532 3533 unsafe_put_user(0, &st->preempted, out); 3534 vcpu->arch.st.preempted = 0; 3535 } 3536 3537 unsafe_get_user(version, &st->version, out); 3538 if (version & 1) 3539 version += 1; /* first time write, random junk */ 3540 3541 version += 1; 3542 unsafe_put_user(version, &st->version, out); 3543 3544 smp_wmb(); 3545 3546 unsafe_get_user(steal, &st->steal, out); 3547 steal += current->sched_info.run_delay - 3548 vcpu->arch.st.last_steal; 3549 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3550 unsafe_put_user(steal, &st->steal, out); 3551 3552 version += 1; 3553 unsafe_put_user(version, &st->version, out); 3554 3555 out: 3556 user_access_end(); 3557 dirty: 3558 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3559 } 3560 3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3562 { 3563 u32 msr = msr_info->index; 3564 u64 data = msr_info->data; 3565 3566 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3567 return kvm_xen_write_hypercall_page(vcpu, data); 3568 3569 switch (msr) { 3570 case MSR_AMD64_NB_CFG: 3571 case MSR_IA32_UCODE_WRITE: 3572 case MSR_VM_HSAVE_PA: 3573 case MSR_AMD64_PATCH_LOADER: 3574 case MSR_AMD64_BU_CFG2: 3575 case MSR_AMD64_DC_CFG: 3576 case MSR_F15H_EX_CFG: 3577 break; 3578 3579 case MSR_IA32_UCODE_REV: 3580 if (msr_info->host_initiated) 3581 vcpu->arch.microcode_version = data; 3582 break; 3583 case MSR_IA32_ARCH_CAPABILITIES: 3584 if (!msr_info->host_initiated) 3585 return 1; 3586 vcpu->arch.arch_capabilities = data; 3587 break; 3588 case MSR_IA32_PERF_CAPABILITIES: 3589 if (!msr_info->host_initiated) 3590 return 1; 3591 if (data & ~kvm_caps.supported_perf_cap) 3592 return 1; 3593 3594 vcpu->arch.perf_capabilities = data; 3595 kvm_pmu_refresh(vcpu); 3596 return 0; 3597 case MSR_EFER: 3598 return set_efer(vcpu, msr_info); 3599 case MSR_K7_HWCR: 3600 data &= ~(u64)0x40; /* ignore flush filter disable */ 3601 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3602 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3603 3604 /* Handle McStatusWrEn */ 3605 if (data == BIT_ULL(18)) { 3606 vcpu->arch.msr_hwcr = data; 3607 } else if (data != 0) { 3608 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3609 return 1; 3610 } 3611 break; 3612 case MSR_FAM10H_MMIO_CONF_BASE: 3613 if (data != 0) { 3614 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3615 return 1; 3616 } 3617 break; 3618 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3619 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3620 return kvm_mtrr_set_msr(vcpu, msr, data); 3621 case MSR_IA32_APICBASE: 3622 return kvm_set_apic_base(vcpu, msr_info); 3623 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3624 return kvm_x2apic_msr_write(vcpu, msr, data); 3625 case MSR_IA32_TSC_DEADLINE: 3626 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3627 break; 3628 case MSR_IA32_TSC_ADJUST: 3629 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3630 if (!msr_info->host_initiated) { 3631 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3632 adjust_tsc_offset_guest(vcpu, adj); 3633 /* Before back to guest, tsc_timestamp must be adjusted 3634 * as well, otherwise guest's percpu pvclock time could jump. 3635 */ 3636 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3637 } 3638 vcpu->arch.ia32_tsc_adjust_msr = data; 3639 } 3640 break; 3641 case MSR_IA32_MISC_ENABLE: { 3642 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3643 3644 if (!msr_info->host_initiated) { 3645 /* RO bits */ 3646 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3647 return 1; 3648 3649 /* R bits, i.e. writes are ignored, but don't fault. */ 3650 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3651 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3652 } 3653 3654 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3655 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3656 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3657 return 1; 3658 vcpu->arch.ia32_misc_enable_msr = data; 3659 kvm_update_cpuid_runtime(vcpu); 3660 } else { 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 } 3663 break; 3664 } 3665 case MSR_IA32_SMBASE: 3666 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3667 return 1; 3668 vcpu->arch.smbase = data; 3669 break; 3670 case MSR_IA32_POWER_CTL: 3671 vcpu->arch.msr_ia32_power_ctl = data; 3672 break; 3673 case MSR_IA32_TSC: 3674 if (msr_info->host_initiated) { 3675 kvm_synchronize_tsc(vcpu, data); 3676 } else { 3677 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3678 adjust_tsc_offset_guest(vcpu, adj); 3679 vcpu->arch.ia32_tsc_adjust_msr += adj; 3680 } 3681 break; 3682 case MSR_IA32_XSS: 3683 if (!msr_info->host_initiated && 3684 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3685 return 1; 3686 /* 3687 * KVM supports exposing PT to the guest, but does not support 3688 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3689 * XSAVES/XRSTORS to save/restore PT MSRs. 3690 */ 3691 if (data & ~kvm_caps.supported_xss) 3692 return 1; 3693 vcpu->arch.ia32_xss = data; 3694 kvm_update_cpuid_runtime(vcpu); 3695 break; 3696 case MSR_SMI_COUNT: 3697 if (!msr_info->host_initiated) 3698 return 1; 3699 vcpu->arch.smi_count = data; 3700 break; 3701 case MSR_KVM_WALL_CLOCK_NEW: 3702 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3703 return 1; 3704 3705 vcpu->kvm->arch.wall_clock = data; 3706 kvm_write_wall_clock(vcpu->kvm, data, 0); 3707 break; 3708 case MSR_KVM_WALL_CLOCK: 3709 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3710 return 1; 3711 3712 vcpu->kvm->arch.wall_clock = data; 3713 kvm_write_wall_clock(vcpu->kvm, data, 0); 3714 break; 3715 case MSR_KVM_SYSTEM_TIME_NEW: 3716 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3717 return 1; 3718 3719 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3720 break; 3721 case MSR_KVM_SYSTEM_TIME: 3722 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3723 return 1; 3724 3725 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3726 break; 3727 case MSR_KVM_ASYNC_PF_EN: 3728 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3729 return 1; 3730 3731 if (kvm_pv_enable_async_pf(vcpu, data)) 3732 return 1; 3733 break; 3734 case MSR_KVM_ASYNC_PF_INT: 3735 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3736 return 1; 3737 3738 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3739 return 1; 3740 break; 3741 case MSR_KVM_ASYNC_PF_ACK: 3742 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3743 return 1; 3744 if (data & 0x1) { 3745 vcpu->arch.apf.pageready_pending = false; 3746 kvm_check_async_pf_completion(vcpu); 3747 } 3748 break; 3749 case MSR_KVM_STEAL_TIME: 3750 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3751 return 1; 3752 3753 if (unlikely(!sched_info_on())) 3754 return 1; 3755 3756 if (data & KVM_STEAL_RESERVED_MASK) 3757 return 1; 3758 3759 vcpu->arch.st.msr_val = data; 3760 3761 if (!(data & KVM_MSR_ENABLED)) 3762 break; 3763 3764 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3765 3766 break; 3767 case MSR_KVM_PV_EOI_EN: 3768 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3769 return 1; 3770 3771 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3772 return 1; 3773 break; 3774 3775 case MSR_KVM_POLL_CONTROL: 3776 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3777 return 1; 3778 3779 /* only enable bit supported */ 3780 if (data & (-1ULL << 1)) 3781 return 1; 3782 3783 vcpu->arch.msr_kvm_poll_control = data; 3784 break; 3785 3786 case MSR_IA32_MCG_CTL: 3787 case MSR_IA32_MCG_STATUS: 3788 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3789 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3790 return set_msr_mce(vcpu, msr_info); 3791 3792 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3793 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3794 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3795 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3796 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3797 return kvm_pmu_set_msr(vcpu, msr_info); 3798 3799 if (data) 3800 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3801 break; 3802 case MSR_K7_CLK_CTL: 3803 /* 3804 * Ignore all writes to this no longer documented MSR. 3805 * Writes are only relevant for old K7 processors, 3806 * all pre-dating SVM, but a recommended workaround from 3807 * AMD for these chips. It is possible to specify the 3808 * affected processor models on the command line, hence 3809 * the need to ignore the workaround. 3810 */ 3811 break; 3812 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3813 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3814 case HV_X64_MSR_SYNDBG_OPTIONS: 3815 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3816 case HV_X64_MSR_CRASH_CTL: 3817 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3818 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3819 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3820 case HV_X64_MSR_TSC_EMULATION_STATUS: 3821 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3822 return kvm_hv_set_msr_common(vcpu, msr, data, 3823 msr_info->host_initiated); 3824 case MSR_IA32_BBL_CR_CTL3: 3825 /* Drop writes to this legacy MSR -- see rdmsr 3826 * counterpart for further detail. 3827 */ 3828 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3829 break; 3830 case MSR_AMD64_OSVW_ID_LENGTH: 3831 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3832 return 1; 3833 vcpu->arch.osvw.length = data; 3834 break; 3835 case MSR_AMD64_OSVW_STATUS: 3836 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3837 return 1; 3838 vcpu->arch.osvw.status = data; 3839 break; 3840 case MSR_PLATFORM_INFO: 3841 if (!msr_info->host_initiated || 3842 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3843 cpuid_fault_enabled(vcpu))) 3844 return 1; 3845 vcpu->arch.msr_platform_info = data; 3846 break; 3847 case MSR_MISC_FEATURES_ENABLES: 3848 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3849 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3850 !supports_cpuid_fault(vcpu))) 3851 return 1; 3852 vcpu->arch.msr_misc_features_enables = data; 3853 break; 3854 #ifdef CONFIG_X86_64 3855 case MSR_IA32_XFD: 3856 if (!msr_info->host_initiated && 3857 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3858 return 1; 3859 3860 if (data & ~kvm_guest_supported_xfd(vcpu)) 3861 return 1; 3862 3863 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3864 break; 3865 case MSR_IA32_XFD_ERR: 3866 if (!msr_info->host_initiated && 3867 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3868 return 1; 3869 3870 if (data & ~kvm_guest_supported_xfd(vcpu)) 3871 return 1; 3872 3873 vcpu->arch.guest_fpu.xfd_err = data; 3874 break; 3875 #endif 3876 case MSR_IA32_PEBS_ENABLE: 3877 case MSR_IA32_DS_AREA: 3878 case MSR_PEBS_DATA_CFG: 3879 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3880 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3881 return kvm_pmu_set_msr(vcpu, msr_info); 3882 /* 3883 * Userspace is allowed to write '0' to MSRs that KVM reports 3884 * as to-be-saved, even if an MSRs isn't fully supported. 3885 */ 3886 return !msr_info->host_initiated || data; 3887 default: 3888 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3889 return kvm_pmu_set_msr(vcpu, msr_info); 3890 return KVM_MSR_RET_INVALID; 3891 } 3892 return 0; 3893 } 3894 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3895 3896 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3897 { 3898 u64 data; 3899 u64 mcg_cap = vcpu->arch.mcg_cap; 3900 unsigned bank_num = mcg_cap & 0xff; 3901 u32 offset, last_msr; 3902 3903 switch (msr) { 3904 case MSR_IA32_P5_MC_ADDR: 3905 case MSR_IA32_P5_MC_TYPE: 3906 data = 0; 3907 break; 3908 case MSR_IA32_MCG_CAP: 3909 data = vcpu->arch.mcg_cap; 3910 break; 3911 case MSR_IA32_MCG_CTL: 3912 if (!(mcg_cap & MCG_CTL_P) && !host) 3913 return 1; 3914 data = vcpu->arch.mcg_ctl; 3915 break; 3916 case MSR_IA32_MCG_STATUS: 3917 data = vcpu->arch.mcg_status; 3918 break; 3919 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3920 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3921 if (msr > last_msr) 3922 return 1; 3923 3924 if (!(mcg_cap & MCG_CMCI_P) && !host) 3925 return 1; 3926 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3927 last_msr + 1 - MSR_IA32_MC0_CTL2); 3928 data = vcpu->arch.mci_ctl2_banks[offset]; 3929 break; 3930 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3931 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3932 if (msr > last_msr) 3933 return 1; 3934 3935 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3936 last_msr + 1 - MSR_IA32_MC0_CTL); 3937 data = vcpu->arch.mce_banks[offset]; 3938 break; 3939 default: 3940 return 1; 3941 } 3942 *pdata = data; 3943 return 0; 3944 } 3945 3946 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3947 { 3948 switch (msr_info->index) { 3949 case MSR_IA32_PLATFORM_ID: 3950 case MSR_IA32_EBL_CR_POWERON: 3951 case MSR_IA32_LASTBRANCHFROMIP: 3952 case MSR_IA32_LASTBRANCHTOIP: 3953 case MSR_IA32_LASTINTFROMIP: 3954 case MSR_IA32_LASTINTTOIP: 3955 case MSR_AMD64_SYSCFG: 3956 case MSR_K8_TSEG_ADDR: 3957 case MSR_K8_TSEG_MASK: 3958 case MSR_VM_HSAVE_PA: 3959 case MSR_K8_INT_PENDING_MSG: 3960 case MSR_AMD64_NB_CFG: 3961 case MSR_FAM10H_MMIO_CONF_BASE: 3962 case MSR_AMD64_BU_CFG2: 3963 case MSR_IA32_PERF_CTL: 3964 case MSR_AMD64_DC_CFG: 3965 case MSR_F15H_EX_CFG: 3966 /* 3967 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3968 * limit) MSRs. Just return 0, as we do not want to expose the host 3969 * data here. Do not conditionalize this on CPUID, as KVM does not do 3970 * so for existing CPU-specific MSRs. 3971 */ 3972 case MSR_RAPL_POWER_UNIT: 3973 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3974 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3975 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3976 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3977 msr_info->data = 0; 3978 break; 3979 case MSR_IA32_PEBS_ENABLE: 3980 case MSR_IA32_DS_AREA: 3981 case MSR_PEBS_DATA_CFG: 3982 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3983 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3984 return kvm_pmu_get_msr(vcpu, msr_info); 3985 /* 3986 * Userspace is allowed to read MSRs that KVM reports as 3987 * to-be-saved, even if an MSR isn't fully supported. 3988 */ 3989 if (!msr_info->host_initiated) 3990 return 1; 3991 msr_info->data = 0; 3992 break; 3993 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3994 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3995 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3996 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3997 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3998 return kvm_pmu_get_msr(vcpu, msr_info); 3999 msr_info->data = 0; 4000 break; 4001 case MSR_IA32_UCODE_REV: 4002 msr_info->data = vcpu->arch.microcode_version; 4003 break; 4004 case MSR_IA32_ARCH_CAPABILITIES: 4005 if (!msr_info->host_initiated && 4006 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4007 return 1; 4008 msr_info->data = vcpu->arch.arch_capabilities; 4009 break; 4010 case MSR_IA32_PERF_CAPABILITIES: 4011 if (!msr_info->host_initiated && 4012 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4013 return 1; 4014 msr_info->data = vcpu->arch.perf_capabilities; 4015 break; 4016 case MSR_IA32_POWER_CTL: 4017 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4018 break; 4019 case MSR_IA32_TSC: { 4020 /* 4021 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4022 * even when not intercepted. AMD manual doesn't explicitly 4023 * state this but appears to behave the same. 4024 * 4025 * On userspace reads and writes, however, we unconditionally 4026 * return L1's TSC value to ensure backwards-compatible 4027 * behavior for migration. 4028 */ 4029 u64 offset, ratio; 4030 4031 if (msr_info->host_initiated) { 4032 offset = vcpu->arch.l1_tsc_offset; 4033 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4034 } else { 4035 offset = vcpu->arch.tsc_offset; 4036 ratio = vcpu->arch.tsc_scaling_ratio; 4037 } 4038 4039 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4040 break; 4041 } 4042 case MSR_MTRRcap: 4043 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4044 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4045 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4046 case 0xcd: /* fsb frequency */ 4047 msr_info->data = 3; 4048 break; 4049 /* 4050 * MSR_EBC_FREQUENCY_ID 4051 * Conservative value valid for even the basic CPU models. 4052 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4053 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4054 * and 266MHz for model 3, or 4. Set Core Clock 4055 * Frequency to System Bus Frequency Ratio to 1 (bits 4056 * 31:24) even though these are only valid for CPU 4057 * models > 2, however guests may end up dividing or 4058 * multiplying by zero otherwise. 4059 */ 4060 case MSR_EBC_FREQUENCY_ID: 4061 msr_info->data = 1 << 24; 4062 break; 4063 case MSR_IA32_APICBASE: 4064 msr_info->data = kvm_get_apic_base(vcpu); 4065 break; 4066 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4067 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4068 case MSR_IA32_TSC_DEADLINE: 4069 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4070 break; 4071 case MSR_IA32_TSC_ADJUST: 4072 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4073 break; 4074 case MSR_IA32_MISC_ENABLE: 4075 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4076 break; 4077 case MSR_IA32_SMBASE: 4078 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4079 return 1; 4080 msr_info->data = vcpu->arch.smbase; 4081 break; 4082 case MSR_SMI_COUNT: 4083 msr_info->data = vcpu->arch.smi_count; 4084 break; 4085 case MSR_IA32_PERF_STATUS: 4086 /* TSC increment by tick */ 4087 msr_info->data = 1000ULL; 4088 /* CPU multiplier */ 4089 msr_info->data |= (((uint64_t)4ULL) << 40); 4090 break; 4091 case MSR_EFER: 4092 msr_info->data = vcpu->arch.efer; 4093 break; 4094 case MSR_KVM_WALL_CLOCK: 4095 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4096 return 1; 4097 4098 msr_info->data = vcpu->kvm->arch.wall_clock; 4099 break; 4100 case MSR_KVM_WALL_CLOCK_NEW: 4101 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4102 return 1; 4103 4104 msr_info->data = vcpu->kvm->arch.wall_clock; 4105 break; 4106 case MSR_KVM_SYSTEM_TIME: 4107 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4108 return 1; 4109 4110 msr_info->data = vcpu->arch.time; 4111 break; 4112 case MSR_KVM_SYSTEM_TIME_NEW: 4113 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4114 return 1; 4115 4116 msr_info->data = vcpu->arch.time; 4117 break; 4118 case MSR_KVM_ASYNC_PF_EN: 4119 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4120 return 1; 4121 4122 msr_info->data = vcpu->arch.apf.msr_en_val; 4123 break; 4124 case MSR_KVM_ASYNC_PF_INT: 4125 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4126 return 1; 4127 4128 msr_info->data = vcpu->arch.apf.msr_int_val; 4129 break; 4130 case MSR_KVM_ASYNC_PF_ACK: 4131 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4132 return 1; 4133 4134 msr_info->data = 0; 4135 break; 4136 case MSR_KVM_STEAL_TIME: 4137 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4138 return 1; 4139 4140 msr_info->data = vcpu->arch.st.msr_val; 4141 break; 4142 case MSR_KVM_PV_EOI_EN: 4143 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4144 return 1; 4145 4146 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4147 break; 4148 case MSR_KVM_POLL_CONTROL: 4149 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4150 return 1; 4151 4152 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4153 break; 4154 case MSR_IA32_P5_MC_ADDR: 4155 case MSR_IA32_P5_MC_TYPE: 4156 case MSR_IA32_MCG_CAP: 4157 case MSR_IA32_MCG_CTL: 4158 case MSR_IA32_MCG_STATUS: 4159 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4160 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4161 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4162 msr_info->host_initiated); 4163 case MSR_IA32_XSS: 4164 if (!msr_info->host_initiated && 4165 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4166 return 1; 4167 msr_info->data = vcpu->arch.ia32_xss; 4168 break; 4169 case MSR_K7_CLK_CTL: 4170 /* 4171 * Provide expected ramp-up count for K7. All other 4172 * are set to zero, indicating minimum divisors for 4173 * every field. 4174 * 4175 * This prevents guest kernels on AMD host with CPU 4176 * type 6, model 8 and higher from exploding due to 4177 * the rdmsr failing. 4178 */ 4179 msr_info->data = 0x20000000; 4180 break; 4181 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4182 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4183 case HV_X64_MSR_SYNDBG_OPTIONS: 4184 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4185 case HV_X64_MSR_CRASH_CTL: 4186 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4187 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4188 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4189 case HV_X64_MSR_TSC_EMULATION_STATUS: 4190 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4191 return kvm_hv_get_msr_common(vcpu, 4192 msr_info->index, &msr_info->data, 4193 msr_info->host_initiated); 4194 case MSR_IA32_BBL_CR_CTL3: 4195 /* This legacy MSR exists but isn't fully documented in current 4196 * silicon. It is however accessed by winxp in very narrow 4197 * scenarios where it sets bit #19, itself documented as 4198 * a "reserved" bit. Best effort attempt to source coherent 4199 * read data here should the balance of the register be 4200 * interpreted by the guest: 4201 * 4202 * L2 cache control register 3: 64GB range, 256KB size, 4203 * enabled, latency 0x1, configured 4204 */ 4205 msr_info->data = 0xbe702111; 4206 break; 4207 case MSR_AMD64_OSVW_ID_LENGTH: 4208 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4209 return 1; 4210 msr_info->data = vcpu->arch.osvw.length; 4211 break; 4212 case MSR_AMD64_OSVW_STATUS: 4213 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4214 return 1; 4215 msr_info->data = vcpu->arch.osvw.status; 4216 break; 4217 case MSR_PLATFORM_INFO: 4218 if (!msr_info->host_initiated && 4219 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4220 return 1; 4221 msr_info->data = vcpu->arch.msr_platform_info; 4222 break; 4223 case MSR_MISC_FEATURES_ENABLES: 4224 msr_info->data = vcpu->arch.msr_misc_features_enables; 4225 break; 4226 case MSR_K7_HWCR: 4227 msr_info->data = vcpu->arch.msr_hwcr; 4228 break; 4229 #ifdef CONFIG_X86_64 4230 case MSR_IA32_XFD: 4231 if (!msr_info->host_initiated && 4232 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4233 return 1; 4234 4235 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4236 break; 4237 case MSR_IA32_XFD_ERR: 4238 if (!msr_info->host_initiated && 4239 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4240 return 1; 4241 4242 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4243 break; 4244 #endif 4245 default: 4246 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4247 return kvm_pmu_get_msr(vcpu, msr_info); 4248 return KVM_MSR_RET_INVALID; 4249 } 4250 return 0; 4251 } 4252 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4253 4254 /* 4255 * Read or write a bunch of msrs. All parameters are kernel addresses. 4256 * 4257 * @return number of msrs set successfully. 4258 */ 4259 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4260 struct kvm_msr_entry *entries, 4261 int (*do_msr)(struct kvm_vcpu *vcpu, 4262 unsigned index, u64 *data)) 4263 { 4264 int i; 4265 4266 for (i = 0; i < msrs->nmsrs; ++i) 4267 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4268 break; 4269 4270 return i; 4271 } 4272 4273 /* 4274 * Read or write a bunch of msrs. Parameters are user addresses. 4275 * 4276 * @return number of msrs set successfully. 4277 */ 4278 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4279 int (*do_msr)(struct kvm_vcpu *vcpu, 4280 unsigned index, u64 *data), 4281 int writeback) 4282 { 4283 struct kvm_msrs msrs; 4284 struct kvm_msr_entry *entries; 4285 int r, n; 4286 unsigned size; 4287 4288 r = -EFAULT; 4289 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4290 goto out; 4291 4292 r = -E2BIG; 4293 if (msrs.nmsrs >= MAX_IO_MSRS) 4294 goto out; 4295 4296 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4297 entries = memdup_user(user_msrs->entries, size); 4298 if (IS_ERR(entries)) { 4299 r = PTR_ERR(entries); 4300 goto out; 4301 } 4302 4303 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4304 if (r < 0) 4305 goto out_free; 4306 4307 r = -EFAULT; 4308 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4309 goto out_free; 4310 4311 r = n; 4312 4313 out_free: 4314 kfree(entries); 4315 out: 4316 return r; 4317 } 4318 4319 static inline bool kvm_can_mwait_in_guest(void) 4320 { 4321 return boot_cpu_has(X86_FEATURE_MWAIT) && 4322 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4323 boot_cpu_has(X86_FEATURE_ARAT); 4324 } 4325 4326 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4327 struct kvm_cpuid2 __user *cpuid_arg) 4328 { 4329 struct kvm_cpuid2 cpuid; 4330 int r; 4331 4332 r = -EFAULT; 4333 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4334 return r; 4335 4336 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4337 if (r) 4338 return r; 4339 4340 r = -EFAULT; 4341 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4342 return r; 4343 4344 return 0; 4345 } 4346 4347 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4348 { 4349 int r = 0; 4350 4351 switch (ext) { 4352 case KVM_CAP_IRQCHIP: 4353 case KVM_CAP_HLT: 4354 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4355 case KVM_CAP_SET_TSS_ADDR: 4356 case KVM_CAP_EXT_CPUID: 4357 case KVM_CAP_EXT_EMUL_CPUID: 4358 case KVM_CAP_CLOCKSOURCE: 4359 case KVM_CAP_PIT: 4360 case KVM_CAP_NOP_IO_DELAY: 4361 case KVM_CAP_MP_STATE: 4362 case KVM_CAP_SYNC_MMU: 4363 case KVM_CAP_USER_NMI: 4364 case KVM_CAP_REINJECT_CONTROL: 4365 case KVM_CAP_IRQ_INJECT_STATUS: 4366 case KVM_CAP_IOEVENTFD: 4367 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4368 case KVM_CAP_PIT2: 4369 case KVM_CAP_PIT_STATE2: 4370 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4371 case KVM_CAP_VCPU_EVENTS: 4372 case KVM_CAP_HYPERV: 4373 case KVM_CAP_HYPERV_VAPIC: 4374 case KVM_CAP_HYPERV_SPIN: 4375 case KVM_CAP_HYPERV_SYNIC: 4376 case KVM_CAP_HYPERV_SYNIC2: 4377 case KVM_CAP_HYPERV_VP_INDEX: 4378 case KVM_CAP_HYPERV_EVENTFD: 4379 case KVM_CAP_HYPERV_TLBFLUSH: 4380 case KVM_CAP_HYPERV_SEND_IPI: 4381 case KVM_CAP_HYPERV_CPUID: 4382 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4383 case KVM_CAP_SYS_HYPERV_CPUID: 4384 case KVM_CAP_PCI_SEGMENT: 4385 case KVM_CAP_DEBUGREGS: 4386 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4387 case KVM_CAP_XSAVE: 4388 case KVM_CAP_ASYNC_PF: 4389 case KVM_CAP_ASYNC_PF_INT: 4390 case KVM_CAP_GET_TSC_KHZ: 4391 case KVM_CAP_KVMCLOCK_CTRL: 4392 case KVM_CAP_READONLY_MEM: 4393 case KVM_CAP_HYPERV_TIME: 4394 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4395 case KVM_CAP_TSC_DEADLINE_TIMER: 4396 case KVM_CAP_DISABLE_QUIRKS: 4397 case KVM_CAP_SET_BOOT_CPU_ID: 4398 case KVM_CAP_SPLIT_IRQCHIP: 4399 case KVM_CAP_IMMEDIATE_EXIT: 4400 case KVM_CAP_PMU_EVENT_FILTER: 4401 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4402 case KVM_CAP_GET_MSR_FEATURES: 4403 case KVM_CAP_MSR_PLATFORM_INFO: 4404 case KVM_CAP_EXCEPTION_PAYLOAD: 4405 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4406 case KVM_CAP_SET_GUEST_DEBUG: 4407 case KVM_CAP_LAST_CPU: 4408 case KVM_CAP_X86_USER_SPACE_MSR: 4409 case KVM_CAP_X86_MSR_FILTER: 4410 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4411 #ifdef CONFIG_X86_SGX_KVM 4412 case KVM_CAP_SGX_ATTRIBUTE: 4413 #endif 4414 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4415 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4416 case KVM_CAP_SREGS2: 4417 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4418 case KVM_CAP_VCPU_ATTRIBUTES: 4419 case KVM_CAP_SYS_ATTRIBUTES: 4420 case KVM_CAP_VAPIC: 4421 case KVM_CAP_ENABLE_CAP: 4422 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4423 r = 1; 4424 break; 4425 case KVM_CAP_EXIT_HYPERCALL: 4426 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4427 break; 4428 case KVM_CAP_SET_GUEST_DEBUG2: 4429 return KVM_GUESTDBG_VALID_MASK; 4430 #ifdef CONFIG_KVM_XEN 4431 case KVM_CAP_XEN_HVM: 4432 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4433 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4434 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4435 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4436 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4437 if (sched_info_on()) 4438 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4439 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4440 break; 4441 #endif 4442 case KVM_CAP_SYNC_REGS: 4443 r = KVM_SYNC_X86_VALID_FIELDS; 4444 break; 4445 case KVM_CAP_ADJUST_CLOCK: 4446 r = KVM_CLOCK_VALID_FLAGS; 4447 break; 4448 case KVM_CAP_X86_DISABLE_EXITS: 4449 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4450 KVM_X86_DISABLE_EXITS_CSTATE; 4451 if(kvm_can_mwait_in_guest()) 4452 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4453 break; 4454 case KVM_CAP_X86_SMM: 4455 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4456 break; 4457 4458 /* SMBASE is usually relocated above 1M on modern chipsets, 4459 * and SMM handlers might indeed rely on 4G segment limits, 4460 * so do not report SMM to be available if real mode is 4461 * emulated via vm86 mode. Still, do not go to great lengths 4462 * to avoid userspace's usage of the feature, because it is a 4463 * fringe case that is not enabled except via specific settings 4464 * of the module parameters. 4465 */ 4466 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4467 break; 4468 case KVM_CAP_NR_VCPUS: 4469 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4470 break; 4471 case KVM_CAP_MAX_VCPUS: 4472 r = KVM_MAX_VCPUS; 4473 break; 4474 case KVM_CAP_MAX_VCPU_ID: 4475 r = KVM_MAX_VCPU_IDS; 4476 break; 4477 case KVM_CAP_PV_MMU: /* obsolete */ 4478 r = 0; 4479 break; 4480 case KVM_CAP_MCE: 4481 r = KVM_MAX_MCE_BANKS; 4482 break; 4483 case KVM_CAP_XCRS: 4484 r = boot_cpu_has(X86_FEATURE_XSAVE); 4485 break; 4486 case KVM_CAP_TSC_CONTROL: 4487 case KVM_CAP_VM_TSC_CONTROL: 4488 r = kvm_caps.has_tsc_control; 4489 break; 4490 case KVM_CAP_X2APIC_API: 4491 r = KVM_X2APIC_API_VALID_FLAGS; 4492 break; 4493 case KVM_CAP_NESTED_STATE: 4494 r = kvm_x86_ops.nested_ops->get_state ? 4495 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4496 break; 4497 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4498 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4499 break; 4500 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4501 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4502 break; 4503 case KVM_CAP_SMALLER_MAXPHYADDR: 4504 r = (int) allow_smaller_maxphyaddr; 4505 break; 4506 case KVM_CAP_STEAL_TIME: 4507 r = sched_info_on(); 4508 break; 4509 case KVM_CAP_X86_BUS_LOCK_EXIT: 4510 if (kvm_caps.has_bus_lock_exit) 4511 r = KVM_BUS_LOCK_DETECTION_OFF | 4512 KVM_BUS_LOCK_DETECTION_EXIT; 4513 else 4514 r = 0; 4515 break; 4516 case KVM_CAP_XSAVE2: { 4517 u64 guest_perm = xstate_get_guest_group_perm(); 4518 4519 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4520 if (r < sizeof(struct kvm_xsave)) 4521 r = sizeof(struct kvm_xsave); 4522 break; 4523 } 4524 case KVM_CAP_PMU_CAPABILITY: 4525 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4526 break; 4527 case KVM_CAP_DISABLE_QUIRKS2: 4528 r = KVM_X86_VALID_QUIRKS; 4529 break; 4530 case KVM_CAP_X86_NOTIFY_VMEXIT: 4531 r = kvm_caps.has_notify_vmexit; 4532 break; 4533 default: 4534 break; 4535 } 4536 return r; 4537 } 4538 4539 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4540 { 4541 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4542 4543 if ((u64)(unsigned long)uaddr != attr->addr) 4544 return ERR_PTR_USR(-EFAULT); 4545 return uaddr; 4546 } 4547 4548 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4549 { 4550 u64 __user *uaddr = kvm_get_attr_addr(attr); 4551 4552 if (attr->group) 4553 return -ENXIO; 4554 4555 if (IS_ERR(uaddr)) 4556 return PTR_ERR(uaddr); 4557 4558 switch (attr->attr) { 4559 case KVM_X86_XCOMP_GUEST_SUPP: 4560 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4561 return -EFAULT; 4562 return 0; 4563 default: 4564 return -ENXIO; 4565 break; 4566 } 4567 } 4568 4569 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4570 { 4571 if (attr->group) 4572 return -ENXIO; 4573 4574 switch (attr->attr) { 4575 case KVM_X86_XCOMP_GUEST_SUPP: 4576 return 0; 4577 default: 4578 return -ENXIO; 4579 } 4580 } 4581 4582 long kvm_arch_dev_ioctl(struct file *filp, 4583 unsigned int ioctl, unsigned long arg) 4584 { 4585 void __user *argp = (void __user *)arg; 4586 long r; 4587 4588 switch (ioctl) { 4589 case KVM_GET_MSR_INDEX_LIST: { 4590 struct kvm_msr_list __user *user_msr_list = argp; 4591 struct kvm_msr_list msr_list; 4592 unsigned n; 4593 4594 r = -EFAULT; 4595 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4596 goto out; 4597 n = msr_list.nmsrs; 4598 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4599 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4600 goto out; 4601 r = -E2BIG; 4602 if (n < msr_list.nmsrs) 4603 goto out; 4604 r = -EFAULT; 4605 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4606 num_msrs_to_save * sizeof(u32))) 4607 goto out; 4608 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4609 &emulated_msrs, 4610 num_emulated_msrs * sizeof(u32))) 4611 goto out; 4612 r = 0; 4613 break; 4614 } 4615 case KVM_GET_SUPPORTED_CPUID: 4616 case KVM_GET_EMULATED_CPUID: { 4617 struct kvm_cpuid2 __user *cpuid_arg = argp; 4618 struct kvm_cpuid2 cpuid; 4619 4620 r = -EFAULT; 4621 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4622 goto out; 4623 4624 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4625 ioctl); 4626 if (r) 4627 goto out; 4628 4629 r = -EFAULT; 4630 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4631 goto out; 4632 r = 0; 4633 break; 4634 } 4635 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4636 r = -EFAULT; 4637 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4638 sizeof(kvm_caps.supported_mce_cap))) 4639 goto out; 4640 r = 0; 4641 break; 4642 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4643 struct kvm_msr_list __user *user_msr_list = argp; 4644 struct kvm_msr_list msr_list; 4645 unsigned int n; 4646 4647 r = -EFAULT; 4648 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4649 goto out; 4650 n = msr_list.nmsrs; 4651 msr_list.nmsrs = num_msr_based_features; 4652 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4653 goto out; 4654 r = -E2BIG; 4655 if (n < msr_list.nmsrs) 4656 goto out; 4657 r = -EFAULT; 4658 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4659 num_msr_based_features * sizeof(u32))) 4660 goto out; 4661 r = 0; 4662 break; 4663 } 4664 case KVM_GET_MSRS: 4665 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4666 break; 4667 case KVM_GET_SUPPORTED_HV_CPUID: 4668 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4669 break; 4670 case KVM_GET_DEVICE_ATTR: { 4671 struct kvm_device_attr attr; 4672 r = -EFAULT; 4673 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4674 break; 4675 r = kvm_x86_dev_get_attr(&attr); 4676 break; 4677 } 4678 case KVM_HAS_DEVICE_ATTR: { 4679 struct kvm_device_attr attr; 4680 r = -EFAULT; 4681 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4682 break; 4683 r = kvm_x86_dev_has_attr(&attr); 4684 break; 4685 } 4686 default: 4687 r = -EINVAL; 4688 break; 4689 } 4690 out: 4691 return r; 4692 } 4693 4694 static void wbinvd_ipi(void *garbage) 4695 { 4696 wbinvd(); 4697 } 4698 4699 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4700 { 4701 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4702 } 4703 4704 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4705 { 4706 /* Address WBINVD may be executed by guest */ 4707 if (need_emulate_wbinvd(vcpu)) { 4708 if (static_call(kvm_x86_has_wbinvd_exit)()) 4709 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4710 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4711 smp_call_function_single(vcpu->cpu, 4712 wbinvd_ipi, NULL, 1); 4713 } 4714 4715 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4716 4717 /* Save host pkru register if supported */ 4718 vcpu->arch.host_pkru = read_pkru(); 4719 4720 /* Apply any externally detected TSC adjustments (due to suspend) */ 4721 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4722 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4723 vcpu->arch.tsc_offset_adjustment = 0; 4724 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4725 } 4726 4727 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4728 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4729 rdtsc() - vcpu->arch.last_host_tsc; 4730 if (tsc_delta < 0) 4731 mark_tsc_unstable("KVM discovered backwards TSC"); 4732 4733 if (kvm_check_tsc_unstable()) { 4734 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4735 vcpu->arch.last_guest_tsc); 4736 kvm_vcpu_write_tsc_offset(vcpu, offset); 4737 vcpu->arch.tsc_catchup = 1; 4738 } 4739 4740 if (kvm_lapic_hv_timer_in_use(vcpu)) 4741 kvm_lapic_restart_hv_timer(vcpu); 4742 4743 /* 4744 * On a host with synchronized TSC, there is no need to update 4745 * kvmclock on vcpu->cpu migration 4746 */ 4747 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4748 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4749 if (vcpu->cpu != cpu) 4750 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4751 vcpu->cpu = cpu; 4752 } 4753 4754 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4755 } 4756 4757 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4758 { 4759 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4760 struct kvm_steal_time __user *st; 4761 struct kvm_memslots *slots; 4762 static const u8 preempted = KVM_VCPU_PREEMPTED; 4763 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4764 4765 /* 4766 * The vCPU can be marked preempted if and only if the VM-Exit was on 4767 * an instruction boundary and will not trigger guest emulation of any 4768 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4769 * when this is true, for example allowing the vCPU to be marked 4770 * preempted if and only if the VM-Exit was due to a host interrupt. 4771 */ 4772 if (!vcpu->arch.at_instruction_boundary) { 4773 vcpu->stat.preemption_other++; 4774 return; 4775 } 4776 4777 vcpu->stat.preemption_reported++; 4778 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4779 return; 4780 4781 if (vcpu->arch.st.preempted) 4782 return; 4783 4784 /* This happens on process exit */ 4785 if (unlikely(current->mm != vcpu->kvm->mm)) 4786 return; 4787 4788 slots = kvm_memslots(vcpu->kvm); 4789 4790 if (unlikely(slots->generation != ghc->generation || 4791 gpa != ghc->gpa || 4792 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4793 return; 4794 4795 st = (struct kvm_steal_time __user *)ghc->hva; 4796 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4797 4798 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4799 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4800 4801 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4802 } 4803 4804 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4805 { 4806 int idx; 4807 4808 if (vcpu->preempted) { 4809 if (!vcpu->arch.guest_state_protected) 4810 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4811 4812 /* 4813 * Take the srcu lock as memslots will be accessed to check the gfn 4814 * cache generation against the memslots generation. 4815 */ 4816 idx = srcu_read_lock(&vcpu->kvm->srcu); 4817 if (kvm_xen_msr_enabled(vcpu->kvm)) 4818 kvm_xen_runstate_set_preempted(vcpu); 4819 else 4820 kvm_steal_time_set_preempted(vcpu); 4821 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4822 } 4823 4824 static_call(kvm_x86_vcpu_put)(vcpu); 4825 vcpu->arch.last_host_tsc = rdtsc(); 4826 } 4827 4828 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4829 struct kvm_lapic_state *s) 4830 { 4831 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4832 4833 return kvm_apic_get_state(vcpu, s); 4834 } 4835 4836 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4837 struct kvm_lapic_state *s) 4838 { 4839 int r; 4840 4841 r = kvm_apic_set_state(vcpu, s); 4842 if (r) 4843 return r; 4844 update_cr8_intercept(vcpu); 4845 4846 return 0; 4847 } 4848 4849 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4850 { 4851 /* 4852 * We can accept userspace's request for interrupt injection 4853 * as long as we have a place to store the interrupt number. 4854 * The actual injection will happen when the CPU is able to 4855 * deliver the interrupt. 4856 */ 4857 if (kvm_cpu_has_extint(vcpu)) 4858 return false; 4859 4860 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4861 return (!lapic_in_kernel(vcpu) || 4862 kvm_apic_accept_pic_intr(vcpu)); 4863 } 4864 4865 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4866 { 4867 /* 4868 * Do not cause an interrupt window exit if an exception 4869 * is pending or an event needs reinjection; userspace 4870 * might want to inject the interrupt manually using KVM_SET_REGS 4871 * or KVM_SET_SREGS. For that to work, we must be at an 4872 * instruction boundary and with no events half-injected. 4873 */ 4874 return (kvm_arch_interrupt_allowed(vcpu) && 4875 kvm_cpu_accept_dm_intr(vcpu) && 4876 !kvm_event_needs_reinjection(vcpu) && 4877 !kvm_is_exception_pending(vcpu)); 4878 } 4879 4880 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4881 struct kvm_interrupt *irq) 4882 { 4883 if (irq->irq >= KVM_NR_INTERRUPTS) 4884 return -EINVAL; 4885 4886 if (!irqchip_in_kernel(vcpu->kvm)) { 4887 kvm_queue_interrupt(vcpu, irq->irq, false); 4888 kvm_make_request(KVM_REQ_EVENT, vcpu); 4889 return 0; 4890 } 4891 4892 /* 4893 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4894 * fail for in-kernel 8259. 4895 */ 4896 if (pic_in_kernel(vcpu->kvm)) 4897 return -ENXIO; 4898 4899 if (vcpu->arch.pending_external_vector != -1) 4900 return -EEXIST; 4901 4902 vcpu->arch.pending_external_vector = irq->irq; 4903 kvm_make_request(KVM_REQ_EVENT, vcpu); 4904 return 0; 4905 } 4906 4907 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4908 { 4909 kvm_inject_nmi(vcpu); 4910 4911 return 0; 4912 } 4913 4914 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4915 struct kvm_tpr_access_ctl *tac) 4916 { 4917 if (tac->flags) 4918 return -EINVAL; 4919 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4920 return 0; 4921 } 4922 4923 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4924 u64 mcg_cap) 4925 { 4926 int r; 4927 unsigned bank_num = mcg_cap & 0xff, bank; 4928 4929 r = -EINVAL; 4930 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4931 goto out; 4932 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4933 goto out; 4934 r = 0; 4935 vcpu->arch.mcg_cap = mcg_cap; 4936 /* Init IA32_MCG_CTL to all 1s */ 4937 if (mcg_cap & MCG_CTL_P) 4938 vcpu->arch.mcg_ctl = ~(u64)0; 4939 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4940 for (bank = 0; bank < bank_num; bank++) { 4941 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4942 if (mcg_cap & MCG_CMCI_P) 4943 vcpu->arch.mci_ctl2_banks[bank] = 0; 4944 } 4945 4946 kvm_apic_after_set_mcg_cap(vcpu); 4947 4948 static_call(kvm_x86_setup_mce)(vcpu); 4949 out: 4950 return r; 4951 } 4952 4953 /* 4954 * Validate this is an UCNA (uncorrectable no action) error by checking the 4955 * MCG_STATUS and MCi_STATUS registers: 4956 * - none of the bits for Machine Check Exceptions are set 4957 * - both the VAL (valid) and UC (uncorrectable) bits are set 4958 * MCI_STATUS_PCC - Processor Context Corrupted 4959 * MCI_STATUS_S - Signaled as a Machine Check Exception 4960 * MCI_STATUS_AR - Software recoverable Action Required 4961 */ 4962 static bool is_ucna(struct kvm_x86_mce *mce) 4963 { 4964 return !mce->mcg_status && 4965 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4966 (mce->status & MCI_STATUS_VAL) && 4967 (mce->status & MCI_STATUS_UC); 4968 } 4969 4970 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4971 { 4972 u64 mcg_cap = vcpu->arch.mcg_cap; 4973 4974 banks[1] = mce->status; 4975 banks[2] = mce->addr; 4976 banks[3] = mce->misc; 4977 vcpu->arch.mcg_status = mce->mcg_status; 4978 4979 if (!(mcg_cap & MCG_CMCI_P) || 4980 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4981 return 0; 4982 4983 if (lapic_in_kernel(vcpu)) 4984 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4985 4986 return 0; 4987 } 4988 4989 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4990 struct kvm_x86_mce *mce) 4991 { 4992 u64 mcg_cap = vcpu->arch.mcg_cap; 4993 unsigned bank_num = mcg_cap & 0xff; 4994 u64 *banks = vcpu->arch.mce_banks; 4995 4996 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4997 return -EINVAL; 4998 4999 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5000 5001 if (is_ucna(mce)) 5002 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5003 5004 /* 5005 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5006 * reporting is disabled 5007 */ 5008 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5009 vcpu->arch.mcg_ctl != ~(u64)0) 5010 return 0; 5011 /* 5012 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5013 * reporting is disabled for the bank 5014 */ 5015 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5016 return 0; 5017 if (mce->status & MCI_STATUS_UC) { 5018 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5019 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5020 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5021 return 0; 5022 } 5023 if (banks[1] & MCI_STATUS_VAL) 5024 mce->status |= MCI_STATUS_OVER; 5025 banks[2] = mce->addr; 5026 banks[3] = mce->misc; 5027 vcpu->arch.mcg_status = mce->mcg_status; 5028 banks[1] = mce->status; 5029 kvm_queue_exception(vcpu, MC_VECTOR); 5030 } else if (!(banks[1] & MCI_STATUS_VAL) 5031 || !(banks[1] & MCI_STATUS_UC)) { 5032 if (banks[1] & MCI_STATUS_VAL) 5033 mce->status |= MCI_STATUS_OVER; 5034 banks[2] = mce->addr; 5035 banks[3] = mce->misc; 5036 banks[1] = mce->status; 5037 } else 5038 banks[1] |= MCI_STATUS_OVER; 5039 return 0; 5040 } 5041 5042 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5043 struct kvm_vcpu_events *events) 5044 { 5045 struct kvm_queued_exception *ex; 5046 5047 process_nmi(vcpu); 5048 5049 #ifdef CONFIG_KVM_SMM 5050 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5051 process_smi(vcpu); 5052 #endif 5053 5054 /* 5055 * KVM's ABI only allows for one exception to be migrated. Luckily, 5056 * the only time there can be two queued exceptions is if there's a 5057 * non-exiting _injected_ exception, and a pending exiting exception. 5058 * In that case, ignore the VM-Exiting exception as it's an extension 5059 * of the injected exception. 5060 */ 5061 if (vcpu->arch.exception_vmexit.pending && 5062 !vcpu->arch.exception.pending && 5063 !vcpu->arch.exception.injected) 5064 ex = &vcpu->arch.exception_vmexit; 5065 else 5066 ex = &vcpu->arch.exception; 5067 5068 /* 5069 * In guest mode, payload delivery should be deferred if the exception 5070 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5071 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5072 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5073 * propagate the payload and so it cannot be safely deferred. Deliver 5074 * the payload if the capability hasn't been requested. 5075 */ 5076 if (!vcpu->kvm->arch.exception_payload_enabled && 5077 ex->pending && ex->has_payload) 5078 kvm_deliver_exception_payload(vcpu, ex); 5079 5080 memset(events, 0, sizeof(*events)); 5081 5082 /* 5083 * The API doesn't provide the instruction length for software 5084 * exceptions, so don't report them. As long as the guest RIP 5085 * isn't advanced, we should expect to encounter the exception 5086 * again. 5087 */ 5088 if (!kvm_exception_is_soft(ex->vector)) { 5089 events->exception.injected = ex->injected; 5090 events->exception.pending = ex->pending; 5091 /* 5092 * For ABI compatibility, deliberately conflate 5093 * pending and injected exceptions when 5094 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5095 */ 5096 if (!vcpu->kvm->arch.exception_payload_enabled) 5097 events->exception.injected |= ex->pending; 5098 } 5099 events->exception.nr = ex->vector; 5100 events->exception.has_error_code = ex->has_error_code; 5101 events->exception.error_code = ex->error_code; 5102 events->exception_has_payload = ex->has_payload; 5103 events->exception_payload = ex->payload; 5104 5105 events->interrupt.injected = 5106 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5107 events->interrupt.nr = vcpu->arch.interrupt.nr; 5108 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5109 5110 events->nmi.injected = vcpu->arch.nmi_injected; 5111 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5112 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5113 5114 /* events->sipi_vector is never valid when reporting to user space */ 5115 5116 #ifdef CONFIG_KVM_SMM 5117 events->smi.smm = is_smm(vcpu); 5118 events->smi.pending = vcpu->arch.smi_pending; 5119 events->smi.smm_inside_nmi = 5120 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5121 #endif 5122 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5123 5124 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5125 | KVM_VCPUEVENT_VALID_SHADOW 5126 | KVM_VCPUEVENT_VALID_SMM); 5127 if (vcpu->kvm->arch.exception_payload_enabled) 5128 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5129 if (vcpu->kvm->arch.triple_fault_event) { 5130 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5131 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5132 } 5133 } 5134 5135 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5136 struct kvm_vcpu_events *events) 5137 { 5138 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5139 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5140 | KVM_VCPUEVENT_VALID_SHADOW 5141 | KVM_VCPUEVENT_VALID_SMM 5142 | KVM_VCPUEVENT_VALID_PAYLOAD 5143 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5144 return -EINVAL; 5145 5146 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5147 if (!vcpu->kvm->arch.exception_payload_enabled) 5148 return -EINVAL; 5149 if (events->exception.pending) 5150 events->exception.injected = 0; 5151 else 5152 events->exception_has_payload = 0; 5153 } else { 5154 events->exception.pending = 0; 5155 events->exception_has_payload = 0; 5156 } 5157 5158 if ((events->exception.injected || events->exception.pending) && 5159 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5160 return -EINVAL; 5161 5162 /* INITs are latched while in SMM */ 5163 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5164 (events->smi.smm || events->smi.pending) && 5165 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5166 return -EINVAL; 5167 5168 process_nmi(vcpu); 5169 5170 /* 5171 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5172 * morph the exception to a VM-Exit if appropriate. Do this only for 5173 * pending exceptions, already-injected exceptions are not subject to 5174 * intercpetion. Note, userspace that conflates pending and injected 5175 * is hosed, and will incorrectly convert an injected exception into a 5176 * pending exception, which in turn may cause a spurious VM-Exit. 5177 */ 5178 vcpu->arch.exception_from_userspace = events->exception.pending; 5179 5180 vcpu->arch.exception_vmexit.pending = false; 5181 5182 vcpu->arch.exception.injected = events->exception.injected; 5183 vcpu->arch.exception.pending = events->exception.pending; 5184 vcpu->arch.exception.vector = events->exception.nr; 5185 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5186 vcpu->arch.exception.error_code = events->exception.error_code; 5187 vcpu->arch.exception.has_payload = events->exception_has_payload; 5188 vcpu->arch.exception.payload = events->exception_payload; 5189 5190 vcpu->arch.interrupt.injected = events->interrupt.injected; 5191 vcpu->arch.interrupt.nr = events->interrupt.nr; 5192 vcpu->arch.interrupt.soft = events->interrupt.soft; 5193 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5194 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5195 events->interrupt.shadow); 5196 5197 vcpu->arch.nmi_injected = events->nmi.injected; 5198 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5199 vcpu->arch.nmi_pending = events->nmi.pending; 5200 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5201 5202 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5203 lapic_in_kernel(vcpu)) 5204 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5205 5206 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5207 #ifdef CONFIG_KVM_SMM 5208 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5209 kvm_leave_nested(vcpu); 5210 kvm_smm_changed(vcpu, events->smi.smm); 5211 } 5212 5213 vcpu->arch.smi_pending = events->smi.pending; 5214 5215 if (events->smi.smm) { 5216 if (events->smi.smm_inside_nmi) 5217 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5218 else 5219 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5220 } 5221 5222 #else 5223 if (events->smi.smm || events->smi.pending || 5224 events->smi.smm_inside_nmi) 5225 return -EINVAL; 5226 #endif 5227 5228 if (lapic_in_kernel(vcpu)) { 5229 if (events->smi.latched_init) 5230 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5231 else 5232 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5233 } 5234 } 5235 5236 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5237 if (!vcpu->kvm->arch.triple_fault_event) 5238 return -EINVAL; 5239 if (events->triple_fault.pending) 5240 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5241 else 5242 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5243 } 5244 5245 kvm_make_request(KVM_REQ_EVENT, vcpu); 5246 5247 return 0; 5248 } 5249 5250 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5251 struct kvm_debugregs *dbgregs) 5252 { 5253 unsigned long val; 5254 5255 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5256 kvm_get_dr(vcpu, 6, &val); 5257 dbgregs->dr6 = val; 5258 dbgregs->dr7 = vcpu->arch.dr7; 5259 dbgregs->flags = 0; 5260 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5261 } 5262 5263 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5264 struct kvm_debugregs *dbgregs) 5265 { 5266 if (dbgregs->flags) 5267 return -EINVAL; 5268 5269 if (!kvm_dr6_valid(dbgregs->dr6)) 5270 return -EINVAL; 5271 if (!kvm_dr7_valid(dbgregs->dr7)) 5272 return -EINVAL; 5273 5274 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5275 kvm_update_dr0123(vcpu); 5276 vcpu->arch.dr6 = dbgregs->dr6; 5277 vcpu->arch.dr7 = dbgregs->dr7; 5278 kvm_update_dr7(vcpu); 5279 5280 return 0; 5281 } 5282 5283 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5284 struct kvm_xsave *guest_xsave) 5285 { 5286 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5287 return; 5288 5289 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5290 guest_xsave->region, 5291 sizeof(guest_xsave->region), 5292 vcpu->arch.pkru); 5293 } 5294 5295 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5296 u8 *state, unsigned int size) 5297 { 5298 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5299 return; 5300 5301 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5302 state, size, vcpu->arch.pkru); 5303 } 5304 5305 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5306 struct kvm_xsave *guest_xsave) 5307 { 5308 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5309 return 0; 5310 5311 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5312 guest_xsave->region, 5313 kvm_caps.supported_xcr0, 5314 &vcpu->arch.pkru); 5315 } 5316 5317 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5318 struct kvm_xcrs *guest_xcrs) 5319 { 5320 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5321 guest_xcrs->nr_xcrs = 0; 5322 return; 5323 } 5324 5325 guest_xcrs->nr_xcrs = 1; 5326 guest_xcrs->flags = 0; 5327 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5328 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5329 } 5330 5331 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5332 struct kvm_xcrs *guest_xcrs) 5333 { 5334 int i, r = 0; 5335 5336 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5337 return -EINVAL; 5338 5339 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5340 return -EINVAL; 5341 5342 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5343 /* Only support XCR0 currently */ 5344 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5345 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5346 guest_xcrs->xcrs[i].value); 5347 break; 5348 } 5349 if (r) 5350 r = -EINVAL; 5351 return r; 5352 } 5353 5354 /* 5355 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5356 * stopped by the hypervisor. This function will be called from the host only. 5357 * EINVAL is returned when the host attempts to set the flag for a guest that 5358 * does not support pv clocks. 5359 */ 5360 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5361 { 5362 if (!vcpu->arch.pv_time.active) 5363 return -EINVAL; 5364 vcpu->arch.pvclock_set_guest_stopped_request = true; 5365 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5366 return 0; 5367 } 5368 5369 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5370 struct kvm_device_attr *attr) 5371 { 5372 int r; 5373 5374 switch (attr->attr) { 5375 case KVM_VCPU_TSC_OFFSET: 5376 r = 0; 5377 break; 5378 default: 5379 r = -ENXIO; 5380 } 5381 5382 return r; 5383 } 5384 5385 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5386 struct kvm_device_attr *attr) 5387 { 5388 u64 __user *uaddr = kvm_get_attr_addr(attr); 5389 int r; 5390 5391 if (IS_ERR(uaddr)) 5392 return PTR_ERR(uaddr); 5393 5394 switch (attr->attr) { 5395 case KVM_VCPU_TSC_OFFSET: 5396 r = -EFAULT; 5397 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5398 break; 5399 r = 0; 5400 break; 5401 default: 5402 r = -ENXIO; 5403 } 5404 5405 return r; 5406 } 5407 5408 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5409 struct kvm_device_attr *attr) 5410 { 5411 u64 __user *uaddr = kvm_get_attr_addr(attr); 5412 struct kvm *kvm = vcpu->kvm; 5413 int r; 5414 5415 if (IS_ERR(uaddr)) 5416 return PTR_ERR(uaddr); 5417 5418 switch (attr->attr) { 5419 case KVM_VCPU_TSC_OFFSET: { 5420 u64 offset, tsc, ns; 5421 unsigned long flags; 5422 bool matched; 5423 5424 r = -EFAULT; 5425 if (get_user(offset, uaddr)) 5426 break; 5427 5428 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5429 5430 matched = (vcpu->arch.virtual_tsc_khz && 5431 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5432 kvm->arch.last_tsc_offset == offset); 5433 5434 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5435 ns = get_kvmclock_base_ns(); 5436 5437 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5438 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5439 5440 r = 0; 5441 break; 5442 } 5443 default: 5444 r = -ENXIO; 5445 } 5446 5447 return r; 5448 } 5449 5450 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5451 unsigned int ioctl, 5452 void __user *argp) 5453 { 5454 struct kvm_device_attr attr; 5455 int r; 5456 5457 if (copy_from_user(&attr, argp, sizeof(attr))) 5458 return -EFAULT; 5459 5460 if (attr.group != KVM_VCPU_TSC_CTRL) 5461 return -ENXIO; 5462 5463 switch (ioctl) { 5464 case KVM_HAS_DEVICE_ATTR: 5465 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5466 break; 5467 case KVM_GET_DEVICE_ATTR: 5468 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5469 break; 5470 case KVM_SET_DEVICE_ATTR: 5471 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5472 break; 5473 } 5474 5475 return r; 5476 } 5477 5478 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5479 struct kvm_enable_cap *cap) 5480 { 5481 int r; 5482 uint16_t vmcs_version; 5483 void __user *user_ptr; 5484 5485 if (cap->flags) 5486 return -EINVAL; 5487 5488 switch (cap->cap) { 5489 case KVM_CAP_HYPERV_SYNIC2: 5490 if (cap->args[0]) 5491 return -EINVAL; 5492 fallthrough; 5493 5494 case KVM_CAP_HYPERV_SYNIC: 5495 if (!irqchip_in_kernel(vcpu->kvm)) 5496 return -EINVAL; 5497 return kvm_hv_activate_synic(vcpu, cap->cap == 5498 KVM_CAP_HYPERV_SYNIC2); 5499 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5500 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5501 return -ENOTTY; 5502 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5503 if (!r) { 5504 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5505 if (copy_to_user(user_ptr, &vmcs_version, 5506 sizeof(vmcs_version))) 5507 r = -EFAULT; 5508 } 5509 return r; 5510 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5511 if (!kvm_x86_ops.enable_l2_tlb_flush) 5512 return -ENOTTY; 5513 5514 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5515 5516 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5517 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5518 5519 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5520 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5521 if (vcpu->arch.pv_cpuid.enforce) 5522 kvm_update_pv_runtime(vcpu); 5523 5524 return 0; 5525 default: 5526 return -EINVAL; 5527 } 5528 } 5529 5530 long kvm_arch_vcpu_ioctl(struct file *filp, 5531 unsigned int ioctl, unsigned long arg) 5532 { 5533 struct kvm_vcpu *vcpu = filp->private_data; 5534 void __user *argp = (void __user *)arg; 5535 int r; 5536 union { 5537 struct kvm_sregs2 *sregs2; 5538 struct kvm_lapic_state *lapic; 5539 struct kvm_xsave *xsave; 5540 struct kvm_xcrs *xcrs; 5541 void *buffer; 5542 } u; 5543 5544 vcpu_load(vcpu); 5545 5546 u.buffer = NULL; 5547 switch (ioctl) { 5548 case KVM_GET_LAPIC: { 5549 r = -EINVAL; 5550 if (!lapic_in_kernel(vcpu)) 5551 goto out; 5552 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5553 GFP_KERNEL_ACCOUNT); 5554 5555 r = -ENOMEM; 5556 if (!u.lapic) 5557 goto out; 5558 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5559 if (r) 5560 goto out; 5561 r = -EFAULT; 5562 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5563 goto out; 5564 r = 0; 5565 break; 5566 } 5567 case KVM_SET_LAPIC: { 5568 r = -EINVAL; 5569 if (!lapic_in_kernel(vcpu)) 5570 goto out; 5571 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5572 if (IS_ERR(u.lapic)) { 5573 r = PTR_ERR(u.lapic); 5574 goto out_nofree; 5575 } 5576 5577 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5578 break; 5579 } 5580 case KVM_INTERRUPT: { 5581 struct kvm_interrupt irq; 5582 5583 r = -EFAULT; 5584 if (copy_from_user(&irq, argp, sizeof(irq))) 5585 goto out; 5586 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5587 break; 5588 } 5589 case KVM_NMI: { 5590 r = kvm_vcpu_ioctl_nmi(vcpu); 5591 break; 5592 } 5593 case KVM_SMI: { 5594 r = kvm_inject_smi(vcpu); 5595 break; 5596 } 5597 case KVM_SET_CPUID: { 5598 struct kvm_cpuid __user *cpuid_arg = argp; 5599 struct kvm_cpuid cpuid; 5600 5601 r = -EFAULT; 5602 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5603 goto out; 5604 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5605 break; 5606 } 5607 case KVM_SET_CPUID2: { 5608 struct kvm_cpuid2 __user *cpuid_arg = argp; 5609 struct kvm_cpuid2 cpuid; 5610 5611 r = -EFAULT; 5612 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5613 goto out; 5614 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5615 cpuid_arg->entries); 5616 break; 5617 } 5618 case KVM_GET_CPUID2: { 5619 struct kvm_cpuid2 __user *cpuid_arg = argp; 5620 struct kvm_cpuid2 cpuid; 5621 5622 r = -EFAULT; 5623 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5624 goto out; 5625 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5626 cpuid_arg->entries); 5627 if (r) 5628 goto out; 5629 r = -EFAULT; 5630 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5631 goto out; 5632 r = 0; 5633 break; 5634 } 5635 case KVM_GET_MSRS: { 5636 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5637 r = msr_io(vcpu, argp, do_get_msr, 1); 5638 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5639 break; 5640 } 5641 case KVM_SET_MSRS: { 5642 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5643 r = msr_io(vcpu, argp, do_set_msr, 0); 5644 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5645 break; 5646 } 5647 case KVM_TPR_ACCESS_REPORTING: { 5648 struct kvm_tpr_access_ctl tac; 5649 5650 r = -EFAULT; 5651 if (copy_from_user(&tac, argp, sizeof(tac))) 5652 goto out; 5653 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5654 if (r) 5655 goto out; 5656 r = -EFAULT; 5657 if (copy_to_user(argp, &tac, sizeof(tac))) 5658 goto out; 5659 r = 0; 5660 break; 5661 }; 5662 case KVM_SET_VAPIC_ADDR: { 5663 struct kvm_vapic_addr va; 5664 int idx; 5665 5666 r = -EINVAL; 5667 if (!lapic_in_kernel(vcpu)) 5668 goto out; 5669 r = -EFAULT; 5670 if (copy_from_user(&va, argp, sizeof(va))) 5671 goto out; 5672 idx = srcu_read_lock(&vcpu->kvm->srcu); 5673 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5674 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5675 break; 5676 } 5677 case KVM_X86_SETUP_MCE: { 5678 u64 mcg_cap; 5679 5680 r = -EFAULT; 5681 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5682 goto out; 5683 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5684 break; 5685 } 5686 case KVM_X86_SET_MCE: { 5687 struct kvm_x86_mce mce; 5688 5689 r = -EFAULT; 5690 if (copy_from_user(&mce, argp, sizeof(mce))) 5691 goto out; 5692 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5693 break; 5694 } 5695 case KVM_GET_VCPU_EVENTS: { 5696 struct kvm_vcpu_events events; 5697 5698 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5699 5700 r = -EFAULT; 5701 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5702 break; 5703 r = 0; 5704 break; 5705 } 5706 case KVM_SET_VCPU_EVENTS: { 5707 struct kvm_vcpu_events events; 5708 5709 r = -EFAULT; 5710 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5711 break; 5712 5713 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5714 break; 5715 } 5716 case KVM_GET_DEBUGREGS: { 5717 struct kvm_debugregs dbgregs; 5718 5719 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5720 5721 r = -EFAULT; 5722 if (copy_to_user(argp, &dbgregs, 5723 sizeof(struct kvm_debugregs))) 5724 break; 5725 r = 0; 5726 break; 5727 } 5728 case KVM_SET_DEBUGREGS: { 5729 struct kvm_debugregs dbgregs; 5730 5731 r = -EFAULT; 5732 if (copy_from_user(&dbgregs, argp, 5733 sizeof(struct kvm_debugregs))) 5734 break; 5735 5736 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5737 break; 5738 } 5739 case KVM_GET_XSAVE: { 5740 r = -EINVAL; 5741 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5742 break; 5743 5744 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5745 r = -ENOMEM; 5746 if (!u.xsave) 5747 break; 5748 5749 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5750 5751 r = -EFAULT; 5752 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5753 break; 5754 r = 0; 5755 break; 5756 } 5757 case KVM_SET_XSAVE: { 5758 int size = vcpu->arch.guest_fpu.uabi_size; 5759 5760 u.xsave = memdup_user(argp, size); 5761 if (IS_ERR(u.xsave)) { 5762 r = PTR_ERR(u.xsave); 5763 goto out_nofree; 5764 } 5765 5766 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5767 break; 5768 } 5769 5770 case KVM_GET_XSAVE2: { 5771 int size = vcpu->arch.guest_fpu.uabi_size; 5772 5773 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5774 r = -ENOMEM; 5775 if (!u.xsave) 5776 break; 5777 5778 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5779 5780 r = -EFAULT; 5781 if (copy_to_user(argp, u.xsave, size)) 5782 break; 5783 5784 r = 0; 5785 break; 5786 } 5787 5788 case KVM_GET_XCRS: { 5789 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5790 r = -ENOMEM; 5791 if (!u.xcrs) 5792 break; 5793 5794 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5795 5796 r = -EFAULT; 5797 if (copy_to_user(argp, u.xcrs, 5798 sizeof(struct kvm_xcrs))) 5799 break; 5800 r = 0; 5801 break; 5802 } 5803 case KVM_SET_XCRS: { 5804 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5805 if (IS_ERR(u.xcrs)) { 5806 r = PTR_ERR(u.xcrs); 5807 goto out_nofree; 5808 } 5809 5810 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5811 break; 5812 } 5813 case KVM_SET_TSC_KHZ: { 5814 u32 user_tsc_khz; 5815 5816 r = -EINVAL; 5817 user_tsc_khz = (u32)arg; 5818 5819 if (kvm_caps.has_tsc_control && 5820 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5821 goto out; 5822 5823 if (user_tsc_khz == 0) 5824 user_tsc_khz = tsc_khz; 5825 5826 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5827 r = 0; 5828 5829 goto out; 5830 } 5831 case KVM_GET_TSC_KHZ: { 5832 r = vcpu->arch.virtual_tsc_khz; 5833 goto out; 5834 } 5835 case KVM_KVMCLOCK_CTRL: { 5836 r = kvm_set_guest_paused(vcpu); 5837 goto out; 5838 } 5839 case KVM_ENABLE_CAP: { 5840 struct kvm_enable_cap cap; 5841 5842 r = -EFAULT; 5843 if (copy_from_user(&cap, argp, sizeof(cap))) 5844 goto out; 5845 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5846 break; 5847 } 5848 case KVM_GET_NESTED_STATE: { 5849 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5850 u32 user_data_size; 5851 5852 r = -EINVAL; 5853 if (!kvm_x86_ops.nested_ops->get_state) 5854 break; 5855 5856 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5857 r = -EFAULT; 5858 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5859 break; 5860 5861 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5862 user_data_size); 5863 if (r < 0) 5864 break; 5865 5866 if (r > user_data_size) { 5867 if (put_user(r, &user_kvm_nested_state->size)) 5868 r = -EFAULT; 5869 else 5870 r = -E2BIG; 5871 break; 5872 } 5873 5874 r = 0; 5875 break; 5876 } 5877 case KVM_SET_NESTED_STATE: { 5878 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5879 struct kvm_nested_state kvm_state; 5880 int idx; 5881 5882 r = -EINVAL; 5883 if (!kvm_x86_ops.nested_ops->set_state) 5884 break; 5885 5886 r = -EFAULT; 5887 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5888 break; 5889 5890 r = -EINVAL; 5891 if (kvm_state.size < sizeof(kvm_state)) 5892 break; 5893 5894 if (kvm_state.flags & 5895 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5896 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5897 | KVM_STATE_NESTED_GIF_SET)) 5898 break; 5899 5900 /* nested_run_pending implies guest_mode. */ 5901 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5902 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5903 break; 5904 5905 idx = srcu_read_lock(&vcpu->kvm->srcu); 5906 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5907 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5908 break; 5909 } 5910 case KVM_GET_SUPPORTED_HV_CPUID: 5911 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5912 break; 5913 #ifdef CONFIG_KVM_XEN 5914 case KVM_XEN_VCPU_GET_ATTR: { 5915 struct kvm_xen_vcpu_attr xva; 5916 5917 r = -EFAULT; 5918 if (copy_from_user(&xva, argp, sizeof(xva))) 5919 goto out; 5920 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5921 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5922 r = -EFAULT; 5923 break; 5924 } 5925 case KVM_XEN_VCPU_SET_ATTR: { 5926 struct kvm_xen_vcpu_attr xva; 5927 5928 r = -EFAULT; 5929 if (copy_from_user(&xva, argp, sizeof(xva))) 5930 goto out; 5931 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5932 break; 5933 } 5934 #endif 5935 case KVM_GET_SREGS2: { 5936 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5937 r = -ENOMEM; 5938 if (!u.sregs2) 5939 goto out; 5940 __get_sregs2(vcpu, u.sregs2); 5941 r = -EFAULT; 5942 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5943 goto out; 5944 r = 0; 5945 break; 5946 } 5947 case KVM_SET_SREGS2: { 5948 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5949 if (IS_ERR(u.sregs2)) { 5950 r = PTR_ERR(u.sregs2); 5951 u.sregs2 = NULL; 5952 goto out; 5953 } 5954 r = __set_sregs2(vcpu, u.sregs2); 5955 break; 5956 } 5957 case KVM_HAS_DEVICE_ATTR: 5958 case KVM_GET_DEVICE_ATTR: 5959 case KVM_SET_DEVICE_ATTR: 5960 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5961 break; 5962 default: 5963 r = -EINVAL; 5964 } 5965 out: 5966 kfree(u.buffer); 5967 out_nofree: 5968 vcpu_put(vcpu); 5969 return r; 5970 } 5971 5972 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5973 { 5974 return VM_FAULT_SIGBUS; 5975 } 5976 5977 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5978 { 5979 int ret; 5980 5981 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5982 return -EINVAL; 5983 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5984 return ret; 5985 } 5986 5987 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5988 u64 ident_addr) 5989 { 5990 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5991 } 5992 5993 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5994 unsigned long kvm_nr_mmu_pages) 5995 { 5996 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5997 return -EINVAL; 5998 5999 mutex_lock(&kvm->slots_lock); 6000 6001 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6002 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6003 6004 mutex_unlock(&kvm->slots_lock); 6005 return 0; 6006 } 6007 6008 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6009 { 6010 return kvm->arch.n_max_mmu_pages; 6011 } 6012 6013 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6014 { 6015 struct kvm_pic *pic = kvm->arch.vpic; 6016 int r; 6017 6018 r = 0; 6019 switch (chip->chip_id) { 6020 case KVM_IRQCHIP_PIC_MASTER: 6021 memcpy(&chip->chip.pic, &pic->pics[0], 6022 sizeof(struct kvm_pic_state)); 6023 break; 6024 case KVM_IRQCHIP_PIC_SLAVE: 6025 memcpy(&chip->chip.pic, &pic->pics[1], 6026 sizeof(struct kvm_pic_state)); 6027 break; 6028 case KVM_IRQCHIP_IOAPIC: 6029 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6030 break; 6031 default: 6032 r = -EINVAL; 6033 break; 6034 } 6035 return r; 6036 } 6037 6038 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6039 { 6040 struct kvm_pic *pic = kvm->arch.vpic; 6041 int r; 6042 6043 r = 0; 6044 switch (chip->chip_id) { 6045 case KVM_IRQCHIP_PIC_MASTER: 6046 spin_lock(&pic->lock); 6047 memcpy(&pic->pics[0], &chip->chip.pic, 6048 sizeof(struct kvm_pic_state)); 6049 spin_unlock(&pic->lock); 6050 break; 6051 case KVM_IRQCHIP_PIC_SLAVE: 6052 spin_lock(&pic->lock); 6053 memcpy(&pic->pics[1], &chip->chip.pic, 6054 sizeof(struct kvm_pic_state)); 6055 spin_unlock(&pic->lock); 6056 break; 6057 case KVM_IRQCHIP_IOAPIC: 6058 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6059 break; 6060 default: 6061 r = -EINVAL; 6062 break; 6063 } 6064 kvm_pic_update_irq(pic); 6065 return r; 6066 } 6067 6068 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6069 { 6070 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6071 6072 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6073 6074 mutex_lock(&kps->lock); 6075 memcpy(ps, &kps->channels, sizeof(*ps)); 6076 mutex_unlock(&kps->lock); 6077 return 0; 6078 } 6079 6080 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6081 { 6082 int i; 6083 struct kvm_pit *pit = kvm->arch.vpit; 6084 6085 mutex_lock(&pit->pit_state.lock); 6086 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6087 for (i = 0; i < 3; i++) 6088 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6089 mutex_unlock(&pit->pit_state.lock); 6090 return 0; 6091 } 6092 6093 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6094 { 6095 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6096 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6097 sizeof(ps->channels)); 6098 ps->flags = kvm->arch.vpit->pit_state.flags; 6099 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6100 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6101 return 0; 6102 } 6103 6104 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6105 { 6106 int start = 0; 6107 int i; 6108 u32 prev_legacy, cur_legacy; 6109 struct kvm_pit *pit = kvm->arch.vpit; 6110 6111 mutex_lock(&pit->pit_state.lock); 6112 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6113 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6114 if (!prev_legacy && cur_legacy) 6115 start = 1; 6116 memcpy(&pit->pit_state.channels, &ps->channels, 6117 sizeof(pit->pit_state.channels)); 6118 pit->pit_state.flags = ps->flags; 6119 for (i = 0; i < 3; i++) 6120 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6121 start && i == 0); 6122 mutex_unlock(&pit->pit_state.lock); 6123 return 0; 6124 } 6125 6126 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6127 struct kvm_reinject_control *control) 6128 { 6129 struct kvm_pit *pit = kvm->arch.vpit; 6130 6131 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6132 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6133 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6134 */ 6135 mutex_lock(&pit->pit_state.lock); 6136 kvm_pit_set_reinject(pit, control->pit_reinject); 6137 mutex_unlock(&pit->pit_state.lock); 6138 6139 return 0; 6140 } 6141 6142 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6143 { 6144 6145 /* 6146 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6147 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6148 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6149 * VM-Exit. 6150 */ 6151 struct kvm_vcpu *vcpu; 6152 unsigned long i; 6153 6154 kvm_for_each_vcpu(i, vcpu, kvm) 6155 kvm_vcpu_kick(vcpu); 6156 } 6157 6158 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6159 bool line_status) 6160 { 6161 if (!irqchip_in_kernel(kvm)) 6162 return -ENXIO; 6163 6164 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6165 irq_event->irq, irq_event->level, 6166 line_status); 6167 return 0; 6168 } 6169 6170 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6171 struct kvm_enable_cap *cap) 6172 { 6173 int r; 6174 6175 if (cap->flags) 6176 return -EINVAL; 6177 6178 switch (cap->cap) { 6179 case KVM_CAP_DISABLE_QUIRKS2: 6180 r = -EINVAL; 6181 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6182 break; 6183 fallthrough; 6184 case KVM_CAP_DISABLE_QUIRKS: 6185 kvm->arch.disabled_quirks = cap->args[0]; 6186 r = 0; 6187 break; 6188 case KVM_CAP_SPLIT_IRQCHIP: { 6189 mutex_lock(&kvm->lock); 6190 r = -EINVAL; 6191 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6192 goto split_irqchip_unlock; 6193 r = -EEXIST; 6194 if (irqchip_in_kernel(kvm)) 6195 goto split_irqchip_unlock; 6196 if (kvm->created_vcpus) 6197 goto split_irqchip_unlock; 6198 r = kvm_setup_empty_irq_routing(kvm); 6199 if (r) 6200 goto split_irqchip_unlock; 6201 /* Pairs with irqchip_in_kernel. */ 6202 smp_wmb(); 6203 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6204 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6205 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6206 r = 0; 6207 split_irqchip_unlock: 6208 mutex_unlock(&kvm->lock); 6209 break; 6210 } 6211 case KVM_CAP_X2APIC_API: 6212 r = -EINVAL; 6213 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6214 break; 6215 6216 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6217 kvm->arch.x2apic_format = true; 6218 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6219 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6220 6221 r = 0; 6222 break; 6223 case KVM_CAP_X86_DISABLE_EXITS: 6224 r = -EINVAL; 6225 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6226 break; 6227 6228 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6229 kvm_can_mwait_in_guest()) 6230 kvm->arch.mwait_in_guest = true; 6231 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6232 kvm->arch.hlt_in_guest = true; 6233 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6234 kvm->arch.pause_in_guest = true; 6235 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6236 kvm->arch.cstate_in_guest = true; 6237 r = 0; 6238 break; 6239 case KVM_CAP_MSR_PLATFORM_INFO: 6240 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6241 r = 0; 6242 break; 6243 case KVM_CAP_EXCEPTION_PAYLOAD: 6244 kvm->arch.exception_payload_enabled = cap->args[0]; 6245 r = 0; 6246 break; 6247 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6248 kvm->arch.triple_fault_event = cap->args[0]; 6249 r = 0; 6250 break; 6251 case KVM_CAP_X86_USER_SPACE_MSR: 6252 r = -EINVAL; 6253 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6254 break; 6255 kvm->arch.user_space_msr_mask = cap->args[0]; 6256 r = 0; 6257 break; 6258 case KVM_CAP_X86_BUS_LOCK_EXIT: 6259 r = -EINVAL; 6260 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6261 break; 6262 6263 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6264 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6265 break; 6266 6267 if (kvm_caps.has_bus_lock_exit && 6268 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6269 kvm->arch.bus_lock_detection_enabled = true; 6270 r = 0; 6271 break; 6272 #ifdef CONFIG_X86_SGX_KVM 6273 case KVM_CAP_SGX_ATTRIBUTE: { 6274 unsigned long allowed_attributes = 0; 6275 6276 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6277 if (r) 6278 break; 6279 6280 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6281 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6282 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6283 kvm->arch.sgx_provisioning_allowed = true; 6284 else 6285 r = -EINVAL; 6286 break; 6287 } 6288 #endif 6289 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6290 r = -EINVAL; 6291 if (!kvm_x86_ops.vm_copy_enc_context_from) 6292 break; 6293 6294 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6295 break; 6296 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6297 r = -EINVAL; 6298 if (!kvm_x86_ops.vm_move_enc_context_from) 6299 break; 6300 6301 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6302 break; 6303 case KVM_CAP_EXIT_HYPERCALL: 6304 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6305 r = -EINVAL; 6306 break; 6307 } 6308 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6309 r = 0; 6310 break; 6311 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6312 r = -EINVAL; 6313 if (cap->args[0] & ~1) 6314 break; 6315 kvm->arch.exit_on_emulation_error = cap->args[0]; 6316 r = 0; 6317 break; 6318 case KVM_CAP_PMU_CAPABILITY: 6319 r = -EINVAL; 6320 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6321 break; 6322 6323 mutex_lock(&kvm->lock); 6324 if (!kvm->created_vcpus) { 6325 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6326 r = 0; 6327 } 6328 mutex_unlock(&kvm->lock); 6329 break; 6330 case KVM_CAP_MAX_VCPU_ID: 6331 r = -EINVAL; 6332 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6333 break; 6334 6335 mutex_lock(&kvm->lock); 6336 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6337 r = 0; 6338 } else if (!kvm->arch.max_vcpu_ids) { 6339 kvm->arch.max_vcpu_ids = cap->args[0]; 6340 r = 0; 6341 } 6342 mutex_unlock(&kvm->lock); 6343 break; 6344 case KVM_CAP_X86_NOTIFY_VMEXIT: 6345 r = -EINVAL; 6346 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6347 break; 6348 if (!kvm_caps.has_notify_vmexit) 6349 break; 6350 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6351 break; 6352 mutex_lock(&kvm->lock); 6353 if (!kvm->created_vcpus) { 6354 kvm->arch.notify_window = cap->args[0] >> 32; 6355 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6356 r = 0; 6357 } 6358 mutex_unlock(&kvm->lock); 6359 break; 6360 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6361 r = -EINVAL; 6362 6363 /* 6364 * Since the risk of disabling NX hugepages is a guest crashing 6365 * the system, ensure the userspace process has permission to 6366 * reboot the system. 6367 * 6368 * Note that unlike the reboot() syscall, the process must have 6369 * this capability in the root namespace because exposing 6370 * /dev/kvm into a container does not limit the scope of the 6371 * iTLB multihit bug to that container. In other words, 6372 * this must use capable(), not ns_capable(). 6373 */ 6374 if (!capable(CAP_SYS_BOOT)) { 6375 r = -EPERM; 6376 break; 6377 } 6378 6379 if (cap->args[0]) 6380 break; 6381 6382 mutex_lock(&kvm->lock); 6383 if (!kvm->created_vcpus) { 6384 kvm->arch.disable_nx_huge_pages = true; 6385 r = 0; 6386 } 6387 mutex_unlock(&kvm->lock); 6388 break; 6389 default: 6390 r = -EINVAL; 6391 break; 6392 } 6393 return r; 6394 } 6395 6396 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6397 { 6398 struct kvm_x86_msr_filter *msr_filter; 6399 6400 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6401 if (!msr_filter) 6402 return NULL; 6403 6404 msr_filter->default_allow = default_allow; 6405 return msr_filter; 6406 } 6407 6408 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6409 { 6410 u32 i; 6411 6412 if (!msr_filter) 6413 return; 6414 6415 for (i = 0; i < msr_filter->count; i++) 6416 kfree(msr_filter->ranges[i].bitmap); 6417 6418 kfree(msr_filter); 6419 } 6420 6421 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6422 struct kvm_msr_filter_range *user_range) 6423 { 6424 unsigned long *bitmap = NULL; 6425 size_t bitmap_size; 6426 6427 if (!user_range->nmsrs) 6428 return 0; 6429 6430 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6431 return -EINVAL; 6432 6433 if (!user_range->flags) 6434 return -EINVAL; 6435 6436 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6437 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6438 return -EINVAL; 6439 6440 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6441 if (IS_ERR(bitmap)) 6442 return PTR_ERR(bitmap); 6443 6444 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6445 .flags = user_range->flags, 6446 .base = user_range->base, 6447 .nmsrs = user_range->nmsrs, 6448 .bitmap = bitmap, 6449 }; 6450 6451 msr_filter->count++; 6452 return 0; 6453 } 6454 6455 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6456 struct kvm_msr_filter *filter) 6457 { 6458 struct kvm_x86_msr_filter *new_filter, *old_filter; 6459 bool default_allow; 6460 bool empty = true; 6461 int r = 0; 6462 u32 i; 6463 6464 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6465 return -EINVAL; 6466 6467 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6468 empty &= !filter->ranges[i].nmsrs; 6469 6470 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6471 if (empty && !default_allow) 6472 return -EINVAL; 6473 6474 new_filter = kvm_alloc_msr_filter(default_allow); 6475 if (!new_filter) 6476 return -ENOMEM; 6477 6478 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6479 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6480 if (r) { 6481 kvm_free_msr_filter(new_filter); 6482 return r; 6483 } 6484 } 6485 6486 mutex_lock(&kvm->lock); 6487 6488 /* The per-VM filter is protected by kvm->lock... */ 6489 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6490 6491 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6492 synchronize_srcu(&kvm->srcu); 6493 6494 kvm_free_msr_filter(old_filter); 6495 6496 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6497 mutex_unlock(&kvm->lock); 6498 6499 return 0; 6500 } 6501 6502 #ifdef CONFIG_KVM_COMPAT 6503 /* for KVM_X86_SET_MSR_FILTER */ 6504 struct kvm_msr_filter_range_compat { 6505 __u32 flags; 6506 __u32 nmsrs; 6507 __u32 base; 6508 __u32 bitmap; 6509 }; 6510 6511 struct kvm_msr_filter_compat { 6512 __u32 flags; 6513 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6514 }; 6515 6516 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6517 6518 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6519 unsigned long arg) 6520 { 6521 void __user *argp = (void __user *)arg; 6522 struct kvm *kvm = filp->private_data; 6523 long r = -ENOTTY; 6524 6525 switch (ioctl) { 6526 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6527 struct kvm_msr_filter __user *user_msr_filter = argp; 6528 struct kvm_msr_filter_compat filter_compat; 6529 struct kvm_msr_filter filter; 6530 int i; 6531 6532 if (copy_from_user(&filter_compat, user_msr_filter, 6533 sizeof(filter_compat))) 6534 return -EFAULT; 6535 6536 filter.flags = filter_compat.flags; 6537 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6538 struct kvm_msr_filter_range_compat *cr; 6539 6540 cr = &filter_compat.ranges[i]; 6541 filter.ranges[i] = (struct kvm_msr_filter_range) { 6542 .flags = cr->flags, 6543 .nmsrs = cr->nmsrs, 6544 .base = cr->base, 6545 .bitmap = (__u8 *)(ulong)cr->bitmap, 6546 }; 6547 } 6548 6549 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6550 break; 6551 } 6552 } 6553 6554 return r; 6555 } 6556 #endif 6557 6558 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6559 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6560 { 6561 struct kvm_vcpu *vcpu; 6562 unsigned long i; 6563 int ret = 0; 6564 6565 mutex_lock(&kvm->lock); 6566 kvm_for_each_vcpu(i, vcpu, kvm) { 6567 if (!vcpu->arch.pv_time.active) 6568 continue; 6569 6570 ret = kvm_set_guest_paused(vcpu); 6571 if (ret) { 6572 kvm_err("Failed to pause guest VCPU%d: %d\n", 6573 vcpu->vcpu_id, ret); 6574 break; 6575 } 6576 } 6577 mutex_unlock(&kvm->lock); 6578 6579 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6580 } 6581 6582 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6583 { 6584 switch (state) { 6585 case PM_HIBERNATION_PREPARE: 6586 case PM_SUSPEND_PREPARE: 6587 return kvm_arch_suspend_notifier(kvm); 6588 } 6589 6590 return NOTIFY_DONE; 6591 } 6592 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6593 6594 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6595 { 6596 struct kvm_clock_data data = { 0 }; 6597 6598 get_kvmclock(kvm, &data); 6599 if (copy_to_user(argp, &data, sizeof(data))) 6600 return -EFAULT; 6601 6602 return 0; 6603 } 6604 6605 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6606 { 6607 struct kvm_arch *ka = &kvm->arch; 6608 struct kvm_clock_data data; 6609 u64 now_raw_ns; 6610 6611 if (copy_from_user(&data, argp, sizeof(data))) 6612 return -EFAULT; 6613 6614 /* 6615 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6616 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6617 */ 6618 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6619 return -EINVAL; 6620 6621 kvm_hv_request_tsc_page_update(kvm); 6622 kvm_start_pvclock_update(kvm); 6623 pvclock_update_vm_gtod_copy(kvm); 6624 6625 /* 6626 * This pairs with kvm_guest_time_update(): when masterclock is 6627 * in use, we use master_kernel_ns + kvmclock_offset to set 6628 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6629 * is slightly ahead) here we risk going negative on unsigned 6630 * 'system_time' when 'data.clock' is very small. 6631 */ 6632 if (data.flags & KVM_CLOCK_REALTIME) { 6633 u64 now_real_ns = ktime_get_real_ns(); 6634 6635 /* 6636 * Avoid stepping the kvmclock backwards. 6637 */ 6638 if (now_real_ns > data.realtime) 6639 data.clock += now_real_ns - data.realtime; 6640 } 6641 6642 if (ka->use_master_clock) 6643 now_raw_ns = ka->master_kernel_ns; 6644 else 6645 now_raw_ns = get_kvmclock_base_ns(); 6646 ka->kvmclock_offset = data.clock - now_raw_ns; 6647 kvm_end_pvclock_update(kvm); 6648 return 0; 6649 } 6650 6651 long kvm_arch_vm_ioctl(struct file *filp, 6652 unsigned int ioctl, unsigned long arg) 6653 { 6654 struct kvm *kvm = filp->private_data; 6655 void __user *argp = (void __user *)arg; 6656 int r = -ENOTTY; 6657 /* 6658 * This union makes it completely explicit to gcc-3.x 6659 * that these two variables' stack usage should be 6660 * combined, not added together. 6661 */ 6662 union { 6663 struct kvm_pit_state ps; 6664 struct kvm_pit_state2 ps2; 6665 struct kvm_pit_config pit_config; 6666 } u; 6667 6668 switch (ioctl) { 6669 case KVM_SET_TSS_ADDR: 6670 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6671 break; 6672 case KVM_SET_IDENTITY_MAP_ADDR: { 6673 u64 ident_addr; 6674 6675 mutex_lock(&kvm->lock); 6676 r = -EINVAL; 6677 if (kvm->created_vcpus) 6678 goto set_identity_unlock; 6679 r = -EFAULT; 6680 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6681 goto set_identity_unlock; 6682 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6683 set_identity_unlock: 6684 mutex_unlock(&kvm->lock); 6685 break; 6686 } 6687 case KVM_SET_NR_MMU_PAGES: 6688 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6689 break; 6690 case KVM_GET_NR_MMU_PAGES: 6691 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6692 break; 6693 case KVM_CREATE_IRQCHIP: { 6694 mutex_lock(&kvm->lock); 6695 6696 r = -EEXIST; 6697 if (irqchip_in_kernel(kvm)) 6698 goto create_irqchip_unlock; 6699 6700 r = -EINVAL; 6701 if (kvm->created_vcpus) 6702 goto create_irqchip_unlock; 6703 6704 r = kvm_pic_init(kvm); 6705 if (r) 6706 goto create_irqchip_unlock; 6707 6708 r = kvm_ioapic_init(kvm); 6709 if (r) { 6710 kvm_pic_destroy(kvm); 6711 goto create_irqchip_unlock; 6712 } 6713 6714 r = kvm_setup_default_irq_routing(kvm); 6715 if (r) { 6716 kvm_ioapic_destroy(kvm); 6717 kvm_pic_destroy(kvm); 6718 goto create_irqchip_unlock; 6719 } 6720 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6721 smp_wmb(); 6722 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6723 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6724 create_irqchip_unlock: 6725 mutex_unlock(&kvm->lock); 6726 break; 6727 } 6728 case KVM_CREATE_PIT: 6729 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6730 goto create_pit; 6731 case KVM_CREATE_PIT2: 6732 r = -EFAULT; 6733 if (copy_from_user(&u.pit_config, argp, 6734 sizeof(struct kvm_pit_config))) 6735 goto out; 6736 create_pit: 6737 mutex_lock(&kvm->lock); 6738 r = -EEXIST; 6739 if (kvm->arch.vpit) 6740 goto create_pit_unlock; 6741 r = -ENOMEM; 6742 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6743 if (kvm->arch.vpit) 6744 r = 0; 6745 create_pit_unlock: 6746 mutex_unlock(&kvm->lock); 6747 break; 6748 case KVM_GET_IRQCHIP: { 6749 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6750 struct kvm_irqchip *chip; 6751 6752 chip = memdup_user(argp, sizeof(*chip)); 6753 if (IS_ERR(chip)) { 6754 r = PTR_ERR(chip); 6755 goto out; 6756 } 6757 6758 r = -ENXIO; 6759 if (!irqchip_kernel(kvm)) 6760 goto get_irqchip_out; 6761 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6762 if (r) 6763 goto get_irqchip_out; 6764 r = -EFAULT; 6765 if (copy_to_user(argp, chip, sizeof(*chip))) 6766 goto get_irqchip_out; 6767 r = 0; 6768 get_irqchip_out: 6769 kfree(chip); 6770 break; 6771 } 6772 case KVM_SET_IRQCHIP: { 6773 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6774 struct kvm_irqchip *chip; 6775 6776 chip = memdup_user(argp, sizeof(*chip)); 6777 if (IS_ERR(chip)) { 6778 r = PTR_ERR(chip); 6779 goto out; 6780 } 6781 6782 r = -ENXIO; 6783 if (!irqchip_kernel(kvm)) 6784 goto set_irqchip_out; 6785 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6786 set_irqchip_out: 6787 kfree(chip); 6788 break; 6789 } 6790 case KVM_GET_PIT: { 6791 r = -EFAULT; 6792 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6793 goto out; 6794 r = -ENXIO; 6795 if (!kvm->arch.vpit) 6796 goto out; 6797 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6798 if (r) 6799 goto out; 6800 r = -EFAULT; 6801 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6802 goto out; 6803 r = 0; 6804 break; 6805 } 6806 case KVM_SET_PIT: { 6807 r = -EFAULT; 6808 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6809 goto out; 6810 mutex_lock(&kvm->lock); 6811 r = -ENXIO; 6812 if (!kvm->arch.vpit) 6813 goto set_pit_out; 6814 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6815 set_pit_out: 6816 mutex_unlock(&kvm->lock); 6817 break; 6818 } 6819 case KVM_GET_PIT2: { 6820 r = -ENXIO; 6821 if (!kvm->arch.vpit) 6822 goto out; 6823 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6824 if (r) 6825 goto out; 6826 r = -EFAULT; 6827 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6828 goto out; 6829 r = 0; 6830 break; 6831 } 6832 case KVM_SET_PIT2: { 6833 r = -EFAULT; 6834 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6835 goto out; 6836 mutex_lock(&kvm->lock); 6837 r = -ENXIO; 6838 if (!kvm->arch.vpit) 6839 goto set_pit2_out; 6840 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6841 set_pit2_out: 6842 mutex_unlock(&kvm->lock); 6843 break; 6844 } 6845 case KVM_REINJECT_CONTROL: { 6846 struct kvm_reinject_control control; 6847 r = -EFAULT; 6848 if (copy_from_user(&control, argp, sizeof(control))) 6849 goto out; 6850 r = -ENXIO; 6851 if (!kvm->arch.vpit) 6852 goto out; 6853 r = kvm_vm_ioctl_reinject(kvm, &control); 6854 break; 6855 } 6856 case KVM_SET_BOOT_CPU_ID: 6857 r = 0; 6858 mutex_lock(&kvm->lock); 6859 if (kvm->created_vcpus) 6860 r = -EBUSY; 6861 else 6862 kvm->arch.bsp_vcpu_id = arg; 6863 mutex_unlock(&kvm->lock); 6864 break; 6865 #ifdef CONFIG_KVM_XEN 6866 case KVM_XEN_HVM_CONFIG: { 6867 struct kvm_xen_hvm_config xhc; 6868 r = -EFAULT; 6869 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6870 goto out; 6871 r = kvm_xen_hvm_config(kvm, &xhc); 6872 break; 6873 } 6874 case KVM_XEN_HVM_GET_ATTR: { 6875 struct kvm_xen_hvm_attr xha; 6876 6877 r = -EFAULT; 6878 if (copy_from_user(&xha, argp, sizeof(xha))) 6879 goto out; 6880 r = kvm_xen_hvm_get_attr(kvm, &xha); 6881 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6882 r = -EFAULT; 6883 break; 6884 } 6885 case KVM_XEN_HVM_SET_ATTR: { 6886 struct kvm_xen_hvm_attr xha; 6887 6888 r = -EFAULT; 6889 if (copy_from_user(&xha, argp, sizeof(xha))) 6890 goto out; 6891 r = kvm_xen_hvm_set_attr(kvm, &xha); 6892 break; 6893 } 6894 case KVM_XEN_HVM_EVTCHN_SEND: { 6895 struct kvm_irq_routing_xen_evtchn uxe; 6896 6897 r = -EFAULT; 6898 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6899 goto out; 6900 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6901 break; 6902 } 6903 #endif 6904 case KVM_SET_CLOCK: 6905 r = kvm_vm_ioctl_set_clock(kvm, argp); 6906 break; 6907 case KVM_GET_CLOCK: 6908 r = kvm_vm_ioctl_get_clock(kvm, argp); 6909 break; 6910 case KVM_SET_TSC_KHZ: { 6911 u32 user_tsc_khz; 6912 6913 r = -EINVAL; 6914 user_tsc_khz = (u32)arg; 6915 6916 if (kvm_caps.has_tsc_control && 6917 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6918 goto out; 6919 6920 if (user_tsc_khz == 0) 6921 user_tsc_khz = tsc_khz; 6922 6923 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6924 r = 0; 6925 6926 goto out; 6927 } 6928 case KVM_GET_TSC_KHZ: { 6929 r = READ_ONCE(kvm->arch.default_tsc_khz); 6930 goto out; 6931 } 6932 case KVM_MEMORY_ENCRYPT_OP: { 6933 r = -ENOTTY; 6934 if (!kvm_x86_ops.mem_enc_ioctl) 6935 goto out; 6936 6937 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6938 break; 6939 } 6940 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6941 struct kvm_enc_region region; 6942 6943 r = -EFAULT; 6944 if (copy_from_user(®ion, argp, sizeof(region))) 6945 goto out; 6946 6947 r = -ENOTTY; 6948 if (!kvm_x86_ops.mem_enc_register_region) 6949 goto out; 6950 6951 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6952 break; 6953 } 6954 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6955 struct kvm_enc_region region; 6956 6957 r = -EFAULT; 6958 if (copy_from_user(®ion, argp, sizeof(region))) 6959 goto out; 6960 6961 r = -ENOTTY; 6962 if (!kvm_x86_ops.mem_enc_unregister_region) 6963 goto out; 6964 6965 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6966 break; 6967 } 6968 case KVM_HYPERV_EVENTFD: { 6969 struct kvm_hyperv_eventfd hvevfd; 6970 6971 r = -EFAULT; 6972 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6973 goto out; 6974 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6975 break; 6976 } 6977 case KVM_SET_PMU_EVENT_FILTER: 6978 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6979 break; 6980 case KVM_X86_SET_MSR_FILTER: { 6981 struct kvm_msr_filter __user *user_msr_filter = argp; 6982 struct kvm_msr_filter filter; 6983 6984 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6985 return -EFAULT; 6986 6987 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6988 break; 6989 } 6990 default: 6991 r = -ENOTTY; 6992 } 6993 out: 6994 return r; 6995 } 6996 6997 static void kvm_init_msr_list(void) 6998 { 6999 u32 dummy[2]; 7000 unsigned i; 7001 7002 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7003 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7004 7005 num_msrs_to_save = 0; 7006 num_emulated_msrs = 0; 7007 num_msr_based_features = 0; 7008 7009 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7010 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7011 continue; 7012 7013 /* 7014 * Even MSRs that are valid in the host may not be exposed 7015 * to the guests in some cases. 7016 */ 7017 switch (msrs_to_save_all[i]) { 7018 case MSR_IA32_BNDCFGS: 7019 if (!kvm_mpx_supported()) 7020 continue; 7021 break; 7022 case MSR_TSC_AUX: 7023 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7024 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7025 continue; 7026 break; 7027 case MSR_IA32_UMWAIT_CONTROL: 7028 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7029 continue; 7030 break; 7031 case MSR_IA32_RTIT_CTL: 7032 case MSR_IA32_RTIT_STATUS: 7033 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7034 continue; 7035 break; 7036 case MSR_IA32_RTIT_CR3_MATCH: 7037 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7038 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7039 continue; 7040 break; 7041 case MSR_IA32_RTIT_OUTPUT_BASE: 7042 case MSR_IA32_RTIT_OUTPUT_MASK: 7043 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7044 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7045 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7046 continue; 7047 break; 7048 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7049 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7050 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7051 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7052 continue; 7053 break; 7054 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7055 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7056 kvm_pmu_cap.num_counters_gp) 7057 continue; 7058 break; 7059 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7060 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7061 kvm_pmu_cap.num_counters_gp) 7062 continue; 7063 break; 7064 case MSR_IA32_XFD: 7065 case MSR_IA32_XFD_ERR: 7066 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7067 continue; 7068 break; 7069 default: 7070 break; 7071 } 7072 7073 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7074 } 7075 7076 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7077 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7078 continue; 7079 7080 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7081 } 7082 7083 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7084 struct kvm_msr_entry msr; 7085 7086 msr.index = msr_based_features_all[i]; 7087 if (kvm_get_msr_feature(&msr)) 7088 continue; 7089 7090 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7091 } 7092 } 7093 7094 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7095 const void *v) 7096 { 7097 int handled = 0; 7098 int n; 7099 7100 do { 7101 n = min(len, 8); 7102 if (!(lapic_in_kernel(vcpu) && 7103 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7104 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7105 break; 7106 handled += n; 7107 addr += n; 7108 len -= n; 7109 v += n; 7110 } while (len); 7111 7112 return handled; 7113 } 7114 7115 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7116 { 7117 int handled = 0; 7118 int n; 7119 7120 do { 7121 n = min(len, 8); 7122 if (!(lapic_in_kernel(vcpu) && 7123 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7124 addr, n, v)) 7125 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7126 break; 7127 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7128 handled += n; 7129 addr += n; 7130 len -= n; 7131 v += n; 7132 } while (len); 7133 7134 return handled; 7135 } 7136 7137 void kvm_set_segment(struct kvm_vcpu *vcpu, 7138 struct kvm_segment *var, int seg) 7139 { 7140 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7141 } 7142 7143 void kvm_get_segment(struct kvm_vcpu *vcpu, 7144 struct kvm_segment *var, int seg) 7145 { 7146 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7147 } 7148 7149 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7150 struct x86_exception *exception) 7151 { 7152 struct kvm_mmu *mmu = vcpu->arch.mmu; 7153 gpa_t t_gpa; 7154 7155 BUG_ON(!mmu_is_nested(vcpu)); 7156 7157 /* NPT walks are always user-walks */ 7158 access |= PFERR_USER_MASK; 7159 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7160 7161 return t_gpa; 7162 } 7163 7164 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7165 struct x86_exception *exception) 7166 { 7167 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7168 7169 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7170 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7171 } 7172 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7173 7174 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7175 struct x86_exception *exception) 7176 { 7177 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7178 7179 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7180 access |= PFERR_WRITE_MASK; 7181 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7182 } 7183 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7184 7185 /* uses this to access any guest's mapped memory without checking CPL */ 7186 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7187 struct x86_exception *exception) 7188 { 7189 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7190 7191 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7192 } 7193 7194 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7195 struct kvm_vcpu *vcpu, u64 access, 7196 struct x86_exception *exception) 7197 { 7198 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7199 void *data = val; 7200 int r = X86EMUL_CONTINUE; 7201 7202 while (bytes) { 7203 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7204 unsigned offset = addr & (PAGE_SIZE-1); 7205 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7206 int ret; 7207 7208 if (gpa == INVALID_GPA) 7209 return X86EMUL_PROPAGATE_FAULT; 7210 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7211 offset, toread); 7212 if (ret < 0) { 7213 r = X86EMUL_IO_NEEDED; 7214 goto out; 7215 } 7216 7217 bytes -= toread; 7218 data += toread; 7219 addr += toread; 7220 } 7221 out: 7222 return r; 7223 } 7224 7225 /* used for instruction fetching */ 7226 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7227 gva_t addr, void *val, unsigned int bytes, 7228 struct x86_exception *exception) 7229 { 7230 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7231 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7232 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7233 unsigned offset; 7234 int ret; 7235 7236 /* Inline kvm_read_guest_virt_helper for speed. */ 7237 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7238 exception); 7239 if (unlikely(gpa == INVALID_GPA)) 7240 return X86EMUL_PROPAGATE_FAULT; 7241 7242 offset = addr & (PAGE_SIZE-1); 7243 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7244 bytes = (unsigned)PAGE_SIZE - offset; 7245 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7246 offset, bytes); 7247 if (unlikely(ret < 0)) 7248 return X86EMUL_IO_NEEDED; 7249 7250 return X86EMUL_CONTINUE; 7251 } 7252 7253 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7254 gva_t addr, void *val, unsigned int bytes, 7255 struct x86_exception *exception) 7256 { 7257 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7258 7259 /* 7260 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7261 * is returned, but our callers are not ready for that and they blindly 7262 * call kvm_inject_page_fault. Ensure that they at least do not leak 7263 * uninitialized kernel stack memory into cr2 and error code. 7264 */ 7265 memset(exception, 0, sizeof(*exception)); 7266 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7267 exception); 7268 } 7269 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7270 7271 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7272 gva_t addr, void *val, unsigned int bytes, 7273 struct x86_exception *exception, bool system) 7274 { 7275 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7276 u64 access = 0; 7277 7278 if (system) 7279 access |= PFERR_IMPLICIT_ACCESS; 7280 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7281 access |= PFERR_USER_MASK; 7282 7283 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7284 } 7285 7286 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7287 struct kvm_vcpu *vcpu, u64 access, 7288 struct x86_exception *exception) 7289 { 7290 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7291 void *data = val; 7292 int r = X86EMUL_CONTINUE; 7293 7294 while (bytes) { 7295 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7296 unsigned offset = addr & (PAGE_SIZE-1); 7297 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7298 int ret; 7299 7300 if (gpa == INVALID_GPA) 7301 return X86EMUL_PROPAGATE_FAULT; 7302 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7303 if (ret < 0) { 7304 r = X86EMUL_IO_NEEDED; 7305 goto out; 7306 } 7307 7308 bytes -= towrite; 7309 data += towrite; 7310 addr += towrite; 7311 } 7312 out: 7313 return r; 7314 } 7315 7316 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7317 unsigned int bytes, struct x86_exception *exception, 7318 bool system) 7319 { 7320 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7321 u64 access = PFERR_WRITE_MASK; 7322 7323 if (system) 7324 access |= PFERR_IMPLICIT_ACCESS; 7325 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7326 access |= PFERR_USER_MASK; 7327 7328 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7329 access, exception); 7330 } 7331 7332 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7333 unsigned int bytes, struct x86_exception *exception) 7334 { 7335 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7336 vcpu->arch.l1tf_flush_l1d = true; 7337 7338 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7339 PFERR_WRITE_MASK, exception); 7340 } 7341 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7342 7343 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7344 void *insn, int insn_len) 7345 { 7346 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7347 insn, insn_len); 7348 } 7349 7350 int handle_ud(struct kvm_vcpu *vcpu) 7351 { 7352 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7353 int fep_flags = READ_ONCE(force_emulation_prefix); 7354 int emul_type = EMULTYPE_TRAP_UD; 7355 char sig[5]; /* ud2; .ascii "kvm" */ 7356 struct x86_exception e; 7357 7358 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7359 return 1; 7360 7361 if (fep_flags && 7362 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7363 sig, sizeof(sig), &e) == 0 && 7364 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7365 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7366 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7367 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7368 emul_type = EMULTYPE_TRAP_UD_FORCED; 7369 } 7370 7371 return kvm_emulate_instruction(vcpu, emul_type); 7372 } 7373 EXPORT_SYMBOL_GPL(handle_ud); 7374 7375 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7376 gpa_t gpa, bool write) 7377 { 7378 /* For APIC access vmexit */ 7379 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7380 return 1; 7381 7382 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7383 trace_vcpu_match_mmio(gva, gpa, write, true); 7384 return 1; 7385 } 7386 7387 return 0; 7388 } 7389 7390 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7391 gpa_t *gpa, struct x86_exception *exception, 7392 bool write) 7393 { 7394 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7395 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7396 | (write ? PFERR_WRITE_MASK : 0); 7397 7398 /* 7399 * currently PKRU is only applied to ept enabled guest so 7400 * there is no pkey in EPT page table for L1 guest or EPT 7401 * shadow page table for L2 guest. 7402 */ 7403 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7404 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7405 vcpu->arch.mmio_access, 0, access))) { 7406 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7407 (gva & (PAGE_SIZE - 1)); 7408 trace_vcpu_match_mmio(gva, *gpa, write, false); 7409 return 1; 7410 } 7411 7412 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7413 7414 if (*gpa == INVALID_GPA) 7415 return -1; 7416 7417 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7418 } 7419 7420 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7421 const void *val, int bytes) 7422 { 7423 int ret; 7424 7425 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7426 if (ret < 0) 7427 return 0; 7428 kvm_page_track_write(vcpu, gpa, val, bytes); 7429 return 1; 7430 } 7431 7432 struct read_write_emulator_ops { 7433 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7434 int bytes); 7435 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7436 void *val, int bytes); 7437 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7438 int bytes, void *val); 7439 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7440 void *val, int bytes); 7441 bool write; 7442 }; 7443 7444 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7445 { 7446 if (vcpu->mmio_read_completed) { 7447 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7448 vcpu->mmio_fragments[0].gpa, val); 7449 vcpu->mmio_read_completed = 0; 7450 return 1; 7451 } 7452 7453 return 0; 7454 } 7455 7456 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7457 void *val, int bytes) 7458 { 7459 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7460 } 7461 7462 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7463 void *val, int bytes) 7464 { 7465 return emulator_write_phys(vcpu, gpa, val, bytes); 7466 } 7467 7468 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7469 { 7470 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7471 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7472 } 7473 7474 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7475 void *val, int bytes) 7476 { 7477 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7478 return X86EMUL_IO_NEEDED; 7479 } 7480 7481 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7482 void *val, int bytes) 7483 { 7484 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7485 7486 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7487 return X86EMUL_CONTINUE; 7488 } 7489 7490 static const struct read_write_emulator_ops read_emultor = { 7491 .read_write_prepare = read_prepare, 7492 .read_write_emulate = read_emulate, 7493 .read_write_mmio = vcpu_mmio_read, 7494 .read_write_exit_mmio = read_exit_mmio, 7495 }; 7496 7497 static const struct read_write_emulator_ops write_emultor = { 7498 .read_write_emulate = write_emulate, 7499 .read_write_mmio = write_mmio, 7500 .read_write_exit_mmio = write_exit_mmio, 7501 .write = true, 7502 }; 7503 7504 static int emulator_read_write_onepage(unsigned long addr, void *val, 7505 unsigned int bytes, 7506 struct x86_exception *exception, 7507 struct kvm_vcpu *vcpu, 7508 const struct read_write_emulator_ops *ops) 7509 { 7510 gpa_t gpa; 7511 int handled, ret; 7512 bool write = ops->write; 7513 struct kvm_mmio_fragment *frag; 7514 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7515 7516 /* 7517 * If the exit was due to a NPF we may already have a GPA. 7518 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7519 * Note, this cannot be used on string operations since string 7520 * operation using rep will only have the initial GPA from the NPF 7521 * occurred. 7522 */ 7523 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7524 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7525 gpa = ctxt->gpa_val; 7526 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7527 } else { 7528 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7529 if (ret < 0) 7530 return X86EMUL_PROPAGATE_FAULT; 7531 } 7532 7533 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7534 return X86EMUL_CONTINUE; 7535 7536 /* 7537 * Is this MMIO handled locally? 7538 */ 7539 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7540 if (handled == bytes) 7541 return X86EMUL_CONTINUE; 7542 7543 gpa += handled; 7544 bytes -= handled; 7545 val += handled; 7546 7547 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7548 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7549 frag->gpa = gpa; 7550 frag->data = val; 7551 frag->len = bytes; 7552 return X86EMUL_CONTINUE; 7553 } 7554 7555 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7556 unsigned long addr, 7557 void *val, unsigned int bytes, 7558 struct x86_exception *exception, 7559 const struct read_write_emulator_ops *ops) 7560 { 7561 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7562 gpa_t gpa; 7563 int rc; 7564 7565 if (ops->read_write_prepare && 7566 ops->read_write_prepare(vcpu, val, bytes)) 7567 return X86EMUL_CONTINUE; 7568 7569 vcpu->mmio_nr_fragments = 0; 7570 7571 /* Crossing a page boundary? */ 7572 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7573 int now; 7574 7575 now = -addr & ~PAGE_MASK; 7576 rc = emulator_read_write_onepage(addr, val, now, exception, 7577 vcpu, ops); 7578 7579 if (rc != X86EMUL_CONTINUE) 7580 return rc; 7581 addr += now; 7582 if (ctxt->mode != X86EMUL_MODE_PROT64) 7583 addr = (u32)addr; 7584 val += now; 7585 bytes -= now; 7586 } 7587 7588 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7589 vcpu, ops); 7590 if (rc != X86EMUL_CONTINUE) 7591 return rc; 7592 7593 if (!vcpu->mmio_nr_fragments) 7594 return rc; 7595 7596 gpa = vcpu->mmio_fragments[0].gpa; 7597 7598 vcpu->mmio_needed = 1; 7599 vcpu->mmio_cur_fragment = 0; 7600 7601 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7602 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7603 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7604 vcpu->run->mmio.phys_addr = gpa; 7605 7606 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7607 } 7608 7609 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7610 unsigned long addr, 7611 void *val, 7612 unsigned int bytes, 7613 struct x86_exception *exception) 7614 { 7615 return emulator_read_write(ctxt, addr, val, bytes, 7616 exception, &read_emultor); 7617 } 7618 7619 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7620 unsigned long addr, 7621 const void *val, 7622 unsigned int bytes, 7623 struct x86_exception *exception) 7624 { 7625 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7626 exception, &write_emultor); 7627 } 7628 7629 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7630 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7631 7632 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7633 unsigned long addr, 7634 const void *old, 7635 const void *new, 7636 unsigned int bytes, 7637 struct x86_exception *exception) 7638 { 7639 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7640 u64 page_line_mask; 7641 unsigned long hva; 7642 gpa_t gpa; 7643 int r; 7644 7645 /* guests cmpxchg8b have to be emulated atomically */ 7646 if (bytes > 8 || (bytes & (bytes - 1))) 7647 goto emul_write; 7648 7649 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7650 7651 if (gpa == INVALID_GPA || 7652 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7653 goto emul_write; 7654 7655 /* 7656 * Emulate the atomic as a straight write to avoid #AC if SLD is 7657 * enabled in the host and the access splits a cache line. 7658 */ 7659 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7660 page_line_mask = ~(cache_line_size() - 1); 7661 else 7662 page_line_mask = PAGE_MASK; 7663 7664 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7665 goto emul_write; 7666 7667 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7668 if (kvm_is_error_hva(hva)) 7669 goto emul_write; 7670 7671 hva += offset_in_page(gpa); 7672 7673 switch (bytes) { 7674 case 1: 7675 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7676 break; 7677 case 2: 7678 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7679 break; 7680 case 4: 7681 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7682 break; 7683 case 8: 7684 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7685 break; 7686 default: 7687 BUG(); 7688 } 7689 7690 if (r < 0) 7691 return X86EMUL_UNHANDLEABLE; 7692 if (r) 7693 return X86EMUL_CMPXCHG_FAILED; 7694 7695 kvm_page_track_write(vcpu, gpa, new, bytes); 7696 7697 return X86EMUL_CONTINUE; 7698 7699 emul_write: 7700 pr_warn_once("emulating exchange as write\n"); 7701 7702 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7703 } 7704 7705 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7706 unsigned short port, void *data, 7707 unsigned int count, bool in) 7708 { 7709 unsigned i; 7710 int r; 7711 7712 WARN_ON_ONCE(vcpu->arch.pio.count); 7713 for (i = 0; i < count; i++) { 7714 if (in) 7715 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7716 else 7717 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7718 7719 if (r) { 7720 if (i == 0) 7721 goto userspace_io; 7722 7723 /* 7724 * Userspace must have unregistered the device while PIO 7725 * was running. Drop writes / read as 0. 7726 */ 7727 if (in) 7728 memset(data, 0, size * (count - i)); 7729 break; 7730 } 7731 7732 data += size; 7733 } 7734 return 1; 7735 7736 userspace_io: 7737 vcpu->arch.pio.port = port; 7738 vcpu->arch.pio.in = in; 7739 vcpu->arch.pio.count = count; 7740 vcpu->arch.pio.size = size; 7741 7742 if (in) 7743 memset(vcpu->arch.pio_data, 0, size * count); 7744 else 7745 memcpy(vcpu->arch.pio_data, data, size * count); 7746 7747 vcpu->run->exit_reason = KVM_EXIT_IO; 7748 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7749 vcpu->run->io.size = size; 7750 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7751 vcpu->run->io.count = count; 7752 vcpu->run->io.port = port; 7753 return 0; 7754 } 7755 7756 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7757 unsigned short port, void *val, unsigned int count) 7758 { 7759 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7760 if (r) 7761 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7762 7763 return r; 7764 } 7765 7766 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7767 { 7768 int size = vcpu->arch.pio.size; 7769 unsigned int count = vcpu->arch.pio.count; 7770 memcpy(val, vcpu->arch.pio_data, size * count); 7771 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7772 vcpu->arch.pio.count = 0; 7773 } 7774 7775 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7776 int size, unsigned short port, void *val, 7777 unsigned int count) 7778 { 7779 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7780 if (vcpu->arch.pio.count) { 7781 /* 7782 * Complete a previous iteration that required userspace I/O. 7783 * Note, @count isn't guaranteed to match pio.count as userspace 7784 * can modify ECX before rerunning the vCPU. Ignore any such 7785 * shenanigans as KVM doesn't support modifying the rep count, 7786 * and the emulator ensures @count doesn't overflow the buffer. 7787 */ 7788 complete_emulator_pio_in(vcpu, val); 7789 return 1; 7790 } 7791 7792 return emulator_pio_in(vcpu, size, port, val, count); 7793 } 7794 7795 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7796 unsigned short port, const void *val, 7797 unsigned int count) 7798 { 7799 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7800 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7801 } 7802 7803 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7804 int size, unsigned short port, 7805 const void *val, unsigned int count) 7806 { 7807 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7808 } 7809 7810 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7811 { 7812 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7813 } 7814 7815 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7816 { 7817 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7818 } 7819 7820 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7821 { 7822 if (!need_emulate_wbinvd(vcpu)) 7823 return X86EMUL_CONTINUE; 7824 7825 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7826 int cpu = get_cpu(); 7827 7828 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7829 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7830 wbinvd_ipi, NULL, 1); 7831 put_cpu(); 7832 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7833 } else 7834 wbinvd(); 7835 return X86EMUL_CONTINUE; 7836 } 7837 7838 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7839 { 7840 kvm_emulate_wbinvd_noskip(vcpu); 7841 return kvm_skip_emulated_instruction(vcpu); 7842 } 7843 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7844 7845 7846 7847 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7848 { 7849 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7850 } 7851 7852 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7853 unsigned long *dest) 7854 { 7855 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7856 } 7857 7858 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7859 unsigned long value) 7860 { 7861 7862 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7863 } 7864 7865 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7866 { 7867 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7868 } 7869 7870 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7871 { 7872 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7873 unsigned long value; 7874 7875 switch (cr) { 7876 case 0: 7877 value = kvm_read_cr0(vcpu); 7878 break; 7879 case 2: 7880 value = vcpu->arch.cr2; 7881 break; 7882 case 3: 7883 value = kvm_read_cr3(vcpu); 7884 break; 7885 case 4: 7886 value = kvm_read_cr4(vcpu); 7887 break; 7888 case 8: 7889 value = kvm_get_cr8(vcpu); 7890 break; 7891 default: 7892 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7893 return 0; 7894 } 7895 7896 return value; 7897 } 7898 7899 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7900 { 7901 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7902 int res = 0; 7903 7904 switch (cr) { 7905 case 0: 7906 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7907 break; 7908 case 2: 7909 vcpu->arch.cr2 = val; 7910 break; 7911 case 3: 7912 res = kvm_set_cr3(vcpu, val); 7913 break; 7914 case 4: 7915 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7916 break; 7917 case 8: 7918 res = kvm_set_cr8(vcpu, val); 7919 break; 7920 default: 7921 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7922 res = -1; 7923 } 7924 7925 return res; 7926 } 7927 7928 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7929 { 7930 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7931 } 7932 7933 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7934 { 7935 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7936 } 7937 7938 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7939 { 7940 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7941 } 7942 7943 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7944 { 7945 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7946 } 7947 7948 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7949 { 7950 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7951 } 7952 7953 static unsigned long emulator_get_cached_segment_base( 7954 struct x86_emulate_ctxt *ctxt, int seg) 7955 { 7956 return get_segment_base(emul_to_vcpu(ctxt), seg); 7957 } 7958 7959 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7960 struct desc_struct *desc, u32 *base3, 7961 int seg) 7962 { 7963 struct kvm_segment var; 7964 7965 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7966 *selector = var.selector; 7967 7968 if (var.unusable) { 7969 memset(desc, 0, sizeof(*desc)); 7970 if (base3) 7971 *base3 = 0; 7972 return false; 7973 } 7974 7975 if (var.g) 7976 var.limit >>= 12; 7977 set_desc_limit(desc, var.limit); 7978 set_desc_base(desc, (unsigned long)var.base); 7979 #ifdef CONFIG_X86_64 7980 if (base3) 7981 *base3 = var.base >> 32; 7982 #endif 7983 desc->type = var.type; 7984 desc->s = var.s; 7985 desc->dpl = var.dpl; 7986 desc->p = var.present; 7987 desc->avl = var.avl; 7988 desc->l = var.l; 7989 desc->d = var.db; 7990 desc->g = var.g; 7991 7992 return true; 7993 } 7994 7995 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7996 struct desc_struct *desc, u32 base3, 7997 int seg) 7998 { 7999 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8000 struct kvm_segment var; 8001 8002 var.selector = selector; 8003 var.base = get_desc_base(desc); 8004 #ifdef CONFIG_X86_64 8005 var.base |= ((u64)base3) << 32; 8006 #endif 8007 var.limit = get_desc_limit(desc); 8008 if (desc->g) 8009 var.limit = (var.limit << 12) | 0xfff; 8010 var.type = desc->type; 8011 var.dpl = desc->dpl; 8012 var.db = desc->d; 8013 var.s = desc->s; 8014 var.l = desc->l; 8015 var.g = desc->g; 8016 var.avl = desc->avl; 8017 var.present = desc->p; 8018 var.unusable = !var.present; 8019 var.padding = 0; 8020 8021 kvm_set_segment(vcpu, &var, seg); 8022 return; 8023 } 8024 8025 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8026 u32 msr_index, u64 *pdata) 8027 { 8028 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8029 int r; 8030 8031 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8032 if (r < 0) 8033 return X86EMUL_UNHANDLEABLE; 8034 8035 if (r) { 8036 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8037 complete_emulated_rdmsr, r)) 8038 return X86EMUL_IO_NEEDED; 8039 8040 trace_kvm_msr_read_ex(msr_index); 8041 return X86EMUL_PROPAGATE_FAULT; 8042 } 8043 8044 trace_kvm_msr_read(msr_index, *pdata); 8045 return X86EMUL_CONTINUE; 8046 } 8047 8048 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8049 u32 msr_index, u64 data) 8050 { 8051 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8052 int r; 8053 8054 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8055 if (r < 0) 8056 return X86EMUL_UNHANDLEABLE; 8057 8058 if (r) { 8059 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8060 complete_emulated_msr_access, r)) 8061 return X86EMUL_IO_NEEDED; 8062 8063 trace_kvm_msr_write_ex(msr_index, data); 8064 return X86EMUL_PROPAGATE_FAULT; 8065 } 8066 8067 trace_kvm_msr_write(msr_index, data); 8068 return X86EMUL_CONTINUE; 8069 } 8070 8071 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8072 u32 msr_index, u64 *pdata) 8073 { 8074 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8075 } 8076 8077 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8078 u32 pmc) 8079 { 8080 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8081 return 0; 8082 return -EINVAL; 8083 } 8084 8085 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8086 u32 pmc, u64 *pdata) 8087 { 8088 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8089 } 8090 8091 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8092 { 8093 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8094 } 8095 8096 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8097 struct x86_instruction_info *info, 8098 enum x86_intercept_stage stage) 8099 { 8100 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8101 &ctxt->exception); 8102 } 8103 8104 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8105 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8106 bool exact_only) 8107 { 8108 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8109 } 8110 8111 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8112 { 8113 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8114 } 8115 8116 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8117 { 8118 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8119 } 8120 8121 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8122 { 8123 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8124 } 8125 8126 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8127 { 8128 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8129 } 8130 8131 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8132 { 8133 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8134 } 8135 8136 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8137 { 8138 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8139 } 8140 8141 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8142 { 8143 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8144 } 8145 8146 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8147 { 8148 return emul_to_vcpu(ctxt)->arch.hflags; 8149 } 8150 8151 #ifndef CONFIG_KVM_SMM 8152 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8153 { 8154 WARN_ON_ONCE(1); 8155 return X86EMUL_UNHANDLEABLE; 8156 } 8157 #endif 8158 8159 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8160 { 8161 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8162 } 8163 8164 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8165 { 8166 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8167 } 8168 8169 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8170 { 8171 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8172 8173 if (!kvm->vm_bugged) 8174 kvm_vm_bugged(kvm); 8175 } 8176 8177 static const struct x86_emulate_ops emulate_ops = { 8178 .vm_bugged = emulator_vm_bugged, 8179 .read_gpr = emulator_read_gpr, 8180 .write_gpr = emulator_write_gpr, 8181 .read_std = emulator_read_std, 8182 .write_std = emulator_write_std, 8183 .fetch = kvm_fetch_guest_virt, 8184 .read_emulated = emulator_read_emulated, 8185 .write_emulated = emulator_write_emulated, 8186 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8187 .invlpg = emulator_invlpg, 8188 .pio_in_emulated = emulator_pio_in_emulated, 8189 .pio_out_emulated = emulator_pio_out_emulated, 8190 .get_segment = emulator_get_segment, 8191 .set_segment = emulator_set_segment, 8192 .get_cached_segment_base = emulator_get_cached_segment_base, 8193 .get_gdt = emulator_get_gdt, 8194 .get_idt = emulator_get_idt, 8195 .set_gdt = emulator_set_gdt, 8196 .set_idt = emulator_set_idt, 8197 .get_cr = emulator_get_cr, 8198 .set_cr = emulator_set_cr, 8199 .cpl = emulator_get_cpl, 8200 .get_dr = emulator_get_dr, 8201 .set_dr = emulator_set_dr, 8202 .set_msr_with_filter = emulator_set_msr_with_filter, 8203 .get_msr_with_filter = emulator_get_msr_with_filter, 8204 .get_msr = emulator_get_msr, 8205 .check_pmc = emulator_check_pmc, 8206 .read_pmc = emulator_read_pmc, 8207 .halt = emulator_halt, 8208 .wbinvd = emulator_wbinvd, 8209 .fix_hypercall = emulator_fix_hypercall, 8210 .intercept = emulator_intercept, 8211 .get_cpuid = emulator_get_cpuid, 8212 .guest_has_long_mode = emulator_guest_has_long_mode, 8213 .guest_has_movbe = emulator_guest_has_movbe, 8214 .guest_has_fxsr = emulator_guest_has_fxsr, 8215 .guest_has_rdpid = emulator_guest_has_rdpid, 8216 .set_nmi_mask = emulator_set_nmi_mask, 8217 .get_hflags = emulator_get_hflags, 8218 .leave_smm = emulator_leave_smm, 8219 .triple_fault = emulator_triple_fault, 8220 .set_xcr = emulator_set_xcr, 8221 }; 8222 8223 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8224 { 8225 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8226 /* 8227 * an sti; sti; sequence only disable interrupts for the first 8228 * instruction. So, if the last instruction, be it emulated or 8229 * not, left the system with the INT_STI flag enabled, it 8230 * means that the last instruction is an sti. We should not 8231 * leave the flag on in this case. The same goes for mov ss 8232 */ 8233 if (int_shadow & mask) 8234 mask = 0; 8235 if (unlikely(int_shadow || mask)) { 8236 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8237 if (!mask) 8238 kvm_make_request(KVM_REQ_EVENT, vcpu); 8239 } 8240 } 8241 8242 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8243 { 8244 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8245 8246 if (ctxt->exception.vector == PF_VECTOR) 8247 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8248 else if (ctxt->exception.error_code_valid) 8249 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8250 ctxt->exception.error_code); 8251 else 8252 kvm_queue_exception(vcpu, ctxt->exception.vector); 8253 } 8254 8255 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8256 { 8257 struct x86_emulate_ctxt *ctxt; 8258 8259 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8260 if (!ctxt) { 8261 pr_err("failed to allocate vcpu's emulator\n"); 8262 return NULL; 8263 } 8264 8265 ctxt->vcpu = vcpu; 8266 ctxt->ops = &emulate_ops; 8267 vcpu->arch.emulate_ctxt = ctxt; 8268 8269 return ctxt; 8270 } 8271 8272 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8273 { 8274 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8275 int cs_db, cs_l; 8276 8277 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8278 8279 ctxt->gpa_available = false; 8280 ctxt->eflags = kvm_get_rflags(vcpu); 8281 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8282 8283 ctxt->eip = kvm_rip_read(vcpu); 8284 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8285 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8286 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8287 cs_db ? X86EMUL_MODE_PROT32 : 8288 X86EMUL_MODE_PROT16; 8289 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8290 8291 ctxt->interruptibility = 0; 8292 ctxt->have_exception = false; 8293 ctxt->exception.vector = -1; 8294 ctxt->perm_ok = false; 8295 8296 init_decode_cache(ctxt); 8297 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8298 } 8299 8300 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8301 { 8302 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8303 int ret; 8304 8305 init_emulate_ctxt(vcpu); 8306 8307 ctxt->op_bytes = 2; 8308 ctxt->ad_bytes = 2; 8309 ctxt->_eip = ctxt->eip + inc_eip; 8310 ret = emulate_int_real(ctxt, irq); 8311 8312 if (ret != X86EMUL_CONTINUE) { 8313 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8314 } else { 8315 ctxt->eip = ctxt->_eip; 8316 kvm_rip_write(vcpu, ctxt->eip); 8317 kvm_set_rflags(vcpu, ctxt->eflags); 8318 } 8319 } 8320 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8321 8322 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8323 u8 ndata, u8 *insn_bytes, u8 insn_size) 8324 { 8325 struct kvm_run *run = vcpu->run; 8326 u64 info[5]; 8327 u8 info_start; 8328 8329 /* 8330 * Zero the whole array used to retrieve the exit info, as casting to 8331 * u32 for select entries will leave some chunks uninitialized. 8332 */ 8333 memset(&info, 0, sizeof(info)); 8334 8335 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8336 &info[2], (u32 *)&info[3], 8337 (u32 *)&info[4]); 8338 8339 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8340 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8341 8342 /* 8343 * There's currently space for 13 entries, but 5 are used for the exit 8344 * reason and info. Restrict to 4 to reduce the maintenance burden 8345 * when expanding kvm_run.emulation_failure in the future. 8346 */ 8347 if (WARN_ON_ONCE(ndata > 4)) 8348 ndata = 4; 8349 8350 /* Always include the flags as a 'data' entry. */ 8351 info_start = 1; 8352 run->emulation_failure.flags = 0; 8353 8354 if (insn_size) { 8355 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8356 sizeof(run->emulation_failure.insn_bytes) != 16)); 8357 info_start += 2; 8358 run->emulation_failure.flags |= 8359 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8360 run->emulation_failure.insn_size = insn_size; 8361 memset(run->emulation_failure.insn_bytes, 0x90, 8362 sizeof(run->emulation_failure.insn_bytes)); 8363 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8364 } 8365 8366 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8367 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8368 ndata * sizeof(data[0])); 8369 8370 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8371 } 8372 8373 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8374 { 8375 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8376 8377 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8378 ctxt->fetch.end - ctxt->fetch.data); 8379 } 8380 8381 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8382 u8 ndata) 8383 { 8384 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8385 } 8386 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8387 8388 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8389 { 8390 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8391 } 8392 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8393 8394 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8395 { 8396 struct kvm *kvm = vcpu->kvm; 8397 8398 ++vcpu->stat.insn_emulation_fail; 8399 trace_kvm_emulate_insn_failed(vcpu); 8400 8401 if (emulation_type & EMULTYPE_VMWARE_GP) { 8402 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8403 return 1; 8404 } 8405 8406 if (kvm->arch.exit_on_emulation_error || 8407 (emulation_type & EMULTYPE_SKIP)) { 8408 prepare_emulation_ctxt_failure_exit(vcpu); 8409 return 0; 8410 } 8411 8412 kvm_queue_exception(vcpu, UD_VECTOR); 8413 8414 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8415 prepare_emulation_ctxt_failure_exit(vcpu); 8416 return 0; 8417 } 8418 8419 return 1; 8420 } 8421 8422 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8423 bool write_fault_to_shadow_pgtable, 8424 int emulation_type) 8425 { 8426 gpa_t gpa = cr2_or_gpa; 8427 kvm_pfn_t pfn; 8428 8429 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8430 return false; 8431 8432 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8433 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8434 return false; 8435 8436 if (!vcpu->arch.mmu->root_role.direct) { 8437 /* 8438 * Write permission should be allowed since only 8439 * write access need to be emulated. 8440 */ 8441 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8442 8443 /* 8444 * If the mapping is invalid in guest, let cpu retry 8445 * it to generate fault. 8446 */ 8447 if (gpa == INVALID_GPA) 8448 return true; 8449 } 8450 8451 /* 8452 * Do not retry the unhandleable instruction if it faults on the 8453 * readonly host memory, otherwise it will goto a infinite loop: 8454 * retry instruction -> write #PF -> emulation fail -> retry 8455 * instruction -> ... 8456 */ 8457 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8458 8459 /* 8460 * If the instruction failed on the error pfn, it can not be fixed, 8461 * report the error to userspace. 8462 */ 8463 if (is_error_noslot_pfn(pfn)) 8464 return false; 8465 8466 kvm_release_pfn_clean(pfn); 8467 8468 /* The instructions are well-emulated on direct mmu. */ 8469 if (vcpu->arch.mmu->root_role.direct) { 8470 unsigned int indirect_shadow_pages; 8471 8472 write_lock(&vcpu->kvm->mmu_lock); 8473 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8474 write_unlock(&vcpu->kvm->mmu_lock); 8475 8476 if (indirect_shadow_pages) 8477 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8478 8479 return true; 8480 } 8481 8482 /* 8483 * if emulation was due to access to shadowed page table 8484 * and it failed try to unshadow page and re-enter the 8485 * guest to let CPU execute the instruction. 8486 */ 8487 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8488 8489 /* 8490 * If the access faults on its page table, it can not 8491 * be fixed by unprotecting shadow page and it should 8492 * be reported to userspace. 8493 */ 8494 return !write_fault_to_shadow_pgtable; 8495 } 8496 8497 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8498 gpa_t cr2_or_gpa, int emulation_type) 8499 { 8500 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8501 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8502 8503 last_retry_eip = vcpu->arch.last_retry_eip; 8504 last_retry_addr = vcpu->arch.last_retry_addr; 8505 8506 /* 8507 * If the emulation is caused by #PF and it is non-page_table 8508 * writing instruction, it means the VM-EXIT is caused by shadow 8509 * page protected, we can zap the shadow page and retry this 8510 * instruction directly. 8511 * 8512 * Note: if the guest uses a non-page-table modifying instruction 8513 * on the PDE that points to the instruction, then we will unmap 8514 * the instruction and go to an infinite loop. So, we cache the 8515 * last retried eip and the last fault address, if we meet the eip 8516 * and the address again, we can break out of the potential infinite 8517 * loop. 8518 */ 8519 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8520 8521 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8522 return false; 8523 8524 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8525 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8526 return false; 8527 8528 if (x86_page_table_writing_insn(ctxt)) 8529 return false; 8530 8531 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8532 return false; 8533 8534 vcpu->arch.last_retry_eip = ctxt->eip; 8535 vcpu->arch.last_retry_addr = cr2_or_gpa; 8536 8537 if (!vcpu->arch.mmu->root_role.direct) 8538 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8539 8540 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8541 8542 return true; 8543 } 8544 8545 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8546 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8547 8548 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8549 unsigned long *db) 8550 { 8551 u32 dr6 = 0; 8552 int i; 8553 u32 enable, rwlen; 8554 8555 enable = dr7; 8556 rwlen = dr7 >> 16; 8557 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8558 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8559 dr6 |= (1 << i); 8560 return dr6; 8561 } 8562 8563 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8564 { 8565 struct kvm_run *kvm_run = vcpu->run; 8566 8567 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8568 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8569 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8570 kvm_run->debug.arch.exception = DB_VECTOR; 8571 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8572 return 0; 8573 } 8574 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8575 return 1; 8576 } 8577 8578 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8579 { 8580 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8581 int r; 8582 8583 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8584 if (unlikely(!r)) 8585 return 0; 8586 8587 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8588 8589 /* 8590 * rflags is the old, "raw" value of the flags. The new value has 8591 * not been saved yet. 8592 * 8593 * This is correct even for TF set by the guest, because "the 8594 * processor will not generate this exception after the instruction 8595 * that sets the TF flag". 8596 */ 8597 if (unlikely(rflags & X86_EFLAGS_TF)) 8598 r = kvm_vcpu_do_singlestep(vcpu); 8599 return r; 8600 } 8601 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8602 8603 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8604 { 8605 u32 shadow; 8606 8607 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8608 return true; 8609 8610 /* 8611 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8612 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8613 * to avoid the relatively expensive CPUID lookup. 8614 */ 8615 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8616 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8617 guest_cpuid_is_intel(vcpu); 8618 } 8619 8620 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8621 int emulation_type, int *r) 8622 { 8623 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8624 8625 /* 8626 * Do not check for code breakpoints if hardware has already done the 8627 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8628 * the instruction has passed all exception checks, and all intercepted 8629 * exceptions that trigger emulation have lower priority than code 8630 * breakpoints, i.e. the fact that the intercepted exception occurred 8631 * means any code breakpoints have already been serviced. 8632 * 8633 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8634 * hardware has checked the RIP of the magic prefix, but not the RIP of 8635 * the instruction being emulated. The intent of forced emulation is 8636 * to behave as if KVM intercepted the instruction without an exception 8637 * and without a prefix. 8638 */ 8639 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8640 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8641 return false; 8642 8643 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8644 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8645 struct kvm_run *kvm_run = vcpu->run; 8646 unsigned long eip = kvm_get_linear_rip(vcpu); 8647 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8648 vcpu->arch.guest_debug_dr7, 8649 vcpu->arch.eff_db); 8650 8651 if (dr6 != 0) { 8652 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8653 kvm_run->debug.arch.pc = eip; 8654 kvm_run->debug.arch.exception = DB_VECTOR; 8655 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8656 *r = 0; 8657 return true; 8658 } 8659 } 8660 8661 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8662 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8663 unsigned long eip = kvm_get_linear_rip(vcpu); 8664 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8665 vcpu->arch.dr7, 8666 vcpu->arch.db); 8667 8668 if (dr6 != 0) { 8669 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8670 *r = 1; 8671 return true; 8672 } 8673 } 8674 8675 return false; 8676 } 8677 8678 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8679 { 8680 switch (ctxt->opcode_len) { 8681 case 1: 8682 switch (ctxt->b) { 8683 case 0xe4: /* IN */ 8684 case 0xe5: 8685 case 0xec: 8686 case 0xed: 8687 case 0xe6: /* OUT */ 8688 case 0xe7: 8689 case 0xee: 8690 case 0xef: 8691 case 0x6c: /* INS */ 8692 case 0x6d: 8693 case 0x6e: /* OUTS */ 8694 case 0x6f: 8695 return true; 8696 } 8697 break; 8698 case 2: 8699 switch (ctxt->b) { 8700 case 0x33: /* RDPMC */ 8701 return true; 8702 } 8703 break; 8704 } 8705 8706 return false; 8707 } 8708 8709 /* 8710 * Decode an instruction for emulation. The caller is responsible for handling 8711 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8712 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8713 * code breakpoints have higher priority and thus have already been done by 8714 * hardware. 8715 * 8716 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8717 * response to a machine check. 8718 */ 8719 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8720 void *insn, int insn_len) 8721 { 8722 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8723 int r; 8724 8725 init_emulate_ctxt(vcpu); 8726 8727 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8728 8729 trace_kvm_emulate_insn_start(vcpu); 8730 ++vcpu->stat.insn_emulation; 8731 8732 return r; 8733 } 8734 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8735 8736 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8737 int emulation_type, void *insn, int insn_len) 8738 { 8739 int r; 8740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8741 bool writeback = true; 8742 bool write_fault_to_spt; 8743 8744 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8745 return 1; 8746 8747 vcpu->arch.l1tf_flush_l1d = true; 8748 8749 /* 8750 * Clear write_fault_to_shadow_pgtable here to ensure it is 8751 * never reused. 8752 */ 8753 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8754 vcpu->arch.write_fault_to_shadow_pgtable = false; 8755 8756 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8757 kvm_clear_exception_queue(vcpu); 8758 8759 /* 8760 * Return immediately if RIP hits a code breakpoint, such #DBs 8761 * are fault-like and are higher priority than any faults on 8762 * the code fetch itself. 8763 */ 8764 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8765 return r; 8766 8767 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8768 insn, insn_len); 8769 if (r != EMULATION_OK) { 8770 if ((emulation_type & EMULTYPE_TRAP_UD) || 8771 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8772 kvm_queue_exception(vcpu, UD_VECTOR); 8773 return 1; 8774 } 8775 if (reexecute_instruction(vcpu, cr2_or_gpa, 8776 write_fault_to_spt, 8777 emulation_type)) 8778 return 1; 8779 8780 if (ctxt->have_exception && 8781 !(emulation_type & EMULTYPE_SKIP)) { 8782 /* 8783 * #UD should result in just EMULATION_FAILED, and trap-like 8784 * exception should not be encountered during decode. 8785 */ 8786 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8787 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8788 inject_emulated_exception(vcpu); 8789 return 1; 8790 } 8791 return handle_emulation_failure(vcpu, emulation_type); 8792 } 8793 } 8794 8795 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8796 !is_vmware_backdoor_opcode(ctxt)) { 8797 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8798 return 1; 8799 } 8800 8801 /* 8802 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8803 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8804 * The caller is responsible for updating interruptibility state and 8805 * injecting single-step #DBs. 8806 */ 8807 if (emulation_type & EMULTYPE_SKIP) { 8808 if (ctxt->mode != X86EMUL_MODE_PROT64) 8809 ctxt->eip = (u32)ctxt->_eip; 8810 else 8811 ctxt->eip = ctxt->_eip; 8812 8813 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8814 r = 1; 8815 goto writeback; 8816 } 8817 8818 kvm_rip_write(vcpu, ctxt->eip); 8819 if (ctxt->eflags & X86_EFLAGS_RF) 8820 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8821 return 1; 8822 } 8823 8824 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8825 return 1; 8826 8827 /* this is needed for vmware backdoor interface to work since it 8828 changes registers values during IO operation */ 8829 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8830 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8831 emulator_invalidate_register_cache(ctxt); 8832 } 8833 8834 restart: 8835 if (emulation_type & EMULTYPE_PF) { 8836 /* Save the faulting GPA (cr2) in the address field */ 8837 ctxt->exception.address = cr2_or_gpa; 8838 8839 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8840 if (vcpu->arch.mmu->root_role.direct) { 8841 ctxt->gpa_available = true; 8842 ctxt->gpa_val = cr2_or_gpa; 8843 } 8844 } else { 8845 /* Sanitize the address out of an abundance of paranoia. */ 8846 ctxt->exception.address = 0; 8847 } 8848 8849 r = x86_emulate_insn(ctxt); 8850 8851 if (r == EMULATION_INTERCEPTED) 8852 return 1; 8853 8854 if (r == EMULATION_FAILED) { 8855 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8856 emulation_type)) 8857 return 1; 8858 8859 return handle_emulation_failure(vcpu, emulation_type); 8860 } 8861 8862 if (ctxt->have_exception) { 8863 r = 1; 8864 inject_emulated_exception(vcpu); 8865 } else if (vcpu->arch.pio.count) { 8866 if (!vcpu->arch.pio.in) { 8867 /* FIXME: return into emulator if single-stepping. */ 8868 vcpu->arch.pio.count = 0; 8869 } else { 8870 writeback = false; 8871 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8872 } 8873 r = 0; 8874 } else if (vcpu->mmio_needed) { 8875 ++vcpu->stat.mmio_exits; 8876 8877 if (!vcpu->mmio_is_write) 8878 writeback = false; 8879 r = 0; 8880 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8881 } else if (vcpu->arch.complete_userspace_io) { 8882 writeback = false; 8883 r = 0; 8884 } else if (r == EMULATION_RESTART) 8885 goto restart; 8886 else 8887 r = 1; 8888 8889 writeback: 8890 if (writeback) { 8891 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8892 toggle_interruptibility(vcpu, ctxt->interruptibility); 8893 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8894 8895 /* 8896 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8897 * only supports code breakpoints and general detect #DB, both 8898 * of which are fault-like. 8899 */ 8900 if (!ctxt->have_exception || 8901 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8902 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8903 if (ctxt->is_branch) 8904 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8905 kvm_rip_write(vcpu, ctxt->eip); 8906 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8907 r = kvm_vcpu_do_singlestep(vcpu); 8908 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8909 __kvm_set_rflags(vcpu, ctxt->eflags); 8910 } 8911 8912 /* 8913 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8914 * do nothing, and it will be requested again as soon as 8915 * the shadow expires. But we still need to check here, 8916 * because POPF has no interrupt shadow. 8917 */ 8918 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8919 kvm_make_request(KVM_REQ_EVENT, vcpu); 8920 } else 8921 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8922 8923 return r; 8924 } 8925 8926 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8927 { 8928 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8929 } 8930 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8931 8932 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8933 void *insn, int insn_len) 8934 { 8935 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8936 } 8937 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8938 8939 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8940 { 8941 vcpu->arch.pio.count = 0; 8942 return 1; 8943 } 8944 8945 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8946 { 8947 vcpu->arch.pio.count = 0; 8948 8949 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8950 return 1; 8951 8952 return kvm_skip_emulated_instruction(vcpu); 8953 } 8954 8955 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8956 unsigned short port) 8957 { 8958 unsigned long val = kvm_rax_read(vcpu); 8959 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8960 8961 if (ret) 8962 return ret; 8963 8964 /* 8965 * Workaround userspace that relies on old KVM behavior of %rip being 8966 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8967 */ 8968 if (port == 0x7e && 8969 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8970 vcpu->arch.complete_userspace_io = 8971 complete_fast_pio_out_port_0x7e; 8972 kvm_skip_emulated_instruction(vcpu); 8973 } else { 8974 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8975 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8976 } 8977 return 0; 8978 } 8979 8980 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8981 { 8982 unsigned long val; 8983 8984 /* We should only ever be called with arch.pio.count equal to 1 */ 8985 BUG_ON(vcpu->arch.pio.count != 1); 8986 8987 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8988 vcpu->arch.pio.count = 0; 8989 return 1; 8990 } 8991 8992 /* For size less than 4 we merge, else we zero extend */ 8993 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8994 8995 complete_emulator_pio_in(vcpu, &val); 8996 kvm_rax_write(vcpu, val); 8997 8998 return kvm_skip_emulated_instruction(vcpu); 8999 } 9000 9001 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9002 unsigned short port) 9003 { 9004 unsigned long val; 9005 int ret; 9006 9007 /* For size less than 4 we merge, else we zero extend */ 9008 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9009 9010 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9011 if (ret) { 9012 kvm_rax_write(vcpu, val); 9013 return ret; 9014 } 9015 9016 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9017 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9018 9019 return 0; 9020 } 9021 9022 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9023 { 9024 int ret; 9025 9026 if (in) 9027 ret = kvm_fast_pio_in(vcpu, size, port); 9028 else 9029 ret = kvm_fast_pio_out(vcpu, size, port); 9030 return ret && kvm_skip_emulated_instruction(vcpu); 9031 } 9032 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9033 9034 static int kvmclock_cpu_down_prep(unsigned int cpu) 9035 { 9036 __this_cpu_write(cpu_tsc_khz, 0); 9037 return 0; 9038 } 9039 9040 static void tsc_khz_changed(void *data) 9041 { 9042 struct cpufreq_freqs *freq = data; 9043 unsigned long khz = 0; 9044 9045 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9046 9047 if (data) 9048 khz = freq->new; 9049 else 9050 khz = cpufreq_quick_get(raw_smp_processor_id()); 9051 if (!khz) 9052 khz = tsc_khz; 9053 __this_cpu_write(cpu_tsc_khz, khz); 9054 } 9055 9056 #ifdef CONFIG_X86_64 9057 static void kvm_hyperv_tsc_notifier(void) 9058 { 9059 struct kvm *kvm; 9060 int cpu; 9061 9062 mutex_lock(&kvm_lock); 9063 list_for_each_entry(kvm, &vm_list, vm_list) 9064 kvm_make_mclock_inprogress_request(kvm); 9065 9066 /* no guest entries from this point */ 9067 hyperv_stop_tsc_emulation(); 9068 9069 /* TSC frequency always matches when on Hyper-V */ 9070 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9071 for_each_present_cpu(cpu) 9072 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9073 } 9074 kvm_caps.max_guest_tsc_khz = tsc_khz; 9075 9076 list_for_each_entry(kvm, &vm_list, vm_list) { 9077 __kvm_start_pvclock_update(kvm); 9078 pvclock_update_vm_gtod_copy(kvm); 9079 kvm_end_pvclock_update(kvm); 9080 } 9081 9082 mutex_unlock(&kvm_lock); 9083 } 9084 #endif 9085 9086 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9087 { 9088 struct kvm *kvm; 9089 struct kvm_vcpu *vcpu; 9090 int send_ipi = 0; 9091 unsigned long i; 9092 9093 /* 9094 * We allow guests to temporarily run on slowing clocks, 9095 * provided we notify them after, or to run on accelerating 9096 * clocks, provided we notify them before. Thus time never 9097 * goes backwards. 9098 * 9099 * However, we have a problem. We can't atomically update 9100 * the frequency of a given CPU from this function; it is 9101 * merely a notifier, which can be called from any CPU. 9102 * Changing the TSC frequency at arbitrary points in time 9103 * requires a recomputation of local variables related to 9104 * the TSC for each VCPU. We must flag these local variables 9105 * to be updated and be sure the update takes place with the 9106 * new frequency before any guests proceed. 9107 * 9108 * Unfortunately, the combination of hotplug CPU and frequency 9109 * change creates an intractable locking scenario; the order 9110 * of when these callouts happen is undefined with respect to 9111 * CPU hotplug, and they can race with each other. As such, 9112 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9113 * undefined; you can actually have a CPU frequency change take 9114 * place in between the computation of X and the setting of the 9115 * variable. To protect against this problem, all updates of 9116 * the per_cpu tsc_khz variable are done in an interrupt 9117 * protected IPI, and all callers wishing to update the value 9118 * must wait for a synchronous IPI to complete (which is trivial 9119 * if the caller is on the CPU already). This establishes the 9120 * necessary total order on variable updates. 9121 * 9122 * Note that because a guest time update may take place 9123 * anytime after the setting of the VCPU's request bit, the 9124 * correct TSC value must be set before the request. However, 9125 * to ensure the update actually makes it to any guest which 9126 * starts running in hardware virtualization between the set 9127 * and the acquisition of the spinlock, we must also ping the 9128 * CPU after setting the request bit. 9129 * 9130 */ 9131 9132 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9133 9134 mutex_lock(&kvm_lock); 9135 list_for_each_entry(kvm, &vm_list, vm_list) { 9136 kvm_for_each_vcpu(i, vcpu, kvm) { 9137 if (vcpu->cpu != cpu) 9138 continue; 9139 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9140 if (vcpu->cpu != raw_smp_processor_id()) 9141 send_ipi = 1; 9142 } 9143 } 9144 mutex_unlock(&kvm_lock); 9145 9146 if (freq->old < freq->new && send_ipi) { 9147 /* 9148 * We upscale the frequency. Must make the guest 9149 * doesn't see old kvmclock values while running with 9150 * the new frequency, otherwise we risk the guest sees 9151 * time go backwards. 9152 * 9153 * In case we update the frequency for another cpu 9154 * (which might be in guest context) send an interrupt 9155 * to kick the cpu out of guest context. Next time 9156 * guest context is entered kvmclock will be updated, 9157 * so the guest will not see stale values. 9158 */ 9159 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9160 } 9161 } 9162 9163 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9164 void *data) 9165 { 9166 struct cpufreq_freqs *freq = data; 9167 int cpu; 9168 9169 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9170 return 0; 9171 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9172 return 0; 9173 9174 for_each_cpu(cpu, freq->policy->cpus) 9175 __kvmclock_cpufreq_notifier(freq, cpu); 9176 9177 return 0; 9178 } 9179 9180 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9181 .notifier_call = kvmclock_cpufreq_notifier 9182 }; 9183 9184 static int kvmclock_cpu_online(unsigned int cpu) 9185 { 9186 tsc_khz_changed(NULL); 9187 return 0; 9188 } 9189 9190 static void kvm_timer_init(void) 9191 { 9192 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9193 max_tsc_khz = tsc_khz; 9194 9195 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9196 struct cpufreq_policy *policy; 9197 int cpu; 9198 9199 cpu = get_cpu(); 9200 policy = cpufreq_cpu_get(cpu); 9201 if (policy) { 9202 if (policy->cpuinfo.max_freq) 9203 max_tsc_khz = policy->cpuinfo.max_freq; 9204 cpufreq_cpu_put(policy); 9205 } 9206 put_cpu(); 9207 } 9208 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9209 CPUFREQ_TRANSITION_NOTIFIER); 9210 9211 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9212 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9213 } 9214 } 9215 9216 #ifdef CONFIG_X86_64 9217 static void pvclock_gtod_update_fn(struct work_struct *work) 9218 { 9219 struct kvm *kvm; 9220 struct kvm_vcpu *vcpu; 9221 unsigned long i; 9222 9223 mutex_lock(&kvm_lock); 9224 list_for_each_entry(kvm, &vm_list, vm_list) 9225 kvm_for_each_vcpu(i, vcpu, kvm) 9226 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9227 atomic_set(&kvm_guest_has_master_clock, 0); 9228 mutex_unlock(&kvm_lock); 9229 } 9230 9231 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9232 9233 /* 9234 * Indirection to move queue_work() out of the tk_core.seq write held 9235 * region to prevent possible deadlocks against time accessors which 9236 * are invoked with work related locks held. 9237 */ 9238 static void pvclock_irq_work_fn(struct irq_work *w) 9239 { 9240 queue_work(system_long_wq, &pvclock_gtod_work); 9241 } 9242 9243 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9244 9245 /* 9246 * Notification about pvclock gtod data update. 9247 */ 9248 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9249 void *priv) 9250 { 9251 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9252 struct timekeeper *tk = priv; 9253 9254 update_pvclock_gtod(tk); 9255 9256 /* 9257 * Disable master clock if host does not trust, or does not use, 9258 * TSC based clocksource. Delegate queue_work() to irq_work as 9259 * this is invoked with tk_core.seq write held. 9260 */ 9261 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9262 atomic_read(&kvm_guest_has_master_clock) != 0) 9263 irq_work_queue(&pvclock_irq_work); 9264 return 0; 9265 } 9266 9267 static struct notifier_block pvclock_gtod_notifier = { 9268 .notifier_call = pvclock_gtod_notify, 9269 }; 9270 #endif 9271 9272 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9273 { 9274 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9275 9276 #define __KVM_X86_OP(func) \ 9277 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9278 #define KVM_X86_OP(func) \ 9279 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9280 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9281 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9282 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9283 (void *)__static_call_return0); 9284 #include <asm/kvm-x86-ops.h> 9285 #undef __KVM_X86_OP 9286 9287 kvm_pmu_ops_update(ops->pmu_ops); 9288 } 9289 9290 static int kvm_x86_check_processor_compatibility(void) 9291 { 9292 int cpu = smp_processor_id(); 9293 struct cpuinfo_x86 *c = &cpu_data(cpu); 9294 9295 /* 9296 * Compatibility checks are done when loading KVM and when enabling 9297 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9298 * compatible, i.e. KVM should never perform a compatibility check on 9299 * an offline CPU. 9300 */ 9301 WARN_ON(!cpu_online(cpu)); 9302 9303 if (__cr4_reserved_bits(cpu_has, c) != 9304 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9305 return -EIO; 9306 9307 return static_call(kvm_x86_check_processor_compatibility)(); 9308 } 9309 9310 static void kvm_x86_check_cpu_compat(void *ret) 9311 { 9312 *(int *)ret = kvm_x86_check_processor_compatibility(); 9313 } 9314 9315 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9316 { 9317 u64 host_pat; 9318 int r, cpu; 9319 9320 if (kvm_x86_ops.hardware_enable) { 9321 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9322 return -EEXIST; 9323 } 9324 9325 /* 9326 * KVM explicitly assumes that the guest has an FPU and 9327 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9328 * vCPU's FPU state as a fxregs_state struct. 9329 */ 9330 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9331 pr_err("inadequate fpu\n"); 9332 return -EOPNOTSUPP; 9333 } 9334 9335 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9336 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9337 return -EOPNOTSUPP; 9338 } 9339 9340 /* 9341 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9342 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9343 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9344 * with an exception. PAT[0] is set to WB on RESET and also by the 9345 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9346 */ 9347 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9348 (host_pat & GENMASK(2, 0)) != 6) { 9349 pr_err("host PAT[0] is not WB\n"); 9350 return -EIO; 9351 } 9352 9353 x86_emulator_cache = kvm_alloc_emulator_cache(); 9354 if (!x86_emulator_cache) { 9355 pr_err("failed to allocate cache for x86 emulator\n"); 9356 return -ENOMEM; 9357 } 9358 9359 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9360 if (!user_return_msrs) { 9361 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9362 r = -ENOMEM; 9363 goto out_free_x86_emulator_cache; 9364 } 9365 kvm_nr_uret_msrs = 0; 9366 9367 r = kvm_mmu_vendor_module_init(); 9368 if (r) 9369 goto out_free_percpu; 9370 9371 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9372 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9373 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9374 } 9375 9376 rdmsrl_safe(MSR_EFER, &host_efer); 9377 9378 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9379 rdmsrl(MSR_IA32_XSS, host_xss); 9380 9381 kvm_init_pmu_capability(ops->pmu_ops); 9382 9383 r = ops->hardware_setup(); 9384 if (r != 0) 9385 goto out_mmu_exit; 9386 9387 kvm_ops_update(ops); 9388 9389 for_each_online_cpu(cpu) { 9390 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9391 if (r < 0) 9392 goto out_unwind_ops; 9393 } 9394 9395 /* 9396 * Point of no return! DO NOT add error paths below this point unless 9397 * absolutely necessary, as most operations from this point forward 9398 * require unwinding. 9399 */ 9400 kvm_timer_init(); 9401 9402 if (pi_inject_timer == -1) 9403 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9404 #ifdef CONFIG_X86_64 9405 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9406 9407 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9408 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9409 #endif 9410 9411 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9412 9413 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9414 kvm_caps.supported_xss = 0; 9415 9416 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9417 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9418 #undef __kvm_cpu_cap_has 9419 9420 if (kvm_caps.has_tsc_control) { 9421 /* 9422 * Make sure the user can only configure tsc_khz values that 9423 * fit into a signed integer. 9424 * A min value is not calculated because it will always 9425 * be 1 on all machines. 9426 */ 9427 u64 max = min(0x7fffffffULL, 9428 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9429 kvm_caps.max_guest_tsc_khz = max; 9430 } 9431 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9432 kvm_init_msr_list(); 9433 return 0; 9434 9435 out_unwind_ops: 9436 kvm_x86_ops.hardware_enable = NULL; 9437 static_call(kvm_x86_hardware_unsetup)(); 9438 out_mmu_exit: 9439 kvm_mmu_vendor_module_exit(); 9440 out_free_percpu: 9441 free_percpu(user_return_msrs); 9442 out_free_x86_emulator_cache: 9443 kmem_cache_destroy(x86_emulator_cache); 9444 return r; 9445 } 9446 9447 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9448 { 9449 int r; 9450 9451 mutex_lock(&vendor_module_lock); 9452 r = __kvm_x86_vendor_init(ops); 9453 mutex_unlock(&vendor_module_lock); 9454 9455 return r; 9456 } 9457 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9458 9459 void kvm_x86_vendor_exit(void) 9460 { 9461 kvm_unregister_perf_callbacks(); 9462 9463 #ifdef CONFIG_X86_64 9464 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9465 clear_hv_tscchange_cb(); 9466 #endif 9467 kvm_lapic_exit(); 9468 9469 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9470 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9471 CPUFREQ_TRANSITION_NOTIFIER); 9472 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9473 } 9474 #ifdef CONFIG_X86_64 9475 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9476 irq_work_sync(&pvclock_irq_work); 9477 cancel_work_sync(&pvclock_gtod_work); 9478 #endif 9479 static_call(kvm_x86_hardware_unsetup)(); 9480 kvm_mmu_vendor_module_exit(); 9481 free_percpu(user_return_msrs); 9482 kmem_cache_destroy(x86_emulator_cache); 9483 #ifdef CONFIG_KVM_XEN 9484 static_key_deferred_flush(&kvm_xen_enabled); 9485 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9486 #endif 9487 mutex_lock(&vendor_module_lock); 9488 kvm_x86_ops.hardware_enable = NULL; 9489 mutex_unlock(&vendor_module_lock); 9490 } 9491 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9492 9493 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9494 { 9495 /* 9496 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9497 * local APIC is in-kernel, the run loop will detect the non-runnable 9498 * state and halt the vCPU. Exit to userspace if the local APIC is 9499 * managed by userspace, in which case userspace is responsible for 9500 * handling wake events. 9501 */ 9502 ++vcpu->stat.halt_exits; 9503 if (lapic_in_kernel(vcpu)) { 9504 vcpu->arch.mp_state = state; 9505 return 1; 9506 } else { 9507 vcpu->run->exit_reason = reason; 9508 return 0; 9509 } 9510 } 9511 9512 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9513 { 9514 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9515 } 9516 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9517 9518 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9519 { 9520 int ret = kvm_skip_emulated_instruction(vcpu); 9521 /* 9522 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9523 * KVM_EXIT_DEBUG here. 9524 */ 9525 return kvm_emulate_halt_noskip(vcpu) && ret; 9526 } 9527 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9528 9529 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9530 { 9531 int ret = kvm_skip_emulated_instruction(vcpu); 9532 9533 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9534 KVM_EXIT_AP_RESET_HOLD) && ret; 9535 } 9536 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9537 9538 #ifdef CONFIG_X86_64 9539 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9540 unsigned long clock_type) 9541 { 9542 struct kvm_clock_pairing clock_pairing; 9543 struct timespec64 ts; 9544 u64 cycle; 9545 int ret; 9546 9547 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9548 return -KVM_EOPNOTSUPP; 9549 9550 /* 9551 * When tsc is in permanent catchup mode guests won't be able to use 9552 * pvclock_read_retry loop to get consistent view of pvclock 9553 */ 9554 if (vcpu->arch.tsc_always_catchup) 9555 return -KVM_EOPNOTSUPP; 9556 9557 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9558 return -KVM_EOPNOTSUPP; 9559 9560 clock_pairing.sec = ts.tv_sec; 9561 clock_pairing.nsec = ts.tv_nsec; 9562 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9563 clock_pairing.flags = 0; 9564 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9565 9566 ret = 0; 9567 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9568 sizeof(struct kvm_clock_pairing))) 9569 ret = -KVM_EFAULT; 9570 9571 return ret; 9572 } 9573 #endif 9574 9575 /* 9576 * kvm_pv_kick_cpu_op: Kick a vcpu. 9577 * 9578 * @apicid - apicid of vcpu to be kicked. 9579 */ 9580 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9581 { 9582 /* 9583 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9584 * common code, e.g. for tracing. Defer initialization to the compiler. 9585 */ 9586 struct kvm_lapic_irq lapic_irq = { 9587 .delivery_mode = APIC_DM_REMRD, 9588 .dest_mode = APIC_DEST_PHYSICAL, 9589 .shorthand = APIC_DEST_NOSHORT, 9590 .dest_id = apicid, 9591 }; 9592 9593 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9594 } 9595 9596 bool kvm_apicv_activated(struct kvm *kvm) 9597 { 9598 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9599 } 9600 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9601 9602 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9603 { 9604 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9605 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9606 9607 return (vm_reasons | vcpu_reasons) == 0; 9608 } 9609 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9610 9611 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9612 enum kvm_apicv_inhibit reason, bool set) 9613 { 9614 if (set) 9615 __set_bit(reason, inhibits); 9616 else 9617 __clear_bit(reason, inhibits); 9618 9619 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9620 } 9621 9622 static void kvm_apicv_init(struct kvm *kvm) 9623 { 9624 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9625 9626 init_rwsem(&kvm->arch.apicv_update_lock); 9627 9628 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9629 9630 if (!enable_apicv) 9631 set_or_clear_apicv_inhibit(inhibits, 9632 APICV_INHIBIT_REASON_DISABLE, true); 9633 } 9634 9635 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9636 { 9637 struct kvm_vcpu *target = NULL; 9638 struct kvm_apic_map *map; 9639 9640 vcpu->stat.directed_yield_attempted++; 9641 9642 if (single_task_running()) 9643 goto no_yield; 9644 9645 rcu_read_lock(); 9646 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9647 9648 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9649 target = map->phys_map[dest_id]->vcpu; 9650 9651 rcu_read_unlock(); 9652 9653 if (!target || !READ_ONCE(target->ready)) 9654 goto no_yield; 9655 9656 /* Ignore requests to yield to self */ 9657 if (vcpu == target) 9658 goto no_yield; 9659 9660 if (kvm_vcpu_yield_to(target) <= 0) 9661 goto no_yield; 9662 9663 vcpu->stat.directed_yield_successful++; 9664 9665 no_yield: 9666 return; 9667 } 9668 9669 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9670 { 9671 u64 ret = vcpu->run->hypercall.ret; 9672 9673 if (!is_64_bit_mode(vcpu)) 9674 ret = (u32)ret; 9675 kvm_rax_write(vcpu, ret); 9676 ++vcpu->stat.hypercalls; 9677 return kvm_skip_emulated_instruction(vcpu); 9678 } 9679 9680 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9681 { 9682 unsigned long nr, a0, a1, a2, a3, ret; 9683 int op_64_bit; 9684 9685 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9686 return kvm_xen_hypercall(vcpu); 9687 9688 if (kvm_hv_hypercall_enabled(vcpu)) 9689 return kvm_hv_hypercall(vcpu); 9690 9691 nr = kvm_rax_read(vcpu); 9692 a0 = kvm_rbx_read(vcpu); 9693 a1 = kvm_rcx_read(vcpu); 9694 a2 = kvm_rdx_read(vcpu); 9695 a3 = kvm_rsi_read(vcpu); 9696 9697 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9698 9699 op_64_bit = is_64_bit_hypercall(vcpu); 9700 if (!op_64_bit) { 9701 nr &= 0xFFFFFFFF; 9702 a0 &= 0xFFFFFFFF; 9703 a1 &= 0xFFFFFFFF; 9704 a2 &= 0xFFFFFFFF; 9705 a3 &= 0xFFFFFFFF; 9706 } 9707 9708 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9709 ret = -KVM_EPERM; 9710 goto out; 9711 } 9712 9713 ret = -KVM_ENOSYS; 9714 9715 switch (nr) { 9716 case KVM_HC_VAPIC_POLL_IRQ: 9717 ret = 0; 9718 break; 9719 case KVM_HC_KICK_CPU: 9720 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9721 break; 9722 9723 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9724 kvm_sched_yield(vcpu, a1); 9725 ret = 0; 9726 break; 9727 #ifdef CONFIG_X86_64 9728 case KVM_HC_CLOCK_PAIRING: 9729 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9730 break; 9731 #endif 9732 case KVM_HC_SEND_IPI: 9733 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9734 break; 9735 9736 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9737 break; 9738 case KVM_HC_SCHED_YIELD: 9739 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9740 break; 9741 9742 kvm_sched_yield(vcpu, a0); 9743 ret = 0; 9744 break; 9745 case KVM_HC_MAP_GPA_RANGE: { 9746 u64 gpa = a0, npages = a1, attrs = a2; 9747 9748 ret = -KVM_ENOSYS; 9749 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9750 break; 9751 9752 if (!PAGE_ALIGNED(gpa) || !npages || 9753 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9754 ret = -KVM_EINVAL; 9755 break; 9756 } 9757 9758 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9759 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9760 vcpu->run->hypercall.args[0] = gpa; 9761 vcpu->run->hypercall.args[1] = npages; 9762 vcpu->run->hypercall.args[2] = attrs; 9763 vcpu->run->hypercall.longmode = op_64_bit; 9764 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9765 return 0; 9766 } 9767 default: 9768 ret = -KVM_ENOSYS; 9769 break; 9770 } 9771 out: 9772 if (!op_64_bit) 9773 ret = (u32)ret; 9774 kvm_rax_write(vcpu, ret); 9775 9776 ++vcpu->stat.hypercalls; 9777 return kvm_skip_emulated_instruction(vcpu); 9778 } 9779 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9780 9781 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9782 { 9783 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9784 char instruction[3]; 9785 unsigned long rip = kvm_rip_read(vcpu); 9786 9787 /* 9788 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9789 * the pieces. 9790 */ 9791 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9792 ctxt->exception.error_code_valid = false; 9793 ctxt->exception.vector = UD_VECTOR; 9794 ctxt->have_exception = true; 9795 return X86EMUL_PROPAGATE_FAULT; 9796 } 9797 9798 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9799 9800 return emulator_write_emulated(ctxt, rip, instruction, 3, 9801 &ctxt->exception); 9802 } 9803 9804 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9805 { 9806 return vcpu->run->request_interrupt_window && 9807 likely(!pic_in_kernel(vcpu->kvm)); 9808 } 9809 9810 /* Called within kvm->srcu read side. */ 9811 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9812 { 9813 struct kvm_run *kvm_run = vcpu->run; 9814 9815 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9816 kvm_run->cr8 = kvm_get_cr8(vcpu); 9817 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9818 9819 kvm_run->ready_for_interrupt_injection = 9820 pic_in_kernel(vcpu->kvm) || 9821 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9822 9823 if (is_smm(vcpu)) 9824 kvm_run->flags |= KVM_RUN_X86_SMM; 9825 } 9826 9827 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9828 { 9829 int max_irr, tpr; 9830 9831 if (!kvm_x86_ops.update_cr8_intercept) 9832 return; 9833 9834 if (!lapic_in_kernel(vcpu)) 9835 return; 9836 9837 if (vcpu->arch.apic->apicv_active) 9838 return; 9839 9840 if (!vcpu->arch.apic->vapic_addr) 9841 max_irr = kvm_lapic_find_highest_irr(vcpu); 9842 else 9843 max_irr = -1; 9844 9845 if (max_irr != -1) 9846 max_irr >>= 4; 9847 9848 tpr = kvm_lapic_get_cr8(vcpu); 9849 9850 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9851 } 9852 9853 9854 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9855 { 9856 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9857 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9858 return 1; 9859 } 9860 9861 return kvm_x86_ops.nested_ops->check_events(vcpu); 9862 } 9863 9864 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9865 { 9866 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9867 vcpu->arch.exception.has_error_code, 9868 vcpu->arch.exception.error_code, 9869 vcpu->arch.exception.injected); 9870 9871 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9872 vcpu->arch.exception.error_code = false; 9873 static_call(kvm_x86_inject_exception)(vcpu); 9874 } 9875 9876 /* 9877 * Check for any event (interrupt or exception) that is ready to be injected, 9878 * and if there is at least one event, inject the event with the highest 9879 * priority. This handles both "pending" events, i.e. events that have never 9880 * been injected into the guest, and "injected" events, i.e. events that were 9881 * injected as part of a previous VM-Enter, but weren't successfully delivered 9882 * and need to be re-injected. 9883 * 9884 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9885 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9886 * be able to inject exceptions in the "middle" of an instruction, and so must 9887 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9888 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9889 * boundaries is necessary and correct. 9890 * 9891 * For simplicity, KVM uses a single path to inject all events (except events 9892 * that are injected directly from L1 to L2) and doesn't explicitly track 9893 * instruction boundaries for asynchronous events. However, because VM-Exits 9894 * that can occur during instruction execution typically result in KVM skipping 9895 * the instruction or injecting an exception, e.g. instruction and exception 9896 * intercepts, and because pending exceptions have higher priority than pending 9897 * interrupts, KVM still honors instruction boundaries in most scenarios. 9898 * 9899 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9900 * the instruction or inject an exception, then KVM can incorrecty inject a new 9901 * asynchrounous event if the event became pending after the CPU fetched the 9902 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9903 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9904 * injected on the restarted instruction instead of being deferred until the 9905 * instruction completes. 9906 * 9907 * In practice, this virtualization hole is unlikely to be observed by the 9908 * guest, and even less likely to cause functional problems. To detect the 9909 * hole, the guest would have to trigger an event on a side effect of an early 9910 * phase of instruction execution, e.g. on the instruction fetch from memory. 9911 * And for it to be a functional problem, the guest would need to depend on the 9912 * ordering between that side effect, the instruction completing, _and_ the 9913 * delivery of the asynchronous event. 9914 */ 9915 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9916 bool *req_immediate_exit) 9917 { 9918 bool can_inject; 9919 int r; 9920 9921 /* 9922 * Process nested events first, as nested VM-Exit supercedes event 9923 * re-injection. If there's an event queued for re-injection, it will 9924 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9925 */ 9926 if (is_guest_mode(vcpu)) 9927 r = kvm_check_nested_events(vcpu); 9928 else 9929 r = 0; 9930 9931 /* 9932 * Re-inject exceptions and events *especially* if immediate entry+exit 9933 * to/from L2 is needed, as any event that has already been injected 9934 * into L2 needs to complete its lifecycle before injecting a new event. 9935 * 9936 * Don't re-inject an NMI or interrupt if there is a pending exception. 9937 * This collision arises if an exception occurred while vectoring the 9938 * injected event, KVM intercepted said exception, and KVM ultimately 9939 * determined the fault belongs to the guest and queues the exception 9940 * for injection back into the guest. 9941 * 9942 * "Injected" interrupts can also collide with pending exceptions if 9943 * userspace ignores the "ready for injection" flag and blindly queues 9944 * an interrupt. In that case, prioritizing the exception is correct, 9945 * as the exception "occurred" before the exit to userspace. Trap-like 9946 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9947 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9948 * priority, they're only generated (pended) during instruction 9949 * execution, and interrupts are recognized at instruction boundaries. 9950 * Thus a pending fault-like exception means the fault occurred on the 9951 * *previous* instruction and must be serviced prior to recognizing any 9952 * new events in order to fully complete the previous instruction. 9953 */ 9954 if (vcpu->arch.exception.injected) 9955 kvm_inject_exception(vcpu); 9956 else if (kvm_is_exception_pending(vcpu)) 9957 ; /* see above */ 9958 else if (vcpu->arch.nmi_injected) 9959 static_call(kvm_x86_inject_nmi)(vcpu); 9960 else if (vcpu->arch.interrupt.injected) 9961 static_call(kvm_x86_inject_irq)(vcpu, true); 9962 9963 /* 9964 * Exceptions that morph to VM-Exits are handled above, and pending 9965 * exceptions on top of injected exceptions that do not VM-Exit should 9966 * either morph to #DF or, sadly, override the injected exception. 9967 */ 9968 WARN_ON_ONCE(vcpu->arch.exception.injected && 9969 vcpu->arch.exception.pending); 9970 9971 /* 9972 * Bail if immediate entry+exit to/from the guest is needed to complete 9973 * nested VM-Enter or event re-injection so that a different pending 9974 * event can be serviced (or if KVM needs to exit to userspace). 9975 * 9976 * Otherwise, continue processing events even if VM-Exit occurred. The 9977 * VM-Exit will have cleared exceptions that were meant for L2, but 9978 * there may now be events that can be injected into L1. 9979 */ 9980 if (r < 0) 9981 goto out; 9982 9983 /* 9984 * A pending exception VM-Exit should either result in nested VM-Exit 9985 * or force an immediate re-entry and exit to/from L2, and exception 9986 * VM-Exits cannot be injected (flag should _never_ be set). 9987 */ 9988 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9989 vcpu->arch.exception_vmexit.pending); 9990 9991 /* 9992 * New events, other than exceptions, cannot be injected if KVM needs 9993 * to re-inject a previous event. See above comments on re-injecting 9994 * for why pending exceptions get priority. 9995 */ 9996 can_inject = !kvm_event_needs_reinjection(vcpu); 9997 9998 if (vcpu->arch.exception.pending) { 9999 /* 10000 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10001 * value pushed on the stack. Trap-like exception and all #DBs 10002 * leave RF as-is (KVM follows Intel's behavior in this regard; 10003 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10004 * 10005 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10006 * describe the behavior of General Detect #DBs, which are 10007 * fault-like. They do _not_ set RF, a la code breakpoints. 10008 */ 10009 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10010 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10011 X86_EFLAGS_RF); 10012 10013 if (vcpu->arch.exception.vector == DB_VECTOR) { 10014 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10015 if (vcpu->arch.dr7 & DR7_GD) { 10016 vcpu->arch.dr7 &= ~DR7_GD; 10017 kvm_update_dr7(vcpu); 10018 } 10019 } 10020 10021 kvm_inject_exception(vcpu); 10022 10023 vcpu->arch.exception.pending = false; 10024 vcpu->arch.exception.injected = true; 10025 10026 can_inject = false; 10027 } 10028 10029 /* Don't inject interrupts if the user asked to avoid doing so */ 10030 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10031 return 0; 10032 10033 /* 10034 * Finally, inject interrupt events. If an event cannot be injected 10035 * due to architectural conditions (e.g. IF=0) a window-open exit 10036 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10037 * and can architecturally be injected, but we cannot do it right now: 10038 * an interrupt could have arrived just now and we have to inject it 10039 * as a vmexit, or there could already an event in the queue, which is 10040 * indicated by can_inject. In that case we request an immediate exit 10041 * in order to make progress and get back here for another iteration. 10042 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10043 */ 10044 #ifdef CONFIG_KVM_SMM 10045 if (vcpu->arch.smi_pending) { 10046 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10047 if (r < 0) 10048 goto out; 10049 if (r) { 10050 vcpu->arch.smi_pending = false; 10051 ++vcpu->arch.smi_count; 10052 enter_smm(vcpu); 10053 can_inject = false; 10054 } else 10055 static_call(kvm_x86_enable_smi_window)(vcpu); 10056 } 10057 #endif 10058 10059 if (vcpu->arch.nmi_pending) { 10060 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10061 if (r < 0) 10062 goto out; 10063 if (r) { 10064 --vcpu->arch.nmi_pending; 10065 vcpu->arch.nmi_injected = true; 10066 static_call(kvm_x86_inject_nmi)(vcpu); 10067 can_inject = false; 10068 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10069 } 10070 if (vcpu->arch.nmi_pending) 10071 static_call(kvm_x86_enable_nmi_window)(vcpu); 10072 } 10073 10074 if (kvm_cpu_has_injectable_intr(vcpu)) { 10075 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10076 if (r < 0) 10077 goto out; 10078 if (r) { 10079 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10080 static_call(kvm_x86_inject_irq)(vcpu, false); 10081 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10082 } 10083 if (kvm_cpu_has_injectable_intr(vcpu)) 10084 static_call(kvm_x86_enable_irq_window)(vcpu); 10085 } 10086 10087 if (is_guest_mode(vcpu) && 10088 kvm_x86_ops.nested_ops->has_events && 10089 kvm_x86_ops.nested_ops->has_events(vcpu)) 10090 *req_immediate_exit = true; 10091 10092 /* 10093 * KVM must never queue a new exception while injecting an event; KVM 10094 * is done emulating and should only propagate the to-be-injected event 10095 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10096 * infinite loop as KVM will bail from VM-Enter to inject the pending 10097 * exception and start the cycle all over. 10098 * 10099 * Exempt triple faults as they have special handling and won't put the 10100 * vCPU into an infinite loop. Triple fault can be queued when running 10101 * VMX without unrestricted guest, as that requires KVM to emulate Real 10102 * Mode events (see kvm_inject_realmode_interrupt()). 10103 */ 10104 WARN_ON_ONCE(vcpu->arch.exception.pending || 10105 vcpu->arch.exception_vmexit.pending); 10106 return 0; 10107 10108 out: 10109 if (r == -EBUSY) { 10110 *req_immediate_exit = true; 10111 r = 0; 10112 } 10113 return r; 10114 } 10115 10116 static void process_nmi(struct kvm_vcpu *vcpu) 10117 { 10118 unsigned limit = 2; 10119 10120 /* 10121 * x86 is limited to one NMI running, and one NMI pending after it. 10122 * If an NMI is already in progress, limit further NMIs to just one. 10123 * Otherwise, allow two (and we'll inject the first one immediately). 10124 */ 10125 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10126 limit = 1; 10127 10128 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10129 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10130 kvm_make_request(KVM_REQ_EVENT, vcpu); 10131 } 10132 10133 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10134 unsigned long *vcpu_bitmap) 10135 { 10136 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10137 } 10138 10139 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10140 { 10141 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10142 } 10143 10144 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10145 { 10146 struct kvm_lapic *apic = vcpu->arch.apic; 10147 bool activate; 10148 10149 if (!lapic_in_kernel(vcpu)) 10150 return; 10151 10152 down_read(&vcpu->kvm->arch.apicv_update_lock); 10153 preempt_disable(); 10154 10155 /* Do not activate APICV when APIC is disabled */ 10156 activate = kvm_vcpu_apicv_activated(vcpu) && 10157 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10158 10159 if (apic->apicv_active == activate) 10160 goto out; 10161 10162 apic->apicv_active = activate; 10163 kvm_apic_update_apicv(vcpu); 10164 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10165 10166 /* 10167 * When APICv gets disabled, we may still have injected interrupts 10168 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10169 * still active when the interrupt got accepted. Make sure 10170 * kvm_check_and_inject_events() is called to check for that. 10171 */ 10172 if (!apic->apicv_active) 10173 kvm_make_request(KVM_REQ_EVENT, vcpu); 10174 10175 out: 10176 preempt_enable(); 10177 up_read(&vcpu->kvm->arch.apicv_update_lock); 10178 } 10179 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10180 10181 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10182 { 10183 if (!lapic_in_kernel(vcpu)) 10184 return; 10185 10186 /* 10187 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10188 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10189 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10190 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10191 * this case so that KVM can the AVIC doorbell to inject interrupts to 10192 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10193 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10194 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10195 * access page is sticky. 10196 */ 10197 if (apic_x2apic_mode(vcpu->arch.apic) && 10198 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10199 kvm_inhibit_apic_access_page(vcpu); 10200 10201 __kvm_vcpu_update_apicv(vcpu); 10202 } 10203 10204 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10205 enum kvm_apicv_inhibit reason, bool set) 10206 { 10207 unsigned long old, new; 10208 10209 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10210 10211 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10212 return; 10213 10214 old = new = kvm->arch.apicv_inhibit_reasons; 10215 10216 set_or_clear_apicv_inhibit(&new, reason, set); 10217 10218 if (!!old != !!new) { 10219 /* 10220 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10221 * false positives in the sanity check WARN in svm_vcpu_run(). 10222 * This task will wait for all vCPUs to ack the kick IRQ before 10223 * updating apicv_inhibit_reasons, and all other vCPUs will 10224 * block on acquiring apicv_update_lock so that vCPUs can't 10225 * redo svm_vcpu_run() without seeing the new inhibit state. 10226 * 10227 * Note, holding apicv_update_lock and taking it in the read 10228 * side (handling the request) also prevents other vCPUs from 10229 * servicing the request with a stale apicv_inhibit_reasons. 10230 */ 10231 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10232 kvm->arch.apicv_inhibit_reasons = new; 10233 if (new) { 10234 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10235 int idx = srcu_read_lock(&kvm->srcu); 10236 10237 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10238 srcu_read_unlock(&kvm->srcu, idx); 10239 } 10240 } else { 10241 kvm->arch.apicv_inhibit_reasons = new; 10242 } 10243 } 10244 10245 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10246 enum kvm_apicv_inhibit reason, bool set) 10247 { 10248 if (!enable_apicv) 10249 return; 10250 10251 down_write(&kvm->arch.apicv_update_lock); 10252 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10253 up_write(&kvm->arch.apicv_update_lock); 10254 } 10255 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10256 10257 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10258 { 10259 if (!kvm_apic_present(vcpu)) 10260 return; 10261 10262 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10263 10264 if (irqchip_split(vcpu->kvm)) 10265 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10266 else { 10267 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10268 if (ioapic_in_kernel(vcpu->kvm)) 10269 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10270 } 10271 10272 if (is_guest_mode(vcpu)) 10273 vcpu->arch.load_eoi_exitmap_pending = true; 10274 else 10275 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10276 } 10277 10278 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10279 { 10280 u64 eoi_exit_bitmap[4]; 10281 10282 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10283 return; 10284 10285 if (to_hv_vcpu(vcpu)) { 10286 bitmap_or((ulong *)eoi_exit_bitmap, 10287 vcpu->arch.ioapic_handled_vectors, 10288 to_hv_synic(vcpu)->vec_bitmap, 256); 10289 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10290 return; 10291 } 10292 10293 static_call_cond(kvm_x86_load_eoi_exitmap)( 10294 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10295 } 10296 10297 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10298 unsigned long start, unsigned long end) 10299 { 10300 unsigned long apic_address; 10301 10302 /* 10303 * The physical address of apic access page is stored in the VMCS. 10304 * Update it when it becomes invalid. 10305 */ 10306 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10307 if (start <= apic_address && apic_address < end) 10308 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10309 } 10310 10311 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10312 { 10313 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10314 } 10315 10316 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10317 { 10318 if (!lapic_in_kernel(vcpu)) 10319 return; 10320 10321 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10322 } 10323 10324 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10325 { 10326 smp_send_reschedule(vcpu->cpu); 10327 } 10328 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10329 10330 /* 10331 * Called within kvm->srcu read side. 10332 * Returns 1 to let vcpu_run() continue the guest execution loop without 10333 * exiting to the userspace. Otherwise, the value will be returned to the 10334 * userspace. 10335 */ 10336 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10337 { 10338 int r; 10339 bool req_int_win = 10340 dm_request_for_irq_injection(vcpu) && 10341 kvm_cpu_accept_dm_intr(vcpu); 10342 fastpath_t exit_fastpath; 10343 10344 bool req_immediate_exit = false; 10345 10346 if (kvm_request_pending(vcpu)) { 10347 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10348 r = -EIO; 10349 goto out; 10350 } 10351 10352 if (kvm_dirty_ring_check_request(vcpu)) { 10353 r = 0; 10354 goto out; 10355 } 10356 10357 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10358 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10359 r = 0; 10360 goto out; 10361 } 10362 } 10363 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10364 kvm_mmu_free_obsolete_roots(vcpu); 10365 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10366 __kvm_migrate_timers(vcpu); 10367 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10368 kvm_update_masterclock(vcpu->kvm); 10369 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10370 kvm_gen_kvmclock_update(vcpu); 10371 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10372 r = kvm_guest_time_update(vcpu); 10373 if (unlikely(r)) 10374 goto out; 10375 } 10376 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10377 kvm_mmu_sync_roots(vcpu); 10378 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10379 kvm_mmu_load_pgd(vcpu); 10380 10381 /* 10382 * Note, the order matters here, as flushing "all" TLB entries 10383 * also flushes the "current" TLB entries, i.e. servicing the 10384 * flush "all" will clear any request to flush "current". 10385 */ 10386 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10387 kvm_vcpu_flush_tlb_all(vcpu); 10388 10389 kvm_service_local_tlb_flush_requests(vcpu); 10390 10391 /* 10392 * Fall back to a "full" guest flush if Hyper-V's precise 10393 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10394 * the flushes are considered "remote" and not "local" because 10395 * the requests can be initiated from other vCPUs. 10396 */ 10397 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10398 kvm_hv_vcpu_flush_tlb(vcpu)) 10399 kvm_vcpu_flush_tlb_guest(vcpu); 10400 10401 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10402 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10403 r = 0; 10404 goto out; 10405 } 10406 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10407 if (is_guest_mode(vcpu)) 10408 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10409 10410 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10411 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10412 vcpu->mmio_needed = 0; 10413 r = 0; 10414 goto out; 10415 } 10416 } 10417 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10418 /* Page is swapped out. Do synthetic halt */ 10419 vcpu->arch.apf.halted = true; 10420 r = 1; 10421 goto out; 10422 } 10423 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10424 record_steal_time(vcpu); 10425 #ifdef CONFIG_KVM_SMM 10426 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10427 process_smi(vcpu); 10428 #endif 10429 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10430 process_nmi(vcpu); 10431 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10432 kvm_pmu_handle_event(vcpu); 10433 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10434 kvm_pmu_deliver_pmi(vcpu); 10435 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10436 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10437 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10438 vcpu->arch.ioapic_handled_vectors)) { 10439 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10440 vcpu->run->eoi.vector = 10441 vcpu->arch.pending_ioapic_eoi; 10442 r = 0; 10443 goto out; 10444 } 10445 } 10446 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10447 vcpu_scan_ioapic(vcpu); 10448 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10449 vcpu_load_eoi_exitmap(vcpu); 10450 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10451 kvm_vcpu_reload_apic_access_page(vcpu); 10452 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10453 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10454 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10455 vcpu->run->system_event.ndata = 0; 10456 r = 0; 10457 goto out; 10458 } 10459 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10460 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10461 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10462 vcpu->run->system_event.ndata = 0; 10463 r = 0; 10464 goto out; 10465 } 10466 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10467 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10468 10469 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10470 vcpu->run->hyperv = hv_vcpu->exit; 10471 r = 0; 10472 goto out; 10473 } 10474 10475 /* 10476 * KVM_REQ_HV_STIMER has to be processed after 10477 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10478 * depend on the guest clock being up-to-date 10479 */ 10480 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10481 kvm_hv_process_stimers(vcpu); 10482 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10483 kvm_vcpu_update_apicv(vcpu); 10484 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10485 kvm_check_async_pf_completion(vcpu); 10486 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10487 static_call(kvm_x86_msr_filter_changed)(vcpu); 10488 10489 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10490 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10491 } 10492 10493 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10494 kvm_xen_has_interrupt(vcpu)) { 10495 ++vcpu->stat.req_event; 10496 r = kvm_apic_accept_events(vcpu); 10497 if (r < 0) { 10498 r = 0; 10499 goto out; 10500 } 10501 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10502 r = 1; 10503 goto out; 10504 } 10505 10506 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10507 if (r < 0) { 10508 r = 0; 10509 goto out; 10510 } 10511 if (req_int_win) 10512 static_call(kvm_x86_enable_irq_window)(vcpu); 10513 10514 if (kvm_lapic_enabled(vcpu)) { 10515 update_cr8_intercept(vcpu); 10516 kvm_lapic_sync_to_vapic(vcpu); 10517 } 10518 } 10519 10520 r = kvm_mmu_reload(vcpu); 10521 if (unlikely(r)) { 10522 goto cancel_injection; 10523 } 10524 10525 preempt_disable(); 10526 10527 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10528 10529 /* 10530 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10531 * IPI are then delayed after guest entry, which ensures that they 10532 * result in virtual interrupt delivery. 10533 */ 10534 local_irq_disable(); 10535 10536 /* Store vcpu->apicv_active before vcpu->mode. */ 10537 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10538 10539 kvm_vcpu_srcu_read_unlock(vcpu); 10540 10541 /* 10542 * 1) We should set ->mode before checking ->requests. Please see 10543 * the comment in kvm_vcpu_exiting_guest_mode(). 10544 * 10545 * 2) For APICv, we should set ->mode before checking PID.ON. This 10546 * pairs with the memory barrier implicit in pi_test_and_set_on 10547 * (see vmx_deliver_posted_interrupt). 10548 * 10549 * 3) This also orders the write to mode from any reads to the page 10550 * tables done while the VCPU is running. Please see the comment 10551 * in kvm_flush_remote_tlbs. 10552 */ 10553 smp_mb__after_srcu_read_unlock(); 10554 10555 /* 10556 * Process pending posted interrupts to handle the case where the 10557 * notification IRQ arrived in the host, or was never sent (because the 10558 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10559 * status, KVM doesn't update assigned devices when APICv is inhibited, 10560 * i.e. they can post interrupts even if APICv is temporarily disabled. 10561 */ 10562 if (kvm_lapic_enabled(vcpu)) 10563 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10564 10565 if (kvm_vcpu_exit_request(vcpu)) { 10566 vcpu->mode = OUTSIDE_GUEST_MODE; 10567 smp_wmb(); 10568 local_irq_enable(); 10569 preempt_enable(); 10570 kvm_vcpu_srcu_read_lock(vcpu); 10571 r = 1; 10572 goto cancel_injection; 10573 } 10574 10575 if (req_immediate_exit) { 10576 kvm_make_request(KVM_REQ_EVENT, vcpu); 10577 static_call(kvm_x86_request_immediate_exit)(vcpu); 10578 } 10579 10580 fpregs_assert_state_consistent(); 10581 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10582 switch_fpu_return(); 10583 10584 if (vcpu->arch.guest_fpu.xfd_err) 10585 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10586 10587 if (unlikely(vcpu->arch.switch_db_regs)) { 10588 set_debugreg(0, 7); 10589 set_debugreg(vcpu->arch.eff_db[0], 0); 10590 set_debugreg(vcpu->arch.eff_db[1], 1); 10591 set_debugreg(vcpu->arch.eff_db[2], 2); 10592 set_debugreg(vcpu->arch.eff_db[3], 3); 10593 } else if (unlikely(hw_breakpoint_active())) { 10594 set_debugreg(0, 7); 10595 } 10596 10597 guest_timing_enter_irqoff(); 10598 10599 for (;;) { 10600 /* 10601 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10602 * update must kick and wait for all vCPUs before toggling the 10603 * per-VM state, and responsing vCPUs must wait for the update 10604 * to complete before servicing KVM_REQ_APICV_UPDATE. 10605 */ 10606 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10607 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10608 10609 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10610 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10611 break; 10612 10613 if (kvm_lapic_enabled(vcpu)) 10614 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10615 10616 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10617 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10618 break; 10619 } 10620 } 10621 10622 /* 10623 * Do this here before restoring debug registers on the host. And 10624 * since we do this before handling the vmexit, a DR access vmexit 10625 * can (a) read the correct value of the debug registers, (b) set 10626 * KVM_DEBUGREG_WONT_EXIT again. 10627 */ 10628 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10629 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10630 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10631 kvm_update_dr0123(vcpu); 10632 kvm_update_dr7(vcpu); 10633 } 10634 10635 /* 10636 * If the guest has used debug registers, at least dr7 10637 * will be disabled while returning to the host. 10638 * If we don't have active breakpoints in the host, we don't 10639 * care about the messed up debug address registers. But if 10640 * we have some of them active, restore the old state. 10641 */ 10642 if (hw_breakpoint_active()) 10643 hw_breakpoint_restore(); 10644 10645 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10646 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10647 10648 vcpu->mode = OUTSIDE_GUEST_MODE; 10649 smp_wmb(); 10650 10651 /* 10652 * Sync xfd before calling handle_exit_irqoff() which may 10653 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10654 * in #NM irqoff handler). 10655 */ 10656 if (vcpu->arch.xfd_no_write_intercept) 10657 fpu_sync_guest_vmexit_xfd_state(); 10658 10659 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10660 10661 if (vcpu->arch.guest_fpu.xfd_err) 10662 wrmsrl(MSR_IA32_XFD_ERR, 0); 10663 10664 /* 10665 * Consume any pending interrupts, including the possible source of 10666 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10667 * An instruction is required after local_irq_enable() to fully unblock 10668 * interrupts on processors that implement an interrupt shadow, the 10669 * stat.exits increment will do nicely. 10670 */ 10671 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10672 local_irq_enable(); 10673 ++vcpu->stat.exits; 10674 local_irq_disable(); 10675 kvm_after_interrupt(vcpu); 10676 10677 /* 10678 * Wait until after servicing IRQs to account guest time so that any 10679 * ticks that occurred while running the guest are properly accounted 10680 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10681 * of accounting via context tracking, but the loss of accuracy is 10682 * acceptable for all known use cases. 10683 */ 10684 guest_timing_exit_irqoff(); 10685 10686 local_irq_enable(); 10687 preempt_enable(); 10688 10689 kvm_vcpu_srcu_read_lock(vcpu); 10690 10691 /* 10692 * Profile KVM exit RIPs: 10693 */ 10694 if (unlikely(prof_on == KVM_PROFILING)) { 10695 unsigned long rip = kvm_rip_read(vcpu); 10696 profile_hit(KVM_PROFILING, (void *)rip); 10697 } 10698 10699 if (unlikely(vcpu->arch.tsc_always_catchup)) 10700 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10701 10702 if (vcpu->arch.apic_attention) 10703 kvm_lapic_sync_from_vapic(vcpu); 10704 10705 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10706 return r; 10707 10708 cancel_injection: 10709 if (req_immediate_exit) 10710 kvm_make_request(KVM_REQ_EVENT, vcpu); 10711 static_call(kvm_x86_cancel_injection)(vcpu); 10712 if (unlikely(vcpu->arch.apic_attention)) 10713 kvm_lapic_sync_from_vapic(vcpu); 10714 out: 10715 return r; 10716 } 10717 10718 /* Called within kvm->srcu read side. */ 10719 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10720 { 10721 bool hv_timer; 10722 10723 if (!kvm_arch_vcpu_runnable(vcpu)) { 10724 /* 10725 * Switch to the software timer before halt-polling/blocking as 10726 * the guest's timer may be a break event for the vCPU, and the 10727 * hypervisor timer runs only when the CPU is in guest mode. 10728 * Switch before halt-polling so that KVM recognizes an expired 10729 * timer before blocking. 10730 */ 10731 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10732 if (hv_timer) 10733 kvm_lapic_switch_to_sw_timer(vcpu); 10734 10735 kvm_vcpu_srcu_read_unlock(vcpu); 10736 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10737 kvm_vcpu_halt(vcpu); 10738 else 10739 kvm_vcpu_block(vcpu); 10740 kvm_vcpu_srcu_read_lock(vcpu); 10741 10742 if (hv_timer) 10743 kvm_lapic_switch_to_hv_timer(vcpu); 10744 10745 /* 10746 * If the vCPU is not runnable, a signal or another host event 10747 * of some kind is pending; service it without changing the 10748 * vCPU's activity state. 10749 */ 10750 if (!kvm_arch_vcpu_runnable(vcpu)) 10751 return 1; 10752 } 10753 10754 /* 10755 * Evaluate nested events before exiting the halted state. This allows 10756 * the halt state to be recorded properly in the VMCS12's activity 10757 * state field (AMD does not have a similar field and a VM-Exit always 10758 * causes a spurious wakeup from HLT). 10759 */ 10760 if (is_guest_mode(vcpu)) { 10761 if (kvm_check_nested_events(vcpu) < 0) 10762 return 0; 10763 } 10764 10765 if (kvm_apic_accept_events(vcpu) < 0) 10766 return 0; 10767 switch(vcpu->arch.mp_state) { 10768 case KVM_MP_STATE_HALTED: 10769 case KVM_MP_STATE_AP_RESET_HOLD: 10770 vcpu->arch.pv.pv_unhalted = false; 10771 vcpu->arch.mp_state = 10772 KVM_MP_STATE_RUNNABLE; 10773 fallthrough; 10774 case KVM_MP_STATE_RUNNABLE: 10775 vcpu->arch.apf.halted = false; 10776 break; 10777 case KVM_MP_STATE_INIT_RECEIVED: 10778 break; 10779 default: 10780 WARN_ON_ONCE(1); 10781 break; 10782 } 10783 return 1; 10784 } 10785 10786 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10787 { 10788 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10789 !vcpu->arch.apf.halted); 10790 } 10791 10792 /* Called within kvm->srcu read side. */ 10793 static int vcpu_run(struct kvm_vcpu *vcpu) 10794 { 10795 int r; 10796 10797 vcpu->arch.l1tf_flush_l1d = true; 10798 10799 for (;;) { 10800 /* 10801 * If another guest vCPU requests a PV TLB flush in the middle 10802 * of instruction emulation, the rest of the emulation could 10803 * use a stale page translation. Assume that any code after 10804 * this point can start executing an instruction. 10805 */ 10806 vcpu->arch.at_instruction_boundary = false; 10807 if (kvm_vcpu_running(vcpu)) { 10808 r = vcpu_enter_guest(vcpu); 10809 } else { 10810 r = vcpu_block(vcpu); 10811 } 10812 10813 if (r <= 0) 10814 break; 10815 10816 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10817 if (kvm_xen_has_pending_events(vcpu)) 10818 kvm_xen_inject_pending_events(vcpu); 10819 10820 if (kvm_cpu_has_pending_timer(vcpu)) 10821 kvm_inject_pending_timer_irqs(vcpu); 10822 10823 if (dm_request_for_irq_injection(vcpu) && 10824 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10825 r = 0; 10826 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10827 ++vcpu->stat.request_irq_exits; 10828 break; 10829 } 10830 10831 if (__xfer_to_guest_mode_work_pending()) { 10832 kvm_vcpu_srcu_read_unlock(vcpu); 10833 r = xfer_to_guest_mode_handle_work(vcpu); 10834 kvm_vcpu_srcu_read_lock(vcpu); 10835 if (r) 10836 return r; 10837 } 10838 } 10839 10840 return r; 10841 } 10842 10843 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10844 { 10845 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10846 } 10847 10848 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10849 { 10850 BUG_ON(!vcpu->arch.pio.count); 10851 10852 return complete_emulated_io(vcpu); 10853 } 10854 10855 /* 10856 * Implements the following, as a state machine: 10857 * 10858 * read: 10859 * for each fragment 10860 * for each mmio piece in the fragment 10861 * write gpa, len 10862 * exit 10863 * copy data 10864 * execute insn 10865 * 10866 * write: 10867 * for each fragment 10868 * for each mmio piece in the fragment 10869 * write gpa, len 10870 * copy data 10871 * exit 10872 */ 10873 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10874 { 10875 struct kvm_run *run = vcpu->run; 10876 struct kvm_mmio_fragment *frag; 10877 unsigned len; 10878 10879 BUG_ON(!vcpu->mmio_needed); 10880 10881 /* Complete previous fragment */ 10882 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10883 len = min(8u, frag->len); 10884 if (!vcpu->mmio_is_write) 10885 memcpy(frag->data, run->mmio.data, len); 10886 10887 if (frag->len <= 8) { 10888 /* Switch to the next fragment. */ 10889 frag++; 10890 vcpu->mmio_cur_fragment++; 10891 } else { 10892 /* Go forward to the next mmio piece. */ 10893 frag->data += len; 10894 frag->gpa += len; 10895 frag->len -= len; 10896 } 10897 10898 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10899 vcpu->mmio_needed = 0; 10900 10901 /* FIXME: return into emulator if single-stepping. */ 10902 if (vcpu->mmio_is_write) 10903 return 1; 10904 vcpu->mmio_read_completed = 1; 10905 return complete_emulated_io(vcpu); 10906 } 10907 10908 run->exit_reason = KVM_EXIT_MMIO; 10909 run->mmio.phys_addr = frag->gpa; 10910 if (vcpu->mmio_is_write) 10911 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10912 run->mmio.len = min(8u, frag->len); 10913 run->mmio.is_write = vcpu->mmio_is_write; 10914 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10915 return 0; 10916 } 10917 10918 /* Swap (qemu) user FPU context for the guest FPU context. */ 10919 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10920 { 10921 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10922 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10923 trace_kvm_fpu(1); 10924 } 10925 10926 /* When vcpu_run ends, restore user space FPU context. */ 10927 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10928 { 10929 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10930 ++vcpu->stat.fpu_reload; 10931 trace_kvm_fpu(0); 10932 } 10933 10934 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10935 { 10936 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10937 struct kvm_run *kvm_run = vcpu->run; 10938 int r; 10939 10940 vcpu_load(vcpu); 10941 kvm_sigset_activate(vcpu); 10942 kvm_run->flags = 0; 10943 kvm_load_guest_fpu(vcpu); 10944 10945 kvm_vcpu_srcu_read_lock(vcpu); 10946 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10947 if (kvm_run->immediate_exit) { 10948 r = -EINTR; 10949 goto out; 10950 } 10951 /* 10952 * It should be impossible for the hypervisor timer to be in 10953 * use before KVM has ever run the vCPU. 10954 */ 10955 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10956 10957 kvm_vcpu_srcu_read_unlock(vcpu); 10958 kvm_vcpu_block(vcpu); 10959 kvm_vcpu_srcu_read_lock(vcpu); 10960 10961 if (kvm_apic_accept_events(vcpu) < 0) { 10962 r = 0; 10963 goto out; 10964 } 10965 r = -EAGAIN; 10966 if (signal_pending(current)) { 10967 r = -EINTR; 10968 kvm_run->exit_reason = KVM_EXIT_INTR; 10969 ++vcpu->stat.signal_exits; 10970 } 10971 goto out; 10972 } 10973 10974 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10975 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10976 r = -EINVAL; 10977 goto out; 10978 } 10979 10980 if (kvm_run->kvm_dirty_regs) { 10981 r = sync_regs(vcpu); 10982 if (r != 0) 10983 goto out; 10984 } 10985 10986 /* re-sync apic's tpr */ 10987 if (!lapic_in_kernel(vcpu)) { 10988 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10989 r = -EINVAL; 10990 goto out; 10991 } 10992 } 10993 10994 /* 10995 * If userspace set a pending exception and L2 is active, convert it to 10996 * a pending VM-Exit if L1 wants to intercept the exception. 10997 */ 10998 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 10999 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11000 ex->error_code)) { 11001 kvm_queue_exception_vmexit(vcpu, ex->vector, 11002 ex->has_error_code, ex->error_code, 11003 ex->has_payload, ex->payload); 11004 ex->injected = false; 11005 ex->pending = false; 11006 } 11007 vcpu->arch.exception_from_userspace = false; 11008 11009 if (unlikely(vcpu->arch.complete_userspace_io)) { 11010 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11011 vcpu->arch.complete_userspace_io = NULL; 11012 r = cui(vcpu); 11013 if (r <= 0) 11014 goto out; 11015 } else { 11016 WARN_ON_ONCE(vcpu->arch.pio.count); 11017 WARN_ON_ONCE(vcpu->mmio_needed); 11018 } 11019 11020 if (kvm_run->immediate_exit) { 11021 r = -EINTR; 11022 goto out; 11023 } 11024 11025 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11026 if (r <= 0) 11027 goto out; 11028 11029 r = vcpu_run(vcpu); 11030 11031 out: 11032 kvm_put_guest_fpu(vcpu); 11033 if (kvm_run->kvm_valid_regs) 11034 store_regs(vcpu); 11035 post_kvm_run_save(vcpu); 11036 kvm_vcpu_srcu_read_unlock(vcpu); 11037 11038 kvm_sigset_deactivate(vcpu); 11039 vcpu_put(vcpu); 11040 return r; 11041 } 11042 11043 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11044 { 11045 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11046 /* 11047 * We are here if userspace calls get_regs() in the middle of 11048 * instruction emulation. Registers state needs to be copied 11049 * back from emulation context to vcpu. Userspace shouldn't do 11050 * that usually, but some bad designed PV devices (vmware 11051 * backdoor interface) need this to work 11052 */ 11053 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11054 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11055 } 11056 regs->rax = kvm_rax_read(vcpu); 11057 regs->rbx = kvm_rbx_read(vcpu); 11058 regs->rcx = kvm_rcx_read(vcpu); 11059 regs->rdx = kvm_rdx_read(vcpu); 11060 regs->rsi = kvm_rsi_read(vcpu); 11061 regs->rdi = kvm_rdi_read(vcpu); 11062 regs->rsp = kvm_rsp_read(vcpu); 11063 regs->rbp = kvm_rbp_read(vcpu); 11064 #ifdef CONFIG_X86_64 11065 regs->r8 = kvm_r8_read(vcpu); 11066 regs->r9 = kvm_r9_read(vcpu); 11067 regs->r10 = kvm_r10_read(vcpu); 11068 regs->r11 = kvm_r11_read(vcpu); 11069 regs->r12 = kvm_r12_read(vcpu); 11070 regs->r13 = kvm_r13_read(vcpu); 11071 regs->r14 = kvm_r14_read(vcpu); 11072 regs->r15 = kvm_r15_read(vcpu); 11073 #endif 11074 11075 regs->rip = kvm_rip_read(vcpu); 11076 regs->rflags = kvm_get_rflags(vcpu); 11077 } 11078 11079 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11080 { 11081 vcpu_load(vcpu); 11082 __get_regs(vcpu, regs); 11083 vcpu_put(vcpu); 11084 return 0; 11085 } 11086 11087 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11088 { 11089 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11090 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11091 11092 kvm_rax_write(vcpu, regs->rax); 11093 kvm_rbx_write(vcpu, regs->rbx); 11094 kvm_rcx_write(vcpu, regs->rcx); 11095 kvm_rdx_write(vcpu, regs->rdx); 11096 kvm_rsi_write(vcpu, regs->rsi); 11097 kvm_rdi_write(vcpu, regs->rdi); 11098 kvm_rsp_write(vcpu, regs->rsp); 11099 kvm_rbp_write(vcpu, regs->rbp); 11100 #ifdef CONFIG_X86_64 11101 kvm_r8_write(vcpu, regs->r8); 11102 kvm_r9_write(vcpu, regs->r9); 11103 kvm_r10_write(vcpu, regs->r10); 11104 kvm_r11_write(vcpu, regs->r11); 11105 kvm_r12_write(vcpu, regs->r12); 11106 kvm_r13_write(vcpu, regs->r13); 11107 kvm_r14_write(vcpu, regs->r14); 11108 kvm_r15_write(vcpu, regs->r15); 11109 #endif 11110 11111 kvm_rip_write(vcpu, regs->rip); 11112 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11113 11114 vcpu->arch.exception.pending = false; 11115 vcpu->arch.exception_vmexit.pending = false; 11116 11117 kvm_make_request(KVM_REQ_EVENT, vcpu); 11118 } 11119 11120 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11121 { 11122 vcpu_load(vcpu); 11123 __set_regs(vcpu, regs); 11124 vcpu_put(vcpu); 11125 return 0; 11126 } 11127 11128 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11129 { 11130 struct desc_ptr dt; 11131 11132 if (vcpu->arch.guest_state_protected) 11133 goto skip_protected_regs; 11134 11135 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11136 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11137 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11138 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11139 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11140 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11141 11142 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11143 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11144 11145 static_call(kvm_x86_get_idt)(vcpu, &dt); 11146 sregs->idt.limit = dt.size; 11147 sregs->idt.base = dt.address; 11148 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11149 sregs->gdt.limit = dt.size; 11150 sregs->gdt.base = dt.address; 11151 11152 sregs->cr2 = vcpu->arch.cr2; 11153 sregs->cr3 = kvm_read_cr3(vcpu); 11154 11155 skip_protected_regs: 11156 sregs->cr0 = kvm_read_cr0(vcpu); 11157 sregs->cr4 = kvm_read_cr4(vcpu); 11158 sregs->cr8 = kvm_get_cr8(vcpu); 11159 sregs->efer = vcpu->arch.efer; 11160 sregs->apic_base = kvm_get_apic_base(vcpu); 11161 } 11162 11163 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11164 { 11165 __get_sregs_common(vcpu, sregs); 11166 11167 if (vcpu->arch.guest_state_protected) 11168 return; 11169 11170 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11171 set_bit(vcpu->arch.interrupt.nr, 11172 (unsigned long *)sregs->interrupt_bitmap); 11173 } 11174 11175 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11176 { 11177 int i; 11178 11179 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11180 11181 if (vcpu->arch.guest_state_protected) 11182 return; 11183 11184 if (is_pae_paging(vcpu)) { 11185 for (i = 0 ; i < 4 ; i++) 11186 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11187 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11188 } 11189 } 11190 11191 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11192 struct kvm_sregs *sregs) 11193 { 11194 vcpu_load(vcpu); 11195 __get_sregs(vcpu, sregs); 11196 vcpu_put(vcpu); 11197 return 0; 11198 } 11199 11200 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11201 struct kvm_mp_state *mp_state) 11202 { 11203 int r; 11204 11205 vcpu_load(vcpu); 11206 if (kvm_mpx_supported()) 11207 kvm_load_guest_fpu(vcpu); 11208 11209 r = kvm_apic_accept_events(vcpu); 11210 if (r < 0) 11211 goto out; 11212 r = 0; 11213 11214 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11215 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11216 vcpu->arch.pv.pv_unhalted) 11217 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11218 else 11219 mp_state->mp_state = vcpu->arch.mp_state; 11220 11221 out: 11222 if (kvm_mpx_supported()) 11223 kvm_put_guest_fpu(vcpu); 11224 vcpu_put(vcpu); 11225 return r; 11226 } 11227 11228 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11229 struct kvm_mp_state *mp_state) 11230 { 11231 int ret = -EINVAL; 11232 11233 vcpu_load(vcpu); 11234 11235 switch (mp_state->mp_state) { 11236 case KVM_MP_STATE_UNINITIALIZED: 11237 case KVM_MP_STATE_HALTED: 11238 case KVM_MP_STATE_AP_RESET_HOLD: 11239 case KVM_MP_STATE_INIT_RECEIVED: 11240 case KVM_MP_STATE_SIPI_RECEIVED: 11241 if (!lapic_in_kernel(vcpu)) 11242 goto out; 11243 break; 11244 11245 case KVM_MP_STATE_RUNNABLE: 11246 break; 11247 11248 default: 11249 goto out; 11250 } 11251 11252 /* 11253 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11254 * forcing the guest into INIT/SIPI if those events are supposed to be 11255 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11256 * if an SMI is pending as well. 11257 */ 11258 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11259 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11260 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11261 goto out; 11262 11263 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11264 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11265 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11266 } else 11267 vcpu->arch.mp_state = mp_state->mp_state; 11268 kvm_make_request(KVM_REQ_EVENT, vcpu); 11269 11270 ret = 0; 11271 out: 11272 vcpu_put(vcpu); 11273 return ret; 11274 } 11275 11276 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11277 int reason, bool has_error_code, u32 error_code) 11278 { 11279 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11280 int ret; 11281 11282 init_emulate_ctxt(vcpu); 11283 11284 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11285 has_error_code, error_code); 11286 if (ret) { 11287 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11288 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11289 vcpu->run->internal.ndata = 0; 11290 return 0; 11291 } 11292 11293 kvm_rip_write(vcpu, ctxt->eip); 11294 kvm_set_rflags(vcpu, ctxt->eflags); 11295 return 1; 11296 } 11297 EXPORT_SYMBOL_GPL(kvm_task_switch); 11298 11299 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11300 { 11301 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11302 /* 11303 * When EFER.LME and CR0.PG are set, the processor is in 11304 * 64-bit mode (though maybe in a 32-bit code segment). 11305 * CR4.PAE and EFER.LMA must be set. 11306 */ 11307 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11308 return false; 11309 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11310 return false; 11311 } else { 11312 /* 11313 * Not in 64-bit mode: EFER.LMA is clear and the code 11314 * segment cannot be 64-bit. 11315 */ 11316 if (sregs->efer & EFER_LMA || sregs->cs.l) 11317 return false; 11318 } 11319 11320 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11321 } 11322 11323 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11324 int *mmu_reset_needed, bool update_pdptrs) 11325 { 11326 struct msr_data apic_base_msr; 11327 int idx; 11328 struct desc_ptr dt; 11329 11330 if (!kvm_is_valid_sregs(vcpu, sregs)) 11331 return -EINVAL; 11332 11333 apic_base_msr.data = sregs->apic_base; 11334 apic_base_msr.host_initiated = true; 11335 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11336 return -EINVAL; 11337 11338 if (vcpu->arch.guest_state_protected) 11339 return 0; 11340 11341 dt.size = sregs->idt.limit; 11342 dt.address = sregs->idt.base; 11343 static_call(kvm_x86_set_idt)(vcpu, &dt); 11344 dt.size = sregs->gdt.limit; 11345 dt.address = sregs->gdt.base; 11346 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11347 11348 vcpu->arch.cr2 = sregs->cr2; 11349 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11350 vcpu->arch.cr3 = sregs->cr3; 11351 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11352 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11353 11354 kvm_set_cr8(vcpu, sregs->cr8); 11355 11356 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11357 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11358 11359 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11360 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11361 vcpu->arch.cr0 = sregs->cr0; 11362 11363 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11364 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11365 11366 if (update_pdptrs) { 11367 idx = srcu_read_lock(&vcpu->kvm->srcu); 11368 if (is_pae_paging(vcpu)) { 11369 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11370 *mmu_reset_needed = 1; 11371 } 11372 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11373 } 11374 11375 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11376 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11377 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11378 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11379 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11380 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11381 11382 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11383 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11384 11385 update_cr8_intercept(vcpu); 11386 11387 /* Older userspace won't unhalt the vcpu on reset. */ 11388 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11389 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11390 !is_protmode(vcpu)) 11391 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11392 11393 return 0; 11394 } 11395 11396 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11397 { 11398 int pending_vec, max_bits; 11399 int mmu_reset_needed = 0; 11400 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11401 11402 if (ret) 11403 return ret; 11404 11405 if (mmu_reset_needed) 11406 kvm_mmu_reset_context(vcpu); 11407 11408 max_bits = KVM_NR_INTERRUPTS; 11409 pending_vec = find_first_bit( 11410 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11411 11412 if (pending_vec < max_bits) { 11413 kvm_queue_interrupt(vcpu, pending_vec, false); 11414 pr_debug("Set back pending irq %d\n", pending_vec); 11415 kvm_make_request(KVM_REQ_EVENT, vcpu); 11416 } 11417 return 0; 11418 } 11419 11420 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11421 { 11422 int mmu_reset_needed = 0; 11423 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11424 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11425 !(sregs2->efer & EFER_LMA); 11426 int i, ret; 11427 11428 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11429 return -EINVAL; 11430 11431 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11432 return -EINVAL; 11433 11434 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11435 &mmu_reset_needed, !valid_pdptrs); 11436 if (ret) 11437 return ret; 11438 11439 if (valid_pdptrs) { 11440 for (i = 0; i < 4 ; i++) 11441 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11442 11443 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11444 mmu_reset_needed = 1; 11445 vcpu->arch.pdptrs_from_userspace = true; 11446 } 11447 if (mmu_reset_needed) 11448 kvm_mmu_reset_context(vcpu); 11449 return 0; 11450 } 11451 11452 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11453 struct kvm_sregs *sregs) 11454 { 11455 int ret; 11456 11457 vcpu_load(vcpu); 11458 ret = __set_sregs(vcpu, sregs); 11459 vcpu_put(vcpu); 11460 return ret; 11461 } 11462 11463 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11464 { 11465 bool set = false; 11466 struct kvm_vcpu *vcpu; 11467 unsigned long i; 11468 11469 if (!enable_apicv) 11470 return; 11471 11472 down_write(&kvm->arch.apicv_update_lock); 11473 11474 kvm_for_each_vcpu(i, vcpu, kvm) { 11475 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11476 set = true; 11477 break; 11478 } 11479 } 11480 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11481 up_write(&kvm->arch.apicv_update_lock); 11482 } 11483 11484 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11485 struct kvm_guest_debug *dbg) 11486 { 11487 unsigned long rflags; 11488 int i, r; 11489 11490 if (vcpu->arch.guest_state_protected) 11491 return -EINVAL; 11492 11493 vcpu_load(vcpu); 11494 11495 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11496 r = -EBUSY; 11497 if (kvm_is_exception_pending(vcpu)) 11498 goto out; 11499 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11500 kvm_queue_exception(vcpu, DB_VECTOR); 11501 else 11502 kvm_queue_exception(vcpu, BP_VECTOR); 11503 } 11504 11505 /* 11506 * Read rflags as long as potentially injected trace flags are still 11507 * filtered out. 11508 */ 11509 rflags = kvm_get_rflags(vcpu); 11510 11511 vcpu->guest_debug = dbg->control; 11512 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11513 vcpu->guest_debug = 0; 11514 11515 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11516 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11517 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11518 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11519 } else { 11520 for (i = 0; i < KVM_NR_DB_REGS; i++) 11521 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11522 } 11523 kvm_update_dr7(vcpu); 11524 11525 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11526 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11527 11528 /* 11529 * Trigger an rflags update that will inject or remove the trace 11530 * flags. 11531 */ 11532 kvm_set_rflags(vcpu, rflags); 11533 11534 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11535 11536 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11537 11538 r = 0; 11539 11540 out: 11541 vcpu_put(vcpu); 11542 return r; 11543 } 11544 11545 /* 11546 * Translate a guest virtual address to a guest physical address. 11547 */ 11548 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11549 struct kvm_translation *tr) 11550 { 11551 unsigned long vaddr = tr->linear_address; 11552 gpa_t gpa; 11553 int idx; 11554 11555 vcpu_load(vcpu); 11556 11557 idx = srcu_read_lock(&vcpu->kvm->srcu); 11558 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11559 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11560 tr->physical_address = gpa; 11561 tr->valid = gpa != INVALID_GPA; 11562 tr->writeable = 1; 11563 tr->usermode = 0; 11564 11565 vcpu_put(vcpu); 11566 return 0; 11567 } 11568 11569 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11570 { 11571 struct fxregs_state *fxsave; 11572 11573 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11574 return 0; 11575 11576 vcpu_load(vcpu); 11577 11578 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11579 memcpy(fpu->fpr, fxsave->st_space, 128); 11580 fpu->fcw = fxsave->cwd; 11581 fpu->fsw = fxsave->swd; 11582 fpu->ftwx = fxsave->twd; 11583 fpu->last_opcode = fxsave->fop; 11584 fpu->last_ip = fxsave->rip; 11585 fpu->last_dp = fxsave->rdp; 11586 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11587 11588 vcpu_put(vcpu); 11589 return 0; 11590 } 11591 11592 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11593 { 11594 struct fxregs_state *fxsave; 11595 11596 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11597 return 0; 11598 11599 vcpu_load(vcpu); 11600 11601 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11602 11603 memcpy(fxsave->st_space, fpu->fpr, 128); 11604 fxsave->cwd = fpu->fcw; 11605 fxsave->swd = fpu->fsw; 11606 fxsave->twd = fpu->ftwx; 11607 fxsave->fop = fpu->last_opcode; 11608 fxsave->rip = fpu->last_ip; 11609 fxsave->rdp = fpu->last_dp; 11610 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11611 11612 vcpu_put(vcpu); 11613 return 0; 11614 } 11615 11616 static void store_regs(struct kvm_vcpu *vcpu) 11617 { 11618 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11619 11620 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11621 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11622 11623 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11624 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11625 11626 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11627 kvm_vcpu_ioctl_x86_get_vcpu_events( 11628 vcpu, &vcpu->run->s.regs.events); 11629 } 11630 11631 static int sync_regs(struct kvm_vcpu *vcpu) 11632 { 11633 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11634 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11635 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11636 } 11637 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11638 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11639 return -EINVAL; 11640 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11641 } 11642 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11643 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11644 vcpu, &vcpu->run->s.regs.events)) 11645 return -EINVAL; 11646 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11647 } 11648 11649 return 0; 11650 } 11651 11652 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11653 { 11654 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11655 pr_warn_once("SMP vm created on host with unstable TSC; " 11656 "guest TSC will not be reliable\n"); 11657 11658 if (!kvm->arch.max_vcpu_ids) 11659 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11660 11661 if (id >= kvm->arch.max_vcpu_ids) 11662 return -EINVAL; 11663 11664 return static_call(kvm_x86_vcpu_precreate)(kvm); 11665 } 11666 11667 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11668 { 11669 struct page *page; 11670 int r; 11671 11672 vcpu->arch.last_vmentry_cpu = -1; 11673 vcpu->arch.regs_avail = ~0; 11674 vcpu->arch.regs_dirty = ~0; 11675 11676 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11677 11678 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11679 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11680 else 11681 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11682 11683 r = kvm_mmu_create(vcpu); 11684 if (r < 0) 11685 return r; 11686 11687 if (irqchip_in_kernel(vcpu->kvm)) { 11688 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11689 if (r < 0) 11690 goto fail_mmu_destroy; 11691 11692 /* 11693 * Defer evaluating inhibits until the vCPU is first run, as 11694 * this vCPU will not get notified of any changes until this 11695 * vCPU is visible to other vCPUs (marked online and added to 11696 * the set of vCPUs). Opportunistically mark APICv active as 11697 * VMX in particularly is highly unlikely to have inhibits. 11698 * Ignore the current per-VM APICv state so that vCPU creation 11699 * is guaranteed to run with a deterministic value, the request 11700 * will ensure the vCPU gets the correct state before VM-Entry. 11701 */ 11702 if (enable_apicv) { 11703 vcpu->arch.apic->apicv_active = true; 11704 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11705 } 11706 } else 11707 static_branch_inc(&kvm_has_noapic_vcpu); 11708 11709 r = -ENOMEM; 11710 11711 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11712 if (!page) 11713 goto fail_free_lapic; 11714 vcpu->arch.pio_data = page_address(page); 11715 11716 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11717 GFP_KERNEL_ACCOUNT); 11718 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11719 GFP_KERNEL_ACCOUNT); 11720 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11721 goto fail_free_mce_banks; 11722 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11723 11724 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11725 GFP_KERNEL_ACCOUNT)) 11726 goto fail_free_mce_banks; 11727 11728 if (!alloc_emulate_ctxt(vcpu)) 11729 goto free_wbinvd_dirty_mask; 11730 11731 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11732 pr_err("failed to allocate vcpu's fpu\n"); 11733 goto free_emulate_ctxt; 11734 } 11735 11736 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11737 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11738 11739 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11740 11741 kvm_async_pf_hash_reset(vcpu); 11742 11743 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11744 kvm_pmu_init(vcpu); 11745 11746 vcpu->arch.pending_external_vector = -1; 11747 vcpu->arch.preempted_in_kernel = false; 11748 11749 #if IS_ENABLED(CONFIG_HYPERV) 11750 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11751 #endif 11752 11753 r = static_call(kvm_x86_vcpu_create)(vcpu); 11754 if (r) 11755 goto free_guest_fpu; 11756 11757 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11758 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11759 kvm_xen_init_vcpu(vcpu); 11760 kvm_vcpu_mtrr_init(vcpu); 11761 vcpu_load(vcpu); 11762 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11763 kvm_vcpu_reset(vcpu, false); 11764 kvm_init_mmu(vcpu); 11765 vcpu_put(vcpu); 11766 return 0; 11767 11768 free_guest_fpu: 11769 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11770 free_emulate_ctxt: 11771 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11772 free_wbinvd_dirty_mask: 11773 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11774 fail_free_mce_banks: 11775 kfree(vcpu->arch.mce_banks); 11776 kfree(vcpu->arch.mci_ctl2_banks); 11777 free_page((unsigned long)vcpu->arch.pio_data); 11778 fail_free_lapic: 11779 kvm_free_lapic(vcpu); 11780 fail_mmu_destroy: 11781 kvm_mmu_destroy(vcpu); 11782 return r; 11783 } 11784 11785 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11786 { 11787 struct kvm *kvm = vcpu->kvm; 11788 11789 if (mutex_lock_killable(&vcpu->mutex)) 11790 return; 11791 vcpu_load(vcpu); 11792 kvm_synchronize_tsc(vcpu, 0); 11793 vcpu_put(vcpu); 11794 11795 /* poll control enabled by default */ 11796 vcpu->arch.msr_kvm_poll_control = 1; 11797 11798 mutex_unlock(&vcpu->mutex); 11799 11800 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11801 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11802 KVMCLOCK_SYNC_PERIOD); 11803 } 11804 11805 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11806 { 11807 int idx; 11808 11809 kvmclock_reset(vcpu); 11810 11811 static_call(kvm_x86_vcpu_free)(vcpu); 11812 11813 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11814 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11815 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11816 11817 kvm_xen_destroy_vcpu(vcpu); 11818 kvm_hv_vcpu_uninit(vcpu); 11819 kvm_pmu_destroy(vcpu); 11820 kfree(vcpu->arch.mce_banks); 11821 kfree(vcpu->arch.mci_ctl2_banks); 11822 kvm_free_lapic(vcpu); 11823 idx = srcu_read_lock(&vcpu->kvm->srcu); 11824 kvm_mmu_destroy(vcpu); 11825 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11826 free_page((unsigned long)vcpu->arch.pio_data); 11827 kvfree(vcpu->arch.cpuid_entries); 11828 if (!lapic_in_kernel(vcpu)) 11829 static_branch_dec(&kvm_has_noapic_vcpu); 11830 } 11831 11832 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11833 { 11834 struct kvm_cpuid_entry2 *cpuid_0x1; 11835 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11836 unsigned long new_cr0; 11837 11838 /* 11839 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11840 * to handle side effects. RESET emulation hits those flows and relies 11841 * on emulated/virtualized registers, including those that are loaded 11842 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11843 * to detect improper or missing initialization. 11844 */ 11845 WARN_ON_ONCE(!init_event && 11846 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11847 11848 /* 11849 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11850 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11851 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11852 * bits), i.e. virtualization is disabled. 11853 */ 11854 if (is_guest_mode(vcpu)) 11855 kvm_leave_nested(vcpu); 11856 11857 kvm_lapic_reset(vcpu, init_event); 11858 11859 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11860 vcpu->arch.hflags = 0; 11861 11862 vcpu->arch.smi_pending = 0; 11863 vcpu->arch.smi_count = 0; 11864 atomic_set(&vcpu->arch.nmi_queued, 0); 11865 vcpu->arch.nmi_pending = 0; 11866 vcpu->arch.nmi_injected = false; 11867 kvm_clear_interrupt_queue(vcpu); 11868 kvm_clear_exception_queue(vcpu); 11869 11870 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11871 kvm_update_dr0123(vcpu); 11872 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11873 vcpu->arch.dr7 = DR7_FIXED_1; 11874 kvm_update_dr7(vcpu); 11875 11876 vcpu->arch.cr2 = 0; 11877 11878 kvm_make_request(KVM_REQ_EVENT, vcpu); 11879 vcpu->arch.apf.msr_en_val = 0; 11880 vcpu->arch.apf.msr_int_val = 0; 11881 vcpu->arch.st.msr_val = 0; 11882 11883 kvmclock_reset(vcpu); 11884 11885 kvm_clear_async_pf_completion_queue(vcpu); 11886 kvm_async_pf_hash_reset(vcpu); 11887 vcpu->arch.apf.halted = false; 11888 11889 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11890 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11891 11892 /* 11893 * All paths that lead to INIT are required to load the guest's 11894 * FPU state (because most paths are buried in KVM_RUN). 11895 */ 11896 if (init_event) 11897 kvm_put_guest_fpu(vcpu); 11898 11899 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11900 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11901 11902 if (init_event) 11903 kvm_load_guest_fpu(vcpu); 11904 } 11905 11906 if (!init_event) { 11907 kvm_pmu_reset(vcpu); 11908 vcpu->arch.smbase = 0x30000; 11909 11910 vcpu->arch.msr_misc_features_enables = 0; 11911 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11912 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11913 11914 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11915 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11916 } 11917 11918 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11919 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11920 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11921 11922 /* 11923 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11924 * if no CPUID match is found. Note, it's impossible to get a match at 11925 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11926 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11927 * on RESET. But, go through the motions in case that's ever remedied. 11928 */ 11929 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11930 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11931 11932 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11933 11934 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11935 kvm_rip_write(vcpu, 0xfff0); 11936 11937 vcpu->arch.cr3 = 0; 11938 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11939 11940 /* 11941 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11942 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11943 * (or qualify) that with a footnote stating that CD/NW are preserved. 11944 */ 11945 new_cr0 = X86_CR0_ET; 11946 if (init_event) 11947 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11948 else 11949 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11950 11951 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11952 static_call(kvm_x86_set_cr4)(vcpu, 0); 11953 static_call(kvm_x86_set_efer)(vcpu, 0); 11954 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11955 11956 /* 11957 * On the standard CR0/CR4/EFER modification paths, there are several 11958 * complex conditions determining whether the MMU has to be reset and/or 11959 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11960 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11961 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11962 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11963 */ 11964 if (old_cr0 & X86_CR0_PG) { 11965 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11966 kvm_mmu_reset_context(vcpu); 11967 } 11968 11969 /* 11970 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11971 * APM states the TLBs are untouched by INIT, but it also states that 11972 * the TLBs are flushed on "External initialization of the processor." 11973 * Flush the guest TLB regardless of vendor, there is no meaningful 11974 * benefit in relying on the guest to flush the TLB immediately after 11975 * INIT. A spurious TLB flush is benign and likely negligible from a 11976 * performance perspective. 11977 */ 11978 if (init_event) 11979 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11980 } 11981 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11982 11983 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11984 { 11985 struct kvm_segment cs; 11986 11987 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11988 cs.selector = vector << 8; 11989 cs.base = vector << 12; 11990 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11991 kvm_rip_write(vcpu, 0); 11992 } 11993 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11994 11995 int kvm_arch_hardware_enable(void) 11996 { 11997 struct kvm *kvm; 11998 struct kvm_vcpu *vcpu; 11999 unsigned long i; 12000 int ret; 12001 u64 local_tsc; 12002 u64 max_tsc = 0; 12003 bool stable, backwards_tsc = false; 12004 12005 kvm_user_return_msr_cpu_online(); 12006 12007 ret = kvm_x86_check_processor_compatibility(); 12008 if (ret) 12009 return ret; 12010 12011 ret = static_call(kvm_x86_hardware_enable)(); 12012 if (ret != 0) 12013 return ret; 12014 12015 local_tsc = rdtsc(); 12016 stable = !kvm_check_tsc_unstable(); 12017 list_for_each_entry(kvm, &vm_list, vm_list) { 12018 kvm_for_each_vcpu(i, vcpu, kvm) { 12019 if (!stable && vcpu->cpu == smp_processor_id()) 12020 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12021 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12022 backwards_tsc = true; 12023 if (vcpu->arch.last_host_tsc > max_tsc) 12024 max_tsc = vcpu->arch.last_host_tsc; 12025 } 12026 } 12027 } 12028 12029 /* 12030 * Sometimes, even reliable TSCs go backwards. This happens on 12031 * platforms that reset TSC during suspend or hibernate actions, but 12032 * maintain synchronization. We must compensate. Fortunately, we can 12033 * detect that condition here, which happens early in CPU bringup, 12034 * before any KVM threads can be running. Unfortunately, we can't 12035 * bring the TSCs fully up to date with real time, as we aren't yet far 12036 * enough into CPU bringup that we know how much real time has actually 12037 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12038 * variables that haven't been updated yet. 12039 * 12040 * So we simply find the maximum observed TSC above, then record the 12041 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12042 * the adjustment will be applied. Note that we accumulate 12043 * adjustments, in case multiple suspend cycles happen before some VCPU 12044 * gets a chance to run again. In the event that no KVM threads get a 12045 * chance to run, we will miss the entire elapsed period, as we'll have 12046 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12047 * loose cycle time. This isn't too big a deal, since the loss will be 12048 * uniform across all VCPUs (not to mention the scenario is extremely 12049 * unlikely). It is possible that a second hibernate recovery happens 12050 * much faster than a first, causing the observed TSC here to be 12051 * smaller; this would require additional padding adjustment, which is 12052 * why we set last_host_tsc to the local tsc observed here. 12053 * 12054 * N.B. - this code below runs only on platforms with reliable TSC, 12055 * as that is the only way backwards_tsc is set above. Also note 12056 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12057 * have the same delta_cyc adjustment applied if backwards_tsc 12058 * is detected. Note further, this adjustment is only done once, 12059 * as we reset last_host_tsc on all VCPUs to stop this from being 12060 * called multiple times (one for each physical CPU bringup). 12061 * 12062 * Platforms with unreliable TSCs don't have to deal with this, they 12063 * will be compensated by the logic in vcpu_load, which sets the TSC to 12064 * catchup mode. This will catchup all VCPUs to real time, but cannot 12065 * guarantee that they stay in perfect synchronization. 12066 */ 12067 if (backwards_tsc) { 12068 u64 delta_cyc = max_tsc - local_tsc; 12069 list_for_each_entry(kvm, &vm_list, vm_list) { 12070 kvm->arch.backwards_tsc_observed = true; 12071 kvm_for_each_vcpu(i, vcpu, kvm) { 12072 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12073 vcpu->arch.last_host_tsc = local_tsc; 12074 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12075 } 12076 12077 /* 12078 * We have to disable TSC offset matching.. if you were 12079 * booting a VM while issuing an S4 host suspend.... 12080 * you may have some problem. Solving this issue is 12081 * left as an exercise to the reader. 12082 */ 12083 kvm->arch.last_tsc_nsec = 0; 12084 kvm->arch.last_tsc_write = 0; 12085 } 12086 12087 } 12088 return 0; 12089 } 12090 12091 void kvm_arch_hardware_disable(void) 12092 { 12093 static_call(kvm_x86_hardware_disable)(); 12094 drop_user_return_notifiers(); 12095 } 12096 12097 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12098 { 12099 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12100 } 12101 12102 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12103 { 12104 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12105 } 12106 12107 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12108 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12109 12110 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12111 { 12112 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12113 12114 vcpu->arch.l1tf_flush_l1d = true; 12115 if (pmu->version && unlikely(pmu->event_count)) { 12116 pmu->need_cleanup = true; 12117 kvm_make_request(KVM_REQ_PMU, vcpu); 12118 } 12119 static_call(kvm_x86_sched_in)(vcpu, cpu); 12120 } 12121 12122 void kvm_arch_free_vm(struct kvm *kvm) 12123 { 12124 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12125 __kvm_arch_free_vm(kvm); 12126 } 12127 12128 12129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12130 { 12131 int ret; 12132 unsigned long flags; 12133 12134 if (type) 12135 return -EINVAL; 12136 12137 ret = kvm_page_track_init(kvm); 12138 if (ret) 12139 goto out; 12140 12141 ret = kvm_mmu_init_vm(kvm); 12142 if (ret) 12143 goto out_page_track; 12144 12145 ret = static_call(kvm_x86_vm_init)(kvm); 12146 if (ret) 12147 goto out_uninit_mmu; 12148 12149 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12150 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12151 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12152 12153 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12154 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12155 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12156 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12157 &kvm->arch.irq_sources_bitmap); 12158 12159 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12160 mutex_init(&kvm->arch.apic_map_lock); 12161 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12162 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12163 12164 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12165 pvclock_update_vm_gtod_copy(kvm); 12166 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12167 12168 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12169 kvm->arch.guest_can_read_msr_platform_info = true; 12170 kvm->arch.enable_pmu = enable_pmu; 12171 12172 #if IS_ENABLED(CONFIG_HYPERV) 12173 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12174 kvm->arch.hv_root_tdp = INVALID_PAGE; 12175 #endif 12176 12177 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12178 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12179 12180 kvm_apicv_init(kvm); 12181 kvm_hv_init_vm(kvm); 12182 kvm_xen_init_vm(kvm); 12183 12184 return 0; 12185 12186 out_uninit_mmu: 12187 kvm_mmu_uninit_vm(kvm); 12188 out_page_track: 12189 kvm_page_track_cleanup(kvm); 12190 out: 12191 return ret; 12192 } 12193 12194 int kvm_arch_post_init_vm(struct kvm *kvm) 12195 { 12196 return kvm_mmu_post_init_vm(kvm); 12197 } 12198 12199 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12200 { 12201 vcpu_load(vcpu); 12202 kvm_mmu_unload(vcpu); 12203 vcpu_put(vcpu); 12204 } 12205 12206 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12207 { 12208 unsigned long i; 12209 struct kvm_vcpu *vcpu; 12210 12211 kvm_for_each_vcpu(i, vcpu, kvm) { 12212 kvm_clear_async_pf_completion_queue(vcpu); 12213 kvm_unload_vcpu_mmu(vcpu); 12214 } 12215 } 12216 12217 void kvm_arch_sync_events(struct kvm *kvm) 12218 { 12219 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12220 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12221 kvm_free_pit(kvm); 12222 } 12223 12224 /** 12225 * __x86_set_memory_region: Setup KVM internal memory slot 12226 * 12227 * @kvm: the kvm pointer to the VM. 12228 * @id: the slot ID to setup. 12229 * @gpa: the GPA to install the slot (unused when @size == 0). 12230 * @size: the size of the slot. Set to zero to uninstall a slot. 12231 * 12232 * This function helps to setup a KVM internal memory slot. Specify 12233 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12234 * slot. The return code can be one of the following: 12235 * 12236 * HVA: on success (uninstall will return a bogus HVA) 12237 * -errno: on error 12238 * 12239 * The caller should always use IS_ERR() to check the return value 12240 * before use. Note, the KVM internal memory slots are guaranteed to 12241 * remain valid and unchanged until the VM is destroyed, i.e., the 12242 * GPA->HVA translation will not change. However, the HVA is a user 12243 * address, i.e. its accessibility is not guaranteed, and must be 12244 * accessed via __copy_{to,from}_user(). 12245 */ 12246 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12247 u32 size) 12248 { 12249 int i, r; 12250 unsigned long hva, old_npages; 12251 struct kvm_memslots *slots = kvm_memslots(kvm); 12252 struct kvm_memory_slot *slot; 12253 12254 /* Called with kvm->slots_lock held. */ 12255 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12256 return ERR_PTR_USR(-EINVAL); 12257 12258 slot = id_to_memslot(slots, id); 12259 if (size) { 12260 if (slot && slot->npages) 12261 return ERR_PTR_USR(-EEXIST); 12262 12263 /* 12264 * MAP_SHARED to prevent internal slot pages from being moved 12265 * by fork()/COW. 12266 */ 12267 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12268 MAP_SHARED | MAP_ANONYMOUS, 0); 12269 if (IS_ERR((void *)hva)) 12270 return (void __user *)hva; 12271 } else { 12272 if (!slot || !slot->npages) 12273 return NULL; 12274 12275 old_npages = slot->npages; 12276 hva = slot->userspace_addr; 12277 } 12278 12279 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12280 struct kvm_userspace_memory_region m; 12281 12282 m.slot = id | (i << 16); 12283 m.flags = 0; 12284 m.guest_phys_addr = gpa; 12285 m.userspace_addr = hva; 12286 m.memory_size = size; 12287 r = __kvm_set_memory_region(kvm, &m); 12288 if (r < 0) 12289 return ERR_PTR_USR(r); 12290 } 12291 12292 if (!size) 12293 vm_munmap(hva, old_npages * PAGE_SIZE); 12294 12295 return (void __user *)hva; 12296 } 12297 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12298 12299 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12300 { 12301 kvm_mmu_pre_destroy_vm(kvm); 12302 } 12303 12304 void kvm_arch_destroy_vm(struct kvm *kvm) 12305 { 12306 if (current->mm == kvm->mm) { 12307 /* 12308 * Free memory regions allocated on behalf of userspace, 12309 * unless the memory map has changed due to process exit 12310 * or fd copying. 12311 */ 12312 mutex_lock(&kvm->slots_lock); 12313 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12314 0, 0); 12315 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12316 0, 0); 12317 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12318 mutex_unlock(&kvm->slots_lock); 12319 } 12320 kvm_unload_vcpu_mmus(kvm); 12321 static_call_cond(kvm_x86_vm_destroy)(kvm); 12322 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12323 kvm_pic_destroy(kvm); 12324 kvm_ioapic_destroy(kvm); 12325 kvm_destroy_vcpus(kvm); 12326 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12327 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12328 kvm_mmu_uninit_vm(kvm); 12329 kvm_page_track_cleanup(kvm); 12330 kvm_xen_destroy_vm(kvm); 12331 kvm_hv_destroy_vm(kvm); 12332 } 12333 12334 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12335 { 12336 int i; 12337 12338 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12339 kvfree(slot->arch.rmap[i]); 12340 slot->arch.rmap[i] = NULL; 12341 } 12342 } 12343 12344 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12345 { 12346 int i; 12347 12348 memslot_rmap_free(slot); 12349 12350 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12351 kvfree(slot->arch.lpage_info[i - 1]); 12352 slot->arch.lpage_info[i - 1] = NULL; 12353 } 12354 12355 kvm_page_track_free_memslot(slot); 12356 } 12357 12358 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12359 { 12360 const int sz = sizeof(*slot->arch.rmap[0]); 12361 int i; 12362 12363 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12364 int level = i + 1; 12365 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12366 12367 if (slot->arch.rmap[i]) 12368 continue; 12369 12370 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12371 if (!slot->arch.rmap[i]) { 12372 memslot_rmap_free(slot); 12373 return -ENOMEM; 12374 } 12375 } 12376 12377 return 0; 12378 } 12379 12380 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12381 struct kvm_memory_slot *slot) 12382 { 12383 unsigned long npages = slot->npages; 12384 int i, r; 12385 12386 /* 12387 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12388 * old arrays will be freed by __kvm_set_memory_region() if installing 12389 * the new memslot is successful. 12390 */ 12391 memset(&slot->arch, 0, sizeof(slot->arch)); 12392 12393 if (kvm_memslots_have_rmaps(kvm)) { 12394 r = memslot_rmap_alloc(slot, npages); 12395 if (r) 12396 return r; 12397 } 12398 12399 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12400 struct kvm_lpage_info *linfo; 12401 unsigned long ugfn; 12402 int lpages; 12403 int level = i + 1; 12404 12405 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12406 12407 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12408 if (!linfo) 12409 goto out_free; 12410 12411 slot->arch.lpage_info[i - 1] = linfo; 12412 12413 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12414 linfo[0].disallow_lpage = 1; 12415 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12416 linfo[lpages - 1].disallow_lpage = 1; 12417 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12418 /* 12419 * If the gfn and userspace address are not aligned wrt each 12420 * other, disable large page support for this slot. 12421 */ 12422 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12423 unsigned long j; 12424 12425 for (j = 0; j < lpages; ++j) 12426 linfo[j].disallow_lpage = 1; 12427 } 12428 } 12429 12430 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12431 goto out_free; 12432 12433 return 0; 12434 12435 out_free: 12436 memslot_rmap_free(slot); 12437 12438 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12439 kvfree(slot->arch.lpage_info[i - 1]); 12440 slot->arch.lpage_info[i - 1] = NULL; 12441 } 12442 return -ENOMEM; 12443 } 12444 12445 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12446 { 12447 struct kvm_vcpu *vcpu; 12448 unsigned long i; 12449 12450 /* 12451 * memslots->generation has been incremented. 12452 * mmio generation may have reached its maximum value. 12453 */ 12454 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12455 12456 /* Force re-initialization of steal_time cache */ 12457 kvm_for_each_vcpu(i, vcpu, kvm) 12458 kvm_vcpu_kick(vcpu); 12459 } 12460 12461 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12462 const struct kvm_memory_slot *old, 12463 struct kvm_memory_slot *new, 12464 enum kvm_mr_change change) 12465 { 12466 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12467 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12468 return -EINVAL; 12469 12470 return kvm_alloc_memslot_metadata(kvm, new); 12471 } 12472 12473 if (change == KVM_MR_FLAGS_ONLY) 12474 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12475 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12476 return -EIO; 12477 12478 return 0; 12479 } 12480 12481 12482 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12483 { 12484 struct kvm_arch *ka = &kvm->arch; 12485 12486 if (!kvm_x86_ops.cpu_dirty_log_size) 12487 return; 12488 12489 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12490 (!enable && --ka->cpu_dirty_logging_count == 0)) 12491 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12492 12493 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12494 } 12495 12496 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12497 struct kvm_memory_slot *old, 12498 const struct kvm_memory_slot *new, 12499 enum kvm_mr_change change) 12500 { 12501 u32 old_flags = old ? old->flags : 0; 12502 u32 new_flags = new ? new->flags : 0; 12503 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12504 12505 /* 12506 * Update CPU dirty logging if dirty logging is being toggled. This 12507 * applies to all operations. 12508 */ 12509 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12510 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12511 12512 /* 12513 * Nothing more to do for RO slots (which can't be dirtied and can't be 12514 * made writable) or CREATE/MOVE/DELETE of a slot. 12515 * 12516 * For a memslot with dirty logging disabled: 12517 * CREATE: No dirty mappings will already exist. 12518 * MOVE/DELETE: The old mappings will already have been cleaned up by 12519 * kvm_arch_flush_shadow_memslot() 12520 * 12521 * For a memslot with dirty logging enabled: 12522 * CREATE: No shadow pages exist, thus nothing to write-protect 12523 * and no dirty bits to clear. 12524 * MOVE/DELETE: The old mappings will already have been cleaned up by 12525 * kvm_arch_flush_shadow_memslot(). 12526 */ 12527 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12528 return; 12529 12530 /* 12531 * READONLY and non-flags changes were filtered out above, and the only 12532 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12533 * logging isn't being toggled on or off. 12534 */ 12535 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12536 return; 12537 12538 if (!log_dirty_pages) { 12539 /* 12540 * Dirty logging tracks sptes in 4k granularity, meaning that 12541 * large sptes have to be split. If live migration succeeds, 12542 * the guest in the source machine will be destroyed and large 12543 * sptes will be created in the destination. However, if the 12544 * guest continues to run in the source machine (for example if 12545 * live migration fails), small sptes will remain around and 12546 * cause bad performance. 12547 * 12548 * Scan sptes if dirty logging has been stopped, dropping those 12549 * which can be collapsed into a single large-page spte. Later 12550 * page faults will create the large-page sptes. 12551 */ 12552 kvm_mmu_zap_collapsible_sptes(kvm, new); 12553 } else { 12554 /* 12555 * Initially-all-set does not require write protecting any page, 12556 * because they're all assumed to be dirty. 12557 */ 12558 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12559 return; 12560 12561 if (READ_ONCE(eager_page_split)) 12562 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12563 12564 if (kvm_x86_ops.cpu_dirty_log_size) { 12565 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12566 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12567 } else { 12568 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12569 } 12570 12571 /* 12572 * Unconditionally flush the TLBs after enabling dirty logging. 12573 * A flush is almost always going to be necessary (see below), 12574 * and unconditionally flushing allows the helpers to omit 12575 * the subtly complex checks when removing write access. 12576 * 12577 * Do the flush outside of mmu_lock to reduce the amount of 12578 * time mmu_lock is held. Flushing after dropping mmu_lock is 12579 * safe as KVM only needs to guarantee the slot is fully 12580 * write-protected before returning to userspace, i.e. before 12581 * userspace can consume the dirty status. 12582 * 12583 * Flushing outside of mmu_lock requires KVM to be careful when 12584 * making decisions based on writable status of an SPTE, e.g. a 12585 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12586 * 12587 * Specifically, KVM also write-protects guest page tables to 12588 * monitor changes when using shadow paging, and must guarantee 12589 * no CPUs can write to those page before mmu_lock is dropped. 12590 * Because CPUs may have stale TLB entries at this point, a 12591 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12592 * 12593 * KVM also allows making SPTES writable outside of mmu_lock, 12594 * e.g. to allow dirty logging without taking mmu_lock. 12595 * 12596 * To handle these scenarios, KVM uses a separate software-only 12597 * bit (MMU-writable) to track if a SPTE is !writable due to 12598 * a guest page table being write-protected (KVM clears the 12599 * MMU-writable flag when write-protecting for shadow paging). 12600 * 12601 * The use of MMU-writable is also the primary motivation for 12602 * the unconditional flush. Because KVM must guarantee that a 12603 * CPU doesn't contain stale, writable TLB entries for a 12604 * !MMU-writable SPTE, KVM must flush if it encounters any 12605 * MMU-writable SPTE regardless of whether the actual hardware 12606 * writable bit was set. I.e. KVM is almost guaranteed to need 12607 * to flush, while unconditionally flushing allows the "remove 12608 * write access" helpers to ignore MMU-writable entirely. 12609 * 12610 * See is_writable_pte() for more details (the case involving 12611 * access-tracked SPTEs is particularly relevant). 12612 */ 12613 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12614 } 12615 } 12616 12617 void kvm_arch_commit_memory_region(struct kvm *kvm, 12618 struct kvm_memory_slot *old, 12619 const struct kvm_memory_slot *new, 12620 enum kvm_mr_change change) 12621 { 12622 if (!kvm->arch.n_requested_mmu_pages && 12623 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12624 unsigned long nr_mmu_pages; 12625 12626 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12627 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12628 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12629 } 12630 12631 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12632 12633 /* Free the arrays associated with the old memslot. */ 12634 if (change == KVM_MR_MOVE) 12635 kvm_arch_free_memslot(kvm, old); 12636 } 12637 12638 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12639 { 12640 kvm_mmu_zap_all(kvm); 12641 } 12642 12643 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12644 struct kvm_memory_slot *slot) 12645 { 12646 kvm_page_track_flush_slot(kvm, slot); 12647 } 12648 12649 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12650 { 12651 return (is_guest_mode(vcpu) && 12652 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12653 } 12654 12655 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12656 { 12657 if (!list_empty_careful(&vcpu->async_pf.done)) 12658 return true; 12659 12660 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12661 kvm_apic_init_sipi_allowed(vcpu)) 12662 return true; 12663 12664 if (vcpu->arch.pv.pv_unhalted) 12665 return true; 12666 12667 if (kvm_is_exception_pending(vcpu)) 12668 return true; 12669 12670 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12671 (vcpu->arch.nmi_pending && 12672 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12673 return true; 12674 12675 #ifdef CONFIG_KVM_SMM 12676 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12677 (vcpu->arch.smi_pending && 12678 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12679 return true; 12680 #endif 12681 12682 if (kvm_arch_interrupt_allowed(vcpu) && 12683 (kvm_cpu_has_interrupt(vcpu) || 12684 kvm_guest_apic_has_interrupt(vcpu))) 12685 return true; 12686 12687 if (kvm_hv_has_stimer_pending(vcpu)) 12688 return true; 12689 12690 if (is_guest_mode(vcpu) && 12691 kvm_x86_ops.nested_ops->has_events && 12692 kvm_x86_ops.nested_ops->has_events(vcpu)) 12693 return true; 12694 12695 if (kvm_xen_has_pending_events(vcpu)) 12696 return true; 12697 12698 return false; 12699 } 12700 12701 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12702 { 12703 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12704 } 12705 12706 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12707 { 12708 if (kvm_vcpu_apicv_active(vcpu) && 12709 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12710 return true; 12711 12712 return false; 12713 } 12714 12715 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12716 { 12717 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12718 return true; 12719 12720 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12721 #ifdef CONFIG_KVM_SMM 12722 kvm_test_request(KVM_REQ_SMI, vcpu) || 12723 #endif 12724 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12725 return true; 12726 12727 return kvm_arch_dy_has_pending_interrupt(vcpu); 12728 } 12729 12730 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12731 { 12732 if (vcpu->arch.guest_state_protected) 12733 return true; 12734 12735 return vcpu->arch.preempted_in_kernel; 12736 } 12737 12738 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12739 { 12740 return kvm_rip_read(vcpu); 12741 } 12742 12743 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12744 { 12745 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12746 } 12747 12748 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12749 { 12750 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12751 } 12752 12753 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12754 { 12755 /* Can't read the RIP when guest state is protected, just return 0 */ 12756 if (vcpu->arch.guest_state_protected) 12757 return 0; 12758 12759 if (is_64_bit_mode(vcpu)) 12760 return kvm_rip_read(vcpu); 12761 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12762 kvm_rip_read(vcpu)); 12763 } 12764 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12765 12766 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12767 { 12768 return kvm_get_linear_rip(vcpu) == linear_rip; 12769 } 12770 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12771 12772 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12773 { 12774 unsigned long rflags; 12775 12776 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12777 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12778 rflags &= ~X86_EFLAGS_TF; 12779 return rflags; 12780 } 12781 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12782 12783 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12784 { 12785 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12786 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12787 rflags |= X86_EFLAGS_TF; 12788 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12789 } 12790 12791 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12792 { 12793 __kvm_set_rflags(vcpu, rflags); 12794 kvm_make_request(KVM_REQ_EVENT, vcpu); 12795 } 12796 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12797 12798 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12799 { 12800 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12801 12802 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12803 } 12804 12805 static inline u32 kvm_async_pf_next_probe(u32 key) 12806 { 12807 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12808 } 12809 12810 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12811 { 12812 u32 key = kvm_async_pf_hash_fn(gfn); 12813 12814 while (vcpu->arch.apf.gfns[key] != ~0) 12815 key = kvm_async_pf_next_probe(key); 12816 12817 vcpu->arch.apf.gfns[key] = gfn; 12818 } 12819 12820 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12821 { 12822 int i; 12823 u32 key = kvm_async_pf_hash_fn(gfn); 12824 12825 for (i = 0; i < ASYNC_PF_PER_VCPU && 12826 (vcpu->arch.apf.gfns[key] != gfn && 12827 vcpu->arch.apf.gfns[key] != ~0); i++) 12828 key = kvm_async_pf_next_probe(key); 12829 12830 return key; 12831 } 12832 12833 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12834 { 12835 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12836 } 12837 12838 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12839 { 12840 u32 i, j, k; 12841 12842 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12843 12844 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12845 return; 12846 12847 while (true) { 12848 vcpu->arch.apf.gfns[i] = ~0; 12849 do { 12850 j = kvm_async_pf_next_probe(j); 12851 if (vcpu->arch.apf.gfns[j] == ~0) 12852 return; 12853 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12854 /* 12855 * k lies cyclically in ]i,j] 12856 * | i.k.j | 12857 * |....j i.k.| or |.k..j i...| 12858 */ 12859 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12860 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12861 i = j; 12862 } 12863 } 12864 12865 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12866 { 12867 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12868 12869 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12870 sizeof(reason)); 12871 } 12872 12873 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12874 { 12875 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12876 12877 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12878 &token, offset, sizeof(token)); 12879 } 12880 12881 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12882 { 12883 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12884 u32 val; 12885 12886 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12887 &val, offset, sizeof(val))) 12888 return false; 12889 12890 return !val; 12891 } 12892 12893 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12894 { 12895 12896 if (!kvm_pv_async_pf_enabled(vcpu)) 12897 return false; 12898 12899 if (vcpu->arch.apf.send_user_only && 12900 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12901 return false; 12902 12903 if (is_guest_mode(vcpu)) { 12904 /* 12905 * L1 needs to opt into the special #PF vmexits that are 12906 * used to deliver async page faults. 12907 */ 12908 return vcpu->arch.apf.delivery_as_pf_vmexit; 12909 } else { 12910 /* 12911 * Play it safe in case the guest temporarily disables paging. 12912 * The real mode IDT in particular is unlikely to have a #PF 12913 * exception setup. 12914 */ 12915 return is_paging(vcpu); 12916 } 12917 } 12918 12919 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12920 { 12921 if (unlikely(!lapic_in_kernel(vcpu) || 12922 kvm_event_needs_reinjection(vcpu) || 12923 kvm_is_exception_pending(vcpu))) 12924 return false; 12925 12926 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12927 return false; 12928 12929 /* 12930 * If interrupts are off we cannot even use an artificial 12931 * halt state. 12932 */ 12933 return kvm_arch_interrupt_allowed(vcpu); 12934 } 12935 12936 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12937 struct kvm_async_pf *work) 12938 { 12939 struct x86_exception fault; 12940 12941 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12942 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12943 12944 if (kvm_can_deliver_async_pf(vcpu) && 12945 !apf_put_user_notpresent(vcpu)) { 12946 fault.vector = PF_VECTOR; 12947 fault.error_code_valid = true; 12948 fault.error_code = 0; 12949 fault.nested_page_fault = false; 12950 fault.address = work->arch.token; 12951 fault.async_page_fault = true; 12952 kvm_inject_page_fault(vcpu, &fault); 12953 return true; 12954 } else { 12955 /* 12956 * It is not possible to deliver a paravirtualized asynchronous 12957 * page fault, but putting the guest in an artificial halt state 12958 * can be beneficial nevertheless: if an interrupt arrives, we 12959 * can deliver it timely and perhaps the guest will schedule 12960 * another process. When the instruction that triggered a page 12961 * fault is retried, hopefully the page will be ready in the host. 12962 */ 12963 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12964 return false; 12965 } 12966 } 12967 12968 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12969 struct kvm_async_pf *work) 12970 { 12971 struct kvm_lapic_irq irq = { 12972 .delivery_mode = APIC_DM_FIXED, 12973 .vector = vcpu->arch.apf.vec 12974 }; 12975 12976 if (work->wakeup_all) 12977 work->arch.token = ~0; /* broadcast wakeup */ 12978 else 12979 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12980 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12981 12982 if ((work->wakeup_all || work->notpresent_injected) && 12983 kvm_pv_async_pf_enabled(vcpu) && 12984 !apf_put_user_ready(vcpu, work->arch.token)) { 12985 vcpu->arch.apf.pageready_pending = true; 12986 kvm_apic_set_irq(vcpu, &irq, NULL); 12987 } 12988 12989 vcpu->arch.apf.halted = false; 12990 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12991 } 12992 12993 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12994 { 12995 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12996 if (!vcpu->arch.apf.pageready_pending) 12997 kvm_vcpu_kick(vcpu); 12998 } 12999 13000 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13001 { 13002 if (!kvm_pv_async_pf_enabled(vcpu)) 13003 return true; 13004 else 13005 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13006 } 13007 13008 void kvm_arch_start_assignment(struct kvm *kvm) 13009 { 13010 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13011 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13012 } 13013 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13014 13015 void kvm_arch_end_assignment(struct kvm *kvm) 13016 { 13017 atomic_dec(&kvm->arch.assigned_device_count); 13018 } 13019 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13020 13021 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13022 { 13023 return arch_atomic_read(&kvm->arch.assigned_device_count); 13024 } 13025 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13026 13027 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13028 { 13029 atomic_inc(&kvm->arch.noncoherent_dma_count); 13030 } 13031 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13032 13033 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13034 { 13035 atomic_dec(&kvm->arch.noncoherent_dma_count); 13036 } 13037 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13038 13039 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13040 { 13041 return atomic_read(&kvm->arch.noncoherent_dma_count); 13042 } 13043 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13044 13045 bool kvm_arch_has_irq_bypass(void) 13046 { 13047 return true; 13048 } 13049 13050 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13051 struct irq_bypass_producer *prod) 13052 { 13053 struct kvm_kernel_irqfd *irqfd = 13054 container_of(cons, struct kvm_kernel_irqfd, consumer); 13055 int ret; 13056 13057 irqfd->producer = prod; 13058 kvm_arch_start_assignment(irqfd->kvm); 13059 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13060 prod->irq, irqfd->gsi, 1); 13061 13062 if (ret) 13063 kvm_arch_end_assignment(irqfd->kvm); 13064 13065 return ret; 13066 } 13067 13068 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13069 struct irq_bypass_producer *prod) 13070 { 13071 int ret; 13072 struct kvm_kernel_irqfd *irqfd = 13073 container_of(cons, struct kvm_kernel_irqfd, consumer); 13074 13075 WARN_ON(irqfd->producer != prod); 13076 irqfd->producer = NULL; 13077 13078 /* 13079 * When producer of consumer is unregistered, we change back to 13080 * remapped mode, so we can re-use the current implementation 13081 * when the irq is masked/disabled or the consumer side (KVM 13082 * int this case doesn't want to receive the interrupts. 13083 */ 13084 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13085 if (ret) 13086 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13087 " fails: %d\n", irqfd->consumer.token, ret); 13088 13089 kvm_arch_end_assignment(irqfd->kvm); 13090 } 13091 13092 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13093 uint32_t guest_irq, bool set) 13094 { 13095 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13096 } 13097 13098 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13099 struct kvm_kernel_irq_routing_entry *new) 13100 { 13101 if (new->type != KVM_IRQ_ROUTING_MSI) 13102 return true; 13103 13104 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13105 } 13106 13107 bool kvm_vector_hashing_enabled(void) 13108 { 13109 return vector_hashing; 13110 } 13111 13112 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13113 { 13114 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13115 } 13116 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13117 13118 13119 int kvm_spec_ctrl_test_value(u64 value) 13120 { 13121 /* 13122 * test that setting IA32_SPEC_CTRL to given value 13123 * is allowed by the host processor 13124 */ 13125 13126 u64 saved_value; 13127 unsigned long flags; 13128 int ret = 0; 13129 13130 local_irq_save(flags); 13131 13132 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13133 ret = 1; 13134 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13135 ret = 1; 13136 else 13137 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13138 13139 local_irq_restore(flags); 13140 13141 return ret; 13142 } 13143 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13144 13145 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13146 { 13147 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13148 struct x86_exception fault; 13149 u64 access = error_code & 13150 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13151 13152 if (!(error_code & PFERR_PRESENT_MASK) || 13153 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13154 /* 13155 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13156 * tables probably do not match the TLB. Just proceed 13157 * with the error code that the processor gave. 13158 */ 13159 fault.vector = PF_VECTOR; 13160 fault.error_code_valid = true; 13161 fault.error_code = error_code; 13162 fault.nested_page_fault = false; 13163 fault.address = gva; 13164 fault.async_page_fault = false; 13165 } 13166 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13167 } 13168 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13169 13170 /* 13171 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13172 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13173 * indicates whether exit to userspace is needed. 13174 */ 13175 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13176 struct x86_exception *e) 13177 { 13178 if (r == X86EMUL_PROPAGATE_FAULT) { 13179 if (KVM_BUG_ON(!e, vcpu->kvm)) 13180 return -EIO; 13181 13182 kvm_inject_emulated_page_fault(vcpu, e); 13183 return 1; 13184 } 13185 13186 /* 13187 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13188 * while handling a VMX instruction KVM could've handled the request 13189 * correctly by exiting to userspace and performing I/O but there 13190 * doesn't seem to be a real use-case behind such requests, just return 13191 * KVM_EXIT_INTERNAL_ERROR for now. 13192 */ 13193 kvm_prepare_emulation_failure_exit(vcpu); 13194 13195 return 0; 13196 } 13197 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13198 13199 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13200 { 13201 bool pcid_enabled; 13202 struct x86_exception e; 13203 struct { 13204 u64 pcid; 13205 u64 gla; 13206 } operand; 13207 int r; 13208 13209 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13210 if (r != X86EMUL_CONTINUE) 13211 return kvm_handle_memory_failure(vcpu, r, &e); 13212 13213 if (operand.pcid >> 12 != 0) { 13214 kvm_inject_gp(vcpu, 0); 13215 return 1; 13216 } 13217 13218 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13219 13220 switch (type) { 13221 case INVPCID_TYPE_INDIV_ADDR: 13222 if ((!pcid_enabled && (operand.pcid != 0)) || 13223 is_noncanonical_address(operand.gla, vcpu)) { 13224 kvm_inject_gp(vcpu, 0); 13225 return 1; 13226 } 13227 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13228 return kvm_skip_emulated_instruction(vcpu); 13229 13230 case INVPCID_TYPE_SINGLE_CTXT: 13231 if (!pcid_enabled && (operand.pcid != 0)) { 13232 kvm_inject_gp(vcpu, 0); 13233 return 1; 13234 } 13235 13236 kvm_invalidate_pcid(vcpu, operand.pcid); 13237 return kvm_skip_emulated_instruction(vcpu); 13238 13239 case INVPCID_TYPE_ALL_NON_GLOBAL: 13240 /* 13241 * Currently, KVM doesn't mark global entries in the shadow 13242 * page tables, so a non-global flush just degenerates to a 13243 * global flush. If needed, we could optimize this later by 13244 * keeping track of global entries in shadow page tables. 13245 */ 13246 13247 fallthrough; 13248 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13249 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13250 return kvm_skip_emulated_instruction(vcpu); 13251 13252 default: 13253 kvm_inject_gp(vcpu, 0); 13254 return 1; 13255 } 13256 } 13257 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13258 13259 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13260 { 13261 struct kvm_run *run = vcpu->run; 13262 struct kvm_mmio_fragment *frag; 13263 unsigned int len; 13264 13265 BUG_ON(!vcpu->mmio_needed); 13266 13267 /* Complete previous fragment */ 13268 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13269 len = min(8u, frag->len); 13270 if (!vcpu->mmio_is_write) 13271 memcpy(frag->data, run->mmio.data, len); 13272 13273 if (frag->len <= 8) { 13274 /* Switch to the next fragment. */ 13275 frag++; 13276 vcpu->mmio_cur_fragment++; 13277 } else { 13278 /* Go forward to the next mmio piece. */ 13279 frag->data += len; 13280 frag->gpa += len; 13281 frag->len -= len; 13282 } 13283 13284 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13285 vcpu->mmio_needed = 0; 13286 13287 // VMG change, at this point, we're always done 13288 // RIP has already been advanced 13289 return 1; 13290 } 13291 13292 // More MMIO is needed 13293 run->mmio.phys_addr = frag->gpa; 13294 run->mmio.len = min(8u, frag->len); 13295 run->mmio.is_write = vcpu->mmio_is_write; 13296 if (run->mmio.is_write) 13297 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13298 run->exit_reason = KVM_EXIT_MMIO; 13299 13300 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13301 13302 return 0; 13303 } 13304 13305 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13306 void *data) 13307 { 13308 int handled; 13309 struct kvm_mmio_fragment *frag; 13310 13311 if (!data) 13312 return -EINVAL; 13313 13314 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13315 if (handled == bytes) 13316 return 1; 13317 13318 bytes -= handled; 13319 gpa += handled; 13320 data += handled; 13321 13322 /*TODO: Check if need to increment number of frags */ 13323 frag = vcpu->mmio_fragments; 13324 vcpu->mmio_nr_fragments = 1; 13325 frag->len = bytes; 13326 frag->gpa = gpa; 13327 frag->data = data; 13328 13329 vcpu->mmio_needed = 1; 13330 vcpu->mmio_cur_fragment = 0; 13331 13332 vcpu->run->mmio.phys_addr = gpa; 13333 vcpu->run->mmio.len = min(8u, frag->len); 13334 vcpu->run->mmio.is_write = 1; 13335 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13336 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13337 13338 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13339 13340 return 0; 13341 } 13342 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13343 13344 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13345 void *data) 13346 { 13347 int handled; 13348 struct kvm_mmio_fragment *frag; 13349 13350 if (!data) 13351 return -EINVAL; 13352 13353 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13354 if (handled == bytes) 13355 return 1; 13356 13357 bytes -= handled; 13358 gpa += handled; 13359 data += handled; 13360 13361 /*TODO: Check if need to increment number of frags */ 13362 frag = vcpu->mmio_fragments; 13363 vcpu->mmio_nr_fragments = 1; 13364 frag->len = bytes; 13365 frag->gpa = gpa; 13366 frag->data = data; 13367 13368 vcpu->mmio_needed = 1; 13369 vcpu->mmio_cur_fragment = 0; 13370 13371 vcpu->run->mmio.phys_addr = gpa; 13372 vcpu->run->mmio.len = min(8u, frag->len); 13373 vcpu->run->mmio.is_write = 0; 13374 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13375 13376 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13377 13378 return 0; 13379 } 13380 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13381 13382 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13383 { 13384 vcpu->arch.sev_pio_count -= count; 13385 vcpu->arch.sev_pio_data += count * size; 13386 } 13387 13388 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13389 unsigned int port); 13390 13391 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13392 { 13393 int size = vcpu->arch.pio.size; 13394 int port = vcpu->arch.pio.port; 13395 13396 vcpu->arch.pio.count = 0; 13397 if (vcpu->arch.sev_pio_count) 13398 return kvm_sev_es_outs(vcpu, size, port); 13399 return 1; 13400 } 13401 13402 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13403 unsigned int port) 13404 { 13405 for (;;) { 13406 unsigned int count = 13407 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13408 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13409 13410 /* memcpy done already by emulator_pio_out. */ 13411 advance_sev_es_emulated_pio(vcpu, count, size); 13412 if (!ret) 13413 break; 13414 13415 /* Emulation done by the kernel. */ 13416 if (!vcpu->arch.sev_pio_count) 13417 return 1; 13418 } 13419 13420 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13421 return 0; 13422 } 13423 13424 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13425 unsigned int port); 13426 13427 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13428 { 13429 unsigned count = vcpu->arch.pio.count; 13430 int size = vcpu->arch.pio.size; 13431 int port = vcpu->arch.pio.port; 13432 13433 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13434 advance_sev_es_emulated_pio(vcpu, count, size); 13435 if (vcpu->arch.sev_pio_count) 13436 return kvm_sev_es_ins(vcpu, size, port); 13437 return 1; 13438 } 13439 13440 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13441 unsigned int port) 13442 { 13443 for (;;) { 13444 unsigned int count = 13445 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13446 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13447 break; 13448 13449 /* Emulation done by the kernel. */ 13450 advance_sev_es_emulated_pio(vcpu, count, size); 13451 if (!vcpu->arch.sev_pio_count) 13452 return 1; 13453 } 13454 13455 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13456 return 0; 13457 } 13458 13459 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13460 unsigned int port, void *data, unsigned int count, 13461 int in) 13462 { 13463 vcpu->arch.sev_pio_data = data; 13464 vcpu->arch.sev_pio_count = count; 13465 return in ? kvm_sev_es_ins(vcpu, size, port) 13466 : kvm_sev_es_outs(vcpu, size, port); 13467 } 13468 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13469 13470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13499 13500 static int __init kvm_x86_init(void) 13501 { 13502 kvm_mmu_x86_module_init(); 13503 return 0; 13504 } 13505 module_init(kvm_x86_init); 13506 13507 static void __exit kvm_x86_exit(void) 13508 { 13509 /* 13510 * If module_init() is implemented, module_exit() must also be 13511 * implemented to allow module unload. 13512 */ 13513 } 13514 module_exit(kvm_x86_exit); 13515