1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* 197 * Restoring the host value for MSRs that are only consumed when running in 198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 199 * returns to userspace, i.e. the kernel can run with the guest's value. 200 */ 201 #define KVM_MAX_NR_USER_RETURN_MSRS 16 202 203 struct kvm_user_return_msrs { 204 struct user_return_notifier urn; 205 bool registered; 206 struct kvm_user_return_msr_values { 207 u64 host; 208 u64 curr; 209 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 210 }; 211 212 u32 __read_mostly kvm_nr_uret_msrs; 213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 215 static struct kvm_user_return_msrs __percpu *user_return_msrs; 216 217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 221 222 u64 __read_mostly host_efer; 223 EXPORT_SYMBOL_GPL(host_efer); 224 225 bool __read_mostly allow_smaller_maxphyaddr = 0; 226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 227 228 bool __read_mostly enable_apicv = true; 229 EXPORT_SYMBOL_GPL(enable_apicv); 230 231 u64 __read_mostly host_xss; 232 EXPORT_SYMBOL_GPL(host_xss); 233 234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 235 KVM_GENERIC_VM_STATS(), 236 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 237 STATS_DESC_COUNTER(VM, mmu_pte_write), 238 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 239 STATS_DESC_COUNTER(VM, mmu_flooded), 240 STATS_DESC_COUNTER(VM, mmu_recycled), 241 STATS_DESC_COUNTER(VM, mmu_cache_miss), 242 STATS_DESC_ICOUNTER(VM, mmu_unsync), 243 STATS_DESC_ICOUNTER(VM, pages_4k), 244 STATS_DESC_ICOUNTER(VM, pages_2m), 245 STATS_DESC_ICOUNTER(VM, pages_1g), 246 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 247 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 248 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 249 }; 250 251 const struct kvm_stats_header kvm_vm_stats_header = { 252 .name_size = KVM_STATS_NAME_SIZE, 253 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 254 .id_offset = sizeof(struct kvm_stats_header), 255 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 256 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 257 sizeof(kvm_vm_stats_desc), 258 }; 259 260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 261 KVM_GENERIC_VCPU_STATS(), 262 STATS_DESC_COUNTER(VCPU, pf_taken), 263 STATS_DESC_COUNTER(VCPU, pf_fixed), 264 STATS_DESC_COUNTER(VCPU, pf_emulate), 265 STATS_DESC_COUNTER(VCPU, pf_spurious), 266 STATS_DESC_COUNTER(VCPU, pf_fast), 267 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 268 STATS_DESC_COUNTER(VCPU, pf_guest), 269 STATS_DESC_COUNTER(VCPU, tlb_flush), 270 STATS_DESC_COUNTER(VCPU, invlpg), 271 STATS_DESC_COUNTER(VCPU, exits), 272 STATS_DESC_COUNTER(VCPU, io_exits), 273 STATS_DESC_COUNTER(VCPU, mmio_exits), 274 STATS_DESC_COUNTER(VCPU, signal_exits), 275 STATS_DESC_COUNTER(VCPU, irq_window_exits), 276 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 277 STATS_DESC_COUNTER(VCPU, l1d_flush), 278 STATS_DESC_COUNTER(VCPU, halt_exits), 279 STATS_DESC_COUNTER(VCPU, request_irq_exits), 280 STATS_DESC_COUNTER(VCPU, irq_exits), 281 STATS_DESC_COUNTER(VCPU, host_state_reload), 282 STATS_DESC_COUNTER(VCPU, fpu_reload), 283 STATS_DESC_COUNTER(VCPU, insn_emulation), 284 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 285 STATS_DESC_COUNTER(VCPU, hypercalls), 286 STATS_DESC_COUNTER(VCPU, irq_injections), 287 STATS_DESC_COUNTER(VCPU, nmi_injections), 288 STATS_DESC_COUNTER(VCPU, req_event), 289 STATS_DESC_COUNTER(VCPU, nested_run), 290 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 291 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 292 STATS_DESC_COUNTER(VCPU, preemption_reported), 293 STATS_DESC_COUNTER(VCPU, preemption_other), 294 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 295 STATS_DESC_COUNTER(VCPU, notify_window_exits), 296 }; 297 298 const struct kvm_stats_header kvm_vcpu_stats_header = { 299 .name_size = KVM_STATS_NAME_SIZE, 300 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 301 .id_offset = sizeof(struct kvm_stats_header), 302 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 303 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 304 sizeof(kvm_vcpu_stats_desc), 305 }; 306 307 u64 __read_mostly host_xcr0; 308 309 static struct kmem_cache *x86_emulator_cache; 310 311 /* 312 * When called, it means the previous get/set msr reached an invalid msr. 313 * Return true if we want to ignore/silent this failed msr access. 314 */ 315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 316 { 317 const char *op = write ? "wrmsr" : "rdmsr"; 318 319 if (ignore_msrs) { 320 if (report_ignored_msrs) 321 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 322 op, msr, data); 323 /* Mask the error */ 324 return true; 325 } else { 326 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 327 op, msr, data); 328 return false; 329 } 330 } 331 332 static struct kmem_cache *kvm_alloc_emulator_cache(void) 333 { 334 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 335 unsigned int size = sizeof(struct x86_emulate_ctxt); 336 337 return kmem_cache_create_usercopy("x86_emulator", size, 338 __alignof__(struct x86_emulate_ctxt), 339 SLAB_ACCOUNT, useroffset, 340 size - useroffset, NULL); 341 } 342 343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 344 345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 346 { 347 int i; 348 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 349 vcpu->arch.apf.gfns[i] = ~0; 350 } 351 352 static void kvm_on_user_return(struct user_return_notifier *urn) 353 { 354 unsigned slot; 355 struct kvm_user_return_msrs *msrs 356 = container_of(urn, struct kvm_user_return_msrs, urn); 357 struct kvm_user_return_msr_values *values; 358 unsigned long flags; 359 360 /* 361 * Disabling irqs at this point since the following code could be 362 * interrupted and executed through kvm_arch_hardware_disable() 363 */ 364 local_irq_save(flags); 365 if (msrs->registered) { 366 msrs->registered = false; 367 user_return_notifier_unregister(urn); 368 } 369 local_irq_restore(flags); 370 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 371 values = &msrs->values[slot]; 372 if (values->host != values->curr) { 373 wrmsrl(kvm_uret_msrs_list[slot], values->host); 374 values->curr = values->host; 375 } 376 } 377 } 378 379 static int kvm_probe_user_return_msr(u32 msr) 380 { 381 u64 val; 382 int ret; 383 384 preempt_disable(); 385 ret = rdmsrl_safe(msr, &val); 386 if (ret) 387 goto out; 388 ret = wrmsrl_safe(msr, val); 389 out: 390 preempt_enable(); 391 return ret; 392 } 393 394 int kvm_add_user_return_msr(u32 msr) 395 { 396 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 397 398 if (kvm_probe_user_return_msr(msr)) 399 return -1; 400 401 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 402 return kvm_nr_uret_msrs++; 403 } 404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 405 406 int kvm_find_user_return_msr(u32 msr) 407 { 408 int i; 409 410 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 411 if (kvm_uret_msrs_list[i] == msr) 412 return i; 413 } 414 return -1; 415 } 416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 417 418 static void kvm_user_return_msr_cpu_online(void) 419 { 420 unsigned int cpu = smp_processor_id(); 421 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 422 u64 value; 423 int i; 424 425 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 426 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 427 msrs->values[i].host = value; 428 msrs->values[i].curr = value; 429 } 430 } 431 432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 433 { 434 unsigned int cpu = smp_processor_id(); 435 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 436 int err; 437 438 value = (value & mask) | (msrs->values[slot].host & ~mask); 439 if (value == msrs->values[slot].curr) 440 return 0; 441 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 442 if (err) 443 return 1; 444 445 msrs->values[slot].curr = value; 446 if (!msrs->registered) { 447 msrs->urn.on_user_return = kvm_on_user_return; 448 user_return_notifier_register(&msrs->urn); 449 msrs->registered = true; 450 } 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 454 455 static void drop_user_return_notifiers(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 459 460 if (msrs->registered) 461 kvm_on_user_return(&msrs->urn); 462 } 463 464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 465 { 466 return vcpu->arch.apic_base; 467 } 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 496 /* 497 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 498 * 499 * Hardware virtualization extension instructions may fault if a reboot turns 500 * off virtualization while processes are running. Usually after catching the 501 * fault we just panic; during reboot instead the instruction is ignored. 502 */ 503 noinstr void kvm_spurious_fault(void) 504 { 505 /* Fault while not rebooting. We want the trace. */ 506 BUG_ON(!kvm_rebooting); 507 } 508 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 509 510 #define EXCPT_BENIGN 0 511 #define EXCPT_CONTRIBUTORY 1 512 #define EXCPT_PF 2 513 514 static int exception_class(int vector) 515 { 516 switch (vector) { 517 case PF_VECTOR: 518 return EXCPT_PF; 519 case DE_VECTOR: 520 case TS_VECTOR: 521 case NP_VECTOR: 522 case SS_VECTOR: 523 case GP_VECTOR: 524 return EXCPT_CONTRIBUTORY; 525 default: 526 break; 527 } 528 return EXCPT_BENIGN; 529 } 530 531 #define EXCPT_FAULT 0 532 #define EXCPT_TRAP 1 533 #define EXCPT_ABORT 2 534 #define EXCPT_INTERRUPT 3 535 #define EXCPT_DB 4 536 537 static int exception_type(int vector) 538 { 539 unsigned int mask; 540 541 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 542 return EXCPT_INTERRUPT; 543 544 mask = 1 << vector; 545 546 /* 547 * #DBs can be trap-like or fault-like, the caller must check other CPU 548 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 549 */ 550 if (mask & (1 << DB_VECTOR)) 551 return EXCPT_DB; 552 553 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 554 return EXCPT_TRAP; 555 556 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 557 return EXCPT_ABORT; 558 559 /* Reserved exceptions will result in fault */ 560 return EXCPT_FAULT; 561 } 562 563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 564 struct kvm_queued_exception *ex) 565 { 566 if (!ex->has_payload) 567 return; 568 569 switch (ex->vector) { 570 case DB_VECTOR: 571 /* 572 * "Certain debug exceptions may clear bit 0-3. The 573 * remaining contents of the DR6 register are never 574 * cleared by the processor". 575 */ 576 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 577 /* 578 * In order to reflect the #DB exception payload in guest 579 * dr6, three components need to be considered: active low 580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 581 * DR6_BS and DR6_BT) 582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 583 * In the target guest dr6: 584 * FIXED_1 bits should always be set. 585 * Active low bits should be cleared if 1-setting in payload. 586 * Active high bits should be set if 1-setting in payload. 587 * 588 * Note, the payload is compatible with the pending debug 589 * exceptions/exit qualification under VMX, that active_low bits 590 * are active high in payload. 591 * So they need to be flipped for DR6. 592 */ 593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 594 vcpu->arch.dr6 |= ex->payload; 595 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 596 597 /* 598 * The #DB payload is defined as compatible with the 'pending 599 * debug exceptions' field under VMX, not DR6. While bit 12 is 600 * defined in the 'pending debug exceptions' field (enabled 601 * breakpoint), it is reserved and must be zero in DR6. 602 */ 603 vcpu->arch.dr6 &= ~BIT(12); 604 break; 605 case PF_VECTOR: 606 vcpu->arch.cr2 = ex->payload; 607 break; 608 } 609 610 ex->has_payload = false; 611 ex->payload = 0; 612 } 613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 614 615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 616 bool has_error_code, u32 error_code, 617 bool has_payload, unsigned long payload) 618 { 619 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 620 621 ex->vector = vector; 622 ex->injected = false; 623 ex->pending = true; 624 ex->has_error_code = has_error_code; 625 ex->error_code = error_code; 626 ex->has_payload = has_payload; 627 ex->payload = payload; 628 } 629 630 /* Forcibly leave the nested mode in cases like a vCPU reset */ 631 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 632 { 633 kvm_x86_ops.nested_ops->leave_nested(vcpu); 634 } 635 636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 637 unsigned nr, bool has_error, u32 error_code, 638 bool has_payload, unsigned long payload, bool reinject) 639 { 640 u32 prev_nr; 641 int class1, class2; 642 643 kvm_make_request(KVM_REQ_EVENT, vcpu); 644 645 /* 646 * If the exception is destined for L2 and isn't being reinjected, 647 * morph it to a VM-Exit if L1 wants to intercept the exception. A 648 * previously injected exception is not checked because it was checked 649 * when it was original queued, and re-checking is incorrect if _L1_ 650 * injected the exception, in which case it's exempt from interception. 651 */ 652 if (!reinject && is_guest_mode(vcpu) && 653 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 654 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 655 has_payload, payload); 656 return; 657 } 658 659 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 660 queue: 661 if (reinject) { 662 /* 663 * On VM-Entry, an exception can be pending if and only 664 * if event injection was blocked by nested_run_pending. 665 * In that case, however, vcpu_enter_guest() requests an 666 * immediate exit, and the guest shouldn't proceed far 667 * enough to need reinjection. 668 */ 669 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 670 vcpu->arch.exception.injected = true; 671 if (WARN_ON_ONCE(has_payload)) { 672 /* 673 * A reinjected event has already 674 * delivered its payload. 675 */ 676 has_payload = false; 677 payload = 0; 678 } 679 } else { 680 vcpu->arch.exception.pending = true; 681 vcpu->arch.exception.injected = false; 682 } 683 vcpu->arch.exception.has_error_code = has_error; 684 vcpu->arch.exception.vector = nr; 685 vcpu->arch.exception.error_code = error_code; 686 vcpu->arch.exception.has_payload = has_payload; 687 vcpu->arch.exception.payload = payload; 688 if (!is_guest_mode(vcpu)) 689 kvm_deliver_exception_payload(vcpu, 690 &vcpu->arch.exception); 691 return; 692 } 693 694 /* to check exception */ 695 prev_nr = vcpu->arch.exception.vector; 696 if (prev_nr == DF_VECTOR) { 697 /* triple fault -> shutdown */ 698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 699 return; 700 } 701 class1 = exception_class(prev_nr); 702 class2 = exception_class(nr); 703 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 704 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 705 /* 706 * Synthesize #DF. Clear the previously injected or pending 707 * exception so as not to incorrectly trigger shutdown. 708 */ 709 vcpu->arch.exception.injected = false; 710 vcpu->arch.exception.pending = false; 711 712 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 713 } else { 714 /* replace previous exception with a new one in a hope 715 that instruction re-execution will regenerate lost 716 exception */ 717 goto queue; 718 } 719 } 720 721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 724 } 725 EXPORT_SYMBOL_GPL(kvm_queue_exception); 726 727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 730 } 731 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 732 733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 734 unsigned long payload) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 739 740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 741 u32 error_code, unsigned long payload) 742 { 743 kvm_multiple_exception(vcpu, nr, true, error_code, 744 true, payload, false); 745 } 746 747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 748 { 749 if (err) 750 kvm_inject_gp(vcpu, 0); 751 else 752 return kvm_skip_emulated_instruction(vcpu); 753 754 return 1; 755 } 756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 757 758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 759 { 760 if (err) { 761 kvm_inject_gp(vcpu, 0); 762 return 1; 763 } 764 765 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 766 EMULTYPE_COMPLETE_USER_EXIT); 767 } 768 769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 770 { 771 ++vcpu->stat.pf_guest; 772 773 /* 774 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 775 * whether or not L1 wants to intercept "regular" #PF. 776 */ 777 if (is_guest_mode(vcpu) && fault->async_page_fault) 778 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 779 true, fault->error_code, 780 true, fault->address); 781 else 782 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 783 fault->address); 784 } 785 786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 787 struct x86_exception *fault) 788 { 789 struct kvm_mmu *fault_mmu; 790 WARN_ON_ONCE(fault->vector != PF_VECTOR); 791 792 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 793 vcpu->arch.walk_mmu; 794 795 /* 796 * Invalidate the TLB entry for the faulting address, if it exists, 797 * else the access will fault indefinitely (and to emulate hardware). 798 */ 799 if ((fault->error_code & PFERR_PRESENT_MASK) && 800 !(fault->error_code & PFERR_RSVD_MASK)) 801 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 802 fault_mmu->root.hpa); 803 804 fault_mmu->inject_page_fault(vcpu, fault); 805 } 806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 807 808 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 809 { 810 atomic_inc(&vcpu->arch.nmi_queued); 811 kvm_make_request(KVM_REQ_NMI, vcpu); 812 } 813 814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 817 } 818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 819 820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 823 } 824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 825 826 /* 827 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 828 * a #GP and return false. 829 */ 830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 831 { 832 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 833 return true; 834 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 835 return false; 836 } 837 838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 839 { 840 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 841 return true; 842 843 kvm_queue_exception(vcpu, UD_VECTOR); 844 return false; 845 } 846 EXPORT_SYMBOL_GPL(kvm_require_dr); 847 848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 849 { 850 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 851 } 852 853 /* 854 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 855 */ 856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 857 { 858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 859 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 860 gpa_t real_gpa; 861 int i; 862 int ret; 863 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 864 865 /* 866 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 867 * to an L1 GPA. 868 */ 869 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 870 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 871 if (real_gpa == INVALID_GPA) 872 return 0; 873 874 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 875 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 876 cr3 & GENMASK(11, 5), sizeof(pdpte)); 877 if (ret < 0) 878 return 0; 879 880 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 881 if ((pdpte[i] & PT_PRESENT_MASK) && 882 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 883 return 0; 884 } 885 } 886 887 /* 888 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 889 * Shadow page roots need to be reconstructed instead. 890 */ 891 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 892 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 893 894 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 895 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 896 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 897 vcpu->arch.pdptrs_from_userspace = false; 898 899 return 1; 900 } 901 EXPORT_SYMBOL_GPL(load_pdptrs); 902 903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 904 { 905 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 906 kvm_clear_async_pf_completion_queue(vcpu); 907 kvm_async_pf_hash_reset(vcpu); 908 909 /* 910 * Clearing CR0.PG is defined to flush the TLB from the guest's 911 * perspective. 912 */ 913 if (!(cr0 & X86_CR0_PG)) 914 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 915 } 916 917 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 918 kvm_mmu_reset_context(vcpu); 919 920 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 921 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 922 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 923 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 924 } 925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 926 927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 928 { 929 unsigned long old_cr0 = kvm_read_cr0(vcpu); 930 931 cr0 |= X86_CR0_ET; 932 933 #ifdef CONFIG_X86_64 934 if (cr0 & 0xffffffff00000000UL) 935 return 1; 936 #endif 937 938 cr0 &= ~CR0_RESERVED_BITS; 939 940 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 941 return 1; 942 943 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 944 return 1; 945 946 #ifdef CONFIG_X86_64 947 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 948 (cr0 & X86_CR0_PG)) { 949 int cs_db, cs_l; 950 951 if (!is_pae(vcpu)) 952 return 1; 953 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 954 if (cs_l) 955 return 1; 956 } 957 #endif 958 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 959 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 960 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 961 return 1; 962 963 if (!(cr0 & X86_CR0_PG) && 964 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 965 return 1; 966 967 static_call(kvm_x86_set_cr0)(vcpu, cr0); 968 969 kvm_post_set_cr0(vcpu, old_cr0, cr0); 970 971 return 0; 972 } 973 EXPORT_SYMBOL_GPL(kvm_set_cr0); 974 975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 976 { 977 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 978 } 979 EXPORT_SYMBOL_GPL(kvm_lmsw); 980 981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.guest_state_protected) 984 return; 985 986 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 987 988 if (vcpu->arch.xcr0 != host_xcr0) 989 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 990 991 if (vcpu->arch.xsaves_enabled && 992 vcpu->arch.ia32_xss != host_xss) 993 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 994 } 995 996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 997 if (static_cpu_has(X86_FEATURE_PKU) && 998 vcpu->arch.pkru != vcpu->arch.host_pkru && 999 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1000 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1001 write_pkru(vcpu->arch.pkru); 1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1005 1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1007 { 1008 if (vcpu->arch.guest_state_protected) 1009 return; 1010 1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1012 if (static_cpu_has(X86_FEATURE_PKU) && 1013 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1014 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1015 vcpu->arch.pkru = rdpkru(); 1016 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1017 write_pkru(vcpu->arch.host_pkru); 1018 } 1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1020 1021 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, host_xss); 1029 } 1030 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1033 1034 #ifdef CONFIG_X86_64 1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1036 { 1037 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1038 } 1039 #endif 1040 1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1042 { 1043 u64 xcr0 = xcr; 1044 u64 old_xcr0 = vcpu->arch.xcr0; 1045 u64 valid_bits; 1046 1047 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1048 if (index != XCR_XFEATURE_ENABLED_MASK) 1049 return 1; 1050 if (!(xcr0 & XFEATURE_MASK_FP)) 1051 return 1; 1052 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1053 return 1; 1054 1055 /* 1056 * Do not allow the guest to set bits that we do not support 1057 * saving. However, xcr0 bit 0 is always set, even if the 1058 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1059 */ 1060 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1061 if (xcr0 & ~valid_bits) 1062 return 1; 1063 1064 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1065 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1066 return 1; 1067 1068 if (xcr0 & XFEATURE_MASK_AVX512) { 1069 if (!(xcr0 & XFEATURE_MASK_YMM)) 1070 return 1; 1071 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1072 return 1; 1073 } 1074 1075 if ((xcr0 & XFEATURE_MASK_XTILE) && 1076 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1077 return 1; 1078 1079 vcpu->arch.xcr0 = xcr0; 1080 1081 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1082 kvm_update_cpuid_runtime(vcpu); 1083 return 0; 1084 } 1085 1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1087 { 1088 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1089 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1090 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1091 kvm_inject_gp(vcpu, 0); 1092 return 1; 1093 } 1094 1095 return kvm_skip_emulated_instruction(vcpu); 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1098 1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1100 { 1101 if (cr4 & cr4_reserved_bits) 1102 return false; 1103 1104 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1105 return false; 1106 1107 return true; 1108 } 1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1110 1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 return __kvm_is_valid_cr4(vcpu, cr4) && 1114 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1115 } 1116 1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1118 { 1119 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1120 kvm_mmu_reset_context(vcpu); 1121 1122 /* 1123 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1124 * according to the SDM; however, stale prev_roots could be reused 1125 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1126 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1127 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1128 * so fall through. 1129 */ 1130 if (!tdp_enabled && 1131 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1132 kvm_mmu_unload(vcpu); 1133 1134 /* 1135 * The TLB has to be flushed for all PCIDs if any of the following 1136 * (architecturally required) changes happen: 1137 * - CR4.PCIDE is changed from 1 to 0 1138 * - CR4.PGE is toggled 1139 * 1140 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1141 */ 1142 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1143 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for the current PCID if any of the 1148 * following (architecturally required) changes happen: 1149 * - CR4.SMEP is changed from 0 to 1 1150 * - CR4.PAE is toggled 1151 */ 1152 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1153 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1158 1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1160 { 1161 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1162 1163 if (!kvm_is_valid_cr4(vcpu, cr4)) 1164 return 1; 1165 1166 if (is_long_mode(vcpu)) { 1167 if (!(cr4 & X86_CR4_PAE)) 1168 return 1; 1169 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1170 return 1; 1171 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1172 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1173 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1174 return 1; 1175 1176 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1178 return 1; 1179 1180 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1181 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1182 return 1; 1183 } 1184 1185 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1186 1187 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1188 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1192 1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1194 { 1195 struct kvm_mmu *mmu = vcpu->arch.mmu; 1196 unsigned long roots_to_free = 0; 1197 int i; 1198 1199 /* 1200 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1201 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1202 * also via the emulator. KVM's TDP page tables are not in the scope of 1203 * the invalidation, but the guest's TLB entries need to be flushed as 1204 * the CPU may have cached entries in its TLB for the target PCID. 1205 */ 1206 if (unlikely(tdp_enabled)) { 1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1208 return; 1209 } 1210 1211 /* 1212 * If neither the current CR3 nor any of the prev_roots use the given 1213 * PCID, then nothing needs to be done here because a resync will 1214 * happen anyway before switching to any other CR3. 1215 */ 1216 if (kvm_get_active_pcid(vcpu) == pcid) { 1217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1219 } 1220 1221 /* 1222 * If PCID is disabled, there is no need to free prev_roots even if the 1223 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1224 * with PCIDE=0. 1225 */ 1226 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1227 return; 1228 1229 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1230 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1231 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1232 1233 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1234 } 1235 1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1237 { 1238 bool skip_tlb_flush = false; 1239 unsigned long pcid = 0; 1240 #ifdef CONFIG_X86_64 1241 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1242 1243 if (pcid_enabled) { 1244 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1245 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1246 pcid = cr3 & X86_CR3_PCID_MASK; 1247 } 1248 #endif 1249 1250 /* PDPTRs are always reloaded for PAE paging. */ 1251 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1252 goto handle_tlb_flush; 1253 1254 /* 1255 * Do not condition the GPA check on long mode, this helper is used to 1256 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1257 * the current vCPU mode is accurate. 1258 */ 1259 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1260 return 1; 1261 1262 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1263 return 1; 1264 1265 if (cr3 != kvm_read_cr3(vcpu)) 1266 kvm_mmu_new_pgd(vcpu, cr3); 1267 1268 vcpu->arch.cr3 = cr3; 1269 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1270 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1271 1272 handle_tlb_flush: 1273 /* 1274 * A load of CR3 that flushes the TLB flushes only the current PCID, 1275 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1276 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1277 * and it's impossible to use a non-zero PCID when PCID is disabled, 1278 * i.e. only PCID=0 can be relevant. 1279 */ 1280 if (!skip_tlb_flush) 1281 kvm_invalidate_pcid(vcpu, pcid); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1286 1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1288 { 1289 if (cr8 & CR8_RESERVED_BITS) 1290 return 1; 1291 if (lapic_in_kernel(vcpu)) 1292 kvm_lapic_set_tpr(vcpu, cr8); 1293 else 1294 vcpu->arch.cr8 = cr8; 1295 return 0; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1298 1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1300 { 1301 if (lapic_in_kernel(vcpu)) 1302 return kvm_lapic_get_cr8(vcpu); 1303 else 1304 return vcpu->arch.cr8; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1307 1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1309 { 1310 int i; 1311 1312 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1313 for (i = 0; i < KVM_NR_DB_REGS; i++) 1314 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1315 } 1316 } 1317 1318 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1319 { 1320 unsigned long dr7; 1321 1322 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1323 dr7 = vcpu->arch.guest_debug_dr7; 1324 else 1325 dr7 = vcpu->arch.dr7; 1326 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1327 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1328 if (dr7 & DR7_BP_EN_MASK) 1329 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1332 1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1334 { 1335 u64 fixed = DR6_FIXED_1; 1336 1337 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1338 fixed |= DR6_RTM; 1339 1340 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1341 fixed |= DR6_BUS_LOCK; 1342 return fixed; 1343 } 1344 1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1346 { 1347 size_t size = ARRAY_SIZE(vcpu->arch.db); 1348 1349 switch (dr) { 1350 case 0 ... 3: 1351 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1352 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1353 vcpu->arch.eff_db[dr] = val; 1354 break; 1355 case 4: 1356 case 6: 1357 if (!kvm_dr6_valid(val)) 1358 return 1; /* #GP */ 1359 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1360 break; 1361 case 5: 1362 default: /* 7 */ 1363 if (!kvm_dr7_valid(val)) 1364 return 1; /* #GP */ 1365 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1366 kvm_update_dr7(vcpu); 1367 break; 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_set_dr); 1373 1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1375 { 1376 size_t size = ARRAY_SIZE(vcpu->arch.db); 1377 1378 switch (dr) { 1379 case 0 ... 3: 1380 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1381 break; 1382 case 4: 1383 case 6: 1384 *val = vcpu->arch.dr6; 1385 break; 1386 case 5: 1387 default: /* 7 */ 1388 *val = vcpu->arch.dr7; 1389 break; 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_get_dr); 1393 1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1395 { 1396 u32 ecx = kvm_rcx_read(vcpu); 1397 u64 data; 1398 1399 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1400 kvm_inject_gp(vcpu, 0); 1401 return 1; 1402 } 1403 1404 kvm_rax_write(vcpu, (u32)data); 1405 kvm_rdx_write(vcpu, data >> 32); 1406 return kvm_skip_emulated_instruction(vcpu); 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1409 1410 /* 1411 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1412 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1413 * 1414 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1415 * extract the supported MSRs from the related const lists. 1416 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1417 * capabilities of the host cpu. This capabilities test skips MSRs that are 1418 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1419 * may depend on host virtualization features rather than host cpu features. 1420 */ 1421 1422 static const u32 msrs_to_save_base[] = { 1423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1424 MSR_STAR, 1425 #ifdef CONFIG_X86_64 1426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1427 #endif 1428 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1429 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1430 MSR_IA32_SPEC_CTRL, 1431 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1432 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1433 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1434 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1435 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1436 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1437 MSR_IA32_UMWAIT_CONTROL, 1438 1439 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1440 }; 1441 1442 static const u32 msrs_to_save_pmu[] = { 1443 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1444 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1445 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1446 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1447 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1448 1449 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1450 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1451 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1452 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1453 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1454 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1456 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1457 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1458 1459 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1460 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1461 1462 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1463 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1464 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1465 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1466 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1467 }; 1468 1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1470 ARRAY_SIZE(msrs_to_save_pmu)]; 1471 static unsigned num_msrs_to_save; 1472 1473 static const u32 emulated_msrs_all[] = { 1474 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1475 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1476 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1477 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1478 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1479 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1480 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1481 HV_X64_MSR_RESET, 1482 HV_X64_MSR_VP_INDEX, 1483 HV_X64_MSR_VP_RUNTIME, 1484 HV_X64_MSR_SCONTROL, 1485 HV_X64_MSR_STIMER0_CONFIG, 1486 HV_X64_MSR_VP_ASSIST_PAGE, 1487 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1488 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1489 HV_X64_MSR_SYNDBG_OPTIONS, 1490 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1491 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1492 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1493 1494 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1495 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1496 1497 MSR_IA32_TSC_ADJUST, 1498 MSR_IA32_TSC_DEADLINE, 1499 MSR_IA32_ARCH_CAPABILITIES, 1500 MSR_IA32_PERF_CAPABILITIES, 1501 MSR_IA32_MISC_ENABLE, 1502 MSR_IA32_MCG_STATUS, 1503 MSR_IA32_MCG_CTL, 1504 MSR_IA32_MCG_EXT_CTL, 1505 MSR_IA32_SMBASE, 1506 MSR_SMI_COUNT, 1507 MSR_PLATFORM_INFO, 1508 MSR_MISC_FEATURES_ENABLES, 1509 MSR_AMD64_VIRT_SPEC_CTRL, 1510 MSR_AMD64_TSC_RATIO, 1511 MSR_IA32_POWER_CTL, 1512 MSR_IA32_UCODE_REV, 1513 1514 /* 1515 * The following list leaves out MSRs whose values are determined 1516 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1517 * We always support the "true" VMX control MSRs, even if the host 1518 * processor does not, so I am putting these registers here rather 1519 * than in msrs_to_save_all. 1520 */ 1521 MSR_IA32_VMX_BASIC, 1522 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1524 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1525 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1526 MSR_IA32_VMX_MISC, 1527 MSR_IA32_VMX_CR0_FIXED0, 1528 MSR_IA32_VMX_CR4_FIXED0, 1529 MSR_IA32_VMX_VMCS_ENUM, 1530 MSR_IA32_VMX_PROCBASED_CTLS2, 1531 MSR_IA32_VMX_EPT_VPID_CAP, 1532 MSR_IA32_VMX_VMFUNC, 1533 1534 MSR_K7_HWCR, 1535 MSR_KVM_POLL_CONTROL, 1536 }; 1537 1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1539 static unsigned num_emulated_msrs; 1540 1541 /* 1542 * List of msr numbers which are used to expose MSR-based features that 1543 * can be used by a hypervisor to validate requested CPU features. 1544 */ 1545 static const u32 msr_based_features_all[] = { 1546 MSR_IA32_VMX_BASIC, 1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1548 MSR_IA32_VMX_PINBASED_CTLS, 1549 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1550 MSR_IA32_VMX_PROCBASED_CTLS, 1551 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1552 MSR_IA32_VMX_EXIT_CTLS, 1553 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1554 MSR_IA32_VMX_ENTRY_CTLS, 1555 MSR_IA32_VMX_MISC, 1556 MSR_IA32_VMX_CR0_FIXED0, 1557 MSR_IA32_VMX_CR0_FIXED1, 1558 MSR_IA32_VMX_CR4_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED1, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_AMD64_DE_CFG, 1566 MSR_IA32_UCODE_REV, 1567 MSR_IA32_ARCH_CAPABILITIES, 1568 MSR_IA32_PERF_CAPABILITIES, 1569 }; 1570 1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1572 static unsigned int num_msr_based_features; 1573 1574 /* 1575 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1576 * does not yet virtualize. These include: 1577 * 10 - MISC_PACKAGE_CTRLS 1578 * 11 - ENERGY_FILTERING_CTL 1579 * 12 - DOITM 1580 * 18 - FB_CLEAR_CTRL 1581 * 21 - XAPIC_DISABLE_STATUS 1582 * 23 - OVERCLOCKING_STATUS 1583 */ 1584 1585 #define KVM_SUPPORTED_ARCH_CAP \ 1586 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1587 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1588 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1589 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1590 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1591 1592 static u64 kvm_get_arch_capabilities(void) 1593 { 1594 u64 data = 0; 1595 1596 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1597 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1598 data &= KVM_SUPPORTED_ARCH_CAP; 1599 } 1600 1601 /* 1602 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1603 * the nested hypervisor runs with NX huge pages. If it is not, 1604 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1605 * L1 guests, so it need not worry about its own (L2) guests. 1606 */ 1607 data |= ARCH_CAP_PSCHANGE_MC_NO; 1608 1609 /* 1610 * If we're doing cache flushes (either "always" or "cond") 1611 * we will do one whenever the guest does a vmlaunch/vmresume. 1612 * If an outer hypervisor is doing the cache flush for us 1613 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1614 * capability to the guest too, and if EPT is disabled we're not 1615 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1616 * require a nested hypervisor to do a flush of its own. 1617 */ 1618 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1619 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1620 1621 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1622 data |= ARCH_CAP_RDCL_NO; 1623 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1624 data |= ARCH_CAP_SSB_NO; 1625 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1626 data |= ARCH_CAP_MDS_NO; 1627 1628 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1629 /* 1630 * If RTM=0 because the kernel has disabled TSX, the host might 1631 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1632 * and therefore knows that there cannot be TAA) but keep 1633 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1634 * and we want to allow migrating those guests to tsx=off hosts. 1635 */ 1636 data &= ~ARCH_CAP_TAA_NO; 1637 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1638 data |= ARCH_CAP_TAA_NO; 1639 } else { 1640 /* 1641 * Nothing to do here; we emulate TSX_CTRL if present on the 1642 * host so the guest can choose between disabling TSX or 1643 * using VERW to clear CPU buffers. 1644 */ 1645 } 1646 1647 return data; 1648 } 1649 1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1651 { 1652 switch (msr->index) { 1653 case MSR_IA32_ARCH_CAPABILITIES: 1654 msr->data = kvm_get_arch_capabilities(); 1655 break; 1656 case MSR_IA32_PERF_CAPABILITIES: 1657 msr->data = kvm_caps.supported_perf_cap; 1658 break; 1659 case MSR_IA32_UCODE_REV: 1660 rdmsrl_safe(msr->index, &msr->data); 1661 break; 1662 default: 1663 return static_call(kvm_x86_get_msr_feature)(msr); 1664 } 1665 return 0; 1666 } 1667 1668 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1669 { 1670 struct kvm_msr_entry msr; 1671 int r; 1672 1673 msr.index = index; 1674 r = kvm_get_msr_feature(&msr); 1675 1676 if (r == KVM_MSR_RET_INVALID) { 1677 /* Unconditionally clear the output for simplicity */ 1678 *data = 0; 1679 if (kvm_msr_ignored_check(index, 0, false)) 1680 r = 0; 1681 } 1682 1683 if (r) 1684 return r; 1685 1686 *data = msr.data; 1687 1688 return 0; 1689 } 1690 1691 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1692 { 1693 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1694 return false; 1695 1696 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1697 return false; 1698 1699 if (efer & (EFER_LME | EFER_LMA) && 1700 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1701 return false; 1702 1703 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1704 return false; 1705 1706 return true; 1707 1708 } 1709 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1710 { 1711 if (efer & efer_reserved_bits) 1712 return false; 1713 1714 return __kvm_valid_efer(vcpu, efer); 1715 } 1716 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1717 1718 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1719 { 1720 u64 old_efer = vcpu->arch.efer; 1721 u64 efer = msr_info->data; 1722 int r; 1723 1724 if (efer & efer_reserved_bits) 1725 return 1; 1726 1727 if (!msr_info->host_initiated) { 1728 if (!__kvm_valid_efer(vcpu, efer)) 1729 return 1; 1730 1731 if (is_paging(vcpu) && 1732 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1733 return 1; 1734 } 1735 1736 efer &= ~EFER_LMA; 1737 efer |= vcpu->arch.efer & EFER_LMA; 1738 1739 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1740 if (r) { 1741 WARN_ON(r > 0); 1742 return r; 1743 } 1744 1745 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1746 kvm_mmu_reset_context(vcpu); 1747 1748 return 0; 1749 } 1750 1751 void kvm_enable_efer_bits(u64 mask) 1752 { 1753 efer_reserved_bits &= ~mask; 1754 } 1755 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1756 1757 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1758 { 1759 struct kvm_x86_msr_filter *msr_filter; 1760 struct msr_bitmap_range *ranges; 1761 struct kvm *kvm = vcpu->kvm; 1762 bool allowed; 1763 int idx; 1764 u32 i; 1765 1766 /* x2APIC MSRs do not support filtering. */ 1767 if (index >= 0x800 && index <= 0x8ff) 1768 return true; 1769 1770 idx = srcu_read_lock(&kvm->srcu); 1771 1772 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1773 if (!msr_filter) { 1774 allowed = true; 1775 goto out; 1776 } 1777 1778 allowed = msr_filter->default_allow; 1779 ranges = msr_filter->ranges; 1780 1781 for (i = 0; i < msr_filter->count; i++) { 1782 u32 start = ranges[i].base; 1783 u32 end = start + ranges[i].nmsrs; 1784 u32 flags = ranges[i].flags; 1785 unsigned long *bitmap = ranges[i].bitmap; 1786 1787 if ((index >= start) && (index < end) && (flags & type)) { 1788 allowed = !!test_bit(index - start, bitmap); 1789 break; 1790 } 1791 } 1792 1793 out: 1794 srcu_read_unlock(&kvm->srcu, idx); 1795 1796 return allowed; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1799 1800 /* 1801 * Write @data into the MSR specified by @index. Select MSR specific fault 1802 * checks are bypassed if @host_initiated is %true. 1803 * Returns 0 on success, non-0 otherwise. 1804 * Assumes vcpu_load() was already called. 1805 */ 1806 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1807 bool host_initiated) 1808 { 1809 struct msr_data msr; 1810 1811 switch (index) { 1812 case MSR_FS_BASE: 1813 case MSR_GS_BASE: 1814 case MSR_KERNEL_GS_BASE: 1815 case MSR_CSTAR: 1816 case MSR_LSTAR: 1817 if (is_noncanonical_address(data, vcpu)) 1818 return 1; 1819 break; 1820 case MSR_IA32_SYSENTER_EIP: 1821 case MSR_IA32_SYSENTER_ESP: 1822 /* 1823 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1824 * non-canonical address is written on Intel but not on 1825 * AMD (which ignores the top 32-bits, because it does 1826 * not implement 64-bit SYSENTER). 1827 * 1828 * 64-bit code should hence be able to write a non-canonical 1829 * value on AMD. Making the address canonical ensures that 1830 * vmentry does not fail on Intel after writing a non-canonical 1831 * value, and that something deterministic happens if the guest 1832 * invokes 64-bit SYSENTER. 1833 */ 1834 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1835 break; 1836 case MSR_TSC_AUX: 1837 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1838 return 1; 1839 1840 if (!host_initiated && 1841 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1842 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1843 return 1; 1844 1845 /* 1846 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1847 * incomplete and conflicting architectural behavior. Current 1848 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1849 * reserved and always read as zeros. Enforce Intel's reserved 1850 * bits check if and only if the guest CPU is Intel, and clear 1851 * the bits in all other cases. This ensures cross-vendor 1852 * migration will provide consistent behavior for the guest. 1853 */ 1854 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1855 return 1; 1856 1857 data = (u32)data; 1858 break; 1859 } 1860 1861 msr.data = data; 1862 msr.index = index; 1863 msr.host_initiated = host_initiated; 1864 1865 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1866 } 1867 1868 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1869 u32 index, u64 data, bool host_initiated) 1870 { 1871 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1872 1873 if (ret == KVM_MSR_RET_INVALID) 1874 if (kvm_msr_ignored_check(index, data, true)) 1875 ret = 0; 1876 1877 return ret; 1878 } 1879 1880 /* 1881 * Read the MSR specified by @index into @data. Select MSR specific fault 1882 * checks are bypassed if @host_initiated is %true. 1883 * Returns 0 on success, non-0 otherwise. 1884 * Assumes vcpu_load() was already called. 1885 */ 1886 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1887 bool host_initiated) 1888 { 1889 struct msr_data msr; 1890 int ret; 1891 1892 switch (index) { 1893 case MSR_TSC_AUX: 1894 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1895 return 1; 1896 1897 if (!host_initiated && 1898 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1899 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1900 return 1; 1901 break; 1902 } 1903 1904 msr.index = index; 1905 msr.host_initiated = host_initiated; 1906 1907 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1908 if (!ret) 1909 *data = msr.data; 1910 return ret; 1911 } 1912 1913 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1914 u32 index, u64 *data, bool host_initiated) 1915 { 1916 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1917 1918 if (ret == KVM_MSR_RET_INVALID) { 1919 /* Unconditionally clear *data for simplicity */ 1920 *data = 0; 1921 if (kvm_msr_ignored_check(index, 0, false)) 1922 ret = 0; 1923 } 1924 1925 return ret; 1926 } 1927 1928 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1929 { 1930 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1931 return KVM_MSR_RET_FILTERED; 1932 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1933 } 1934 1935 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 1942 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1943 { 1944 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1945 } 1946 EXPORT_SYMBOL_GPL(kvm_get_msr); 1947 1948 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1949 { 1950 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1951 } 1952 EXPORT_SYMBOL_GPL(kvm_set_msr); 1953 1954 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1955 { 1956 if (!vcpu->run->msr.error) { 1957 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1958 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1959 } 1960 } 1961 1962 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1963 { 1964 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1965 } 1966 1967 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1968 { 1969 complete_userspace_rdmsr(vcpu); 1970 return complete_emulated_msr_access(vcpu); 1971 } 1972 1973 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1974 { 1975 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1976 } 1977 1978 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1979 { 1980 complete_userspace_rdmsr(vcpu); 1981 return complete_fast_msr_access(vcpu); 1982 } 1983 1984 static u64 kvm_msr_reason(int r) 1985 { 1986 switch (r) { 1987 case KVM_MSR_RET_INVALID: 1988 return KVM_MSR_EXIT_REASON_UNKNOWN; 1989 case KVM_MSR_RET_FILTERED: 1990 return KVM_MSR_EXIT_REASON_FILTER; 1991 default: 1992 return KVM_MSR_EXIT_REASON_INVAL; 1993 } 1994 } 1995 1996 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1997 u32 exit_reason, u64 data, 1998 int (*completion)(struct kvm_vcpu *vcpu), 1999 int r) 2000 { 2001 u64 msr_reason = kvm_msr_reason(r); 2002 2003 /* Check if the user wanted to know about this MSR fault */ 2004 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2005 return 0; 2006 2007 vcpu->run->exit_reason = exit_reason; 2008 vcpu->run->msr.error = 0; 2009 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2010 vcpu->run->msr.reason = msr_reason; 2011 vcpu->run->msr.index = index; 2012 vcpu->run->msr.data = data; 2013 vcpu->arch.complete_userspace_io = completion; 2014 2015 return 1; 2016 } 2017 2018 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2019 { 2020 u32 ecx = kvm_rcx_read(vcpu); 2021 u64 data; 2022 int r; 2023 2024 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2025 2026 if (!r) { 2027 trace_kvm_msr_read(ecx, data); 2028 2029 kvm_rax_write(vcpu, data & -1u); 2030 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2031 } else { 2032 /* MSR read failed? See if we should ask user space */ 2033 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2034 complete_fast_rdmsr, r)) 2035 return 0; 2036 trace_kvm_msr_read_ex(ecx); 2037 } 2038 2039 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2040 } 2041 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2042 2043 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2044 { 2045 u32 ecx = kvm_rcx_read(vcpu); 2046 u64 data = kvm_read_edx_eax(vcpu); 2047 int r; 2048 2049 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2050 2051 if (!r) { 2052 trace_kvm_msr_write(ecx, data); 2053 } else { 2054 /* MSR write failed? See if we should ask user space */ 2055 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2056 complete_fast_msr_access, r)) 2057 return 0; 2058 /* Signal all other negative errors to userspace */ 2059 if (r < 0) 2060 return r; 2061 trace_kvm_msr_write_ex(ecx, data); 2062 } 2063 2064 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2065 } 2066 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2067 2068 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2069 { 2070 return kvm_skip_emulated_instruction(vcpu); 2071 } 2072 2073 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2074 { 2075 /* Treat an INVD instruction as a NOP and just skip it. */ 2076 return kvm_emulate_as_nop(vcpu); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2079 2080 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2081 { 2082 kvm_queue_exception(vcpu, UD_VECTOR); 2083 return 1; 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2086 2087 2088 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2089 { 2090 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2091 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2092 return kvm_handle_invalid_op(vcpu); 2093 2094 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2095 return kvm_emulate_as_nop(vcpu); 2096 } 2097 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2098 { 2099 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2102 2103 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2104 { 2105 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2108 2109 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2110 { 2111 xfer_to_guest_mode_prepare(); 2112 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2113 xfer_to_guest_mode_work_pending(); 2114 } 2115 2116 /* 2117 * The fast path for frequent and performance sensitive wrmsr emulation, 2118 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2119 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2120 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2121 * other cases which must be called after interrupts are enabled on the host. 2122 */ 2123 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2124 { 2125 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2126 return 1; 2127 2128 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2129 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2130 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2131 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2132 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2133 2134 return 1; 2135 } 2136 2137 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2138 { 2139 if (!kvm_can_use_hv_timer(vcpu)) 2140 return 1; 2141 2142 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2143 return 0; 2144 } 2145 2146 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2147 { 2148 u32 msr = kvm_rcx_read(vcpu); 2149 u64 data; 2150 fastpath_t ret = EXIT_FASTPATH_NONE; 2151 2152 switch (msr) { 2153 case APIC_BASE_MSR + (APIC_ICR >> 4): 2154 data = kvm_read_edx_eax(vcpu); 2155 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2156 kvm_skip_emulated_instruction(vcpu); 2157 ret = EXIT_FASTPATH_EXIT_HANDLED; 2158 } 2159 break; 2160 case MSR_IA32_TSC_DEADLINE: 2161 data = kvm_read_edx_eax(vcpu); 2162 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2163 kvm_skip_emulated_instruction(vcpu); 2164 ret = EXIT_FASTPATH_REENTER_GUEST; 2165 } 2166 break; 2167 default: 2168 break; 2169 } 2170 2171 if (ret != EXIT_FASTPATH_NONE) 2172 trace_kvm_msr_write(msr, data); 2173 2174 return ret; 2175 } 2176 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2177 2178 /* 2179 * Adapt set_msr() to msr_io()'s calling convention 2180 */ 2181 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2182 { 2183 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2184 } 2185 2186 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2187 { 2188 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2189 } 2190 2191 #ifdef CONFIG_X86_64 2192 struct pvclock_clock { 2193 int vclock_mode; 2194 u64 cycle_last; 2195 u64 mask; 2196 u32 mult; 2197 u32 shift; 2198 u64 base_cycles; 2199 u64 offset; 2200 }; 2201 2202 struct pvclock_gtod_data { 2203 seqcount_t seq; 2204 2205 struct pvclock_clock clock; /* extract of a clocksource struct */ 2206 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2207 2208 ktime_t offs_boot; 2209 u64 wall_time_sec; 2210 }; 2211 2212 static struct pvclock_gtod_data pvclock_gtod_data; 2213 2214 static void update_pvclock_gtod(struct timekeeper *tk) 2215 { 2216 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2217 2218 write_seqcount_begin(&vdata->seq); 2219 2220 /* copy pvclock gtod data */ 2221 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2222 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2223 vdata->clock.mask = tk->tkr_mono.mask; 2224 vdata->clock.mult = tk->tkr_mono.mult; 2225 vdata->clock.shift = tk->tkr_mono.shift; 2226 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2227 vdata->clock.offset = tk->tkr_mono.base; 2228 2229 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2230 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2231 vdata->raw_clock.mask = tk->tkr_raw.mask; 2232 vdata->raw_clock.mult = tk->tkr_raw.mult; 2233 vdata->raw_clock.shift = tk->tkr_raw.shift; 2234 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2235 vdata->raw_clock.offset = tk->tkr_raw.base; 2236 2237 vdata->wall_time_sec = tk->xtime_sec; 2238 2239 vdata->offs_boot = tk->offs_boot; 2240 2241 write_seqcount_end(&vdata->seq); 2242 } 2243 2244 static s64 get_kvmclock_base_ns(void) 2245 { 2246 /* Count up from boot time, but with the frequency of the raw clock. */ 2247 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2248 } 2249 #else 2250 static s64 get_kvmclock_base_ns(void) 2251 { 2252 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2253 return ktime_get_boottime_ns(); 2254 } 2255 #endif 2256 2257 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2258 { 2259 int version; 2260 int r; 2261 struct pvclock_wall_clock wc; 2262 u32 wc_sec_hi; 2263 u64 wall_nsec; 2264 2265 if (!wall_clock) 2266 return; 2267 2268 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2269 if (r) 2270 return; 2271 2272 if (version & 1) 2273 ++version; /* first time write, random junk */ 2274 2275 ++version; 2276 2277 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2278 return; 2279 2280 /* 2281 * The guest calculates current wall clock time by adding 2282 * system time (updated by kvm_guest_time_update below) to the 2283 * wall clock specified here. We do the reverse here. 2284 */ 2285 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2286 2287 wc.nsec = do_div(wall_nsec, 1000000000); 2288 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2289 wc.version = version; 2290 2291 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2292 2293 if (sec_hi_ofs) { 2294 wc_sec_hi = wall_nsec >> 32; 2295 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2296 &wc_sec_hi, sizeof(wc_sec_hi)); 2297 } 2298 2299 version++; 2300 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2301 } 2302 2303 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2304 bool old_msr, bool host_initiated) 2305 { 2306 struct kvm_arch *ka = &vcpu->kvm->arch; 2307 2308 if (vcpu->vcpu_id == 0 && !host_initiated) { 2309 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2310 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2311 2312 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2313 } 2314 2315 vcpu->arch.time = system_time; 2316 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2317 2318 /* we verify if the enable bit is set... */ 2319 if (system_time & 1) 2320 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2321 sizeof(struct pvclock_vcpu_time_info)); 2322 else 2323 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2324 2325 return; 2326 } 2327 2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2329 { 2330 do_shl32_div32(dividend, divisor); 2331 return dividend; 2332 } 2333 2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2335 s8 *pshift, u32 *pmultiplier) 2336 { 2337 uint64_t scaled64; 2338 int32_t shift = 0; 2339 uint64_t tps64; 2340 uint32_t tps32; 2341 2342 tps64 = base_hz; 2343 scaled64 = scaled_hz; 2344 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2345 tps64 >>= 1; 2346 shift--; 2347 } 2348 2349 tps32 = (uint32_t)tps64; 2350 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2351 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2352 scaled64 >>= 1; 2353 else 2354 tps32 <<= 1; 2355 shift++; 2356 } 2357 2358 *pshift = shift; 2359 *pmultiplier = div_frac(scaled64, tps32); 2360 } 2361 2362 #ifdef CONFIG_X86_64 2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2364 #endif 2365 2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2367 static unsigned long max_tsc_khz; 2368 2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2370 { 2371 u64 v = (u64)khz * (1000000 + ppm); 2372 do_div(v, 1000000); 2373 return v; 2374 } 2375 2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2377 2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2379 { 2380 u64 ratio; 2381 2382 /* Guest TSC same frequency as host TSC? */ 2383 if (!scale) { 2384 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2385 return 0; 2386 } 2387 2388 /* TSC scaling supported? */ 2389 if (!kvm_caps.has_tsc_control) { 2390 if (user_tsc_khz > tsc_khz) { 2391 vcpu->arch.tsc_catchup = 1; 2392 vcpu->arch.tsc_always_catchup = 1; 2393 return 0; 2394 } else { 2395 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2396 return -1; 2397 } 2398 } 2399 2400 /* TSC scaling required - calculate ratio */ 2401 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2402 user_tsc_khz, tsc_khz); 2403 2404 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2405 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2406 user_tsc_khz); 2407 return -1; 2408 } 2409 2410 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2411 return 0; 2412 } 2413 2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2415 { 2416 u32 thresh_lo, thresh_hi; 2417 int use_scaling = 0; 2418 2419 /* tsc_khz can be zero if TSC calibration fails */ 2420 if (user_tsc_khz == 0) { 2421 /* set tsc_scaling_ratio to a safe value */ 2422 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2423 return -1; 2424 } 2425 2426 /* Compute a scale to convert nanoseconds in TSC cycles */ 2427 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2428 &vcpu->arch.virtual_tsc_shift, 2429 &vcpu->arch.virtual_tsc_mult); 2430 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2431 2432 /* 2433 * Compute the variation in TSC rate which is acceptable 2434 * within the range of tolerance and decide if the 2435 * rate being applied is within that bounds of the hardware 2436 * rate. If so, no scaling or compensation need be done. 2437 */ 2438 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2439 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2440 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2441 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2442 user_tsc_khz, thresh_lo, thresh_hi); 2443 use_scaling = 1; 2444 } 2445 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2446 } 2447 2448 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2449 { 2450 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2451 vcpu->arch.virtual_tsc_mult, 2452 vcpu->arch.virtual_tsc_shift); 2453 tsc += vcpu->arch.this_tsc_write; 2454 return tsc; 2455 } 2456 2457 #ifdef CONFIG_X86_64 2458 static inline int gtod_is_based_on_tsc(int mode) 2459 { 2460 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2461 } 2462 #endif 2463 2464 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2465 { 2466 #ifdef CONFIG_X86_64 2467 bool vcpus_matched; 2468 struct kvm_arch *ka = &vcpu->kvm->arch; 2469 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2470 2471 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2472 atomic_read(&vcpu->kvm->online_vcpus)); 2473 2474 /* 2475 * Once the masterclock is enabled, always perform request in 2476 * order to update it. 2477 * 2478 * In order to enable masterclock, the host clocksource must be TSC 2479 * and the vcpus need to have matched TSCs. When that happens, 2480 * perform request to enable masterclock. 2481 */ 2482 if (ka->use_master_clock || 2483 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2484 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2485 2486 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2487 atomic_read(&vcpu->kvm->online_vcpus), 2488 ka->use_master_clock, gtod->clock.vclock_mode); 2489 #endif 2490 } 2491 2492 /* 2493 * Multiply tsc by a fixed point number represented by ratio. 2494 * 2495 * The most significant 64-N bits (mult) of ratio represent the 2496 * integral part of the fixed point number; the remaining N bits 2497 * (frac) represent the fractional part, ie. ratio represents a fixed 2498 * point number (mult + frac * 2^(-N)). 2499 * 2500 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2501 */ 2502 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2503 { 2504 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2505 } 2506 2507 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2508 { 2509 u64 _tsc = tsc; 2510 2511 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2512 _tsc = __scale_tsc(ratio, tsc); 2513 2514 return _tsc; 2515 } 2516 2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2518 { 2519 u64 tsc; 2520 2521 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2522 2523 return target_tsc - tsc; 2524 } 2525 2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2527 { 2528 return vcpu->arch.l1_tsc_offset + 2529 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2532 2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2534 { 2535 u64 nested_offset; 2536 2537 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2538 nested_offset = l1_offset; 2539 else 2540 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2541 kvm_caps.tsc_scaling_ratio_frac_bits); 2542 2543 nested_offset += l2_offset; 2544 return nested_offset; 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2547 2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2549 { 2550 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2551 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2552 kvm_caps.tsc_scaling_ratio_frac_bits); 2553 2554 return l1_multiplier; 2555 } 2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2557 2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2559 { 2560 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2561 vcpu->arch.l1_tsc_offset, 2562 l1_offset); 2563 2564 vcpu->arch.l1_tsc_offset = l1_offset; 2565 2566 /* 2567 * If we are here because L1 chose not to trap WRMSR to TSC then 2568 * according to the spec this should set L1's TSC (as opposed to 2569 * setting L1's offset for L2). 2570 */ 2571 if (is_guest_mode(vcpu)) 2572 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2573 l1_offset, 2574 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2575 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2576 else 2577 vcpu->arch.tsc_offset = l1_offset; 2578 2579 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2580 } 2581 2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2583 { 2584 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2585 2586 /* Userspace is changing the multiplier while L2 is active */ 2587 if (is_guest_mode(vcpu)) 2588 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2589 l1_multiplier, 2590 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2591 else 2592 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2593 2594 if (kvm_caps.has_tsc_control) 2595 static_call(kvm_x86_write_tsc_multiplier)( 2596 vcpu, vcpu->arch.tsc_scaling_ratio); 2597 } 2598 2599 static inline bool kvm_check_tsc_unstable(void) 2600 { 2601 #ifdef CONFIG_X86_64 2602 /* 2603 * TSC is marked unstable when we're running on Hyper-V, 2604 * 'TSC page' clocksource is good. 2605 */ 2606 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2607 return false; 2608 #endif 2609 return check_tsc_unstable(); 2610 } 2611 2612 /* 2613 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2614 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2615 * participates in. 2616 */ 2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2618 u64 ns, bool matched) 2619 { 2620 struct kvm *kvm = vcpu->kvm; 2621 2622 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2623 2624 /* 2625 * We also track th most recent recorded KHZ, write and time to 2626 * allow the matching interval to be extended at each write. 2627 */ 2628 kvm->arch.last_tsc_nsec = ns; 2629 kvm->arch.last_tsc_write = tsc; 2630 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2631 kvm->arch.last_tsc_offset = offset; 2632 2633 vcpu->arch.last_guest_tsc = tsc; 2634 2635 kvm_vcpu_write_tsc_offset(vcpu, offset); 2636 2637 if (!matched) { 2638 /* 2639 * We split periods of matched TSC writes into generations. 2640 * For each generation, we track the original measured 2641 * nanosecond time, offset, and write, so if TSCs are in 2642 * sync, we can match exact offset, and if not, we can match 2643 * exact software computation in compute_guest_tsc() 2644 * 2645 * These values are tracked in kvm->arch.cur_xxx variables. 2646 */ 2647 kvm->arch.cur_tsc_generation++; 2648 kvm->arch.cur_tsc_nsec = ns; 2649 kvm->arch.cur_tsc_write = tsc; 2650 kvm->arch.cur_tsc_offset = offset; 2651 kvm->arch.nr_vcpus_matched_tsc = 0; 2652 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2653 kvm->arch.nr_vcpus_matched_tsc++; 2654 } 2655 2656 /* Keep track of which generation this VCPU has synchronized to */ 2657 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2658 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2659 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2660 2661 kvm_track_tsc_matching(vcpu); 2662 } 2663 2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2665 { 2666 struct kvm *kvm = vcpu->kvm; 2667 u64 offset, ns, elapsed; 2668 unsigned long flags; 2669 bool matched = false; 2670 bool synchronizing = false; 2671 2672 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2673 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2674 ns = get_kvmclock_base_ns(); 2675 elapsed = ns - kvm->arch.last_tsc_nsec; 2676 2677 if (vcpu->arch.virtual_tsc_khz) { 2678 if (data == 0) { 2679 /* 2680 * detection of vcpu initialization -- need to sync 2681 * with other vCPUs. This particularly helps to keep 2682 * kvm_clock stable after CPU hotplug 2683 */ 2684 synchronizing = true; 2685 } else { 2686 u64 tsc_exp = kvm->arch.last_tsc_write + 2687 nsec_to_cycles(vcpu, elapsed); 2688 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2689 /* 2690 * Special case: TSC write with a small delta (1 second) 2691 * of virtual cycle time against real time is 2692 * interpreted as an attempt to synchronize the CPU. 2693 */ 2694 synchronizing = data < tsc_exp + tsc_hz && 2695 data + tsc_hz > tsc_exp; 2696 } 2697 } 2698 2699 /* 2700 * For a reliable TSC, we can match TSC offsets, and for an unstable 2701 * TSC, we add elapsed time in this computation. We could let the 2702 * compensation code attempt to catch up if we fall behind, but 2703 * it's better to try to match offsets from the beginning. 2704 */ 2705 if (synchronizing && 2706 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2707 if (!kvm_check_tsc_unstable()) { 2708 offset = kvm->arch.cur_tsc_offset; 2709 } else { 2710 u64 delta = nsec_to_cycles(vcpu, elapsed); 2711 data += delta; 2712 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2713 } 2714 matched = true; 2715 } 2716 2717 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2718 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2719 } 2720 2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2722 s64 adjustment) 2723 { 2724 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2725 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2726 } 2727 2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2729 { 2730 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2731 WARN_ON(adjustment < 0); 2732 adjustment = kvm_scale_tsc((u64) adjustment, 2733 vcpu->arch.l1_tsc_scaling_ratio); 2734 adjust_tsc_offset_guest(vcpu, adjustment); 2735 } 2736 2737 #ifdef CONFIG_X86_64 2738 2739 static u64 read_tsc(void) 2740 { 2741 u64 ret = (u64)rdtsc_ordered(); 2742 u64 last = pvclock_gtod_data.clock.cycle_last; 2743 2744 if (likely(ret >= last)) 2745 return ret; 2746 2747 /* 2748 * GCC likes to generate cmov here, but this branch is extremely 2749 * predictable (it's just a function of time and the likely is 2750 * very likely) and there's a data dependence, so force GCC 2751 * to generate a branch instead. I don't barrier() because 2752 * we don't actually need a barrier, and if this function 2753 * ever gets inlined it will generate worse code. 2754 */ 2755 asm volatile (""); 2756 return last; 2757 } 2758 2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2760 int *mode) 2761 { 2762 long v; 2763 u64 tsc_pg_val; 2764 2765 switch (clock->vclock_mode) { 2766 case VDSO_CLOCKMODE_HVCLOCK: 2767 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2768 tsc_timestamp); 2769 if (tsc_pg_val != U64_MAX) { 2770 /* TSC page valid */ 2771 *mode = VDSO_CLOCKMODE_HVCLOCK; 2772 v = (tsc_pg_val - clock->cycle_last) & 2773 clock->mask; 2774 } else { 2775 /* TSC page invalid */ 2776 *mode = VDSO_CLOCKMODE_NONE; 2777 } 2778 break; 2779 case VDSO_CLOCKMODE_TSC: 2780 *mode = VDSO_CLOCKMODE_TSC; 2781 *tsc_timestamp = read_tsc(); 2782 v = (*tsc_timestamp - clock->cycle_last) & 2783 clock->mask; 2784 break; 2785 default: 2786 *mode = VDSO_CLOCKMODE_NONE; 2787 } 2788 2789 if (*mode == VDSO_CLOCKMODE_NONE) 2790 *tsc_timestamp = v = 0; 2791 2792 return v * clock->mult; 2793 } 2794 2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2796 { 2797 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2798 unsigned long seq; 2799 int mode; 2800 u64 ns; 2801 2802 do { 2803 seq = read_seqcount_begin(>od->seq); 2804 ns = gtod->raw_clock.base_cycles; 2805 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2806 ns >>= gtod->raw_clock.shift; 2807 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2808 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2809 *t = ns; 2810 2811 return mode; 2812 } 2813 2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2815 { 2816 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2817 unsigned long seq; 2818 int mode; 2819 u64 ns; 2820 2821 do { 2822 seq = read_seqcount_begin(>od->seq); 2823 ts->tv_sec = gtod->wall_time_sec; 2824 ns = gtod->clock.base_cycles; 2825 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2826 ns >>= gtod->clock.shift; 2827 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2828 2829 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2830 ts->tv_nsec = ns; 2831 2832 return mode; 2833 } 2834 2835 /* returns true if host is using TSC based clocksource */ 2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2837 { 2838 /* checked again under seqlock below */ 2839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2840 return false; 2841 2842 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2843 tsc_timestamp)); 2844 } 2845 2846 /* returns true if host is using TSC based clocksource */ 2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2848 u64 *tsc_timestamp) 2849 { 2850 /* checked again under seqlock below */ 2851 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2852 return false; 2853 2854 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2855 } 2856 #endif 2857 2858 /* 2859 * 2860 * Assuming a stable TSC across physical CPUS, and a stable TSC 2861 * across virtual CPUs, the following condition is possible. 2862 * Each numbered line represents an event visible to both 2863 * CPUs at the next numbered event. 2864 * 2865 * "timespecX" represents host monotonic time. "tscX" represents 2866 * RDTSC value. 2867 * 2868 * VCPU0 on CPU0 | VCPU1 on CPU1 2869 * 2870 * 1. read timespec0,tsc0 2871 * 2. | timespec1 = timespec0 + N 2872 * | tsc1 = tsc0 + M 2873 * 3. transition to guest | transition to guest 2874 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2875 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2876 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2877 * 2878 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2879 * 2880 * - ret0 < ret1 2881 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2882 * ... 2883 * - 0 < N - M => M < N 2884 * 2885 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2886 * always the case (the difference between two distinct xtime instances 2887 * might be smaller then the difference between corresponding TSC reads, 2888 * when updating guest vcpus pvclock areas). 2889 * 2890 * To avoid that problem, do not allow visibility of distinct 2891 * system_timestamp/tsc_timestamp values simultaneously: use a master 2892 * copy of host monotonic time values. Update that master copy 2893 * in lockstep. 2894 * 2895 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2896 * 2897 */ 2898 2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2900 { 2901 #ifdef CONFIG_X86_64 2902 struct kvm_arch *ka = &kvm->arch; 2903 int vclock_mode; 2904 bool host_tsc_clocksource, vcpus_matched; 2905 2906 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2907 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2908 atomic_read(&kvm->online_vcpus)); 2909 2910 /* 2911 * If the host uses TSC clock, then passthrough TSC as stable 2912 * to the guest. 2913 */ 2914 host_tsc_clocksource = kvm_get_time_and_clockread( 2915 &ka->master_kernel_ns, 2916 &ka->master_cycle_now); 2917 2918 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2919 && !ka->backwards_tsc_observed 2920 && !ka->boot_vcpu_runs_old_kvmclock; 2921 2922 if (ka->use_master_clock) 2923 atomic_set(&kvm_guest_has_master_clock, 1); 2924 2925 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2926 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2927 vcpus_matched); 2928 #endif 2929 } 2930 2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2932 { 2933 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2934 } 2935 2936 static void __kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2939 write_seqcount_begin(&kvm->arch.pvclock_sc); 2940 } 2941 2942 static void kvm_start_pvclock_update(struct kvm *kvm) 2943 { 2944 kvm_make_mclock_inprogress_request(kvm); 2945 2946 /* no guest entries from this point */ 2947 __kvm_start_pvclock_update(kvm); 2948 } 2949 2950 static void kvm_end_pvclock_update(struct kvm *kvm) 2951 { 2952 struct kvm_arch *ka = &kvm->arch; 2953 struct kvm_vcpu *vcpu; 2954 unsigned long i; 2955 2956 write_seqcount_end(&ka->pvclock_sc); 2957 raw_spin_unlock_irq(&ka->tsc_write_lock); 2958 kvm_for_each_vcpu(i, vcpu, kvm) 2959 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2960 2961 /* guest entries allowed */ 2962 kvm_for_each_vcpu(i, vcpu, kvm) 2963 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2964 } 2965 2966 static void kvm_update_masterclock(struct kvm *kvm) 2967 { 2968 kvm_hv_request_tsc_page_update(kvm); 2969 kvm_start_pvclock_update(kvm); 2970 pvclock_update_vm_gtod_copy(kvm); 2971 kvm_end_pvclock_update(kvm); 2972 } 2973 2974 /* 2975 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2976 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2977 * can change during boot even if the TSC is constant, as it's possible for KVM 2978 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2979 * notification when calibration completes, but practically speaking calibration 2980 * will complete before userspace is alive enough to create VMs. 2981 */ 2982 static unsigned long get_cpu_tsc_khz(void) 2983 { 2984 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2985 return tsc_khz; 2986 else 2987 return __this_cpu_read(cpu_tsc_khz); 2988 } 2989 2990 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2991 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2992 { 2993 struct kvm_arch *ka = &kvm->arch; 2994 struct pvclock_vcpu_time_info hv_clock; 2995 2996 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2997 get_cpu(); 2998 2999 data->flags = 0; 3000 if (ka->use_master_clock && 3001 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3002 #ifdef CONFIG_X86_64 3003 struct timespec64 ts; 3004 3005 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3006 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3007 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3008 } else 3009 #endif 3010 data->host_tsc = rdtsc(); 3011 3012 data->flags |= KVM_CLOCK_TSC_STABLE; 3013 hv_clock.tsc_timestamp = ka->master_cycle_now; 3014 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3015 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3016 &hv_clock.tsc_shift, 3017 &hv_clock.tsc_to_system_mul); 3018 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3019 } else { 3020 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3021 } 3022 3023 put_cpu(); 3024 } 3025 3026 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3027 { 3028 struct kvm_arch *ka = &kvm->arch; 3029 unsigned seq; 3030 3031 do { 3032 seq = read_seqcount_begin(&ka->pvclock_sc); 3033 __get_kvmclock(kvm, data); 3034 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3035 } 3036 3037 u64 get_kvmclock_ns(struct kvm *kvm) 3038 { 3039 struct kvm_clock_data data; 3040 3041 get_kvmclock(kvm, &data); 3042 return data.clock; 3043 } 3044 3045 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3046 struct gfn_to_pfn_cache *gpc, 3047 unsigned int offset) 3048 { 3049 struct kvm_vcpu_arch *vcpu = &v->arch; 3050 struct pvclock_vcpu_time_info *guest_hv_clock; 3051 unsigned long flags; 3052 3053 read_lock_irqsave(&gpc->lock, flags); 3054 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3055 read_unlock_irqrestore(&gpc->lock, flags); 3056 3057 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3058 return; 3059 3060 read_lock_irqsave(&gpc->lock, flags); 3061 } 3062 3063 guest_hv_clock = (void *)(gpc->khva + offset); 3064 3065 /* 3066 * This VCPU is paused, but it's legal for a guest to read another 3067 * VCPU's kvmclock, so we really have to follow the specification where 3068 * it says that version is odd if data is being modified, and even after 3069 * it is consistent. 3070 */ 3071 3072 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3073 smp_wmb(); 3074 3075 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3076 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3077 3078 if (vcpu->pvclock_set_guest_stopped_request) { 3079 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3080 vcpu->pvclock_set_guest_stopped_request = false; 3081 } 3082 3083 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3084 smp_wmb(); 3085 3086 guest_hv_clock->version = ++vcpu->hv_clock.version; 3087 3088 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3089 read_unlock_irqrestore(&gpc->lock, flags); 3090 3091 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3092 } 3093 3094 static int kvm_guest_time_update(struct kvm_vcpu *v) 3095 { 3096 unsigned long flags, tgt_tsc_khz; 3097 unsigned seq; 3098 struct kvm_vcpu_arch *vcpu = &v->arch; 3099 struct kvm_arch *ka = &v->kvm->arch; 3100 s64 kernel_ns; 3101 u64 tsc_timestamp, host_tsc; 3102 u8 pvclock_flags; 3103 bool use_master_clock; 3104 3105 kernel_ns = 0; 3106 host_tsc = 0; 3107 3108 /* 3109 * If the host uses TSC clock, then passthrough TSC as stable 3110 * to the guest. 3111 */ 3112 do { 3113 seq = read_seqcount_begin(&ka->pvclock_sc); 3114 use_master_clock = ka->use_master_clock; 3115 if (use_master_clock) { 3116 host_tsc = ka->master_cycle_now; 3117 kernel_ns = ka->master_kernel_ns; 3118 } 3119 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3120 3121 /* Keep irq disabled to prevent changes to the clock */ 3122 local_irq_save(flags); 3123 tgt_tsc_khz = get_cpu_tsc_khz(); 3124 if (unlikely(tgt_tsc_khz == 0)) { 3125 local_irq_restore(flags); 3126 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3127 return 1; 3128 } 3129 if (!use_master_clock) { 3130 host_tsc = rdtsc(); 3131 kernel_ns = get_kvmclock_base_ns(); 3132 } 3133 3134 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3135 3136 /* 3137 * We may have to catch up the TSC to match elapsed wall clock 3138 * time for two reasons, even if kvmclock is used. 3139 * 1) CPU could have been running below the maximum TSC rate 3140 * 2) Broken TSC compensation resets the base at each VCPU 3141 * entry to avoid unknown leaps of TSC even when running 3142 * again on the same CPU. This may cause apparent elapsed 3143 * time to disappear, and the guest to stand still or run 3144 * very slowly. 3145 */ 3146 if (vcpu->tsc_catchup) { 3147 u64 tsc = compute_guest_tsc(v, kernel_ns); 3148 if (tsc > tsc_timestamp) { 3149 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3150 tsc_timestamp = tsc; 3151 } 3152 } 3153 3154 local_irq_restore(flags); 3155 3156 /* With all the info we got, fill in the values */ 3157 3158 if (kvm_caps.has_tsc_control) 3159 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3160 v->arch.l1_tsc_scaling_ratio); 3161 3162 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3163 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3164 &vcpu->hv_clock.tsc_shift, 3165 &vcpu->hv_clock.tsc_to_system_mul); 3166 vcpu->hw_tsc_khz = tgt_tsc_khz; 3167 } 3168 3169 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3170 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3171 vcpu->last_guest_tsc = tsc_timestamp; 3172 3173 /* If the host uses TSC clocksource, then it is stable */ 3174 pvclock_flags = 0; 3175 if (use_master_clock) 3176 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3177 3178 vcpu->hv_clock.flags = pvclock_flags; 3179 3180 if (vcpu->pv_time.active) 3181 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3182 if (vcpu->xen.vcpu_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3184 offsetof(struct compat_vcpu_info, time)); 3185 if (vcpu->xen.vcpu_time_info_cache.active) 3186 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3187 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3188 return 0; 3189 } 3190 3191 /* 3192 * kvmclock updates which are isolated to a given vcpu, such as 3193 * vcpu->cpu migration, should not allow system_timestamp from 3194 * the rest of the vcpus to remain static. Otherwise ntp frequency 3195 * correction applies to one vcpu's system_timestamp but not 3196 * the others. 3197 * 3198 * So in those cases, request a kvmclock update for all vcpus. 3199 * We need to rate-limit these requests though, as they can 3200 * considerably slow guests that have a large number of vcpus. 3201 * The time for a remote vcpu to update its kvmclock is bound 3202 * by the delay we use to rate-limit the updates. 3203 */ 3204 3205 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3206 3207 static void kvmclock_update_fn(struct work_struct *work) 3208 { 3209 unsigned long i; 3210 struct delayed_work *dwork = to_delayed_work(work); 3211 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3212 kvmclock_update_work); 3213 struct kvm *kvm = container_of(ka, struct kvm, arch); 3214 struct kvm_vcpu *vcpu; 3215 3216 kvm_for_each_vcpu(i, vcpu, kvm) { 3217 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3218 kvm_vcpu_kick(vcpu); 3219 } 3220 } 3221 3222 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3223 { 3224 struct kvm *kvm = v->kvm; 3225 3226 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3227 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3228 KVMCLOCK_UPDATE_DELAY); 3229 } 3230 3231 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3232 3233 static void kvmclock_sync_fn(struct work_struct *work) 3234 { 3235 struct delayed_work *dwork = to_delayed_work(work); 3236 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3237 kvmclock_sync_work); 3238 struct kvm *kvm = container_of(ka, struct kvm, arch); 3239 3240 if (!kvmclock_periodic_sync) 3241 return; 3242 3243 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3244 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3245 KVMCLOCK_SYNC_PERIOD); 3246 } 3247 3248 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3249 static bool is_mci_control_msr(u32 msr) 3250 { 3251 return (msr & 3) == 0; 3252 } 3253 static bool is_mci_status_msr(u32 msr) 3254 { 3255 return (msr & 3) == 1; 3256 } 3257 3258 /* 3259 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3260 */ 3261 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3262 { 3263 /* McStatusWrEn enabled? */ 3264 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3265 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3266 3267 return false; 3268 } 3269 3270 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3271 { 3272 u64 mcg_cap = vcpu->arch.mcg_cap; 3273 unsigned bank_num = mcg_cap & 0xff; 3274 u32 msr = msr_info->index; 3275 u64 data = msr_info->data; 3276 u32 offset, last_msr; 3277 3278 switch (msr) { 3279 case MSR_IA32_MCG_STATUS: 3280 vcpu->arch.mcg_status = data; 3281 break; 3282 case MSR_IA32_MCG_CTL: 3283 if (!(mcg_cap & MCG_CTL_P) && 3284 (data || !msr_info->host_initiated)) 3285 return 1; 3286 if (data != 0 && data != ~(u64)0) 3287 return 1; 3288 vcpu->arch.mcg_ctl = data; 3289 break; 3290 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3291 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3292 if (msr > last_msr) 3293 return 1; 3294 3295 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3296 return 1; 3297 /* An attempt to write a 1 to a reserved bit raises #GP */ 3298 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3299 return 1; 3300 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3301 last_msr + 1 - MSR_IA32_MC0_CTL2); 3302 vcpu->arch.mci_ctl2_banks[offset] = data; 3303 break; 3304 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3305 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3306 if (msr > last_msr) 3307 return 1; 3308 3309 /* 3310 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3311 * values are architecturally undefined. But, some Linux 3312 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3313 * issue on AMD K8s, allow bit 10 to be clear when setting all 3314 * other bits in order to avoid an uncaught #GP in the guest. 3315 * 3316 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3317 * single-bit ECC data errors. 3318 */ 3319 if (is_mci_control_msr(msr) && 3320 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3321 return 1; 3322 3323 /* 3324 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3325 * AMD-based CPUs allow non-zero values, but if and only if 3326 * HWCR[McStatusWrEn] is set. 3327 */ 3328 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3329 data != 0 && !can_set_mci_status(vcpu)) 3330 return 1; 3331 3332 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3333 last_msr + 1 - MSR_IA32_MC0_CTL); 3334 vcpu->arch.mce_banks[offset] = data; 3335 break; 3336 default: 3337 return 1; 3338 } 3339 return 0; 3340 } 3341 3342 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3343 { 3344 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3345 3346 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3347 } 3348 3349 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3350 { 3351 gpa_t gpa = data & ~0x3f; 3352 3353 /* Bits 4:5 are reserved, Should be zero */ 3354 if (data & 0x30) 3355 return 1; 3356 3357 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3358 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3359 return 1; 3360 3361 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3362 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3363 return 1; 3364 3365 if (!lapic_in_kernel(vcpu)) 3366 return data ? 1 : 0; 3367 3368 vcpu->arch.apf.msr_en_val = data; 3369 3370 if (!kvm_pv_async_pf_enabled(vcpu)) { 3371 kvm_clear_async_pf_completion_queue(vcpu); 3372 kvm_async_pf_hash_reset(vcpu); 3373 return 0; 3374 } 3375 3376 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3377 sizeof(u64))) 3378 return 1; 3379 3380 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3381 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3382 3383 kvm_async_pf_wakeup_all(vcpu); 3384 3385 return 0; 3386 } 3387 3388 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3389 { 3390 /* Bits 8-63 are reserved */ 3391 if (data >> 8) 3392 return 1; 3393 3394 if (!lapic_in_kernel(vcpu)) 3395 return 1; 3396 3397 vcpu->arch.apf.msr_int_val = data; 3398 3399 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3400 3401 return 0; 3402 } 3403 3404 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3405 { 3406 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3407 vcpu->arch.time = 0; 3408 } 3409 3410 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3411 { 3412 ++vcpu->stat.tlb_flush; 3413 static_call(kvm_x86_flush_tlb_all)(vcpu); 3414 3415 /* Flushing all ASIDs flushes the current ASID... */ 3416 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3417 } 3418 3419 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3420 { 3421 ++vcpu->stat.tlb_flush; 3422 3423 if (!tdp_enabled) { 3424 /* 3425 * A TLB flush on behalf of the guest is equivalent to 3426 * INVPCID(all), toggling CR4.PGE, etc., which requires 3427 * a forced sync of the shadow page tables. Ensure all the 3428 * roots are synced and the guest TLB in hardware is clean. 3429 */ 3430 kvm_mmu_sync_roots(vcpu); 3431 kvm_mmu_sync_prev_roots(vcpu); 3432 } 3433 3434 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3435 3436 /* 3437 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3438 * grained flushing. 3439 */ 3440 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3441 } 3442 3443 3444 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3445 { 3446 ++vcpu->stat.tlb_flush; 3447 static_call(kvm_x86_flush_tlb_current)(vcpu); 3448 } 3449 3450 /* 3451 * Service "local" TLB flush requests, which are specific to the current MMU 3452 * context. In addition to the generic event handling in vcpu_enter_guest(), 3453 * TLB flushes that are targeted at an MMU context also need to be serviced 3454 * prior before nested VM-Enter/VM-Exit. 3455 */ 3456 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3457 { 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3459 kvm_vcpu_flush_tlb_current(vcpu); 3460 3461 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3462 kvm_vcpu_flush_tlb_guest(vcpu); 3463 } 3464 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3465 3466 static void record_steal_time(struct kvm_vcpu *vcpu) 3467 { 3468 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3469 struct kvm_steal_time __user *st; 3470 struct kvm_memslots *slots; 3471 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3472 u64 steal; 3473 u32 version; 3474 3475 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3476 kvm_xen_runstate_set_running(vcpu); 3477 return; 3478 } 3479 3480 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3481 return; 3482 3483 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3484 return; 3485 3486 slots = kvm_memslots(vcpu->kvm); 3487 3488 if (unlikely(slots->generation != ghc->generation || 3489 gpa != ghc->gpa || 3490 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3491 /* We rely on the fact that it fits in a single page. */ 3492 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3493 3494 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3495 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3496 return; 3497 } 3498 3499 st = (struct kvm_steal_time __user *)ghc->hva; 3500 /* 3501 * Doing a TLB flush here, on the guest's behalf, can avoid 3502 * expensive IPIs. 3503 */ 3504 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3505 u8 st_preempted = 0; 3506 int err = -EFAULT; 3507 3508 if (!user_access_begin(st, sizeof(*st))) 3509 return; 3510 3511 asm volatile("1: xchgb %0, %2\n" 3512 "xor %1, %1\n" 3513 "2:\n" 3514 _ASM_EXTABLE_UA(1b, 2b) 3515 : "+q" (st_preempted), 3516 "+&r" (err), 3517 "+m" (st->preempted)); 3518 if (err) 3519 goto out; 3520 3521 user_access_end(); 3522 3523 vcpu->arch.st.preempted = 0; 3524 3525 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3526 st_preempted & KVM_VCPU_FLUSH_TLB); 3527 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3528 kvm_vcpu_flush_tlb_guest(vcpu); 3529 3530 if (!user_access_begin(st, sizeof(*st))) 3531 goto dirty; 3532 } else { 3533 if (!user_access_begin(st, sizeof(*st))) 3534 return; 3535 3536 unsafe_put_user(0, &st->preempted, out); 3537 vcpu->arch.st.preempted = 0; 3538 } 3539 3540 unsafe_get_user(version, &st->version, out); 3541 if (version & 1) 3542 version += 1; /* first time write, random junk */ 3543 3544 version += 1; 3545 unsafe_put_user(version, &st->version, out); 3546 3547 smp_wmb(); 3548 3549 unsafe_get_user(steal, &st->steal, out); 3550 steal += current->sched_info.run_delay - 3551 vcpu->arch.st.last_steal; 3552 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3553 unsafe_put_user(steal, &st->steal, out); 3554 3555 version += 1; 3556 unsafe_put_user(version, &st->version, out); 3557 3558 out: 3559 user_access_end(); 3560 dirty: 3561 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3562 } 3563 3564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3565 { 3566 u32 msr = msr_info->index; 3567 u64 data = msr_info->data; 3568 3569 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3570 return kvm_xen_write_hypercall_page(vcpu, data); 3571 3572 switch (msr) { 3573 case MSR_AMD64_NB_CFG: 3574 case MSR_IA32_UCODE_WRITE: 3575 case MSR_VM_HSAVE_PA: 3576 case MSR_AMD64_PATCH_LOADER: 3577 case MSR_AMD64_BU_CFG2: 3578 case MSR_AMD64_DC_CFG: 3579 case MSR_F15H_EX_CFG: 3580 break; 3581 3582 case MSR_IA32_UCODE_REV: 3583 if (msr_info->host_initiated) 3584 vcpu->arch.microcode_version = data; 3585 break; 3586 case MSR_IA32_ARCH_CAPABILITIES: 3587 if (!msr_info->host_initiated) 3588 return 1; 3589 vcpu->arch.arch_capabilities = data; 3590 break; 3591 case MSR_IA32_PERF_CAPABILITIES: 3592 if (!msr_info->host_initiated) 3593 return 1; 3594 if (data & ~kvm_caps.supported_perf_cap) 3595 return 1; 3596 3597 vcpu->arch.perf_capabilities = data; 3598 kvm_pmu_refresh(vcpu); 3599 return 0; 3600 case MSR_EFER: 3601 return set_efer(vcpu, msr_info); 3602 case MSR_K7_HWCR: 3603 data &= ~(u64)0x40; /* ignore flush filter disable */ 3604 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3605 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3606 3607 /* Handle McStatusWrEn */ 3608 if (data == BIT_ULL(18)) { 3609 vcpu->arch.msr_hwcr = data; 3610 } else if (data != 0) { 3611 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3612 return 1; 3613 } 3614 break; 3615 case MSR_FAM10H_MMIO_CONF_BASE: 3616 if (data != 0) { 3617 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3618 return 1; 3619 } 3620 break; 3621 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3622 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3623 return kvm_mtrr_set_msr(vcpu, msr, data); 3624 case MSR_IA32_APICBASE: 3625 return kvm_set_apic_base(vcpu, msr_info); 3626 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3627 return kvm_x2apic_msr_write(vcpu, msr, data); 3628 case MSR_IA32_TSC_DEADLINE: 3629 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3630 break; 3631 case MSR_IA32_TSC_ADJUST: 3632 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3633 if (!msr_info->host_initiated) { 3634 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3635 adjust_tsc_offset_guest(vcpu, adj); 3636 /* Before back to guest, tsc_timestamp must be adjusted 3637 * as well, otherwise guest's percpu pvclock time could jump. 3638 */ 3639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3640 } 3641 vcpu->arch.ia32_tsc_adjust_msr = data; 3642 } 3643 break; 3644 case MSR_IA32_MISC_ENABLE: { 3645 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3646 3647 if (!msr_info->host_initiated) { 3648 /* RO bits */ 3649 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3650 return 1; 3651 3652 /* R bits, i.e. writes are ignored, but don't fault. */ 3653 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3654 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3655 } 3656 3657 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3658 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3659 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3660 return 1; 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 kvm_update_cpuid_runtime(vcpu); 3663 } else { 3664 vcpu->arch.ia32_misc_enable_msr = data; 3665 } 3666 break; 3667 } 3668 case MSR_IA32_SMBASE: 3669 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3670 return 1; 3671 vcpu->arch.smbase = data; 3672 break; 3673 case MSR_IA32_POWER_CTL: 3674 vcpu->arch.msr_ia32_power_ctl = data; 3675 break; 3676 case MSR_IA32_TSC: 3677 if (msr_info->host_initiated) { 3678 kvm_synchronize_tsc(vcpu, data); 3679 } else { 3680 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3681 adjust_tsc_offset_guest(vcpu, adj); 3682 vcpu->arch.ia32_tsc_adjust_msr += adj; 3683 } 3684 break; 3685 case MSR_IA32_XSS: 3686 if (!msr_info->host_initiated && 3687 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3688 return 1; 3689 /* 3690 * KVM supports exposing PT to the guest, but does not support 3691 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3692 * XSAVES/XRSTORS to save/restore PT MSRs. 3693 */ 3694 if (data & ~kvm_caps.supported_xss) 3695 return 1; 3696 vcpu->arch.ia32_xss = data; 3697 kvm_update_cpuid_runtime(vcpu); 3698 break; 3699 case MSR_SMI_COUNT: 3700 if (!msr_info->host_initiated) 3701 return 1; 3702 vcpu->arch.smi_count = data; 3703 break; 3704 case MSR_KVM_WALL_CLOCK_NEW: 3705 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3706 return 1; 3707 3708 vcpu->kvm->arch.wall_clock = data; 3709 kvm_write_wall_clock(vcpu->kvm, data, 0); 3710 break; 3711 case MSR_KVM_WALL_CLOCK: 3712 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3713 return 1; 3714 3715 vcpu->kvm->arch.wall_clock = data; 3716 kvm_write_wall_clock(vcpu->kvm, data, 0); 3717 break; 3718 case MSR_KVM_SYSTEM_TIME_NEW: 3719 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3720 return 1; 3721 3722 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3723 break; 3724 case MSR_KVM_SYSTEM_TIME: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3726 return 1; 3727 3728 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3729 break; 3730 case MSR_KVM_ASYNC_PF_EN: 3731 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3732 return 1; 3733 3734 if (kvm_pv_enable_async_pf(vcpu, data)) 3735 return 1; 3736 break; 3737 case MSR_KVM_ASYNC_PF_INT: 3738 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3739 return 1; 3740 3741 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3742 return 1; 3743 break; 3744 case MSR_KVM_ASYNC_PF_ACK: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3746 return 1; 3747 if (data & 0x1) { 3748 vcpu->arch.apf.pageready_pending = false; 3749 kvm_check_async_pf_completion(vcpu); 3750 } 3751 break; 3752 case MSR_KVM_STEAL_TIME: 3753 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3754 return 1; 3755 3756 if (unlikely(!sched_info_on())) 3757 return 1; 3758 3759 if (data & KVM_STEAL_RESERVED_MASK) 3760 return 1; 3761 3762 vcpu->arch.st.msr_val = data; 3763 3764 if (!(data & KVM_MSR_ENABLED)) 3765 break; 3766 3767 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3768 3769 break; 3770 case MSR_KVM_PV_EOI_EN: 3771 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3772 return 1; 3773 3774 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3775 return 1; 3776 break; 3777 3778 case MSR_KVM_POLL_CONTROL: 3779 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3780 return 1; 3781 3782 /* only enable bit supported */ 3783 if (data & (-1ULL << 1)) 3784 return 1; 3785 3786 vcpu->arch.msr_kvm_poll_control = data; 3787 break; 3788 3789 case MSR_IA32_MCG_CTL: 3790 case MSR_IA32_MCG_STATUS: 3791 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3792 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3793 return set_msr_mce(vcpu, msr_info); 3794 3795 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3796 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3797 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3798 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3799 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3800 return kvm_pmu_set_msr(vcpu, msr_info); 3801 3802 if (data) 3803 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3804 break; 3805 case MSR_K7_CLK_CTL: 3806 /* 3807 * Ignore all writes to this no longer documented MSR. 3808 * Writes are only relevant for old K7 processors, 3809 * all pre-dating SVM, but a recommended workaround from 3810 * AMD for these chips. It is possible to specify the 3811 * affected processor models on the command line, hence 3812 * the need to ignore the workaround. 3813 */ 3814 break; 3815 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3816 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3817 case HV_X64_MSR_SYNDBG_OPTIONS: 3818 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3819 case HV_X64_MSR_CRASH_CTL: 3820 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3821 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3822 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3823 case HV_X64_MSR_TSC_EMULATION_STATUS: 3824 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3825 return kvm_hv_set_msr_common(vcpu, msr, data, 3826 msr_info->host_initiated); 3827 case MSR_IA32_BBL_CR_CTL3: 3828 /* Drop writes to this legacy MSR -- see rdmsr 3829 * counterpart for further detail. 3830 */ 3831 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3832 break; 3833 case MSR_AMD64_OSVW_ID_LENGTH: 3834 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3835 return 1; 3836 vcpu->arch.osvw.length = data; 3837 break; 3838 case MSR_AMD64_OSVW_STATUS: 3839 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3840 return 1; 3841 vcpu->arch.osvw.status = data; 3842 break; 3843 case MSR_PLATFORM_INFO: 3844 if (!msr_info->host_initiated || 3845 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3846 cpuid_fault_enabled(vcpu))) 3847 return 1; 3848 vcpu->arch.msr_platform_info = data; 3849 break; 3850 case MSR_MISC_FEATURES_ENABLES: 3851 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3852 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3853 !supports_cpuid_fault(vcpu))) 3854 return 1; 3855 vcpu->arch.msr_misc_features_enables = data; 3856 break; 3857 #ifdef CONFIG_X86_64 3858 case MSR_IA32_XFD: 3859 if (!msr_info->host_initiated && 3860 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3861 return 1; 3862 3863 if (data & ~kvm_guest_supported_xfd(vcpu)) 3864 return 1; 3865 3866 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3867 break; 3868 case MSR_IA32_XFD_ERR: 3869 if (!msr_info->host_initiated && 3870 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3871 return 1; 3872 3873 if (data & ~kvm_guest_supported_xfd(vcpu)) 3874 return 1; 3875 3876 vcpu->arch.guest_fpu.xfd_err = data; 3877 break; 3878 #endif 3879 case MSR_IA32_PEBS_ENABLE: 3880 case MSR_IA32_DS_AREA: 3881 case MSR_PEBS_DATA_CFG: 3882 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3883 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3884 return kvm_pmu_set_msr(vcpu, msr_info); 3885 /* 3886 * Userspace is allowed to write '0' to MSRs that KVM reports 3887 * as to-be-saved, even if an MSRs isn't fully supported. 3888 */ 3889 return !msr_info->host_initiated || data; 3890 default: 3891 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3892 return kvm_pmu_set_msr(vcpu, msr_info); 3893 return KVM_MSR_RET_INVALID; 3894 } 3895 return 0; 3896 } 3897 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3898 3899 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3900 { 3901 u64 data; 3902 u64 mcg_cap = vcpu->arch.mcg_cap; 3903 unsigned bank_num = mcg_cap & 0xff; 3904 u32 offset, last_msr; 3905 3906 switch (msr) { 3907 case MSR_IA32_P5_MC_ADDR: 3908 case MSR_IA32_P5_MC_TYPE: 3909 data = 0; 3910 break; 3911 case MSR_IA32_MCG_CAP: 3912 data = vcpu->arch.mcg_cap; 3913 break; 3914 case MSR_IA32_MCG_CTL: 3915 if (!(mcg_cap & MCG_CTL_P) && !host) 3916 return 1; 3917 data = vcpu->arch.mcg_ctl; 3918 break; 3919 case MSR_IA32_MCG_STATUS: 3920 data = vcpu->arch.mcg_status; 3921 break; 3922 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3923 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3924 if (msr > last_msr) 3925 return 1; 3926 3927 if (!(mcg_cap & MCG_CMCI_P) && !host) 3928 return 1; 3929 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3930 last_msr + 1 - MSR_IA32_MC0_CTL2); 3931 data = vcpu->arch.mci_ctl2_banks[offset]; 3932 break; 3933 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3934 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3935 if (msr > last_msr) 3936 return 1; 3937 3938 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3939 last_msr + 1 - MSR_IA32_MC0_CTL); 3940 data = vcpu->arch.mce_banks[offset]; 3941 break; 3942 default: 3943 return 1; 3944 } 3945 *pdata = data; 3946 return 0; 3947 } 3948 3949 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3950 { 3951 switch (msr_info->index) { 3952 case MSR_IA32_PLATFORM_ID: 3953 case MSR_IA32_EBL_CR_POWERON: 3954 case MSR_IA32_LASTBRANCHFROMIP: 3955 case MSR_IA32_LASTBRANCHTOIP: 3956 case MSR_IA32_LASTINTFROMIP: 3957 case MSR_IA32_LASTINTTOIP: 3958 case MSR_AMD64_SYSCFG: 3959 case MSR_K8_TSEG_ADDR: 3960 case MSR_K8_TSEG_MASK: 3961 case MSR_VM_HSAVE_PA: 3962 case MSR_K8_INT_PENDING_MSG: 3963 case MSR_AMD64_NB_CFG: 3964 case MSR_FAM10H_MMIO_CONF_BASE: 3965 case MSR_AMD64_BU_CFG2: 3966 case MSR_IA32_PERF_CTL: 3967 case MSR_AMD64_DC_CFG: 3968 case MSR_F15H_EX_CFG: 3969 /* 3970 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3971 * limit) MSRs. Just return 0, as we do not want to expose the host 3972 * data here. Do not conditionalize this on CPUID, as KVM does not do 3973 * so for existing CPU-specific MSRs. 3974 */ 3975 case MSR_RAPL_POWER_UNIT: 3976 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3977 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3978 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3979 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3980 msr_info->data = 0; 3981 break; 3982 case MSR_IA32_PEBS_ENABLE: 3983 case MSR_IA32_DS_AREA: 3984 case MSR_PEBS_DATA_CFG: 3985 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3986 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3987 return kvm_pmu_get_msr(vcpu, msr_info); 3988 /* 3989 * Userspace is allowed to read MSRs that KVM reports as 3990 * to-be-saved, even if an MSR isn't fully supported. 3991 */ 3992 if (!msr_info->host_initiated) 3993 return 1; 3994 msr_info->data = 0; 3995 break; 3996 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3997 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3998 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3999 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4000 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4001 return kvm_pmu_get_msr(vcpu, msr_info); 4002 msr_info->data = 0; 4003 break; 4004 case MSR_IA32_UCODE_REV: 4005 msr_info->data = vcpu->arch.microcode_version; 4006 break; 4007 case MSR_IA32_ARCH_CAPABILITIES: 4008 if (!msr_info->host_initiated && 4009 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4010 return 1; 4011 msr_info->data = vcpu->arch.arch_capabilities; 4012 break; 4013 case MSR_IA32_PERF_CAPABILITIES: 4014 if (!msr_info->host_initiated && 4015 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4016 return 1; 4017 msr_info->data = vcpu->arch.perf_capabilities; 4018 break; 4019 case MSR_IA32_POWER_CTL: 4020 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4021 break; 4022 case MSR_IA32_TSC: { 4023 /* 4024 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4025 * even when not intercepted. AMD manual doesn't explicitly 4026 * state this but appears to behave the same. 4027 * 4028 * On userspace reads and writes, however, we unconditionally 4029 * return L1's TSC value to ensure backwards-compatible 4030 * behavior for migration. 4031 */ 4032 u64 offset, ratio; 4033 4034 if (msr_info->host_initiated) { 4035 offset = vcpu->arch.l1_tsc_offset; 4036 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4037 } else { 4038 offset = vcpu->arch.tsc_offset; 4039 ratio = vcpu->arch.tsc_scaling_ratio; 4040 } 4041 4042 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4043 break; 4044 } 4045 case MSR_MTRRcap: 4046 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4047 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4048 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4049 case 0xcd: /* fsb frequency */ 4050 msr_info->data = 3; 4051 break; 4052 /* 4053 * MSR_EBC_FREQUENCY_ID 4054 * Conservative value valid for even the basic CPU models. 4055 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4056 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4057 * and 266MHz for model 3, or 4. Set Core Clock 4058 * Frequency to System Bus Frequency Ratio to 1 (bits 4059 * 31:24) even though these are only valid for CPU 4060 * models > 2, however guests may end up dividing or 4061 * multiplying by zero otherwise. 4062 */ 4063 case MSR_EBC_FREQUENCY_ID: 4064 msr_info->data = 1 << 24; 4065 break; 4066 case MSR_IA32_APICBASE: 4067 msr_info->data = kvm_get_apic_base(vcpu); 4068 break; 4069 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4070 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4071 case MSR_IA32_TSC_DEADLINE: 4072 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4073 break; 4074 case MSR_IA32_TSC_ADJUST: 4075 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4076 break; 4077 case MSR_IA32_MISC_ENABLE: 4078 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4079 break; 4080 case MSR_IA32_SMBASE: 4081 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4082 return 1; 4083 msr_info->data = vcpu->arch.smbase; 4084 break; 4085 case MSR_SMI_COUNT: 4086 msr_info->data = vcpu->arch.smi_count; 4087 break; 4088 case MSR_IA32_PERF_STATUS: 4089 /* TSC increment by tick */ 4090 msr_info->data = 1000ULL; 4091 /* CPU multiplier */ 4092 msr_info->data |= (((uint64_t)4ULL) << 40); 4093 break; 4094 case MSR_EFER: 4095 msr_info->data = vcpu->arch.efer; 4096 break; 4097 case MSR_KVM_WALL_CLOCK: 4098 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4099 return 1; 4100 4101 msr_info->data = vcpu->kvm->arch.wall_clock; 4102 break; 4103 case MSR_KVM_WALL_CLOCK_NEW: 4104 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4105 return 1; 4106 4107 msr_info->data = vcpu->kvm->arch.wall_clock; 4108 break; 4109 case MSR_KVM_SYSTEM_TIME: 4110 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4111 return 1; 4112 4113 msr_info->data = vcpu->arch.time; 4114 break; 4115 case MSR_KVM_SYSTEM_TIME_NEW: 4116 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4117 return 1; 4118 4119 msr_info->data = vcpu->arch.time; 4120 break; 4121 case MSR_KVM_ASYNC_PF_EN: 4122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4123 return 1; 4124 4125 msr_info->data = vcpu->arch.apf.msr_en_val; 4126 break; 4127 case MSR_KVM_ASYNC_PF_INT: 4128 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4129 return 1; 4130 4131 msr_info->data = vcpu->arch.apf.msr_int_val; 4132 break; 4133 case MSR_KVM_ASYNC_PF_ACK: 4134 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4135 return 1; 4136 4137 msr_info->data = 0; 4138 break; 4139 case MSR_KVM_STEAL_TIME: 4140 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4141 return 1; 4142 4143 msr_info->data = vcpu->arch.st.msr_val; 4144 break; 4145 case MSR_KVM_PV_EOI_EN: 4146 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4147 return 1; 4148 4149 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4150 break; 4151 case MSR_KVM_POLL_CONTROL: 4152 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4153 return 1; 4154 4155 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4156 break; 4157 case MSR_IA32_P5_MC_ADDR: 4158 case MSR_IA32_P5_MC_TYPE: 4159 case MSR_IA32_MCG_CAP: 4160 case MSR_IA32_MCG_CTL: 4161 case MSR_IA32_MCG_STATUS: 4162 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4163 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4164 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4165 msr_info->host_initiated); 4166 case MSR_IA32_XSS: 4167 if (!msr_info->host_initiated && 4168 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4169 return 1; 4170 msr_info->data = vcpu->arch.ia32_xss; 4171 break; 4172 case MSR_K7_CLK_CTL: 4173 /* 4174 * Provide expected ramp-up count for K7. All other 4175 * are set to zero, indicating minimum divisors for 4176 * every field. 4177 * 4178 * This prevents guest kernels on AMD host with CPU 4179 * type 6, model 8 and higher from exploding due to 4180 * the rdmsr failing. 4181 */ 4182 msr_info->data = 0x20000000; 4183 break; 4184 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4185 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4186 case HV_X64_MSR_SYNDBG_OPTIONS: 4187 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4188 case HV_X64_MSR_CRASH_CTL: 4189 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4190 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4191 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4192 case HV_X64_MSR_TSC_EMULATION_STATUS: 4193 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4194 return kvm_hv_get_msr_common(vcpu, 4195 msr_info->index, &msr_info->data, 4196 msr_info->host_initiated); 4197 case MSR_IA32_BBL_CR_CTL3: 4198 /* This legacy MSR exists but isn't fully documented in current 4199 * silicon. It is however accessed by winxp in very narrow 4200 * scenarios where it sets bit #19, itself documented as 4201 * a "reserved" bit. Best effort attempt to source coherent 4202 * read data here should the balance of the register be 4203 * interpreted by the guest: 4204 * 4205 * L2 cache control register 3: 64GB range, 256KB size, 4206 * enabled, latency 0x1, configured 4207 */ 4208 msr_info->data = 0xbe702111; 4209 break; 4210 case MSR_AMD64_OSVW_ID_LENGTH: 4211 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4212 return 1; 4213 msr_info->data = vcpu->arch.osvw.length; 4214 break; 4215 case MSR_AMD64_OSVW_STATUS: 4216 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4217 return 1; 4218 msr_info->data = vcpu->arch.osvw.status; 4219 break; 4220 case MSR_PLATFORM_INFO: 4221 if (!msr_info->host_initiated && 4222 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4223 return 1; 4224 msr_info->data = vcpu->arch.msr_platform_info; 4225 break; 4226 case MSR_MISC_FEATURES_ENABLES: 4227 msr_info->data = vcpu->arch.msr_misc_features_enables; 4228 break; 4229 case MSR_K7_HWCR: 4230 msr_info->data = vcpu->arch.msr_hwcr; 4231 break; 4232 #ifdef CONFIG_X86_64 4233 case MSR_IA32_XFD: 4234 if (!msr_info->host_initiated && 4235 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4236 return 1; 4237 4238 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4239 break; 4240 case MSR_IA32_XFD_ERR: 4241 if (!msr_info->host_initiated && 4242 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4243 return 1; 4244 4245 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4246 break; 4247 #endif 4248 default: 4249 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4250 return kvm_pmu_get_msr(vcpu, msr_info); 4251 return KVM_MSR_RET_INVALID; 4252 } 4253 return 0; 4254 } 4255 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4256 4257 /* 4258 * Read or write a bunch of msrs. All parameters are kernel addresses. 4259 * 4260 * @return number of msrs set successfully. 4261 */ 4262 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4263 struct kvm_msr_entry *entries, 4264 int (*do_msr)(struct kvm_vcpu *vcpu, 4265 unsigned index, u64 *data)) 4266 { 4267 int i; 4268 4269 for (i = 0; i < msrs->nmsrs; ++i) 4270 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4271 break; 4272 4273 return i; 4274 } 4275 4276 /* 4277 * Read or write a bunch of msrs. Parameters are user addresses. 4278 * 4279 * @return number of msrs set successfully. 4280 */ 4281 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4282 int (*do_msr)(struct kvm_vcpu *vcpu, 4283 unsigned index, u64 *data), 4284 int writeback) 4285 { 4286 struct kvm_msrs msrs; 4287 struct kvm_msr_entry *entries; 4288 int r, n; 4289 unsigned size; 4290 4291 r = -EFAULT; 4292 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4293 goto out; 4294 4295 r = -E2BIG; 4296 if (msrs.nmsrs >= MAX_IO_MSRS) 4297 goto out; 4298 4299 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4300 entries = memdup_user(user_msrs->entries, size); 4301 if (IS_ERR(entries)) { 4302 r = PTR_ERR(entries); 4303 goto out; 4304 } 4305 4306 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4307 if (r < 0) 4308 goto out_free; 4309 4310 r = -EFAULT; 4311 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4312 goto out_free; 4313 4314 r = n; 4315 4316 out_free: 4317 kfree(entries); 4318 out: 4319 return r; 4320 } 4321 4322 static inline bool kvm_can_mwait_in_guest(void) 4323 { 4324 return boot_cpu_has(X86_FEATURE_MWAIT) && 4325 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4326 boot_cpu_has(X86_FEATURE_ARAT); 4327 } 4328 4329 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4330 struct kvm_cpuid2 __user *cpuid_arg) 4331 { 4332 struct kvm_cpuid2 cpuid; 4333 int r; 4334 4335 r = -EFAULT; 4336 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4337 return r; 4338 4339 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4340 if (r) 4341 return r; 4342 4343 r = -EFAULT; 4344 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4345 return r; 4346 4347 return 0; 4348 } 4349 4350 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4351 { 4352 int r = 0; 4353 4354 switch (ext) { 4355 case KVM_CAP_IRQCHIP: 4356 case KVM_CAP_HLT: 4357 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4358 case KVM_CAP_SET_TSS_ADDR: 4359 case KVM_CAP_EXT_CPUID: 4360 case KVM_CAP_EXT_EMUL_CPUID: 4361 case KVM_CAP_CLOCKSOURCE: 4362 case KVM_CAP_PIT: 4363 case KVM_CAP_NOP_IO_DELAY: 4364 case KVM_CAP_MP_STATE: 4365 case KVM_CAP_SYNC_MMU: 4366 case KVM_CAP_USER_NMI: 4367 case KVM_CAP_REINJECT_CONTROL: 4368 case KVM_CAP_IRQ_INJECT_STATUS: 4369 case KVM_CAP_IOEVENTFD: 4370 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4371 case KVM_CAP_PIT2: 4372 case KVM_CAP_PIT_STATE2: 4373 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4374 case KVM_CAP_VCPU_EVENTS: 4375 case KVM_CAP_HYPERV: 4376 case KVM_CAP_HYPERV_VAPIC: 4377 case KVM_CAP_HYPERV_SPIN: 4378 case KVM_CAP_HYPERV_SYNIC: 4379 case KVM_CAP_HYPERV_SYNIC2: 4380 case KVM_CAP_HYPERV_VP_INDEX: 4381 case KVM_CAP_HYPERV_EVENTFD: 4382 case KVM_CAP_HYPERV_TLBFLUSH: 4383 case KVM_CAP_HYPERV_SEND_IPI: 4384 case KVM_CAP_HYPERV_CPUID: 4385 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4386 case KVM_CAP_SYS_HYPERV_CPUID: 4387 case KVM_CAP_PCI_SEGMENT: 4388 case KVM_CAP_DEBUGREGS: 4389 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4390 case KVM_CAP_XSAVE: 4391 case KVM_CAP_ASYNC_PF: 4392 case KVM_CAP_ASYNC_PF_INT: 4393 case KVM_CAP_GET_TSC_KHZ: 4394 case KVM_CAP_KVMCLOCK_CTRL: 4395 case KVM_CAP_READONLY_MEM: 4396 case KVM_CAP_HYPERV_TIME: 4397 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4398 case KVM_CAP_TSC_DEADLINE_TIMER: 4399 case KVM_CAP_DISABLE_QUIRKS: 4400 case KVM_CAP_SET_BOOT_CPU_ID: 4401 case KVM_CAP_SPLIT_IRQCHIP: 4402 case KVM_CAP_IMMEDIATE_EXIT: 4403 case KVM_CAP_PMU_EVENT_FILTER: 4404 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4405 case KVM_CAP_GET_MSR_FEATURES: 4406 case KVM_CAP_MSR_PLATFORM_INFO: 4407 case KVM_CAP_EXCEPTION_PAYLOAD: 4408 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4409 case KVM_CAP_SET_GUEST_DEBUG: 4410 case KVM_CAP_LAST_CPU: 4411 case KVM_CAP_X86_USER_SPACE_MSR: 4412 case KVM_CAP_X86_MSR_FILTER: 4413 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4414 #ifdef CONFIG_X86_SGX_KVM 4415 case KVM_CAP_SGX_ATTRIBUTE: 4416 #endif 4417 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4418 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4419 case KVM_CAP_SREGS2: 4420 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4421 case KVM_CAP_VCPU_ATTRIBUTES: 4422 case KVM_CAP_SYS_ATTRIBUTES: 4423 case KVM_CAP_VAPIC: 4424 case KVM_CAP_ENABLE_CAP: 4425 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4426 r = 1; 4427 break; 4428 case KVM_CAP_EXIT_HYPERCALL: 4429 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4430 break; 4431 case KVM_CAP_SET_GUEST_DEBUG2: 4432 return KVM_GUESTDBG_VALID_MASK; 4433 #ifdef CONFIG_KVM_XEN 4434 case KVM_CAP_XEN_HVM: 4435 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4436 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4437 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4438 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4439 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4440 if (sched_info_on()) 4441 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4442 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4443 break; 4444 #endif 4445 case KVM_CAP_SYNC_REGS: 4446 r = KVM_SYNC_X86_VALID_FIELDS; 4447 break; 4448 case KVM_CAP_ADJUST_CLOCK: 4449 r = KVM_CLOCK_VALID_FLAGS; 4450 break; 4451 case KVM_CAP_X86_DISABLE_EXITS: 4452 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4453 KVM_X86_DISABLE_EXITS_CSTATE; 4454 if(kvm_can_mwait_in_guest()) 4455 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4456 break; 4457 case KVM_CAP_X86_SMM: 4458 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4459 break; 4460 4461 /* SMBASE is usually relocated above 1M on modern chipsets, 4462 * and SMM handlers might indeed rely on 4G segment limits, 4463 * so do not report SMM to be available if real mode is 4464 * emulated via vm86 mode. Still, do not go to great lengths 4465 * to avoid userspace's usage of the feature, because it is a 4466 * fringe case that is not enabled except via specific settings 4467 * of the module parameters. 4468 */ 4469 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4470 break; 4471 case KVM_CAP_NR_VCPUS: 4472 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4473 break; 4474 case KVM_CAP_MAX_VCPUS: 4475 r = KVM_MAX_VCPUS; 4476 break; 4477 case KVM_CAP_MAX_VCPU_ID: 4478 r = KVM_MAX_VCPU_IDS; 4479 break; 4480 case KVM_CAP_PV_MMU: /* obsolete */ 4481 r = 0; 4482 break; 4483 case KVM_CAP_MCE: 4484 r = KVM_MAX_MCE_BANKS; 4485 break; 4486 case KVM_CAP_XCRS: 4487 r = boot_cpu_has(X86_FEATURE_XSAVE); 4488 break; 4489 case KVM_CAP_TSC_CONTROL: 4490 case KVM_CAP_VM_TSC_CONTROL: 4491 r = kvm_caps.has_tsc_control; 4492 break; 4493 case KVM_CAP_X2APIC_API: 4494 r = KVM_X2APIC_API_VALID_FLAGS; 4495 break; 4496 case KVM_CAP_NESTED_STATE: 4497 r = kvm_x86_ops.nested_ops->get_state ? 4498 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4499 break; 4500 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4501 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4502 break; 4503 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4504 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4505 break; 4506 case KVM_CAP_SMALLER_MAXPHYADDR: 4507 r = (int) allow_smaller_maxphyaddr; 4508 break; 4509 case KVM_CAP_STEAL_TIME: 4510 r = sched_info_on(); 4511 break; 4512 case KVM_CAP_X86_BUS_LOCK_EXIT: 4513 if (kvm_caps.has_bus_lock_exit) 4514 r = KVM_BUS_LOCK_DETECTION_OFF | 4515 KVM_BUS_LOCK_DETECTION_EXIT; 4516 else 4517 r = 0; 4518 break; 4519 case KVM_CAP_XSAVE2: { 4520 u64 guest_perm = xstate_get_guest_group_perm(); 4521 4522 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4523 if (r < sizeof(struct kvm_xsave)) 4524 r = sizeof(struct kvm_xsave); 4525 break; 4526 } 4527 case KVM_CAP_PMU_CAPABILITY: 4528 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4529 break; 4530 case KVM_CAP_DISABLE_QUIRKS2: 4531 r = KVM_X86_VALID_QUIRKS; 4532 break; 4533 case KVM_CAP_X86_NOTIFY_VMEXIT: 4534 r = kvm_caps.has_notify_vmexit; 4535 break; 4536 default: 4537 break; 4538 } 4539 return r; 4540 } 4541 4542 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4543 { 4544 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4545 4546 if ((u64)(unsigned long)uaddr != attr->addr) 4547 return ERR_PTR_USR(-EFAULT); 4548 return uaddr; 4549 } 4550 4551 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4552 { 4553 u64 __user *uaddr = kvm_get_attr_addr(attr); 4554 4555 if (attr->group) 4556 return -ENXIO; 4557 4558 if (IS_ERR(uaddr)) 4559 return PTR_ERR(uaddr); 4560 4561 switch (attr->attr) { 4562 case KVM_X86_XCOMP_GUEST_SUPP: 4563 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4564 return -EFAULT; 4565 return 0; 4566 default: 4567 return -ENXIO; 4568 break; 4569 } 4570 } 4571 4572 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4573 { 4574 if (attr->group) 4575 return -ENXIO; 4576 4577 switch (attr->attr) { 4578 case KVM_X86_XCOMP_GUEST_SUPP: 4579 return 0; 4580 default: 4581 return -ENXIO; 4582 } 4583 } 4584 4585 long kvm_arch_dev_ioctl(struct file *filp, 4586 unsigned int ioctl, unsigned long arg) 4587 { 4588 void __user *argp = (void __user *)arg; 4589 long r; 4590 4591 switch (ioctl) { 4592 case KVM_GET_MSR_INDEX_LIST: { 4593 struct kvm_msr_list __user *user_msr_list = argp; 4594 struct kvm_msr_list msr_list; 4595 unsigned n; 4596 4597 r = -EFAULT; 4598 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4599 goto out; 4600 n = msr_list.nmsrs; 4601 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4602 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4603 goto out; 4604 r = -E2BIG; 4605 if (n < msr_list.nmsrs) 4606 goto out; 4607 r = -EFAULT; 4608 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4609 num_msrs_to_save * sizeof(u32))) 4610 goto out; 4611 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4612 &emulated_msrs, 4613 num_emulated_msrs * sizeof(u32))) 4614 goto out; 4615 r = 0; 4616 break; 4617 } 4618 case KVM_GET_SUPPORTED_CPUID: 4619 case KVM_GET_EMULATED_CPUID: { 4620 struct kvm_cpuid2 __user *cpuid_arg = argp; 4621 struct kvm_cpuid2 cpuid; 4622 4623 r = -EFAULT; 4624 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4625 goto out; 4626 4627 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4628 ioctl); 4629 if (r) 4630 goto out; 4631 4632 r = -EFAULT; 4633 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4634 goto out; 4635 r = 0; 4636 break; 4637 } 4638 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4639 r = -EFAULT; 4640 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4641 sizeof(kvm_caps.supported_mce_cap))) 4642 goto out; 4643 r = 0; 4644 break; 4645 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4646 struct kvm_msr_list __user *user_msr_list = argp; 4647 struct kvm_msr_list msr_list; 4648 unsigned int n; 4649 4650 r = -EFAULT; 4651 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4652 goto out; 4653 n = msr_list.nmsrs; 4654 msr_list.nmsrs = num_msr_based_features; 4655 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4656 goto out; 4657 r = -E2BIG; 4658 if (n < msr_list.nmsrs) 4659 goto out; 4660 r = -EFAULT; 4661 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4662 num_msr_based_features * sizeof(u32))) 4663 goto out; 4664 r = 0; 4665 break; 4666 } 4667 case KVM_GET_MSRS: 4668 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4669 break; 4670 case KVM_GET_SUPPORTED_HV_CPUID: 4671 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4672 break; 4673 case KVM_GET_DEVICE_ATTR: { 4674 struct kvm_device_attr attr; 4675 r = -EFAULT; 4676 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4677 break; 4678 r = kvm_x86_dev_get_attr(&attr); 4679 break; 4680 } 4681 case KVM_HAS_DEVICE_ATTR: { 4682 struct kvm_device_attr attr; 4683 r = -EFAULT; 4684 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4685 break; 4686 r = kvm_x86_dev_has_attr(&attr); 4687 break; 4688 } 4689 default: 4690 r = -EINVAL; 4691 break; 4692 } 4693 out: 4694 return r; 4695 } 4696 4697 static void wbinvd_ipi(void *garbage) 4698 { 4699 wbinvd(); 4700 } 4701 4702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4703 { 4704 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4705 } 4706 4707 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4708 { 4709 /* Address WBINVD may be executed by guest */ 4710 if (need_emulate_wbinvd(vcpu)) { 4711 if (static_call(kvm_x86_has_wbinvd_exit)()) 4712 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4713 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4714 smp_call_function_single(vcpu->cpu, 4715 wbinvd_ipi, NULL, 1); 4716 } 4717 4718 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4719 4720 /* Save host pkru register if supported */ 4721 vcpu->arch.host_pkru = read_pkru(); 4722 4723 /* Apply any externally detected TSC adjustments (due to suspend) */ 4724 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4725 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4726 vcpu->arch.tsc_offset_adjustment = 0; 4727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4728 } 4729 4730 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4731 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4732 rdtsc() - vcpu->arch.last_host_tsc; 4733 if (tsc_delta < 0) 4734 mark_tsc_unstable("KVM discovered backwards TSC"); 4735 4736 if (kvm_check_tsc_unstable()) { 4737 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4738 vcpu->arch.last_guest_tsc); 4739 kvm_vcpu_write_tsc_offset(vcpu, offset); 4740 vcpu->arch.tsc_catchup = 1; 4741 } 4742 4743 if (kvm_lapic_hv_timer_in_use(vcpu)) 4744 kvm_lapic_restart_hv_timer(vcpu); 4745 4746 /* 4747 * On a host with synchronized TSC, there is no need to update 4748 * kvmclock on vcpu->cpu migration 4749 */ 4750 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4751 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4752 if (vcpu->cpu != cpu) 4753 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4754 vcpu->cpu = cpu; 4755 } 4756 4757 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4758 } 4759 4760 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4761 { 4762 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4763 struct kvm_steal_time __user *st; 4764 struct kvm_memslots *slots; 4765 static const u8 preempted = KVM_VCPU_PREEMPTED; 4766 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4767 4768 /* 4769 * The vCPU can be marked preempted if and only if the VM-Exit was on 4770 * an instruction boundary and will not trigger guest emulation of any 4771 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4772 * when this is true, for example allowing the vCPU to be marked 4773 * preempted if and only if the VM-Exit was due to a host interrupt. 4774 */ 4775 if (!vcpu->arch.at_instruction_boundary) { 4776 vcpu->stat.preemption_other++; 4777 return; 4778 } 4779 4780 vcpu->stat.preemption_reported++; 4781 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4782 return; 4783 4784 if (vcpu->arch.st.preempted) 4785 return; 4786 4787 /* This happens on process exit */ 4788 if (unlikely(current->mm != vcpu->kvm->mm)) 4789 return; 4790 4791 slots = kvm_memslots(vcpu->kvm); 4792 4793 if (unlikely(slots->generation != ghc->generation || 4794 gpa != ghc->gpa || 4795 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4796 return; 4797 4798 st = (struct kvm_steal_time __user *)ghc->hva; 4799 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4800 4801 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4802 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4803 4804 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4805 } 4806 4807 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4808 { 4809 int idx; 4810 4811 if (vcpu->preempted) { 4812 if (!vcpu->arch.guest_state_protected) 4813 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4814 4815 /* 4816 * Take the srcu lock as memslots will be accessed to check the gfn 4817 * cache generation against the memslots generation. 4818 */ 4819 idx = srcu_read_lock(&vcpu->kvm->srcu); 4820 if (kvm_xen_msr_enabled(vcpu->kvm)) 4821 kvm_xen_runstate_set_preempted(vcpu); 4822 else 4823 kvm_steal_time_set_preempted(vcpu); 4824 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4825 } 4826 4827 static_call(kvm_x86_vcpu_put)(vcpu); 4828 vcpu->arch.last_host_tsc = rdtsc(); 4829 } 4830 4831 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4832 struct kvm_lapic_state *s) 4833 { 4834 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4835 4836 return kvm_apic_get_state(vcpu, s); 4837 } 4838 4839 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4840 struct kvm_lapic_state *s) 4841 { 4842 int r; 4843 4844 r = kvm_apic_set_state(vcpu, s); 4845 if (r) 4846 return r; 4847 update_cr8_intercept(vcpu); 4848 4849 return 0; 4850 } 4851 4852 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4853 { 4854 /* 4855 * We can accept userspace's request for interrupt injection 4856 * as long as we have a place to store the interrupt number. 4857 * The actual injection will happen when the CPU is able to 4858 * deliver the interrupt. 4859 */ 4860 if (kvm_cpu_has_extint(vcpu)) 4861 return false; 4862 4863 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4864 return (!lapic_in_kernel(vcpu) || 4865 kvm_apic_accept_pic_intr(vcpu)); 4866 } 4867 4868 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4869 { 4870 /* 4871 * Do not cause an interrupt window exit if an exception 4872 * is pending or an event needs reinjection; userspace 4873 * might want to inject the interrupt manually using KVM_SET_REGS 4874 * or KVM_SET_SREGS. For that to work, we must be at an 4875 * instruction boundary and with no events half-injected. 4876 */ 4877 return (kvm_arch_interrupt_allowed(vcpu) && 4878 kvm_cpu_accept_dm_intr(vcpu) && 4879 !kvm_event_needs_reinjection(vcpu) && 4880 !kvm_is_exception_pending(vcpu)); 4881 } 4882 4883 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4884 struct kvm_interrupt *irq) 4885 { 4886 if (irq->irq >= KVM_NR_INTERRUPTS) 4887 return -EINVAL; 4888 4889 if (!irqchip_in_kernel(vcpu->kvm)) { 4890 kvm_queue_interrupt(vcpu, irq->irq, false); 4891 kvm_make_request(KVM_REQ_EVENT, vcpu); 4892 return 0; 4893 } 4894 4895 /* 4896 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4897 * fail for in-kernel 8259. 4898 */ 4899 if (pic_in_kernel(vcpu->kvm)) 4900 return -ENXIO; 4901 4902 if (vcpu->arch.pending_external_vector != -1) 4903 return -EEXIST; 4904 4905 vcpu->arch.pending_external_vector = irq->irq; 4906 kvm_make_request(KVM_REQ_EVENT, vcpu); 4907 return 0; 4908 } 4909 4910 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4911 { 4912 kvm_inject_nmi(vcpu); 4913 4914 return 0; 4915 } 4916 4917 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4918 struct kvm_tpr_access_ctl *tac) 4919 { 4920 if (tac->flags) 4921 return -EINVAL; 4922 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4923 return 0; 4924 } 4925 4926 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4927 u64 mcg_cap) 4928 { 4929 int r; 4930 unsigned bank_num = mcg_cap & 0xff, bank; 4931 4932 r = -EINVAL; 4933 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4934 goto out; 4935 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4936 goto out; 4937 r = 0; 4938 vcpu->arch.mcg_cap = mcg_cap; 4939 /* Init IA32_MCG_CTL to all 1s */ 4940 if (mcg_cap & MCG_CTL_P) 4941 vcpu->arch.mcg_ctl = ~(u64)0; 4942 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4943 for (bank = 0; bank < bank_num; bank++) { 4944 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4945 if (mcg_cap & MCG_CMCI_P) 4946 vcpu->arch.mci_ctl2_banks[bank] = 0; 4947 } 4948 4949 kvm_apic_after_set_mcg_cap(vcpu); 4950 4951 static_call(kvm_x86_setup_mce)(vcpu); 4952 out: 4953 return r; 4954 } 4955 4956 /* 4957 * Validate this is an UCNA (uncorrectable no action) error by checking the 4958 * MCG_STATUS and MCi_STATUS registers: 4959 * - none of the bits for Machine Check Exceptions are set 4960 * - both the VAL (valid) and UC (uncorrectable) bits are set 4961 * MCI_STATUS_PCC - Processor Context Corrupted 4962 * MCI_STATUS_S - Signaled as a Machine Check Exception 4963 * MCI_STATUS_AR - Software recoverable Action Required 4964 */ 4965 static bool is_ucna(struct kvm_x86_mce *mce) 4966 { 4967 return !mce->mcg_status && 4968 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4969 (mce->status & MCI_STATUS_VAL) && 4970 (mce->status & MCI_STATUS_UC); 4971 } 4972 4973 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4974 { 4975 u64 mcg_cap = vcpu->arch.mcg_cap; 4976 4977 banks[1] = mce->status; 4978 banks[2] = mce->addr; 4979 banks[3] = mce->misc; 4980 vcpu->arch.mcg_status = mce->mcg_status; 4981 4982 if (!(mcg_cap & MCG_CMCI_P) || 4983 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4984 return 0; 4985 4986 if (lapic_in_kernel(vcpu)) 4987 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4988 4989 return 0; 4990 } 4991 4992 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4993 struct kvm_x86_mce *mce) 4994 { 4995 u64 mcg_cap = vcpu->arch.mcg_cap; 4996 unsigned bank_num = mcg_cap & 0xff; 4997 u64 *banks = vcpu->arch.mce_banks; 4998 4999 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5000 return -EINVAL; 5001 5002 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5003 5004 if (is_ucna(mce)) 5005 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5006 5007 /* 5008 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5009 * reporting is disabled 5010 */ 5011 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5012 vcpu->arch.mcg_ctl != ~(u64)0) 5013 return 0; 5014 /* 5015 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5016 * reporting is disabled for the bank 5017 */ 5018 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5019 return 0; 5020 if (mce->status & MCI_STATUS_UC) { 5021 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5022 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5023 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5024 return 0; 5025 } 5026 if (banks[1] & MCI_STATUS_VAL) 5027 mce->status |= MCI_STATUS_OVER; 5028 banks[2] = mce->addr; 5029 banks[3] = mce->misc; 5030 vcpu->arch.mcg_status = mce->mcg_status; 5031 banks[1] = mce->status; 5032 kvm_queue_exception(vcpu, MC_VECTOR); 5033 } else if (!(banks[1] & MCI_STATUS_VAL) 5034 || !(banks[1] & MCI_STATUS_UC)) { 5035 if (banks[1] & MCI_STATUS_VAL) 5036 mce->status |= MCI_STATUS_OVER; 5037 banks[2] = mce->addr; 5038 banks[3] = mce->misc; 5039 banks[1] = mce->status; 5040 } else 5041 banks[1] |= MCI_STATUS_OVER; 5042 return 0; 5043 } 5044 5045 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5046 struct kvm_vcpu_events *events) 5047 { 5048 struct kvm_queued_exception *ex; 5049 5050 process_nmi(vcpu); 5051 5052 #ifdef CONFIG_KVM_SMM 5053 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5054 process_smi(vcpu); 5055 #endif 5056 5057 /* 5058 * KVM's ABI only allows for one exception to be migrated. Luckily, 5059 * the only time there can be two queued exceptions is if there's a 5060 * non-exiting _injected_ exception, and a pending exiting exception. 5061 * In that case, ignore the VM-Exiting exception as it's an extension 5062 * of the injected exception. 5063 */ 5064 if (vcpu->arch.exception_vmexit.pending && 5065 !vcpu->arch.exception.pending && 5066 !vcpu->arch.exception.injected) 5067 ex = &vcpu->arch.exception_vmexit; 5068 else 5069 ex = &vcpu->arch.exception; 5070 5071 /* 5072 * In guest mode, payload delivery should be deferred if the exception 5073 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5074 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5075 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5076 * propagate the payload and so it cannot be safely deferred. Deliver 5077 * the payload if the capability hasn't been requested. 5078 */ 5079 if (!vcpu->kvm->arch.exception_payload_enabled && 5080 ex->pending && ex->has_payload) 5081 kvm_deliver_exception_payload(vcpu, ex); 5082 5083 memset(events, 0, sizeof(*events)); 5084 5085 /* 5086 * The API doesn't provide the instruction length for software 5087 * exceptions, so don't report them. As long as the guest RIP 5088 * isn't advanced, we should expect to encounter the exception 5089 * again. 5090 */ 5091 if (!kvm_exception_is_soft(ex->vector)) { 5092 events->exception.injected = ex->injected; 5093 events->exception.pending = ex->pending; 5094 /* 5095 * For ABI compatibility, deliberately conflate 5096 * pending and injected exceptions when 5097 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5098 */ 5099 if (!vcpu->kvm->arch.exception_payload_enabled) 5100 events->exception.injected |= ex->pending; 5101 } 5102 events->exception.nr = ex->vector; 5103 events->exception.has_error_code = ex->has_error_code; 5104 events->exception.error_code = ex->error_code; 5105 events->exception_has_payload = ex->has_payload; 5106 events->exception_payload = ex->payload; 5107 5108 events->interrupt.injected = 5109 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5110 events->interrupt.nr = vcpu->arch.interrupt.nr; 5111 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5112 5113 events->nmi.injected = vcpu->arch.nmi_injected; 5114 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5115 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5116 5117 /* events->sipi_vector is never valid when reporting to user space */ 5118 5119 #ifdef CONFIG_KVM_SMM 5120 events->smi.smm = is_smm(vcpu); 5121 events->smi.pending = vcpu->arch.smi_pending; 5122 events->smi.smm_inside_nmi = 5123 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5124 #endif 5125 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5126 5127 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5128 | KVM_VCPUEVENT_VALID_SHADOW 5129 | KVM_VCPUEVENT_VALID_SMM); 5130 if (vcpu->kvm->arch.exception_payload_enabled) 5131 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5132 if (vcpu->kvm->arch.triple_fault_event) { 5133 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5134 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5135 } 5136 } 5137 5138 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5139 struct kvm_vcpu_events *events) 5140 { 5141 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5142 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5143 | KVM_VCPUEVENT_VALID_SHADOW 5144 | KVM_VCPUEVENT_VALID_SMM 5145 | KVM_VCPUEVENT_VALID_PAYLOAD 5146 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5147 return -EINVAL; 5148 5149 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5150 if (!vcpu->kvm->arch.exception_payload_enabled) 5151 return -EINVAL; 5152 if (events->exception.pending) 5153 events->exception.injected = 0; 5154 else 5155 events->exception_has_payload = 0; 5156 } else { 5157 events->exception.pending = 0; 5158 events->exception_has_payload = 0; 5159 } 5160 5161 if ((events->exception.injected || events->exception.pending) && 5162 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5163 return -EINVAL; 5164 5165 /* INITs are latched while in SMM */ 5166 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5167 (events->smi.smm || events->smi.pending) && 5168 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5169 return -EINVAL; 5170 5171 process_nmi(vcpu); 5172 5173 /* 5174 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5175 * morph the exception to a VM-Exit if appropriate. Do this only for 5176 * pending exceptions, already-injected exceptions are not subject to 5177 * intercpetion. Note, userspace that conflates pending and injected 5178 * is hosed, and will incorrectly convert an injected exception into a 5179 * pending exception, which in turn may cause a spurious VM-Exit. 5180 */ 5181 vcpu->arch.exception_from_userspace = events->exception.pending; 5182 5183 vcpu->arch.exception_vmexit.pending = false; 5184 5185 vcpu->arch.exception.injected = events->exception.injected; 5186 vcpu->arch.exception.pending = events->exception.pending; 5187 vcpu->arch.exception.vector = events->exception.nr; 5188 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5189 vcpu->arch.exception.error_code = events->exception.error_code; 5190 vcpu->arch.exception.has_payload = events->exception_has_payload; 5191 vcpu->arch.exception.payload = events->exception_payload; 5192 5193 vcpu->arch.interrupt.injected = events->interrupt.injected; 5194 vcpu->arch.interrupt.nr = events->interrupt.nr; 5195 vcpu->arch.interrupt.soft = events->interrupt.soft; 5196 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5197 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5198 events->interrupt.shadow); 5199 5200 vcpu->arch.nmi_injected = events->nmi.injected; 5201 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5202 vcpu->arch.nmi_pending = events->nmi.pending; 5203 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5204 5205 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5206 lapic_in_kernel(vcpu)) 5207 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5208 5209 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5210 #ifdef CONFIG_KVM_SMM 5211 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5212 kvm_leave_nested(vcpu); 5213 kvm_smm_changed(vcpu, events->smi.smm); 5214 } 5215 5216 vcpu->arch.smi_pending = events->smi.pending; 5217 5218 if (events->smi.smm) { 5219 if (events->smi.smm_inside_nmi) 5220 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5221 else 5222 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5223 } 5224 5225 #else 5226 if (events->smi.smm || events->smi.pending || 5227 events->smi.smm_inside_nmi) 5228 return -EINVAL; 5229 #endif 5230 5231 if (lapic_in_kernel(vcpu)) { 5232 if (events->smi.latched_init) 5233 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5234 else 5235 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5236 } 5237 } 5238 5239 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5240 if (!vcpu->kvm->arch.triple_fault_event) 5241 return -EINVAL; 5242 if (events->triple_fault.pending) 5243 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5244 else 5245 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5246 } 5247 5248 kvm_make_request(KVM_REQ_EVENT, vcpu); 5249 5250 return 0; 5251 } 5252 5253 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5254 struct kvm_debugregs *dbgregs) 5255 { 5256 unsigned long val; 5257 5258 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5259 kvm_get_dr(vcpu, 6, &val); 5260 dbgregs->dr6 = val; 5261 dbgregs->dr7 = vcpu->arch.dr7; 5262 dbgregs->flags = 0; 5263 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5264 } 5265 5266 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5267 struct kvm_debugregs *dbgregs) 5268 { 5269 if (dbgregs->flags) 5270 return -EINVAL; 5271 5272 if (!kvm_dr6_valid(dbgregs->dr6)) 5273 return -EINVAL; 5274 if (!kvm_dr7_valid(dbgregs->dr7)) 5275 return -EINVAL; 5276 5277 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5278 kvm_update_dr0123(vcpu); 5279 vcpu->arch.dr6 = dbgregs->dr6; 5280 vcpu->arch.dr7 = dbgregs->dr7; 5281 kvm_update_dr7(vcpu); 5282 5283 return 0; 5284 } 5285 5286 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5287 struct kvm_xsave *guest_xsave) 5288 { 5289 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5290 return; 5291 5292 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5293 guest_xsave->region, 5294 sizeof(guest_xsave->region), 5295 vcpu->arch.pkru); 5296 } 5297 5298 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5299 u8 *state, unsigned int size) 5300 { 5301 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5302 return; 5303 5304 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5305 state, size, vcpu->arch.pkru); 5306 } 5307 5308 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5309 struct kvm_xsave *guest_xsave) 5310 { 5311 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5312 return 0; 5313 5314 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5315 guest_xsave->region, 5316 kvm_caps.supported_xcr0, 5317 &vcpu->arch.pkru); 5318 } 5319 5320 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5321 struct kvm_xcrs *guest_xcrs) 5322 { 5323 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5324 guest_xcrs->nr_xcrs = 0; 5325 return; 5326 } 5327 5328 guest_xcrs->nr_xcrs = 1; 5329 guest_xcrs->flags = 0; 5330 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5331 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5332 } 5333 5334 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5335 struct kvm_xcrs *guest_xcrs) 5336 { 5337 int i, r = 0; 5338 5339 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5340 return -EINVAL; 5341 5342 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5343 return -EINVAL; 5344 5345 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5346 /* Only support XCR0 currently */ 5347 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5348 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5349 guest_xcrs->xcrs[i].value); 5350 break; 5351 } 5352 if (r) 5353 r = -EINVAL; 5354 return r; 5355 } 5356 5357 /* 5358 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5359 * stopped by the hypervisor. This function will be called from the host only. 5360 * EINVAL is returned when the host attempts to set the flag for a guest that 5361 * does not support pv clocks. 5362 */ 5363 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5364 { 5365 if (!vcpu->arch.pv_time.active) 5366 return -EINVAL; 5367 vcpu->arch.pvclock_set_guest_stopped_request = true; 5368 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5369 return 0; 5370 } 5371 5372 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5373 struct kvm_device_attr *attr) 5374 { 5375 int r; 5376 5377 switch (attr->attr) { 5378 case KVM_VCPU_TSC_OFFSET: 5379 r = 0; 5380 break; 5381 default: 5382 r = -ENXIO; 5383 } 5384 5385 return r; 5386 } 5387 5388 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5389 struct kvm_device_attr *attr) 5390 { 5391 u64 __user *uaddr = kvm_get_attr_addr(attr); 5392 int r; 5393 5394 if (IS_ERR(uaddr)) 5395 return PTR_ERR(uaddr); 5396 5397 switch (attr->attr) { 5398 case KVM_VCPU_TSC_OFFSET: 5399 r = -EFAULT; 5400 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5401 break; 5402 r = 0; 5403 break; 5404 default: 5405 r = -ENXIO; 5406 } 5407 5408 return r; 5409 } 5410 5411 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5412 struct kvm_device_attr *attr) 5413 { 5414 u64 __user *uaddr = kvm_get_attr_addr(attr); 5415 struct kvm *kvm = vcpu->kvm; 5416 int r; 5417 5418 if (IS_ERR(uaddr)) 5419 return PTR_ERR(uaddr); 5420 5421 switch (attr->attr) { 5422 case KVM_VCPU_TSC_OFFSET: { 5423 u64 offset, tsc, ns; 5424 unsigned long flags; 5425 bool matched; 5426 5427 r = -EFAULT; 5428 if (get_user(offset, uaddr)) 5429 break; 5430 5431 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5432 5433 matched = (vcpu->arch.virtual_tsc_khz && 5434 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5435 kvm->arch.last_tsc_offset == offset); 5436 5437 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5438 ns = get_kvmclock_base_ns(); 5439 5440 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5441 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5442 5443 r = 0; 5444 break; 5445 } 5446 default: 5447 r = -ENXIO; 5448 } 5449 5450 return r; 5451 } 5452 5453 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5454 unsigned int ioctl, 5455 void __user *argp) 5456 { 5457 struct kvm_device_attr attr; 5458 int r; 5459 5460 if (copy_from_user(&attr, argp, sizeof(attr))) 5461 return -EFAULT; 5462 5463 if (attr.group != KVM_VCPU_TSC_CTRL) 5464 return -ENXIO; 5465 5466 switch (ioctl) { 5467 case KVM_HAS_DEVICE_ATTR: 5468 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5469 break; 5470 case KVM_GET_DEVICE_ATTR: 5471 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5472 break; 5473 case KVM_SET_DEVICE_ATTR: 5474 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5475 break; 5476 } 5477 5478 return r; 5479 } 5480 5481 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5482 struct kvm_enable_cap *cap) 5483 { 5484 int r; 5485 uint16_t vmcs_version; 5486 void __user *user_ptr; 5487 5488 if (cap->flags) 5489 return -EINVAL; 5490 5491 switch (cap->cap) { 5492 case KVM_CAP_HYPERV_SYNIC2: 5493 if (cap->args[0]) 5494 return -EINVAL; 5495 fallthrough; 5496 5497 case KVM_CAP_HYPERV_SYNIC: 5498 if (!irqchip_in_kernel(vcpu->kvm)) 5499 return -EINVAL; 5500 return kvm_hv_activate_synic(vcpu, cap->cap == 5501 KVM_CAP_HYPERV_SYNIC2); 5502 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5503 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5504 return -ENOTTY; 5505 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5506 if (!r) { 5507 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5508 if (copy_to_user(user_ptr, &vmcs_version, 5509 sizeof(vmcs_version))) 5510 r = -EFAULT; 5511 } 5512 return r; 5513 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5514 if (!kvm_x86_ops.enable_l2_tlb_flush) 5515 return -ENOTTY; 5516 5517 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5518 5519 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5520 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5521 5522 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5523 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5524 if (vcpu->arch.pv_cpuid.enforce) 5525 kvm_update_pv_runtime(vcpu); 5526 5527 return 0; 5528 default: 5529 return -EINVAL; 5530 } 5531 } 5532 5533 long kvm_arch_vcpu_ioctl(struct file *filp, 5534 unsigned int ioctl, unsigned long arg) 5535 { 5536 struct kvm_vcpu *vcpu = filp->private_data; 5537 void __user *argp = (void __user *)arg; 5538 int r; 5539 union { 5540 struct kvm_sregs2 *sregs2; 5541 struct kvm_lapic_state *lapic; 5542 struct kvm_xsave *xsave; 5543 struct kvm_xcrs *xcrs; 5544 void *buffer; 5545 } u; 5546 5547 vcpu_load(vcpu); 5548 5549 u.buffer = NULL; 5550 switch (ioctl) { 5551 case KVM_GET_LAPIC: { 5552 r = -EINVAL; 5553 if (!lapic_in_kernel(vcpu)) 5554 goto out; 5555 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5556 GFP_KERNEL_ACCOUNT); 5557 5558 r = -ENOMEM; 5559 if (!u.lapic) 5560 goto out; 5561 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5562 if (r) 5563 goto out; 5564 r = -EFAULT; 5565 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5566 goto out; 5567 r = 0; 5568 break; 5569 } 5570 case KVM_SET_LAPIC: { 5571 r = -EINVAL; 5572 if (!lapic_in_kernel(vcpu)) 5573 goto out; 5574 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5575 if (IS_ERR(u.lapic)) { 5576 r = PTR_ERR(u.lapic); 5577 goto out_nofree; 5578 } 5579 5580 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5581 break; 5582 } 5583 case KVM_INTERRUPT: { 5584 struct kvm_interrupt irq; 5585 5586 r = -EFAULT; 5587 if (copy_from_user(&irq, argp, sizeof(irq))) 5588 goto out; 5589 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5590 break; 5591 } 5592 case KVM_NMI: { 5593 r = kvm_vcpu_ioctl_nmi(vcpu); 5594 break; 5595 } 5596 case KVM_SMI: { 5597 r = kvm_inject_smi(vcpu); 5598 break; 5599 } 5600 case KVM_SET_CPUID: { 5601 struct kvm_cpuid __user *cpuid_arg = argp; 5602 struct kvm_cpuid cpuid; 5603 5604 r = -EFAULT; 5605 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5606 goto out; 5607 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5608 break; 5609 } 5610 case KVM_SET_CPUID2: { 5611 struct kvm_cpuid2 __user *cpuid_arg = argp; 5612 struct kvm_cpuid2 cpuid; 5613 5614 r = -EFAULT; 5615 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5616 goto out; 5617 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5618 cpuid_arg->entries); 5619 break; 5620 } 5621 case KVM_GET_CPUID2: { 5622 struct kvm_cpuid2 __user *cpuid_arg = argp; 5623 struct kvm_cpuid2 cpuid; 5624 5625 r = -EFAULT; 5626 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5627 goto out; 5628 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5629 cpuid_arg->entries); 5630 if (r) 5631 goto out; 5632 r = -EFAULT; 5633 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5634 goto out; 5635 r = 0; 5636 break; 5637 } 5638 case KVM_GET_MSRS: { 5639 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5640 r = msr_io(vcpu, argp, do_get_msr, 1); 5641 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5642 break; 5643 } 5644 case KVM_SET_MSRS: { 5645 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5646 r = msr_io(vcpu, argp, do_set_msr, 0); 5647 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5648 break; 5649 } 5650 case KVM_TPR_ACCESS_REPORTING: { 5651 struct kvm_tpr_access_ctl tac; 5652 5653 r = -EFAULT; 5654 if (copy_from_user(&tac, argp, sizeof(tac))) 5655 goto out; 5656 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5657 if (r) 5658 goto out; 5659 r = -EFAULT; 5660 if (copy_to_user(argp, &tac, sizeof(tac))) 5661 goto out; 5662 r = 0; 5663 break; 5664 }; 5665 case KVM_SET_VAPIC_ADDR: { 5666 struct kvm_vapic_addr va; 5667 int idx; 5668 5669 r = -EINVAL; 5670 if (!lapic_in_kernel(vcpu)) 5671 goto out; 5672 r = -EFAULT; 5673 if (copy_from_user(&va, argp, sizeof(va))) 5674 goto out; 5675 idx = srcu_read_lock(&vcpu->kvm->srcu); 5676 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5677 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5678 break; 5679 } 5680 case KVM_X86_SETUP_MCE: { 5681 u64 mcg_cap; 5682 5683 r = -EFAULT; 5684 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5685 goto out; 5686 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5687 break; 5688 } 5689 case KVM_X86_SET_MCE: { 5690 struct kvm_x86_mce mce; 5691 5692 r = -EFAULT; 5693 if (copy_from_user(&mce, argp, sizeof(mce))) 5694 goto out; 5695 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5696 break; 5697 } 5698 case KVM_GET_VCPU_EVENTS: { 5699 struct kvm_vcpu_events events; 5700 5701 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5702 5703 r = -EFAULT; 5704 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5705 break; 5706 r = 0; 5707 break; 5708 } 5709 case KVM_SET_VCPU_EVENTS: { 5710 struct kvm_vcpu_events events; 5711 5712 r = -EFAULT; 5713 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5714 break; 5715 5716 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5717 break; 5718 } 5719 case KVM_GET_DEBUGREGS: { 5720 struct kvm_debugregs dbgregs; 5721 5722 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5723 5724 r = -EFAULT; 5725 if (copy_to_user(argp, &dbgregs, 5726 sizeof(struct kvm_debugregs))) 5727 break; 5728 r = 0; 5729 break; 5730 } 5731 case KVM_SET_DEBUGREGS: { 5732 struct kvm_debugregs dbgregs; 5733 5734 r = -EFAULT; 5735 if (copy_from_user(&dbgregs, argp, 5736 sizeof(struct kvm_debugregs))) 5737 break; 5738 5739 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5740 break; 5741 } 5742 case KVM_GET_XSAVE: { 5743 r = -EINVAL; 5744 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5745 break; 5746 5747 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5748 r = -ENOMEM; 5749 if (!u.xsave) 5750 break; 5751 5752 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5753 5754 r = -EFAULT; 5755 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5756 break; 5757 r = 0; 5758 break; 5759 } 5760 case KVM_SET_XSAVE: { 5761 int size = vcpu->arch.guest_fpu.uabi_size; 5762 5763 u.xsave = memdup_user(argp, size); 5764 if (IS_ERR(u.xsave)) { 5765 r = PTR_ERR(u.xsave); 5766 goto out_nofree; 5767 } 5768 5769 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5770 break; 5771 } 5772 5773 case KVM_GET_XSAVE2: { 5774 int size = vcpu->arch.guest_fpu.uabi_size; 5775 5776 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5777 r = -ENOMEM; 5778 if (!u.xsave) 5779 break; 5780 5781 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5782 5783 r = -EFAULT; 5784 if (copy_to_user(argp, u.xsave, size)) 5785 break; 5786 5787 r = 0; 5788 break; 5789 } 5790 5791 case KVM_GET_XCRS: { 5792 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5793 r = -ENOMEM; 5794 if (!u.xcrs) 5795 break; 5796 5797 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5798 5799 r = -EFAULT; 5800 if (copy_to_user(argp, u.xcrs, 5801 sizeof(struct kvm_xcrs))) 5802 break; 5803 r = 0; 5804 break; 5805 } 5806 case KVM_SET_XCRS: { 5807 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5808 if (IS_ERR(u.xcrs)) { 5809 r = PTR_ERR(u.xcrs); 5810 goto out_nofree; 5811 } 5812 5813 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5814 break; 5815 } 5816 case KVM_SET_TSC_KHZ: { 5817 u32 user_tsc_khz; 5818 5819 r = -EINVAL; 5820 user_tsc_khz = (u32)arg; 5821 5822 if (kvm_caps.has_tsc_control && 5823 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5824 goto out; 5825 5826 if (user_tsc_khz == 0) 5827 user_tsc_khz = tsc_khz; 5828 5829 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5830 r = 0; 5831 5832 goto out; 5833 } 5834 case KVM_GET_TSC_KHZ: { 5835 r = vcpu->arch.virtual_tsc_khz; 5836 goto out; 5837 } 5838 case KVM_KVMCLOCK_CTRL: { 5839 r = kvm_set_guest_paused(vcpu); 5840 goto out; 5841 } 5842 case KVM_ENABLE_CAP: { 5843 struct kvm_enable_cap cap; 5844 5845 r = -EFAULT; 5846 if (copy_from_user(&cap, argp, sizeof(cap))) 5847 goto out; 5848 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5849 break; 5850 } 5851 case KVM_GET_NESTED_STATE: { 5852 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5853 u32 user_data_size; 5854 5855 r = -EINVAL; 5856 if (!kvm_x86_ops.nested_ops->get_state) 5857 break; 5858 5859 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5860 r = -EFAULT; 5861 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5862 break; 5863 5864 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5865 user_data_size); 5866 if (r < 0) 5867 break; 5868 5869 if (r > user_data_size) { 5870 if (put_user(r, &user_kvm_nested_state->size)) 5871 r = -EFAULT; 5872 else 5873 r = -E2BIG; 5874 break; 5875 } 5876 5877 r = 0; 5878 break; 5879 } 5880 case KVM_SET_NESTED_STATE: { 5881 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5882 struct kvm_nested_state kvm_state; 5883 int idx; 5884 5885 r = -EINVAL; 5886 if (!kvm_x86_ops.nested_ops->set_state) 5887 break; 5888 5889 r = -EFAULT; 5890 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5891 break; 5892 5893 r = -EINVAL; 5894 if (kvm_state.size < sizeof(kvm_state)) 5895 break; 5896 5897 if (kvm_state.flags & 5898 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5899 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5900 | KVM_STATE_NESTED_GIF_SET)) 5901 break; 5902 5903 /* nested_run_pending implies guest_mode. */ 5904 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5905 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5906 break; 5907 5908 idx = srcu_read_lock(&vcpu->kvm->srcu); 5909 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5910 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5911 break; 5912 } 5913 case KVM_GET_SUPPORTED_HV_CPUID: 5914 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5915 break; 5916 #ifdef CONFIG_KVM_XEN 5917 case KVM_XEN_VCPU_GET_ATTR: { 5918 struct kvm_xen_vcpu_attr xva; 5919 5920 r = -EFAULT; 5921 if (copy_from_user(&xva, argp, sizeof(xva))) 5922 goto out; 5923 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5924 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5925 r = -EFAULT; 5926 break; 5927 } 5928 case KVM_XEN_VCPU_SET_ATTR: { 5929 struct kvm_xen_vcpu_attr xva; 5930 5931 r = -EFAULT; 5932 if (copy_from_user(&xva, argp, sizeof(xva))) 5933 goto out; 5934 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5935 break; 5936 } 5937 #endif 5938 case KVM_GET_SREGS2: { 5939 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5940 r = -ENOMEM; 5941 if (!u.sregs2) 5942 goto out; 5943 __get_sregs2(vcpu, u.sregs2); 5944 r = -EFAULT; 5945 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5946 goto out; 5947 r = 0; 5948 break; 5949 } 5950 case KVM_SET_SREGS2: { 5951 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5952 if (IS_ERR(u.sregs2)) { 5953 r = PTR_ERR(u.sregs2); 5954 u.sregs2 = NULL; 5955 goto out; 5956 } 5957 r = __set_sregs2(vcpu, u.sregs2); 5958 break; 5959 } 5960 case KVM_HAS_DEVICE_ATTR: 5961 case KVM_GET_DEVICE_ATTR: 5962 case KVM_SET_DEVICE_ATTR: 5963 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5964 break; 5965 default: 5966 r = -EINVAL; 5967 } 5968 out: 5969 kfree(u.buffer); 5970 out_nofree: 5971 vcpu_put(vcpu); 5972 return r; 5973 } 5974 5975 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5976 { 5977 return VM_FAULT_SIGBUS; 5978 } 5979 5980 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5981 { 5982 int ret; 5983 5984 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5985 return -EINVAL; 5986 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5987 return ret; 5988 } 5989 5990 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5991 u64 ident_addr) 5992 { 5993 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5994 } 5995 5996 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5997 unsigned long kvm_nr_mmu_pages) 5998 { 5999 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6000 return -EINVAL; 6001 6002 mutex_lock(&kvm->slots_lock); 6003 6004 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6005 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6006 6007 mutex_unlock(&kvm->slots_lock); 6008 return 0; 6009 } 6010 6011 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6012 { 6013 return kvm->arch.n_max_mmu_pages; 6014 } 6015 6016 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6017 { 6018 struct kvm_pic *pic = kvm->arch.vpic; 6019 int r; 6020 6021 r = 0; 6022 switch (chip->chip_id) { 6023 case KVM_IRQCHIP_PIC_MASTER: 6024 memcpy(&chip->chip.pic, &pic->pics[0], 6025 sizeof(struct kvm_pic_state)); 6026 break; 6027 case KVM_IRQCHIP_PIC_SLAVE: 6028 memcpy(&chip->chip.pic, &pic->pics[1], 6029 sizeof(struct kvm_pic_state)); 6030 break; 6031 case KVM_IRQCHIP_IOAPIC: 6032 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6033 break; 6034 default: 6035 r = -EINVAL; 6036 break; 6037 } 6038 return r; 6039 } 6040 6041 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6042 { 6043 struct kvm_pic *pic = kvm->arch.vpic; 6044 int r; 6045 6046 r = 0; 6047 switch (chip->chip_id) { 6048 case KVM_IRQCHIP_PIC_MASTER: 6049 spin_lock(&pic->lock); 6050 memcpy(&pic->pics[0], &chip->chip.pic, 6051 sizeof(struct kvm_pic_state)); 6052 spin_unlock(&pic->lock); 6053 break; 6054 case KVM_IRQCHIP_PIC_SLAVE: 6055 spin_lock(&pic->lock); 6056 memcpy(&pic->pics[1], &chip->chip.pic, 6057 sizeof(struct kvm_pic_state)); 6058 spin_unlock(&pic->lock); 6059 break; 6060 case KVM_IRQCHIP_IOAPIC: 6061 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6062 break; 6063 default: 6064 r = -EINVAL; 6065 break; 6066 } 6067 kvm_pic_update_irq(pic); 6068 return r; 6069 } 6070 6071 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6072 { 6073 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6074 6075 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6076 6077 mutex_lock(&kps->lock); 6078 memcpy(ps, &kps->channels, sizeof(*ps)); 6079 mutex_unlock(&kps->lock); 6080 return 0; 6081 } 6082 6083 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6084 { 6085 int i; 6086 struct kvm_pit *pit = kvm->arch.vpit; 6087 6088 mutex_lock(&pit->pit_state.lock); 6089 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6090 for (i = 0; i < 3; i++) 6091 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6092 mutex_unlock(&pit->pit_state.lock); 6093 return 0; 6094 } 6095 6096 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6097 { 6098 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6099 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6100 sizeof(ps->channels)); 6101 ps->flags = kvm->arch.vpit->pit_state.flags; 6102 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6103 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6104 return 0; 6105 } 6106 6107 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6108 { 6109 int start = 0; 6110 int i; 6111 u32 prev_legacy, cur_legacy; 6112 struct kvm_pit *pit = kvm->arch.vpit; 6113 6114 mutex_lock(&pit->pit_state.lock); 6115 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6116 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6117 if (!prev_legacy && cur_legacy) 6118 start = 1; 6119 memcpy(&pit->pit_state.channels, &ps->channels, 6120 sizeof(pit->pit_state.channels)); 6121 pit->pit_state.flags = ps->flags; 6122 for (i = 0; i < 3; i++) 6123 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6124 start && i == 0); 6125 mutex_unlock(&pit->pit_state.lock); 6126 return 0; 6127 } 6128 6129 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6130 struct kvm_reinject_control *control) 6131 { 6132 struct kvm_pit *pit = kvm->arch.vpit; 6133 6134 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6135 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6136 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6137 */ 6138 mutex_lock(&pit->pit_state.lock); 6139 kvm_pit_set_reinject(pit, control->pit_reinject); 6140 mutex_unlock(&pit->pit_state.lock); 6141 6142 return 0; 6143 } 6144 6145 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6146 { 6147 6148 /* 6149 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6150 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6151 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6152 * VM-Exit. 6153 */ 6154 struct kvm_vcpu *vcpu; 6155 unsigned long i; 6156 6157 kvm_for_each_vcpu(i, vcpu, kvm) 6158 kvm_vcpu_kick(vcpu); 6159 } 6160 6161 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6162 bool line_status) 6163 { 6164 if (!irqchip_in_kernel(kvm)) 6165 return -ENXIO; 6166 6167 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6168 irq_event->irq, irq_event->level, 6169 line_status); 6170 return 0; 6171 } 6172 6173 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6174 struct kvm_enable_cap *cap) 6175 { 6176 int r; 6177 6178 if (cap->flags) 6179 return -EINVAL; 6180 6181 switch (cap->cap) { 6182 case KVM_CAP_DISABLE_QUIRKS2: 6183 r = -EINVAL; 6184 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6185 break; 6186 fallthrough; 6187 case KVM_CAP_DISABLE_QUIRKS: 6188 kvm->arch.disabled_quirks = cap->args[0]; 6189 r = 0; 6190 break; 6191 case KVM_CAP_SPLIT_IRQCHIP: { 6192 mutex_lock(&kvm->lock); 6193 r = -EINVAL; 6194 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6195 goto split_irqchip_unlock; 6196 r = -EEXIST; 6197 if (irqchip_in_kernel(kvm)) 6198 goto split_irqchip_unlock; 6199 if (kvm->created_vcpus) 6200 goto split_irqchip_unlock; 6201 r = kvm_setup_empty_irq_routing(kvm); 6202 if (r) 6203 goto split_irqchip_unlock; 6204 /* Pairs with irqchip_in_kernel. */ 6205 smp_wmb(); 6206 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6207 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6208 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6209 r = 0; 6210 split_irqchip_unlock: 6211 mutex_unlock(&kvm->lock); 6212 break; 6213 } 6214 case KVM_CAP_X2APIC_API: 6215 r = -EINVAL; 6216 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6217 break; 6218 6219 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6220 kvm->arch.x2apic_format = true; 6221 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6222 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6223 6224 r = 0; 6225 break; 6226 case KVM_CAP_X86_DISABLE_EXITS: 6227 r = -EINVAL; 6228 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6229 break; 6230 6231 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6232 kvm_can_mwait_in_guest()) 6233 kvm->arch.mwait_in_guest = true; 6234 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6235 kvm->arch.hlt_in_guest = true; 6236 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6237 kvm->arch.pause_in_guest = true; 6238 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6239 kvm->arch.cstate_in_guest = true; 6240 r = 0; 6241 break; 6242 case KVM_CAP_MSR_PLATFORM_INFO: 6243 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6244 r = 0; 6245 break; 6246 case KVM_CAP_EXCEPTION_PAYLOAD: 6247 kvm->arch.exception_payload_enabled = cap->args[0]; 6248 r = 0; 6249 break; 6250 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6251 kvm->arch.triple_fault_event = cap->args[0]; 6252 r = 0; 6253 break; 6254 case KVM_CAP_X86_USER_SPACE_MSR: 6255 r = -EINVAL; 6256 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6257 break; 6258 kvm->arch.user_space_msr_mask = cap->args[0]; 6259 r = 0; 6260 break; 6261 case KVM_CAP_X86_BUS_LOCK_EXIT: 6262 r = -EINVAL; 6263 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6264 break; 6265 6266 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6267 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6268 break; 6269 6270 if (kvm_caps.has_bus_lock_exit && 6271 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6272 kvm->arch.bus_lock_detection_enabled = true; 6273 r = 0; 6274 break; 6275 #ifdef CONFIG_X86_SGX_KVM 6276 case KVM_CAP_SGX_ATTRIBUTE: { 6277 unsigned long allowed_attributes = 0; 6278 6279 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6280 if (r) 6281 break; 6282 6283 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6284 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6285 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6286 kvm->arch.sgx_provisioning_allowed = true; 6287 else 6288 r = -EINVAL; 6289 break; 6290 } 6291 #endif 6292 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6293 r = -EINVAL; 6294 if (!kvm_x86_ops.vm_copy_enc_context_from) 6295 break; 6296 6297 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6298 break; 6299 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6300 r = -EINVAL; 6301 if (!kvm_x86_ops.vm_move_enc_context_from) 6302 break; 6303 6304 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6305 break; 6306 case KVM_CAP_EXIT_HYPERCALL: 6307 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6308 r = -EINVAL; 6309 break; 6310 } 6311 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6312 r = 0; 6313 break; 6314 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6315 r = -EINVAL; 6316 if (cap->args[0] & ~1) 6317 break; 6318 kvm->arch.exit_on_emulation_error = cap->args[0]; 6319 r = 0; 6320 break; 6321 case KVM_CAP_PMU_CAPABILITY: 6322 r = -EINVAL; 6323 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6324 break; 6325 6326 mutex_lock(&kvm->lock); 6327 if (!kvm->created_vcpus) { 6328 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6329 r = 0; 6330 } 6331 mutex_unlock(&kvm->lock); 6332 break; 6333 case KVM_CAP_MAX_VCPU_ID: 6334 r = -EINVAL; 6335 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6336 break; 6337 6338 mutex_lock(&kvm->lock); 6339 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6340 r = 0; 6341 } else if (!kvm->arch.max_vcpu_ids) { 6342 kvm->arch.max_vcpu_ids = cap->args[0]; 6343 r = 0; 6344 } 6345 mutex_unlock(&kvm->lock); 6346 break; 6347 case KVM_CAP_X86_NOTIFY_VMEXIT: 6348 r = -EINVAL; 6349 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6350 break; 6351 if (!kvm_caps.has_notify_vmexit) 6352 break; 6353 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6354 break; 6355 mutex_lock(&kvm->lock); 6356 if (!kvm->created_vcpus) { 6357 kvm->arch.notify_window = cap->args[0] >> 32; 6358 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6359 r = 0; 6360 } 6361 mutex_unlock(&kvm->lock); 6362 break; 6363 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6364 r = -EINVAL; 6365 6366 /* 6367 * Since the risk of disabling NX hugepages is a guest crashing 6368 * the system, ensure the userspace process has permission to 6369 * reboot the system. 6370 * 6371 * Note that unlike the reboot() syscall, the process must have 6372 * this capability in the root namespace because exposing 6373 * /dev/kvm into a container does not limit the scope of the 6374 * iTLB multihit bug to that container. In other words, 6375 * this must use capable(), not ns_capable(). 6376 */ 6377 if (!capable(CAP_SYS_BOOT)) { 6378 r = -EPERM; 6379 break; 6380 } 6381 6382 if (cap->args[0]) 6383 break; 6384 6385 mutex_lock(&kvm->lock); 6386 if (!kvm->created_vcpus) { 6387 kvm->arch.disable_nx_huge_pages = true; 6388 r = 0; 6389 } 6390 mutex_unlock(&kvm->lock); 6391 break; 6392 default: 6393 r = -EINVAL; 6394 break; 6395 } 6396 return r; 6397 } 6398 6399 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6400 { 6401 struct kvm_x86_msr_filter *msr_filter; 6402 6403 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6404 if (!msr_filter) 6405 return NULL; 6406 6407 msr_filter->default_allow = default_allow; 6408 return msr_filter; 6409 } 6410 6411 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6412 { 6413 u32 i; 6414 6415 if (!msr_filter) 6416 return; 6417 6418 for (i = 0; i < msr_filter->count; i++) 6419 kfree(msr_filter->ranges[i].bitmap); 6420 6421 kfree(msr_filter); 6422 } 6423 6424 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6425 struct kvm_msr_filter_range *user_range) 6426 { 6427 unsigned long *bitmap = NULL; 6428 size_t bitmap_size; 6429 6430 if (!user_range->nmsrs) 6431 return 0; 6432 6433 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6434 return -EINVAL; 6435 6436 if (!user_range->flags) 6437 return -EINVAL; 6438 6439 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6440 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6441 return -EINVAL; 6442 6443 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6444 if (IS_ERR(bitmap)) 6445 return PTR_ERR(bitmap); 6446 6447 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6448 .flags = user_range->flags, 6449 .base = user_range->base, 6450 .nmsrs = user_range->nmsrs, 6451 .bitmap = bitmap, 6452 }; 6453 6454 msr_filter->count++; 6455 return 0; 6456 } 6457 6458 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6459 struct kvm_msr_filter *filter) 6460 { 6461 struct kvm_x86_msr_filter *new_filter, *old_filter; 6462 bool default_allow; 6463 bool empty = true; 6464 int r = 0; 6465 u32 i; 6466 6467 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6468 return -EINVAL; 6469 6470 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6471 empty &= !filter->ranges[i].nmsrs; 6472 6473 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6474 if (empty && !default_allow) 6475 return -EINVAL; 6476 6477 new_filter = kvm_alloc_msr_filter(default_allow); 6478 if (!new_filter) 6479 return -ENOMEM; 6480 6481 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6482 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6483 if (r) { 6484 kvm_free_msr_filter(new_filter); 6485 return r; 6486 } 6487 } 6488 6489 mutex_lock(&kvm->lock); 6490 6491 /* The per-VM filter is protected by kvm->lock... */ 6492 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6493 6494 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6495 synchronize_srcu(&kvm->srcu); 6496 6497 kvm_free_msr_filter(old_filter); 6498 6499 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6500 mutex_unlock(&kvm->lock); 6501 6502 return 0; 6503 } 6504 6505 #ifdef CONFIG_KVM_COMPAT 6506 /* for KVM_X86_SET_MSR_FILTER */ 6507 struct kvm_msr_filter_range_compat { 6508 __u32 flags; 6509 __u32 nmsrs; 6510 __u32 base; 6511 __u32 bitmap; 6512 }; 6513 6514 struct kvm_msr_filter_compat { 6515 __u32 flags; 6516 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6517 }; 6518 6519 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6520 6521 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6522 unsigned long arg) 6523 { 6524 void __user *argp = (void __user *)arg; 6525 struct kvm *kvm = filp->private_data; 6526 long r = -ENOTTY; 6527 6528 switch (ioctl) { 6529 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6530 struct kvm_msr_filter __user *user_msr_filter = argp; 6531 struct kvm_msr_filter_compat filter_compat; 6532 struct kvm_msr_filter filter; 6533 int i; 6534 6535 if (copy_from_user(&filter_compat, user_msr_filter, 6536 sizeof(filter_compat))) 6537 return -EFAULT; 6538 6539 filter.flags = filter_compat.flags; 6540 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6541 struct kvm_msr_filter_range_compat *cr; 6542 6543 cr = &filter_compat.ranges[i]; 6544 filter.ranges[i] = (struct kvm_msr_filter_range) { 6545 .flags = cr->flags, 6546 .nmsrs = cr->nmsrs, 6547 .base = cr->base, 6548 .bitmap = (__u8 *)(ulong)cr->bitmap, 6549 }; 6550 } 6551 6552 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6553 break; 6554 } 6555 } 6556 6557 return r; 6558 } 6559 #endif 6560 6561 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6562 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6563 { 6564 struct kvm_vcpu *vcpu; 6565 unsigned long i; 6566 int ret = 0; 6567 6568 mutex_lock(&kvm->lock); 6569 kvm_for_each_vcpu(i, vcpu, kvm) { 6570 if (!vcpu->arch.pv_time.active) 6571 continue; 6572 6573 ret = kvm_set_guest_paused(vcpu); 6574 if (ret) { 6575 kvm_err("Failed to pause guest VCPU%d: %d\n", 6576 vcpu->vcpu_id, ret); 6577 break; 6578 } 6579 } 6580 mutex_unlock(&kvm->lock); 6581 6582 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6583 } 6584 6585 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6586 { 6587 switch (state) { 6588 case PM_HIBERNATION_PREPARE: 6589 case PM_SUSPEND_PREPARE: 6590 return kvm_arch_suspend_notifier(kvm); 6591 } 6592 6593 return NOTIFY_DONE; 6594 } 6595 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6596 6597 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6598 { 6599 struct kvm_clock_data data = { 0 }; 6600 6601 get_kvmclock(kvm, &data); 6602 if (copy_to_user(argp, &data, sizeof(data))) 6603 return -EFAULT; 6604 6605 return 0; 6606 } 6607 6608 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6609 { 6610 struct kvm_arch *ka = &kvm->arch; 6611 struct kvm_clock_data data; 6612 u64 now_raw_ns; 6613 6614 if (copy_from_user(&data, argp, sizeof(data))) 6615 return -EFAULT; 6616 6617 /* 6618 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6619 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6620 */ 6621 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6622 return -EINVAL; 6623 6624 kvm_hv_request_tsc_page_update(kvm); 6625 kvm_start_pvclock_update(kvm); 6626 pvclock_update_vm_gtod_copy(kvm); 6627 6628 /* 6629 * This pairs with kvm_guest_time_update(): when masterclock is 6630 * in use, we use master_kernel_ns + kvmclock_offset to set 6631 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6632 * is slightly ahead) here we risk going negative on unsigned 6633 * 'system_time' when 'data.clock' is very small. 6634 */ 6635 if (data.flags & KVM_CLOCK_REALTIME) { 6636 u64 now_real_ns = ktime_get_real_ns(); 6637 6638 /* 6639 * Avoid stepping the kvmclock backwards. 6640 */ 6641 if (now_real_ns > data.realtime) 6642 data.clock += now_real_ns - data.realtime; 6643 } 6644 6645 if (ka->use_master_clock) 6646 now_raw_ns = ka->master_kernel_ns; 6647 else 6648 now_raw_ns = get_kvmclock_base_ns(); 6649 ka->kvmclock_offset = data.clock - now_raw_ns; 6650 kvm_end_pvclock_update(kvm); 6651 return 0; 6652 } 6653 6654 long kvm_arch_vm_ioctl(struct file *filp, 6655 unsigned int ioctl, unsigned long arg) 6656 { 6657 struct kvm *kvm = filp->private_data; 6658 void __user *argp = (void __user *)arg; 6659 int r = -ENOTTY; 6660 /* 6661 * This union makes it completely explicit to gcc-3.x 6662 * that these two variables' stack usage should be 6663 * combined, not added together. 6664 */ 6665 union { 6666 struct kvm_pit_state ps; 6667 struct kvm_pit_state2 ps2; 6668 struct kvm_pit_config pit_config; 6669 } u; 6670 6671 switch (ioctl) { 6672 case KVM_SET_TSS_ADDR: 6673 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6674 break; 6675 case KVM_SET_IDENTITY_MAP_ADDR: { 6676 u64 ident_addr; 6677 6678 mutex_lock(&kvm->lock); 6679 r = -EINVAL; 6680 if (kvm->created_vcpus) 6681 goto set_identity_unlock; 6682 r = -EFAULT; 6683 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6684 goto set_identity_unlock; 6685 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6686 set_identity_unlock: 6687 mutex_unlock(&kvm->lock); 6688 break; 6689 } 6690 case KVM_SET_NR_MMU_PAGES: 6691 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6692 break; 6693 case KVM_GET_NR_MMU_PAGES: 6694 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6695 break; 6696 case KVM_CREATE_IRQCHIP: { 6697 mutex_lock(&kvm->lock); 6698 6699 r = -EEXIST; 6700 if (irqchip_in_kernel(kvm)) 6701 goto create_irqchip_unlock; 6702 6703 r = -EINVAL; 6704 if (kvm->created_vcpus) 6705 goto create_irqchip_unlock; 6706 6707 r = kvm_pic_init(kvm); 6708 if (r) 6709 goto create_irqchip_unlock; 6710 6711 r = kvm_ioapic_init(kvm); 6712 if (r) { 6713 kvm_pic_destroy(kvm); 6714 goto create_irqchip_unlock; 6715 } 6716 6717 r = kvm_setup_default_irq_routing(kvm); 6718 if (r) { 6719 kvm_ioapic_destroy(kvm); 6720 kvm_pic_destroy(kvm); 6721 goto create_irqchip_unlock; 6722 } 6723 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6724 smp_wmb(); 6725 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6726 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6727 create_irqchip_unlock: 6728 mutex_unlock(&kvm->lock); 6729 break; 6730 } 6731 case KVM_CREATE_PIT: 6732 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6733 goto create_pit; 6734 case KVM_CREATE_PIT2: 6735 r = -EFAULT; 6736 if (copy_from_user(&u.pit_config, argp, 6737 sizeof(struct kvm_pit_config))) 6738 goto out; 6739 create_pit: 6740 mutex_lock(&kvm->lock); 6741 r = -EEXIST; 6742 if (kvm->arch.vpit) 6743 goto create_pit_unlock; 6744 r = -ENOMEM; 6745 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6746 if (kvm->arch.vpit) 6747 r = 0; 6748 create_pit_unlock: 6749 mutex_unlock(&kvm->lock); 6750 break; 6751 case KVM_GET_IRQCHIP: { 6752 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6753 struct kvm_irqchip *chip; 6754 6755 chip = memdup_user(argp, sizeof(*chip)); 6756 if (IS_ERR(chip)) { 6757 r = PTR_ERR(chip); 6758 goto out; 6759 } 6760 6761 r = -ENXIO; 6762 if (!irqchip_kernel(kvm)) 6763 goto get_irqchip_out; 6764 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6765 if (r) 6766 goto get_irqchip_out; 6767 r = -EFAULT; 6768 if (copy_to_user(argp, chip, sizeof(*chip))) 6769 goto get_irqchip_out; 6770 r = 0; 6771 get_irqchip_out: 6772 kfree(chip); 6773 break; 6774 } 6775 case KVM_SET_IRQCHIP: { 6776 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6777 struct kvm_irqchip *chip; 6778 6779 chip = memdup_user(argp, sizeof(*chip)); 6780 if (IS_ERR(chip)) { 6781 r = PTR_ERR(chip); 6782 goto out; 6783 } 6784 6785 r = -ENXIO; 6786 if (!irqchip_kernel(kvm)) 6787 goto set_irqchip_out; 6788 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6789 set_irqchip_out: 6790 kfree(chip); 6791 break; 6792 } 6793 case KVM_GET_PIT: { 6794 r = -EFAULT; 6795 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6796 goto out; 6797 r = -ENXIO; 6798 if (!kvm->arch.vpit) 6799 goto out; 6800 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6801 if (r) 6802 goto out; 6803 r = -EFAULT; 6804 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6805 goto out; 6806 r = 0; 6807 break; 6808 } 6809 case KVM_SET_PIT: { 6810 r = -EFAULT; 6811 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6812 goto out; 6813 mutex_lock(&kvm->lock); 6814 r = -ENXIO; 6815 if (!kvm->arch.vpit) 6816 goto set_pit_out; 6817 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6818 set_pit_out: 6819 mutex_unlock(&kvm->lock); 6820 break; 6821 } 6822 case KVM_GET_PIT2: { 6823 r = -ENXIO; 6824 if (!kvm->arch.vpit) 6825 goto out; 6826 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6827 if (r) 6828 goto out; 6829 r = -EFAULT; 6830 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6831 goto out; 6832 r = 0; 6833 break; 6834 } 6835 case KVM_SET_PIT2: { 6836 r = -EFAULT; 6837 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6838 goto out; 6839 mutex_lock(&kvm->lock); 6840 r = -ENXIO; 6841 if (!kvm->arch.vpit) 6842 goto set_pit2_out; 6843 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6844 set_pit2_out: 6845 mutex_unlock(&kvm->lock); 6846 break; 6847 } 6848 case KVM_REINJECT_CONTROL: { 6849 struct kvm_reinject_control control; 6850 r = -EFAULT; 6851 if (copy_from_user(&control, argp, sizeof(control))) 6852 goto out; 6853 r = -ENXIO; 6854 if (!kvm->arch.vpit) 6855 goto out; 6856 r = kvm_vm_ioctl_reinject(kvm, &control); 6857 break; 6858 } 6859 case KVM_SET_BOOT_CPU_ID: 6860 r = 0; 6861 mutex_lock(&kvm->lock); 6862 if (kvm->created_vcpus) 6863 r = -EBUSY; 6864 else 6865 kvm->arch.bsp_vcpu_id = arg; 6866 mutex_unlock(&kvm->lock); 6867 break; 6868 #ifdef CONFIG_KVM_XEN 6869 case KVM_XEN_HVM_CONFIG: { 6870 struct kvm_xen_hvm_config xhc; 6871 r = -EFAULT; 6872 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6873 goto out; 6874 r = kvm_xen_hvm_config(kvm, &xhc); 6875 break; 6876 } 6877 case KVM_XEN_HVM_GET_ATTR: { 6878 struct kvm_xen_hvm_attr xha; 6879 6880 r = -EFAULT; 6881 if (copy_from_user(&xha, argp, sizeof(xha))) 6882 goto out; 6883 r = kvm_xen_hvm_get_attr(kvm, &xha); 6884 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6885 r = -EFAULT; 6886 break; 6887 } 6888 case KVM_XEN_HVM_SET_ATTR: { 6889 struct kvm_xen_hvm_attr xha; 6890 6891 r = -EFAULT; 6892 if (copy_from_user(&xha, argp, sizeof(xha))) 6893 goto out; 6894 r = kvm_xen_hvm_set_attr(kvm, &xha); 6895 break; 6896 } 6897 case KVM_XEN_HVM_EVTCHN_SEND: { 6898 struct kvm_irq_routing_xen_evtchn uxe; 6899 6900 r = -EFAULT; 6901 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6902 goto out; 6903 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6904 break; 6905 } 6906 #endif 6907 case KVM_SET_CLOCK: 6908 r = kvm_vm_ioctl_set_clock(kvm, argp); 6909 break; 6910 case KVM_GET_CLOCK: 6911 r = kvm_vm_ioctl_get_clock(kvm, argp); 6912 break; 6913 case KVM_SET_TSC_KHZ: { 6914 u32 user_tsc_khz; 6915 6916 r = -EINVAL; 6917 user_tsc_khz = (u32)arg; 6918 6919 if (kvm_caps.has_tsc_control && 6920 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6921 goto out; 6922 6923 if (user_tsc_khz == 0) 6924 user_tsc_khz = tsc_khz; 6925 6926 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6927 r = 0; 6928 6929 goto out; 6930 } 6931 case KVM_GET_TSC_KHZ: { 6932 r = READ_ONCE(kvm->arch.default_tsc_khz); 6933 goto out; 6934 } 6935 case KVM_MEMORY_ENCRYPT_OP: { 6936 r = -ENOTTY; 6937 if (!kvm_x86_ops.mem_enc_ioctl) 6938 goto out; 6939 6940 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6941 break; 6942 } 6943 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6944 struct kvm_enc_region region; 6945 6946 r = -EFAULT; 6947 if (copy_from_user(®ion, argp, sizeof(region))) 6948 goto out; 6949 6950 r = -ENOTTY; 6951 if (!kvm_x86_ops.mem_enc_register_region) 6952 goto out; 6953 6954 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6955 break; 6956 } 6957 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6958 struct kvm_enc_region region; 6959 6960 r = -EFAULT; 6961 if (copy_from_user(®ion, argp, sizeof(region))) 6962 goto out; 6963 6964 r = -ENOTTY; 6965 if (!kvm_x86_ops.mem_enc_unregister_region) 6966 goto out; 6967 6968 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6969 break; 6970 } 6971 case KVM_HYPERV_EVENTFD: { 6972 struct kvm_hyperv_eventfd hvevfd; 6973 6974 r = -EFAULT; 6975 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6976 goto out; 6977 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6978 break; 6979 } 6980 case KVM_SET_PMU_EVENT_FILTER: 6981 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6982 break; 6983 case KVM_X86_SET_MSR_FILTER: { 6984 struct kvm_msr_filter __user *user_msr_filter = argp; 6985 struct kvm_msr_filter filter; 6986 6987 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6988 return -EFAULT; 6989 6990 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6991 break; 6992 } 6993 default: 6994 r = -ENOTTY; 6995 } 6996 out: 6997 return r; 6998 } 6999 7000 static void kvm_probe_msr_to_save(u32 msr_index) 7001 { 7002 u32 dummy[2]; 7003 7004 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7005 return; 7006 7007 /* 7008 * Even MSRs that are valid in the host may not be exposed to guests in 7009 * some cases. 7010 */ 7011 switch (msr_index) { 7012 case MSR_IA32_BNDCFGS: 7013 if (!kvm_mpx_supported()) 7014 return; 7015 break; 7016 case MSR_TSC_AUX: 7017 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7018 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7019 return; 7020 break; 7021 case MSR_IA32_UMWAIT_CONTROL: 7022 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7023 return; 7024 break; 7025 case MSR_IA32_RTIT_CTL: 7026 case MSR_IA32_RTIT_STATUS: 7027 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7028 return; 7029 break; 7030 case MSR_IA32_RTIT_CR3_MATCH: 7031 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7032 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7033 return; 7034 break; 7035 case MSR_IA32_RTIT_OUTPUT_BASE: 7036 case MSR_IA32_RTIT_OUTPUT_MASK: 7037 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7038 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7039 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7040 return; 7041 break; 7042 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7043 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7044 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7045 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7046 return; 7047 break; 7048 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7049 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7050 kvm_pmu_cap.num_counters_gp) 7051 return; 7052 break; 7053 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7054 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7055 kvm_pmu_cap.num_counters_gp) 7056 return; 7057 break; 7058 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7059 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7060 kvm_pmu_cap.num_counters_fixed) 7061 return; 7062 break; 7063 case MSR_IA32_XFD: 7064 case MSR_IA32_XFD_ERR: 7065 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7066 return; 7067 break; 7068 default: 7069 break; 7070 } 7071 7072 msrs_to_save[num_msrs_to_save++] = msr_index; 7073 } 7074 7075 static void kvm_init_msr_list(void) 7076 { 7077 unsigned i; 7078 7079 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7080 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7081 7082 num_msrs_to_save = 0; 7083 num_emulated_msrs = 0; 7084 num_msr_based_features = 0; 7085 7086 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7087 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7088 7089 if (enable_pmu) { 7090 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7091 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7092 } 7093 7094 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7095 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7096 continue; 7097 7098 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7099 } 7100 7101 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7102 struct kvm_msr_entry msr; 7103 7104 msr.index = msr_based_features_all[i]; 7105 if (kvm_get_msr_feature(&msr)) 7106 continue; 7107 7108 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7109 } 7110 } 7111 7112 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7113 const void *v) 7114 { 7115 int handled = 0; 7116 int n; 7117 7118 do { 7119 n = min(len, 8); 7120 if (!(lapic_in_kernel(vcpu) && 7121 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7122 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7123 break; 7124 handled += n; 7125 addr += n; 7126 len -= n; 7127 v += n; 7128 } while (len); 7129 7130 return handled; 7131 } 7132 7133 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7134 { 7135 int handled = 0; 7136 int n; 7137 7138 do { 7139 n = min(len, 8); 7140 if (!(lapic_in_kernel(vcpu) && 7141 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7142 addr, n, v)) 7143 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7144 break; 7145 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7146 handled += n; 7147 addr += n; 7148 len -= n; 7149 v += n; 7150 } while (len); 7151 7152 return handled; 7153 } 7154 7155 void kvm_set_segment(struct kvm_vcpu *vcpu, 7156 struct kvm_segment *var, int seg) 7157 { 7158 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7159 } 7160 7161 void kvm_get_segment(struct kvm_vcpu *vcpu, 7162 struct kvm_segment *var, int seg) 7163 { 7164 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7165 } 7166 7167 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7168 struct x86_exception *exception) 7169 { 7170 struct kvm_mmu *mmu = vcpu->arch.mmu; 7171 gpa_t t_gpa; 7172 7173 BUG_ON(!mmu_is_nested(vcpu)); 7174 7175 /* NPT walks are always user-walks */ 7176 access |= PFERR_USER_MASK; 7177 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7178 7179 return t_gpa; 7180 } 7181 7182 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7183 struct x86_exception *exception) 7184 { 7185 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7186 7187 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7188 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7189 } 7190 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7191 7192 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7193 struct x86_exception *exception) 7194 { 7195 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7196 7197 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7198 access |= PFERR_WRITE_MASK; 7199 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7200 } 7201 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7202 7203 /* uses this to access any guest's mapped memory without checking CPL */ 7204 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7205 struct x86_exception *exception) 7206 { 7207 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7208 7209 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7210 } 7211 7212 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7213 struct kvm_vcpu *vcpu, u64 access, 7214 struct x86_exception *exception) 7215 { 7216 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7217 void *data = val; 7218 int r = X86EMUL_CONTINUE; 7219 7220 while (bytes) { 7221 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7222 unsigned offset = addr & (PAGE_SIZE-1); 7223 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7224 int ret; 7225 7226 if (gpa == INVALID_GPA) 7227 return X86EMUL_PROPAGATE_FAULT; 7228 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7229 offset, toread); 7230 if (ret < 0) { 7231 r = X86EMUL_IO_NEEDED; 7232 goto out; 7233 } 7234 7235 bytes -= toread; 7236 data += toread; 7237 addr += toread; 7238 } 7239 out: 7240 return r; 7241 } 7242 7243 /* used for instruction fetching */ 7244 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7245 gva_t addr, void *val, unsigned int bytes, 7246 struct x86_exception *exception) 7247 { 7248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7249 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7250 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7251 unsigned offset; 7252 int ret; 7253 7254 /* Inline kvm_read_guest_virt_helper for speed. */ 7255 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7256 exception); 7257 if (unlikely(gpa == INVALID_GPA)) 7258 return X86EMUL_PROPAGATE_FAULT; 7259 7260 offset = addr & (PAGE_SIZE-1); 7261 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7262 bytes = (unsigned)PAGE_SIZE - offset; 7263 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7264 offset, bytes); 7265 if (unlikely(ret < 0)) 7266 return X86EMUL_IO_NEEDED; 7267 7268 return X86EMUL_CONTINUE; 7269 } 7270 7271 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7272 gva_t addr, void *val, unsigned int bytes, 7273 struct x86_exception *exception) 7274 { 7275 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7276 7277 /* 7278 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7279 * is returned, but our callers are not ready for that and they blindly 7280 * call kvm_inject_page_fault. Ensure that they at least do not leak 7281 * uninitialized kernel stack memory into cr2 and error code. 7282 */ 7283 memset(exception, 0, sizeof(*exception)); 7284 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7285 exception); 7286 } 7287 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7288 7289 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7290 gva_t addr, void *val, unsigned int bytes, 7291 struct x86_exception *exception, bool system) 7292 { 7293 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7294 u64 access = 0; 7295 7296 if (system) 7297 access |= PFERR_IMPLICIT_ACCESS; 7298 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7299 access |= PFERR_USER_MASK; 7300 7301 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7302 } 7303 7304 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7305 struct kvm_vcpu *vcpu, u64 access, 7306 struct x86_exception *exception) 7307 { 7308 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7309 void *data = val; 7310 int r = X86EMUL_CONTINUE; 7311 7312 while (bytes) { 7313 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7314 unsigned offset = addr & (PAGE_SIZE-1); 7315 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7316 int ret; 7317 7318 if (gpa == INVALID_GPA) 7319 return X86EMUL_PROPAGATE_FAULT; 7320 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7321 if (ret < 0) { 7322 r = X86EMUL_IO_NEEDED; 7323 goto out; 7324 } 7325 7326 bytes -= towrite; 7327 data += towrite; 7328 addr += towrite; 7329 } 7330 out: 7331 return r; 7332 } 7333 7334 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7335 unsigned int bytes, struct x86_exception *exception, 7336 bool system) 7337 { 7338 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7339 u64 access = PFERR_WRITE_MASK; 7340 7341 if (system) 7342 access |= PFERR_IMPLICIT_ACCESS; 7343 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7344 access |= PFERR_USER_MASK; 7345 7346 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7347 access, exception); 7348 } 7349 7350 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7351 unsigned int bytes, struct x86_exception *exception) 7352 { 7353 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7354 vcpu->arch.l1tf_flush_l1d = true; 7355 7356 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7357 PFERR_WRITE_MASK, exception); 7358 } 7359 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7360 7361 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7362 void *insn, int insn_len) 7363 { 7364 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7365 insn, insn_len); 7366 } 7367 7368 int handle_ud(struct kvm_vcpu *vcpu) 7369 { 7370 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7371 int fep_flags = READ_ONCE(force_emulation_prefix); 7372 int emul_type = EMULTYPE_TRAP_UD; 7373 char sig[5]; /* ud2; .ascii "kvm" */ 7374 struct x86_exception e; 7375 7376 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7377 return 1; 7378 7379 if (fep_flags && 7380 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7381 sig, sizeof(sig), &e) == 0 && 7382 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7383 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7384 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7385 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7386 emul_type = EMULTYPE_TRAP_UD_FORCED; 7387 } 7388 7389 return kvm_emulate_instruction(vcpu, emul_type); 7390 } 7391 EXPORT_SYMBOL_GPL(handle_ud); 7392 7393 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7394 gpa_t gpa, bool write) 7395 { 7396 /* For APIC access vmexit */ 7397 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7398 return 1; 7399 7400 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7401 trace_vcpu_match_mmio(gva, gpa, write, true); 7402 return 1; 7403 } 7404 7405 return 0; 7406 } 7407 7408 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7409 gpa_t *gpa, struct x86_exception *exception, 7410 bool write) 7411 { 7412 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7413 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7414 | (write ? PFERR_WRITE_MASK : 0); 7415 7416 /* 7417 * currently PKRU is only applied to ept enabled guest so 7418 * there is no pkey in EPT page table for L1 guest or EPT 7419 * shadow page table for L2 guest. 7420 */ 7421 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7422 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7423 vcpu->arch.mmio_access, 0, access))) { 7424 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7425 (gva & (PAGE_SIZE - 1)); 7426 trace_vcpu_match_mmio(gva, *gpa, write, false); 7427 return 1; 7428 } 7429 7430 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7431 7432 if (*gpa == INVALID_GPA) 7433 return -1; 7434 7435 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7436 } 7437 7438 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7439 const void *val, int bytes) 7440 { 7441 int ret; 7442 7443 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7444 if (ret < 0) 7445 return 0; 7446 kvm_page_track_write(vcpu, gpa, val, bytes); 7447 return 1; 7448 } 7449 7450 struct read_write_emulator_ops { 7451 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7452 int bytes); 7453 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7454 void *val, int bytes); 7455 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7456 int bytes, void *val); 7457 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7458 void *val, int bytes); 7459 bool write; 7460 }; 7461 7462 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7463 { 7464 if (vcpu->mmio_read_completed) { 7465 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7466 vcpu->mmio_fragments[0].gpa, val); 7467 vcpu->mmio_read_completed = 0; 7468 return 1; 7469 } 7470 7471 return 0; 7472 } 7473 7474 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7475 void *val, int bytes) 7476 { 7477 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7478 } 7479 7480 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7481 void *val, int bytes) 7482 { 7483 return emulator_write_phys(vcpu, gpa, val, bytes); 7484 } 7485 7486 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7487 { 7488 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7489 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7490 } 7491 7492 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7493 void *val, int bytes) 7494 { 7495 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7496 return X86EMUL_IO_NEEDED; 7497 } 7498 7499 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7500 void *val, int bytes) 7501 { 7502 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7503 7504 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7505 return X86EMUL_CONTINUE; 7506 } 7507 7508 static const struct read_write_emulator_ops read_emultor = { 7509 .read_write_prepare = read_prepare, 7510 .read_write_emulate = read_emulate, 7511 .read_write_mmio = vcpu_mmio_read, 7512 .read_write_exit_mmio = read_exit_mmio, 7513 }; 7514 7515 static const struct read_write_emulator_ops write_emultor = { 7516 .read_write_emulate = write_emulate, 7517 .read_write_mmio = write_mmio, 7518 .read_write_exit_mmio = write_exit_mmio, 7519 .write = true, 7520 }; 7521 7522 static int emulator_read_write_onepage(unsigned long addr, void *val, 7523 unsigned int bytes, 7524 struct x86_exception *exception, 7525 struct kvm_vcpu *vcpu, 7526 const struct read_write_emulator_ops *ops) 7527 { 7528 gpa_t gpa; 7529 int handled, ret; 7530 bool write = ops->write; 7531 struct kvm_mmio_fragment *frag; 7532 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7533 7534 /* 7535 * If the exit was due to a NPF we may already have a GPA. 7536 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7537 * Note, this cannot be used on string operations since string 7538 * operation using rep will only have the initial GPA from the NPF 7539 * occurred. 7540 */ 7541 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7542 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7543 gpa = ctxt->gpa_val; 7544 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7545 } else { 7546 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7547 if (ret < 0) 7548 return X86EMUL_PROPAGATE_FAULT; 7549 } 7550 7551 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7552 return X86EMUL_CONTINUE; 7553 7554 /* 7555 * Is this MMIO handled locally? 7556 */ 7557 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7558 if (handled == bytes) 7559 return X86EMUL_CONTINUE; 7560 7561 gpa += handled; 7562 bytes -= handled; 7563 val += handled; 7564 7565 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7566 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7567 frag->gpa = gpa; 7568 frag->data = val; 7569 frag->len = bytes; 7570 return X86EMUL_CONTINUE; 7571 } 7572 7573 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7574 unsigned long addr, 7575 void *val, unsigned int bytes, 7576 struct x86_exception *exception, 7577 const struct read_write_emulator_ops *ops) 7578 { 7579 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7580 gpa_t gpa; 7581 int rc; 7582 7583 if (ops->read_write_prepare && 7584 ops->read_write_prepare(vcpu, val, bytes)) 7585 return X86EMUL_CONTINUE; 7586 7587 vcpu->mmio_nr_fragments = 0; 7588 7589 /* Crossing a page boundary? */ 7590 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7591 int now; 7592 7593 now = -addr & ~PAGE_MASK; 7594 rc = emulator_read_write_onepage(addr, val, now, exception, 7595 vcpu, ops); 7596 7597 if (rc != X86EMUL_CONTINUE) 7598 return rc; 7599 addr += now; 7600 if (ctxt->mode != X86EMUL_MODE_PROT64) 7601 addr = (u32)addr; 7602 val += now; 7603 bytes -= now; 7604 } 7605 7606 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7607 vcpu, ops); 7608 if (rc != X86EMUL_CONTINUE) 7609 return rc; 7610 7611 if (!vcpu->mmio_nr_fragments) 7612 return rc; 7613 7614 gpa = vcpu->mmio_fragments[0].gpa; 7615 7616 vcpu->mmio_needed = 1; 7617 vcpu->mmio_cur_fragment = 0; 7618 7619 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7620 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7621 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7622 vcpu->run->mmio.phys_addr = gpa; 7623 7624 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7625 } 7626 7627 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7628 unsigned long addr, 7629 void *val, 7630 unsigned int bytes, 7631 struct x86_exception *exception) 7632 { 7633 return emulator_read_write(ctxt, addr, val, bytes, 7634 exception, &read_emultor); 7635 } 7636 7637 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7638 unsigned long addr, 7639 const void *val, 7640 unsigned int bytes, 7641 struct x86_exception *exception) 7642 { 7643 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7644 exception, &write_emultor); 7645 } 7646 7647 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7648 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7649 7650 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7651 unsigned long addr, 7652 const void *old, 7653 const void *new, 7654 unsigned int bytes, 7655 struct x86_exception *exception) 7656 { 7657 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7658 u64 page_line_mask; 7659 unsigned long hva; 7660 gpa_t gpa; 7661 int r; 7662 7663 /* guests cmpxchg8b have to be emulated atomically */ 7664 if (bytes > 8 || (bytes & (bytes - 1))) 7665 goto emul_write; 7666 7667 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7668 7669 if (gpa == INVALID_GPA || 7670 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7671 goto emul_write; 7672 7673 /* 7674 * Emulate the atomic as a straight write to avoid #AC if SLD is 7675 * enabled in the host and the access splits a cache line. 7676 */ 7677 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7678 page_line_mask = ~(cache_line_size() - 1); 7679 else 7680 page_line_mask = PAGE_MASK; 7681 7682 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7683 goto emul_write; 7684 7685 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7686 if (kvm_is_error_hva(hva)) 7687 goto emul_write; 7688 7689 hva += offset_in_page(gpa); 7690 7691 switch (bytes) { 7692 case 1: 7693 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7694 break; 7695 case 2: 7696 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7697 break; 7698 case 4: 7699 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7700 break; 7701 case 8: 7702 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7703 break; 7704 default: 7705 BUG(); 7706 } 7707 7708 if (r < 0) 7709 return X86EMUL_UNHANDLEABLE; 7710 if (r) 7711 return X86EMUL_CMPXCHG_FAILED; 7712 7713 kvm_page_track_write(vcpu, gpa, new, bytes); 7714 7715 return X86EMUL_CONTINUE; 7716 7717 emul_write: 7718 pr_warn_once("emulating exchange as write\n"); 7719 7720 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7721 } 7722 7723 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7724 unsigned short port, void *data, 7725 unsigned int count, bool in) 7726 { 7727 unsigned i; 7728 int r; 7729 7730 WARN_ON_ONCE(vcpu->arch.pio.count); 7731 for (i = 0; i < count; i++) { 7732 if (in) 7733 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7734 else 7735 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7736 7737 if (r) { 7738 if (i == 0) 7739 goto userspace_io; 7740 7741 /* 7742 * Userspace must have unregistered the device while PIO 7743 * was running. Drop writes / read as 0. 7744 */ 7745 if (in) 7746 memset(data, 0, size * (count - i)); 7747 break; 7748 } 7749 7750 data += size; 7751 } 7752 return 1; 7753 7754 userspace_io: 7755 vcpu->arch.pio.port = port; 7756 vcpu->arch.pio.in = in; 7757 vcpu->arch.pio.count = count; 7758 vcpu->arch.pio.size = size; 7759 7760 if (in) 7761 memset(vcpu->arch.pio_data, 0, size * count); 7762 else 7763 memcpy(vcpu->arch.pio_data, data, size * count); 7764 7765 vcpu->run->exit_reason = KVM_EXIT_IO; 7766 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7767 vcpu->run->io.size = size; 7768 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7769 vcpu->run->io.count = count; 7770 vcpu->run->io.port = port; 7771 return 0; 7772 } 7773 7774 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7775 unsigned short port, void *val, unsigned int count) 7776 { 7777 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7778 if (r) 7779 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7780 7781 return r; 7782 } 7783 7784 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7785 { 7786 int size = vcpu->arch.pio.size; 7787 unsigned int count = vcpu->arch.pio.count; 7788 memcpy(val, vcpu->arch.pio_data, size * count); 7789 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7790 vcpu->arch.pio.count = 0; 7791 } 7792 7793 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7794 int size, unsigned short port, void *val, 7795 unsigned int count) 7796 { 7797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7798 if (vcpu->arch.pio.count) { 7799 /* 7800 * Complete a previous iteration that required userspace I/O. 7801 * Note, @count isn't guaranteed to match pio.count as userspace 7802 * can modify ECX before rerunning the vCPU. Ignore any such 7803 * shenanigans as KVM doesn't support modifying the rep count, 7804 * and the emulator ensures @count doesn't overflow the buffer. 7805 */ 7806 complete_emulator_pio_in(vcpu, val); 7807 return 1; 7808 } 7809 7810 return emulator_pio_in(vcpu, size, port, val, count); 7811 } 7812 7813 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7814 unsigned short port, const void *val, 7815 unsigned int count) 7816 { 7817 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7818 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7819 } 7820 7821 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7822 int size, unsigned short port, 7823 const void *val, unsigned int count) 7824 { 7825 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7826 } 7827 7828 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7829 { 7830 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7831 } 7832 7833 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7834 { 7835 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7836 } 7837 7838 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7839 { 7840 if (!need_emulate_wbinvd(vcpu)) 7841 return X86EMUL_CONTINUE; 7842 7843 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7844 int cpu = get_cpu(); 7845 7846 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7847 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7848 wbinvd_ipi, NULL, 1); 7849 put_cpu(); 7850 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7851 } else 7852 wbinvd(); 7853 return X86EMUL_CONTINUE; 7854 } 7855 7856 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7857 { 7858 kvm_emulate_wbinvd_noskip(vcpu); 7859 return kvm_skip_emulated_instruction(vcpu); 7860 } 7861 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7862 7863 7864 7865 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7866 { 7867 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7868 } 7869 7870 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7871 unsigned long *dest) 7872 { 7873 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7874 } 7875 7876 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7877 unsigned long value) 7878 { 7879 7880 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7881 } 7882 7883 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7884 { 7885 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7886 } 7887 7888 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7889 { 7890 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7891 unsigned long value; 7892 7893 switch (cr) { 7894 case 0: 7895 value = kvm_read_cr0(vcpu); 7896 break; 7897 case 2: 7898 value = vcpu->arch.cr2; 7899 break; 7900 case 3: 7901 value = kvm_read_cr3(vcpu); 7902 break; 7903 case 4: 7904 value = kvm_read_cr4(vcpu); 7905 break; 7906 case 8: 7907 value = kvm_get_cr8(vcpu); 7908 break; 7909 default: 7910 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7911 return 0; 7912 } 7913 7914 return value; 7915 } 7916 7917 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7918 { 7919 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7920 int res = 0; 7921 7922 switch (cr) { 7923 case 0: 7924 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7925 break; 7926 case 2: 7927 vcpu->arch.cr2 = val; 7928 break; 7929 case 3: 7930 res = kvm_set_cr3(vcpu, val); 7931 break; 7932 case 4: 7933 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7934 break; 7935 case 8: 7936 res = kvm_set_cr8(vcpu, val); 7937 break; 7938 default: 7939 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7940 res = -1; 7941 } 7942 7943 return res; 7944 } 7945 7946 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7947 { 7948 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7949 } 7950 7951 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7952 { 7953 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7954 } 7955 7956 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7957 { 7958 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7959 } 7960 7961 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7962 { 7963 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7964 } 7965 7966 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7967 { 7968 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7969 } 7970 7971 static unsigned long emulator_get_cached_segment_base( 7972 struct x86_emulate_ctxt *ctxt, int seg) 7973 { 7974 return get_segment_base(emul_to_vcpu(ctxt), seg); 7975 } 7976 7977 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7978 struct desc_struct *desc, u32 *base3, 7979 int seg) 7980 { 7981 struct kvm_segment var; 7982 7983 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7984 *selector = var.selector; 7985 7986 if (var.unusable) { 7987 memset(desc, 0, sizeof(*desc)); 7988 if (base3) 7989 *base3 = 0; 7990 return false; 7991 } 7992 7993 if (var.g) 7994 var.limit >>= 12; 7995 set_desc_limit(desc, var.limit); 7996 set_desc_base(desc, (unsigned long)var.base); 7997 #ifdef CONFIG_X86_64 7998 if (base3) 7999 *base3 = var.base >> 32; 8000 #endif 8001 desc->type = var.type; 8002 desc->s = var.s; 8003 desc->dpl = var.dpl; 8004 desc->p = var.present; 8005 desc->avl = var.avl; 8006 desc->l = var.l; 8007 desc->d = var.db; 8008 desc->g = var.g; 8009 8010 return true; 8011 } 8012 8013 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8014 struct desc_struct *desc, u32 base3, 8015 int seg) 8016 { 8017 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8018 struct kvm_segment var; 8019 8020 var.selector = selector; 8021 var.base = get_desc_base(desc); 8022 #ifdef CONFIG_X86_64 8023 var.base |= ((u64)base3) << 32; 8024 #endif 8025 var.limit = get_desc_limit(desc); 8026 if (desc->g) 8027 var.limit = (var.limit << 12) | 0xfff; 8028 var.type = desc->type; 8029 var.dpl = desc->dpl; 8030 var.db = desc->d; 8031 var.s = desc->s; 8032 var.l = desc->l; 8033 var.g = desc->g; 8034 var.avl = desc->avl; 8035 var.present = desc->p; 8036 var.unusable = !var.present; 8037 var.padding = 0; 8038 8039 kvm_set_segment(vcpu, &var, seg); 8040 return; 8041 } 8042 8043 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8044 u32 msr_index, u64 *pdata) 8045 { 8046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8047 int r; 8048 8049 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8050 if (r < 0) 8051 return X86EMUL_UNHANDLEABLE; 8052 8053 if (r) { 8054 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8055 complete_emulated_rdmsr, r)) 8056 return X86EMUL_IO_NEEDED; 8057 8058 trace_kvm_msr_read_ex(msr_index); 8059 return X86EMUL_PROPAGATE_FAULT; 8060 } 8061 8062 trace_kvm_msr_read(msr_index, *pdata); 8063 return X86EMUL_CONTINUE; 8064 } 8065 8066 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8067 u32 msr_index, u64 data) 8068 { 8069 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8070 int r; 8071 8072 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8073 if (r < 0) 8074 return X86EMUL_UNHANDLEABLE; 8075 8076 if (r) { 8077 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8078 complete_emulated_msr_access, r)) 8079 return X86EMUL_IO_NEEDED; 8080 8081 trace_kvm_msr_write_ex(msr_index, data); 8082 return X86EMUL_PROPAGATE_FAULT; 8083 } 8084 8085 trace_kvm_msr_write(msr_index, data); 8086 return X86EMUL_CONTINUE; 8087 } 8088 8089 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8090 u32 msr_index, u64 *pdata) 8091 { 8092 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8093 } 8094 8095 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8096 u32 pmc) 8097 { 8098 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8099 return 0; 8100 return -EINVAL; 8101 } 8102 8103 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8104 u32 pmc, u64 *pdata) 8105 { 8106 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8107 } 8108 8109 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8110 { 8111 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8112 } 8113 8114 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8115 struct x86_instruction_info *info, 8116 enum x86_intercept_stage stage) 8117 { 8118 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8119 &ctxt->exception); 8120 } 8121 8122 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8123 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8124 bool exact_only) 8125 { 8126 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8127 } 8128 8129 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8130 { 8131 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8132 } 8133 8134 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8135 { 8136 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8137 } 8138 8139 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8140 { 8141 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8142 } 8143 8144 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8145 { 8146 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8147 } 8148 8149 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8150 { 8151 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8152 } 8153 8154 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8155 { 8156 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8157 } 8158 8159 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8160 { 8161 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8162 } 8163 8164 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8165 { 8166 return emul_to_vcpu(ctxt)->arch.hflags; 8167 } 8168 8169 #ifndef CONFIG_KVM_SMM 8170 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8171 { 8172 WARN_ON_ONCE(1); 8173 return X86EMUL_UNHANDLEABLE; 8174 } 8175 #endif 8176 8177 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8178 { 8179 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8180 } 8181 8182 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8183 { 8184 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8185 } 8186 8187 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8188 { 8189 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8190 8191 if (!kvm->vm_bugged) 8192 kvm_vm_bugged(kvm); 8193 } 8194 8195 static const struct x86_emulate_ops emulate_ops = { 8196 .vm_bugged = emulator_vm_bugged, 8197 .read_gpr = emulator_read_gpr, 8198 .write_gpr = emulator_write_gpr, 8199 .read_std = emulator_read_std, 8200 .write_std = emulator_write_std, 8201 .fetch = kvm_fetch_guest_virt, 8202 .read_emulated = emulator_read_emulated, 8203 .write_emulated = emulator_write_emulated, 8204 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8205 .invlpg = emulator_invlpg, 8206 .pio_in_emulated = emulator_pio_in_emulated, 8207 .pio_out_emulated = emulator_pio_out_emulated, 8208 .get_segment = emulator_get_segment, 8209 .set_segment = emulator_set_segment, 8210 .get_cached_segment_base = emulator_get_cached_segment_base, 8211 .get_gdt = emulator_get_gdt, 8212 .get_idt = emulator_get_idt, 8213 .set_gdt = emulator_set_gdt, 8214 .set_idt = emulator_set_idt, 8215 .get_cr = emulator_get_cr, 8216 .set_cr = emulator_set_cr, 8217 .cpl = emulator_get_cpl, 8218 .get_dr = emulator_get_dr, 8219 .set_dr = emulator_set_dr, 8220 .set_msr_with_filter = emulator_set_msr_with_filter, 8221 .get_msr_with_filter = emulator_get_msr_with_filter, 8222 .get_msr = emulator_get_msr, 8223 .check_pmc = emulator_check_pmc, 8224 .read_pmc = emulator_read_pmc, 8225 .halt = emulator_halt, 8226 .wbinvd = emulator_wbinvd, 8227 .fix_hypercall = emulator_fix_hypercall, 8228 .intercept = emulator_intercept, 8229 .get_cpuid = emulator_get_cpuid, 8230 .guest_has_long_mode = emulator_guest_has_long_mode, 8231 .guest_has_movbe = emulator_guest_has_movbe, 8232 .guest_has_fxsr = emulator_guest_has_fxsr, 8233 .guest_has_rdpid = emulator_guest_has_rdpid, 8234 .set_nmi_mask = emulator_set_nmi_mask, 8235 .get_hflags = emulator_get_hflags, 8236 .leave_smm = emulator_leave_smm, 8237 .triple_fault = emulator_triple_fault, 8238 .set_xcr = emulator_set_xcr, 8239 }; 8240 8241 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8242 { 8243 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8244 /* 8245 * an sti; sti; sequence only disable interrupts for the first 8246 * instruction. So, if the last instruction, be it emulated or 8247 * not, left the system with the INT_STI flag enabled, it 8248 * means that the last instruction is an sti. We should not 8249 * leave the flag on in this case. The same goes for mov ss 8250 */ 8251 if (int_shadow & mask) 8252 mask = 0; 8253 if (unlikely(int_shadow || mask)) { 8254 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8255 if (!mask) 8256 kvm_make_request(KVM_REQ_EVENT, vcpu); 8257 } 8258 } 8259 8260 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8261 { 8262 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8263 8264 if (ctxt->exception.vector == PF_VECTOR) 8265 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8266 else if (ctxt->exception.error_code_valid) 8267 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8268 ctxt->exception.error_code); 8269 else 8270 kvm_queue_exception(vcpu, ctxt->exception.vector); 8271 } 8272 8273 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8274 { 8275 struct x86_emulate_ctxt *ctxt; 8276 8277 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8278 if (!ctxt) { 8279 pr_err("failed to allocate vcpu's emulator\n"); 8280 return NULL; 8281 } 8282 8283 ctxt->vcpu = vcpu; 8284 ctxt->ops = &emulate_ops; 8285 vcpu->arch.emulate_ctxt = ctxt; 8286 8287 return ctxt; 8288 } 8289 8290 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8291 { 8292 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8293 int cs_db, cs_l; 8294 8295 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8296 8297 ctxt->gpa_available = false; 8298 ctxt->eflags = kvm_get_rflags(vcpu); 8299 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8300 8301 ctxt->eip = kvm_rip_read(vcpu); 8302 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8303 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8304 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8305 cs_db ? X86EMUL_MODE_PROT32 : 8306 X86EMUL_MODE_PROT16; 8307 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8308 8309 ctxt->interruptibility = 0; 8310 ctxt->have_exception = false; 8311 ctxt->exception.vector = -1; 8312 ctxt->perm_ok = false; 8313 8314 init_decode_cache(ctxt); 8315 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8316 } 8317 8318 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8319 { 8320 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8321 int ret; 8322 8323 init_emulate_ctxt(vcpu); 8324 8325 ctxt->op_bytes = 2; 8326 ctxt->ad_bytes = 2; 8327 ctxt->_eip = ctxt->eip + inc_eip; 8328 ret = emulate_int_real(ctxt, irq); 8329 8330 if (ret != X86EMUL_CONTINUE) { 8331 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8332 } else { 8333 ctxt->eip = ctxt->_eip; 8334 kvm_rip_write(vcpu, ctxt->eip); 8335 kvm_set_rflags(vcpu, ctxt->eflags); 8336 } 8337 } 8338 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8339 8340 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8341 u8 ndata, u8 *insn_bytes, u8 insn_size) 8342 { 8343 struct kvm_run *run = vcpu->run; 8344 u64 info[5]; 8345 u8 info_start; 8346 8347 /* 8348 * Zero the whole array used to retrieve the exit info, as casting to 8349 * u32 for select entries will leave some chunks uninitialized. 8350 */ 8351 memset(&info, 0, sizeof(info)); 8352 8353 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8354 &info[2], (u32 *)&info[3], 8355 (u32 *)&info[4]); 8356 8357 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8358 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8359 8360 /* 8361 * There's currently space for 13 entries, but 5 are used for the exit 8362 * reason and info. Restrict to 4 to reduce the maintenance burden 8363 * when expanding kvm_run.emulation_failure in the future. 8364 */ 8365 if (WARN_ON_ONCE(ndata > 4)) 8366 ndata = 4; 8367 8368 /* Always include the flags as a 'data' entry. */ 8369 info_start = 1; 8370 run->emulation_failure.flags = 0; 8371 8372 if (insn_size) { 8373 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8374 sizeof(run->emulation_failure.insn_bytes) != 16)); 8375 info_start += 2; 8376 run->emulation_failure.flags |= 8377 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8378 run->emulation_failure.insn_size = insn_size; 8379 memset(run->emulation_failure.insn_bytes, 0x90, 8380 sizeof(run->emulation_failure.insn_bytes)); 8381 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8382 } 8383 8384 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8385 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8386 ndata * sizeof(data[0])); 8387 8388 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8389 } 8390 8391 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8392 { 8393 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8394 8395 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8396 ctxt->fetch.end - ctxt->fetch.data); 8397 } 8398 8399 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8400 u8 ndata) 8401 { 8402 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8403 } 8404 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8405 8406 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8407 { 8408 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8409 } 8410 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8411 8412 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8413 { 8414 struct kvm *kvm = vcpu->kvm; 8415 8416 ++vcpu->stat.insn_emulation_fail; 8417 trace_kvm_emulate_insn_failed(vcpu); 8418 8419 if (emulation_type & EMULTYPE_VMWARE_GP) { 8420 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8421 return 1; 8422 } 8423 8424 if (kvm->arch.exit_on_emulation_error || 8425 (emulation_type & EMULTYPE_SKIP)) { 8426 prepare_emulation_ctxt_failure_exit(vcpu); 8427 return 0; 8428 } 8429 8430 kvm_queue_exception(vcpu, UD_VECTOR); 8431 8432 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8433 prepare_emulation_ctxt_failure_exit(vcpu); 8434 return 0; 8435 } 8436 8437 return 1; 8438 } 8439 8440 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8441 bool write_fault_to_shadow_pgtable, 8442 int emulation_type) 8443 { 8444 gpa_t gpa = cr2_or_gpa; 8445 kvm_pfn_t pfn; 8446 8447 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8448 return false; 8449 8450 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8451 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8452 return false; 8453 8454 if (!vcpu->arch.mmu->root_role.direct) { 8455 /* 8456 * Write permission should be allowed since only 8457 * write access need to be emulated. 8458 */ 8459 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8460 8461 /* 8462 * If the mapping is invalid in guest, let cpu retry 8463 * it to generate fault. 8464 */ 8465 if (gpa == INVALID_GPA) 8466 return true; 8467 } 8468 8469 /* 8470 * Do not retry the unhandleable instruction if it faults on the 8471 * readonly host memory, otherwise it will goto a infinite loop: 8472 * retry instruction -> write #PF -> emulation fail -> retry 8473 * instruction -> ... 8474 */ 8475 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8476 8477 /* 8478 * If the instruction failed on the error pfn, it can not be fixed, 8479 * report the error to userspace. 8480 */ 8481 if (is_error_noslot_pfn(pfn)) 8482 return false; 8483 8484 kvm_release_pfn_clean(pfn); 8485 8486 /* The instructions are well-emulated on direct mmu. */ 8487 if (vcpu->arch.mmu->root_role.direct) { 8488 unsigned int indirect_shadow_pages; 8489 8490 write_lock(&vcpu->kvm->mmu_lock); 8491 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8492 write_unlock(&vcpu->kvm->mmu_lock); 8493 8494 if (indirect_shadow_pages) 8495 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8496 8497 return true; 8498 } 8499 8500 /* 8501 * if emulation was due to access to shadowed page table 8502 * and it failed try to unshadow page and re-enter the 8503 * guest to let CPU execute the instruction. 8504 */ 8505 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8506 8507 /* 8508 * If the access faults on its page table, it can not 8509 * be fixed by unprotecting shadow page and it should 8510 * be reported to userspace. 8511 */ 8512 return !write_fault_to_shadow_pgtable; 8513 } 8514 8515 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8516 gpa_t cr2_or_gpa, int emulation_type) 8517 { 8518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8519 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8520 8521 last_retry_eip = vcpu->arch.last_retry_eip; 8522 last_retry_addr = vcpu->arch.last_retry_addr; 8523 8524 /* 8525 * If the emulation is caused by #PF and it is non-page_table 8526 * writing instruction, it means the VM-EXIT is caused by shadow 8527 * page protected, we can zap the shadow page and retry this 8528 * instruction directly. 8529 * 8530 * Note: if the guest uses a non-page-table modifying instruction 8531 * on the PDE that points to the instruction, then we will unmap 8532 * the instruction and go to an infinite loop. So, we cache the 8533 * last retried eip and the last fault address, if we meet the eip 8534 * and the address again, we can break out of the potential infinite 8535 * loop. 8536 */ 8537 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8538 8539 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8540 return false; 8541 8542 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8543 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8544 return false; 8545 8546 if (x86_page_table_writing_insn(ctxt)) 8547 return false; 8548 8549 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8550 return false; 8551 8552 vcpu->arch.last_retry_eip = ctxt->eip; 8553 vcpu->arch.last_retry_addr = cr2_or_gpa; 8554 8555 if (!vcpu->arch.mmu->root_role.direct) 8556 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8557 8558 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8559 8560 return true; 8561 } 8562 8563 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8564 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8565 8566 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8567 unsigned long *db) 8568 { 8569 u32 dr6 = 0; 8570 int i; 8571 u32 enable, rwlen; 8572 8573 enable = dr7; 8574 rwlen = dr7 >> 16; 8575 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8576 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8577 dr6 |= (1 << i); 8578 return dr6; 8579 } 8580 8581 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8582 { 8583 struct kvm_run *kvm_run = vcpu->run; 8584 8585 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8586 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8587 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8588 kvm_run->debug.arch.exception = DB_VECTOR; 8589 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8590 return 0; 8591 } 8592 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8593 return 1; 8594 } 8595 8596 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8597 { 8598 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8599 int r; 8600 8601 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8602 if (unlikely(!r)) 8603 return 0; 8604 8605 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8606 8607 /* 8608 * rflags is the old, "raw" value of the flags. The new value has 8609 * not been saved yet. 8610 * 8611 * This is correct even for TF set by the guest, because "the 8612 * processor will not generate this exception after the instruction 8613 * that sets the TF flag". 8614 */ 8615 if (unlikely(rflags & X86_EFLAGS_TF)) 8616 r = kvm_vcpu_do_singlestep(vcpu); 8617 return r; 8618 } 8619 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8620 8621 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8622 { 8623 u32 shadow; 8624 8625 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8626 return true; 8627 8628 /* 8629 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8630 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8631 * to avoid the relatively expensive CPUID lookup. 8632 */ 8633 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8634 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8635 guest_cpuid_is_intel(vcpu); 8636 } 8637 8638 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8639 int emulation_type, int *r) 8640 { 8641 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8642 8643 /* 8644 * Do not check for code breakpoints if hardware has already done the 8645 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8646 * the instruction has passed all exception checks, and all intercepted 8647 * exceptions that trigger emulation have lower priority than code 8648 * breakpoints, i.e. the fact that the intercepted exception occurred 8649 * means any code breakpoints have already been serviced. 8650 * 8651 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8652 * hardware has checked the RIP of the magic prefix, but not the RIP of 8653 * the instruction being emulated. The intent of forced emulation is 8654 * to behave as if KVM intercepted the instruction without an exception 8655 * and without a prefix. 8656 */ 8657 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8658 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8659 return false; 8660 8661 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8662 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8663 struct kvm_run *kvm_run = vcpu->run; 8664 unsigned long eip = kvm_get_linear_rip(vcpu); 8665 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8666 vcpu->arch.guest_debug_dr7, 8667 vcpu->arch.eff_db); 8668 8669 if (dr6 != 0) { 8670 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8671 kvm_run->debug.arch.pc = eip; 8672 kvm_run->debug.arch.exception = DB_VECTOR; 8673 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8674 *r = 0; 8675 return true; 8676 } 8677 } 8678 8679 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8680 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8681 unsigned long eip = kvm_get_linear_rip(vcpu); 8682 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8683 vcpu->arch.dr7, 8684 vcpu->arch.db); 8685 8686 if (dr6 != 0) { 8687 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8688 *r = 1; 8689 return true; 8690 } 8691 } 8692 8693 return false; 8694 } 8695 8696 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8697 { 8698 switch (ctxt->opcode_len) { 8699 case 1: 8700 switch (ctxt->b) { 8701 case 0xe4: /* IN */ 8702 case 0xe5: 8703 case 0xec: 8704 case 0xed: 8705 case 0xe6: /* OUT */ 8706 case 0xe7: 8707 case 0xee: 8708 case 0xef: 8709 case 0x6c: /* INS */ 8710 case 0x6d: 8711 case 0x6e: /* OUTS */ 8712 case 0x6f: 8713 return true; 8714 } 8715 break; 8716 case 2: 8717 switch (ctxt->b) { 8718 case 0x33: /* RDPMC */ 8719 return true; 8720 } 8721 break; 8722 } 8723 8724 return false; 8725 } 8726 8727 /* 8728 * Decode an instruction for emulation. The caller is responsible for handling 8729 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8730 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8731 * code breakpoints have higher priority and thus have already been done by 8732 * hardware. 8733 * 8734 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8735 * response to a machine check. 8736 */ 8737 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8738 void *insn, int insn_len) 8739 { 8740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8741 int r; 8742 8743 init_emulate_ctxt(vcpu); 8744 8745 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8746 8747 trace_kvm_emulate_insn_start(vcpu); 8748 ++vcpu->stat.insn_emulation; 8749 8750 return r; 8751 } 8752 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8753 8754 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8755 int emulation_type, void *insn, int insn_len) 8756 { 8757 int r; 8758 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8759 bool writeback = true; 8760 bool write_fault_to_spt; 8761 8762 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8763 return 1; 8764 8765 vcpu->arch.l1tf_flush_l1d = true; 8766 8767 /* 8768 * Clear write_fault_to_shadow_pgtable here to ensure it is 8769 * never reused. 8770 */ 8771 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8772 vcpu->arch.write_fault_to_shadow_pgtable = false; 8773 8774 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8775 kvm_clear_exception_queue(vcpu); 8776 8777 /* 8778 * Return immediately if RIP hits a code breakpoint, such #DBs 8779 * are fault-like and are higher priority than any faults on 8780 * the code fetch itself. 8781 */ 8782 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8783 return r; 8784 8785 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8786 insn, insn_len); 8787 if (r != EMULATION_OK) { 8788 if ((emulation_type & EMULTYPE_TRAP_UD) || 8789 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8790 kvm_queue_exception(vcpu, UD_VECTOR); 8791 return 1; 8792 } 8793 if (reexecute_instruction(vcpu, cr2_or_gpa, 8794 write_fault_to_spt, 8795 emulation_type)) 8796 return 1; 8797 8798 if (ctxt->have_exception && 8799 !(emulation_type & EMULTYPE_SKIP)) { 8800 /* 8801 * #UD should result in just EMULATION_FAILED, and trap-like 8802 * exception should not be encountered during decode. 8803 */ 8804 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8805 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8806 inject_emulated_exception(vcpu); 8807 return 1; 8808 } 8809 return handle_emulation_failure(vcpu, emulation_type); 8810 } 8811 } 8812 8813 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8814 !is_vmware_backdoor_opcode(ctxt)) { 8815 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8816 return 1; 8817 } 8818 8819 /* 8820 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8821 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8822 * The caller is responsible for updating interruptibility state and 8823 * injecting single-step #DBs. 8824 */ 8825 if (emulation_type & EMULTYPE_SKIP) { 8826 if (ctxt->mode != X86EMUL_MODE_PROT64) 8827 ctxt->eip = (u32)ctxt->_eip; 8828 else 8829 ctxt->eip = ctxt->_eip; 8830 8831 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8832 r = 1; 8833 goto writeback; 8834 } 8835 8836 kvm_rip_write(vcpu, ctxt->eip); 8837 if (ctxt->eflags & X86_EFLAGS_RF) 8838 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8839 return 1; 8840 } 8841 8842 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8843 return 1; 8844 8845 /* this is needed for vmware backdoor interface to work since it 8846 changes registers values during IO operation */ 8847 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8848 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8849 emulator_invalidate_register_cache(ctxt); 8850 } 8851 8852 restart: 8853 if (emulation_type & EMULTYPE_PF) { 8854 /* Save the faulting GPA (cr2) in the address field */ 8855 ctxt->exception.address = cr2_or_gpa; 8856 8857 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8858 if (vcpu->arch.mmu->root_role.direct) { 8859 ctxt->gpa_available = true; 8860 ctxt->gpa_val = cr2_or_gpa; 8861 } 8862 } else { 8863 /* Sanitize the address out of an abundance of paranoia. */ 8864 ctxt->exception.address = 0; 8865 } 8866 8867 r = x86_emulate_insn(ctxt); 8868 8869 if (r == EMULATION_INTERCEPTED) 8870 return 1; 8871 8872 if (r == EMULATION_FAILED) { 8873 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8874 emulation_type)) 8875 return 1; 8876 8877 return handle_emulation_failure(vcpu, emulation_type); 8878 } 8879 8880 if (ctxt->have_exception) { 8881 r = 1; 8882 inject_emulated_exception(vcpu); 8883 } else if (vcpu->arch.pio.count) { 8884 if (!vcpu->arch.pio.in) { 8885 /* FIXME: return into emulator if single-stepping. */ 8886 vcpu->arch.pio.count = 0; 8887 } else { 8888 writeback = false; 8889 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8890 } 8891 r = 0; 8892 } else if (vcpu->mmio_needed) { 8893 ++vcpu->stat.mmio_exits; 8894 8895 if (!vcpu->mmio_is_write) 8896 writeback = false; 8897 r = 0; 8898 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8899 } else if (vcpu->arch.complete_userspace_io) { 8900 writeback = false; 8901 r = 0; 8902 } else if (r == EMULATION_RESTART) 8903 goto restart; 8904 else 8905 r = 1; 8906 8907 writeback: 8908 if (writeback) { 8909 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8910 toggle_interruptibility(vcpu, ctxt->interruptibility); 8911 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8912 8913 /* 8914 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8915 * only supports code breakpoints and general detect #DB, both 8916 * of which are fault-like. 8917 */ 8918 if (!ctxt->have_exception || 8919 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8920 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8921 if (ctxt->is_branch) 8922 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8923 kvm_rip_write(vcpu, ctxt->eip); 8924 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8925 r = kvm_vcpu_do_singlestep(vcpu); 8926 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8927 __kvm_set_rflags(vcpu, ctxt->eflags); 8928 } 8929 8930 /* 8931 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8932 * do nothing, and it will be requested again as soon as 8933 * the shadow expires. But we still need to check here, 8934 * because POPF has no interrupt shadow. 8935 */ 8936 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8937 kvm_make_request(KVM_REQ_EVENT, vcpu); 8938 } else 8939 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8940 8941 return r; 8942 } 8943 8944 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8945 { 8946 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8947 } 8948 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8949 8950 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8951 void *insn, int insn_len) 8952 { 8953 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8954 } 8955 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8956 8957 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8958 { 8959 vcpu->arch.pio.count = 0; 8960 return 1; 8961 } 8962 8963 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8964 { 8965 vcpu->arch.pio.count = 0; 8966 8967 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8968 return 1; 8969 8970 return kvm_skip_emulated_instruction(vcpu); 8971 } 8972 8973 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8974 unsigned short port) 8975 { 8976 unsigned long val = kvm_rax_read(vcpu); 8977 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8978 8979 if (ret) 8980 return ret; 8981 8982 /* 8983 * Workaround userspace that relies on old KVM behavior of %rip being 8984 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8985 */ 8986 if (port == 0x7e && 8987 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8988 vcpu->arch.complete_userspace_io = 8989 complete_fast_pio_out_port_0x7e; 8990 kvm_skip_emulated_instruction(vcpu); 8991 } else { 8992 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8993 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8994 } 8995 return 0; 8996 } 8997 8998 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8999 { 9000 unsigned long val; 9001 9002 /* We should only ever be called with arch.pio.count equal to 1 */ 9003 BUG_ON(vcpu->arch.pio.count != 1); 9004 9005 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9006 vcpu->arch.pio.count = 0; 9007 return 1; 9008 } 9009 9010 /* For size less than 4 we merge, else we zero extend */ 9011 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9012 9013 complete_emulator_pio_in(vcpu, &val); 9014 kvm_rax_write(vcpu, val); 9015 9016 return kvm_skip_emulated_instruction(vcpu); 9017 } 9018 9019 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9020 unsigned short port) 9021 { 9022 unsigned long val; 9023 int ret; 9024 9025 /* For size less than 4 we merge, else we zero extend */ 9026 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9027 9028 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9029 if (ret) { 9030 kvm_rax_write(vcpu, val); 9031 return ret; 9032 } 9033 9034 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9035 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9036 9037 return 0; 9038 } 9039 9040 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9041 { 9042 int ret; 9043 9044 if (in) 9045 ret = kvm_fast_pio_in(vcpu, size, port); 9046 else 9047 ret = kvm_fast_pio_out(vcpu, size, port); 9048 return ret && kvm_skip_emulated_instruction(vcpu); 9049 } 9050 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9051 9052 static int kvmclock_cpu_down_prep(unsigned int cpu) 9053 { 9054 __this_cpu_write(cpu_tsc_khz, 0); 9055 return 0; 9056 } 9057 9058 static void tsc_khz_changed(void *data) 9059 { 9060 struct cpufreq_freqs *freq = data; 9061 unsigned long khz = 0; 9062 9063 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9064 9065 if (data) 9066 khz = freq->new; 9067 else 9068 khz = cpufreq_quick_get(raw_smp_processor_id()); 9069 if (!khz) 9070 khz = tsc_khz; 9071 __this_cpu_write(cpu_tsc_khz, khz); 9072 } 9073 9074 #ifdef CONFIG_X86_64 9075 static void kvm_hyperv_tsc_notifier(void) 9076 { 9077 struct kvm *kvm; 9078 int cpu; 9079 9080 mutex_lock(&kvm_lock); 9081 list_for_each_entry(kvm, &vm_list, vm_list) 9082 kvm_make_mclock_inprogress_request(kvm); 9083 9084 /* no guest entries from this point */ 9085 hyperv_stop_tsc_emulation(); 9086 9087 /* TSC frequency always matches when on Hyper-V */ 9088 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9089 for_each_present_cpu(cpu) 9090 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9091 } 9092 kvm_caps.max_guest_tsc_khz = tsc_khz; 9093 9094 list_for_each_entry(kvm, &vm_list, vm_list) { 9095 __kvm_start_pvclock_update(kvm); 9096 pvclock_update_vm_gtod_copy(kvm); 9097 kvm_end_pvclock_update(kvm); 9098 } 9099 9100 mutex_unlock(&kvm_lock); 9101 } 9102 #endif 9103 9104 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9105 { 9106 struct kvm *kvm; 9107 struct kvm_vcpu *vcpu; 9108 int send_ipi = 0; 9109 unsigned long i; 9110 9111 /* 9112 * We allow guests to temporarily run on slowing clocks, 9113 * provided we notify them after, or to run on accelerating 9114 * clocks, provided we notify them before. Thus time never 9115 * goes backwards. 9116 * 9117 * However, we have a problem. We can't atomically update 9118 * the frequency of a given CPU from this function; it is 9119 * merely a notifier, which can be called from any CPU. 9120 * Changing the TSC frequency at arbitrary points in time 9121 * requires a recomputation of local variables related to 9122 * the TSC for each VCPU. We must flag these local variables 9123 * to be updated and be sure the update takes place with the 9124 * new frequency before any guests proceed. 9125 * 9126 * Unfortunately, the combination of hotplug CPU and frequency 9127 * change creates an intractable locking scenario; the order 9128 * of when these callouts happen is undefined with respect to 9129 * CPU hotplug, and they can race with each other. As such, 9130 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9131 * undefined; you can actually have a CPU frequency change take 9132 * place in between the computation of X and the setting of the 9133 * variable. To protect against this problem, all updates of 9134 * the per_cpu tsc_khz variable are done in an interrupt 9135 * protected IPI, and all callers wishing to update the value 9136 * must wait for a synchronous IPI to complete (which is trivial 9137 * if the caller is on the CPU already). This establishes the 9138 * necessary total order on variable updates. 9139 * 9140 * Note that because a guest time update may take place 9141 * anytime after the setting of the VCPU's request bit, the 9142 * correct TSC value must be set before the request. However, 9143 * to ensure the update actually makes it to any guest which 9144 * starts running in hardware virtualization between the set 9145 * and the acquisition of the spinlock, we must also ping the 9146 * CPU after setting the request bit. 9147 * 9148 */ 9149 9150 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9151 9152 mutex_lock(&kvm_lock); 9153 list_for_each_entry(kvm, &vm_list, vm_list) { 9154 kvm_for_each_vcpu(i, vcpu, kvm) { 9155 if (vcpu->cpu != cpu) 9156 continue; 9157 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9158 if (vcpu->cpu != raw_smp_processor_id()) 9159 send_ipi = 1; 9160 } 9161 } 9162 mutex_unlock(&kvm_lock); 9163 9164 if (freq->old < freq->new && send_ipi) { 9165 /* 9166 * We upscale the frequency. Must make the guest 9167 * doesn't see old kvmclock values while running with 9168 * the new frequency, otherwise we risk the guest sees 9169 * time go backwards. 9170 * 9171 * In case we update the frequency for another cpu 9172 * (which might be in guest context) send an interrupt 9173 * to kick the cpu out of guest context. Next time 9174 * guest context is entered kvmclock will be updated, 9175 * so the guest will not see stale values. 9176 */ 9177 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9178 } 9179 } 9180 9181 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9182 void *data) 9183 { 9184 struct cpufreq_freqs *freq = data; 9185 int cpu; 9186 9187 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9188 return 0; 9189 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9190 return 0; 9191 9192 for_each_cpu(cpu, freq->policy->cpus) 9193 __kvmclock_cpufreq_notifier(freq, cpu); 9194 9195 return 0; 9196 } 9197 9198 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9199 .notifier_call = kvmclock_cpufreq_notifier 9200 }; 9201 9202 static int kvmclock_cpu_online(unsigned int cpu) 9203 { 9204 tsc_khz_changed(NULL); 9205 return 0; 9206 } 9207 9208 static void kvm_timer_init(void) 9209 { 9210 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9211 max_tsc_khz = tsc_khz; 9212 9213 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9214 struct cpufreq_policy *policy; 9215 int cpu; 9216 9217 cpu = get_cpu(); 9218 policy = cpufreq_cpu_get(cpu); 9219 if (policy) { 9220 if (policy->cpuinfo.max_freq) 9221 max_tsc_khz = policy->cpuinfo.max_freq; 9222 cpufreq_cpu_put(policy); 9223 } 9224 put_cpu(); 9225 } 9226 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9227 CPUFREQ_TRANSITION_NOTIFIER); 9228 9229 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9230 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9231 } 9232 } 9233 9234 #ifdef CONFIG_X86_64 9235 static void pvclock_gtod_update_fn(struct work_struct *work) 9236 { 9237 struct kvm *kvm; 9238 struct kvm_vcpu *vcpu; 9239 unsigned long i; 9240 9241 mutex_lock(&kvm_lock); 9242 list_for_each_entry(kvm, &vm_list, vm_list) 9243 kvm_for_each_vcpu(i, vcpu, kvm) 9244 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9245 atomic_set(&kvm_guest_has_master_clock, 0); 9246 mutex_unlock(&kvm_lock); 9247 } 9248 9249 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9250 9251 /* 9252 * Indirection to move queue_work() out of the tk_core.seq write held 9253 * region to prevent possible deadlocks against time accessors which 9254 * are invoked with work related locks held. 9255 */ 9256 static void pvclock_irq_work_fn(struct irq_work *w) 9257 { 9258 queue_work(system_long_wq, &pvclock_gtod_work); 9259 } 9260 9261 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9262 9263 /* 9264 * Notification about pvclock gtod data update. 9265 */ 9266 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9267 void *priv) 9268 { 9269 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9270 struct timekeeper *tk = priv; 9271 9272 update_pvclock_gtod(tk); 9273 9274 /* 9275 * Disable master clock if host does not trust, or does not use, 9276 * TSC based clocksource. Delegate queue_work() to irq_work as 9277 * this is invoked with tk_core.seq write held. 9278 */ 9279 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9280 atomic_read(&kvm_guest_has_master_clock) != 0) 9281 irq_work_queue(&pvclock_irq_work); 9282 return 0; 9283 } 9284 9285 static struct notifier_block pvclock_gtod_notifier = { 9286 .notifier_call = pvclock_gtod_notify, 9287 }; 9288 #endif 9289 9290 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9291 { 9292 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9293 9294 #define __KVM_X86_OP(func) \ 9295 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9296 #define KVM_X86_OP(func) \ 9297 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9298 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9299 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9300 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9301 (void *)__static_call_return0); 9302 #include <asm/kvm-x86-ops.h> 9303 #undef __KVM_X86_OP 9304 9305 kvm_pmu_ops_update(ops->pmu_ops); 9306 } 9307 9308 static int kvm_x86_check_processor_compatibility(void) 9309 { 9310 int cpu = smp_processor_id(); 9311 struct cpuinfo_x86 *c = &cpu_data(cpu); 9312 9313 /* 9314 * Compatibility checks are done when loading KVM and when enabling 9315 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9316 * compatible, i.e. KVM should never perform a compatibility check on 9317 * an offline CPU. 9318 */ 9319 WARN_ON(!cpu_online(cpu)); 9320 9321 if (__cr4_reserved_bits(cpu_has, c) != 9322 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9323 return -EIO; 9324 9325 return static_call(kvm_x86_check_processor_compatibility)(); 9326 } 9327 9328 static void kvm_x86_check_cpu_compat(void *ret) 9329 { 9330 *(int *)ret = kvm_x86_check_processor_compatibility(); 9331 } 9332 9333 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9334 { 9335 u64 host_pat; 9336 int r, cpu; 9337 9338 if (kvm_x86_ops.hardware_enable) { 9339 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9340 return -EEXIST; 9341 } 9342 9343 /* 9344 * KVM explicitly assumes that the guest has an FPU and 9345 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9346 * vCPU's FPU state as a fxregs_state struct. 9347 */ 9348 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9349 pr_err("inadequate fpu\n"); 9350 return -EOPNOTSUPP; 9351 } 9352 9353 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9354 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9355 return -EOPNOTSUPP; 9356 } 9357 9358 /* 9359 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9360 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9361 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9362 * with an exception. PAT[0] is set to WB on RESET and also by the 9363 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9364 */ 9365 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9366 (host_pat & GENMASK(2, 0)) != 6) { 9367 pr_err("host PAT[0] is not WB\n"); 9368 return -EIO; 9369 } 9370 9371 x86_emulator_cache = kvm_alloc_emulator_cache(); 9372 if (!x86_emulator_cache) { 9373 pr_err("failed to allocate cache for x86 emulator\n"); 9374 return -ENOMEM; 9375 } 9376 9377 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9378 if (!user_return_msrs) { 9379 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9380 r = -ENOMEM; 9381 goto out_free_x86_emulator_cache; 9382 } 9383 kvm_nr_uret_msrs = 0; 9384 9385 r = kvm_mmu_vendor_module_init(); 9386 if (r) 9387 goto out_free_percpu; 9388 9389 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9390 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9391 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9392 } 9393 9394 rdmsrl_safe(MSR_EFER, &host_efer); 9395 9396 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9397 rdmsrl(MSR_IA32_XSS, host_xss); 9398 9399 kvm_init_pmu_capability(ops->pmu_ops); 9400 9401 r = ops->hardware_setup(); 9402 if (r != 0) 9403 goto out_mmu_exit; 9404 9405 kvm_ops_update(ops); 9406 9407 for_each_online_cpu(cpu) { 9408 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9409 if (r < 0) 9410 goto out_unwind_ops; 9411 } 9412 9413 /* 9414 * Point of no return! DO NOT add error paths below this point unless 9415 * absolutely necessary, as most operations from this point forward 9416 * require unwinding. 9417 */ 9418 kvm_timer_init(); 9419 9420 if (pi_inject_timer == -1) 9421 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9422 #ifdef CONFIG_X86_64 9423 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9424 9425 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9426 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9427 #endif 9428 9429 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9430 9431 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9432 kvm_caps.supported_xss = 0; 9433 9434 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9435 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9436 #undef __kvm_cpu_cap_has 9437 9438 if (kvm_caps.has_tsc_control) { 9439 /* 9440 * Make sure the user can only configure tsc_khz values that 9441 * fit into a signed integer. 9442 * A min value is not calculated because it will always 9443 * be 1 on all machines. 9444 */ 9445 u64 max = min(0x7fffffffULL, 9446 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9447 kvm_caps.max_guest_tsc_khz = max; 9448 } 9449 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9450 kvm_init_msr_list(); 9451 return 0; 9452 9453 out_unwind_ops: 9454 kvm_x86_ops.hardware_enable = NULL; 9455 static_call(kvm_x86_hardware_unsetup)(); 9456 out_mmu_exit: 9457 kvm_mmu_vendor_module_exit(); 9458 out_free_percpu: 9459 free_percpu(user_return_msrs); 9460 out_free_x86_emulator_cache: 9461 kmem_cache_destroy(x86_emulator_cache); 9462 return r; 9463 } 9464 9465 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9466 { 9467 int r; 9468 9469 mutex_lock(&vendor_module_lock); 9470 r = __kvm_x86_vendor_init(ops); 9471 mutex_unlock(&vendor_module_lock); 9472 9473 return r; 9474 } 9475 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9476 9477 void kvm_x86_vendor_exit(void) 9478 { 9479 kvm_unregister_perf_callbacks(); 9480 9481 #ifdef CONFIG_X86_64 9482 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9483 clear_hv_tscchange_cb(); 9484 #endif 9485 kvm_lapic_exit(); 9486 9487 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9488 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9489 CPUFREQ_TRANSITION_NOTIFIER); 9490 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9491 } 9492 #ifdef CONFIG_X86_64 9493 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9494 irq_work_sync(&pvclock_irq_work); 9495 cancel_work_sync(&pvclock_gtod_work); 9496 #endif 9497 static_call(kvm_x86_hardware_unsetup)(); 9498 kvm_mmu_vendor_module_exit(); 9499 free_percpu(user_return_msrs); 9500 kmem_cache_destroy(x86_emulator_cache); 9501 #ifdef CONFIG_KVM_XEN 9502 static_key_deferred_flush(&kvm_xen_enabled); 9503 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9504 #endif 9505 mutex_lock(&vendor_module_lock); 9506 kvm_x86_ops.hardware_enable = NULL; 9507 mutex_unlock(&vendor_module_lock); 9508 } 9509 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9510 9511 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9512 { 9513 /* 9514 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9515 * local APIC is in-kernel, the run loop will detect the non-runnable 9516 * state and halt the vCPU. Exit to userspace if the local APIC is 9517 * managed by userspace, in which case userspace is responsible for 9518 * handling wake events. 9519 */ 9520 ++vcpu->stat.halt_exits; 9521 if (lapic_in_kernel(vcpu)) { 9522 vcpu->arch.mp_state = state; 9523 return 1; 9524 } else { 9525 vcpu->run->exit_reason = reason; 9526 return 0; 9527 } 9528 } 9529 9530 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9531 { 9532 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9533 } 9534 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9535 9536 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9537 { 9538 int ret = kvm_skip_emulated_instruction(vcpu); 9539 /* 9540 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9541 * KVM_EXIT_DEBUG here. 9542 */ 9543 return kvm_emulate_halt_noskip(vcpu) && ret; 9544 } 9545 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9546 9547 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9548 { 9549 int ret = kvm_skip_emulated_instruction(vcpu); 9550 9551 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9552 KVM_EXIT_AP_RESET_HOLD) && ret; 9553 } 9554 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9555 9556 #ifdef CONFIG_X86_64 9557 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9558 unsigned long clock_type) 9559 { 9560 struct kvm_clock_pairing clock_pairing; 9561 struct timespec64 ts; 9562 u64 cycle; 9563 int ret; 9564 9565 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9566 return -KVM_EOPNOTSUPP; 9567 9568 /* 9569 * When tsc is in permanent catchup mode guests won't be able to use 9570 * pvclock_read_retry loop to get consistent view of pvclock 9571 */ 9572 if (vcpu->arch.tsc_always_catchup) 9573 return -KVM_EOPNOTSUPP; 9574 9575 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9576 return -KVM_EOPNOTSUPP; 9577 9578 clock_pairing.sec = ts.tv_sec; 9579 clock_pairing.nsec = ts.tv_nsec; 9580 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9581 clock_pairing.flags = 0; 9582 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9583 9584 ret = 0; 9585 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9586 sizeof(struct kvm_clock_pairing))) 9587 ret = -KVM_EFAULT; 9588 9589 return ret; 9590 } 9591 #endif 9592 9593 /* 9594 * kvm_pv_kick_cpu_op: Kick a vcpu. 9595 * 9596 * @apicid - apicid of vcpu to be kicked. 9597 */ 9598 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9599 { 9600 /* 9601 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9602 * common code, e.g. for tracing. Defer initialization to the compiler. 9603 */ 9604 struct kvm_lapic_irq lapic_irq = { 9605 .delivery_mode = APIC_DM_REMRD, 9606 .dest_mode = APIC_DEST_PHYSICAL, 9607 .shorthand = APIC_DEST_NOSHORT, 9608 .dest_id = apicid, 9609 }; 9610 9611 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9612 } 9613 9614 bool kvm_apicv_activated(struct kvm *kvm) 9615 { 9616 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9617 } 9618 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9619 9620 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9621 { 9622 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9623 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9624 9625 return (vm_reasons | vcpu_reasons) == 0; 9626 } 9627 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9628 9629 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9630 enum kvm_apicv_inhibit reason, bool set) 9631 { 9632 if (set) 9633 __set_bit(reason, inhibits); 9634 else 9635 __clear_bit(reason, inhibits); 9636 9637 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9638 } 9639 9640 static void kvm_apicv_init(struct kvm *kvm) 9641 { 9642 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9643 9644 init_rwsem(&kvm->arch.apicv_update_lock); 9645 9646 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9647 9648 if (!enable_apicv) 9649 set_or_clear_apicv_inhibit(inhibits, 9650 APICV_INHIBIT_REASON_DISABLE, true); 9651 } 9652 9653 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9654 { 9655 struct kvm_vcpu *target = NULL; 9656 struct kvm_apic_map *map; 9657 9658 vcpu->stat.directed_yield_attempted++; 9659 9660 if (single_task_running()) 9661 goto no_yield; 9662 9663 rcu_read_lock(); 9664 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9665 9666 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9667 target = map->phys_map[dest_id]->vcpu; 9668 9669 rcu_read_unlock(); 9670 9671 if (!target || !READ_ONCE(target->ready)) 9672 goto no_yield; 9673 9674 /* Ignore requests to yield to self */ 9675 if (vcpu == target) 9676 goto no_yield; 9677 9678 if (kvm_vcpu_yield_to(target) <= 0) 9679 goto no_yield; 9680 9681 vcpu->stat.directed_yield_successful++; 9682 9683 no_yield: 9684 return; 9685 } 9686 9687 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9688 { 9689 u64 ret = vcpu->run->hypercall.ret; 9690 9691 if (!is_64_bit_mode(vcpu)) 9692 ret = (u32)ret; 9693 kvm_rax_write(vcpu, ret); 9694 ++vcpu->stat.hypercalls; 9695 return kvm_skip_emulated_instruction(vcpu); 9696 } 9697 9698 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9699 { 9700 unsigned long nr, a0, a1, a2, a3, ret; 9701 int op_64_bit; 9702 9703 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9704 return kvm_xen_hypercall(vcpu); 9705 9706 if (kvm_hv_hypercall_enabled(vcpu)) 9707 return kvm_hv_hypercall(vcpu); 9708 9709 nr = kvm_rax_read(vcpu); 9710 a0 = kvm_rbx_read(vcpu); 9711 a1 = kvm_rcx_read(vcpu); 9712 a2 = kvm_rdx_read(vcpu); 9713 a3 = kvm_rsi_read(vcpu); 9714 9715 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9716 9717 op_64_bit = is_64_bit_hypercall(vcpu); 9718 if (!op_64_bit) { 9719 nr &= 0xFFFFFFFF; 9720 a0 &= 0xFFFFFFFF; 9721 a1 &= 0xFFFFFFFF; 9722 a2 &= 0xFFFFFFFF; 9723 a3 &= 0xFFFFFFFF; 9724 } 9725 9726 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9727 ret = -KVM_EPERM; 9728 goto out; 9729 } 9730 9731 ret = -KVM_ENOSYS; 9732 9733 switch (nr) { 9734 case KVM_HC_VAPIC_POLL_IRQ: 9735 ret = 0; 9736 break; 9737 case KVM_HC_KICK_CPU: 9738 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9739 break; 9740 9741 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9742 kvm_sched_yield(vcpu, a1); 9743 ret = 0; 9744 break; 9745 #ifdef CONFIG_X86_64 9746 case KVM_HC_CLOCK_PAIRING: 9747 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9748 break; 9749 #endif 9750 case KVM_HC_SEND_IPI: 9751 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9752 break; 9753 9754 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9755 break; 9756 case KVM_HC_SCHED_YIELD: 9757 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9758 break; 9759 9760 kvm_sched_yield(vcpu, a0); 9761 ret = 0; 9762 break; 9763 case KVM_HC_MAP_GPA_RANGE: { 9764 u64 gpa = a0, npages = a1, attrs = a2; 9765 9766 ret = -KVM_ENOSYS; 9767 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9768 break; 9769 9770 if (!PAGE_ALIGNED(gpa) || !npages || 9771 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9772 ret = -KVM_EINVAL; 9773 break; 9774 } 9775 9776 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9777 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9778 vcpu->run->hypercall.args[0] = gpa; 9779 vcpu->run->hypercall.args[1] = npages; 9780 vcpu->run->hypercall.args[2] = attrs; 9781 vcpu->run->hypercall.longmode = op_64_bit; 9782 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9783 return 0; 9784 } 9785 default: 9786 ret = -KVM_ENOSYS; 9787 break; 9788 } 9789 out: 9790 if (!op_64_bit) 9791 ret = (u32)ret; 9792 kvm_rax_write(vcpu, ret); 9793 9794 ++vcpu->stat.hypercalls; 9795 return kvm_skip_emulated_instruction(vcpu); 9796 } 9797 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9798 9799 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9800 { 9801 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9802 char instruction[3]; 9803 unsigned long rip = kvm_rip_read(vcpu); 9804 9805 /* 9806 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9807 * the pieces. 9808 */ 9809 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9810 ctxt->exception.error_code_valid = false; 9811 ctxt->exception.vector = UD_VECTOR; 9812 ctxt->have_exception = true; 9813 return X86EMUL_PROPAGATE_FAULT; 9814 } 9815 9816 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9817 9818 return emulator_write_emulated(ctxt, rip, instruction, 3, 9819 &ctxt->exception); 9820 } 9821 9822 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9823 { 9824 return vcpu->run->request_interrupt_window && 9825 likely(!pic_in_kernel(vcpu->kvm)); 9826 } 9827 9828 /* Called within kvm->srcu read side. */ 9829 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9830 { 9831 struct kvm_run *kvm_run = vcpu->run; 9832 9833 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9834 kvm_run->cr8 = kvm_get_cr8(vcpu); 9835 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9836 9837 kvm_run->ready_for_interrupt_injection = 9838 pic_in_kernel(vcpu->kvm) || 9839 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9840 9841 if (is_smm(vcpu)) 9842 kvm_run->flags |= KVM_RUN_X86_SMM; 9843 } 9844 9845 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9846 { 9847 int max_irr, tpr; 9848 9849 if (!kvm_x86_ops.update_cr8_intercept) 9850 return; 9851 9852 if (!lapic_in_kernel(vcpu)) 9853 return; 9854 9855 if (vcpu->arch.apic->apicv_active) 9856 return; 9857 9858 if (!vcpu->arch.apic->vapic_addr) 9859 max_irr = kvm_lapic_find_highest_irr(vcpu); 9860 else 9861 max_irr = -1; 9862 9863 if (max_irr != -1) 9864 max_irr >>= 4; 9865 9866 tpr = kvm_lapic_get_cr8(vcpu); 9867 9868 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9869 } 9870 9871 9872 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9873 { 9874 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9875 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9876 return 1; 9877 } 9878 9879 return kvm_x86_ops.nested_ops->check_events(vcpu); 9880 } 9881 9882 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9883 { 9884 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9885 vcpu->arch.exception.has_error_code, 9886 vcpu->arch.exception.error_code, 9887 vcpu->arch.exception.injected); 9888 9889 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9890 vcpu->arch.exception.error_code = false; 9891 static_call(kvm_x86_inject_exception)(vcpu); 9892 } 9893 9894 /* 9895 * Check for any event (interrupt or exception) that is ready to be injected, 9896 * and if there is at least one event, inject the event with the highest 9897 * priority. This handles both "pending" events, i.e. events that have never 9898 * been injected into the guest, and "injected" events, i.e. events that were 9899 * injected as part of a previous VM-Enter, but weren't successfully delivered 9900 * and need to be re-injected. 9901 * 9902 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9903 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9904 * be able to inject exceptions in the "middle" of an instruction, and so must 9905 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9906 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9907 * boundaries is necessary and correct. 9908 * 9909 * For simplicity, KVM uses a single path to inject all events (except events 9910 * that are injected directly from L1 to L2) and doesn't explicitly track 9911 * instruction boundaries for asynchronous events. However, because VM-Exits 9912 * that can occur during instruction execution typically result in KVM skipping 9913 * the instruction or injecting an exception, e.g. instruction and exception 9914 * intercepts, and because pending exceptions have higher priority than pending 9915 * interrupts, KVM still honors instruction boundaries in most scenarios. 9916 * 9917 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9918 * the instruction or inject an exception, then KVM can incorrecty inject a new 9919 * asynchrounous event if the event became pending after the CPU fetched the 9920 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9921 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9922 * injected on the restarted instruction instead of being deferred until the 9923 * instruction completes. 9924 * 9925 * In practice, this virtualization hole is unlikely to be observed by the 9926 * guest, and even less likely to cause functional problems. To detect the 9927 * hole, the guest would have to trigger an event on a side effect of an early 9928 * phase of instruction execution, e.g. on the instruction fetch from memory. 9929 * And for it to be a functional problem, the guest would need to depend on the 9930 * ordering between that side effect, the instruction completing, _and_ the 9931 * delivery of the asynchronous event. 9932 */ 9933 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9934 bool *req_immediate_exit) 9935 { 9936 bool can_inject; 9937 int r; 9938 9939 /* 9940 * Process nested events first, as nested VM-Exit supercedes event 9941 * re-injection. If there's an event queued for re-injection, it will 9942 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9943 */ 9944 if (is_guest_mode(vcpu)) 9945 r = kvm_check_nested_events(vcpu); 9946 else 9947 r = 0; 9948 9949 /* 9950 * Re-inject exceptions and events *especially* if immediate entry+exit 9951 * to/from L2 is needed, as any event that has already been injected 9952 * into L2 needs to complete its lifecycle before injecting a new event. 9953 * 9954 * Don't re-inject an NMI or interrupt if there is a pending exception. 9955 * This collision arises if an exception occurred while vectoring the 9956 * injected event, KVM intercepted said exception, and KVM ultimately 9957 * determined the fault belongs to the guest and queues the exception 9958 * for injection back into the guest. 9959 * 9960 * "Injected" interrupts can also collide with pending exceptions if 9961 * userspace ignores the "ready for injection" flag and blindly queues 9962 * an interrupt. In that case, prioritizing the exception is correct, 9963 * as the exception "occurred" before the exit to userspace. Trap-like 9964 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9965 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9966 * priority, they're only generated (pended) during instruction 9967 * execution, and interrupts are recognized at instruction boundaries. 9968 * Thus a pending fault-like exception means the fault occurred on the 9969 * *previous* instruction and must be serviced prior to recognizing any 9970 * new events in order to fully complete the previous instruction. 9971 */ 9972 if (vcpu->arch.exception.injected) 9973 kvm_inject_exception(vcpu); 9974 else if (kvm_is_exception_pending(vcpu)) 9975 ; /* see above */ 9976 else if (vcpu->arch.nmi_injected) 9977 static_call(kvm_x86_inject_nmi)(vcpu); 9978 else if (vcpu->arch.interrupt.injected) 9979 static_call(kvm_x86_inject_irq)(vcpu, true); 9980 9981 /* 9982 * Exceptions that morph to VM-Exits are handled above, and pending 9983 * exceptions on top of injected exceptions that do not VM-Exit should 9984 * either morph to #DF or, sadly, override the injected exception. 9985 */ 9986 WARN_ON_ONCE(vcpu->arch.exception.injected && 9987 vcpu->arch.exception.pending); 9988 9989 /* 9990 * Bail if immediate entry+exit to/from the guest is needed to complete 9991 * nested VM-Enter or event re-injection so that a different pending 9992 * event can be serviced (or if KVM needs to exit to userspace). 9993 * 9994 * Otherwise, continue processing events even if VM-Exit occurred. The 9995 * VM-Exit will have cleared exceptions that were meant for L2, but 9996 * there may now be events that can be injected into L1. 9997 */ 9998 if (r < 0) 9999 goto out; 10000 10001 /* 10002 * A pending exception VM-Exit should either result in nested VM-Exit 10003 * or force an immediate re-entry and exit to/from L2, and exception 10004 * VM-Exits cannot be injected (flag should _never_ be set). 10005 */ 10006 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10007 vcpu->arch.exception_vmexit.pending); 10008 10009 /* 10010 * New events, other than exceptions, cannot be injected if KVM needs 10011 * to re-inject a previous event. See above comments on re-injecting 10012 * for why pending exceptions get priority. 10013 */ 10014 can_inject = !kvm_event_needs_reinjection(vcpu); 10015 10016 if (vcpu->arch.exception.pending) { 10017 /* 10018 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10019 * value pushed on the stack. Trap-like exception and all #DBs 10020 * leave RF as-is (KVM follows Intel's behavior in this regard; 10021 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10022 * 10023 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10024 * describe the behavior of General Detect #DBs, which are 10025 * fault-like. They do _not_ set RF, a la code breakpoints. 10026 */ 10027 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10028 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10029 X86_EFLAGS_RF); 10030 10031 if (vcpu->arch.exception.vector == DB_VECTOR) { 10032 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10033 if (vcpu->arch.dr7 & DR7_GD) { 10034 vcpu->arch.dr7 &= ~DR7_GD; 10035 kvm_update_dr7(vcpu); 10036 } 10037 } 10038 10039 kvm_inject_exception(vcpu); 10040 10041 vcpu->arch.exception.pending = false; 10042 vcpu->arch.exception.injected = true; 10043 10044 can_inject = false; 10045 } 10046 10047 /* Don't inject interrupts if the user asked to avoid doing so */ 10048 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10049 return 0; 10050 10051 /* 10052 * Finally, inject interrupt events. If an event cannot be injected 10053 * due to architectural conditions (e.g. IF=0) a window-open exit 10054 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10055 * and can architecturally be injected, but we cannot do it right now: 10056 * an interrupt could have arrived just now and we have to inject it 10057 * as a vmexit, or there could already an event in the queue, which is 10058 * indicated by can_inject. In that case we request an immediate exit 10059 * in order to make progress and get back here for another iteration. 10060 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10061 */ 10062 #ifdef CONFIG_KVM_SMM 10063 if (vcpu->arch.smi_pending) { 10064 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10065 if (r < 0) 10066 goto out; 10067 if (r) { 10068 vcpu->arch.smi_pending = false; 10069 ++vcpu->arch.smi_count; 10070 enter_smm(vcpu); 10071 can_inject = false; 10072 } else 10073 static_call(kvm_x86_enable_smi_window)(vcpu); 10074 } 10075 #endif 10076 10077 if (vcpu->arch.nmi_pending) { 10078 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10079 if (r < 0) 10080 goto out; 10081 if (r) { 10082 --vcpu->arch.nmi_pending; 10083 vcpu->arch.nmi_injected = true; 10084 static_call(kvm_x86_inject_nmi)(vcpu); 10085 can_inject = false; 10086 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10087 } 10088 if (vcpu->arch.nmi_pending) 10089 static_call(kvm_x86_enable_nmi_window)(vcpu); 10090 } 10091 10092 if (kvm_cpu_has_injectable_intr(vcpu)) { 10093 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10094 if (r < 0) 10095 goto out; 10096 if (r) { 10097 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10098 static_call(kvm_x86_inject_irq)(vcpu, false); 10099 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10100 } 10101 if (kvm_cpu_has_injectable_intr(vcpu)) 10102 static_call(kvm_x86_enable_irq_window)(vcpu); 10103 } 10104 10105 if (is_guest_mode(vcpu) && 10106 kvm_x86_ops.nested_ops->has_events && 10107 kvm_x86_ops.nested_ops->has_events(vcpu)) 10108 *req_immediate_exit = true; 10109 10110 /* 10111 * KVM must never queue a new exception while injecting an event; KVM 10112 * is done emulating and should only propagate the to-be-injected event 10113 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10114 * infinite loop as KVM will bail from VM-Enter to inject the pending 10115 * exception and start the cycle all over. 10116 * 10117 * Exempt triple faults as they have special handling and won't put the 10118 * vCPU into an infinite loop. Triple fault can be queued when running 10119 * VMX without unrestricted guest, as that requires KVM to emulate Real 10120 * Mode events (see kvm_inject_realmode_interrupt()). 10121 */ 10122 WARN_ON_ONCE(vcpu->arch.exception.pending || 10123 vcpu->arch.exception_vmexit.pending); 10124 return 0; 10125 10126 out: 10127 if (r == -EBUSY) { 10128 *req_immediate_exit = true; 10129 r = 0; 10130 } 10131 return r; 10132 } 10133 10134 static void process_nmi(struct kvm_vcpu *vcpu) 10135 { 10136 unsigned limit = 2; 10137 10138 /* 10139 * x86 is limited to one NMI running, and one NMI pending after it. 10140 * If an NMI is already in progress, limit further NMIs to just one. 10141 * Otherwise, allow two (and we'll inject the first one immediately). 10142 */ 10143 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10144 limit = 1; 10145 10146 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10147 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10148 kvm_make_request(KVM_REQ_EVENT, vcpu); 10149 } 10150 10151 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10152 unsigned long *vcpu_bitmap) 10153 { 10154 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10155 } 10156 10157 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10158 { 10159 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10160 } 10161 10162 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10163 { 10164 struct kvm_lapic *apic = vcpu->arch.apic; 10165 bool activate; 10166 10167 if (!lapic_in_kernel(vcpu)) 10168 return; 10169 10170 down_read(&vcpu->kvm->arch.apicv_update_lock); 10171 preempt_disable(); 10172 10173 /* Do not activate APICV when APIC is disabled */ 10174 activate = kvm_vcpu_apicv_activated(vcpu) && 10175 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10176 10177 if (apic->apicv_active == activate) 10178 goto out; 10179 10180 apic->apicv_active = activate; 10181 kvm_apic_update_apicv(vcpu); 10182 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10183 10184 /* 10185 * When APICv gets disabled, we may still have injected interrupts 10186 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10187 * still active when the interrupt got accepted. Make sure 10188 * kvm_check_and_inject_events() is called to check for that. 10189 */ 10190 if (!apic->apicv_active) 10191 kvm_make_request(KVM_REQ_EVENT, vcpu); 10192 10193 out: 10194 preempt_enable(); 10195 up_read(&vcpu->kvm->arch.apicv_update_lock); 10196 } 10197 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10198 10199 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10200 { 10201 if (!lapic_in_kernel(vcpu)) 10202 return; 10203 10204 /* 10205 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10206 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10207 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10208 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10209 * this case so that KVM can the AVIC doorbell to inject interrupts to 10210 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10211 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10212 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10213 * access page is sticky. 10214 */ 10215 if (apic_x2apic_mode(vcpu->arch.apic) && 10216 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10217 kvm_inhibit_apic_access_page(vcpu); 10218 10219 __kvm_vcpu_update_apicv(vcpu); 10220 } 10221 10222 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10223 enum kvm_apicv_inhibit reason, bool set) 10224 { 10225 unsigned long old, new; 10226 10227 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10228 10229 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10230 return; 10231 10232 old = new = kvm->arch.apicv_inhibit_reasons; 10233 10234 set_or_clear_apicv_inhibit(&new, reason, set); 10235 10236 if (!!old != !!new) { 10237 /* 10238 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10239 * false positives in the sanity check WARN in svm_vcpu_run(). 10240 * This task will wait for all vCPUs to ack the kick IRQ before 10241 * updating apicv_inhibit_reasons, and all other vCPUs will 10242 * block on acquiring apicv_update_lock so that vCPUs can't 10243 * redo svm_vcpu_run() without seeing the new inhibit state. 10244 * 10245 * Note, holding apicv_update_lock and taking it in the read 10246 * side (handling the request) also prevents other vCPUs from 10247 * servicing the request with a stale apicv_inhibit_reasons. 10248 */ 10249 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10250 kvm->arch.apicv_inhibit_reasons = new; 10251 if (new) { 10252 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10253 int idx = srcu_read_lock(&kvm->srcu); 10254 10255 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10256 srcu_read_unlock(&kvm->srcu, idx); 10257 } 10258 } else { 10259 kvm->arch.apicv_inhibit_reasons = new; 10260 } 10261 } 10262 10263 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10264 enum kvm_apicv_inhibit reason, bool set) 10265 { 10266 if (!enable_apicv) 10267 return; 10268 10269 down_write(&kvm->arch.apicv_update_lock); 10270 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10271 up_write(&kvm->arch.apicv_update_lock); 10272 } 10273 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10274 10275 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10276 { 10277 if (!kvm_apic_present(vcpu)) 10278 return; 10279 10280 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10281 10282 if (irqchip_split(vcpu->kvm)) 10283 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10284 else { 10285 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10286 if (ioapic_in_kernel(vcpu->kvm)) 10287 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10288 } 10289 10290 if (is_guest_mode(vcpu)) 10291 vcpu->arch.load_eoi_exitmap_pending = true; 10292 else 10293 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10294 } 10295 10296 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10297 { 10298 u64 eoi_exit_bitmap[4]; 10299 10300 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10301 return; 10302 10303 if (to_hv_vcpu(vcpu)) { 10304 bitmap_or((ulong *)eoi_exit_bitmap, 10305 vcpu->arch.ioapic_handled_vectors, 10306 to_hv_synic(vcpu)->vec_bitmap, 256); 10307 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10308 return; 10309 } 10310 10311 static_call_cond(kvm_x86_load_eoi_exitmap)( 10312 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10313 } 10314 10315 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10316 unsigned long start, unsigned long end) 10317 { 10318 unsigned long apic_address; 10319 10320 /* 10321 * The physical address of apic access page is stored in the VMCS. 10322 * Update it when it becomes invalid. 10323 */ 10324 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10325 if (start <= apic_address && apic_address < end) 10326 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10327 } 10328 10329 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10330 { 10331 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10332 } 10333 10334 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10335 { 10336 if (!lapic_in_kernel(vcpu)) 10337 return; 10338 10339 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10340 } 10341 10342 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10343 { 10344 smp_send_reschedule(vcpu->cpu); 10345 } 10346 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10347 10348 /* 10349 * Called within kvm->srcu read side. 10350 * Returns 1 to let vcpu_run() continue the guest execution loop without 10351 * exiting to the userspace. Otherwise, the value will be returned to the 10352 * userspace. 10353 */ 10354 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10355 { 10356 int r; 10357 bool req_int_win = 10358 dm_request_for_irq_injection(vcpu) && 10359 kvm_cpu_accept_dm_intr(vcpu); 10360 fastpath_t exit_fastpath; 10361 10362 bool req_immediate_exit = false; 10363 10364 if (kvm_request_pending(vcpu)) { 10365 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10366 r = -EIO; 10367 goto out; 10368 } 10369 10370 if (kvm_dirty_ring_check_request(vcpu)) { 10371 r = 0; 10372 goto out; 10373 } 10374 10375 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10376 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10377 r = 0; 10378 goto out; 10379 } 10380 } 10381 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10382 kvm_mmu_free_obsolete_roots(vcpu); 10383 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10384 __kvm_migrate_timers(vcpu); 10385 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10386 kvm_update_masterclock(vcpu->kvm); 10387 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10388 kvm_gen_kvmclock_update(vcpu); 10389 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10390 r = kvm_guest_time_update(vcpu); 10391 if (unlikely(r)) 10392 goto out; 10393 } 10394 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10395 kvm_mmu_sync_roots(vcpu); 10396 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10397 kvm_mmu_load_pgd(vcpu); 10398 10399 /* 10400 * Note, the order matters here, as flushing "all" TLB entries 10401 * also flushes the "current" TLB entries, i.e. servicing the 10402 * flush "all" will clear any request to flush "current". 10403 */ 10404 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10405 kvm_vcpu_flush_tlb_all(vcpu); 10406 10407 kvm_service_local_tlb_flush_requests(vcpu); 10408 10409 /* 10410 * Fall back to a "full" guest flush if Hyper-V's precise 10411 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10412 * the flushes are considered "remote" and not "local" because 10413 * the requests can be initiated from other vCPUs. 10414 */ 10415 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10416 kvm_hv_vcpu_flush_tlb(vcpu)) 10417 kvm_vcpu_flush_tlb_guest(vcpu); 10418 10419 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10420 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10421 r = 0; 10422 goto out; 10423 } 10424 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10425 if (is_guest_mode(vcpu)) 10426 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10427 10428 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10429 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10430 vcpu->mmio_needed = 0; 10431 r = 0; 10432 goto out; 10433 } 10434 } 10435 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10436 /* Page is swapped out. Do synthetic halt */ 10437 vcpu->arch.apf.halted = true; 10438 r = 1; 10439 goto out; 10440 } 10441 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10442 record_steal_time(vcpu); 10443 #ifdef CONFIG_KVM_SMM 10444 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10445 process_smi(vcpu); 10446 #endif 10447 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10448 process_nmi(vcpu); 10449 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10450 kvm_pmu_handle_event(vcpu); 10451 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10452 kvm_pmu_deliver_pmi(vcpu); 10453 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10454 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10455 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10456 vcpu->arch.ioapic_handled_vectors)) { 10457 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10458 vcpu->run->eoi.vector = 10459 vcpu->arch.pending_ioapic_eoi; 10460 r = 0; 10461 goto out; 10462 } 10463 } 10464 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10465 vcpu_scan_ioapic(vcpu); 10466 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10467 vcpu_load_eoi_exitmap(vcpu); 10468 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10469 kvm_vcpu_reload_apic_access_page(vcpu); 10470 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10471 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10472 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10473 vcpu->run->system_event.ndata = 0; 10474 r = 0; 10475 goto out; 10476 } 10477 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10478 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10479 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10480 vcpu->run->system_event.ndata = 0; 10481 r = 0; 10482 goto out; 10483 } 10484 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10485 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10486 10487 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10488 vcpu->run->hyperv = hv_vcpu->exit; 10489 r = 0; 10490 goto out; 10491 } 10492 10493 /* 10494 * KVM_REQ_HV_STIMER has to be processed after 10495 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10496 * depend on the guest clock being up-to-date 10497 */ 10498 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10499 kvm_hv_process_stimers(vcpu); 10500 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10501 kvm_vcpu_update_apicv(vcpu); 10502 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10503 kvm_check_async_pf_completion(vcpu); 10504 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10505 static_call(kvm_x86_msr_filter_changed)(vcpu); 10506 10507 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10508 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10509 } 10510 10511 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10512 kvm_xen_has_interrupt(vcpu)) { 10513 ++vcpu->stat.req_event; 10514 r = kvm_apic_accept_events(vcpu); 10515 if (r < 0) { 10516 r = 0; 10517 goto out; 10518 } 10519 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10520 r = 1; 10521 goto out; 10522 } 10523 10524 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10525 if (r < 0) { 10526 r = 0; 10527 goto out; 10528 } 10529 if (req_int_win) 10530 static_call(kvm_x86_enable_irq_window)(vcpu); 10531 10532 if (kvm_lapic_enabled(vcpu)) { 10533 update_cr8_intercept(vcpu); 10534 kvm_lapic_sync_to_vapic(vcpu); 10535 } 10536 } 10537 10538 r = kvm_mmu_reload(vcpu); 10539 if (unlikely(r)) { 10540 goto cancel_injection; 10541 } 10542 10543 preempt_disable(); 10544 10545 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10546 10547 /* 10548 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10549 * IPI are then delayed after guest entry, which ensures that they 10550 * result in virtual interrupt delivery. 10551 */ 10552 local_irq_disable(); 10553 10554 /* Store vcpu->apicv_active before vcpu->mode. */ 10555 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10556 10557 kvm_vcpu_srcu_read_unlock(vcpu); 10558 10559 /* 10560 * 1) We should set ->mode before checking ->requests. Please see 10561 * the comment in kvm_vcpu_exiting_guest_mode(). 10562 * 10563 * 2) For APICv, we should set ->mode before checking PID.ON. This 10564 * pairs with the memory barrier implicit in pi_test_and_set_on 10565 * (see vmx_deliver_posted_interrupt). 10566 * 10567 * 3) This also orders the write to mode from any reads to the page 10568 * tables done while the VCPU is running. Please see the comment 10569 * in kvm_flush_remote_tlbs. 10570 */ 10571 smp_mb__after_srcu_read_unlock(); 10572 10573 /* 10574 * Process pending posted interrupts to handle the case where the 10575 * notification IRQ arrived in the host, or was never sent (because the 10576 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10577 * status, KVM doesn't update assigned devices when APICv is inhibited, 10578 * i.e. they can post interrupts even if APICv is temporarily disabled. 10579 */ 10580 if (kvm_lapic_enabled(vcpu)) 10581 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10582 10583 if (kvm_vcpu_exit_request(vcpu)) { 10584 vcpu->mode = OUTSIDE_GUEST_MODE; 10585 smp_wmb(); 10586 local_irq_enable(); 10587 preempt_enable(); 10588 kvm_vcpu_srcu_read_lock(vcpu); 10589 r = 1; 10590 goto cancel_injection; 10591 } 10592 10593 if (req_immediate_exit) { 10594 kvm_make_request(KVM_REQ_EVENT, vcpu); 10595 static_call(kvm_x86_request_immediate_exit)(vcpu); 10596 } 10597 10598 fpregs_assert_state_consistent(); 10599 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10600 switch_fpu_return(); 10601 10602 if (vcpu->arch.guest_fpu.xfd_err) 10603 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10604 10605 if (unlikely(vcpu->arch.switch_db_regs)) { 10606 set_debugreg(0, 7); 10607 set_debugreg(vcpu->arch.eff_db[0], 0); 10608 set_debugreg(vcpu->arch.eff_db[1], 1); 10609 set_debugreg(vcpu->arch.eff_db[2], 2); 10610 set_debugreg(vcpu->arch.eff_db[3], 3); 10611 } else if (unlikely(hw_breakpoint_active())) { 10612 set_debugreg(0, 7); 10613 } 10614 10615 guest_timing_enter_irqoff(); 10616 10617 for (;;) { 10618 /* 10619 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10620 * update must kick and wait for all vCPUs before toggling the 10621 * per-VM state, and responsing vCPUs must wait for the update 10622 * to complete before servicing KVM_REQ_APICV_UPDATE. 10623 */ 10624 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10625 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10626 10627 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10628 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10629 break; 10630 10631 if (kvm_lapic_enabled(vcpu)) 10632 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10633 10634 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10635 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10636 break; 10637 } 10638 } 10639 10640 /* 10641 * Do this here before restoring debug registers on the host. And 10642 * since we do this before handling the vmexit, a DR access vmexit 10643 * can (a) read the correct value of the debug registers, (b) set 10644 * KVM_DEBUGREG_WONT_EXIT again. 10645 */ 10646 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10647 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10648 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10649 kvm_update_dr0123(vcpu); 10650 kvm_update_dr7(vcpu); 10651 } 10652 10653 /* 10654 * If the guest has used debug registers, at least dr7 10655 * will be disabled while returning to the host. 10656 * If we don't have active breakpoints in the host, we don't 10657 * care about the messed up debug address registers. But if 10658 * we have some of them active, restore the old state. 10659 */ 10660 if (hw_breakpoint_active()) 10661 hw_breakpoint_restore(); 10662 10663 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10664 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10665 10666 vcpu->mode = OUTSIDE_GUEST_MODE; 10667 smp_wmb(); 10668 10669 /* 10670 * Sync xfd before calling handle_exit_irqoff() which may 10671 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10672 * in #NM irqoff handler). 10673 */ 10674 if (vcpu->arch.xfd_no_write_intercept) 10675 fpu_sync_guest_vmexit_xfd_state(); 10676 10677 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10678 10679 if (vcpu->arch.guest_fpu.xfd_err) 10680 wrmsrl(MSR_IA32_XFD_ERR, 0); 10681 10682 /* 10683 * Consume any pending interrupts, including the possible source of 10684 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10685 * An instruction is required after local_irq_enable() to fully unblock 10686 * interrupts on processors that implement an interrupt shadow, the 10687 * stat.exits increment will do nicely. 10688 */ 10689 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10690 local_irq_enable(); 10691 ++vcpu->stat.exits; 10692 local_irq_disable(); 10693 kvm_after_interrupt(vcpu); 10694 10695 /* 10696 * Wait until after servicing IRQs to account guest time so that any 10697 * ticks that occurred while running the guest are properly accounted 10698 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10699 * of accounting via context tracking, but the loss of accuracy is 10700 * acceptable for all known use cases. 10701 */ 10702 guest_timing_exit_irqoff(); 10703 10704 local_irq_enable(); 10705 preempt_enable(); 10706 10707 kvm_vcpu_srcu_read_lock(vcpu); 10708 10709 /* 10710 * Profile KVM exit RIPs: 10711 */ 10712 if (unlikely(prof_on == KVM_PROFILING)) { 10713 unsigned long rip = kvm_rip_read(vcpu); 10714 profile_hit(KVM_PROFILING, (void *)rip); 10715 } 10716 10717 if (unlikely(vcpu->arch.tsc_always_catchup)) 10718 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10719 10720 if (vcpu->arch.apic_attention) 10721 kvm_lapic_sync_from_vapic(vcpu); 10722 10723 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10724 return r; 10725 10726 cancel_injection: 10727 if (req_immediate_exit) 10728 kvm_make_request(KVM_REQ_EVENT, vcpu); 10729 static_call(kvm_x86_cancel_injection)(vcpu); 10730 if (unlikely(vcpu->arch.apic_attention)) 10731 kvm_lapic_sync_from_vapic(vcpu); 10732 out: 10733 return r; 10734 } 10735 10736 /* Called within kvm->srcu read side. */ 10737 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10738 { 10739 bool hv_timer; 10740 10741 if (!kvm_arch_vcpu_runnable(vcpu)) { 10742 /* 10743 * Switch to the software timer before halt-polling/blocking as 10744 * the guest's timer may be a break event for the vCPU, and the 10745 * hypervisor timer runs only when the CPU is in guest mode. 10746 * Switch before halt-polling so that KVM recognizes an expired 10747 * timer before blocking. 10748 */ 10749 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10750 if (hv_timer) 10751 kvm_lapic_switch_to_sw_timer(vcpu); 10752 10753 kvm_vcpu_srcu_read_unlock(vcpu); 10754 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10755 kvm_vcpu_halt(vcpu); 10756 else 10757 kvm_vcpu_block(vcpu); 10758 kvm_vcpu_srcu_read_lock(vcpu); 10759 10760 if (hv_timer) 10761 kvm_lapic_switch_to_hv_timer(vcpu); 10762 10763 /* 10764 * If the vCPU is not runnable, a signal or another host event 10765 * of some kind is pending; service it without changing the 10766 * vCPU's activity state. 10767 */ 10768 if (!kvm_arch_vcpu_runnable(vcpu)) 10769 return 1; 10770 } 10771 10772 /* 10773 * Evaluate nested events before exiting the halted state. This allows 10774 * the halt state to be recorded properly in the VMCS12's activity 10775 * state field (AMD does not have a similar field and a VM-Exit always 10776 * causes a spurious wakeup from HLT). 10777 */ 10778 if (is_guest_mode(vcpu)) { 10779 if (kvm_check_nested_events(vcpu) < 0) 10780 return 0; 10781 } 10782 10783 if (kvm_apic_accept_events(vcpu) < 0) 10784 return 0; 10785 switch(vcpu->arch.mp_state) { 10786 case KVM_MP_STATE_HALTED: 10787 case KVM_MP_STATE_AP_RESET_HOLD: 10788 vcpu->arch.pv.pv_unhalted = false; 10789 vcpu->arch.mp_state = 10790 KVM_MP_STATE_RUNNABLE; 10791 fallthrough; 10792 case KVM_MP_STATE_RUNNABLE: 10793 vcpu->arch.apf.halted = false; 10794 break; 10795 case KVM_MP_STATE_INIT_RECEIVED: 10796 break; 10797 default: 10798 WARN_ON_ONCE(1); 10799 break; 10800 } 10801 return 1; 10802 } 10803 10804 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10805 { 10806 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10807 !vcpu->arch.apf.halted); 10808 } 10809 10810 /* Called within kvm->srcu read side. */ 10811 static int vcpu_run(struct kvm_vcpu *vcpu) 10812 { 10813 int r; 10814 10815 vcpu->arch.l1tf_flush_l1d = true; 10816 10817 for (;;) { 10818 /* 10819 * If another guest vCPU requests a PV TLB flush in the middle 10820 * of instruction emulation, the rest of the emulation could 10821 * use a stale page translation. Assume that any code after 10822 * this point can start executing an instruction. 10823 */ 10824 vcpu->arch.at_instruction_boundary = false; 10825 if (kvm_vcpu_running(vcpu)) { 10826 r = vcpu_enter_guest(vcpu); 10827 } else { 10828 r = vcpu_block(vcpu); 10829 } 10830 10831 if (r <= 0) 10832 break; 10833 10834 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10835 if (kvm_xen_has_pending_events(vcpu)) 10836 kvm_xen_inject_pending_events(vcpu); 10837 10838 if (kvm_cpu_has_pending_timer(vcpu)) 10839 kvm_inject_pending_timer_irqs(vcpu); 10840 10841 if (dm_request_for_irq_injection(vcpu) && 10842 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10843 r = 0; 10844 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10845 ++vcpu->stat.request_irq_exits; 10846 break; 10847 } 10848 10849 if (__xfer_to_guest_mode_work_pending()) { 10850 kvm_vcpu_srcu_read_unlock(vcpu); 10851 r = xfer_to_guest_mode_handle_work(vcpu); 10852 kvm_vcpu_srcu_read_lock(vcpu); 10853 if (r) 10854 return r; 10855 } 10856 } 10857 10858 return r; 10859 } 10860 10861 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10862 { 10863 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10864 } 10865 10866 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10867 { 10868 BUG_ON(!vcpu->arch.pio.count); 10869 10870 return complete_emulated_io(vcpu); 10871 } 10872 10873 /* 10874 * Implements the following, as a state machine: 10875 * 10876 * read: 10877 * for each fragment 10878 * for each mmio piece in the fragment 10879 * write gpa, len 10880 * exit 10881 * copy data 10882 * execute insn 10883 * 10884 * write: 10885 * for each fragment 10886 * for each mmio piece in the fragment 10887 * write gpa, len 10888 * copy data 10889 * exit 10890 */ 10891 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10892 { 10893 struct kvm_run *run = vcpu->run; 10894 struct kvm_mmio_fragment *frag; 10895 unsigned len; 10896 10897 BUG_ON(!vcpu->mmio_needed); 10898 10899 /* Complete previous fragment */ 10900 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10901 len = min(8u, frag->len); 10902 if (!vcpu->mmio_is_write) 10903 memcpy(frag->data, run->mmio.data, len); 10904 10905 if (frag->len <= 8) { 10906 /* Switch to the next fragment. */ 10907 frag++; 10908 vcpu->mmio_cur_fragment++; 10909 } else { 10910 /* Go forward to the next mmio piece. */ 10911 frag->data += len; 10912 frag->gpa += len; 10913 frag->len -= len; 10914 } 10915 10916 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10917 vcpu->mmio_needed = 0; 10918 10919 /* FIXME: return into emulator if single-stepping. */ 10920 if (vcpu->mmio_is_write) 10921 return 1; 10922 vcpu->mmio_read_completed = 1; 10923 return complete_emulated_io(vcpu); 10924 } 10925 10926 run->exit_reason = KVM_EXIT_MMIO; 10927 run->mmio.phys_addr = frag->gpa; 10928 if (vcpu->mmio_is_write) 10929 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10930 run->mmio.len = min(8u, frag->len); 10931 run->mmio.is_write = vcpu->mmio_is_write; 10932 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10933 return 0; 10934 } 10935 10936 /* Swap (qemu) user FPU context for the guest FPU context. */ 10937 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10938 { 10939 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10940 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10941 trace_kvm_fpu(1); 10942 } 10943 10944 /* When vcpu_run ends, restore user space FPU context. */ 10945 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10946 { 10947 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10948 ++vcpu->stat.fpu_reload; 10949 trace_kvm_fpu(0); 10950 } 10951 10952 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10953 { 10954 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10955 struct kvm_run *kvm_run = vcpu->run; 10956 int r; 10957 10958 vcpu_load(vcpu); 10959 kvm_sigset_activate(vcpu); 10960 kvm_run->flags = 0; 10961 kvm_load_guest_fpu(vcpu); 10962 10963 kvm_vcpu_srcu_read_lock(vcpu); 10964 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10965 if (kvm_run->immediate_exit) { 10966 r = -EINTR; 10967 goto out; 10968 } 10969 /* 10970 * It should be impossible for the hypervisor timer to be in 10971 * use before KVM has ever run the vCPU. 10972 */ 10973 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10974 10975 kvm_vcpu_srcu_read_unlock(vcpu); 10976 kvm_vcpu_block(vcpu); 10977 kvm_vcpu_srcu_read_lock(vcpu); 10978 10979 if (kvm_apic_accept_events(vcpu) < 0) { 10980 r = 0; 10981 goto out; 10982 } 10983 r = -EAGAIN; 10984 if (signal_pending(current)) { 10985 r = -EINTR; 10986 kvm_run->exit_reason = KVM_EXIT_INTR; 10987 ++vcpu->stat.signal_exits; 10988 } 10989 goto out; 10990 } 10991 10992 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10993 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10994 r = -EINVAL; 10995 goto out; 10996 } 10997 10998 if (kvm_run->kvm_dirty_regs) { 10999 r = sync_regs(vcpu); 11000 if (r != 0) 11001 goto out; 11002 } 11003 11004 /* re-sync apic's tpr */ 11005 if (!lapic_in_kernel(vcpu)) { 11006 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11007 r = -EINVAL; 11008 goto out; 11009 } 11010 } 11011 11012 /* 11013 * If userspace set a pending exception and L2 is active, convert it to 11014 * a pending VM-Exit if L1 wants to intercept the exception. 11015 */ 11016 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11017 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11018 ex->error_code)) { 11019 kvm_queue_exception_vmexit(vcpu, ex->vector, 11020 ex->has_error_code, ex->error_code, 11021 ex->has_payload, ex->payload); 11022 ex->injected = false; 11023 ex->pending = false; 11024 } 11025 vcpu->arch.exception_from_userspace = false; 11026 11027 if (unlikely(vcpu->arch.complete_userspace_io)) { 11028 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11029 vcpu->arch.complete_userspace_io = NULL; 11030 r = cui(vcpu); 11031 if (r <= 0) 11032 goto out; 11033 } else { 11034 WARN_ON_ONCE(vcpu->arch.pio.count); 11035 WARN_ON_ONCE(vcpu->mmio_needed); 11036 } 11037 11038 if (kvm_run->immediate_exit) { 11039 r = -EINTR; 11040 goto out; 11041 } 11042 11043 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11044 if (r <= 0) 11045 goto out; 11046 11047 r = vcpu_run(vcpu); 11048 11049 out: 11050 kvm_put_guest_fpu(vcpu); 11051 if (kvm_run->kvm_valid_regs) 11052 store_regs(vcpu); 11053 post_kvm_run_save(vcpu); 11054 kvm_vcpu_srcu_read_unlock(vcpu); 11055 11056 kvm_sigset_deactivate(vcpu); 11057 vcpu_put(vcpu); 11058 return r; 11059 } 11060 11061 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11062 { 11063 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11064 /* 11065 * We are here if userspace calls get_regs() in the middle of 11066 * instruction emulation. Registers state needs to be copied 11067 * back from emulation context to vcpu. Userspace shouldn't do 11068 * that usually, but some bad designed PV devices (vmware 11069 * backdoor interface) need this to work 11070 */ 11071 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11072 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11073 } 11074 regs->rax = kvm_rax_read(vcpu); 11075 regs->rbx = kvm_rbx_read(vcpu); 11076 regs->rcx = kvm_rcx_read(vcpu); 11077 regs->rdx = kvm_rdx_read(vcpu); 11078 regs->rsi = kvm_rsi_read(vcpu); 11079 regs->rdi = kvm_rdi_read(vcpu); 11080 regs->rsp = kvm_rsp_read(vcpu); 11081 regs->rbp = kvm_rbp_read(vcpu); 11082 #ifdef CONFIG_X86_64 11083 regs->r8 = kvm_r8_read(vcpu); 11084 regs->r9 = kvm_r9_read(vcpu); 11085 regs->r10 = kvm_r10_read(vcpu); 11086 regs->r11 = kvm_r11_read(vcpu); 11087 regs->r12 = kvm_r12_read(vcpu); 11088 regs->r13 = kvm_r13_read(vcpu); 11089 regs->r14 = kvm_r14_read(vcpu); 11090 regs->r15 = kvm_r15_read(vcpu); 11091 #endif 11092 11093 regs->rip = kvm_rip_read(vcpu); 11094 regs->rflags = kvm_get_rflags(vcpu); 11095 } 11096 11097 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11098 { 11099 vcpu_load(vcpu); 11100 __get_regs(vcpu, regs); 11101 vcpu_put(vcpu); 11102 return 0; 11103 } 11104 11105 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11106 { 11107 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11108 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11109 11110 kvm_rax_write(vcpu, regs->rax); 11111 kvm_rbx_write(vcpu, regs->rbx); 11112 kvm_rcx_write(vcpu, regs->rcx); 11113 kvm_rdx_write(vcpu, regs->rdx); 11114 kvm_rsi_write(vcpu, regs->rsi); 11115 kvm_rdi_write(vcpu, regs->rdi); 11116 kvm_rsp_write(vcpu, regs->rsp); 11117 kvm_rbp_write(vcpu, regs->rbp); 11118 #ifdef CONFIG_X86_64 11119 kvm_r8_write(vcpu, regs->r8); 11120 kvm_r9_write(vcpu, regs->r9); 11121 kvm_r10_write(vcpu, regs->r10); 11122 kvm_r11_write(vcpu, regs->r11); 11123 kvm_r12_write(vcpu, regs->r12); 11124 kvm_r13_write(vcpu, regs->r13); 11125 kvm_r14_write(vcpu, regs->r14); 11126 kvm_r15_write(vcpu, regs->r15); 11127 #endif 11128 11129 kvm_rip_write(vcpu, regs->rip); 11130 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11131 11132 vcpu->arch.exception.pending = false; 11133 vcpu->arch.exception_vmexit.pending = false; 11134 11135 kvm_make_request(KVM_REQ_EVENT, vcpu); 11136 } 11137 11138 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11139 { 11140 vcpu_load(vcpu); 11141 __set_regs(vcpu, regs); 11142 vcpu_put(vcpu); 11143 return 0; 11144 } 11145 11146 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11147 { 11148 struct desc_ptr dt; 11149 11150 if (vcpu->arch.guest_state_protected) 11151 goto skip_protected_regs; 11152 11153 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11154 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11155 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11156 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11157 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11158 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11159 11160 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11161 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11162 11163 static_call(kvm_x86_get_idt)(vcpu, &dt); 11164 sregs->idt.limit = dt.size; 11165 sregs->idt.base = dt.address; 11166 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11167 sregs->gdt.limit = dt.size; 11168 sregs->gdt.base = dt.address; 11169 11170 sregs->cr2 = vcpu->arch.cr2; 11171 sregs->cr3 = kvm_read_cr3(vcpu); 11172 11173 skip_protected_regs: 11174 sregs->cr0 = kvm_read_cr0(vcpu); 11175 sregs->cr4 = kvm_read_cr4(vcpu); 11176 sregs->cr8 = kvm_get_cr8(vcpu); 11177 sregs->efer = vcpu->arch.efer; 11178 sregs->apic_base = kvm_get_apic_base(vcpu); 11179 } 11180 11181 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11182 { 11183 __get_sregs_common(vcpu, sregs); 11184 11185 if (vcpu->arch.guest_state_protected) 11186 return; 11187 11188 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11189 set_bit(vcpu->arch.interrupt.nr, 11190 (unsigned long *)sregs->interrupt_bitmap); 11191 } 11192 11193 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11194 { 11195 int i; 11196 11197 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11198 11199 if (vcpu->arch.guest_state_protected) 11200 return; 11201 11202 if (is_pae_paging(vcpu)) { 11203 for (i = 0 ; i < 4 ; i++) 11204 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11205 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11206 } 11207 } 11208 11209 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11210 struct kvm_sregs *sregs) 11211 { 11212 vcpu_load(vcpu); 11213 __get_sregs(vcpu, sregs); 11214 vcpu_put(vcpu); 11215 return 0; 11216 } 11217 11218 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11219 struct kvm_mp_state *mp_state) 11220 { 11221 int r; 11222 11223 vcpu_load(vcpu); 11224 if (kvm_mpx_supported()) 11225 kvm_load_guest_fpu(vcpu); 11226 11227 r = kvm_apic_accept_events(vcpu); 11228 if (r < 0) 11229 goto out; 11230 r = 0; 11231 11232 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11233 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11234 vcpu->arch.pv.pv_unhalted) 11235 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11236 else 11237 mp_state->mp_state = vcpu->arch.mp_state; 11238 11239 out: 11240 if (kvm_mpx_supported()) 11241 kvm_put_guest_fpu(vcpu); 11242 vcpu_put(vcpu); 11243 return r; 11244 } 11245 11246 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11247 struct kvm_mp_state *mp_state) 11248 { 11249 int ret = -EINVAL; 11250 11251 vcpu_load(vcpu); 11252 11253 switch (mp_state->mp_state) { 11254 case KVM_MP_STATE_UNINITIALIZED: 11255 case KVM_MP_STATE_HALTED: 11256 case KVM_MP_STATE_AP_RESET_HOLD: 11257 case KVM_MP_STATE_INIT_RECEIVED: 11258 case KVM_MP_STATE_SIPI_RECEIVED: 11259 if (!lapic_in_kernel(vcpu)) 11260 goto out; 11261 break; 11262 11263 case KVM_MP_STATE_RUNNABLE: 11264 break; 11265 11266 default: 11267 goto out; 11268 } 11269 11270 /* 11271 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11272 * forcing the guest into INIT/SIPI if those events are supposed to be 11273 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11274 * if an SMI is pending as well. 11275 */ 11276 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11277 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11278 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11279 goto out; 11280 11281 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11282 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11283 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11284 } else 11285 vcpu->arch.mp_state = mp_state->mp_state; 11286 kvm_make_request(KVM_REQ_EVENT, vcpu); 11287 11288 ret = 0; 11289 out: 11290 vcpu_put(vcpu); 11291 return ret; 11292 } 11293 11294 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11295 int reason, bool has_error_code, u32 error_code) 11296 { 11297 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11298 int ret; 11299 11300 init_emulate_ctxt(vcpu); 11301 11302 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11303 has_error_code, error_code); 11304 if (ret) { 11305 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11306 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11307 vcpu->run->internal.ndata = 0; 11308 return 0; 11309 } 11310 11311 kvm_rip_write(vcpu, ctxt->eip); 11312 kvm_set_rflags(vcpu, ctxt->eflags); 11313 return 1; 11314 } 11315 EXPORT_SYMBOL_GPL(kvm_task_switch); 11316 11317 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11318 { 11319 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11320 /* 11321 * When EFER.LME and CR0.PG are set, the processor is in 11322 * 64-bit mode (though maybe in a 32-bit code segment). 11323 * CR4.PAE and EFER.LMA must be set. 11324 */ 11325 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11326 return false; 11327 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11328 return false; 11329 } else { 11330 /* 11331 * Not in 64-bit mode: EFER.LMA is clear and the code 11332 * segment cannot be 64-bit. 11333 */ 11334 if (sregs->efer & EFER_LMA || sregs->cs.l) 11335 return false; 11336 } 11337 11338 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11339 } 11340 11341 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11342 int *mmu_reset_needed, bool update_pdptrs) 11343 { 11344 struct msr_data apic_base_msr; 11345 int idx; 11346 struct desc_ptr dt; 11347 11348 if (!kvm_is_valid_sregs(vcpu, sregs)) 11349 return -EINVAL; 11350 11351 apic_base_msr.data = sregs->apic_base; 11352 apic_base_msr.host_initiated = true; 11353 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11354 return -EINVAL; 11355 11356 if (vcpu->arch.guest_state_protected) 11357 return 0; 11358 11359 dt.size = sregs->idt.limit; 11360 dt.address = sregs->idt.base; 11361 static_call(kvm_x86_set_idt)(vcpu, &dt); 11362 dt.size = sregs->gdt.limit; 11363 dt.address = sregs->gdt.base; 11364 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11365 11366 vcpu->arch.cr2 = sregs->cr2; 11367 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11368 vcpu->arch.cr3 = sregs->cr3; 11369 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11370 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11371 11372 kvm_set_cr8(vcpu, sregs->cr8); 11373 11374 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11375 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11376 11377 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11378 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11379 vcpu->arch.cr0 = sregs->cr0; 11380 11381 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11382 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11383 11384 if (update_pdptrs) { 11385 idx = srcu_read_lock(&vcpu->kvm->srcu); 11386 if (is_pae_paging(vcpu)) { 11387 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11388 *mmu_reset_needed = 1; 11389 } 11390 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11391 } 11392 11393 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11394 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11395 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11396 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11397 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11398 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11399 11400 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11401 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11402 11403 update_cr8_intercept(vcpu); 11404 11405 /* Older userspace won't unhalt the vcpu on reset. */ 11406 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11407 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11408 !is_protmode(vcpu)) 11409 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11410 11411 return 0; 11412 } 11413 11414 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11415 { 11416 int pending_vec, max_bits; 11417 int mmu_reset_needed = 0; 11418 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11419 11420 if (ret) 11421 return ret; 11422 11423 if (mmu_reset_needed) 11424 kvm_mmu_reset_context(vcpu); 11425 11426 max_bits = KVM_NR_INTERRUPTS; 11427 pending_vec = find_first_bit( 11428 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11429 11430 if (pending_vec < max_bits) { 11431 kvm_queue_interrupt(vcpu, pending_vec, false); 11432 pr_debug("Set back pending irq %d\n", pending_vec); 11433 kvm_make_request(KVM_REQ_EVENT, vcpu); 11434 } 11435 return 0; 11436 } 11437 11438 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11439 { 11440 int mmu_reset_needed = 0; 11441 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11442 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11443 !(sregs2->efer & EFER_LMA); 11444 int i, ret; 11445 11446 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11447 return -EINVAL; 11448 11449 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11450 return -EINVAL; 11451 11452 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11453 &mmu_reset_needed, !valid_pdptrs); 11454 if (ret) 11455 return ret; 11456 11457 if (valid_pdptrs) { 11458 for (i = 0; i < 4 ; i++) 11459 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11460 11461 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11462 mmu_reset_needed = 1; 11463 vcpu->arch.pdptrs_from_userspace = true; 11464 } 11465 if (mmu_reset_needed) 11466 kvm_mmu_reset_context(vcpu); 11467 return 0; 11468 } 11469 11470 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11471 struct kvm_sregs *sregs) 11472 { 11473 int ret; 11474 11475 vcpu_load(vcpu); 11476 ret = __set_sregs(vcpu, sregs); 11477 vcpu_put(vcpu); 11478 return ret; 11479 } 11480 11481 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11482 { 11483 bool set = false; 11484 struct kvm_vcpu *vcpu; 11485 unsigned long i; 11486 11487 if (!enable_apicv) 11488 return; 11489 11490 down_write(&kvm->arch.apicv_update_lock); 11491 11492 kvm_for_each_vcpu(i, vcpu, kvm) { 11493 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11494 set = true; 11495 break; 11496 } 11497 } 11498 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11499 up_write(&kvm->arch.apicv_update_lock); 11500 } 11501 11502 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11503 struct kvm_guest_debug *dbg) 11504 { 11505 unsigned long rflags; 11506 int i, r; 11507 11508 if (vcpu->arch.guest_state_protected) 11509 return -EINVAL; 11510 11511 vcpu_load(vcpu); 11512 11513 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11514 r = -EBUSY; 11515 if (kvm_is_exception_pending(vcpu)) 11516 goto out; 11517 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11518 kvm_queue_exception(vcpu, DB_VECTOR); 11519 else 11520 kvm_queue_exception(vcpu, BP_VECTOR); 11521 } 11522 11523 /* 11524 * Read rflags as long as potentially injected trace flags are still 11525 * filtered out. 11526 */ 11527 rflags = kvm_get_rflags(vcpu); 11528 11529 vcpu->guest_debug = dbg->control; 11530 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11531 vcpu->guest_debug = 0; 11532 11533 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11534 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11535 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11536 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11537 } else { 11538 for (i = 0; i < KVM_NR_DB_REGS; i++) 11539 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11540 } 11541 kvm_update_dr7(vcpu); 11542 11543 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11544 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11545 11546 /* 11547 * Trigger an rflags update that will inject or remove the trace 11548 * flags. 11549 */ 11550 kvm_set_rflags(vcpu, rflags); 11551 11552 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11553 11554 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11555 11556 r = 0; 11557 11558 out: 11559 vcpu_put(vcpu); 11560 return r; 11561 } 11562 11563 /* 11564 * Translate a guest virtual address to a guest physical address. 11565 */ 11566 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11567 struct kvm_translation *tr) 11568 { 11569 unsigned long vaddr = tr->linear_address; 11570 gpa_t gpa; 11571 int idx; 11572 11573 vcpu_load(vcpu); 11574 11575 idx = srcu_read_lock(&vcpu->kvm->srcu); 11576 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11577 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11578 tr->physical_address = gpa; 11579 tr->valid = gpa != INVALID_GPA; 11580 tr->writeable = 1; 11581 tr->usermode = 0; 11582 11583 vcpu_put(vcpu); 11584 return 0; 11585 } 11586 11587 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11588 { 11589 struct fxregs_state *fxsave; 11590 11591 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11592 return 0; 11593 11594 vcpu_load(vcpu); 11595 11596 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11597 memcpy(fpu->fpr, fxsave->st_space, 128); 11598 fpu->fcw = fxsave->cwd; 11599 fpu->fsw = fxsave->swd; 11600 fpu->ftwx = fxsave->twd; 11601 fpu->last_opcode = fxsave->fop; 11602 fpu->last_ip = fxsave->rip; 11603 fpu->last_dp = fxsave->rdp; 11604 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11605 11606 vcpu_put(vcpu); 11607 return 0; 11608 } 11609 11610 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11611 { 11612 struct fxregs_state *fxsave; 11613 11614 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11615 return 0; 11616 11617 vcpu_load(vcpu); 11618 11619 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11620 11621 memcpy(fxsave->st_space, fpu->fpr, 128); 11622 fxsave->cwd = fpu->fcw; 11623 fxsave->swd = fpu->fsw; 11624 fxsave->twd = fpu->ftwx; 11625 fxsave->fop = fpu->last_opcode; 11626 fxsave->rip = fpu->last_ip; 11627 fxsave->rdp = fpu->last_dp; 11628 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11629 11630 vcpu_put(vcpu); 11631 return 0; 11632 } 11633 11634 static void store_regs(struct kvm_vcpu *vcpu) 11635 { 11636 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11637 11638 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11639 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11640 11641 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11642 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11643 11644 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11645 kvm_vcpu_ioctl_x86_get_vcpu_events( 11646 vcpu, &vcpu->run->s.regs.events); 11647 } 11648 11649 static int sync_regs(struct kvm_vcpu *vcpu) 11650 { 11651 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11652 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11653 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11654 } 11655 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11656 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11657 return -EINVAL; 11658 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11659 } 11660 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11661 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11662 vcpu, &vcpu->run->s.regs.events)) 11663 return -EINVAL; 11664 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11665 } 11666 11667 return 0; 11668 } 11669 11670 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11671 { 11672 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11673 pr_warn_once("SMP vm created on host with unstable TSC; " 11674 "guest TSC will not be reliable\n"); 11675 11676 if (!kvm->arch.max_vcpu_ids) 11677 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11678 11679 if (id >= kvm->arch.max_vcpu_ids) 11680 return -EINVAL; 11681 11682 return static_call(kvm_x86_vcpu_precreate)(kvm); 11683 } 11684 11685 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11686 { 11687 struct page *page; 11688 int r; 11689 11690 vcpu->arch.last_vmentry_cpu = -1; 11691 vcpu->arch.regs_avail = ~0; 11692 vcpu->arch.regs_dirty = ~0; 11693 11694 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11695 11696 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11697 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11698 else 11699 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11700 11701 r = kvm_mmu_create(vcpu); 11702 if (r < 0) 11703 return r; 11704 11705 if (irqchip_in_kernel(vcpu->kvm)) { 11706 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11707 if (r < 0) 11708 goto fail_mmu_destroy; 11709 11710 /* 11711 * Defer evaluating inhibits until the vCPU is first run, as 11712 * this vCPU will not get notified of any changes until this 11713 * vCPU is visible to other vCPUs (marked online and added to 11714 * the set of vCPUs). Opportunistically mark APICv active as 11715 * VMX in particularly is highly unlikely to have inhibits. 11716 * Ignore the current per-VM APICv state so that vCPU creation 11717 * is guaranteed to run with a deterministic value, the request 11718 * will ensure the vCPU gets the correct state before VM-Entry. 11719 */ 11720 if (enable_apicv) { 11721 vcpu->arch.apic->apicv_active = true; 11722 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11723 } 11724 } else 11725 static_branch_inc(&kvm_has_noapic_vcpu); 11726 11727 r = -ENOMEM; 11728 11729 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11730 if (!page) 11731 goto fail_free_lapic; 11732 vcpu->arch.pio_data = page_address(page); 11733 11734 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11735 GFP_KERNEL_ACCOUNT); 11736 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11737 GFP_KERNEL_ACCOUNT); 11738 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11739 goto fail_free_mce_banks; 11740 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11741 11742 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11743 GFP_KERNEL_ACCOUNT)) 11744 goto fail_free_mce_banks; 11745 11746 if (!alloc_emulate_ctxt(vcpu)) 11747 goto free_wbinvd_dirty_mask; 11748 11749 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11750 pr_err("failed to allocate vcpu's fpu\n"); 11751 goto free_emulate_ctxt; 11752 } 11753 11754 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11755 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11756 11757 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11758 11759 kvm_async_pf_hash_reset(vcpu); 11760 11761 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11762 kvm_pmu_init(vcpu); 11763 11764 vcpu->arch.pending_external_vector = -1; 11765 vcpu->arch.preempted_in_kernel = false; 11766 11767 #if IS_ENABLED(CONFIG_HYPERV) 11768 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11769 #endif 11770 11771 r = static_call(kvm_x86_vcpu_create)(vcpu); 11772 if (r) 11773 goto free_guest_fpu; 11774 11775 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11776 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11777 kvm_xen_init_vcpu(vcpu); 11778 kvm_vcpu_mtrr_init(vcpu); 11779 vcpu_load(vcpu); 11780 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11781 kvm_vcpu_reset(vcpu, false); 11782 kvm_init_mmu(vcpu); 11783 vcpu_put(vcpu); 11784 return 0; 11785 11786 free_guest_fpu: 11787 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11788 free_emulate_ctxt: 11789 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11790 free_wbinvd_dirty_mask: 11791 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11792 fail_free_mce_banks: 11793 kfree(vcpu->arch.mce_banks); 11794 kfree(vcpu->arch.mci_ctl2_banks); 11795 free_page((unsigned long)vcpu->arch.pio_data); 11796 fail_free_lapic: 11797 kvm_free_lapic(vcpu); 11798 fail_mmu_destroy: 11799 kvm_mmu_destroy(vcpu); 11800 return r; 11801 } 11802 11803 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11804 { 11805 struct kvm *kvm = vcpu->kvm; 11806 11807 if (mutex_lock_killable(&vcpu->mutex)) 11808 return; 11809 vcpu_load(vcpu); 11810 kvm_synchronize_tsc(vcpu, 0); 11811 vcpu_put(vcpu); 11812 11813 /* poll control enabled by default */ 11814 vcpu->arch.msr_kvm_poll_control = 1; 11815 11816 mutex_unlock(&vcpu->mutex); 11817 11818 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11819 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11820 KVMCLOCK_SYNC_PERIOD); 11821 } 11822 11823 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11824 { 11825 int idx; 11826 11827 kvmclock_reset(vcpu); 11828 11829 static_call(kvm_x86_vcpu_free)(vcpu); 11830 11831 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11832 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11833 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11834 11835 kvm_xen_destroy_vcpu(vcpu); 11836 kvm_hv_vcpu_uninit(vcpu); 11837 kvm_pmu_destroy(vcpu); 11838 kfree(vcpu->arch.mce_banks); 11839 kfree(vcpu->arch.mci_ctl2_banks); 11840 kvm_free_lapic(vcpu); 11841 idx = srcu_read_lock(&vcpu->kvm->srcu); 11842 kvm_mmu_destroy(vcpu); 11843 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11844 free_page((unsigned long)vcpu->arch.pio_data); 11845 kvfree(vcpu->arch.cpuid_entries); 11846 if (!lapic_in_kernel(vcpu)) 11847 static_branch_dec(&kvm_has_noapic_vcpu); 11848 } 11849 11850 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11851 { 11852 struct kvm_cpuid_entry2 *cpuid_0x1; 11853 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11854 unsigned long new_cr0; 11855 11856 /* 11857 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11858 * to handle side effects. RESET emulation hits those flows and relies 11859 * on emulated/virtualized registers, including those that are loaded 11860 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11861 * to detect improper or missing initialization. 11862 */ 11863 WARN_ON_ONCE(!init_event && 11864 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11865 11866 /* 11867 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11868 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11869 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11870 * bits), i.e. virtualization is disabled. 11871 */ 11872 if (is_guest_mode(vcpu)) 11873 kvm_leave_nested(vcpu); 11874 11875 kvm_lapic_reset(vcpu, init_event); 11876 11877 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11878 vcpu->arch.hflags = 0; 11879 11880 vcpu->arch.smi_pending = 0; 11881 vcpu->arch.smi_count = 0; 11882 atomic_set(&vcpu->arch.nmi_queued, 0); 11883 vcpu->arch.nmi_pending = 0; 11884 vcpu->arch.nmi_injected = false; 11885 kvm_clear_interrupt_queue(vcpu); 11886 kvm_clear_exception_queue(vcpu); 11887 11888 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11889 kvm_update_dr0123(vcpu); 11890 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11891 vcpu->arch.dr7 = DR7_FIXED_1; 11892 kvm_update_dr7(vcpu); 11893 11894 vcpu->arch.cr2 = 0; 11895 11896 kvm_make_request(KVM_REQ_EVENT, vcpu); 11897 vcpu->arch.apf.msr_en_val = 0; 11898 vcpu->arch.apf.msr_int_val = 0; 11899 vcpu->arch.st.msr_val = 0; 11900 11901 kvmclock_reset(vcpu); 11902 11903 kvm_clear_async_pf_completion_queue(vcpu); 11904 kvm_async_pf_hash_reset(vcpu); 11905 vcpu->arch.apf.halted = false; 11906 11907 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11908 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11909 11910 /* 11911 * All paths that lead to INIT are required to load the guest's 11912 * FPU state (because most paths are buried in KVM_RUN). 11913 */ 11914 if (init_event) 11915 kvm_put_guest_fpu(vcpu); 11916 11917 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11918 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11919 11920 if (init_event) 11921 kvm_load_guest_fpu(vcpu); 11922 } 11923 11924 if (!init_event) { 11925 kvm_pmu_reset(vcpu); 11926 vcpu->arch.smbase = 0x30000; 11927 11928 vcpu->arch.msr_misc_features_enables = 0; 11929 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11930 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11931 11932 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11933 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11934 } 11935 11936 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11937 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11938 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11939 11940 /* 11941 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11942 * if no CPUID match is found. Note, it's impossible to get a match at 11943 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11944 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11945 * on RESET. But, go through the motions in case that's ever remedied. 11946 */ 11947 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11948 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11949 11950 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11951 11952 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11953 kvm_rip_write(vcpu, 0xfff0); 11954 11955 vcpu->arch.cr3 = 0; 11956 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11957 11958 /* 11959 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11960 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11961 * (or qualify) that with a footnote stating that CD/NW are preserved. 11962 */ 11963 new_cr0 = X86_CR0_ET; 11964 if (init_event) 11965 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11966 else 11967 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11968 11969 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11970 static_call(kvm_x86_set_cr4)(vcpu, 0); 11971 static_call(kvm_x86_set_efer)(vcpu, 0); 11972 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11973 11974 /* 11975 * On the standard CR0/CR4/EFER modification paths, there are several 11976 * complex conditions determining whether the MMU has to be reset and/or 11977 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11978 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11979 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11980 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11981 */ 11982 if (old_cr0 & X86_CR0_PG) { 11983 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11984 kvm_mmu_reset_context(vcpu); 11985 } 11986 11987 /* 11988 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11989 * APM states the TLBs are untouched by INIT, but it also states that 11990 * the TLBs are flushed on "External initialization of the processor." 11991 * Flush the guest TLB regardless of vendor, there is no meaningful 11992 * benefit in relying on the guest to flush the TLB immediately after 11993 * INIT. A spurious TLB flush is benign and likely negligible from a 11994 * performance perspective. 11995 */ 11996 if (init_event) 11997 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11998 } 11999 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12000 12001 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12002 { 12003 struct kvm_segment cs; 12004 12005 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12006 cs.selector = vector << 8; 12007 cs.base = vector << 12; 12008 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12009 kvm_rip_write(vcpu, 0); 12010 } 12011 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12012 12013 int kvm_arch_hardware_enable(void) 12014 { 12015 struct kvm *kvm; 12016 struct kvm_vcpu *vcpu; 12017 unsigned long i; 12018 int ret; 12019 u64 local_tsc; 12020 u64 max_tsc = 0; 12021 bool stable, backwards_tsc = false; 12022 12023 kvm_user_return_msr_cpu_online(); 12024 12025 ret = kvm_x86_check_processor_compatibility(); 12026 if (ret) 12027 return ret; 12028 12029 ret = static_call(kvm_x86_hardware_enable)(); 12030 if (ret != 0) 12031 return ret; 12032 12033 local_tsc = rdtsc(); 12034 stable = !kvm_check_tsc_unstable(); 12035 list_for_each_entry(kvm, &vm_list, vm_list) { 12036 kvm_for_each_vcpu(i, vcpu, kvm) { 12037 if (!stable && vcpu->cpu == smp_processor_id()) 12038 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12039 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12040 backwards_tsc = true; 12041 if (vcpu->arch.last_host_tsc > max_tsc) 12042 max_tsc = vcpu->arch.last_host_tsc; 12043 } 12044 } 12045 } 12046 12047 /* 12048 * Sometimes, even reliable TSCs go backwards. This happens on 12049 * platforms that reset TSC during suspend or hibernate actions, but 12050 * maintain synchronization. We must compensate. Fortunately, we can 12051 * detect that condition here, which happens early in CPU bringup, 12052 * before any KVM threads can be running. Unfortunately, we can't 12053 * bring the TSCs fully up to date with real time, as we aren't yet far 12054 * enough into CPU bringup that we know how much real time has actually 12055 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12056 * variables that haven't been updated yet. 12057 * 12058 * So we simply find the maximum observed TSC above, then record the 12059 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12060 * the adjustment will be applied. Note that we accumulate 12061 * adjustments, in case multiple suspend cycles happen before some VCPU 12062 * gets a chance to run again. In the event that no KVM threads get a 12063 * chance to run, we will miss the entire elapsed period, as we'll have 12064 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12065 * loose cycle time. This isn't too big a deal, since the loss will be 12066 * uniform across all VCPUs (not to mention the scenario is extremely 12067 * unlikely). It is possible that a second hibernate recovery happens 12068 * much faster than a first, causing the observed TSC here to be 12069 * smaller; this would require additional padding adjustment, which is 12070 * why we set last_host_tsc to the local tsc observed here. 12071 * 12072 * N.B. - this code below runs only on platforms with reliable TSC, 12073 * as that is the only way backwards_tsc is set above. Also note 12074 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12075 * have the same delta_cyc adjustment applied if backwards_tsc 12076 * is detected. Note further, this adjustment is only done once, 12077 * as we reset last_host_tsc on all VCPUs to stop this from being 12078 * called multiple times (one for each physical CPU bringup). 12079 * 12080 * Platforms with unreliable TSCs don't have to deal with this, they 12081 * will be compensated by the logic in vcpu_load, which sets the TSC to 12082 * catchup mode. This will catchup all VCPUs to real time, but cannot 12083 * guarantee that they stay in perfect synchronization. 12084 */ 12085 if (backwards_tsc) { 12086 u64 delta_cyc = max_tsc - local_tsc; 12087 list_for_each_entry(kvm, &vm_list, vm_list) { 12088 kvm->arch.backwards_tsc_observed = true; 12089 kvm_for_each_vcpu(i, vcpu, kvm) { 12090 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12091 vcpu->arch.last_host_tsc = local_tsc; 12092 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12093 } 12094 12095 /* 12096 * We have to disable TSC offset matching.. if you were 12097 * booting a VM while issuing an S4 host suspend.... 12098 * you may have some problem. Solving this issue is 12099 * left as an exercise to the reader. 12100 */ 12101 kvm->arch.last_tsc_nsec = 0; 12102 kvm->arch.last_tsc_write = 0; 12103 } 12104 12105 } 12106 return 0; 12107 } 12108 12109 void kvm_arch_hardware_disable(void) 12110 { 12111 static_call(kvm_x86_hardware_disable)(); 12112 drop_user_return_notifiers(); 12113 } 12114 12115 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12116 { 12117 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12118 } 12119 12120 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12121 { 12122 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12123 } 12124 12125 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12126 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12127 12128 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12129 { 12130 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12131 12132 vcpu->arch.l1tf_flush_l1d = true; 12133 if (pmu->version && unlikely(pmu->event_count)) { 12134 pmu->need_cleanup = true; 12135 kvm_make_request(KVM_REQ_PMU, vcpu); 12136 } 12137 static_call(kvm_x86_sched_in)(vcpu, cpu); 12138 } 12139 12140 void kvm_arch_free_vm(struct kvm *kvm) 12141 { 12142 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12143 __kvm_arch_free_vm(kvm); 12144 } 12145 12146 12147 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12148 { 12149 int ret; 12150 unsigned long flags; 12151 12152 if (type) 12153 return -EINVAL; 12154 12155 ret = kvm_page_track_init(kvm); 12156 if (ret) 12157 goto out; 12158 12159 ret = kvm_mmu_init_vm(kvm); 12160 if (ret) 12161 goto out_page_track; 12162 12163 ret = static_call(kvm_x86_vm_init)(kvm); 12164 if (ret) 12165 goto out_uninit_mmu; 12166 12167 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12168 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12169 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12170 12171 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12172 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12173 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12174 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12175 &kvm->arch.irq_sources_bitmap); 12176 12177 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12178 mutex_init(&kvm->arch.apic_map_lock); 12179 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12180 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12181 12182 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12183 pvclock_update_vm_gtod_copy(kvm); 12184 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12185 12186 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12187 kvm->arch.guest_can_read_msr_platform_info = true; 12188 kvm->arch.enable_pmu = enable_pmu; 12189 12190 #if IS_ENABLED(CONFIG_HYPERV) 12191 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12192 kvm->arch.hv_root_tdp = INVALID_PAGE; 12193 #endif 12194 12195 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12196 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12197 12198 kvm_apicv_init(kvm); 12199 kvm_hv_init_vm(kvm); 12200 kvm_xen_init_vm(kvm); 12201 12202 return 0; 12203 12204 out_uninit_mmu: 12205 kvm_mmu_uninit_vm(kvm); 12206 out_page_track: 12207 kvm_page_track_cleanup(kvm); 12208 out: 12209 return ret; 12210 } 12211 12212 int kvm_arch_post_init_vm(struct kvm *kvm) 12213 { 12214 return kvm_mmu_post_init_vm(kvm); 12215 } 12216 12217 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12218 { 12219 vcpu_load(vcpu); 12220 kvm_mmu_unload(vcpu); 12221 vcpu_put(vcpu); 12222 } 12223 12224 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12225 { 12226 unsigned long i; 12227 struct kvm_vcpu *vcpu; 12228 12229 kvm_for_each_vcpu(i, vcpu, kvm) { 12230 kvm_clear_async_pf_completion_queue(vcpu); 12231 kvm_unload_vcpu_mmu(vcpu); 12232 } 12233 } 12234 12235 void kvm_arch_sync_events(struct kvm *kvm) 12236 { 12237 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12238 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12239 kvm_free_pit(kvm); 12240 } 12241 12242 /** 12243 * __x86_set_memory_region: Setup KVM internal memory slot 12244 * 12245 * @kvm: the kvm pointer to the VM. 12246 * @id: the slot ID to setup. 12247 * @gpa: the GPA to install the slot (unused when @size == 0). 12248 * @size: the size of the slot. Set to zero to uninstall a slot. 12249 * 12250 * This function helps to setup a KVM internal memory slot. Specify 12251 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12252 * slot. The return code can be one of the following: 12253 * 12254 * HVA: on success (uninstall will return a bogus HVA) 12255 * -errno: on error 12256 * 12257 * The caller should always use IS_ERR() to check the return value 12258 * before use. Note, the KVM internal memory slots are guaranteed to 12259 * remain valid and unchanged until the VM is destroyed, i.e., the 12260 * GPA->HVA translation will not change. However, the HVA is a user 12261 * address, i.e. its accessibility is not guaranteed, and must be 12262 * accessed via __copy_{to,from}_user(). 12263 */ 12264 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12265 u32 size) 12266 { 12267 int i, r; 12268 unsigned long hva, old_npages; 12269 struct kvm_memslots *slots = kvm_memslots(kvm); 12270 struct kvm_memory_slot *slot; 12271 12272 /* Called with kvm->slots_lock held. */ 12273 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12274 return ERR_PTR_USR(-EINVAL); 12275 12276 slot = id_to_memslot(slots, id); 12277 if (size) { 12278 if (slot && slot->npages) 12279 return ERR_PTR_USR(-EEXIST); 12280 12281 /* 12282 * MAP_SHARED to prevent internal slot pages from being moved 12283 * by fork()/COW. 12284 */ 12285 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12286 MAP_SHARED | MAP_ANONYMOUS, 0); 12287 if (IS_ERR((void *)hva)) 12288 return (void __user *)hva; 12289 } else { 12290 if (!slot || !slot->npages) 12291 return NULL; 12292 12293 old_npages = slot->npages; 12294 hva = slot->userspace_addr; 12295 } 12296 12297 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12298 struct kvm_userspace_memory_region m; 12299 12300 m.slot = id | (i << 16); 12301 m.flags = 0; 12302 m.guest_phys_addr = gpa; 12303 m.userspace_addr = hva; 12304 m.memory_size = size; 12305 r = __kvm_set_memory_region(kvm, &m); 12306 if (r < 0) 12307 return ERR_PTR_USR(r); 12308 } 12309 12310 if (!size) 12311 vm_munmap(hva, old_npages * PAGE_SIZE); 12312 12313 return (void __user *)hva; 12314 } 12315 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12316 12317 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12318 { 12319 kvm_mmu_pre_destroy_vm(kvm); 12320 } 12321 12322 void kvm_arch_destroy_vm(struct kvm *kvm) 12323 { 12324 if (current->mm == kvm->mm) { 12325 /* 12326 * Free memory regions allocated on behalf of userspace, 12327 * unless the memory map has changed due to process exit 12328 * or fd copying. 12329 */ 12330 mutex_lock(&kvm->slots_lock); 12331 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12332 0, 0); 12333 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12334 0, 0); 12335 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12336 mutex_unlock(&kvm->slots_lock); 12337 } 12338 kvm_unload_vcpu_mmus(kvm); 12339 static_call_cond(kvm_x86_vm_destroy)(kvm); 12340 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12341 kvm_pic_destroy(kvm); 12342 kvm_ioapic_destroy(kvm); 12343 kvm_destroy_vcpus(kvm); 12344 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12345 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12346 kvm_mmu_uninit_vm(kvm); 12347 kvm_page_track_cleanup(kvm); 12348 kvm_xen_destroy_vm(kvm); 12349 kvm_hv_destroy_vm(kvm); 12350 } 12351 12352 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12353 { 12354 int i; 12355 12356 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12357 kvfree(slot->arch.rmap[i]); 12358 slot->arch.rmap[i] = NULL; 12359 } 12360 } 12361 12362 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12363 { 12364 int i; 12365 12366 memslot_rmap_free(slot); 12367 12368 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12369 kvfree(slot->arch.lpage_info[i - 1]); 12370 slot->arch.lpage_info[i - 1] = NULL; 12371 } 12372 12373 kvm_page_track_free_memslot(slot); 12374 } 12375 12376 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12377 { 12378 const int sz = sizeof(*slot->arch.rmap[0]); 12379 int i; 12380 12381 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12382 int level = i + 1; 12383 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12384 12385 if (slot->arch.rmap[i]) 12386 continue; 12387 12388 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12389 if (!slot->arch.rmap[i]) { 12390 memslot_rmap_free(slot); 12391 return -ENOMEM; 12392 } 12393 } 12394 12395 return 0; 12396 } 12397 12398 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12399 struct kvm_memory_slot *slot) 12400 { 12401 unsigned long npages = slot->npages; 12402 int i, r; 12403 12404 /* 12405 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12406 * old arrays will be freed by __kvm_set_memory_region() if installing 12407 * the new memslot is successful. 12408 */ 12409 memset(&slot->arch, 0, sizeof(slot->arch)); 12410 12411 if (kvm_memslots_have_rmaps(kvm)) { 12412 r = memslot_rmap_alloc(slot, npages); 12413 if (r) 12414 return r; 12415 } 12416 12417 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12418 struct kvm_lpage_info *linfo; 12419 unsigned long ugfn; 12420 int lpages; 12421 int level = i + 1; 12422 12423 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12424 12425 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12426 if (!linfo) 12427 goto out_free; 12428 12429 slot->arch.lpage_info[i - 1] = linfo; 12430 12431 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12432 linfo[0].disallow_lpage = 1; 12433 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12434 linfo[lpages - 1].disallow_lpage = 1; 12435 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12436 /* 12437 * If the gfn and userspace address are not aligned wrt each 12438 * other, disable large page support for this slot. 12439 */ 12440 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12441 unsigned long j; 12442 12443 for (j = 0; j < lpages; ++j) 12444 linfo[j].disallow_lpage = 1; 12445 } 12446 } 12447 12448 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12449 goto out_free; 12450 12451 return 0; 12452 12453 out_free: 12454 memslot_rmap_free(slot); 12455 12456 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12457 kvfree(slot->arch.lpage_info[i - 1]); 12458 slot->arch.lpage_info[i - 1] = NULL; 12459 } 12460 return -ENOMEM; 12461 } 12462 12463 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12464 { 12465 struct kvm_vcpu *vcpu; 12466 unsigned long i; 12467 12468 /* 12469 * memslots->generation has been incremented. 12470 * mmio generation may have reached its maximum value. 12471 */ 12472 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12473 12474 /* Force re-initialization of steal_time cache */ 12475 kvm_for_each_vcpu(i, vcpu, kvm) 12476 kvm_vcpu_kick(vcpu); 12477 } 12478 12479 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12480 const struct kvm_memory_slot *old, 12481 struct kvm_memory_slot *new, 12482 enum kvm_mr_change change) 12483 { 12484 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12485 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12486 return -EINVAL; 12487 12488 return kvm_alloc_memslot_metadata(kvm, new); 12489 } 12490 12491 if (change == KVM_MR_FLAGS_ONLY) 12492 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12493 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12494 return -EIO; 12495 12496 return 0; 12497 } 12498 12499 12500 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12501 { 12502 struct kvm_arch *ka = &kvm->arch; 12503 12504 if (!kvm_x86_ops.cpu_dirty_log_size) 12505 return; 12506 12507 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12508 (!enable && --ka->cpu_dirty_logging_count == 0)) 12509 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12510 12511 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12512 } 12513 12514 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12515 struct kvm_memory_slot *old, 12516 const struct kvm_memory_slot *new, 12517 enum kvm_mr_change change) 12518 { 12519 u32 old_flags = old ? old->flags : 0; 12520 u32 new_flags = new ? new->flags : 0; 12521 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12522 12523 /* 12524 * Update CPU dirty logging if dirty logging is being toggled. This 12525 * applies to all operations. 12526 */ 12527 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12528 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12529 12530 /* 12531 * Nothing more to do for RO slots (which can't be dirtied and can't be 12532 * made writable) or CREATE/MOVE/DELETE of a slot. 12533 * 12534 * For a memslot with dirty logging disabled: 12535 * CREATE: No dirty mappings will already exist. 12536 * MOVE/DELETE: The old mappings will already have been cleaned up by 12537 * kvm_arch_flush_shadow_memslot() 12538 * 12539 * For a memslot with dirty logging enabled: 12540 * CREATE: No shadow pages exist, thus nothing to write-protect 12541 * and no dirty bits to clear. 12542 * MOVE/DELETE: The old mappings will already have been cleaned up by 12543 * kvm_arch_flush_shadow_memslot(). 12544 */ 12545 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12546 return; 12547 12548 /* 12549 * READONLY and non-flags changes were filtered out above, and the only 12550 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12551 * logging isn't being toggled on or off. 12552 */ 12553 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12554 return; 12555 12556 if (!log_dirty_pages) { 12557 /* 12558 * Dirty logging tracks sptes in 4k granularity, meaning that 12559 * large sptes have to be split. If live migration succeeds, 12560 * the guest in the source machine will be destroyed and large 12561 * sptes will be created in the destination. However, if the 12562 * guest continues to run in the source machine (for example if 12563 * live migration fails), small sptes will remain around and 12564 * cause bad performance. 12565 * 12566 * Scan sptes if dirty logging has been stopped, dropping those 12567 * which can be collapsed into a single large-page spte. Later 12568 * page faults will create the large-page sptes. 12569 */ 12570 kvm_mmu_zap_collapsible_sptes(kvm, new); 12571 } else { 12572 /* 12573 * Initially-all-set does not require write protecting any page, 12574 * because they're all assumed to be dirty. 12575 */ 12576 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12577 return; 12578 12579 if (READ_ONCE(eager_page_split)) 12580 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12581 12582 if (kvm_x86_ops.cpu_dirty_log_size) { 12583 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12584 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12585 } else { 12586 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12587 } 12588 12589 /* 12590 * Unconditionally flush the TLBs after enabling dirty logging. 12591 * A flush is almost always going to be necessary (see below), 12592 * and unconditionally flushing allows the helpers to omit 12593 * the subtly complex checks when removing write access. 12594 * 12595 * Do the flush outside of mmu_lock to reduce the amount of 12596 * time mmu_lock is held. Flushing after dropping mmu_lock is 12597 * safe as KVM only needs to guarantee the slot is fully 12598 * write-protected before returning to userspace, i.e. before 12599 * userspace can consume the dirty status. 12600 * 12601 * Flushing outside of mmu_lock requires KVM to be careful when 12602 * making decisions based on writable status of an SPTE, e.g. a 12603 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12604 * 12605 * Specifically, KVM also write-protects guest page tables to 12606 * monitor changes when using shadow paging, and must guarantee 12607 * no CPUs can write to those page before mmu_lock is dropped. 12608 * Because CPUs may have stale TLB entries at this point, a 12609 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12610 * 12611 * KVM also allows making SPTES writable outside of mmu_lock, 12612 * e.g. to allow dirty logging without taking mmu_lock. 12613 * 12614 * To handle these scenarios, KVM uses a separate software-only 12615 * bit (MMU-writable) to track if a SPTE is !writable due to 12616 * a guest page table being write-protected (KVM clears the 12617 * MMU-writable flag when write-protecting for shadow paging). 12618 * 12619 * The use of MMU-writable is also the primary motivation for 12620 * the unconditional flush. Because KVM must guarantee that a 12621 * CPU doesn't contain stale, writable TLB entries for a 12622 * !MMU-writable SPTE, KVM must flush if it encounters any 12623 * MMU-writable SPTE regardless of whether the actual hardware 12624 * writable bit was set. I.e. KVM is almost guaranteed to need 12625 * to flush, while unconditionally flushing allows the "remove 12626 * write access" helpers to ignore MMU-writable entirely. 12627 * 12628 * See is_writable_pte() for more details (the case involving 12629 * access-tracked SPTEs is particularly relevant). 12630 */ 12631 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12632 } 12633 } 12634 12635 void kvm_arch_commit_memory_region(struct kvm *kvm, 12636 struct kvm_memory_slot *old, 12637 const struct kvm_memory_slot *new, 12638 enum kvm_mr_change change) 12639 { 12640 if (!kvm->arch.n_requested_mmu_pages && 12641 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12642 unsigned long nr_mmu_pages; 12643 12644 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12645 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12646 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12647 } 12648 12649 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12650 12651 /* Free the arrays associated with the old memslot. */ 12652 if (change == KVM_MR_MOVE) 12653 kvm_arch_free_memslot(kvm, old); 12654 } 12655 12656 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12657 { 12658 kvm_mmu_zap_all(kvm); 12659 } 12660 12661 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12662 struct kvm_memory_slot *slot) 12663 { 12664 kvm_page_track_flush_slot(kvm, slot); 12665 } 12666 12667 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12668 { 12669 return (is_guest_mode(vcpu) && 12670 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12671 } 12672 12673 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12674 { 12675 if (!list_empty_careful(&vcpu->async_pf.done)) 12676 return true; 12677 12678 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12679 kvm_apic_init_sipi_allowed(vcpu)) 12680 return true; 12681 12682 if (vcpu->arch.pv.pv_unhalted) 12683 return true; 12684 12685 if (kvm_is_exception_pending(vcpu)) 12686 return true; 12687 12688 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12689 (vcpu->arch.nmi_pending && 12690 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12691 return true; 12692 12693 #ifdef CONFIG_KVM_SMM 12694 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12695 (vcpu->arch.smi_pending && 12696 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12697 return true; 12698 #endif 12699 12700 if (kvm_arch_interrupt_allowed(vcpu) && 12701 (kvm_cpu_has_interrupt(vcpu) || 12702 kvm_guest_apic_has_interrupt(vcpu))) 12703 return true; 12704 12705 if (kvm_hv_has_stimer_pending(vcpu)) 12706 return true; 12707 12708 if (is_guest_mode(vcpu) && 12709 kvm_x86_ops.nested_ops->has_events && 12710 kvm_x86_ops.nested_ops->has_events(vcpu)) 12711 return true; 12712 12713 if (kvm_xen_has_pending_events(vcpu)) 12714 return true; 12715 12716 return false; 12717 } 12718 12719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12720 { 12721 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12722 } 12723 12724 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12725 { 12726 if (kvm_vcpu_apicv_active(vcpu) && 12727 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12728 return true; 12729 12730 return false; 12731 } 12732 12733 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12734 { 12735 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12736 return true; 12737 12738 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12739 #ifdef CONFIG_KVM_SMM 12740 kvm_test_request(KVM_REQ_SMI, vcpu) || 12741 #endif 12742 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12743 return true; 12744 12745 return kvm_arch_dy_has_pending_interrupt(vcpu); 12746 } 12747 12748 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12749 { 12750 if (vcpu->arch.guest_state_protected) 12751 return true; 12752 12753 return vcpu->arch.preempted_in_kernel; 12754 } 12755 12756 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12757 { 12758 return kvm_rip_read(vcpu); 12759 } 12760 12761 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12762 { 12763 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12764 } 12765 12766 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12767 { 12768 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12769 } 12770 12771 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12772 { 12773 /* Can't read the RIP when guest state is protected, just return 0 */ 12774 if (vcpu->arch.guest_state_protected) 12775 return 0; 12776 12777 if (is_64_bit_mode(vcpu)) 12778 return kvm_rip_read(vcpu); 12779 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12780 kvm_rip_read(vcpu)); 12781 } 12782 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12783 12784 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12785 { 12786 return kvm_get_linear_rip(vcpu) == linear_rip; 12787 } 12788 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12789 12790 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12791 { 12792 unsigned long rflags; 12793 12794 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12795 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12796 rflags &= ~X86_EFLAGS_TF; 12797 return rflags; 12798 } 12799 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12800 12801 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12802 { 12803 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12804 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12805 rflags |= X86_EFLAGS_TF; 12806 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12807 } 12808 12809 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12810 { 12811 __kvm_set_rflags(vcpu, rflags); 12812 kvm_make_request(KVM_REQ_EVENT, vcpu); 12813 } 12814 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12815 12816 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12817 { 12818 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12819 12820 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12821 } 12822 12823 static inline u32 kvm_async_pf_next_probe(u32 key) 12824 { 12825 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12826 } 12827 12828 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12829 { 12830 u32 key = kvm_async_pf_hash_fn(gfn); 12831 12832 while (vcpu->arch.apf.gfns[key] != ~0) 12833 key = kvm_async_pf_next_probe(key); 12834 12835 vcpu->arch.apf.gfns[key] = gfn; 12836 } 12837 12838 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12839 { 12840 int i; 12841 u32 key = kvm_async_pf_hash_fn(gfn); 12842 12843 for (i = 0; i < ASYNC_PF_PER_VCPU && 12844 (vcpu->arch.apf.gfns[key] != gfn && 12845 vcpu->arch.apf.gfns[key] != ~0); i++) 12846 key = kvm_async_pf_next_probe(key); 12847 12848 return key; 12849 } 12850 12851 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12852 { 12853 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12854 } 12855 12856 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12857 { 12858 u32 i, j, k; 12859 12860 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12861 12862 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12863 return; 12864 12865 while (true) { 12866 vcpu->arch.apf.gfns[i] = ~0; 12867 do { 12868 j = kvm_async_pf_next_probe(j); 12869 if (vcpu->arch.apf.gfns[j] == ~0) 12870 return; 12871 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12872 /* 12873 * k lies cyclically in ]i,j] 12874 * | i.k.j | 12875 * |....j i.k.| or |.k..j i...| 12876 */ 12877 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12878 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12879 i = j; 12880 } 12881 } 12882 12883 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12884 { 12885 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12886 12887 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12888 sizeof(reason)); 12889 } 12890 12891 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12892 { 12893 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12894 12895 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12896 &token, offset, sizeof(token)); 12897 } 12898 12899 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12900 { 12901 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12902 u32 val; 12903 12904 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12905 &val, offset, sizeof(val))) 12906 return false; 12907 12908 return !val; 12909 } 12910 12911 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12912 { 12913 12914 if (!kvm_pv_async_pf_enabled(vcpu)) 12915 return false; 12916 12917 if (vcpu->arch.apf.send_user_only && 12918 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12919 return false; 12920 12921 if (is_guest_mode(vcpu)) { 12922 /* 12923 * L1 needs to opt into the special #PF vmexits that are 12924 * used to deliver async page faults. 12925 */ 12926 return vcpu->arch.apf.delivery_as_pf_vmexit; 12927 } else { 12928 /* 12929 * Play it safe in case the guest temporarily disables paging. 12930 * The real mode IDT in particular is unlikely to have a #PF 12931 * exception setup. 12932 */ 12933 return is_paging(vcpu); 12934 } 12935 } 12936 12937 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12938 { 12939 if (unlikely(!lapic_in_kernel(vcpu) || 12940 kvm_event_needs_reinjection(vcpu) || 12941 kvm_is_exception_pending(vcpu))) 12942 return false; 12943 12944 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12945 return false; 12946 12947 /* 12948 * If interrupts are off we cannot even use an artificial 12949 * halt state. 12950 */ 12951 return kvm_arch_interrupt_allowed(vcpu); 12952 } 12953 12954 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12955 struct kvm_async_pf *work) 12956 { 12957 struct x86_exception fault; 12958 12959 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12960 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12961 12962 if (kvm_can_deliver_async_pf(vcpu) && 12963 !apf_put_user_notpresent(vcpu)) { 12964 fault.vector = PF_VECTOR; 12965 fault.error_code_valid = true; 12966 fault.error_code = 0; 12967 fault.nested_page_fault = false; 12968 fault.address = work->arch.token; 12969 fault.async_page_fault = true; 12970 kvm_inject_page_fault(vcpu, &fault); 12971 return true; 12972 } else { 12973 /* 12974 * It is not possible to deliver a paravirtualized asynchronous 12975 * page fault, but putting the guest in an artificial halt state 12976 * can be beneficial nevertheless: if an interrupt arrives, we 12977 * can deliver it timely and perhaps the guest will schedule 12978 * another process. When the instruction that triggered a page 12979 * fault is retried, hopefully the page will be ready in the host. 12980 */ 12981 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12982 return false; 12983 } 12984 } 12985 12986 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12987 struct kvm_async_pf *work) 12988 { 12989 struct kvm_lapic_irq irq = { 12990 .delivery_mode = APIC_DM_FIXED, 12991 .vector = vcpu->arch.apf.vec 12992 }; 12993 12994 if (work->wakeup_all) 12995 work->arch.token = ~0; /* broadcast wakeup */ 12996 else 12997 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12998 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12999 13000 if ((work->wakeup_all || work->notpresent_injected) && 13001 kvm_pv_async_pf_enabled(vcpu) && 13002 !apf_put_user_ready(vcpu, work->arch.token)) { 13003 vcpu->arch.apf.pageready_pending = true; 13004 kvm_apic_set_irq(vcpu, &irq, NULL); 13005 } 13006 13007 vcpu->arch.apf.halted = false; 13008 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13009 } 13010 13011 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13012 { 13013 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13014 if (!vcpu->arch.apf.pageready_pending) 13015 kvm_vcpu_kick(vcpu); 13016 } 13017 13018 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13019 { 13020 if (!kvm_pv_async_pf_enabled(vcpu)) 13021 return true; 13022 else 13023 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13024 } 13025 13026 void kvm_arch_start_assignment(struct kvm *kvm) 13027 { 13028 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13029 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13030 } 13031 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13032 13033 void kvm_arch_end_assignment(struct kvm *kvm) 13034 { 13035 atomic_dec(&kvm->arch.assigned_device_count); 13036 } 13037 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13038 13039 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13040 { 13041 return arch_atomic_read(&kvm->arch.assigned_device_count); 13042 } 13043 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13044 13045 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13046 { 13047 atomic_inc(&kvm->arch.noncoherent_dma_count); 13048 } 13049 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13050 13051 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13052 { 13053 atomic_dec(&kvm->arch.noncoherent_dma_count); 13054 } 13055 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13056 13057 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13058 { 13059 return atomic_read(&kvm->arch.noncoherent_dma_count); 13060 } 13061 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13062 13063 bool kvm_arch_has_irq_bypass(void) 13064 { 13065 return true; 13066 } 13067 13068 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13069 struct irq_bypass_producer *prod) 13070 { 13071 struct kvm_kernel_irqfd *irqfd = 13072 container_of(cons, struct kvm_kernel_irqfd, consumer); 13073 int ret; 13074 13075 irqfd->producer = prod; 13076 kvm_arch_start_assignment(irqfd->kvm); 13077 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13078 prod->irq, irqfd->gsi, 1); 13079 13080 if (ret) 13081 kvm_arch_end_assignment(irqfd->kvm); 13082 13083 return ret; 13084 } 13085 13086 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13087 struct irq_bypass_producer *prod) 13088 { 13089 int ret; 13090 struct kvm_kernel_irqfd *irqfd = 13091 container_of(cons, struct kvm_kernel_irqfd, consumer); 13092 13093 WARN_ON(irqfd->producer != prod); 13094 irqfd->producer = NULL; 13095 13096 /* 13097 * When producer of consumer is unregistered, we change back to 13098 * remapped mode, so we can re-use the current implementation 13099 * when the irq is masked/disabled or the consumer side (KVM 13100 * int this case doesn't want to receive the interrupts. 13101 */ 13102 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13103 if (ret) 13104 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13105 " fails: %d\n", irqfd->consumer.token, ret); 13106 13107 kvm_arch_end_assignment(irqfd->kvm); 13108 } 13109 13110 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13111 uint32_t guest_irq, bool set) 13112 { 13113 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13114 } 13115 13116 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13117 struct kvm_kernel_irq_routing_entry *new) 13118 { 13119 if (new->type != KVM_IRQ_ROUTING_MSI) 13120 return true; 13121 13122 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13123 } 13124 13125 bool kvm_vector_hashing_enabled(void) 13126 { 13127 return vector_hashing; 13128 } 13129 13130 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13131 { 13132 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13133 } 13134 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13135 13136 13137 int kvm_spec_ctrl_test_value(u64 value) 13138 { 13139 /* 13140 * test that setting IA32_SPEC_CTRL to given value 13141 * is allowed by the host processor 13142 */ 13143 13144 u64 saved_value; 13145 unsigned long flags; 13146 int ret = 0; 13147 13148 local_irq_save(flags); 13149 13150 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13151 ret = 1; 13152 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13153 ret = 1; 13154 else 13155 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13156 13157 local_irq_restore(flags); 13158 13159 return ret; 13160 } 13161 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13162 13163 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13164 { 13165 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13166 struct x86_exception fault; 13167 u64 access = error_code & 13168 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13169 13170 if (!(error_code & PFERR_PRESENT_MASK) || 13171 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13172 /* 13173 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13174 * tables probably do not match the TLB. Just proceed 13175 * with the error code that the processor gave. 13176 */ 13177 fault.vector = PF_VECTOR; 13178 fault.error_code_valid = true; 13179 fault.error_code = error_code; 13180 fault.nested_page_fault = false; 13181 fault.address = gva; 13182 fault.async_page_fault = false; 13183 } 13184 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13185 } 13186 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13187 13188 /* 13189 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13190 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13191 * indicates whether exit to userspace is needed. 13192 */ 13193 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13194 struct x86_exception *e) 13195 { 13196 if (r == X86EMUL_PROPAGATE_FAULT) { 13197 if (KVM_BUG_ON(!e, vcpu->kvm)) 13198 return -EIO; 13199 13200 kvm_inject_emulated_page_fault(vcpu, e); 13201 return 1; 13202 } 13203 13204 /* 13205 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13206 * while handling a VMX instruction KVM could've handled the request 13207 * correctly by exiting to userspace and performing I/O but there 13208 * doesn't seem to be a real use-case behind such requests, just return 13209 * KVM_EXIT_INTERNAL_ERROR for now. 13210 */ 13211 kvm_prepare_emulation_failure_exit(vcpu); 13212 13213 return 0; 13214 } 13215 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13216 13217 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13218 { 13219 bool pcid_enabled; 13220 struct x86_exception e; 13221 struct { 13222 u64 pcid; 13223 u64 gla; 13224 } operand; 13225 int r; 13226 13227 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13228 if (r != X86EMUL_CONTINUE) 13229 return kvm_handle_memory_failure(vcpu, r, &e); 13230 13231 if (operand.pcid >> 12 != 0) { 13232 kvm_inject_gp(vcpu, 0); 13233 return 1; 13234 } 13235 13236 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13237 13238 switch (type) { 13239 case INVPCID_TYPE_INDIV_ADDR: 13240 if ((!pcid_enabled && (operand.pcid != 0)) || 13241 is_noncanonical_address(operand.gla, vcpu)) { 13242 kvm_inject_gp(vcpu, 0); 13243 return 1; 13244 } 13245 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13246 return kvm_skip_emulated_instruction(vcpu); 13247 13248 case INVPCID_TYPE_SINGLE_CTXT: 13249 if (!pcid_enabled && (operand.pcid != 0)) { 13250 kvm_inject_gp(vcpu, 0); 13251 return 1; 13252 } 13253 13254 kvm_invalidate_pcid(vcpu, operand.pcid); 13255 return kvm_skip_emulated_instruction(vcpu); 13256 13257 case INVPCID_TYPE_ALL_NON_GLOBAL: 13258 /* 13259 * Currently, KVM doesn't mark global entries in the shadow 13260 * page tables, so a non-global flush just degenerates to a 13261 * global flush. If needed, we could optimize this later by 13262 * keeping track of global entries in shadow page tables. 13263 */ 13264 13265 fallthrough; 13266 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13267 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13268 return kvm_skip_emulated_instruction(vcpu); 13269 13270 default: 13271 kvm_inject_gp(vcpu, 0); 13272 return 1; 13273 } 13274 } 13275 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13276 13277 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13278 { 13279 struct kvm_run *run = vcpu->run; 13280 struct kvm_mmio_fragment *frag; 13281 unsigned int len; 13282 13283 BUG_ON(!vcpu->mmio_needed); 13284 13285 /* Complete previous fragment */ 13286 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13287 len = min(8u, frag->len); 13288 if (!vcpu->mmio_is_write) 13289 memcpy(frag->data, run->mmio.data, len); 13290 13291 if (frag->len <= 8) { 13292 /* Switch to the next fragment. */ 13293 frag++; 13294 vcpu->mmio_cur_fragment++; 13295 } else { 13296 /* Go forward to the next mmio piece. */ 13297 frag->data += len; 13298 frag->gpa += len; 13299 frag->len -= len; 13300 } 13301 13302 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13303 vcpu->mmio_needed = 0; 13304 13305 // VMG change, at this point, we're always done 13306 // RIP has already been advanced 13307 return 1; 13308 } 13309 13310 // More MMIO is needed 13311 run->mmio.phys_addr = frag->gpa; 13312 run->mmio.len = min(8u, frag->len); 13313 run->mmio.is_write = vcpu->mmio_is_write; 13314 if (run->mmio.is_write) 13315 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13316 run->exit_reason = KVM_EXIT_MMIO; 13317 13318 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13319 13320 return 0; 13321 } 13322 13323 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13324 void *data) 13325 { 13326 int handled; 13327 struct kvm_mmio_fragment *frag; 13328 13329 if (!data) 13330 return -EINVAL; 13331 13332 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13333 if (handled == bytes) 13334 return 1; 13335 13336 bytes -= handled; 13337 gpa += handled; 13338 data += handled; 13339 13340 /*TODO: Check if need to increment number of frags */ 13341 frag = vcpu->mmio_fragments; 13342 vcpu->mmio_nr_fragments = 1; 13343 frag->len = bytes; 13344 frag->gpa = gpa; 13345 frag->data = data; 13346 13347 vcpu->mmio_needed = 1; 13348 vcpu->mmio_cur_fragment = 0; 13349 13350 vcpu->run->mmio.phys_addr = gpa; 13351 vcpu->run->mmio.len = min(8u, frag->len); 13352 vcpu->run->mmio.is_write = 1; 13353 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13354 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13355 13356 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13357 13358 return 0; 13359 } 13360 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13361 13362 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13363 void *data) 13364 { 13365 int handled; 13366 struct kvm_mmio_fragment *frag; 13367 13368 if (!data) 13369 return -EINVAL; 13370 13371 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13372 if (handled == bytes) 13373 return 1; 13374 13375 bytes -= handled; 13376 gpa += handled; 13377 data += handled; 13378 13379 /*TODO: Check if need to increment number of frags */ 13380 frag = vcpu->mmio_fragments; 13381 vcpu->mmio_nr_fragments = 1; 13382 frag->len = bytes; 13383 frag->gpa = gpa; 13384 frag->data = data; 13385 13386 vcpu->mmio_needed = 1; 13387 vcpu->mmio_cur_fragment = 0; 13388 13389 vcpu->run->mmio.phys_addr = gpa; 13390 vcpu->run->mmio.len = min(8u, frag->len); 13391 vcpu->run->mmio.is_write = 0; 13392 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13393 13394 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13395 13396 return 0; 13397 } 13398 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13399 13400 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13401 { 13402 vcpu->arch.sev_pio_count -= count; 13403 vcpu->arch.sev_pio_data += count * size; 13404 } 13405 13406 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13407 unsigned int port); 13408 13409 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13410 { 13411 int size = vcpu->arch.pio.size; 13412 int port = vcpu->arch.pio.port; 13413 13414 vcpu->arch.pio.count = 0; 13415 if (vcpu->arch.sev_pio_count) 13416 return kvm_sev_es_outs(vcpu, size, port); 13417 return 1; 13418 } 13419 13420 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13421 unsigned int port) 13422 { 13423 for (;;) { 13424 unsigned int count = 13425 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13426 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13427 13428 /* memcpy done already by emulator_pio_out. */ 13429 advance_sev_es_emulated_pio(vcpu, count, size); 13430 if (!ret) 13431 break; 13432 13433 /* Emulation done by the kernel. */ 13434 if (!vcpu->arch.sev_pio_count) 13435 return 1; 13436 } 13437 13438 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13439 return 0; 13440 } 13441 13442 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13443 unsigned int port); 13444 13445 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13446 { 13447 unsigned count = vcpu->arch.pio.count; 13448 int size = vcpu->arch.pio.size; 13449 int port = vcpu->arch.pio.port; 13450 13451 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13452 advance_sev_es_emulated_pio(vcpu, count, size); 13453 if (vcpu->arch.sev_pio_count) 13454 return kvm_sev_es_ins(vcpu, size, port); 13455 return 1; 13456 } 13457 13458 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13459 unsigned int port) 13460 { 13461 for (;;) { 13462 unsigned int count = 13463 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13464 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13465 break; 13466 13467 /* Emulation done by the kernel. */ 13468 advance_sev_es_emulated_pio(vcpu, count, size); 13469 if (!vcpu->arch.sev_pio_count) 13470 return 1; 13471 } 13472 13473 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13474 return 0; 13475 } 13476 13477 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13478 unsigned int port, void *data, unsigned int count, 13479 int in) 13480 { 13481 vcpu->arch.sev_pio_data = data; 13482 vcpu->arch.sev_pio_count = count; 13483 return in ? kvm_sev_es_ins(vcpu, size, port) 13484 : kvm_sev_es_outs(vcpu, size, port); 13485 } 13486 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13487 13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13517 13518 static int __init kvm_x86_init(void) 13519 { 13520 kvm_mmu_x86_module_init(); 13521 return 0; 13522 } 13523 module_init(kvm_x86_init); 13524 13525 static void __exit kvm_x86_exit(void) 13526 { 13527 /* 13528 * If module_init() is implemented, module_exit() must also be 13529 * implemented to allow module unload. 13530 */ 13531 } 13532 module_exit(kvm_x86_exit); 13533