xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d6174299365ddbbf491620c0b8c5ca1a6ef2eea5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_guest),
271 	STATS_DESC_COUNTER(VCPU, tlb_flush),
272 	STATS_DESC_COUNTER(VCPU, invlpg),
273 	STATS_DESC_COUNTER(VCPU, exits),
274 	STATS_DESC_COUNTER(VCPU, io_exits),
275 	STATS_DESC_COUNTER(VCPU, mmio_exits),
276 	STATS_DESC_COUNTER(VCPU, signal_exits),
277 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
278 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279 	STATS_DESC_COUNTER(VCPU, l1d_flush),
280 	STATS_DESC_COUNTER(VCPU, halt_exits),
281 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_exits),
283 	STATS_DESC_COUNTER(VCPU, host_state_reload),
284 	STATS_DESC_COUNTER(VCPU, fpu_reload),
285 	STATS_DESC_COUNTER(VCPU, insn_emulation),
286 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287 	STATS_DESC_COUNTER(VCPU, hypercalls),
288 	STATS_DESC_COUNTER(VCPU, irq_injections),
289 	STATS_DESC_COUNTER(VCPU, nmi_injections),
290 	STATS_DESC_COUNTER(VCPU, req_event),
291 	STATS_DESC_COUNTER(VCPU, nested_run),
292 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296 
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 	.name_size = KVM_STATS_NAME_SIZE,
299 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 	.id_offset = sizeof(struct kvm_stats_header),
301 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 		       sizeof(kvm_vcpu_stats_desc),
304 };
305 
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309 
310 static struct kmem_cache *x86_emulator_cache;
311 
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318 	const char *op = write ? "wrmsr" : "rdmsr";
319 
320 	if (ignore_msrs) {
321 		if (report_ignored_msrs)
322 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323 				      op, msr, data);
324 		/* Mask the error */
325 		return true;
326 	} else {
327 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		return false;
330 	}
331 }
332 
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336 	unsigned int size = sizeof(struct x86_emulate_ctxt);
337 
338 	return kmem_cache_create_usercopy("x86_emulator", size,
339 					  __alignof__(struct x86_emulate_ctxt),
340 					  SLAB_ACCOUNT, useroffset,
341 					  size - useroffset, NULL);
342 }
343 
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345 
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348 	int i;
349 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350 		vcpu->arch.apf.gfns[i] = ~0;
351 }
352 
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355 	unsigned slot;
356 	struct kvm_user_return_msrs *msrs
357 		= container_of(urn, struct kvm_user_return_msrs, urn);
358 	struct kvm_user_return_msr_values *values;
359 	unsigned long flags;
360 
361 	/*
362 	 * Disabling irqs at this point since the following code could be
363 	 * interrupted and executed through kvm_arch_hardware_disable()
364 	 */
365 	local_irq_save(flags);
366 	if (msrs->registered) {
367 		msrs->registered = false;
368 		user_return_notifier_unregister(urn);
369 	}
370 	local_irq_restore(flags);
371 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372 		values = &msrs->values[slot];
373 		if (values->host != values->curr) {
374 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
375 			values->curr = values->host;
376 		}
377 	}
378 }
379 
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382 	u64 val;
383 	int ret;
384 
385 	preempt_disable();
386 	ret = rdmsrl_safe(msr, &val);
387 	if (ret)
388 		goto out;
389 	ret = wrmsrl_safe(msr, val);
390 out:
391 	preempt_enable();
392 	return ret;
393 }
394 
395 int kvm_add_user_return_msr(u32 msr)
396 {
397 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398 
399 	if (kvm_probe_user_return_msr(msr))
400 		return -1;
401 
402 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403 	return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406 
407 int kvm_find_user_return_msr(u32 msr)
408 {
409 	int i;
410 
411 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412 		if (kvm_uret_msrs_list[i] == msr)
413 			return i;
414 	}
415 	return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418 
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421 	unsigned int cpu = smp_processor_id();
422 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423 	u64 value;
424 	int i;
425 
426 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428 		msrs->values[i].host = value;
429 		msrs->values[i].curr = value;
430 	}
431 }
432 
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435 	unsigned int cpu = smp_processor_id();
436 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437 	int err;
438 
439 	value = (value & mask) | (msrs->values[slot].host & ~mask);
440 	if (value == msrs->values[slot].curr)
441 		return 0;
442 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443 	if (err)
444 		return 1;
445 
446 	msrs->values[slot].curr = value;
447 	if (!msrs->registered) {
448 		msrs->urn.on_user_return = kvm_on_user_return;
449 		user_return_notifier_register(&msrs->urn);
450 		msrs->registered = true;
451 	}
452 	return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455 
456 static void drop_user_return_notifiers(void)
457 {
458 	unsigned int cpu = smp_processor_id();
459 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460 
461 	if (msrs->registered)
462 		kvm_on_user_return(&msrs->urn);
463 }
464 
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467 	return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470 
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476 
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483 
484 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485 		return 1;
486 	if (!msr_info->host_initiated) {
487 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488 			return 1;
489 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490 			return 1;
491 	}
492 
493 	kvm_lapic_set_base(vcpu, msr_info->data);
494 	kvm_recalculate_apic_map(vcpu->kvm);
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498 
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508 	/* Fault while not rebooting.  We want the trace. */
509 	BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512 
513 #define EXCPT_BENIGN		0
514 #define EXCPT_CONTRIBUTORY	1
515 #define EXCPT_PF		2
516 
517 static int exception_class(int vector)
518 {
519 	switch (vector) {
520 	case PF_VECTOR:
521 		return EXCPT_PF;
522 	case DE_VECTOR:
523 	case TS_VECTOR:
524 	case NP_VECTOR:
525 	case SS_VECTOR:
526 	case GP_VECTOR:
527 		return EXCPT_CONTRIBUTORY;
528 	default:
529 		break;
530 	}
531 	return EXCPT_BENIGN;
532 }
533 
534 #define EXCPT_FAULT		0
535 #define EXCPT_TRAP		1
536 #define EXCPT_ABORT		2
537 #define EXCPT_INTERRUPT		3
538 
539 static int exception_type(int vector)
540 {
541 	unsigned int mask;
542 
543 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544 		return EXCPT_INTERRUPT;
545 
546 	mask = 1 << vector;
547 
548 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
549 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550 		return EXCPT_TRAP;
551 
552 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553 		return EXCPT_ABORT;
554 
555 	/* Reserved exceptions will result in fault */
556 	return EXCPT_FAULT;
557 }
558 
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561 	unsigned nr = vcpu->arch.exception.nr;
562 	bool has_payload = vcpu->arch.exception.has_payload;
563 	unsigned long payload = vcpu->arch.exception.payload;
564 
565 	if (!has_payload)
566 		return;
567 
568 	switch (nr) {
569 	case DB_VECTOR:
570 		/*
571 		 * "Certain debug exceptions may clear bit 0-3.  The
572 		 * remaining contents of the DR6 register are never
573 		 * cleared by the processor".
574 		 */
575 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576 		/*
577 		 * In order to reflect the #DB exception payload in guest
578 		 * dr6, three components need to be considered: active low
579 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580 		 * DR6_BS and DR6_BT)
581 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582 		 * In the target guest dr6:
583 		 * FIXED_1 bits should always be set.
584 		 * Active low bits should be cleared if 1-setting in payload.
585 		 * Active high bits should be set if 1-setting in payload.
586 		 *
587 		 * Note, the payload is compatible with the pending debug
588 		 * exceptions/exit qualification under VMX, that active_low bits
589 		 * are active high in payload.
590 		 * So they need to be flipped for DR6.
591 		 */
592 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593 		vcpu->arch.dr6 |= payload;
594 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595 
596 		/*
597 		 * The #DB payload is defined as compatible with the 'pending
598 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
599 		 * defined in the 'pending debug exceptions' field (enabled
600 		 * breakpoint), it is reserved and must be zero in DR6.
601 		 */
602 		vcpu->arch.dr6 &= ~BIT(12);
603 		break;
604 	case PF_VECTOR:
605 		vcpu->arch.cr2 = payload;
606 		break;
607 	}
608 
609 	vcpu->arch.exception.has_payload = false;
610 	vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613 
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615 		unsigned nr, bool has_error, u32 error_code,
616 	        bool has_payload, unsigned long payload, bool reinject)
617 {
618 	u32 prev_nr;
619 	int class1, class2;
620 
621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
622 
623 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624 	queue:
625 		if (reinject) {
626 			/*
627 			 * On vmentry, vcpu->arch.exception.pending is only
628 			 * true if an event injection was blocked by
629 			 * nested_run_pending.  In that case, however,
630 			 * vcpu_enter_guest requests an immediate exit,
631 			 * and the guest shouldn't proceed far enough to
632 			 * need reinjection.
633 			 */
634 			WARN_ON_ONCE(vcpu->arch.exception.pending);
635 			vcpu->arch.exception.injected = true;
636 			if (WARN_ON_ONCE(has_payload)) {
637 				/*
638 				 * A reinjected event has already
639 				 * delivered its payload.
640 				 */
641 				has_payload = false;
642 				payload = 0;
643 			}
644 		} else {
645 			vcpu->arch.exception.pending = true;
646 			vcpu->arch.exception.injected = false;
647 		}
648 		vcpu->arch.exception.has_error_code = has_error;
649 		vcpu->arch.exception.nr = nr;
650 		vcpu->arch.exception.error_code = error_code;
651 		vcpu->arch.exception.has_payload = has_payload;
652 		vcpu->arch.exception.payload = payload;
653 		if (!is_guest_mode(vcpu))
654 			kvm_deliver_exception_payload(vcpu);
655 		return;
656 	}
657 
658 	/* to check exception */
659 	prev_nr = vcpu->arch.exception.nr;
660 	if (prev_nr == DF_VECTOR) {
661 		/* triple fault -> shutdown */
662 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663 		return;
664 	}
665 	class1 = exception_class(prev_nr);
666 	class2 = exception_class(nr);
667 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669 		/*
670 		 * Generate double fault per SDM Table 5-5.  Set
671 		 * exception.pending = true so that the double fault
672 		 * can trigger a nested vmexit.
673 		 */
674 		vcpu->arch.exception.pending = true;
675 		vcpu->arch.exception.injected = false;
676 		vcpu->arch.exception.has_error_code = true;
677 		vcpu->arch.exception.nr = DF_VECTOR;
678 		vcpu->arch.exception.error_code = 0;
679 		vcpu->arch.exception.has_payload = false;
680 		vcpu->arch.exception.payload = 0;
681 	} else
682 		/* replace previous exception with a new one in a hope
683 		   that instruction re-execution will regenerate lost
684 		   exception */
685 		goto queue;
686 }
687 
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693 
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699 
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701 			   unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706 
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708 				    u32 error_code, unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, true, error_code,
711 			       true, payload, false);
712 }
713 
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716 	if (err)
717 		kvm_inject_gp(vcpu, 0);
718 	else
719 		return kvm_skip_emulated_instruction(vcpu);
720 
721 	return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724 
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727 	if (err) {
728 		kvm_inject_gp(vcpu, 0);
729 		return 1;
730 	}
731 
732 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733 				       EMULTYPE_COMPLETE_USER_EXIT);
734 }
735 
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738 	++vcpu->stat.pf_guest;
739 	vcpu->arch.exception.nested_apf =
740 		is_guest_mode(vcpu) && fault->async_page_fault;
741 	if (vcpu->arch.exception.nested_apf) {
742 		vcpu->arch.apf.nested_apf_token = fault->address;
743 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744 	} else {
745 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746 					fault->address);
747 	}
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750 
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752 				    struct x86_exception *fault)
753 {
754 	struct kvm_mmu *fault_mmu;
755 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
756 
757 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758 					       vcpu->arch.walk_mmu;
759 
760 	/*
761 	 * Invalidate the TLB entry for the faulting address, if it exists,
762 	 * else the access will fault indefinitely (and to emulate hardware).
763 	 */
764 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
765 	    !(fault->error_code & PFERR_RSVD_MASK))
766 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767 				       fault_mmu->root_hpa);
768 
769 	fault_mmu->inject_page_fault(vcpu, fault);
770 	return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773 
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776 	atomic_inc(&vcpu->arch.nmi_queued);
777 	kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780 
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786 
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792 
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800 		return true;
801 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802 	return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805 
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809 		return true;
810 
811 	kvm_queue_exception(vcpu, UD_VECTOR);
812 	return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815 
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820 
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 	gpa_t real_gpa;
829 	int i;
830 	int ret;
831 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832 
833 	/*
834 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835 	 * to an L1 GPA.
836 	 */
837 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839 	if (real_gpa == UNMAPPED_GVA)
840 		return 0;
841 
842 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
845 	if (ret < 0)
846 		return 0;
847 
848 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849 		if ((pdpte[i] & PT_PRESENT_MASK) &&
850 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851 			return 0;
852 		}
853 	}
854 
855 	/*
856 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857 	 * Shadow page roots need to be reconstructed instead.
858 	 */
859 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860 		kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
861 
862 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865 	vcpu->arch.pdptrs_from_userspace = false;
866 
867 	return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870 
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 	}
877 
878 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
879 		kvm_mmu_reset_context(vcpu);
880 
881 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885 }
886 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
887 
888 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
889 {
890 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
891 
892 	cr0 |= X86_CR0_ET;
893 
894 #ifdef CONFIG_X86_64
895 	if (cr0 & 0xffffffff00000000UL)
896 		return 1;
897 #endif
898 
899 	cr0 &= ~CR0_RESERVED_BITS;
900 
901 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
902 		return 1;
903 
904 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
905 		return 1;
906 
907 #ifdef CONFIG_X86_64
908 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
909 	    (cr0 & X86_CR0_PG)) {
910 		int cs_db, cs_l;
911 
912 		if (!is_pae(vcpu))
913 			return 1;
914 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
915 		if (cs_l)
916 			return 1;
917 	}
918 #endif
919 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
920 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
921 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
922 		return 1;
923 
924 	if (!(cr0 & X86_CR0_PG) &&
925 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
926 		return 1;
927 
928 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
929 
930 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
931 
932 	return 0;
933 }
934 EXPORT_SYMBOL_GPL(kvm_set_cr0);
935 
936 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
937 {
938 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
939 }
940 EXPORT_SYMBOL_GPL(kvm_lmsw);
941 
942 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
943 {
944 	if (vcpu->arch.guest_state_protected)
945 		return;
946 
947 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
948 
949 		if (vcpu->arch.xcr0 != host_xcr0)
950 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
951 
952 		if (vcpu->arch.xsaves_enabled &&
953 		    vcpu->arch.ia32_xss != host_xss)
954 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
955 	}
956 
957 	if (static_cpu_has(X86_FEATURE_PKU) &&
958 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
959 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
960 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
961 		write_pkru(vcpu->arch.pkru);
962 }
963 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
964 
965 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
966 {
967 	if (vcpu->arch.guest_state_protected)
968 		return;
969 
970 	if (static_cpu_has(X86_FEATURE_PKU) &&
971 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
972 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
973 		vcpu->arch.pkru = rdpkru();
974 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
975 			write_pkru(vcpu->arch.host_pkru);
976 	}
977 
978 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
979 
980 		if (vcpu->arch.xcr0 != host_xcr0)
981 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
982 
983 		if (vcpu->arch.xsaves_enabled &&
984 		    vcpu->arch.ia32_xss != host_xss)
985 			wrmsrl(MSR_IA32_XSS, host_xss);
986 	}
987 
988 }
989 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
990 
991 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
992 {
993 	u64 xcr0 = xcr;
994 	u64 old_xcr0 = vcpu->arch.xcr0;
995 	u64 valid_bits;
996 
997 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
998 	if (index != XCR_XFEATURE_ENABLED_MASK)
999 		return 1;
1000 	if (!(xcr0 & XFEATURE_MASK_FP))
1001 		return 1;
1002 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1003 		return 1;
1004 
1005 	/*
1006 	 * Do not allow the guest to set bits that we do not support
1007 	 * saving.  However, xcr0 bit 0 is always set, even if the
1008 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1009 	 */
1010 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1011 	if (xcr0 & ~valid_bits)
1012 		return 1;
1013 
1014 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1015 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1016 		return 1;
1017 
1018 	if (xcr0 & XFEATURE_MASK_AVX512) {
1019 		if (!(xcr0 & XFEATURE_MASK_YMM))
1020 			return 1;
1021 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1022 			return 1;
1023 	}
1024 
1025 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1026 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1027 		return 1;
1028 
1029 	vcpu->arch.xcr0 = xcr0;
1030 
1031 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1032 		kvm_update_cpuid_runtime(vcpu);
1033 	return 0;
1034 }
1035 
1036 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1037 {
1038 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1039 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1040 		kvm_inject_gp(vcpu, 0);
1041 		return 1;
1042 	}
1043 
1044 	return kvm_skip_emulated_instruction(vcpu);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1047 
1048 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1049 {
1050 	if (cr4 & cr4_reserved_bits)
1051 		return false;
1052 
1053 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1054 		return false;
1055 
1056 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1059 
1060 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1061 {
1062 	/*
1063 	 * If any role bit is changed, the MMU needs to be reset.
1064 	 *
1065 	 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1066 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1067 	 * according to the SDM; however, stale prev_roots could be reused
1068 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1069 	 * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1070 	 * is slow, but changing CR4.PCIDE is a rare case.
1071 	 *
1072 	 * If CR4.PGE is changed, the guest TLB must be flushed.
1073 	 *
1074 	 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1075 	 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1076 	 * the usage of "else if".
1077 	 */
1078 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1079 		kvm_mmu_reset_context(vcpu);
1080 	else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1081 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1082 	else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1083 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1086 
1087 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1088 {
1089 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1090 
1091 	if (!kvm_is_valid_cr4(vcpu, cr4))
1092 		return 1;
1093 
1094 	if (is_long_mode(vcpu)) {
1095 		if (!(cr4 & X86_CR4_PAE))
1096 			return 1;
1097 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1098 			return 1;
1099 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1100 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1101 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1102 		return 1;
1103 
1104 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1105 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1106 			return 1;
1107 
1108 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1109 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1110 			return 1;
1111 	}
1112 
1113 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1114 
1115 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1116 
1117 	return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1120 
1121 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1122 {
1123 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1124 	unsigned long roots_to_free = 0;
1125 	int i;
1126 
1127 	/*
1128 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1129 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1130 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1131 	 * the invalidation, but the guest's TLB entries need to be flushed as
1132 	 * the CPU may have cached entries in its TLB for the target PCID.
1133 	 */
1134 	if (unlikely(tdp_enabled)) {
1135 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1136 		return;
1137 	}
1138 
1139 	/*
1140 	 * If neither the current CR3 nor any of the prev_roots use the given
1141 	 * PCID, then nothing needs to be done here because a resync will
1142 	 * happen anyway before switching to any other CR3.
1143 	 */
1144 	if (kvm_get_active_pcid(vcpu) == pcid) {
1145 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1146 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1147 	}
1148 
1149 	/*
1150 	 * If PCID is disabled, there is no need to free prev_roots even if the
1151 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1152 	 * with PCIDE=0.
1153 	 */
1154 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1155 		return;
1156 
1157 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1158 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1159 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1160 
1161 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1162 }
1163 
1164 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1165 {
1166 	bool skip_tlb_flush = false;
1167 	unsigned long pcid = 0;
1168 #ifdef CONFIG_X86_64
1169 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1170 
1171 	if (pcid_enabled) {
1172 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1173 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1174 		pcid = cr3 & X86_CR3_PCID_MASK;
1175 	}
1176 #endif
1177 
1178 	/* PDPTRs are always reloaded for PAE paging. */
1179 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1180 		goto handle_tlb_flush;
1181 
1182 	/*
1183 	 * Do not condition the GPA check on long mode, this helper is used to
1184 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1185 	 * the current vCPU mode is accurate.
1186 	 */
1187 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1188 		return 1;
1189 
1190 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1191 		return 1;
1192 
1193 	if (cr3 != kvm_read_cr3(vcpu))
1194 		kvm_mmu_new_pgd(vcpu, cr3);
1195 
1196 	vcpu->arch.cr3 = cr3;
1197 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1198 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1199 
1200 handle_tlb_flush:
1201 	/*
1202 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1203 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1204 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1205 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1206 	 * i.e. only PCID=0 can be relevant.
1207 	 */
1208 	if (!skip_tlb_flush)
1209 		kvm_invalidate_pcid(vcpu, pcid);
1210 
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1214 
1215 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1216 {
1217 	if (cr8 & CR8_RESERVED_BITS)
1218 		return 1;
1219 	if (lapic_in_kernel(vcpu))
1220 		kvm_lapic_set_tpr(vcpu, cr8);
1221 	else
1222 		vcpu->arch.cr8 = cr8;
1223 	return 0;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1226 
1227 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1228 {
1229 	if (lapic_in_kernel(vcpu))
1230 		return kvm_lapic_get_cr8(vcpu);
1231 	else
1232 		return vcpu->arch.cr8;
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1235 
1236 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1237 {
1238 	int i;
1239 
1240 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1241 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1242 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1243 	}
1244 }
1245 
1246 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1247 {
1248 	unsigned long dr7;
1249 
1250 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1251 		dr7 = vcpu->arch.guest_debug_dr7;
1252 	else
1253 		dr7 = vcpu->arch.dr7;
1254 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1255 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1256 	if (dr7 & DR7_BP_EN_MASK)
1257 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1260 
1261 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1262 {
1263 	u64 fixed = DR6_FIXED_1;
1264 
1265 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1266 		fixed |= DR6_RTM;
1267 
1268 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1269 		fixed |= DR6_BUS_LOCK;
1270 	return fixed;
1271 }
1272 
1273 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1274 {
1275 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1276 
1277 	switch (dr) {
1278 	case 0 ... 3:
1279 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1280 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1281 			vcpu->arch.eff_db[dr] = val;
1282 		break;
1283 	case 4:
1284 	case 6:
1285 		if (!kvm_dr6_valid(val))
1286 			return 1; /* #GP */
1287 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1288 		break;
1289 	case 5:
1290 	default: /* 7 */
1291 		if (!kvm_dr7_valid(val))
1292 			return 1; /* #GP */
1293 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1294 		kvm_update_dr7(vcpu);
1295 		break;
1296 	}
1297 
1298 	return 0;
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_set_dr);
1301 
1302 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1303 {
1304 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1305 
1306 	switch (dr) {
1307 	case 0 ... 3:
1308 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1309 		break;
1310 	case 4:
1311 	case 6:
1312 		*val = vcpu->arch.dr6;
1313 		break;
1314 	case 5:
1315 	default: /* 7 */
1316 		*val = vcpu->arch.dr7;
1317 		break;
1318 	}
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_get_dr);
1321 
1322 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1323 {
1324 	u32 ecx = kvm_rcx_read(vcpu);
1325 	u64 data;
1326 
1327 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1328 		kvm_inject_gp(vcpu, 0);
1329 		return 1;
1330 	}
1331 
1332 	kvm_rax_write(vcpu, (u32)data);
1333 	kvm_rdx_write(vcpu, data >> 32);
1334 	return kvm_skip_emulated_instruction(vcpu);
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1337 
1338 /*
1339  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1340  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1341  *
1342  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1343  * extract the supported MSRs from the related const lists.
1344  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1345  * capabilities of the host cpu. This capabilities test skips MSRs that are
1346  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1347  * may depend on host virtualization features rather than host cpu features.
1348  */
1349 
1350 static const u32 msrs_to_save_all[] = {
1351 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1352 	MSR_STAR,
1353 #ifdef CONFIG_X86_64
1354 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1355 #endif
1356 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1357 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1358 	MSR_IA32_SPEC_CTRL,
1359 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1360 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1361 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1362 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1363 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1364 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1365 	MSR_IA32_UMWAIT_CONTROL,
1366 
1367 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1368 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1369 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1370 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1371 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1372 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1373 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1374 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1375 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1376 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1377 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1378 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1379 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1380 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1381 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1382 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1383 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1384 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1385 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1386 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1387 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1388 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1389 
1390 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1391 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1392 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1393 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1394 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1395 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1396 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1397 };
1398 
1399 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1400 static unsigned num_msrs_to_save;
1401 
1402 static const u32 emulated_msrs_all[] = {
1403 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1404 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1405 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1406 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1407 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1408 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1409 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1410 	HV_X64_MSR_RESET,
1411 	HV_X64_MSR_VP_INDEX,
1412 	HV_X64_MSR_VP_RUNTIME,
1413 	HV_X64_MSR_SCONTROL,
1414 	HV_X64_MSR_STIMER0_CONFIG,
1415 	HV_X64_MSR_VP_ASSIST_PAGE,
1416 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1417 	HV_X64_MSR_TSC_EMULATION_STATUS,
1418 	HV_X64_MSR_SYNDBG_OPTIONS,
1419 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1420 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1421 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1422 
1423 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1424 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1425 
1426 	MSR_IA32_TSC_ADJUST,
1427 	MSR_IA32_TSC_DEADLINE,
1428 	MSR_IA32_ARCH_CAPABILITIES,
1429 	MSR_IA32_PERF_CAPABILITIES,
1430 	MSR_IA32_MISC_ENABLE,
1431 	MSR_IA32_MCG_STATUS,
1432 	MSR_IA32_MCG_CTL,
1433 	MSR_IA32_MCG_EXT_CTL,
1434 	MSR_IA32_SMBASE,
1435 	MSR_SMI_COUNT,
1436 	MSR_PLATFORM_INFO,
1437 	MSR_MISC_FEATURES_ENABLES,
1438 	MSR_AMD64_VIRT_SPEC_CTRL,
1439 	MSR_AMD64_TSC_RATIO,
1440 	MSR_IA32_POWER_CTL,
1441 	MSR_IA32_UCODE_REV,
1442 
1443 	/*
1444 	 * The following list leaves out MSRs whose values are determined
1445 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1446 	 * We always support the "true" VMX control MSRs, even if the host
1447 	 * processor does not, so I am putting these registers here rather
1448 	 * than in msrs_to_save_all.
1449 	 */
1450 	MSR_IA32_VMX_BASIC,
1451 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1452 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1453 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1454 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1455 	MSR_IA32_VMX_MISC,
1456 	MSR_IA32_VMX_CR0_FIXED0,
1457 	MSR_IA32_VMX_CR4_FIXED0,
1458 	MSR_IA32_VMX_VMCS_ENUM,
1459 	MSR_IA32_VMX_PROCBASED_CTLS2,
1460 	MSR_IA32_VMX_EPT_VPID_CAP,
1461 	MSR_IA32_VMX_VMFUNC,
1462 
1463 	MSR_K7_HWCR,
1464 	MSR_KVM_POLL_CONTROL,
1465 };
1466 
1467 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1468 static unsigned num_emulated_msrs;
1469 
1470 /*
1471  * List of msr numbers which are used to expose MSR-based features that
1472  * can be used by a hypervisor to validate requested CPU features.
1473  */
1474 static const u32 msr_based_features_all[] = {
1475 	MSR_IA32_VMX_BASIC,
1476 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1477 	MSR_IA32_VMX_PINBASED_CTLS,
1478 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1479 	MSR_IA32_VMX_PROCBASED_CTLS,
1480 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1481 	MSR_IA32_VMX_EXIT_CTLS,
1482 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1483 	MSR_IA32_VMX_ENTRY_CTLS,
1484 	MSR_IA32_VMX_MISC,
1485 	MSR_IA32_VMX_CR0_FIXED0,
1486 	MSR_IA32_VMX_CR0_FIXED1,
1487 	MSR_IA32_VMX_CR4_FIXED0,
1488 	MSR_IA32_VMX_CR4_FIXED1,
1489 	MSR_IA32_VMX_VMCS_ENUM,
1490 	MSR_IA32_VMX_PROCBASED_CTLS2,
1491 	MSR_IA32_VMX_EPT_VPID_CAP,
1492 	MSR_IA32_VMX_VMFUNC,
1493 
1494 	MSR_F10H_DECFG,
1495 	MSR_IA32_UCODE_REV,
1496 	MSR_IA32_ARCH_CAPABILITIES,
1497 	MSR_IA32_PERF_CAPABILITIES,
1498 };
1499 
1500 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1501 static unsigned int num_msr_based_features;
1502 
1503 static u64 kvm_get_arch_capabilities(void)
1504 {
1505 	u64 data = 0;
1506 
1507 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1508 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1509 
1510 	/*
1511 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1512 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1513 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1514 	 * L1 guests, so it need not worry about its own (L2) guests.
1515 	 */
1516 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1517 
1518 	/*
1519 	 * If we're doing cache flushes (either "always" or "cond")
1520 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1521 	 * If an outer hypervisor is doing the cache flush for us
1522 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1523 	 * capability to the guest too, and if EPT is disabled we're not
1524 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1525 	 * require a nested hypervisor to do a flush of its own.
1526 	 */
1527 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1528 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1529 
1530 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1531 		data |= ARCH_CAP_RDCL_NO;
1532 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1533 		data |= ARCH_CAP_SSB_NO;
1534 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1535 		data |= ARCH_CAP_MDS_NO;
1536 
1537 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1538 		/*
1539 		 * If RTM=0 because the kernel has disabled TSX, the host might
1540 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1541 		 * and therefore knows that there cannot be TAA) but keep
1542 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1543 		 * and we want to allow migrating those guests to tsx=off hosts.
1544 		 */
1545 		data &= ~ARCH_CAP_TAA_NO;
1546 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1547 		data |= ARCH_CAP_TAA_NO;
1548 	} else {
1549 		/*
1550 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1551 		 * host so the guest can choose between disabling TSX or
1552 		 * using VERW to clear CPU buffers.
1553 		 */
1554 	}
1555 
1556 	return data;
1557 }
1558 
1559 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1560 {
1561 	switch (msr->index) {
1562 	case MSR_IA32_ARCH_CAPABILITIES:
1563 		msr->data = kvm_get_arch_capabilities();
1564 		break;
1565 	case MSR_IA32_UCODE_REV:
1566 		rdmsrl_safe(msr->index, &msr->data);
1567 		break;
1568 	default:
1569 		return static_call(kvm_x86_get_msr_feature)(msr);
1570 	}
1571 	return 0;
1572 }
1573 
1574 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1575 {
1576 	struct kvm_msr_entry msr;
1577 	int r;
1578 
1579 	msr.index = index;
1580 	r = kvm_get_msr_feature(&msr);
1581 
1582 	if (r == KVM_MSR_RET_INVALID) {
1583 		/* Unconditionally clear the output for simplicity */
1584 		*data = 0;
1585 		if (kvm_msr_ignored_check(index, 0, false))
1586 			r = 0;
1587 	}
1588 
1589 	if (r)
1590 		return r;
1591 
1592 	*data = msr.data;
1593 
1594 	return 0;
1595 }
1596 
1597 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1598 {
1599 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1600 		return false;
1601 
1602 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1603 		return false;
1604 
1605 	if (efer & (EFER_LME | EFER_LMA) &&
1606 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1607 		return false;
1608 
1609 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1610 		return false;
1611 
1612 	return true;
1613 
1614 }
1615 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1616 {
1617 	if (efer & efer_reserved_bits)
1618 		return false;
1619 
1620 	return __kvm_valid_efer(vcpu, efer);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1623 
1624 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1625 {
1626 	u64 old_efer = vcpu->arch.efer;
1627 	u64 efer = msr_info->data;
1628 	int r;
1629 
1630 	if (efer & efer_reserved_bits)
1631 		return 1;
1632 
1633 	if (!msr_info->host_initiated) {
1634 		if (!__kvm_valid_efer(vcpu, efer))
1635 			return 1;
1636 
1637 		if (is_paging(vcpu) &&
1638 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1639 			return 1;
1640 	}
1641 
1642 	efer &= ~EFER_LMA;
1643 	efer |= vcpu->arch.efer & EFER_LMA;
1644 
1645 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1646 	if (r) {
1647 		WARN_ON(r > 0);
1648 		return r;
1649 	}
1650 
1651 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1652 		kvm_mmu_reset_context(vcpu);
1653 
1654 	return 0;
1655 }
1656 
1657 void kvm_enable_efer_bits(u64 mask)
1658 {
1659        efer_reserved_bits &= ~mask;
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1662 
1663 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1664 {
1665 	struct kvm_x86_msr_filter *msr_filter;
1666 	struct msr_bitmap_range *ranges;
1667 	struct kvm *kvm = vcpu->kvm;
1668 	bool allowed;
1669 	int idx;
1670 	u32 i;
1671 
1672 	/* x2APIC MSRs do not support filtering. */
1673 	if (index >= 0x800 && index <= 0x8ff)
1674 		return true;
1675 
1676 	idx = srcu_read_lock(&kvm->srcu);
1677 
1678 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1679 	if (!msr_filter) {
1680 		allowed = true;
1681 		goto out;
1682 	}
1683 
1684 	allowed = msr_filter->default_allow;
1685 	ranges = msr_filter->ranges;
1686 
1687 	for (i = 0; i < msr_filter->count; i++) {
1688 		u32 start = ranges[i].base;
1689 		u32 end = start + ranges[i].nmsrs;
1690 		u32 flags = ranges[i].flags;
1691 		unsigned long *bitmap = ranges[i].bitmap;
1692 
1693 		if ((index >= start) && (index < end) && (flags & type)) {
1694 			allowed = !!test_bit(index - start, bitmap);
1695 			break;
1696 		}
1697 	}
1698 
1699 out:
1700 	srcu_read_unlock(&kvm->srcu, idx);
1701 
1702 	return allowed;
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1705 
1706 /*
1707  * Write @data into the MSR specified by @index.  Select MSR specific fault
1708  * checks are bypassed if @host_initiated is %true.
1709  * Returns 0 on success, non-0 otherwise.
1710  * Assumes vcpu_load() was already called.
1711  */
1712 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1713 			 bool host_initiated)
1714 {
1715 	struct msr_data msr;
1716 
1717 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1718 		return KVM_MSR_RET_FILTERED;
1719 
1720 	switch (index) {
1721 	case MSR_FS_BASE:
1722 	case MSR_GS_BASE:
1723 	case MSR_KERNEL_GS_BASE:
1724 	case MSR_CSTAR:
1725 	case MSR_LSTAR:
1726 		if (is_noncanonical_address(data, vcpu))
1727 			return 1;
1728 		break;
1729 	case MSR_IA32_SYSENTER_EIP:
1730 	case MSR_IA32_SYSENTER_ESP:
1731 		/*
1732 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1733 		 * non-canonical address is written on Intel but not on
1734 		 * AMD (which ignores the top 32-bits, because it does
1735 		 * not implement 64-bit SYSENTER).
1736 		 *
1737 		 * 64-bit code should hence be able to write a non-canonical
1738 		 * value on AMD.  Making the address canonical ensures that
1739 		 * vmentry does not fail on Intel after writing a non-canonical
1740 		 * value, and that something deterministic happens if the guest
1741 		 * invokes 64-bit SYSENTER.
1742 		 */
1743 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1744 		break;
1745 	case MSR_TSC_AUX:
1746 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1747 			return 1;
1748 
1749 		if (!host_initiated &&
1750 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1751 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1752 			return 1;
1753 
1754 		/*
1755 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1756 		 * incomplete and conflicting architectural behavior.  Current
1757 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1758 		 * reserved and always read as zeros.  Enforce Intel's reserved
1759 		 * bits check if and only if the guest CPU is Intel, and clear
1760 		 * the bits in all other cases.  This ensures cross-vendor
1761 		 * migration will provide consistent behavior for the guest.
1762 		 */
1763 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1764 			return 1;
1765 
1766 		data = (u32)data;
1767 		break;
1768 	}
1769 
1770 	msr.data = data;
1771 	msr.index = index;
1772 	msr.host_initiated = host_initiated;
1773 
1774 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1775 }
1776 
1777 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1778 				     u32 index, u64 data, bool host_initiated)
1779 {
1780 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1781 
1782 	if (ret == KVM_MSR_RET_INVALID)
1783 		if (kvm_msr_ignored_check(index, data, true))
1784 			ret = 0;
1785 
1786 	return ret;
1787 }
1788 
1789 /*
1790  * Read the MSR specified by @index into @data.  Select MSR specific fault
1791  * checks are bypassed if @host_initiated is %true.
1792  * Returns 0 on success, non-0 otherwise.
1793  * Assumes vcpu_load() was already called.
1794  */
1795 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1796 		  bool host_initiated)
1797 {
1798 	struct msr_data msr;
1799 	int ret;
1800 
1801 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1802 		return KVM_MSR_RET_FILTERED;
1803 
1804 	switch (index) {
1805 	case MSR_TSC_AUX:
1806 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1807 			return 1;
1808 
1809 		if (!host_initiated &&
1810 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1811 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1812 			return 1;
1813 		break;
1814 	}
1815 
1816 	msr.index = index;
1817 	msr.host_initiated = host_initiated;
1818 
1819 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1820 	if (!ret)
1821 		*data = msr.data;
1822 	return ret;
1823 }
1824 
1825 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1826 				     u32 index, u64 *data, bool host_initiated)
1827 {
1828 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1829 
1830 	if (ret == KVM_MSR_RET_INVALID) {
1831 		/* Unconditionally clear *data for simplicity */
1832 		*data = 0;
1833 		if (kvm_msr_ignored_check(index, 0, false))
1834 			ret = 0;
1835 	}
1836 
1837 	return ret;
1838 }
1839 
1840 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1841 {
1842 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_get_msr);
1845 
1846 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1847 {
1848 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_set_msr);
1851 
1852 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1853 {
1854 	if (!vcpu->run->msr.error) {
1855 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1856 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1857 	}
1858 }
1859 
1860 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1861 {
1862 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1863 }
1864 
1865 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1866 {
1867 	complete_userspace_rdmsr(vcpu);
1868 	return complete_emulated_msr_access(vcpu);
1869 }
1870 
1871 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1872 {
1873 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1874 }
1875 
1876 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1877 {
1878 	complete_userspace_rdmsr(vcpu);
1879 	return complete_fast_msr_access(vcpu);
1880 }
1881 
1882 static u64 kvm_msr_reason(int r)
1883 {
1884 	switch (r) {
1885 	case KVM_MSR_RET_INVALID:
1886 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1887 	case KVM_MSR_RET_FILTERED:
1888 		return KVM_MSR_EXIT_REASON_FILTER;
1889 	default:
1890 		return KVM_MSR_EXIT_REASON_INVAL;
1891 	}
1892 }
1893 
1894 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1895 			      u32 exit_reason, u64 data,
1896 			      int (*completion)(struct kvm_vcpu *vcpu),
1897 			      int r)
1898 {
1899 	u64 msr_reason = kvm_msr_reason(r);
1900 
1901 	/* Check if the user wanted to know about this MSR fault */
1902 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1903 		return 0;
1904 
1905 	vcpu->run->exit_reason = exit_reason;
1906 	vcpu->run->msr.error = 0;
1907 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1908 	vcpu->run->msr.reason = msr_reason;
1909 	vcpu->run->msr.index = index;
1910 	vcpu->run->msr.data = data;
1911 	vcpu->arch.complete_userspace_io = completion;
1912 
1913 	return 1;
1914 }
1915 
1916 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1917 {
1918 	u32 ecx = kvm_rcx_read(vcpu);
1919 	u64 data;
1920 	int r;
1921 
1922 	r = kvm_get_msr(vcpu, ecx, &data);
1923 
1924 	if (!r) {
1925 		trace_kvm_msr_read(ecx, data);
1926 
1927 		kvm_rax_write(vcpu, data & -1u);
1928 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1929 	} else {
1930 		/* MSR read failed? See if we should ask user space */
1931 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1932 				       complete_fast_rdmsr, r))
1933 			return 0;
1934 		trace_kvm_msr_read_ex(ecx);
1935 	}
1936 
1937 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1940 
1941 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1942 {
1943 	u32 ecx = kvm_rcx_read(vcpu);
1944 	u64 data = kvm_read_edx_eax(vcpu);
1945 	int r;
1946 
1947 	r = kvm_set_msr(vcpu, ecx, data);
1948 
1949 	if (!r) {
1950 		trace_kvm_msr_write(ecx, data);
1951 	} else {
1952 		/* MSR write failed? See if we should ask user space */
1953 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1954 				       complete_fast_msr_access, r))
1955 			return 0;
1956 		/* Signal all other negative errors to userspace */
1957 		if (r < 0)
1958 			return r;
1959 		trace_kvm_msr_write_ex(ecx, data);
1960 	}
1961 
1962 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1963 }
1964 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1965 
1966 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1967 {
1968 	return kvm_skip_emulated_instruction(vcpu);
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1971 
1972 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1973 {
1974 	/* Treat an INVD instruction as a NOP and just skip it. */
1975 	return kvm_emulate_as_nop(vcpu);
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1978 
1979 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1980 {
1981 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1982 	return kvm_emulate_as_nop(vcpu);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1985 
1986 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1987 {
1988 	kvm_queue_exception(vcpu, UD_VECTOR);
1989 	return 1;
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1992 
1993 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1994 {
1995 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1996 	return kvm_emulate_as_nop(vcpu);
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1999 
2000 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2001 {
2002 	xfer_to_guest_mode_prepare();
2003 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2004 		xfer_to_guest_mode_work_pending();
2005 }
2006 
2007 /*
2008  * The fast path for frequent and performance sensitive wrmsr emulation,
2009  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2010  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2011  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2012  * other cases which must be called after interrupts are enabled on the host.
2013  */
2014 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2015 {
2016 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2017 		return 1;
2018 
2019 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2020 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2021 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2022 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
2023 
2024 		data &= ~(1 << 12);
2025 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2026 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2027 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2028 		trace_kvm_apic_write(APIC_ICR, (u32)data);
2029 		return 0;
2030 	}
2031 
2032 	return 1;
2033 }
2034 
2035 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2036 {
2037 	if (!kvm_can_use_hv_timer(vcpu))
2038 		return 1;
2039 
2040 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2041 	return 0;
2042 }
2043 
2044 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2045 {
2046 	u32 msr = kvm_rcx_read(vcpu);
2047 	u64 data;
2048 	fastpath_t ret = EXIT_FASTPATH_NONE;
2049 
2050 	switch (msr) {
2051 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2052 		data = kvm_read_edx_eax(vcpu);
2053 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2054 			kvm_skip_emulated_instruction(vcpu);
2055 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2056 		}
2057 		break;
2058 	case MSR_IA32_TSC_DEADLINE:
2059 		data = kvm_read_edx_eax(vcpu);
2060 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2061 			kvm_skip_emulated_instruction(vcpu);
2062 			ret = EXIT_FASTPATH_REENTER_GUEST;
2063 		}
2064 		break;
2065 	default:
2066 		break;
2067 	}
2068 
2069 	if (ret != EXIT_FASTPATH_NONE)
2070 		trace_kvm_msr_write(msr, data);
2071 
2072 	return ret;
2073 }
2074 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2075 
2076 /*
2077  * Adapt set_msr() to msr_io()'s calling convention
2078  */
2079 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2080 {
2081 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2082 }
2083 
2084 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2085 {
2086 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2087 }
2088 
2089 #ifdef CONFIG_X86_64
2090 struct pvclock_clock {
2091 	int vclock_mode;
2092 	u64 cycle_last;
2093 	u64 mask;
2094 	u32 mult;
2095 	u32 shift;
2096 	u64 base_cycles;
2097 	u64 offset;
2098 };
2099 
2100 struct pvclock_gtod_data {
2101 	seqcount_t	seq;
2102 
2103 	struct pvclock_clock clock; /* extract of a clocksource struct */
2104 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2105 
2106 	ktime_t		offs_boot;
2107 	u64		wall_time_sec;
2108 };
2109 
2110 static struct pvclock_gtod_data pvclock_gtod_data;
2111 
2112 static void update_pvclock_gtod(struct timekeeper *tk)
2113 {
2114 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2115 
2116 	write_seqcount_begin(&vdata->seq);
2117 
2118 	/* copy pvclock gtod data */
2119 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2120 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2121 	vdata->clock.mask		= tk->tkr_mono.mask;
2122 	vdata->clock.mult		= tk->tkr_mono.mult;
2123 	vdata->clock.shift		= tk->tkr_mono.shift;
2124 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2125 	vdata->clock.offset		= tk->tkr_mono.base;
2126 
2127 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2128 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2129 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2130 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2131 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2132 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2133 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2134 
2135 	vdata->wall_time_sec            = tk->xtime_sec;
2136 
2137 	vdata->offs_boot		= tk->offs_boot;
2138 
2139 	write_seqcount_end(&vdata->seq);
2140 }
2141 
2142 static s64 get_kvmclock_base_ns(void)
2143 {
2144 	/* Count up from boot time, but with the frequency of the raw clock.  */
2145 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2146 }
2147 #else
2148 static s64 get_kvmclock_base_ns(void)
2149 {
2150 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2151 	return ktime_get_boottime_ns();
2152 }
2153 #endif
2154 
2155 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2156 {
2157 	int version;
2158 	int r;
2159 	struct pvclock_wall_clock wc;
2160 	u32 wc_sec_hi;
2161 	u64 wall_nsec;
2162 
2163 	if (!wall_clock)
2164 		return;
2165 
2166 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2167 	if (r)
2168 		return;
2169 
2170 	if (version & 1)
2171 		++version;  /* first time write, random junk */
2172 
2173 	++version;
2174 
2175 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2176 		return;
2177 
2178 	/*
2179 	 * The guest calculates current wall clock time by adding
2180 	 * system time (updated by kvm_guest_time_update below) to the
2181 	 * wall clock specified here.  We do the reverse here.
2182 	 */
2183 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2184 
2185 	wc.nsec = do_div(wall_nsec, 1000000000);
2186 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2187 	wc.version = version;
2188 
2189 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2190 
2191 	if (sec_hi_ofs) {
2192 		wc_sec_hi = wall_nsec >> 32;
2193 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2194 				&wc_sec_hi, sizeof(wc_sec_hi));
2195 	}
2196 
2197 	version++;
2198 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2199 }
2200 
2201 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2202 				  bool old_msr, bool host_initiated)
2203 {
2204 	struct kvm_arch *ka = &vcpu->kvm->arch;
2205 
2206 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2207 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2208 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2209 
2210 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2211 	}
2212 
2213 	vcpu->arch.time = system_time;
2214 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2215 
2216 	/* we verify if the enable bit is set... */
2217 	vcpu->arch.pv_time_enabled = false;
2218 	if (!(system_time & 1))
2219 		return;
2220 
2221 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2222 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2223 				       sizeof(struct pvclock_vcpu_time_info)))
2224 		vcpu->arch.pv_time_enabled = true;
2225 
2226 	return;
2227 }
2228 
2229 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2230 {
2231 	do_shl32_div32(dividend, divisor);
2232 	return dividend;
2233 }
2234 
2235 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2236 			       s8 *pshift, u32 *pmultiplier)
2237 {
2238 	uint64_t scaled64;
2239 	int32_t  shift = 0;
2240 	uint64_t tps64;
2241 	uint32_t tps32;
2242 
2243 	tps64 = base_hz;
2244 	scaled64 = scaled_hz;
2245 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2246 		tps64 >>= 1;
2247 		shift--;
2248 	}
2249 
2250 	tps32 = (uint32_t)tps64;
2251 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2252 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2253 			scaled64 >>= 1;
2254 		else
2255 			tps32 <<= 1;
2256 		shift++;
2257 	}
2258 
2259 	*pshift = shift;
2260 	*pmultiplier = div_frac(scaled64, tps32);
2261 }
2262 
2263 #ifdef CONFIG_X86_64
2264 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2265 #endif
2266 
2267 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2268 static unsigned long max_tsc_khz;
2269 
2270 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2271 {
2272 	u64 v = (u64)khz * (1000000 + ppm);
2273 	do_div(v, 1000000);
2274 	return v;
2275 }
2276 
2277 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2278 
2279 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2280 {
2281 	u64 ratio;
2282 
2283 	/* Guest TSC same frequency as host TSC? */
2284 	if (!scale) {
2285 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2286 		return 0;
2287 	}
2288 
2289 	/* TSC scaling supported? */
2290 	if (!kvm_has_tsc_control) {
2291 		if (user_tsc_khz > tsc_khz) {
2292 			vcpu->arch.tsc_catchup = 1;
2293 			vcpu->arch.tsc_always_catchup = 1;
2294 			return 0;
2295 		} else {
2296 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2297 			return -1;
2298 		}
2299 	}
2300 
2301 	/* TSC scaling required  - calculate ratio */
2302 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2303 				user_tsc_khz, tsc_khz);
2304 
2305 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2306 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2307 			            user_tsc_khz);
2308 		return -1;
2309 	}
2310 
2311 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2312 	return 0;
2313 }
2314 
2315 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2316 {
2317 	u32 thresh_lo, thresh_hi;
2318 	int use_scaling = 0;
2319 
2320 	/* tsc_khz can be zero if TSC calibration fails */
2321 	if (user_tsc_khz == 0) {
2322 		/* set tsc_scaling_ratio to a safe value */
2323 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2324 		return -1;
2325 	}
2326 
2327 	/* Compute a scale to convert nanoseconds in TSC cycles */
2328 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2329 			   &vcpu->arch.virtual_tsc_shift,
2330 			   &vcpu->arch.virtual_tsc_mult);
2331 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2332 
2333 	/*
2334 	 * Compute the variation in TSC rate which is acceptable
2335 	 * within the range of tolerance and decide if the
2336 	 * rate being applied is within that bounds of the hardware
2337 	 * rate.  If so, no scaling or compensation need be done.
2338 	 */
2339 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2340 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2341 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2342 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2343 		use_scaling = 1;
2344 	}
2345 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2346 }
2347 
2348 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2349 {
2350 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2351 				      vcpu->arch.virtual_tsc_mult,
2352 				      vcpu->arch.virtual_tsc_shift);
2353 	tsc += vcpu->arch.this_tsc_write;
2354 	return tsc;
2355 }
2356 
2357 static inline int gtod_is_based_on_tsc(int mode)
2358 {
2359 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2360 }
2361 
2362 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2363 {
2364 #ifdef CONFIG_X86_64
2365 	bool vcpus_matched;
2366 	struct kvm_arch *ka = &vcpu->kvm->arch;
2367 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2368 
2369 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2370 			 atomic_read(&vcpu->kvm->online_vcpus));
2371 
2372 	/*
2373 	 * Once the masterclock is enabled, always perform request in
2374 	 * order to update it.
2375 	 *
2376 	 * In order to enable masterclock, the host clocksource must be TSC
2377 	 * and the vcpus need to have matched TSCs.  When that happens,
2378 	 * perform request to enable masterclock.
2379 	 */
2380 	if (ka->use_master_clock ||
2381 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2382 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2383 
2384 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2385 			    atomic_read(&vcpu->kvm->online_vcpus),
2386 		            ka->use_master_clock, gtod->clock.vclock_mode);
2387 #endif
2388 }
2389 
2390 /*
2391  * Multiply tsc by a fixed point number represented by ratio.
2392  *
2393  * The most significant 64-N bits (mult) of ratio represent the
2394  * integral part of the fixed point number; the remaining N bits
2395  * (frac) represent the fractional part, ie. ratio represents a fixed
2396  * point number (mult + frac * 2^(-N)).
2397  *
2398  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2399  */
2400 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2401 {
2402 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2403 }
2404 
2405 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2406 {
2407 	u64 _tsc = tsc;
2408 
2409 	if (ratio != kvm_default_tsc_scaling_ratio)
2410 		_tsc = __scale_tsc(ratio, tsc);
2411 
2412 	return _tsc;
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2415 
2416 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2417 {
2418 	u64 tsc;
2419 
2420 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2421 
2422 	return target_tsc - tsc;
2423 }
2424 
2425 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2426 {
2427 	return vcpu->arch.l1_tsc_offset +
2428 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2429 }
2430 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2431 
2432 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2433 {
2434 	u64 nested_offset;
2435 
2436 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2437 		nested_offset = l1_offset;
2438 	else
2439 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2440 						kvm_tsc_scaling_ratio_frac_bits);
2441 
2442 	nested_offset += l2_offset;
2443 	return nested_offset;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2446 
2447 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2448 {
2449 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2450 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2451 				       kvm_tsc_scaling_ratio_frac_bits);
2452 
2453 	return l1_multiplier;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2456 
2457 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2458 {
2459 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2460 				   vcpu->arch.l1_tsc_offset,
2461 				   l1_offset);
2462 
2463 	vcpu->arch.l1_tsc_offset = l1_offset;
2464 
2465 	/*
2466 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2467 	 * according to the spec this should set L1's TSC (as opposed to
2468 	 * setting L1's offset for L2).
2469 	 */
2470 	if (is_guest_mode(vcpu))
2471 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2472 			l1_offset,
2473 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2474 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2475 	else
2476 		vcpu->arch.tsc_offset = l1_offset;
2477 
2478 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2479 }
2480 
2481 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2482 {
2483 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2484 
2485 	/* Userspace is changing the multiplier while L2 is active */
2486 	if (is_guest_mode(vcpu))
2487 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2488 			l1_multiplier,
2489 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2490 	else
2491 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2492 
2493 	if (kvm_has_tsc_control)
2494 		static_call(kvm_x86_write_tsc_multiplier)(
2495 			vcpu, vcpu->arch.tsc_scaling_ratio);
2496 }
2497 
2498 static inline bool kvm_check_tsc_unstable(void)
2499 {
2500 #ifdef CONFIG_X86_64
2501 	/*
2502 	 * TSC is marked unstable when we're running on Hyper-V,
2503 	 * 'TSC page' clocksource is good.
2504 	 */
2505 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2506 		return false;
2507 #endif
2508 	return check_tsc_unstable();
2509 }
2510 
2511 /*
2512  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2513  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2514  * participates in.
2515  */
2516 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2517 				  u64 ns, bool matched)
2518 {
2519 	struct kvm *kvm = vcpu->kvm;
2520 
2521 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2522 
2523 	/*
2524 	 * We also track th most recent recorded KHZ, write and time to
2525 	 * allow the matching interval to be extended at each write.
2526 	 */
2527 	kvm->arch.last_tsc_nsec = ns;
2528 	kvm->arch.last_tsc_write = tsc;
2529 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2530 	kvm->arch.last_tsc_offset = offset;
2531 
2532 	vcpu->arch.last_guest_tsc = tsc;
2533 
2534 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2535 
2536 	if (!matched) {
2537 		/*
2538 		 * We split periods of matched TSC writes into generations.
2539 		 * For each generation, we track the original measured
2540 		 * nanosecond time, offset, and write, so if TSCs are in
2541 		 * sync, we can match exact offset, and if not, we can match
2542 		 * exact software computation in compute_guest_tsc()
2543 		 *
2544 		 * These values are tracked in kvm->arch.cur_xxx variables.
2545 		 */
2546 		kvm->arch.cur_tsc_generation++;
2547 		kvm->arch.cur_tsc_nsec = ns;
2548 		kvm->arch.cur_tsc_write = tsc;
2549 		kvm->arch.cur_tsc_offset = offset;
2550 		kvm->arch.nr_vcpus_matched_tsc = 0;
2551 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2552 		kvm->arch.nr_vcpus_matched_tsc++;
2553 	}
2554 
2555 	/* Keep track of which generation this VCPU has synchronized to */
2556 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2557 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2558 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2559 
2560 	kvm_track_tsc_matching(vcpu);
2561 }
2562 
2563 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2564 {
2565 	struct kvm *kvm = vcpu->kvm;
2566 	u64 offset, ns, elapsed;
2567 	unsigned long flags;
2568 	bool matched = false;
2569 	bool synchronizing = false;
2570 
2571 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2572 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2573 	ns = get_kvmclock_base_ns();
2574 	elapsed = ns - kvm->arch.last_tsc_nsec;
2575 
2576 	if (vcpu->arch.virtual_tsc_khz) {
2577 		if (data == 0) {
2578 			/*
2579 			 * detection of vcpu initialization -- need to sync
2580 			 * with other vCPUs. This particularly helps to keep
2581 			 * kvm_clock stable after CPU hotplug
2582 			 */
2583 			synchronizing = true;
2584 		} else {
2585 			u64 tsc_exp = kvm->arch.last_tsc_write +
2586 						nsec_to_cycles(vcpu, elapsed);
2587 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2588 			/*
2589 			 * Special case: TSC write with a small delta (1 second)
2590 			 * of virtual cycle time against real time is
2591 			 * interpreted as an attempt to synchronize the CPU.
2592 			 */
2593 			synchronizing = data < tsc_exp + tsc_hz &&
2594 					data + tsc_hz > tsc_exp;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2600 	 * TSC, we add elapsed time in this computation.  We could let the
2601 	 * compensation code attempt to catch up if we fall behind, but
2602 	 * it's better to try to match offsets from the beginning.
2603          */
2604 	if (synchronizing &&
2605 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2606 		if (!kvm_check_tsc_unstable()) {
2607 			offset = kvm->arch.cur_tsc_offset;
2608 		} else {
2609 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2610 			data += delta;
2611 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2612 		}
2613 		matched = true;
2614 	}
2615 
2616 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2617 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2618 }
2619 
2620 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2621 					   s64 adjustment)
2622 {
2623 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2624 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2625 }
2626 
2627 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2628 {
2629 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2630 		WARN_ON(adjustment < 0);
2631 	adjustment = kvm_scale_tsc((u64) adjustment,
2632 				   vcpu->arch.l1_tsc_scaling_ratio);
2633 	adjust_tsc_offset_guest(vcpu, adjustment);
2634 }
2635 
2636 #ifdef CONFIG_X86_64
2637 
2638 static u64 read_tsc(void)
2639 {
2640 	u64 ret = (u64)rdtsc_ordered();
2641 	u64 last = pvclock_gtod_data.clock.cycle_last;
2642 
2643 	if (likely(ret >= last))
2644 		return ret;
2645 
2646 	/*
2647 	 * GCC likes to generate cmov here, but this branch is extremely
2648 	 * predictable (it's just a function of time and the likely is
2649 	 * very likely) and there's a data dependence, so force GCC
2650 	 * to generate a branch instead.  I don't barrier() because
2651 	 * we don't actually need a barrier, and if this function
2652 	 * ever gets inlined it will generate worse code.
2653 	 */
2654 	asm volatile ("");
2655 	return last;
2656 }
2657 
2658 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2659 			  int *mode)
2660 {
2661 	long v;
2662 	u64 tsc_pg_val;
2663 
2664 	switch (clock->vclock_mode) {
2665 	case VDSO_CLOCKMODE_HVCLOCK:
2666 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2667 						  tsc_timestamp);
2668 		if (tsc_pg_val != U64_MAX) {
2669 			/* TSC page valid */
2670 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2671 			v = (tsc_pg_val - clock->cycle_last) &
2672 				clock->mask;
2673 		} else {
2674 			/* TSC page invalid */
2675 			*mode = VDSO_CLOCKMODE_NONE;
2676 		}
2677 		break;
2678 	case VDSO_CLOCKMODE_TSC:
2679 		*mode = VDSO_CLOCKMODE_TSC;
2680 		*tsc_timestamp = read_tsc();
2681 		v = (*tsc_timestamp - clock->cycle_last) &
2682 			clock->mask;
2683 		break;
2684 	default:
2685 		*mode = VDSO_CLOCKMODE_NONE;
2686 	}
2687 
2688 	if (*mode == VDSO_CLOCKMODE_NONE)
2689 		*tsc_timestamp = v = 0;
2690 
2691 	return v * clock->mult;
2692 }
2693 
2694 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2695 {
2696 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2697 	unsigned long seq;
2698 	int mode;
2699 	u64 ns;
2700 
2701 	do {
2702 		seq = read_seqcount_begin(&gtod->seq);
2703 		ns = gtod->raw_clock.base_cycles;
2704 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2705 		ns >>= gtod->raw_clock.shift;
2706 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2707 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2708 	*t = ns;
2709 
2710 	return mode;
2711 }
2712 
2713 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2714 {
2715 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2716 	unsigned long seq;
2717 	int mode;
2718 	u64 ns;
2719 
2720 	do {
2721 		seq = read_seqcount_begin(&gtod->seq);
2722 		ts->tv_sec = gtod->wall_time_sec;
2723 		ns = gtod->clock.base_cycles;
2724 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2725 		ns >>= gtod->clock.shift;
2726 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2727 
2728 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2729 	ts->tv_nsec = ns;
2730 
2731 	return mode;
2732 }
2733 
2734 /* returns true if host is using TSC based clocksource */
2735 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2736 {
2737 	/* checked again under seqlock below */
2738 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2739 		return false;
2740 
2741 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2742 						      tsc_timestamp));
2743 }
2744 
2745 /* returns true if host is using TSC based clocksource */
2746 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2747 					   u64 *tsc_timestamp)
2748 {
2749 	/* checked again under seqlock below */
2750 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2751 		return false;
2752 
2753 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2754 }
2755 #endif
2756 
2757 /*
2758  *
2759  * Assuming a stable TSC across physical CPUS, and a stable TSC
2760  * across virtual CPUs, the following condition is possible.
2761  * Each numbered line represents an event visible to both
2762  * CPUs at the next numbered event.
2763  *
2764  * "timespecX" represents host monotonic time. "tscX" represents
2765  * RDTSC value.
2766  *
2767  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2768  *
2769  * 1.  read timespec0,tsc0
2770  * 2.					| timespec1 = timespec0 + N
2771  * 					| tsc1 = tsc0 + M
2772  * 3. transition to guest		| transition to guest
2773  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2774  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2775  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2776  *
2777  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2778  *
2779  * 	- ret0 < ret1
2780  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2781  *		...
2782  *	- 0 < N - M => M < N
2783  *
2784  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2785  * always the case (the difference between two distinct xtime instances
2786  * might be smaller then the difference between corresponding TSC reads,
2787  * when updating guest vcpus pvclock areas).
2788  *
2789  * To avoid that problem, do not allow visibility of distinct
2790  * system_timestamp/tsc_timestamp values simultaneously: use a master
2791  * copy of host monotonic time values. Update that master copy
2792  * in lockstep.
2793  *
2794  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2795  *
2796  */
2797 
2798 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2799 {
2800 #ifdef CONFIG_X86_64
2801 	struct kvm_arch *ka = &kvm->arch;
2802 	int vclock_mode;
2803 	bool host_tsc_clocksource, vcpus_matched;
2804 
2805 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2806 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2807 			atomic_read(&kvm->online_vcpus));
2808 
2809 	/*
2810 	 * If the host uses TSC clock, then passthrough TSC as stable
2811 	 * to the guest.
2812 	 */
2813 	host_tsc_clocksource = kvm_get_time_and_clockread(
2814 					&ka->master_kernel_ns,
2815 					&ka->master_cycle_now);
2816 
2817 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2818 				&& !ka->backwards_tsc_observed
2819 				&& !ka->boot_vcpu_runs_old_kvmclock;
2820 
2821 	if (ka->use_master_clock)
2822 		atomic_set(&kvm_guest_has_master_clock, 1);
2823 
2824 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2825 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2826 					vcpus_matched);
2827 #endif
2828 }
2829 
2830 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2831 {
2832 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2833 }
2834 
2835 static void __kvm_start_pvclock_update(struct kvm *kvm)
2836 {
2837 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2838 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2839 }
2840 
2841 static void kvm_start_pvclock_update(struct kvm *kvm)
2842 {
2843 	kvm_make_mclock_inprogress_request(kvm);
2844 
2845 	/* no guest entries from this point */
2846 	__kvm_start_pvclock_update(kvm);
2847 }
2848 
2849 static void kvm_end_pvclock_update(struct kvm *kvm)
2850 {
2851 	struct kvm_arch *ka = &kvm->arch;
2852 	struct kvm_vcpu *vcpu;
2853 	unsigned long i;
2854 
2855 	write_seqcount_end(&ka->pvclock_sc);
2856 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2857 	kvm_for_each_vcpu(i, vcpu, kvm)
2858 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2859 
2860 	/* guest entries allowed */
2861 	kvm_for_each_vcpu(i, vcpu, kvm)
2862 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2863 }
2864 
2865 static void kvm_update_masterclock(struct kvm *kvm)
2866 {
2867 	kvm_hv_invalidate_tsc_page(kvm);
2868 	kvm_start_pvclock_update(kvm);
2869 	pvclock_update_vm_gtod_copy(kvm);
2870 	kvm_end_pvclock_update(kvm);
2871 }
2872 
2873 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2874 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2875 {
2876 	struct kvm_arch *ka = &kvm->arch;
2877 	struct pvclock_vcpu_time_info hv_clock;
2878 
2879 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2880 	get_cpu();
2881 
2882 	data->flags = 0;
2883 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2884 #ifdef CONFIG_X86_64
2885 		struct timespec64 ts;
2886 
2887 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2888 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2889 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2890 		} else
2891 #endif
2892 		data->host_tsc = rdtsc();
2893 
2894 		data->flags |= KVM_CLOCK_TSC_STABLE;
2895 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2896 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2897 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2898 				   &hv_clock.tsc_shift,
2899 				   &hv_clock.tsc_to_system_mul);
2900 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2901 	} else {
2902 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2903 	}
2904 
2905 	put_cpu();
2906 }
2907 
2908 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2909 {
2910 	struct kvm_arch *ka = &kvm->arch;
2911 	unsigned seq;
2912 
2913 	do {
2914 		seq = read_seqcount_begin(&ka->pvclock_sc);
2915 		__get_kvmclock(kvm, data);
2916 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2917 }
2918 
2919 u64 get_kvmclock_ns(struct kvm *kvm)
2920 {
2921 	struct kvm_clock_data data;
2922 
2923 	get_kvmclock(kvm, &data);
2924 	return data.clock;
2925 }
2926 
2927 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2928 				   struct gfn_to_hva_cache *cache,
2929 				   unsigned int offset)
2930 {
2931 	struct kvm_vcpu_arch *vcpu = &v->arch;
2932 	struct pvclock_vcpu_time_info guest_hv_clock;
2933 
2934 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2935 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2936 		return;
2937 
2938 	/* This VCPU is paused, but it's legal for a guest to read another
2939 	 * VCPU's kvmclock, so we really have to follow the specification where
2940 	 * it says that version is odd if data is being modified, and even after
2941 	 * it is consistent.
2942 	 *
2943 	 * Version field updates must be kept separate.  This is because
2944 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2945 	 * writes within a string instruction are weakly ordered.  So there
2946 	 * are three writes overall.
2947 	 *
2948 	 * As a small optimization, only write the version field in the first
2949 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2950 	 * version field is the first in the struct.
2951 	 */
2952 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2953 
2954 	if (guest_hv_clock.version & 1)
2955 		++guest_hv_clock.version;  /* first time write, random junk */
2956 
2957 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2958 	kvm_write_guest_offset_cached(v->kvm, cache,
2959 				      &vcpu->hv_clock, offset,
2960 				      sizeof(vcpu->hv_clock.version));
2961 
2962 	smp_wmb();
2963 
2964 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2965 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2966 
2967 	if (vcpu->pvclock_set_guest_stopped_request) {
2968 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2969 		vcpu->pvclock_set_guest_stopped_request = false;
2970 	}
2971 
2972 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2973 
2974 	kvm_write_guest_offset_cached(v->kvm, cache,
2975 				      &vcpu->hv_clock, offset,
2976 				      sizeof(vcpu->hv_clock));
2977 
2978 	smp_wmb();
2979 
2980 	vcpu->hv_clock.version++;
2981 	kvm_write_guest_offset_cached(v->kvm, cache,
2982 				     &vcpu->hv_clock, offset,
2983 				     sizeof(vcpu->hv_clock.version));
2984 }
2985 
2986 static int kvm_guest_time_update(struct kvm_vcpu *v)
2987 {
2988 	unsigned long flags, tgt_tsc_khz;
2989 	unsigned seq;
2990 	struct kvm_vcpu_arch *vcpu = &v->arch;
2991 	struct kvm_arch *ka = &v->kvm->arch;
2992 	s64 kernel_ns;
2993 	u64 tsc_timestamp, host_tsc;
2994 	u8 pvclock_flags;
2995 	bool use_master_clock;
2996 
2997 	kernel_ns = 0;
2998 	host_tsc = 0;
2999 
3000 	/*
3001 	 * If the host uses TSC clock, then passthrough TSC as stable
3002 	 * to the guest.
3003 	 */
3004 	do {
3005 		seq = read_seqcount_begin(&ka->pvclock_sc);
3006 		use_master_clock = ka->use_master_clock;
3007 		if (use_master_clock) {
3008 			host_tsc = ka->master_cycle_now;
3009 			kernel_ns = ka->master_kernel_ns;
3010 		}
3011 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3012 
3013 	/* Keep irq disabled to prevent changes to the clock */
3014 	local_irq_save(flags);
3015 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3016 	if (unlikely(tgt_tsc_khz == 0)) {
3017 		local_irq_restore(flags);
3018 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3019 		return 1;
3020 	}
3021 	if (!use_master_clock) {
3022 		host_tsc = rdtsc();
3023 		kernel_ns = get_kvmclock_base_ns();
3024 	}
3025 
3026 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3027 
3028 	/*
3029 	 * We may have to catch up the TSC to match elapsed wall clock
3030 	 * time for two reasons, even if kvmclock is used.
3031 	 *   1) CPU could have been running below the maximum TSC rate
3032 	 *   2) Broken TSC compensation resets the base at each VCPU
3033 	 *      entry to avoid unknown leaps of TSC even when running
3034 	 *      again on the same CPU.  This may cause apparent elapsed
3035 	 *      time to disappear, and the guest to stand still or run
3036 	 *	very slowly.
3037 	 */
3038 	if (vcpu->tsc_catchup) {
3039 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3040 		if (tsc > tsc_timestamp) {
3041 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3042 			tsc_timestamp = tsc;
3043 		}
3044 	}
3045 
3046 	local_irq_restore(flags);
3047 
3048 	/* With all the info we got, fill in the values */
3049 
3050 	if (kvm_has_tsc_control)
3051 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3052 					    v->arch.l1_tsc_scaling_ratio);
3053 
3054 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3055 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3056 				   &vcpu->hv_clock.tsc_shift,
3057 				   &vcpu->hv_clock.tsc_to_system_mul);
3058 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3059 	}
3060 
3061 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3062 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3063 	vcpu->last_guest_tsc = tsc_timestamp;
3064 
3065 	/* If the host uses TSC clocksource, then it is stable */
3066 	pvclock_flags = 0;
3067 	if (use_master_clock)
3068 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3069 
3070 	vcpu->hv_clock.flags = pvclock_flags;
3071 
3072 	if (vcpu->pv_time_enabled)
3073 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3074 	if (vcpu->xen.vcpu_info_set)
3075 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3076 				       offsetof(struct compat_vcpu_info, time));
3077 	if (vcpu->xen.vcpu_time_info_set)
3078 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3079 	if (!v->vcpu_idx)
3080 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3081 	return 0;
3082 }
3083 
3084 /*
3085  * kvmclock updates which are isolated to a given vcpu, such as
3086  * vcpu->cpu migration, should not allow system_timestamp from
3087  * the rest of the vcpus to remain static. Otherwise ntp frequency
3088  * correction applies to one vcpu's system_timestamp but not
3089  * the others.
3090  *
3091  * So in those cases, request a kvmclock update for all vcpus.
3092  * We need to rate-limit these requests though, as they can
3093  * considerably slow guests that have a large number of vcpus.
3094  * The time for a remote vcpu to update its kvmclock is bound
3095  * by the delay we use to rate-limit the updates.
3096  */
3097 
3098 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3099 
3100 static void kvmclock_update_fn(struct work_struct *work)
3101 {
3102 	unsigned long i;
3103 	struct delayed_work *dwork = to_delayed_work(work);
3104 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3105 					   kvmclock_update_work);
3106 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3107 	struct kvm_vcpu *vcpu;
3108 
3109 	kvm_for_each_vcpu(i, vcpu, kvm) {
3110 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3111 		kvm_vcpu_kick(vcpu);
3112 	}
3113 }
3114 
3115 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3116 {
3117 	struct kvm *kvm = v->kvm;
3118 
3119 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3120 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3121 					KVMCLOCK_UPDATE_DELAY);
3122 }
3123 
3124 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3125 
3126 static void kvmclock_sync_fn(struct work_struct *work)
3127 {
3128 	struct delayed_work *dwork = to_delayed_work(work);
3129 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3130 					   kvmclock_sync_work);
3131 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3132 
3133 	if (!kvmclock_periodic_sync)
3134 		return;
3135 
3136 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3137 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3138 					KVMCLOCK_SYNC_PERIOD);
3139 }
3140 
3141 /*
3142  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3143  */
3144 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3145 {
3146 	/* McStatusWrEn enabled? */
3147 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3148 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3149 
3150 	return false;
3151 }
3152 
3153 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3154 {
3155 	u64 mcg_cap = vcpu->arch.mcg_cap;
3156 	unsigned bank_num = mcg_cap & 0xff;
3157 	u32 msr = msr_info->index;
3158 	u64 data = msr_info->data;
3159 
3160 	switch (msr) {
3161 	case MSR_IA32_MCG_STATUS:
3162 		vcpu->arch.mcg_status = data;
3163 		break;
3164 	case MSR_IA32_MCG_CTL:
3165 		if (!(mcg_cap & MCG_CTL_P) &&
3166 		    (data || !msr_info->host_initiated))
3167 			return 1;
3168 		if (data != 0 && data != ~(u64)0)
3169 			return 1;
3170 		vcpu->arch.mcg_ctl = data;
3171 		break;
3172 	default:
3173 		if (msr >= MSR_IA32_MC0_CTL &&
3174 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3175 			u32 offset = array_index_nospec(
3176 				msr - MSR_IA32_MC0_CTL,
3177 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3178 
3179 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3180 			 * some Linux kernels though clear bit 10 in bank 4 to
3181 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3182 			 * this to avoid an uncatched #GP in the guest
3183 			 */
3184 			if ((offset & 0x3) == 0 &&
3185 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3186 				return -1;
3187 
3188 			/* MCi_STATUS */
3189 			if (!msr_info->host_initiated &&
3190 			    (offset & 0x3) == 1 && data != 0) {
3191 				if (!can_set_mci_status(vcpu))
3192 					return -1;
3193 			}
3194 
3195 			vcpu->arch.mce_banks[offset] = data;
3196 			break;
3197 		}
3198 		return 1;
3199 	}
3200 	return 0;
3201 }
3202 
3203 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3204 {
3205 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3206 
3207 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3208 }
3209 
3210 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3211 {
3212 	gpa_t gpa = data & ~0x3f;
3213 
3214 	/* Bits 4:5 are reserved, Should be zero */
3215 	if (data & 0x30)
3216 		return 1;
3217 
3218 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3219 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3220 		return 1;
3221 
3222 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3223 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3224 		return 1;
3225 
3226 	if (!lapic_in_kernel(vcpu))
3227 		return data ? 1 : 0;
3228 
3229 	vcpu->arch.apf.msr_en_val = data;
3230 
3231 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3232 		kvm_clear_async_pf_completion_queue(vcpu);
3233 		kvm_async_pf_hash_reset(vcpu);
3234 		return 0;
3235 	}
3236 
3237 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3238 					sizeof(u64)))
3239 		return 1;
3240 
3241 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3242 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3243 
3244 	kvm_async_pf_wakeup_all(vcpu);
3245 
3246 	return 0;
3247 }
3248 
3249 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3250 {
3251 	/* Bits 8-63 are reserved */
3252 	if (data >> 8)
3253 		return 1;
3254 
3255 	if (!lapic_in_kernel(vcpu))
3256 		return 1;
3257 
3258 	vcpu->arch.apf.msr_int_val = data;
3259 
3260 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3261 
3262 	return 0;
3263 }
3264 
3265 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3266 {
3267 	vcpu->arch.pv_time_enabled = false;
3268 	vcpu->arch.time = 0;
3269 }
3270 
3271 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3272 {
3273 	++vcpu->stat.tlb_flush;
3274 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3275 }
3276 
3277 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3278 {
3279 	++vcpu->stat.tlb_flush;
3280 
3281 	if (!tdp_enabled) {
3282 		/*
3283 		 * A TLB flush on behalf of the guest is equivalent to
3284 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3285 		 * a forced sync of the shadow page tables.  Ensure all the
3286 		 * roots are synced and the guest TLB in hardware is clean.
3287 		 */
3288 		kvm_mmu_sync_roots(vcpu);
3289 		kvm_mmu_sync_prev_roots(vcpu);
3290 	}
3291 
3292 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3293 }
3294 
3295 
3296 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3297 {
3298 	++vcpu->stat.tlb_flush;
3299 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3300 }
3301 
3302 /*
3303  * Service "local" TLB flush requests, which are specific to the current MMU
3304  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3305  * TLB flushes that are targeted at an MMU context also need to be serviced
3306  * prior before nested VM-Enter/VM-Exit.
3307  */
3308 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3309 {
3310 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3311 		kvm_vcpu_flush_tlb_current(vcpu);
3312 
3313 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3314 		kvm_vcpu_flush_tlb_guest(vcpu);
3315 }
3316 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3317 
3318 static void record_steal_time(struct kvm_vcpu *vcpu)
3319 {
3320 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3321 	struct kvm_steal_time __user *st;
3322 	struct kvm_memslots *slots;
3323 	u64 steal;
3324 	u32 version;
3325 
3326 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3327 		kvm_xen_runstate_set_running(vcpu);
3328 		return;
3329 	}
3330 
3331 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3332 		return;
3333 
3334 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3335 		return;
3336 
3337 	slots = kvm_memslots(vcpu->kvm);
3338 
3339 	if (unlikely(slots->generation != ghc->generation ||
3340 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3341 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3342 
3343 		/* We rely on the fact that it fits in a single page. */
3344 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3345 
3346 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3347 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3348 			return;
3349 	}
3350 
3351 	st = (struct kvm_steal_time __user *)ghc->hva;
3352 	/*
3353 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3354 	 * expensive IPIs.
3355 	 */
3356 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3357 		u8 st_preempted = 0;
3358 		int err = -EFAULT;
3359 
3360 		if (!user_access_begin(st, sizeof(*st)))
3361 			return;
3362 
3363 		asm volatile("1: xchgb %0, %2\n"
3364 			     "xor %1, %1\n"
3365 			     "2:\n"
3366 			     _ASM_EXTABLE_UA(1b, 2b)
3367 			     : "+q" (st_preempted),
3368 			       "+&r" (err),
3369 			       "+m" (st->preempted));
3370 		if (err)
3371 			goto out;
3372 
3373 		user_access_end();
3374 
3375 		vcpu->arch.st.preempted = 0;
3376 
3377 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3378 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3379 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3380 			kvm_vcpu_flush_tlb_guest(vcpu);
3381 
3382 		if (!user_access_begin(st, sizeof(*st)))
3383 			goto dirty;
3384 	} else {
3385 		if (!user_access_begin(st, sizeof(*st)))
3386 			return;
3387 
3388 		unsafe_put_user(0, &st->preempted, out);
3389 		vcpu->arch.st.preempted = 0;
3390 	}
3391 
3392 	unsafe_get_user(version, &st->version, out);
3393 	if (version & 1)
3394 		version += 1;  /* first time write, random junk */
3395 
3396 	version += 1;
3397 	unsafe_put_user(version, &st->version, out);
3398 
3399 	smp_wmb();
3400 
3401 	unsafe_get_user(steal, &st->steal, out);
3402 	steal += current->sched_info.run_delay -
3403 		vcpu->arch.st.last_steal;
3404 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3405 	unsafe_put_user(steal, &st->steal, out);
3406 
3407 	version += 1;
3408 	unsafe_put_user(version, &st->version, out);
3409 
3410  out:
3411 	user_access_end();
3412  dirty:
3413 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3414 }
3415 
3416 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3417 {
3418 	bool pr = false;
3419 	u32 msr = msr_info->index;
3420 	u64 data = msr_info->data;
3421 
3422 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3423 		return kvm_xen_write_hypercall_page(vcpu, data);
3424 
3425 	switch (msr) {
3426 	case MSR_AMD64_NB_CFG:
3427 	case MSR_IA32_UCODE_WRITE:
3428 	case MSR_VM_HSAVE_PA:
3429 	case MSR_AMD64_PATCH_LOADER:
3430 	case MSR_AMD64_BU_CFG2:
3431 	case MSR_AMD64_DC_CFG:
3432 	case MSR_F15H_EX_CFG:
3433 		break;
3434 
3435 	case MSR_IA32_UCODE_REV:
3436 		if (msr_info->host_initiated)
3437 			vcpu->arch.microcode_version = data;
3438 		break;
3439 	case MSR_IA32_ARCH_CAPABILITIES:
3440 		if (!msr_info->host_initiated)
3441 			return 1;
3442 		vcpu->arch.arch_capabilities = data;
3443 		break;
3444 	case MSR_IA32_PERF_CAPABILITIES: {
3445 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3446 
3447 		if (!msr_info->host_initiated)
3448 			return 1;
3449 		if (kvm_get_msr_feature(&msr_ent))
3450 			return 1;
3451 		if (data & ~msr_ent.data)
3452 			return 1;
3453 
3454 		vcpu->arch.perf_capabilities = data;
3455 
3456 		return 0;
3457 		}
3458 	case MSR_EFER:
3459 		return set_efer(vcpu, msr_info);
3460 	case MSR_K7_HWCR:
3461 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3462 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3463 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3464 
3465 		/* Handle McStatusWrEn */
3466 		if (data == BIT_ULL(18)) {
3467 			vcpu->arch.msr_hwcr = data;
3468 		} else if (data != 0) {
3469 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3470 				    data);
3471 			return 1;
3472 		}
3473 		break;
3474 	case MSR_FAM10H_MMIO_CONF_BASE:
3475 		if (data != 0) {
3476 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3477 				    "0x%llx\n", data);
3478 			return 1;
3479 		}
3480 		break;
3481 	case 0x200 ... 0x2ff:
3482 		return kvm_mtrr_set_msr(vcpu, msr, data);
3483 	case MSR_IA32_APICBASE:
3484 		return kvm_set_apic_base(vcpu, msr_info);
3485 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3486 		return kvm_x2apic_msr_write(vcpu, msr, data);
3487 	case MSR_IA32_TSC_DEADLINE:
3488 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3489 		break;
3490 	case MSR_IA32_TSC_ADJUST:
3491 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3492 			if (!msr_info->host_initiated) {
3493 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3494 				adjust_tsc_offset_guest(vcpu, adj);
3495 				/* Before back to guest, tsc_timestamp must be adjusted
3496 				 * as well, otherwise guest's percpu pvclock time could jump.
3497 				 */
3498 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3499 			}
3500 			vcpu->arch.ia32_tsc_adjust_msr = data;
3501 		}
3502 		break;
3503 	case MSR_IA32_MISC_ENABLE:
3504 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3505 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3506 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3507 				return 1;
3508 			vcpu->arch.ia32_misc_enable_msr = data;
3509 			kvm_update_cpuid_runtime(vcpu);
3510 		} else {
3511 			vcpu->arch.ia32_misc_enable_msr = data;
3512 		}
3513 		break;
3514 	case MSR_IA32_SMBASE:
3515 		if (!msr_info->host_initiated)
3516 			return 1;
3517 		vcpu->arch.smbase = data;
3518 		break;
3519 	case MSR_IA32_POWER_CTL:
3520 		vcpu->arch.msr_ia32_power_ctl = data;
3521 		break;
3522 	case MSR_IA32_TSC:
3523 		if (msr_info->host_initiated) {
3524 			kvm_synchronize_tsc(vcpu, data);
3525 		} else {
3526 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3527 			adjust_tsc_offset_guest(vcpu, adj);
3528 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3529 		}
3530 		break;
3531 	case MSR_IA32_XSS:
3532 		if (!msr_info->host_initiated &&
3533 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3534 			return 1;
3535 		/*
3536 		 * KVM supports exposing PT to the guest, but does not support
3537 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3538 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3539 		 */
3540 		if (data & ~supported_xss)
3541 			return 1;
3542 		vcpu->arch.ia32_xss = data;
3543 		kvm_update_cpuid_runtime(vcpu);
3544 		break;
3545 	case MSR_SMI_COUNT:
3546 		if (!msr_info->host_initiated)
3547 			return 1;
3548 		vcpu->arch.smi_count = data;
3549 		break;
3550 	case MSR_KVM_WALL_CLOCK_NEW:
3551 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3552 			return 1;
3553 
3554 		vcpu->kvm->arch.wall_clock = data;
3555 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3556 		break;
3557 	case MSR_KVM_WALL_CLOCK:
3558 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3559 			return 1;
3560 
3561 		vcpu->kvm->arch.wall_clock = data;
3562 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3563 		break;
3564 	case MSR_KVM_SYSTEM_TIME_NEW:
3565 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3566 			return 1;
3567 
3568 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3569 		break;
3570 	case MSR_KVM_SYSTEM_TIME:
3571 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3572 			return 1;
3573 
3574 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3575 		break;
3576 	case MSR_KVM_ASYNC_PF_EN:
3577 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3578 			return 1;
3579 
3580 		if (kvm_pv_enable_async_pf(vcpu, data))
3581 			return 1;
3582 		break;
3583 	case MSR_KVM_ASYNC_PF_INT:
3584 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3585 			return 1;
3586 
3587 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3588 			return 1;
3589 		break;
3590 	case MSR_KVM_ASYNC_PF_ACK:
3591 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3592 			return 1;
3593 		if (data & 0x1) {
3594 			vcpu->arch.apf.pageready_pending = false;
3595 			kvm_check_async_pf_completion(vcpu);
3596 		}
3597 		break;
3598 	case MSR_KVM_STEAL_TIME:
3599 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3600 			return 1;
3601 
3602 		if (unlikely(!sched_info_on()))
3603 			return 1;
3604 
3605 		if (data & KVM_STEAL_RESERVED_MASK)
3606 			return 1;
3607 
3608 		vcpu->arch.st.msr_val = data;
3609 
3610 		if (!(data & KVM_MSR_ENABLED))
3611 			break;
3612 
3613 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3614 
3615 		break;
3616 	case MSR_KVM_PV_EOI_EN:
3617 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3618 			return 1;
3619 
3620 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3621 			return 1;
3622 		break;
3623 
3624 	case MSR_KVM_POLL_CONTROL:
3625 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3626 			return 1;
3627 
3628 		/* only enable bit supported */
3629 		if (data & (-1ULL << 1))
3630 			return 1;
3631 
3632 		vcpu->arch.msr_kvm_poll_control = data;
3633 		break;
3634 
3635 	case MSR_IA32_MCG_CTL:
3636 	case MSR_IA32_MCG_STATUS:
3637 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3638 		return set_msr_mce(vcpu, msr_info);
3639 
3640 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3641 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3642 		pr = true;
3643 		fallthrough;
3644 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3645 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3646 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3647 			return kvm_pmu_set_msr(vcpu, msr_info);
3648 
3649 		if (pr || data != 0)
3650 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3651 				    "0x%x data 0x%llx\n", msr, data);
3652 		break;
3653 	case MSR_K7_CLK_CTL:
3654 		/*
3655 		 * Ignore all writes to this no longer documented MSR.
3656 		 * Writes are only relevant for old K7 processors,
3657 		 * all pre-dating SVM, but a recommended workaround from
3658 		 * AMD for these chips. It is possible to specify the
3659 		 * affected processor models on the command line, hence
3660 		 * the need to ignore the workaround.
3661 		 */
3662 		break;
3663 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3664 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3665 	case HV_X64_MSR_SYNDBG_OPTIONS:
3666 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3667 	case HV_X64_MSR_CRASH_CTL:
3668 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3669 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3670 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3671 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3672 		return kvm_hv_set_msr_common(vcpu, msr, data,
3673 					     msr_info->host_initiated);
3674 	case MSR_IA32_BBL_CR_CTL3:
3675 		/* Drop writes to this legacy MSR -- see rdmsr
3676 		 * counterpart for further detail.
3677 		 */
3678 		if (report_ignored_msrs)
3679 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3680 				msr, data);
3681 		break;
3682 	case MSR_AMD64_OSVW_ID_LENGTH:
3683 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3684 			return 1;
3685 		vcpu->arch.osvw.length = data;
3686 		break;
3687 	case MSR_AMD64_OSVW_STATUS:
3688 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3689 			return 1;
3690 		vcpu->arch.osvw.status = data;
3691 		break;
3692 	case MSR_PLATFORM_INFO:
3693 		if (!msr_info->host_initiated ||
3694 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3695 		     cpuid_fault_enabled(vcpu)))
3696 			return 1;
3697 		vcpu->arch.msr_platform_info = data;
3698 		break;
3699 	case MSR_MISC_FEATURES_ENABLES:
3700 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3701 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3702 		     !supports_cpuid_fault(vcpu)))
3703 			return 1;
3704 		vcpu->arch.msr_misc_features_enables = data;
3705 		break;
3706 #ifdef CONFIG_X86_64
3707 	case MSR_IA32_XFD:
3708 		if (!msr_info->host_initiated &&
3709 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3710 			return 1;
3711 
3712 		if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3713 			     vcpu->arch.guest_supported_xcr0))
3714 			return 1;
3715 
3716 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3717 		break;
3718 	case MSR_IA32_XFD_ERR:
3719 		if (!msr_info->host_initiated &&
3720 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3721 			return 1;
3722 
3723 		if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3724 			     vcpu->arch.guest_supported_xcr0))
3725 			return 1;
3726 
3727 		vcpu->arch.guest_fpu.xfd_err = data;
3728 		break;
3729 #endif
3730 	default:
3731 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3732 			return kvm_pmu_set_msr(vcpu, msr_info);
3733 		return KVM_MSR_RET_INVALID;
3734 	}
3735 	return 0;
3736 }
3737 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3738 
3739 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3740 {
3741 	u64 data;
3742 	u64 mcg_cap = vcpu->arch.mcg_cap;
3743 	unsigned bank_num = mcg_cap & 0xff;
3744 
3745 	switch (msr) {
3746 	case MSR_IA32_P5_MC_ADDR:
3747 	case MSR_IA32_P5_MC_TYPE:
3748 		data = 0;
3749 		break;
3750 	case MSR_IA32_MCG_CAP:
3751 		data = vcpu->arch.mcg_cap;
3752 		break;
3753 	case MSR_IA32_MCG_CTL:
3754 		if (!(mcg_cap & MCG_CTL_P) && !host)
3755 			return 1;
3756 		data = vcpu->arch.mcg_ctl;
3757 		break;
3758 	case MSR_IA32_MCG_STATUS:
3759 		data = vcpu->arch.mcg_status;
3760 		break;
3761 	default:
3762 		if (msr >= MSR_IA32_MC0_CTL &&
3763 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3764 			u32 offset = array_index_nospec(
3765 				msr - MSR_IA32_MC0_CTL,
3766 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3767 
3768 			data = vcpu->arch.mce_banks[offset];
3769 			break;
3770 		}
3771 		return 1;
3772 	}
3773 	*pdata = data;
3774 	return 0;
3775 }
3776 
3777 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3778 {
3779 	switch (msr_info->index) {
3780 	case MSR_IA32_PLATFORM_ID:
3781 	case MSR_IA32_EBL_CR_POWERON:
3782 	case MSR_IA32_LASTBRANCHFROMIP:
3783 	case MSR_IA32_LASTBRANCHTOIP:
3784 	case MSR_IA32_LASTINTFROMIP:
3785 	case MSR_IA32_LASTINTTOIP:
3786 	case MSR_AMD64_SYSCFG:
3787 	case MSR_K8_TSEG_ADDR:
3788 	case MSR_K8_TSEG_MASK:
3789 	case MSR_VM_HSAVE_PA:
3790 	case MSR_K8_INT_PENDING_MSG:
3791 	case MSR_AMD64_NB_CFG:
3792 	case MSR_FAM10H_MMIO_CONF_BASE:
3793 	case MSR_AMD64_BU_CFG2:
3794 	case MSR_IA32_PERF_CTL:
3795 	case MSR_AMD64_DC_CFG:
3796 	case MSR_F15H_EX_CFG:
3797 	/*
3798 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3799 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3800 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3801 	 * so for existing CPU-specific MSRs.
3802 	 */
3803 	case MSR_RAPL_POWER_UNIT:
3804 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3805 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3806 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3807 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3808 		msr_info->data = 0;
3809 		break;
3810 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3811 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3812 			return kvm_pmu_get_msr(vcpu, msr_info);
3813 		if (!msr_info->host_initiated)
3814 			return 1;
3815 		msr_info->data = 0;
3816 		break;
3817 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3818 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3819 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3820 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3821 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3822 			return kvm_pmu_get_msr(vcpu, msr_info);
3823 		msr_info->data = 0;
3824 		break;
3825 	case MSR_IA32_UCODE_REV:
3826 		msr_info->data = vcpu->arch.microcode_version;
3827 		break;
3828 	case MSR_IA32_ARCH_CAPABILITIES:
3829 		if (!msr_info->host_initiated &&
3830 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3831 			return 1;
3832 		msr_info->data = vcpu->arch.arch_capabilities;
3833 		break;
3834 	case MSR_IA32_PERF_CAPABILITIES:
3835 		if (!msr_info->host_initiated &&
3836 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3837 			return 1;
3838 		msr_info->data = vcpu->arch.perf_capabilities;
3839 		break;
3840 	case MSR_IA32_POWER_CTL:
3841 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3842 		break;
3843 	case MSR_IA32_TSC: {
3844 		/*
3845 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3846 		 * even when not intercepted. AMD manual doesn't explicitly
3847 		 * state this but appears to behave the same.
3848 		 *
3849 		 * On userspace reads and writes, however, we unconditionally
3850 		 * return L1's TSC value to ensure backwards-compatible
3851 		 * behavior for migration.
3852 		 */
3853 		u64 offset, ratio;
3854 
3855 		if (msr_info->host_initiated) {
3856 			offset = vcpu->arch.l1_tsc_offset;
3857 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3858 		} else {
3859 			offset = vcpu->arch.tsc_offset;
3860 			ratio = vcpu->arch.tsc_scaling_ratio;
3861 		}
3862 
3863 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3864 		break;
3865 	}
3866 	case MSR_MTRRcap:
3867 	case 0x200 ... 0x2ff:
3868 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3869 	case 0xcd: /* fsb frequency */
3870 		msr_info->data = 3;
3871 		break;
3872 		/*
3873 		 * MSR_EBC_FREQUENCY_ID
3874 		 * Conservative value valid for even the basic CPU models.
3875 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3876 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3877 		 * and 266MHz for model 3, or 4. Set Core Clock
3878 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3879 		 * 31:24) even though these are only valid for CPU
3880 		 * models > 2, however guests may end up dividing or
3881 		 * multiplying by zero otherwise.
3882 		 */
3883 	case MSR_EBC_FREQUENCY_ID:
3884 		msr_info->data = 1 << 24;
3885 		break;
3886 	case MSR_IA32_APICBASE:
3887 		msr_info->data = kvm_get_apic_base(vcpu);
3888 		break;
3889 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3890 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3891 	case MSR_IA32_TSC_DEADLINE:
3892 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3893 		break;
3894 	case MSR_IA32_TSC_ADJUST:
3895 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3896 		break;
3897 	case MSR_IA32_MISC_ENABLE:
3898 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3899 		break;
3900 	case MSR_IA32_SMBASE:
3901 		if (!msr_info->host_initiated)
3902 			return 1;
3903 		msr_info->data = vcpu->arch.smbase;
3904 		break;
3905 	case MSR_SMI_COUNT:
3906 		msr_info->data = vcpu->arch.smi_count;
3907 		break;
3908 	case MSR_IA32_PERF_STATUS:
3909 		/* TSC increment by tick */
3910 		msr_info->data = 1000ULL;
3911 		/* CPU multiplier */
3912 		msr_info->data |= (((uint64_t)4ULL) << 40);
3913 		break;
3914 	case MSR_EFER:
3915 		msr_info->data = vcpu->arch.efer;
3916 		break;
3917 	case MSR_KVM_WALL_CLOCK:
3918 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3919 			return 1;
3920 
3921 		msr_info->data = vcpu->kvm->arch.wall_clock;
3922 		break;
3923 	case MSR_KVM_WALL_CLOCK_NEW:
3924 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3925 			return 1;
3926 
3927 		msr_info->data = vcpu->kvm->arch.wall_clock;
3928 		break;
3929 	case MSR_KVM_SYSTEM_TIME:
3930 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3931 			return 1;
3932 
3933 		msr_info->data = vcpu->arch.time;
3934 		break;
3935 	case MSR_KVM_SYSTEM_TIME_NEW:
3936 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3937 			return 1;
3938 
3939 		msr_info->data = vcpu->arch.time;
3940 		break;
3941 	case MSR_KVM_ASYNC_PF_EN:
3942 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3943 			return 1;
3944 
3945 		msr_info->data = vcpu->arch.apf.msr_en_val;
3946 		break;
3947 	case MSR_KVM_ASYNC_PF_INT:
3948 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3949 			return 1;
3950 
3951 		msr_info->data = vcpu->arch.apf.msr_int_val;
3952 		break;
3953 	case MSR_KVM_ASYNC_PF_ACK:
3954 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3955 			return 1;
3956 
3957 		msr_info->data = 0;
3958 		break;
3959 	case MSR_KVM_STEAL_TIME:
3960 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3961 			return 1;
3962 
3963 		msr_info->data = vcpu->arch.st.msr_val;
3964 		break;
3965 	case MSR_KVM_PV_EOI_EN:
3966 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3967 			return 1;
3968 
3969 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3970 		break;
3971 	case MSR_KVM_POLL_CONTROL:
3972 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3973 			return 1;
3974 
3975 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3976 		break;
3977 	case MSR_IA32_P5_MC_ADDR:
3978 	case MSR_IA32_P5_MC_TYPE:
3979 	case MSR_IA32_MCG_CAP:
3980 	case MSR_IA32_MCG_CTL:
3981 	case MSR_IA32_MCG_STATUS:
3982 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3983 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3984 				   msr_info->host_initiated);
3985 	case MSR_IA32_XSS:
3986 		if (!msr_info->host_initiated &&
3987 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3988 			return 1;
3989 		msr_info->data = vcpu->arch.ia32_xss;
3990 		break;
3991 	case MSR_K7_CLK_CTL:
3992 		/*
3993 		 * Provide expected ramp-up count for K7. All other
3994 		 * are set to zero, indicating minimum divisors for
3995 		 * every field.
3996 		 *
3997 		 * This prevents guest kernels on AMD host with CPU
3998 		 * type 6, model 8 and higher from exploding due to
3999 		 * the rdmsr failing.
4000 		 */
4001 		msr_info->data = 0x20000000;
4002 		break;
4003 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4004 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4005 	case HV_X64_MSR_SYNDBG_OPTIONS:
4006 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4007 	case HV_X64_MSR_CRASH_CTL:
4008 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4009 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4010 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4011 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4012 		return kvm_hv_get_msr_common(vcpu,
4013 					     msr_info->index, &msr_info->data,
4014 					     msr_info->host_initiated);
4015 	case MSR_IA32_BBL_CR_CTL3:
4016 		/* This legacy MSR exists but isn't fully documented in current
4017 		 * silicon.  It is however accessed by winxp in very narrow
4018 		 * scenarios where it sets bit #19, itself documented as
4019 		 * a "reserved" bit.  Best effort attempt to source coherent
4020 		 * read data here should the balance of the register be
4021 		 * interpreted by the guest:
4022 		 *
4023 		 * L2 cache control register 3: 64GB range, 256KB size,
4024 		 * enabled, latency 0x1, configured
4025 		 */
4026 		msr_info->data = 0xbe702111;
4027 		break;
4028 	case MSR_AMD64_OSVW_ID_LENGTH:
4029 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4030 			return 1;
4031 		msr_info->data = vcpu->arch.osvw.length;
4032 		break;
4033 	case MSR_AMD64_OSVW_STATUS:
4034 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4035 			return 1;
4036 		msr_info->data = vcpu->arch.osvw.status;
4037 		break;
4038 	case MSR_PLATFORM_INFO:
4039 		if (!msr_info->host_initiated &&
4040 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4041 			return 1;
4042 		msr_info->data = vcpu->arch.msr_platform_info;
4043 		break;
4044 	case MSR_MISC_FEATURES_ENABLES:
4045 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4046 		break;
4047 	case MSR_K7_HWCR:
4048 		msr_info->data = vcpu->arch.msr_hwcr;
4049 		break;
4050 #ifdef CONFIG_X86_64
4051 	case MSR_IA32_XFD:
4052 		if (!msr_info->host_initiated &&
4053 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4054 			return 1;
4055 
4056 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4057 		break;
4058 	case MSR_IA32_XFD_ERR:
4059 		if (!msr_info->host_initiated &&
4060 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4061 			return 1;
4062 
4063 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4064 		break;
4065 #endif
4066 	default:
4067 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4068 			return kvm_pmu_get_msr(vcpu, msr_info);
4069 		return KVM_MSR_RET_INVALID;
4070 	}
4071 	return 0;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4074 
4075 /*
4076  * Read or write a bunch of msrs. All parameters are kernel addresses.
4077  *
4078  * @return number of msrs set successfully.
4079  */
4080 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4081 		    struct kvm_msr_entry *entries,
4082 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4083 				  unsigned index, u64 *data))
4084 {
4085 	int i;
4086 
4087 	for (i = 0; i < msrs->nmsrs; ++i)
4088 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4089 			break;
4090 
4091 	return i;
4092 }
4093 
4094 /*
4095  * Read or write a bunch of msrs. Parameters are user addresses.
4096  *
4097  * @return number of msrs set successfully.
4098  */
4099 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4100 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4101 				unsigned index, u64 *data),
4102 		  int writeback)
4103 {
4104 	struct kvm_msrs msrs;
4105 	struct kvm_msr_entry *entries;
4106 	int r, n;
4107 	unsigned size;
4108 
4109 	r = -EFAULT;
4110 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4111 		goto out;
4112 
4113 	r = -E2BIG;
4114 	if (msrs.nmsrs >= MAX_IO_MSRS)
4115 		goto out;
4116 
4117 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4118 	entries = memdup_user(user_msrs->entries, size);
4119 	if (IS_ERR(entries)) {
4120 		r = PTR_ERR(entries);
4121 		goto out;
4122 	}
4123 
4124 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4125 	if (r < 0)
4126 		goto out_free;
4127 
4128 	r = -EFAULT;
4129 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4130 		goto out_free;
4131 
4132 	r = n;
4133 
4134 out_free:
4135 	kfree(entries);
4136 out:
4137 	return r;
4138 }
4139 
4140 static inline bool kvm_can_mwait_in_guest(void)
4141 {
4142 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4143 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4144 		boot_cpu_has(X86_FEATURE_ARAT);
4145 }
4146 
4147 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4148 					    struct kvm_cpuid2 __user *cpuid_arg)
4149 {
4150 	struct kvm_cpuid2 cpuid;
4151 	int r;
4152 
4153 	r = -EFAULT;
4154 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4155 		return r;
4156 
4157 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4158 	if (r)
4159 		return r;
4160 
4161 	r = -EFAULT;
4162 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4163 		return r;
4164 
4165 	return 0;
4166 }
4167 
4168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4169 {
4170 	int r = 0;
4171 
4172 	switch (ext) {
4173 	case KVM_CAP_IRQCHIP:
4174 	case KVM_CAP_HLT:
4175 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4176 	case KVM_CAP_SET_TSS_ADDR:
4177 	case KVM_CAP_EXT_CPUID:
4178 	case KVM_CAP_EXT_EMUL_CPUID:
4179 	case KVM_CAP_CLOCKSOURCE:
4180 	case KVM_CAP_PIT:
4181 	case KVM_CAP_NOP_IO_DELAY:
4182 	case KVM_CAP_MP_STATE:
4183 	case KVM_CAP_SYNC_MMU:
4184 	case KVM_CAP_USER_NMI:
4185 	case KVM_CAP_REINJECT_CONTROL:
4186 	case KVM_CAP_IRQ_INJECT_STATUS:
4187 	case KVM_CAP_IOEVENTFD:
4188 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4189 	case KVM_CAP_PIT2:
4190 	case KVM_CAP_PIT_STATE2:
4191 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4192 	case KVM_CAP_VCPU_EVENTS:
4193 	case KVM_CAP_HYPERV:
4194 	case KVM_CAP_HYPERV_VAPIC:
4195 	case KVM_CAP_HYPERV_SPIN:
4196 	case KVM_CAP_HYPERV_SYNIC:
4197 	case KVM_CAP_HYPERV_SYNIC2:
4198 	case KVM_CAP_HYPERV_VP_INDEX:
4199 	case KVM_CAP_HYPERV_EVENTFD:
4200 	case KVM_CAP_HYPERV_TLBFLUSH:
4201 	case KVM_CAP_HYPERV_SEND_IPI:
4202 	case KVM_CAP_HYPERV_CPUID:
4203 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4204 	case KVM_CAP_SYS_HYPERV_CPUID:
4205 	case KVM_CAP_PCI_SEGMENT:
4206 	case KVM_CAP_DEBUGREGS:
4207 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4208 	case KVM_CAP_XSAVE:
4209 	case KVM_CAP_ASYNC_PF:
4210 	case KVM_CAP_ASYNC_PF_INT:
4211 	case KVM_CAP_GET_TSC_KHZ:
4212 	case KVM_CAP_KVMCLOCK_CTRL:
4213 	case KVM_CAP_READONLY_MEM:
4214 	case KVM_CAP_HYPERV_TIME:
4215 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4216 	case KVM_CAP_TSC_DEADLINE_TIMER:
4217 	case KVM_CAP_DISABLE_QUIRKS:
4218 	case KVM_CAP_SET_BOOT_CPU_ID:
4219  	case KVM_CAP_SPLIT_IRQCHIP:
4220 	case KVM_CAP_IMMEDIATE_EXIT:
4221 	case KVM_CAP_PMU_EVENT_FILTER:
4222 	case KVM_CAP_GET_MSR_FEATURES:
4223 	case KVM_CAP_MSR_PLATFORM_INFO:
4224 	case KVM_CAP_EXCEPTION_PAYLOAD:
4225 	case KVM_CAP_SET_GUEST_DEBUG:
4226 	case KVM_CAP_LAST_CPU:
4227 	case KVM_CAP_X86_USER_SPACE_MSR:
4228 	case KVM_CAP_X86_MSR_FILTER:
4229 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4230 #ifdef CONFIG_X86_SGX_KVM
4231 	case KVM_CAP_SGX_ATTRIBUTE:
4232 #endif
4233 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4234 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4235 	case KVM_CAP_SREGS2:
4236 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4237 	case KVM_CAP_VCPU_ATTRIBUTES:
4238 	case KVM_CAP_SYS_ATTRIBUTES:
4239 	case KVM_CAP_VAPIC:
4240 		r = 1;
4241 		break;
4242 	case KVM_CAP_EXIT_HYPERCALL:
4243 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4244 		break;
4245 	case KVM_CAP_SET_GUEST_DEBUG2:
4246 		return KVM_GUESTDBG_VALID_MASK;
4247 #ifdef CONFIG_KVM_XEN
4248 	case KVM_CAP_XEN_HVM:
4249 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4250 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4251 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4252 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4253 		if (sched_info_on())
4254 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4255 		break;
4256 #endif
4257 	case KVM_CAP_SYNC_REGS:
4258 		r = KVM_SYNC_X86_VALID_FIELDS;
4259 		break;
4260 	case KVM_CAP_ADJUST_CLOCK:
4261 		r = KVM_CLOCK_VALID_FLAGS;
4262 		break;
4263 	case KVM_CAP_X86_DISABLE_EXITS:
4264 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4265 		      KVM_X86_DISABLE_EXITS_CSTATE;
4266 		if(kvm_can_mwait_in_guest())
4267 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4268 		break;
4269 	case KVM_CAP_X86_SMM:
4270 		/* SMBASE is usually relocated above 1M on modern chipsets,
4271 		 * and SMM handlers might indeed rely on 4G segment limits,
4272 		 * so do not report SMM to be available if real mode is
4273 		 * emulated via vm86 mode.  Still, do not go to great lengths
4274 		 * to avoid userspace's usage of the feature, because it is a
4275 		 * fringe case that is not enabled except via specific settings
4276 		 * of the module parameters.
4277 		 */
4278 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4279 		break;
4280 	case KVM_CAP_NR_VCPUS:
4281 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4282 		break;
4283 	case KVM_CAP_MAX_VCPUS:
4284 		r = KVM_MAX_VCPUS;
4285 		break;
4286 	case KVM_CAP_MAX_VCPU_ID:
4287 		r = KVM_MAX_VCPU_IDS;
4288 		break;
4289 	case KVM_CAP_PV_MMU:	/* obsolete */
4290 		r = 0;
4291 		break;
4292 	case KVM_CAP_MCE:
4293 		r = KVM_MAX_MCE_BANKS;
4294 		break;
4295 	case KVM_CAP_XCRS:
4296 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4297 		break;
4298 	case KVM_CAP_TSC_CONTROL:
4299 		r = kvm_has_tsc_control;
4300 		break;
4301 	case KVM_CAP_X2APIC_API:
4302 		r = KVM_X2APIC_API_VALID_FLAGS;
4303 		break;
4304 	case KVM_CAP_NESTED_STATE:
4305 		r = kvm_x86_ops.nested_ops->get_state ?
4306 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4307 		break;
4308 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4309 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4310 		break;
4311 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4312 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4313 		break;
4314 	case KVM_CAP_SMALLER_MAXPHYADDR:
4315 		r = (int) allow_smaller_maxphyaddr;
4316 		break;
4317 	case KVM_CAP_STEAL_TIME:
4318 		r = sched_info_on();
4319 		break;
4320 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4321 		if (kvm_has_bus_lock_exit)
4322 			r = KVM_BUS_LOCK_DETECTION_OFF |
4323 			    KVM_BUS_LOCK_DETECTION_EXIT;
4324 		else
4325 			r = 0;
4326 		break;
4327 	case KVM_CAP_XSAVE2: {
4328 		u64 guest_perm = xstate_get_guest_group_perm();
4329 
4330 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4331 		if (r < sizeof(struct kvm_xsave))
4332 			r = sizeof(struct kvm_xsave);
4333 		break;
4334 	case KVM_CAP_PMU_CAPABILITY:
4335 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4336 		break;
4337 	}
4338 	default:
4339 		break;
4340 	}
4341 	return r;
4342 }
4343 
4344 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4345 {
4346 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4347 
4348 	if ((u64)(unsigned long)uaddr != attr->addr)
4349 		return ERR_PTR_USR(-EFAULT);
4350 	return uaddr;
4351 }
4352 
4353 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4354 {
4355 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4356 
4357 	if (attr->group)
4358 		return -ENXIO;
4359 
4360 	if (IS_ERR(uaddr))
4361 		return PTR_ERR(uaddr);
4362 
4363 	switch (attr->attr) {
4364 	case KVM_X86_XCOMP_GUEST_SUPP:
4365 		if (put_user(supported_xcr0, uaddr))
4366 			return -EFAULT;
4367 		return 0;
4368 	default:
4369 		return -ENXIO;
4370 		break;
4371 	}
4372 }
4373 
4374 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4375 {
4376 	if (attr->group)
4377 		return -ENXIO;
4378 
4379 	switch (attr->attr) {
4380 	case KVM_X86_XCOMP_GUEST_SUPP:
4381 		return 0;
4382 	default:
4383 		return -ENXIO;
4384 	}
4385 }
4386 
4387 long kvm_arch_dev_ioctl(struct file *filp,
4388 			unsigned int ioctl, unsigned long arg)
4389 {
4390 	void __user *argp = (void __user *)arg;
4391 	long r;
4392 
4393 	switch (ioctl) {
4394 	case KVM_GET_MSR_INDEX_LIST: {
4395 		struct kvm_msr_list __user *user_msr_list = argp;
4396 		struct kvm_msr_list msr_list;
4397 		unsigned n;
4398 
4399 		r = -EFAULT;
4400 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4401 			goto out;
4402 		n = msr_list.nmsrs;
4403 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4404 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4405 			goto out;
4406 		r = -E2BIG;
4407 		if (n < msr_list.nmsrs)
4408 			goto out;
4409 		r = -EFAULT;
4410 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4411 				 num_msrs_to_save * sizeof(u32)))
4412 			goto out;
4413 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4414 				 &emulated_msrs,
4415 				 num_emulated_msrs * sizeof(u32)))
4416 			goto out;
4417 		r = 0;
4418 		break;
4419 	}
4420 	case KVM_GET_SUPPORTED_CPUID:
4421 	case KVM_GET_EMULATED_CPUID: {
4422 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4423 		struct kvm_cpuid2 cpuid;
4424 
4425 		r = -EFAULT;
4426 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4427 			goto out;
4428 
4429 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4430 					    ioctl);
4431 		if (r)
4432 			goto out;
4433 
4434 		r = -EFAULT;
4435 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4436 			goto out;
4437 		r = 0;
4438 		break;
4439 	}
4440 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4441 		r = -EFAULT;
4442 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4443 				 sizeof(kvm_mce_cap_supported)))
4444 			goto out;
4445 		r = 0;
4446 		break;
4447 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4448 		struct kvm_msr_list __user *user_msr_list = argp;
4449 		struct kvm_msr_list msr_list;
4450 		unsigned int n;
4451 
4452 		r = -EFAULT;
4453 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4454 			goto out;
4455 		n = msr_list.nmsrs;
4456 		msr_list.nmsrs = num_msr_based_features;
4457 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4458 			goto out;
4459 		r = -E2BIG;
4460 		if (n < msr_list.nmsrs)
4461 			goto out;
4462 		r = -EFAULT;
4463 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4464 				 num_msr_based_features * sizeof(u32)))
4465 			goto out;
4466 		r = 0;
4467 		break;
4468 	}
4469 	case KVM_GET_MSRS:
4470 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4471 		break;
4472 	case KVM_GET_SUPPORTED_HV_CPUID:
4473 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4474 		break;
4475 	case KVM_GET_DEVICE_ATTR: {
4476 		struct kvm_device_attr attr;
4477 		r = -EFAULT;
4478 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4479 			break;
4480 		r = kvm_x86_dev_get_attr(&attr);
4481 		break;
4482 	}
4483 	case KVM_HAS_DEVICE_ATTR: {
4484 		struct kvm_device_attr attr;
4485 		r = -EFAULT;
4486 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4487 			break;
4488 		r = kvm_x86_dev_has_attr(&attr);
4489 		break;
4490 	}
4491 	default:
4492 		r = -EINVAL;
4493 		break;
4494 	}
4495 out:
4496 	return r;
4497 }
4498 
4499 static void wbinvd_ipi(void *garbage)
4500 {
4501 	wbinvd();
4502 }
4503 
4504 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4505 {
4506 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4507 }
4508 
4509 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4510 {
4511 	/* Address WBINVD may be executed by guest */
4512 	if (need_emulate_wbinvd(vcpu)) {
4513 		if (static_call(kvm_x86_has_wbinvd_exit)())
4514 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4515 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4516 			smp_call_function_single(vcpu->cpu,
4517 					wbinvd_ipi, NULL, 1);
4518 	}
4519 
4520 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4521 
4522 	/* Save host pkru register if supported */
4523 	vcpu->arch.host_pkru = read_pkru();
4524 
4525 	/* Apply any externally detected TSC adjustments (due to suspend) */
4526 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4527 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4528 		vcpu->arch.tsc_offset_adjustment = 0;
4529 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4530 	}
4531 
4532 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4533 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4534 				rdtsc() - vcpu->arch.last_host_tsc;
4535 		if (tsc_delta < 0)
4536 			mark_tsc_unstable("KVM discovered backwards TSC");
4537 
4538 		if (kvm_check_tsc_unstable()) {
4539 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4540 						vcpu->arch.last_guest_tsc);
4541 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4542 			vcpu->arch.tsc_catchup = 1;
4543 		}
4544 
4545 		if (kvm_lapic_hv_timer_in_use(vcpu))
4546 			kvm_lapic_restart_hv_timer(vcpu);
4547 
4548 		/*
4549 		 * On a host with synchronized TSC, there is no need to update
4550 		 * kvmclock on vcpu->cpu migration
4551 		 */
4552 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4553 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4554 		if (vcpu->cpu != cpu)
4555 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4556 		vcpu->cpu = cpu;
4557 	}
4558 
4559 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4560 }
4561 
4562 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4563 {
4564 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4565 	struct kvm_steal_time __user *st;
4566 	struct kvm_memslots *slots;
4567 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4568 
4569 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4570 		return;
4571 
4572 	if (vcpu->arch.st.preempted)
4573 		return;
4574 
4575 	/* This happens on process exit */
4576 	if (unlikely(current->mm != vcpu->kvm->mm))
4577 		return;
4578 
4579 	slots = kvm_memslots(vcpu->kvm);
4580 
4581 	if (unlikely(slots->generation != ghc->generation ||
4582 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4583 		return;
4584 
4585 	st = (struct kvm_steal_time __user *)ghc->hva;
4586 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4587 
4588 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4589 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4590 
4591 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4592 }
4593 
4594 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4595 {
4596 	int idx;
4597 
4598 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4599 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4600 
4601 	/*
4602 	 * Take the srcu lock as memslots will be accessed to check the gfn
4603 	 * cache generation against the memslots generation.
4604 	 */
4605 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4606 	if (kvm_xen_msr_enabled(vcpu->kvm))
4607 		kvm_xen_runstate_set_preempted(vcpu);
4608 	else
4609 		kvm_steal_time_set_preempted(vcpu);
4610 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4611 
4612 	static_call(kvm_x86_vcpu_put)(vcpu);
4613 	vcpu->arch.last_host_tsc = rdtsc();
4614 }
4615 
4616 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4617 				    struct kvm_lapic_state *s)
4618 {
4619 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4620 
4621 	return kvm_apic_get_state(vcpu, s);
4622 }
4623 
4624 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4625 				    struct kvm_lapic_state *s)
4626 {
4627 	int r;
4628 
4629 	r = kvm_apic_set_state(vcpu, s);
4630 	if (r)
4631 		return r;
4632 	update_cr8_intercept(vcpu);
4633 
4634 	return 0;
4635 }
4636 
4637 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4638 {
4639 	/*
4640 	 * We can accept userspace's request for interrupt injection
4641 	 * as long as we have a place to store the interrupt number.
4642 	 * The actual injection will happen when the CPU is able to
4643 	 * deliver the interrupt.
4644 	 */
4645 	if (kvm_cpu_has_extint(vcpu))
4646 		return false;
4647 
4648 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4649 	return (!lapic_in_kernel(vcpu) ||
4650 		kvm_apic_accept_pic_intr(vcpu));
4651 }
4652 
4653 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4654 {
4655 	/*
4656 	 * Do not cause an interrupt window exit if an exception
4657 	 * is pending or an event needs reinjection; userspace
4658 	 * might want to inject the interrupt manually using KVM_SET_REGS
4659 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4660 	 * instruction boundary and with no events half-injected.
4661 	 */
4662 	return (kvm_arch_interrupt_allowed(vcpu) &&
4663 		kvm_cpu_accept_dm_intr(vcpu) &&
4664 		!kvm_event_needs_reinjection(vcpu) &&
4665 		!vcpu->arch.exception.pending);
4666 }
4667 
4668 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4669 				    struct kvm_interrupt *irq)
4670 {
4671 	if (irq->irq >= KVM_NR_INTERRUPTS)
4672 		return -EINVAL;
4673 
4674 	if (!irqchip_in_kernel(vcpu->kvm)) {
4675 		kvm_queue_interrupt(vcpu, irq->irq, false);
4676 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4677 		return 0;
4678 	}
4679 
4680 	/*
4681 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4682 	 * fail for in-kernel 8259.
4683 	 */
4684 	if (pic_in_kernel(vcpu->kvm))
4685 		return -ENXIO;
4686 
4687 	if (vcpu->arch.pending_external_vector != -1)
4688 		return -EEXIST;
4689 
4690 	vcpu->arch.pending_external_vector = irq->irq;
4691 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4692 	return 0;
4693 }
4694 
4695 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4696 {
4697 	kvm_inject_nmi(vcpu);
4698 
4699 	return 0;
4700 }
4701 
4702 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4703 {
4704 	kvm_make_request(KVM_REQ_SMI, vcpu);
4705 
4706 	return 0;
4707 }
4708 
4709 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4710 					   struct kvm_tpr_access_ctl *tac)
4711 {
4712 	if (tac->flags)
4713 		return -EINVAL;
4714 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4715 	return 0;
4716 }
4717 
4718 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4719 					u64 mcg_cap)
4720 {
4721 	int r;
4722 	unsigned bank_num = mcg_cap & 0xff, bank;
4723 
4724 	r = -EINVAL;
4725 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4726 		goto out;
4727 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4728 		goto out;
4729 	r = 0;
4730 	vcpu->arch.mcg_cap = mcg_cap;
4731 	/* Init IA32_MCG_CTL to all 1s */
4732 	if (mcg_cap & MCG_CTL_P)
4733 		vcpu->arch.mcg_ctl = ~(u64)0;
4734 	/* Init IA32_MCi_CTL to all 1s */
4735 	for (bank = 0; bank < bank_num; bank++)
4736 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4737 
4738 	static_call(kvm_x86_setup_mce)(vcpu);
4739 out:
4740 	return r;
4741 }
4742 
4743 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4744 				      struct kvm_x86_mce *mce)
4745 {
4746 	u64 mcg_cap = vcpu->arch.mcg_cap;
4747 	unsigned bank_num = mcg_cap & 0xff;
4748 	u64 *banks = vcpu->arch.mce_banks;
4749 
4750 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4751 		return -EINVAL;
4752 	/*
4753 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4754 	 * reporting is disabled
4755 	 */
4756 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4757 	    vcpu->arch.mcg_ctl != ~(u64)0)
4758 		return 0;
4759 	banks += 4 * mce->bank;
4760 	/*
4761 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4762 	 * reporting is disabled for the bank
4763 	 */
4764 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4765 		return 0;
4766 	if (mce->status & MCI_STATUS_UC) {
4767 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4768 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4769 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4770 			return 0;
4771 		}
4772 		if (banks[1] & MCI_STATUS_VAL)
4773 			mce->status |= MCI_STATUS_OVER;
4774 		banks[2] = mce->addr;
4775 		banks[3] = mce->misc;
4776 		vcpu->arch.mcg_status = mce->mcg_status;
4777 		banks[1] = mce->status;
4778 		kvm_queue_exception(vcpu, MC_VECTOR);
4779 	} else if (!(banks[1] & MCI_STATUS_VAL)
4780 		   || !(banks[1] & MCI_STATUS_UC)) {
4781 		if (banks[1] & MCI_STATUS_VAL)
4782 			mce->status |= MCI_STATUS_OVER;
4783 		banks[2] = mce->addr;
4784 		banks[3] = mce->misc;
4785 		banks[1] = mce->status;
4786 	} else
4787 		banks[1] |= MCI_STATUS_OVER;
4788 	return 0;
4789 }
4790 
4791 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4792 					       struct kvm_vcpu_events *events)
4793 {
4794 	process_nmi(vcpu);
4795 
4796 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4797 		process_smi(vcpu);
4798 
4799 	/*
4800 	 * In guest mode, payload delivery should be deferred,
4801 	 * so that the L1 hypervisor can intercept #PF before
4802 	 * CR2 is modified (or intercept #DB before DR6 is
4803 	 * modified under nVMX). Unless the per-VM capability,
4804 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4805 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4806 	 * opportunistically defer the exception payload, deliver it if the
4807 	 * capability hasn't been requested before processing a
4808 	 * KVM_GET_VCPU_EVENTS.
4809 	 */
4810 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4811 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4812 		kvm_deliver_exception_payload(vcpu);
4813 
4814 	/*
4815 	 * The API doesn't provide the instruction length for software
4816 	 * exceptions, so don't report them. As long as the guest RIP
4817 	 * isn't advanced, we should expect to encounter the exception
4818 	 * again.
4819 	 */
4820 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4821 		events->exception.injected = 0;
4822 		events->exception.pending = 0;
4823 	} else {
4824 		events->exception.injected = vcpu->arch.exception.injected;
4825 		events->exception.pending = vcpu->arch.exception.pending;
4826 		/*
4827 		 * For ABI compatibility, deliberately conflate
4828 		 * pending and injected exceptions when
4829 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4830 		 */
4831 		if (!vcpu->kvm->arch.exception_payload_enabled)
4832 			events->exception.injected |=
4833 				vcpu->arch.exception.pending;
4834 	}
4835 	events->exception.nr = vcpu->arch.exception.nr;
4836 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4837 	events->exception.error_code = vcpu->arch.exception.error_code;
4838 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4839 	events->exception_payload = vcpu->arch.exception.payload;
4840 
4841 	events->interrupt.injected =
4842 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4843 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4844 	events->interrupt.soft = 0;
4845 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4846 
4847 	events->nmi.injected = vcpu->arch.nmi_injected;
4848 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4849 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4850 	events->nmi.pad = 0;
4851 
4852 	events->sipi_vector = 0; /* never valid when reporting to user space */
4853 
4854 	events->smi.smm = is_smm(vcpu);
4855 	events->smi.pending = vcpu->arch.smi_pending;
4856 	events->smi.smm_inside_nmi =
4857 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4858 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4859 
4860 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4861 			 | KVM_VCPUEVENT_VALID_SHADOW
4862 			 | KVM_VCPUEVENT_VALID_SMM);
4863 	if (vcpu->kvm->arch.exception_payload_enabled)
4864 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4865 
4866 	memset(&events->reserved, 0, sizeof(events->reserved));
4867 }
4868 
4869 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4870 
4871 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4872 					      struct kvm_vcpu_events *events)
4873 {
4874 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4875 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4876 			      | KVM_VCPUEVENT_VALID_SHADOW
4877 			      | KVM_VCPUEVENT_VALID_SMM
4878 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4879 		return -EINVAL;
4880 
4881 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4882 		if (!vcpu->kvm->arch.exception_payload_enabled)
4883 			return -EINVAL;
4884 		if (events->exception.pending)
4885 			events->exception.injected = 0;
4886 		else
4887 			events->exception_has_payload = 0;
4888 	} else {
4889 		events->exception.pending = 0;
4890 		events->exception_has_payload = 0;
4891 	}
4892 
4893 	if ((events->exception.injected || events->exception.pending) &&
4894 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4895 		return -EINVAL;
4896 
4897 	/* INITs are latched while in SMM */
4898 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4899 	    (events->smi.smm || events->smi.pending) &&
4900 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4901 		return -EINVAL;
4902 
4903 	process_nmi(vcpu);
4904 	vcpu->arch.exception.injected = events->exception.injected;
4905 	vcpu->arch.exception.pending = events->exception.pending;
4906 	vcpu->arch.exception.nr = events->exception.nr;
4907 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4908 	vcpu->arch.exception.error_code = events->exception.error_code;
4909 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4910 	vcpu->arch.exception.payload = events->exception_payload;
4911 
4912 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4913 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4914 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4915 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4916 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4917 						events->interrupt.shadow);
4918 
4919 	vcpu->arch.nmi_injected = events->nmi.injected;
4920 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4921 		vcpu->arch.nmi_pending = events->nmi.pending;
4922 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4923 
4924 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4925 	    lapic_in_kernel(vcpu))
4926 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4927 
4928 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4929 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4930 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4931 			kvm_smm_changed(vcpu, events->smi.smm);
4932 		}
4933 
4934 		vcpu->arch.smi_pending = events->smi.pending;
4935 
4936 		if (events->smi.smm) {
4937 			if (events->smi.smm_inside_nmi)
4938 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4939 			else
4940 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4941 		}
4942 
4943 		if (lapic_in_kernel(vcpu)) {
4944 			if (events->smi.latched_init)
4945 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4946 			else
4947 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4948 		}
4949 	}
4950 
4951 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4952 
4953 	return 0;
4954 }
4955 
4956 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4957 					     struct kvm_debugregs *dbgregs)
4958 {
4959 	unsigned long val;
4960 
4961 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4962 	kvm_get_dr(vcpu, 6, &val);
4963 	dbgregs->dr6 = val;
4964 	dbgregs->dr7 = vcpu->arch.dr7;
4965 	dbgregs->flags = 0;
4966 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4967 }
4968 
4969 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4970 					    struct kvm_debugregs *dbgregs)
4971 {
4972 	if (dbgregs->flags)
4973 		return -EINVAL;
4974 
4975 	if (!kvm_dr6_valid(dbgregs->dr6))
4976 		return -EINVAL;
4977 	if (!kvm_dr7_valid(dbgregs->dr7))
4978 		return -EINVAL;
4979 
4980 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4981 	kvm_update_dr0123(vcpu);
4982 	vcpu->arch.dr6 = dbgregs->dr6;
4983 	vcpu->arch.dr7 = dbgregs->dr7;
4984 	kvm_update_dr7(vcpu);
4985 
4986 	return 0;
4987 }
4988 
4989 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4990 					 struct kvm_xsave *guest_xsave)
4991 {
4992 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4993 		return;
4994 
4995 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4996 				       guest_xsave->region,
4997 				       sizeof(guest_xsave->region),
4998 				       vcpu->arch.pkru);
4999 }
5000 
5001 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5002 					  u8 *state, unsigned int size)
5003 {
5004 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5005 		return;
5006 
5007 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5008 				       state, size, vcpu->arch.pkru);
5009 }
5010 
5011 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5012 					struct kvm_xsave *guest_xsave)
5013 {
5014 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5015 		return 0;
5016 
5017 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5018 					      guest_xsave->region,
5019 					      supported_xcr0, &vcpu->arch.pkru);
5020 }
5021 
5022 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5023 					struct kvm_xcrs *guest_xcrs)
5024 {
5025 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5026 		guest_xcrs->nr_xcrs = 0;
5027 		return;
5028 	}
5029 
5030 	guest_xcrs->nr_xcrs = 1;
5031 	guest_xcrs->flags = 0;
5032 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5033 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5034 }
5035 
5036 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5037 				       struct kvm_xcrs *guest_xcrs)
5038 {
5039 	int i, r = 0;
5040 
5041 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5042 		return -EINVAL;
5043 
5044 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5045 		return -EINVAL;
5046 
5047 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5048 		/* Only support XCR0 currently */
5049 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5050 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5051 				guest_xcrs->xcrs[i].value);
5052 			break;
5053 		}
5054 	if (r)
5055 		r = -EINVAL;
5056 	return r;
5057 }
5058 
5059 /*
5060  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5061  * stopped by the hypervisor.  This function will be called from the host only.
5062  * EINVAL is returned when the host attempts to set the flag for a guest that
5063  * does not support pv clocks.
5064  */
5065 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5066 {
5067 	if (!vcpu->arch.pv_time_enabled)
5068 		return -EINVAL;
5069 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5070 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5071 	return 0;
5072 }
5073 
5074 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5075 				 struct kvm_device_attr *attr)
5076 {
5077 	int r;
5078 
5079 	switch (attr->attr) {
5080 	case KVM_VCPU_TSC_OFFSET:
5081 		r = 0;
5082 		break;
5083 	default:
5084 		r = -ENXIO;
5085 	}
5086 
5087 	return r;
5088 }
5089 
5090 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5091 				 struct kvm_device_attr *attr)
5092 {
5093 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5094 	int r;
5095 
5096 	if (IS_ERR(uaddr))
5097 		return PTR_ERR(uaddr);
5098 
5099 	switch (attr->attr) {
5100 	case KVM_VCPU_TSC_OFFSET:
5101 		r = -EFAULT;
5102 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5103 			break;
5104 		r = 0;
5105 		break;
5106 	default:
5107 		r = -ENXIO;
5108 	}
5109 
5110 	return r;
5111 }
5112 
5113 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5114 				 struct kvm_device_attr *attr)
5115 {
5116 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5117 	struct kvm *kvm = vcpu->kvm;
5118 	int r;
5119 
5120 	if (IS_ERR(uaddr))
5121 		return PTR_ERR(uaddr);
5122 
5123 	switch (attr->attr) {
5124 	case KVM_VCPU_TSC_OFFSET: {
5125 		u64 offset, tsc, ns;
5126 		unsigned long flags;
5127 		bool matched;
5128 
5129 		r = -EFAULT;
5130 		if (get_user(offset, uaddr))
5131 			break;
5132 
5133 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5134 
5135 		matched = (vcpu->arch.virtual_tsc_khz &&
5136 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5137 			   kvm->arch.last_tsc_offset == offset);
5138 
5139 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5140 		ns = get_kvmclock_base_ns();
5141 
5142 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5143 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5144 
5145 		r = 0;
5146 		break;
5147 	}
5148 	default:
5149 		r = -ENXIO;
5150 	}
5151 
5152 	return r;
5153 }
5154 
5155 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5156 				      unsigned int ioctl,
5157 				      void __user *argp)
5158 {
5159 	struct kvm_device_attr attr;
5160 	int r;
5161 
5162 	if (copy_from_user(&attr, argp, sizeof(attr)))
5163 		return -EFAULT;
5164 
5165 	if (attr.group != KVM_VCPU_TSC_CTRL)
5166 		return -ENXIO;
5167 
5168 	switch (ioctl) {
5169 	case KVM_HAS_DEVICE_ATTR:
5170 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5171 		break;
5172 	case KVM_GET_DEVICE_ATTR:
5173 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5174 		break;
5175 	case KVM_SET_DEVICE_ATTR:
5176 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5177 		break;
5178 	}
5179 
5180 	return r;
5181 }
5182 
5183 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5184 				     struct kvm_enable_cap *cap)
5185 {
5186 	int r;
5187 	uint16_t vmcs_version;
5188 	void __user *user_ptr;
5189 
5190 	if (cap->flags)
5191 		return -EINVAL;
5192 
5193 	switch (cap->cap) {
5194 	case KVM_CAP_HYPERV_SYNIC2:
5195 		if (cap->args[0])
5196 			return -EINVAL;
5197 		fallthrough;
5198 
5199 	case KVM_CAP_HYPERV_SYNIC:
5200 		if (!irqchip_in_kernel(vcpu->kvm))
5201 			return -EINVAL;
5202 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5203 					     KVM_CAP_HYPERV_SYNIC2);
5204 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5205 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5206 			return -ENOTTY;
5207 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5208 		if (!r) {
5209 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5210 			if (copy_to_user(user_ptr, &vmcs_version,
5211 					 sizeof(vmcs_version)))
5212 				r = -EFAULT;
5213 		}
5214 		return r;
5215 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5216 		if (!kvm_x86_ops.enable_direct_tlbflush)
5217 			return -ENOTTY;
5218 
5219 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5220 
5221 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5222 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5223 
5224 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5225 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5226 		if (vcpu->arch.pv_cpuid.enforce)
5227 			kvm_update_pv_runtime(vcpu);
5228 
5229 		return 0;
5230 	default:
5231 		return -EINVAL;
5232 	}
5233 }
5234 
5235 long kvm_arch_vcpu_ioctl(struct file *filp,
5236 			 unsigned int ioctl, unsigned long arg)
5237 {
5238 	struct kvm_vcpu *vcpu = filp->private_data;
5239 	void __user *argp = (void __user *)arg;
5240 	int r;
5241 	union {
5242 		struct kvm_sregs2 *sregs2;
5243 		struct kvm_lapic_state *lapic;
5244 		struct kvm_xsave *xsave;
5245 		struct kvm_xcrs *xcrs;
5246 		void *buffer;
5247 	} u;
5248 
5249 	vcpu_load(vcpu);
5250 
5251 	u.buffer = NULL;
5252 	switch (ioctl) {
5253 	case KVM_GET_LAPIC: {
5254 		r = -EINVAL;
5255 		if (!lapic_in_kernel(vcpu))
5256 			goto out;
5257 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5258 				GFP_KERNEL_ACCOUNT);
5259 
5260 		r = -ENOMEM;
5261 		if (!u.lapic)
5262 			goto out;
5263 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5264 		if (r)
5265 			goto out;
5266 		r = -EFAULT;
5267 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5268 			goto out;
5269 		r = 0;
5270 		break;
5271 	}
5272 	case KVM_SET_LAPIC: {
5273 		r = -EINVAL;
5274 		if (!lapic_in_kernel(vcpu))
5275 			goto out;
5276 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5277 		if (IS_ERR(u.lapic)) {
5278 			r = PTR_ERR(u.lapic);
5279 			goto out_nofree;
5280 		}
5281 
5282 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5283 		break;
5284 	}
5285 	case KVM_INTERRUPT: {
5286 		struct kvm_interrupt irq;
5287 
5288 		r = -EFAULT;
5289 		if (copy_from_user(&irq, argp, sizeof(irq)))
5290 			goto out;
5291 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5292 		break;
5293 	}
5294 	case KVM_NMI: {
5295 		r = kvm_vcpu_ioctl_nmi(vcpu);
5296 		break;
5297 	}
5298 	case KVM_SMI: {
5299 		r = kvm_vcpu_ioctl_smi(vcpu);
5300 		break;
5301 	}
5302 	case KVM_SET_CPUID: {
5303 		struct kvm_cpuid __user *cpuid_arg = argp;
5304 		struct kvm_cpuid cpuid;
5305 
5306 		r = -EFAULT;
5307 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5308 			goto out;
5309 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5310 		break;
5311 	}
5312 	case KVM_SET_CPUID2: {
5313 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5314 		struct kvm_cpuid2 cpuid;
5315 
5316 		r = -EFAULT;
5317 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5318 			goto out;
5319 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5320 					      cpuid_arg->entries);
5321 		break;
5322 	}
5323 	case KVM_GET_CPUID2: {
5324 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5325 		struct kvm_cpuid2 cpuid;
5326 
5327 		r = -EFAULT;
5328 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5329 			goto out;
5330 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5331 					      cpuid_arg->entries);
5332 		if (r)
5333 			goto out;
5334 		r = -EFAULT;
5335 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5336 			goto out;
5337 		r = 0;
5338 		break;
5339 	}
5340 	case KVM_GET_MSRS: {
5341 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5342 		r = msr_io(vcpu, argp, do_get_msr, 1);
5343 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5344 		break;
5345 	}
5346 	case KVM_SET_MSRS: {
5347 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5348 		r = msr_io(vcpu, argp, do_set_msr, 0);
5349 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5350 		break;
5351 	}
5352 	case KVM_TPR_ACCESS_REPORTING: {
5353 		struct kvm_tpr_access_ctl tac;
5354 
5355 		r = -EFAULT;
5356 		if (copy_from_user(&tac, argp, sizeof(tac)))
5357 			goto out;
5358 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5359 		if (r)
5360 			goto out;
5361 		r = -EFAULT;
5362 		if (copy_to_user(argp, &tac, sizeof(tac)))
5363 			goto out;
5364 		r = 0;
5365 		break;
5366 	};
5367 	case KVM_SET_VAPIC_ADDR: {
5368 		struct kvm_vapic_addr va;
5369 		int idx;
5370 
5371 		r = -EINVAL;
5372 		if (!lapic_in_kernel(vcpu))
5373 			goto out;
5374 		r = -EFAULT;
5375 		if (copy_from_user(&va, argp, sizeof(va)))
5376 			goto out;
5377 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5378 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5379 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5380 		break;
5381 	}
5382 	case KVM_X86_SETUP_MCE: {
5383 		u64 mcg_cap;
5384 
5385 		r = -EFAULT;
5386 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5387 			goto out;
5388 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5389 		break;
5390 	}
5391 	case KVM_X86_SET_MCE: {
5392 		struct kvm_x86_mce mce;
5393 
5394 		r = -EFAULT;
5395 		if (copy_from_user(&mce, argp, sizeof(mce)))
5396 			goto out;
5397 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5398 		break;
5399 	}
5400 	case KVM_GET_VCPU_EVENTS: {
5401 		struct kvm_vcpu_events events;
5402 
5403 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5404 
5405 		r = -EFAULT;
5406 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5407 			break;
5408 		r = 0;
5409 		break;
5410 	}
5411 	case KVM_SET_VCPU_EVENTS: {
5412 		struct kvm_vcpu_events events;
5413 
5414 		r = -EFAULT;
5415 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5416 			break;
5417 
5418 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5419 		break;
5420 	}
5421 	case KVM_GET_DEBUGREGS: {
5422 		struct kvm_debugregs dbgregs;
5423 
5424 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5425 
5426 		r = -EFAULT;
5427 		if (copy_to_user(argp, &dbgregs,
5428 				 sizeof(struct kvm_debugregs)))
5429 			break;
5430 		r = 0;
5431 		break;
5432 	}
5433 	case KVM_SET_DEBUGREGS: {
5434 		struct kvm_debugregs dbgregs;
5435 
5436 		r = -EFAULT;
5437 		if (copy_from_user(&dbgregs, argp,
5438 				   sizeof(struct kvm_debugregs)))
5439 			break;
5440 
5441 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5442 		break;
5443 	}
5444 	case KVM_GET_XSAVE: {
5445 		r = -EINVAL;
5446 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5447 			break;
5448 
5449 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5450 		r = -ENOMEM;
5451 		if (!u.xsave)
5452 			break;
5453 
5454 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5455 
5456 		r = -EFAULT;
5457 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5458 			break;
5459 		r = 0;
5460 		break;
5461 	}
5462 	case KVM_SET_XSAVE: {
5463 		int size = vcpu->arch.guest_fpu.uabi_size;
5464 
5465 		u.xsave = memdup_user(argp, size);
5466 		if (IS_ERR(u.xsave)) {
5467 			r = PTR_ERR(u.xsave);
5468 			goto out_nofree;
5469 		}
5470 
5471 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5472 		break;
5473 	}
5474 
5475 	case KVM_GET_XSAVE2: {
5476 		int size = vcpu->arch.guest_fpu.uabi_size;
5477 
5478 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5479 		r = -ENOMEM;
5480 		if (!u.xsave)
5481 			break;
5482 
5483 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5484 
5485 		r = -EFAULT;
5486 		if (copy_to_user(argp, u.xsave, size))
5487 			break;
5488 
5489 		r = 0;
5490 		break;
5491 	}
5492 
5493 	case KVM_GET_XCRS: {
5494 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5495 		r = -ENOMEM;
5496 		if (!u.xcrs)
5497 			break;
5498 
5499 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5500 
5501 		r = -EFAULT;
5502 		if (copy_to_user(argp, u.xcrs,
5503 				 sizeof(struct kvm_xcrs)))
5504 			break;
5505 		r = 0;
5506 		break;
5507 	}
5508 	case KVM_SET_XCRS: {
5509 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5510 		if (IS_ERR(u.xcrs)) {
5511 			r = PTR_ERR(u.xcrs);
5512 			goto out_nofree;
5513 		}
5514 
5515 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5516 		break;
5517 	}
5518 	case KVM_SET_TSC_KHZ: {
5519 		u32 user_tsc_khz;
5520 
5521 		r = -EINVAL;
5522 		user_tsc_khz = (u32)arg;
5523 
5524 		if (kvm_has_tsc_control &&
5525 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5526 			goto out;
5527 
5528 		if (user_tsc_khz == 0)
5529 			user_tsc_khz = tsc_khz;
5530 
5531 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5532 			r = 0;
5533 
5534 		goto out;
5535 	}
5536 	case KVM_GET_TSC_KHZ: {
5537 		r = vcpu->arch.virtual_tsc_khz;
5538 		goto out;
5539 	}
5540 	case KVM_KVMCLOCK_CTRL: {
5541 		r = kvm_set_guest_paused(vcpu);
5542 		goto out;
5543 	}
5544 	case KVM_ENABLE_CAP: {
5545 		struct kvm_enable_cap cap;
5546 
5547 		r = -EFAULT;
5548 		if (copy_from_user(&cap, argp, sizeof(cap)))
5549 			goto out;
5550 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5551 		break;
5552 	}
5553 	case KVM_GET_NESTED_STATE: {
5554 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5555 		u32 user_data_size;
5556 
5557 		r = -EINVAL;
5558 		if (!kvm_x86_ops.nested_ops->get_state)
5559 			break;
5560 
5561 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5562 		r = -EFAULT;
5563 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5564 			break;
5565 
5566 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5567 						     user_data_size);
5568 		if (r < 0)
5569 			break;
5570 
5571 		if (r > user_data_size) {
5572 			if (put_user(r, &user_kvm_nested_state->size))
5573 				r = -EFAULT;
5574 			else
5575 				r = -E2BIG;
5576 			break;
5577 		}
5578 
5579 		r = 0;
5580 		break;
5581 	}
5582 	case KVM_SET_NESTED_STATE: {
5583 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5584 		struct kvm_nested_state kvm_state;
5585 		int idx;
5586 
5587 		r = -EINVAL;
5588 		if (!kvm_x86_ops.nested_ops->set_state)
5589 			break;
5590 
5591 		r = -EFAULT;
5592 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5593 			break;
5594 
5595 		r = -EINVAL;
5596 		if (kvm_state.size < sizeof(kvm_state))
5597 			break;
5598 
5599 		if (kvm_state.flags &
5600 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5601 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5602 		      | KVM_STATE_NESTED_GIF_SET))
5603 			break;
5604 
5605 		/* nested_run_pending implies guest_mode.  */
5606 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5607 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5608 			break;
5609 
5610 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5611 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5612 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5613 		break;
5614 	}
5615 	case KVM_GET_SUPPORTED_HV_CPUID:
5616 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5617 		break;
5618 #ifdef CONFIG_KVM_XEN
5619 	case KVM_XEN_VCPU_GET_ATTR: {
5620 		struct kvm_xen_vcpu_attr xva;
5621 
5622 		r = -EFAULT;
5623 		if (copy_from_user(&xva, argp, sizeof(xva)))
5624 			goto out;
5625 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5626 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5627 			r = -EFAULT;
5628 		break;
5629 	}
5630 	case KVM_XEN_VCPU_SET_ATTR: {
5631 		struct kvm_xen_vcpu_attr xva;
5632 
5633 		r = -EFAULT;
5634 		if (copy_from_user(&xva, argp, sizeof(xva)))
5635 			goto out;
5636 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5637 		break;
5638 	}
5639 #endif
5640 	case KVM_GET_SREGS2: {
5641 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5642 		r = -ENOMEM;
5643 		if (!u.sregs2)
5644 			goto out;
5645 		__get_sregs2(vcpu, u.sregs2);
5646 		r = -EFAULT;
5647 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5648 			goto out;
5649 		r = 0;
5650 		break;
5651 	}
5652 	case KVM_SET_SREGS2: {
5653 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5654 		if (IS_ERR(u.sregs2)) {
5655 			r = PTR_ERR(u.sregs2);
5656 			u.sregs2 = NULL;
5657 			goto out;
5658 		}
5659 		r = __set_sregs2(vcpu, u.sregs2);
5660 		break;
5661 	}
5662 	case KVM_HAS_DEVICE_ATTR:
5663 	case KVM_GET_DEVICE_ATTR:
5664 	case KVM_SET_DEVICE_ATTR:
5665 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5666 		break;
5667 	default:
5668 		r = -EINVAL;
5669 	}
5670 out:
5671 	kfree(u.buffer);
5672 out_nofree:
5673 	vcpu_put(vcpu);
5674 	return r;
5675 }
5676 
5677 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5678 {
5679 	return VM_FAULT_SIGBUS;
5680 }
5681 
5682 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5683 {
5684 	int ret;
5685 
5686 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5687 		return -EINVAL;
5688 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5689 	return ret;
5690 }
5691 
5692 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5693 					      u64 ident_addr)
5694 {
5695 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5696 }
5697 
5698 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5699 					 unsigned long kvm_nr_mmu_pages)
5700 {
5701 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5702 		return -EINVAL;
5703 
5704 	mutex_lock(&kvm->slots_lock);
5705 
5706 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5707 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5708 
5709 	mutex_unlock(&kvm->slots_lock);
5710 	return 0;
5711 }
5712 
5713 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5714 {
5715 	return kvm->arch.n_max_mmu_pages;
5716 }
5717 
5718 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5719 {
5720 	struct kvm_pic *pic = kvm->arch.vpic;
5721 	int r;
5722 
5723 	r = 0;
5724 	switch (chip->chip_id) {
5725 	case KVM_IRQCHIP_PIC_MASTER:
5726 		memcpy(&chip->chip.pic, &pic->pics[0],
5727 			sizeof(struct kvm_pic_state));
5728 		break;
5729 	case KVM_IRQCHIP_PIC_SLAVE:
5730 		memcpy(&chip->chip.pic, &pic->pics[1],
5731 			sizeof(struct kvm_pic_state));
5732 		break;
5733 	case KVM_IRQCHIP_IOAPIC:
5734 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5735 		break;
5736 	default:
5737 		r = -EINVAL;
5738 		break;
5739 	}
5740 	return r;
5741 }
5742 
5743 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5744 {
5745 	struct kvm_pic *pic = kvm->arch.vpic;
5746 	int r;
5747 
5748 	r = 0;
5749 	switch (chip->chip_id) {
5750 	case KVM_IRQCHIP_PIC_MASTER:
5751 		spin_lock(&pic->lock);
5752 		memcpy(&pic->pics[0], &chip->chip.pic,
5753 			sizeof(struct kvm_pic_state));
5754 		spin_unlock(&pic->lock);
5755 		break;
5756 	case KVM_IRQCHIP_PIC_SLAVE:
5757 		spin_lock(&pic->lock);
5758 		memcpy(&pic->pics[1], &chip->chip.pic,
5759 			sizeof(struct kvm_pic_state));
5760 		spin_unlock(&pic->lock);
5761 		break;
5762 	case KVM_IRQCHIP_IOAPIC:
5763 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5764 		break;
5765 	default:
5766 		r = -EINVAL;
5767 		break;
5768 	}
5769 	kvm_pic_update_irq(pic);
5770 	return r;
5771 }
5772 
5773 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5774 {
5775 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5776 
5777 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5778 
5779 	mutex_lock(&kps->lock);
5780 	memcpy(ps, &kps->channels, sizeof(*ps));
5781 	mutex_unlock(&kps->lock);
5782 	return 0;
5783 }
5784 
5785 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5786 {
5787 	int i;
5788 	struct kvm_pit *pit = kvm->arch.vpit;
5789 
5790 	mutex_lock(&pit->pit_state.lock);
5791 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5792 	for (i = 0; i < 3; i++)
5793 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5794 	mutex_unlock(&pit->pit_state.lock);
5795 	return 0;
5796 }
5797 
5798 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5799 {
5800 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5801 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5802 		sizeof(ps->channels));
5803 	ps->flags = kvm->arch.vpit->pit_state.flags;
5804 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5805 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5806 	return 0;
5807 }
5808 
5809 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5810 {
5811 	int start = 0;
5812 	int i;
5813 	u32 prev_legacy, cur_legacy;
5814 	struct kvm_pit *pit = kvm->arch.vpit;
5815 
5816 	mutex_lock(&pit->pit_state.lock);
5817 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5818 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5819 	if (!prev_legacy && cur_legacy)
5820 		start = 1;
5821 	memcpy(&pit->pit_state.channels, &ps->channels,
5822 	       sizeof(pit->pit_state.channels));
5823 	pit->pit_state.flags = ps->flags;
5824 	for (i = 0; i < 3; i++)
5825 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5826 				   start && i == 0);
5827 	mutex_unlock(&pit->pit_state.lock);
5828 	return 0;
5829 }
5830 
5831 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5832 				 struct kvm_reinject_control *control)
5833 {
5834 	struct kvm_pit *pit = kvm->arch.vpit;
5835 
5836 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5837 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5838 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5839 	 */
5840 	mutex_lock(&pit->pit_state.lock);
5841 	kvm_pit_set_reinject(pit, control->pit_reinject);
5842 	mutex_unlock(&pit->pit_state.lock);
5843 
5844 	return 0;
5845 }
5846 
5847 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5848 {
5849 
5850 	/*
5851 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5852 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5853 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5854 	 * VM-Exit.
5855 	 */
5856 	struct kvm_vcpu *vcpu;
5857 	unsigned long i;
5858 
5859 	kvm_for_each_vcpu(i, vcpu, kvm)
5860 		kvm_vcpu_kick(vcpu);
5861 }
5862 
5863 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5864 			bool line_status)
5865 {
5866 	if (!irqchip_in_kernel(kvm))
5867 		return -ENXIO;
5868 
5869 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5870 					irq_event->irq, irq_event->level,
5871 					line_status);
5872 	return 0;
5873 }
5874 
5875 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5876 			    struct kvm_enable_cap *cap)
5877 {
5878 	int r;
5879 
5880 	if (cap->flags)
5881 		return -EINVAL;
5882 
5883 	switch (cap->cap) {
5884 	case KVM_CAP_DISABLE_QUIRKS:
5885 		kvm->arch.disabled_quirks = cap->args[0];
5886 		r = 0;
5887 		break;
5888 	case KVM_CAP_SPLIT_IRQCHIP: {
5889 		mutex_lock(&kvm->lock);
5890 		r = -EINVAL;
5891 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5892 			goto split_irqchip_unlock;
5893 		r = -EEXIST;
5894 		if (irqchip_in_kernel(kvm))
5895 			goto split_irqchip_unlock;
5896 		if (kvm->created_vcpus)
5897 			goto split_irqchip_unlock;
5898 		r = kvm_setup_empty_irq_routing(kvm);
5899 		if (r)
5900 			goto split_irqchip_unlock;
5901 		/* Pairs with irqchip_in_kernel. */
5902 		smp_wmb();
5903 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5904 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5905 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5906 		r = 0;
5907 split_irqchip_unlock:
5908 		mutex_unlock(&kvm->lock);
5909 		break;
5910 	}
5911 	case KVM_CAP_X2APIC_API:
5912 		r = -EINVAL;
5913 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5914 			break;
5915 
5916 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5917 			kvm->arch.x2apic_format = true;
5918 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5919 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5920 
5921 		r = 0;
5922 		break;
5923 	case KVM_CAP_X86_DISABLE_EXITS:
5924 		r = -EINVAL;
5925 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5926 			break;
5927 
5928 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5929 			kvm_can_mwait_in_guest())
5930 			kvm->arch.mwait_in_guest = true;
5931 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5932 			kvm->arch.hlt_in_guest = true;
5933 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5934 			kvm->arch.pause_in_guest = true;
5935 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5936 			kvm->arch.cstate_in_guest = true;
5937 		r = 0;
5938 		break;
5939 	case KVM_CAP_MSR_PLATFORM_INFO:
5940 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5941 		r = 0;
5942 		break;
5943 	case KVM_CAP_EXCEPTION_PAYLOAD:
5944 		kvm->arch.exception_payload_enabled = cap->args[0];
5945 		r = 0;
5946 		break;
5947 	case KVM_CAP_X86_USER_SPACE_MSR:
5948 		kvm->arch.user_space_msr_mask = cap->args[0];
5949 		r = 0;
5950 		break;
5951 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5952 		r = -EINVAL;
5953 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5954 			break;
5955 
5956 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5957 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5958 			break;
5959 
5960 		if (kvm_has_bus_lock_exit &&
5961 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5962 			kvm->arch.bus_lock_detection_enabled = true;
5963 		r = 0;
5964 		break;
5965 #ifdef CONFIG_X86_SGX_KVM
5966 	case KVM_CAP_SGX_ATTRIBUTE: {
5967 		unsigned long allowed_attributes = 0;
5968 
5969 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5970 		if (r)
5971 			break;
5972 
5973 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5974 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5975 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5976 			kvm->arch.sgx_provisioning_allowed = true;
5977 		else
5978 			r = -EINVAL;
5979 		break;
5980 	}
5981 #endif
5982 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5983 		r = -EINVAL;
5984 		if (!kvm_x86_ops.vm_copy_enc_context_from)
5985 			break;
5986 
5987 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
5988 		break;
5989 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5990 		r = -EINVAL;
5991 		if (!kvm_x86_ops.vm_move_enc_context_from)
5992 			break;
5993 
5994 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
5995 		break;
5996 	case KVM_CAP_EXIT_HYPERCALL:
5997 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5998 			r = -EINVAL;
5999 			break;
6000 		}
6001 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6002 		r = 0;
6003 		break;
6004 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6005 		r = -EINVAL;
6006 		if (cap->args[0] & ~1)
6007 			break;
6008 		kvm->arch.exit_on_emulation_error = cap->args[0];
6009 		r = 0;
6010 		break;
6011 	case KVM_CAP_PMU_CAPABILITY:
6012 		r = -EINVAL;
6013 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6014 			break;
6015 
6016 		mutex_lock(&kvm->lock);
6017 		if (!kvm->created_vcpus) {
6018 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6019 			r = 0;
6020 		}
6021 		mutex_unlock(&kvm->lock);
6022 		break;
6023 	default:
6024 		r = -EINVAL;
6025 		break;
6026 	}
6027 	return r;
6028 }
6029 
6030 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6031 {
6032 	struct kvm_x86_msr_filter *msr_filter;
6033 
6034 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6035 	if (!msr_filter)
6036 		return NULL;
6037 
6038 	msr_filter->default_allow = default_allow;
6039 	return msr_filter;
6040 }
6041 
6042 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6043 {
6044 	u32 i;
6045 
6046 	if (!msr_filter)
6047 		return;
6048 
6049 	for (i = 0; i < msr_filter->count; i++)
6050 		kfree(msr_filter->ranges[i].bitmap);
6051 
6052 	kfree(msr_filter);
6053 }
6054 
6055 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6056 			      struct kvm_msr_filter_range *user_range)
6057 {
6058 	unsigned long *bitmap = NULL;
6059 	size_t bitmap_size;
6060 
6061 	if (!user_range->nmsrs)
6062 		return 0;
6063 
6064 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6065 		return -EINVAL;
6066 
6067 	if (!user_range->flags)
6068 		return -EINVAL;
6069 
6070 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6071 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6072 		return -EINVAL;
6073 
6074 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6075 	if (IS_ERR(bitmap))
6076 		return PTR_ERR(bitmap);
6077 
6078 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6079 		.flags = user_range->flags,
6080 		.base = user_range->base,
6081 		.nmsrs = user_range->nmsrs,
6082 		.bitmap = bitmap,
6083 	};
6084 
6085 	msr_filter->count++;
6086 	return 0;
6087 }
6088 
6089 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6090 {
6091 	struct kvm_msr_filter __user *user_msr_filter = argp;
6092 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6093 	struct kvm_msr_filter filter;
6094 	bool default_allow;
6095 	bool empty = true;
6096 	int r = 0;
6097 	u32 i;
6098 
6099 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6100 		return -EFAULT;
6101 
6102 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6103 		empty &= !filter.ranges[i].nmsrs;
6104 
6105 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6106 	if (empty && !default_allow)
6107 		return -EINVAL;
6108 
6109 	new_filter = kvm_alloc_msr_filter(default_allow);
6110 	if (!new_filter)
6111 		return -ENOMEM;
6112 
6113 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6114 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6115 		if (r) {
6116 			kvm_free_msr_filter(new_filter);
6117 			return r;
6118 		}
6119 	}
6120 
6121 	mutex_lock(&kvm->lock);
6122 
6123 	/* The per-VM filter is protected by kvm->lock... */
6124 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6125 
6126 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6127 	synchronize_srcu(&kvm->srcu);
6128 
6129 	kvm_free_msr_filter(old_filter);
6130 
6131 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6132 	mutex_unlock(&kvm->lock);
6133 
6134 	return 0;
6135 }
6136 
6137 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6138 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6139 {
6140 	struct kvm_vcpu *vcpu;
6141 	unsigned long i;
6142 	int ret = 0;
6143 
6144 	mutex_lock(&kvm->lock);
6145 	kvm_for_each_vcpu(i, vcpu, kvm) {
6146 		if (!vcpu->arch.pv_time_enabled)
6147 			continue;
6148 
6149 		ret = kvm_set_guest_paused(vcpu);
6150 		if (ret) {
6151 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6152 				vcpu->vcpu_id, ret);
6153 			break;
6154 		}
6155 	}
6156 	mutex_unlock(&kvm->lock);
6157 
6158 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6159 }
6160 
6161 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6162 {
6163 	switch (state) {
6164 	case PM_HIBERNATION_PREPARE:
6165 	case PM_SUSPEND_PREPARE:
6166 		return kvm_arch_suspend_notifier(kvm);
6167 	}
6168 
6169 	return NOTIFY_DONE;
6170 }
6171 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6172 
6173 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6174 {
6175 	struct kvm_clock_data data = { 0 };
6176 
6177 	get_kvmclock(kvm, &data);
6178 	if (copy_to_user(argp, &data, sizeof(data)))
6179 		return -EFAULT;
6180 
6181 	return 0;
6182 }
6183 
6184 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6185 {
6186 	struct kvm_arch *ka = &kvm->arch;
6187 	struct kvm_clock_data data;
6188 	u64 now_raw_ns;
6189 
6190 	if (copy_from_user(&data, argp, sizeof(data)))
6191 		return -EFAULT;
6192 
6193 	/*
6194 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6195 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6196 	 */
6197 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6198 		return -EINVAL;
6199 
6200 	kvm_hv_invalidate_tsc_page(kvm);
6201 	kvm_start_pvclock_update(kvm);
6202 	pvclock_update_vm_gtod_copy(kvm);
6203 
6204 	/*
6205 	 * This pairs with kvm_guest_time_update(): when masterclock is
6206 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6207 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6208 	 * is slightly ahead) here we risk going negative on unsigned
6209 	 * 'system_time' when 'data.clock' is very small.
6210 	 */
6211 	if (data.flags & KVM_CLOCK_REALTIME) {
6212 		u64 now_real_ns = ktime_get_real_ns();
6213 
6214 		/*
6215 		 * Avoid stepping the kvmclock backwards.
6216 		 */
6217 		if (now_real_ns > data.realtime)
6218 			data.clock += now_real_ns - data.realtime;
6219 	}
6220 
6221 	if (ka->use_master_clock)
6222 		now_raw_ns = ka->master_kernel_ns;
6223 	else
6224 		now_raw_ns = get_kvmclock_base_ns();
6225 	ka->kvmclock_offset = data.clock - now_raw_ns;
6226 	kvm_end_pvclock_update(kvm);
6227 	return 0;
6228 }
6229 
6230 long kvm_arch_vm_ioctl(struct file *filp,
6231 		       unsigned int ioctl, unsigned long arg)
6232 {
6233 	struct kvm *kvm = filp->private_data;
6234 	void __user *argp = (void __user *)arg;
6235 	int r = -ENOTTY;
6236 	/*
6237 	 * This union makes it completely explicit to gcc-3.x
6238 	 * that these two variables' stack usage should be
6239 	 * combined, not added together.
6240 	 */
6241 	union {
6242 		struct kvm_pit_state ps;
6243 		struct kvm_pit_state2 ps2;
6244 		struct kvm_pit_config pit_config;
6245 	} u;
6246 
6247 	switch (ioctl) {
6248 	case KVM_SET_TSS_ADDR:
6249 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6250 		break;
6251 	case KVM_SET_IDENTITY_MAP_ADDR: {
6252 		u64 ident_addr;
6253 
6254 		mutex_lock(&kvm->lock);
6255 		r = -EINVAL;
6256 		if (kvm->created_vcpus)
6257 			goto set_identity_unlock;
6258 		r = -EFAULT;
6259 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6260 			goto set_identity_unlock;
6261 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6262 set_identity_unlock:
6263 		mutex_unlock(&kvm->lock);
6264 		break;
6265 	}
6266 	case KVM_SET_NR_MMU_PAGES:
6267 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6268 		break;
6269 	case KVM_GET_NR_MMU_PAGES:
6270 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6271 		break;
6272 	case KVM_CREATE_IRQCHIP: {
6273 		mutex_lock(&kvm->lock);
6274 
6275 		r = -EEXIST;
6276 		if (irqchip_in_kernel(kvm))
6277 			goto create_irqchip_unlock;
6278 
6279 		r = -EINVAL;
6280 		if (kvm->created_vcpus)
6281 			goto create_irqchip_unlock;
6282 
6283 		r = kvm_pic_init(kvm);
6284 		if (r)
6285 			goto create_irqchip_unlock;
6286 
6287 		r = kvm_ioapic_init(kvm);
6288 		if (r) {
6289 			kvm_pic_destroy(kvm);
6290 			goto create_irqchip_unlock;
6291 		}
6292 
6293 		r = kvm_setup_default_irq_routing(kvm);
6294 		if (r) {
6295 			kvm_ioapic_destroy(kvm);
6296 			kvm_pic_destroy(kvm);
6297 			goto create_irqchip_unlock;
6298 		}
6299 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6300 		smp_wmb();
6301 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6302 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6303 	create_irqchip_unlock:
6304 		mutex_unlock(&kvm->lock);
6305 		break;
6306 	}
6307 	case KVM_CREATE_PIT:
6308 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6309 		goto create_pit;
6310 	case KVM_CREATE_PIT2:
6311 		r = -EFAULT;
6312 		if (copy_from_user(&u.pit_config, argp,
6313 				   sizeof(struct kvm_pit_config)))
6314 			goto out;
6315 	create_pit:
6316 		mutex_lock(&kvm->lock);
6317 		r = -EEXIST;
6318 		if (kvm->arch.vpit)
6319 			goto create_pit_unlock;
6320 		r = -ENOMEM;
6321 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6322 		if (kvm->arch.vpit)
6323 			r = 0;
6324 	create_pit_unlock:
6325 		mutex_unlock(&kvm->lock);
6326 		break;
6327 	case KVM_GET_IRQCHIP: {
6328 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6329 		struct kvm_irqchip *chip;
6330 
6331 		chip = memdup_user(argp, sizeof(*chip));
6332 		if (IS_ERR(chip)) {
6333 			r = PTR_ERR(chip);
6334 			goto out;
6335 		}
6336 
6337 		r = -ENXIO;
6338 		if (!irqchip_kernel(kvm))
6339 			goto get_irqchip_out;
6340 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6341 		if (r)
6342 			goto get_irqchip_out;
6343 		r = -EFAULT;
6344 		if (copy_to_user(argp, chip, sizeof(*chip)))
6345 			goto get_irqchip_out;
6346 		r = 0;
6347 	get_irqchip_out:
6348 		kfree(chip);
6349 		break;
6350 	}
6351 	case KVM_SET_IRQCHIP: {
6352 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6353 		struct kvm_irqchip *chip;
6354 
6355 		chip = memdup_user(argp, sizeof(*chip));
6356 		if (IS_ERR(chip)) {
6357 			r = PTR_ERR(chip);
6358 			goto out;
6359 		}
6360 
6361 		r = -ENXIO;
6362 		if (!irqchip_kernel(kvm))
6363 			goto set_irqchip_out;
6364 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6365 	set_irqchip_out:
6366 		kfree(chip);
6367 		break;
6368 	}
6369 	case KVM_GET_PIT: {
6370 		r = -EFAULT;
6371 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6372 			goto out;
6373 		r = -ENXIO;
6374 		if (!kvm->arch.vpit)
6375 			goto out;
6376 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6377 		if (r)
6378 			goto out;
6379 		r = -EFAULT;
6380 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6381 			goto out;
6382 		r = 0;
6383 		break;
6384 	}
6385 	case KVM_SET_PIT: {
6386 		r = -EFAULT;
6387 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6388 			goto out;
6389 		mutex_lock(&kvm->lock);
6390 		r = -ENXIO;
6391 		if (!kvm->arch.vpit)
6392 			goto set_pit_out;
6393 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6394 set_pit_out:
6395 		mutex_unlock(&kvm->lock);
6396 		break;
6397 	}
6398 	case KVM_GET_PIT2: {
6399 		r = -ENXIO;
6400 		if (!kvm->arch.vpit)
6401 			goto out;
6402 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6403 		if (r)
6404 			goto out;
6405 		r = -EFAULT;
6406 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6407 			goto out;
6408 		r = 0;
6409 		break;
6410 	}
6411 	case KVM_SET_PIT2: {
6412 		r = -EFAULT;
6413 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6414 			goto out;
6415 		mutex_lock(&kvm->lock);
6416 		r = -ENXIO;
6417 		if (!kvm->arch.vpit)
6418 			goto set_pit2_out;
6419 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6420 set_pit2_out:
6421 		mutex_unlock(&kvm->lock);
6422 		break;
6423 	}
6424 	case KVM_REINJECT_CONTROL: {
6425 		struct kvm_reinject_control control;
6426 		r =  -EFAULT;
6427 		if (copy_from_user(&control, argp, sizeof(control)))
6428 			goto out;
6429 		r = -ENXIO;
6430 		if (!kvm->arch.vpit)
6431 			goto out;
6432 		r = kvm_vm_ioctl_reinject(kvm, &control);
6433 		break;
6434 	}
6435 	case KVM_SET_BOOT_CPU_ID:
6436 		r = 0;
6437 		mutex_lock(&kvm->lock);
6438 		if (kvm->created_vcpus)
6439 			r = -EBUSY;
6440 		else
6441 			kvm->arch.bsp_vcpu_id = arg;
6442 		mutex_unlock(&kvm->lock);
6443 		break;
6444 #ifdef CONFIG_KVM_XEN
6445 	case KVM_XEN_HVM_CONFIG: {
6446 		struct kvm_xen_hvm_config xhc;
6447 		r = -EFAULT;
6448 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6449 			goto out;
6450 		r = kvm_xen_hvm_config(kvm, &xhc);
6451 		break;
6452 	}
6453 	case KVM_XEN_HVM_GET_ATTR: {
6454 		struct kvm_xen_hvm_attr xha;
6455 
6456 		r = -EFAULT;
6457 		if (copy_from_user(&xha, argp, sizeof(xha)))
6458 			goto out;
6459 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6460 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6461 			r = -EFAULT;
6462 		break;
6463 	}
6464 	case KVM_XEN_HVM_SET_ATTR: {
6465 		struct kvm_xen_hvm_attr xha;
6466 
6467 		r = -EFAULT;
6468 		if (copy_from_user(&xha, argp, sizeof(xha)))
6469 			goto out;
6470 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6471 		break;
6472 	}
6473 #endif
6474 	case KVM_SET_CLOCK:
6475 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6476 		break;
6477 	case KVM_GET_CLOCK:
6478 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6479 		break;
6480 	case KVM_MEMORY_ENCRYPT_OP: {
6481 		r = -ENOTTY;
6482 		if (!kvm_x86_ops.mem_enc_ioctl)
6483 			goto out;
6484 
6485 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6486 		break;
6487 	}
6488 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6489 		struct kvm_enc_region region;
6490 
6491 		r = -EFAULT;
6492 		if (copy_from_user(&region, argp, sizeof(region)))
6493 			goto out;
6494 
6495 		r = -ENOTTY;
6496 		if (!kvm_x86_ops.mem_enc_register_region)
6497 			goto out;
6498 
6499 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6500 		break;
6501 	}
6502 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6503 		struct kvm_enc_region region;
6504 
6505 		r = -EFAULT;
6506 		if (copy_from_user(&region, argp, sizeof(region)))
6507 			goto out;
6508 
6509 		r = -ENOTTY;
6510 		if (!kvm_x86_ops.mem_enc_unregister_region)
6511 			goto out;
6512 
6513 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6514 		break;
6515 	}
6516 	case KVM_HYPERV_EVENTFD: {
6517 		struct kvm_hyperv_eventfd hvevfd;
6518 
6519 		r = -EFAULT;
6520 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6521 			goto out;
6522 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6523 		break;
6524 	}
6525 	case KVM_SET_PMU_EVENT_FILTER:
6526 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6527 		break;
6528 	case KVM_X86_SET_MSR_FILTER:
6529 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6530 		break;
6531 	default:
6532 		r = -ENOTTY;
6533 	}
6534 out:
6535 	return r;
6536 }
6537 
6538 static void kvm_init_msr_list(void)
6539 {
6540 	struct x86_pmu_capability x86_pmu;
6541 	u32 dummy[2];
6542 	unsigned i;
6543 
6544 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6545 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6546 
6547 	perf_get_x86_pmu_capability(&x86_pmu);
6548 
6549 	num_msrs_to_save = 0;
6550 	num_emulated_msrs = 0;
6551 	num_msr_based_features = 0;
6552 
6553 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6554 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6555 			continue;
6556 
6557 		/*
6558 		 * Even MSRs that are valid in the host may not be exposed
6559 		 * to the guests in some cases.
6560 		 */
6561 		switch (msrs_to_save_all[i]) {
6562 		case MSR_IA32_BNDCFGS:
6563 			if (!kvm_mpx_supported())
6564 				continue;
6565 			break;
6566 		case MSR_TSC_AUX:
6567 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6568 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6569 				continue;
6570 			break;
6571 		case MSR_IA32_UMWAIT_CONTROL:
6572 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6573 				continue;
6574 			break;
6575 		case MSR_IA32_RTIT_CTL:
6576 		case MSR_IA32_RTIT_STATUS:
6577 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6578 				continue;
6579 			break;
6580 		case MSR_IA32_RTIT_CR3_MATCH:
6581 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6582 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6583 				continue;
6584 			break;
6585 		case MSR_IA32_RTIT_OUTPUT_BASE:
6586 		case MSR_IA32_RTIT_OUTPUT_MASK:
6587 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6588 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6589 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6590 				continue;
6591 			break;
6592 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6593 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6594 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6595 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6596 				continue;
6597 			break;
6598 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6599 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6600 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6601 				continue;
6602 			break;
6603 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6604 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6605 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6606 				continue;
6607 			break;
6608 		case MSR_IA32_XFD:
6609 		case MSR_IA32_XFD_ERR:
6610 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6611 				continue;
6612 			break;
6613 		default:
6614 			break;
6615 		}
6616 
6617 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6618 	}
6619 
6620 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6621 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6622 			continue;
6623 
6624 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6625 	}
6626 
6627 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6628 		struct kvm_msr_entry msr;
6629 
6630 		msr.index = msr_based_features_all[i];
6631 		if (kvm_get_msr_feature(&msr))
6632 			continue;
6633 
6634 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6635 	}
6636 }
6637 
6638 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6639 			   const void *v)
6640 {
6641 	int handled = 0;
6642 	int n;
6643 
6644 	do {
6645 		n = min(len, 8);
6646 		if (!(lapic_in_kernel(vcpu) &&
6647 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6648 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6649 			break;
6650 		handled += n;
6651 		addr += n;
6652 		len -= n;
6653 		v += n;
6654 	} while (len);
6655 
6656 	return handled;
6657 }
6658 
6659 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6660 {
6661 	int handled = 0;
6662 	int n;
6663 
6664 	do {
6665 		n = min(len, 8);
6666 		if (!(lapic_in_kernel(vcpu) &&
6667 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6668 					 addr, n, v))
6669 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6670 			break;
6671 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6672 		handled += n;
6673 		addr += n;
6674 		len -= n;
6675 		v += n;
6676 	} while (len);
6677 
6678 	return handled;
6679 }
6680 
6681 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6682 			struct kvm_segment *var, int seg)
6683 {
6684 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6685 }
6686 
6687 void kvm_get_segment(struct kvm_vcpu *vcpu,
6688 		     struct kvm_segment *var, int seg)
6689 {
6690 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6691 }
6692 
6693 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6694 			   struct x86_exception *exception)
6695 {
6696 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6697 	gpa_t t_gpa;
6698 
6699 	BUG_ON(!mmu_is_nested(vcpu));
6700 
6701 	/* NPT walks are always user-walks */
6702 	access |= PFERR_USER_MASK;
6703 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6704 
6705 	return t_gpa;
6706 }
6707 
6708 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6709 			      struct x86_exception *exception)
6710 {
6711 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6712 
6713 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6714 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6715 }
6716 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6717 
6718  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6719 				struct x86_exception *exception)
6720 {
6721 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6722 
6723 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6724 	access |= PFERR_FETCH_MASK;
6725 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6726 }
6727 
6728 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6729 			       struct x86_exception *exception)
6730 {
6731 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6732 
6733 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6734 	access |= PFERR_WRITE_MASK;
6735 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6736 }
6737 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6738 
6739 /* uses this to access any guest's mapped memory without checking CPL */
6740 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6741 				struct x86_exception *exception)
6742 {
6743 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6744 
6745 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6746 }
6747 
6748 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6749 				      struct kvm_vcpu *vcpu, u32 access,
6750 				      struct x86_exception *exception)
6751 {
6752 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6753 	void *data = val;
6754 	int r = X86EMUL_CONTINUE;
6755 
6756 	while (bytes) {
6757 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6758 		unsigned offset = addr & (PAGE_SIZE-1);
6759 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6760 		int ret;
6761 
6762 		if (gpa == UNMAPPED_GVA)
6763 			return X86EMUL_PROPAGATE_FAULT;
6764 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6765 					       offset, toread);
6766 		if (ret < 0) {
6767 			r = X86EMUL_IO_NEEDED;
6768 			goto out;
6769 		}
6770 
6771 		bytes -= toread;
6772 		data += toread;
6773 		addr += toread;
6774 	}
6775 out:
6776 	return r;
6777 }
6778 
6779 /* used for instruction fetching */
6780 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6781 				gva_t addr, void *val, unsigned int bytes,
6782 				struct x86_exception *exception)
6783 {
6784 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6785 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6786 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6787 	unsigned offset;
6788 	int ret;
6789 
6790 	/* Inline kvm_read_guest_virt_helper for speed.  */
6791 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6792 				    exception);
6793 	if (unlikely(gpa == UNMAPPED_GVA))
6794 		return X86EMUL_PROPAGATE_FAULT;
6795 
6796 	offset = addr & (PAGE_SIZE-1);
6797 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6798 		bytes = (unsigned)PAGE_SIZE - offset;
6799 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6800 				       offset, bytes);
6801 	if (unlikely(ret < 0))
6802 		return X86EMUL_IO_NEEDED;
6803 
6804 	return X86EMUL_CONTINUE;
6805 }
6806 
6807 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6808 			       gva_t addr, void *val, unsigned int bytes,
6809 			       struct x86_exception *exception)
6810 {
6811 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6812 
6813 	/*
6814 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6815 	 * is returned, but our callers are not ready for that and they blindly
6816 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6817 	 * uninitialized kernel stack memory into cr2 and error code.
6818 	 */
6819 	memset(exception, 0, sizeof(*exception));
6820 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6821 					  exception);
6822 }
6823 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6824 
6825 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6826 			     gva_t addr, void *val, unsigned int bytes,
6827 			     struct x86_exception *exception, bool system)
6828 {
6829 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6830 	u32 access = 0;
6831 
6832 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6833 		access |= PFERR_USER_MASK;
6834 
6835 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6836 }
6837 
6838 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6839 		unsigned long addr, void *val, unsigned int bytes)
6840 {
6841 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6842 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6843 
6844 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6845 }
6846 
6847 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6848 				      struct kvm_vcpu *vcpu, u32 access,
6849 				      struct x86_exception *exception)
6850 {
6851 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6852 	void *data = val;
6853 	int r = X86EMUL_CONTINUE;
6854 
6855 	while (bytes) {
6856 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6857 		unsigned offset = addr & (PAGE_SIZE-1);
6858 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6859 		int ret;
6860 
6861 		if (gpa == UNMAPPED_GVA)
6862 			return X86EMUL_PROPAGATE_FAULT;
6863 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6864 		if (ret < 0) {
6865 			r = X86EMUL_IO_NEEDED;
6866 			goto out;
6867 		}
6868 
6869 		bytes -= towrite;
6870 		data += towrite;
6871 		addr += towrite;
6872 	}
6873 out:
6874 	return r;
6875 }
6876 
6877 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6878 			      unsigned int bytes, struct x86_exception *exception,
6879 			      bool system)
6880 {
6881 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6882 	u32 access = PFERR_WRITE_MASK;
6883 
6884 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6885 		access |= PFERR_USER_MASK;
6886 
6887 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6888 					   access, exception);
6889 }
6890 
6891 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6892 				unsigned int bytes, struct x86_exception *exception)
6893 {
6894 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6895 	vcpu->arch.l1tf_flush_l1d = true;
6896 
6897 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6898 					   PFERR_WRITE_MASK, exception);
6899 }
6900 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6901 
6902 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6903 				void *insn, int insn_len)
6904 {
6905 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6906 							    insn, insn_len);
6907 }
6908 
6909 int handle_ud(struct kvm_vcpu *vcpu)
6910 {
6911 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6912 	int emul_type = EMULTYPE_TRAP_UD;
6913 	char sig[5]; /* ud2; .ascii "kvm" */
6914 	struct x86_exception e;
6915 
6916 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6917 		return 1;
6918 
6919 	if (force_emulation_prefix &&
6920 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6921 				sig, sizeof(sig), &e) == 0 &&
6922 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6923 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6924 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6925 	}
6926 
6927 	return kvm_emulate_instruction(vcpu, emul_type);
6928 }
6929 EXPORT_SYMBOL_GPL(handle_ud);
6930 
6931 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6932 			    gpa_t gpa, bool write)
6933 {
6934 	/* For APIC access vmexit */
6935 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6936 		return 1;
6937 
6938 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6939 		trace_vcpu_match_mmio(gva, gpa, write, true);
6940 		return 1;
6941 	}
6942 
6943 	return 0;
6944 }
6945 
6946 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6947 				gpa_t *gpa, struct x86_exception *exception,
6948 				bool write)
6949 {
6950 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6951 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6952 		| (write ? PFERR_WRITE_MASK : 0);
6953 
6954 	/*
6955 	 * currently PKRU is only applied to ept enabled guest so
6956 	 * there is no pkey in EPT page table for L1 guest or EPT
6957 	 * shadow page table for L2 guest.
6958 	 */
6959 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6960 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6961 			      vcpu->arch.mmio_access, 0, access))) {
6962 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6963 					(gva & (PAGE_SIZE - 1));
6964 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6965 		return 1;
6966 	}
6967 
6968 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6969 
6970 	if (*gpa == UNMAPPED_GVA)
6971 		return -1;
6972 
6973 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6974 }
6975 
6976 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6977 			const void *val, int bytes)
6978 {
6979 	int ret;
6980 
6981 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6982 	if (ret < 0)
6983 		return 0;
6984 	kvm_page_track_write(vcpu, gpa, val, bytes);
6985 	return 1;
6986 }
6987 
6988 struct read_write_emulator_ops {
6989 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6990 				  int bytes);
6991 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6992 				  void *val, int bytes);
6993 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6994 			       int bytes, void *val);
6995 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6996 				    void *val, int bytes);
6997 	bool write;
6998 };
6999 
7000 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7001 {
7002 	if (vcpu->mmio_read_completed) {
7003 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7004 			       vcpu->mmio_fragments[0].gpa, val);
7005 		vcpu->mmio_read_completed = 0;
7006 		return 1;
7007 	}
7008 
7009 	return 0;
7010 }
7011 
7012 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7013 			void *val, int bytes)
7014 {
7015 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7016 }
7017 
7018 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7019 			 void *val, int bytes)
7020 {
7021 	return emulator_write_phys(vcpu, gpa, val, bytes);
7022 }
7023 
7024 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7025 {
7026 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7027 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7028 }
7029 
7030 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7031 			  void *val, int bytes)
7032 {
7033 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7034 	return X86EMUL_IO_NEEDED;
7035 }
7036 
7037 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7038 			   void *val, int bytes)
7039 {
7040 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7041 
7042 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7043 	return X86EMUL_CONTINUE;
7044 }
7045 
7046 static const struct read_write_emulator_ops read_emultor = {
7047 	.read_write_prepare = read_prepare,
7048 	.read_write_emulate = read_emulate,
7049 	.read_write_mmio = vcpu_mmio_read,
7050 	.read_write_exit_mmio = read_exit_mmio,
7051 };
7052 
7053 static const struct read_write_emulator_ops write_emultor = {
7054 	.read_write_emulate = write_emulate,
7055 	.read_write_mmio = write_mmio,
7056 	.read_write_exit_mmio = write_exit_mmio,
7057 	.write = true,
7058 };
7059 
7060 static int emulator_read_write_onepage(unsigned long addr, void *val,
7061 				       unsigned int bytes,
7062 				       struct x86_exception *exception,
7063 				       struct kvm_vcpu *vcpu,
7064 				       const struct read_write_emulator_ops *ops)
7065 {
7066 	gpa_t gpa;
7067 	int handled, ret;
7068 	bool write = ops->write;
7069 	struct kvm_mmio_fragment *frag;
7070 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7071 
7072 	/*
7073 	 * If the exit was due to a NPF we may already have a GPA.
7074 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7075 	 * Note, this cannot be used on string operations since string
7076 	 * operation using rep will only have the initial GPA from the NPF
7077 	 * occurred.
7078 	 */
7079 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7080 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7081 		gpa = ctxt->gpa_val;
7082 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7083 	} else {
7084 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7085 		if (ret < 0)
7086 			return X86EMUL_PROPAGATE_FAULT;
7087 	}
7088 
7089 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7090 		return X86EMUL_CONTINUE;
7091 
7092 	/*
7093 	 * Is this MMIO handled locally?
7094 	 */
7095 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7096 	if (handled == bytes)
7097 		return X86EMUL_CONTINUE;
7098 
7099 	gpa += handled;
7100 	bytes -= handled;
7101 	val += handled;
7102 
7103 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7104 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7105 	frag->gpa = gpa;
7106 	frag->data = val;
7107 	frag->len = bytes;
7108 	return X86EMUL_CONTINUE;
7109 }
7110 
7111 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7112 			unsigned long addr,
7113 			void *val, unsigned int bytes,
7114 			struct x86_exception *exception,
7115 			const struct read_write_emulator_ops *ops)
7116 {
7117 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7118 	gpa_t gpa;
7119 	int rc;
7120 
7121 	if (ops->read_write_prepare &&
7122 		  ops->read_write_prepare(vcpu, val, bytes))
7123 		return X86EMUL_CONTINUE;
7124 
7125 	vcpu->mmio_nr_fragments = 0;
7126 
7127 	/* Crossing a page boundary? */
7128 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7129 		int now;
7130 
7131 		now = -addr & ~PAGE_MASK;
7132 		rc = emulator_read_write_onepage(addr, val, now, exception,
7133 						 vcpu, ops);
7134 
7135 		if (rc != X86EMUL_CONTINUE)
7136 			return rc;
7137 		addr += now;
7138 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7139 			addr = (u32)addr;
7140 		val += now;
7141 		bytes -= now;
7142 	}
7143 
7144 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7145 					 vcpu, ops);
7146 	if (rc != X86EMUL_CONTINUE)
7147 		return rc;
7148 
7149 	if (!vcpu->mmio_nr_fragments)
7150 		return rc;
7151 
7152 	gpa = vcpu->mmio_fragments[0].gpa;
7153 
7154 	vcpu->mmio_needed = 1;
7155 	vcpu->mmio_cur_fragment = 0;
7156 
7157 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7158 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7159 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7160 	vcpu->run->mmio.phys_addr = gpa;
7161 
7162 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7163 }
7164 
7165 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7166 				  unsigned long addr,
7167 				  void *val,
7168 				  unsigned int bytes,
7169 				  struct x86_exception *exception)
7170 {
7171 	return emulator_read_write(ctxt, addr, val, bytes,
7172 				   exception, &read_emultor);
7173 }
7174 
7175 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7176 			    unsigned long addr,
7177 			    const void *val,
7178 			    unsigned int bytes,
7179 			    struct x86_exception *exception)
7180 {
7181 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7182 				   exception, &write_emultor);
7183 }
7184 
7185 #define CMPXCHG_TYPE(t, ptr, old, new) \
7186 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7187 
7188 #ifdef CONFIG_X86_64
7189 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7190 #else
7191 #  define CMPXCHG64(ptr, old, new) \
7192 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7193 #endif
7194 
7195 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7196 				     unsigned long addr,
7197 				     const void *old,
7198 				     const void *new,
7199 				     unsigned int bytes,
7200 				     struct x86_exception *exception)
7201 {
7202 	struct kvm_host_map map;
7203 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7204 	u64 page_line_mask;
7205 	gpa_t gpa;
7206 	char *kaddr;
7207 	bool exchanged;
7208 
7209 	/* guests cmpxchg8b have to be emulated atomically */
7210 	if (bytes > 8 || (bytes & (bytes - 1)))
7211 		goto emul_write;
7212 
7213 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7214 
7215 	if (gpa == UNMAPPED_GVA ||
7216 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7217 		goto emul_write;
7218 
7219 	/*
7220 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7221 	 * enabled in the host and the access splits a cache line.
7222 	 */
7223 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7224 		page_line_mask = ~(cache_line_size() - 1);
7225 	else
7226 		page_line_mask = PAGE_MASK;
7227 
7228 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7229 		goto emul_write;
7230 
7231 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7232 		goto emul_write;
7233 
7234 	kaddr = map.hva + offset_in_page(gpa);
7235 
7236 	switch (bytes) {
7237 	case 1:
7238 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7239 		break;
7240 	case 2:
7241 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7242 		break;
7243 	case 4:
7244 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7245 		break;
7246 	case 8:
7247 		exchanged = CMPXCHG64(kaddr, old, new);
7248 		break;
7249 	default:
7250 		BUG();
7251 	}
7252 
7253 	kvm_vcpu_unmap(vcpu, &map, true);
7254 
7255 	if (!exchanged)
7256 		return X86EMUL_CMPXCHG_FAILED;
7257 
7258 	kvm_page_track_write(vcpu, gpa, new, bytes);
7259 
7260 	return X86EMUL_CONTINUE;
7261 
7262 emul_write:
7263 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7264 
7265 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7266 }
7267 
7268 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7269 {
7270 	int r = 0, i;
7271 
7272 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7273 		if (vcpu->arch.pio.in)
7274 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7275 					    vcpu->arch.pio.size, pd);
7276 		else
7277 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7278 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7279 					     pd);
7280 		if (r)
7281 			break;
7282 		pd += vcpu->arch.pio.size;
7283 	}
7284 	return r;
7285 }
7286 
7287 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7288 			       unsigned short port,
7289 			       unsigned int count, bool in)
7290 {
7291 	vcpu->arch.pio.port = port;
7292 	vcpu->arch.pio.in = in;
7293 	vcpu->arch.pio.count  = count;
7294 	vcpu->arch.pio.size = size;
7295 
7296 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7297 		return 1;
7298 
7299 	vcpu->run->exit_reason = KVM_EXIT_IO;
7300 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7301 	vcpu->run->io.size = size;
7302 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7303 	vcpu->run->io.count = count;
7304 	vcpu->run->io.port = port;
7305 
7306 	return 0;
7307 }
7308 
7309 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7310 			     unsigned short port, unsigned int count)
7311 {
7312 	WARN_ON(vcpu->arch.pio.count);
7313 	memset(vcpu->arch.pio_data, 0, size * count);
7314 	return emulator_pio_in_out(vcpu, size, port, count, true);
7315 }
7316 
7317 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7318 {
7319 	int size = vcpu->arch.pio.size;
7320 	unsigned count = vcpu->arch.pio.count;
7321 	memcpy(val, vcpu->arch.pio_data, size * count);
7322 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7323 	vcpu->arch.pio.count = 0;
7324 }
7325 
7326 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7327 			   unsigned short port, void *val, unsigned int count)
7328 {
7329 	if (vcpu->arch.pio.count) {
7330 		/*
7331 		 * Complete a previous iteration that required userspace I/O.
7332 		 * Note, @count isn't guaranteed to match pio.count as userspace
7333 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7334 		 * shenanigans as KVM doesn't support modifying the rep count,
7335 		 * and the emulator ensures @count doesn't overflow the buffer.
7336 		 */
7337 	} else {
7338 		int r = __emulator_pio_in(vcpu, size, port, count);
7339 		if (!r)
7340 			return r;
7341 
7342 		/* Results already available, fall through.  */
7343 	}
7344 
7345 	complete_emulator_pio_in(vcpu, val);
7346 	return 1;
7347 }
7348 
7349 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7350 				    int size, unsigned short port, void *val,
7351 				    unsigned int count)
7352 {
7353 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7354 
7355 }
7356 
7357 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7358 			    unsigned short port, const void *val,
7359 			    unsigned int count)
7360 {
7361 	int ret;
7362 
7363 	memcpy(vcpu->arch.pio_data, val, size * count);
7364 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7365 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7366 	if (ret)
7367                 vcpu->arch.pio.count = 0;
7368 
7369         return ret;
7370 }
7371 
7372 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7373 				     int size, unsigned short port,
7374 				     const void *val, unsigned int count)
7375 {
7376 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7377 }
7378 
7379 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7380 {
7381 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7382 }
7383 
7384 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7385 {
7386 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7387 }
7388 
7389 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7390 {
7391 	if (!need_emulate_wbinvd(vcpu))
7392 		return X86EMUL_CONTINUE;
7393 
7394 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7395 		int cpu = get_cpu();
7396 
7397 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7398 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7399 				wbinvd_ipi, NULL, 1);
7400 		put_cpu();
7401 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7402 	} else
7403 		wbinvd();
7404 	return X86EMUL_CONTINUE;
7405 }
7406 
7407 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7408 {
7409 	kvm_emulate_wbinvd_noskip(vcpu);
7410 	return kvm_skip_emulated_instruction(vcpu);
7411 }
7412 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7413 
7414 
7415 
7416 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7417 {
7418 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7419 }
7420 
7421 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7422 			    unsigned long *dest)
7423 {
7424 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7425 }
7426 
7427 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7428 			   unsigned long value)
7429 {
7430 
7431 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7432 }
7433 
7434 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7435 {
7436 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7437 }
7438 
7439 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7440 {
7441 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7442 	unsigned long value;
7443 
7444 	switch (cr) {
7445 	case 0:
7446 		value = kvm_read_cr0(vcpu);
7447 		break;
7448 	case 2:
7449 		value = vcpu->arch.cr2;
7450 		break;
7451 	case 3:
7452 		value = kvm_read_cr3(vcpu);
7453 		break;
7454 	case 4:
7455 		value = kvm_read_cr4(vcpu);
7456 		break;
7457 	case 8:
7458 		value = kvm_get_cr8(vcpu);
7459 		break;
7460 	default:
7461 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7462 		return 0;
7463 	}
7464 
7465 	return value;
7466 }
7467 
7468 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7469 {
7470 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7471 	int res = 0;
7472 
7473 	switch (cr) {
7474 	case 0:
7475 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7476 		break;
7477 	case 2:
7478 		vcpu->arch.cr2 = val;
7479 		break;
7480 	case 3:
7481 		res = kvm_set_cr3(vcpu, val);
7482 		break;
7483 	case 4:
7484 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7485 		break;
7486 	case 8:
7487 		res = kvm_set_cr8(vcpu, val);
7488 		break;
7489 	default:
7490 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7491 		res = -1;
7492 	}
7493 
7494 	return res;
7495 }
7496 
7497 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7498 {
7499 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7500 }
7501 
7502 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7503 {
7504 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7505 }
7506 
7507 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7508 {
7509 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7510 }
7511 
7512 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7513 {
7514 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7515 }
7516 
7517 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7518 {
7519 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7520 }
7521 
7522 static unsigned long emulator_get_cached_segment_base(
7523 	struct x86_emulate_ctxt *ctxt, int seg)
7524 {
7525 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7526 }
7527 
7528 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7529 				 struct desc_struct *desc, u32 *base3,
7530 				 int seg)
7531 {
7532 	struct kvm_segment var;
7533 
7534 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7535 	*selector = var.selector;
7536 
7537 	if (var.unusable) {
7538 		memset(desc, 0, sizeof(*desc));
7539 		if (base3)
7540 			*base3 = 0;
7541 		return false;
7542 	}
7543 
7544 	if (var.g)
7545 		var.limit >>= 12;
7546 	set_desc_limit(desc, var.limit);
7547 	set_desc_base(desc, (unsigned long)var.base);
7548 #ifdef CONFIG_X86_64
7549 	if (base3)
7550 		*base3 = var.base >> 32;
7551 #endif
7552 	desc->type = var.type;
7553 	desc->s = var.s;
7554 	desc->dpl = var.dpl;
7555 	desc->p = var.present;
7556 	desc->avl = var.avl;
7557 	desc->l = var.l;
7558 	desc->d = var.db;
7559 	desc->g = var.g;
7560 
7561 	return true;
7562 }
7563 
7564 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7565 				 struct desc_struct *desc, u32 base3,
7566 				 int seg)
7567 {
7568 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7569 	struct kvm_segment var;
7570 
7571 	var.selector = selector;
7572 	var.base = get_desc_base(desc);
7573 #ifdef CONFIG_X86_64
7574 	var.base |= ((u64)base3) << 32;
7575 #endif
7576 	var.limit = get_desc_limit(desc);
7577 	if (desc->g)
7578 		var.limit = (var.limit << 12) | 0xfff;
7579 	var.type = desc->type;
7580 	var.dpl = desc->dpl;
7581 	var.db = desc->d;
7582 	var.s = desc->s;
7583 	var.l = desc->l;
7584 	var.g = desc->g;
7585 	var.avl = desc->avl;
7586 	var.present = desc->p;
7587 	var.unusable = !var.present;
7588 	var.padding = 0;
7589 
7590 	kvm_set_segment(vcpu, &var, seg);
7591 	return;
7592 }
7593 
7594 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7595 			    u32 msr_index, u64 *pdata)
7596 {
7597 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7598 	int r;
7599 
7600 	r = kvm_get_msr(vcpu, msr_index, pdata);
7601 
7602 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7603 				    complete_emulated_rdmsr, r)) {
7604 		/* Bounce to user space */
7605 		return X86EMUL_IO_NEEDED;
7606 	}
7607 
7608 	return r;
7609 }
7610 
7611 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7612 			    u32 msr_index, u64 data)
7613 {
7614 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7615 	int r;
7616 
7617 	r = kvm_set_msr(vcpu, msr_index, data);
7618 
7619 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7620 				    complete_emulated_msr_access, r)) {
7621 		/* Bounce to user space */
7622 		return X86EMUL_IO_NEEDED;
7623 	}
7624 
7625 	return r;
7626 }
7627 
7628 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7629 {
7630 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7631 
7632 	return vcpu->arch.smbase;
7633 }
7634 
7635 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7636 {
7637 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7638 
7639 	vcpu->arch.smbase = smbase;
7640 }
7641 
7642 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7643 			      u32 pmc)
7644 {
7645 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7646 		return 0;
7647 	return -EINVAL;
7648 }
7649 
7650 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7651 			     u32 pmc, u64 *pdata)
7652 {
7653 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7654 }
7655 
7656 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7657 {
7658 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7659 }
7660 
7661 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7662 			      struct x86_instruction_info *info,
7663 			      enum x86_intercept_stage stage)
7664 {
7665 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7666 					    &ctxt->exception);
7667 }
7668 
7669 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7670 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7671 			      bool exact_only)
7672 {
7673 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7674 }
7675 
7676 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7677 {
7678 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7679 }
7680 
7681 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7682 {
7683 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7684 }
7685 
7686 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7687 {
7688 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7689 }
7690 
7691 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7692 {
7693 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7694 }
7695 
7696 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7697 {
7698 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7699 }
7700 
7701 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7702 {
7703 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7704 }
7705 
7706 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7707 {
7708 	return emul_to_vcpu(ctxt)->arch.hflags;
7709 }
7710 
7711 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7712 {
7713 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7714 
7715 	kvm_smm_changed(vcpu, false);
7716 }
7717 
7718 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7719 				  const char *smstate)
7720 {
7721 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7722 }
7723 
7724 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7725 {
7726 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7727 }
7728 
7729 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7730 {
7731 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7732 }
7733 
7734 static const struct x86_emulate_ops emulate_ops = {
7735 	.read_gpr            = emulator_read_gpr,
7736 	.write_gpr           = emulator_write_gpr,
7737 	.read_std            = emulator_read_std,
7738 	.write_std           = emulator_write_std,
7739 	.read_phys           = kvm_read_guest_phys_system,
7740 	.fetch               = kvm_fetch_guest_virt,
7741 	.read_emulated       = emulator_read_emulated,
7742 	.write_emulated      = emulator_write_emulated,
7743 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7744 	.invlpg              = emulator_invlpg,
7745 	.pio_in_emulated     = emulator_pio_in_emulated,
7746 	.pio_out_emulated    = emulator_pio_out_emulated,
7747 	.get_segment         = emulator_get_segment,
7748 	.set_segment         = emulator_set_segment,
7749 	.get_cached_segment_base = emulator_get_cached_segment_base,
7750 	.get_gdt             = emulator_get_gdt,
7751 	.get_idt	     = emulator_get_idt,
7752 	.set_gdt             = emulator_set_gdt,
7753 	.set_idt	     = emulator_set_idt,
7754 	.get_cr              = emulator_get_cr,
7755 	.set_cr              = emulator_set_cr,
7756 	.cpl                 = emulator_get_cpl,
7757 	.get_dr              = emulator_get_dr,
7758 	.set_dr              = emulator_set_dr,
7759 	.get_smbase          = emulator_get_smbase,
7760 	.set_smbase          = emulator_set_smbase,
7761 	.set_msr             = emulator_set_msr,
7762 	.get_msr             = emulator_get_msr,
7763 	.check_pmc	     = emulator_check_pmc,
7764 	.read_pmc            = emulator_read_pmc,
7765 	.halt                = emulator_halt,
7766 	.wbinvd              = emulator_wbinvd,
7767 	.fix_hypercall       = emulator_fix_hypercall,
7768 	.intercept           = emulator_intercept,
7769 	.get_cpuid           = emulator_get_cpuid,
7770 	.guest_has_long_mode = emulator_guest_has_long_mode,
7771 	.guest_has_movbe     = emulator_guest_has_movbe,
7772 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7773 	.set_nmi_mask        = emulator_set_nmi_mask,
7774 	.get_hflags          = emulator_get_hflags,
7775 	.exiting_smm         = emulator_exiting_smm,
7776 	.leave_smm           = emulator_leave_smm,
7777 	.triple_fault        = emulator_triple_fault,
7778 	.set_xcr             = emulator_set_xcr,
7779 };
7780 
7781 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7782 {
7783 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7784 	/*
7785 	 * an sti; sti; sequence only disable interrupts for the first
7786 	 * instruction. So, if the last instruction, be it emulated or
7787 	 * not, left the system with the INT_STI flag enabled, it
7788 	 * means that the last instruction is an sti. We should not
7789 	 * leave the flag on in this case. The same goes for mov ss
7790 	 */
7791 	if (int_shadow & mask)
7792 		mask = 0;
7793 	if (unlikely(int_shadow || mask)) {
7794 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7795 		if (!mask)
7796 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7797 	}
7798 }
7799 
7800 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7801 {
7802 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7803 	if (ctxt->exception.vector == PF_VECTOR)
7804 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7805 
7806 	if (ctxt->exception.error_code_valid)
7807 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7808 				      ctxt->exception.error_code);
7809 	else
7810 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7811 	return false;
7812 }
7813 
7814 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7815 {
7816 	struct x86_emulate_ctxt *ctxt;
7817 
7818 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7819 	if (!ctxt) {
7820 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7821 		return NULL;
7822 	}
7823 
7824 	ctxt->vcpu = vcpu;
7825 	ctxt->ops = &emulate_ops;
7826 	vcpu->arch.emulate_ctxt = ctxt;
7827 
7828 	return ctxt;
7829 }
7830 
7831 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7832 {
7833 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7834 	int cs_db, cs_l;
7835 
7836 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7837 
7838 	ctxt->gpa_available = false;
7839 	ctxt->eflags = kvm_get_rflags(vcpu);
7840 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7841 
7842 	ctxt->eip = kvm_rip_read(vcpu);
7843 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7844 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7845 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7846 		     cs_db				? X86EMUL_MODE_PROT32 :
7847 							  X86EMUL_MODE_PROT16;
7848 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7849 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7850 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7851 
7852 	ctxt->interruptibility = 0;
7853 	ctxt->have_exception = false;
7854 	ctxt->exception.vector = -1;
7855 	ctxt->perm_ok = false;
7856 
7857 	init_decode_cache(ctxt);
7858 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7859 }
7860 
7861 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7862 {
7863 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7864 	int ret;
7865 
7866 	init_emulate_ctxt(vcpu);
7867 
7868 	ctxt->op_bytes = 2;
7869 	ctxt->ad_bytes = 2;
7870 	ctxt->_eip = ctxt->eip + inc_eip;
7871 	ret = emulate_int_real(ctxt, irq);
7872 
7873 	if (ret != X86EMUL_CONTINUE) {
7874 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7875 	} else {
7876 		ctxt->eip = ctxt->_eip;
7877 		kvm_rip_write(vcpu, ctxt->eip);
7878 		kvm_set_rflags(vcpu, ctxt->eflags);
7879 	}
7880 }
7881 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7882 
7883 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7884 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7885 {
7886 	struct kvm_run *run = vcpu->run;
7887 	u64 info[5];
7888 	u8 info_start;
7889 
7890 	/*
7891 	 * Zero the whole array used to retrieve the exit info, as casting to
7892 	 * u32 for select entries will leave some chunks uninitialized.
7893 	 */
7894 	memset(&info, 0, sizeof(info));
7895 
7896 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7897 					   &info[2], (u32 *)&info[3],
7898 					   (u32 *)&info[4]);
7899 
7900 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7901 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7902 
7903 	/*
7904 	 * There's currently space for 13 entries, but 5 are used for the exit
7905 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7906 	 * when expanding kvm_run.emulation_failure in the future.
7907 	 */
7908 	if (WARN_ON_ONCE(ndata > 4))
7909 		ndata = 4;
7910 
7911 	/* Always include the flags as a 'data' entry. */
7912 	info_start = 1;
7913 	run->emulation_failure.flags = 0;
7914 
7915 	if (insn_size) {
7916 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7917 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7918 		info_start += 2;
7919 		run->emulation_failure.flags |=
7920 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7921 		run->emulation_failure.insn_size = insn_size;
7922 		memset(run->emulation_failure.insn_bytes, 0x90,
7923 		       sizeof(run->emulation_failure.insn_bytes));
7924 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7925 	}
7926 
7927 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7928 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7929 	       ndata * sizeof(data[0]));
7930 
7931 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7932 }
7933 
7934 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7935 {
7936 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7937 
7938 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7939 				       ctxt->fetch.end - ctxt->fetch.data);
7940 }
7941 
7942 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7943 					  u8 ndata)
7944 {
7945 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7946 }
7947 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7948 
7949 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7950 {
7951 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7952 }
7953 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7954 
7955 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7956 {
7957 	struct kvm *kvm = vcpu->kvm;
7958 
7959 	++vcpu->stat.insn_emulation_fail;
7960 	trace_kvm_emulate_insn_failed(vcpu);
7961 
7962 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7963 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7964 		return 1;
7965 	}
7966 
7967 	if (kvm->arch.exit_on_emulation_error ||
7968 	    (emulation_type & EMULTYPE_SKIP)) {
7969 		prepare_emulation_ctxt_failure_exit(vcpu);
7970 		return 0;
7971 	}
7972 
7973 	kvm_queue_exception(vcpu, UD_VECTOR);
7974 
7975 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7976 		prepare_emulation_ctxt_failure_exit(vcpu);
7977 		return 0;
7978 	}
7979 
7980 	return 1;
7981 }
7982 
7983 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7984 				  bool write_fault_to_shadow_pgtable,
7985 				  int emulation_type)
7986 {
7987 	gpa_t gpa = cr2_or_gpa;
7988 	kvm_pfn_t pfn;
7989 
7990 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7991 		return false;
7992 
7993 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7994 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7995 		return false;
7996 
7997 	if (!vcpu->arch.mmu->direct_map) {
7998 		/*
7999 		 * Write permission should be allowed since only
8000 		 * write access need to be emulated.
8001 		 */
8002 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8003 
8004 		/*
8005 		 * If the mapping is invalid in guest, let cpu retry
8006 		 * it to generate fault.
8007 		 */
8008 		if (gpa == UNMAPPED_GVA)
8009 			return true;
8010 	}
8011 
8012 	/*
8013 	 * Do not retry the unhandleable instruction if it faults on the
8014 	 * readonly host memory, otherwise it will goto a infinite loop:
8015 	 * retry instruction -> write #PF -> emulation fail -> retry
8016 	 * instruction -> ...
8017 	 */
8018 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8019 
8020 	/*
8021 	 * If the instruction failed on the error pfn, it can not be fixed,
8022 	 * report the error to userspace.
8023 	 */
8024 	if (is_error_noslot_pfn(pfn))
8025 		return false;
8026 
8027 	kvm_release_pfn_clean(pfn);
8028 
8029 	/* The instructions are well-emulated on direct mmu. */
8030 	if (vcpu->arch.mmu->direct_map) {
8031 		unsigned int indirect_shadow_pages;
8032 
8033 		write_lock(&vcpu->kvm->mmu_lock);
8034 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8035 		write_unlock(&vcpu->kvm->mmu_lock);
8036 
8037 		if (indirect_shadow_pages)
8038 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8039 
8040 		return true;
8041 	}
8042 
8043 	/*
8044 	 * if emulation was due to access to shadowed page table
8045 	 * and it failed try to unshadow page and re-enter the
8046 	 * guest to let CPU execute the instruction.
8047 	 */
8048 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8049 
8050 	/*
8051 	 * If the access faults on its page table, it can not
8052 	 * be fixed by unprotecting shadow page and it should
8053 	 * be reported to userspace.
8054 	 */
8055 	return !write_fault_to_shadow_pgtable;
8056 }
8057 
8058 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8059 			      gpa_t cr2_or_gpa,  int emulation_type)
8060 {
8061 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8062 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8063 
8064 	last_retry_eip = vcpu->arch.last_retry_eip;
8065 	last_retry_addr = vcpu->arch.last_retry_addr;
8066 
8067 	/*
8068 	 * If the emulation is caused by #PF and it is non-page_table
8069 	 * writing instruction, it means the VM-EXIT is caused by shadow
8070 	 * page protected, we can zap the shadow page and retry this
8071 	 * instruction directly.
8072 	 *
8073 	 * Note: if the guest uses a non-page-table modifying instruction
8074 	 * on the PDE that points to the instruction, then we will unmap
8075 	 * the instruction and go to an infinite loop. So, we cache the
8076 	 * last retried eip and the last fault address, if we meet the eip
8077 	 * and the address again, we can break out of the potential infinite
8078 	 * loop.
8079 	 */
8080 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8081 
8082 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8083 		return false;
8084 
8085 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8086 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8087 		return false;
8088 
8089 	if (x86_page_table_writing_insn(ctxt))
8090 		return false;
8091 
8092 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8093 		return false;
8094 
8095 	vcpu->arch.last_retry_eip = ctxt->eip;
8096 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8097 
8098 	if (!vcpu->arch.mmu->direct_map)
8099 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8100 
8101 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8102 
8103 	return true;
8104 }
8105 
8106 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8107 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8108 
8109 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8110 {
8111 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8112 
8113 	if (entering_smm) {
8114 		vcpu->arch.hflags |= HF_SMM_MASK;
8115 	} else {
8116 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8117 
8118 		/* Process a latched INIT or SMI, if any.  */
8119 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8120 
8121 		/*
8122 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8123 		 * on SMM exit we still need to reload them from
8124 		 * guest memory
8125 		 */
8126 		vcpu->arch.pdptrs_from_userspace = false;
8127 	}
8128 
8129 	kvm_mmu_reset_context(vcpu);
8130 }
8131 
8132 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8133 				unsigned long *db)
8134 {
8135 	u32 dr6 = 0;
8136 	int i;
8137 	u32 enable, rwlen;
8138 
8139 	enable = dr7;
8140 	rwlen = dr7 >> 16;
8141 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8142 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8143 			dr6 |= (1 << i);
8144 	return dr6;
8145 }
8146 
8147 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8148 {
8149 	struct kvm_run *kvm_run = vcpu->run;
8150 
8151 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8152 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8153 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8154 		kvm_run->debug.arch.exception = DB_VECTOR;
8155 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8156 		return 0;
8157 	}
8158 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8159 	return 1;
8160 }
8161 
8162 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8163 {
8164 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8165 	int r;
8166 
8167 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8168 	if (unlikely(!r))
8169 		return 0;
8170 
8171 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8172 
8173 	/*
8174 	 * rflags is the old, "raw" value of the flags.  The new value has
8175 	 * not been saved yet.
8176 	 *
8177 	 * This is correct even for TF set by the guest, because "the
8178 	 * processor will not generate this exception after the instruction
8179 	 * that sets the TF flag".
8180 	 */
8181 	if (unlikely(rflags & X86_EFLAGS_TF))
8182 		r = kvm_vcpu_do_singlestep(vcpu);
8183 	return r;
8184 }
8185 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8186 
8187 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8188 {
8189 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8190 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8191 		struct kvm_run *kvm_run = vcpu->run;
8192 		unsigned long eip = kvm_get_linear_rip(vcpu);
8193 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8194 					   vcpu->arch.guest_debug_dr7,
8195 					   vcpu->arch.eff_db);
8196 
8197 		if (dr6 != 0) {
8198 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8199 			kvm_run->debug.arch.pc = eip;
8200 			kvm_run->debug.arch.exception = DB_VECTOR;
8201 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8202 			*r = 0;
8203 			return true;
8204 		}
8205 	}
8206 
8207 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8208 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8209 		unsigned long eip = kvm_get_linear_rip(vcpu);
8210 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8211 					   vcpu->arch.dr7,
8212 					   vcpu->arch.db);
8213 
8214 		if (dr6 != 0) {
8215 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8216 			*r = 1;
8217 			return true;
8218 		}
8219 	}
8220 
8221 	return false;
8222 }
8223 
8224 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8225 {
8226 	switch (ctxt->opcode_len) {
8227 	case 1:
8228 		switch (ctxt->b) {
8229 		case 0xe4:	/* IN */
8230 		case 0xe5:
8231 		case 0xec:
8232 		case 0xed:
8233 		case 0xe6:	/* OUT */
8234 		case 0xe7:
8235 		case 0xee:
8236 		case 0xef:
8237 		case 0x6c:	/* INS */
8238 		case 0x6d:
8239 		case 0x6e:	/* OUTS */
8240 		case 0x6f:
8241 			return true;
8242 		}
8243 		break;
8244 	case 2:
8245 		switch (ctxt->b) {
8246 		case 0x33:	/* RDPMC */
8247 			return true;
8248 		}
8249 		break;
8250 	}
8251 
8252 	return false;
8253 }
8254 
8255 /*
8256  * Decode to be emulated instruction. Return EMULATION_OK if success.
8257  */
8258 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8259 				    void *insn, int insn_len)
8260 {
8261 	int r = EMULATION_OK;
8262 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8263 
8264 	init_emulate_ctxt(vcpu);
8265 
8266 	/*
8267 	 * We will reenter on the same instruction since we do not set
8268 	 * complete_userspace_io. This does not handle watchpoints yet,
8269 	 * those would be handled in the emulate_ops.
8270 	 */
8271 	if (!(emulation_type & EMULTYPE_SKIP) &&
8272 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8273 		return r;
8274 
8275 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8276 
8277 	trace_kvm_emulate_insn_start(vcpu);
8278 	++vcpu->stat.insn_emulation;
8279 
8280 	return r;
8281 }
8282 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8283 
8284 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8285 			    int emulation_type, void *insn, int insn_len)
8286 {
8287 	int r;
8288 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8289 	bool writeback = true;
8290 	bool write_fault_to_spt;
8291 
8292 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8293 		return 1;
8294 
8295 	vcpu->arch.l1tf_flush_l1d = true;
8296 
8297 	/*
8298 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8299 	 * never reused.
8300 	 */
8301 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8302 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8303 
8304 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8305 		kvm_clear_exception_queue(vcpu);
8306 
8307 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8308 						    insn, insn_len);
8309 		if (r != EMULATION_OK)  {
8310 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8311 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8312 				kvm_queue_exception(vcpu, UD_VECTOR);
8313 				return 1;
8314 			}
8315 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8316 						  write_fault_to_spt,
8317 						  emulation_type))
8318 				return 1;
8319 			if (ctxt->have_exception) {
8320 				/*
8321 				 * #UD should result in just EMULATION_FAILED, and trap-like
8322 				 * exception should not be encountered during decode.
8323 				 */
8324 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8325 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8326 				inject_emulated_exception(vcpu);
8327 				return 1;
8328 			}
8329 			return handle_emulation_failure(vcpu, emulation_type);
8330 		}
8331 	}
8332 
8333 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8334 	    !is_vmware_backdoor_opcode(ctxt)) {
8335 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8336 		return 1;
8337 	}
8338 
8339 	/*
8340 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8341 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8342 	 * The caller is responsible for updating interruptibility state and
8343 	 * injecting single-step #DBs.
8344 	 */
8345 	if (emulation_type & EMULTYPE_SKIP) {
8346 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8347 			ctxt->eip = (u32)ctxt->_eip;
8348 		else
8349 			ctxt->eip = ctxt->_eip;
8350 
8351 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8352 			r = 1;
8353 			goto writeback;
8354 		}
8355 
8356 		kvm_rip_write(vcpu, ctxt->eip);
8357 		if (ctxt->eflags & X86_EFLAGS_RF)
8358 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8359 		return 1;
8360 	}
8361 
8362 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8363 		return 1;
8364 
8365 	/* this is needed for vmware backdoor interface to work since it
8366 	   changes registers values  during IO operation */
8367 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8368 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8369 		emulator_invalidate_register_cache(ctxt);
8370 	}
8371 
8372 restart:
8373 	if (emulation_type & EMULTYPE_PF) {
8374 		/* Save the faulting GPA (cr2) in the address field */
8375 		ctxt->exception.address = cr2_or_gpa;
8376 
8377 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8378 		if (vcpu->arch.mmu->direct_map) {
8379 			ctxt->gpa_available = true;
8380 			ctxt->gpa_val = cr2_or_gpa;
8381 		}
8382 	} else {
8383 		/* Sanitize the address out of an abundance of paranoia. */
8384 		ctxt->exception.address = 0;
8385 	}
8386 
8387 	r = x86_emulate_insn(ctxt);
8388 
8389 	if (r == EMULATION_INTERCEPTED)
8390 		return 1;
8391 
8392 	if (r == EMULATION_FAILED) {
8393 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8394 					emulation_type))
8395 			return 1;
8396 
8397 		return handle_emulation_failure(vcpu, emulation_type);
8398 	}
8399 
8400 	if (ctxt->have_exception) {
8401 		r = 1;
8402 		if (inject_emulated_exception(vcpu))
8403 			return r;
8404 	} else if (vcpu->arch.pio.count) {
8405 		if (!vcpu->arch.pio.in) {
8406 			/* FIXME: return into emulator if single-stepping.  */
8407 			vcpu->arch.pio.count = 0;
8408 		} else {
8409 			writeback = false;
8410 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8411 		}
8412 		r = 0;
8413 	} else if (vcpu->mmio_needed) {
8414 		++vcpu->stat.mmio_exits;
8415 
8416 		if (!vcpu->mmio_is_write)
8417 			writeback = false;
8418 		r = 0;
8419 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8420 	} else if (vcpu->arch.complete_userspace_io) {
8421 		writeback = false;
8422 		r = 0;
8423 	} else if (r == EMULATION_RESTART)
8424 		goto restart;
8425 	else
8426 		r = 1;
8427 
8428 writeback:
8429 	if (writeback) {
8430 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8431 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8432 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8433 		if (!ctxt->have_exception ||
8434 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8435 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8436 			if (ctxt->is_branch)
8437 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8438 			kvm_rip_write(vcpu, ctxt->eip);
8439 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8440 				r = kvm_vcpu_do_singlestep(vcpu);
8441 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8442 			__kvm_set_rflags(vcpu, ctxt->eflags);
8443 		}
8444 
8445 		/*
8446 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8447 		 * do nothing, and it will be requested again as soon as
8448 		 * the shadow expires.  But we still need to check here,
8449 		 * because POPF has no interrupt shadow.
8450 		 */
8451 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8452 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8453 	} else
8454 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8455 
8456 	return r;
8457 }
8458 
8459 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8460 {
8461 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8462 }
8463 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8464 
8465 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8466 					void *insn, int insn_len)
8467 {
8468 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8469 }
8470 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8471 
8472 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8473 {
8474 	vcpu->arch.pio.count = 0;
8475 	return 1;
8476 }
8477 
8478 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8479 {
8480 	vcpu->arch.pio.count = 0;
8481 
8482 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8483 		return 1;
8484 
8485 	return kvm_skip_emulated_instruction(vcpu);
8486 }
8487 
8488 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8489 			    unsigned short port)
8490 {
8491 	unsigned long val = kvm_rax_read(vcpu);
8492 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8493 
8494 	if (ret)
8495 		return ret;
8496 
8497 	/*
8498 	 * Workaround userspace that relies on old KVM behavior of %rip being
8499 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8500 	 */
8501 	if (port == 0x7e &&
8502 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8503 		vcpu->arch.complete_userspace_io =
8504 			complete_fast_pio_out_port_0x7e;
8505 		kvm_skip_emulated_instruction(vcpu);
8506 	} else {
8507 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8508 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8509 	}
8510 	return 0;
8511 }
8512 
8513 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8514 {
8515 	unsigned long val;
8516 
8517 	/* We should only ever be called with arch.pio.count equal to 1 */
8518 	BUG_ON(vcpu->arch.pio.count != 1);
8519 
8520 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8521 		vcpu->arch.pio.count = 0;
8522 		return 1;
8523 	}
8524 
8525 	/* For size less than 4 we merge, else we zero extend */
8526 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8527 
8528 	/*
8529 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8530 	 * the copy and tracing
8531 	 */
8532 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8533 	kvm_rax_write(vcpu, val);
8534 
8535 	return kvm_skip_emulated_instruction(vcpu);
8536 }
8537 
8538 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8539 			   unsigned short port)
8540 {
8541 	unsigned long val;
8542 	int ret;
8543 
8544 	/* For size less than 4 we merge, else we zero extend */
8545 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8546 
8547 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8548 	if (ret) {
8549 		kvm_rax_write(vcpu, val);
8550 		return ret;
8551 	}
8552 
8553 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8554 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8555 
8556 	return 0;
8557 }
8558 
8559 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8560 {
8561 	int ret;
8562 
8563 	if (in)
8564 		ret = kvm_fast_pio_in(vcpu, size, port);
8565 	else
8566 		ret = kvm_fast_pio_out(vcpu, size, port);
8567 	return ret && kvm_skip_emulated_instruction(vcpu);
8568 }
8569 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8570 
8571 static int kvmclock_cpu_down_prep(unsigned int cpu)
8572 {
8573 	__this_cpu_write(cpu_tsc_khz, 0);
8574 	return 0;
8575 }
8576 
8577 static void tsc_khz_changed(void *data)
8578 {
8579 	struct cpufreq_freqs *freq = data;
8580 	unsigned long khz = 0;
8581 
8582 	if (data)
8583 		khz = freq->new;
8584 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8585 		khz = cpufreq_quick_get(raw_smp_processor_id());
8586 	if (!khz)
8587 		khz = tsc_khz;
8588 	__this_cpu_write(cpu_tsc_khz, khz);
8589 }
8590 
8591 #ifdef CONFIG_X86_64
8592 static void kvm_hyperv_tsc_notifier(void)
8593 {
8594 	struct kvm *kvm;
8595 	int cpu;
8596 
8597 	mutex_lock(&kvm_lock);
8598 	list_for_each_entry(kvm, &vm_list, vm_list)
8599 		kvm_make_mclock_inprogress_request(kvm);
8600 
8601 	/* no guest entries from this point */
8602 	hyperv_stop_tsc_emulation();
8603 
8604 	/* TSC frequency always matches when on Hyper-V */
8605 	for_each_present_cpu(cpu)
8606 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8607 	kvm_max_guest_tsc_khz = tsc_khz;
8608 
8609 	list_for_each_entry(kvm, &vm_list, vm_list) {
8610 		__kvm_start_pvclock_update(kvm);
8611 		pvclock_update_vm_gtod_copy(kvm);
8612 		kvm_end_pvclock_update(kvm);
8613 	}
8614 
8615 	mutex_unlock(&kvm_lock);
8616 }
8617 #endif
8618 
8619 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8620 {
8621 	struct kvm *kvm;
8622 	struct kvm_vcpu *vcpu;
8623 	int send_ipi = 0;
8624 	unsigned long i;
8625 
8626 	/*
8627 	 * We allow guests to temporarily run on slowing clocks,
8628 	 * provided we notify them after, or to run on accelerating
8629 	 * clocks, provided we notify them before.  Thus time never
8630 	 * goes backwards.
8631 	 *
8632 	 * However, we have a problem.  We can't atomically update
8633 	 * the frequency of a given CPU from this function; it is
8634 	 * merely a notifier, which can be called from any CPU.
8635 	 * Changing the TSC frequency at arbitrary points in time
8636 	 * requires a recomputation of local variables related to
8637 	 * the TSC for each VCPU.  We must flag these local variables
8638 	 * to be updated and be sure the update takes place with the
8639 	 * new frequency before any guests proceed.
8640 	 *
8641 	 * Unfortunately, the combination of hotplug CPU and frequency
8642 	 * change creates an intractable locking scenario; the order
8643 	 * of when these callouts happen is undefined with respect to
8644 	 * CPU hotplug, and they can race with each other.  As such,
8645 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8646 	 * undefined; you can actually have a CPU frequency change take
8647 	 * place in between the computation of X and the setting of the
8648 	 * variable.  To protect against this problem, all updates of
8649 	 * the per_cpu tsc_khz variable are done in an interrupt
8650 	 * protected IPI, and all callers wishing to update the value
8651 	 * must wait for a synchronous IPI to complete (which is trivial
8652 	 * if the caller is on the CPU already).  This establishes the
8653 	 * necessary total order on variable updates.
8654 	 *
8655 	 * Note that because a guest time update may take place
8656 	 * anytime after the setting of the VCPU's request bit, the
8657 	 * correct TSC value must be set before the request.  However,
8658 	 * to ensure the update actually makes it to any guest which
8659 	 * starts running in hardware virtualization between the set
8660 	 * and the acquisition of the spinlock, we must also ping the
8661 	 * CPU after setting the request bit.
8662 	 *
8663 	 */
8664 
8665 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8666 
8667 	mutex_lock(&kvm_lock);
8668 	list_for_each_entry(kvm, &vm_list, vm_list) {
8669 		kvm_for_each_vcpu(i, vcpu, kvm) {
8670 			if (vcpu->cpu != cpu)
8671 				continue;
8672 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8673 			if (vcpu->cpu != raw_smp_processor_id())
8674 				send_ipi = 1;
8675 		}
8676 	}
8677 	mutex_unlock(&kvm_lock);
8678 
8679 	if (freq->old < freq->new && send_ipi) {
8680 		/*
8681 		 * We upscale the frequency.  Must make the guest
8682 		 * doesn't see old kvmclock values while running with
8683 		 * the new frequency, otherwise we risk the guest sees
8684 		 * time go backwards.
8685 		 *
8686 		 * In case we update the frequency for another cpu
8687 		 * (which might be in guest context) send an interrupt
8688 		 * to kick the cpu out of guest context.  Next time
8689 		 * guest context is entered kvmclock will be updated,
8690 		 * so the guest will not see stale values.
8691 		 */
8692 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8693 	}
8694 }
8695 
8696 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8697 				     void *data)
8698 {
8699 	struct cpufreq_freqs *freq = data;
8700 	int cpu;
8701 
8702 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8703 		return 0;
8704 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8705 		return 0;
8706 
8707 	for_each_cpu(cpu, freq->policy->cpus)
8708 		__kvmclock_cpufreq_notifier(freq, cpu);
8709 
8710 	return 0;
8711 }
8712 
8713 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8714 	.notifier_call  = kvmclock_cpufreq_notifier
8715 };
8716 
8717 static int kvmclock_cpu_online(unsigned int cpu)
8718 {
8719 	tsc_khz_changed(NULL);
8720 	return 0;
8721 }
8722 
8723 static void kvm_timer_init(void)
8724 {
8725 	max_tsc_khz = tsc_khz;
8726 
8727 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8728 #ifdef CONFIG_CPU_FREQ
8729 		struct cpufreq_policy *policy;
8730 		int cpu;
8731 
8732 		cpu = get_cpu();
8733 		policy = cpufreq_cpu_get(cpu);
8734 		if (policy) {
8735 			if (policy->cpuinfo.max_freq)
8736 				max_tsc_khz = policy->cpuinfo.max_freq;
8737 			cpufreq_cpu_put(policy);
8738 		}
8739 		put_cpu();
8740 #endif
8741 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8742 					  CPUFREQ_TRANSITION_NOTIFIER);
8743 	}
8744 
8745 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8746 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8747 }
8748 
8749 #ifdef CONFIG_X86_64
8750 static void pvclock_gtod_update_fn(struct work_struct *work)
8751 {
8752 	struct kvm *kvm;
8753 	struct kvm_vcpu *vcpu;
8754 	unsigned long i;
8755 
8756 	mutex_lock(&kvm_lock);
8757 	list_for_each_entry(kvm, &vm_list, vm_list)
8758 		kvm_for_each_vcpu(i, vcpu, kvm)
8759 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8760 	atomic_set(&kvm_guest_has_master_clock, 0);
8761 	mutex_unlock(&kvm_lock);
8762 }
8763 
8764 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8765 
8766 /*
8767  * Indirection to move queue_work() out of the tk_core.seq write held
8768  * region to prevent possible deadlocks against time accessors which
8769  * are invoked with work related locks held.
8770  */
8771 static void pvclock_irq_work_fn(struct irq_work *w)
8772 {
8773 	queue_work(system_long_wq, &pvclock_gtod_work);
8774 }
8775 
8776 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8777 
8778 /*
8779  * Notification about pvclock gtod data update.
8780  */
8781 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8782 			       void *priv)
8783 {
8784 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8785 	struct timekeeper *tk = priv;
8786 
8787 	update_pvclock_gtod(tk);
8788 
8789 	/*
8790 	 * Disable master clock if host does not trust, or does not use,
8791 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8792 	 * this is invoked with tk_core.seq write held.
8793 	 */
8794 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8795 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8796 		irq_work_queue(&pvclock_irq_work);
8797 	return 0;
8798 }
8799 
8800 static struct notifier_block pvclock_gtod_notifier = {
8801 	.notifier_call = pvclock_gtod_notify,
8802 };
8803 #endif
8804 
8805 int kvm_arch_init(void *opaque)
8806 {
8807 	struct kvm_x86_init_ops *ops = opaque;
8808 	int r;
8809 
8810 	if (kvm_x86_ops.hardware_enable) {
8811 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8812 		r = -EEXIST;
8813 		goto out;
8814 	}
8815 
8816 	if (!ops->cpu_has_kvm_support()) {
8817 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8818 				   ops->runtime_ops->name);
8819 		r = -EOPNOTSUPP;
8820 		goto out;
8821 	}
8822 	if (ops->disabled_by_bios()) {
8823 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8824 				   ops->runtime_ops->name);
8825 		r = -EOPNOTSUPP;
8826 		goto out;
8827 	}
8828 
8829 	/*
8830 	 * KVM explicitly assumes that the guest has an FPU and
8831 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8832 	 * vCPU's FPU state as a fxregs_state struct.
8833 	 */
8834 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8835 		printk(KERN_ERR "kvm: inadequate fpu\n");
8836 		r = -EOPNOTSUPP;
8837 		goto out;
8838 	}
8839 
8840 	r = -ENOMEM;
8841 
8842 	x86_emulator_cache = kvm_alloc_emulator_cache();
8843 	if (!x86_emulator_cache) {
8844 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8845 		goto out;
8846 	}
8847 
8848 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8849 	if (!user_return_msrs) {
8850 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8851 		goto out_free_x86_emulator_cache;
8852 	}
8853 	kvm_nr_uret_msrs = 0;
8854 
8855 	r = kvm_mmu_module_init();
8856 	if (r)
8857 		goto out_free_percpu;
8858 
8859 	kvm_timer_init();
8860 
8861 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8862 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8863 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8864 	}
8865 
8866 	if (pi_inject_timer == -1)
8867 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8868 #ifdef CONFIG_X86_64
8869 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8870 
8871 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8872 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8873 #endif
8874 
8875 	return 0;
8876 
8877 out_free_percpu:
8878 	free_percpu(user_return_msrs);
8879 out_free_x86_emulator_cache:
8880 	kmem_cache_destroy(x86_emulator_cache);
8881 out:
8882 	return r;
8883 }
8884 
8885 void kvm_arch_exit(void)
8886 {
8887 #ifdef CONFIG_X86_64
8888 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8889 		clear_hv_tscchange_cb();
8890 #endif
8891 	kvm_lapic_exit();
8892 
8893 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8894 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8895 					    CPUFREQ_TRANSITION_NOTIFIER);
8896 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8897 #ifdef CONFIG_X86_64
8898 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8899 	irq_work_sync(&pvclock_irq_work);
8900 	cancel_work_sync(&pvclock_gtod_work);
8901 #endif
8902 	kvm_x86_ops.hardware_enable = NULL;
8903 	kvm_mmu_module_exit();
8904 	free_percpu(user_return_msrs);
8905 	kmem_cache_destroy(x86_emulator_cache);
8906 #ifdef CONFIG_KVM_XEN
8907 	static_key_deferred_flush(&kvm_xen_enabled);
8908 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8909 #endif
8910 }
8911 
8912 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8913 {
8914 	/*
8915 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8916 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8917 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8918 	 * managed by userspace, in which case userspace is responsible for
8919 	 * handling wake events.
8920 	 */
8921 	++vcpu->stat.halt_exits;
8922 	if (lapic_in_kernel(vcpu)) {
8923 		vcpu->arch.mp_state = state;
8924 		return 1;
8925 	} else {
8926 		vcpu->run->exit_reason = reason;
8927 		return 0;
8928 	}
8929 }
8930 
8931 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8932 {
8933 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8934 }
8935 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8936 
8937 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8938 {
8939 	int ret = kvm_skip_emulated_instruction(vcpu);
8940 	/*
8941 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8942 	 * KVM_EXIT_DEBUG here.
8943 	 */
8944 	return kvm_emulate_halt_noskip(vcpu) && ret;
8945 }
8946 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8947 
8948 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8949 {
8950 	int ret = kvm_skip_emulated_instruction(vcpu);
8951 
8952 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8953 					KVM_EXIT_AP_RESET_HOLD) && ret;
8954 }
8955 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8956 
8957 #ifdef CONFIG_X86_64
8958 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8959 			        unsigned long clock_type)
8960 {
8961 	struct kvm_clock_pairing clock_pairing;
8962 	struct timespec64 ts;
8963 	u64 cycle;
8964 	int ret;
8965 
8966 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8967 		return -KVM_EOPNOTSUPP;
8968 
8969 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8970 		return -KVM_EOPNOTSUPP;
8971 
8972 	clock_pairing.sec = ts.tv_sec;
8973 	clock_pairing.nsec = ts.tv_nsec;
8974 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8975 	clock_pairing.flags = 0;
8976 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8977 
8978 	ret = 0;
8979 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8980 			    sizeof(struct kvm_clock_pairing)))
8981 		ret = -KVM_EFAULT;
8982 
8983 	return ret;
8984 }
8985 #endif
8986 
8987 /*
8988  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8989  *
8990  * @apicid - apicid of vcpu to be kicked.
8991  */
8992 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
8993 {
8994 	struct kvm_lapic_irq lapic_irq;
8995 
8996 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8997 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8998 	lapic_irq.level = 0;
8999 	lapic_irq.dest_id = apicid;
9000 	lapic_irq.msi_redir_hint = false;
9001 
9002 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9003 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9004 }
9005 
9006 bool kvm_apicv_activated(struct kvm *kvm)
9007 {
9008 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9009 }
9010 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9011 
9012 static void kvm_apicv_init(struct kvm *kvm)
9013 {
9014 	init_rwsem(&kvm->arch.apicv_update_lock);
9015 
9016 	set_bit(APICV_INHIBIT_REASON_ABSENT,
9017 		&kvm->arch.apicv_inhibit_reasons);
9018 	if (!enable_apicv)
9019 		set_bit(APICV_INHIBIT_REASON_DISABLE,
9020 			&kvm->arch.apicv_inhibit_reasons);
9021 }
9022 
9023 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9024 {
9025 	struct kvm_vcpu *target = NULL;
9026 	struct kvm_apic_map *map;
9027 
9028 	vcpu->stat.directed_yield_attempted++;
9029 
9030 	if (single_task_running())
9031 		goto no_yield;
9032 
9033 	rcu_read_lock();
9034 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9035 
9036 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9037 		target = map->phys_map[dest_id]->vcpu;
9038 
9039 	rcu_read_unlock();
9040 
9041 	if (!target || !READ_ONCE(target->ready))
9042 		goto no_yield;
9043 
9044 	/* Ignore requests to yield to self */
9045 	if (vcpu == target)
9046 		goto no_yield;
9047 
9048 	if (kvm_vcpu_yield_to(target) <= 0)
9049 		goto no_yield;
9050 
9051 	vcpu->stat.directed_yield_successful++;
9052 
9053 no_yield:
9054 	return;
9055 }
9056 
9057 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9058 {
9059 	u64 ret = vcpu->run->hypercall.ret;
9060 
9061 	if (!is_64_bit_mode(vcpu))
9062 		ret = (u32)ret;
9063 	kvm_rax_write(vcpu, ret);
9064 	++vcpu->stat.hypercalls;
9065 	return kvm_skip_emulated_instruction(vcpu);
9066 }
9067 
9068 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9069 {
9070 	unsigned long nr, a0, a1, a2, a3, ret;
9071 	int op_64_bit;
9072 
9073 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9074 		return kvm_xen_hypercall(vcpu);
9075 
9076 	if (kvm_hv_hypercall_enabled(vcpu))
9077 		return kvm_hv_hypercall(vcpu);
9078 
9079 	nr = kvm_rax_read(vcpu);
9080 	a0 = kvm_rbx_read(vcpu);
9081 	a1 = kvm_rcx_read(vcpu);
9082 	a2 = kvm_rdx_read(vcpu);
9083 	a3 = kvm_rsi_read(vcpu);
9084 
9085 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9086 
9087 	op_64_bit = is_64_bit_hypercall(vcpu);
9088 	if (!op_64_bit) {
9089 		nr &= 0xFFFFFFFF;
9090 		a0 &= 0xFFFFFFFF;
9091 		a1 &= 0xFFFFFFFF;
9092 		a2 &= 0xFFFFFFFF;
9093 		a3 &= 0xFFFFFFFF;
9094 	}
9095 
9096 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9097 		ret = -KVM_EPERM;
9098 		goto out;
9099 	}
9100 
9101 	ret = -KVM_ENOSYS;
9102 
9103 	switch (nr) {
9104 	case KVM_HC_VAPIC_POLL_IRQ:
9105 		ret = 0;
9106 		break;
9107 	case KVM_HC_KICK_CPU:
9108 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9109 			break;
9110 
9111 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9112 		kvm_sched_yield(vcpu, a1);
9113 		ret = 0;
9114 		break;
9115 #ifdef CONFIG_X86_64
9116 	case KVM_HC_CLOCK_PAIRING:
9117 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9118 		break;
9119 #endif
9120 	case KVM_HC_SEND_IPI:
9121 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9122 			break;
9123 
9124 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9125 		break;
9126 	case KVM_HC_SCHED_YIELD:
9127 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9128 			break;
9129 
9130 		kvm_sched_yield(vcpu, a0);
9131 		ret = 0;
9132 		break;
9133 	case KVM_HC_MAP_GPA_RANGE: {
9134 		u64 gpa = a0, npages = a1, attrs = a2;
9135 
9136 		ret = -KVM_ENOSYS;
9137 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9138 			break;
9139 
9140 		if (!PAGE_ALIGNED(gpa) || !npages ||
9141 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9142 			ret = -KVM_EINVAL;
9143 			break;
9144 		}
9145 
9146 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9147 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9148 		vcpu->run->hypercall.args[0]  = gpa;
9149 		vcpu->run->hypercall.args[1]  = npages;
9150 		vcpu->run->hypercall.args[2]  = attrs;
9151 		vcpu->run->hypercall.longmode = op_64_bit;
9152 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9153 		return 0;
9154 	}
9155 	default:
9156 		ret = -KVM_ENOSYS;
9157 		break;
9158 	}
9159 out:
9160 	if (!op_64_bit)
9161 		ret = (u32)ret;
9162 	kvm_rax_write(vcpu, ret);
9163 
9164 	++vcpu->stat.hypercalls;
9165 	return kvm_skip_emulated_instruction(vcpu);
9166 }
9167 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9168 
9169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9170 {
9171 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9172 	char instruction[3];
9173 	unsigned long rip = kvm_rip_read(vcpu);
9174 
9175 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9176 
9177 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9178 		&ctxt->exception);
9179 }
9180 
9181 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9182 {
9183 	return vcpu->run->request_interrupt_window &&
9184 		likely(!pic_in_kernel(vcpu->kvm));
9185 }
9186 
9187 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9188 {
9189 	struct kvm_run *kvm_run = vcpu->run;
9190 
9191 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9192 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9193 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9194 
9195 	/*
9196 	 * The call to kvm_ready_for_interrupt_injection() may end up in
9197 	 * kvm_xen_has_interrupt() which may require the srcu lock to be
9198 	 * held, to protect against changes in the vcpu_info address.
9199 	 */
9200 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9201 	kvm_run->ready_for_interrupt_injection =
9202 		pic_in_kernel(vcpu->kvm) ||
9203 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9204 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9205 
9206 	if (is_smm(vcpu))
9207 		kvm_run->flags |= KVM_RUN_X86_SMM;
9208 }
9209 
9210 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9211 {
9212 	int max_irr, tpr;
9213 
9214 	if (!kvm_x86_ops.update_cr8_intercept)
9215 		return;
9216 
9217 	if (!lapic_in_kernel(vcpu))
9218 		return;
9219 
9220 	if (vcpu->arch.apicv_active)
9221 		return;
9222 
9223 	if (!vcpu->arch.apic->vapic_addr)
9224 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9225 	else
9226 		max_irr = -1;
9227 
9228 	if (max_irr != -1)
9229 		max_irr >>= 4;
9230 
9231 	tpr = kvm_lapic_get_cr8(vcpu);
9232 
9233 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9234 }
9235 
9236 
9237 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9238 {
9239 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9240 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9241 		return 1;
9242 	}
9243 
9244 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9245 }
9246 
9247 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9248 {
9249 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9250 		vcpu->arch.exception.error_code = false;
9251 	static_call(kvm_x86_queue_exception)(vcpu);
9252 }
9253 
9254 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9255 {
9256 	int r;
9257 	bool can_inject = true;
9258 
9259 	/* try to reinject previous events if any */
9260 
9261 	if (vcpu->arch.exception.injected) {
9262 		kvm_inject_exception(vcpu);
9263 		can_inject = false;
9264 	}
9265 	/*
9266 	 * Do not inject an NMI or interrupt if there is a pending
9267 	 * exception.  Exceptions and interrupts are recognized at
9268 	 * instruction boundaries, i.e. the start of an instruction.
9269 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9270 	 * NMIs and interrupts, i.e. traps are recognized before an
9271 	 * NMI/interrupt that's pending on the same instruction.
9272 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9273 	 * priority, but are only generated (pended) during instruction
9274 	 * execution, i.e. a pending fault-like exception means the
9275 	 * fault occurred on the *previous* instruction and must be
9276 	 * serviced prior to recognizing any new events in order to
9277 	 * fully complete the previous instruction.
9278 	 */
9279 	else if (!vcpu->arch.exception.pending) {
9280 		if (vcpu->arch.nmi_injected) {
9281 			static_call(kvm_x86_inject_nmi)(vcpu);
9282 			can_inject = false;
9283 		} else if (vcpu->arch.interrupt.injected) {
9284 			static_call(kvm_x86_inject_irq)(vcpu);
9285 			can_inject = false;
9286 		}
9287 	}
9288 
9289 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9290 		     vcpu->arch.exception.pending);
9291 
9292 	/*
9293 	 * Call check_nested_events() even if we reinjected a previous event
9294 	 * in order for caller to determine if it should require immediate-exit
9295 	 * from L2 to L1 due to pending L1 events which require exit
9296 	 * from L2 to L1.
9297 	 */
9298 	if (is_guest_mode(vcpu)) {
9299 		r = kvm_check_nested_events(vcpu);
9300 		if (r < 0)
9301 			goto out;
9302 	}
9303 
9304 	/* try to inject new event if pending */
9305 	if (vcpu->arch.exception.pending) {
9306 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9307 					vcpu->arch.exception.has_error_code,
9308 					vcpu->arch.exception.error_code);
9309 
9310 		vcpu->arch.exception.pending = false;
9311 		vcpu->arch.exception.injected = true;
9312 
9313 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9314 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9315 					     X86_EFLAGS_RF);
9316 
9317 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9318 			kvm_deliver_exception_payload(vcpu);
9319 			if (vcpu->arch.dr7 & DR7_GD) {
9320 				vcpu->arch.dr7 &= ~DR7_GD;
9321 				kvm_update_dr7(vcpu);
9322 			}
9323 		}
9324 
9325 		kvm_inject_exception(vcpu);
9326 		can_inject = false;
9327 	}
9328 
9329 	/* Don't inject interrupts if the user asked to avoid doing so */
9330 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9331 		return 0;
9332 
9333 	/*
9334 	 * Finally, inject interrupt events.  If an event cannot be injected
9335 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9336 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9337 	 * and can architecturally be injected, but we cannot do it right now:
9338 	 * an interrupt could have arrived just now and we have to inject it
9339 	 * as a vmexit, or there could already an event in the queue, which is
9340 	 * indicated by can_inject.  In that case we request an immediate exit
9341 	 * in order to make progress and get back here for another iteration.
9342 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9343 	 */
9344 	if (vcpu->arch.smi_pending) {
9345 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9346 		if (r < 0)
9347 			goto out;
9348 		if (r) {
9349 			vcpu->arch.smi_pending = false;
9350 			++vcpu->arch.smi_count;
9351 			enter_smm(vcpu);
9352 			can_inject = false;
9353 		} else
9354 			static_call(kvm_x86_enable_smi_window)(vcpu);
9355 	}
9356 
9357 	if (vcpu->arch.nmi_pending) {
9358 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9359 		if (r < 0)
9360 			goto out;
9361 		if (r) {
9362 			--vcpu->arch.nmi_pending;
9363 			vcpu->arch.nmi_injected = true;
9364 			static_call(kvm_x86_inject_nmi)(vcpu);
9365 			can_inject = false;
9366 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9367 		}
9368 		if (vcpu->arch.nmi_pending)
9369 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9370 	}
9371 
9372 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9373 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9374 		if (r < 0)
9375 			goto out;
9376 		if (r) {
9377 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9378 			static_call(kvm_x86_inject_irq)(vcpu);
9379 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9380 		}
9381 		if (kvm_cpu_has_injectable_intr(vcpu))
9382 			static_call(kvm_x86_enable_irq_window)(vcpu);
9383 	}
9384 
9385 	if (is_guest_mode(vcpu) &&
9386 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9387 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9388 		*req_immediate_exit = true;
9389 
9390 	WARN_ON(vcpu->arch.exception.pending);
9391 	return 0;
9392 
9393 out:
9394 	if (r == -EBUSY) {
9395 		*req_immediate_exit = true;
9396 		r = 0;
9397 	}
9398 	return r;
9399 }
9400 
9401 static void process_nmi(struct kvm_vcpu *vcpu)
9402 {
9403 	unsigned limit = 2;
9404 
9405 	/*
9406 	 * x86 is limited to one NMI running, and one NMI pending after it.
9407 	 * If an NMI is already in progress, limit further NMIs to just one.
9408 	 * Otherwise, allow two (and we'll inject the first one immediately).
9409 	 */
9410 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9411 		limit = 1;
9412 
9413 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9414 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9415 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9416 }
9417 
9418 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9419 {
9420 	u32 flags = 0;
9421 	flags |= seg->g       << 23;
9422 	flags |= seg->db      << 22;
9423 	flags |= seg->l       << 21;
9424 	flags |= seg->avl     << 20;
9425 	flags |= seg->present << 15;
9426 	flags |= seg->dpl     << 13;
9427 	flags |= seg->s       << 12;
9428 	flags |= seg->type    << 8;
9429 	return flags;
9430 }
9431 
9432 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9433 {
9434 	struct kvm_segment seg;
9435 	int offset;
9436 
9437 	kvm_get_segment(vcpu, &seg, n);
9438 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9439 
9440 	if (n < 3)
9441 		offset = 0x7f84 + n * 12;
9442 	else
9443 		offset = 0x7f2c + (n - 3) * 12;
9444 
9445 	put_smstate(u32, buf, offset + 8, seg.base);
9446 	put_smstate(u32, buf, offset + 4, seg.limit);
9447 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9448 }
9449 
9450 #ifdef CONFIG_X86_64
9451 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9452 {
9453 	struct kvm_segment seg;
9454 	int offset;
9455 	u16 flags;
9456 
9457 	kvm_get_segment(vcpu, &seg, n);
9458 	offset = 0x7e00 + n * 16;
9459 
9460 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9461 	put_smstate(u16, buf, offset, seg.selector);
9462 	put_smstate(u16, buf, offset + 2, flags);
9463 	put_smstate(u32, buf, offset + 4, seg.limit);
9464 	put_smstate(u64, buf, offset + 8, seg.base);
9465 }
9466 #endif
9467 
9468 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9469 {
9470 	struct desc_ptr dt;
9471 	struct kvm_segment seg;
9472 	unsigned long val;
9473 	int i;
9474 
9475 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9476 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9477 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9478 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9479 
9480 	for (i = 0; i < 8; i++)
9481 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9482 
9483 	kvm_get_dr(vcpu, 6, &val);
9484 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9485 	kvm_get_dr(vcpu, 7, &val);
9486 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9487 
9488 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9489 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9490 	put_smstate(u32, buf, 0x7f64, seg.base);
9491 	put_smstate(u32, buf, 0x7f60, seg.limit);
9492 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9493 
9494 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9495 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9496 	put_smstate(u32, buf, 0x7f80, seg.base);
9497 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9498 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9499 
9500 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9501 	put_smstate(u32, buf, 0x7f74, dt.address);
9502 	put_smstate(u32, buf, 0x7f70, dt.size);
9503 
9504 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9505 	put_smstate(u32, buf, 0x7f58, dt.address);
9506 	put_smstate(u32, buf, 0x7f54, dt.size);
9507 
9508 	for (i = 0; i < 6; i++)
9509 		enter_smm_save_seg_32(vcpu, buf, i);
9510 
9511 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9512 
9513 	/* revision id */
9514 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9515 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9516 }
9517 
9518 #ifdef CONFIG_X86_64
9519 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9520 {
9521 	struct desc_ptr dt;
9522 	struct kvm_segment seg;
9523 	unsigned long val;
9524 	int i;
9525 
9526 	for (i = 0; i < 16; i++)
9527 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9528 
9529 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9530 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9531 
9532 	kvm_get_dr(vcpu, 6, &val);
9533 	put_smstate(u64, buf, 0x7f68, val);
9534 	kvm_get_dr(vcpu, 7, &val);
9535 	put_smstate(u64, buf, 0x7f60, val);
9536 
9537 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9538 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9539 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9540 
9541 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9542 
9543 	/* revision id */
9544 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9545 
9546 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9547 
9548 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9549 	put_smstate(u16, buf, 0x7e90, seg.selector);
9550 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9551 	put_smstate(u32, buf, 0x7e94, seg.limit);
9552 	put_smstate(u64, buf, 0x7e98, seg.base);
9553 
9554 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9555 	put_smstate(u32, buf, 0x7e84, dt.size);
9556 	put_smstate(u64, buf, 0x7e88, dt.address);
9557 
9558 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9559 	put_smstate(u16, buf, 0x7e70, seg.selector);
9560 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9561 	put_smstate(u32, buf, 0x7e74, seg.limit);
9562 	put_smstate(u64, buf, 0x7e78, seg.base);
9563 
9564 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9565 	put_smstate(u32, buf, 0x7e64, dt.size);
9566 	put_smstate(u64, buf, 0x7e68, dt.address);
9567 
9568 	for (i = 0; i < 6; i++)
9569 		enter_smm_save_seg_64(vcpu, buf, i);
9570 }
9571 #endif
9572 
9573 static void enter_smm(struct kvm_vcpu *vcpu)
9574 {
9575 	struct kvm_segment cs, ds;
9576 	struct desc_ptr dt;
9577 	unsigned long cr0;
9578 	char buf[512];
9579 
9580 	memset(buf, 0, 512);
9581 #ifdef CONFIG_X86_64
9582 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9583 		enter_smm_save_state_64(vcpu, buf);
9584 	else
9585 #endif
9586 		enter_smm_save_state_32(vcpu, buf);
9587 
9588 	/*
9589 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9590 	 * state (e.g. leave guest mode) after we've saved the state into the
9591 	 * SMM state-save area.
9592 	 */
9593 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9594 
9595 	kvm_smm_changed(vcpu, true);
9596 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9597 
9598 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9599 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9600 	else
9601 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9602 
9603 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9604 	kvm_rip_write(vcpu, 0x8000);
9605 
9606 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9607 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9608 	vcpu->arch.cr0 = cr0;
9609 
9610 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9611 
9612 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9613 	dt.address = dt.size = 0;
9614 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9615 
9616 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9617 
9618 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9619 	cs.base = vcpu->arch.smbase;
9620 
9621 	ds.selector = 0;
9622 	ds.base = 0;
9623 
9624 	cs.limit    = ds.limit = 0xffffffff;
9625 	cs.type     = ds.type = 0x3;
9626 	cs.dpl      = ds.dpl = 0;
9627 	cs.db       = ds.db = 0;
9628 	cs.s        = ds.s = 1;
9629 	cs.l        = ds.l = 0;
9630 	cs.g        = ds.g = 1;
9631 	cs.avl      = ds.avl = 0;
9632 	cs.present  = ds.present = 1;
9633 	cs.unusable = ds.unusable = 0;
9634 	cs.padding  = ds.padding = 0;
9635 
9636 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9637 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9638 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9639 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9640 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9641 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9642 
9643 #ifdef CONFIG_X86_64
9644 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9645 		static_call(kvm_x86_set_efer)(vcpu, 0);
9646 #endif
9647 
9648 	kvm_update_cpuid_runtime(vcpu);
9649 	kvm_mmu_reset_context(vcpu);
9650 }
9651 
9652 static void process_smi(struct kvm_vcpu *vcpu)
9653 {
9654 	vcpu->arch.smi_pending = true;
9655 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9656 }
9657 
9658 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9659 				       unsigned long *vcpu_bitmap)
9660 {
9661 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9662 }
9663 
9664 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9665 {
9666 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9667 }
9668 
9669 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9670 {
9671 	bool activate;
9672 
9673 	if (!lapic_in_kernel(vcpu))
9674 		return;
9675 
9676 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9677 
9678 	activate = kvm_apicv_activated(vcpu->kvm);
9679 	if (vcpu->arch.apicv_active == activate)
9680 		goto out;
9681 
9682 	vcpu->arch.apicv_active = activate;
9683 	kvm_apic_update_apicv(vcpu);
9684 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9685 
9686 	/*
9687 	 * When APICv gets disabled, we may still have injected interrupts
9688 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9689 	 * still active when the interrupt got accepted. Make sure
9690 	 * inject_pending_event() is called to check for that.
9691 	 */
9692 	if (!vcpu->arch.apicv_active)
9693 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9694 
9695 out:
9696 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9697 }
9698 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9699 
9700 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9701 {
9702 	unsigned long old, new;
9703 
9704 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9705 
9706 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9707 		return;
9708 
9709 	old = new = kvm->arch.apicv_inhibit_reasons;
9710 
9711 	if (activate)
9712 		__clear_bit(bit, &new);
9713 	else
9714 		__set_bit(bit, &new);
9715 
9716 	if (!!old != !!new) {
9717 		trace_kvm_apicv_update_request(activate, bit);
9718 		/*
9719 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9720 		 * false positives in the sanity check WARN in svm_vcpu_run().
9721 		 * This task will wait for all vCPUs to ack the kick IRQ before
9722 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9723 		 * block on acquiring apicv_update_lock so that vCPUs can't
9724 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9725 		 *
9726 		 * Note, holding apicv_update_lock and taking it in the read
9727 		 * side (handling the request) also prevents other vCPUs from
9728 		 * servicing the request with a stale apicv_inhibit_reasons.
9729 		 */
9730 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9731 		kvm->arch.apicv_inhibit_reasons = new;
9732 		if (new) {
9733 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9734 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9735 		}
9736 	} else
9737 		kvm->arch.apicv_inhibit_reasons = new;
9738 }
9739 
9740 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9741 {
9742 	if (!enable_apicv)
9743 		return;
9744 
9745 	down_write(&kvm->arch.apicv_update_lock);
9746 	__kvm_request_apicv_update(kvm, activate, bit);
9747 	up_write(&kvm->arch.apicv_update_lock);
9748 }
9749 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9750 
9751 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9752 {
9753 	if (!kvm_apic_present(vcpu))
9754 		return;
9755 
9756 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9757 
9758 	if (irqchip_split(vcpu->kvm))
9759 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9760 	else {
9761 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9762 		if (ioapic_in_kernel(vcpu->kvm))
9763 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9764 	}
9765 
9766 	if (is_guest_mode(vcpu))
9767 		vcpu->arch.load_eoi_exitmap_pending = true;
9768 	else
9769 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9770 }
9771 
9772 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9773 {
9774 	u64 eoi_exit_bitmap[4];
9775 
9776 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9777 		return;
9778 
9779 	if (to_hv_vcpu(vcpu)) {
9780 		bitmap_or((ulong *)eoi_exit_bitmap,
9781 			  vcpu->arch.ioapic_handled_vectors,
9782 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9783 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9784 		return;
9785 	}
9786 
9787 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9788 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9789 }
9790 
9791 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9792 					    unsigned long start, unsigned long end)
9793 {
9794 	unsigned long apic_address;
9795 
9796 	/*
9797 	 * The physical address of apic access page is stored in the VMCS.
9798 	 * Update it when it becomes invalid.
9799 	 */
9800 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9801 	if (start <= apic_address && apic_address < end)
9802 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9803 }
9804 
9805 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9806 {
9807 	if (!lapic_in_kernel(vcpu))
9808 		return;
9809 
9810 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9811 }
9812 
9813 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9814 {
9815 	smp_send_reschedule(vcpu->cpu);
9816 }
9817 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9818 
9819 /*
9820  * Returns 1 to let vcpu_run() continue the guest execution loop without
9821  * exiting to the userspace.  Otherwise, the value will be returned to the
9822  * userspace.
9823  */
9824 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9825 {
9826 	int r;
9827 	bool req_int_win =
9828 		dm_request_for_irq_injection(vcpu) &&
9829 		kvm_cpu_accept_dm_intr(vcpu);
9830 	fastpath_t exit_fastpath;
9831 
9832 	bool req_immediate_exit = false;
9833 
9834 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9835 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9836 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9837 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9838 		trace_kvm_dirty_ring_exit(vcpu);
9839 		r = 0;
9840 		goto out;
9841 	}
9842 
9843 	if (kvm_request_pending(vcpu)) {
9844 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9845 			r = -EIO;
9846 			goto out;
9847 		}
9848 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9849 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9850 				r = 0;
9851 				goto out;
9852 			}
9853 		}
9854 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9855 			kvm_mmu_unload(vcpu);
9856 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9857 			__kvm_migrate_timers(vcpu);
9858 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9859 			kvm_update_masterclock(vcpu->kvm);
9860 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9861 			kvm_gen_kvmclock_update(vcpu);
9862 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9863 			r = kvm_guest_time_update(vcpu);
9864 			if (unlikely(r))
9865 				goto out;
9866 		}
9867 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9868 			kvm_mmu_sync_roots(vcpu);
9869 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9870 			kvm_mmu_load_pgd(vcpu);
9871 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9872 			kvm_vcpu_flush_tlb_all(vcpu);
9873 
9874 			/* Flushing all ASIDs flushes the current ASID... */
9875 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9876 		}
9877 		kvm_service_local_tlb_flush_requests(vcpu);
9878 
9879 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9880 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9881 			r = 0;
9882 			goto out;
9883 		}
9884 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9885 			if (is_guest_mode(vcpu)) {
9886 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9887 			} else {
9888 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9889 				vcpu->mmio_needed = 0;
9890 				r = 0;
9891 				goto out;
9892 			}
9893 		}
9894 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9895 			/* Page is swapped out. Do synthetic halt */
9896 			vcpu->arch.apf.halted = true;
9897 			r = 1;
9898 			goto out;
9899 		}
9900 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9901 			record_steal_time(vcpu);
9902 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9903 			process_smi(vcpu);
9904 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9905 			process_nmi(vcpu);
9906 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9907 			kvm_pmu_handle_event(vcpu);
9908 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9909 			kvm_pmu_deliver_pmi(vcpu);
9910 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9911 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9912 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9913 				     vcpu->arch.ioapic_handled_vectors)) {
9914 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9915 				vcpu->run->eoi.vector =
9916 						vcpu->arch.pending_ioapic_eoi;
9917 				r = 0;
9918 				goto out;
9919 			}
9920 		}
9921 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9922 			vcpu_scan_ioapic(vcpu);
9923 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9924 			vcpu_load_eoi_exitmap(vcpu);
9925 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9926 			kvm_vcpu_reload_apic_access_page(vcpu);
9927 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9928 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9929 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9930 			r = 0;
9931 			goto out;
9932 		}
9933 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9934 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9935 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9936 			r = 0;
9937 			goto out;
9938 		}
9939 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9940 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9941 
9942 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9943 			vcpu->run->hyperv = hv_vcpu->exit;
9944 			r = 0;
9945 			goto out;
9946 		}
9947 
9948 		/*
9949 		 * KVM_REQ_HV_STIMER has to be processed after
9950 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9951 		 * depend on the guest clock being up-to-date
9952 		 */
9953 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9954 			kvm_hv_process_stimers(vcpu);
9955 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9956 			kvm_vcpu_update_apicv(vcpu);
9957 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9958 			kvm_check_async_pf_completion(vcpu);
9959 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9960 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9961 
9962 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9963 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9964 	}
9965 
9966 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9967 	    kvm_xen_has_interrupt(vcpu)) {
9968 		++vcpu->stat.req_event;
9969 		r = kvm_apic_accept_events(vcpu);
9970 		if (r < 0) {
9971 			r = 0;
9972 			goto out;
9973 		}
9974 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9975 			r = 1;
9976 			goto out;
9977 		}
9978 
9979 		r = inject_pending_event(vcpu, &req_immediate_exit);
9980 		if (r < 0) {
9981 			r = 0;
9982 			goto out;
9983 		}
9984 		if (req_int_win)
9985 			static_call(kvm_x86_enable_irq_window)(vcpu);
9986 
9987 		if (kvm_lapic_enabled(vcpu)) {
9988 			update_cr8_intercept(vcpu);
9989 			kvm_lapic_sync_to_vapic(vcpu);
9990 		}
9991 	}
9992 
9993 	r = kvm_mmu_reload(vcpu);
9994 	if (unlikely(r)) {
9995 		goto cancel_injection;
9996 	}
9997 
9998 	preempt_disable();
9999 
10000 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10001 
10002 	/*
10003 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10004 	 * IPI are then delayed after guest entry, which ensures that they
10005 	 * result in virtual interrupt delivery.
10006 	 */
10007 	local_irq_disable();
10008 
10009 	/* Store vcpu->apicv_active before vcpu->mode.  */
10010 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10011 
10012 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10013 
10014 	/*
10015 	 * 1) We should set ->mode before checking ->requests.  Please see
10016 	 * the comment in kvm_vcpu_exiting_guest_mode().
10017 	 *
10018 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10019 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10020 	 * (see vmx_deliver_posted_interrupt).
10021 	 *
10022 	 * 3) This also orders the write to mode from any reads to the page
10023 	 * tables done while the VCPU is running.  Please see the comment
10024 	 * in kvm_flush_remote_tlbs.
10025 	 */
10026 	smp_mb__after_srcu_read_unlock();
10027 
10028 	/*
10029 	 * Process pending posted interrupts to handle the case where the
10030 	 * notification IRQ arrived in the host, or was never sent (because the
10031 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10032 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10033 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10034 	 */
10035 	if (kvm_lapic_enabled(vcpu))
10036 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10037 
10038 	if (kvm_vcpu_exit_request(vcpu)) {
10039 		vcpu->mode = OUTSIDE_GUEST_MODE;
10040 		smp_wmb();
10041 		local_irq_enable();
10042 		preempt_enable();
10043 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10044 		r = 1;
10045 		goto cancel_injection;
10046 	}
10047 
10048 	if (req_immediate_exit) {
10049 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10050 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10051 	}
10052 
10053 	fpregs_assert_state_consistent();
10054 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10055 		switch_fpu_return();
10056 
10057 	if (vcpu->arch.guest_fpu.xfd_err)
10058 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10059 
10060 	if (unlikely(vcpu->arch.switch_db_regs)) {
10061 		set_debugreg(0, 7);
10062 		set_debugreg(vcpu->arch.eff_db[0], 0);
10063 		set_debugreg(vcpu->arch.eff_db[1], 1);
10064 		set_debugreg(vcpu->arch.eff_db[2], 2);
10065 		set_debugreg(vcpu->arch.eff_db[3], 3);
10066 	} else if (unlikely(hw_breakpoint_active())) {
10067 		set_debugreg(0, 7);
10068 	}
10069 
10070 	guest_timing_enter_irqoff();
10071 
10072 	for (;;) {
10073 		/*
10074 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10075 		 * update must kick and wait for all vCPUs before toggling the
10076 		 * per-VM state, and responsing vCPUs must wait for the update
10077 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10078 		 */
10079 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10080 
10081 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10082 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10083 			break;
10084 
10085 		if (kvm_lapic_enabled(vcpu))
10086 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10087 
10088 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10089 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10090 			break;
10091 		}
10092 	}
10093 
10094 	/*
10095 	 * Do this here before restoring debug registers on the host.  And
10096 	 * since we do this before handling the vmexit, a DR access vmexit
10097 	 * can (a) read the correct value of the debug registers, (b) set
10098 	 * KVM_DEBUGREG_WONT_EXIT again.
10099 	 */
10100 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10101 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10102 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10103 		kvm_update_dr0123(vcpu);
10104 		kvm_update_dr7(vcpu);
10105 	}
10106 
10107 	/*
10108 	 * If the guest has used debug registers, at least dr7
10109 	 * will be disabled while returning to the host.
10110 	 * If we don't have active breakpoints in the host, we don't
10111 	 * care about the messed up debug address registers. But if
10112 	 * we have some of them active, restore the old state.
10113 	 */
10114 	if (hw_breakpoint_active())
10115 		hw_breakpoint_restore();
10116 
10117 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10118 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10119 
10120 	vcpu->mode = OUTSIDE_GUEST_MODE;
10121 	smp_wmb();
10122 
10123 	/*
10124 	 * Sync xfd before calling handle_exit_irqoff() which may
10125 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10126 	 * in #NM irqoff handler).
10127 	 */
10128 	if (vcpu->arch.xfd_no_write_intercept)
10129 		fpu_sync_guest_vmexit_xfd_state();
10130 
10131 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10132 
10133 	if (vcpu->arch.guest_fpu.xfd_err)
10134 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10135 
10136 	/*
10137 	 * Consume any pending interrupts, including the possible source of
10138 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10139 	 * An instruction is required after local_irq_enable() to fully unblock
10140 	 * interrupts on processors that implement an interrupt shadow, the
10141 	 * stat.exits increment will do nicely.
10142 	 */
10143 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10144 	local_irq_enable();
10145 	++vcpu->stat.exits;
10146 	local_irq_disable();
10147 	kvm_after_interrupt(vcpu);
10148 
10149 	/*
10150 	 * Wait until after servicing IRQs to account guest time so that any
10151 	 * ticks that occurred while running the guest are properly accounted
10152 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10153 	 * of accounting via context tracking, but the loss of accuracy is
10154 	 * acceptable for all known use cases.
10155 	 */
10156 	guest_timing_exit_irqoff();
10157 
10158 	if (lapic_in_kernel(vcpu)) {
10159 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10160 		if (delta != S64_MIN) {
10161 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10162 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10163 		}
10164 	}
10165 
10166 	local_irq_enable();
10167 	preempt_enable();
10168 
10169 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10170 
10171 	/*
10172 	 * Profile KVM exit RIPs:
10173 	 */
10174 	if (unlikely(prof_on == KVM_PROFILING)) {
10175 		unsigned long rip = kvm_rip_read(vcpu);
10176 		profile_hit(KVM_PROFILING, (void *)rip);
10177 	}
10178 
10179 	if (unlikely(vcpu->arch.tsc_always_catchup))
10180 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10181 
10182 	if (vcpu->arch.apic_attention)
10183 		kvm_lapic_sync_from_vapic(vcpu);
10184 
10185 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10186 	return r;
10187 
10188 cancel_injection:
10189 	if (req_immediate_exit)
10190 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10191 	static_call(kvm_x86_cancel_injection)(vcpu);
10192 	if (unlikely(vcpu->arch.apic_attention))
10193 		kvm_lapic_sync_from_vapic(vcpu);
10194 out:
10195 	return r;
10196 }
10197 
10198 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10199 {
10200 	bool hv_timer;
10201 
10202 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10203 		/*
10204 		 * Switch to the software timer before halt-polling/blocking as
10205 		 * the guest's timer may be a break event for the vCPU, and the
10206 		 * hypervisor timer runs only when the CPU is in guest mode.
10207 		 * Switch before halt-polling so that KVM recognizes an expired
10208 		 * timer before blocking.
10209 		 */
10210 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10211 		if (hv_timer)
10212 			kvm_lapic_switch_to_sw_timer(vcpu);
10213 
10214 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10215 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10216 			kvm_vcpu_halt(vcpu);
10217 		else
10218 			kvm_vcpu_block(vcpu);
10219 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10220 
10221 		if (hv_timer)
10222 			kvm_lapic_switch_to_hv_timer(vcpu);
10223 
10224 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10225 			return 1;
10226 	}
10227 
10228 	if (kvm_apic_accept_events(vcpu) < 0)
10229 		return 0;
10230 	switch(vcpu->arch.mp_state) {
10231 	case KVM_MP_STATE_HALTED:
10232 	case KVM_MP_STATE_AP_RESET_HOLD:
10233 		vcpu->arch.pv.pv_unhalted = false;
10234 		vcpu->arch.mp_state =
10235 			KVM_MP_STATE_RUNNABLE;
10236 		fallthrough;
10237 	case KVM_MP_STATE_RUNNABLE:
10238 		vcpu->arch.apf.halted = false;
10239 		break;
10240 	case KVM_MP_STATE_INIT_RECEIVED:
10241 		break;
10242 	default:
10243 		return -EINTR;
10244 	}
10245 	return 1;
10246 }
10247 
10248 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10249 {
10250 	if (is_guest_mode(vcpu))
10251 		kvm_check_nested_events(vcpu);
10252 
10253 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10254 		!vcpu->arch.apf.halted);
10255 }
10256 
10257 static int vcpu_run(struct kvm_vcpu *vcpu)
10258 {
10259 	int r;
10260 	struct kvm *kvm = vcpu->kvm;
10261 
10262 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10263 	vcpu->arch.l1tf_flush_l1d = true;
10264 
10265 	for (;;) {
10266 		if (kvm_vcpu_running(vcpu)) {
10267 			r = vcpu_enter_guest(vcpu);
10268 		} else {
10269 			r = vcpu_block(kvm, vcpu);
10270 		}
10271 
10272 		if (r <= 0)
10273 			break;
10274 
10275 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10276 		if (kvm_cpu_has_pending_timer(vcpu))
10277 			kvm_inject_pending_timer_irqs(vcpu);
10278 
10279 		if (dm_request_for_irq_injection(vcpu) &&
10280 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10281 			r = 0;
10282 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10283 			++vcpu->stat.request_irq_exits;
10284 			break;
10285 		}
10286 
10287 		if (__xfer_to_guest_mode_work_pending()) {
10288 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10289 			r = xfer_to_guest_mode_handle_work(vcpu);
10290 			if (r)
10291 				return r;
10292 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10293 		}
10294 	}
10295 
10296 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10297 
10298 	return r;
10299 }
10300 
10301 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10302 {
10303 	int r;
10304 
10305 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10306 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10307 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10308 	return r;
10309 }
10310 
10311 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10312 {
10313 	BUG_ON(!vcpu->arch.pio.count);
10314 
10315 	return complete_emulated_io(vcpu);
10316 }
10317 
10318 /*
10319  * Implements the following, as a state machine:
10320  *
10321  * read:
10322  *   for each fragment
10323  *     for each mmio piece in the fragment
10324  *       write gpa, len
10325  *       exit
10326  *       copy data
10327  *   execute insn
10328  *
10329  * write:
10330  *   for each fragment
10331  *     for each mmio piece in the fragment
10332  *       write gpa, len
10333  *       copy data
10334  *       exit
10335  */
10336 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10337 {
10338 	struct kvm_run *run = vcpu->run;
10339 	struct kvm_mmio_fragment *frag;
10340 	unsigned len;
10341 
10342 	BUG_ON(!vcpu->mmio_needed);
10343 
10344 	/* Complete previous fragment */
10345 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10346 	len = min(8u, frag->len);
10347 	if (!vcpu->mmio_is_write)
10348 		memcpy(frag->data, run->mmio.data, len);
10349 
10350 	if (frag->len <= 8) {
10351 		/* Switch to the next fragment. */
10352 		frag++;
10353 		vcpu->mmio_cur_fragment++;
10354 	} else {
10355 		/* Go forward to the next mmio piece. */
10356 		frag->data += len;
10357 		frag->gpa += len;
10358 		frag->len -= len;
10359 	}
10360 
10361 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10362 		vcpu->mmio_needed = 0;
10363 
10364 		/* FIXME: return into emulator if single-stepping.  */
10365 		if (vcpu->mmio_is_write)
10366 			return 1;
10367 		vcpu->mmio_read_completed = 1;
10368 		return complete_emulated_io(vcpu);
10369 	}
10370 
10371 	run->exit_reason = KVM_EXIT_MMIO;
10372 	run->mmio.phys_addr = frag->gpa;
10373 	if (vcpu->mmio_is_write)
10374 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10375 	run->mmio.len = min(8u, frag->len);
10376 	run->mmio.is_write = vcpu->mmio_is_write;
10377 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10378 	return 0;
10379 }
10380 
10381 /* Swap (qemu) user FPU context for the guest FPU context. */
10382 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10383 {
10384 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10385 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10386 	trace_kvm_fpu(1);
10387 }
10388 
10389 /* When vcpu_run ends, restore user space FPU context. */
10390 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10391 {
10392 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10393 	++vcpu->stat.fpu_reload;
10394 	trace_kvm_fpu(0);
10395 }
10396 
10397 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10398 {
10399 	struct kvm_run *kvm_run = vcpu->run;
10400 	int r;
10401 
10402 	vcpu_load(vcpu);
10403 	kvm_sigset_activate(vcpu);
10404 	kvm_run->flags = 0;
10405 	kvm_load_guest_fpu(vcpu);
10406 
10407 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10408 		if (kvm_run->immediate_exit) {
10409 			r = -EINTR;
10410 			goto out;
10411 		}
10412 		/*
10413 		 * It should be impossible for the hypervisor timer to be in
10414 		 * use before KVM has ever run the vCPU.
10415 		 */
10416 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10417 		kvm_vcpu_block(vcpu);
10418 		if (kvm_apic_accept_events(vcpu) < 0) {
10419 			r = 0;
10420 			goto out;
10421 		}
10422 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10423 		r = -EAGAIN;
10424 		if (signal_pending(current)) {
10425 			r = -EINTR;
10426 			kvm_run->exit_reason = KVM_EXIT_INTR;
10427 			++vcpu->stat.signal_exits;
10428 		}
10429 		goto out;
10430 	}
10431 
10432 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10433 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10434 		r = -EINVAL;
10435 		goto out;
10436 	}
10437 
10438 	if (kvm_run->kvm_dirty_regs) {
10439 		r = sync_regs(vcpu);
10440 		if (r != 0)
10441 			goto out;
10442 	}
10443 
10444 	/* re-sync apic's tpr */
10445 	if (!lapic_in_kernel(vcpu)) {
10446 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10447 			r = -EINVAL;
10448 			goto out;
10449 		}
10450 	}
10451 
10452 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10453 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10454 		vcpu->arch.complete_userspace_io = NULL;
10455 		r = cui(vcpu);
10456 		if (r <= 0)
10457 			goto out;
10458 	} else
10459 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10460 
10461 	if (kvm_run->immediate_exit) {
10462 		r = -EINTR;
10463 		goto out;
10464 	}
10465 
10466 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10467 	if (r <= 0)
10468 		goto out;
10469 
10470 	r = vcpu_run(vcpu);
10471 
10472 out:
10473 	kvm_put_guest_fpu(vcpu);
10474 	if (kvm_run->kvm_valid_regs)
10475 		store_regs(vcpu);
10476 	post_kvm_run_save(vcpu);
10477 	kvm_sigset_deactivate(vcpu);
10478 
10479 	vcpu_put(vcpu);
10480 	return r;
10481 }
10482 
10483 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10484 {
10485 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10486 		/*
10487 		 * We are here if userspace calls get_regs() in the middle of
10488 		 * instruction emulation. Registers state needs to be copied
10489 		 * back from emulation context to vcpu. Userspace shouldn't do
10490 		 * that usually, but some bad designed PV devices (vmware
10491 		 * backdoor interface) need this to work
10492 		 */
10493 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10494 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10495 	}
10496 	regs->rax = kvm_rax_read(vcpu);
10497 	regs->rbx = kvm_rbx_read(vcpu);
10498 	regs->rcx = kvm_rcx_read(vcpu);
10499 	regs->rdx = kvm_rdx_read(vcpu);
10500 	regs->rsi = kvm_rsi_read(vcpu);
10501 	regs->rdi = kvm_rdi_read(vcpu);
10502 	regs->rsp = kvm_rsp_read(vcpu);
10503 	regs->rbp = kvm_rbp_read(vcpu);
10504 #ifdef CONFIG_X86_64
10505 	regs->r8 = kvm_r8_read(vcpu);
10506 	regs->r9 = kvm_r9_read(vcpu);
10507 	regs->r10 = kvm_r10_read(vcpu);
10508 	regs->r11 = kvm_r11_read(vcpu);
10509 	regs->r12 = kvm_r12_read(vcpu);
10510 	regs->r13 = kvm_r13_read(vcpu);
10511 	regs->r14 = kvm_r14_read(vcpu);
10512 	regs->r15 = kvm_r15_read(vcpu);
10513 #endif
10514 
10515 	regs->rip = kvm_rip_read(vcpu);
10516 	regs->rflags = kvm_get_rflags(vcpu);
10517 }
10518 
10519 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10520 {
10521 	vcpu_load(vcpu);
10522 	__get_regs(vcpu, regs);
10523 	vcpu_put(vcpu);
10524 	return 0;
10525 }
10526 
10527 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10528 {
10529 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10530 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10531 
10532 	kvm_rax_write(vcpu, regs->rax);
10533 	kvm_rbx_write(vcpu, regs->rbx);
10534 	kvm_rcx_write(vcpu, regs->rcx);
10535 	kvm_rdx_write(vcpu, regs->rdx);
10536 	kvm_rsi_write(vcpu, regs->rsi);
10537 	kvm_rdi_write(vcpu, regs->rdi);
10538 	kvm_rsp_write(vcpu, regs->rsp);
10539 	kvm_rbp_write(vcpu, regs->rbp);
10540 #ifdef CONFIG_X86_64
10541 	kvm_r8_write(vcpu, regs->r8);
10542 	kvm_r9_write(vcpu, regs->r9);
10543 	kvm_r10_write(vcpu, regs->r10);
10544 	kvm_r11_write(vcpu, regs->r11);
10545 	kvm_r12_write(vcpu, regs->r12);
10546 	kvm_r13_write(vcpu, regs->r13);
10547 	kvm_r14_write(vcpu, regs->r14);
10548 	kvm_r15_write(vcpu, regs->r15);
10549 #endif
10550 
10551 	kvm_rip_write(vcpu, regs->rip);
10552 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10553 
10554 	vcpu->arch.exception.pending = false;
10555 
10556 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10557 }
10558 
10559 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10560 {
10561 	vcpu_load(vcpu);
10562 	__set_regs(vcpu, regs);
10563 	vcpu_put(vcpu);
10564 	return 0;
10565 }
10566 
10567 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10568 {
10569 	struct desc_ptr dt;
10570 
10571 	if (vcpu->arch.guest_state_protected)
10572 		goto skip_protected_regs;
10573 
10574 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10575 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10576 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10577 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10578 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10579 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10580 
10581 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10582 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10583 
10584 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10585 	sregs->idt.limit = dt.size;
10586 	sregs->idt.base = dt.address;
10587 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10588 	sregs->gdt.limit = dt.size;
10589 	sregs->gdt.base = dt.address;
10590 
10591 	sregs->cr2 = vcpu->arch.cr2;
10592 	sregs->cr3 = kvm_read_cr3(vcpu);
10593 
10594 skip_protected_regs:
10595 	sregs->cr0 = kvm_read_cr0(vcpu);
10596 	sregs->cr4 = kvm_read_cr4(vcpu);
10597 	sregs->cr8 = kvm_get_cr8(vcpu);
10598 	sregs->efer = vcpu->arch.efer;
10599 	sregs->apic_base = kvm_get_apic_base(vcpu);
10600 }
10601 
10602 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10603 {
10604 	__get_sregs_common(vcpu, sregs);
10605 
10606 	if (vcpu->arch.guest_state_protected)
10607 		return;
10608 
10609 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10610 		set_bit(vcpu->arch.interrupt.nr,
10611 			(unsigned long *)sregs->interrupt_bitmap);
10612 }
10613 
10614 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10615 {
10616 	int i;
10617 
10618 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10619 
10620 	if (vcpu->arch.guest_state_protected)
10621 		return;
10622 
10623 	if (is_pae_paging(vcpu)) {
10624 		for (i = 0 ; i < 4 ; i++)
10625 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10626 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10627 	}
10628 }
10629 
10630 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10631 				  struct kvm_sregs *sregs)
10632 {
10633 	vcpu_load(vcpu);
10634 	__get_sregs(vcpu, sregs);
10635 	vcpu_put(vcpu);
10636 	return 0;
10637 }
10638 
10639 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10640 				    struct kvm_mp_state *mp_state)
10641 {
10642 	int r;
10643 
10644 	vcpu_load(vcpu);
10645 	if (kvm_mpx_supported())
10646 		kvm_load_guest_fpu(vcpu);
10647 
10648 	r = kvm_apic_accept_events(vcpu);
10649 	if (r < 0)
10650 		goto out;
10651 	r = 0;
10652 
10653 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10654 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10655 	    vcpu->arch.pv.pv_unhalted)
10656 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10657 	else
10658 		mp_state->mp_state = vcpu->arch.mp_state;
10659 
10660 out:
10661 	if (kvm_mpx_supported())
10662 		kvm_put_guest_fpu(vcpu);
10663 	vcpu_put(vcpu);
10664 	return r;
10665 }
10666 
10667 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10668 				    struct kvm_mp_state *mp_state)
10669 {
10670 	int ret = -EINVAL;
10671 
10672 	vcpu_load(vcpu);
10673 
10674 	if (!lapic_in_kernel(vcpu) &&
10675 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10676 		goto out;
10677 
10678 	/*
10679 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10680 	 * INIT state; latched init should be reported using
10681 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10682 	 */
10683 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10684 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10685 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10686 		goto out;
10687 
10688 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10689 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10690 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10691 	} else
10692 		vcpu->arch.mp_state = mp_state->mp_state;
10693 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10694 
10695 	ret = 0;
10696 out:
10697 	vcpu_put(vcpu);
10698 	return ret;
10699 }
10700 
10701 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10702 		    int reason, bool has_error_code, u32 error_code)
10703 {
10704 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10705 	int ret;
10706 
10707 	init_emulate_ctxt(vcpu);
10708 
10709 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10710 				   has_error_code, error_code);
10711 	if (ret) {
10712 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10713 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10714 		vcpu->run->internal.ndata = 0;
10715 		return 0;
10716 	}
10717 
10718 	kvm_rip_write(vcpu, ctxt->eip);
10719 	kvm_set_rflags(vcpu, ctxt->eflags);
10720 	return 1;
10721 }
10722 EXPORT_SYMBOL_GPL(kvm_task_switch);
10723 
10724 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10725 {
10726 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10727 		/*
10728 		 * When EFER.LME and CR0.PG are set, the processor is in
10729 		 * 64-bit mode (though maybe in a 32-bit code segment).
10730 		 * CR4.PAE and EFER.LMA must be set.
10731 		 */
10732 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10733 			return false;
10734 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10735 			return false;
10736 	} else {
10737 		/*
10738 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10739 		 * segment cannot be 64-bit.
10740 		 */
10741 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10742 			return false;
10743 	}
10744 
10745 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10746 }
10747 
10748 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10749 		int *mmu_reset_needed, bool update_pdptrs)
10750 {
10751 	struct msr_data apic_base_msr;
10752 	int idx;
10753 	struct desc_ptr dt;
10754 
10755 	if (!kvm_is_valid_sregs(vcpu, sregs))
10756 		return -EINVAL;
10757 
10758 	apic_base_msr.data = sregs->apic_base;
10759 	apic_base_msr.host_initiated = true;
10760 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10761 		return -EINVAL;
10762 
10763 	if (vcpu->arch.guest_state_protected)
10764 		return 0;
10765 
10766 	dt.size = sregs->idt.limit;
10767 	dt.address = sregs->idt.base;
10768 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10769 	dt.size = sregs->gdt.limit;
10770 	dt.address = sregs->gdt.base;
10771 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10772 
10773 	vcpu->arch.cr2 = sregs->cr2;
10774 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10775 	vcpu->arch.cr3 = sregs->cr3;
10776 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10777 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10778 
10779 	kvm_set_cr8(vcpu, sregs->cr8);
10780 
10781 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10782 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10783 
10784 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10785 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10786 	vcpu->arch.cr0 = sregs->cr0;
10787 
10788 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10789 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10790 
10791 	if (update_pdptrs) {
10792 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10793 		if (is_pae_paging(vcpu)) {
10794 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10795 			*mmu_reset_needed = 1;
10796 		}
10797 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10798 	}
10799 
10800 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10801 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10802 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10803 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10804 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10805 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10806 
10807 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10808 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10809 
10810 	update_cr8_intercept(vcpu);
10811 
10812 	/* Older userspace won't unhalt the vcpu on reset. */
10813 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10814 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10815 	    !is_protmode(vcpu))
10816 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10817 
10818 	return 0;
10819 }
10820 
10821 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10822 {
10823 	int pending_vec, max_bits;
10824 	int mmu_reset_needed = 0;
10825 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10826 
10827 	if (ret)
10828 		return ret;
10829 
10830 	if (mmu_reset_needed)
10831 		kvm_mmu_reset_context(vcpu);
10832 
10833 	max_bits = KVM_NR_INTERRUPTS;
10834 	pending_vec = find_first_bit(
10835 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10836 
10837 	if (pending_vec < max_bits) {
10838 		kvm_queue_interrupt(vcpu, pending_vec, false);
10839 		pr_debug("Set back pending irq %d\n", pending_vec);
10840 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10841 	}
10842 	return 0;
10843 }
10844 
10845 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10846 {
10847 	int mmu_reset_needed = 0;
10848 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10849 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10850 		!(sregs2->efer & EFER_LMA);
10851 	int i, ret;
10852 
10853 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10854 		return -EINVAL;
10855 
10856 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10857 		return -EINVAL;
10858 
10859 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10860 				 &mmu_reset_needed, !valid_pdptrs);
10861 	if (ret)
10862 		return ret;
10863 
10864 	if (valid_pdptrs) {
10865 		for (i = 0; i < 4 ; i++)
10866 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10867 
10868 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10869 		mmu_reset_needed = 1;
10870 		vcpu->arch.pdptrs_from_userspace = true;
10871 	}
10872 	if (mmu_reset_needed)
10873 		kvm_mmu_reset_context(vcpu);
10874 	return 0;
10875 }
10876 
10877 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10878 				  struct kvm_sregs *sregs)
10879 {
10880 	int ret;
10881 
10882 	vcpu_load(vcpu);
10883 	ret = __set_sregs(vcpu, sregs);
10884 	vcpu_put(vcpu);
10885 	return ret;
10886 }
10887 
10888 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10889 {
10890 	bool inhibit = false;
10891 	struct kvm_vcpu *vcpu;
10892 	unsigned long i;
10893 
10894 	down_write(&kvm->arch.apicv_update_lock);
10895 
10896 	kvm_for_each_vcpu(i, vcpu, kvm) {
10897 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10898 			inhibit = true;
10899 			break;
10900 		}
10901 	}
10902 	__kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10903 	up_write(&kvm->arch.apicv_update_lock);
10904 }
10905 
10906 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10907 					struct kvm_guest_debug *dbg)
10908 {
10909 	unsigned long rflags;
10910 	int i, r;
10911 
10912 	if (vcpu->arch.guest_state_protected)
10913 		return -EINVAL;
10914 
10915 	vcpu_load(vcpu);
10916 
10917 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10918 		r = -EBUSY;
10919 		if (vcpu->arch.exception.pending)
10920 			goto out;
10921 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10922 			kvm_queue_exception(vcpu, DB_VECTOR);
10923 		else
10924 			kvm_queue_exception(vcpu, BP_VECTOR);
10925 	}
10926 
10927 	/*
10928 	 * Read rflags as long as potentially injected trace flags are still
10929 	 * filtered out.
10930 	 */
10931 	rflags = kvm_get_rflags(vcpu);
10932 
10933 	vcpu->guest_debug = dbg->control;
10934 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10935 		vcpu->guest_debug = 0;
10936 
10937 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10938 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10939 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10940 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10941 	} else {
10942 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10943 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10944 	}
10945 	kvm_update_dr7(vcpu);
10946 
10947 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10948 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10949 
10950 	/*
10951 	 * Trigger an rflags update that will inject or remove the trace
10952 	 * flags.
10953 	 */
10954 	kvm_set_rflags(vcpu, rflags);
10955 
10956 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10957 
10958 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10959 
10960 	r = 0;
10961 
10962 out:
10963 	vcpu_put(vcpu);
10964 	return r;
10965 }
10966 
10967 /*
10968  * Translate a guest virtual address to a guest physical address.
10969  */
10970 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10971 				    struct kvm_translation *tr)
10972 {
10973 	unsigned long vaddr = tr->linear_address;
10974 	gpa_t gpa;
10975 	int idx;
10976 
10977 	vcpu_load(vcpu);
10978 
10979 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10980 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10981 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10982 	tr->physical_address = gpa;
10983 	tr->valid = gpa != UNMAPPED_GVA;
10984 	tr->writeable = 1;
10985 	tr->usermode = 0;
10986 
10987 	vcpu_put(vcpu);
10988 	return 0;
10989 }
10990 
10991 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10992 {
10993 	struct fxregs_state *fxsave;
10994 
10995 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10996 		return 0;
10997 
10998 	vcpu_load(vcpu);
10999 
11000 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11001 	memcpy(fpu->fpr, fxsave->st_space, 128);
11002 	fpu->fcw = fxsave->cwd;
11003 	fpu->fsw = fxsave->swd;
11004 	fpu->ftwx = fxsave->twd;
11005 	fpu->last_opcode = fxsave->fop;
11006 	fpu->last_ip = fxsave->rip;
11007 	fpu->last_dp = fxsave->rdp;
11008 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11009 
11010 	vcpu_put(vcpu);
11011 	return 0;
11012 }
11013 
11014 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11015 {
11016 	struct fxregs_state *fxsave;
11017 
11018 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11019 		return 0;
11020 
11021 	vcpu_load(vcpu);
11022 
11023 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11024 
11025 	memcpy(fxsave->st_space, fpu->fpr, 128);
11026 	fxsave->cwd = fpu->fcw;
11027 	fxsave->swd = fpu->fsw;
11028 	fxsave->twd = fpu->ftwx;
11029 	fxsave->fop = fpu->last_opcode;
11030 	fxsave->rip = fpu->last_ip;
11031 	fxsave->rdp = fpu->last_dp;
11032 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11033 
11034 	vcpu_put(vcpu);
11035 	return 0;
11036 }
11037 
11038 static void store_regs(struct kvm_vcpu *vcpu)
11039 {
11040 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11041 
11042 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11043 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11044 
11045 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11046 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11047 
11048 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11049 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11050 				vcpu, &vcpu->run->s.regs.events);
11051 }
11052 
11053 static int sync_regs(struct kvm_vcpu *vcpu)
11054 {
11055 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11056 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11057 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11058 	}
11059 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11060 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11061 			return -EINVAL;
11062 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11063 	}
11064 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11065 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11066 				vcpu, &vcpu->run->s.regs.events))
11067 			return -EINVAL;
11068 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11069 	}
11070 
11071 	return 0;
11072 }
11073 
11074 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11075 {
11076 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11077 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11078 			     "guest TSC will not be reliable\n");
11079 
11080 	return 0;
11081 }
11082 
11083 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11084 {
11085 	struct page *page;
11086 	int r;
11087 
11088 	vcpu->arch.last_vmentry_cpu = -1;
11089 	vcpu->arch.regs_avail = ~0;
11090 	vcpu->arch.regs_dirty = ~0;
11091 
11092 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11093 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11094 	else
11095 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11096 
11097 	r = kvm_mmu_create(vcpu);
11098 	if (r < 0)
11099 		return r;
11100 
11101 	if (irqchip_in_kernel(vcpu->kvm)) {
11102 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11103 		if (r < 0)
11104 			goto fail_mmu_destroy;
11105 		if (kvm_apicv_activated(vcpu->kvm))
11106 			vcpu->arch.apicv_active = true;
11107 	} else
11108 		static_branch_inc(&kvm_has_noapic_vcpu);
11109 
11110 	r = -ENOMEM;
11111 
11112 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11113 	if (!page)
11114 		goto fail_free_lapic;
11115 	vcpu->arch.pio_data = page_address(page);
11116 
11117 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11118 				       GFP_KERNEL_ACCOUNT);
11119 	if (!vcpu->arch.mce_banks)
11120 		goto fail_free_pio_data;
11121 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11122 
11123 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11124 				GFP_KERNEL_ACCOUNT))
11125 		goto fail_free_mce_banks;
11126 
11127 	if (!alloc_emulate_ctxt(vcpu))
11128 		goto free_wbinvd_dirty_mask;
11129 
11130 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11131 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11132 		goto free_emulate_ctxt;
11133 	}
11134 
11135 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11136 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11137 
11138 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11139 
11140 	kvm_async_pf_hash_reset(vcpu);
11141 	kvm_pmu_init(vcpu);
11142 
11143 	vcpu->arch.pending_external_vector = -1;
11144 	vcpu->arch.preempted_in_kernel = false;
11145 
11146 #if IS_ENABLED(CONFIG_HYPERV)
11147 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11148 #endif
11149 
11150 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11151 	if (r)
11152 		goto free_guest_fpu;
11153 
11154 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11155 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11156 	kvm_vcpu_mtrr_init(vcpu);
11157 	vcpu_load(vcpu);
11158 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11159 	kvm_vcpu_reset(vcpu, false);
11160 	kvm_init_mmu(vcpu);
11161 	vcpu_put(vcpu);
11162 	return 0;
11163 
11164 free_guest_fpu:
11165 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11166 free_emulate_ctxt:
11167 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11168 free_wbinvd_dirty_mask:
11169 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11170 fail_free_mce_banks:
11171 	kfree(vcpu->arch.mce_banks);
11172 fail_free_pio_data:
11173 	free_page((unsigned long)vcpu->arch.pio_data);
11174 fail_free_lapic:
11175 	kvm_free_lapic(vcpu);
11176 fail_mmu_destroy:
11177 	kvm_mmu_destroy(vcpu);
11178 	return r;
11179 }
11180 
11181 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11182 {
11183 	struct kvm *kvm = vcpu->kvm;
11184 
11185 	if (mutex_lock_killable(&vcpu->mutex))
11186 		return;
11187 	vcpu_load(vcpu);
11188 	kvm_synchronize_tsc(vcpu, 0);
11189 	vcpu_put(vcpu);
11190 
11191 	/* poll control enabled by default */
11192 	vcpu->arch.msr_kvm_poll_control = 1;
11193 
11194 	mutex_unlock(&vcpu->mutex);
11195 
11196 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11197 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11198 						KVMCLOCK_SYNC_PERIOD);
11199 }
11200 
11201 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11202 {
11203 	int idx;
11204 
11205 	kvmclock_reset(vcpu);
11206 
11207 	static_call(kvm_x86_vcpu_free)(vcpu);
11208 
11209 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11210 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11211 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11212 
11213 	kvm_hv_vcpu_uninit(vcpu);
11214 	kvm_pmu_destroy(vcpu);
11215 	kfree(vcpu->arch.mce_banks);
11216 	kvm_free_lapic(vcpu);
11217 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11218 	kvm_mmu_destroy(vcpu);
11219 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11220 	free_page((unsigned long)vcpu->arch.pio_data);
11221 	kvfree(vcpu->arch.cpuid_entries);
11222 	if (!lapic_in_kernel(vcpu))
11223 		static_branch_dec(&kvm_has_noapic_vcpu);
11224 }
11225 
11226 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11227 {
11228 	struct kvm_cpuid_entry2 *cpuid_0x1;
11229 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11230 	unsigned long new_cr0;
11231 
11232 	/*
11233 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11234 	 * to handle side effects.  RESET emulation hits those flows and relies
11235 	 * on emulated/virtualized registers, including those that are loaded
11236 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11237 	 * to detect improper or missing initialization.
11238 	 */
11239 	WARN_ON_ONCE(!init_event &&
11240 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11241 
11242 	kvm_lapic_reset(vcpu, init_event);
11243 
11244 	vcpu->arch.hflags = 0;
11245 
11246 	vcpu->arch.smi_pending = 0;
11247 	vcpu->arch.smi_count = 0;
11248 	atomic_set(&vcpu->arch.nmi_queued, 0);
11249 	vcpu->arch.nmi_pending = 0;
11250 	vcpu->arch.nmi_injected = false;
11251 	kvm_clear_interrupt_queue(vcpu);
11252 	kvm_clear_exception_queue(vcpu);
11253 
11254 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11255 	kvm_update_dr0123(vcpu);
11256 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11257 	vcpu->arch.dr7 = DR7_FIXED_1;
11258 	kvm_update_dr7(vcpu);
11259 
11260 	vcpu->arch.cr2 = 0;
11261 
11262 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11263 	vcpu->arch.apf.msr_en_val = 0;
11264 	vcpu->arch.apf.msr_int_val = 0;
11265 	vcpu->arch.st.msr_val = 0;
11266 
11267 	kvmclock_reset(vcpu);
11268 
11269 	kvm_clear_async_pf_completion_queue(vcpu);
11270 	kvm_async_pf_hash_reset(vcpu);
11271 	vcpu->arch.apf.halted = false;
11272 
11273 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11274 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11275 
11276 		/*
11277 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11278 		 * called with loaded FPU and does not let userspace fix the state.
11279 		 */
11280 		if (init_event)
11281 			kvm_put_guest_fpu(vcpu);
11282 
11283 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11284 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11285 
11286 		if (init_event)
11287 			kvm_load_guest_fpu(vcpu);
11288 	}
11289 
11290 	if (!init_event) {
11291 		kvm_pmu_reset(vcpu);
11292 		vcpu->arch.smbase = 0x30000;
11293 
11294 		vcpu->arch.msr_misc_features_enables = 0;
11295 
11296 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11297 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11298 	}
11299 
11300 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11301 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11302 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11303 
11304 	/*
11305 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11306 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11307 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11308 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11309 	 * on RESET.  But, go through the motions in case that's ever remedied.
11310 	 */
11311 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11312 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11313 
11314 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11315 
11316 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11317 	kvm_rip_write(vcpu, 0xfff0);
11318 
11319 	vcpu->arch.cr3 = 0;
11320 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11321 
11322 	/*
11323 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11324 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11325 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11326 	 */
11327 	new_cr0 = X86_CR0_ET;
11328 	if (init_event)
11329 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11330 	else
11331 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11332 
11333 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11334 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11335 	static_call(kvm_x86_set_efer)(vcpu, 0);
11336 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11337 
11338 	/*
11339 	 * Reset the MMU context if paging was enabled prior to INIT (which is
11340 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11341 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11342 	 * checked because it is unconditionally cleared on INIT and all other
11343 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11344 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11345 	 */
11346 	if (old_cr0 & X86_CR0_PG)
11347 		kvm_mmu_reset_context(vcpu);
11348 
11349 	/*
11350 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11351 	 * APM states the TLBs are untouched by INIT, but it also states that
11352 	 * the TLBs are flushed on "External initialization of the processor."
11353 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11354 	 * benefit in relying on the guest to flush the TLB immediately after
11355 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11356 	 * performance perspective.
11357 	 */
11358 	if (init_event)
11359 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11360 }
11361 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11362 
11363 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11364 {
11365 	struct kvm_segment cs;
11366 
11367 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11368 	cs.selector = vector << 8;
11369 	cs.base = vector << 12;
11370 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11371 	kvm_rip_write(vcpu, 0);
11372 }
11373 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11374 
11375 int kvm_arch_hardware_enable(void)
11376 {
11377 	struct kvm *kvm;
11378 	struct kvm_vcpu *vcpu;
11379 	unsigned long i;
11380 	int ret;
11381 	u64 local_tsc;
11382 	u64 max_tsc = 0;
11383 	bool stable, backwards_tsc = false;
11384 
11385 	kvm_user_return_msr_cpu_online();
11386 	ret = static_call(kvm_x86_hardware_enable)();
11387 	if (ret != 0)
11388 		return ret;
11389 
11390 	local_tsc = rdtsc();
11391 	stable = !kvm_check_tsc_unstable();
11392 	list_for_each_entry(kvm, &vm_list, vm_list) {
11393 		kvm_for_each_vcpu(i, vcpu, kvm) {
11394 			if (!stable && vcpu->cpu == smp_processor_id())
11395 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11396 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11397 				backwards_tsc = true;
11398 				if (vcpu->arch.last_host_tsc > max_tsc)
11399 					max_tsc = vcpu->arch.last_host_tsc;
11400 			}
11401 		}
11402 	}
11403 
11404 	/*
11405 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11406 	 * platforms that reset TSC during suspend or hibernate actions, but
11407 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11408 	 * detect that condition here, which happens early in CPU bringup,
11409 	 * before any KVM threads can be running.  Unfortunately, we can't
11410 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11411 	 * enough into CPU bringup that we know how much real time has actually
11412 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11413 	 * variables that haven't been updated yet.
11414 	 *
11415 	 * So we simply find the maximum observed TSC above, then record the
11416 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11417 	 * the adjustment will be applied.  Note that we accumulate
11418 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11419 	 * gets a chance to run again.  In the event that no KVM threads get a
11420 	 * chance to run, we will miss the entire elapsed period, as we'll have
11421 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11422 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11423 	 * uniform across all VCPUs (not to mention the scenario is extremely
11424 	 * unlikely). It is possible that a second hibernate recovery happens
11425 	 * much faster than a first, causing the observed TSC here to be
11426 	 * smaller; this would require additional padding adjustment, which is
11427 	 * why we set last_host_tsc to the local tsc observed here.
11428 	 *
11429 	 * N.B. - this code below runs only on platforms with reliable TSC,
11430 	 * as that is the only way backwards_tsc is set above.  Also note
11431 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11432 	 * have the same delta_cyc adjustment applied if backwards_tsc
11433 	 * is detected.  Note further, this adjustment is only done once,
11434 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11435 	 * called multiple times (one for each physical CPU bringup).
11436 	 *
11437 	 * Platforms with unreliable TSCs don't have to deal with this, they
11438 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11439 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11440 	 * guarantee that they stay in perfect synchronization.
11441 	 */
11442 	if (backwards_tsc) {
11443 		u64 delta_cyc = max_tsc - local_tsc;
11444 		list_for_each_entry(kvm, &vm_list, vm_list) {
11445 			kvm->arch.backwards_tsc_observed = true;
11446 			kvm_for_each_vcpu(i, vcpu, kvm) {
11447 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11448 				vcpu->arch.last_host_tsc = local_tsc;
11449 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11450 			}
11451 
11452 			/*
11453 			 * We have to disable TSC offset matching.. if you were
11454 			 * booting a VM while issuing an S4 host suspend....
11455 			 * you may have some problem.  Solving this issue is
11456 			 * left as an exercise to the reader.
11457 			 */
11458 			kvm->arch.last_tsc_nsec = 0;
11459 			kvm->arch.last_tsc_write = 0;
11460 		}
11461 
11462 	}
11463 	return 0;
11464 }
11465 
11466 void kvm_arch_hardware_disable(void)
11467 {
11468 	static_call(kvm_x86_hardware_disable)();
11469 	drop_user_return_notifiers();
11470 }
11471 
11472 int kvm_arch_hardware_setup(void *opaque)
11473 {
11474 	struct kvm_x86_init_ops *ops = opaque;
11475 	int r;
11476 
11477 	rdmsrl_safe(MSR_EFER, &host_efer);
11478 
11479 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11480 		rdmsrl(MSR_IA32_XSS, host_xss);
11481 
11482 	r = ops->hardware_setup();
11483 	if (r != 0)
11484 		return r;
11485 
11486 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11487 	kvm_ops_static_call_update();
11488 
11489 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11490 
11491 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11492 		supported_xss = 0;
11493 
11494 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11495 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11496 #undef __kvm_cpu_cap_has
11497 
11498 	if (kvm_has_tsc_control) {
11499 		/*
11500 		 * Make sure the user can only configure tsc_khz values that
11501 		 * fit into a signed integer.
11502 		 * A min value is not calculated because it will always
11503 		 * be 1 on all machines.
11504 		 */
11505 		u64 max = min(0x7fffffffULL,
11506 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11507 		kvm_max_guest_tsc_khz = max;
11508 
11509 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11510 	}
11511 
11512 	kvm_init_msr_list();
11513 	return 0;
11514 }
11515 
11516 void kvm_arch_hardware_unsetup(void)
11517 {
11518 	kvm_unregister_perf_callbacks();
11519 
11520 	static_call(kvm_x86_hardware_unsetup)();
11521 }
11522 
11523 int kvm_arch_check_processor_compat(void *opaque)
11524 {
11525 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11526 	struct kvm_x86_init_ops *ops = opaque;
11527 
11528 	WARN_ON(!irqs_disabled());
11529 
11530 	if (__cr4_reserved_bits(cpu_has, c) !=
11531 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11532 		return -EIO;
11533 
11534 	return ops->check_processor_compatibility();
11535 }
11536 
11537 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11538 {
11539 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11540 }
11541 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11542 
11543 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11544 {
11545 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11546 }
11547 
11548 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11549 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11550 
11551 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11552 {
11553 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11554 
11555 	vcpu->arch.l1tf_flush_l1d = true;
11556 	if (pmu->version && unlikely(pmu->event_count)) {
11557 		pmu->need_cleanup = true;
11558 		kvm_make_request(KVM_REQ_PMU, vcpu);
11559 	}
11560 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11561 }
11562 
11563 void kvm_arch_free_vm(struct kvm *kvm)
11564 {
11565 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11566 	__kvm_arch_free_vm(kvm);
11567 }
11568 
11569 
11570 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11571 {
11572 	int ret;
11573 	unsigned long flags;
11574 
11575 	if (type)
11576 		return -EINVAL;
11577 
11578 	ret = kvm_page_track_init(kvm);
11579 	if (ret)
11580 		return ret;
11581 
11582 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11583 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11584 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11585 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11586 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11587 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11588 
11589 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11590 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11591 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11592 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11593 		&kvm->arch.irq_sources_bitmap);
11594 
11595 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11596 	mutex_init(&kvm->arch.apic_map_lock);
11597 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11598 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11599 
11600 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11601 	pvclock_update_vm_gtod_copy(kvm);
11602 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11603 
11604 	kvm->arch.guest_can_read_msr_platform_info = true;
11605 	kvm->arch.enable_pmu = enable_pmu;
11606 
11607 #if IS_ENABLED(CONFIG_HYPERV)
11608 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11609 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11610 #endif
11611 
11612 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11613 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11614 
11615 	kvm_apicv_init(kvm);
11616 	kvm_hv_init_vm(kvm);
11617 	kvm_mmu_init_vm(kvm);
11618 	kvm_xen_init_vm(kvm);
11619 
11620 	return static_call(kvm_x86_vm_init)(kvm);
11621 }
11622 
11623 int kvm_arch_post_init_vm(struct kvm *kvm)
11624 {
11625 	return kvm_mmu_post_init_vm(kvm);
11626 }
11627 
11628 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11629 {
11630 	vcpu_load(vcpu);
11631 	kvm_mmu_unload(vcpu);
11632 	vcpu_put(vcpu);
11633 }
11634 
11635 static void kvm_free_vcpus(struct kvm *kvm)
11636 {
11637 	unsigned long i;
11638 	struct kvm_vcpu *vcpu;
11639 
11640 	/*
11641 	 * Unpin any mmu pages first.
11642 	 */
11643 	kvm_for_each_vcpu(i, vcpu, kvm) {
11644 		kvm_clear_async_pf_completion_queue(vcpu);
11645 		kvm_unload_vcpu_mmu(vcpu);
11646 	}
11647 
11648 	kvm_destroy_vcpus(kvm);
11649 }
11650 
11651 void kvm_arch_sync_events(struct kvm *kvm)
11652 {
11653 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11654 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11655 	kvm_free_pit(kvm);
11656 }
11657 
11658 /**
11659  * __x86_set_memory_region: Setup KVM internal memory slot
11660  *
11661  * @kvm: the kvm pointer to the VM.
11662  * @id: the slot ID to setup.
11663  * @gpa: the GPA to install the slot (unused when @size == 0).
11664  * @size: the size of the slot. Set to zero to uninstall a slot.
11665  *
11666  * This function helps to setup a KVM internal memory slot.  Specify
11667  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11668  * slot.  The return code can be one of the following:
11669  *
11670  *   HVA:           on success (uninstall will return a bogus HVA)
11671  *   -errno:        on error
11672  *
11673  * The caller should always use IS_ERR() to check the return value
11674  * before use.  Note, the KVM internal memory slots are guaranteed to
11675  * remain valid and unchanged until the VM is destroyed, i.e., the
11676  * GPA->HVA translation will not change.  However, the HVA is a user
11677  * address, i.e. its accessibility is not guaranteed, and must be
11678  * accessed via __copy_{to,from}_user().
11679  */
11680 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11681 				      u32 size)
11682 {
11683 	int i, r;
11684 	unsigned long hva, old_npages;
11685 	struct kvm_memslots *slots = kvm_memslots(kvm);
11686 	struct kvm_memory_slot *slot;
11687 
11688 	/* Called with kvm->slots_lock held.  */
11689 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11690 		return ERR_PTR_USR(-EINVAL);
11691 
11692 	slot = id_to_memslot(slots, id);
11693 	if (size) {
11694 		if (slot && slot->npages)
11695 			return ERR_PTR_USR(-EEXIST);
11696 
11697 		/*
11698 		 * MAP_SHARED to prevent internal slot pages from being moved
11699 		 * by fork()/COW.
11700 		 */
11701 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11702 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11703 		if (IS_ERR((void *)hva))
11704 			return (void __user *)hva;
11705 	} else {
11706 		if (!slot || !slot->npages)
11707 			return NULL;
11708 
11709 		old_npages = slot->npages;
11710 		hva = slot->userspace_addr;
11711 	}
11712 
11713 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11714 		struct kvm_userspace_memory_region m;
11715 
11716 		m.slot = id | (i << 16);
11717 		m.flags = 0;
11718 		m.guest_phys_addr = gpa;
11719 		m.userspace_addr = hva;
11720 		m.memory_size = size;
11721 		r = __kvm_set_memory_region(kvm, &m);
11722 		if (r < 0)
11723 			return ERR_PTR_USR(r);
11724 	}
11725 
11726 	if (!size)
11727 		vm_munmap(hva, old_npages * PAGE_SIZE);
11728 
11729 	return (void __user *)hva;
11730 }
11731 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11732 
11733 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11734 {
11735 	kvm_mmu_pre_destroy_vm(kvm);
11736 }
11737 
11738 void kvm_arch_destroy_vm(struct kvm *kvm)
11739 {
11740 	if (current->mm == kvm->mm) {
11741 		/*
11742 		 * Free memory regions allocated on behalf of userspace,
11743 		 * unless the the memory map has changed due to process exit
11744 		 * or fd copying.
11745 		 */
11746 		mutex_lock(&kvm->slots_lock);
11747 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11748 					0, 0);
11749 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11750 					0, 0);
11751 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11752 		mutex_unlock(&kvm->slots_lock);
11753 	}
11754 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11755 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11756 	kvm_pic_destroy(kvm);
11757 	kvm_ioapic_destroy(kvm);
11758 	kvm_free_vcpus(kvm);
11759 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11760 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11761 	kvm_mmu_uninit_vm(kvm);
11762 	kvm_page_track_cleanup(kvm);
11763 	kvm_xen_destroy_vm(kvm);
11764 	kvm_hv_destroy_vm(kvm);
11765 }
11766 
11767 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11768 {
11769 	int i;
11770 
11771 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11772 		kvfree(slot->arch.rmap[i]);
11773 		slot->arch.rmap[i] = NULL;
11774 	}
11775 }
11776 
11777 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11778 {
11779 	int i;
11780 
11781 	memslot_rmap_free(slot);
11782 
11783 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11784 		kvfree(slot->arch.lpage_info[i - 1]);
11785 		slot->arch.lpage_info[i - 1] = NULL;
11786 	}
11787 
11788 	kvm_page_track_free_memslot(slot);
11789 }
11790 
11791 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11792 {
11793 	const int sz = sizeof(*slot->arch.rmap[0]);
11794 	int i;
11795 
11796 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11797 		int level = i + 1;
11798 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11799 
11800 		if (slot->arch.rmap[i])
11801 			continue;
11802 
11803 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11804 		if (!slot->arch.rmap[i]) {
11805 			memslot_rmap_free(slot);
11806 			return -ENOMEM;
11807 		}
11808 	}
11809 
11810 	return 0;
11811 }
11812 
11813 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11814 				      struct kvm_memory_slot *slot)
11815 {
11816 	unsigned long npages = slot->npages;
11817 	int i, r;
11818 
11819 	/*
11820 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11821 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11822 	 * the new memslot is successful.
11823 	 */
11824 	memset(&slot->arch, 0, sizeof(slot->arch));
11825 
11826 	if (kvm_memslots_have_rmaps(kvm)) {
11827 		r = memslot_rmap_alloc(slot, npages);
11828 		if (r)
11829 			return r;
11830 	}
11831 
11832 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11833 		struct kvm_lpage_info *linfo;
11834 		unsigned long ugfn;
11835 		int lpages;
11836 		int level = i + 1;
11837 
11838 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11839 
11840 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11841 		if (!linfo)
11842 			goto out_free;
11843 
11844 		slot->arch.lpage_info[i - 1] = linfo;
11845 
11846 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11847 			linfo[0].disallow_lpage = 1;
11848 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11849 			linfo[lpages - 1].disallow_lpage = 1;
11850 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11851 		/*
11852 		 * If the gfn and userspace address are not aligned wrt each
11853 		 * other, disable large page support for this slot.
11854 		 */
11855 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11856 			unsigned long j;
11857 
11858 			for (j = 0; j < lpages; ++j)
11859 				linfo[j].disallow_lpage = 1;
11860 		}
11861 	}
11862 
11863 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11864 		goto out_free;
11865 
11866 	return 0;
11867 
11868 out_free:
11869 	memslot_rmap_free(slot);
11870 
11871 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11872 		kvfree(slot->arch.lpage_info[i - 1]);
11873 		slot->arch.lpage_info[i - 1] = NULL;
11874 	}
11875 	return -ENOMEM;
11876 }
11877 
11878 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11879 {
11880 	struct kvm_vcpu *vcpu;
11881 	unsigned long i;
11882 
11883 	/*
11884 	 * memslots->generation has been incremented.
11885 	 * mmio generation may have reached its maximum value.
11886 	 */
11887 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11888 
11889 	/* Force re-initialization of steal_time cache */
11890 	kvm_for_each_vcpu(i, vcpu, kvm)
11891 		kvm_vcpu_kick(vcpu);
11892 }
11893 
11894 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11895 				   const struct kvm_memory_slot *old,
11896 				   struct kvm_memory_slot *new,
11897 				   enum kvm_mr_change change)
11898 {
11899 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11900 		return kvm_alloc_memslot_metadata(kvm, new);
11901 
11902 	if (change == KVM_MR_FLAGS_ONLY)
11903 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
11904 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11905 		return -EIO;
11906 
11907 	return 0;
11908 }
11909 
11910 
11911 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11912 {
11913 	struct kvm_arch *ka = &kvm->arch;
11914 
11915 	if (!kvm_x86_ops.cpu_dirty_log_size)
11916 		return;
11917 
11918 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11919 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11920 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11921 
11922 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11923 }
11924 
11925 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11926 				     struct kvm_memory_slot *old,
11927 				     const struct kvm_memory_slot *new,
11928 				     enum kvm_mr_change change)
11929 {
11930 	u32 old_flags = old ? old->flags : 0;
11931 	u32 new_flags = new ? new->flags : 0;
11932 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11933 
11934 	/*
11935 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11936 	 * applies to all operations.
11937 	 */
11938 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11939 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11940 
11941 	/*
11942 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11943 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11944 	 *
11945 	 * For a memslot with dirty logging disabled:
11946 	 * CREATE:      No dirty mappings will already exist.
11947 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11948 	 *		kvm_arch_flush_shadow_memslot()
11949 	 *
11950 	 * For a memslot with dirty logging enabled:
11951 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11952 	 *		and no dirty bits to clear.
11953 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11954 	 *		kvm_arch_flush_shadow_memslot().
11955 	 */
11956 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11957 		return;
11958 
11959 	/*
11960 	 * READONLY and non-flags changes were filtered out above, and the only
11961 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11962 	 * logging isn't being toggled on or off.
11963 	 */
11964 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11965 		return;
11966 
11967 	if (!log_dirty_pages) {
11968 		/*
11969 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11970 		 * large sptes have to be split.  If live migration succeeds,
11971 		 * the guest in the source machine will be destroyed and large
11972 		 * sptes will be created in the destination.  However, if the
11973 		 * guest continues to run in the source machine (for example if
11974 		 * live migration fails), small sptes will remain around and
11975 		 * cause bad performance.
11976 		 *
11977 		 * Scan sptes if dirty logging has been stopped, dropping those
11978 		 * which can be collapsed into a single large-page spte.  Later
11979 		 * page faults will create the large-page sptes.
11980 		 */
11981 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11982 	} else {
11983 		/*
11984 		 * Initially-all-set does not require write protecting any page,
11985 		 * because they're all assumed to be dirty.
11986 		 */
11987 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11988 			return;
11989 
11990 		if (READ_ONCE(eager_page_split))
11991 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
11992 
11993 		if (kvm_x86_ops.cpu_dirty_log_size) {
11994 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11995 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11996 		} else {
11997 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11998 		}
11999 	}
12000 }
12001 
12002 void kvm_arch_commit_memory_region(struct kvm *kvm,
12003 				struct kvm_memory_slot *old,
12004 				const struct kvm_memory_slot *new,
12005 				enum kvm_mr_change change)
12006 {
12007 	if (!kvm->arch.n_requested_mmu_pages &&
12008 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12009 		unsigned long nr_mmu_pages;
12010 
12011 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12012 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12013 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12014 	}
12015 
12016 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12017 
12018 	/* Free the arrays associated with the old memslot. */
12019 	if (change == KVM_MR_MOVE)
12020 		kvm_arch_free_memslot(kvm, old);
12021 }
12022 
12023 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12024 {
12025 	kvm_mmu_zap_all(kvm);
12026 }
12027 
12028 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12029 				   struct kvm_memory_slot *slot)
12030 {
12031 	kvm_page_track_flush_slot(kvm, slot);
12032 }
12033 
12034 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12035 {
12036 	return (is_guest_mode(vcpu) &&
12037 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12038 }
12039 
12040 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12041 {
12042 	if (!list_empty_careful(&vcpu->async_pf.done))
12043 		return true;
12044 
12045 	if (kvm_apic_has_events(vcpu))
12046 		return true;
12047 
12048 	if (vcpu->arch.pv.pv_unhalted)
12049 		return true;
12050 
12051 	if (vcpu->arch.exception.pending)
12052 		return true;
12053 
12054 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12055 	    (vcpu->arch.nmi_pending &&
12056 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12057 		return true;
12058 
12059 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12060 	    (vcpu->arch.smi_pending &&
12061 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12062 		return true;
12063 
12064 	if (kvm_arch_interrupt_allowed(vcpu) &&
12065 	    (kvm_cpu_has_interrupt(vcpu) ||
12066 	    kvm_guest_apic_has_interrupt(vcpu)))
12067 		return true;
12068 
12069 	if (kvm_hv_has_stimer_pending(vcpu))
12070 		return true;
12071 
12072 	if (is_guest_mode(vcpu) &&
12073 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12074 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12075 		return true;
12076 
12077 	return false;
12078 }
12079 
12080 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12081 {
12082 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12083 }
12084 
12085 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12086 {
12087 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12088 		return true;
12089 
12090 	return false;
12091 }
12092 
12093 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12094 {
12095 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12096 		return true;
12097 
12098 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12099 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12100 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12101 		return true;
12102 
12103 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12104 }
12105 
12106 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12107 {
12108 	if (vcpu->arch.guest_state_protected)
12109 		return true;
12110 
12111 	return vcpu->arch.preempted_in_kernel;
12112 }
12113 
12114 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12115 {
12116 	return kvm_rip_read(vcpu);
12117 }
12118 
12119 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12120 {
12121 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12122 }
12123 
12124 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12125 {
12126 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12127 }
12128 
12129 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12130 {
12131 	/* Can't read the RIP when guest state is protected, just return 0 */
12132 	if (vcpu->arch.guest_state_protected)
12133 		return 0;
12134 
12135 	if (is_64_bit_mode(vcpu))
12136 		return kvm_rip_read(vcpu);
12137 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12138 		     kvm_rip_read(vcpu));
12139 }
12140 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12141 
12142 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12143 {
12144 	return kvm_get_linear_rip(vcpu) == linear_rip;
12145 }
12146 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12147 
12148 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12149 {
12150 	unsigned long rflags;
12151 
12152 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12153 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12154 		rflags &= ~X86_EFLAGS_TF;
12155 	return rflags;
12156 }
12157 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12158 
12159 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12160 {
12161 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12162 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12163 		rflags |= X86_EFLAGS_TF;
12164 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12165 }
12166 
12167 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12168 {
12169 	__kvm_set_rflags(vcpu, rflags);
12170 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12171 }
12172 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12173 
12174 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12175 {
12176 	int r;
12177 
12178 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12179 	      work->wakeup_all)
12180 		return;
12181 
12182 	r = kvm_mmu_reload(vcpu);
12183 	if (unlikely(r))
12184 		return;
12185 
12186 	if (!vcpu->arch.mmu->direct_map &&
12187 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12188 		return;
12189 
12190 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12191 }
12192 
12193 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12194 {
12195 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12196 
12197 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12198 }
12199 
12200 static inline u32 kvm_async_pf_next_probe(u32 key)
12201 {
12202 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12203 }
12204 
12205 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12206 {
12207 	u32 key = kvm_async_pf_hash_fn(gfn);
12208 
12209 	while (vcpu->arch.apf.gfns[key] != ~0)
12210 		key = kvm_async_pf_next_probe(key);
12211 
12212 	vcpu->arch.apf.gfns[key] = gfn;
12213 }
12214 
12215 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12216 {
12217 	int i;
12218 	u32 key = kvm_async_pf_hash_fn(gfn);
12219 
12220 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12221 		     (vcpu->arch.apf.gfns[key] != gfn &&
12222 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12223 		key = kvm_async_pf_next_probe(key);
12224 
12225 	return key;
12226 }
12227 
12228 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12229 {
12230 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12231 }
12232 
12233 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12234 {
12235 	u32 i, j, k;
12236 
12237 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12238 
12239 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12240 		return;
12241 
12242 	while (true) {
12243 		vcpu->arch.apf.gfns[i] = ~0;
12244 		do {
12245 			j = kvm_async_pf_next_probe(j);
12246 			if (vcpu->arch.apf.gfns[j] == ~0)
12247 				return;
12248 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12249 			/*
12250 			 * k lies cyclically in ]i,j]
12251 			 * |    i.k.j |
12252 			 * |....j i.k.| or  |.k..j i...|
12253 			 */
12254 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12255 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12256 		i = j;
12257 	}
12258 }
12259 
12260 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12261 {
12262 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12263 
12264 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12265 				      sizeof(reason));
12266 }
12267 
12268 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12269 {
12270 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12271 
12272 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12273 					     &token, offset, sizeof(token));
12274 }
12275 
12276 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12277 {
12278 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12279 	u32 val;
12280 
12281 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12282 					 &val, offset, sizeof(val)))
12283 		return false;
12284 
12285 	return !val;
12286 }
12287 
12288 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12289 {
12290 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12291 		return false;
12292 
12293 	if (!kvm_pv_async_pf_enabled(vcpu) ||
12294 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12295 		return false;
12296 
12297 	return true;
12298 }
12299 
12300 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12301 {
12302 	if (unlikely(!lapic_in_kernel(vcpu) ||
12303 		     kvm_event_needs_reinjection(vcpu) ||
12304 		     vcpu->arch.exception.pending))
12305 		return false;
12306 
12307 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12308 		return false;
12309 
12310 	/*
12311 	 * If interrupts are off we cannot even use an artificial
12312 	 * halt state.
12313 	 */
12314 	return kvm_arch_interrupt_allowed(vcpu);
12315 }
12316 
12317 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12318 				     struct kvm_async_pf *work)
12319 {
12320 	struct x86_exception fault;
12321 
12322 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12323 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12324 
12325 	if (kvm_can_deliver_async_pf(vcpu) &&
12326 	    !apf_put_user_notpresent(vcpu)) {
12327 		fault.vector = PF_VECTOR;
12328 		fault.error_code_valid = true;
12329 		fault.error_code = 0;
12330 		fault.nested_page_fault = false;
12331 		fault.address = work->arch.token;
12332 		fault.async_page_fault = true;
12333 		kvm_inject_page_fault(vcpu, &fault);
12334 		return true;
12335 	} else {
12336 		/*
12337 		 * It is not possible to deliver a paravirtualized asynchronous
12338 		 * page fault, but putting the guest in an artificial halt state
12339 		 * can be beneficial nevertheless: if an interrupt arrives, we
12340 		 * can deliver it timely and perhaps the guest will schedule
12341 		 * another process.  When the instruction that triggered a page
12342 		 * fault is retried, hopefully the page will be ready in the host.
12343 		 */
12344 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12345 		return false;
12346 	}
12347 }
12348 
12349 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12350 				 struct kvm_async_pf *work)
12351 {
12352 	struct kvm_lapic_irq irq = {
12353 		.delivery_mode = APIC_DM_FIXED,
12354 		.vector = vcpu->arch.apf.vec
12355 	};
12356 
12357 	if (work->wakeup_all)
12358 		work->arch.token = ~0; /* broadcast wakeup */
12359 	else
12360 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12361 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12362 
12363 	if ((work->wakeup_all || work->notpresent_injected) &&
12364 	    kvm_pv_async_pf_enabled(vcpu) &&
12365 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12366 		vcpu->arch.apf.pageready_pending = true;
12367 		kvm_apic_set_irq(vcpu, &irq, NULL);
12368 	}
12369 
12370 	vcpu->arch.apf.halted = false;
12371 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12372 }
12373 
12374 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12375 {
12376 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12377 	if (!vcpu->arch.apf.pageready_pending)
12378 		kvm_vcpu_kick(vcpu);
12379 }
12380 
12381 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12382 {
12383 	if (!kvm_pv_async_pf_enabled(vcpu))
12384 		return true;
12385 	else
12386 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12387 }
12388 
12389 void kvm_arch_start_assignment(struct kvm *kvm)
12390 {
12391 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12392 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12393 }
12394 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12395 
12396 void kvm_arch_end_assignment(struct kvm *kvm)
12397 {
12398 	atomic_dec(&kvm->arch.assigned_device_count);
12399 }
12400 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12401 
12402 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12403 {
12404 	return atomic_read(&kvm->arch.assigned_device_count);
12405 }
12406 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12407 
12408 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12409 {
12410 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12411 }
12412 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12413 
12414 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12415 {
12416 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12417 }
12418 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12419 
12420 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12421 {
12422 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12423 }
12424 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12425 
12426 bool kvm_arch_has_irq_bypass(void)
12427 {
12428 	return true;
12429 }
12430 
12431 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12432 				      struct irq_bypass_producer *prod)
12433 {
12434 	struct kvm_kernel_irqfd *irqfd =
12435 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12436 	int ret;
12437 
12438 	irqfd->producer = prod;
12439 	kvm_arch_start_assignment(irqfd->kvm);
12440 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12441 					 prod->irq, irqfd->gsi, 1);
12442 
12443 	if (ret)
12444 		kvm_arch_end_assignment(irqfd->kvm);
12445 
12446 	return ret;
12447 }
12448 
12449 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12450 				      struct irq_bypass_producer *prod)
12451 {
12452 	int ret;
12453 	struct kvm_kernel_irqfd *irqfd =
12454 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12455 
12456 	WARN_ON(irqfd->producer != prod);
12457 	irqfd->producer = NULL;
12458 
12459 	/*
12460 	 * When producer of consumer is unregistered, we change back to
12461 	 * remapped mode, so we can re-use the current implementation
12462 	 * when the irq is masked/disabled or the consumer side (KVM
12463 	 * int this case doesn't want to receive the interrupts.
12464 	*/
12465 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12466 	if (ret)
12467 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12468 		       " fails: %d\n", irqfd->consumer.token, ret);
12469 
12470 	kvm_arch_end_assignment(irqfd->kvm);
12471 }
12472 
12473 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12474 				   uint32_t guest_irq, bool set)
12475 {
12476 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12477 }
12478 
12479 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12480 				  struct kvm_kernel_irq_routing_entry *new)
12481 {
12482 	if (new->type != KVM_IRQ_ROUTING_MSI)
12483 		return true;
12484 
12485 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12486 }
12487 
12488 bool kvm_vector_hashing_enabled(void)
12489 {
12490 	return vector_hashing;
12491 }
12492 
12493 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12494 {
12495 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12496 }
12497 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12498 
12499 
12500 int kvm_spec_ctrl_test_value(u64 value)
12501 {
12502 	/*
12503 	 * test that setting IA32_SPEC_CTRL to given value
12504 	 * is allowed by the host processor
12505 	 */
12506 
12507 	u64 saved_value;
12508 	unsigned long flags;
12509 	int ret = 0;
12510 
12511 	local_irq_save(flags);
12512 
12513 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12514 		ret = 1;
12515 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12516 		ret = 1;
12517 	else
12518 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12519 
12520 	local_irq_restore(flags);
12521 
12522 	return ret;
12523 }
12524 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12525 
12526 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12527 {
12528 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12529 	struct x86_exception fault;
12530 	u32 access = error_code &
12531 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12532 
12533 	if (!(error_code & PFERR_PRESENT_MASK) ||
12534 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12535 		/*
12536 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12537 		 * tables probably do not match the TLB.  Just proceed
12538 		 * with the error code that the processor gave.
12539 		 */
12540 		fault.vector = PF_VECTOR;
12541 		fault.error_code_valid = true;
12542 		fault.error_code = error_code;
12543 		fault.nested_page_fault = false;
12544 		fault.address = gva;
12545 	}
12546 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12547 }
12548 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12549 
12550 /*
12551  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12552  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12553  * indicates whether exit to userspace is needed.
12554  */
12555 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12556 			      struct x86_exception *e)
12557 {
12558 	if (r == X86EMUL_PROPAGATE_FAULT) {
12559 		kvm_inject_emulated_page_fault(vcpu, e);
12560 		return 1;
12561 	}
12562 
12563 	/*
12564 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12565 	 * while handling a VMX instruction KVM could've handled the request
12566 	 * correctly by exiting to userspace and performing I/O but there
12567 	 * doesn't seem to be a real use-case behind such requests, just return
12568 	 * KVM_EXIT_INTERNAL_ERROR for now.
12569 	 */
12570 	kvm_prepare_emulation_failure_exit(vcpu);
12571 
12572 	return 0;
12573 }
12574 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12575 
12576 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12577 {
12578 	bool pcid_enabled;
12579 	struct x86_exception e;
12580 	struct {
12581 		u64 pcid;
12582 		u64 gla;
12583 	} operand;
12584 	int r;
12585 
12586 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12587 	if (r != X86EMUL_CONTINUE)
12588 		return kvm_handle_memory_failure(vcpu, r, &e);
12589 
12590 	if (operand.pcid >> 12 != 0) {
12591 		kvm_inject_gp(vcpu, 0);
12592 		return 1;
12593 	}
12594 
12595 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12596 
12597 	switch (type) {
12598 	case INVPCID_TYPE_INDIV_ADDR:
12599 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12600 		    is_noncanonical_address(operand.gla, vcpu)) {
12601 			kvm_inject_gp(vcpu, 0);
12602 			return 1;
12603 		}
12604 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12605 		return kvm_skip_emulated_instruction(vcpu);
12606 
12607 	case INVPCID_TYPE_SINGLE_CTXT:
12608 		if (!pcid_enabled && (operand.pcid != 0)) {
12609 			kvm_inject_gp(vcpu, 0);
12610 			return 1;
12611 		}
12612 
12613 		kvm_invalidate_pcid(vcpu, operand.pcid);
12614 		return kvm_skip_emulated_instruction(vcpu);
12615 
12616 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12617 		/*
12618 		 * Currently, KVM doesn't mark global entries in the shadow
12619 		 * page tables, so a non-global flush just degenerates to a
12620 		 * global flush. If needed, we could optimize this later by
12621 		 * keeping track of global entries in shadow page tables.
12622 		 */
12623 
12624 		fallthrough;
12625 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12626 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12627 		return kvm_skip_emulated_instruction(vcpu);
12628 
12629 	default:
12630 		kvm_inject_gp(vcpu, 0);
12631 		return 1;
12632 	}
12633 }
12634 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12635 
12636 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12637 {
12638 	struct kvm_run *run = vcpu->run;
12639 	struct kvm_mmio_fragment *frag;
12640 	unsigned int len;
12641 
12642 	BUG_ON(!vcpu->mmio_needed);
12643 
12644 	/* Complete previous fragment */
12645 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12646 	len = min(8u, frag->len);
12647 	if (!vcpu->mmio_is_write)
12648 		memcpy(frag->data, run->mmio.data, len);
12649 
12650 	if (frag->len <= 8) {
12651 		/* Switch to the next fragment. */
12652 		frag++;
12653 		vcpu->mmio_cur_fragment++;
12654 	} else {
12655 		/* Go forward to the next mmio piece. */
12656 		frag->data += len;
12657 		frag->gpa += len;
12658 		frag->len -= len;
12659 	}
12660 
12661 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12662 		vcpu->mmio_needed = 0;
12663 
12664 		// VMG change, at this point, we're always done
12665 		// RIP has already been advanced
12666 		return 1;
12667 	}
12668 
12669 	// More MMIO is needed
12670 	run->mmio.phys_addr = frag->gpa;
12671 	run->mmio.len = min(8u, frag->len);
12672 	run->mmio.is_write = vcpu->mmio_is_write;
12673 	if (run->mmio.is_write)
12674 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12675 	run->exit_reason = KVM_EXIT_MMIO;
12676 
12677 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12678 
12679 	return 0;
12680 }
12681 
12682 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12683 			  void *data)
12684 {
12685 	int handled;
12686 	struct kvm_mmio_fragment *frag;
12687 
12688 	if (!data)
12689 		return -EINVAL;
12690 
12691 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12692 	if (handled == bytes)
12693 		return 1;
12694 
12695 	bytes -= handled;
12696 	gpa += handled;
12697 	data += handled;
12698 
12699 	/*TODO: Check if need to increment number of frags */
12700 	frag = vcpu->mmio_fragments;
12701 	vcpu->mmio_nr_fragments = 1;
12702 	frag->len = bytes;
12703 	frag->gpa = gpa;
12704 	frag->data = data;
12705 
12706 	vcpu->mmio_needed = 1;
12707 	vcpu->mmio_cur_fragment = 0;
12708 
12709 	vcpu->run->mmio.phys_addr = gpa;
12710 	vcpu->run->mmio.len = min(8u, frag->len);
12711 	vcpu->run->mmio.is_write = 1;
12712 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12713 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12714 
12715 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12716 
12717 	return 0;
12718 }
12719 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12720 
12721 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12722 			 void *data)
12723 {
12724 	int handled;
12725 	struct kvm_mmio_fragment *frag;
12726 
12727 	if (!data)
12728 		return -EINVAL;
12729 
12730 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12731 	if (handled == bytes)
12732 		return 1;
12733 
12734 	bytes -= handled;
12735 	gpa += handled;
12736 	data += handled;
12737 
12738 	/*TODO: Check if need to increment number of frags */
12739 	frag = vcpu->mmio_fragments;
12740 	vcpu->mmio_nr_fragments = 1;
12741 	frag->len = bytes;
12742 	frag->gpa = gpa;
12743 	frag->data = data;
12744 
12745 	vcpu->mmio_needed = 1;
12746 	vcpu->mmio_cur_fragment = 0;
12747 
12748 	vcpu->run->mmio.phys_addr = gpa;
12749 	vcpu->run->mmio.len = min(8u, frag->len);
12750 	vcpu->run->mmio.is_write = 0;
12751 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12752 
12753 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12754 
12755 	return 0;
12756 }
12757 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12758 
12759 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12760 			   unsigned int port);
12761 
12762 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12763 {
12764 	int size = vcpu->arch.pio.size;
12765 	int port = vcpu->arch.pio.port;
12766 
12767 	vcpu->arch.pio.count = 0;
12768 	if (vcpu->arch.sev_pio_count)
12769 		return kvm_sev_es_outs(vcpu, size, port);
12770 	return 1;
12771 }
12772 
12773 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12774 			   unsigned int port)
12775 {
12776 	for (;;) {
12777 		unsigned int count =
12778 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12779 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12780 
12781 		/* memcpy done already by emulator_pio_out.  */
12782 		vcpu->arch.sev_pio_count -= count;
12783 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12784 		if (!ret)
12785 			break;
12786 
12787 		/* Emulation done by the kernel.  */
12788 		if (!vcpu->arch.sev_pio_count)
12789 			return 1;
12790 	}
12791 
12792 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12793 	return 0;
12794 }
12795 
12796 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12797 			  unsigned int port);
12798 
12799 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12800 {
12801 	unsigned count = vcpu->arch.pio.count;
12802 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12803 	vcpu->arch.sev_pio_count -= count;
12804 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12805 }
12806 
12807 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12808 {
12809 	int size = vcpu->arch.pio.size;
12810 	int port = vcpu->arch.pio.port;
12811 
12812 	advance_sev_es_emulated_ins(vcpu);
12813 	if (vcpu->arch.sev_pio_count)
12814 		return kvm_sev_es_ins(vcpu, size, port);
12815 	return 1;
12816 }
12817 
12818 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12819 			  unsigned int port)
12820 {
12821 	for (;;) {
12822 		unsigned int count =
12823 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12824 		if (!__emulator_pio_in(vcpu, size, port, count))
12825 			break;
12826 
12827 		/* Emulation done by the kernel.  */
12828 		advance_sev_es_emulated_ins(vcpu);
12829 		if (!vcpu->arch.sev_pio_count)
12830 			return 1;
12831 	}
12832 
12833 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12834 	return 0;
12835 }
12836 
12837 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12838 			 unsigned int port, void *data,  unsigned int count,
12839 			 int in)
12840 {
12841 	vcpu->arch.sev_pio_data = data;
12842 	vcpu->arch.sev_pio_count = count;
12843 	return in ? kvm_sev_es_ins(vcpu, size, port)
12844 		  : kvm_sev_es_outs(vcpu, size, port);
12845 }
12846 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12847 
12848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12876