1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 #include "smm.h" 34 35 #include <linux/clocksource.h> 36 #include <linux/interrupt.h> 37 #include <linux/kvm.h> 38 #include <linux/fs.h> 39 #include <linux/vmalloc.h> 40 #include <linux/export.h> 41 #include <linux/moduleparam.h> 42 #include <linux/mman.h> 43 #include <linux/highmem.h> 44 #include <linux/iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 91 struct kvm_caps kvm_caps __read_mostly = { 92 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 93 }; 94 EXPORT_SYMBOL_GPL(kvm_caps); 95 96 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 97 98 #define emul_to_vcpu(ctxt) \ 99 ((struct kvm_vcpu *)(ctxt)->vcpu) 100 101 /* EFER defaults: 102 * - enable syscall per default because its emulated by KVM 103 * - enable LME and LMA per default on 64 bit KVM 104 */ 105 #ifdef CONFIG_X86_64 106 static 107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 108 #else 109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 110 #endif 111 112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 113 114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 115 116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 117 118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 119 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 120 121 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 122 static void process_nmi(struct kvm_vcpu *vcpu); 123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 124 static void store_regs(struct kvm_vcpu *vcpu); 125 static int sync_regs(struct kvm_vcpu *vcpu); 126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 127 128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 131 struct kvm_x86_ops kvm_x86_ops __read_mostly; 132 133 #define KVM_X86_OP(func) \ 134 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 135 *(((struct kvm_x86_ops *)0)->func)); 136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 138 #include <asm/kvm-x86-ops.h> 139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 141 142 static bool __read_mostly ignore_msrs = 0; 143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 144 145 bool __read_mostly report_ignored_msrs = true; 146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 147 EXPORT_SYMBOL_GPL(report_ignored_msrs); 148 149 unsigned int min_timer_period_us = 200; 150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly kvmclock_periodic_sync = true; 153 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 154 155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 156 static u32 __read_mostly tsc_tolerance_ppm = 250; 157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 158 159 /* 160 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 161 * adaptive tuning starting from default advancement of 1000ns. '0' disables 162 * advancement entirely. Any other value is used as-is and disables adaptive 163 * tuning, i.e. allows privileged userspace to set an exact advancement time. 164 */ 165 static int __read_mostly lapic_timer_advance_ns = -1; 166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, S_IRUGO); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, S_IRUGO); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* 195 * Restoring the host value for MSRs that are only consumed when running in 196 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 197 * returns to userspace, i.e. the kernel can run with the guest's value. 198 */ 199 #define KVM_MAX_NR_USER_RETURN_MSRS 16 200 201 struct kvm_user_return_msrs { 202 struct user_return_notifier urn; 203 bool registered; 204 struct kvm_user_return_msr_values { 205 u64 host; 206 u64 curr; 207 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 208 }; 209 210 u32 __read_mostly kvm_nr_uret_msrs; 211 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 212 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 213 static struct kvm_user_return_msrs __percpu *user_return_msrs; 214 215 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 216 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 217 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 218 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 219 220 u64 __read_mostly host_efer; 221 EXPORT_SYMBOL_GPL(host_efer); 222 223 bool __read_mostly allow_smaller_maxphyaddr = 0; 224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 225 226 bool __read_mostly enable_apicv = true; 227 EXPORT_SYMBOL_GPL(enable_apicv); 228 229 u64 __read_mostly host_xss; 230 EXPORT_SYMBOL_GPL(host_xss); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 u64 __read_mostly host_xcr0; 306 307 static struct kmem_cache *x86_emulator_cache; 308 309 /* 310 * When called, it means the previous get/set msr reached an invalid msr. 311 * Return true if we want to ignore/silent this failed msr access. 312 */ 313 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 314 { 315 const char *op = write ? "wrmsr" : "rdmsr"; 316 317 if (ignore_msrs) { 318 if (report_ignored_msrs) 319 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 320 op, msr, data); 321 /* Mask the error */ 322 return true; 323 } else { 324 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 325 op, msr, data); 326 return false; 327 } 328 } 329 330 static struct kmem_cache *kvm_alloc_emulator_cache(void) 331 { 332 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 333 unsigned int size = sizeof(struct x86_emulate_ctxt); 334 335 return kmem_cache_create_usercopy("x86_emulator", size, 336 __alignof__(struct x86_emulate_ctxt), 337 SLAB_ACCOUNT, useroffset, 338 size - useroffset, NULL); 339 } 340 341 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 342 343 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 344 { 345 int i; 346 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 347 vcpu->arch.apf.gfns[i] = ~0; 348 } 349 350 static void kvm_on_user_return(struct user_return_notifier *urn) 351 { 352 unsigned slot; 353 struct kvm_user_return_msrs *msrs 354 = container_of(urn, struct kvm_user_return_msrs, urn); 355 struct kvm_user_return_msr_values *values; 356 unsigned long flags; 357 358 /* 359 * Disabling irqs at this point since the following code could be 360 * interrupted and executed through kvm_arch_hardware_disable() 361 */ 362 local_irq_save(flags); 363 if (msrs->registered) { 364 msrs->registered = false; 365 user_return_notifier_unregister(urn); 366 } 367 local_irq_restore(flags); 368 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 369 values = &msrs->values[slot]; 370 if (values->host != values->curr) { 371 wrmsrl(kvm_uret_msrs_list[slot], values->host); 372 values->curr = values->host; 373 } 374 } 375 } 376 377 static int kvm_probe_user_return_msr(u32 msr) 378 { 379 u64 val; 380 int ret; 381 382 preempt_disable(); 383 ret = rdmsrl_safe(msr, &val); 384 if (ret) 385 goto out; 386 ret = wrmsrl_safe(msr, val); 387 out: 388 preempt_enable(); 389 return ret; 390 } 391 392 int kvm_add_user_return_msr(u32 msr) 393 { 394 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 395 396 if (kvm_probe_user_return_msr(msr)) 397 return -1; 398 399 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 400 return kvm_nr_uret_msrs++; 401 } 402 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 403 404 int kvm_find_user_return_msr(u32 msr) 405 { 406 int i; 407 408 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 409 if (kvm_uret_msrs_list[i] == msr) 410 return i; 411 } 412 return -1; 413 } 414 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 415 416 static void kvm_user_return_msr_cpu_online(void) 417 { 418 unsigned int cpu = smp_processor_id(); 419 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 420 u64 value; 421 int i; 422 423 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 424 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 425 msrs->values[i].host = value; 426 msrs->values[i].curr = value; 427 } 428 } 429 430 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 431 { 432 unsigned int cpu = smp_processor_id(); 433 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 434 int err; 435 436 value = (value & mask) | (msrs->values[slot].host & ~mask); 437 if (value == msrs->values[slot].curr) 438 return 0; 439 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 440 if (err) 441 return 1; 442 443 msrs->values[slot].curr = value; 444 if (!msrs->registered) { 445 msrs->urn.on_user_return = kvm_on_user_return; 446 user_return_notifier_register(&msrs->urn); 447 msrs->registered = true; 448 } 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 452 453 static void drop_user_return_notifiers(void) 454 { 455 unsigned int cpu = smp_processor_id(); 456 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 457 458 if (msrs->registered) 459 kvm_on_user_return(&msrs->urn); 460 } 461 462 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 463 { 464 return vcpu->arch.apic_base; 465 } 466 467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 468 { 469 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 470 } 471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 472 473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 474 { 475 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 476 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 477 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 478 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 479 480 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 481 return 1; 482 if (!msr_info->host_initiated) { 483 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 484 return 1; 485 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 486 return 1; 487 } 488 489 kvm_lapic_set_base(vcpu, msr_info->data); 490 kvm_recalculate_apic_map(vcpu->kvm); 491 return 0; 492 } 493 494 /* 495 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 496 * 497 * Hardware virtualization extension instructions may fault if a reboot turns 498 * off virtualization while processes are running. Usually after catching the 499 * fault we just panic; during reboot instead the instruction is ignored. 500 */ 501 noinstr void kvm_spurious_fault(void) 502 { 503 /* Fault while not rebooting. We want the trace. */ 504 BUG_ON(!kvm_rebooting); 505 } 506 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 507 508 #define EXCPT_BENIGN 0 509 #define EXCPT_CONTRIBUTORY 1 510 #define EXCPT_PF 2 511 512 static int exception_class(int vector) 513 { 514 switch (vector) { 515 case PF_VECTOR: 516 return EXCPT_PF; 517 case DE_VECTOR: 518 case TS_VECTOR: 519 case NP_VECTOR: 520 case SS_VECTOR: 521 case GP_VECTOR: 522 return EXCPT_CONTRIBUTORY; 523 default: 524 break; 525 } 526 return EXCPT_BENIGN; 527 } 528 529 #define EXCPT_FAULT 0 530 #define EXCPT_TRAP 1 531 #define EXCPT_ABORT 2 532 #define EXCPT_INTERRUPT 3 533 #define EXCPT_DB 4 534 535 static int exception_type(int vector) 536 { 537 unsigned int mask; 538 539 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 540 return EXCPT_INTERRUPT; 541 542 mask = 1 << vector; 543 544 /* 545 * #DBs can be trap-like or fault-like, the caller must check other CPU 546 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 547 */ 548 if (mask & (1 << DB_VECTOR)) 549 return EXCPT_DB; 550 551 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 552 return EXCPT_TRAP; 553 554 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 555 return EXCPT_ABORT; 556 557 /* Reserved exceptions will result in fault */ 558 return EXCPT_FAULT; 559 } 560 561 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 562 struct kvm_queued_exception *ex) 563 { 564 if (!ex->has_payload) 565 return; 566 567 switch (ex->vector) { 568 case DB_VECTOR: 569 /* 570 * "Certain debug exceptions may clear bit 0-3. The 571 * remaining contents of the DR6 register are never 572 * cleared by the processor". 573 */ 574 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 575 /* 576 * In order to reflect the #DB exception payload in guest 577 * dr6, three components need to be considered: active low 578 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 579 * DR6_BS and DR6_BT) 580 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 581 * In the target guest dr6: 582 * FIXED_1 bits should always be set. 583 * Active low bits should be cleared if 1-setting in payload. 584 * Active high bits should be set if 1-setting in payload. 585 * 586 * Note, the payload is compatible with the pending debug 587 * exceptions/exit qualification under VMX, that active_low bits 588 * are active high in payload. 589 * So they need to be flipped for DR6. 590 */ 591 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 592 vcpu->arch.dr6 |= ex->payload; 593 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 594 595 /* 596 * The #DB payload is defined as compatible with the 'pending 597 * debug exceptions' field under VMX, not DR6. While bit 12 is 598 * defined in the 'pending debug exceptions' field (enabled 599 * breakpoint), it is reserved and must be zero in DR6. 600 */ 601 vcpu->arch.dr6 &= ~BIT(12); 602 break; 603 case PF_VECTOR: 604 vcpu->arch.cr2 = ex->payload; 605 break; 606 } 607 608 ex->has_payload = false; 609 ex->payload = 0; 610 } 611 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 612 613 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 614 bool has_error_code, u32 error_code, 615 bool has_payload, unsigned long payload) 616 { 617 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 618 619 ex->vector = vector; 620 ex->injected = false; 621 ex->pending = true; 622 ex->has_error_code = has_error_code; 623 ex->error_code = error_code; 624 ex->has_payload = has_payload; 625 ex->payload = payload; 626 } 627 628 /* Forcibly leave the nested mode in cases like a vCPU reset */ 629 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 630 { 631 kvm_x86_ops.nested_ops->leave_nested(vcpu); 632 } 633 634 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 635 unsigned nr, bool has_error, u32 error_code, 636 bool has_payload, unsigned long payload, bool reinject) 637 { 638 u32 prev_nr; 639 int class1, class2; 640 641 kvm_make_request(KVM_REQ_EVENT, vcpu); 642 643 /* 644 * If the exception is destined for L2 and isn't being reinjected, 645 * morph it to a VM-Exit if L1 wants to intercept the exception. A 646 * previously injected exception is not checked because it was checked 647 * when it was original queued, and re-checking is incorrect if _L1_ 648 * injected the exception, in which case it's exempt from interception. 649 */ 650 if (!reinject && is_guest_mode(vcpu) && 651 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 652 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 653 has_payload, payload); 654 return; 655 } 656 657 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 658 queue: 659 if (reinject) { 660 /* 661 * On VM-Entry, an exception can be pending if and only 662 * if event injection was blocked by nested_run_pending. 663 * In that case, however, vcpu_enter_guest() requests an 664 * immediate exit, and the guest shouldn't proceed far 665 * enough to need reinjection. 666 */ 667 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 668 vcpu->arch.exception.injected = true; 669 if (WARN_ON_ONCE(has_payload)) { 670 /* 671 * A reinjected event has already 672 * delivered its payload. 673 */ 674 has_payload = false; 675 payload = 0; 676 } 677 } else { 678 vcpu->arch.exception.pending = true; 679 vcpu->arch.exception.injected = false; 680 } 681 vcpu->arch.exception.has_error_code = has_error; 682 vcpu->arch.exception.vector = nr; 683 vcpu->arch.exception.error_code = error_code; 684 vcpu->arch.exception.has_payload = has_payload; 685 vcpu->arch.exception.payload = payload; 686 if (!is_guest_mode(vcpu)) 687 kvm_deliver_exception_payload(vcpu, 688 &vcpu->arch.exception); 689 return; 690 } 691 692 /* to check exception */ 693 prev_nr = vcpu->arch.exception.vector; 694 if (prev_nr == DF_VECTOR) { 695 /* triple fault -> shutdown */ 696 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 697 return; 698 } 699 class1 = exception_class(prev_nr); 700 class2 = exception_class(nr); 701 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 702 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 703 /* 704 * Synthesize #DF. Clear the previously injected or pending 705 * exception so as not to incorrectly trigger shutdown. 706 */ 707 vcpu->arch.exception.injected = false; 708 vcpu->arch.exception.pending = false; 709 710 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 711 } else { 712 /* replace previous exception with a new one in a hope 713 that instruction re-execution will regenerate lost 714 exception */ 715 goto queue; 716 } 717 } 718 719 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 720 { 721 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 722 } 723 EXPORT_SYMBOL_GPL(kvm_queue_exception); 724 725 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 726 { 727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 728 } 729 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 730 731 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 732 unsigned long payload) 733 { 734 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 735 } 736 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 737 738 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 739 u32 error_code, unsigned long payload) 740 { 741 kvm_multiple_exception(vcpu, nr, true, error_code, 742 true, payload, false); 743 } 744 745 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 746 { 747 if (err) 748 kvm_inject_gp(vcpu, 0); 749 else 750 return kvm_skip_emulated_instruction(vcpu); 751 752 return 1; 753 } 754 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 755 756 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 757 { 758 if (err) { 759 kvm_inject_gp(vcpu, 0); 760 return 1; 761 } 762 763 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 764 EMULTYPE_COMPLETE_USER_EXIT); 765 } 766 767 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 768 { 769 ++vcpu->stat.pf_guest; 770 771 /* 772 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 773 * whether or not L1 wants to intercept "regular" #PF. 774 */ 775 if (is_guest_mode(vcpu) && fault->async_page_fault) 776 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 777 true, fault->error_code, 778 true, fault->address); 779 else 780 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 781 fault->address); 782 } 783 784 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 785 struct x86_exception *fault) 786 { 787 struct kvm_mmu *fault_mmu; 788 WARN_ON_ONCE(fault->vector != PF_VECTOR); 789 790 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 791 vcpu->arch.walk_mmu; 792 793 /* 794 * Invalidate the TLB entry for the faulting address, if it exists, 795 * else the access will fault indefinitely (and to emulate hardware). 796 */ 797 if ((fault->error_code & PFERR_PRESENT_MASK) && 798 !(fault->error_code & PFERR_RSVD_MASK)) 799 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 800 fault_mmu->root.hpa); 801 802 fault_mmu->inject_page_fault(vcpu, fault); 803 } 804 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 805 806 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 807 { 808 atomic_inc(&vcpu->arch.nmi_queued); 809 kvm_make_request(KVM_REQ_NMI, vcpu); 810 } 811 812 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 813 { 814 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 815 } 816 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 817 818 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 819 { 820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 821 } 822 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 823 824 /* 825 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 826 * a #GP and return false. 827 */ 828 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 829 { 830 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 831 return true; 832 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 833 return false; 834 } 835 836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837 { 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843 } 844 EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847 { 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849 } 850 851 /* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855 { 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == INVALID_GPA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898 } 899 EXPORT_SYMBOL_GPL(load_pdptrs); 900 901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902 { 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922 } 923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926 { 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931 #ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934 #endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944 #ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955 #endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974 { 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976 } 977 EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980 { 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005 { 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032 #ifdef CONFIG_X86_64 1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1034 { 1035 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1036 } 1037 #endif 1038 1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1040 { 1041 u64 xcr0 = xcr; 1042 u64 old_xcr0 = vcpu->arch.xcr0; 1043 u64 valid_bits; 1044 1045 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1046 if (index != XCR_XFEATURE_ENABLED_MASK) 1047 return 1; 1048 if (!(xcr0 & XFEATURE_MASK_FP)) 1049 return 1; 1050 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1051 return 1; 1052 1053 /* 1054 * Do not allow the guest to set bits that we do not support 1055 * saving. However, xcr0 bit 0 is always set, even if the 1056 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1057 */ 1058 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1059 if (xcr0 & ~valid_bits) 1060 return 1; 1061 1062 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1063 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1064 return 1; 1065 1066 if (xcr0 & XFEATURE_MASK_AVX512) { 1067 if (!(xcr0 & XFEATURE_MASK_YMM)) 1068 return 1; 1069 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1070 return 1; 1071 } 1072 1073 if ((xcr0 & XFEATURE_MASK_XTILE) && 1074 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1075 return 1; 1076 1077 vcpu->arch.xcr0 = xcr0; 1078 1079 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1080 kvm_update_cpuid_runtime(vcpu); 1081 return 0; 1082 } 1083 1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1085 { 1086 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return true; 1106 } 1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1108 1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1110 { 1111 return __kvm_is_valid_cr4(vcpu, cr4) && 1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1113 } 1114 1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1116 { 1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1118 kvm_mmu_reset_context(vcpu); 1119 1120 /* 1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1122 * according to the SDM; however, stale prev_roots could be reused 1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1126 * so fall through. 1127 */ 1128 if (!tdp_enabled && 1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1130 kvm_mmu_unload(vcpu); 1131 1132 /* 1133 * The TLB has to be flushed for all PCIDs if any of the following 1134 * (architecturally required) changes happen: 1135 * - CR4.PCIDE is changed from 1 to 0 1136 * - CR4.PGE is toggled 1137 * 1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1139 */ 1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1143 1144 /* 1145 * The TLB has to be flushed for the current PCID if any of the 1146 * following (architecturally required) changes happen: 1147 * - CR4.SMEP is changed from 0 to 1 1148 * - CR4.PAE is toggled 1149 */ 1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1153 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1156 1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1158 { 1159 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1160 1161 if (!kvm_is_valid_cr4(vcpu, cr4)) 1162 return 1; 1163 1164 if (is_long_mode(vcpu)) { 1165 if (!(cr4 & X86_CR4_PAE)) 1166 return 1; 1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1168 return 1; 1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1172 return 1; 1173 1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1176 return 1; 1177 1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1180 return 1; 1181 } 1182 1183 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1184 1185 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1190 1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1192 { 1193 struct kvm_mmu *mmu = vcpu->arch.mmu; 1194 unsigned long roots_to_free = 0; 1195 int i; 1196 1197 /* 1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1200 * also via the emulator. KVM's TDP page tables are not in the scope of 1201 * the invalidation, but the guest's TLB entries need to be flushed as 1202 * the CPU may have cached entries in its TLB for the target PCID. 1203 */ 1204 if (unlikely(tdp_enabled)) { 1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1206 return; 1207 } 1208 1209 /* 1210 * If neither the current CR3 nor any of the prev_roots use the given 1211 * PCID, then nothing needs to be done here because a resync will 1212 * happen anyway before switching to any other CR3. 1213 */ 1214 if (kvm_get_active_pcid(vcpu) == pcid) { 1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1217 } 1218 1219 /* 1220 * If PCID is disabled, there is no need to free prev_roots even if the 1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1222 * with PCIDE=0. 1223 */ 1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1225 return; 1226 1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1230 1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1232 } 1233 1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1235 { 1236 bool skip_tlb_flush = false; 1237 unsigned long pcid = 0; 1238 #ifdef CONFIG_X86_64 1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1240 1241 if (pcid_enabled) { 1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1243 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1244 pcid = cr3 & X86_CR3_PCID_MASK; 1245 } 1246 #endif 1247 1248 /* PDPTRs are always reloaded for PAE paging. */ 1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1250 goto handle_tlb_flush; 1251 1252 /* 1253 * Do not condition the GPA check on long mode, this helper is used to 1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1255 * the current vCPU mode is accurate. 1256 */ 1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1258 return 1; 1259 1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1261 return 1; 1262 1263 if (cr3 != kvm_read_cr3(vcpu)) 1264 kvm_mmu_new_pgd(vcpu, cr3); 1265 1266 vcpu->arch.cr3 = cr3; 1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1269 1270 handle_tlb_flush: 1271 /* 1272 * A load of CR3 that flushes the TLB flushes only the current PCID, 1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1274 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1275 * and it's impossible to use a non-zero PCID when PCID is disabled, 1276 * i.e. only PCID=0 can be relevant. 1277 */ 1278 if (!skip_tlb_flush) 1279 kvm_invalidate_pcid(vcpu, pcid); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1284 1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1286 { 1287 if (cr8 & CR8_RESERVED_BITS) 1288 return 1; 1289 if (lapic_in_kernel(vcpu)) 1290 kvm_lapic_set_tpr(vcpu, cr8); 1291 else 1292 vcpu->arch.cr8 = cr8; 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1296 1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1298 { 1299 if (lapic_in_kernel(vcpu)) 1300 return kvm_lapic_get_cr8(vcpu); 1301 else 1302 return vcpu->arch.cr8; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1305 1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1307 { 1308 int i; 1309 1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1311 for (i = 0; i < KVM_NR_DB_REGS; i++) 1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1313 } 1314 } 1315 1316 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1317 { 1318 unsigned long dr7; 1319 1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1321 dr7 = vcpu->arch.guest_debug_dr7; 1322 else 1323 dr7 = vcpu->arch.dr7; 1324 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1326 if (dr7 & DR7_BP_EN_MASK) 1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1330 1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1332 { 1333 u64 fixed = DR6_FIXED_1; 1334 1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1336 fixed |= DR6_RTM; 1337 1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1339 fixed |= DR6_BUS_LOCK; 1340 return fixed; 1341 } 1342 1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1344 { 1345 size_t size = ARRAY_SIZE(vcpu->arch.db); 1346 1347 switch (dr) { 1348 case 0 ... 3: 1349 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1351 vcpu->arch.eff_db[dr] = val; 1352 break; 1353 case 4: 1354 case 6: 1355 if (!kvm_dr6_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1358 break; 1359 case 5: 1360 default: /* 7 */ 1361 if (!kvm_dr7_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1364 kvm_update_dr7(vcpu); 1365 break; 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_set_dr); 1371 1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1373 { 1374 size_t size = ARRAY_SIZE(vcpu->arch.db); 1375 1376 switch (dr) { 1377 case 0 ... 3: 1378 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1379 break; 1380 case 4: 1381 case 6: 1382 *val = vcpu->arch.dr6; 1383 break; 1384 case 5: 1385 default: /* 7 */ 1386 *val = vcpu->arch.dr7; 1387 break; 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_get_dr); 1391 1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1393 { 1394 u32 ecx = kvm_rcx_read(vcpu); 1395 u64 data; 1396 1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1398 kvm_inject_gp(vcpu, 0); 1399 return 1; 1400 } 1401 1402 kvm_rax_write(vcpu, (u32)data); 1403 kvm_rdx_write(vcpu, data >> 32); 1404 return kvm_skip_emulated_instruction(vcpu); 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1407 1408 /* 1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1411 * 1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1413 * extract the supported MSRs from the related const lists. 1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1415 * capabilities of the host cpu. This capabilities test skips MSRs that are 1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1417 * may depend on host virtualization features rather than host cpu features. 1418 */ 1419 1420 static const u32 msrs_to_save_all[] = { 1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1422 MSR_STAR, 1423 #ifdef CONFIG_X86_64 1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1425 #endif 1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1428 MSR_IA32_SPEC_CTRL, 1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1435 MSR_IA32_UMWAIT_CONTROL, 1436 1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1441 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1442 1443 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1444 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1448 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1452 1453 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1454 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1455 1456 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1457 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1458 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1459 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1460 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1461 1462 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1463 }; 1464 1465 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1466 static unsigned num_msrs_to_save; 1467 1468 static const u32 emulated_msrs_all[] = { 1469 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1470 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1471 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1472 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1473 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1474 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1475 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1476 HV_X64_MSR_RESET, 1477 HV_X64_MSR_VP_INDEX, 1478 HV_X64_MSR_VP_RUNTIME, 1479 HV_X64_MSR_SCONTROL, 1480 HV_X64_MSR_STIMER0_CONFIG, 1481 HV_X64_MSR_VP_ASSIST_PAGE, 1482 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1483 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1484 HV_X64_MSR_SYNDBG_OPTIONS, 1485 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1486 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1487 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1488 1489 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1490 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1491 1492 MSR_IA32_TSC_ADJUST, 1493 MSR_IA32_TSC_DEADLINE, 1494 MSR_IA32_ARCH_CAPABILITIES, 1495 MSR_IA32_PERF_CAPABILITIES, 1496 MSR_IA32_MISC_ENABLE, 1497 MSR_IA32_MCG_STATUS, 1498 MSR_IA32_MCG_CTL, 1499 MSR_IA32_MCG_EXT_CTL, 1500 MSR_IA32_SMBASE, 1501 MSR_SMI_COUNT, 1502 MSR_PLATFORM_INFO, 1503 MSR_MISC_FEATURES_ENABLES, 1504 MSR_AMD64_VIRT_SPEC_CTRL, 1505 MSR_AMD64_TSC_RATIO, 1506 MSR_IA32_POWER_CTL, 1507 MSR_IA32_UCODE_REV, 1508 1509 /* 1510 * The following list leaves out MSRs whose values are determined 1511 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1512 * We always support the "true" VMX control MSRs, even if the host 1513 * processor does not, so I am putting these registers here rather 1514 * than in msrs_to_save_all. 1515 */ 1516 MSR_IA32_VMX_BASIC, 1517 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1518 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1519 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1520 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1521 MSR_IA32_VMX_MISC, 1522 MSR_IA32_VMX_CR0_FIXED0, 1523 MSR_IA32_VMX_CR4_FIXED0, 1524 MSR_IA32_VMX_VMCS_ENUM, 1525 MSR_IA32_VMX_PROCBASED_CTLS2, 1526 MSR_IA32_VMX_EPT_VPID_CAP, 1527 MSR_IA32_VMX_VMFUNC, 1528 1529 MSR_K7_HWCR, 1530 MSR_KVM_POLL_CONTROL, 1531 }; 1532 1533 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1534 static unsigned num_emulated_msrs; 1535 1536 /* 1537 * List of msr numbers which are used to expose MSR-based features that 1538 * can be used by a hypervisor to validate requested CPU features. 1539 */ 1540 static const u32 msr_based_features_all[] = { 1541 MSR_IA32_VMX_BASIC, 1542 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1543 MSR_IA32_VMX_PINBASED_CTLS, 1544 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1545 MSR_IA32_VMX_PROCBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1547 MSR_IA32_VMX_EXIT_CTLS, 1548 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1549 MSR_IA32_VMX_ENTRY_CTLS, 1550 MSR_IA32_VMX_MISC, 1551 MSR_IA32_VMX_CR0_FIXED0, 1552 MSR_IA32_VMX_CR0_FIXED1, 1553 MSR_IA32_VMX_CR4_FIXED0, 1554 MSR_IA32_VMX_CR4_FIXED1, 1555 MSR_IA32_VMX_VMCS_ENUM, 1556 MSR_IA32_VMX_PROCBASED_CTLS2, 1557 MSR_IA32_VMX_EPT_VPID_CAP, 1558 MSR_IA32_VMX_VMFUNC, 1559 1560 MSR_F10H_DECFG, 1561 MSR_IA32_UCODE_REV, 1562 MSR_IA32_ARCH_CAPABILITIES, 1563 MSR_IA32_PERF_CAPABILITIES, 1564 }; 1565 1566 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1567 static unsigned int num_msr_based_features; 1568 1569 /* 1570 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1571 * does not yet virtualize. These include: 1572 * 10 - MISC_PACKAGE_CTRLS 1573 * 11 - ENERGY_FILTERING_CTL 1574 * 12 - DOITM 1575 * 18 - FB_CLEAR_CTRL 1576 * 21 - XAPIC_DISABLE_STATUS 1577 * 23 - OVERCLOCKING_STATUS 1578 */ 1579 1580 #define KVM_SUPPORTED_ARCH_CAP \ 1581 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1582 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1583 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1584 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1585 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1586 1587 static u64 kvm_get_arch_capabilities(void) 1588 { 1589 u64 data = 0; 1590 1591 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1592 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1593 data &= KVM_SUPPORTED_ARCH_CAP; 1594 } 1595 1596 /* 1597 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1598 * the nested hypervisor runs with NX huge pages. If it is not, 1599 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1600 * L1 guests, so it need not worry about its own (L2) guests. 1601 */ 1602 data |= ARCH_CAP_PSCHANGE_MC_NO; 1603 1604 /* 1605 * If we're doing cache flushes (either "always" or "cond") 1606 * we will do one whenever the guest does a vmlaunch/vmresume. 1607 * If an outer hypervisor is doing the cache flush for us 1608 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1609 * capability to the guest too, and if EPT is disabled we're not 1610 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1611 * require a nested hypervisor to do a flush of its own. 1612 */ 1613 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1614 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1615 1616 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1617 data |= ARCH_CAP_RDCL_NO; 1618 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1619 data |= ARCH_CAP_SSB_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1621 data |= ARCH_CAP_MDS_NO; 1622 1623 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1624 /* 1625 * If RTM=0 because the kernel has disabled TSX, the host might 1626 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1627 * and therefore knows that there cannot be TAA) but keep 1628 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1629 * and we want to allow migrating those guests to tsx=off hosts. 1630 */ 1631 data &= ~ARCH_CAP_TAA_NO; 1632 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1633 data |= ARCH_CAP_TAA_NO; 1634 } else { 1635 /* 1636 * Nothing to do here; we emulate TSX_CTRL if present on the 1637 * host so the guest can choose between disabling TSX or 1638 * using VERW to clear CPU buffers. 1639 */ 1640 } 1641 1642 return data; 1643 } 1644 1645 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1646 { 1647 switch (msr->index) { 1648 case MSR_IA32_ARCH_CAPABILITIES: 1649 msr->data = kvm_get_arch_capabilities(); 1650 break; 1651 case MSR_IA32_PERF_CAPABILITIES: 1652 msr->data = kvm_caps.supported_perf_cap; 1653 break; 1654 case MSR_IA32_UCODE_REV: 1655 rdmsrl_safe(msr->index, &msr->data); 1656 break; 1657 default: 1658 return static_call(kvm_x86_get_msr_feature)(msr); 1659 } 1660 return 0; 1661 } 1662 1663 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1664 { 1665 struct kvm_msr_entry msr; 1666 int r; 1667 1668 msr.index = index; 1669 r = kvm_get_msr_feature(&msr); 1670 1671 if (r == KVM_MSR_RET_INVALID) { 1672 /* Unconditionally clear the output for simplicity */ 1673 *data = 0; 1674 if (kvm_msr_ignored_check(index, 0, false)) 1675 r = 0; 1676 } 1677 1678 if (r) 1679 return r; 1680 1681 *data = msr.data; 1682 1683 return 0; 1684 } 1685 1686 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1687 { 1688 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1689 return false; 1690 1691 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1692 return false; 1693 1694 if (efer & (EFER_LME | EFER_LMA) && 1695 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1696 return false; 1697 1698 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1699 return false; 1700 1701 return true; 1702 1703 } 1704 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1705 { 1706 if (efer & efer_reserved_bits) 1707 return false; 1708 1709 return __kvm_valid_efer(vcpu, efer); 1710 } 1711 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1712 1713 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1714 { 1715 u64 old_efer = vcpu->arch.efer; 1716 u64 efer = msr_info->data; 1717 int r; 1718 1719 if (efer & efer_reserved_bits) 1720 return 1; 1721 1722 if (!msr_info->host_initiated) { 1723 if (!__kvm_valid_efer(vcpu, efer)) 1724 return 1; 1725 1726 if (is_paging(vcpu) && 1727 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1728 return 1; 1729 } 1730 1731 efer &= ~EFER_LMA; 1732 efer |= vcpu->arch.efer & EFER_LMA; 1733 1734 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1735 if (r) { 1736 WARN_ON(r > 0); 1737 return r; 1738 } 1739 1740 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1741 kvm_mmu_reset_context(vcpu); 1742 1743 return 0; 1744 } 1745 1746 void kvm_enable_efer_bits(u64 mask) 1747 { 1748 efer_reserved_bits &= ~mask; 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1751 1752 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1753 { 1754 struct kvm_x86_msr_filter *msr_filter; 1755 struct msr_bitmap_range *ranges; 1756 struct kvm *kvm = vcpu->kvm; 1757 bool allowed; 1758 int idx; 1759 u32 i; 1760 1761 /* x2APIC MSRs do not support filtering. */ 1762 if (index >= 0x800 && index <= 0x8ff) 1763 return true; 1764 1765 idx = srcu_read_lock(&kvm->srcu); 1766 1767 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1768 if (!msr_filter) { 1769 allowed = true; 1770 goto out; 1771 } 1772 1773 allowed = msr_filter->default_allow; 1774 ranges = msr_filter->ranges; 1775 1776 for (i = 0; i < msr_filter->count; i++) { 1777 u32 start = ranges[i].base; 1778 u32 end = start + ranges[i].nmsrs; 1779 u32 flags = ranges[i].flags; 1780 unsigned long *bitmap = ranges[i].bitmap; 1781 1782 if ((index >= start) && (index < end) && (flags & type)) { 1783 allowed = !!test_bit(index - start, bitmap); 1784 break; 1785 } 1786 } 1787 1788 out: 1789 srcu_read_unlock(&kvm->srcu, idx); 1790 1791 return allowed; 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1794 1795 /* 1796 * Write @data into the MSR specified by @index. Select MSR specific fault 1797 * checks are bypassed if @host_initiated is %true. 1798 * Returns 0 on success, non-0 otherwise. 1799 * Assumes vcpu_load() was already called. 1800 */ 1801 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1802 bool host_initiated) 1803 { 1804 struct msr_data msr; 1805 1806 switch (index) { 1807 case MSR_FS_BASE: 1808 case MSR_GS_BASE: 1809 case MSR_KERNEL_GS_BASE: 1810 case MSR_CSTAR: 1811 case MSR_LSTAR: 1812 if (is_noncanonical_address(data, vcpu)) 1813 return 1; 1814 break; 1815 case MSR_IA32_SYSENTER_EIP: 1816 case MSR_IA32_SYSENTER_ESP: 1817 /* 1818 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1819 * non-canonical address is written on Intel but not on 1820 * AMD (which ignores the top 32-bits, because it does 1821 * not implement 64-bit SYSENTER). 1822 * 1823 * 64-bit code should hence be able to write a non-canonical 1824 * value on AMD. Making the address canonical ensures that 1825 * vmentry does not fail on Intel after writing a non-canonical 1826 * value, and that something deterministic happens if the guest 1827 * invokes 64-bit SYSENTER. 1828 */ 1829 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1830 break; 1831 case MSR_TSC_AUX: 1832 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1833 return 1; 1834 1835 if (!host_initiated && 1836 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1837 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1838 return 1; 1839 1840 /* 1841 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1842 * incomplete and conflicting architectural behavior. Current 1843 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1844 * reserved and always read as zeros. Enforce Intel's reserved 1845 * bits check if and only if the guest CPU is Intel, and clear 1846 * the bits in all other cases. This ensures cross-vendor 1847 * migration will provide consistent behavior for the guest. 1848 */ 1849 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1850 return 1; 1851 1852 data = (u32)data; 1853 break; 1854 } 1855 1856 msr.data = data; 1857 msr.index = index; 1858 msr.host_initiated = host_initiated; 1859 1860 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1861 } 1862 1863 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1864 u32 index, u64 data, bool host_initiated) 1865 { 1866 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1867 1868 if (ret == KVM_MSR_RET_INVALID) 1869 if (kvm_msr_ignored_check(index, data, true)) 1870 ret = 0; 1871 1872 return ret; 1873 } 1874 1875 /* 1876 * Read the MSR specified by @index into @data. Select MSR specific fault 1877 * checks are bypassed if @host_initiated is %true. 1878 * Returns 0 on success, non-0 otherwise. 1879 * Assumes vcpu_load() was already called. 1880 */ 1881 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1882 bool host_initiated) 1883 { 1884 struct msr_data msr; 1885 int ret; 1886 1887 switch (index) { 1888 case MSR_TSC_AUX: 1889 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1890 return 1; 1891 1892 if (!host_initiated && 1893 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1894 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1895 return 1; 1896 break; 1897 } 1898 1899 msr.index = index; 1900 msr.host_initiated = host_initiated; 1901 1902 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1903 if (!ret) 1904 *data = msr.data; 1905 return ret; 1906 } 1907 1908 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1909 u32 index, u64 *data, bool host_initiated) 1910 { 1911 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1912 1913 if (ret == KVM_MSR_RET_INVALID) { 1914 /* Unconditionally clear *data for simplicity */ 1915 *data = 0; 1916 if (kvm_msr_ignored_check(index, 0, false)) 1917 ret = 0; 1918 } 1919 1920 return ret; 1921 } 1922 1923 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1924 { 1925 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1926 return KVM_MSR_RET_FILTERED; 1927 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1928 } 1929 1930 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1931 { 1932 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1933 return KVM_MSR_RET_FILTERED; 1934 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1935 } 1936 1937 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1938 { 1939 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_get_msr); 1942 1943 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1944 { 1945 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1946 } 1947 EXPORT_SYMBOL_GPL(kvm_set_msr); 1948 1949 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1950 { 1951 if (!vcpu->run->msr.error) { 1952 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1953 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1954 } 1955 } 1956 1957 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1958 { 1959 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1960 } 1961 1962 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1963 { 1964 complete_userspace_rdmsr(vcpu); 1965 return complete_emulated_msr_access(vcpu); 1966 } 1967 1968 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1969 { 1970 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1971 } 1972 1973 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1974 { 1975 complete_userspace_rdmsr(vcpu); 1976 return complete_fast_msr_access(vcpu); 1977 } 1978 1979 static u64 kvm_msr_reason(int r) 1980 { 1981 switch (r) { 1982 case KVM_MSR_RET_INVALID: 1983 return KVM_MSR_EXIT_REASON_UNKNOWN; 1984 case KVM_MSR_RET_FILTERED: 1985 return KVM_MSR_EXIT_REASON_FILTER; 1986 default: 1987 return KVM_MSR_EXIT_REASON_INVAL; 1988 } 1989 } 1990 1991 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1992 u32 exit_reason, u64 data, 1993 int (*completion)(struct kvm_vcpu *vcpu), 1994 int r) 1995 { 1996 u64 msr_reason = kvm_msr_reason(r); 1997 1998 /* Check if the user wanted to know about this MSR fault */ 1999 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2000 return 0; 2001 2002 vcpu->run->exit_reason = exit_reason; 2003 vcpu->run->msr.error = 0; 2004 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2005 vcpu->run->msr.reason = msr_reason; 2006 vcpu->run->msr.index = index; 2007 vcpu->run->msr.data = data; 2008 vcpu->arch.complete_userspace_io = completion; 2009 2010 return 1; 2011 } 2012 2013 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2014 { 2015 u32 ecx = kvm_rcx_read(vcpu); 2016 u64 data; 2017 int r; 2018 2019 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2020 2021 if (!r) { 2022 trace_kvm_msr_read(ecx, data); 2023 2024 kvm_rax_write(vcpu, data & -1u); 2025 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2026 } else { 2027 /* MSR read failed? See if we should ask user space */ 2028 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2029 complete_fast_rdmsr, r)) 2030 return 0; 2031 trace_kvm_msr_read_ex(ecx); 2032 } 2033 2034 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2035 } 2036 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2037 2038 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2039 { 2040 u32 ecx = kvm_rcx_read(vcpu); 2041 u64 data = kvm_read_edx_eax(vcpu); 2042 int r; 2043 2044 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2045 2046 if (!r) { 2047 trace_kvm_msr_write(ecx, data); 2048 } else { 2049 /* MSR write failed? See if we should ask user space */ 2050 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2051 complete_fast_msr_access, r)) 2052 return 0; 2053 /* Signal all other negative errors to userspace */ 2054 if (r < 0) 2055 return r; 2056 trace_kvm_msr_write_ex(ecx, data); 2057 } 2058 2059 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2060 } 2061 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2062 2063 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2064 { 2065 return kvm_skip_emulated_instruction(vcpu); 2066 } 2067 2068 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2069 { 2070 /* Treat an INVD instruction as a NOP and just skip it. */ 2071 return kvm_emulate_as_nop(vcpu); 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2074 2075 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2076 { 2077 kvm_queue_exception(vcpu, UD_VECTOR); 2078 return 1; 2079 } 2080 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2081 2082 2083 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2084 { 2085 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2086 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2087 return kvm_handle_invalid_op(vcpu); 2088 2089 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2090 return kvm_emulate_as_nop(vcpu); 2091 } 2092 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2093 { 2094 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2095 } 2096 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2097 2098 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2099 { 2100 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2103 2104 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2105 { 2106 xfer_to_guest_mode_prepare(); 2107 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2108 xfer_to_guest_mode_work_pending(); 2109 } 2110 2111 /* 2112 * The fast path for frequent and performance sensitive wrmsr emulation, 2113 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2114 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2115 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2116 * other cases which must be called after interrupts are enabled on the host. 2117 */ 2118 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2119 { 2120 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2121 return 1; 2122 2123 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2124 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2125 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2126 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2127 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2128 2129 return 1; 2130 } 2131 2132 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2133 { 2134 if (!kvm_can_use_hv_timer(vcpu)) 2135 return 1; 2136 2137 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2138 return 0; 2139 } 2140 2141 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2142 { 2143 u32 msr = kvm_rcx_read(vcpu); 2144 u64 data; 2145 fastpath_t ret = EXIT_FASTPATH_NONE; 2146 2147 switch (msr) { 2148 case APIC_BASE_MSR + (APIC_ICR >> 4): 2149 data = kvm_read_edx_eax(vcpu); 2150 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2151 kvm_skip_emulated_instruction(vcpu); 2152 ret = EXIT_FASTPATH_EXIT_HANDLED; 2153 } 2154 break; 2155 case MSR_IA32_TSC_DEADLINE: 2156 data = kvm_read_edx_eax(vcpu); 2157 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2158 kvm_skip_emulated_instruction(vcpu); 2159 ret = EXIT_FASTPATH_REENTER_GUEST; 2160 } 2161 break; 2162 default: 2163 break; 2164 } 2165 2166 if (ret != EXIT_FASTPATH_NONE) 2167 trace_kvm_msr_write(msr, data); 2168 2169 return ret; 2170 } 2171 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2172 2173 /* 2174 * Adapt set_msr() to msr_io()'s calling convention 2175 */ 2176 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2177 { 2178 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2179 } 2180 2181 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2182 { 2183 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2184 } 2185 2186 #ifdef CONFIG_X86_64 2187 struct pvclock_clock { 2188 int vclock_mode; 2189 u64 cycle_last; 2190 u64 mask; 2191 u32 mult; 2192 u32 shift; 2193 u64 base_cycles; 2194 u64 offset; 2195 }; 2196 2197 struct pvclock_gtod_data { 2198 seqcount_t seq; 2199 2200 struct pvclock_clock clock; /* extract of a clocksource struct */ 2201 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2202 2203 ktime_t offs_boot; 2204 u64 wall_time_sec; 2205 }; 2206 2207 static struct pvclock_gtod_data pvclock_gtod_data; 2208 2209 static void update_pvclock_gtod(struct timekeeper *tk) 2210 { 2211 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2212 2213 write_seqcount_begin(&vdata->seq); 2214 2215 /* copy pvclock gtod data */ 2216 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2217 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2218 vdata->clock.mask = tk->tkr_mono.mask; 2219 vdata->clock.mult = tk->tkr_mono.mult; 2220 vdata->clock.shift = tk->tkr_mono.shift; 2221 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2222 vdata->clock.offset = tk->tkr_mono.base; 2223 2224 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2225 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2226 vdata->raw_clock.mask = tk->tkr_raw.mask; 2227 vdata->raw_clock.mult = tk->tkr_raw.mult; 2228 vdata->raw_clock.shift = tk->tkr_raw.shift; 2229 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2230 vdata->raw_clock.offset = tk->tkr_raw.base; 2231 2232 vdata->wall_time_sec = tk->xtime_sec; 2233 2234 vdata->offs_boot = tk->offs_boot; 2235 2236 write_seqcount_end(&vdata->seq); 2237 } 2238 2239 static s64 get_kvmclock_base_ns(void) 2240 { 2241 /* Count up from boot time, but with the frequency of the raw clock. */ 2242 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2243 } 2244 #else 2245 static s64 get_kvmclock_base_ns(void) 2246 { 2247 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2248 return ktime_get_boottime_ns(); 2249 } 2250 #endif 2251 2252 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2253 { 2254 int version; 2255 int r; 2256 struct pvclock_wall_clock wc; 2257 u32 wc_sec_hi; 2258 u64 wall_nsec; 2259 2260 if (!wall_clock) 2261 return; 2262 2263 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2264 if (r) 2265 return; 2266 2267 if (version & 1) 2268 ++version; /* first time write, random junk */ 2269 2270 ++version; 2271 2272 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2273 return; 2274 2275 /* 2276 * The guest calculates current wall clock time by adding 2277 * system time (updated by kvm_guest_time_update below) to the 2278 * wall clock specified here. We do the reverse here. 2279 */ 2280 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2281 2282 wc.nsec = do_div(wall_nsec, 1000000000); 2283 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2284 wc.version = version; 2285 2286 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2287 2288 if (sec_hi_ofs) { 2289 wc_sec_hi = wall_nsec >> 32; 2290 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2291 &wc_sec_hi, sizeof(wc_sec_hi)); 2292 } 2293 2294 version++; 2295 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2296 } 2297 2298 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2299 bool old_msr, bool host_initiated) 2300 { 2301 struct kvm_arch *ka = &vcpu->kvm->arch; 2302 2303 if (vcpu->vcpu_id == 0 && !host_initiated) { 2304 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2305 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2306 2307 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2308 } 2309 2310 vcpu->arch.time = system_time; 2311 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2312 2313 /* we verify if the enable bit is set... */ 2314 if (system_time & 1) 2315 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2316 sizeof(struct pvclock_vcpu_time_info)); 2317 else 2318 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2319 2320 return; 2321 } 2322 2323 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2324 { 2325 do_shl32_div32(dividend, divisor); 2326 return dividend; 2327 } 2328 2329 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2330 s8 *pshift, u32 *pmultiplier) 2331 { 2332 uint64_t scaled64; 2333 int32_t shift = 0; 2334 uint64_t tps64; 2335 uint32_t tps32; 2336 2337 tps64 = base_hz; 2338 scaled64 = scaled_hz; 2339 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2340 tps64 >>= 1; 2341 shift--; 2342 } 2343 2344 tps32 = (uint32_t)tps64; 2345 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2346 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2347 scaled64 >>= 1; 2348 else 2349 tps32 <<= 1; 2350 shift++; 2351 } 2352 2353 *pshift = shift; 2354 *pmultiplier = div_frac(scaled64, tps32); 2355 } 2356 2357 #ifdef CONFIG_X86_64 2358 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2359 #endif 2360 2361 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2362 static unsigned long max_tsc_khz; 2363 2364 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2365 { 2366 u64 v = (u64)khz * (1000000 + ppm); 2367 do_div(v, 1000000); 2368 return v; 2369 } 2370 2371 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2372 2373 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2374 { 2375 u64 ratio; 2376 2377 /* Guest TSC same frequency as host TSC? */ 2378 if (!scale) { 2379 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2380 return 0; 2381 } 2382 2383 /* TSC scaling supported? */ 2384 if (!kvm_caps.has_tsc_control) { 2385 if (user_tsc_khz > tsc_khz) { 2386 vcpu->arch.tsc_catchup = 1; 2387 vcpu->arch.tsc_always_catchup = 1; 2388 return 0; 2389 } else { 2390 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2391 return -1; 2392 } 2393 } 2394 2395 /* TSC scaling required - calculate ratio */ 2396 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2397 user_tsc_khz, tsc_khz); 2398 2399 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2400 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2401 user_tsc_khz); 2402 return -1; 2403 } 2404 2405 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2406 return 0; 2407 } 2408 2409 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2410 { 2411 u32 thresh_lo, thresh_hi; 2412 int use_scaling = 0; 2413 2414 /* tsc_khz can be zero if TSC calibration fails */ 2415 if (user_tsc_khz == 0) { 2416 /* set tsc_scaling_ratio to a safe value */ 2417 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2418 return -1; 2419 } 2420 2421 /* Compute a scale to convert nanoseconds in TSC cycles */ 2422 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2423 &vcpu->arch.virtual_tsc_shift, 2424 &vcpu->arch.virtual_tsc_mult); 2425 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2426 2427 /* 2428 * Compute the variation in TSC rate which is acceptable 2429 * within the range of tolerance and decide if the 2430 * rate being applied is within that bounds of the hardware 2431 * rate. If so, no scaling or compensation need be done. 2432 */ 2433 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2434 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2435 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2436 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2437 use_scaling = 1; 2438 } 2439 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2440 } 2441 2442 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2443 { 2444 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2445 vcpu->arch.virtual_tsc_mult, 2446 vcpu->arch.virtual_tsc_shift); 2447 tsc += vcpu->arch.this_tsc_write; 2448 return tsc; 2449 } 2450 2451 #ifdef CONFIG_X86_64 2452 static inline int gtod_is_based_on_tsc(int mode) 2453 { 2454 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2455 } 2456 #endif 2457 2458 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2459 { 2460 #ifdef CONFIG_X86_64 2461 bool vcpus_matched; 2462 struct kvm_arch *ka = &vcpu->kvm->arch; 2463 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2464 2465 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2466 atomic_read(&vcpu->kvm->online_vcpus)); 2467 2468 /* 2469 * Once the masterclock is enabled, always perform request in 2470 * order to update it. 2471 * 2472 * In order to enable masterclock, the host clocksource must be TSC 2473 * and the vcpus need to have matched TSCs. When that happens, 2474 * perform request to enable masterclock. 2475 */ 2476 if (ka->use_master_clock || 2477 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2478 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2479 2480 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2481 atomic_read(&vcpu->kvm->online_vcpus), 2482 ka->use_master_clock, gtod->clock.vclock_mode); 2483 #endif 2484 } 2485 2486 /* 2487 * Multiply tsc by a fixed point number represented by ratio. 2488 * 2489 * The most significant 64-N bits (mult) of ratio represent the 2490 * integral part of the fixed point number; the remaining N bits 2491 * (frac) represent the fractional part, ie. ratio represents a fixed 2492 * point number (mult + frac * 2^(-N)). 2493 * 2494 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2495 */ 2496 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2497 { 2498 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2499 } 2500 2501 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2502 { 2503 u64 _tsc = tsc; 2504 2505 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2506 _tsc = __scale_tsc(ratio, tsc); 2507 2508 return _tsc; 2509 } 2510 2511 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2512 { 2513 u64 tsc; 2514 2515 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2516 2517 return target_tsc - tsc; 2518 } 2519 2520 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2521 { 2522 return vcpu->arch.l1_tsc_offset + 2523 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2524 } 2525 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2526 2527 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2528 { 2529 u64 nested_offset; 2530 2531 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2532 nested_offset = l1_offset; 2533 else 2534 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2535 kvm_caps.tsc_scaling_ratio_frac_bits); 2536 2537 nested_offset += l2_offset; 2538 return nested_offset; 2539 } 2540 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2541 2542 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2543 { 2544 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2545 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2546 kvm_caps.tsc_scaling_ratio_frac_bits); 2547 2548 return l1_multiplier; 2549 } 2550 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2551 2552 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2553 { 2554 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2555 vcpu->arch.l1_tsc_offset, 2556 l1_offset); 2557 2558 vcpu->arch.l1_tsc_offset = l1_offset; 2559 2560 /* 2561 * If we are here because L1 chose not to trap WRMSR to TSC then 2562 * according to the spec this should set L1's TSC (as opposed to 2563 * setting L1's offset for L2). 2564 */ 2565 if (is_guest_mode(vcpu)) 2566 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2567 l1_offset, 2568 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2569 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2570 else 2571 vcpu->arch.tsc_offset = l1_offset; 2572 2573 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2574 } 2575 2576 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2577 { 2578 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2579 2580 /* Userspace is changing the multiplier while L2 is active */ 2581 if (is_guest_mode(vcpu)) 2582 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2583 l1_multiplier, 2584 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2585 else 2586 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2587 2588 if (kvm_caps.has_tsc_control) 2589 static_call(kvm_x86_write_tsc_multiplier)( 2590 vcpu, vcpu->arch.tsc_scaling_ratio); 2591 } 2592 2593 static inline bool kvm_check_tsc_unstable(void) 2594 { 2595 #ifdef CONFIG_X86_64 2596 /* 2597 * TSC is marked unstable when we're running on Hyper-V, 2598 * 'TSC page' clocksource is good. 2599 */ 2600 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2601 return false; 2602 #endif 2603 return check_tsc_unstable(); 2604 } 2605 2606 /* 2607 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2608 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2609 * participates in. 2610 */ 2611 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2612 u64 ns, bool matched) 2613 { 2614 struct kvm *kvm = vcpu->kvm; 2615 2616 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2617 2618 /* 2619 * We also track th most recent recorded KHZ, write and time to 2620 * allow the matching interval to be extended at each write. 2621 */ 2622 kvm->arch.last_tsc_nsec = ns; 2623 kvm->arch.last_tsc_write = tsc; 2624 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2625 kvm->arch.last_tsc_offset = offset; 2626 2627 vcpu->arch.last_guest_tsc = tsc; 2628 2629 kvm_vcpu_write_tsc_offset(vcpu, offset); 2630 2631 if (!matched) { 2632 /* 2633 * We split periods of matched TSC writes into generations. 2634 * For each generation, we track the original measured 2635 * nanosecond time, offset, and write, so if TSCs are in 2636 * sync, we can match exact offset, and if not, we can match 2637 * exact software computation in compute_guest_tsc() 2638 * 2639 * These values are tracked in kvm->arch.cur_xxx variables. 2640 */ 2641 kvm->arch.cur_tsc_generation++; 2642 kvm->arch.cur_tsc_nsec = ns; 2643 kvm->arch.cur_tsc_write = tsc; 2644 kvm->arch.cur_tsc_offset = offset; 2645 kvm->arch.nr_vcpus_matched_tsc = 0; 2646 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2647 kvm->arch.nr_vcpus_matched_tsc++; 2648 } 2649 2650 /* Keep track of which generation this VCPU has synchronized to */ 2651 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2652 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2653 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2654 2655 kvm_track_tsc_matching(vcpu); 2656 } 2657 2658 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2659 { 2660 struct kvm *kvm = vcpu->kvm; 2661 u64 offset, ns, elapsed; 2662 unsigned long flags; 2663 bool matched = false; 2664 bool synchronizing = false; 2665 2666 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2667 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2668 ns = get_kvmclock_base_ns(); 2669 elapsed = ns - kvm->arch.last_tsc_nsec; 2670 2671 if (vcpu->arch.virtual_tsc_khz) { 2672 if (data == 0) { 2673 /* 2674 * detection of vcpu initialization -- need to sync 2675 * with other vCPUs. This particularly helps to keep 2676 * kvm_clock stable after CPU hotplug 2677 */ 2678 synchronizing = true; 2679 } else { 2680 u64 tsc_exp = kvm->arch.last_tsc_write + 2681 nsec_to_cycles(vcpu, elapsed); 2682 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2683 /* 2684 * Special case: TSC write with a small delta (1 second) 2685 * of virtual cycle time against real time is 2686 * interpreted as an attempt to synchronize the CPU. 2687 */ 2688 synchronizing = data < tsc_exp + tsc_hz && 2689 data + tsc_hz > tsc_exp; 2690 } 2691 } 2692 2693 /* 2694 * For a reliable TSC, we can match TSC offsets, and for an unstable 2695 * TSC, we add elapsed time in this computation. We could let the 2696 * compensation code attempt to catch up if we fall behind, but 2697 * it's better to try to match offsets from the beginning. 2698 */ 2699 if (synchronizing && 2700 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2701 if (!kvm_check_tsc_unstable()) { 2702 offset = kvm->arch.cur_tsc_offset; 2703 } else { 2704 u64 delta = nsec_to_cycles(vcpu, elapsed); 2705 data += delta; 2706 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2707 } 2708 matched = true; 2709 } 2710 2711 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2712 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2713 } 2714 2715 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2716 s64 adjustment) 2717 { 2718 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2719 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2720 } 2721 2722 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2723 { 2724 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2725 WARN_ON(adjustment < 0); 2726 adjustment = kvm_scale_tsc((u64) adjustment, 2727 vcpu->arch.l1_tsc_scaling_ratio); 2728 adjust_tsc_offset_guest(vcpu, adjustment); 2729 } 2730 2731 #ifdef CONFIG_X86_64 2732 2733 static u64 read_tsc(void) 2734 { 2735 u64 ret = (u64)rdtsc_ordered(); 2736 u64 last = pvclock_gtod_data.clock.cycle_last; 2737 2738 if (likely(ret >= last)) 2739 return ret; 2740 2741 /* 2742 * GCC likes to generate cmov here, but this branch is extremely 2743 * predictable (it's just a function of time and the likely is 2744 * very likely) and there's a data dependence, so force GCC 2745 * to generate a branch instead. I don't barrier() because 2746 * we don't actually need a barrier, and if this function 2747 * ever gets inlined it will generate worse code. 2748 */ 2749 asm volatile (""); 2750 return last; 2751 } 2752 2753 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2754 int *mode) 2755 { 2756 long v; 2757 u64 tsc_pg_val; 2758 2759 switch (clock->vclock_mode) { 2760 case VDSO_CLOCKMODE_HVCLOCK: 2761 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2762 tsc_timestamp); 2763 if (tsc_pg_val != U64_MAX) { 2764 /* TSC page valid */ 2765 *mode = VDSO_CLOCKMODE_HVCLOCK; 2766 v = (tsc_pg_val - clock->cycle_last) & 2767 clock->mask; 2768 } else { 2769 /* TSC page invalid */ 2770 *mode = VDSO_CLOCKMODE_NONE; 2771 } 2772 break; 2773 case VDSO_CLOCKMODE_TSC: 2774 *mode = VDSO_CLOCKMODE_TSC; 2775 *tsc_timestamp = read_tsc(); 2776 v = (*tsc_timestamp - clock->cycle_last) & 2777 clock->mask; 2778 break; 2779 default: 2780 *mode = VDSO_CLOCKMODE_NONE; 2781 } 2782 2783 if (*mode == VDSO_CLOCKMODE_NONE) 2784 *tsc_timestamp = v = 0; 2785 2786 return v * clock->mult; 2787 } 2788 2789 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2790 { 2791 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2792 unsigned long seq; 2793 int mode; 2794 u64 ns; 2795 2796 do { 2797 seq = read_seqcount_begin(>od->seq); 2798 ns = gtod->raw_clock.base_cycles; 2799 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2800 ns >>= gtod->raw_clock.shift; 2801 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2802 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2803 *t = ns; 2804 2805 return mode; 2806 } 2807 2808 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2809 { 2810 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2811 unsigned long seq; 2812 int mode; 2813 u64 ns; 2814 2815 do { 2816 seq = read_seqcount_begin(>od->seq); 2817 ts->tv_sec = gtod->wall_time_sec; 2818 ns = gtod->clock.base_cycles; 2819 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2820 ns >>= gtod->clock.shift; 2821 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2822 2823 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2824 ts->tv_nsec = ns; 2825 2826 return mode; 2827 } 2828 2829 /* returns true if host is using TSC based clocksource */ 2830 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2831 { 2832 /* checked again under seqlock below */ 2833 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2834 return false; 2835 2836 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2837 tsc_timestamp)); 2838 } 2839 2840 /* returns true if host is using TSC based clocksource */ 2841 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2842 u64 *tsc_timestamp) 2843 { 2844 /* checked again under seqlock below */ 2845 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2846 return false; 2847 2848 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2849 } 2850 #endif 2851 2852 /* 2853 * 2854 * Assuming a stable TSC across physical CPUS, and a stable TSC 2855 * across virtual CPUs, the following condition is possible. 2856 * Each numbered line represents an event visible to both 2857 * CPUs at the next numbered event. 2858 * 2859 * "timespecX" represents host monotonic time. "tscX" represents 2860 * RDTSC value. 2861 * 2862 * VCPU0 on CPU0 | VCPU1 on CPU1 2863 * 2864 * 1. read timespec0,tsc0 2865 * 2. | timespec1 = timespec0 + N 2866 * | tsc1 = tsc0 + M 2867 * 3. transition to guest | transition to guest 2868 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2869 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2870 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2871 * 2872 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2873 * 2874 * - ret0 < ret1 2875 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2876 * ... 2877 * - 0 < N - M => M < N 2878 * 2879 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2880 * always the case (the difference between two distinct xtime instances 2881 * might be smaller then the difference between corresponding TSC reads, 2882 * when updating guest vcpus pvclock areas). 2883 * 2884 * To avoid that problem, do not allow visibility of distinct 2885 * system_timestamp/tsc_timestamp values simultaneously: use a master 2886 * copy of host monotonic time values. Update that master copy 2887 * in lockstep. 2888 * 2889 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2890 * 2891 */ 2892 2893 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2894 { 2895 #ifdef CONFIG_X86_64 2896 struct kvm_arch *ka = &kvm->arch; 2897 int vclock_mode; 2898 bool host_tsc_clocksource, vcpus_matched; 2899 2900 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2901 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2902 atomic_read(&kvm->online_vcpus)); 2903 2904 /* 2905 * If the host uses TSC clock, then passthrough TSC as stable 2906 * to the guest. 2907 */ 2908 host_tsc_clocksource = kvm_get_time_and_clockread( 2909 &ka->master_kernel_ns, 2910 &ka->master_cycle_now); 2911 2912 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2913 && !ka->backwards_tsc_observed 2914 && !ka->boot_vcpu_runs_old_kvmclock; 2915 2916 if (ka->use_master_clock) 2917 atomic_set(&kvm_guest_has_master_clock, 1); 2918 2919 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2920 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2921 vcpus_matched); 2922 #endif 2923 } 2924 2925 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2926 { 2927 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2928 } 2929 2930 static void __kvm_start_pvclock_update(struct kvm *kvm) 2931 { 2932 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2933 write_seqcount_begin(&kvm->arch.pvclock_sc); 2934 } 2935 2936 static void kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 kvm_make_mclock_inprogress_request(kvm); 2939 2940 /* no guest entries from this point */ 2941 __kvm_start_pvclock_update(kvm); 2942 } 2943 2944 static void kvm_end_pvclock_update(struct kvm *kvm) 2945 { 2946 struct kvm_arch *ka = &kvm->arch; 2947 struct kvm_vcpu *vcpu; 2948 unsigned long i; 2949 2950 write_seqcount_end(&ka->pvclock_sc); 2951 raw_spin_unlock_irq(&ka->tsc_write_lock); 2952 kvm_for_each_vcpu(i, vcpu, kvm) 2953 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2954 2955 /* guest entries allowed */ 2956 kvm_for_each_vcpu(i, vcpu, kvm) 2957 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2958 } 2959 2960 static void kvm_update_masterclock(struct kvm *kvm) 2961 { 2962 kvm_hv_request_tsc_page_update(kvm); 2963 kvm_start_pvclock_update(kvm); 2964 pvclock_update_vm_gtod_copy(kvm); 2965 kvm_end_pvclock_update(kvm); 2966 } 2967 2968 /* 2969 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2970 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2971 * can change during boot even if the TSC is constant, as it's possible for KVM 2972 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2973 * notification when calibration completes, but practically speaking calibration 2974 * will complete before userspace is alive enough to create VMs. 2975 */ 2976 static unsigned long get_cpu_tsc_khz(void) 2977 { 2978 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2979 return tsc_khz; 2980 else 2981 return __this_cpu_read(cpu_tsc_khz); 2982 } 2983 2984 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2985 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2986 { 2987 struct kvm_arch *ka = &kvm->arch; 2988 struct pvclock_vcpu_time_info hv_clock; 2989 2990 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2991 get_cpu(); 2992 2993 data->flags = 0; 2994 if (ka->use_master_clock && 2995 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 2996 #ifdef CONFIG_X86_64 2997 struct timespec64 ts; 2998 2999 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3000 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3001 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3002 } else 3003 #endif 3004 data->host_tsc = rdtsc(); 3005 3006 data->flags |= KVM_CLOCK_TSC_STABLE; 3007 hv_clock.tsc_timestamp = ka->master_cycle_now; 3008 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3009 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3010 &hv_clock.tsc_shift, 3011 &hv_clock.tsc_to_system_mul); 3012 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3013 } else { 3014 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3015 } 3016 3017 put_cpu(); 3018 } 3019 3020 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3021 { 3022 struct kvm_arch *ka = &kvm->arch; 3023 unsigned seq; 3024 3025 do { 3026 seq = read_seqcount_begin(&ka->pvclock_sc); 3027 __get_kvmclock(kvm, data); 3028 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3029 } 3030 3031 u64 get_kvmclock_ns(struct kvm *kvm) 3032 { 3033 struct kvm_clock_data data; 3034 3035 get_kvmclock(kvm, &data); 3036 return data.clock; 3037 } 3038 3039 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3040 struct gfn_to_pfn_cache *gpc, 3041 unsigned int offset) 3042 { 3043 struct kvm_vcpu_arch *vcpu = &v->arch; 3044 struct pvclock_vcpu_time_info *guest_hv_clock; 3045 unsigned long flags; 3046 3047 read_lock_irqsave(&gpc->lock, flags); 3048 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3049 read_unlock_irqrestore(&gpc->lock, flags); 3050 3051 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3052 return; 3053 3054 read_lock_irqsave(&gpc->lock, flags); 3055 } 3056 3057 guest_hv_clock = (void *)(gpc->khva + offset); 3058 3059 /* 3060 * This VCPU is paused, but it's legal for a guest to read another 3061 * VCPU's kvmclock, so we really have to follow the specification where 3062 * it says that version is odd if data is being modified, and even after 3063 * it is consistent. 3064 */ 3065 3066 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3067 smp_wmb(); 3068 3069 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3070 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3071 3072 if (vcpu->pvclock_set_guest_stopped_request) { 3073 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3074 vcpu->pvclock_set_guest_stopped_request = false; 3075 } 3076 3077 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3078 smp_wmb(); 3079 3080 guest_hv_clock->version = ++vcpu->hv_clock.version; 3081 3082 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3083 read_unlock_irqrestore(&gpc->lock, flags); 3084 3085 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3086 } 3087 3088 static int kvm_guest_time_update(struct kvm_vcpu *v) 3089 { 3090 unsigned long flags, tgt_tsc_khz; 3091 unsigned seq; 3092 struct kvm_vcpu_arch *vcpu = &v->arch; 3093 struct kvm_arch *ka = &v->kvm->arch; 3094 s64 kernel_ns; 3095 u64 tsc_timestamp, host_tsc; 3096 u8 pvclock_flags; 3097 bool use_master_clock; 3098 3099 kernel_ns = 0; 3100 host_tsc = 0; 3101 3102 /* 3103 * If the host uses TSC clock, then passthrough TSC as stable 3104 * to the guest. 3105 */ 3106 do { 3107 seq = read_seqcount_begin(&ka->pvclock_sc); 3108 use_master_clock = ka->use_master_clock; 3109 if (use_master_clock) { 3110 host_tsc = ka->master_cycle_now; 3111 kernel_ns = ka->master_kernel_ns; 3112 } 3113 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3114 3115 /* Keep irq disabled to prevent changes to the clock */ 3116 local_irq_save(flags); 3117 tgt_tsc_khz = get_cpu_tsc_khz(); 3118 if (unlikely(tgt_tsc_khz == 0)) { 3119 local_irq_restore(flags); 3120 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3121 return 1; 3122 } 3123 if (!use_master_clock) { 3124 host_tsc = rdtsc(); 3125 kernel_ns = get_kvmclock_base_ns(); 3126 } 3127 3128 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3129 3130 /* 3131 * We may have to catch up the TSC to match elapsed wall clock 3132 * time for two reasons, even if kvmclock is used. 3133 * 1) CPU could have been running below the maximum TSC rate 3134 * 2) Broken TSC compensation resets the base at each VCPU 3135 * entry to avoid unknown leaps of TSC even when running 3136 * again on the same CPU. This may cause apparent elapsed 3137 * time to disappear, and the guest to stand still or run 3138 * very slowly. 3139 */ 3140 if (vcpu->tsc_catchup) { 3141 u64 tsc = compute_guest_tsc(v, kernel_ns); 3142 if (tsc > tsc_timestamp) { 3143 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3144 tsc_timestamp = tsc; 3145 } 3146 } 3147 3148 local_irq_restore(flags); 3149 3150 /* With all the info we got, fill in the values */ 3151 3152 if (kvm_caps.has_tsc_control) 3153 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3154 v->arch.l1_tsc_scaling_ratio); 3155 3156 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3157 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3158 &vcpu->hv_clock.tsc_shift, 3159 &vcpu->hv_clock.tsc_to_system_mul); 3160 vcpu->hw_tsc_khz = tgt_tsc_khz; 3161 } 3162 3163 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3164 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3165 vcpu->last_guest_tsc = tsc_timestamp; 3166 3167 /* If the host uses TSC clocksource, then it is stable */ 3168 pvclock_flags = 0; 3169 if (use_master_clock) 3170 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3171 3172 vcpu->hv_clock.flags = pvclock_flags; 3173 3174 if (vcpu->pv_time.active) 3175 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3176 if (vcpu->xen.vcpu_info_cache.active) 3177 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3178 offsetof(struct compat_vcpu_info, time)); 3179 if (vcpu->xen.vcpu_time_info_cache.active) 3180 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3181 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3182 return 0; 3183 } 3184 3185 /* 3186 * kvmclock updates which are isolated to a given vcpu, such as 3187 * vcpu->cpu migration, should not allow system_timestamp from 3188 * the rest of the vcpus to remain static. Otherwise ntp frequency 3189 * correction applies to one vcpu's system_timestamp but not 3190 * the others. 3191 * 3192 * So in those cases, request a kvmclock update for all vcpus. 3193 * We need to rate-limit these requests though, as they can 3194 * considerably slow guests that have a large number of vcpus. 3195 * The time for a remote vcpu to update its kvmclock is bound 3196 * by the delay we use to rate-limit the updates. 3197 */ 3198 3199 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3200 3201 static void kvmclock_update_fn(struct work_struct *work) 3202 { 3203 unsigned long i; 3204 struct delayed_work *dwork = to_delayed_work(work); 3205 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3206 kvmclock_update_work); 3207 struct kvm *kvm = container_of(ka, struct kvm, arch); 3208 struct kvm_vcpu *vcpu; 3209 3210 kvm_for_each_vcpu(i, vcpu, kvm) { 3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3212 kvm_vcpu_kick(vcpu); 3213 } 3214 } 3215 3216 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3217 { 3218 struct kvm *kvm = v->kvm; 3219 3220 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3221 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3222 KVMCLOCK_UPDATE_DELAY); 3223 } 3224 3225 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3226 3227 static void kvmclock_sync_fn(struct work_struct *work) 3228 { 3229 struct delayed_work *dwork = to_delayed_work(work); 3230 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3231 kvmclock_sync_work); 3232 struct kvm *kvm = container_of(ka, struct kvm, arch); 3233 3234 if (!kvmclock_periodic_sync) 3235 return; 3236 3237 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3238 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3239 KVMCLOCK_SYNC_PERIOD); 3240 } 3241 3242 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3243 static bool is_mci_control_msr(u32 msr) 3244 { 3245 return (msr & 3) == 0; 3246 } 3247 static bool is_mci_status_msr(u32 msr) 3248 { 3249 return (msr & 3) == 1; 3250 } 3251 3252 /* 3253 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3254 */ 3255 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3256 { 3257 /* McStatusWrEn enabled? */ 3258 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3259 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3260 3261 return false; 3262 } 3263 3264 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3265 { 3266 u64 mcg_cap = vcpu->arch.mcg_cap; 3267 unsigned bank_num = mcg_cap & 0xff; 3268 u32 msr = msr_info->index; 3269 u64 data = msr_info->data; 3270 u32 offset, last_msr; 3271 3272 switch (msr) { 3273 case MSR_IA32_MCG_STATUS: 3274 vcpu->arch.mcg_status = data; 3275 break; 3276 case MSR_IA32_MCG_CTL: 3277 if (!(mcg_cap & MCG_CTL_P) && 3278 (data || !msr_info->host_initiated)) 3279 return 1; 3280 if (data != 0 && data != ~(u64)0) 3281 return 1; 3282 vcpu->arch.mcg_ctl = data; 3283 break; 3284 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3285 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3286 if (msr > last_msr) 3287 return 1; 3288 3289 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3290 return 1; 3291 /* An attempt to write a 1 to a reserved bit raises #GP */ 3292 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3293 return 1; 3294 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3295 last_msr + 1 - MSR_IA32_MC0_CTL2); 3296 vcpu->arch.mci_ctl2_banks[offset] = data; 3297 break; 3298 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3299 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3300 if (msr > last_msr) 3301 return 1; 3302 3303 /* 3304 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3305 * values are architecturally undefined. But, some Linux 3306 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3307 * issue on AMD K8s, allow bit 10 to be clear when setting all 3308 * other bits in order to avoid an uncaught #GP in the guest. 3309 * 3310 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3311 * single-bit ECC data errors. 3312 */ 3313 if (is_mci_control_msr(msr) && 3314 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3315 return 1; 3316 3317 /* 3318 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3319 * AMD-based CPUs allow non-zero values, but if and only if 3320 * HWCR[McStatusWrEn] is set. 3321 */ 3322 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3323 data != 0 && !can_set_mci_status(vcpu)) 3324 return 1; 3325 3326 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3327 last_msr + 1 - MSR_IA32_MC0_CTL); 3328 vcpu->arch.mce_banks[offset] = data; 3329 break; 3330 default: 3331 return 1; 3332 } 3333 return 0; 3334 } 3335 3336 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3337 { 3338 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3339 3340 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3341 } 3342 3343 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3344 { 3345 gpa_t gpa = data & ~0x3f; 3346 3347 /* Bits 4:5 are reserved, Should be zero */ 3348 if (data & 0x30) 3349 return 1; 3350 3351 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3352 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3353 return 1; 3354 3355 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3356 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3357 return 1; 3358 3359 if (!lapic_in_kernel(vcpu)) 3360 return data ? 1 : 0; 3361 3362 vcpu->arch.apf.msr_en_val = data; 3363 3364 if (!kvm_pv_async_pf_enabled(vcpu)) { 3365 kvm_clear_async_pf_completion_queue(vcpu); 3366 kvm_async_pf_hash_reset(vcpu); 3367 return 0; 3368 } 3369 3370 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3371 sizeof(u64))) 3372 return 1; 3373 3374 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3375 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3376 3377 kvm_async_pf_wakeup_all(vcpu); 3378 3379 return 0; 3380 } 3381 3382 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3383 { 3384 /* Bits 8-63 are reserved */ 3385 if (data >> 8) 3386 return 1; 3387 3388 if (!lapic_in_kernel(vcpu)) 3389 return 1; 3390 3391 vcpu->arch.apf.msr_int_val = data; 3392 3393 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3394 3395 return 0; 3396 } 3397 3398 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3399 { 3400 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3401 vcpu->arch.time = 0; 3402 } 3403 3404 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3405 { 3406 ++vcpu->stat.tlb_flush; 3407 static_call(kvm_x86_flush_tlb_all)(vcpu); 3408 3409 /* Flushing all ASIDs flushes the current ASID... */ 3410 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3411 } 3412 3413 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3414 { 3415 ++vcpu->stat.tlb_flush; 3416 3417 if (!tdp_enabled) { 3418 /* 3419 * A TLB flush on behalf of the guest is equivalent to 3420 * INVPCID(all), toggling CR4.PGE, etc., which requires 3421 * a forced sync of the shadow page tables. Ensure all the 3422 * roots are synced and the guest TLB in hardware is clean. 3423 */ 3424 kvm_mmu_sync_roots(vcpu); 3425 kvm_mmu_sync_prev_roots(vcpu); 3426 } 3427 3428 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3429 3430 /* 3431 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3432 * grained flushing. 3433 */ 3434 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3435 } 3436 3437 3438 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3439 { 3440 ++vcpu->stat.tlb_flush; 3441 static_call(kvm_x86_flush_tlb_current)(vcpu); 3442 } 3443 3444 /* 3445 * Service "local" TLB flush requests, which are specific to the current MMU 3446 * context. In addition to the generic event handling in vcpu_enter_guest(), 3447 * TLB flushes that are targeted at an MMU context also need to be serviced 3448 * prior before nested VM-Enter/VM-Exit. 3449 */ 3450 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3451 { 3452 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3453 kvm_vcpu_flush_tlb_current(vcpu); 3454 3455 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3456 kvm_vcpu_flush_tlb_guest(vcpu); 3457 } 3458 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3459 3460 static void record_steal_time(struct kvm_vcpu *vcpu) 3461 { 3462 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3463 struct kvm_steal_time __user *st; 3464 struct kvm_memslots *slots; 3465 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3466 u64 steal; 3467 u32 version; 3468 3469 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3470 kvm_xen_runstate_set_running(vcpu); 3471 return; 3472 } 3473 3474 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3475 return; 3476 3477 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3478 return; 3479 3480 slots = kvm_memslots(vcpu->kvm); 3481 3482 if (unlikely(slots->generation != ghc->generation || 3483 gpa != ghc->gpa || 3484 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3485 /* We rely on the fact that it fits in a single page. */ 3486 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3487 3488 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3489 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3490 return; 3491 } 3492 3493 st = (struct kvm_steal_time __user *)ghc->hva; 3494 /* 3495 * Doing a TLB flush here, on the guest's behalf, can avoid 3496 * expensive IPIs. 3497 */ 3498 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3499 u8 st_preempted = 0; 3500 int err = -EFAULT; 3501 3502 if (!user_access_begin(st, sizeof(*st))) 3503 return; 3504 3505 asm volatile("1: xchgb %0, %2\n" 3506 "xor %1, %1\n" 3507 "2:\n" 3508 _ASM_EXTABLE_UA(1b, 2b) 3509 : "+q" (st_preempted), 3510 "+&r" (err), 3511 "+m" (st->preempted)); 3512 if (err) 3513 goto out; 3514 3515 user_access_end(); 3516 3517 vcpu->arch.st.preempted = 0; 3518 3519 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3520 st_preempted & KVM_VCPU_FLUSH_TLB); 3521 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3522 kvm_vcpu_flush_tlb_guest(vcpu); 3523 3524 if (!user_access_begin(st, sizeof(*st))) 3525 goto dirty; 3526 } else { 3527 if (!user_access_begin(st, sizeof(*st))) 3528 return; 3529 3530 unsafe_put_user(0, &st->preempted, out); 3531 vcpu->arch.st.preempted = 0; 3532 } 3533 3534 unsafe_get_user(version, &st->version, out); 3535 if (version & 1) 3536 version += 1; /* first time write, random junk */ 3537 3538 version += 1; 3539 unsafe_put_user(version, &st->version, out); 3540 3541 smp_wmb(); 3542 3543 unsafe_get_user(steal, &st->steal, out); 3544 steal += current->sched_info.run_delay - 3545 vcpu->arch.st.last_steal; 3546 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3547 unsafe_put_user(steal, &st->steal, out); 3548 3549 version += 1; 3550 unsafe_put_user(version, &st->version, out); 3551 3552 out: 3553 user_access_end(); 3554 dirty: 3555 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3556 } 3557 3558 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3559 { 3560 bool pr = false; 3561 u32 msr = msr_info->index; 3562 u64 data = msr_info->data; 3563 3564 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3565 return kvm_xen_write_hypercall_page(vcpu, data); 3566 3567 switch (msr) { 3568 case MSR_AMD64_NB_CFG: 3569 case MSR_IA32_UCODE_WRITE: 3570 case MSR_VM_HSAVE_PA: 3571 case MSR_AMD64_PATCH_LOADER: 3572 case MSR_AMD64_BU_CFG2: 3573 case MSR_AMD64_DC_CFG: 3574 case MSR_F15H_EX_CFG: 3575 break; 3576 3577 case MSR_IA32_UCODE_REV: 3578 if (msr_info->host_initiated) 3579 vcpu->arch.microcode_version = data; 3580 break; 3581 case MSR_IA32_ARCH_CAPABILITIES: 3582 if (!msr_info->host_initiated) 3583 return 1; 3584 vcpu->arch.arch_capabilities = data; 3585 break; 3586 case MSR_IA32_PERF_CAPABILITIES: 3587 if (!msr_info->host_initiated) 3588 return 1; 3589 if (data & ~kvm_caps.supported_perf_cap) 3590 return 1; 3591 3592 vcpu->arch.perf_capabilities = data; 3593 kvm_pmu_refresh(vcpu); 3594 return 0; 3595 case MSR_EFER: 3596 return set_efer(vcpu, msr_info); 3597 case MSR_K7_HWCR: 3598 data &= ~(u64)0x40; /* ignore flush filter disable */ 3599 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3600 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3601 3602 /* Handle McStatusWrEn */ 3603 if (data == BIT_ULL(18)) { 3604 vcpu->arch.msr_hwcr = data; 3605 } else if (data != 0) { 3606 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3607 data); 3608 return 1; 3609 } 3610 break; 3611 case MSR_FAM10H_MMIO_CONF_BASE: 3612 if (data != 0) { 3613 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3614 "0x%llx\n", data); 3615 return 1; 3616 } 3617 break; 3618 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3619 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3620 return kvm_mtrr_set_msr(vcpu, msr, data); 3621 case MSR_IA32_APICBASE: 3622 return kvm_set_apic_base(vcpu, msr_info); 3623 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3624 return kvm_x2apic_msr_write(vcpu, msr, data); 3625 case MSR_IA32_TSC_DEADLINE: 3626 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3627 break; 3628 case MSR_IA32_TSC_ADJUST: 3629 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3630 if (!msr_info->host_initiated) { 3631 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3632 adjust_tsc_offset_guest(vcpu, adj); 3633 /* Before back to guest, tsc_timestamp must be adjusted 3634 * as well, otherwise guest's percpu pvclock time could jump. 3635 */ 3636 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3637 } 3638 vcpu->arch.ia32_tsc_adjust_msr = data; 3639 } 3640 break; 3641 case MSR_IA32_MISC_ENABLE: { 3642 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3643 3644 if (!msr_info->host_initiated) { 3645 /* RO bits */ 3646 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3647 return 1; 3648 3649 /* R bits, i.e. writes are ignored, but don't fault. */ 3650 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3651 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3652 } 3653 3654 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3655 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3656 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3657 return 1; 3658 vcpu->arch.ia32_misc_enable_msr = data; 3659 kvm_update_cpuid_runtime(vcpu); 3660 } else { 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 } 3663 break; 3664 } 3665 case MSR_IA32_SMBASE: 3666 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3667 return 1; 3668 vcpu->arch.smbase = data; 3669 break; 3670 case MSR_IA32_POWER_CTL: 3671 vcpu->arch.msr_ia32_power_ctl = data; 3672 break; 3673 case MSR_IA32_TSC: 3674 if (msr_info->host_initiated) { 3675 kvm_synchronize_tsc(vcpu, data); 3676 } else { 3677 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3678 adjust_tsc_offset_guest(vcpu, adj); 3679 vcpu->arch.ia32_tsc_adjust_msr += adj; 3680 } 3681 break; 3682 case MSR_IA32_XSS: 3683 if (!msr_info->host_initiated && 3684 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3685 return 1; 3686 /* 3687 * KVM supports exposing PT to the guest, but does not support 3688 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3689 * XSAVES/XRSTORS to save/restore PT MSRs. 3690 */ 3691 if (data & ~kvm_caps.supported_xss) 3692 return 1; 3693 vcpu->arch.ia32_xss = data; 3694 kvm_update_cpuid_runtime(vcpu); 3695 break; 3696 case MSR_SMI_COUNT: 3697 if (!msr_info->host_initiated) 3698 return 1; 3699 vcpu->arch.smi_count = data; 3700 break; 3701 case MSR_KVM_WALL_CLOCK_NEW: 3702 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3703 return 1; 3704 3705 vcpu->kvm->arch.wall_clock = data; 3706 kvm_write_wall_clock(vcpu->kvm, data, 0); 3707 break; 3708 case MSR_KVM_WALL_CLOCK: 3709 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3710 return 1; 3711 3712 vcpu->kvm->arch.wall_clock = data; 3713 kvm_write_wall_clock(vcpu->kvm, data, 0); 3714 break; 3715 case MSR_KVM_SYSTEM_TIME_NEW: 3716 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3717 return 1; 3718 3719 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3720 break; 3721 case MSR_KVM_SYSTEM_TIME: 3722 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3723 return 1; 3724 3725 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3726 break; 3727 case MSR_KVM_ASYNC_PF_EN: 3728 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3729 return 1; 3730 3731 if (kvm_pv_enable_async_pf(vcpu, data)) 3732 return 1; 3733 break; 3734 case MSR_KVM_ASYNC_PF_INT: 3735 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3736 return 1; 3737 3738 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3739 return 1; 3740 break; 3741 case MSR_KVM_ASYNC_PF_ACK: 3742 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3743 return 1; 3744 if (data & 0x1) { 3745 vcpu->arch.apf.pageready_pending = false; 3746 kvm_check_async_pf_completion(vcpu); 3747 } 3748 break; 3749 case MSR_KVM_STEAL_TIME: 3750 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3751 return 1; 3752 3753 if (unlikely(!sched_info_on())) 3754 return 1; 3755 3756 if (data & KVM_STEAL_RESERVED_MASK) 3757 return 1; 3758 3759 vcpu->arch.st.msr_val = data; 3760 3761 if (!(data & KVM_MSR_ENABLED)) 3762 break; 3763 3764 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3765 3766 break; 3767 case MSR_KVM_PV_EOI_EN: 3768 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3769 return 1; 3770 3771 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3772 return 1; 3773 break; 3774 3775 case MSR_KVM_POLL_CONTROL: 3776 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3777 return 1; 3778 3779 /* only enable bit supported */ 3780 if (data & (-1ULL << 1)) 3781 return 1; 3782 3783 vcpu->arch.msr_kvm_poll_control = data; 3784 break; 3785 3786 case MSR_IA32_MCG_CTL: 3787 case MSR_IA32_MCG_STATUS: 3788 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3789 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3790 return set_msr_mce(vcpu, msr_info); 3791 3792 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3793 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3794 pr = true; 3795 fallthrough; 3796 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3797 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3798 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3799 return kvm_pmu_set_msr(vcpu, msr_info); 3800 3801 if (pr || data != 0) 3802 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3803 "0x%x data 0x%llx\n", msr, data); 3804 break; 3805 case MSR_K7_CLK_CTL: 3806 /* 3807 * Ignore all writes to this no longer documented MSR. 3808 * Writes are only relevant for old K7 processors, 3809 * all pre-dating SVM, but a recommended workaround from 3810 * AMD for these chips. It is possible to specify the 3811 * affected processor models on the command line, hence 3812 * the need to ignore the workaround. 3813 */ 3814 break; 3815 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3816 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3817 case HV_X64_MSR_SYNDBG_OPTIONS: 3818 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3819 case HV_X64_MSR_CRASH_CTL: 3820 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3821 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3822 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3823 case HV_X64_MSR_TSC_EMULATION_STATUS: 3824 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3825 return kvm_hv_set_msr_common(vcpu, msr, data, 3826 msr_info->host_initiated); 3827 case MSR_IA32_BBL_CR_CTL3: 3828 /* Drop writes to this legacy MSR -- see rdmsr 3829 * counterpart for further detail. 3830 */ 3831 if (report_ignored_msrs) 3832 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3833 msr, data); 3834 break; 3835 case MSR_AMD64_OSVW_ID_LENGTH: 3836 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3837 return 1; 3838 vcpu->arch.osvw.length = data; 3839 break; 3840 case MSR_AMD64_OSVW_STATUS: 3841 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3842 return 1; 3843 vcpu->arch.osvw.status = data; 3844 break; 3845 case MSR_PLATFORM_INFO: 3846 if (!msr_info->host_initiated || 3847 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3848 cpuid_fault_enabled(vcpu))) 3849 return 1; 3850 vcpu->arch.msr_platform_info = data; 3851 break; 3852 case MSR_MISC_FEATURES_ENABLES: 3853 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3854 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3855 !supports_cpuid_fault(vcpu))) 3856 return 1; 3857 vcpu->arch.msr_misc_features_enables = data; 3858 break; 3859 #ifdef CONFIG_X86_64 3860 case MSR_IA32_XFD: 3861 if (!msr_info->host_initiated && 3862 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3863 return 1; 3864 3865 if (data & ~kvm_guest_supported_xfd(vcpu)) 3866 return 1; 3867 3868 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3869 break; 3870 case MSR_IA32_XFD_ERR: 3871 if (!msr_info->host_initiated && 3872 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3873 return 1; 3874 3875 if (data & ~kvm_guest_supported_xfd(vcpu)) 3876 return 1; 3877 3878 vcpu->arch.guest_fpu.xfd_err = data; 3879 break; 3880 #endif 3881 case MSR_IA32_PEBS_ENABLE: 3882 case MSR_IA32_DS_AREA: 3883 case MSR_PEBS_DATA_CFG: 3884 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3885 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3886 return kvm_pmu_set_msr(vcpu, msr_info); 3887 /* 3888 * Userspace is allowed to write '0' to MSRs that KVM reports 3889 * as to-be-saved, even if an MSRs isn't fully supported. 3890 */ 3891 return !msr_info->host_initiated || data; 3892 default: 3893 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3894 return kvm_pmu_set_msr(vcpu, msr_info); 3895 return KVM_MSR_RET_INVALID; 3896 } 3897 return 0; 3898 } 3899 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3900 3901 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3902 { 3903 u64 data; 3904 u64 mcg_cap = vcpu->arch.mcg_cap; 3905 unsigned bank_num = mcg_cap & 0xff; 3906 u32 offset, last_msr; 3907 3908 switch (msr) { 3909 case MSR_IA32_P5_MC_ADDR: 3910 case MSR_IA32_P5_MC_TYPE: 3911 data = 0; 3912 break; 3913 case MSR_IA32_MCG_CAP: 3914 data = vcpu->arch.mcg_cap; 3915 break; 3916 case MSR_IA32_MCG_CTL: 3917 if (!(mcg_cap & MCG_CTL_P) && !host) 3918 return 1; 3919 data = vcpu->arch.mcg_ctl; 3920 break; 3921 case MSR_IA32_MCG_STATUS: 3922 data = vcpu->arch.mcg_status; 3923 break; 3924 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3925 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3926 if (msr > last_msr) 3927 return 1; 3928 3929 if (!(mcg_cap & MCG_CMCI_P) && !host) 3930 return 1; 3931 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3932 last_msr + 1 - MSR_IA32_MC0_CTL2); 3933 data = vcpu->arch.mci_ctl2_banks[offset]; 3934 break; 3935 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3936 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3937 if (msr > last_msr) 3938 return 1; 3939 3940 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3941 last_msr + 1 - MSR_IA32_MC0_CTL); 3942 data = vcpu->arch.mce_banks[offset]; 3943 break; 3944 default: 3945 return 1; 3946 } 3947 *pdata = data; 3948 return 0; 3949 } 3950 3951 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3952 { 3953 switch (msr_info->index) { 3954 case MSR_IA32_PLATFORM_ID: 3955 case MSR_IA32_EBL_CR_POWERON: 3956 case MSR_IA32_LASTBRANCHFROMIP: 3957 case MSR_IA32_LASTBRANCHTOIP: 3958 case MSR_IA32_LASTINTFROMIP: 3959 case MSR_IA32_LASTINTTOIP: 3960 case MSR_AMD64_SYSCFG: 3961 case MSR_K8_TSEG_ADDR: 3962 case MSR_K8_TSEG_MASK: 3963 case MSR_VM_HSAVE_PA: 3964 case MSR_K8_INT_PENDING_MSG: 3965 case MSR_AMD64_NB_CFG: 3966 case MSR_FAM10H_MMIO_CONF_BASE: 3967 case MSR_AMD64_BU_CFG2: 3968 case MSR_IA32_PERF_CTL: 3969 case MSR_AMD64_DC_CFG: 3970 case MSR_F15H_EX_CFG: 3971 /* 3972 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3973 * limit) MSRs. Just return 0, as we do not want to expose the host 3974 * data here. Do not conditionalize this on CPUID, as KVM does not do 3975 * so for existing CPU-specific MSRs. 3976 */ 3977 case MSR_RAPL_POWER_UNIT: 3978 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3979 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3980 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3981 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3982 msr_info->data = 0; 3983 break; 3984 case MSR_IA32_PEBS_ENABLE: 3985 case MSR_IA32_DS_AREA: 3986 case MSR_PEBS_DATA_CFG: 3987 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3988 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3989 return kvm_pmu_get_msr(vcpu, msr_info); 3990 /* 3991 * Userspace is allowed to read MSRs that KVM reports as 3992 * to-be-saved, even if an MSR isn't fully supported. 3993 */ 3994 if (!msr_info->host_initiated) 3995 return 1; 3996 msr_info->data = 0; 3997 break; 3998 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3999 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4000 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4001 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4002 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4003 return kvm_pmu_get_msr(vcpu, msr_info); 4004 msr_info->data = 0; 4005 break; 4006 case MSR_IA32_UCODE_REV: 4007 msr_info->data = vcpu->arch.microcode_version; 4008 break; 4009 case MSR_IA32_ARCH_CAPABILITIES: 4010 if (!msr_info->host_initiated && 4011 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4012 return 1; 4013 msr_info->data = vcpu->arch.arch_capabilities; 4014 break; 4015 case MSR_IA32_PERF_CAPABILITIES: 4016 if (!msr_info->host_initiated && 4017 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4018 return 1; 4019 msr_info->data = vcpu->arch.perf_capabilities; 4020 break; 4021 case MSR_IA32_POWER_CTL: 4022 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4023 break; 4024 case MSR_IA32_TSC: { 4025 /* 4026 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4027 * even when not intercepted. AMD manual doesn't explicitly 4028 * state this but appears to behave the same. 4029 * 4030 * On userspace reads and writes, however, we unconditionally 4031 * return L1's TSC value to ensure backwards-compatible 4032 * behavior for migration. 4033 */ 4034 u64 offset, ratio; 4035 4036 if (msr_info->host_initiated) { 4037 offset = vcpu->arch.l1_tsc_offset; 4038 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4039 } else { 4040 offset = vcpu->arch.tsc_offset; 4041 ratio = vcpu->arch.tsc_scaling_ratio; 4042 } 4043 4044 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4045 break; 4046 } 4047 case MSR_MTRRcap: 4048 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4049 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4050 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4051 case 0xcd: /* fsb frequency */ 4052 msr_info->data = 3; 4053 break; 4054 /* 4055 * MSR_EBC_FREQUENCY_ID 4056 * Conservative value valid for even the basic CPU models. 4057 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4058 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4059 * and 266MHz for model 3, or 4. Set Core Clock 4060 * Frequency to System Bus Frequency Ratio to 1 (bits 4061 * 31:24) even though these are only valid for CPU 4062 * models > 2, however guests may end up dividing or 4063 * multiplying by zero otherwise. 4064 */ 4065 case MSR_EBC_FREQUENCY_ID: 4066 msr_info->data = 1 << 24; 4067 break; 4068 case MSR_IA32_APICBASE: 4069 msr_info->data = kvm_get_apic_base(vcpu); 4070 break; 4071 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4072 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4073 case MSR_IA32_TSC_DEADLINE: 4074 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4075 break; 4076 case MSR_IA32_TSC_ADJUST: 4077 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4078 break; 4079 case MSR_IA32_MISC_ENABLE: 4080 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4081 break; 4082 case MSR_IA32_SMBASE: 4083 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4084 return 1; 4085 msr_info->data = vcpu->arch.smbase; 4086 break; 4087 case MSR_SMI_COUNT: 4088 msr_info->data = vcpu->arch.smi_count; 4089 break; 4090 case MSR_IA32_PERF_STATUS: 4091 /* TSC increment by tick */ 4092 msr_info->data = 1000ULL; 4093 /* CPU multiplier */ 4094 msr_info->data |= (((uint64_t)4ULL) << 40); 4095 break; 4096 case MSR_EFER: 4097 msr_info->data = vcpu->arch.efer; 4098 break; 4099 case MSR_KVM_WALL_CLOCK: 4100 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4101 return 1; 4102 4103 msr_info->data = vcpu->kvm->arch.wall_clock; 4104 break; 4105 case MSR_KVM_WALL_CLOCK_NEW: 4106 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4107 return 1; 4108 4109 msr_info->data = vcpu->kvm->arch.wall_clock; 4110 break; 4111 case MSR_KVM_SYSTEM_TIME: 4112 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4113 return 1; 4114 4115 msr_info->data = vcpu->arch.time; 4116 break; 4117 case MSR_KVM_SYSTEM_TIME_NEW: 4118 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4119 return 1; 4120 4121 msr_info->data = vcpu->arch.time; 4122 break; 4123 case MSR_KVM_ASYNC_PF_EN: 4124 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4125 return 1; 4126 4127 msr_info->data = vcpu->arch.apf.msr_en_val; 4128 break; 4129 case MSR_KVM_ASYNC_PF_INT: 4130 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4131 return 1; 4132 4133 msr_info->data = vcpu->arch.apf.msr_int_val; 4134 break; 4135 case MSR_KVM_ASYNC_PF_ACK: 4136 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4137 return 1; 4138 4139 msr_info->data = 0; 4140 break; 4141 case MSR_KVM_STEAL_TIME: 4142 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4143 return 1; 4144 4145 msr_info->data = vcpu->arch.st.msr_val; 4146 break; 4147 case MSR_KVM_PV_EOI_EN: 4148 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4149 return 1; 4150 4151 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4152 break; 4153 case MSR_KVM_POLL_CONTROL: 4154 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4155 return 1; 4156 4157 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4158 break; 4159 case MSR_IA32_P5_MC_ADDR: 4160 case MSR_IA32_P5_MC_TYPE: 4161 case MSR_IA32_MCG_CAP: 4162 case MSR_IA32_MCG_CTL: 4163 case MSR_IA32_MCG_STATUS: 4164 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4165 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4166 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4167 msr_info->host_initiated); 4168 case MSR_IA32_XSS: 4169 if (!msr_info->host_initiated && 4170 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4171 return 1; 4172 msr_info->data = vcpu->arch.ia32_xss; 4173 break; 4174 case MSR_K7_CLK_CTL: 4175 /* 4176 * Provide expected ramp-up count for K7. All other 4177 * are set to zero, indicating minimum divisors for 4178 * every field. 4179 * 4180 * This prevents guest kernels on AMD host with CPU 4181 * type 6, model 8 and higher from exploding due to 4182 * the rdmsr failing. 4183 */ 4184 msr_info->data = 0x20000000; 4185 break; 4186 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4187 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4188 case HV_X64_MSR_SYNDBG_OPTIONS: 4189 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4190 case HV_X64_MSR_CRASH_CTL: 4191 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4192 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4193 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4194 case HV_X64_MSR_TSC_EMULATION_STATUS: 4195 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4196 return kvm_hv_get_msr_common(vcpu, 4197 msr_info->index, &msr_info->data, 4198 msr_info->host_initiated); 4199 case MSR_IA32_BBL_CR_CTL3: 4200 /* This legacy MSR exists but isn't fully documented in current 4201 * silicon. It is however accessed by winxp in very narrow 4202 * scenarios where it sets bit #19, itself documented as 4203 * a "reserved" bit. Best effort attempt to source coherent 4204 * read data here should the balance of the register be 4205 * interpreted by the guest: 4206 * 4207 * L2 cache control register 3: 64GB range, 256KB size, 4208 * enabled, latency 0x1, configured 4209 */ 4210 msr_info->data = 0xbe702111; 4211 break; 4212 case MSR_AMD64_OSVW_ID_LENGTH: 4213 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4214 return 1; 4215 msr_info->data = vcpu->arch.osvw.length; 4216 break; 4217 case MSR_AMD64_OSVW_STATUS: 4218 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4219 return 1; 4220 msr_info->data = vcpu->arch.osvw.status; 4221 break; 4222 case MSR_PLATFORM_INFO: 4223 if (!msr_info->host_initiated && 4224 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4225 return 1; 4226 msr_info->data = vcpu->arch.msr_platform_info; 4227 break; 4228 case MSR_MISC_FEATURES_ENABLES: 4229 msr_info->data = vcpu->arch.msr_misc_features_enables; 4230 break; 4231 case MSR_K7_HWCR: 4232 msr_info->data = vcpu->arch.msr_hwcr; 4233 break; 4234 #ifdef CONFIG_X86_64 4235 case MSR_IA32_XFD: 4236 if (!msr_info->host_initiated && 4237 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4238 return 1; 4239 4240 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4241 break; 4242 case MSR_IA32_XFD_ERR: 4243 if (!msr_info->host_initiated && 4244 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4245 return 1; 4246 4247 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4248 break; 4249 #endif 4250 default: 4251 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4252 return kvm_pmu_get_msr(vcpu, msr_info); 4253 return KVM_MSR_RET_INVALID; 4254 } 4255 return 0; 4256 } 4257 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4258 4259 /* 4260 * Read or write a bunch of msrs. All parameters are kernel addresses. 4261 * 4262 * @return number of msrs set successfully. 4263 */ 4264 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4265 struct kvm_msr_entry *entries, 4266 int (*do_msr)(struct kvm_vcpu *vcpu, 4267 unsigned index, u64 *data)) 4268 { 4269 int i; 4270 4271 for (i = 0; i < msrs->nmsrs; ++i) 4272 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4273 break; 4274 4275 return i; 4276 } 4277 4278 /* 4279 * Read or write a bunch of msrs. Parameters are user addresses. 4280 * 4281 * @return number of msrs set successfully. 4282 */ 4283 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4284 int (*do_msr)(struct kvm_vcpu *vcpu, 4285 unsigned index, u64 *data), 4286 int writeback) 4287 { 4288 struct kvm_msrs msrs; 4289 struct kvm_msr_entry *entries; 4290 int r, n; 4291 unsigned size; 4292 4293 r = -EFAULT; 4294 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4295 goto out; 4296 4297 r = -E2BIG; 4298 if (msrs.nmsrs >= MAX_IO_MSRS) 4299 goto out; 4300 4301 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4302 entries = memdup_user(user_msrs->entries, size); 4303 if (IS_ERR(entries)) { 4304 r = PTR_ERR(entries); 4305 goto out; 4306 } 4307 4308 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4309 if (r < 0) 4310 goto out_free; 4311 4312 r = -EFAULT; 4313 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4314 goto out_free; 4315 4316 r = n; 4317 4318 out_free: 4319 kfree(entries); 4320 out: 4321 return r; 4322 } 4323 4324 static inline bool kvm_can_mwait_in_guest(void) 4325 { 4326 return boot_cpu_has(X86_FEATURE_MWAIT) && 4327 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4328 boot_cpu_has(X86_FEATURE_ARAT); 4329 } 4330 4331 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4332 struct kvm_cpuid2 __user *cpuid_arg) 4333 { 4334 struct kvm_cpuid2 cpuid; 4335 int r; 4336 4337 r = -EFAULT; 4338 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4339 return r; 4340 4341 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4342 if (r) 4343 return r; 4344 4345 r = -EFAULT; 4346 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4347 return r; 4348 4349 return 0; 4350 } 4351 4352 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4353 { 4354 int r = 0; 4355 4356 switch (ext) { 4357 case KVM_CAP_IRQCHIP: 4358 case KVM_CAP_HLT: 4359 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4360 case KVM_CAP_SET_TSS_ADDR: 4361 case KVM_CAP_EXT_CPUID: 4362 case KVM_CAP_EXT_EMUL_CPUID: 4363 case KVM_CAP_CLOCKSOURCE: 4364 case KVM_CAP_PIT: 4365 case KVM_CAP_NOP_IO_DELAY: 4366 case KVM_CAP_MP_STATE: 4367 case KVM_CAP_SYNC_MMU: 4368 case KVM_CAP_USER_NMI: 4369 case KVM_CAP_REINJECT_CONTROL: 4370 case KVM_CAP_IRQ_INJECT_STATUS: 4371 case KVM_CAP_IOEVENTFD: 4372 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4373 case KVM_CAP_PIT2: 4374 case KVM_CAP_PIT_STATE2: 4375 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4376 case KVM_CAP_VCPU_EVENTS: 4377 case KVM_CAP_HYPERV: 4378 case KVM_CAP_HYPERV_VAPIC: 4379 case KVM_CAP_HYPERV_SPIN: 4380 case KVM_CAP_HYPERV_SYNIC: 4381 case KVM_CAP_HYPERV_SYNIC2: 4382 case KVM_CAP_HYPERV_VP_INDEX: 4383 case KVM_CAP_HYPERV_EVENTFD: 4384 case KVM_CAP_HYPERV_TLBFLUSH: 4385 case KVM_CAP_HYPERV_SEND_IPI: 4386 case KVM_CAP_HYPERV_CPUID: 4387 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4388 case KVM_CAP_SYS_HYPERV_CPUID: 4389 case KVM_CAP_PCI_SEGMENT: 4390 case KVM_CAP_DEBUGREGS: 4391 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4392 case KVM_CAP_XSAVE: 4393 case KVM_CAP_ASYNC_PF: 4394 case KVM_CAP_ASYNC_PF_INT: 4395 case KVM_CAP_GET_TSC_KHZ: 4396 case KVM_CAP_KVMCLOCK_CTRL: 4397 case KVM_CAP_READONLY_MEM: 4398 case KVM_CAP_HYPERV_TIME: 4399 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4400 case KVM_CAP_TSC_DEADLINE_TIMER: 4401 case KVM_CAP_DISABLE_QUIRKS: 4402 case KVM_CAP_SET_BOOT_CPU_ID: 4403 case KVM_CAP_SPLIT_IRQCHIP: 4404 case KVM_CAP_IMMEDIATE_EXIT: 4405 case KVM_CAP_PMU_EVENT_FILTER: 4406 case KVM_CAP_GET_MSR_FEATURES: 4407 case KVM_CAP_MSR_PLATFORM_INFO: 4408 case KVM_CAP_EXCEPTION_PAYLOAD: 4409 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4410 case KVM_CAP_SET_GUEST_DEBUG: 4411 case KVM_CAP_LAST_CPU: 4412 case KVM_CAP_X86_USER_SPACE_MSR: 4413 case KVM_CAP_X86_MSR_FILTER: 4414 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4415 #ifdef CONFIG_X86_SGX_KVM 4416 case KVM_CAP_SGX_ATTRIBUTE: 4417 #endif 4418 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4419 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4420 case KVM_CAP_SREGS2: 4421 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4422 case KVM_CAP_VCPU_ATTRIBUTES: 4423 case KVM_CAP_SYS_ATTRIBUTES: 4424 case KVM_CAP_VAPIC: 4425 case KVM_CAP_ENABLE_CAP: 4426 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4427 r = 1; 4428 break; 4429 case KVM_CAP_EXIT_HYPERCALL: 4430 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4431 break; 4432 case KVM_CAP_SET_GUEST_DEBUG2: 4433 return KVM_GUESTDBG_VALID_MASK; 4434 #ifdef CONFIG_KVM_XEN 4435 case KVM_CAP_XEN_HVM: 4436 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4437 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4438 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4439 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4440 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4441 if (sched_info_on()) 4442 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4443 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4444 break; 4445 #endif 4446 case KVM_CAP_SYNC_REGS: 4447 r = KVM_SYNC_X86_VALID_FIELDS; 4448 break; 4449 case KVM_CAP_ADJUST_CLOCK: 4450 r = KVM_CLOCK_VALID_FLAGS; 4451 break; 4452 case KVM_CAP_X86_DISABLE_EXITS: 4453 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4454 KVM_X86_DISABLE_EXITS_CSTATE; 4455 if(kvm_can_mwait_in_guest()) 4456 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4457 break; 4458 case KVM_CAP_X86_SMM: 4459 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4460 break; 4461 4462 /* SMBASE is usually relocated above 1M on modern chipsets, 4463 * and SMM handlers might indeed rely on 4G segment limits, 4464 * so do not report SMM to be available if real mode is 4465 * emulated via vm86 mode. Still, do not go to great lengths 4466 * to avoid userspace's usage of the feature, because it is a 4467 * fringe case that is not enabled except via specific settings 4468 * of the module parameters. 4469 */ 4470 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4471 break; 4472 case KVM_CAP_NR_VCPUS: 4473 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4474 break; 4475 case KVM_CAP_MAX_VCPUS: 4476 r = KVM_MAX_VCPUS; 4477 break; 4478 case KVM_CAP_MAX_VCPU_ID: 4479 r = KVM_MAX_VCPU_IDS; 4480 break; 4481 case KVM_CAP_PV_MMU: /* obsolete */ 4482 r = 0; 4483 break; 4484 case KVM_CAP_MCE: 4485 r = KVM_MAX_MCE_BANKS; 4486 break; 4487 case KVM_CAP_XCRS: 4488 r = boot_cpu_has(X86_FEATURE_XSAVE); 4489 break; 4490 case KVM_CAP_TSC_CONTROL: 4491 case KVM_CAP_VM_TSC_CONTROL: 4492 r = kvm_caps.has_tsc_control; 4493 break; 4494 case KVM_CAP_X2APIC_API: 4495 r = KVM_X2APIC_API_VALID_FLAGS; 4496 break; 4497 case KVM_CAP_NESTED_STATE: 4498 r = kvm_x86_ops.nested_ops->get_state ? 4499 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4500 break; 4501 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4502 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4503 break; 4504 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4505 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4506 break; 4507 case KVM_CAP_SMALLER_MAXPHYADDR: 4508 r = (int) allow_smaller_maxphyaddr; 4509 break; 4510 case KVM_CAP_STEAL_TIME: 4511 r = sched_info_on(); 4512 break; 4513 case KVM_CAP_X86_BUS_LOCK_EXIT: 4514 if (kvm_caps.has_bus_lock_exit) 4515 r = KVM_BUS_LOCK_DETECTION_OFF | 4516 KVM_BUS_LOCK_DETECTION_EXIT; 4517 else 4518 r = 0; 4519 break; 4520 case KVM_CAP_XSAVE2: { 4521 u64 guest_perm = xstate_get_guest_group_perm(); 4522 4523 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4524 if (r < sizeof(struct kvm_xsave)) 4525 r = sizeof(struct kvm_xsave); 4526 break; 4527 } 4528 case KVM_CAP_PMU_CAPABILITY: 4529 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4530 break; 4531 case KVM_CAP_DISABLE_QUIRKS2: 4532 r = KVM_X86_VALID_QUIRKS; 4533 break; 4534 case KVM_CAP_X86_NOTIFY_VMEXIT: 4535 r = kvm_caps.has_notify_vmexit; 4536 break; 4537 default: 4538 break; 4539 } 4540 return r; 4541 } 4542 4543 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4544 { 4545 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4546 4547 if ((u64)(unsigned long)uaddr != attr->addr) 4548 return ERR_PTR_USR(-EFAULT); 4549 return uaddr; 4550 } 4551 4552 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4553 { 4554 u64 __user *uaddr = kvm_get_attr_addr(attr); 4555 4556 if (attr->group) 4557 return -ENXIO; 4558 4559 if (IS_ERR(uaddr)) 4560 return PTR_ERR(uaddr); 4561 4562 switch (attr->attr) { 4563 case KVM_X86_XCOMP_GUEST_SUPP: 4564 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4565 return -EFAULT; 4566 return 0; 4567 default: 4568 return -ENXIO; 4569 break; 4570 } 4571 } 4572 4573 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4574 { 4575 if (attr->group) 4576 return -ENXIO; 4577 4578 switch (attr->attr) { 4579 case KVM_X86_XCOMP_GUEST_SUPP: 4580 return 0; 4581 default: 4582 return -ENXIO; 4583 } 4584 } 4585 4586 long kvm_arch_dev_ioctl(struct file *filp, 4587 unsigned int ioctl, unsigned long arg) 4588 { 4589 void __user *argp = (void __user *)arg; 4590 long r; 4591 4592 switch (ioctl) { 4593 case KVM_GET_MSR_INDEX_LIST: { 4594 struct kvm_msr_list __user *user_msr_list = argp; 4595 struct kvm_msr_list msr_list; 4596 unsigned n; 4597 4598 r = -EFAULT; 4599 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4600 goto out; 4601 n = msr_list.nmsrs; 4602 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4603 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4604 goto out; 4605 r = -E2BIG; 4606 if (n < msr_list.nmsrs) 4607 goto out; 4608 r = -EFAULT; 4609 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4610 num_msrs_to_save * sizeof(u32))) 4611 goto out; 4612 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4613 &emulated_msrs, 4614 num_emulated_msrs * sizeof(u32))) 4615 goto out; 4616 r = 0; 4617 break; 4618 } 4619 case KVM_GET_SUPPORTED_CPUID: 4620 case KVM_GET_EMULATED_CPUID: { 4621 struct kvm_cpuid2 __user *cpuid_arg = argp; 4622 struct kvm_cpuid2 cpuid; 4623 4624 r = -EFAULT; 4625 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4626 goto out; 4627 4628 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4629 ioctl); 4630 if (r) 4631 goto out; 4632 4633 r = -EFAULT; 4634 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4635 goto out; 4636 r = 0; 4637 break; 4638 } 4639 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4640 r = -EFAULT; 4641 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4642 sizeof(kvm_caps.supported_mce_cap))) 4643 goto out; 4644 r = 0; 4645 break; 4646 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4647 struct kvm_msr_list __user *user_msr_list = argp; 4648 struct kvm_msr_list msr_list; 4649 unsigned int n; 4650 4651 r = -EFAULT; 4652 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4653 goto out; 4654 n = msr_list.nmsrs; 4655 msr_list.nmsrs = num_msr_based_features; 4656 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4657 goto out; 4658 r = -E2BIG; 4659 if (n < msr_list.nmsrs) 4660 goto out; 4661 r = -EFAULT; 4662 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4663 num_msr_based_features * sizeof(u32))) 4664 goto out; 4665 r = 0; 4666 break; 4667 } 4668 case KVM_GET_MSRS: 4669 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4670 break; 4671 case KVM_GET_SUPPORTED_HV_CPUID: 4672 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4673 break; 4674 case KVM_GET_DEVICE_ATTR: { 4675 struct kvm_device_attr attr; 4676 r = -EFAULT; 4677 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4678 break; 4679 r = kvm_x86_dev_get_attr(&attr); 4680 break; 4681 } 4682 case KVM_HAS_DEVICE_ATTR: { 4683 struct kvm_device_attr attr; 4684 r = -EFAULT; 4685 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4686 break; 4687 r = kvm_x86_dev_has_attr(&attr); 4688 break; 4689 } 4690 default: 4691 r = -EINVAL; 4692 break; 4693 } 4694 out: 4695 return r; 4696 } 4697 4698 static void wbinvd_ipi(void *garbage) 4699 { 4700 wbinvd(); 4701 } 4702 4703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4704 { 4705 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4706 } 4707 4708 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4709 { 4710 /* Address WBINVD may be executed by guest */ 4711 if (need_emulate_wbinvd(vcpu)) { 4712 if (static_call(kvm_x86_has_wbinvd_exit)()) 4713 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4714 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4715 smp_call_function_single(vcpu->cpu, 4716 wbinvd_ipi, NULL, 1); 4717 } 4718 4719 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4720 4721 /* Save host pkru register if supported */ 4722 vcpu->arch.host_pkru = read_pkru(); 4723 4724 /* Apply any externally detected TSC adjustments (due to suspend) */ 4725 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4726 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4727 vcpu->arch.tsc_offset_adjustment = 0; 4728 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4729 } 4730 4731 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4732 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4733 rdtsc() - vcpu->arch.last_host_tsc; 4734 if (tsc_delta < 0) 4735 mark_tsc_unstable("KVM discovered backwards TSC"); 4736 4737 if (kvm_check_tsc_unstable()) { 4738 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4739 vcpu->arch.last_guest_tsc); 4740 kvm_vcpu_write_tsc_offset(vcpu, offset); 4741 vcpu->arch.tsc_catchup = 1; 4742 } 4743 4744 if (kvm_lapic_hv_timer_in_use(vcpu)) 4745 kvm_lapic_restart_hv_timer(vcpu); 4746 4747 /* 4748 * On a host with synchronized TSC, there is no need to update 4749 * kvmclock on vcpu->cpu migration 4750 */ 4751 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4752 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4753 if (vcpu->cpu != cpu) 4754 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4755 vcpu->cpu = cpu; 4756 } 4757 4758 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4759 } 4760 4761 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4762 { 4763 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4764 struct kvm_steal_time __user *st; 4765 struct kvm_memslots *slots; 4766 static const u8 preempted = KVM_VCPU_PREEMPTED; 4767 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4768 4769 /* 4770 * The vCPU can be marked preempted if and only if the VM-Exit was on 4771 * an instruction boundary and will not trigger guest emulation of any 4772 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4773 * when this is true, for example allowing the vCPU to be marked 4774 * preempted if and only if the VM-Exit was due to a host interrupt. 4775 */ 4776 if (!vcpu->arch.at_instruction_boundary) { 4777 vcpu->stat.preemption_other++; 4778 return; 4779 } 4780 4781 vcpu->stat.preemption_reported++; 4782 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4783 return; 4784 4785 if (vcpu->arch.st.preempted) 4786 return; 4787 4788 /* This happens on process exit */ 4789 if (unlikely(current->mm != vcpu->kvm->mm)) 4790 return; 4791 4792 slots = kvm_memslots(vcpu->kvm); 4793 4794 if (unlikely(slots->generation != ghc->generation || 4795 gpa != ghc->gpa || 4796 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4797 return; 4798 4799 st = (struct kvm_steal_time __user *)ghc->hva; 4800 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4801 4802 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4803 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4804 4805 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4806 } 4807 4808 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4809 { 4810 int idx; 4811 4812 if (vcpu->preempted) { 4813 if (!vcpu->arch.guest_state_protected) 4814 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4815 4816 /* 4817 * Take the srcu lock as memslots will be accessed to check the gfn 4818 * cache generation against the memslots generation. 4819 */ 4820 idx = srcu_read_lock(&vcpu->kvm->srcu); 4821 if (kvm_xen_msr_enabled(vcpu->kvm)) 4822 kvm_xen_runstate_set_preempted(vcpu); 4823 else 4824 kvm_steal_time_set_preempted(vcpu); 4825 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4826 } 4827 4828 static_call(kvm_x86_vcpu_put)(vcpu); 4829 vcpu->arch.last_host_tsc = rdtsc(); 4830 } 4831 4832 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4833 struct kvm_lapic_state *s) 4834 { 4835 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4836 4837 return kvm_apic_get_state(vcpu, s); 4838 } 4839 4840 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4841 struct kvm_lapic_state *s) 4842 { 4843 int r; 4844 4845 r = kvm_apic_set_state(vcpu, s); 4846 if (r) 4847 return r; 4848 update_cr8_intercept(vcpu); 4849 4850 return 0; 4851 } 4852 4853 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4854 { 4855 /* 4856 * We can accept userspace's request for interrupt injection 4857 * as long as we have a place to store the interrupt number. 4858 * The actual injection will happen when the CPU is able to 4859 * deliver the interrupt. 4860 */ 4861 if (kvm_cpu_has_extint(vcpu)) 4862 return false; 4863 4864 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4865 return (!lapic_in_kernel(vcpu) || 4866 kvm_apic_accept_pic_intr(vcpu)); 4867 } 4868 4869 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4870 { 4871 /* 4872 * Do not cause an interrupt window exit if an exception 4873 * is pending or an event needs reinjection; userspace 4874 * might want to inject the interrupt manually using KVM_SET_REGS 4875 * or KVM_SET_SREGS. For that to work, we must be at an 4876 * instruction boundary and with no events half-injected. 4877 */ 4878 return (kvm_arch_interrupt_allowed(vcpu) && 4879 kvm_cpu_accept_dm_intr(vcpu) && 4880 !kvm_event_needs_reinjection(vcpu) && 4881 !kvm_is_exception_pending(vcpu)); 4882 } 4883 4884 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4885 struct kvm_interrupt *irq) 4886 { 4887 if (irq->irq >= KVM_NR_INTERRUPTS) 4888 return -EINVAL; 4889 4890 if (!irqchip_in_kernel(vcpu->kvm)) { 4891 kvm_queue_interrupt(vcpu, irq->irq, false); 4892 kvm_make_request(KVM_REQ_EVENT, vcpu); 4893 return 0; 4894 } 4895 4896 /* 4897 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4898 * fail for in-kernel 8259. 4899 */ 4900 if (pic_in_kernel(vcpu->kvm)) 4901 return -ENXIO; 4902 4903 if (vcpu->arch.pending_external_vector != -1) 4904 return -EEXIST; 4905 4906 vcpu->arch.pending_external_vector = irq->irq; 4907 kvm_make_request(KVM_REQ_EVENT, vcpu); 4908 return 0; 4909 } 4910 4911 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4912 { 4913 kvm_inject_nmi(vcpu); 4914 4915 return 0; 4916 } 4917 4918 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4919 struct kvm_tpr_access_ctl *tac) 4920 { 4921 if (tac->flags) 4922 return -EINVAL; 4923 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4924 return 0; 4925 } 4926 4927 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4928 u64 mcg_cap) 4929 { 4930 int r; 4931 unsigned bank_num = mcg_cap & 0xff, bank; 4932 4933 r = -EINVAL; 4934 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4935 goto out; 4936 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4937 goto out; 4938 r = 0; 4939 vcpu->arch.mcg_cap = mcg_cap; 4940 /* Init IA32_MCG_CTL to all 1s */ 4941 if (mcg_cap & MCG_CTL_P) 4942 vcpu->arch.mcg_ctl = ~(u64)0; 4943 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4944 for (bank = 0; bank < bank_num; bank++) { 4945 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4946 if (mcg_cap & MCG_CMCI_P) 4947 vcpu->arch.mci_ctl2_banks[bank] = 0; 4948 } 4949 4950 kvm_apic_after_set_mcg_cap(vcpu); 4951 4952 static_call(kvm_x86_setup_mce)(vcpu); 4953 out: 4954 return r; 4955 } 4956 4957 /* 4958 * Validate this is an UCNA (uncorrectable no action) error by checking the 4959 * MCG_STATUS and MCi_STATUS registers: 4960 * - none of the bits for Machine Check Exceptions are set 4961 * - both the VAL (valid) and UC (uncorrectable) bits are set 4962 * MCI_STATUS_PCC - Processor Context Corrupted 4963 * MCI_STATUS_S - Signaled as a Machine Check Exception 4964 * MCI_STATUS_AR - Software recoverable Action Required 4965 */ 4966 static bool is_ucna(struct kvm_x86_mce *mce) 4967 { 4968 return !mce->mcg_status && 4969 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4970 (mce->status & MCI_STATUS_VAL) && 4971 (mce->status & MCI_STATUS_UC); 4972 } 4973 4974 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4975 { 4976 u64 mcg_cap = vcpu->arch.mcg_cap; 4977 4978 banks[1] = mce->status; 4979 banks[2] = mce->addr; 4980 banks[3] = mce->misc; 4981 vcpu->arch.mcg_status = mce->mcg_status; 4982 4983 if (!(mcg_cap & MCG_CMCI_P) || 4984 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4985 return 0; 4986 4987 if (lapic_in_kernel(vcpu)) 4988 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4989 4990 return 0; 4991 } 4992 4993 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4994 struct kvm_x86_mce *mce) 4995 { 4996 u64 mcg_cap = vcpu->arch.mcg_cap; 4997 unsigned bank_num = mcg_cap & 0xff; 4998 u64 *banks = vcpu->arch.mce_banks; 4999 5000 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5001 return -EINVAL; 5002 5003 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5004 5005 if (is_ucna(mce)) 5006 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5007 5008 /* 5009 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5010 * reporting is disabled 5011 */ 5012 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5013 vcpu->arch.mcg_ctl != ~(u64)0) 5014 return 0; 5015 /* 5016 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5017 * reporting is disabled for the bank 5018 */ 5019 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5020 return 0; 5021 if (mce->status & MCI_STATUS_UC) { 5022 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5023 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5024 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5025 return 0; 5026 } 5027 if (banks[1] & MCI_STATUS_VAL) 5028 mce->status |= MCI_STATUS_OVER; 5029 banks[2] = mce->addr; 5030 banks[3] = mce->misc; 5031 vcpu->arch.mcg_status = mce->mcg_status; 5032 banks[1] = mce->status; 5033 kvm_queue_exception(vcpu, MC_VECTOR); 5034 } else if (!(banks[1] & MCI_STATUS_VAL) 5035 || !(banks[1] & MCI_STATUS_UC)) { 5036 if (banks[1] & MCI_STATUS_VAL) 5037 mce->status |= MCI_STATUS_OVER; 5038 banks[2] = mce->addr; 5039 banks[3] = mce->misc; 5040 banks[1] = mce->status; 5041 } else 5042 banks[1] |= MCI_STATUS_OVER; 5043 return 0; 5044 } 5045 5046 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5047 struct kvm_vcpu_events *events) 5048 { 5049 struct kvm_queued_exception *ex; 5050 5051 process_nmi(vcpu); 5052 5053 #ifdef CONFIG_KVM_SMM 5054 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5055 process_smi(vcpu); 5056 #endif 5057 5058 /* 5059 * KVM's ABI only allows for one exception to be migrated. Luckily, 5060 * the only time there can be two queued exceptions is if there's a 5061 * non-exiting _injected_ exception, and a pending exiting exception. 5062 * In that case, ignore the VM-Exiting exception as it's an extension 5063 * of the injected exception. 5064 */ 5065 if (vcpu->arch.exception_vmexit.pending && 5066 !vcpu->arch.exception.pending && 5067 !vcpu->arch.exception.injected) 5068 ex = &vcpu->arch.exception_vmexit; 5069 else 5070 ex = &vcpu->arch.exception; 5071 5072 /* 5073 * In guest mode, payload delivery should be deferred if the exception 5074 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5075 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5076 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5077 * propagate the payload and so it cannot be safely deferred. Deliver 5078 * the payload if the capability hasn't been requested. 5079 */ 5080 if (!vcpu->kvm->arch.exception_payload_enabled && 5081 ex->pending && ex->has_payload) 5082 kvm_deliver_exception_payload(vcpu, ex); 5083 5084 memset(events, 0, sizeof(*events)); 5085 5086 /* 5087 * The API doesn't provide the instruction length for software 5088 * exceptions, so don't report them. As long as the guest RIP 5089 * isn't advanced, we should expect to encounter the exception 5090 * again. 5091 */ 5092 if (!kvm_exception_is_soft(ex->vector)) { 5093 events->exception.injected = ex->injected; 5094 events->exception.pending = ex->pending; 5095 /* 5096 * For ABI compatibility, deliberately conflate 5097 * pending and injected exceptions when 5098 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5099 */ 5100 if (!vcpu->kvm->arch.exception_payload_enabled) 5101 events->exception.injected |= ex->pending; 5102 } 5103 events->exception.nr = ex->vector; 5104 events->exception.has_error_code = ex->has_error_code; 5105 events->exception.error_code = ex->error_code; 5106 events->exception_has_payload = ex->has_payload; 5107 events->exception_payload = ex->payload; 5108 5109 events->interrupt.injected = 5110 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5111 events->interrupt.nr = vcpu->arch.interrupt.nr; 5112 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5113 5114 events->nmi.injected = vcpu->arch.nmi_injected; 5115 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5116 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5117 5118 /* events->sipi_vector is never valid when reporting to user space */ 5119 5120 #ifdef CONFIG_KVM_SMM 5121 events->smi.smm = is_smm(vcpu); 5122 events->smi.pending = vcpu->arch.smi_pending; 5123 events->smi.smm_inside_nmi = 5124 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5125 #endif 5126 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5127 5128 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5129 | KVM_VCPUEVENT_VALID_SHADOW 5130 | KVM_VCPUEVENT_VALID_SMM); 5131 if (vcpu->kvm->arch.exception_payload_enabled) 5132 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5133 if (vcpu->kvm->arch.triple_fault_event) { 5134 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5135 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5136 } 5137 } 5138 5139 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5140 struct kvm_vcpu_events *events) 5141 { 5142 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5143 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5144 | KVM_VCPUEVENT_VALID_SHADOW 5145 | KVM_VCPUEVENT_VALID_SMM 5146 | KVM_VCPUEVENT_VALID_PAYLOAD 5147 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5148 return -EINVAL; 5149 5150 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5151 if (!vcpu->kvm->arch.exception_payload_enabled) 5152 return -EINVAL; 5153 if (events->exception.pending) 5154 events->exception.injected = 0; 5155 else 5156 events->exception_has_payload = 0; 5157 } else { 5158 events->exception.pending = 0; 5159 events->exception_has_payload = 0; 5160 } 5161 5162 if ((events->exception.injected || events->exception.pending) && 5163 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5164 return -EINVAL; 5165 5166 /* INITs are latched while in SMM */ 5167 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5168 (events->smi.smm || events->smi.pending) && 5169 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5170 return -EINVAL; 5171 5172 process_nmi(vcpu); 5173 5174 /* 5175 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5176 * morph the exception to a VM-Exit if appropriate. Do this only for 5177 * pending exceptions, already-injected exceptions are not subject to 5178 * intercpetion. Note, userspace that conflates pending and injected 5179 * is hosed, and will incorrectly convert an injected exception into a 5180 * pending exception, which in turn may cause a spurious VM-Exit. 5181 */ 5182 vcpu->arch.exception_from_userspace = events->exception.pending; 5183 5184 vcpu->arch.exception_vmexit.pending = false; 5185 5186 vcpu->arch.exception.injected = events->exception.injected; 5187 vcpu->arch.exception.pending = events->exception.pending; 5188 vcpu->arch.exception.vector = events->exception.nr; 5189 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5190 vcpu->arch.exception.error_code = events->exception.error_code; 5191 vcpu->arch.exception.has_payload = events->exception_has_payload; 5192 vcpu->arch.exception.payload = events->exception_payload; 5193 5194 vcpu->arch.interrupt.injected = events->interrupt.injected; 5195 vcpu->arch.interrupt.nr = events->interrupt.nr; 5196 vcpu->arch.interrupt.soft = events->interrupt.soft; 5197 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5198 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5199 events->interrupt.shadow); 5200 5201 vcpu->arch.nmi_injected = events->nmi.injected; 5202 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5203 vcpu->arch.nmi_pending = events->nmi.pending; 5204 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5205 5206 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5207 lapic_in_kernel(vcpu)) 5208 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5209 5210 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5211 #ifdef CONFIG_KVM_SMM 5212 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5213 kvm_leave_nested(vcpu); 5214 kvm_smm_changed(vcpu, events->smi.smm); 5215 } 5216 5217 vcpu->arch.smi_pending = events->smi.pending; 5218 5219 if (events->smi.smm) { 5220 if (events->smi.smm_inside_nmi) 5221 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5222 else 5223 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5224 } 5225 5226 #else 5227 if (events->smi.smm || events->smi.pending || 5228 events->smi.smm_inside_nmi) 5229 return -EINVAL; 5230 #endif 5231 5232 if (lapic_in_kernel(vcpu)) { 5233 if (events->smi.latched_init) 5234 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5235 else 5236 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5237 } 5238 } 5239 5240 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5241 if (!vcpu->kvm->arch.triple_fault_event) 5242 return -EINVAL; 5243 if (events->triple_fault.pending) 5244 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5245 else 5246 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5247 } 5248 5249 kvm_make_request(KVM_REQ_EVENT, vcpu); 5250 5251 return 0; 5252 } 5253 5254 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5255 struct kvm_debugregs *dbgregs) 5256 { 5257 unsigned long val; 5258 5259 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5260 kvm_get_dr(vcpu, 6, &val); 5261 dbgregs->dr6 = val; 5262 dbgregs->dr7 = vcpu->arch.dr7; 5263 dbgregs->flags = 0; 5264 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5265 } 5266 5267 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5268 struct kvm_debugregs *dbgregs) 5269 { 5270 if (dbgregs->flags) 5271 return -EINVAL; 5272 5273 if (!kvm_dr6_valid(dbgregs->dr6)) 5274 return -EINVAL; 5275 if (!kvm_dr7_valid(dbgregs->dr7)) 5276 return -EINVAL; 5277 5278 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5279 kvm_update_dr0123(vcpu); 5280 vcpu->arch.dr6 = dbgregs->dr6; 5281 vcpu->arch.dr7 = dbgregs->dr7; 5282 kvm_update_dr7(vcpu); 5283 5284 return 0; 5285 } 5286 5287 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5288 struct kvm_xsave *guest_xsave) 5289 { 5290 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5291 return; 5292 5293 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5294 guest_xsave->region, 5295 sizeof(guest_xsave->region), 5296 vcpu->arch.pkru); 5297 } 5298 5299 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5300 u8 *state, unsigned int size) 5301 { 5302 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5303 return; 5304 5305 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5306 state, size, vcpu->arch.pkru); 5307 } 5308 5309 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5310 struct kvm_xsave *guest_xsave) 5311 { 5312 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5313 return 0; 5314 5315 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5316 guest_xsave->region, 5317 kvm_caps.supported_xcr0, 5318 &vcpu->arch.pkru); 5319 } 5320 5321 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5322 struct kvm_xcrs *guest_xcrs) 5323 { 5324 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5325 guest_xcrs->nr_xcrs = 0; 5326 return; 5327 } 5328 5329 guest_xcrs->nr_xcrs = 1; 5330 guest_xcrs->flags = 0; 5331 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5332 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5333 } 5334 5335 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5336 struct kvm_xcrs *guest_xcrs) 5337 { 5338 int i, r = 0; 5339 5340 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5341 return -EINVAL; 5342 5343 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5344 return -EINVAL; 5345 5346 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5347 /* Only support XCR0 currently */ 5348 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5349 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5350 guest_xcrs->xcrs[i].value); 5351 break; 5352 } 5353 if (r) 5354 r = -EINVAL; 5355 return r; 5356 } 5357 5358 /* 5359 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5360 * stopped by the hypervisor. This function will be called from the host only. 5361 * EINVAL is returned when the host attempts to set the flag for a guest that 5362 * does not support pv clocks. 5363 */ 5364 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5365 { 5366 if (!vcpu->arch.pv_time.active) 5367 return -EINVAL; 5368 vcpu->arch.pvclock_set_guest_stopped_request = true; 5369 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5370 return 0; 5371 } 5372 5373 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5374 struct kvm_device_attr *attr) 5375 { 5376 int r; 5377 5378 switch (attr->attr) { 5379 case KVM_VCPU_TSC_OFFSET: 5380 r = 0; 5381 break; 5382 default: 5383 r = -ENXIO; 5384 } 5385 5386 return r; 5387 } 5388 5389 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5390 struct kvm_device_attr *attr) 5391 { 5392 u64 __user *uaddr = kvm_get_attr_addr(attr); 5393 int r; 5394 5395 if (IS_ERR(uaddr)) 5396 return PTR_ERR(uaddr); 5397 5398 switch (attr->attr) { 5399 case KVM_VCPU_TSC_OFFSET: 5400 r = -EFAULT; 5401 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5402 break; 5403 r = 0; 5404 break; 5405 default: 5406 r = -ENXIO; 5407 } 5408 5409 return r; 5410 } 5411 5412 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5413 struct kvm_device_attr *attr) 5414 { 5415 u64 __user *uaddr = kvm_get_attr_addr(attr); 5416 struct kvm *kvm = vcpu->kvm; 5417 int r; 5418 5419 if (IS_ERR(uaddr)) 5420 return PTR_ERR(uaddr); 5421 5422 switch (attr->attr) { 5423 case KVM_VCPU_TSC_OFFSET: { 5424 u64 offset, tsc, ns; 5425 unsigned long flags; 5426 bool matched; 5427 5428 r = -EFAULT; 5429 if (get_user(offset, uaddr)) 5430 break; 5431 5432 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5433 5434 matched = (vcpu->arch.virtual_tsc_khz && 5435 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5436 kvm->arch.last_tsc_offset == offset); 5437 5438 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5439 ns = get_kvmclock_base_ns(); 5440 5441 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5442 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5443 5444 r = 0; 5445 break; 5446 } 5447 default: 5448 r = -ENXIO; 5449 } 5450 5451 return r; 5452 } 5453 5454 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5455 unsigned int ioctl, 5456 void __user *argp) 5457 { 5458 struct kvm_device_attr attr; 5459 int r; 5460 5461 if (copy_from_user(&attr, argp, sizeof(attr))) 5462 return -EFAULT; 5463 5464 if (attr.group != KVM_VCPU_TSC_CTRL) 5465 return -ENXIO; 5466 5467 switch (ioctl) { 5468 case KVM_HAS_DEVICE_ATTR: 5469 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5470 break; 5471 case KVM_GET_DEVICE_ATTR: 5472 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5473 break; 5474 case KVM_SET_DEVICE_ATTR: 5475 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5476 break; 5477 } 5478 5479 return r; 5480 } 5481 5482 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5483 struct kvm_enable_cap *cap) 5484 { 5485 int r; 5486 uint16_t vmcs_version; 5487 void __user *user_ptr; 5488 5489 if (cap->flags) 5490 return -EINVAL; 5491 5492 switch (cap->cap) { 5493 case KVM_CAP_HYPERV_SYNIC2: 5494 if (cap->args[0]) 5495 return -EINVAL; 5496 fallthrough; 5497 5498 case KVM_CAP_HYPERV_SYNIC: 5499 if (!irqchip_in_kernel(vcpu->kvm)) 5500 return -EINVAL; 5501 return kvm_hv_activate_synic(vcpu, cap->cap == 5502 KVM_CAP_HYPERV_SYNIC2); 5503 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5504 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5505 return -ENOTTY; 5506 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5507 if (!r) { 5508 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5509 if (copy_to_user(user_ptr, &vmcs_version, 5510 sizeof(vmcs_version))) 5511 r = -EFAULT; 5512 } 5513 return r; 5514 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5515 if (!kvm_x86_ops.enable_l2_tlb_flush) 5516 return -ENOTTY; 5517 5518 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5519 5520 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5521 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5522 5523 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5524 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5525 if (vcpu->arch.pv_cpuid.enforce) 5526 kvm_update_pv_runtime(vcpu); 5527 5528 return 0; 5529 default: 5530 return -EINVAL; 5531 } 5532 } 5533 5534 long kvm_arch_vcpu_ioctl(struct file *filp, 5535 unsigned int ioctl, unsigned long arg) 5536 { 5537 struct kvm_vcpu *vcpu = filp->private_data; 5538 void __user *argp = (void __user *)arg; 5539 int r; 5540 union { 5541 struct kvm_sregs2 *sregs2; 5542 struct kvm_lapic_state *lapic; 5543 struct kvm_xsave *xsave; 5544 struct kvm_xcrs *xcrs; 5545 void *buffer; 5546 } u; 5547 5548 vcpu_load(vcpu); 5549 5550 u.buffer = NULL; 5551 switch (ioctl) { 5552 case KVM_GET_LAPIC: { 5553 r = -EINVAL; 5554 if (!lapic_in_kernel(vcpu)) 5555 goto out; 5556 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5557 GFP_KERNEL_ACCOUNT); 5558 5559 r = -ENOMEM; 5560 if (!u.lapic) 5561 goto out; 5562 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5563 if (r) 5564 goto out; 5565 r = -EFAULT; 5566 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5567 goto out; 5568 r = 0; 5569 break; 5570 } 5571 case KVM_SET_LAPIC: { 5572 r = -EINVAL; 5573 if (!lapic_in_kernel(vcpu)) 5574 goto out; 5575 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5576 if (IS_ERR(u.lapic)) { 5577 r = PTR_ERR(u.lapic); 5578 goto out_nofree; 5579 } 5580 5581 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5582 break; 5583 } 5584 case KVM_INTERRUPT: { 5585 struct kvm_interrupt irq; 5586 5587 r = -EFAULT; 5588 if (copy_from_user(&irq, argp, sizeof(irq))) 5589 goto out; 5590 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5591 break; 5592 } 5593 case KVM_NMI: { 5594 r = kvm_vcpu_ioctl_nmi(vcpu); 5595 break; 5596 } 5597 case KVM_SMI: { 5598 r = kvm_inject_smi(vcpu); 5599 break; 5600 } 5601 case KVM_SET_CPUID: { 5602 struct kvm_cpuid __user *cpuid_arg = argp; 5603 struct kvm_cpuid cpuid; 5604 5605 r = -EFAULT; 5606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5607 goto out; 5608 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5609 break; 5610 } 5611 case KVM_SET_CPUID2: { 5612 struct kvm_cpuid2 __user *cpuid_arg = argp; 5613 struct kvm_cpuid2 cpuid; 5614 5615 r = -EFAULT; 5616 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5617 goto out; 5618 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5619 cpuid_arg->entries); 5620 break; 5621 } 5622 case KVM_GET_CPUID2: { 5623 struct kvm_cpuid2 __user *cpuid_arg = argp; 5624 struct kvm_cpuid2 cpuid; 5625 5626 r = -EFAULT; 5627 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5628 goto out; 5629 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5630 cpuid_arg->entries); 5631 if (r) 5632 goto out; 5633 r = -EFAULT; 5634 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5635 goto out; 5636 r = 0; 5637 break; 5638 } 5639 case KVM_GET_MSRS: { 5640 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5641 r = msr_io(vcpu, argp, do_get_msr, 1); 5642 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5643 break; 5644 } 5645 case KVM_SET_MSRS: { 5646 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5647 r = msr_io(vcpu, argp, do_set_msr, 0); 5648 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5649 break; 5650 } 5651 case KVM_TPR_ACCESS_REPORTING: { 5652 struct kvm_tpr_access_ctl tac; 5653 5654 r = -EFAULT; 5655 if (copy_from_user(&tac, argp, sizeof(tac))) 5656 goto out; 5657 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5658 if (r) 5659 goto out; 5660 r = -EFAULT; 5661 if (copy_to_user(argp, &tac, sizeof(tac))) 5662 goto out; 5663 r = 0; 5664 break; 5665 }; 5666 case KVM_SET_VAPIC_ADDR: { 5667 struct kvm_vapic_addr va; 5668 int idx; 5669 5670 r = -EINVAL; 5671 if (!lapic_in_kernel(vcpu)) 5672 goto out; 5673 r = -EFAULT; 5674 if (copy_from_user(&va, argp, sizeof(va))) 5675 goto out; 5676 idx = srcu_read_lock(&vcpu->kvm->srcu); 5677 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5678 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5679 break; 5680 } 5681 case KVM_X86_SETUP_MCE: { 5682 u64 mcg_cap; 5683 5684 r = -EFAULT; 5685 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5686 goto out; 5687 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5688 break; 5689 } 5690 case KVM_X86_SET_MCE: { 5691 struct kvm_x86_mce mce; 5692 5693 r = -EFAULT; 5694 if (copy_from_user(&mce, argp, sizeof(mce))) 5695 goto out; 5696 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5697 break; 5698 } 5699 case KVM_GET_VCPU_EVENTS: { 5700 struct kvm_vcpu_events events; 5701 5702 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5703 5704 r = -EFAULT; 5705 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5706 break; 5707 r = 0; 5708 break; 5709 } 5710 case KVM_SET_VCPU_EVENTS: { 5711 struct kvm_vcpu_events events; 5712 5713 r = -EFAULT; 5714 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5715 break; 5716 5717 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5718 break; 5719 } 5720 case KVM_GET_DEBUGREGS: { 5721 struct kvm_debugregs dbgregs; 5722 5723 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5724 5725 r = -EFAULT; 5726 if (copy_to_user(argp, &dbgregs, 5727 sizeof(struct kvm_debugregs))) 5728 break; 5729 r = 0; 5730 break; 5731 } 5732 case KVM_SET_DEBUGREGS: { 5733 struct kvm_debugregs dbgregs; 5734 5735 r = -EFAULT; 5736 if (copy_from_user(&dbgregs, argp, 5737 sizeof(struct kvm_debugregs))) 5738 break; 5739 5740 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5741 break; 5742 } 5743 case KVM_GET_XSAVE: { 5744 r = -EINVAL; 5745 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5746 break; 5747 5748 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5749 r = -ENOMEM; 5750 if (!u.xsave) 5751 break; 5752 5753 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5754 5755 r = -EFAULT; 5756 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5757 break; 5758 r = 0; 5759 break; 5760 } 5761 case KVM_SET_XSAVE: { 5762 int size = vcpu->arch.guest_fpu.uabi_size; 5763 5764 u.xsave = memdup_user(argp, size); 5765 if (IS_ERR(u.xsave)) { 5766 r = PTR_ERR(u.xsave); 5767 goto out_nofree; 5768 } 5769 5770 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5771 break; 5772 } 5773 5774 case KVM_GET_XSAVE2: { 5775 int size = vcpu->arch.guest_fpu.uabi_size; 5776 5777 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5778 r = -ENOMEM; 5779 if (!u.xsave) 5780 break; 5781 5782 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5783 5784 r = -EFAULT; 5785 if (copy_to_user(argp, u.xsave, size)) 5786 break; 5787 5788 r = 0; 5789 break; 5790 } 5791 5792 case KVM_GET_XCRS: { 5793 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5794 r = -ENOMEM; 5795 if (!u.xcrs) 5796 break; 5797 5798 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5799 5800 r = -EFAULT; 5801 if (copy_to_user(argp, u.xcrs, 5802 sizeof(struct kvm_xcrs))) 5803 break; 5804 r = 0; 5805 break; 5806 } 5807 case KVM_SET_XCRS: { 5808 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5809 if (IS_ERR(u.xcrs)) { 5810 r = PTR_ERR(u.xcrs); 5811 goto out_nofree; 5812 } 5813 5814 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5815 break; 5816 } 5817 case KVM_SET_TSC_KHZ: { 5818 u32 user_tsc_khz; 5819 5820 r = -EINVAL; 5821 user_tsc_khz = (u32)arg; 5822 5823 if (kvm_caps.has_tsc_control && 5824 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5825 goto out; 5826 5827 if (user_tsc_khz == 0) 5828 user_tsc_khz = tsc_khz; 5829 5830 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5831 r = 0; 5832 5833 goto out; 5834 } 5835 case KVM_GET_TSC_KHZ: { 5836 r = vcpu->arch.virtual_tsc_khz; 5837 goto out; 5838 } 5839 case KVM_KVMCLOCK_CTRL: { 5840 r = kvm_set_guest_paused(vcpu); 5841 goto out; 5842 } 5843 case KVM_ENABLE_CAP: { 5844 struct kvm_enable_cap cap; 5845 5846 r = -EFAULT; 5847 if (copy_from_user(&cap, argp, sizeof(cap))) 5848 goto out; 5849 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5850 break; 5851 } 5852 case KVM_GET_NESTED_STATE: { 5853 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5854 u32 user_data_size; 5855 5856 r = -EINVAL; 5857 if (!kvm_x86_ops.nested_ops->get_state) 5858 break; 5859 5860 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5861 r = -EFAULT; 5862 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5863 break; 5864 5865 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5866 user_data_size); 5867 if (r < 0) 5868 break; 5869 5870 if (r > user_data_size) { 5871 if (put_user(r, &user_kvm_nested_state->size)) 5872 r = -EFAULT; 5873 else 5874 r = -E2BIG; 5875 break; 5876 } 5877 5878 r = 0; 5879 break; 5880 } 5881 case KVM_SET_NESTED_STATE: { 5882 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5883 struct kvm_nested_state kvm_state; 5884 int idx; 5885 5886 r = -EINVAL; 5887 if (!kvm_x86_ops.nested_ops->set_state) 5888 break; 5889 5890 r = -EFAULT; 5891 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5892 break; 5893 5894 r = -EINVAL; 5895 if (kvm_state.size < sizeof(kvm_state)) 5896 break; 5897 5898 if (kvm_state.flags & 5899 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5900 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5901 | KVM_STATE_NESTED_GIF_SET)) 5902 break; 5903 5904 /* nested_run_pending implies guest_mode. */ 5905 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5906 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5907 break; 5908 5909 idx = srcu_read_lock(&vcpu->kvm->srcu); 5910 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5911 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5912 break; 5913 } 5914 case KVM_GET_SUPPORTED_HV_CPUID: 5915 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5916 break; 5917 #ifdef CONFIG_KVM_XEN 5918 case KVM_XEN_VCPU_GET_ATTR: { 5919 struct kvm_xen_vcpu_attr xva; 5920 5921 r = -EFAULT; 5922 if (copy_from_user(&xva, argp, sizeof(xva))) 5923 goto out; 5924 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5925 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5926 r = -EFAULT; 5927 break; 5928 } 5929 case KVM_XEN_VCPU_SET_ATTR: { 5930 struct kvm_xen_vcpu_attr xva; 5931 5932 r = -EFAULT; 5933 if (copy_from_user(&xva, argp, sizeof(xva))) 5934 goto out; 5935 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5936 break; 5937 } 5938 #endif 5939 case KVM_GET_SREGS2: { 5940 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5941 r = -ENOMEM; 5942 if (!u.sregs2) 5943 goto out; 5944 __get_sregs2(vcpu, u.sregs2); 5945 r = -EFAULT; 5946 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5947 goto out; 5948 r = 0; 5949 break; 5950 } 5951 case KVM_SET_SREGS2: { 5952 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5953 if (IS_ERR(u.sregs2)) { 5954 r = PTR_ERR(u.sregs2); 5955 u.sregs2 = NULL; 5956 goto out; 5957 } 5958 r = __set_sregs2(vcpu, u.sregs2); 5959 break; 5960 } 5961 case KVM_HAS_DEVICE_ATTR: 5962 case KVM_GET_DEVICE_ATTR: 5963 case KVM_SET_DEVICE_ATTR: 5964 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5965 break; 5966 default: 5967 r = -EINVAL; 5968 } 5969 out: 5970 kfree(u.buffer); 5971 out_nofree: 5972 vcpu_put(vcpu); 5973 return r; 5974 } 5975 5976 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5977 { 5978 return VM_FAULT_SIGBUS; 5979 } 5980 5981 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5982 { 5983 int ret; 5984 5985 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5986 return -EINVAL; 5987 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5988 return ret; 5989 } 5990 5991 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5992 u64 ident_addr) 5993 { 5994 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5995 } 5996 5997 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5998 unsigned long kvm_nr_mmu_pages) 5999 { 6000 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6001 return -EINVAL; 6002 6003 mutex_lock(&kvm->slots_lock); 6004 6005 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6006 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6007 6008 mutex_unlock(&kvm->slots_lock); 6009 return 0; 6010 } 6011 6012 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6013 { 6014 return kvm->arch.n_max_mmu_pages; 6015 } 6016 6017 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6018 { 6019 struct kvm_pic *pic = kvm->arch.vpic; 6020 int r; 6021 6022 r = 0; 6023 switch (chip->chip_id) { 6024 case KVM_IRQCHIP_PIC_MASTER: 6025 memcpy(&chip->chip.pic, &pic->pics[0], 6026 sizeof(struct kvm_pic_state)); 6027 break; 6028 case KVM_IRQCHIP_PIC_SLAVE: 6029 memcpy(&chip->chip.pic, &pic->pics[1], 6030 sizeof(struct kvm_pic_state)); 6031 break; 6032 case KVM_IRQCHIP_IOAPIC: 6033 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6034 break; 6035 default: 6036 r = -EINVAL; 6037 break; 6038 } 6039 return r; 6040 } 6041 6042 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6043 { 6044 struct kvm_pic *pic = kvm->arch.vpic; 6045 int r; 6046 6047 r = 0; 6048 switch (chip->chip_id) { 6049 case KVM_IRQCHIP_PIC_MASTER: 6050 spin_lock(&pic->lock); 6051 memcpy(&pic->pics[0], &chip->chip.pic, 6052 sizeof(struct kvm_pic_state)); 6053 spin_unlock(&pic->lock); 6054 break; 6055 case KVM_IRQCHIP_PIC_SLAVE: 6056 spin_lock(&pic->lock); 6057 memcpy(&pic->pics[1], &chip->chip.pic, 6058 sizeof(struct kvm_pic_state)); 6059 spin_unlock(&pic->lock); 6060 break; 6061 case KVM_IRQCHIP_IOAPIC: 6062 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6063 break; 6064 default: 6065 r = -EINVAL; 6066 break; 6067 } 6068 kvm_pic_update_irq(pic); 6069 return r; 6070 } 6071 6072 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6073 { 6074 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6075 6076 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6077 6078 mutex_lock(&kps->lock); 6079 memcpy(ps, &kps->channels, sizeof(*ps)); 6080 mutex_unlock(&kps->lock); 6081 return 0; 6082 } 6083 6084 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6085 { 6086 int i; 6087 struct kvm_pit *pit = kvm->arch.vpit; 6088 6089 mutex_lock(&pit->pit_state.lock); 6090 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6091 for (i = 0; i < 3; i++) 6092 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6093 mutex_unlock(&pit->pit_state.lock); 6094 return 0; 6095 } 6096 6097 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6098 { 6099 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6100 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6101 sizeof(ps->channels)); 6102 ps->flags = kvm->arch.vpit->pit_state.flags; 6103 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6104 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6105 return 0; 6106 } 6107 6108 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6109 { 6110 int start = 0; 6111 int i; 6112 u32 prev_legacy, cur_legacy; 6113 struct kvm_pit *pit = kvm->arch.vpit; 6114 6115 mutex_lock(&pit->pit_state.lock); 6116 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6117 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6118 if (!prev_legacy && cur_legacy) 6119 start = 1; 6120 memcpy(&pit->pit_state.channels, &ps->channels, 6121 sizeof(pit->pit_state.channels)); 6122 pit->pit_state.flags = ps->flags; 6123 for (i = 0; i < 3; i++) 6124 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6125 start && i == 0); 6126 mutex_unlock(&pit->pit_state.lock); 6127 return 0; 6128 } 6129 6130 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6131 struct kvm_reinject_control *control) 6132 { 6133 struct kvm_pit *pit = kvm->arch.vpit; 6134 6135 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6136 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6137 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6138 */ 6139 mutex_lock(&pit->pit_state.lock); 6140 kvm_pit_set_reinject(pit, control->pit_reinject); 6141 mutex_unlock(&pit->pit_state.lock); 6142 6143 return 0; 6144 } 6145 6146 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6147 { 6148 6149 /* 6150 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6151 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6152 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6153 * VM-Exit. 6154 */ 6155 struct kvm_vcpu *vcpu; 6156 unsigned long i; 6157 6158 kvm_for_each_vcpu(i, vcpu, kvm) 6159 kvm_vcpu_kick(vcpu); 6160 } 6161 6162 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6163 bool line_status) 6164 { 6165 if (!irqchip_in_kernel(kvm)) 6166 return -ENXIO; 6167 6168 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6169 irq_event->irq, irq_event->level, 6170 line_status); 6171 return 0; 6172 } 6173 6174 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6175 struct kvm_enable_cap *cap) 6176 { 6177 int r; 6178 6179 if (cap->flags) 6180 return -EINVAL; 6181 6182 switch (cap->cap) { 6183 case KVM_CAP_DISABLE_QUIRKS2: 6184 r = -EINVAL; 6185 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6186 break; 6187 fallthrough; 6188 case KVM_CAP_DISABLE_QUIRKS: 6189 kvm->arch.disabled_quirks = cap->args[0]; 6190 r = 0; 6191 break; 6192 case KVM_CAP_SPLIT_IRQCHIP: { 6193 mutex_lock(&kvm->lock); 6194 r = -EINVAL; 6195 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6196 goto split_irqchip_unlock; 6197 r = -EEXIST; 6198 if (irqchip_in_kernel(kvm)) 6199 goto split_irqchip_unlock; 6200 if (kvm->created_vcpus) 6201 goto split_irqchip_unlock; 6202 r = kvm_setup_empty_irq_routing(kvm); 6203 if (r) 6204 goto split_irqchip_unlock; 6205 /* Pairs with irqchip_in_kernel. */ 6206 smp_wmb(); 6207 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6208 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6209 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6210 r = 0; 6211 split_irqchip_unlock: 6212 mutex_unlock(&kvm->lock); 6213 break; 6214 } 6215 case KVM_CAP_X2APIC_API: 6216 r = -EINVAL; 6217 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6218 break; 6219 6220 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6221 kvm->arch.x2apic_format = true; 6222 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6223 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6224 6225 r = 0; 6226 break; 6227 case KVM_CAP_X86_DISABLE_EXITS: 6228 r = -EINVAL; 6229 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6230 break; 6231 6232 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6233 kvm_can_mwait_in_guest()) 6234 kvm->arch.mwait_in_guest = true; 6235 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6236 kvm->arch.hlt_in_guest = true; 6237 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6238 kvm->arch.pause_in_guest = true; 6239 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6240 kvm->arch.cstate_in_guest = true; 6241 r = 0; 6242 break; 6243 case KVM_CAP_MSR_PLATFORM_INFO: 6244 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6245 r = 0; 6246 break; 6247 case KVM_CAP_EXCEPTION_PAYLOAD: 6248 kvm->arch.exception_payload_enabled = cap->args[0]; 6249 r = 0; 6250 break; 6251 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6252 kvm->arch.triple_fault_event = cap->args[0]; 6253 r = 0; 6254 break; 6255 case KVM_CAP_X86_USER_SPACE_MSR: 6256 r = -EINVAL; 6257 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6258 break; 6259 kvm->arch.user_space_msr_mask = cap->args[0]; 6260 r = 0; 6261 break; 6262 case KVM_CAP_X86_BUS_LOCK_EXIT: 6263 r = -EINVAL; 6264 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6265 break; 6266 6267 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6268 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6269 break; 6270 6271 if (kvm_caps.has_bus_lock_exit && 6272 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6273 kvm->arch.bus_lock_detection_enabled = true; 6274 r = 0; 6275 break; 6276 #ifdef CONFIG_X86_SGX_KVM 6277 case KVM_CAP_SGX_ATTRIBUTE: { 6278 unsigned long allowed_attributes = 0; 6279 6280 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6281 if (r) 6282 break; 6283 6284 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6285 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6286 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6287 kvm->arch.sgx_provisioning_allowed = true; 6288 else 6289 r = -EINVAL; 6290 break; 6291 } 6292 #endif 6293 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6294 r = -EINVAL; 6295 if (!kvm_x86_ops.vm_copy_enc_context_from) 6296 break; 6297 6298 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6299 break; 6300 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6301 r = -EINVAL; 6302 if (!kvm_x86_ops.vm_move_enc_context_from) 6303 break; 6304 6305 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6306 break; 6307 case KVM_CAP_EXIT_HYPERCALL: 6308 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6309 r = -EINVAL; 6310 break; 6311 } 6312 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6313 r = 0; 6314 break; 6315 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6316 r = -EINVAL; 6317 if (cap->args[0] & ~1) 6318 break; 6319 kvm->arch.exit_on_emulation_error = cap->args[0]; 6320 r = 0; 6321 break; 6322 case KVM_CAP_PMU_CAPABILITY: 6323 r = -EINVAL; 6324 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6325 break; 6326 6327 mutex_lock(&kvm->lock); 6328 if (!kvm->created_vcpus) { 6329 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6330 r = 0; 6331 } 6332 mutex_unlock(&kvm->lock); 6333 break; 6334 case KVM_CAP_MAX_VCPU_ID: 6335 r = -EINVAL; 6336 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6337 break; 6338 6339 mutex_lock(&kvm->lock); 6340 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6341 r = 0; 6342 } else if (!kvm->arch.max_vcpu_ids) { 6343 kvm->arch.max_vcpu_ids = cap->args[0]; 6344 r = 0; 6345 } 6346 mutex_unlock(&kvm->lock); 6347 break; 6348 case KVM_CAP_X86_NOTIFY_VMEXIT: 6349 r = -EINVAL; 6350 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6351 break; 6352 if (!kvm_caps.has_notify_vmexit) 6353 break; 6354 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6355 break; 6356 mutex_lock(&kvm->lock); 6357 if (!kvm->created_vcpus) { 6358 kvm->arch.notify_window = cap->args[0] >> 32; 6359 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6360 r = 0; 6361 } 6362 mutex_unlock(&kvm->lock); 6363 break; 6364 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6365 r = -EINVAL; 6366 6367 /* 6368 * Since the risk of disabling NX hugepages is a guest crashing 6369 * the system, ensure the userspace process has permission to 6370 * reboot the system. 6371 * 6372 * Note that unlike the reboot() syscall, the process must have 6373 * this capability in the root namespace because exposing 6374 * /dev/kvm into a container does not limit the scope of the 6375 * iTLB multihit bug to that container. In other words, 6376 * this must use capable(), not ns_capable(). 6377 */ 6378 if (!capable(CAP_SYS_BOOT)) { 6379 r = -EPERM; 6380 break; 6381 } 6382 6383 if (cap->args[0]) 6384 break; 6385 6386 mutex_lock(&kvm->lock); 6387 if (!kvm->created_vcpus) { 6388 kvm->arch.disable_nx_huge_pages = true; 6389 r = 0; 6390 } 6391 mutex_unlock(&kvm->lock); 6392 break; 6393 default: 6394 r = -EINVAL; 6395 break; 6396 } 6397 return r; 6398 } 6399 6400 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6401 { 6402 struct kvm_x86_msr_filter *msr_filter; 6403 6404 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6405 if (!msr_filter) 6406 return NULL; 6407 6408 msr_filter->default_allow = default_allow; 6409 return msr_filter; 6410 } 6411 6412 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6413 { 6414 u32 i; 6415 6416 if (!msr_filter) 6417 return; 6418 6419 for (i = 0; i < msr_filter->count; i++) 6420 kfree(msr_filter->ranges[i].bitmap); 6421 6422 kfree(msr_filter); 6423 } 6424 6425 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6426 struct kvm_msr_filter_range *user_range) 6427 { 6428 unsigned long *bitmap = NULL; 6429 size_t bitmap_size; 6430 6431 if (!user_range->nmsrs) 6432 return 0; 6433 6434 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6435 return -EINVAL; 6436 6437 if (!user_range->flags) 6438 return -EINVAL; 6439 6440 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6441 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6442 return -EINVAL; 6443 6444 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6445 if (IS_ERR(bitmap)) 6446 return PTR_ERR(bitmap); 6447 6448 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6449 .flags = user_range->flags, 6450 .base = user_range->base, 6451 .nmsrs = user_range->nmsrs, 6452 .bitmap = bitmap, 6453 }; 6454 6455 msr_filter->count++; 6456 return 0; 6457 } 6458 6459 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6460 struct kvm_msr_filter *filter) 6461 { 6462 struct kvm_x86_msr_filter *new_filter, *old_filter; 6463 bool default_allow; 6464 bool empty = true; 6465 int r = 0; 6466 u32 i; 6467 6468 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6469 return -EINVAL; 6470 6471 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6472 empty &= !filter->ranges[i].nmsrs; 6473 6474 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6475 if (empty && !default_allow) 6476 return -EINVAL; 6477 6478 new_filter = kvm_alloc_msr_filter(default_allow); 6479 if (!new_filter) 6480 return -ENOMEM; 6481 6482 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6483 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6484 if (r) { 6485 kvm_free_msr_filter(new_filter); 6486 return r; 6487 } 6488 } 6489 6490 mutex_lock(&kvm->lock); 6491 6492 /* The per-VM filter is protected by kvm->lock... */ 6493 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6494 6495 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6496 synchronize_srcu(&kvm->srcu); 6497 6498 kvm_free_msr_filter(old_filter); 6499 6500 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6501 mutex_unlock(&kvm->lock); 6502 6503 return 0; 6504 } 6505 6506 #ifdef CONFIG_KVM_COMPAT 6507 /* for KVM_X86_SET_MSR_FILTER */ 6508 struct kvm_msr_filter_range_compat { 6509 __u32 flags; 6510 __u32 nmsrs; 6511 __u32 base; 6512 __u32 bitmap; 6513 }; 6514 6515 struct kvm_msr_filter_compat { 6516 __u32 flags; 6517 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6518 }; 6519 6520 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6521 6522 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6523 unsigned long arg) 6524 { 6525 void __user *argp = (void __user *)arg; 6526 struct kvm *kvm = filp->private_data; 6527 long r = -ENOTTY; 6528 6529 switch (ioctl) { 6530 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6531 struct kvm_msr_filter __user *user_msr_filter = argp; 6532 struct kvm_msr_filter_compat filter_compat; 6533 struct kvm_msr_filter filter; 6534 int i; 6535 6536 if (copy_from_user(&filter_compat, user_msr_filter, 6537 sizeof(filter_compat))) 6538 return -EFAULT; 6539 6540 filter.flags = filter_compat.flags; 6541 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6542 struct kvm_msr_filter_range_compat *cr; 6543 6544 cr = &filter_compat.ranges[i]; 6545 filter.ranges[i] = (struct kvm_msr_filter_range) { 6546 .flags = cr->flags, 6547 .nmsrs = cr->nmsrs, 6548 .base = cr->base, 6549 .bitmap = (__u8 *)(ulong)cr->bitmap, 6550 }; 6551 } 6552 6553 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6554 break; 6555 } 6556 } 6557 6558 return r; 6559 } 6560 #endif 6561 6562 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6563 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6564 { 6565 struct kvm_vcpu *vcpu; 6566 unsigned long i; 6567 int ret = 0; 6568 6569 mutex_lock(&kvm->lock); 6570 kvm_for_each_vcpu(i, vcpu, kvm) { 6571 if (!vcpu->arch.pv_time.active) 6572 continue; 6573 6574 ret = kvm_set_guest_paused(vcpu); 6575 if (ret) { 6576 kvm_err("Failed to pause guest VCPU%d: %d\n", 6577 vcpu->vcpu_id, ret); 6578 break; 6579 } 6580 } 6581 mutex_unlock(&kvm->lock); 6582 6583 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6584 } 6585 6586 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6587 { 6588 switch (state) { 6589 case PM_HIBERNATION_PREPARE: 6590 case PM_SUSPEND_PREPARE: 6591 return kvm_arch_suspend_notifier(kvm); 6592 } 6593 6594 return NOTIFY_DONE; 6595 } 6596 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6597 6598 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6599 { 6600 struct kvm_clock_data data = { 0 }; 6601 6602 get_kvmclock(kvm, &data); 6603 if (copy_to_user(argp, &data, sizeof(data))) 6604 return -EFAULT; 6605 6606 return 0; 6607 } 6608 6609 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6610 { 6611 struct kvm_arch *ka = &kvm->arch; 6612 struct kvm_clock_data data; 6613 u64 now_raw_ns; 6614 6615 if (copy_from_user(&data, argp, sizeof(data))) 6616 return -EFAULT; 6617 6618 /* 6619 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6620 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6621 */ 6622 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6623 return -EINVAL; 6624 6625 kvm_hv_request_tsc_page_update(kvm); 6626 kvm_start_pvclock_update(kvm); 6627 pvclock_update_vm_gtod_copy(kvm); 6628 6629 /* 6630 * This pairs with kvm_guest_time_update(): when masterclock is 6631 * in use, we use master_kernel_ns + kvmclock_offset to set 6632 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6633 * is slightly ahead) here we risk going negative on unsigned 6634 * 'system_time' when 'data.clock' is very small. 6635 */ 6636 if (data.flags & KVM_CLOCK_REALTIME) { 6637 u64 now_real_ns = ktime_get_real_ns(); 6638 6639 /* 6640 * Avoid stepping the kvmclock backwards. 6641 */ 6642 if (now_real_ns > data.realtime) 6643 data.clock += now_real_ns - data.realtime; 6644 } 6645 6646 if (ka->use_master_clock) 6647 now_raw_ns = ka->master_kernel_ns; 6648 else 6649 now_raw_ns = get_kvmclock_base_ns(); 6650 ka->kvmclock_offset = data.clock - now_raw_ns; 6651 kvm_end_pvclock_update(kvm); 6652 return 0; 6653 } 6654 6655 long kvm_arch_vm_ioctl(struct file *filp, 6656 unsigned int ioctl, unsigned long arg) 6657 { 6658 struct kvm *kvm = filp->private_data; 6659 void __user *argp = (void __user *)arg; 6660 int r = -ENOTTY; 6661 /* 6662 * This union makes it completely explicit to gcc-3.x 6663 * that these two variables' stack usage should be 6664 * combined, not added together. 6665 */ 6666 union { 6667 struct kvm_pit_state ps; 6668 struct kvm_pit_state2 ps2; 6669 struct kvm_pit_config pit_config; 6670 } u; 6671 6672 switch (ioctl) { 6673 case KVM_SET_TSS_ADDR: 6674 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6675 break; 6676 case KVM_SET_IDENTITY_MAP_ADDR: { 6677 u64 ident_addr; 6678 6679 mutex_lock(&kvm->lock); 6680 r = -EINVAL; 6681 if (kvm->created_vcpus) 6682 goto set_identity_unlock; 6683 r = -EFAULT; 6684 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6685 goto set_identity_unlock; 6686 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6687 set_identity_unlock: 6688 mutex_unlock(&kvm->lock); 6689 break; 6690 } 6691 case KVM_SET_NR_MMU_PAGES: 6692 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6693 break; 6694 case KVM_GET_NR_MMU_PAGES: 6695 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6696 break; 6697 case KVM_CREATE_IRQCHIP: { 6698 mutex_lock(&kvm->lock); 6699 6700 r = -EEXIST; 6701 if (irqchip_in_kernel(kvm)) 6702 goto create_irqchip_unlock; 6703 6704 r = -EINVAL; 6705 if (kvm->created_vcpus) 6706 goto create_irqchip_unlock; 6707 6708 r = kvm_pic_init(kvm); 6709 if (r) 6710 goto create_irqchip_unlock; 6711 6712 r = kvm_ioapic_init(kvm); 6713 if (r) { 6714 kvm_pic_destroy(kvm); 6715 goto create_irqchip_unlock; 6716 } 6717 6718 r = kvm_setup_default_irq_routing(kvm); 6719 if (r) { 6720 kvm_ioapic_destroy(kvm); 6721 kvm_pic_destroy(kvm); 6722 goto create_irqchip_unlock; 6723 } 6724 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6725 smp_wmb(); 6726 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6727 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6728 create_irqchip_unlock: 6729 mutex_unlock(&kvm->lock); 6730 break; 6731 } 6732 case KVM_CREATE_PIT: 6733 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6734 goto create_pit; 6735 case KVM_CREATE_PIT2: 6736 r = -EFAULT; 6737 if (copy_from_user(&u.pit_config, argp, 6738 sizeof(struct kvm_pit_config))) 6739 goto out; 6740 create_pit: 6741 mutex_lock(&kvm->lock); 6742 r = -EEXIST; 6743 if (kvm->arch.vpit) 6744 goto create_pit_unlock; 6745 r = -ENOMEM; 6746 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6747 if (kvm->arch.vpit) 6748 r = 0; 6749 create_pit_unlock: 6750 mutex_unlock(&kvm->lock); 6751 break; 6752 case KVM_GET_IRQCHIP: { 6753 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6754 struct kvm_irqchip *chip; 6755 6756 chip = memdup_user(argp, sizeof(*chip)); 6757 if (IS_ERR(chip)) { 6758 r = PTR_ERR(chip); 6759 goto out; 6760 } 6761 6762 r = -ENXIO; 6763 if (!irqchip_kernel(kvm)) 6764 goto get_irqchip_out; 6765 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6766 if (r) 6767 goto get_irqchip_out; 6768 r = -EFAULT; 6769 if (copy_to_user(argp, chip, sizeof(*chip))) 6770 goto get_irqchip_out; 6771 r = 0; 6772 get_irqchip_out: 6773 kfree(chip); 6774 break; 6775 } 6776 case KVM_SET_IRQCHIP: { 6777 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6778 struct kvm_irqchip *chip; 6779 6780 chip = memdup_user(argp, sizeof(*chip)); 6781 if (IS_ERR(chip)) { 6782 r = PTR_ERR(chip); 6783 goto out; 6784 } 6785 6786 r = -ENXIO; 6787 if (!irqchip_kernel(kvm)) 6788 goto set_irqchip_out; 6789 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6790 set_irqchip_out: 6791 kfree(chip); 6792 break; 6793 } 6794 case KVM_GET_PIT: { 6795 r = -EFAULT; 6796 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6797 goto out; 6798 r = -ENXIO; 6799 if (!kvm->arch.vpit) 6800 goto out; 6801 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6802 if (r) 6803 goto out; 6804 r = -EFAULT; 6805 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6806 goto out; 6807 r = 0; 6808 break; 6809 } 6810 case KVM_SET_PIT: { 6811 r = -EFAULT; 6812 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6813 goto out; 6814 mutex_lock(&kvm->lock); 6815 r = -ENXIO; 6816 if (!kvm->arch.vpit) 6817 goto set_pit_out; 6818 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6819 set_pit_out: 6820 mutex_unlock(&kvm->lock); 6821 break; 6822 } 6823 case KVM_GET_PIT2: { 6824 r = -ENXIO; 6825 if (!kvm->arch.vpit) 6826 goto out; 6827 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6828 if (r) 6829 goto out; 6830 r = -EFAULT; 6831 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6832 goto out; 6833 r = 0; 6834 break; 6835 } 6836 case KVM_SET_PIT2: { 6837 r = -EFAULT; 6838 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6839 goto out; 6840 mutex_lock(&kvm->lock); 6841 r = -ENXIO; 6842 if (!kvm->arch.vpit) 6843 goto set_pit2_out; 6844 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6845 set_pit2_out: 6846 mutex_unlock(&kvm->lock); 6847 break; 6848 } 6849 case KVM_REINJECT_CONTROL: { 6850 struct kvm_reinject_control control; 6851 r = -EFAULT; 6852 if (copy_from_user(&control, argp, sizeof(control))) 6853 goto out; 6854 r = -ENXIO; 6855 if (!kvm->arch.vpit) 6856 goto out; 6857 r = kvm_vm_ioctl_reinject(kvm, &control); 6858 break; 6859 } 6860 case KVM_SET_BOOT_CPU_ID: 6861 r = 0; 6862 mutex_lock(&kvm->lock); 6863 if (kvm->created_vcpus) 6864 r = -EBUSY; 6865 else 6866 kvm->arch.bsp_vcpu_id = arg; 6867 mutex_unlock(&kvm->lock); 6868 break; 6869 #ifdef CONFIG_KVM_XEN 6870 case KVM_XEN_HVM_CONFIG: { 6871 struct kvm_xen_hvm_config xhc; 6872 r = -EFAULT; 6873 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6874 goto out; 6875 r = kvm_xen_hvm_config(kvm, &xhc); 6876 break; 6877 } 6878 case KVM_XEN_HVM_GET_ATTR: { 6879 struct kvm_xen_hvm_attr xha; 6880 6881 r = -EFAULT; 6882 if (copy_from_user(&xha, argp, sizeof(xha))) 6883 goto out; 6884 r = kvm_xen_hvm_get_attr(kvm, &xha); 6885 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6886 r = -EFAULT; 6887 break; 6888 } 6889 case KVM_XEN_HVM_SET_ATTR: { 6890 struct kvm_xen_hvm_attr xha; 6891 6892 r = -EFAULT; 6893 if (copy_from_user(&xha, argp, sizeof(xha))) 6894 goto out; 6895 r = kvm_xen_hvm_set_attr(kvm, &xha); 6896 break; 6897 } 6898 case KVM_XEN_HVM_EVTCHN_SEND: { 6899 struct kvm_irq_routing_xen_evtchn uxe; 6900 6901 r = -EFAULT; 6902 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6903 goto out; 6904 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6905 break; 6906 } 6907 #endif 6908 case KVM_SET_CLOCK: 6909 r = kvm_vm_ioctl_set_clock(kvm, argp); 6910 break; 6911 case KVM_GET_CLOCK: 6912 r = kvm_vm_ioctl_get_clock(kvm, argp); 6913 break; 6914 case KVM_SET_TSC_KHZ: { 6915 u32 user_tsc_khz; 6916 6917 r = -EINVAL; 6918 user_tsc_khz = (u32)arg; 6919 6920 if (kvm_caps.has_tsc_control && 6921 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6922 goto out; 6923 6924 if (user_tsc_khz == 0) 6925 user_tsc_khz = tsc_khz; 6926 6927 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6928 r = 0; 6929 6930 goto out; 6931 } 6932 case KVM_GET_TSC_KHZ: { 6933 r = READ_ONCE(kvm->arch.default_tsc_khz); 6934 goto out; 6935 } 6936 case KVM_MEMORY_ENCRYPT_OP: { 6937 r = -ENOTTY; 6938 if (!kvm_x86_ops.mem_enc_ioctl) 6939 goto out; 6940 6941 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6942 break; 6943 } 6944 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6945 struct kvm_enc_region region; 6946 6947 r = -EFAULT; 6948 if (copy_from_user(®ion, argp, sizeof(region))) 6949 goto out; 6950 6951 r = -ENOTTY; 6952 if (!kvm_x86_ops.mem_enc_register_region) 6953 goto out; 6954 6955 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6956 break; 6957 } 6958 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6959 struct kvm_enc_region region; 6960 6961 r = -EFAULT; 6962 if (copy_from_user(®ion, argp, sizeof(region))) 6963 goto out; 6964 6965 r = -ENOTTY; 6966 if (!kvm_x86_ops.mem_enc_unregister_region) 6967 goto out; 6968 6969 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6970 break; 6971 } 6972 case KVM_HYPERV_EVENTFD: { 6973 struct kvm_hyperv_eventfd hvevfd; 6974 6975 r = -EFAULT; 6976 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6977 goto out; 6978 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6979 break; 6980 } 6981 case KVM_SET_PMU_EVENT_FILTER: 6982 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6983 break; 6984 case KVM_X86_SET_MSR_FILTER: { 6985 struct kvm_msr_filter __user *user_msr_filter = argp; 6986 struct kvm_msr_filter filter; 6987 6988 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6989 return -EFAULT; 6990 6991 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6992 break; 6993 } 6994 default: 6995 r = -ENOTTY; 6996 } 6997 out: 6998 return r; 6999 } 7000 7001 static void kvm_init_msr_list(void) 7002 { 7003 u32 dummy[2]; 7004 unsigned i; 7005 7006 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7007 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7008 7009 num_msrs_to_save = 0; 7010 num_emulated_msrs = 0; 7011 num_msr_based_features = 0; 7012 7013 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7014 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7015 continue; 7016 7017 /* 7018 * Even MSRs that are valid in the host may not be exposed 7019 * to the guests in some cases. 7020 */ 7021 switch (msrs_to_save_all[i]) { 7022 case MSR_IA32_BNDCFGS: 7023 if (!kvm_mpx_supported()) 7024 continue; 7025 break; 7026 case MSR_TSC_AUX: 7027 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7028 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7029 continue; 7030 break; 7031 case MSR_IA32_UMWAIT_CONTROL: 7032 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7033 continue; 7034 break; 7035 case MSR_IA32_RTIT_CTL: 7036 case MSR_IA32_RTIT_STATUS: 7037 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7038 continue; 7039 break; 7040 case MSR_IA32_RTIT_CR3_MATCH: 7041 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7042 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7043 continue; 7044 break; 7045 case MSR_IA32_RTIT_OUTPUT_BASE: 7046 case MSR_IA32_RTIT_OUTPUT_MASK: 7047 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7048 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7049 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7050 continue; 7051 break; 7052 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7053 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7054 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7055 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7056 continue; 7057 break; 7058 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7059 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7060 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7061 continue; 7062 break; 7063 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7064 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7065 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7066 continue; 7067 break; 7068 case MSR_IA32_XFD: 7069 case MSR_IA32_XFD_ERR: 7070 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7071 continue; 7072 break; 7073 default: 7074 break; 7075 } 7076 7077 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7078 } 7079 7080 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7081 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7082 continue; 7083 7084 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7085 } 7086 7087 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7088 struct kvm_msr_entry msr; 7089 7090 msr.index = msr_based_features_all[i]; 7091 if (kvm_get_msr_feature(&msr)) 7092 continue; 7093 7094 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7095 } 7096 } 7097 7098 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7099 const void *v) 7100 { 7101 int handled = 0; 7102 int n; 7103 7104 do { 7105 n = min(len, 8); 7106 if (!(lapic_in_kernel(vcpu) && 7107 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7108 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7109 break; 7110 handled += n; 7111 addr += n; 7112 len -= n; 7113 v += n; 7114 } while (len); 7115 7116 return handled; 7117 } 7118 7119 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7120 { 7121 int handled = 0; 7122 int n; 7123 7124 do { 7125 n = min(len, 8); 7126 if (!(lapic_in_kernel(vcpu) && 7127 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7128 addr, n, v)) 7129 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7130 break; 7131 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7132 handled += n; 7133 addr += n; 7134 len -= n; 7135 v += n; 7136 } while (len); 7137 7138 return handled; 7139 } 7140 7141 void kvm_set_segment(struct kvm_vcpu *vcpu, 7142 struct kvm_segment *var, int seg) 7143 { 7144 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7145 } 7146 7147 void kvm_get_segment(struct kvm_vcpu *vcpu, 7148 struct kvm_segment *var, int seg) 7149 { 7150 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7151 } 7152 7153 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7154 struct x86_exception *exception) 7155 { 7156 struct kvm_mmu *mmu = vcpu->arch.mmu; 7157 gpa_t t_gpa; 7158 7159 BUG_ON(!mmu_is_nested(vcpu)); 7160 7161 /* NPT walks are always user-walks */ 7162 access |= PFERR_USER_MASK; 7163 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7164 7165 return t_gpa; 7166 } 7167 7168 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7169 struct x86_exception *exception) 7170 { 7171 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7172 7173 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7174 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7175 } 7176 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7177 7178 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7179 struct x86_exception *exception) 7180 { 7181 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7182 7183 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7184 access |= PFERR_WRITE_MASK; 7185 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7186 } 7187 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7188 7189 /* uses this to access any guest's mapped memory without checking CPL */ 7190 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7191 struct x86_exception *exception) 7192 { 7193 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7194 7195 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7196 } 7197 7198 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7199 struct kvm_vcpu *vcpu, u64 access, 7200 struct x86_exception *exception) 7201 { 7202 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7203 void *data = val; 7204 int r = X86EMUL_CONTINUE; 7205 7206 while (bytes) { 7207 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7208 unsigned offset = addr & (PAGE_SIZE-1); 7209 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7210 int ret; 7211 7212 if (gpa == INVALID_GPA) 7213 return X86EMUL_PROPAGATE_FAULT; 7214 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7215 offset, toread); 7216 if (ret < 0) { 7217 r = X86EMUL_IO_NEEDED; 7218 goto out; 7219 } 7220 7221 bytes -= toread; 7222 data += toread; 7223 addr += toread; 7224 } 7225 out: 7226 return r; 7227 } 7228 7229 /* used for instruction fetching */ 7230 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7231 gva_t addr, void *val, unsigned int bytes, 7232 struct x86_exception *exception) 7233 { 7234 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7235 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7236 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7237 unsigned offset; 7238 int ret; 7239 7240 /* Inline kvm_read_guest_virt_helper for speed. */ 7241 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7242 exception); 7243 if (unlikely(gpa == INVALID_GPA)) 7244 return X86EMUL_PROPAGATE_FAULT; 7245 7246 offset = addr & (PAGE_SIZE-1); 7247 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7248 bytes = (unsigned)PAGE_SIZE - offset; 7249 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7250 offset, bytes); 7251 if (unlikely(ret < 0)) 7252 return X86EMUL_IO_NEEDED; 7253 7254 return X86EMUL_CONTINUE; 7255 } 7256 7257 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7258 gva_t addr, void *val, unsigned int bytes, 7259 struct x86_exception *exception) 7260 { 7261 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7262 7263 /* 7264 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7265 * is returned, but our callers are not ready for that and they blindly 7266 * call kvm_inject_page_fault. Ensure that they at least do not leak 7267 * uninitialized kernel stack memory into cr2 and error code. 7268 */ 7269 memset(exception, 0, sizeof(*exception)); 7270 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7271 exception); 7272 } 7273 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7274 7275 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7276 gva_t addr, void *val, unsigned int bytes, 7277 struct x86_exception *exception, bool system) 7278 { 7279 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7280 u64 access = 0; 7281 7282 if (system) 7283 access |= PFERR_IMPLICIT_ACCESS; 7284 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7285 access |= PFERR_USER_MASK; 7286 7287 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7288 } 7289 7290 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7291 struct kvm_vcpu *vcpu, u64 access, 7292 struct x86_exception *exception) 7293 { 7294 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7295 void *data = val; 7296 int r = X86EMUL_CONTINUE; 7297 7298 while (bytes) { 7299 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7300 unsigned offset = addr & (PAGE_SIZE-1); 7301 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7302 int ret; 7303 7304 if (gpa == INVALID_GPA) 7305 return X86EMUL_PROPAGATE_FAULT; 7306 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7307 if (ret < 0) { 7308 r = X86EMUL_IO_NEEDED; 7309 goto out; 7310 } 7311 7312 bytes -= towrite; 7313 data += towrite; 7314 addr += towrite; 7315 } 7316 out: 7317 return r; 7318 } 7319 7320 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7321 unsigned int bytes, struct x86_exception *exception, 7322 bool system) 7323 { 7324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7325 u64 access = PFERR_WRITE_MASK; 7326 7327 if (system) 7328 access |= PFERR_IMPLICIT_ACCESS; 7329 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7330 access |= PFERR_USER_MASK; 7331 7332 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7333 access, exception); 7334 } 7335 7336 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7337 unsigned int bytes, struct x86_exception *exception) 7338 { 7339 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7340 vcpu->arch.l1tf_flush_l1d = true; 7341 7342 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7343 PFERR_WRITE_MASK, exception); 7344 } 7345 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7346 7347 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7348 void *insn, int insn_len) 7349 { 7350 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7351 insn, insn_len); 7352 } 7353 7354 int handle_ud(struct kvm_vcpu *vcpu) 7355 { 7356 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7357 int fep_flags = READ_ONCE(force_emulation_prefix); 7358 int emul_type = EMULTYPE_TRAP_UD; 7359 char sig[5]; /* ud2; .ascii "kvm" */ 7360 struct x86_exception e; 7361 7362 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7363 return 1; 7364 7365 if (fep_flags && 7366 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7367 sig, sizeof(sig), &e) == 0 && 7368 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7369 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7370 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7371 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7372 emul_type = EMULTYPE_TRAP_UD_FORCED; 7373 } 7374 7375 return kvm_emulate_instruction(vcpu, emul_type); 7376 } 7377 EXPORT_SYMBOL_GPL(handle_ud); 7378 7379 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7380 gpa_t gpa, bool write) 7381 { 7382 /* For APIC access vmexit */ 7383 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7384 return 1; 7385 7386 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7387 trace_vcpu_match_mmio(gva, gpa, write, true); 7388 return 1; 7389 } 7390 7391 return 0; 7392 } 7393 7394 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7395 gpa_t *gpa, struct x86_exception *exception, 7396 bool write) 7397 { 7398 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7399 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7400 | (write ? PFERR_WRITE_MASK : 0); 7401 7402 /* 7403 * currently PKRU is only applied to ept enabled guest so 7404 * there is no pkey in EPT page table for L1 guest or EPT 7405 * shadow page table for L2 guest. 7406 */ 7407 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7408 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7409 vcpu->arch.mmio_access, 0, access))) { 7410 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7411 (gva & (PAGE_SIZE - 1)); 7412 trace_vcpu_match_mmio(gva, *gpa, write, false); 7413 return 1; 7414 } 7415 7416 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7417 7418 if (*gpa == INVALID_GPA) 7419 return -1; 7420 7421 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7422 } 7423 7424 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7425 const void *val, int bytes) 7426 { 7427 int ret; 7428 7429 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7430 if (ret < 0) 7431 return 0; 7432 kvm_page_track_write(vcpu, gpa, val, bytes); 7433 return 1; 7434 } 7435 7436 struct read_write_emulator_ops { 7437 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7438 int bytes); 7439 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7440 void *val, int bytes); 7441 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7442 int bytes, void *val); 7443 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7444 void *val, int bytes); 7445 bool write; 7446 }; 7447 7448 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7449 { 7450 if (vcpu->mmio_read_completed) { 7451 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7452 vcpu->mmio_fragments[0].gpa, val); 7453 vcpu->mmio_read_completed = 0; 7454 return 1; 7455 } 7456 7457 return 0; 7458 } 7459 7460 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7461 void *val, int bytes) 7462 { 7463 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7464 } 7465 7466 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7467 void *val, int bytes) 7468 { 7469 return emulator_write_phys(vcpu, gpa, val, bytes); 7470 } 7471 7472 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7473 { 7474 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7475 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7476 } 7477 7478 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7479 void *val, int bytes) 7480 { 7481 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7482 return X86EMUL_IO_NEEDED; 7483 } 7484 7485 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7486 void *val, int bytes) 7487 { 7488 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7489 7490 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7491 return X86EMUL_CONTINUE; 7492 } 7493 7494 static const struct read_write_emulator_ops read_emultor = { 7495 .read_write_prepare = read_prepare, 7496 .read_write_emulate = read_emulate, 7497 .read_write_mmio = vcpu_mmio_read, 7498 .read_write_exit_mmio = read_exit_mmio, 7499 }; 7500 7501 static const struct read_write_emulator_ops write_emultor = { 7502 .read_write_emulate = write_emulate, 7503 .read_write_mmio = write_mmio, 7504 .read_write_exit_mmio = write_exit_mmio, 7505 .write = true, 7506 }; 7507 7508 static int emulator_read_write_onepage(unsigned long addr, void *val, 7509 unsigned int bytes, 7510 struct x86_exception *exception, 7511 struct kvm_vcpu *vcpu, 7512 const struct read_write_emulator_ops *ops) 7513 { 7514 gpa_t gpa; 7515 int handled, ret; 7516 bool write = ops->write; 7517 struct kvm_mmio_fragment *frag; 7518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7519 7520 /* 7521 * If the exit was due to a NPF we may already have a GPA. 7522 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7523 * Note, this cannot be used on string operations since string 7524 * operation using rep will only have the initial GPA from the NPF 7525 * occurred. 7526 */ 7527 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7528 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7529 gpa = ctxt->gpa_val; 7530 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7531 } else { 7532 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7533 if (ret < 0) 7534 return X86EMUL_PROPAGATE_FAULT; 7535 } 7536 7537 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7538 return X86EMUL_CONTINUE; 7539 7540 /* 7541 * Is this MMIO handled locally? 7542 */ 7543 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7544 if (handled == bytes) 7545 return X86EMUL_CONTINUE; 7546 7547 gpa += handled; 7548 bytes -= handled; 7549 val += handled; 7550 7551 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7552 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7553 frag->gpa = gpa; 7554 frag->data = val; 7555 frag->len = bytes; 7556 return X86EMUL_CONTINUE; 7557 } 7558 7559 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7560 unsigned long addr, 7561 void *val, unsigned int bytes, 7562 struct x86_exception *exception, 7563 const struct read_write_emulator_ops *ops) 7564 { 7565 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7566 gpa_t gpa; 7567 int rc; 7568 7569 if (ops->read_write_prepare && 7570 ops->read_write_prepare(vcpu, val, bytes)) 7571 return X86EMUL_CONTINUE; 7572 7573 vcpu->mmio_nr_fragments = 0; 7574 7575 /* Crossing a page boundary? */ 7576 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7577 int now; 7578 7579 now = -addr & ~PAGE_MASK; 7580 rc = emulator_read_write_onepage(addr, val, now, exception, 7581 vcpu, ops); 7582 7583 if (rc != X86EMUL_CONTINUE) 7584 return rc; 7585 addr += now; 7586 if (ctxt->mode != X86EMUL_MODE_PROT64) 7587 addr = (u32)addr; 7588 val += now; 7589 bytes -= now; 7590 } 7591 7592 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7593 vcpu, ops); 7594 if (rc != X86EMUL_CONTINUE) 7595 return rc; 7596 7597 if (!vcpu->mmio_nr_fragments) 7598 return rc; 7599 7600 gpa = vcpu->mmio_fragments[0].gpa; 7601 7602 vcpu->mmio_needed = 1; 7603 vcpu->mmio_cur_fragment = 0; 7604 7605 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7606 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7607 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7608 vcpu->run->mmio.phys_addr = gpa; 7609 7610 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7611 } 7612 7613 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7614 unsigned long addr, 7615 void *val, 7616 unsigned int bytes, 7617 struct x86_exception *exception) 7618 { 7619 return emulator_read_write(ctxt, addr, val, bytes, 7620 exception, &read_emultor); 7621 } 7622 7623 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7624 unsigned long addr, 7625 const void *val, 7626 unsigned int bytes, 7627 struct x86_exception *exception) 7628 { 7629 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7630 exception, &write_emultor); 7631 } 7632 7633 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7634 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7635 7636 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7637 unsigned long addr, 7638 const void *old, 7639 const void *new, 7640 unsigned int bytes, 7641 struct x86_exception *exception) 7642 { 7643 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7644 u64 page_line_mask; 7645 unsigned long hva; 7646 gpa_t gpa; 7647 int r; 7648 7649 /* guests cmpxchg8b have to be emulated atomically */ 7650 if (bytes > 8 || (bytes & (bytes - 1))) 7651 goto emul_write; 7652 7653 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7654 7655 if (gpa == INVALID_GPA || 7656 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7657 goto emul_write; 7658 7659 /* 7660 * Emulate the atomic as a straight write to avoid #AC if SLD is 7661 * enabled in the host and the access splits a cache line. 7662 */ 7663 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7664 page_line_mask = ~(cache_line_size() - 1); 7665 else 7666 page_line_mask = PAGE_MASK; 7667 7668 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7669 goto emul_write; 7670 7671 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7672 if (kvm_is_error_hva(hva)) 7673 goto emul_write; 7674 7675 hva += offset_in_page(gpa); 7676 7677 switch (bytes) { 7678 case 1: 7679 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7680 break; 7681 case 2: 7682 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7683 break; 7684 case 4: 7685 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7686 break; 7687 case 8: 7688 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7689 break; 7690 default: 7691 BUG(); 7692 } 7693 7694 if (r < 0) 7695 return X86EMUL_UNHANDLEABLE; 7696 if (r) 7697 return X86EMUL_CMPXCHG_FAILED; 7698 7699 kvm_page_track_write(vcpu, gpa, new, bytes); 7700 7701 return X86EMUL_CONTINUE; 7702 7703 emul_write: 7704 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7705 7706 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7707 } 7708 7709 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7710 unsigned short port, void *data, 7711 unsigned int count, bool in) 7712 { 7713 unsigned i; 7714 int r; 7715 7716 WARN_ON_ONCE(vcpu->arch.pio.count); 7717 for (i = 0; i < count; i++) { 7718 if (in) 7719 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7720 else 7721 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7722 7723 if (r) { 7724 if (i == 0) 7725 goto userspace_io; 7726 7727 /* 7728 * Userspace must have unregistered the device while PIO 7729 * was running. Drop writes / read as 0. 7730 */ 7731 if (in) 7732 memset(data, 0, size * (count - i)); 7733 break; 7734 } 7735 7736 data += size; 7737 } 7738 return 1; 7739 7740 userspace_io: 7741 vcpu->arch.pio.port = port; 7742 vcpu->arch.pio.in = in; 7743 vcpu->arch.pio.count = count; 7744 vcpu->arch.pio.size = size; 7745 7746 if (in) 7747 memset(vcpu->arch.pio_data, 0, size * count); 7748 else 7749 memcpy(vcpu->arch.pio_data, data, size * count); 7750 7751 vcpu->run->exit_reason = KVM_EXIT_IO; 7752 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7753 vcpu->run->io.size = size; 7754 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7755 vcpu->run->io.count = count; 7756 vcpu->run->io.port = port; 7757 return 0; 7758 } 7759 7760 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7761 unsigned short port, void *val, unsigned int count) 7762 { 7763 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7764 if (r) 7765 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7766 7767 return r; 7768 } 7769 7770 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7771 { 7772 int size = vcpu->arch.pio.size; 7773 unsigned int count = vcpu->arch.pio.count; 7774 memcpy(val, vcpu->arch.pio_data, size * count); 7775 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7776 vcpu->arch.pio.count = 0; 7777 } 7778 7779 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7780 int size, unsigned short port, void *val, 7781 unsigned int count) 7782 { 7783 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7784 if (vcpu->arch.pio.count) { 7785 /* 7786 * Complete a previous iteration that required userspace I/O. 7787 * Note, @count isn't guaranteed to match pio.count as userspace 7788 * can modify ECX before rerunning the vCPU. Ignore any such 7789 * shenanigans as KVM doesn't support modifying the rep count, 7790 * and the emulator ensures @count doesn't overflow the buffer. 7791 */ 7792 complete_emulator_pio_in(vcpu, val); 7793 return 1; 7794 } 7795 7796 return emulator_pio_in(vcpu, size, port, val, count); 7797 } 7798 7799 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7800 unsigned short port, const void *val, 7801 unsigned int count) 7802 { 7803 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7804 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7805 } 7806 7807 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7808 int size, unsigned short port, 7809 const void *val, unsigned int count) 7810 { 7811 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7812 } 7813 7814 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7815 { 7816 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7817 } 7818 7819 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7820 { 7821 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7822 } 7823 7824 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7825 { 7826 if (!need_emulate_wbinvd(vcpu)) 7827 return X86EMUL_CONTINUE; 7828 7829 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7830 int cpu = get_cpu(); 7831 7832 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7833 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7834 wbinvd_ipi, NULL, 1); 7835 put_cpu(); 7836 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7837 } else 7838 wbinvd(); 7839 return X86EMUL_CONTINUE; 7840 } 7841 7842 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7843 { 7844 kvm_emulate_wbinvd_noskip(vcpu); 7845 return kvm_skip_emulated_instruction(vcpu); 7846 } 7847 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7848 7849 7850 7851 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7852 { 7853 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7854 } 7855 7856 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7857 unsigned long *dest) 7858 { 7859 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7860 } 7861 7862 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7863 unsigned long value) 7864 { 7865 7866 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7867 } 7868 7869 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7870 { 7871 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7872 } 7873 7874 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7875 { 7876 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7877 unsigned long value; 7878 7879 switch (cr) { 7880 case 0: 7881 value = kvm_read_cr0(vcpu); 7882 break; 7883 case 2: 7884 value = vcpu->arch.cr2; 7885 break; 7886 case 3: 7887 value = kvm_read_cr3(vcpu); 7888 break; 7889 case 4: 7890 value = kvm_read_cr4(vcpu); 7891 break; 7892 case 8: 7893 value = kvm_get_cr8(vcpu); 7894 break; 7895 default: 7896 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7897 return 0; 7898 } 7899 7900 return value; 7901 } 7902 7903 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7904 { 7905 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7906 int res = 0; 7907 7908 switch (cr) { 7909 case 0: 7910 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7911 break; 7912 case 2: 7913 vcpu->arch.cr2 = val; 7914 break; 7915 case 3: 7916 res = kvm_set_cr3(vcpu, val); 7917 break; 7918 case 4: 7919 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7920 break; 7921 case 8: 7922 res = kvm_set_cr8(vcpu, val); 7923 break; 7924 default: 7925 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7926 res = -1; 7927 } 7928 7929 return res; 7930 } 7931 7932 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7933 { 7934 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7935 } 7936 7937 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7938 { 7939 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7940 } 7941 7942 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7943 { 7944 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7945 } 7946 7947 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7948 { 7949 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7950 } 7951 7952 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7953 { 7954 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7955 } 7956 7957 static unsigned long emulator_get_cached_segment_base( 7958 struct x86_emulate_ctxt *ctxt, int seg) 7959 { 7960 return get_segment_base(emul_to_vcpu(ctxt), seg); 7961 } 7962 7963 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7964 struct desc_struct *desc, u32 *base3, 7965 int seg) 7966 { 7967 struct kvm_segment var; 7968 7969 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7970 *selector = var.selector; 7971 7972 if (var.unusable) { 7973 memset(desc, 0, sizeof(*desc)); 7974 if (base3) 7975 *base3 = 0; 7976 return false; 7977 } 7978 7979 if (var.g) 7980 var.limit >>= 12; 7981 set_desc_limit(desc, var.limit); 7982 set_desc_base(desc, (unsigned long)var.base); 7983 #ifdef CONFIG_X86_64 7984 if (base3) 7985 *base3 = var.base >> 32; 7986 #endif 7987 desc->type = var.type; 7988 desc->s = var.s; 7989 desc->dpl = var.dpl; 7990 desc->p = var.present; 7991 desc->avl = var.avl; 7992 desc->l = var.l; 7993 desc->d = var.db; 7994 desc->g = var.g; 7995 7996 return true; 7997 } 7998 7999 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8000 struct desc_struct *desc, u32 base3, 8001 int seg) 8002 { 8003 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8004 struct kvm_segment var; 8005 8006 var.selector = selector; 8007 var.base = get_desc_base(desc); 8008 #ifdef CONFIG_X86_64 8009 var.base |= ((u64)base3) << 32; 8010 #endif 8011 var.limit = get_desc_limit(desc); 8012 if (desc->g) 8013 var.limit = (var.limit << 12) | 0xfff; 8014 var.type = desc->type; 8015 var.dpl = desc->dpl; 8016 var.db = desc->d; 8017 var.s = desc->s; 8018 var.l = desc->l; 8019 var.g = desc->g; 8020 var.avl = desc->avl; 8021 var.present = desc->p; 8022 var.unusable = !var.present; 8023 var.padding = 0; 8024 8025 kvm_set_segment(vcpu, &var, seg); 8026 return; 8027 } 8028 8029 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8030 u32 msr_index, u64 *pdata) 8031 { 8032 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8033 int r; 8034 8035 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8036 if (r < 0) 8037 return X86EMUL_UNHANDLEABLE; 8038 8039 if (r) { 8040 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8041 complete_emulated_rdmsr, r)) 8042 return X86EMUL_IO_NEEDED; 8043 8044 trace_kvm_msr_read_ex(msr_index); 8045 return X86EMUL_PROPAGATE_FAULT; 8046 } 8047 8048 trace_kvm_msr_read(msr_index, *pdata); 8049 return X86EMUL_CONTINUE; 8050 } 8051 8052 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8053 u32 msr_index, u64 data) 8054 { 8055 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8056 int r; 8057 8058 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8059 if (r < 0) 8060 return X86EMUL_UNHANDLEABLE; 8061 8062 if (r) { 8063 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8064 complete_emulated_msr_access, r)) 8065 return X86EMUL_IO_NEEDED; 8066 8067 trace_kvm_msr_write_ex(msr_index, data); 8068 return X86EMUL_PROPAGATE_FAULT; 8069 } 8070 8071 trace_kvm_msr_write(msr_index, data); 8072 return X86EMUL_CONTINUE; 8073 } 8074 8075 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8076 u32 msr_index, u64 *pdata) 8077 { 8078 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8079 } 8080 8081 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8082 u32 pmc) 8083 { 8084 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8085 return 0; 8086 return -EINVAL; 8087 } 8088 8089 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8090 u32 pmc, u64 *pdata) 8091 { 8092 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8093 } 8094 8095 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8096 { 8097 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8098 } 8099 8100 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8101 struct x86_instruction_info *info, 8102 enum x86_intercept_stage stage) 8103 { 8104 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8105 &ctxt->exception); 8106 } 8107 8108 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8109 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8110 bool exact_only) 8111 { 8112 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8113 } 8114 8115 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8116 { 8117 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8118 } 8119 8120 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8121 { 8122 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8123 } 8124 8125 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8126 { 8127 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8128 } 8129 8130 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8131 { 8132 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8133 } 8134 8135 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8136 { 8137 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8138 } 8139 8140 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8141 { 8142 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8143 } 8144 8145 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8146 { 8147 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8148 } 8149 8150 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8151 { 8152 return emul_to_vcpu(ctxt)->arch.hflags; 8153 } 8154 8155 #ifndef CONFIG_KVM_SMM 8156 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8157 { 8158 WARN_ON_ONCE(1); 8159 return X86EMUL_UNHANDLEABLE; 8160 } 8161 #endif 8162 8163 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8164 { 8165 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8166 } 8167 8168 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8169 { 8170 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8171 } 8172 8173 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8174 { 8175 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8176 8177 if (!kvm->vm_bugged) 8178 kvm_vm_bugged(kvm); 8179 } 8180 8181 static const struct x86_emulate_ops emulate_ops = { 8182 .vm_bugged = emulator_vm_bugged, 8183 .read_gpr = emulator_read_gpr, 8184 .write_gpr = emulator_write_gpr, 8185 .read_std = emulator_read_std, 8186 .write_std = emulator_write_std, 8187 .fetch = kvm_fetch_guest_virt, 8188 .read_emulated = emulator_read_emulated, 8189 .write_emulated = emulator_write_emulated, 8190 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8191 .invlpg = emulator_invlpg, 8192 .pio_in_emulated = emulator_pio_in_emulated, 8193 .pio_out_emulated = emulator_pio_out_emulated, 8194 .get_segment = emulator_get_segment, 8195 .set_segment = emulator_set_segment, 8196 .get_cached_segment_base = emulator_get_cached_segment_base, 8197 .get_gdt = emulator_get_gdt, 8198 .get_idt = emulator_get_idt, 8199 .set_gdt = emulator_set_gdt, 8200 .set_idt = emulator_set_idt, 8201 .get_cr = emulator_get_cr, 8202 .set_cr = emulator_set_cr, 8203 .cpl = emulator_get_cpl, 8204 .get_dr = emulator_get_dr, 8205 .set_dr = emulator_set_dr, 8206 .set_msr_with_filter = emulator_set_msr_with_filter, 8207 .get_msr_with_filter = emulator_get_msr_with_filter, 8208 .get_msr = emulator_get_msr, 8209 .check_pmc = emulator_check_pmc, 8210 .read_pmc = emulator_read_pmc, 8211 .halt = emulator_halt, 8212 .wbinvd = emulator_wbinvd, 8213 .fix_hypercall = emulator_fix_hypercall, 8214 .intercept = emulator_intercept, 8215 .get_cpuid = emulator_get_cpuid, 8216 .guest_has_long_mode = emulator_guest_has_long_mode, 8217 .guest_has_movbe = emulator_guest_has_movbe, 8218 .guest_has_fxsr = emulator_guest_has_fxsr, 8219 .guest_has_rdpid = emulator_guest_has_rdpid, 8220 .set_nmi_mask = emulator_set_nmi_mask, 8221 .get_hflags = emulator_get_hflags, 8222 .leave_smm = emulator_leave_smm, 8223 .triple_fault = emulator_triple_fault, 8224 .set_xcr = emulator_set_xcr, 8225 }; 8226 8227 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8228 { 8229 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8230 /* 8231 * an sti; sti; sequence only disable interrupts for the first 8232 * instruction. So, if the last instruction, be it emulated or 8233 * not, left the system with the INT_STI flag enabled, it 8234 * means that the last instruction is an sti. We should not 8235 * leave the flag on in this case. The same goes for mov ss 8236 */ 8237 if (int_shadow & mask) 8238 mask = 0; 8239 if (unlikely(int_shadow || mask)) { 8240 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8241 if (!mask) 8242 kvm_make_request(KVM_REQ_EVENT, vcpu); 8243 } 8244 } 8245 8246 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8247 { 8248 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8249 8250 if (ctxt->exception.vector == PF_VECTOR) 8251 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8252 else if (ctxt->exception.error_code_valid) 8253 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8254 ctxt->exception.error_code); 8255 else 8256 kvm_queue_exception(vcpu, ctxt->exception.vector); 8257 } 8258 8259 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8260 { 8261 struct x86_emulate_ctxt *ctxt; 8262 8263 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8264 if (!ctxt) { 8265 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8266 return NULL; 8267 } 8268 8269 ctxt->vcpu = vcpu; 8270 ctxt->ops = &emulate_ops; 8271 vcpu->arch.emulate_ctxt = ctxt; 8272 8273 return ctxt; 8274 } 8275 8276 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8277 { 8278 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8279 int cs_db, cs_l; 8280 8281 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8282 8283 ctxt->gpa_available = false; 8284 ctxt->eflags = kvm_get_rflags(vcpu); 8285 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8286 8287 ctxt->eip = kvm_rip_read(vcpu); 8288 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8289 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8290 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8291 cs_db ? X86EMUL_MODE_PROT32 : 8292 X86EMUL_MODE_PROT16; 8293 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8294 8295 ctxt->interruptibility = 0; 8296 ctxt->have_exception = false; 8297 ctxt->exception.vector = -1; 8298 ctxt->perm_ok = false; 8299 8300 init_decode_cache(ctxt); 8301 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8302 } 8303 8304 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8305 { 8306 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8307 int ret; 8308 8309 init_emulate_ctxt(vcpu); 8310 8311 ctxt->op_bytes = 2; 8312 ctxt->ad_bytes = 2; 8313 ctxt->_eip = ctxt->eip + inc_eip; 8314 ret = emulate_int_real(ctxt, irq); 8315 8316 if (ret != X86EMUL_CONTINUE) { 8317 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8318 } else { 8319 ctxt->eip = ctxt->_eip; 8320 kvm_rip_write(vcpu, ctxt->eip); 8321 kvm_set_rflags(vcpu, ctxt->eflags); 8322 } 8323 } 8324 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8325 8326 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8327 u8 ndata, u8 *insn_bytes, u8 insn_size) 8328 { 8329 struct kvm_run *run = vcpu->run; 8330 u64 info[5]; 8331 u8 info_start; 8332 8333 /* 8334 * Zero the whole array used to retrieve the exit info, as casting to 8335 * u32 for select entries will leave some chunks uninitialized. 8336 */ 8337 memset(&info, 0, sizeof(info)); 8338 8339 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8340 &info[2], (u32 *)&info[3], 8341 (u32 *)&info[4]); 8342 8343 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8344 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8345 8346 /* 8347 * There's currently space for 13 entries, but 5 are used for the exit 8348 * reason and info. Restrict to 4 to reduce the maintenance burden 8349 * when expanding kvm_run.emulation_failure in the future. 8350 */ 8351 if (WARN_ON_ONCE(ndata > 4)) 8352 ndata = 4; 8353 8354 /* Always include the flags as a 'data' entry. */ 8355 info_start = 1; 8356 run->emulation_failure.flags = 0; 8357 8358 if (insn_size) { 8359 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8360 sizeof(run->emulation_failure.insn_bytes) != 16)); 8361 info_start += 2; 8362 run->emulation_failure.flags |= 8363 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8364 run->emulation_failure.insn_size = insn_size; 8365 memset(run->emulation_failure.insn_bytes, 0x90, 8366 sizeof(run->emulation_failure.insn_bytes)); 8367 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8368 } 8369 8370 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8371 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8372 ndata * sizeof(data[0])); 8373 8374 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8375 } 8376 8377 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8378 { 8379 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8380 8381 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8382 ctxt->fetch.end - ctxt->fetch.data); 8383 } 8384 8385 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8386 u8 ndata) 8387 { 8388 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8389 } 8390 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8391 8392 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8393 { 8394 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8395 } 8396 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8397 8398 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8399 { 8400 struct kvm *kvm = vcpu->kvm; 8401 8402 ++vcpu->stat.insn_emulation_fail; 8403 trace_kvm_emulate_insn_failed(vcpu); 8404 8405 if (emulation_type & EMULTYPE_VMWARE_GP) { 8406 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8407 return 1; 8408 } 8409 8410 if (kvm->arch.exit_on_emulation_error || 8411 (emulation_type & EMULTYPE_SKIP)) { 8412 prepare_emulation_ctxt_failure_exit(vcpu); 8413 return 0; 8414 } 8415 8416 kvm_queue_exception(vcpu, UD_VECTOR); 8417 8418 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8419 prepare_emulation_ctxt_failure_exit(vcpu); 8420 return 0; 8421 } 8422 8423 return 1; 8424 } 8425 8426 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8427 bool write_fault_to_shadow_pgtable, 8428 int emulation_type) 8429 { 8430 gpa_t gpa = cr2_or_gpa; 8431 kvm_pfn_t pfn; 8432 8433 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8434 return false; 8435 8436 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8437 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8438 return false; 8439 8440 if (!vcpu->arch.mmu->root_role.direct) { 8441 /* 8442 * Write permission should be allowed since only 8443 * write access need to be emulated. 8444 */ 8445 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8446 8447 /* 8448 * If the mapping is invalid in guest, let cpu retry 8449 * it to generate fault. 8450 */ 8451 if (gpa == INVALID_GPA) 8452 return true; 8453 } 8454 8455 /* 8456 * Do not retry the unhandleable instruction if it faults on the 8457 * readonly host memory, otherwise it will goto a infinite loop: 8458 * retry instruction -> write #PF -> emulation fail -> retry 8459 * instruction -> ... 8460 */ 8461 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8462 8463 /* 8464 * If the instruction failed on the error pfn, it can not be fixed, 8465 * report the error to userspace. 8466 */ 8467 if (is_error_noslot_pfn(pfn)) 8468 return false; 8469 8470 kvm_release_pfn_clean(pfn); 8471 8472 /* The instructions are well-emulated on direct mmu. */ 8473 if (vcpu->arch.mmu->root_role.direct) { 8474 unsigned int indirect_shadow_pages; 8475 8476 write_lock(&vcpu->kvm->mmu_lock); 8477 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8478 write_unlock(&vcpu->kvm->mmu_lock); 8479 8480 if (indirect_shadow_pages) 8481 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8482 8483 return true; 8484 } 8485 8486 /* 8487 * if emulation was due to access to shadowed page table 8488 * and it failed try to unshadow page and re-enter the 8489 * guest to let CPU execute the instruction. 8490 */ 8491 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8492 8493 /* 8494 * If the access faults on its page table, it can not 8495 * be fixed by unprotecting shadow page and it should 8496 * be reported to userspace. 8497 */ 8498 return !write_fault_to_shadow_pgtable; 8499 } 8500 8501 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8502 gpa_t cr2_or_gpa, int emulation_type) 8503 { 8504 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8505 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8506 8507 last_retry_eip = vcpu->arch.last_retry_eip; 8508 last_retry_addr = vcpu->arch.last_retry_addr; 8509 8510 /* 8511 * If the emulation is caused by #PF and it is non-page_table 8512 * writing instruction, it means the VM-EXIT is caused by shadow 8513 * page protected, we can zap the shadow page and retry this 8514 * instruction directly. 8515 * 8516 * Note: if the guest uses a non-page-table modifying instruction 8517 * on the PDE that points to the instruction, then we will unmap 8518 * the instruction and go to an infinite loop. So, we cache the 8519 * last retried eip and the last fault address, if we meet the eip 8520 * and the address again, we can break out of the potential infinite 8521 * loop. 8522 */ 8523 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8524 8525 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8526 return false; 8527 8528 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8529 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8530 return false; 8531 8532 if (x86_page_table_writing_insn(ctxt)) 8533 return false; 8534 8535 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8536 return false; 8537 8538 vcpu->arch.last_retry_eip = ctxt->eip; 8539 vcpu->arch.last_retry_addr = cr2_or_gpa; 8540 8541 if (!vcpu->arch.mmu->root_role.direct) 8542 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8543 8544 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8545 8546 return true; 8547 } 8548 8549 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8550 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8551 8552 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8553 unsigned long *db) 8554 { 8555 u32 dr6 = 0; 8556 int i; 8557 u32 enable, rwlen; 8558 8559 enable = dr7; 8560 rwlen = dr7 >> 16; 8561 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8562 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8563 dr6 |= (1 << i); 8564 return dr6; 8565 } 8566 8567 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8568 { 8569 struct kvm_run *kvm_run = vcpu->run; 8570 8571 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8572 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8573 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8574 kvm_run->debug.arch.exception = DB_VECTOR; 8575 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8576 return 0; 8577 } 8578 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8579 return 1; 8580 } 8581 8582 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8583 { 8584 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8585 int r; 8586 8587 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8588 if (unlikely(!r)) 8589 return 0; 8590 8591 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8592 8593 /* 8594 * rflags is the old, "raw" value of the flags. The new value has 8595 * not been saved yet. 8596 * 8597 * This is correct even for TF set by the guest, because "the 8598 * processor will not generate this exception after the instruction 8599 * that sets the TF flag". 8600 */ 8601 if (unlikely(rflags & X86_EFLAGS_TF)) 8602 r = kvm_vcpu_do_singlestep(vcpu); 8603 return r; 8604 } 8605 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8606 8607 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8608 { 8609 u32 shadow; 8610 8611 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8612 return true; 8613 8614 /* 8615 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8616 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8617 * to avoid the relatively expensive CPUID lookup. 8618 */ 8619 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8620 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8621 guest_cpuid_is_intel(vcpu); 8622 } 8623 8624 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8625 int emulation_type, int *r) 8626 { 8627 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8628 8629 /* 8630 * Do not check for code breakpoints if hardware has already done the 8631 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8632 * the instruction has passed all exception checks, and all intercepted 8633 * exceptions that trigger emulation have lower priority than code 8634 * breakpoints, i.e. the fact that the intercepted exception occurred 8635 * means any code breakpoints have already been serviced. 8636 * 8637 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8638 * hardware has checked the RIP of the magic prefix, but not the RIP of 8639 * the instruction being emulated. The intent of forced emulation is 8640 * to behave as if KVM intercepted the instruction without an exception 8641 * and without a prefix. 8642 */ 8643 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8644 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8645 return false; 8646 8647 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8648 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8649 struct kvm_run *kvm_run = vcpu->run; 8650 unsigned long eip = kvm_get_linear_rip(vcpu); 8651 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8652 vcpu->arch.guest_debug_dr7, 8653 vcpu->arch.eff_db); 8654 8655 if (dr6 != 0) { 8656 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8657 kvm_run->debug.arch.pc = eip; 8658 kvm_run->debug.arch.exception = DB_VECTOR; 8659 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8660 *r = 0; 8661 return true; 8662 } 8663 } 8664 8665 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8666 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8667 unsigned long eip = kvm_get_linear_rip(vcpu); 8668 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8669 vcpu->arch.dr7, 8670 vcpu->arch.db); 8671 8672 if (dr6 != 0) { 8673 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8674 *r = 1; 8675 return true; 8676 } 8677 } 8678 8679 return false; 8680 } 8681 8682 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8683 { 8684 switch (ctxt->opcode_len) { 8685 case 1: 8686 switch (ctxt->b) { 8687 case 0xe4: /* IN */ 8688 case 0xe5: 8689 case 0xec: 8690 case 0xed: 8691 case 0xe6: /* OUT */ 8692 case 0xe7: 8693 case 0xee: 8694 case 0xef: 8695 case 0x6c: /* INS */ 8696 case 0x6d: 8697 case 0x6e: /* OUTS */ 8698 case 0x6f: 8699 return true; 8700 } 8701 break; 8702 case 2: 8703 switch (ctxt->b) { 8704 case 0x33: /* RDPMC */ 8705 return true; 8706 } 8707 break; 8708 } 8709 8710 return false; 8711 } 8712 8713 /* 8714 * Decode an instruction for emulation. The caller is responsible for handling 8715 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8716 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8717 * code breakpoints have higher priority and thus have already been done by 8718 * hardware. 8719 * 8720 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8721 * response to a machine check. 8722 */ 8723 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8724 void *insn, int insn_len) 8725 { 8726 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8727 int r; 8728 8729 init_emulate_ctxt(vcpu); 8730 8731 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8732 8733 trace_kvm_emulate_insn_start(vcpu); 8734 ++vcpu->stat.insn_emulation; 8735 8736 return r; 8737 } 8738 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8739 8740 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8741 int emulation_type, void *insn, int insn_len) 8742 { 8743 int r; 8744 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8745 bool writeback = true; 8746 bool write_fault_to_spt; 8747 8748 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8749 return 1; 8750 8751 vcpu->arch.l1tf_flush_l1d = true; 8752 8753 /* 8754 * Clear write_fault_to_shadow_pgtable here to ensure it is 8755 * never reused. 8756 */ 8757 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8758 vcpu->arch.write_fault_to_shadow_pgtable = false; 8759 8760 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8761 kvm_clear_exception_queue(vcpu); 8762 8763 /* 8764 * Return immediately if RIP hits a code breakpoint, such #DBs 8765 * are fault-like and are higher priority than any faults on 8766 * the code fetch itself. 8767 */ 8768 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8769 return r; 8770 8771 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8772 insn, insn_len); 8773 if (r != EMULATION_OK) { 8774 if ((emulation_type & EMULTYPE_TRAP_UD) || 8775 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8776 kvm_queue_exception(vcpu, UD_VECTOR); 8777 return 1; 8778 } 8779 if (reexecute_instruction(vcpu, cr2_or_gpa, 8780 write_fault_to_spt, 8781 emulation_type)) 8782 return 1; 8783 8784 if (ctxt->have_exception && 8785 !(emulation_type & EMULTYPE_SKIP)) { 8786 /* 8787 * #UD should result in just EMULATION_FAILED, and trap-like 8788 * exception should not be encountered during decode. 8789 */ 8790 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8791 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8792 inject_emulated_exception(vcpu); 8793 return 1; 8794 } 8795 return handle_emulation_failure(vcpu, emulation_type); 8796 } 8797 } 8798 8799 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8800 !is_vmware_backdoor_opcode(ctxt)) { 8801 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8802 return 1; 8803 } 8804 8805 /* 8806 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8807 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8808 * The caller is responsible for updating interruptibility state and 8809 * injecting single-step #DBs. 8810 */ 8811 if (emulation_type & EMULTYPE_SKIP) { 8812 if (ctxt->mode != X86EMUL_MODE_PROT64) 8813 ctxt->eip = (u32)ctxt->_eip; 8814 else 8815 ctxt->eip = ctxt->_eip; 8816 8817 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8818 r = 1; 8819 goto writeback; 8820 } 8821 8822 kvm_rip_write(vcpu, ctxt->eip); 8823 if (ctxt->eflags & X86_EFLAGS_RF) 8824 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8825 return 1; 8826 } 8827 8828 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8829 return 1; 8830 8831 /* this is needed for vmware backdoor interface to work since it 8832 changes registers values during IO operation */ 8833 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8834 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8835 emulator_invalidate_register_cache(ctxt); 8836 } 8837 8838 restart: 8839 if (emulation_type & EMULTYPE_PF) { 8840 /* Save the faulting GPA (cr2) in the address field */ 8841 ctxt->exception.address = cr2_or_gpa; 8842 8843 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8844 if (vcpu->arch.mmu->root_role.direct) { 8845 ctxt->gpa_available = true; 8846 ctxt->gpa_val = cr2_or_gpa; 8847 } 8848 } else { 8849 /* Sanitize the address out of an abundance of paranoia. */ 8850 ctxt->exception.address = 0; 8851 } 8852 8853 r = x86_emulate_insn(ctxt); 8854 8855 if (r == EMULATION_INTERCEPTED) 8856 return 1; 8857 8858 if (r == EMULATION_FAILED) { 8859 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8860 emulation_type)) 8861 return 1; 8862 8863 return handle_emulation_failure(vcpu, emulation_type); 8864 } 8865 8866 if (ctxt->have_exception) { 8867 r = 1; 8868 inject_emulated_exception(vcpu); 8869 } else if (vcpu->arch.pio.count) { 8870 if (!vcpu->arch.pio.in) { 8871 /* FIXME: return into emulator if single-stepping. */ 8872 vcpu->arch.pio.count = 0; 8873 } else { 8874 writeback = false; 8875 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8876 } 8877 r = 0; 8878 } else if (vcpu->mmio_needed) { 8879 ++vcpu->stat.mmio_exits; 8880 8881 if (!vcpu->mmio_is_write) 8882 writeback = false; 8883 r = 0; 8884 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8885 } else if (vcpu->arch.complete_userspace_io) { 8886 writeback = false; 8887 r = 0; 8888 } else if (r == EMULATION_RESTART) 8889 goto restart; 8890 else 8891 r = 1; 8892 8893 writeback: 8894 if (writeback) { 8895 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8896 toggle_interruptibility(vcpu, ctxt->interruptibility); 8897 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8898 8899 /* 8900 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8901 * only supports code breakpoints and general detect #DB, both 8902 * of which are fault-like. 8903 */ 8904 if (!ctxt->have_exception || 8905 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8906 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8907 if (ctxt->is_branch) 8908 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8909 kvm_rip_write(vcpu, ctxt->eip); 8910 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8911 r = kvm_vcpu_do_singlestep(vcpu); 8912 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8913 __kvm_set_rflags(vcpu, ctxt->eflags); 8914 } 8915 8916 /* 8917 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8918 * do nothing, and it will be requested again as soon as 8919 * the shadow expires. But we still need to check here, 8920 * because POPF has no interrupt shadow. 8921 */ 8922 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8923 kvm_make_request(KVM_REQ_EVENT, vcpu); 8924 } else 8925 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8926 8927 return r; 8928 } 8929 8930 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8931 { 8932 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8933 } 8934 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8935 8936 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8937 void *insn, int insn_len) 8938 { 8939 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8940 } 8941 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8942 8943 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8944 { 8945 vcpu->arch.pio.count = 0; 8946 return 1; 8947 } 8948 8949 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8950 { 8951 vcpu->arch.pio.count = 0; 8952 8953 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8954 return 1; 8955 8956 return kvm_skip_emulated_instruction(vcpu); 8957 } 8958 8959 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8960 unsigned short port) 8961 { 8962 unsigned long val = kvm_rax_read(vcpu); 8963 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8964 8965 if (ret) 8966 return ret; 8967 8968 /* 8969 * Workaround userspace that relies on old KVM behavior of %rip being 8970 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8971 */ 8972 if (port == 0x7e && 8973 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8974 vcpu->arch.complete_userspace_io = 8975 complete_fast_pio_out_port_0x7e; 8976 kvm_skip_emulated_instruction(vcpu); 8977 } else { 8978 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8979 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8980 } 8981 return 0; 8982 } 8983 8984 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8985 { 8986 unsigned long val; 8987 8988 /* We should only ever be called with arch.pio.count equal to 1 */ 8989 BUG_ON(vcpu->arch.pio.count != 1); 8990 8991 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8992 vcpu->arch.pio.count = 0; 8993 return 1; 8994 } 8995 8996 /* For size less than 4 we merge, else we zero extend */ 8997 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8998 8999 complete_emulator_pio_in(vcpu, &val); 9000 kvm_rax_write(vcpu, val); 9001 9002 return kvm_skip_emulated_instruction(vcpu); 9003 } 9004 9005 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9006 unsigned short port) 9007 { 9008 unsigned long val; 9009 int ret; 9010 9011 /* For size less than 4 we merge, else we zero extend */ 9012 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9013 9014 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9015 if (ret) { 9016 kvm_rax_write(vcpu, val); 9017 return ret; 9018 } 9019 9020 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9021 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9022 9023 return 0; 9024 } 9025 9026 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9027 { 9028 int ret; 9029 9030 if (in) 9031 ret = kvm_fast_pio_in(vcpu, size, port); 9032 else 9033 ret = kvm_fast_pio_out(vcpu, size, port); 9034 return ret && kvm_skip_emulated_instruction(vcpu); 9035 } 9036 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9037 9038 static int kvmclock_cpu_down_prep(unsigned int cpu) 9039 { 9040 __this_cpu_write(cpu_tsc_khz, 0); 9041 return 0; 9042 } 9043 9044 static void tsc_khz_changed(void *data) 9045 { 9046 struct cpufreq_freqs *freq = data; 9047 unsigned long khz = 0; 9048 9049 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9050 9051 if (data) 9052 khz = freq->new; 9053 else 9054 khz = cpufreq_quick_get(raw_smp_processor_id()); 9055 if (!khz) 9056 khz = tsc_khz; 9057 __this_cpu_write(cpu_tsc_khz, khz); 9058 } 9059 9060 #ifdef CONFIG_X86_64 9061 static void kvm_hyperv_tsc_notifier(void) 9062 { 9063 struct kvm *kvm; 9064 int cpu; 9065 9066 mutex_lock(&kvm_lock); 9067 list_for_each_entry(kvm, &vm_list, vm_list) 9068 kvm_make_mclock_inprogress_request(kvm); 9069 9070 /* no guest entries from this point */ 9071 hyperv_stop_tsc_emulation(); 9072 9073 /* TSC frequency always matches when on Hyper-V */ 9074 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9075 for_each_present_cpu(cpu) 9076 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9077 } 9078 kvm_caps.max_guest_tsc_khz = tsc_khz; 9079 9080 list_for_each_entry(kvm, &vm_list, vm_list) { 9081 __kvm_start_pvclock_update(kvm); 9082 pvclock_update_vm_gtod_copy(kvm); 9083 kvm_end_pvclock_update(kvm); 9084 } 9085 9086 mutex_unlock(&kvm_lock); 9087 } 9088 #endif 9089 9090 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9091 { 9092 struct kvm *kvm; 9093 struct kvm_vcpu *vcpu; 9094 int send_ipi = 0; 9095 unsigned long i; 9096 9097 /* 9098 * We allow guests to temporarily run on slowing clocks, 9099 * provided we notify them after, or to run on accelerating 9100 * clocks, provided we notify them before. Thus time never 9101 * goes backwards. 9102 * 9103 * However, we have a problem. We can't atomically update 9104 * the frequency of a given CPU from this function; it is 9105 * merely a notifier, which can be called from any CPU. 9106 * Changing the TSC frequency at arbitrary points in time 9107 * requires a recomputation of local variables related to 9108 * the TSC for each VCPU. We must flag these local variables 9109 * to be updated and be sure the update takes place with the 9110 * new frequency before any guests proceed. 9111 * 9112 * Unfortunately, the combination of hotplug CPU and frequency 9113 * change creates an intractable locking scenario; the order 9114 * of when these callouts happen is undefined with respect to 9115 * CPU hotplug, and they can race with each other. As such, 9116 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9117 * undefined; you can actually have a CPU frequency change take 9118 * place in between the computation of X and the setting of the 9119 * variable. To protect against this problem, all updates of 9120 * the per_cpu tsc_khz variable are done in an interrupt 9121 * protected IPI, and all callers wishing to update the value 9122 * must wait for a synchronous IPI to complete (which is trivial 9123 * if the caller is on the CPU already). This establishes the 9124 * necessary total order on variable updates. 9125 * 9126 * Note that because a guest time update may take place 9127 * anytime after the setting of the VCPU's request bit, the 9128 * correct TSC value must be set before the request. However, 9129 * to ensure the update actually makes it to any guest which 9130 * starts running in hardware virtualization between the set 9131 * and the acquisition of the spinlock, we must also ping the 9132 * CPU after setting the request bit. 9133 * 9134 */ 9135 9136 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9137 9138 mutex_lock(&kvm_lock); 9139 list_for_each_entry(kvm, &vm_list, vm_list) { 9140 kvm_for_each_vcpu(i, vcpu, kvm) { 9141 if (vcpu->cpu != cpu) 9142 continue; 9143 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9144 if (vcpu->cpu != raw_smp_processor_id()) 9145 send_ipi = 1; 9146 } 9147 } 9148 mutex_unlock(&kvm_lock); 9149 9150 if (freq->old < freq->new && send_ipi) { 9151 /* 9152 * We upscale the frequency. Must make the guest 9153 * doesn't see old kvmclock values while running with 9154 * the new frequency, otherwise we risk the guest sees 9155 * time go backwards. 9156 * 9157 * In case we update the frequency for another cpu 9158 * (which might be in guest context) send an interrupt 9159 * to kick the cpu out of guest context. Next time 9160 * guest context is entered kvmclock will be updated, 9161 * so the guest will not see stale values. 9162 */ 9163 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9164 } 9165 } 9166 9167 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9168 void *data) 9169 { 9170 struct cpufreq_freqs *freq = data; 9171 int cpu; 9172 9173 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9174 return 0; 9175 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9176 return 0; 9177 9178 for_each_cpu(cpu, freq->policy->cpus) 9179 __kvmclock_cpufreq_notifier(freq, cpu); 9180 9181 return 0; 9182 } 9183 9184 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9185 .notifier_call = kvmclock_cpufreq_notifier 9186 }; 9187 9188 static int kvmclock_cpu_online(unsigned int cpu) 9189 { 9190 tsc_khz_changed(NULL); 9191 return 0; 9192 } 9193 9194 static void kvm_timer_init(void) 9195 { 9196 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9197 max_tsc_khz = tsc_khz; 9198 9199 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9200 struct cpufreq_policy *policy; 9201 int cpu; 9202 9203 cpu = get_cpu(); 9204 policy = cpufreq_cpu_get(cpu); 9205 if (policy) { 9206 if (policy->cpuinfo.max_freq) 9207 max_tsc_khz = policy->cpuinfo.max_freq; 9208 cpufreq_cpu_put(policy); 9209 } 9210 put_cpu(); 9211 } 9212 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9213 CPUFREQ_TRANSITION_NOTIFIER); 9214 9215 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9216 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9217 } 9218 } 9219 9220 #ifdef CONFIG_X86_64 9221 static void pvclock_gtod_update_fn(struct work_struct *work) 9222 { 9223 struct kvm *kvm; 9224 struct kvm_vcpu *vcpu; 9225 unsigned long i; 9226 9227 mutex_lock(&kvm_lock); 9228 list_for_each_entry(kvm, &vm_list, vm_list) 9229 kvm_for_each_vcpu(i, vcpu, kvm) 9230 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9231 atomic_set(&kvm_guest_has_master_clock, 0); 9232 mutex_unlock(&kvm_lock); 9233 } 9234 9235 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9236 9237 /* 9238 * Indirection to move queue_work() out of the tk_core.seq write held 9239 * region to prevent possible deadlocks against time accessors which 9240 * are invoked with work related locks held. 9241 */ 9242 static void pvclock_irq_work_fn(struct irq_work *w) 9243 { 9244 queue_work(system_long_wq, &pvclock_gtod_work); 9245 } 9246 9247 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9248 9249 /* 9250 * Notification about pvclock gtod data update. 9251 */ 9252 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9253 void *priv) 9254 { 9255 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9256 struct timekeeper *tk = priv; 9257 9258 update_pvclock_gtod(tk); 9259 9260 /* 9261 * Disable master clock if host does not trust, or does not use, 9262 * TSC based clocksource. Delegate queue_work() to irq_work as 9263 * this is invoked with tk_core.seq write held. 9264 */ 9265 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9266 atomic_read(&kvm_guest_has_master_clock) != 0) 9267 irq_work_queue(&pvclock_irq_work); 9268 return 0; 9269 } 9270 9271 static struct notifier_block pvclock_gtod_notifier = { 9272 .notifier_call = pvclock_gtod_notify, 9273 }; 9274 #endif 9275 9276 int kvm_arch_init(void *opaque) 9277 { 9278 struct kvm_x86_init_ops *ops = opaque; 9279 u64 host_pat; 9280 int r; 9281 9282 if (kvm_x86_ops.hardware_enable) { 9283 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9284 return -EEXIST; 9285 } 9286 9287 if (!ops->cpu_has_kvm_support()) { 9288 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9289 ops->runtime_ops->name); 9290 return -EOPNOTSUPP; 9291 } 9292 if (ops->disabled_by_bios()) { 9293 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9294 ops->runtime_ops->name); 9295 return -EOPNOTSUPP; 9296 } 9297 9298 /* 9299 * KVM explicitly assumes that the guest has an FPU and 9300 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9301 * vCPU's FPU state as a fxregs_state struct. 9302 */ 9303 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9304 printk(KERN_ERR "kvm: inadequate fpu\n"); 9305 return -EOPNOTSUPP; 9306 } 9307 9308 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9309 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9310 return -EOPNOTSUPP; 9311 } 9312 9313 /* 9314 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9315 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9316 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9317 * with an exception. PAT[0] is set to WB on RESET and also by the 9318 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9319 */ 9320 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9321 (host_pat & GENMASK(2, 0)) != 6) { 9322 pr_err("kvm: host PAT[0] is not WB\n"); 9323 return -EIO; 9324 } 9325 9326 x86_emulator_cache = kvm_alloc_emulator_cache(); 9327 if (!x86_emulator_cache) { 9328 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9329 return -ENOMEM; 9330 } 9331 9332 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9333 if (!user_return_msrs) { 9334 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9335 r = -ENOMEM; 9336 goto out_free_x86_emulator_cache; 9337 } 9338 kvm_nr_uret_msrs = 0; 9339 9340 r = kvm_mmu_vendor_module_init(); 9341 if (r) 9342 goto out_free_percpu; 9343 9344 kvm_timer_init(); 9345 9346 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9347 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9348 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9349 } 9350 9351 if (pi_inject_timer == -1) 9352 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9353 #ifdef CONFIG_X86_64 9354 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9355 9356 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9357 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9358 #endif 9359 9360 return 0; 9361 9362 out_free_percpu: 9363 free_percpu(user_return_msrs); 9364 out_free_x86_emulator_cache: 9365 kmem_cache_destroy(x86_emulator_cache); 9366 return r; 9367 } 9368 9369 void kvm_arch_exit(void) 9370 { 9371 #ifdef CONFIG_X86_64 9372 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9373 clear_hv_tscchange_cb(); 9374 #endif 9375 kvm_lapic_exit(); 9376 9377 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9378 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9379 CPUFREQ_TRANSITION_NOTIFIER); 9380 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9381 } 9382 #ifdef CONFIG_X86_64 9383 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9384 irq_work_sync(&pvclock_irq_work); 9385 cancel_work_sync(&pvclock_gtod_work); 9386 #endif 9387 kvm_x86_ops.hardware_enable = NULL; 9388 kvm_mmu_vendor_module_exit(); 9389 free_percpu(user_return_msrs); 9390 kmem_cache_destroy(x86_emulator_cache); 9391 #ifdef CONFIG_KVM_XEN 9392 static_key_deferred_flush(&kvm_xen_enabled); 9393 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9394 #endif 9395 } 9396 9397 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9398 { 9399 /* 9400 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9401 * local APIC is in-kernel, the run loop will detect the non-runnable 9402 * state and halt the vCPU. Exit to userspace if the local APIC is 9403 * managed by userspace, in which case userspace is responsible for 9404 * handling wake events. 9405 */ 9406 ++vcpu->stat.halt_exits; 9407 if (lapic_in_kernel(vcpu)) { 9408 vcpu->arch.mp_state = state; 9409 return 1; 9410 } else { 9411 vcpu->run->exit_reason = reason; 9412 return 0; 9413 } 9414 } 9415 9416 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9417 { 9418 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9419 } 9420 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9421 9422 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9423 { 9424 int ret = kvm_skip_emulated_instruction(vcpu); 9425 /* 9426 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9427 * KVM_EXIT_DEBUG here. 9428 */ 9429 return kvm_emulate_halt_noskip(vcpu) && ret; 9430 } 9431 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9432 9433 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9434 { 9435 int ret = kvm_skip_emulated_instruction(vcpu); 9436 9437 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9438 KVM_EXIT_AP_RESET_HOLD) && ret; 9439 } 9440 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9441 9442 #ifdef CONFIG_X86_64 9443 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9444 unsigned long clock_type) 9445 { 9446 struct kvm_clock_pairing clock_pairing; 9447 struct timespec64 ts; 9448 u64 cycle; 9449 int ret; 9450 9451 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9452 return -KVM_EOPNOTSUPP; 9453 9454 /* 9455 * When tsc is in permanent catchup mode guests won't be able to use 9456 * pvclock_read_retry loop to get consistent view of pvclock 9457 */ 9458 if (vcpu->arch.tsc_always_catchup) 9459 return -KVM_EOPNOTSUPP; 9460 9461 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9462 return -KVM_EOPNOTSUPP; 9463 9464 clock_pairing.sec = ts.tv_sec; 9465 clock_pairing.nsec = ts.tv_nsec; 9466 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9467 clock_pairing.flags = 0; 9468 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9469 9470 ret = 0; 9471 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9472 sizeof(struct kvm_clock_pairing))) 9473 ret = -KVM_EFAULT; 9474 9475 return ret; 9476 } 9477 #endif 9478 9479 /* 9480 * kvm_pv_kick_cpu_op: Kick a vcpu. 9481 * 9482 * @apicid - apicid of vcpu to be kicked. 9483 */ 9484 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9485 { 9486 /* 9487 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9488 * common code, e.g. for tracing. Defer initialization to the compiler. 9489 */ 9490 struct kvm_lapic_irq lapic_irq = { 9491 .delivery_mode = APIC_DM_REMRD, 9492 .dest_mode = APIC_DEST_PHYSICAL, 9493 .shorthand = APIC_DEST_NOSHORT, 9494 .dest_id = apicid, 9495 }; 9496 9497 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9498 } 9499 9500 bool kvm_apicv_activated(struct kvm *kvm) 9501 { 9502 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9503 } 9504 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9505 9506 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9507 { 9508 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9509 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9510 9511 return (vm_reasons | vcpu_reasons) == 0; 9512 } 9513 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9514 9515 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9516 enum kvm_apicv_inhibit reason, bool set) 9517 { 9518 if (set) 9519 __set_bit(reason, inhibits); 9520 else 9521 __clear_bit(reason, inhibits); 9522 9523 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9524 } 9525 9526 static void kvm_apicv_init(struct kvm *kvm) 9527 { 9528 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9529 9530 init_rwsem(&kvm->arch.apicv_update_lock); 9531 9532 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9533 9534 if (!enable_apicv) 9535 set_or_clear_apicv_inhibit(inhibits, 9536 APICV_INHIBIT_REASON_DISABLE, true); 9537 } 9538 9539 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9540 { 9541 struct kvm_vcpu *target = NULL; 9542 struct kvm_apic_map *map; 9543 9544 vcpu->stat.directed_yield_attempted++; 9545 9546 if (single_task_running()) 9547 goto no_yield; 9548 9549 rcu_read_lock(); 9550 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9551 9552 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9553 target = map->phys_map[dest_id]->vcpu; 9554 9555 rcu_read_unlock(); 9556 9557 if (!target || !READ_ONCE(target->ready)) 9558 goto no_yield; 9559 9560 /* Ignore requests to yield to self */ 9561 if (vcpu == target) 9562 goto no_yield; 9563 9564 if (kvm_vcpu_yield_to(target) <= 0) 9565 goto no_yield; 9566 9567 vcpu->stat.directed_yield_successful++; 9568 9569 no_yield: 9570 return; 9571 } 9572 9573 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9574 { 9575 u64 ret = vcpu->run->hypercall.ret; 9576 9577 if (!is_64_bit_mode(vcpu)) 9578 ret = (u32)ret; 9579 kvm_rax_write(vcpu, ret); 9580 ++vcpu->stat.hypercalls; 9581 return kvm_skip_emulated_instruction(vcpu); 9582 } 9583 9584 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9585 { 9586 unsigned long nr, a0, a1, a2, a3, ret; 9587 int op_64_bit; 9588 9589 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9590 return kvm_xen_hypercall(vcpu); 9591 9592 if (kvm_hv_hypercall_enabled(vcpu)) 9593 return kvm_hv_hypercall(vcpu); 9594 9595 nr = kvm_rax_read(vcpu); 9596 a0 = kvm_rbx_read(vcpu); 9597 a1 = kvm_rcx_read(vcpu); 9598 a2 = kvm_rdx_read(vcpu); 9599 a3 = kvm_rsi_read(vcpu); 9600 9601 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9602 9603 op_64_bit = is_64_bit_hypercall(vcpu); 9604 if (!op_64_bit) { 9605 nr &= 0xFFFFFFFF; 9606 a0 &= 0xFFFFFFFF; 9607 a1 &= 0xFFFFFFFF; 9608 a2 &= 0xFFFFFFFF; 9609 a3 &= 0xFFFFFFFF; 9610 } 9611 9612 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9613 ret = -KVM_EPERM; 9614 goto out; 9615 } 9616 9617 ret = -KVM_ENOSYS; 9618 9619 switch (nr) { 9620 case KVM_HC_VAPIC_POLL_IRQ: 9621 ret = 0; 9622 break; 9623 case KVM_HC_KICK_CPU: 9624 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9625 break; 9626 9627 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9628 kvm_sched_yield(vcpu, a1); 9629 ret = 0; 9630 break; 9631 #ifdef CONFIG_X86_64 9632 case KVM_HC_CLOCK_PAIRING: 9633 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9634 break; 9635 #endif 9636 case KVM_HC_SEND_IPI: 9637 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9638 break; 9639 9640 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9641 break; 9642 case KVM_HC_SCHED_YIELD: 9643 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9644 break; 9645 9646 kvm_sched_yield(vcpu, a0); 9647 ret = 0; 9648 break; 9649 case KVM_HC_MAP_GPA_RANGE: { 9650 u64 gpa = a0, npages = a1, attrs = a2; 9651 9652 ret = -KVM_ENOSYS; 9653 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9654 break; 9655 9656 if (!PAGE_ALIGNED(gpa) || !npages || 9657 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9658 ret = -KVM_EINVAL; 9659 break; 9660 } 9661 9662 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9663 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9664 vcpu->run->hypercall.args[0] = gpa; 9665 vcpu->run->hypercall.args[1] = npages; 9666 vcpu->run->hypercall.args[2] = attrs; 9667 vcpu->run->hypercall.longmode = op_64_bit; 9668 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9669 return 0; 9670 } 9671 default: 9672 ret = -KVM_ENOSYS; 9673 break; 9674 } 9675 out: 9676 if (!op_64_bit) 9677 ret = (u32)ret; 9678 kvm_rax_write(vcpu, ret); 9679 9680 ++vcpu->stat.hypercalls; 9681 return kvm_skip_emulated_instruction(vcpu); 9682 } 9683 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9684 9685 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9686 { 9687 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9688 char instruction[3]; 9689 unsigned long rip = kvm_rip_read(vcpu); 9690 9691 /* 9692 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9693 * the pieces. 9694 */ 9695 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9696 ctxt->exception.error_code_valid = false; 9697 ctxt->exception.vector = UD_VECTOR; 9698 ctxt->have_exception = true; 9699 return X86EMUL_PROPAGATE_FAULT; 9700 } 9701 9702 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9703 9704 return emulator_write_emulated(ctxt, rip, instruction, 3, 9705 &ctxt->exception); 9706 } 9707 9708 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9709 { 9710 return vcpu->run->request_interrupt_window && 9711 likely(!pic_in_kernel(vcpu->kvm)); 9712 } 9713 9714 /* Called within kvm->srcu read side. */ 9715 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9716 { 9717 struct kvm_run *kvm_run = vcpu->run; 9718 9719 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9720 kvm_run->cr8 = kvm_get_cr8(vcpu); 9721 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9722 9723 kvm_run->ready_for_interrupt_injection = 9724 pic_in_kernel(vcpu->kvm) || 9725 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9726 9727 if (is_smm(vcpu)) 9728 kvm_run->flags |= KVM_RUN_X86_SMM; 9729 } 9730 9731 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9732 { 9733 int max_irr, tpr; 9734 9735 if (!kvm_x86_ops.update_cr8_intercept) 9736 return; 9737 9738 if (!lapic_in_kernel(vcpu)) 9739 return; 9740 9741 if (vcpu->arch.apic->apicv_active) 9742 return; 9743 9744 if (!vcpu->arch.apic->vapic_addr) 9745 max_irr = kvm_lapic_find_highest_irr(vcpu); 9746 else 9747 max_irr = -1; 9748 9749 if (max_irr != -1) 9750 max_irr >>= 4; 9751 9752 tpr = kvm_lapic_get_cr8(vcpu); 9753 9754 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9755 } 9756 9757 9758 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9759 { 9760 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9761 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9762 return 1; 9763 } 9764 9765 return kvm_x86_ops.nested_ops->check_events(vcpu); 9766 } 9767 9768 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9769 { 9770 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9771 vcpu->arch.exception.has_error_code, 9772 vcpu->arch.exception.error_code, 9773 vcpu->arch.exception.injected); 9774 9775 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9776 vcpu->arch.exception.error_code = false; 9777 static_call(kvm_x86_inject_exception)(vcpu); 9778 } 9779 9780 /* 9781 * Check for any event (interrupt or exception) that is ready to be injected, 9782 * and if there is at least one event, inject the event with the highest 9783 * priority. This handles both "pending" events, i.e. events that have never 9784 * been injected into the guest, and "injected" events, i.e. events that were 9785 * injected as part of a previous VM-Enter, but weren't successfully delivered 9786 * and need to be re-injected. 9787 * 9788 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9789 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9790 * be able to inject exceptions in the "middle" of an instruction, and so must 9791 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9792 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9793 * boundaries is necessary and correct. 9794 * 9795 * For simplicity, KVM uses a single path to inject all events (except events 9796 * that are injected directly from L1 to L2) and doesn't explicitly track 9797 * instruction boundaries for asynchronous events. However, because VM-Exits 9798 * that can occur during instruction execution typically result in KVM skipping 9799 * the instruction or injecting an exception, e.g. instruction and exception 9800 * intercepts, and because pending exceptions have higher priority than pending 9801 * interrupts, KVM still honors instruction boundaries in most scenarios. 9802 * 9803 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9804 * the instruction or inject an exception, then KVM can incorrecty inject a new 9805 * asynchrounous event if the event became pending after the CPU fetched the 9806 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9807 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9808 * injected on the restarted instruction instead of being deferred until the 9809 * instruction completes. 9810 * 9811 * In practice, this virtualization hole is unlikely to be observed by the 9812 * guest, and even less likely to cause functional problems. To detect the 9813 * hole, the guest would have to trigger an event on a side effect of an early 9814 * phase of instruction execution, e.g. on the instruction fetch from memory. 9815 * And for it to be a functional problem, the guest would need to depend on the 9816 * ordering between that side effect, the instruction completing, _and_ the 9817 * delivery of the asynchronous event. 9818 */ 9819 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9820 bool *req_immediate_exit) 9821 { 9822 bool can_inject; 9823 int r; 9824 9825 /* 9826 * Process nested events first, as nested VM-Exit supercedes event 9827 * re-injection. If there's an event queued for re-injection, it will 9828 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9829 */ 9830 if (is_guest_mode(vcpu)) 9831 r = kvm_check_nested_events(vcpu); 9832 else 9833 r = 0; 9834 9835 /* 9836 * Re-inject exceptions and events *especially* if immediate entry+exit 9837 * to/from L2 is needed, as any event that has already been injected 9838 * into L2 needs to complete its lifecycle before injecting a new event. 9839 * 9840 * Don't re-inject an NMI or interrupt if there is a pending exception. 9841 * This collision arises if an exception occurred while vectoring the 9842 * injected event, KVM intercepted said exception, and KVM ultimately 9843 * determined the fault belongs to the guest and queues the exception 9844 * for injection back into the guest. 9845 * 9846 * "Injected" interrupts can also collide with pending exceptions if 9847 * userspace ignores the "ready for injection" flag and blindly queues 9848 * an interrupt. In that case, prioritizing the exception is correct, 9849 * as the exception "occurred" before the exit to userspace. Trap-like 9850 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9851 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9852 * priority, they're only generated (pended) during instruction 9853 * execution, and interrupts are recognized at instruction boundaries. 9854 * Thus a pending fault-like exception means the fault occurred on the 9855 * *previous* instruction and must be serviced prior to recognizing any 9856 * new events in order to fully complete the previous instruction. 9857 */ 9858 if (vcpu->arch.exception.injected) 9859 kvm_inject_exception(vcpu); 9860 else if (kvm_is_exception_pending(vcpu)) 9861 ; /* see above */ 9862 else if (vcpu->arch.nmi_injected) 9863 static_call(kvm_x86_inject_nmi)(vcpu); 9864 else if (vcpu->arch.interrupt.injected) 9865 static_call(kvm_x86_inject_irq)(vcpu, true); 9866 9867 /* 9868 * Exceptions that morph to VM-Exits are handled above, and pending 9869 * exceptions on top of injected exceptions that do not VM-Exit should 9870 * either morph to #DF or, sadly, override the injected exception. 9871 */ 9872 WARN_ON_ONCE(vcpu->arch.exception.injected && 9873 vcpu->arch.exception.pending); 9874 9875 /* 9876 * Bail if immediate entry+exit to/from the guest is needed to complete 9877 * nested VM-Enter or event re-injection so that a different pending 9878 * event can be serviced (or if KVM needs to exit to userspace). 9879 * 9880 * Otherwise, continue processing events even if VM-Exit occurred. The 9881 * VM-Exit will have cleared exceptions that were meant for L2, but 9882 * there may now be events that can be injected into L1. 9883 */ 9884 if (r < 0) 9885 goto out; 9886 9887 /* 9888 * A pending exception VM-Exit should either result in nested VM-Exit 9889 * or force an immediate re-entry and exit to/from L2, and exception 9890 * VM-Exits cannot be injected (flag should _never_ be set). 9891 */ 9892 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9893 vcpu->arch.exception_vmexit.pending); 9894 9895 /* 9896 * New events, other than exceptions, cannot be injected if KVM needs 9897 * to re-inject a previous event. See above comments on re-injecting 9898 * for why pending exceptions get priority. 9899 */ 9900 can_inject = !kvm_event_needs_reinjection(vcpu); 9901 9902 if (vcpu->arch.exception.pending) { 9903 /* 9904 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9905 * value pushed on the stack. Trap-like exception and all #DBs 9906 * leave RF as-is (KVM follows Intel's behavior in this regard; 9907 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9908 * 9909 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9910 * describe the behavior of General Detect #DBs, which are 9911 * fault-like. They do _not_ set RF, a la code breakpoints. 9912 */ 9913 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9914 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9915 X86_EFLAGS_RF); 9916 9917 if (vcpu->arch.exception.vector == DB_VECTOR) { 9918 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9919 if (vcpu->arch.dr7 & DR7_GD) { 9920 vcpu->arch.dr7 &= ~DR7_GD; 9921 kvm_update_dr7(vcpu); 9922 } 9923 } 9924 9925 kvm_inject_exception(vcpu); 9926 9927 vcpu->arch.exception.pending = false; 9928 vcpu->arch.exception.injected = true; 9929 9930 can_inject = false; 9931 } 9932 9933 /* Don't inject interrupts if the user asked to avoid doing so */ 9934 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9935 return 0; 9936 9937 /* 9938 * Finally, inject interrupt events. If an event cannot be injected 9939 * due to architectural conditions (e.g. IF=0) a window-open exit 9940 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9941 * and can architecturally be injected, but we cannot do it right now: 9942 * an interrupt could have arrived just now and we have to inject it 9943 * as a vmexit, or there could already an event in the queue, which is 9944 * indicated by can_inject. In that case we request an immediate exit 9945 * in order to make progress and get back here for another iteration. 9946 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9947 */ 9948 #ifdef CONFIG_KVM_SMM 9949 if (vcpu->arch.smi_pending) { 9950 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9951 if (r < 0) 9952 goto out; 9953 if (r) { 9954 vcpu->arch.smi_pending = false; 9955 ++vcpu->arch.smi_count; 9956 enter_smm(vcpu); 9957 can_inject = false; 9958 } else 9959 static_call(kvm_x86_enable_smi_window)(vcpu); 9960 } 9961 #endif 9962 9963 if (vcpu->arch.nmi_pending) { 9964 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9965 if (r < 0) 9966 goto out; 9967 if (r) { 9968 --vcpu->arch.nmi_pending; 9969 vcpu->arch.nmi_injected = true; 9970 static_call(kvm_x86_inject_nmi)(vcpu); 9971 can_inject = false; 9972 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9973 } 9974 if (vcpu->arch.nmi_pending) 9975 static_call(kvm_x86_enable_nmi_window)(vcpu); 9976 } 9977 9978 if (kvm_cpu_has_injectable_intr(vcpu)) { 9979 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9980 if (r < 0) 9981 goto out; 9982 if (r) { 9983 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9984 static_call(kvm_x86_inject_irq)(vcpu, false); 9985 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9986 } 9987 if (kvm_cpu_has_injectable_intr(vcpu)) 9988 static_call(kvm_x86_enable_irq_window)(vcpu); 9989 } 9990 9991 if (is_guest_mode(vcpu) && 9992 kvm_x86_ops.nested_ops->has_events && 9993 kvm_x86_ops.nested_ops->has_events(vcpu)) 9994 *req_immediate_exit = true; 9995 9996 /* 9997 * KVM must never queue a new exception while injecting an event; KVM 9998 * is done emulating and should only propagate the to-be-injected event 9999 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10000 * infinite loop as KVM will bail from VM-Enter to inject the pending 10001 * exception and start the cycle all over. 10002 * 10003 * Exempt triple faults as they have special handling and won't put the 10004 * vCPU into an infinite loop. Triple fault can be queued when running 10005 * VMX without unrestricted guest, as that requires KVM to emulate Real 10006 * Mode events (see kvm_inject_realmode_interrupt()). 10007 */ 10008 WARN_ON_ONCE(vcpu->arch.exception.pending || 10009 vcpu->arch.exception_vmexit.pending); 10010 return 0; 10011 10012 out: 10013 if (r == -EBUSY) { 10014 *req_immediate_exit = true; 10015 r = 0; 10016 } 10017 return r; 10018 } 10019 10020 static void process_nmi(struct kvm_vcpu *vcpu) 10021 { 10022 unsigned limit = 2; 10023 10024 /* 10025 * x86 is limited to one NMI running, and one NMI pending after it. 10026 * If an NMI is already in progress, limit further NMIs to just one. 10027 * Otherwise, allow two (and we'll inject the first one immediately). 10028 */ 10029 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10030 limit = 1; 10031 10032 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10033 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10034 kvm_make_request(KVM_REQ_EVENT, vcpu); 10035 } 10036 10037 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10038 unsigned long *vcpu_bitmap) 10039 { 10040 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10041 } 10042 10043 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10044 { 10045 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10046 } 10047 10048 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10049 { 10050 struct kvm_lapic *apic = vcpu->arch.apic; 10051 bool activate; 10052 10053 if (!lapic_in_kernel(vcpu)) 10054 return; 10055 10056 down_read(&vcpu->kvm->arch.apicv_update_lock); 10057 preempt_disable(); 10058 10059 /* Do not activate APICV when APIC is disabled */ 10060 activate = kvm_vcpu_apicv_activated(vcpu) && 10061 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10062 10063 if (apic->apicv_active == activate) 10064 goto out; 10065 10066 apic->apicv_active = activate; 10067 kvm_apic_update_apicv(vcpu); 10068 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10069 10070 /* 10071 * When APICv gets disabled, we may still have injected interrupts 10072 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10073 * still active when the interrupt got accepted. Make sure 10074 * kvm_check_and_inject_events() is called to check for that. 10075 */ 10076 if (!apic->apicv_active) 10077 kvm_make_request(KVM_REQ_EVENT, vcpu); 10078 10079 out: 10080 preempt_enable(); 10081 up_read(&vcpu->kvm->arch.apicv_update_lock); 10082 } 10083 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10084 10085 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10086 { 10087 if (!lapic_in_kernel(vcpu)) 10088 return; 10089 10090 /* 10091 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10092 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10093 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10094 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10095 * this case so that KVM can the AVIC doorbell to inject interrupts to 10096 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10097 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10098 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10099 * access page is sticky. 10100 */ 10101 if (apic_x2apic_mode(vcpu->arch.apic) && 10102 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10103 kvm_inhibit_apic_access_page(vcpu); 10104 10105 __kvm_vcpu_update_apicv(vcpu); 10106 } 10107 10108 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10109 enum kvm_apicv_inhibit reason, bool set) 10110 { 10111 unsigned long old, new; 10112 10113 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10114 10115 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10116 return; 10117 10118 old = new = kvm->arch.apicv_inhibit_reasons; 10119 10120 set_or_clear_apicv_inhibit(&new, reason, set); 10121 10122 if (!!old != !!new) { 10123 /* 10124 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10125 * false positives in the sanity check WARN in svm_vcpu_run(). 10126 * This task will wait for all vCPUs to ack the kick IRQ before 10127 * updating apicv_inhibit_reasons, and all other vCPUs will 10128 * block on acquiring apicv_update_lock so that vCPUs can't 10129 * redo svm_vcpu_run() without seeing the new inhibit state. 10130 * 10131 * Note, holding apicv_update_lock and taking it in the read 10132 * side (handling the request) also prevents other vCPUs from 10133 * servicing the request with a stale apicv_inhibit_reasons. 10134 */ 10135 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10136 kvm->arch.apicv_inhibit_reasons = new; 10137 if (new) { 10138 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10139 int idx = srcu_read_lock(&kvm->srcu); 10140 10141 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10142 srcu_read_unlock(&kvm->srcu, idx); 10143 } 10144 } else { 10145 kvm->arch.apicv_inhibit_reasons = new; 10146 } 10147 } 10148 10149 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10150 enum kvm_apicv_inhibit reason, bool set) 10151 { 10152 if (!enable_apicv) 10153 return; 10154 10155 down_write(&kvm->arch.apicv_update_lock); 10156 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10157 up_write(&kvm->arch.apicv_update_lock); 10158 } 10159 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10160 10161 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10162 { 10163 if (!kvm_apic_present(vcpu)) 10164 return; 10165 10166 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10167 10168 if (irqchip_split(vcpu->kvm)) 10169 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10170 else { 10171 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10172 if (ioapic_in_kernel(vcpu->kvm)) 10173 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10174 } 10175 10176 if (is_guest_mode(vcpu)) 10177 vcpu->arch.load_eoi_exitmap_pending = true; 10178 else 10179 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10180 } 10181 10182 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10183 { 10184 u64 eoi_exit_bitmap[4]; 10185 10186 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10187 return; 10188 10189 if (to_hv_vcpu(vcpu)) { 10190 bitmap_or((ulong *)eoi_exit_bitmap, 10191 vcpu->arch.ioapic_handled_vectors, 10192 to_hv_synic(vcpu)->vec_bitmap, 256); 10193 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10194 return; 10195 } 10196 10197 static_call_cond(kvm_x86_load_eoi_exitmap)( 10198 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10199 } 10200 10201 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10202 unsigned long start, unsigned long end) 10203 { 10204 unsigned long apic_address; 10205 10206 /* 10207 * The physical address of apic access page is stored in the VMCS. 10208 * Update it when it becomes invalid. 10209 */ 10210 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10211 if (start <= apic_address && apic_address < end) 10212 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10213 } 10214 10215 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10216 { 10217 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10218 } 10219 10220 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10221 { 10222 if (!lapic_in_kernel(vcpu)) 10223 return; 10224 10225 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10226 } 10227 10228 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10229 { 10230 smp_send_reschedule(vcpu->cpu); 10231 } 10232 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10233 10234 /* 10235 * Called within kvm->srcu read side. 10236 * Returns 1 to let vcpu_run() continue the guest execution loop without 10237 * exiting to the userspace. Otherwise, the value will be returned to the 10238 * userspace. 10239 */ 10240 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10241 { 10242 int r; 10243 bool req_int_win = 10244 dm_request_for_irq_injection(vcpu) && 10245 kvm_cpu_accept_dm_intr(vcpu); 10246 fastpath_t exit_fastpath; 10247 10248 bool req_immediate_exit = false; 10249 10250 if (kvm_request_pending(vcpu)) { 10251 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10252 r = -EIO; 10253 goto out; 10254 } 10255 10256 if (kvm_dirty_ring_check_request(vcpu)) { 10257 r = 0; 10258 goto out; 10259 } 10260 10261 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10262 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10263 r = 0; 10264 goto out; 10265 } 10266 } 10267 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10268 kvm_mmu_free_obsolete_roots(vcpu); 10269 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10270 __kvm_migrate_timers(vcpu); 10271 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10272 kvm_update_masterclock(vcpu->kvm); 10273 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10274 kvm_gen_kvmclock_update(vcpu); 10275 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10276 r = kvm_guest_time_update(vcpu); 10277 if (unlikely(r)) 10278 goto out; 10279 } 10280 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10281 kvm_mmu_sync_roots(vcpu); 10282 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10283 kvm_mmu_load_pgd(vcpu); 10284 10285 /* 10286 * Note, the order matters here, as flushing "all" TLB entries 10287 * also flushes the "current" TLB entries, i.e. servicing the 10288 * flush "all" will clear any request to flush "current". 10289 */ 10290 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10291 kvm_vcpu_flush_tlb_all(vcpu); 10292 10293 kvm_service_local_tlb_flush_requests(vcpu); 10294 10295 /* 10296 * Fall back to a "full" guest flush if Hyper-V's precise 10297 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10298 * the flushes are considered "remote" and not "local" because 10299 * the requests can be initiated from other vCPUs. 10300 */ 10301 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10302 kvm_hv_vcpu_flush_tlb(vcpu)) 10303 kvm_vcpu_flush_tlb_guest(vcpu); 10304 10305 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10306 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10307 r = 0; 10308 goto out; 10309 } 10310 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10311 if (is_guest_mode(vcpu)) 10312 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10313 10314 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10315 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10316 vcpu->mmio_needed = 0; 10317 r = 0; 10318 goto out; 10319 } 10320 } 10321 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10322 /* Page is swapped out. Do synthetic halt */ 10323 vcpu->arch.apf.halted = true; 10324 r = 1; 10325 goto out; 10326 } 10327 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10328 record_steal_time(vcpu); 10329 #ifdef CONFIG_KVM_SMM 10330 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10331 process_smi(vcpu); 10332 #endif 10333 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10334 process_nmi(vcpu); 10335 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10336 kvm_pmu_handle_event(vcpu); 10337 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10338 kvm_pmu_deliver_pmi(vcpu); 10339 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10340 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10341 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10342 vcpu->arch.ioapic_handled_vectors)) { 10343 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10344 vcpu->run->eoi.vector = 10345 vcpu->arch.pending_ioapic_eoi; 10346 r = 0; 10347 goto out; 10348 } 10349 } 10350 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10351 vcpu_scan_ioapic(vcpu); 10352 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10353 vcpu_load_eoi_exitmap(vcpu); 10354 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10355 kvm_vcpu_reload_apic_access_page(vcpu); 10356 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10357 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10358 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10359 vcpu->run->system_event.ndata = 0; 10360 r = 0; 10361 goto out; 10362 } 10363 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10364 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10365 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10366 vcpu->run->system_event.ndata = 0; 10367 r = 0; 10368 goto out; 10369 } 10370 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10371 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10372 10373 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10374 vcpu->run->hyperv = hv_vcpu->exit; 10375 r = 0; 10376 goto out; 10377 } 10378 10379 /* 10380 * KVM_REQ_HV_STIMER has to be processed after 10381 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10382 * depend on the guest clock being up-to-date 10383 */ 10384 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10385 kvm_hv_process_stimers(vcpu); 10386 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10387 kvm_vcpu_update_apicv(vcpu); 10388 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10389 kvm_check_async_pf_completion(vcpu); 10390 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10391 static_call(kvm_x86_msr_filter_changed)(vcpu); 10392 10393 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10394 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10395 } 10396 10397 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10398 kvm_xen_has_interrupt(vcpu)) { 10399 ++vcpu->stat.req_event; 10400 r = kvm_apic_accept_events(vcpu); 10401 if (r < 0) { 10402 r = 0; 10403 goto out; 10404 } 10405 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10406 r = 1; 10407 goto out; 10408 } 10409 10410 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10411 if (r < 0) { 10412 r = 0; 10413 goto out; 10414 } 10415 if (req_int_win) 10416 static_call(kvm_x86_enable_irq_window)(vcpu); 10417 10418 if (kvm_lapic_enabled(vcpu)) { 10419 update_cr8_intercept(vcpu); 10420 kvm_lapic_sync_to_vapic(vcpu); 10421 } 10422 } 10423 10424 r = kvm_mmu_reload(vcpu); 10425 if (unlikely(r)) { 10426 goto cancel_injection; 10427 } 10428 10429 preempt_disable(); 10430 10431 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10432 10433 /* 10434 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10435 * IPI are then delayed after guest entry, which ensures that they 10436 * result in virtual interrupt delivery. 10437 */ 10438 local_irq_disable(); 10439 10440 /* Store vcpu->apicv_active before vcpu->mode. */ 10441 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10442 10443 kvm_vcpu_srcu_read_unlock(vcpu); 10444 10445 /* 10446 * 1) We should set ->mode before checking ->requests. Please see 10447 * the comment in kvm_vcpu_exiting_guest_mode(). 10448 * 10449 * 2) For APICv, we should set ->mode before checking PID.ON. This 10450 * pairs with the memory barrier implicit in pi_test_and_set_on 10451 * (see vmx_deliver_posted_interrupt). 10452 * 10453 * 3) This also orders the write to mode from any reads to the page 10454 * tables done while the VCPU is running. Please see the comment 10455 * in kvm_flush_remote_tlbs. 10456 */ 10457 smp_mb__after_srcu_read_unlock(); 10458 10459 /* 10460 * Process pending posted interrupts to handle the case where the 10461 * notification IRQ arrived in the host, or was never sent (because the 10462 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10463 * status, KVM doesn't update assigned devices when APICv is inhibited, 10464 * i.e. they can post interrupts even if APICv is temporarily disabled. 10465 */ 10466 if (kvm_lapic_enabled(vcpu)) 10467 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10468 10469 if (kvm_vcpu_exit_request(vcpu)) { 10470 vcpu->mode = OUTSIDE_GUEST_MODE; 10471 smp_wmb(); 10472 local_irq_enable(); 10473 preempt_enable(); 10474 kvm_vcpu_srcu_read_lock(vcpu); 10475 r = 1; 10476 goto cancel_injection; 10477 } 10478 10479 if (req_immediate_exit) { 10480 kvm_make_request(KVM_REQ_EVENT, vcpu); 10481 static_call(kvm_x86_request_immediate_exit)(vcpu); 10482 } 10483 10484 fpregs_assert_state_consistent(); 10485 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10486 switch_fpu_return(); 10487 10488 if (vcpu->arch.guest_fpu.xfd_err) 10489 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10490 10491 if (unlikely(vcpu->arch.switch_db_regs)) { 10492 set_debugreg(0, 7); 10493 set_debugreg(vcpu->arch.eff_db[0], 0); 10494 set_debugreg(vcpu->arch.eff_db[1], 1); 10495 set_debugreg(vcpu->arch.eff_db[2], 2); 10496 set_debugreg(vcpu->arch.eff_db[3], 3); 10497 } else if (unlikely(hw_breakpoint_active())) { 10498 set_debugreg(0, 7); 10499 } 10500 10501 guest_timing_enter_irqoff(); 10502 10503 for (;;) { 10504 /* 10505 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10506 * update must kick and wait for all vCPUs before toggling the 10507 * per-VM state, and responsing vCPUs must wait for the update 10508 * to complete before servicing KVM_REQ_APICV_UPDATE. 10509 */ 10510 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10511 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10512 10513 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10514 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10515 break; 10516 10517 if (kvm_lapic_enabled(vcpu)) 10518 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10519 10520 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10521 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10522 break; 10523 } 10524 } 10525 10526 /* 10527 * Do this here before restoring debug registers on the host. And 10528 * since we do this before handling the vmexit, a DR access vmexit 10529 * can (a) read the correct value of the debug registers, (b) set 10530 * KVM_DEBUGREG_WONT_EXIT again. 10531 */ 10532 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10533 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10534 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10535 kvm_update_dr0123(vcpu); 10536 kvm_update_dr7(vcpu); 10537 } 10538 10539 /* 10540 * If the guest has used debug registers, at least dr7 10541 * will be disabled while returning to the host. 10542 * If we don't have active breakpoints in the host, we don't 10543 * care about the messed up debug address registers. But if 10544 * we have some of them active, restore the old state. 10545 */ 10546 if (hw_breakpoint_active()) 10547 hw_breakpoint_restore(); 10548 10549 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10550 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10551 10552 vcpu->mode = OUTSIDE_GUEST_MODE; 10553 smp_wmb(); 10554 10555 /* 10556 * Sync xfd before calling handle_exit_irqoff() which may 10557 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10558 * in #NM irqoff handler). 10559 */ 10560 if (vcpu->arch.xfd_no_write_intercept) 10561 fpu_sync_guest_vmexit_xfd_state(); 10562 10563 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10564 10565 if (vcpu->arch.guest_fpu.xfd_err) 10566 wrmsrl(MSR_IA32_XFD_ERR, 0); 10567 10568 /* 10569 * Consume any pending interrupts, including the possible source of 10570 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10571 * An instruction is required after local_irq_enable() to fully unblock 10572 * interrupts on processors that implement an interrupt shadow, the 10573 * stat.exits increment will do nicely. 10574 */ 10575 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10576 local_irq_enable(); 10577 ++vcpu->stat.exits; 10578 local_irq_disable(); 10579 kvm_after_interrupt(vcpu); 10580 10581 /* 10582 * Wait until after servicing IRQs to account guest time so that any 10583 * ticks that occurred while running the guest are properly accounted 10584 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10585 * of accounting via context tracking, but the loss of accuracy is 10586 * acceptable for all known use cases. 10587 */ 10588 guest_timing_exit_irqoff(); 10589 10590 local_irq_enable(); 10591 preempt_enable(); 10592 10593 kvm_vcpu_srcu_read_lock(vcpu); 10594 10595 /* 10596 * Profile KVM exit RIPs: 10597 */ 10598 if (unlikely(prof_on == KVM_PROFILING)) { 10599 unsigned long rip = kvm_rip_read(vcpu); 10600 profile_hit(KVM_PROFILING, (void *)rip); 10601 } 10602 10603 if (unlikely(vcpu->arch.tsc_always_catchup)) 10604 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10605 10606 if (vcpu->arch.apic_attention) 10607 kvm_lapic_sync_from_vapic(vcpu); 10608 10609 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10610 return r; 10611 10612 cancel_injection: 10613 if (req_immediate_exit) 10614 kvm_make_request(KVM_REQ_EVENT, vcpu); 10615 static_call(kvm_x86_cancel_injection)(vcpu); 10616 if (unlikely(vcpu->arch.apic_attention)) 10617 kvm_lapic_sync_from_vapic(vcpu); 10618 out: 10619 return r; 10620 } 10621 10622 /* Called within kvm->srcu read side. */ 10623 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10624 { 10625 bool hv_timer; 10626 10627 if (!kvm_arch_vcpu_runnable(vcpu)) { 10628 /* 10629 * Switch to the software timer before halt-polling/blocking as 10630 * the guest's timer may be a break event for the vCPU, and the 10631 * hypervisor timer runs only when the CPU is in guest mode. 10632 * Switch before halt-polling so that KVM recognizes an expired 10633 * timer before blocking. 10634 */ 10635 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10636 if (hv_timer) 10637 kvm_lapic_switch_to_sw_timer(vcpu); 10638 10639 kvm_vcpu_srcu_read_unlock(vcpu); 10640 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10641 kvm_vcpu_halt(vcpu); 10642 else 10643 kvm_vcpu_block(vcpu); 10644 kvm_vcpu_srcu_read_lock(vcpu); 10645 10646 if (hv_timer) 10647 kvm_lapic_switch_to_hv_timer(vcpu); 10648 10649 /* 10650 * If the vCPU is not runnable, a signal or another host event 10651 * of some kind is pending; service it without changing the 10652 * vCPU's activity state. 10653 */ 10654 if (!kvm_arch_vcpu_runnable(vcpu)) 10655 return 1; 10656 } 10657 10658 /* 10659 * Evaluate nested events before exiting the halted state. This allows 10660 * the halt state to be recorded properly in the VMCS12's activity 10661 * state field (AMD does not have a similar field and a VM-Exit always 10662 * causes a spurious wakeup from HLT). 10663 */ 10664 if (is_guest_mode(vcpu)) { 10665 if (kvm_check_nested_events(vcpu) < 0) 10666 return 0; 10667 } 10668 10669 if (kvm_apic_accept_events(vcpu) < 0) 10670 return 0; 10671 switch(vcpu->arch.mp_state) { 10672 case KVM_MP_STATE_HALTED: 10673 case KVM_MP_STATE_AP_RESET_HOLD: 10674 vcpu->arch.pv.pv_unhalted = false; 10675 vcpu->arch.mp_state = 10676 KVM_MP_STATE_RUNNABLE; 10677 fallthrough; 10678 case KVM_MP_STATE_RUNNABLE: 10679 vcpu->arch.apf.halted = false; 10680 break; 10681 case KVM_MP_STATE_INIT_RECEIVED: 10682 break; 10683 default: 10684 WARN_ON_ONCE(1); 10685 break; 10686 } 10687 return 1; 10688 } 10689 10690 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10691 { 10692 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10693 !vcpu->arch.apf.halted); 10694 } 10695 10696 /* Called within kvm->srcu read side. */ 10697 static int vcpu_run(struct kvm_vcpu *vcpu) 10698 { 10699 int r; 10700 10701 vcpu->arch.l1tf_flush_l1d = true; 10702 10703 for (;;) { 10704 /* 10705 * If another guest vCPU requests a PV TLB flush in the middle 10706 * of instruction emulation, the rest of the emulation could 10707 * use a stale page translation. Assume that any code after 10708 * this point can start executing an instruction. 10709 */ 10710 vcpu->arch.at_instruction_boundary = false; 10711 if (kvm_vcpu_running(vcpu)) { 10712 r = vcpu_enter_guest(vcpu); 10713 } else { 10714 r = vcpu_block(vcpu); 10715 } 10716 10717 if (r <= 0) 10718 break; 10719 10720 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10721 if (kvm_xen_has_pending_events(vcpu)) 10722 kvm_xen_inject_pending_events(vcpu); 10723 10724 if (kvm_cpu_has_pending_timer(vcpu)) 10725 kvm_inject_pending_timer_irqs(vcpu); 10726 10727 if (dm_request_for_irq_injection(vcpu) && 10728 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10729 r = 0; 10730 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10731 ++vcpu->stat.request_irq_exits; 10732 break; 10733 } 10734 10735 if (__xfer_to_guest_mode_work_pending()) { 10736 kvm_vcpu_srcu_read_unlock(vcpu); 10737 r = xfer_to_guest_mode_handle_work(vcpu); 10738 kvm_vcpu_srcu_read_lock(vcpu); 10739 if (r) 10740 return r; 10741 } 10742 } 10743 10744 return r; 10745 } 10746 10747 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10748 { 10749 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10750 } 10751 10752 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10753 { 10754 BUG_ON(!vcpu->arch.pio.count); 10755 10756 return complete_emulated_io(vcpu); 10757 } 10758 10759 /* 10760 * Implements the following, as a state machine: 10761 * 10762 * read: 10763 * for each fragment 10764 * for each mmio piece in the fragment 10765 * write gpa, len 10766 * exit 10767 * copy data 10768 * execute insn 10769 * 10770 * write: 10771 * for each fragment 10772 * for each mmio piece in the fragment 10773 * write gpa, len 10774 * copy data 10775 * exit 10776 */ 10777 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10778 { 10779 struct kvm_run *run = vcpu->run; 10780 struct kvm_mmio_fragment *frag; 10781 unsigned len; 10782 10783 BUG_ON(!vcpu->mmio_needed); 10784 10785 /* Complete previous fragment */ 10786 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10787 len = min(8u, frag->len); 10788 if (!vcpu->mmio_is_write) 10789 memcpy(frag->data, run->mmio.data, len); 10790 10791 if (frag->len <= 8) { 10792 /* Switch to the next fragment. */ 10793 frag++; 10794 vcpu->mmio_cur_fragment++; 10795 } else { 10796 /* Go forward to the next mmio piece. */ 10797 frag->data += len; 10798 frag->gpa += len; 10799 frag->len -= len; 10800 } 10801 10802 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10803 vcpu->mmio_needed = 0; 10804 10805 /* FIXME: return into emulator if single-stepping. */ 10806 if (vcpu->mmio_is_write) 10807 return 1; 10808 vcpu->mmio_read_completed = 1; 10809 return complete_emulated_io(vcpu); 10810 } 10811 10812 run->exit_reason = KVM_EXIT_MMIO; 10813 run->mmio.phys_addr = frag->gpa; 10814 if (vcpu->mmio_is_write) 10815 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10816 run->mmio.len = min(8u, frag->len); 10817 run->mmio.is_write = vcpu->mmio_is_write; 10818 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10819 return 0; 10820 } 10821 10822 /* Swap (qemu) user FPU context for the guest FPU context. */ 10823 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10824 { 10825 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10826 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10827 trace_kvm_fpu(1); 10828 } 10829 10830 /* When vcpu_run ends, restore user space FPU context. */ 10831 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10832 { 10833 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10834 ++vcpu->stat.fpu_reload; 10835 trace_kvm_fpu(0); 10836 } 10837 10838 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10839 { 10840 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10841 struct kvm_run *kvm_run = vcpu->run; 10842 int r; 10843 10844 vcpu_load(vcpu); 10845 kvm_sigset_activate(vcpu); 10846 kvm_run->flags = 0; 10847 kvm_load_guest_fpu(vcpu); 10848 10849 kvm_vcpu_srcu_read_lock(vcpu); 10850 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10851 if (kvm_run->immediate_exit) { 10852 r = -EINTR; 10853 goto out; 10854 } 10855 /* 10856 * It should be impossible for the hypervisor timer to be in 10857 * use before KVM has ever run the vCPU. 10858 */ 10859 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10860 10861 kvm_vcpu_srcu_read_unlock(vcpu); 10862 kvm_vcpu_block(vcpu); 10863 kvm_vcpu_srcu_read_lock(vcpu); 10864 10865 if (kvm_apic_accept_events(vcpu) < 0) { 10866 r = 0; 10867 goto out; 10868 } 10869 r = -EAGAIN; 10870 if (signal_pending(current)) { 10871 r = -EINTR; 10872 kvm_run->exit_reason = KVM_EXIT_INTR; 10873 ++vcpu->stat.signal_exits; 10874 } 10875 goto out; 10876 } 10877 10878 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10879 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10880 r = -EINVAL; 10881 goto out; 10882 } 10883 10884 if (kvm_run->kvm_dirty_regs) { 10885 r = sync_regs(vcpu); 10886 if (r != 0) 10887 goto out; 10888 } 10889 10890 /* re-sync apic's tpr */ 10891 if (!lapic_in_kernel(vcpu)) { 10892 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10893 r = -EINVAL; 10894 goto out; 10895 } 10896 } 10897 10898 /* 10899 * If userspace set a pending exception and L2 is active, convert it to 10900 * a pending VM-Exit if L1 wants to intercept the exception. 10901 */ 10902 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 10903 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 10904 ex->error_code)) { 10905 kvm_queue_exception_vmexit(vcpu, ex->vector, 10906 ex->has_error_code, ex->error_code, 10907 ex->has_payload, ex->payload); 10908 ex->injected = false; 10909 ex->pending = false; 10910 } 10911 vcpu->arch.exception_from_userspace = false; 10912 10913 if (unlikely(vcpu->arch.complete_userspace_io)) { 10914 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10915 vcpu->arch.complete_userspace_io = NULL; 10916 r = cui(vcpu); 10917 if (r <= 0) 10918 goto out; 10919 } else { 10920 WARN_ON_ONCE(vcpu->arch.pio.count); 10921 WARN_ON_ONCE(vcpu->mmio_needed); 10922 } 10923 10924 if (kvm_run->immediate_exit) { 10925 r = -EINTR; 10926 goto out; 10927 } 10928 10929 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10930 if (r <= 0) 10931 goto out; 10932 10933 r = vcpu_run(vcpu); 10934 10935 out: 10936 kvm_put_guest_fpu(vcpu); 10937 if (kvm_run->kvm_valid_regs) 10938 store_regs(vcpu); 10939 post_kvm_run_save(vcpu); 10940 kvm_vcpu_srcu_read_unlock(vcpu); 10941 10942 kvm_sigset_deactivate(vcpu); 10943 vcpu_put(vcpu); 10944 return r; 10945 } 10946 10947 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10948 { 10949 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10950 /* 10951 * We are here if userspace calls get_regs() in the middle of 10952 * instruction emulation. Registers state needs to be copied 10953 * back from emulation context to vcpu. Userspace shouldn't do 10954 * that usually, but some bad designed PV devices (vmware 10955 * backdoor interface) need this to work 10956 */ 10957 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10958 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10959 } 10960 regs->rax = kvm_rax_read(vcpu); 10961 regs->rbx = kvm_rbx_read(vcpu); 10962 regs->rcx = kvm_rcx_read(vcpu); 10963 regs->rdx = kvm_rdx_read(vcpu); 10964 regs->rsi = kvm_rsi_read(vcpu); 10965 regs->rdi = kvm_rdi_read(vcpu); 10966 regs->rsp = kvm_rsp_read(vcpu); 10967 regs->rbp = kvm_rbp_read(vcpu); 10968 #ifdef CONFIG_X86_64 10969 regs->r8 = kvm_r8_read(vcpu); 10970 regs->r9 = kvm_r9_read(vcpu); 10971 regs->r10 = kvm_r10_read(vcpu); 10972 regs->r11 = kvm_r11_read(vcpu); 10973 regs->r12 = kvm_r12_read(vcpu); 10974 regs->r13 = kvm_r13_read(vcpu); 10975 regs->r14 = kvm_r14_read(vcpu); 10976 regs->r15 = kvm_r15_read(vcpu); 10977 #endif 10978 10979 regs->rip = kvm_rip_read(vcpu); 10980 regs->rflags = kvm_get_rflags(vcpu); 10981 } 10982 10983 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10984 { 10985 vcpu_load(vcpu); 10986 __get_regs(vcpu, regs); 10987 vcpu_put(vcpu); 10988 return 0; 10989 } 10990 10991 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10992 { 10993 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10994 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10995 10996 kvm_rax_write(vcpu, regs->rax); 10997 kvm_rbx_write(vcpu, regs->rbx); 10998 kvm_rcx_write(vcpu, regs->rcx); 10999 kvm_rdx_write(vcpu, regs->rdx); 11000 kvm_rsi_write(vcpu, regs->rsi); 11001 kvm_rdi_write(vcpu, regs->rdi); 11002 kvm_rsp_write(vcpu, regs->rsp); 11003 kvm_rbp_write(vcpu, regs->rbp); 11004 #ifdef CONFIG_X86_64 11005 kvm_r8_write(vcpu, regs->r8); 11006 kvm_r9_write(vcpu, regs->r9); 11007 kvm_r10_write(vcpu, regs->r10); 11008 kvm_r11_write(vcpu, regs->r11); 11009 kvm_r12_write(vcpu, regs->r12); 11010 kvm_r13_write(vcpu, regs->r13); 11011 kvm_r14_write(vcpu, regs->r14); 11012 kvm_r15_write(vcpu, regs->r15); 11013 #endif 11014 11015 kvm_rip_write(vcpu, regs->rip); 11016 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11017 11018 vcpu->arch.exception.pending = false; 11019 vcpu->arch.exception_vmexit.pending = false; 11020 11021 kvm_make_request(KVM_REQ_EVENT, vcpu); 11022 } 11023 11024 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11025 { 11026 vcpu_load(vcpu); 11027 __set_regs(vcpu, regs); 11028 vcpu_put(vcpu); 11029 return 0; 11030 } 11031 11032 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11033 { 11034 struct desc_ptr dt; 11035 11036 if (vcpu->arch.guest_state_protected) 11037 goto skip_protected_regs; 11038 11039 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11040 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11041 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11042 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11043 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11044 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11045 11046 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11047 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11048 11049 static_call(kvm_x86_get_idt)(vcpu, &dt); 11050 sregs->idt.limit = dt.size; 11051 sregs->idt.base = dt.address; 11052 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11053 sregs->gdt.limit = dt.size; 11054 sregs->gdt.base = dt.address; 11055 11056 sregs->cr2 = vcpu->arch.cr2; 11057 sregs->cr3 = kvm_read_cr3(vcpu); 11058 11059 skip_protected_regs: 11060 sregs->cr0 = kvm_read_cr0(vcpu); 11061 sregs->cr4 = kvm_read_cr4(vcpu); 11062 sregs->cr8 = kvm_get_cr8(vcpu); 11063 sregs->efer = vcpu->arch.efer; 11064 sregs->apic_base = kvm_get_apic_base(vcpu); 11065 } 11066 11067 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11068 { 11069 __get_sregs_common(vcpu, sregs); 11070 11071 if (vcpu->arch.guest_state_protected) 11072 return; 11073 11074 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11075 set_bit(vcpu->arch.interrupt.nr, 11076 (unsigned long *)sregs->interrupt_bitmap); 11077 } 11078 11079 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11080 { 11081 int i; 11082 11083 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11084 11085 if (vcpu->arch.guest_state_protected) 11086 return; 11087 11088 if (is_pae_paging(vcpu)) { 11089 for (i = 0 ; i < 4 ; i++) 11090 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11091 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11092 } 11093 } 11094 11095 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11096 struct kvm_sregs *sregs) 11097 { 11098 vcpu_load(vcpu); 11099 __get_sregs(vcpu, sregs); 11100 vcpu_put(vcpu); 11101 return 0; 11102 } 11103 11104 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11105 struct kvm_mp_state *mp_state) 11106 { 11107 int r; 11108 11109 vcpu_load(vcpu); 11110 if (kvm_mpx_supported()) 11111 kvm_load_guest_fpu(vcpu); 11112 11113 r = kvm_apic_accept_events(vcpu); 11114 if (r < 0) 11115 goto out; 11116 r = 0; 11117 11118 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11119 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11120 vcpu->arch.pv.pv_unhalted) 11121 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11122 else 11123 mp_state->mp_state = vcpu->arch.mp_state; 11124 11125 out: 11126 if (kvm_mpx_supported()) 11127 kvm_put_guest_fpu(vcpu); 11128 vcpu_put(vcpu); 11129 return r; 11130 } 11131 11132 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11133 struct kvm_mp_state *mp_state) 11134 { 11135 int ret = -EINVAL; 11136 11137 vcpu_load(vcpu); 11138 11139 switch (mp_state->mp_state) { 11140 case KVM_MP_STATE_UNINITIALIZED: 11141 case KVM_MP_STATE_HALTED: 11142 case KVM_MP_STATE_AP_RESET_HOLD: 11143 case KVM_MP_STATE_INIT_RECEIVED: 11144 case KVM_MP_STATE_SIPI_RECEIVED: 11145 if (!lapic_in_kernel(vcpu)) 11146 goto out; 11147 break; 11148 11149 case KVM_MP_STATE_RUNNABLE: 11150 break; 11151 11152 default: 11153 goto out; 11154 } 11155 11156 /* 11157 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11158 * forcing the guest into INIT/SIPI if those events are supposed to be 11159 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11160 * if an SMI is pending as well. 11161 */ 11162 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11163 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11164 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11165 goto out; 11166 11167 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11168 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11169 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11170 } else 11171 vcpu->arch.mp_state = mp_state->mp_state; 11172 kvm_make_request(KVM_REQ_EVENT, vcpu); 11173 11174 ret = 0; 11175 out: 11176 vcpu_put(vcpu); 11177 return ret; 11178 } 11179 11180 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11181 int reason, bool has_error_code, u32 error_code) 11182 { 11183 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11184 int ret; 11185 11186 init_emulate_ctxt(vcpu); 11187 11188 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11189 has_error_code, error_code); 11190 if (ret) { 11191 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11192 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11193 vcpu->run->internal.ndata = 0; 11194 return 0; 11195 } 11196 11197 kvm_rip_write(vcpu, ctxt->eip); 11198 kvm_set_rflags(vcpu, ctxt->eflags); 11199 return 1; 11200 } 11201 EXPORT_SYMBOL_GPL(kvm_task_switch); 11202 11203 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11204 { 11205 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11206 /* 11207 * When EFER.LME and CR0.PG are set, the processor is in 11208 * 64-bit mode (though maybe in a 32-bit code segment). 11209 * CR4.PAE and EFER.LMA must be set. 11210 */ 11211 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11212 return false; 11213 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11214 return false; 11215 } else { 11216 /* 11217 * Not in 64-bit mode: EFER.LMA is clear and the code 11218 * segment cannot be 64-bit. 11219 */ 11220 if (sregs->efer & EFER_LMA || sregs->cs.l) 11221 return false; 11222 } 11223 11224 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11225 } 11226 11227 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11228 int *mmu_reset_needed, bool update_pdptrs) 11229 { 11230 struct msr_data apic_base_msr; 11231 int idx; 11232 struct desc_ptr dt; 11233 11234 if (!kvm_is_valid_sregs(vcpu, sregs)) 11235 return -EINVAL; 11236 11237 apic_base_msr.data = sregs->apic_base; 11238 apic_base_msr.host_initiated = true; 11239 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11240 return -EINVAL; 11241 11242 if (vcpu->arch.guest_state_protected) 11243 return 0; 11244 11245 dt.size = sregs->idt.limit; 11246 dt.address = sregs->idt.base; 11247 static_call(kvm_x86_set_idt)(vcpu, &dt); 11248 dt.size = sregs->gdt.limit; 11249 dt.address = sregs->gdt.base; 11250 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11251 11252 vcpu->arch.cr2 = sregs->cr2; 11253 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11254 vcpu->arch.cr3 = sregs->cr3; 11255 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11256 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11257 11258 kvm_set_cr8(vcpu, sregs->cr8); 11259 11260 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11261 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11262 11263 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11264 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11265 vcpu->arch.cr0 = sregs->cr0; 11266 11267 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11268 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11269 11270 if (update_pdptrs) { 11271 idx = srcu_read_lock(&vcpu->kvm->srcu); 11272 if (is_pae_paging(vcpu)) { 11273 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11274 *mmu_reset_needed = 1; 11275 } 11276 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11277 } 11278 11279 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11280 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11281 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11282 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11283 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11284 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11285 11286 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11287 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11288 11289 update_cr8_intercept(vcpu); 11290 11291 /* Older userspace won't unhalt the vcpu on reset. */ 11292 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11293 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11294 !is_protmode(vcpu)) 11295 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11296 11297 return 0; 11298 } 11299 11300 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11301 { 11302 int pending_vec, max_bits; 11303 int mmu_reset_needed = 0; 11304 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11305 11306 if (ret) 11307 return ret; 11308 11309 if (mmu_reset_needed) 11310 kvm_mmu_reset_context(vcpu); 11311 11312 max_bits = KVM_NR_INTERRUPTS; 11313 pending_vec = find_first_bit( 11314 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11315 11316 if (pending_vec < max_bits) { 11317 kvm_queue_interrupt(vcpu, pending_vec, false); 11318 pr_debug("Set back pending irq %d\n", pending_vec); 11319 kvm_make_request(KVM_REQ_EVENT, vcpu); 11320 } 11321 return 0; 11322 } 11323 11324 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11325 { 11326 int mmu_reset_needed = 0; 11327 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11328 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11329 !(sregs2->efer & EFER_LMA); 11330 int i, ret; 11331 11332 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11333 return -EINVAL; 11334 11335 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11336 return -EINVAL; 11337 11338 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11339 &mmu_reset_needed, !valid_pdptrs); 11340 if (ret) 11341 return ret; 11342 11343 if (valid_pdptrs) { 11344 for (i = 0; i < 4 ; i++) 11345 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11346 11347 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11348 mmu_reset_needed = 1; 11349 vcpu->arch.pdptrs_from_userspace = true; 11350 } 11351 if (mmu_reset_needed) 11352 kvm_mmu_reset_context(vcpu); 11353 return 0; 11354 } 11355 11356 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11357 struct kvm_sregs *sregs) 11358 { 11359 int ret; 11360 11361 vcpu_load(vcpu); 11362 ret = __set_sregs(vcpu, sregs); 11363 vcpu_put(vcpu); 11364 return ret; 11365 } 11366 11367 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11368 { 11369 bool set = false; 11370 struct kvm_vcpu *vcpu; 11371 unsigned long i; 11372 11373 if (!enable_apicv) 11374 return; 11375 11376 down_write(&kvm->arch.apicv_update_lock); 11377 11378 kvm_for_each_vcpu(i, vcpu, kvm) { 11379 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11380 set = true; 11381 break; 11382 } 11383 } 11384 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11385 up_write(&kvm->arch.apicv_update_lock); 11386 } 11387 11388 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11389 struct kvm_guest_debug *dbg) 11390 { 11391 unsigned long rflags; 11392 int i, r; 11393 11394 if (vcpu->arch.guest_state_protected) 11395 return -EINVAL; 11396 11397 vcpu_load(vcpu); 11398 11399 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11400 r = -EBUSY; 11401 if (kvm_is_exception_pending(vcpu)) 11402 goto out; 11403 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11404 kvm_queue_exception(vcpu, DB_VECTOR); 11405 else 11406 kvm_queue_exception(vcpu, BP_VECTOR); 11407 } 11408 11409 /* 11410 * Read rflags as long as potentially injected trace flags are still 11411 * filtered out. 11412 */ 11413 rflags = kvm_get_rflags(vcpu); 11414 11415 vcpu->guest_debug = dbg->control; 11416 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11417 vcpu->guest_debug = 0; 11418 11419 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11420 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11421 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11422 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11423 } else { 11424 for (i = 0; i < KVM_NR_DB_REGS; i++) 11425 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11426 } 11427 kvm_update_dr7(vcpu); 11428 11429 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11430 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11431 11432 /* 11433 * Trigger an rflags update that will inject or remove the trace 11434 * flags. 11435 */ 11436 kvm_set_rflags(vcpu, rflags); 11437 11438 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11439 11440 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11441 11442 r = 0; 11443 11444 out: 11445 vcpu_put(vcpu); 11446 return r; 11447 } 11448 11449 /* 11450 * Translate a guest virtual address to a guest physical address. 11451 */ 11452 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11453 struct kvm_translation *tr) 11454 { 11455 unsigned long vaddr = tr->linear_address; 11456 gpa_t gpa; 11457 int idx; 11458 11459 vcpu_load(vcpu); 11460 11461 idx = srcu_read_lock(&vcpu->kvm->srcu); 11462 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11463 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11464 tr->physical_address = gpa; 11465 tr->valid = gpa != INVALID_GPA; 11466 tr->writeable = 1; 11467 tr->usermode = 0; 11468 11469 vcpu_put(vcpu); 11470 return 0; 11471 } 11472 11473 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11474 { 11475 struct fxregs_state *fxsave; 11476 11477 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11478 return 0; 11479 11480 vcpu_load(vcpu); 11481 11482 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11483 memcpy(fpu->fpr, fxsave->st_space, 128); 11484 fpu->fcw = fxsave->cwd; 11485 fpu->fsw = fxsave->swd; 11486 fpu->ftwx = fxsave->twd; 11487 fpu->last_opcode = fxsave->fop; 11488 fpu->last_ip = fxsave->rip; 11489 fpu->last_dp = fxsave->rdp; 11490 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11491 11492 vcpu_put(vcpu); 11493 return 0; 11494 } 11495 11496 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11497 { 11498 struct fxregs_state *fxsave; 11499 11500 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11501 return 0; 11502 11503 vcpu_load(vcpu); 11504 11505 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11506 11507 memcpy(fxsave->st_space, fpu->fpr, 128); 11508 fxsave->cwd = fpu->fcw; 11509 fxsave->swd = fpu->fsw; 11510 fxsave->twd = fpu->ftwx; 11511 fxsave->fop = fpu->last_opcode; 11512 fxsave->rip = fpu->last_ip; 11513 fxsave->rdp = fpu->last_dp; 11514 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11515 11516 vcpu_put(vcpu); 11517 return 0; 11518 } 11519 11520 static void store_regs(struct kvm_vcpu *vcpu) 11521 { 11522 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11523 11524 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11525 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11526 11527 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11528 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11529 11530 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11531 kvm_vcpu_ioctl_x86_get_vcpu_events( 11532 vcpu, &vcpu->run->s.regs.events); 11533 } 11534 11535 static int sync_regs(struct kvm_vcpu *vcpu) 11536 { 11537 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11538 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11539 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11540 } 11541 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11542 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11543 return -EINVAL; 11544 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11545 } 11546 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11547 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11548 vcpu, &vcpu->run->s.regs.events)) 11549 return -EINVAL; 11550 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11551 } 11552 11553 return 0; 11554 } 11555 11556 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11557 { 11558 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11559 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11560 "guest TSC will not be reliable\n"); 11561 11562 if (!kvm->arch.max_vcpu_ids) 11563 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11564 11565 if (id >= kvm->arch.max_vcpu_ids) 11566 return -EINVAL; 11567 11568 return static_call(kvm_x86_vcpu_precreate)(kvm); 11569 } 11570 11571 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11572 { 11573 struct page *page; 11574 int r; 11575 11576 vcpu->arch.last_vmentry_cpu = -1; 11577 vcpu->arch.regs_avail = ~0; 11578 vcpu->arch.regs_dirty = ~0; 11579 11580 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11581 11582 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11583 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11584 else 11585 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11586 11587 r = kvm_mmu_create(vcpu); 11588 if (r < 0) 11589 return r; 11590 11591 if (irqchip_in_kernel(vcpu->kvm)) { 11592 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11593 if (r < 0) 11594 goto fail_mmu_destroy; 11595 11596 /* 11597 * Defer evaluating inhibits until the vCPU is first run, as 11598 * this vCPU will not get notified of any changes until this 11599 * vCPU is visible to other vCPUs (marked online and added to 11600 * the set of vCPUs). Opportunistically mark APICv active as 11601 * VMX in particularly is highly unlikely to have inhibits. 11602 * Ignore the current per-VM APICv state so that vCPU creation 11603 * is guaranteed to run with a deterministic value, the request 11604 * will ensure the vCPU gets the correct state before VM-Entry. 11605 */ 11606 if (enable_apicv) { 11607 vcpu->arch.apic->apicv_active = true; 11608 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11609 } 11610 } else 11611 static_branch_inc(&kvm_has_noapic_vcpu); 11612 11613 r = -ENOMEM; 11614 11615 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11616 if (!page) 11617 goto fail_free_lapic; 11618 vcpu->arch.pio_data = page_address(page); 11619 11620 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11621 GFP_KERNEL_ACCOUNT); 11622 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11623 GFP_KERNEL_ACCOUNT); 11624 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11625 goto fail_free_mce_banks; 11626 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11627 11628 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11629 GFP_KERNEL_ACCOUNT)) 11630 goto fail_free_mce_banks; 11631 11632 if (!alloc_emulate_ctxt(vcpu)) 11633 goto free_wbinvd_dirty_mask; 11634 11635 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11636 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11637 goto free_emulate_ctxt; 11638 } 11639 11640 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11641 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11642 11643 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11644 11645 kvm_async_pf_hash_reset(vcpu); 11646 11647 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11648 kvm_pmu_init(vcpu); 11649 11650 vcpu->arch.pending_external_vector = -1; 11651 vcpu->arch.preempted_in_kernel = false; 11652 11653 #if IS_ENABLED(CONFIG_HYPERV) 11654 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11655 #endif 11656 11657 r = static_call(kvm_x86_vcpu_create)(vcpu); 11658 if (r) 11659 goto free_guest_fpu; 11660 11661 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11662 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11663 kvm_xen_init_vcpu(vcpu); 11664 kvm_vcpu_mtrr_init(vcpu); 11665 vcpu_load(vcpu); 11666 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11667 kvm_vcpu_reset(vcpu, false); 11668 kvm_init_mmu(vcpu); 11669 vcpu_put(vcpu); 11670 return 0; 11671 11672 free_guest_fpu: 11673 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11674 free_emulate_ctxt: 11675 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11676 free_wbinvd_dirty_mask: 11677 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11678 fail_free_mce_banks: 11679 kfree(vcpu->arch.mce_banks); 11680 kfree(vcpu->arch.mci_ctl2_banks); 11681 free_page((unsigned long)vcpu->arch.pio_data); 11682 fail_free_lapic: 11683 kvm_free_lapic(vcpu); 11684 fail_mmu_destroy: 11685 kvm_mmu_destroy(vcpu); 11686 return r; 11687 } 11688 11689 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11690 { 11691 struct kvm *kvm = vcpu->kvm; 11692 11693 if (mutex_lock_killable(&vcpu->mutex)) 11694 return; 11695 vcpu_load(vcpu); 11696 kvm_synchronize_tsc(vcpu, 0); 11697 vcpu_put(vcpu); 11698 11699 /* poll control enabled by default */ 11700 vcpu->arch.msr_kvm_poll_control = 1; 11701 11702 mutex_unlock(&vcpu->mutex); 11703 11704 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11705 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11706 KVMCLOCK_SYNC_PERIOD); 11707 } 11708 11709 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11710 { 11711 int idx; 11712 11713 kvmclock_reset(vcpu); 11714 11715 static_call(kvm_x86_vcpu_free)(vcpu); 11716 11717 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11718 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11719 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11720 11721 kvm_xen_destroy_vcpu(vcpu); 11722 kvm_hv_vcpu_uninit(vcpu); 11723 kvm_pmu_destroy(vcpu); 11724 kfree(vcpu->arch.mce_banks); 11725 kfree(vcpu->arch.mci_ctl2_banks); 11726 kvm_free_lapic(vcpu); 11727 idx = srcu_read_lock(&vcpu->kvm->srcu); 11728 kvm_mmu_destroy(vcpu); 11729 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11730 free_page((unsigned long)vcpu->arch.pio_data); 11731 kvfree(vcpu->arch.cpuid_entries); 11732 if (!lapic_in_kernel(vcpu)) 11733 static_branch_dec(&kvm_has_noapic_vcpu); 11734 } 11735 11736 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11737 { 11738 struct kvm_cpuid_entry2 *cpuid_0x1; 11739 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11740 unsigned long new_cr0; 11741 11742 /* 11743 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11744 * to handle side effects. RESET emulation hits those flows and relies 11745 * on emulated/virtualized registers, including those that are loaded 11746 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11747 * to detect improper or missing initialization. 11748 */ 11749 WARN_ON_ONCE(!init_event && 11750 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11751 11752 /* 11753 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11754 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11755 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11756 * bits), i.e. virtualization is disabled. 11757 */ 11758 if (is_guest_mode(vcpu)) 11759 kvm_leave_nested(vcpu); 11760 11761 kvm_lapic_reset(vcpu, init_event); 11762 11763 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11764 vcpu->arch.hflags = 0; 11765 11766 vcpu->arch.smi_pending = 0; 11767 vcpu->arch.smi_count = 0; 11768 atomic_set(&vcpu->arch.nmi_queued, 0); 11769 vcpu->arch.nmi_pending = 0; 11770 vcpu->arch.nmi_injected = false; 11771 kvm_clear_interrupt_queue(vcpu); 11772 kvm_clear_exception_queue(vcpu); 11773 11774 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11775 kvm_update_dr0123(vcpu); 11776 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11777 vcpu->arch.dr7 = DR7_FIXED_1; 11778 kvm_update_dr7(vcpu); 11779 11780 vcpu->arch.cr2 = 0; 11781 11782 kvm_make_request(KVM_REQ_EVENT, vcpu); 11783 vcpu->arch.apf.msr_en_val = 0; 11784 vcpu->arch.apf.msr_int_val = 0; 11785 vcpu->arch.st.msr_val = 0; 11786 11787 kvmclock_reset(vcpu); 11788 11789 kvm_clear_async_pf_completion_queue(vcpu); 11790 kvm_async_pf_hash_reset(vcpu); 11791 vcpu->arch.apf.halted = false; 11792 11793 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11794 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11795 11796 /* 11797 * All paths that lead to INIT are required to load the guest's 11798 * FPU state (because most paths are buried in KVM_RUN). 11799 */ 11800 if (init_event) 11801 kvm_put_guest_fpu(vcpu); 11802 11803 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11804 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11805 11806 if (init_event) 11807 kvm_load_guest_fpu(vcpu); 11808 } 11809 11810 if (!init_event) { 11811 kvm_pmu_reset(vcpu); 11812 vcpu->arch.smbase = 0x30000; 11813 11814 vcpu->arch.msr_misc_features_enables = 0; 11815 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11816 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11817 11818 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11819 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11820 } 11821 11822 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11823 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11824 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11825 11826 /* 11827 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11828 * if no CPUID match is found. Note, it's impossible to get a match at 11829 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11830 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11831 * on RESET. But, go through the motions in case that's ever remedied. 11832 */ 11833 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11834 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11835 11836 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11837 11838 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11839 kvm_rip_write(vcpu, 0xfff0); 11840 11841 vcpu->arch.cr3 = 0; 11842 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11843 11844 /* 11845 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11846 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11847 * (or qualify) that with a footnote stating that CD/NW are preserved. 11848 */ 11849 new_cr0 = X86_CR0_ET; 11850 if (init_event) 11851 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11852 else 11853 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11854 11855 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11856 static_call(kvm_x86_set_cr4)(vcpu, 0); 11857 static_call(kvm_x86_set_efer)(vcpu, 0); 11858 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11859 11860 /* 11861 * On the standard CR0/CR4/EFER modification paths, there are several 11862 * complex conditions determining whether the MMU has to be reset and/or 11863 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11864 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11865 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11866 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11867 */ 11868 if (old_cr0 & X86_CR0_PG) { 11869 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11870 kvm_mmu_reset_context(vcpu); 11871 } 11872 11873 /* 11874 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11875 * APM states the TLBs are untouched by INIT, but it also states that 11876 * the TLBs are flushed on "External initialization of the processor." 11877 * Flush the guest TLB regardless of vendor, there is no meaningful 11878 * benefit in relying on the guest to flush the TLB immediately after 11879 * INIT. A spurious TLB flush is benign and likely negligible from a 11880 * performance perspective. 11881 */ 11882 if (init_event) 11883 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11884 } 11885 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11886 11887 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11888 { 11889 struct kvm_segment cs; 11890 11891 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11892 cs.selector = vector << 8; 11893 cs.base = vector << 12; 11894 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11895 kvm_rip_write(vcpu, 0); 11896 } 11897 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11898 11899 int kvm_arch_hardware_enable(void) 11900 { 11901 struct kvm *kvm; 11902 struct kvm_vcpu *vcpu; 11903 unsigned long i; 11904 int ret; 11905 u64 local_tsc; 11906 u64 max_tsc = 0; 11907 bool stable, backwards_tsc = false; 11908 11909 kvm_user_return_msr_cpu_online(); 11910 ret = static_call(kvm_x86_hardware_enable)(); 11911 if (ret != 0) 11912 return ret; 11913 11914 local_tsc = rdtsc(); 11915 stable = !kvm_check_tsc_unstable(); 11916 list_for_each_entry(kvm, &vm_list, vm_list) { 11917 kvm_for_each_vcpu(i, vcpu, kvm) { 11918 if (!stable && vcpu->cpu == smp_processor_id()) 11919 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11920 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11921 backwards_tsc = true; 11922 if (vcpu->arch.last_host_tsc > max_tsc) 11923 max_tsc = vcpu->arch.last_host_tsc; 11924 } 11925 } 11926 } 11927 11928 /* 11929 * Sometimes, even reliable TSCs go backwards. This happens on 11930 * platforms that reset TSC during suspend or hibernate actions, but 11931 * maintain synchronization. We must compensate. Fortunately, we can 11932 * detect that condition here, which happens early in CPU bringup, 11933 * before any KVM threads can be running. Unfortunately, we can't 11934 * bring the TSCs fully up to date with real time, as we aren't yet far 11935 * enough into CPU bringup that we know how much real time has actually 11936 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11937 * variables that haven't been updated yet. 11938 * 11939 * So we simply find the maximum observed TSC above, then record the 11940 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11941 * the adjustment will be applied. Note that we accumulate 11942 * adjustments, in case multiple suspend cycles happen before some VCPU 11943 * gets a chance to run again. In the event that no KVM threads get a 11944 * chance to run, we will miss the entire elapsed period, as we'll have 11945 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11946 * loose cycle time. This isn't too big a deal, since the loss will be 11947 * uniform across all VCPUs (not to mention the scenario is extremely 11948 * unlikely). It is possible that a second hibernate recovery happens 11949 * much faster than a first, causing the observed TSC here to be 11950 * smaller; this would require additional padding adjustment, which is 11951 * why we set last_host_tsc to the local tsc observed here. 11952 * 11953 * N.B. - this code below runs only on platforms with reliable TSC, 11954 * as that is the only way backwards_tsc is set above. Also note 11955 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11956 * have the same delta_cyc adjustment applied if backwards_tsc 11957 * is detected. Note further, this adjustment is only done once, 11958 * as we reset last_host_tsc on all VCPUs to stop this from being 11959 * called multiple times (one for each physical CPU bringup). 11960 * 11961 * Platforms with unreliable TSCs don't have to deal with this, they 11962 * will be compensated by the logic in vcpu_load, which sets the TSC to 11963 * catchup mode. This will catchup all VCPUs to real time, but cannot 11964 * guarantee that they stay in perfect synchronization. 11965 */ 11966 if (backwards_tsc) { 11967 u64 delta_cyc = max_tsc - local_tsc; 11968 list_for_each_entry(kvm, &vm_list, vm_list) { 11969 kvm->arch.backwards_tsc_observed = true; 11970 kvm_for_each_vcpu(i, vcpu, kvm) { 11971 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11972 vcpu->arch.last_host_tsc = local_tsc; 11973 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11974 } 11975 11976 /* 11977 * We have to disable TSC offset matching.. if you were 11978 * booting a VM while issuing an S4 host suspend.... 11979 * you may have some problem. Solving this issue is 11980 * left as an exercise to the reader. 11981 */ 11982 kvm->arch.last_tsc_nsec = 0; 11983 kvm->arch.last_tsc_write = 0; 11984 } 11985 11986 } 11987 return 0; 11988 } 11989 11990 void kvm_arch_hardware_disable(void) 11991 { 11992 static_call(kvm_x86_hardware_disable)(); 11993 drop_user_return_notifiers(); 11994 } 11995 11996 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11997 { 11998 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11999 12000 #define __KVM_X86_OP(func) \ 12001 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 12002 #define KVM_X86_OP(func) \ 12003 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 12004 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 12005 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 12006 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 12007 (void *)__static_call_return0); 12008 #include <asm/kvm-x86-ops.h> 12009 #undef __KVM_X86_OP 12010 12011 kvm_pmu_ops_update(ops->pmu_ops); 12012 } 12013 12014 int kvm_arch_hardware_setup(void *opaque) 12015 { 12016 struct kvm_x86_init_ops *ops = opaque; 12017 int r; 12018 12019 rdmsrl_safe(MSR_EFER, &host_efer); 12020 12021 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12022 rdmsrl(MSR_IA32_XSS, host_xss); 12023 12024 kvm_init_pmu_capability(); 12025 12026 r = ops->hardware_setup(); 12027 if (r != 0) 12028 return r; 12029 12030 kvm_ops_update(ops); 12031 12032 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12033 12034 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12035 kvm_caps.supported_xss = 0; 12036 12037 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12038 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12039 #undef __kvm_cpu_cap_has 12040 12041 if (kvm_caps.has_tsc_control) { 12042 /* 12043 * Make sure the user can only configure tsc_khz values that 12044 * fit into a signed integer. 12045 * A min value is not calculated because it will always 12046 * be 1 on all machines. 12047 */ 12048 u64 max = min(0x7fffffffULL, 12049 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12050 kvm_caps.max_guest_tsc_khz = max; 12051 } 12052 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12053 kvm_init_msr_list(); 12054 return 0; 12055 } 12056 12057 void kvm_arch_hardware_unsetup(void) 12058 { 12059 kvm_unregister_perf_callbacks(); 12060 12061 static_call(kvm_x86_hardware_unsetup)(); 12062 } 12063 12064 int kvm_arch_check_processor_compat(void *opaque) 12065 { 12066 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12067 struct kvm_x86_init_ops *ops = opaque; 12068 12069 WARN_ON(!irqs_disabled()); 12070 12071 if (__cr4_reserved_bits(cpu_has, c) != 12072 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12073 return -EIO; 12074 12075 return ops->check_processor_compatibility(); 12076 } 12077 12078 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12079 { 12080 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12081 } 12082 12083 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12084 { 12085 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12086 } 12087 12088 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12089 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12090 12091 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12092 { 12093 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12094 12095 vcpu->arch.l1tf_flush_l1d = true; 12096 if (pmu->version && unlikely(pmu->event_count)) { 12097 pmu->need_cleanup = true; 12098 kvm_make_request(KVM_REQ_PMU, vcpu); 12099 } 12100 static_call(kvm_x86_sched_in)(vcpu, cpu); 12101 } 12102 12103 void kvm_arch_free_vm(struct kvm *kvm) 12104 { 12105 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12106 __kvm_arch_free_vm(kvm); 12107 } 12108 12109 12110 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12111 { 12112 int ret; 12113 unsigned long flags; 12114 12115 if (type) 12116 return -EINVAL; 12117 12118 ret = kvm_page_track_init(kvm); 12119 if (ret) 12120 goto out; 12121 12122 ret = kvm_mmu_init_vm(kvm); 12123 if (ret) 12124 goto out_page_track; 12125 12126 ret = static_call(kvm_x86_vm_init)(kvm); 12127 if (ret) 12128 goto out_uninit_mmu; 12129 12130 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12131 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12132 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12133 12134 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12135 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12136 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12137 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12138 &kvm->arch.irq_sources_bitmap); 12139 12140 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12141 mutex_init(&kvm->arch.apic_map_lock); 12142 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12143 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12144 12145 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12146 pvclock_update_vm_gtod_copy(kvm); 12147 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12148 12149 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12150 kvm->arch.guest_can_read_msr_platform_info = true; 12151 kvm->arch.enable_pmu = enable_pmu; 12152 12153 #if IS_ENABLED(CONFIG_HYPERV) 12154 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12155 kvm->arch.hv_root_tdp = INVALID_PAGE; 12156 #endif 12157 12158 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12159 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12160 12161 kvm_apicv_init(kvm); 12162 kvm_hv_init_vm(kvm); 12163 kvm_xen_init_vm(kvm); 12164 12165 return 0; 12166 12167 out_uninit_mmu: 12168 kvm_mmu_uninit_vm(kvm); 12169 out_page_track: 12170 kvm_page_track_cleanup(kvm); 12171 out: 12172 return ret; 12173 } 12174 12175 int kvm_arch_post_init_vm(struct kvm *kvm) 12176 { 12177 return kvm_mmu_post_init_vm(kvm); 12178 } 12179 12180 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12181 { 12182 vcpu_load(vcpu); 12183 kvm_mmu_unload(vcpu); 12184 vcpu_put(vcpu); 12185 } 12186 12187 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12188 { 12189 unsigned long i; 12190 struct kvm_vcpu *vcpu; 12191 12192 kvm_for_each_vcpu(i, vcpu, kvm) { 12193 kvm_clear_async_pf_completion_queue(vcpu); 12194 kvm_unload_vcpu_mmu(vcpu); 12195 } 12196 } 12197 12198 void kvm_arch_sync_events(struct kvm *kvm) 12199 { 12200 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12201 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12202 kvm_free_pit(kvm); 12203 } 12204 12205 /** 12206 * __x86_set_memory_region: Setup KVM internal memory slot 12207 * 12208 * @kvm: the kvm pointer to the VM. 12209 * @id: the slot ID to setup. 12210 * @gpa: the GPA to install the slot (unused when @size == 0). 12211 * @size: the size of the slot. Set to zero to uninstall a slot. 12212 * 12213 * This function helps to setup a KVM internal memory slot. Specify 12214 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12215 * slot. The return code can be one of the following: 12216 * 12217 * HVA: on success (uninstall will return a bogus HVA) 12218 * -errno: on error 12219 * 12220 * The caller should always use IS_ERR() to check the return value 12221 * before use. Note, the KVM internal memory slots are guaranteed to 12222 * remain valid and unchanged until the VM is destroyed, i.e., the 12223 * GPA->HVA translation will not change. However, the HVA is a user 12224 * address, i.e. its accessibility is not guaranteed, and must be 12225 * accessed via __copy_{to,from}_user(). 12226 */ 12227 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12228 u32 size) 12229 { 12230 int i, r; 12231 unsigned long hva, old_npages; 12232 struct kvm_memslots *slots = kvm_memslots(kvm); 12233 struct kvm_memory_slot *slot; 12234 12235 /* Called with kvm->slots_lock held. */ 12236 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12237 return ERR_PTR_USR(-EINVAL); 12238 12239 slot = id_to_memslot(slots, id); 12240 if (size) { 12241 if (slot && slot->npages) 12242 return ERR_PTR_USR(-EEXIST); 12243 12244 /* 12245 * MAP_SHARED to prevent internal slot pages from being moved 12246 * by fork()/COW. 12247 */ 12248 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12249 MAP_SHARED | MAP_ANONYMOUS, 0); 12250 if (IS_ERR((void *)hva)) 12251 return (void __user *)hva; 12252 } else { 12253 if (!slot || !slot->npages) 12254 return NULL; 12255 12256 old_npages = slot->npages; 12257 hva = slot->userspace_addr; 12258 } 12259 12260 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12261 struct kvm_userspace_memory_region m; 12262 12263 m.slot = id | (i << 16); 12264 m.flags = 0; 12265 m.guest_phys_addr = gpa; 12266 m.userspace_addr = hva; 12267 m.memory_size = size; 12268 r = __kvm_set_memory_region(kvm, &m); 12269 if (r < 0) 12270 return ERR_PTR_USR(r); 12271 } 12272 12273 if (!size) 12274 vm_munmap(hva, old_npages * PAGE_SIZE); 12275 12276 return (void __user *)hva; 12277 } 12278 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12279 12280 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12281 { 12282 kvm_mmu_pre_destroy_vm(kvm); 12283 } 12284 12285 void kvm_arch_destroy_vm(struct kvm *kvm) 12286 { 12287 if (current->mm == kvm->mm) { 12288 /* 12289 * Free memory regions allocated on behalf of userspace, 12290 * unless the memory map has changed due to process exit 12291 * or fd copying. 12292 */ 12293 mutex_lock(&kvm->slots_lock); 12294 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12295 0, 0); 12296 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12297 0, 0); 12298 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12299 mutex_unlock(&kvm->slots_lock); 12300 } 12301 kvm_unload_vcpu_mmus(kvm); 12302 static_call_cond(kvm_x86_vm_destroy)(kvm); 12303 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12304 kvm_pic_destroy(kvm); 12305 kvm_ioapic_destroy(kvm); 12306 kvm_destroy_vcpus(kvm); 12307 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12308 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12309 kvm_mmu_uninit_vm(kvm); 12310 kvm_page_track_cleanup(kvm); 12311 kvm_xen_destroy_vm(kvm); 12312 kvm_hv_destroy_vm(kvm); 12313 } 12314 12315 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12316 { 12317 int i; 12318 12319 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12320 kvfree(slot->arch.rmap[i]); 12321 slot->arch.rmap[i] = NULL; 12322 } 12323 } 12324 12325 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12326 { 12327 int i; 12328 12329 memslot_rmap_free(slot); 12330 12331 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12332 kvfree(slot->arch.lpage_info[i - 1]); 12333 slot->arch.lpage_info[i - 1] = NULL; 12334 } 12335 12336 kvm_page_track_free_memslot(slot); 12337 } 12338 12339 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12340 { 12341 const int sz = sizeof(*slot->arch.rmap[0]); 12342 int i; 12343 12344 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12345 int level = i + 1; 12346 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12347 12348 if (slot->arch.rmap[i]) 12349 continue; 12350 12351 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12352 if (!slot->arch.rmap[i]) { 12353 memslot_rmap_free(slot); 12354 return -ENOMEM; 12355 } 12356 } 12357 12358 return 0; 12359 } 12360 12361 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12362 struct kvm_memory_slot *slot) 12363 { 12364 unsigned long npages = slot->npages; 12365 int i, r; 12366 12367 /* 12368 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12369 * old arrays will be freed by __kvm_set_memory_region() if installing 12370 * the new memslot is successful. 12371 */ 12372 memset(&slot->arch, 0, sizeof(slot->arch)); 12373 12374 if (kvm_memslots_have_rmaps(kvm)) { 12375 r = memslot_rmap_alloc(slot, npages); 12376 if (r) 12377 return r; 12378 } 12379 12380 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12381 struct kvm_lpage_info *linfo; 12382 unsigned long ugfn; 12383 int lpages; 12384 int level = i + 1; 12385 12386 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12387 12388 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12389 if (!linfo) 12390 goto out_free; 12391 12392 slot->arch.lpage_info[i - 1] = linfo; 12393 12394 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12395 linfo[0].disallow_lpage = 1; 12396 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12397 linfo[lpages - 1].disallow_lpage = 1; 12398 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12399 /* 12400 * If the gfn and userspace address are not aligned wrt each 12401 * other, disable large page support for this slot. 12402 */ 12403 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12404 unsigned long j; 12405 12406 for (j = 0; j < lpages; ++j) 12407 linfo[j].disallow_lpage = 1; 12408 } 12409 } 12410 12411 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12412 goto out_free; 12413 12414 return 0; 12415 12416 out_free: 12417 memslot_rmap_free(slot); 12418 12419 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12420 kvfree(slot->arch.lpage_info[i - 1]); 12421 slot->arch.lpage_info[i - 1] = NULL; 12422 } 12423 return -ENOMEM; 12424 } 12425 12426 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12427 { 12428 struct kvm_vcpu *vcpu; 12429 unsigned long i; 12430 12431 /* 12432 * memslots->generation has been incremented. 12433 * mmio generation may have reached its maximum value. 12434 */ 12435 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12436 12437 /* Force re-initialization of steal_time cache */ 12438 kvm_for_each_vcpu(i, vcpu, kvm) 12439 kvm_vcpu_kick(vcpu); 12440 } 12441 12442 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12443 const struct kvm_memory_slot *old, 12444 struct kvm_memory_slot *new, 12445 enum kvm_mr_change change) 12446 { 12447 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12448 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12449 return -EINVAL; 12450 12451 return kvm_alloc_memslot_metadata(kvm, new); 12452 } 12453 12454 if (change == KVM_MR_FLAGS_ONLY) 12455 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12456 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12457 return -EIO; 12458 12459 return 0; 12460 } 12461 12462 12463 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12464 { 12465 struct kvm_arch *ka = &kvm->arch; 12466 12467 if (!kvm_x86_ops.cpu_dirty_log_size) 12468 return; 12469 12470 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12471 (!enable && --ka->cpu_dirty_logging_count == 0)) 12472 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12473 12474 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12475 } 12476 12477 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12478 struct kvm_memory_slot *old, 12479 const struct kvm_memory_slot *new, 12480 enum kvm_mr_change change) 12481 { 12482 u32 old_flags = old ? old->flags : 0; 12483 u32 new_flags = new ? new->flags : 0; 12484 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12485 12486 /* 12487 * Update CPU dirty logging if dirty logging is being toggled. This 12488 * applies to all operations. 12489 */ 12490 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12491 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12492 12493 /* 12494 * Nothing more to do for RO slots (which can't be dirtied and can't be 12495 * made writable) or CREATE/MOVE/DELETE of a slot. 12496 * 12497 * For a memslot with dirty logging disabled: 12498 * CREATE: No dirty mappings will already exist. 12499 * MOVE/DELETE: The old mappings will already have been cleaned up by 12500 * kvm_arch_flush_shadow_memslot() 12501 * 12502 * For a memslot with dirty logging enabled: 12503 * CREATE: No shadow pages exist, thus nothing to write-protect 12504 * and no dirty bits to clear. 12505 * MOVE/DELETE: The old mappings will already have been cleaned up by 12506 * kvm_arch_flush_shadow_memslot(). 12507 */ 12508 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12509 return; 12510 12511 /* 12512 * READONLY and non-flags changes were filtered out above, and the only 12513 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12514 * logging isn't being toggled on or off. 12515 */ 12516 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12517 return; 12518 12519 if (!log_dirty_pages) { 12520 /* 12521 * Dirty logging tracks sptes in 4k granularity, meaning that 12522 * large sptes have to be split. If live migration succeeds, 12523 * the guest in the source machine will be destroyed and large 12524 * sptes will be created in the destination. However, if the 12525 * guest continues to run in the source machine (for example if 12526 * live migration fails), small sptes will remain around and 12527 * cause bad performance. 12528 * 12529 * Scan sptes if dirty logging has been stopped, dropping those 12530 * which can be collapsed into a single large-page spte. Later 12531 * page faults will create the large-page sptes. 12532 */ 12533 kvm_mmu_zap_collapsible_sptes(kvm, new); 12534 } else { 12535 /* 12536 * Initially-all-set does not require write protecting any page, 12537 * because they're all assumed to be dirty. 12538 */ 12539 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12540 return; 12541 12542 if (READ_ONCE(eager_page_split)) 12543 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12544 12545 if (kvm_x86_ops.cpu_dirty_log_size) { 12546 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12547 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12548 } else { 12549 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12550 } 12551 12552 /* 12553 * Unconditionally flush the TLBs after enabling dirty logging. 12554 * A flush is almost always going to be necessary (see below), 12555 * and unconditionally flushing allows the helpers to omit 12556 * the subtly complex checks when removing write access. 12557 * 12558 * Do the flush outside of mmu_lock to reduce the amount of 12559 * time mmu_lock is held. Flushing after dropping mmu_lock is 12560 * safe as KVM only needs to guarantee the slot is fully 12561 * write-protected before returning to userspace, i.e. before 12562 * userspace can consume the dirty status. 12563 * 12564 * Flushing outside of mmu_lock requires KVM to be careful when 12565 * making decisions based on writable status of an SPTE, e.g. a 12566 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12567 * 12568 * Specifically, KVM also write-protects guest page tables to 12569 * monitor changes when using shadow paging, and must guarantee 12570 * no CPUs can write to those page before mmu_lock is dropped. 12571 * Because CPUs may have stale TLB entries at this point, a 12572 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12573 * 12574 * KVM also allows making SPTES writable outside of mmu_lock, 12575 * e.g. to allow dirty logging without taking mmu_lock. 12576 * 12577 * To handle these scenarios, KVM uses a separate software-only 12578 * bit (MMU-writable) to track if a SPTE is !writable due to 12579 * a guest page table being write-protected (KVM clears the 12580 * MMU-writable flag when write-protecting for shadow paging). 12581 * 12582 * The use of MMU-writable is also the primary motivation for 12583 * the unconditional flush. Because KVM must guarantee that a 12584 * CPU doesn't contain stale, writable TLB entries for a 12585 * !MMU-writable SPTE, KVM must flush if it encounters any 12586 * MMU-writable SPTE regardless of whether the actual hardware 12587 * writable bit was set. I.e. KVM is almost guaranteed to need 12588 * to flush, while unconditionally flushing allows the "remove 12589 * write access" helpers to ignore MMU-writable entirely. 12590 * 12591 * See is_writable_pte() for more details (the case involving 12592 * access-tracked SPTEs is particularly relevant). 12593 */ 12594 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12595 } 12596 } 12597 12598 void kvm_arch_commit_memory_region(struct kvm *kvm, 12599 struct kvm_memory_slot *old, 12600 const struct kvm_memory_slot *new, 12601 enum kvm_mr_change change) 12602 { 12603 if (!kvm->arch.n_requested_mmu_pages && 12604 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12605 unsigned long nr_mmu_pages; 12606 12607 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12608 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12609 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12610 } 12611 12612 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12613 12614 /* Free the arrays associated with the old memslot. */ 12615 if (change == KVM_MR_MOVE) 12616 kvm_arch_free_memslot(kvm, old); 12617 } 12618 12619 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12620 { 12621 kvm_mmu_zap_all(kvm); 12622 } 12623 12624 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12625 struct kvm_memory_slot *slot) 12626 { 12627 kvm_page_track_flush_slot(kvm, slot); 12628 } 12629 12630 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12631 { 12632 return (is_guest_mode(vcpu) && 12633 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12634 } 12635 12636 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12637 { 12638 if (!list_empty_careful(&vcpu->async_pf.done)) 12639 return true; 12640 12641 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12642 kvm_apic_init_sipi_allowed(vcpu)) 12643 return true; 12644 12645 if (vcpu->arch.pv.pv_unhalted) 12646 return true; 12647 12648 if (kvm_is_exception_pending(vcpu)) 12649 return true; 12650 12651 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12652 (vcpu->arch.nmi_pending && 12653 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12654 return true; 12655 12656 #ifdef CONFIG_KVM_SMM 12657 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12658 (vcpu->arch.smi_pending && 12659 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12660 return true; 12661 #endif 12662 12663 if (kvm_arch_interrupt_allowed(vcpu) && 12664 (kvm_cpu_has_interrupt(vcpu) || 12665 kvm_guest_apic_has_interrupt(vcpu))) 12666 return true; 12667 12668 if (kvm_hv_has_stimer_pending(vcpu)) 12669 return true; 12670 12671 if (is_guest_mode(vcpu) && 12672 kvm_x86_ops.nested_ops->has_events && 12673 kvm_x86_ops.nested_ops->has_events(vcpu)) 12674 return true; 12675 12676 if (kvm_xen_has_pending_events(vcpu)) 12677 return true; 12678 12679 return false; 12680 } 12681 12682 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12683 { 12684 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12685 } 12686 12687 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12688 { 12689 if (kvm_vcpu_apicv_active(vcpu) && 12690 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12691 return true; 12692 12693 return false; 12694 } 12695 12696 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12697 { 12698 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12699 return true; 12700 12701 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12702 #ifdef CONFIG_KVM_SMM 12703 kvm_test_request(KVM_REQ_SMI, vcpu) || 12704 #endif 12705 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12706 return true; 12707 12708 return kvm_arch_dy_has_pending_interrupt(vcpu); 12709 } 12710 12711 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12712 { 12713 if (vcpu->arch.guest_state_protected) 12714 return true; 12715 12716 return vcpu->arch.preempted_in_kernel; 12717 } 12718 12719 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12720 { 12721 return kvm_rip_read(vcpu); 12722 } 12723 12724 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12725 { 12726 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12727 } 12728 12729 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12730 { 12731 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12732 } 12733 12734 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12735 { 12736 /* Can't read the RIP when guest state is protected, just return 0 */ 12737 if (vcpu->arch.guest_state_protected) 12738 return 0; 12739 12740 if (is_64_bit_mode(vcpu)) 12741 return kvm_rip_read(vcpu); 12742 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12743 kvm_rip_read(vcpu)); 12744 } 12745 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12746 12747 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12748 { 12749 return kvm_get_linear_rip(vcpu) == linear_rip; 12750 } 12751 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12752 12753 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12754 { 12755 unsigned long rflags; 12756 12757 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12758 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12759 rflags &= ~X86_EFLAGS_TF; 12760 return rflags; 12761 } 12762 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12763 12764 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12765 { 12766 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12767 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12768 rflags |= X86_EFLAGS_TF; 12769 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12770 } 12771 12772 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12773 { 12774 __kvm_set_rflags(vcpu, rflags); 12775 kvm_make_request(KVM_REQ_EVENT, vcpu); 12776 } 12777 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12778 12779 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12780 { 12781 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12782 12783 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12784 } 12785 12786 static inline u32 kvm_async_pf_next_probe(u32 key) 12787 { 12788 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12789 } 12790 12791 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12792 { 12793 u32 key = kvm_async_pf_hash_fn(gfn); 12794 12795 while (vcpu->arch.apf.gfns[key] != ~0) 12796 key = kvm_async_pf_next_probe(key); 12797 12798 vcpu->arch.apf.gfns[key] = gfn; 12799 } 12800 12801 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12802 { 12803 int i; 12804 u32 key = kvm_async_pf_hash_fn(gfn); 12805 12806 for (i = 0; i < ASYNC_PF_PER_VCPU && 12807 (vcpu->arch.apf.gfns[key] != gfn && 12808 vcpu->arch.apf.gfns[key] != ~0); i++) 12809 key = kvm_async_pf_next_probe(key); 12810 12811 return key; 12812 } 12813 12814 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12815 { 12816 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12817 } 12818 12819 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12820 { 12821 u32 i, j, k; 12822 12823 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12824 12825 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12826 return; 12827 12828 while (true) { 12829 vcpu->arch.apf.gfns[i] = ~0; 12830 do { 12831 j = kvm_async_pf_next_probe(j); 12832 if (vcpu->arch.apf.gfns[j] == ~0) 12833 return; 12834 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12835 /* 12836 * k lies cyclically in ]i,j] 12837 * | i.k.j | 12838 * |....j i.k.| or |.k..j i...| 12839 */ 12840 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12841 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12842 i = j; 12843 } 12844 } 12845 12846 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12847 { 12848 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12849 12850 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12851 sizeof(reason)); 12852 } 12853 12854 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12855 { 12856 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12857 12858 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12859 &token, offset, sizeof(token)); 12860 } 12861 12862 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12863 { 12864 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12865 u32 val; 12866 12867 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12868 &val, offset, sizeof(val))) 12869 return false; 12870 12871 return !val; 12872 } 12873 12874 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12875 { 12876 12877 if (!kvm_pv_async_pf_enabled(vcpu)) 12878 return false; 12879 12880 if (vcpu->arch.apf.send_user_only && 12881 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12882 return false; 12883 12884 if (is_guest_mode(vcpu)) { 12885 /* 12886 * L1 needs to opt into the special #PF vmexits that are 12887 * used to deliver async page faults. 12888 */ 12889 return vcpu->arch.apf.delivery_as_pf_vmexit; 12890 } else { 12891 /* 12892 * Play it safe in case the guest temporarily disables paging. 12893 * The real mode IDT in particular is unlikely to have a #PF 12894 * exception setup. 12895 */ 12896 return is_paging(vcpu); 12897 } 12898 } 12899 12900 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12901 { 12902 if (unlikely(!lapic_in_kernel(vcpu) || 12903 kvm_event_needs_reinjection(vcpu) || 12904 kvm_is_exception_pending(vcpu))) 12905 return false; 12906 12907 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12908 return false; 12909 12910 /* 12911 * If interrupts are off we cannot even use an artificial 12912 * halt state. 12913 */ 12914 return kvm_arch_interrupt_allowed(vcpu); 12915 } 12916 12917 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12918 struct kvm_async_pf *work) 12919 { 12920 struct x86_exception fault; 12921 12922 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12923 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12924 12925 if (kvm_can_deliver_async_pf(vcpu) && 12926 !apf_put_user_notpresent(vcpu)) { 12927 fault.vector = PF_VECTOR; 12928 fault.error_code_valid = true; 12929 fault.error_code = 0; 12930 fault.nested_page_fault = false; 12931 fault.address = work->arch.token; 12932 fault.async_page_fault = true; 12933 kvm_inject_page_fault(vcpu, &fault); 12934 return true; 12935 } else { 12936 /* 12937 * It is not possible to deliver a paravirtualized asynchronous 12938 * page fault, but putting the guest in an artificial halt state 12939 * can be beneficial nevertheless: if an interrupt arrives, we 12940 * can deliver it timely and perhaps the guest will schedule 12941 * another process. When the instruction that triggered a page 12942 * fault is retried, hopefully the page will be ready in the host. 12943 */ 12944 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12945 return false; 12946 } 12947 } 12948 12949 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12950 struct kvm_async_pf *work) 12951 { 12952 struct kvm_lapic_irq irq = { 12953 .delivery_mode = APIC_DM_FIXED, 12954 .vector = vcpu->arch.apf.vec 12955 }; 12956 12957 if (work->wakeup_all) 12958 work->arch.token = ~0; /* broadcast wakeup */ 12959 else 12960 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12961 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12962 12963 if ((work->wakeup_all || work->notpresent_injected) && 12964 kvm_pv_async_pf_enabled(vcpu) && 12965 !apf_put_user_ready(vcpu, work->arch.token)) { 12966 vcpu->arch.apf.pageready_pending = true; 12967 kvm_apic_set_irq(vcpu, &irq, NULL); 12968 } 12969 12970 vcpu->arch.apf.halted = false; 12971 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12972 } 12973 12974 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12975 { 12976 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12977 if (!vcpu->arch.apf.pageready_pending) 12978 kvm_vcpu_kick(vcpu); 12979 } 12980 12981 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12982 { 12983 if (!kvm_pv_async_pf_enabled(vcpu)) 12984 return true; 12985 else 12986 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12987 } 12988 12989 void kvm_arch_start_assignment(struct kvm *kvm) 12990 { 12991 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12992 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12993 } 12994 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12995 12996 void kvm_arch_end_assignment(struct kvm *kvm) 12997 { 12998 atomic_dec(&kvm->arch.assigned_device_count); 12999 } 13000 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13001 13002 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13003 { 13004 return arch_atomic_read(&kvm->arch.assigned_device_count); 13005 } 13006 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13007 13008 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13009 { 13010 atomic_inc(&kvm->arch.noncoherent_dma_count); 13011 } 13012 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13013 13014 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13015 { 13016 atomic_dec(&kvm->arch.noncoherent_dma_count); 13017 } 13018 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13019 13020 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13021 { 13022 return atomic_read(&kvm->arch.noncoherent_dma_count); 13023 } 13024 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13025 13026 bool kvm_arch_has_irq_bypass(void) 13027 { 13028 return true; 13029 } 13030 13031 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13032 struct irq_bypass_producer *prod) 13033 { 13034 struct kvm_kernel_irqfd *irqfd = 13035 container_of(cons, struct kvm_kernel_irqfd, consumer); 13036 int ret; 13037 13038 irqfd->producer = prod; 13039 kvm_arch_start_assignment(irqfd->kvm); 13040 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13041 prod->irq, irqfd->gsi, 1); 13042 13043 if (ret) 13044 kvm_arch_end_assignment(irqfd->kvm); 13045 13046 return ret; 13047 } 13048 13049 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13050 struct irq_bypass_producer *prod) 13051 { 13052 int ret; 13053 struct kvm_kernel_irqfd *irqfd = 13054 container_of(cons, struct kvm_kernel_irqfd, consumer); 13055 13056 WARN_ON(irqfd->producer != prod); 13057 irqfd->producer = NULL; 13058 13059 /* 13060 * When producer of consumer is unregistered, we change back to 13061 * remapped mode, so we can re-use the current implementation 13062 * when the irq is masked/disabled or the consumer side (KVM 13063 * int this case doesn't want to receive the interrupts. 13064 */ 13065 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13066 if (ret) 13067 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13068 " fails: %d\n", irqfd->consumer.token, ret); 13069 13070 kvm_arch_end_assignment(irqfd->kvm); 13071 } 13072 13073 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13074 uint32_t guest_irq, bool set) 13075 { 13076 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13077 } 13078 13079 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13080 struct kvm_kernel_irq_routing_entry *new) 13081 { 13082 if (new->type != KVM_IRQ_ROUTING_MSI) 13083 return true; 13084 13085 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13086 } 13087 13088 bool kvm_vector_hashing_enabled(void) 13089 { 13090 return vector_hashing; 13091 } 13092 13093 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13094 { 13095 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13096 } 13097 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13098 13099 13100 int kvm_spec_ctrl_test_value(u64 value) 13101 { 13102 /* 13103 * test that setting IA32_SPEC_CTRL to given value 13104 * is allowed by the host processor 13105 */ 13106 13107 u64 saved_value; 13108 unsigned long flags; 13109 int ret = 0; 13110 13111 local_irq_save(flags); 13112 13113 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13114 ret = 1; 13115 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13116 ret = 1; 13117 else 13118 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13119 13120 local_irq_restore(flags); 13121 13122 return ret; 13123 } 13124 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13125 13126 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13127 { 13128 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13129 struct x86_exception fault; 13130 u64 access = error_code & 13131 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13132 13133 if (!(error_code & PFERR_PRESENT_MASK) || 13134 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13135 /* 13136 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13137 * tables probably do not match the TLB. Just proceed 13138 * with the error code that the processor gave. 13139 */ 13140 fault.vector = PF_VECTOR; 13141 fault.error_code_valid = true; 13142 fault.error_code = error_code; 13143 fault.nested_page_fault = false; 13144 fault.address = gva; 13145 fault.async_page_fault = false; 13146 } 13147 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13148 } 13149 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13150 13151 /* 13152 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13153 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13154 * indicates whether exit to userspace is needed. 13155 */ 13156 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13157 struct x86_exception *e) 13158 { 13159 if (r == X86EMUL_PROPAGATE_FAULT) { 13160 if (KVM_BUG_ON(!e, vcpu->kvm)) 13161 return -EIO; 13162 13163 kvm_inject_emulated_page_fault(vcpu, e); 13164 return 1; 13165 } 13166 13167 /* 13168 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13169 * while handling a VMX instruction KVM could've handled the request 13170 * correctly by exiting to userspace and performing I/O but there 13171 * doesn't seem to be a real use-case behind such requests, just return 13172 * KVM_EXIT_INTERNAL_ERROR for now. 13173 */ 13174 kvm_prepare_emulation_failure_exit(vcpu); 13175 13176 return 0; 13177 } 13178 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13179 13180 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13181 { 13182 bool pcid_enabled; 13183 struct x86_exception e; 13184 struct { 13185 u64 pcid; 13186 u64 gla; 13187 } operand; 13188 int r; 13189 13190 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13191 if (r != X86EMUL_CONTINUE) 13192 return kvm_handle_memory_failure(vcpu, r, &e); 13193 13194 if (operand.pcid >> 12 != 0) { 13195 kvm_inject_gp(vcpu, 0); 13196 return 1; 13197 } 13198 13199 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13200 13201 switch (type) { 13202 case INVPCID_TYPE_INDIV_ADDR: 13203 if ((!pcid_enabled && (operand.pcid != 0)) || 13204 is_noncanonical_address(operand.gla, vcpu)) { 13205 kvm_inject_gp(vcpu, 0); 13206 return 1; 13207 } 13208 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13209 return kvm_skip_emulated_instruction(vcpu); 13210 13211 case INVPCID_TYPE_SINGLE_CTXT: 13212 if (!pcid_enabled && (operand.pcid != 0)) { 13213 kvm_inject_gp(vcpu, 0); 13214 return 1; 13215 } 13216 13217 kvm_invalidate_pcid(vcpu, operand.pcid); 13218 return kvm_skip_emulated_instruction(vcpu); 13219 13220 case INVPCID_TYPE_ALL_NON_GLOBAL: 13221 /* 13222 * Currently, KVM doesn't mark global entries in the shadow 13223 * page tables, so a non-global flush just degenerates to a 13224 * global flush. If needed, we could optimize this later by 13225 * keeping track of global entries in shadow page tables. 13226 */ 13227 13228 fallthrough; 13229 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13230 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13231 return kvm_skip_emulated_instruction(vcpu); 13232 13233 default: 13234 kvm_inject_gp(vcpu, 0); 13235 return 1; 13236 } 13237 } 13238 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13239 13240 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13241 { 13242 struct kvm_run *run = vcpu->run; 13243 struct kvm_mmio_fragment *frag; 13244 unsigned int len; 13245 13246 BUG_ON(!vcpu->mmio_needed); 13247 13248 /* Complete previous fragment */ 13249 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13250 len = min(8u, frag->len); 13251 if (!vcpu->mmio_is_write) 13252 memcpy(frag->data, run->mmio.data, len); 13253 13254 if (frag->len <= 8) { 13255 /* Switch to the next fragment. */ 13256 frag++; 13257 vcpu->mmio_cur_fragment++; 13258 } else { 13259 /* Go forward to the next mmio piece. */ 13260 frag->data += len; 13261 frag->gpa += len; 13262 frag->len -= len; 13263 } 13264 13265 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13266 vcpu->mmio_needed = 0; 13267 13268 // VMG change, at this point, we're always done 13269 // RIP has already been advanced 13270 return 1; 13271 } 13272 13273 // More MMIO is needed 13274 run->mmio.phys_addr = frag->gpa; 13275 run->mmio.len = min(8u, frag->len); 13276 run->mmio.is_write = vcpu->mmio_is_write; 13277 if (run->mmio.is_write) 13278 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13279 run->exit_reason = KVM_EXIT_MMIO; 13280 13281 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13282 13283 return 0; 13284 } 13285 13286 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13287 void *data) 13288 { 13289 int handled; 13290 struct kvm_mmio_fragment *frag; 13291 13292 if (!data) 13293 return -EINVAL; 13294 13295 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13296 if (handled == bytes) 13297 return 1; 13298 13299 bytes -= handled; 13300 gpa += handled; 13301 data += handled; 13302 13303 /*TODO: Check if need to increment number of frags */ 13304 frag = vcpu->mmio_fragments; 13305 vcpu->mmio_nr_fragments = 1; 13306 frag->len = bytes; 13307 frag->gpa = gpa; 13308 frag->data = data; 13309 13310 vcpu->mmio_needed = 1; 13311 vcpu->mmio_cur_fragment = 0; 13312 13313 vcpu->run->mmio.phys_addr = gpa; 13314 vcpu->run->mmio.len = min(8u, frag->len); 13315 vcpu->run->mmio.is_write = 1; 13316 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13317 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13318 13319 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13320 13321 return 0; 13322 } 13323 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13324 13325 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13326 void *data) 13327 { 13328 int handled; 13329 struct kvm_mmio_fragment *frag; 13330 13331 if (!data) 13332 return -EINVAL; 13333 13334 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13335 if (handled == bytes) 13336 return 1; 13337 13338 bytes -= handled; 13339 gpa += handled; 13340 data += handled; 13341 13342 /*TODO: Check if need to increment number of frags */ 13343 frag = vcpu->mmio_fragments; 13344 vcpu->mmio_nr_fragments = 1; 13345 frag->len = bytes; 13346 frag->gpa = gpa; 13347 frag->data = data; 13348 13349 vcpu->mmio_needed = 1; 13350 vcpu->mmio_cur_fragment = 0; 13351 13352 vcpu->run->mmio.phys_addr = gpa; 13353 vcpu->run->mmio.len = min(8u, frag->len); 13354 vcpu->run->mmio.is_write = 0; 13355 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13356 13357 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13358 13359 return 0; 13360 } 13361 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13362 13363 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13364 { 13365 vcpu->arch.sev_pio_count -= count; 13366 vcpu->arch.sev_pio_data += count * size; 13367 } 13368 13369 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13370 unsigned int port); 13371 13372 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13373 { 13374 int size = vcpu->arch.pio.size; 13375 int port = vcpu->arch.pio.port; 13376 13377 vcpu->arch.pio.count = 0; 13378 if (vcpu->arch.sev_pio_count) 13379 return kvm_sev_es_outs(vcpu, size, port); 13380 return 1; 13381 } 13382 13383 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13384 unsigned int port) 13385 { 13386 for (;;) { 13387 unsigned int count = 13388 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13389 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13390 13391 /* memcpy done already by emulator_pio_out. */ 13392 advance_sev_es_emulated_pio(vcpu, count, size); 13393 if (!ret) 13394 break; 13395 13396 /* Emulation done by the kernel. */ 13397 if (!vcpu->arch.sev_pio_count) 13398 return 1; 13399 } 13400 13401 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13402 return 0; 13403 } 13404 13405 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13406 unsigned int port); 13407 13408 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13409 { 13410 unsigned count = vcpu->arch.pio.count; 13411 int size = vcpu->arch.pio.size; 13412 int port = vcpu->arch.pio.port; 13413 13414 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13415 advance_sev_es_emulated_pio(vcpu, count, size); 13416 if (vcpu->arch.sev_pio_count) 13417 return kvm_sev_es_ins(vcpu, size, port); 13418 return 1; 13419 } 13420 13421 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13422 unsigned int port) 13423 { 13424 for (;;) { 13425 unsigned int count = 13426 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13427 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13428 break; 13429 13430 /* Emulation done by the kernel. */ 13431 advance_sev_es_emulated_pio(vcpu, count, size); 13432 if (!vcpu->arch.sev_pio_count) 13433 return 1; 13434 } 13435 13436 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13437 return 0; 13438 } 13439 13440 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13441 unsigned int port, void *data, unsigned int count, 13442 int in) 13443 { 13444 vcpu->arch.sev_pio_data = data; 13445 vcpu->arch.sev_pio_count = count; 13446 return in ? kvm_sev_es_ins(vcpu, size, port) 13447 : kvm_sev_es_outs(vcpu, size, port); 13448 } 13449 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13450 13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13480 13481 static int __init kvm_x86_init(void) 13482 { 13483 kvm_mmu_x86_module_init(); 13484 return 0; 13485 } 13486 module_init(kvm_x86_init); 13487 13488 static void __exit kvm_x86_exit(void) 13489 { 13490 /* 13491 * If module_init() is implemented, module_exit() must also be 13492 * implemented to allow module unload. 13493 */ 13494 } 13495 module_exit(kvm_x86_exit); 13496