xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 9ed96e87c5748de4c2807ef17e81287c7304186c)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99 
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104 
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108 
109 #define KVM_NR_SHARED_MSRS 16
110 
111 struct kvm_shared_msrs_global {
112 	int nr;
113 	u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115 
116 struct kvm_shared_msrs {
117 	struct user_return_notifier urn;
118 	bool registered;
119 	struct kvm_shared_msr_values {
120 		u64 host;
121 		u64 curr;
122 	} values[KVM_NR_SHARED_MSRS];
123 };
124 
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127 
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
130 	{ "pf_guest", VCPU_STAT(pf_guest) },
131 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
132 	{ "invlpg", VCPU_STAT(invlpg) },
133 	{ "exits", VCPU_STAT(exits) },
134 	{ "io_exits", VCPU_STAT(io_exits) },
135 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
136 	{ "signal_exits", VCPU_STAT(signal_exits) },
137 	{ "irq_window", VCPU_STAT(irq_window_exits) },
138 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
139 	{ "halt_exits", VCPU_STAT(halt_exits) },
140 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
141 	{ "hypercalls", VCPU_STAT(hypercalls) },
142 	{ "request_irq", VCPU_STAT(request_irq_exits) },
143 	{ "irq_exits", VCPU_STAT(irq_exits) },
144 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
145 	{ "efer_reload", VCPU_STAT(efer_reload) },
146 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
147 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
148 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149 	{ "irq_injections", VCPU_STAT(irq_injections) },
150 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
151 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
153 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
156 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
157 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
159 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160 	{ "largepages", VM_STAT(lpages) },
161 	{ NULL }
162 };
163 
164 u64 __read_mostly host_xcr0;
165 
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167 
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170 	int i;
171 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172 		vcpu->arch.apf.gfns[i] = ~0;
173 }
174 
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177 	unsigned slot;
178 	struct kvm_shared_msrs *locals
179 		= container_of(urn, struct kvm_shared_msrs, urn);
180 	struct kvm_shared_msr_values *values;
181 
182 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183 		values = &locals->values[slot];
184 		if (values->host != values->curr) {
185 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
186 			values->curr = values->host;
187 		}
188 	}
189 	locals->registered = false;
190 	user_return_notifier_unregister(urn);
191 }
192 
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195 	u64 value;
196 	unsigned int cpu = smp_processor_id();
197 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198 
199 	/* only read, and nobody should modify it at this time,
200 	 * so don't need lock */
201 	if (slot >= shared_msrs_global.nr) {
202 		printk(KERN_ERR "kvm: invalid MSR slot!");
203 		return;
204 	}
205 	rdmsrl_safe(msr, &value);
206 	smsr->values[slot].host = value;
207 	smsr->values[slot].curr = value;
208 }
209 
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212 	if (slot >= shared_msrs_global.nr)
213 		shared_msrs_global.nr = slot + 1;
214 	shared_msrs_global.msrs[slot] = msr;
215 	/* we need ensured the shared_msr_global have been updated */
216 	smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219 
220 static void kvm_shared_msr_cpu_online(void)
221 {
222 	unsigned i;
223 
224 	for (i = 0; i < shared_msrs_global.nr; ++i)
225 		shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227 
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230 	unsigned int cpu = smp_processor_id();
231 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232 
233 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
234 		return;
235 	smsr->values[slot].curr = value;
236 	wrmsrl(shared_msrs_global.msrs[slot], value);
237 	if (!smsr->registered) {
238 		smsr->urn.on_user_return = kvm_on_user_return;
239 		user_return_notifier_register(&smsr->urn);
240 		smsr->registered = true;
241 	}
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244 
245 static void drop_user_return_notifiers(void *ignore)
246 {
247 	unsigned int cpu = smp_processor_id();
248 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249 
250 	if (smsr->registered)
251 		kvm_on_user_return(&smsr->urn);
252 }
253 
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256 	return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259 
260 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
261 {
262 	/* TODO: reserve bits check */
263 	kvm_lapic_set_base(vcpu, data);
264 }
265 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266 
267 asmlinkage void kvm_spurious_fault(void)
268 {
269 	/* Fault while not rebooting.  We want the trace. */
270 	BUG();
271 }
272 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
273 
274 #define EXCPT_BENIGN		0
275 #define EXCPT_CONTRIBUTORY	1
276 #define EXCPT_PF		2
277 
278 static int exception_class(int vector)
279 {
280 	switch (vector) {
281 	case PF_VECTOR:
282 		return EXCPT_PF;
283 	case DE_VECTOR:
284 	case TS_VECTOR:
285 	case NP_VECTOR:
286 	case SS_VECTOR:
287 	case GP_VECTOR:
288 		return EXCPT_CONTRIBUTORY;
289 	default:
290 		break;
291 	}
292 	return EXCPT_BENIGN;
293 }
294 
295 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
296 		unsigned nr, bool has_error, u32 error_code,
297 		bool reinject)
298 {
299 	u32 prev_nr;
300 	int class1, class2;
301 
302 	kvm_make_request(KVM_REQ_EVENT, vcpu);
303 
304 	if (!vcpu->arch.exception.pending) {
305 	queue:
306 		vcpu->arch.exception.pending = true;
307 		vcpu->arch.exception.has_error_code = has_error;
308 		vcpu->arch.exception.nr = nr;
309 		vcpu->arch.exception.error_code = error_code;
310 		vcpu->arch.exception.reinject = reinject;
311 		return;
312 	}
313 
314 	/* to check exception */
315 	prev_nr = vcpu->arch.exception.nr;
316 	if (prev_nr == DF_VECTOR) {
317 		/* triple fault -> shutdown */
318 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
319 		return;
320 	}
321 	class1 = exception_class(prev_nr);
322 	class2 = exception_class(nr);
323 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
324 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
325 		/* generate double fault per SDM Table 5-5 */
326 		vcpu->arch.exception.pending = true;
327 		vcpu->arch.exception.has_error_code = true;
328 		vcpu->arch.exception.nr = DF_VECTOR;
329 		vcpu->arch.exception.error_code = 0;
330 	} else
331 		/* replace previous exception with a new one in a hope
332 		   that instruction re-execution will regenerate lost
333 		   exception */
334 		goto queue;
335 }
336 
337 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
338 {
339 	kvm_multiple_exception(vcpu, nr, false, 0, false);
340 }
341 EXPORT_SYMBOL_GPL(kvm_queue_exception);
342 
343 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
344 {
345 	kvm_multiple_exception(vcpu, nr, false, 0, true);
346 }
347 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
348 
349 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
350 {
351 	if (err)
352 		kvm_inject_gp(vcpu, 0);
353 	else
354 		kvm_x86_ops->skip_emulated_instruction(vcpu);
355 }
356 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
357 
358 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 	++vcpu->stat.pf_guest;
361 	vcpu->arch.cr2 = fault->address;
362 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
363 }
364 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
365 
366 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
367 {
368 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
369 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
370 	else
371 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
372 }
373 
374 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
375 {
376 	atomic_inc(&vcpu->arch.nmi_queued);
377 	kvm_make_request(KVM_REQ_NMI, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
380 
381 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
382 {
383 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
384 }
385 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
386 
387 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
388 {
389 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
390 }
391 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
392 
393 /*
394  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
395  * a #GP and return false.
396  */
397 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
398 {
399 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
400 		return true;
401 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
402 	return false;
403 }
404 EXPORT_SYMBOL_GPL(kvm_require_cpl);
405 
406 /*
407  * This function will be used to read from the physical memory of the currently
408  * running guest. The difference to kvm_read_guest_page is that this function
409  * can read from guest physical or from the guest's guest physical memory.
410  */
411 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
412 			    gfn_t ngfn, void *data, int offset, int len,
413 			    u32 access)
414 {
415 	gfn_t real_gfn;
416 	gpa_t ngpa;
417 
418 	ngpa     = gfn_to_gpa(ngfn);
419 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
420 	if (real_gfn == UNMAPPED_GVA)
421 		return -EFAULT;
422 
423 	real_gfn = gpa_to_gfn(real_gfn);
424 
425 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
426 }
427 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
428 
429 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
430 			       void *data, int offset, int len, u32 access)
431 {
432 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
433 				       data, offset, len, access);
434 }
435 
436 /*
437  * Load the pae pdptrs.  Return true is they are all valid.
438  */
439 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
440 {
441 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
442 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
443 	int i;
444 	int ret;
445 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
446 
447 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
448 				      offset * sizeof(u64), sizeof(pdpte),
449 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
450 	if (ret < 0) {
451 		ret = 0;
452 		goto out;
453 	}
454 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
455 		if (is_present_gpte(pdpte[i]) &&
456 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
457 			ret = 0;
458 			goto out;
459 		}
460 	}
461 	ret = 1;
462 
463 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
464 	__set_bit(VCPU_EXREG_PDPTR,
465 		  (unsigned long *)&vcpu->arch.regs_avail);
466 	__set_bit(VCPU_EXREG_PDPTR,
467 		  (unsigned long *)&vcpu->arch.regs_dirty);
468 out:
469 
470 	return ret;
471 }
472 EXPORT_SYMBOL_GPL(load_pdptrs);
473 
474 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
475 {
476 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
477 	bool changed = true;
478 	int offset;
479 	gfn_t gfn;
480 	int r;
481 
482 	if (is_long_mode(vcpu) || !is_pae(vcpu))
483 		return false;
484 
485 	if (!test_bit(VCPU_EXREG_PDPTR,
486 		      (unsigned long *)&vcpu->arch.regs_avail))
487 		return true;
488 
489 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
490 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
491 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
492 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
493 	if (r < 0)
494 		goto out;
495 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
496 out:
497 
498 	return changed;
499 }
500 
501 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
502 {
503 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
504 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
505 				    X86_CR0_CD | X86_CR0_NW;
506 
507 	cr0 |= X86_CR0_ET;
508 
509 #ifdef CONFIG_X86_64
510 	if (cr0 & 0xffffffff00000000UL)
511 		return 1;
512 #endif
513 
514 	cr0 &= ~CR0_RESERVED_BITS;
515 
516 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
517 		return 1;
518 
519 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
520 		return 1;
521 
522 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
523 #ifdef CONFIG_X86_64
524 		if ((vcpu->arch.efer & EFER_LME)) {
525 			int cs_db, cs_l;
526 
527 			if (!is_pae(vcpu))
528 				return 1;
529 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
530 			if (cs_l)
531 				return 1;
532 		} else
533 #endif
534 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
535 						 kvm_read_cr3(vcpu)))
536 			return 1;
537 	}
538 
539 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
540 		return 1;
541 
542 	kvm_x86_ops->set_cr0(vcpu, cr0);
543 
544 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
545 		kvm_clear_async_pf_completion_queue(vcpu);
546 		kvm_async_pf_hash_reset(vcpu);
547 	}
548 
549 	if ((cr0 ^ old_cr0) & update_bits)
550 		kvm_mmu_reset_context(vcpu);
551 	return 0;
552 }
553 EXPORT_SYMBOL_GPL(kvm_set_cr0);
554 
555 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
556 {
557 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
558 }
559 EXPORT_SYMBOL_GPL(kvm_lmsw);
560 
561 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
562 {
563 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
564 			!vcpu->guest_xcr0_loaded) {
565 		/* kvm_set_xcr() also depends on this */
566 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
567 		vcpu->guest_xcr0_loaded = 1;
568 	}
569 }
570 
571 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
572 {
573 	if (vcpu->guest_xcr0_loaded) {
574 		if (vcpu->arch.xcr0 != host_xcr0)
575 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
576 		vcpu->guest_xcr0_loaded = 0;
577 	}
578 }
579 
580 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
581 {
582 	u64 xcr0;
583 	u64 valid_bits;
584 
585 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
586 	if (index != XCR_XFEATURE_ENABLED_MASK)
587 		return 1;
588 	xcr0 = xcr;
589 	if (!(xcr0 & XSTATE_FP))
590 		return 1;
591 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
592 		return 1;
593 
594 	/*
595 	 * Do not allow the guest to set bits that we do not support
596 	 * saving.  However, xcr0 bit 0 is always set, even if the
597 	 * emulated CPU does not support XSAVE (see fx_init).
598 	 */
599 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
600 	if (xcr0 & ~valid_bits)
601 		return 1;
602 
603 	kvm_put_guest_xcr0(vcpu);
604 	vcpu->arch.xcr0 = xcr0;
605 	return 0;
606 }
607 
608 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
609 {
610 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
611 	    __kvm_set_xcr(vcpu, index, xcr)) {
612 		kvm_inject_gp(vcpu, 0);
613 		return 1;
614 	}
615 	return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_xcr);
618 
619 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
620 {
621 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
622 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
623 				   X86_CR4_PAE | X86_CR4_SMEP;
624 	if (cr4 & CR4_RESERVED_BITS)
625 		return 1;
626 
627 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
628 		return 1;
629 
630 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
631 		return 1;
632 
633 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
634 		return 1;
635 
636 	if (is_long_mode(vcpu)) {
637 		if (!(cr4 & X86_CR4_PAE))
638 			return 1;
639 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
640 		   && ((cr4 ^ old_cr4) & pdptr_bits)
641 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
642 				   kvm_read_cr3(vcpu)))
643 		return 1;
644 
645 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
646 		if (!guest_cpuid_has_pcid(vcpu))
647 			return 1;
648 
649 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
650 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
651 			return 1;
652 	}
653 
654 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
655 		return 1;
656 
657 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
658 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
659 		kvm_mmu_reset_context(vcpu);
660 
661 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
662 		kvm_update_cpuid(vcpu);
663 
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr4);
667 
668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
669 {
670 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
671 		kvm_mmu_sync_roots(vcpu);
672 		kvm_mmu_flush_tlb(vcpu);
673 		return 0;
674 	}
675 
676 	if (is_long_mode(vcpu)) {
677 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
678 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
679 				return 1;
680 		} else
681 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
682 				return 1;
683 	} else {
684 		if (is_pae(vcpu)) {
685 			if (cr3 & CR3_PAE_RESERVED_BITS)
686 				return 1;
687 			if (is_paging(vcpu) &&
688 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
689 				return 1;
690 		}
691 		/*
692 		 * We don't check reserved bits in nonpae mode, because
693 		 * this isn't enforced, and VMware depends on this.
694 		 */
695 	}
696 
697 	vcpu->arch.cr3 = cr3;
698 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
699 	kvm_mmu_new_cr3(vcpu);
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr3);
703 
704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
705 {
706 	if (cr8 & CR8_RESERVED_BITS)
707 		return 1;
708 	if (irqchip_in_kernel(vcpu->kvm))
709 		kvm_lapic_set_tpr(vcpu, cr8);
710 	else
711 		vcpu->arch.cr8 = cr8;
712 	return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_cr8);
715 
716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
717 {
718 	if (irqchip_in_kernel(vcpu->kvm))
719 		return kvm_lapic_get_cr8(vcpu);
720 	else
721 		return vcpu->arch.cr8;
722 }
723 EXPORT_SYMBOL_GPL(kvm_get_cr8);
724 
725 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
726 {
727 	unsigned long dr7;
728 
729 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
730 		dr7 = vcpu->arch.guest_debug_dr7;
731 	else
732 		dr7 = vcpu->arch.dr7;
733 	kvm_x86_ops->set_dr7(vcpu, dr7);
734 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
735 }
736 
737 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
738 {
739 	switch (dr) {
740 	case 0 ... 3:
741 		vcpu->arch.db[dr] = val;
742 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
743 			vcpu->arch.eff_db[dr] = val;
744 		break;
745 	case 4:
746 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747 			return 1; /* #UD */
748 		/* fall through */
749 	case 6:
750 		if (val & 0xffffffff00000000ULL)
751 			return -1; /* #GP */
752 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
753 		break;
754 	case 5:
755 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
756 			return 1; /* #UD */
757 		/* fall through */
758 	default: /* 7 */
759 		if (val & 0xffffffff00000000ULL)
760 			return -1; /* #GP */
761 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
762 		kvm_update_dr7(vcpu);
763 		break;
764 	}
765 
766 	return 0;
767 }
768 
769 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
770 {
771 	int res;
772 
773 	res = __kvm_set_dr(vcpu, dr, val);
774 	if (res > 0)
775 		kvm_queue_exception(vcpu, UD_VECTOR);
776 	else if (res < 0)
777 		kvm_inject_gp(vcpu, 0);
778 
779 	return res;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_dr);
782 
783 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
784 {
785 	switch (dr) {
786 	case 0 ... 3:
787 		*val = vcpu->arch.db[dr];
788 		break;
789 	case 4:
790 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
791 			return 1;
792 		/* fall through */
793 	case 6:
794 		*val = vcpu->arch.dr6;
795 		break;
796 	case 5:
797 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798 			return 1;
799 		/* fall through */
800 	default: /* 7 */
801 		*val = vcpu->arch.dr7;
802 		break;
803 	}
804 
805 	return 0;
806 }
807 
808 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
809 {
810 	if (_kvm_get_dr(vcpu, dr, val)) {
811 		kvm_queue_exception(vcpu, UD_VECTOR);
812 		return 1;
813 	}
814 	return 0;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_dr);
817 
818 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
819 {
820 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
821 	u64 data;
822 	int err;
823 
824 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
825 	if (err)
826 		return err;
827 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
828 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
829 	return err;
830 }
831 EXPORT_SYMBOL_GPL(kvm_rdpmc);
832 
833 /*
834  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
835  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
836  *
837  * This list is modified at module load time to reflect the
838  * capabilities of the host cpu. This capabilities test skips MSRs that are
839  * kvm-specific. Those are put in the beginning of the list.
840  */
841 
842 #define KVM_SAVE_MSRS_BEGIN	10
843 static u32 msrs_to_save[] = {
844 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
845 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
846 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
847 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
848 	MSR_KVM_PV_EOI_EN,
849 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
850 	MSR_STAR,
851 #ifdef CONFIG_X86_64
852 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
853 #endif
854 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
855 	MSR_IA32_FEATURE_CONTROL
856 };
857 
858 static unsigned num_msrs_to_save;
859 
860 static const u32 emulated_msrs[] = {
861 	MSR_IA32_TSC_ADJUST,
862 	MSR_IA32_TSCDEADLINE,
863 	MSR_IA32_MISC_ENABLE,
864 	MSR_IA32_MCG_STATUS,
865 	MSR_IA32_MCG_CTL,
866 };
867 
868 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
869 {
870 	if (efer & efer_reserved_bits)
871 		return false;
872 
873 	if (efer & EFER_FFXSR) {
874 		struct kvm_cpuid_entry2 *feat;
875 
876 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
877 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
878 			return false;
879 	}
880 
881 	if (efer & EFER_SVME) {
882 		struct kvm_cpuid_entry2 *feat;
883 
884 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
885 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
886 			return false;
887 	}
888 
889 	return true;
890 }
891 EXPORT_SYMBOL_GPL(kvm_valid_efer);
892 
893 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
894 {
895 	u64 old_efer = vcpu->arch.efer;
896 
897 	if (!kvm_valid_efer(vcpu, efer))
898 		return 1;
899 
900 	if (is_paging(vcpu)
901 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
902 		return 1;
903 
904 	efer &= ~EFER_LMA;
905 	efer |= vcpu->arch.efer & EFER_LMA;
906 
907 	kvm_x86_ops->set_efer(vcpu, efer);
908 
909 	/* Update reserved bits */
910 	if ((efer ^ old_efer) & EFER_NX)
911 		kvm_mmu_reset_context(vcpu);
912 
913 	return 0;
914 }
915 
916 void kvm_enable_efer_bits(u64 mask)
917 {
918        efer_reserved_bits &= ~mask;
919 }
920 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
921 
922 
923 /*
924  * Writes msr value into into the appropriate "register".
925  * Returns 0 on success, non-0 otherwise.
926  * Assumes vcpu_load() was already called.
927  */
928 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
929 {
930 	return kvm_x86_ops->set_msr(vcpu, msr);
931 }
932 
933 /*
934  * Adapt set_msr() to msr_io()'s calling convention
935  */
936 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
937 {
938 	struct msr_data msr;
939 
940 	msr.data = *data;
941 	msr.index = index;
942 	msr.host_initiated = true;
943 	return kvm_set_msr(vcpu, &msr);
944 }
945 
946 #ifdef CONFIG_X86_64
947 struct pvclock_gtod_data {
948 	seqcount_t	seq;
949 
950 	struct { /* extract of a clocksource struct */
951 		int vclock_mode;
952 		cycle_t	cycle_last;
953 		cycle_t	mask;
954 		u32	mult;
955 		u32	shift;
956 	} clock;
957 
958 	/* open coded 'struct timespec' */
959 	u64		monotonic_time_snsec;
960 	time_t		monotonic_time_sec;
961 };
962 
963 static struct pvclock_gtod_data pvclock_gtod_data;
964 
965 static void update_pvclock_gtod(struct timekeeper *tk)
966 {
967 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
968 
969 	write_seqcount_begin(&vdata->seq);
970 
971 	/* copy pvclock gtod data */
972 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
973 	vdata->clock.cycle_last		= tk->clock->cycle_last;
974 	vdata->clock.mask		= tk->clock->mask;
975 	vdata->clock.mult		= tk->mult;
976 	vdata->clock.shift		= tk->shift;
977 
978 	vdata->monotonic_time_sec	= tk->xtime_sec
979 					+ tk->wall_to_monotonic.tv_sec;
980 	vdata->monotonic_time_snsec	= tk->xtime_nsec
981 					+ (tk->wall_to_monotonic.tv_nsec
982 						<< tk->shift);
983 	while (vdata->monotonic_time_snsec >=
984 					(((u64)NSEC_PER_SEC) << tk->shift)) {
985 		vdata->monotonic_time_snsec -=
986 					((u64)NSEC_PER_SEC) << tk->shift;
987 		vdata->monotonic_time_sec++;
988 	}
989 
990 	write_seqcount_end(&vdata->seq);
991 }
992 #endif
993 
994 
995 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
996 {
997 	int version;
998 	int r;
999 	struct pvclock_wall_clock wc;
1000 	struct timespec boot;
1001 
1002 	if (!wall_clock)
1003 		return;
1004 
1005 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1006 	if (r)
1007 		return;
1008 
1009 	if (version & 1)
1010 		++version;  /* first time write, random junk */
1011 
1012 	++version;
1013 
1014 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1015 
1016 	/*
1017 	 * The guest calculates current wall clock time by adding
1018 	 * system time (updated by kvm_guest_time_update below) to the
1019 	 * wall clock specified here.  guest system time equals host
1020 	 * system time for us, thus we must fill in host boot time here.
1021 	 */
1022 	getboottime(&boot);
1023 
1024 	if (kvm->arch.kvmclock_offset) {
1025 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1026 		boot = timespec_sub(boot, ts);
1027 	}
1028 	wc.sec = boot.tv_sec;
1029 	wc.nsec = boot.tv_nsec;
1030 	wc.version = version;
1031 
1032 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1033 
1034 	version++;
1035 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1036 }
1037 
1038 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1039 {
1040 	uint32_t quotient, remainder;
1041 
1042 	/* Don't try to replace with do_div(), this one calculates
1043 	 * "(dividend << 32) / divisor" */
1044 	__asm__ ( "divl %4"
1045 		  : "=a" (quotient), "=d" (remainder)
1046 		  : "0" (0), "1" (dividend), "r" (divisor) );
1047 	return quotient;
1048 }
1049 
1050 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1051 			       s8 *pshift, u32 *pmultiplier)
1052 {
1053 	uint64_t scaled64;
1054 	int32_t  shift = 0;
1055 	uint64_t tps64;
1056 	uint32_t tps32;
1057 
1058 	tps64 = base_khz * 1000LL;
1059 	scaled64 = scaled_khz * 1000LL;
1060 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1061 		tps64 >>= 1;
1062 		shift--;
1063 	}
1064 
1065 	tps32 = (uint32_t)tps64;
1066 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1067 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1068 			scaled64 >>= 1;
1069 		else
1070 			tps32 <<= 1;
1071 		shift++;
1072 	}
1073 
1074 	*pshift = shift;
1075 	*pmultiplier = div_frac(scaled64, tps32);
1076 
1077 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1078 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1079 }
1080 
1081 static inline u64 get_kernel_ns(void)
1082 {
1083 	struct timespec ts;
1084 
1085 	WARN_ON(preemptible());
1086 	ktime_get_ts(&ts);
1087 	monotonic_to_bootbased(&ts);
1088 	return timespec_to_ns(&ts);
1089 }
1090 
1091 #ifdef CONFIG_X86_64
1092 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1093 #endif
1094 
1095 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1096 unsigned long max_tsc_khz;
1097 
1098 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1099 {
1100 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1101 				   vcpu->arch.virtual_tsc_shift);
1102 }
1103 
1104 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1105 {
1106 	u64 v = (u64)khz * (1000000 + ppm);
1107 	do_div(v, 1000000);
1108 	return v;
1109 }
1110 
1111 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1112 {
1113 	u32 thresh_lo, thresh_hi;
1114 	int use_scaling = 0;
1115 
1116 	/* tsc_khz can be zero if TSC calibration fails */
1117 	if (this_tsc_khz == 0)
1118 		return;
1119 
1120 	/* Compute a scale to convert nanoseconds in TSC cycles */
1121 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1122 			   &vcpu->arch.virtual_tsc_shift,
1123 			   &vcpu->arch.virtual_tsc_mult);
1124 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1125 
1126 	/*
1127 	 * Compute the variation in TSC rate which is acceptable
1128 	 * within the range of tolerance and decide if the
1129 	 * rate being applied is within that bounds of the hardware
1130 	 * rate.  If so, no scaling or compensation need be done.
1131 	 */
1132 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1133 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1134 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1135 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1136 		use_scaling = 1;
1137 	}
1138 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1139 }
1140 
1141 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1142 {
1143 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1144 				      vcpu->arch.virtual_tsc_mult,
1145 				      vcpu->arch.virtual_tsc_shift);
1146 	tsc += vcpu->arch.this_tsc_write;
1147 	return tsc;
1148 }
1149 
1150 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1151 {
1152 #ifdef CONFIG_X86_64
1153 	bool vcpus_matched;
1154 	bool do_request = false;
1155 	struct kvm_arch *ka = &vcpu->kvm->arch;
1156 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1157 
1158 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1159 			 atomic_read(&vcpu->kvm->online_vcpus));
1160 
1161 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1162 		if (!ka->use_master_clock)
1163 			do_request = 1;
1164 
1165 	if (!vcpus_matched && ka->use_master_clock)
1166 			do_request = 1;
1167 
1168 	if (do_request)
1169 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1170 
1171 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1172 			    atomic_read(&vcpu->kvm->online_vcpus),
1173 		            ka->use_master_clock, gtod->clock.vclock_mode);
1174 #endif
1175 }
1176 
1177 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1178 {
1179 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1180 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1181 }
1182 
1183 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1184 {
1185 	struct kvm *kvm = vcpu->kvm;
1186 	u64 offset, ns, elapsed;
1187 	unsigned long flags;
1188 	s64 usdiff;
1189 	bool matched;
1190 	u64 data = msr->data;
1191 
1192 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1193 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1194 	ns = get_kernel_ns();
1195 	elapsed = ns - kvm->arch.last_tsc_nsec;
1196 
1197 	if (vcpu->arch.virtual_tsc_khz) {
1198 		int faulted = 0;
1199 
1200 		/* n.b - signed multiplication and division required */
1201 		usdiff = data - kvm->arch.last_tsc_write;
1202 #ifdef CONFIG_X86_64
1203 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1204 #else
1205 		/* do_div() only does unsigned */
1206 		asm("1: idivl %[divisor]\n"
1207 		    "2: xor %%edx, %%edx\n"
1208 		    "   movl $0, %[faulted]\n"
1209 		    "3:\n"
1210 		    ".section .fixup,\"ax\"\n"
1211 		    "4: movl $1, %[faulted]\n"
1212 		    "   jmp  3b\n"
1213 		    ".previous\n"
1214 
1215 		_ASM_EXTABLE(1b, 4b)
1216 
1217 		: "=A"(usdiff), [faulted] "=r" (faulted)
1218 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1219 
1220 #endif
1221 		do_div(elapsed, 1000);
1222 		usdiff -= elapsed;
1223 		if (usdiff < 0)
1224 			usdiff = -usdiff;
1225 
1226 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1227 		if (faulted)
1228 			usdiff = USEC_PER_SEC;
1229 	} else
1230 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1231 
1232 	/*
1233 	 * Special case: TSC write with a small delta (1 second) of virtual
1234 	 * cycle time against real time is interpreted as an attempt to
1235 	 * synchronize the CPU.
1236          *
1237 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1238 	 * TSC, we add elapsed time in this computation.  We could let the
1239 	 * compensation code attempt to catch up if we fall behind, but
1240 	 * it's better to try to match offsets from the beginning.
1241          */
1242 	if (usdiff < USEC_PER_SEC &&
1243 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1244 		if (!check_tsc_unstable()) {
1245 			offset = kvm->arch.cur_tsc_offset;
1246 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1247 		} else {
1248 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1249 			data += delta;
1250 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1251 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1252 		}
1253 		matched = true;
1254 	} else {
1255 		/*
1256 		 * We split periods of matched TSC writes into generations.
1257 		 * For each generation, we track the original measured
1258 		 * nanosecond time, offset, and write, so if TSCs are in
1259 		 * sync, we can match exact offset, and if not, we can match
1260 		 * exact software computation in compute_guest_tsc()
1261 		 *
1262 		 * These values are tracked in kvm->arch.cur_xxx variables.
1263 		 */
1264 		kvm->arch.cur_tsc_generation++;
1265 		kvm->arch.cur_tsc_nsec = ns;
1266 		kvm->arch.cur_tsc_write = data;
1267 		kvm->arch.cur_tsc_offset = offset;
1268 		matched = false;
1269 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1270 			 kvm->arch.cur_tsc_generation, data);
1271 	}
1272 
1273 	/*
1274 	 * We also track th most recent recorded KHZ, write and time to
1275 	 * allow the matching interval to be extended at each write.
1276 	 */
1277 	kvm->arch.last_tsc_nsec = ns;
1278 	kvm->arch.last_tsc_write = data;
1279 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1280 
1281 	/* Reset of TSC must disable overshoot protection below */
1282 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1283 	vcpu->arch.last_guest_tsc = data;
1284 
1285 	/* Keep track of which generation this VCPU has synchronized to */
1286 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1287 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1288 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1289 
1290 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1291 		update_ia32_tsc_adjust_msr(vcpu, offset);
1292 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1293 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1294 
1295 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1296 	if (matched)
1297 		kvm->arch.nr_vcpus_matched_tsc++;
1298 	else
1299 		kvm->arch.nr_vcpus_matched_tsc = 0;
1300 
1301 	kvm_track_tsc_matching(vcpu);
1302 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1303 }
1304 
1305 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1306 
1307 #ifdef CONFIG_X86_64
1308 
1309 static cycle_t read_tsc(void)
1310 {
1311 	cycle_t ret;
1312 	u64 last;
1313 
1314 	/*
1315 	 * Empirically, a fence (of type that depends on the CPU)
1316 	 * before rdtsc is enough to ensure that rdtsc is ordered
1317 	 * with respect to loads.  The various CPU manuals are unclear
1318 	 * as to whether rdtsc can be reordered with later loads,
1319 	 * but no one has ever seen it happen.
1320 	 */
1321 	rdtsc_barrier();
1322 	ret = (cycle_t)vget_cycles();
1323 
1324 	last = pvclock_gtod_data.clock.cycle_last;
1325 
1326 	if (likely(ret >= last))
1327 		return ret;
1328 
1329 	/*
1330 	 * GCC likes to generate cmov here, but this branch is extremely
1331 	 * predictable (it's just a funciton of time and the likely is
1332 	 * very likely) and there's a data dependence, so force GCC
1333 	 * to generate a branch instead.  I don't barrier() because
1334 	 * we don't actually need a barrier, and if this function
1335 	 * ever gets inlined it will generate worse code.
1336 	 */
1337 	asm volatile ("");
1338 	return last;
1339 }
1340 
1341 static inline u64 vgettsc(cycle_t *cycle_now)
1342 {
1343 	long v;
1344 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1345 
1346 	*cycle_now = read_tsc();
1347 
1348 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1349 	return v * gtod->clock.mult;
1350 }
1351 
1352 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1353 {
1354 	unsigned long seq;
1355 	u64 ns;
1356 	int mode;
1357 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358 
1359 	ts->tv_nsec = 0;
1360 	do {
1361 		seq = read_seqcount_begin(&gtod->seq);
1362 		mode = gtod->clock.vclock_mode;
1363 		ts->tv_sec = gtod->monotonic_time_sec;
1364 		ns = gtod->monotonic_time_snsec;
1365 		ns += vgettsc(cycle_now);
1366 		ns >>= gtod->clock.shift;
1367 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1368 	timespec_add_ns(ts, ns);
1369 
1370 	return mode;
1371 }
1372 
1373 /* returns true if host is using tsc clocksource */
1374 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1375 {
1376 	struct timespec ts;
1377 
1378 	/* checked again under seqlock below */
1379 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1380 		return false;
1381 
1382 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1383 		return false;
1384 
1385 	monotonic_to_bootbased(&ts);
1386 	*kernel_ns = timespec_to_ns(&ts);
1387 
1388 	return true;
1389 }
1390 #endif
1391 
1392 /*
1393  *
1394  * Assuming a stable TSC across physical CPUS, and a stable TSC
1395  * across virtual CPUs, the following condition is possible.
1396  * Each numbered line represents an event visible to both
1397  * CPUs at the next numbered event.
1398  *
1399  * "timespecX" represents host monotonic time. "tscX" represents
1400  * RDTSC value.
1401  *
1402  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1403  *
1404  * 1.  read timespec0,tsc0
1405  * 2.					| timespec1 = timespec0 + N
1406  * 					| tsc1 = tsc0 + M
1407  * 3. transition to guest		| transition to guest
1408  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1409  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1410  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1411  *
1412  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1413  *
1414  * 	- ret0 < ret1
1415  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1416  *		...
1417  *	- 0 < N - M => M < N
1418  *
1419  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1420  * always the case (the difference between two distinct xtime instances
1421  * might be smaller then the difference between corresponding TSC reads,
1422  * when updating guest vcpus pvclock areas).
1423  *
1424  * To avoid that problem, do not allow visibility of distinct
1425  * system_timestamp/tsc_timestamp values simultaneously: use a master
1426  * copy of host monotonic time values. Update that master copy
1427  * in lockstep.
1428  *
1429  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1430  *
1431  */
1432 
1433 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1434 {
1435 #ifdef CONFIG_X86_64
1436 	struct kvm_arch *ka = &kvm->arch;
1437 	int vclock_mode;
1438 	bool host_tsc_clocksource, vcpus_matched;
1439 
1440 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1441 			atomic_read(&kvm->online_vcpus));
1442 
1443 	/*
1444 	 * If the host uses TSC clock, then passthrough TSC as stable
1445 	 * to the guest.
1446 	 */
1447 	host_tsc_clocksource = kvm_get_time_and_clockread(
1448 					&ka->master_kernel_ns,
1449 					&ka->master_cycle_now);
1450 
1451 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1452 
1453 	if (ka->use_master_clock)
1454 		atomic_set(&kvm_guest_has_master_clock, 1);
1455 
1456 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1457 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1458 					vcpus_matched);
1459 #endif
1460 }
1461 
1462 static void kvm_gen_update_masterclock(struct kvm *kvm)
1463 {
1464 #ifdef CONFIG_X86_64
1465 	int i;
1466 	struct kvm_vcpu *vcpu;
1467 	struct kvm_arch *ka = &kvm->arch;
1468 
1469 	spin_lock(&ka->pvclock_gtod_sync_lock);
1470 	kvm_make_mclock_inprogress_request(kvm);
1471 	/* no guest entries from this point */
1472 	pvclock_update_vm_gtod_copy(kvm);
1473 
1474 	kvm_for_each_vcpu(i, vcpu, kvm)
1475 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1476 
1477 	/* guest entries allowed */
1478 	kvm_for_each_vcpu(i, vcpu, kvm)
1479 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1480 
1481 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1482 #endif
1483 }
1484 
1485 static int kvm_guest_time_update(struct kvm_vcpu *v)
1486 {
1487 	unsigned long flags, this_tsc_khz;
1488 	struct kvm_vcpu_arch *vcpu = &v->arch;
1489 	struct kvm_arch *ka = &v->kvm->arch;
1490 	s64 kernel_ns, max_kernel_ns;
1491 	u64 tsc_timestamp, host_tsc;
1492 	struct pvclock_vcpu_time_info guest_hv_clock;
1493 	u8 pvclock_flags;
1494 	bool use_master_clock;
1495 
1496 	kernel_ns = 0;
1497 	host_tsc = 0;
1498 
1499 	/*
1500 	 * If the host uses TSC clock, then passthrough TSC as stable
1501 	 * to the guest.
1502 	 */
1503 	spin_lock(&ka->pvclock_gtod_sync_lock);
1504 	use_master_clock = ka->use_master_clock;
1505 	if (use_master_clock) {
1506 		host_tsc = ka->master_cycle_now;
1507 		kernel_ns = ka->master_kernel_ns;
1508 	}
1509 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1510 
1511 	/* Keep irq disabled to prevent changes to the clock */
1512 	local_irq_save(flags);
1513 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1514 	if (unlikely(this_tsc_khz == 0)) {
1515 		local_irq_restore(flags);
1516 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1517 		return 1;
1518 	}
1519 	if (!use_master_clock) {
1520 		host_tsc = native_read_tsc();
1521 		kernel_ns = get_kernel_ns();
1522 	}
1523 
1524 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1525 
1526 	/*
1527 	 * We may have to catch up the TSC to match elapsed wall clock
1528 	 * time for two reasons, even if kvmclock is used.
1529 	 *   1) CPU could have been running below the maximum TSC rate
1530 	 *   2) Broken TSC compensation resets the base at each VCPU
1531 	 *      entry to avoid unknown leaps of TSC even when running
1532 	 *      again on the same CPU.  This may cause apparent elapsed
1533 	 *      time to disappear, and the guest to stand still or run
1534 	 *	very slowly.
1535 	 */
1536 	if (vcpu->tsc_catchup) {
1537 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1538 		if (tsc > tsc_timestamp) {
1539 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1540 			tsc_timestamp = tsc;
1541 		}
1542 	}
1543 
1544 	local_irq_restore(flags);
1545 
1546 	if (!vcpu->pv_time_enabled)
1547 		return 0;
1548 
1549 	/*
1550 	 * Time as measured by the TSC may go backwards when resetting the base
1551 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1552 	 * higher than the resolution of the other clock scales.  Thus, many
1553 	 * possible measurments of the TSC correspond to one measurement of any
1554 	 * other clock, and so a spread of values is possible.  This is not a
1555 	 * problem for the computation of the nanosecond clock; with TSC rates
1556 	 * around 1GHZ, there can only be a few cycles which correspond to one
1557 	 * nanosecond value, and any path through this code will inevitably
1558 	 * take longer than that.  However, with the kernel_ns value itself,
1559 	 * the precision may be much lower, down to HZ granularity.  If the
1560 	 * first sampling of TSC against kernel_ns ends in the low part of the
1561 	 * range, and the second in the high end of the range, we can get:
1562 	 *
1563 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1564 	 *
1565 	 * As the sampling errors potentially range in the thousands of cycles,
1566 	 * it is possible such a time value has already been observed by the
1567 	 * guest.  To protect against this, we must compute the system time as
1568 	 * observed by the guest and ensure the new system time is greater.
1569 	 */
1570 	max_kernel_ns = 0;
1571 	if (vcpu->hv_clock.tsc_timestamp) {
1572 		max_kernel_ns = vcpu->last_guest_tsc -
1573 				vcpu->hv_clock.tsc_timestamp;
1574 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1575 				    vcpu->hv_clock.tsc_to_system_mul,
1576 				    vcpu->hv_clock.tsc_shift);
1577 		max_kernel_ns += vcpu->last_kernel_ns;
1578 	}
1579 
1580 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1581 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1582 				   &vcpu->hv_clock.tsc_shift,
1583 				   &vcpu->hv_clock.tsc_to_system_mul);
1584 		vcpu->hw_tsc_khz = this_tsc_khz;
1585 	}
1586 
1587 	/* with a master <monotonic time, tsc value> tuple,
1588 	 * pvclock clock reads always increase at the (scaled) rate
1589 	 * of guest TSC - no need to deal with sampling errors.
1590 	 */
1591 	if (!use_master_clock) {
1592 		if (max_kernel_ns > kernel_ns)
1593 			kernel_ns = max_kernel_ns;
1594 	}
1595 	/* With all the info we got, fill in the values */
1596 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1597 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1598 	vcpu->last_kernel_ns = kernel_ns;
1599 	vcpu->last_guest_tsc = tsc_timestamp;
1600 
1601 	/*
1602 	 * The interface expects us to write an even number signaling that the
1603 	 * update is finished. Since the guest won't see the intermediate
1604 	 * state, we just increase by 2 at the end.
1605 	 */
1606 	vcpu->hv_clock.version += 2;
1607 
1608 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1609 		&guest_hv_clock, sizeof(guest_hv_clock))))
1610 		return 0;
1611 
1612 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1613 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1614 
1615 	if (vcpu->pvclock_set_guest_stopped_request) {
1616 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1617 		vcpu->pvclock_set_guest_stopped_request = false;
1618 	}
1619 
1620 	/* If the host uses TSC clocksource, then it is stable */
1621 	if (use_master_clock)
1622 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1623 
1624 	vcpu->hv_clock.flags = pvclock_flags;
1625 
1626 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1627 				&vcpu->hv_clock,
1628 				sizeof(vcpu->hv_clock));
1629 	return 0;
1630 }
1631 
1632 /*
1633  * kvmclock updates which are isolated to a given vcpu, such as
1634  * vcpu->cpu migration, should not allow system_timestamp from
1635  * the rest of the vcpus to remain static. Otherwise ntp frequency
1636  * correction applies to one vcpu's system_timestamp but not
1637  * the others.
1638  *
1639  * So in those cases, request a kvmclock update for all vcpus.
1640  * The worst case for a remote vcpu to update its kvmclock
1641  * is then bounded by maximum nohz sleep latency.
1642  */
1643 
1644 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1645 {
1646 	int i;
1647 	struct kvm *kvm = v->kvm;
1648 	struct kvm_vcpu *vcpu;
1649 
1650 	kvm_for_each_vcpu(i, vcpu, kvm) {
1651 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1652 		kvm_vcpu_kick(vcpu);
1653 	}
1654 }
1655 
1656 static bool msr_mtrr_valid(unsigned msr)
1657 {
1658 	switch (msr) {
1659 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1660 	case MSR_MTRRfix64K_00000:
1661 	case MSR_MTRRfix16K_80000:
1662 	case MSR_MTRRfix16K_A0000:
1663 	case MSR_MTRRfix4K_C0000:
1664 	case MSR_MTRRfix4K_C8000:
1665 	case MSR_MTRRfix4K_D0000:
1666 	case MSR_MTRRfix4K_D8000:
1667 	case MSR_MTRRfix4K_E0000:
1668 	case MSR_MTRRfix4K_E8000:
1669 	case MSR_MTRRfix4K_F0000:
1670 	case MSR_MTRRfix4K_F8000:
1671 	case MSR_MTRRdefType:
1672 	case MSR_IA32_CR_PAT:
1673 		return true;
1674 	case 0x2f8:
1675 		return true;
1676 	}
1677 	return false;
1678 }
1679 
1680 static bool valid_pat_type(unsigned t)
1681 {
1682 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1683 }
1684 
1685 static bool valid_mtrr_type(unsigned t)
1686 {
1687 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1688 }
1689 
1690 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1691 {
1692 	int i;
1693 
1694 	if (!msr_mtrr_valid(msr))
1695 		return false;
1696 
1697 	if (msr == MSR_IA32_CR_PAT) {
1698 		for (i = 0; i < 8; i++)
1699 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1700 				return false;
1701 		return true;
1702 	} else if (msr == MSR_MTRRdefType) {
1703 		if (data & ~0xcff)
1704 			return false;
1705 		return valid_mtrr_type(data & 0xff);
1706 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1707 		for (i = 0; i < 8 ; i++)
1708 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1709 				return false;
1710 		return true;
1711 	}
1712 
1713 	/* variable MTRRs */
1714 	return valid_mtrr_type(data & 0xff);
1715 }
1716 
1717 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1718 {
1719 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1720 
1721 	if (!mtrr_valid(vcpu, msr, data))
1722 		return 1;
1723 
1724 	if (msr == MSR_MTRRdefType) {
1725 		vcpu->arch.mtrr_state.def_type = data;
1726 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1727 	} else if (msr == MSR_MTRRfix64K_00000)
1728 		p[0] = data;
1729 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1730 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1731 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1732 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1733 	else if (msr == MSR_IA32_CR_PAT)
1734 		vcpu->arch.pat = data;
1735 	else {	/* Variable MTRRs */
1736 		int idx, is_mtrr_mask;
1737 		u64 *pt;
1738 
1739 		idx = (msr - 0x200) / 2;
1740 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1741 		if (!is_mtrr_mask)
1742 			pt =
1743 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1744 		else
1745 			pt =
1746 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1747 		*pt = data;
1748 	}
1749 
1750 	kvm_mmu_reset_context(vcpu);
1751 	return 0;
1752 }
1753 
1754 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1755 {
1756 	u64 mcg_cap = vcpu->arch.mcg_cap;
1757 	unsigned bank_num = mcg_cap & 0xff;
1758 
1759 	switch (msr) {
1760 	case MSR_IA32_MCG_STATUS:
1761 		vcpu->arch.mcg_status = data;
1762 		break;
1763 	case MSR_IA32_MCG_CTL:
1764 		if (!(mcg_cap & MCG_CTL_P))
1765 			return 1;
1766 		if (data != 0 && data != ~(u64)0)
1767 			return -1;
1768 		vcpu->arch.mcg_ctl = data;
1769 		break;
1770 	default:
1771 		if (msr >= MSR_IA32_MC0_CTL &&
1772 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1773 			u32 offset = msr - MSR_IA32_MC0_CTL;
1774 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1775 			 * some Linux kernels though clear bit 10 in bank 4 to
1776 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1777 			 * this to avoid an uncatched #GP in the guest
1778 			 */
1779 			if ((offset & 0x3) == 0 &&
1780 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1781 				return -1;
1782 			vcpu->arch.mce_banks[offset] = data;
1783 			break;
1784 		}
1785 		return 1;
1786 	}
1787 	return 0;
1788 }
1789 
1790 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1791 {
1792 	struct kvm *kvm = vcpu->kvm;
1793 	int lm = is_long_mode(vcpu);
1794 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1795 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1796 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1797 		: kvm->arch.xen_hvm_config.blob_size_32;
1798 	u32 page_num = data & ~PAGE_MASK;
1799 	u64 page_addr = data & PAGE_MASK;
1800 	u8 *page;
1801 	int r;
1802 
1803 	r = -E2BIG;
1804 	if (page_num >= blob_size)
1805 		goto out;
1806 	r = -ENOMEM;
1807 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1808 	if (IS_ERR(page)) {
1809 		r = PTR_ERR(page);
1810 		goto out;
1811 	}
1812 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1813 		goto out_free;
1814 	r = 0;
1815 out_free:
1816 	kfree(page);
1817 out:
1818 	return r;
1819 }
1820 
1821 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1822 {
1823 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1824 }
1825 
1826 static bool kvm_hv_msr_partition_wide(u32 msr)
1827 {
1828 	bool r = false;
1829 	switch (msr) {
1830 	case HV_X64_MSR_GUEST_OS_ID:
1831 	case HV_X64_MSR_HYPERCALL:
1832 		r = true;
1833 		break;
1834 	}
1835 
1836 	return r;
1837 }
1838 
1839 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1840 {
1841 	struct kvm *kvm = vcpu->kvm;
1842 
1843 	switch (msr) {
1844 	case HV_X64_MSR_GUEST_OS_ID:
1845 		kvm->arch.hv_guest_os_id = data;
1846 		/* setting guest os id to zero disables hypercall page */
1847 		if (!kvm->arch.hv_guest_os_id)
1848 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1849 		break;
1850 	case HV_X64_MSR_HYPERCALL: {
1851 		u64 gfn;
1852 		unsigned long addr;
1853 		u8 instructions[4];
1854 
1855 		/* if guest os id is not set hypercall should remain disabled */
1856 		if (!kvm->arch.hv_guest_os_id)
1857 			break;
1858 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1859 			kvm->arch.hv_hypercall = data;
1860 			break;
1861 		}
1862 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1863 		addr = gfn_to_hva(kvm, gfn);
1864 		if (kvm_is_error_hva(addr))
1865 			return 1;
1866 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1867 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1868 		if (__copy_to_user((void __user *)addr, instructions, 4))
1869 			return 1;
1870 		kvm->arch.hv_hypercall = data;
1871 		break;
1872 	}
1873 	default:
1874 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1875 			    "data 0x%llx\n", msr, data);
1876 		return 1;
1877 	}
1878 	return 0;
1879 }
1880 
1881 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1882 {
1883 	switch (msr) {
1884 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1885 		unsigned long addr;
1886 
1887 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1888 			vcpu->arch.hv_vapic = data;
1889 			break;
1890 		}
1891 		addr = gfn_to_hva(vcpu->kvm, data >>
1892 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1893 		if (kvm_is_error_hva(addr))
1894 			return 1;
1895 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1896 			return 1;
1897 		vcpu->arch.hv_vapic = data;
1898 		break;
1899 	}
1900 	case HV_X64_MSR_EOI:
1901 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1902 	case HV_X64_MSR_ICR:
1903 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1904 	case HV_X64_MSR_TPR:
1905 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1906 	default:
1907 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1908 			    "data 0x%llx\n", msr, data);
1909 		return 1;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1916 {
1917 	gpa_t gpa = data & ~0x3f;
1918 
1919 	/* Bits 2:5 are reserved, Should be zero */
1920 	if (data & 0x3c)
1921 		return 1;
1922 
1923 	vcpu->arch.apf.msr_val = data;
1924 
1925 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1926 		kvm_clear_async_pf_completion_queue(vcpu);
1927 		kvm_async_pf_hash_reset(vcpu);
1928 		return 0;
1929 	}
1930 
1931 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1932 					sizeof(u32)))
1933 		return 1;
1934 
1935 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1936 	kvm_async_pf_wakeup_all(vcpu);
1937 	return 0;
1938 }
1939 
1940 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1941 {
1942 	vcpu->arch.pv_time_enabled = false;
1943 }
1944 
1945 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1946 {
1947 	u64 delta;
1948 
1949 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1950 		return;
1951 
1952 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1953 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1954 	vcpu->arch.st.accum_steal = delta;
1955 }
1956 
1957 static void record_steal_time(struct kvm_vcpu *vcpu)
1958 {
1959 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1960 		return;
1961 
1962 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1963 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1964 		return;
1965 
1966 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1967 	vcpu->arch.st.steal.version += 2;
1968 	vcpu->arch.st.accum_steal = 0;
1969 
1970 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1971 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1972 }
1973 
1974 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1975 {
1976 	bool pr = false;
1977 	u32 msr = msr_info->index;
1978 	u64 data = msr_info->data;
1979 
1980 	switch (msr) {
1981 	case MSR_AMD64_NB_CFG:
1982 	case MSR_IA32_UCODE_REV:
1983 	case MSR_IA32_UCODE_WRITE:
1984 	case MSR_VM_HSAVE_PA:
1985 	case MSR_AMD64_PATCH_LOADER:
1986 	case MSR_AMD64_BU_CFG2:
1987 		break;
1988 
1989 	case MSR_EFER:
1990 		return set_efer(vcpu, data);
1991 	case MSR_K7_HWCR:
1992 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1993 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1994 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1995 		if (data != 0) {
1996 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1997 				    data);
1998 			return 1;
1999 		}
2000 		break;
2001 	case MSR_FAM10H_MMIO_CONF_BASE:
2002 		if (data != 0) {
2003 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2004 				    "0x%llx\n", data);
2005 			return 1;
2006 		}
2007 		break;
2008 	case MSR_IA32_DEBUGCTLMSR:
2009 		if (!data) {
2010 			/* We support the non-activated case already */
2011 			break;
2012 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2013 			/* Values other than LBR and BTF are vendor-specific,
2014 			   thus reserved and should throw a #GP */
2015 			return 1;
2016 		}
2017 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2018 			    __func__, data);
2019 		break;
2020 	case 0x200 ... 0x2ff:
2021 		return set_msr_mtrr(vcpu, msr, data);
2022 	case MSR_IA32_APICBASE:
2023 		kvm_set_apic_base(vcpu, data);
2024 		break;
2025 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2026 		return kvm_x2apic_msr_write(vcpu, msr, data);
2027 	case MSR_IA32_TSCDEADLINE:
2028 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2029 		break;
2030 	case MSR_IA32_TSC_ADJUST:
2031 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2032 			if (!msr_info->host_initiated) {
2033 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2034 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2035 			}
2036 			vcpu->arch.ia32_tsc_adjust_msr = data;
2037 		}
2038 		break;
2039 	case MSR_IA32_MISC_ENABLE:
2040 		vcpu->arch.ia32_misc_enable_msr = data;
2041 		break;
2042 	case MSR_KVM_WALL_CLOCK_NEW:
2043 	case MSR_KVM_WALL_CLOCK:
2044 		vcpu->kvm->arch.wall_clock = data;
2045 		kvm_write_wall_clock(vcpu->kvm, data);
2046 		break;
2047 	case MSR_KVM_SYSTEM_TIME_NEW:
2048 	case MSR_KVM_SYSTEM_TIME: {
2049 		u64 gpa_offset;
2050 		kvmclock_reset(vcpu);
2051 
2052 		vcpu->arch.time = data;
2053 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2054 
2055 		/* we verify if the enable bit is set... */
2056 		if (!(data & 1))
2057 			break;
2058 
2059 		gpa_offset = data & ~(PAGE_MASK | 1);
2060 
2061 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2062 		     &vcpu->arch.pv_time, data & ~1ULL,
2063 		     sizeof(struct pvclock_vcpu_time_info)))
2064 			vcpu->arch.pv_time_enabled = false;
2065 		else
2066 			vcpu->arch.pv_time_enabled = true;
2067 
2068 		break;
2069 	}
2070 	case MSR_KVM_ASYNC_PF_EN:
2071 		if (kvm_pv_enable_async_pf(vcpu, data))
2072 			return 1;
2073 		break;
2074 	case MSR_KVM_STEAL_TIME:
2075 
2076 		if (unlikely(!sched_info_on()))
2077 			return 1;
2078 
2079 		if (data & KVM_STEAL_RESERVED_MASK)
2080 			return 1;
2081 
2082 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2083 						data & KVM_STEAL_VALID_BITS,
2084 						sizeof(struct kvm_steal_time)))
2085 			return 1;
2086 
2087 		vcpu->arch.st.msr_val = data;
2088 
2089 		if (!(data & KVM_MSR_ENABLED))
2090 			break;
2091 
2092 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2093 
2094 		preempt_disable();
2095 		accumulate_steal_time(vcpu);
2096 		preempt_enable();
2097 
2098 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2099 
2100 		break;
2101 	case MSR_KVM_PV_EOI_EN:
2102 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2103 			return 1;
2104 		break;
2105 
2106 	case MSR_IA32_MCG_CTL:
2107 	case MSR_IA32_MCG_STATUS:
2108 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2109 		return set_msr_mce(vcpu, msr, data);
2110 
2111 	/* Performance counters are not protected by a CPUID bit,
2112 	 * so we should check all of them in the generic path for the sake of
2113 	 * cross vendor migration.
2114 	 * Writing a zero into the event select MSRs disables them,
2115 	 * which we perfectly emulate ;-). Any other value should be at least
2116 	 * reported, some guests depend on them.
2117 	 */
2118 	case MSR_K7_EVNTSEL0:
2119 	case MSR_K7_EVNTSEL1:
2120 	case MSR_K7_EVNTSEL2:
2121 	case MSR_K7_EVNTSEL3:
2122 		if (data != 0)
2123 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2124 				    "0x%x data 0x%llx\n", msr, data);
2125 		break;
2126 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2127 	 * so we ignore writes to make it happy.
2128 	 */
2129 	case MSR_K7_PERFCTR0:
2130 	case MSR_K7_PERFCTR1:
2131 	case MSR_K7_PERFCTR2:
2132 	case MSR_K7_PERFCTR3:
2133 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2134 			    "0x%x data 0x%llx\n", msr, data);
2135 		break;
2136 	case MSR_P6_PERFCTR0:
2137 	case MSR_P6_PERFCTR1:
2138 		pr = true;
2139 	case MSR_P6_EVNTSEL0:
2140 	case MSR_P6_EVNTSEL1:
2141 		if (kvm_pmu_msr(vcpu, msr))
2142 			return kvm_pmu_set_msr(vcpu, msr_info);
2143 
2144 		if (pr || data != 0)
2145 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2146 				    "0x%x data 0x%llx\n", msr, data);
2147 		break;
2148 	case MSR_K7_CLK_CTL:
2149 		/*
2150 		 * Ignore all writes to this no longer documented MSR.
2151 		 * Writes are only relevant for old K7 processors,
2152 		 * all pre-dating SVM, but a recommended workaround from
2153 		 * AMD for these chips. It is possible to specify the
2154 		 * affected processor models on the command line, hence
2155 		 * the need to ignore the workaround.
2156 		 */
2157 		break;
2158 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2159 		if (kvm_hv_msr_partition_wide(msr)) {
2160 			int r;
2161 			mutex_lock(&vcpu->kvm->lock);
2162 			r = set_msr_hyperv_pw(vcpu, msr, data);
2163 			mutex_unlock(&vcpu->kvm->lock);
2164 			return r;
2165 		} else
2166 			return set_msr_hyperv(vcpu, msr, data);
2167 		break;
2168 	case MSR_IA32_BBL_CR_CTL3:
2169 		/* Drop writes to this legacy MSR -- see rdmsr
2170 		 * counterpart for further detail.
2171 		 */
2172 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2173 		break;
2174 	case MSR_AMD64_OSVW_ID_LENGTH:
2175 		if (!guest_cpuid_has_osvw(vcpu))
2176 			return 1;
2177 		vcpu->arch.osvw.length = data;
2178 		break;
2179 	case MSR_AMD64_OSVW_STATUS:
2180 		if (!guest_cpuid_has_osvw(vcpu))
2181 			return 1;
2182 		vcpu->arch.osvw.status = data;
2183 		break;
2184 	default:
2185 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2186 			return xen_hvm_config(vcpu, data);
2187 		if (kvm_pmu_msr(vcpu, msr))
2188 			return kvm_pmu_set_msr(vcpu, msr_info);
2189 		if (!ignore_msrs) {
2190 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2191 				    msr, data);
2192 			return 1;
2193 		} else {
2194 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2195 				    msr, data);
2196 			break;
2197 		}
2198 	}
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2202 
2203 
2204 /*
2205  * Reads an msr value (of 'msr_index') into 'pdata'.
2206  * Returns 0 on success, non-0 otherwise.
2207  * Assumes vcpu_load() was already called.
2208  */
2209 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2210 {
2211 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2212 }
2213 
2214 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2215 {
2216 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2217 
2218 	if (!msr_mtrr_valid(msr))
2219 		return 1;
2220 
2221 	if (msr == MSR_MTRRdefType)
2222 		*pdata = vcpu->arch.mtrr_state.def_type +
2223 			 (vcpu->arch.mtrr_state.enabled << 10);
2224 	else if (msr == MSR_MTRRfix64K_00000)
2225 		*pdata = p[0];
2226 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2227 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2228 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2229 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2230 	else if (msr == MSR_IA32_CR_PAT)
2231 		*pdata = vcpu->arch.pat;
2232 	else {	/* Variable MTRRs */
2233 		int idx, is_mtrr_mask;
2234 		u64 *pt;
2235 
2236 		idx = (msr - 0x200) / 2;
2237 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2238 		if (!is_mtrr_mask)
2239 			pt =
2240 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2241 		else
2242 			pt =
2243 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2244 		*pdata = *pt;
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2251 {
2252 	u64 data;
2253 	u64 mcg_cap = vcpu->arch.mcg_cap;
2254 	unsigned bank_num = mcg_cap & 0xff;
2255 
2256 	switch (msr) {
2257 	case MSR_IA32_P5_MC_ADDR:
2258 	case MSR_IA32_P5_MC_TYPE:
2259 		data = 0;
2260 		break;
2261 	case MSR_IA32_MCG_CAP:
2262 		data = vcpu->arch.mcg_cap;
2263 		break;
2264 	case MSR_IA32_MCG_CTL:
2265 		if (!(mcg_cap & MCG_CTL_P))
2266 			return 1;
2267 		data = vcpu->arch.mcg_ctl;
2268 		break;
2269 	case MSR_IA32_MCG_STATUS:
2270 		data = vcpu->arch.mcg_status;
2271 		break;
2272 	default:
2273 		if (msr >= MSR_IA32_MC0_CTL &&
2274 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2275 			u32 offset = msr - MSR_IA32_MC0_CTL;
2276 			data = vcpu->arch.mce_banks[offset];
2277 			break;
2278 		}
2279 		return 1;
2280 	}
2281 	*pdata = data;
2282 	return 0;
2283 }
2284 
2285 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2286 {
2287 	u64 data = 0;
2288 	struct kvm *kvm = vcpu->kvm;
2289 
2290 	switch (msr) {
2291 	case HV_X64_MSR_GUEST_OS_ID:
2292 		data = kvm->arch.hv_guest_os_id;
2293 		break;
2294 	case HV_X64_MSR_HYPERCALL:
2295 		data = kvm->arch.hv_hypercall;
2296 		break;
2297 	default:
2298 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2299 		return 1;
2300 	}
2301 
2302 	*pdata = data;
2303 	return 0;
2304 }
2305 
2306 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2307 {
2308 	u64 data = 0;
2309 
2310 	switch (msr) {
2311 	case HV_X64_MSR_VP_INDEX: {
2312 		int r;
2313 		struct kvm_vcpu *v;
2314 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2315 			if (v == vcpu)
2316 				data = r;
2317 		break;
2318 	}
2319 	case HV_X64_MSR_EOI:
2320 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2321 	case HV_X64_MSR_ICR:
2322 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2323 	case HV_X64_MSR_TPR:
2324 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2325 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2326 		data = vcpu->arch.hv_vapic;
2327 		break;
2328 	default:
2329 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2330 		return 1;
2331 	}
2332 	*pdata = data;
2333 	return 0;
2334 }
2335 
2336 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2337 {
2338 	u64 data;
2339 
2340 	switch (msr) {
2341 	case MSR_IA32_PLATFORM_ID:
2342 	case MSR_IA32_EBL_CR_POWERON:
2343 	case MSR_IA32_DEBUGCTLMSR:
2344 	case MSR_IA32_LASTBRANCHFROMIP:
2345 	case MSR_IA32_LASTBRANCHTOIP:
2346 	case MSR_IA32_LASTINTFROMIP:
2347 	case MSR_IA32_LASTINTTOIP:
2348 	case MSR_K8_SYSCFG:
2349 	case MSR_K7_HWCR:
2350 	case MSR_VM_HSAVE_PA:
2351 	case MSR_K7_EVNTSEL0:
2352 	case MSR_K7_PERFCTR0:
2353 	case MSR_K8_INT_PENDING_MSG:
2354 	case MSR_AMD64_NB_CFG:
2355 	case MSR_FAM10H_MMIO_CONF_BASE:
2356 	case MSR_AMD64_BU_CFG2:
2357 		data = 0;
2358 		break;
2359 	case MSR_P6_PERFCTR0:
2360 	case MSR_P6_PERFCTR1:
2361 	case MSR_P6_EVNTSEL0:
2362 	case MSR_P6_EVNTSEL1:
2363 		if (kvm_pmu_msr(vcpu, msr))
2364 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2365 		data = 0;
2366 		break;
2367 	case MSR_IA32_UCODE_REV:
2368 		data = 0x100000000ULL;
2369 		break;
2370 	case MSR_MTRRcap:
2371 		data = 0x500 | KVM_NR_VAR_MTRR;
2372 		break;
2373 	case 0x200 ... 0x2ff:
2374 		return get_msr_mtrr(vcpu, msr, pdata);
2375 	case 0xcd: /* fsb frequency */
2376 		data = 3;
2377 		break;
2378 		/*
2379 		 * MSR_EBC_FREQUENCY_ID
2380 		 * Conservative value valid for even the basic CPU models.
2381 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2382 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2383 		 * and 266MHz for model 3, or 4. Set Core Clock
2384 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2385 		 * 31:24) even though these are only valid for CPU
2386 		 * models > 2, however guests may end up dividing or
2387 		 * multiplying by zero otherwise.
2388 		 */
2389 	case MSR_EBC_FREQUENCY_ID:
2390 		data = 1 << 24;
2391 		break;
2392 	case MSR_IA32_APICBASE:
2393 		data = kvm_get_apic_base(vcpu);
2394 		break;
2395 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2396 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2397 		break;
2398 	case MSR_IA32_TSCDEADLINE:
2399 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2400 		break;
2401 	case MSR_IA32_TSC_ADJUST:
2402 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2403 		break;
2404 	case MSR_IA32_MISC_ENABLE:
2405 		data = vcpu->arch.ia32_misc_enable_msr;
2406 		break;
2407 	case MSR_IA32_PERF_STATUS:
2408 		/* TSC increment by tick */
2409 		data = 1000ULL;
2410 		/* CPU multiplier */
2411 		data |= (((uint64_t)4ULL) << 40);
2412 		break;
2413 	case MSR_EFER:
2414 		data = vcpu->arch.efer;
2415 		break;
2416 	case MSR_KVM_WALL_CLOCK:
2417 	case MSR_KVM_WALL_CLOCK_NEW:
2418 		data = vcpu->kvm->arch.wall_clock;
2419 		break;
2420 	case MSR_KVM_SYSTEM_TIME:
2421 	case MSR_KVM_SYSTEM_TIME_NEW:
2422 		data = vcpu->arch.time;
2423 		break;
2424 	case MSR_KVM_ASYNC_PF_EN:
2425 		data = vcpu->arch.apf.msr_val;
2426 		break;
2427 	case MSR_KVM_STEAL_TIME:
2428 		data = vcpu->arch.st.msr_val;
2429 		break;
2430 	case MSR_KVM_PV_EOI_EN:
2431 		data = vcpu->arch.pv_eoi.msr_val;
2432 		break;
2433 	case MSR_IA32_P5_MC_ADDR:
2434 	case MSR_IA32_P5_MC_TYPE:
2435 	case MSR_IA32_MCG_CAP:
2436 	case MSR_IA32_MCG_CTL:
2437 	case MSR_IA32_MCG_STATUS:
2438 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2439 		return get_msr_mce(vcpu, msr, pdata);
2440 	case MSR_K7_CLK_CTL:
2441 		/*
2442 		 * Provide expected ramp-up count for K7. All other
2443 		 * are set to zero, indicating minimum divisors for
2444 		 * every field.
2445 		 *
2446 		 * This prevents guest kernels on AMD host with CPU
2447 		 * type 6, model 8 and higher from exploding due to
2448 		 * the rdmsr failing.
2449 		 */
2450 		data = 0x20000000;
2451 		break;
2452 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2453 		if (kvm_hv_msr_partition_wide(msr)) {
2454 			int r;
2455 			mutex_lock(&vcpu->kvm->lock);
2456 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2457 			mutex_unlock(&vcpu->kvm->lock);
2458 			return r;
2459 		} else
2460 			return get_msr_hyperv(vcpu, msr, pdata);
2461 		break;
2462 	case MSR_IA32_BBL_CR_CTL3:
2463 		/* This legacy MSR exists but isn't fully documented in current
2464 		 * silicon.  It is however accessed by winxp in very narrow
2465 		 * scenarios where it sets bit #19, itself documented as
2466 		 * a "reserved" bit.  Best effort attempt to source coherent
2467 		 * read data here should the balance of the register be
2468 		 * interpreted by the guest:
2469 		 *
2470 		 * L2 cache control register 3: 64GB range, 256KB size,
2471 		 * enabled, latency 0x1, configured
2472 		 */
2473 		data = 0xbe702111;
2474 		break;
2475 	case MSR_AMD64_OSVW_ID_LENGTH:
2476 		if (!guest_cpuid_has_osvw(vcpu))
2477 			return 1;
2478 		data = vcpu->arch.osvw.length;
2479 		break;
2480 	case MSR_AMD64_OSVW_STATUS:
2481 		if (!guest_cpuid_has_osvw(vcpu))
2482 			return 1;
2483 		data = vcpu->arch.osvw.status;
2484 		break;
2485 	default:
2486 		if (kvm_pmu_msr(vcpu, msr))
2487 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2488 		if (!ignore_msrs) {
2489 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2490 			return 1;
2491 		} else {
2492 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2493 			data = 0;
2494 		}
2495 		break;
2496 	}
2497 	*pdata = data;
2498 	return 0;
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2501 
2502 /*
2503  * Read or write a bunch of msrs. All parameters are kernel addresses.
2504  *
2505  * @return number of msrs set successfully.
2506  */
2507 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2508 		    struct kvm_msr_entry *entries,
2509 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2510 				  unsigned index, u64 *data))
2511 {
2512 	int i, idx;
2513 
2514 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2515 	for (i = 0; i < msrs->nmsrs; ++i)
2516 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2517 			break;
2518 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2519 
2520 	return i;
2521 }
2522 
2523 /*
2524  * Read or write a bunch of msrs. Parameters are user addresses.
2525  *
2526  * @return number of msrs set successfully.
2527  */
2528 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2529 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2530 				unsigned index, u64 *data),
2531 		  int writeback)
2532 {
2533 	struct kvm_msrs msrs;
2534 	struct kvm_msr_entry *entries;
2535 	int r, n;
2536 	unsigned size;
2537 
2538 	r = -EFAULT;
2539 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2540 		goto out;
2541 
2542 	r = -E2BIG;
2543 	if (msrs.nmsrs >= MAX_IO_MSRS)
2544 		goto out;
2545 
2546 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2547 	entries = memdup_user(user_msrs->entries, size);
2548 	if (IS_ERR(entries)) {
2549 		r = PTR_ERR(entries);
2550 		goto out;
2551 	}
2552 
2553 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2554 	if (r < 0)
2555 		goto out_free;
2556 
2557 	r = -EFAULT;
2558 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2559 		goto out_free;
2560 
2561 	r = n;
2562 
2563 out_free:
2564 	kfree(entries);
2565 out:
2566 	return r;
2567 }
2568 
2569 int kvm_dev_ioctl_check_extension(long ext)
2570 {
2571 	int r;
2572 
2573 	switch (ext) {
2574 	case KVM_CAP_IRQCHIP:
2575 	case KVM_CAP_HLT:
2576 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2577 	case KVM_CAP_SET_TSS_ADDR:
2578 	case KVM_CAP_EXT_CPUID:
2579 	case KVM_CAP_EXT_EMUL_CPUID:
2580 	case KVM_CAP_CLOCKSOURCE:
2581 	case KVM_CAP_PIT:
2582 	case KVM_CAP_NOP_IO_DELAY:
2583 	case KVM_CAP_MP_STATE:
2584 	case KVM_CAP_SYNC_MMU:
2585 	case KVM_CAP_USER_NMI:
2586 	case KVM_CAP_REINJECT_CONTROL:
2587 	case KVM_CAP_IRQ_INJECT_STATUS:
2588 	case KVM_CAP_IRQFD:
2589 	case KVM_CAP_IOEVENTFD:
2590 	case KVM_CAP_PIT2:
2591 	case KVM_CAP_PIT_STATE2:
2592 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2593 	case KVM_CAP_XEN_HVM:
2594 	case KVM_CAP_ADJUST_CLOCK:
2595 	case KVM_CAP_VCPU_EVENTS:
2596 	case KVM_CAP_HYPERV:
2597 	case KVM_CAP_HYPERV_VAPIC:
2598 	case KVM_CAP_HYPERV_SPIN:
2599 	case KVM_CAP_PCI_SEGMENT:
2600 	case KVM_CAP_DEBUGREGS:
2601 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2602 	case KVM_CAP_XSAVE:
2603 	case KVM_CAP_ASYNC_PF:
2604 	case KVM_CAP_GET_TSC_KHZ:
2605 	case KVM_CAP_KVMCLOCK_CTRL:
2606 	case KVM_CAP_READONLY_MEM:
2607 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2608 	case KVM_CAP_ASSIGN_DEV_IRQ:
2609 	case KVM_CAP_PCI_2_3:
2610 #endif
2611 		r = 1;
2612 		break;
2613 	case KVM_CAP_COALESCED_MMIO:
2614 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2615 		break;
2616 	case KVM_CAP_VAPIC:
2617 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2618 		break;
2619 	case KVM_CAP_NR_VCPUS:
2620 		r = KVM_SOFT_MAX_VCPUS;
2621 		break;
2622 	case KVM_CAP_MAX_VCPUS:
2623 		r = KVM_MAX_VCPUS;
2624 		break;
2625 	case KVM_CAP_NR_MEMSLOTS:
2626 		r = KVM_USER_MEM_SLOTS;
2627 		break;
2628 	case KVM_CAP_PV_MMU:	/* obsolete */
2629 		r = 0;
2630 		break;
2631 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2632 	case KVM_CAP_IOMMU:
2633 		r = iommu_present(&pci_bus_type);
2634 		break;
2635 #endif
2636 	case KVM_CAP_MCE:
2637 		r = KVM_MAX_MCE_BANKS;
2638 		break;
2639 	case KVM_CAP_XCRS:
2640 		r = cpu_has_xsave;
2641 		break;
2642 	case KVM_CAP_TSC_CONTROL:
2643 		r = kvm_has_tsc_control;
2644 		break;
2645 	case KVM_CAP_TSC_DEADLINE_TIMER:
2646 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2647 		break;
2648 	default:
2649 		r = 0;
2650 		break;
2651 	}
2652 	return r;
2653 
2654 }
2655 
2656 long kvm_arch_dev_ioctl(struct file *filp,
2657 			unsigned int ioctl, unsigned long arg)
2658 {
2659 	void __user *argp = (void __user *)arg;
2660 	long r;
2661 
2662 	switch (ioctl) {
2663 	case KVM_GET_MSR_INDEX_LIST: {
2664 		struct kvm_msr_list __user *user_msr_list = argp;
2665 		struct kvm_msr_list msr_list;
2666 		unsigned n;
2667 
2668 		r = -EFAULT;
2669 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2670 			goto out;
2671 		n = msr_list.nmsrs;
2672 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2673 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2674 			goto out;
2675 		r = -E2BIG;
2676 		if (n < msr_list.nmsrs)
2677 			goto out;
2678 		r = -EFAULT;
2679 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2680 				 num_msrs_to_save * sizeof(u32)))
2681 			goto out;
2682 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2683 				 &emulated_msrs,
2684 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2685 			goto out;
2686 		r = 0;
2687 		break;
2688 	}
2689 	case KVM_GET_SUPPORTED_CPUID:
2690 	case KVM_GET_EMULATED_CPUID: {
2691 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2692 		struct kvm_cpuid2 cpuid;
2693 
2694 		r = -EFAULT;
2695 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2696 			goto out;
2697 
2698 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2699 					    ioctl);
2700 		if (r)
2701 			goto out;
2702 
2703 		r = -EFAULT;
2704 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2705 			goto out;
2706 		r = 0;
2707 		break;
2708 	}
2709 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2710 		u64 mce_cap;
2711 
2712 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2713 		r = -EFAULT;
2714 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2715 			goto out;
2716 		r = 0;
2717 		break;
2718 	}
2719 	default:
2720 		r = -EINVAL;
2721 	}
2722 out:
2723 	return r;
2724 }
2725 
2726 static void wbinvd_ipi(void *garbage)
2727 {
2728 	wbinvd();
2729 }
2730 
2731 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2732 {
2733 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2734 }
2735 
2736 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2737 {
2738 	/* Address WBINVD may be executed by guest */
2739 	if (need_emulate_wbinvd(vcpu)) {
2740 		if (kvm_x86_ops->has_wbinvd_exit())
2741 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2742 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2743 			smp_call_function_single(vcpu->cpu,
2744 					wbinvd_ipi, NULL, 1);
2745 	}
2746 
2747 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2748 
2749 	/* Apply any externally detected TSC adjustments (due to suspend) */
2750 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2751 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2752 		vcpu->arch.tsc_offset_adjustment = 0;
2753 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2754 	}
2755 
2756 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2757 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2758 				native_read_tsc() - vcpu->arch.last_host_tsc;
2759 		if (tsc_delta < 0)
2760 			mark_tsc_unstable("KVM discovered backwards TSC");
2761 		if (check_tsc_unstable()) {
2762 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2763 						vcpu->arch.last_guest_tsc);
2764 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2765 			vcpu->arch.tsc_catchup = 1;
2766 		}
2767 		/*
2768 		 * On a host with synchronized TSC, there is no need to update
2769 		 * kvmclock on vcpu->cpu migration
2770 		 */
2771 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2772 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2773 		if (vcpu->cpu != cpu)
2774 			kvm_migrate_timers(vcpu);
2775 		vcpu->cpu = cpu;
2776 	}
2777 
2778 	accumulate_steal_time(vcpu);
2779 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2780 }
2781 
2782 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2783 {
2784 	kvm_x86_ops->vcpu_put(vcpu);
2785 	kvm_put_guest_fpu(vcpu);
2786 	vcpu->arch.last_host_tsc = native_read_tsc();
2787 }
2788 
2789 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2790 				    struct kvm_lapic_state *s)
2791 {
2792 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2793 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2794 
2795 	return 0;
2796 }
2797 
2798 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2799 				    struct kvm_lapic_state *s)
2800 {
2801 	kvm_apic_post_state_restore(vcpu, s);
2802 	update_cr8_intercept(vcpu);
2803 
2804 	return 0;
2805 }
2806 
2807 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2808 				    struct kvm_interrupt *irq)
2809 {
2810 	if (irq->irq >= KVM_NR_INTERRUPTS)
2811 		return -EINVAL;
2812 	if (irqchip_in_kernel(vcpu->kvm))
2813 		return -ENXIO;
2814 
2815 	kvm_queue_interrupt(vcpu, irq->irq, false);
2816 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2817 
2818 	return 0;
2819 }
2820 
2821 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2822 {
2823 	kvm_inject_nmi(vcpu);
2824 
2825 	return 0;
2826 }
2827 
2828 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2829 					   struct kvm_tpr_access_ctl *tac)
2830 {
2831 	if (tac->flags)
2832 		return -EINVAL;
2833 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2834 	return 0;
2835 }
2836 
2837 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2838 					u64 mcg_cap)
2839 {
2840 	int r;
2841 	unsigned bank_num = mcg_cap & 0xff, bank;
2842 
2843 	r = -EINVAL;
2844 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2845 		goto out;
2846 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2847 		goto out;
2848 	r = 0;
2849 	vcpu->arch.mcg_cap = mcg_cap;
2850 	/* Init IA32_MCG_CTL to all 1s */
2851 	if (mcg_cap & MCG_CTL_P)
2852 		vcpu->arch.mcg_ctl = ~(u64)0;
2853 	/* Init IA32_MCi_CTL to all 1s */
2854 	for (bank = 0; bank < bank_num; bank++)
2855 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2856 out:
2857 	return r;
2858 }
2859 
2860 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2861 				      struct kvm_x86_mce *mce)
2862 {
2863 	u64 mcg_cap = vcpu->arch.mcg_cap;
2864 	unsigned bank_num = mcg_cap & 0xff;
2865 	u64 *banks = vcpu->arch.mce_banks;
2866 
2867 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2868 		return -EINVAL;
2869 	/*
2870 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2871 	 * reporting is disabled
2872 	 */
2873 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2874 	    vcpu->arch.mcg_ctl != ~(u64)0)
2875 		return 0;
2876 	banks += 4 * mce->bank;
2877 	/*
2878 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2879 	 * reporting is disabled for the bank
2880 	 */
2881 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2882 		return 0;
2883 	if (mce->status & MCI_STATUS_UC) {
2884 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2885 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2886 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2887 			return 0;
2888 		}
2889 		if (banks[1] & MCI_STATUS_VAL)
2890 			mce->status |= MCI_STATUS_OVER;
2891 		banks[2] = mce->addr;
2892 		banks[3] = mce->misc;
2893 		vcpu->arch.mcg_status = mce->mcg_status;
2894 		banks[1] = mce->status;
2895 		kvm_queue_exception(vcpu, MC_VECTOR);
2896 	} else if (!(banks[1] & MCI_STATUS_VAL)
2897 		   || !(banks[1] & MCI_STATUS_UC)) {
2898 		if (banks[1] & MCI_STATUS_VAL)
2899 			mce->status |= MCI_STATUS_OVER;
2900 		banks[2] = mce->addr;
2901 		banks[3] = mce->misc;
2902 		banks[1] = mce->status;
2903 	} else
2904 		banks[1] |= MCI_STATUS_OVER;
2905 	return 0;
2906 }
2907 
2908 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2909 					       struct kvm_vcpu_events *events)
2910 {
2911 	process_nmi(vcpu);
2912 	events->exception.injected =
2913 		vcpu->arch.exception.pending &&
2914 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2915 	events->exception.nr = vcpu->arch.exception.nr;
2916 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2917 	events->exception.pad = 0;
2918 	events->exception.error_code = vcpu->arch.exception.error_code;
2919 
2920 	events->interrupt.injected =
2921 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2922 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2923 	events->interrupt.soft = 0;
2924 	events->interrupt.shadow =
2925 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2926 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2927 
2928 	events->nmi.injected = vcpu->arch.nmi_injected;
2929 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2930 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2931 	events->nmi.pad = 0;
2932 
2933 	events->sipi_vector = 0; /* never valid when reporting to user space */
2934 
2935 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2936 			 | KVM_VCPUEVENT_VALID_SHADOW);
2937 	memset(&events->reserved, 0, sizeof(events->reserved));
2938 }
2939 
2940 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2941 					      struct kvm_vcpu_events *events)
2942 {
2943 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2944 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2945 			      | KVM_VCPUEVENT_VALID_SHADOW))
2946 		return -EINVAL;
2947 
2948 	process_nmi(vcpu);
2949 	vcpu->arch.exception.pending = events->exception.injected;
2950 	vcpu->arch.exception.nr = events->exception.nr;
2951 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2952 	vcpu->arch.exception.error_code = events->exception.error_code;
2953 
2954 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2955 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2956 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2957 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2958 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2959 						  events->interrupt.shadow);
2960 
2961 	vcpu->arch.nmi_injected = events->nmi.injected;
2962 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2963 		vcpu->arch.nmi_pending = events->nmi.pending;
2964 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2965 
2966 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2967 	    kvm_vcpu_has_lapic(vcpu))
2968 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2969 
2970 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2971 
2972 	return 0;
2973 }
2974 
2975 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2976 					     struct kvm_debugregs *dbgregs)
2977 {
2978 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2979 	dbgregs->dr6 = vcpu->arch.dr6;
2980 	dbgregs->dr7 = vcpu->arch.dr7;
2981 	dbgregs->flags = 0;
2982 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2983 }
2984 
2985 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2986 					    struct kvm_debugregs *dbgregs)
2987 {
2988 	if (dbgregs->flags)
2989 		return -EINVAL;
2990 
2991 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2992 	vcpu->arch.dr6 = dbgregs->dr6;
2993 	vcpu->arch.dr7 = dbgregs->dr7;
2994 
2995 	return 0;
2996 }
2997 
2998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2999 					 struct kvm_xsave *guest_xsave)
3000 {
3001 	if (cpu_has_xsave) {
3002 		memcpy(guest_xsave->region,
3003 			&vcpu->arch.guest_fpu.state->xsave,
3004 			vcpu->arch.guest_xstate_size);
3005 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3006 			vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3007 	} else {
3008 		memcpy(guest_xsave->region,
3009 			&vcpu->arch.guest_fpu.state->fxsave,
3010 			sizeof(struct i387_fxsave_struct));
3011 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3012 			XSTATE_FPSSE;
3013 	}
3014 }
3015 
3016 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3017 					struct kvm_xsave *guest_xsave)
3018 {
3019 	u64 xstate_bv =
3020 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3021 
3022 	if (cpu_has_xsave) {
3023 		/*
3024 		 * Here we allow setting states that are not present in
3025 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3026 		 * with old userspace.
3027 		 */
3028 		if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3029 			return -EINVAL;
3030 		if (xstate_bv & ~host_xcr0)
3031 			return -EINVAL;
3032 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
3033 			guest_xsave->region, vcpu->arch.guest_xstate_size);
3034 	} else {
3035 		if (xstate_bv & ~XSTATE_FPSSE)
3036 			return -EINVAL;
3037 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3038 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3039 	}
3040 	return 0;
3041 }
3042 
3043 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3044 					struct kvm_xcrs *guest_xcrs)
3045 {
3046 	if (!cpu_has_xsave) {
3047 		guest_xcrs->nr_xcrs = 0;
3048 		return;
3049 	}
3050 
3051 	guest_xcrs->nr_xcrs = 1;
3052 	guest_xcrs->flags = 0;
3053 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3054 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3055 }
3056 
3057 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3058 				       struct kvm_xcrs *guest_xcrs)
3059 {
3060 	int i, r = 0;
3061 
3062 	if (!cpu_has_xsave)
3063 		return -EINVAL;
3064 
3065 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3066 		return -EINVAL;
3067 
3068 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3069 		/* Only support XCR0 currently */
3070 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3071 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3072 				guest_xcrs->xcrs[i].value);
3073 			break;
3074 		}
3075 	if (r)
3076 		r = -EINVAL;
3077 	return r;
3078 }
3079 
3080 /*
3081  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3082  * stopped by the hypervisor.  This function will be called from the host only.
3083  * EINVAL is returned when the host attempts to set the flag for a guest that
3084  * does not support pv clocks.
3085  */
3086 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3087 {
3088 	if (!vcpu->arch.pv_time_enabled)
3089 		return -EINVAL;
3090 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3091 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3092 	return 0;
3093 }
3094 
3095 long kvm_arch_vcpu_ioctl(struct file *filp,
3096 			 unsigned int ioctl, unsigned long arg)
3097 {
3098 	struct kvm_vcpu *vcpu = filp->private_data;
3099 	void __user *argp = (void __user *)arg;
3100 	int r;
3101 	union {
3102 		struct kvm_lapic_state *lapic;
3103 		struct kvm_xsave *xsave;
3104 		struct kvm_xcrs *xcrs;
3105 		void *buffer;
3106 	} u;
3107 
3108 	u.buffer = NULL;
3109 	switch (ioctl) {
3110 	case KVM_GET_LAPIC: {
3111 		r = -EINVAL;
3112 		if (!vcpu->arch.apic)
3113 			goto out;
3114 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3115 
3116 		r = -ENOMEM;
3117 		if (!u.lapic)
3118 			goto out;
3119 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3120 		if (r)
3121 			goto out;
3122 		r = -EFAULT;
3123 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3124 			goto out;
3125 		r = 0;
3126 		break;
3127 	}
3128 	case KVM_SET_LAPIC: {
3129 		r = -EINVAL;
3130 		if (!vcpu->arch.apic)
3131 			goto out;
3132 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3133 		if (IS_ERR(u.lapic))
3134 			return PTR_ERR(u.lapic);
3135 
3136 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3137 		break;
3138 	}
3139 	case KVM_INTERRUPT: {
3140 		struct kvm_interrupt irq;
3141 
3142 		r = -EFAULT;
3143 		if (copy_from_user(&irq, argp, sizeof irq))
3144 			goto out;
3145 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3146 		break;
3147 	}
3148 	case KVM_NMI: {
3149 		r = kvm_vcpu_ioctl_nmi(vcpu);
3150 		break;
3151 	}
3152 	case KVM_SET_CPUID: {
3153 		struct kvm_cpuid __user *cpuid_arg = argp;
3154 		struct kvm_cpuid cpuid;
3155 
3156 		r = -EFAULT;
3157 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3158 			goto out;
3159 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3160 		break;
3161 	}
3162 	case KVM_SET_CPUID2: {
3163 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3164 		struct kvm_cpuid2 cpuid;
3165 
3166 		r = -EFAULT;
3167 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3168 			goto out;
3169 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3170 					      cpuid_arg->entries);
3171 		break;
3172 	}
3173 	case KVM_GET_CPUID2: {
3174 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3175 		struct kvm_cpuid2 cpuid;
3176 
3177 		r = -EFAULT;
3178 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3179 			goto out;
3180 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3181 					      cpuid_arg->entries);
3182 		if (r)
3183 			goto out;
3184 		r = -EFAULT;
3185 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3186 			goto out;
3187 		r = 0;
3188 		break;
3189 	}
3190 	case KVM_GET_MSRS:
3191 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3192 		break;
3193 	case KVM_SET_MSRS:
3194 		r = msr_io(vcpu, argp, do_set_msr, 0);
3195 		break;
3196 	case KVM_TPR_ACCESS_REPORTING: {
3197 		struct kvm_tpr_access_ctl tac;
3198 
3199 		r = -EFAULT;
3200 		if (copy_from_user(&tac, argp, sizeof tac))
3201 			goto out;
3202 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3203 		if (r)
3204 			goto out;
3205 		r = -EFAULT;
3206 		if (copy_to_user(argp, &tac, sizeof tac))
3207 			goto out;
3208 		r = 0;
3209 		break;
3210 	};
3211 	case KVM_SET_VAPIC_ADDR: {
3212 		struct kvm_vapic_addr va;
3213 
3214 		r = -EINVAL;
3215 		if (!irqchip_in_kernel(vcpu->kvm))
3216 			goto out;
3217 		r = -EFAULT;
3218 		if (copy_from_user(&va, argp, sizeof va))
3219 			goto out;
3220 		r = 0;
3221 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3222 		break;
3223 	}
3224 	case KVM_X86_SETUP_MCE: {
3225 		u64 mcg_cap;
3226 
3227 		r = -EFAULT;
3228 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3229 			goto out;
3230 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3231 		break;
3232 	}
3233 	case KVM_X86_SET_MCE: {
3234 		struct kvm_x86_mce mce;
3235 
3236 		r = -EFAULT;
3237 		if (copy_from_user(&mce, argp, sizeof mce))
3238 			goto out;
3239 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3240 		break;
3241 	}
3242 	case KVM_GET_VCPU_EVENTS: {
3243 		struct kvm_vcpu_events events;
3244 
3245 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3246 
3247 		r = -EFAULT;
3248 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3249 			break;
3250 		r = 0;
3251 		break;
3252 	}
3253 	case KVM_SET_VCPU_EVENTS: {
3254 		struct kvm_vcpu_events events;
3255 
3256 		r = -EFAULT;
3257 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3258 			break;
3259 
3260 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3261 		break;
3262 	}
3263 	case KVM_GET_DEBUGREGS: {
3264 		struct kvm_debugregs dbgregs;
3265 
3266 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3267 
3268 		r = -EFAULT;
3269 		if (copy_to_user(argp, &dbgregs,
3270 				 sizeof(struct kvm_debugregs)))
3271 			break;
3272 		r = 0;
3273 		break;
3274 	}
3275 	case KVM_SET_DEBUGREGS: {
3276 		struct kvm_debugregs dbgregs;
3277 
3278 		r = -EFAULT;
3279 		if (copy_from_user(&dbgregs, argp,
3280 				   sizeof(struct kvm_debugregs)))
3281 			break;
3282 
3283 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3284 		break;
3285 	}
3286 	case KVM_GET_XSAVE: {
3287 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3288 		r = -ENOMEM;
3289 		if (!u.xsave)
3290 			break;
3291 
3292 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3293 
3294 		r = -EFAULT;
3295 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3296 			break;
3297 		r = 0;
3298 		break;
3299 	}
3300 	case KVM_SET_XSAVE: {
3301 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3302 		if (IS_ERR(u.xsave))
3303 			return PTR_ERR(u.xsave);
3304 
3305 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3306 		break;
3307 	}
3308 	case KVM_GET_XCRS: {
3309 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3310 		r = -ENOMEM;
3311 		if (!u.xcrs)
3312 			break;
3313 
3314 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3315 
3316 		r = -EFAULT;
3317 		if (copy_to_user(argp, u.xcrs,
3318 				 sizeof(struct kvm_xcrs)))
3319 			break;
3320 		r = 0;
3321 		break;
3322 	}
3323 	case KVM_SET_XCRS: {
3324 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3325 		if (IS_ERR(u.xcrs))
3326 			return PTR_ERR(u.xcrs);
3327 
3328 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3329 		break;
3330 	}
3331 	case KVM_SET_TSC_KHZ: {
3332 		u32 user_tsc_khz;
3333 
3334 		r = -EINVAL;
3335 		user_tsc_khz = (u32)arg;
3336 
3337 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3338 			goto out;
3339 
3340 		if (user_tsc_khz == 0)
3341 			user_tsc_khz = tsc_khz;
3342 
3343 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3344 
3345 		r = 0;
3346 		goto out;
3347 	}
3348 	case KVM_GET_TSC_KHZ: {
3349 		r = vcpu->arch.virtual_tsc_khz;
3350 		goto out;
3351 	}
3352 	case KVM_KVMCLOCK_CTRL: {
3353 		r = kvm_set_guest_paused(vcpu);
3354 		goto out;
3355 	}
3356 	default:
3357 		r = -EINVAL;
3358 	}
3359 out:
3360 	kfree(u.buffer);
3361 	return r;
3362 }
3363 
3364 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3365 {
3366 	return VM_FAULT_SIGBUS;
3367 }
3368 
3369 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3370 {
3371 	int ret;
3372 
3373 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3374 		return -EINVAL;
3375 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3376 	return ret;
3377 }
3378 
3379 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3380 					      u64 ident_addr)
3381 {
3382 	kvm->arch.ept_identity_map_addr = ident_addr;
3383 	return 0;
3384 }
3385 
3386 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3387 					  u32 kvm_nr_mmu_pages)
3388 {
3389 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3390 		return -EINVAL;
3391 
3392 	mutex_lock(&kvm->slots_lock);
3393 
3394 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3395 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3396 
3397 	mutex_unlock(&kvm->slots_lock);
3398 	return 0;
3399 }
3400 
3401 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3402 {
3403 	return kvm->arch.n_max_mmu_pages;
3404 }
3405 
3406 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3407 {
3408 	int r;
3409 
3410 	r = 0;
3411 	switch (chip->chip_id) {
3412 	case KVM_IRQCHIP_PIC_MASTER:
3413 		memcpy(&chip->chip.pic,
3414 			&pic_irqchip(kvm)->pics[0],
3415 			sizeof(struct kvm_pic_state));
3416 		break;
3417 	case KVM_IRQCHIP_PIC_SLAVE:
3418 		memcpy(&chip->chip.pic,
3419 			&pic_irqchip(kvm)->pics[1],
3420 			sizeof(struct kvm_pic_state));
3421 		break;
3422 	case KVM_IRQCHIP_IOAPIC:
3423 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3424 		break;
3425 	default:
3426 		r = -EINVAL;
3427 		break;
3428 	}
3429 	return r;
3430 }
3431 
3432 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3433 {
3434 	int r;
3435 
3436 	r = 0;
3437 	switch (chip->chip_id) {
3438 	case KVM_IRQCHIP_PIC_MASTER:
3439 		spin_lock(&pic_irqchip(kvm)->lock);
3440 		memcpy(&pic_irqchip(kvm)->pics[0],
3441 			&chip->chip.pic,
3442 			sizeof(struct kvm_pic_state));
3443 		spin_unlock(&pic_irqchip(kvm)->lock);
3444 		break;
3445 	case KVM_IRQCHIP_PIC_SLAVE:
3446 		spin_lock(&pic_irqchip(kvm)->lock);
3447 		memcpy(&pic_irqchip(kvm)->pics[1],
3448 			&chip->chip.pic,
3449 			sizeof(struct kvm_pic_state));
3450 		spin_unlock(&pic_irqchip(kvm)->lock);
3451 		break;
3452 	case KVM_IRQCHIP_IOAPIC:
3453 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3454 		break;
3455 	default:
3456 		r = -EINVAL;
3457 		break;
3458 	}
3459 	kvm_pic_update_irq(pic_irqchip(kvm));
3460 	return r;
3461 }
3462 
3463 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3464 {
3465 	int r = 0;
3466 
3467 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3468 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3469 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3470 	return r;
3471 }
3472 
3473 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3474 {
3475 	int r = 0;
3476 
3477 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3478 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3479 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3480 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3481 	return r;
3482 }
3483 
3484 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3485 {
3486 	int r = 0;
3487 
3488 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3489 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3490 		sizeof(ps->channels));
3491 	ps->flags = kvm->arch.vpit->pit_state.flags;
3492 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3493 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3494 	return r;
3495 }
3496 
3497 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3498 {
3499 	int r = 0, start = 0;
3500 	u32 prev_legacy, cur_legacy;
3501 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3502 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3503 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3504 	if (!prev_legacy && cur_legacy)
3505 		start = 1;
3506 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3507 	       sizeof(kvm->arch.vpit->pit_state.channels));
3508 	kvm->arch.vpit->pit_state.flags = ps->flags;
3509 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3510 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3511 	return r;
3512 }
3513 
3514 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3515 				 struct kvm_reinject_control *control)
3516 {
3517 	if (!kvm->arch.vpit)
3518 		return -ENXIO;
3519 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3520 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3521 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3522 	return 0;
3523 }
3524 
3525 /**
3526  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3527  * @kvm: kvm instance
3528  * @log: slot id and address to which we copy the log
3529  *
3530  * We need to keep it in mind that VCPU threads can write to the bitmap
3531  * concurrently.  So, to avoid losing data, we keep the following order for
3532  * each bit:
3533  *
3534  *   1. Take a snapshot of the bit and clear it if needed.
3535  *   2. Write protect the corresponding page.
3536  *   3. Flush TLB's if needed.
3537  *   4. Copy the snapshot to the userspace.
3538  *
3539  * Between 2 and 3, the guest may write to the page using the remaining TLB
3540  * entry.  This is not a problem because the page will be reported dirty at
3541  * step 4 using the snapshot taken before and step 3 ensures that successive
3542  * writes will be logged for the next call.
3543  */
3544 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3545 {
3546 	int r;
3547 	struct kvm_memory_slot *memslot;
3548 	unsigned long n, i;
3549 	unsigned long *dirty_bitmap;
3550 	unsigned long *dirty_bitmap_buffer;
3551 	bool is_dirty = false;
3552 
3553 	mutex_lock(&kvm->slots_lock);
3554 
3555 	r = -EINVAL;
3556 	if (log->slot >= KVM_USER_MEM_SLOTS)
3557 		goto out;
3558 
3559 	memslot = id_to_memslot(kvm->memslots, log->slot);
3560 
3561 	dirty_bitmap = memslot->dirty_bitmap;
3562 	r = -ENOENT;
3563 	if (!dirty_bitmap)
3564 		goto out;
3565 
3566 	n = kvm_dirty_bitmap_bytes(memslot);
3567 
3568 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3569 	memset(dirty_bitmap_buffer, 0, n);
3570 
3571 	spin_lock(&kvm->mmu_lock);
3572 
3573 	for (i = 0; i < n / sizeof(long); i++) {
3574 		unsigned long mask;
3575 		gfn_t offset;
3576 
3577 		if (!dirty_bitmap[i])
3578 			continue;
3579 
3580 		is_dirty = true;
3581 
3582 		mask = xchg(&dirty_bitmap[i], 0);
3583 		dirty_bitmap_buffer[i] = mask;
3584 
3585 		offset = i * BITS_PER_LONG;
3586 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3587 	}
3588 	if (is_dirty)
3589 		kvm_flush_remote_tlbs(kvm);
3590 
3591 	spin_unlock(&kvm->mmu_lock);
3592 
3593 	r = -EFAULT;
3594 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3595 		goto out;
3596 
3597 	r = 0;
3598 out:
3599 	mutex_unlock(&kvm->slots_lock);
3600 	return r;
3601 }
3602 
3603 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3604 			bool line_status)
3605 {
3606 	if (!irqchip_in_kernel(kvm))
3607 		return -ENXIO;
3608 
3609 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3610 					irq_event->irq, irq_event->level,
3611 					line_status);
3612 	return 0;
3613 }
3614 
3615 long kvm_arch_vm_ioctl(struct file *filp,
3616 		       unsigned int ioctl, unsigned long arg)
3617 {
3618 	struct kvm *kvm = filp->private_data;
3619 	void __user *argp = (void __user *)arg;
3620 	int r = -ENOTTY;
3621 	/*
3622 	 * This union makes it completely explicit to gcc-3.x
3623 	 * that these two variables' stack usage should be
3624 	 * combined, not added together.
3625 	 */
3626 	union {
3627 		struct kvm_pit_state ps;
3628 		struct kvm_pit_state2 ps2;
3629 		struct kvm_pit_config pit_config;
3630 	} u;
3631 
3632 	switch (ioctl) {
3633 	case KVM_SET_TSS_ADDR:
3634 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3635 		break;
3636 	case KVM_SET_IDENTITY_MAP_ADDR: {
3637 		u64 ident_addr;
3638 
3639 		r = -EFAULT;
3640 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3641 			goto out;
3642 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3643 		break;
3644 	}
3645 	case KVM_SET_NR_MMU_PAGES:
3646 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3647 		break;
3648 	case KVM_GET_NR_MMU_PAGES:
3649 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3650 		break;
3651 	case KVM_CREATE_IRQCHIP: {
3652 		struct kvm_pic *vpic;
3653 
3654 		mutex_lock(&kvm->lock);
3655 		r = -EEXIST;
3656 		if (kvm->arch.vpic)
3657 			goto create_irqchip_unlock;
3658 		r = -EINVAL;
3659 		if (atomic_read(&kvm->online_vcpus))
3660 			goto create_irqchip_unlock;
3661 		r = -ENOMEM;
3662 		vpic = kvm_create_pic(kvm);
3663 		if (vpic) {
3664 			r = kvm_ioapic_init(kvm);
3665 			if (r) {
3666 				mutex_lock(&kvm->slots_lock);
3667 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3668 							  &vpic->dev_master);
3669 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3670 							  &vpic->dev_slave);
3671 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3672 							  &vpic->dev_eclr);
3673 				mutex_unlock(&kvm->slots_lock);
3674 				kfree(vpic);
3675 				goto create_irqchip_unlock;
3676 			}
3677 		} else
3678 			goto create_irqchip_unlock;
3679 		smp_wmb();
3680 		kvm->arch.vpic = vpic;
3681 		smp_wmb();
3682 		r = kvm_setup_default_irq_routing(kvm);
3683 		if (r) {
3684 			mutex_lock(&kvm->slots_lock);
3685 			mutex_lock(&kvm->irq_lock);
3686 			kvm_ioapic_destroy(kvm);
3687 			kvm_destroy_pic(kvm);
3688 			mutex_unlock(&kvm->irq_lock);
3689 			mutex_unlock(&kvm->slots_lock);
3690 		}
3691 	create_irqchip_unlock:
3692 		mutex_unlock(&kvm->lock);
3693 		break;
3694 	}
3695 	case KVM_CREATE_PIT:
3696 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3697 		goto create_pit;
3698 	case KVM_CREATE_PIT2:
3699 		r = -EFAULT;
3700 		if (copy_from_user(&u.pit_config, argp,
3701 				   sizeof(struct kvm_pit_config)))
3702 			goto out;
3703 	create_pit:
3704 		mutex_lock(&kvm->slots_lock);
3705 		r = -EEXIST;
3706 		if (kvm->arch.vpit)
3707 			goto create_pit_unlock;
3708 		r = -ENOMEM;
3709 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3710 		if (kvm->arch.vpit)
3711 			r = 0;
3712 	create_pit_unlock:
3713 		mutex_unlock(&kvm->slots_lock);
3714 		break;
3715 	case KVM_GET_IRQCHIP: {
3716 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3717 		struct kvm_irqchip *chip;
3718 
3719 		chip = memdup_user(argp, sizeof(*chip));
3720 		if (IS_ERR(chip)) {
3721 			r = PTR_ERR(chip);
3722 			goto out;
3723 		}
3724 
3725 		r = -ENXIO;
3726 		if (!irqchip_in_kernel(kvm))
3727 			goto get_irqchip_out;
3728 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3729 		if (r)
3730 			goto get_irqchip_out;
3731 		r = -EFAULT;
3732 		if (copy_to_user(argp, chip, sizeof *chip))
3733 			goto get_irqchip_out;
3734 		r = 0;
3735 	get_irqchip_out:
3736 		kfree(chip);
3737 		break;
3738 	}
3739 	case KVM_SET_IRQCHIP: {
3740 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3741 		struct kvm_irqchip *chip;
3742 
3743 		chip = memdup_user(argp, sizeof(*chip));
3744 		if (IS_ERR(chip)) {
3745 			r = PTR_ERR(chip);
3746 			goto out;
3747 		}
3748 
3749 		r = -ENXIO;
3750 		if (!irqchip_in_kernel(kvm))
3751 			goto set_irqchip_out;
3752 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3753 		if (r)
3754 			goto set_irqchip_out;
3755 		r = 0;
3756 	set_irqchip_out:
3757 		kfree(chip);
3758 		break;
3759 	}
3760 	case KVM_GET_PIT: {
3761 		r = -EFAULT;
3762 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3763 			goto out;
3764 		r = -ENXIO;
3765 		if (!kvm->arch.vpit)
3766 			goto out;
3767 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3768 		if (r)
3769 			goto out;
3770 		r = -EFAULT;
3771 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3772 			goto out;
3773 		r = 0;
3774 		break;
3775 	}
3776 	case KVM_SET_PIT: {
3777 		r = -EFAULT;
3778 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3779 			goto out;
3780 		r = -ENXIO;
3781 		if (!kvm->arch.vpit)
3782 			goto out;
3783 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3784 		break;
3785 	}
3786 	case KVM_GET_PIT2: {
3787 		r = -ENXIO;
3788 		if (!kvm->arch.vpit)
3789 			goto out;
3790 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3791 		if (r)
3792 			goto out;
3793 		r = -EFAULT;
3794 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3795 			goto out;
3796 		r = 0;
3797 		break;
3798 	}
3799 	case KVM_SET_PIT2: {
3800 		r = -EFAULT;
3801 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3802 			goto out;
3803 		r = -ENXIO;
3804 		if (!kvm->arch.vpit)
3805 			goto out;
3806 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3807 		break;
3808 	}
3809 	case KVM_REINJECT_CONTROL: {
3810 		struct kvm_reinject_control control;
3811 		r =  -EFAULT;
3812 		if (copy_from_user(&control, argp, sizeof(control)))
3813 			goto out;
3814 		r = kvm_vm_ioctl_reinject(kvm, &control);
3815 		break;
3816 	}
3817 	case KVM_XEN_HVM_CONFIG: {
3818 		r = -EFAULT;
3819 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3820 				   sizeof(struct kvm_xen_hvm_config)))
3821 			goto out;
3822 		r = -EINVAL;
3823 		if (kvm->arch.xen_hvm_config.flags)
3824 			goto out;
3825 		r = 0;
3826 		break;
3827 	}
3828 	case KVM_SET_CLOCK: {
3829 		struct kvm_clock_data user_ns;
3830 		u64 now_ns;
3831 		s64 delta;
3832 
3833 		r = -EFAULT;
3834 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3835 			goto out;
3836 
3837 		r = -EINVAL;
3838 		if (user_ns.flags)
3839 			goto out;
3840 
3841 		r = 0;
3842 		local_irq_disable();
3843 		now_ns = get_kernel_ns();
3844 		delta = user_ns.clock - now_ns;
3845 		local_irq_enable();
3846 		kvm->arch.kvmclock_offset = delta;
3847 		kvm_gen_update_masterclock(kvm);
3848 		break;
3849 	}
3850 	case KVM_GET_CLOCK: {
3851 		struct kvm_clock_data user_ns;
3852 		u64 now_ns;
3853 
3854 		local_irq_disable();
3855 		now_ns = get_kernel_ns();
3856 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3857 		local_irq_enable();
3858 		user_ns.flags = 0;
3859 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3860 
3861 		r = -EFAULT;
3862 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3863 			goto out;
3864 		r = 0;
3865 		break;
3866 	}
3867 
3868 	default:
3869 		;
3870 	}
3871 out:
3872 	return r;
3873 }
3874 
3875 static void kvm_init_msr_list(void)
3876 {
3877 	u32 dummy[2];
3878 	unsigned i, j;
3879 
3880 	/* skip the first msrs in the list. KVM-specific */
3881 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3882 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3883 			continue;
3884 		if (j < i)
3885 			msrs_to_save[j] = msrs_to_save[i];
3886 		j++;
3887 	}
3888 	num_msrs_to_save = j;
3889 }
3890 
3891 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3892 			   const void *v)
3893 {
3894 	int handled = 0;
3895 	int n;
3896 
3897 	do {
3898 		n = min(len, 8);
3899 		if (!(vcpu->arch.apic &&
3900 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3901 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3902 			break;
3903 		handled += n;
3904 		addr += n;
3905 		len -= n;
3906 		v += n;
3907 	} while (len);
3908 
3909 	return handled;
3910 }
3911 
3912 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3913 {
3914 	int handled = 0;
3915 	int n;
3916 
3917 	do {
3918 		n = min(len, 8);
3919 		if (!(vcpu->arch.apic &&
3920 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3921 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3922 			break;
3923 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3924 		handled += n;
3925 		addr += n;
3926 		len -= n;
3927 		v += n;
3928 	} while (len);
3929 
3930 	return handled;
3931 }
3932 
3933 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3934 			struct kvm_segment *var, int seg)
3935 {
3936 	kvm_x86_ops->set_segment(vcpu, var, seg);
3937 }
3938 
3939 void kvm_get_segment(struct kvm_vcpu *vcpu,
3940 		     struct kvm_segment *var, int seg)
3941 {
3942 	kvm_x86_ops->get_segment(vcpu, var, seg);
3943 }
3944 
3945 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3946 {
3947 	gpa_t t_gpa;
3948 	struct x86_exception exception;
3949 
3950 	BUG_ON(!mmu_is_nested(vcpu));
3951 
3952 	/* NPT walks are always user-walks */
3953 	access |= PFERR_USER_MASK;
3954 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3955 
3956 	return t_gpa;
3957 }
3958 
3959 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3960 			      struct x86_exception *exception)
3961 {
3962 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3963 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3964 }
3965 
3966  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3967 				struct x86_exception *exception)
3968 {
3969 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3970 	access |= PFERR_FETCH_MASK;
3971 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3972 }
3973 
3974 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3975 			       struct x86_exception *exception)
3976 {
3977 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3978 	access |= PFERR_WRITE_MASK;
3979 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3980 }
3981 
3982 /* uses this to access any guest's mapped memory without checking CPL */
3983 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3984 				struct x86_exception *exception)
3985 {
3986 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3987 }
3988 
3989 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3990 				      struct kvm_vcpu *vcpu, u32 access,
3991 				      struct x86_exception *exception)
3992 {
3993 	void *data = val;
3994 	int r = X86EMUL_CONTINUE;
3995 
3996 	while (bytes) {
3997 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3998 							    exception);
3999 		unsigned offset = addr & (PAGE_SIZE-1);
4000 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4001 		int ret;
4002 
4003 		if (gpa == UNMAPPED_GVA)
4004 			return X86EMUL_PROPAGATE_FAULT;
4005 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4006 		if (ret < 0) {
4007 			r = X86EMUL_IO_NEEDED;
4008 			goto out;
4009 		}
4010 
4011 		bytes -= toread;
4012 		data += toread;
4013 		addr += toread;
4014 	}
4015 out:
4016 	return r;
4017 }
4018 
4019 /* used for instruction fetching */
4020 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4021 				gva_t addr, void *val, unsigned int bytes,
4022 				struct x86_exception *exception)
4023 {
4024 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4025 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4026 
4027 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4028 					  access | PFERR_FETCH_MASK,
4029 					  exception);
4030 }
4031 
4032 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4033 			       gva_t addr, void *val, unsigned int bytes,
4034 			       struct x86_exception *exception)
4035 {
4036 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4037 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4038 
4039 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4040 					  exception);
4041 }
4042 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4043 
4044 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4045 				      gva_t addr, void *val, unsigned int bytes,
4046 				      struct x86_exception *exception)
4047 {
4048 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4049 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4050 }
4051 
4052 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4053 				       gva_t addr, void *val,
4054 				       unsigned int bytes,
4055 				       struct x86_exception *exception)
4056 {
4057 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4058 	void *data = val;
4059 	int r = X86EMUL_CONTINUE;
4060 
4061 	while (bytes) {
4062 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4063 							     PFERR_WRITE_MASK,
4064 							     exception);
4065 		unsigned offset = addr & (PAGE_SIZE-1);
4066 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4067 		int ret;
4068 
4069 		if (gpa == UNMAPPED_GVA)
4070 			return X86EMUL_PROPAGATE_FAULT;
4071 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4072 		if (ret < 0) {
4073 			r = X86EMUL_IO_NEEDED;
4074 			goto out;
4075 		}
4076 
4077 		bytes -= towrite;
4078 		data += towrite;
4079 		addr += towrite;
4080 	}
4081 out:
4082 	return r;
4083 }
4084 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4085 
4086 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4087 				gpa_t *gpa, struct x86_exception *exception,
4088 				bool write)
4089 {
4090 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4091 		| (write ? PFERR_WRITE_MASK : 0);
4092 
4093 	if (vcpu_match_mmio_gva(vcpu, gva)
4094 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4095 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4096 					(gva & (PAGE_SIZE - 1));
4097 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4098 		return 1;
4099 	}
4100 
4101 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4102 
4103 	if (*gpa == UNMAPPED_GVA)
4104 		return -1;
4105 
4106 	/* For APIC access vmexit */
4107 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4108 		return 1;
4109 
4110 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4111 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4112 		return 1;
4113 	}
4114 
4115 	return 0;
4116 }
4117 
4118 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4119 			const void *val, int bytes)
4120 {
4121 	int ret;
4122 
4123 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4124 	if (ret < 0)
4125 		return 0;
4126 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4127 	return 1;
4128 }
4129 
4130 struct read_write_emulator_ops {
4131 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4132 				  int bytes);
4133 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4134 				  void *val, int bytes);
4135 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4136 			       int bytes, void *val);
4137 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4138 				    void *val, int bytes);
4139 	bool write;
4140 };
4141 
4142 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4143 {
4144 	if (vcpu->mmio_read_completed) {
4145 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4146 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4147 		vcpu->mmio_read_completed = 0;
4148 		return 1;
4149 	}
4150 
4151 	return 0;
4152 }
4153 
4154 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4155 			void *val, int bytes)
4156 {
4157 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4158 }
4159 
4160 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4161 			 void *val, int bytes)
4162 {
4163 	return emulator_write_phys(vcpu, gpa, val, bytes);
4164 }
4165 
4166 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4167 {
4168 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4169 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4170 }
4171 
4172 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4173 			  void *val, int bytes)
4174 {
4175 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4176 	return X86EMUL_IO_NEEDED;
4177 }
4178 
4179 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4180 			   void *val, int bytes)
4181 {
4182 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4183 
4184 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4185 	return X86EMUL_CONTINUE;
4186 }
4187 
4188 static const struct read_write_emulator_ops read_emultor = {
4189 	.read_write_prepare = read_prepare,
4190 	.read_write_emulate = read_emulate,
4191 	.read_write_mmio = vcpu_mmio_read,
4192 	.read_write_exit_mmio = read_exit_mmio,
4193 };
4194 
4195 static const struct read_write_emulator_ops write_emultor = {
4196 	.read_write_emulate = write_emulate,
4197 	.read_write_mmio = write_mmio,
4198 	.read_write_exit_mmio = write_exit_mmio,
4199 	.write = true,
4200 };
4201 
4202 static int emulator_read_write_onepage(unsigned long addr, void *val,
4203 				       unsigned int bytes,
4204 				       struct x86_exception *exception,
4205 				       struct kvm_vcpu *vcpu,
4206 				       const struct read_write_emulator_ops *ops)
4207 {
4208 	gpa_t gpa;
4209 	int handled, ret;
4210 	bool write = ops->write;
4211 	struct kvm_mmio_fragment *frag;
4212 
4213 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4214 
4215 	if (ret < 0)
4216 		return X86EMUL_PROPAGATE_FAULT;
4217 
4218 	/* For APIC access vmexit */
4219 	if (ret)
4220 		goto mmio;
4221 
4222 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4223 		return X86EMUL_CONTINUE;
4224 
4225 mmio:
4226 	/*
4227 	 * Is this MMIO handled locally?
4228 	 */
4229 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4230 	if (handled == bytes)
4231 		return X86EMUL_CONTINUE;
4232 
4233 	gpa += handled;
4234 	bytes -= handled;
4235 	val += handled;
4236 
4237 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4238 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4239 	frag->gpa = gpa;
4240 	frag->data = val;
4241 	frag->len = bytes;
4242 	return X86EMUL_CONTINUE;
4243 }
4244 
4245 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4246 			void *val, unsigned int bytes,
4247 			struct x86_exception *exception,
4248 			const struct read_write_emulator_ops *ops)
4249 {
4250 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4251 	gpa_t gpa;
4252 	int rc;
4253 
4254 	if (ops->read_write_prepare &&
4255 		  ops->read_write_prepare(vcpu, val, bytes))
4256 		return X86EMUL_CONTINUE;
4257 
4258 	vcpu->mmio_nr_fragments = 0;
4259 
4260 	/* Crossing a page boundary? */
4261 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4262 		int now;
4263 
4264 		now = -addr & ~PAGE_MASK;
4265 		rc = emulator_read_write_onepage(addr, val, now, exception,
4266 						 vcpu, ops);
4267 
4268 		if (rc != X86EMUL_CONTINUE)
4269 			return rc;
4270 		addr += now;
4271 		val += now;
4272 		bytes -= now;
4273 	}
4274 
4275 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4276 					 vcpu, ops);
4277 	if (rc != X86EMUL_CONTINUE)
4278 		return rc;
4279 
4280 	if (!vcpu->mmio_nr_fragments)
4281 		return rc;
4282 
4283 	gpa = vcpu->mmio_fragments[0].gpa;
4284 
4285 	vcpu->mmio_needed = 1;
4286 	vcpu->mmio_cur_fragment = 0;
4287 
4288 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4289 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4290 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4291 	vcpu->run->mmio.phys_addr = gpa;
4292 
4293 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4294 }
4295 
4296 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4297 				  unsigned long addr,
4298 				  void *val,
4299 				  unsigned int bytes,
4300 				  struct x86_exception *exception)
4301 {
4302 	return emulator_read_write(ctxt, addr, val, bytes,
4303 				   exception, &read_emultor);
4304 }
4305 
4306 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4307 			    unsigned long addr,
4308 			    const void *val,
4309 			    unsigned int bytes,
4310 			    struct x86_exception *exception)
4311 {
4312 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4313 				   exception, &write_emultor);
4314 }
4315 
4316 #define CMPXCHG_TYPE(t, ptr, old, new) \
4317 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4318 
4319 #ifdef CONFIG_X86_64
4320 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4321 #else
4322 #  define CMPXCHG64(ptr, old, new) \
4323 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4324 #endif
4325 
4326 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4327 				     unsigned long addr,
4328 				     const void *old,
4329 				     const void *new,
4330 				     unsigned int bytes,
4331 				     struct x86_exception *exception)
4332 {
4333 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4334 	gpa_t gpa;
4335 	struct page *page;
4336 	char *kaddr;
4337 	bool exchanged;
4338 
4339 	/* guests cmpxchg8b have to be emulated atomically */
4340 	if (bytes > 8 || (bytes & (bytes - 1)))
4341 		goto emul_write;
4342 
4343 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4344 
4345 	if (gpa == UNMAPPED_GVA ||
4346 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4347 		goto emul_write;
4348 
4349 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4350 		goto emul_write;
4351 
4352 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4353 	if (is_error_page(page))
4354 		goto emul_write;
4355 
4356 	kaddr = kmap_atomic(page);
4357 	kaddr += offset_in_page(gpa);
4358 	switch (bytes) {
4359 	case 1:
4360 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4361 		break;
4362 	case 2:
4363 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4364 		break;
4365 	case 4:
4366 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4367 		break;
4368 	case 8:
4369 		exchanged = CMPXCHG64(kaddr, old, new);
4370 		break;
4371 	default:
4372 		BUG();
4373 	}
4374 	kunmap_atomic(kaddr);
4375 	kvm_release_page_dirty(page);
4376 
4377 	if (!exchanged)
4378 		return X86EMUL_CMPXCHG_FAILED;
4379 
4380 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4381 
4382 	return X86EMUL_CONTINUE;
4383 
4384 emul_write:
4385 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4386 
4387 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4388 }
4389 
4390 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4391 {
4392 	/* TODO: String I/O for in kernel device */
4393 	int r;
4394 
4395 	if (vcpu->arch.pio.in)
4396 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4397 				    vcpu->arch.pio.size, pd);
4398 	else
4399 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4400 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4401 				     pd);
4402 	return r;
4403 }
4404 
4405 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4406 			       unsigned short port, void *val,
4407 			       unsigned int count, bool in)
4408 {
4409 	trace_kvm_pio(!in, port, size, count);
4410 
4411 	vcpu->arch.pio.port = port;
4412 	vcpu->arch.pio.in = in;
4413 	vcpu->arch.pio.count  = count;
4414 	vcpu->arch.pio.size = size;
4415 
4416 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4417 		vcpu->arch.pio.count = 0;
4418 		return 1;
4419 	}
4420 
4421 	vcpu->run->exit_reason = KVM_EXIT_IO;
4422 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4423 	vcpu->run->io.size = size;
4424 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4425 	vcpu->run->io.count = count;
4426 	vcpu->run->io.port = port;
4427 
4428 	return 0;
4429 }
4430 
4431 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4432 				    int size, unsigned short port, void *val,
4433 				    unsigned int count)
4434 {
4435 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4436 	int ret;
4437 
4438 	if (vcpu->arch.pio.count)
4439 		goto data_avail;
4440 
4441 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4442 	if (ret) {
4443 data_avail:
4444 		memcpy(val, vcpu->arch.pio_data, size * count);
4445 		vcpu->arch.pio.count = 0;
4446 		return 1;
4447 	}
4448 
4449 	return 0;
4450 }
4451 
4452 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4453 				     int size, unsigned short port,
4454 				     const void *val, unsigned int count)
4455 {
4456 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457 
4458 	memcpy(vcpu->arch.pio_data, val, size * count);
4459 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4460 }
4461 
4462 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4463 {
4464 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4465 }
4466 
4467 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4468 {
4469 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4470 }
4471 
4472 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4473 {
4474 	if (!need_emulate_wbinvd(vcpu))
4475 		return X86EMUL_CONTINUE;
4476 
4477 	if (kvm_x86_ops->has_wbinvd_exit()) {
4478 		int cpu = get_cpu();
4479 
4480 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4481 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4482 				wbinvd_ipi, NULL, 1);
4483 		put_cpu();
4484 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4485 	} else
4486 		wbinvd();
4487 	return X86EMUL_CONTINUE;
4488 }
4489 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4490 
4491 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4492 {
4493 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4494 }
4495 
4496 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4497 {
4498 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4499 }
4500 
4501 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4502 {
4503 
4504 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4505 }
4506 
4507 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4508 {
4509 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4510 }
4511 
4512 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4513 {
4514 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4515 	unsigned long value;
4516 
4517 	switch (cr) {
4518 	case 0:
4519 		value = kvm_read_cr0(vcpu);
4520 		break;
4521 	case 2:
4522 		value = vcpu->arch.cr2;
4523 		break;
4524 	case 3:
4525 		value = kvm_read_cr3(vcpu);
4526 		break;
4527 	case 4:
4528 		value = kvm_read_cr4(vcpu);
4529 		break;
4530 	case 8:
4531 		value = kvm_get_cr8(vcpu);
4532 		break;
4533 	default:
4534 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4535 		return 0;
4536 	}
4537 
4538 	return value;
4539 }
4540 
4541 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4542 {
4543 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4544 	int res = 0;
4545 
4546 	switch (cr) {
4547 	case 0:
4548 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4549 		break;
4550 	case 2:
4551 		vcpu->arch.cr2 = val;
4552 		break;
4553 	case 3:
4554 		res = kvm_set_cr3(vcpu, val);
4555 		break;
4556 	case 4:
4557 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4558 		break;
4559 	case 8:
4560 		res = kvm_set_cr8(vcpu, val);
4561 		break;
4562 	default:
4563 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4564 		res = -1;
4565 	}
4566 
4567 	return res;
4568 }
4569 
4570 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4571 {
4572 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4573 }
4574 
4575 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4576 {
4577 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4578 }
4579 
4580 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4581 {
4582 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4583 }
4584 
4585 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4586 {
4587 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4588 }
4589 
4590 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4591 {
4592 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4593 }
4594 
4595 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4596 {
4597 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4598 }
4599 
4600 static unsigned long emulator_get_cached_segment_base(
4601 	struct x86_emulate_ctxt *ctxt, int seg)
4602 {
4603 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4604 }
4605 
4606 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4607 				 struct desc_struct *desc, u32 *base3,
4608 				 int seg)
4609 {
4610 	struct kvm_segment var;
4611 
4612 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4613 	*selector = var.selector;
4614 
4615 	if (var.unusable) {
4616 		memset(desc, 0, sizeof(*desc));
4617 		return false;
4618 	}
4619 
4620 	if (var.g)
4621 		var.limit >>= 12;
4622 	set_desc_limit(desc, var.limit);
4623 	set_desc_base(desc, (unsigned long)var.base);
4624 #ifdef CONFIG_X86_64
4625 	if (base3)
4626 		*base3 = var.base >> 32;
4627 #endif
4628 	desc->type = var.type;
4629 	desc->s = var.s;
4630 	desc->dpl = var.dpl;
4631 	desc->p = var.present;
4632 	desc->avl = var.avl;
4633 	desc->l = var.l;
4634 	desc->d = var.db;
4635 	desc->g = var.g;
4636 
4637 	return true;
4638 }
4639 
4640 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4641 				 struct desc_struct *desc, u32 base3,
4642 				 int seg)
4643 {
4644 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4645 	struct kvm_segment var;
4646 
4647 	var.selector = selector;
4648 	var.base = get_desc_base(desc);
4649 #ifdef CONFIG_X86_64
4650 	var.base |= ((u64)base3) << 32;
4651 #endif
4652 	var.limit = get_desc_limit(desc);
4653 	if (desc->g)
4654 		var.limit = (var.limit << 12) | 0xfff;
4655 	var.type = desc->type;
4656 	var.present = desc->p;
4657 	var.dpl = desc->dpl;
4658 	var.db = desc->d;
4659 	var.s = desc->s;
4660 	var.l = desc->l;
4661 	var.g = desc->g;
4662 	var.avl = desc->avl;
4663 	var.present = desc->p;
4664 	var.unusable = !var.present;
4665 	var.padding = 0;
4666 
4667 	kvm_set_segment(vcpu, &var, seg);
4668 	return;
4669 }
4670 
4671 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4672 			    u32 msr_index, u64 *pdata)
4673 {
4674 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4675 }
4676 
4677 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4678 			    u32 msr_index, u64 data)
4679 {
4680 	struct msr_data msr;
4681 
4682 	msr.data = data;
4683 	msr.index = msr_index;
4684 	msr.host_initiated = false;
4685 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4686 }
4687 
4688 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4689 			     u32 pmc, u64 *pdata)
4690 {
4691 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4692 }
4693 
4694 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4695 {
4696 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4697 }
4698 
4699 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4700 {
4701 	preempt_disable();
4702 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4703 	/*
4704 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4705 	 * so it may be clear at this point.
4706 	 */
4707 	clts();
4708 }
4709 
4710 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4711 {
4712 	preempt_enable();
4713 }
4714 
4715 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4716 			      struct x86_instruction_info *info,
4717 			      enum x86_intercept_stage stage)
4718 {
4719 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4720 }
4721 
4722 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4723 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4724 {
4725 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4726 }
4727 
4728 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4729 {
4730 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4731 }
4732 
4733 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4734 {
4735 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4736 }
4737 
4738 static const struct x86_emulate_ops emulate_ops = {
4739 	.read_gpr            = emulator_read_gpr,
4740 	.write_gpr           = emulator_write_gpr,
4741 	.read_std            = kvm_read_guest_virt_system,
4742 	.write_std           = kvm_write_guest_virt_system,
4743 	.fetch               = kvm_fetch_guest_virt,
4744 	.read_emulated       = emulator_read_emulated,
4745 	.write_emulated      = emulator_write_emulated,
4746 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4747 	.invlpg              = emulator_invlpg,
4748 	.pio_in_emulated     = emulator_pio_in_emulated,
4749 	.pio_out_emulated    = emulator_pio_out_emulated,
4750 	.get_segment         = emulator_get_segment,
4751 	.set_segment         = emulator_set_segment,
4752 	.get_cached_segment_base = emulator_get_cached_segment_base,
4753 	.get_gdt             = emulator_get_gdt,
4754 	.get_idt	     = emulator_get_idt,
4755 	.set_gdt             = emulator_set_gdt,
4756 	.set_idt	     = emulator_set_idt,
4757 	.get_cr              = emulator_get_cr,
4758 	.set_cr              = emulator_set_cr,
4759 	.set_rflags          = emulator_set_rflags,
4760 	.cpl                 = emulator_get_cpl,
4761 	.get_dr              = emulator_get_dr,
4762 	.set_dr              = emulator_set_dr,
4763 	.set_msr             = emulator_set_msr,
4764 	.get_msr             = emulator_get_msr,
4765 	.read_pmc            = emulator_read_pmc,
4766 	.halt                = emulator_halt,
4767 	.wbinvd              = emulator_wbinvd,
4768 	.fix_hypercall       = emulator_fix_hypercall,
4769 	.get_fpu             = emulator_get_fpu,
4770 	.put_fpu             = emulator_put_fpu,
4771 	.intercept           = emulator_intercept,
4772 	.get_cpuid           = emulator_get_cpuid,
4773 };
4774 
4775 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4776 {
4777 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4778 	/*
4779 	 * an sti; sti; sequence only disable interrupts for the first
4780 	 * instruction. So, if the last instruction, be it emulated or
4781 	 * not, left the system with the INT_STI flag enabled, it
4782 	 * means that the last instruction is an sti. We should not
4783 	 * leave the flag on in this case. The same goes for mov ss
4784 	 */
4785 	if (!(int_shadow & mask))
4786 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4787 }
4788 
4789 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4790 {
4791 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4792 	if (ctxt->exception.vector == PF_VECTOR)
4793 		kvm_propagate_fault(vcpu, &ctxt->exception);
4794 	else if (ctxt->exception.error_code_valid)
4795 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4796 				      ctxt->exception.error_code);
4797 	else
4798 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4799 }
4800 
4801 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4802 {
4803 	memset(&ctxt->opcode_len, 0,
4804 	       (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4805 
4806 	ctxt->fetch.start = 0;
4807 	ctxt->fetch.end = 0;
4808 	ctxt->io_read.pos = 0;
4809 	ctxt->io_read.end = 0;
4810 	ctxt->mem_read.pos = 0;
4811 	ctxt->mem_read.end = 0;
4812 }
4813 
4814 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4815 {
4816 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4817 	int cs_db, cs_l;
4818 
4819 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4820 
4821 	ctxt->eflags = kvm_get_rflags(vcpu);
4822 	ctxt->eip = kvm_rip_read(vcpu);
4823 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4824 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4825 		     cs_l				? X86EMUL_MODE_PROT64 :
4826 		     cs_db				? X86EMUL_MODE_PROT32 :
4827 							  X86EMUL_MODE_PROT16;
4828 	ctxt->guest_mode = is_guest_mode(vcpu);
4829 
4830 	init_decode_cache(ctxt);
4831 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4832 }
4833 
4834 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4835 {
4836 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4837 	int ret;
4838 
4839 	init_emulate_ctxt(vcpu);
4840 
4841 	ctxt->op_bytes = 2;
4842 	ctxt->ad_bytes = 2;
4843 	ctxt->_eip = ctxt->eip + inc_eip;
4844 	ret = emulate_int_real(ctxt, irq);
4845 
4846 	if (ret != X86EMUL_CONTINUE)
4847 		return EMULATE_FAIL;
4848 
4849 	ctxt->eip = ctxt->_eip;
4850 	kvm_rip_write(vcpu, ctxt->eip);
4851 	kvm_set_rflags(vcpu, ctxt->eflags);
4852 
4853 	if (irq == NMI_VECTOR)
4854 		vcpu->arch.nmi_pending = 0;
4855 	else
4856 		vcpu->arch.interrupt.pending = false;
4857 
4858 	return EMULATE_DONE;
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4861 
4862 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4863 {
4864 	int r = EMULATE_DONE;
4865 
4866 	++vcpu->stat.insn_emulation_fail;
4867 	trace_kvm_emulate_insn_failed(vcpu);
4868 	if (!is_guest_mode(vcpu)) {
4869 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4870 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4871 		vcpu->run->internal.ndata = 0;
4872 		r = EMULATE_FAIL;
4873 	}
4874 	kvm_queue_exception(vcpu, UD_VECTOR);
4875 
4876 	return r;
4877 }
4878 
4879 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4880 				  bool write_fault_to_shadow_pgtable,
4881 				  int emulation_type)
4882 {
4883 	gpa_t gpa = cr2;
4884 	pfn_t pfn;
4885 
4886 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4887 		return false;
4888 
4889 	if (!vcpu->arch.mmu.direct_map) {
4890 		/*
4891 		 * Write permission should be allowed since only
4892 		 * write access need to be emulated.
4893 		 */
4894 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4895 
4896 		/*
4897 		 * If the mapping is invalid in guest, let cpu retry
4898 		 * it to generate fault.
4899 		 */
4900 		if (gpa == UNMAPPED_GVA)
4901 			return true;
4902 	}
4903 
4904 	/*
4905 	 * Do not retry the unhandleable instruction if it faults on the
4906 	 * readonly host memory, otherwise it will goto a infinite loop:
4907 	 * retry instruction -> write #PF -> emulation fail -> retry
4908 	 * instruction -> ...
4909 	 */
4910 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4911 
4912 	/*
4913 	 * If the instruction failed on the error pfn, it can not be fixed,
4914 	 * report the error to userspace.
4915 	 */
4916 	if (is_error_noslot_pfn(pfn))
4917 		return false;
4918 
4919 	kvm_release_pfn_clean(pfn);
4920 
4921 	/* The instructions are well-emulated on direct mmu. */
4922 	if (vcpu->arch.mmu.direct_map) {
4923 		unsigned int indirect_shadow_pages;
4924 
4925 		spin_lock(&vcpu->kvm->mmu_lock);
4926 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4927 		spin_unlock(&vcpu->kvm->mmu_lock);
4928 
4929 		if (indirect_shadow_pages)
4930 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4931 
4932 		return true;
4933 	}
4934 
4935 	/*
4936 	 * if emulation was due to access to shadowed page table
4937 	 * and it failed try to unshadow page and re-enter the
4938 	 * guest to let CPU execute the instruction.
4939 	 */
4940 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4941 
4942 	/*
4943 	 * If the access faults on its page table, it can not
4944 	 * be fixed by unprotecting shadow page and it should
4945 	 * be reported to userspace.
4946 	 */
4947 	return !write_fault_to_shadow_pgtable;
4948 }
4949 
4950 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4951 			      unsigned long cr2,  int emulation_type)
4952 {
4953 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4955 
4956 	last_retry_eip = vcpu->arch.last_retry_eip;
4957 	last_retry_addr = vcpu->arch.last_retry_addr;
4958 
4959 	/*
4960 	 * If the emulation is caused by #PF and it is non-page_table
4961 	 * writing instruction, it means the VM-EXIT is caused by shadow
4962 	 * page protected, we can zap the shadow page and retry this
4963 	 * instruction directly.
4964 	 *
4965 	 * Note: if the guest uses a non-page-table modifying instruction
4966 	 * on the PDE that points to the instruction, then we will unmap
4967 	 * the instruction and go to an infinite loop. So, we cache the
4968 	 * last retried eip and the last fault address, if we meet the eip
4969 	 * and the address again, we can break out of the potential infinite
4970 	 * loop.
4971 	 */
4972 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4973 
4974 	if (!(emulation_type & EMULTYPE_RETRY))
4975 		return false;
4976 
4977 	if (x86_page_table_writing_insn(ctxt))
4978 		return false;
4979 
4980 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4981 		return false;
4982 
4983 	vcpu->arch.last_retry_eip = ctxt->eip;
4984 	vcpu->arch.last_retry_addr = cr2;
4985 
4986 	if (!vcpu->arch.mmu.direct_map)
4987 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4988 
4989 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4990 
4991 	return true;
4992 }
4993 
4994 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4995 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4996 
4997 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4998 				unsigned long *db)
4999 {
5000 	u32 dr6 = 0;
5001 	int i;
5002 	u32 enable, rwlen;
5003 
5004 	enable = dr7;
5005 	rwlen = dr7 >> 16;
5006 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5007 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5008 			dr6 |= (1 << i);
5009 	return dr6;
5010 }
5011 
5012 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5013 {
5014 	struct kvm_run *kvm_run = vcpu->run;
5015 
5016 	/*
5017 	 * Use the "raw" value to see if TF was passed to the processor.
5018 	 * Note that the new value of the flags has not been saved yet.
5019 	 *
5020 	 * This is correct even for TF set by the guest, because "the
5021 	 * processor will not generate this exception after the instruction
5022 	 * that sets the TF flag".
5023 	 */
5024 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5025 
5026 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5027 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5028 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5029 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5030 			kvm_run->debug.arch.exception = DB_VECTOR;
5031 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5032 			*r = EMULATE_USER_EXIT;
5033 		} else {
5034 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5035 			/*
5036 			 * "Certain debug exceptions may clear bit 0-3.  The
5037 			 * remaining contents of the DR6 register are never
5038 			 * cleared by the processor".
5039 			 */
5040 			vcpu->arch.dr6 &= ~15;
5041 			vcpu->arch.dr6 |= DR6_BS;
5042 			kvm_queue_exception(vcpu, DB_VECTOR);
5043 		}
5044 	}
5045 }
5046 
5047 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5048 {
5049 	struct kvm_run *kvm_run = vcpu->run;
5050 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5051 	u32 dr6 = 0;
5052 
5053 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5054 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5055 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5056 					   vcpu->arch.guest_debug_dr7,
5057 					   vcpu->arch.eff_db);
5058 
5059 		if (dr6 != 0) {
5060 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5061 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5062 				get_segment_base(vcpu, VCPU_SREG_CS);
5063 
5064 			kvm_run->debug.arch.exception = DB_VECTOR;
5065 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5066 			*r = EMULATE_USER_EXIT;
5067 			return true;
5068 		}
5069 	}
5070 
5071 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5072 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5073 					   vcpu->arch.dr7,
5074 					   vcpu->arch.db);
5075 
5076 		if (dr6 != 0) {
5077 			vcpu->arch.dr6 &= ~15;
5078 			vcpu->arch.dr6 |= dr6;
5079 			kvm_queue_exception(vcpu, DB_VECTOR);
5080 			*r = EMULATE_DONE;
5081 			return true;
5082 		}
5083 	}
5084 
5085 	return false;
5086 }
5087 
5088 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5089 			    unsigned long cr2,
5090 			    int emulation_type,
5091 			    void *insn,
5092 			    int insn_len)
5093 {
5094 	int r;
5095 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5096 	bool writeback = true;
5097 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5098 
5099 	/*
5100 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5101 	 * never reused.
5102 	 */
5103 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5104 	kvm_clear_exception_queue(vcpu);
5105 
5106 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5107 		init_emulate_ctxt(vcpu);
5108 
5109 		/*
5110 		 * We will reenter on the same instruction since
5111 		 * we do not set complete_userspace_io.  This does not
5112 		 * handle watchpoints yet, those would be handled in
5113 		 * the emulate_ops.
5114 		 */
5115 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5116 			return r;
5117 
5118 		ctxt->interruptibility = 0;
5119 		ctxt->have_exception = false;
5120 		ctxt->perm_ok = false;
5121 
5122 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5123 
5124 		r = x86_decode_insn(ctxt, insn, insn_len);
5125 
5126 		trace_kvm_emulate_insn_start(vcpu);
5127 		++vcpu->stat.insn_emulation;
5128 		if (r != EMULATION_OK)  {
5129 			if (emulation_type & EMULTYPE_TRAP_UD)
5130 				return EMULATE_FAIL;
5131 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5132 						emulation_type))
5133 				return EMULATE_DONE;
5134 			if (emulation_type & EMULTYPE_SKIP)
5135 				return EMULATE_FAIL;
5136 			return handle_emulation_failure(vcpu);
5137 		}
5138 	}
5139 
5140 	if (emulation_type & EMULTYPE_SKIP) {
5141 		kvm_rip_write(vcpu, ctxt->_eip);
5142 		return EMULATE_DONE;
5143 	}
5144 
5145 	if (retry_instruction(ctxt, cr2, emulation_type))
5146 		return EMULATE_DONE;
5147 
5148 	/* this is needed for vmware backdoor interface to work since it
5149 	   changes registers values  during IO operation */
5150 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5151 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5152 		emulator_invalidate_register_cache(ctxt);
5153 	}
5154 
5155 restart:
5156 	r = x86_emulate_insn(ctxt);
5157 
5158 	if (r == EMULATION_INTERCEPTED)
5159 		return EMULATE_DONE;
5160 
5161 	if (r == EMULATION_FAILED) {
5162 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5163 					emulation_type))
5164 			return EMULATE_DONE;
5165 
5166 		return handle_emulation_failure(vcpu);
5167 	}
5168 
5169 	if (ctxt->have_exception) {
5170 		inject_emulated_exception(vcpu);
5171 		r = EMULATE_DONE;
5172 	} else if (vcpu->arch.pio.count) {
5173 		if (!vcpu->arch.pio.in) {
5174 			/* FIXME: return into emulator if single-stepping.  */
5175 			vcpu->arch.pio.count = 0;
5176 		} else {
5177 			writeback = false;
5178 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5179 		}
5180 		r = EMULATE_USER_EXIT;
5181 	} else if (vcpu->mmio_needed) {
5182 		if (!vcpu->mmio_is_write)
5183 			writeback = false;
5184 		r = EMULATE_USER_EXIT;
5185 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5186 	} else if (r == EMULATION_RESTART)
5187 		goto restart;
5188 	else
5189 		r = EMULATE_DONE;
5190 
5191 	if (writeback) {
5192 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5193 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5194 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5195 		kvm_rip_write(vcpu, ctxt->eip);
5196 		if (r == EMULATE_DONE)
5197 			kvm_vcpu_check_singlestep(vcpu, &r);
5198 		kvm_set_rflags(vcpu, ctxt->eflags);
5199 	} else
5200 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5201 
5202 	return r;
5203 }
5204 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5205 
5206 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5207 {
5208 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5209 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5210 					    size, port, &val, 1);
5211 	/* do not return to emulator after return from userspace */
5212 	vcpu->arch.pio.count = 0;
5213 	return ret;
5214 }
5215 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5216 
5217 static void tsc_bad(void *info)
5218 {
5219 	__this_cpu_write(cpu_tsc_khz, 0);
5220 }
5221 
5222 static void tsc_khz_changed(void *data)
5223 {
5224 	struct cpufreq_freqs *freq = data;
5225 	unsigned long khz = 0;
5226 
5227 	if (data)
5228 		khz = freq->new;
5229 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5230 		khz = cpufreq_quick_get(raw_smp_processor_id());
5231 	if (!khz)
5232 		khz = tsc_khz;
5233 	__this_cpu_write(cpu_tsc_khz, khz);
5234 }
5235 
5236 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5237 				     void *data)
5238 {
5239 	struct cpufreq_freqs *freq = data;
5240 	struct kvm *kvm;
5241 	struct kvm_vcpu *vcpu;
5242 	int i, send_ipi = 0;
5243 
5244 	/*
5245 	 * We allow guests to temporarily run on slowing clocks,
5246 	 * provided we notify them after, or to run on accelerating
5247 	 * clocks, provided we notify them before.  Thus time never
5248 	 * goes backwards.
5249 	 *
5250 	 * However, we have a problem.  We can't atomically update
5251 	 * the frequency of a given CPU from this function; it is
5252 	 * merely a notifier, which can be called from any CPU.
5253 	 * Changing the TSC frequency at arbitrary points in time
5254 	 * requires a recomputation of local variables related to
5255 	 * the TSC for each VCPU.  We must flag these local variables
5256 	 * to be updated and be sure the update takes place with the
5257 	 * new frequency before any guests proceed.
5258 	 *
5259 	 * Unfortunately, the combination of hotplug CPU and frequency
5260 	 * change creates an intractable locking scenario; the order
5261 	 * of when these callouts happen is undefined with respect to
5262 	 * CPU hotplug, and they can race with each other.  As such,
5263 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5264 	 * undefined; you can actually have a CPU frequency change take
5265 	 * place in between the computation of X and the setting of the
5266 	 * variable.  To protect against this problem, all updates of
5267 	 * the per_cpu tsc_khz variable are done in an interrupt
5268 	 * protected IPI, and all callers wishing to update the value
5269 	 * must wait for a synchronous IPI to complete (which is trivial
5270 	 * if the caller is on the CPU already).  This establishes the
5271 	 * necessary total order on variable updates.
5272 	 *
5273 	 * Note that because a guest time update may take place
5274 	 * anytime after the setting of the VCPU's request bit, the
5275 	 * correct TSC value must be set before the request.  However,
5276 	 * to ensure the update actually makes it to any guest which
5277 	 * starts running in hardware virtualization between the set
5278 	 * and the acquisition of the spinlock, we must also ping the
5279 	 * CPU after setting the request bit.
5280 	 *
5281 	 */
5282 
5283 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5284 		return 0;
5285 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5286 		return 0;
5287 
5288 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5289 
5290 	spin_lock(&kvm_lock);
5291 	list_for_each_entry(kvm, &vm_list, vm_list) {
5292 		kvm_for_each_vcpu(i, vcpu, kvm) {
5293 			if (vcpu->cpu != freq->cpu)
5294 				continue;
5295 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5296 			if (vcpu->cpu != smp_processor_id())
5297 				send_ipi = 1;
5298 		}
5299 	}
5300 	spin_unlock(&kvm_lock);
5301 
5302 	if (freq->old < freq->new && send_ipi) {
5303 		/*
5304 		 * We upscale the frequency.  Must make the guest
5305 		 * doesn't see old kvmclock values while running with
5306 		 * the new frequency, otherwise we risk the guest sees
5307 		 * time go backwards.
5308 		 *
5309 		 * In case we update the frequency for another cpu
5310 		 * (which might be in guest context) send an interrupt
5311 		 * to kick the cpu out of guest context.  Next time
5312 		 * guest context is entered kvmclock will be updated,
5313 		 * so the guest will not see stale values.
5314 		 */
5315 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5316 	}
5317 	return 0;
5318 }
5319 
5320 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5321 	.notifier_call  = kvmclock_cpufreq_notifier
5322 };
5323 
5324 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5325 					unsigned long action, void *hcpu)
5326 {
5327 	unsigned int cpu = (unsigned long)hcpu;
5328 
5329 	switch (action) {
5330 		case CPU_ONLINE:
5331 		case CPU_DOWN_FAILED:
5332 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5333 			break;
5334 		case CPU_DOWN_PREPARE:
5335 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5336 			break;
5337 	}
5338 	return NOTIFY_OK;
5339 }
5340 
5341 static struct notifier_block kvmclock_cpu_notifier_block = {
5342 	.notifier_call  = kvmclock_cpu_notifier,
5343 	.priority = -INT_MAX
5344 };
5345 
5346 static void kvm_timer_init(void)
5347 {
5348 	int cpu;
5349 
5350 	max_tsc_khz = tsc_khz;
5351 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5352 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5353 #ifdef CONFIG_CPU_FREQ
5354 		struct cpufreq_policy policy;
5355 		memset(&policy, 0, sizeof(policy));
5356 		cpu = get_cpu();
5357 		cpufreq_get_policy(&policy, cpu);
5358 		if (policy.cpuinfo.max_freq)
5359 			max_tsc_khz = policy.cpuinfo.max_freq;
5360 		put_cpu();
5361 #endif
5362 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5363 					  CPUFREQ_TRANSITION_NOTIFIER);
5364 	}
5365 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5366 	for_each_online_cpu(cpu)
5367 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5368 }
5369 
5370 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5371 
5372 int kvm_is_in_guest(void)
5373 {
5374 	return __this_cpu_read(current_vcpu) != NULL;
5375 }
5376 
5377 static int kvm_is_user_mode(void)
5378 {
5379 	int user_mode = 3;
5380 
5381 	if (__this_cpu_read(current_vcpu))
5382 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5383 
5384 	return user_mode != 0;
5385 }
5386 
5387 static unsigned long kvm_get_guest_ip(void)
5388 {
5389 	unsigned long ip = 0;
5390 
5391 	if (__this_cpu_read(current_vcpu))
5392 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5393 
5394 	return ip;
5395 }
5396 
5397 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5398 	.is_in_guest		= kvm_is_in_guest,
5399 	.is_user_mode		= kvm_is_user_mode,
5400 	.get_guest_ip		= kvm_get_guest_ip,
5401 };
5402 
5403 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5404 {
5405 	__this_cpu_write(current_vcpu, vcpu);
5406 }
5407 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5408 
5409 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5410 {
5411 	__this_cpu_write(current_vcpu, NULL);
5412 }
5413 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5414 
5415 static void kvm_set_mmio_spte_mask(void)
5416 {
5417 	u64 mask;
5418 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5419 
5420 	/*
5421 	 * Set the reserved bits and the present bit of an paging-structure
5422 	 * entry to generate page fault with PFER.RSV = 1.
5423 	 */
5424 	 /* Mask the reserved physical address bits. */
5425 	mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5426 
5427 	/* Bit 62 is always reserved for 32bit host. */
5428 	mask |= 0x3ull << 62;
5429 
5430 	/* Set the present bit. */
5431 	mask |= 1ull;
5432 
5433 #ifdef CONFIG_X86_64
5434 	/*
5435 	 * If reserved bit is not supported, clear the present bit to disable
5436 	 * mmio page fault.
5437 	 */
5438 	if (maxphyaddr == 52)
5439 		mask &= ~1ull;
5440 #endif
5441 
5442 	kvm_mmu_set_mmio_spte_mask(mask);
5443 }
5444 
5445 #ifdef CONFIG_X86_64
5446 static void pvclock_gtod_update_fn(struct work_struct *work)
5447 {
5448 	struct kvm *kvm;
5449 
5450 	struct kvm_vcpu *vcpu;
5451 	int i;
5452 
5453 	spin_lock(&kvm_lock);
5454 	list_for_each_entry(kvm, &vm_list, vm_list)
5455 		kvm_for_each_vcpu(i, vcpu, kvm)
5456 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5457 	atomic_set(&kvm_guest_has_master_clock, 0);
5458 	spin_unlock(&kvm_lock);
5459 }
5460 
5461 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5462 
5463 /*
5464  * Notification about pvclock gtod data update.
5465  */
5466 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5467 			       void *priv)
5468 {
5469 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5470 	struct timekeeper *tk = priv;
5471 
5472 	update_pvclock_gtod(tk);
5473 
5474 	/* disable master clock if host does not trust, or does not
5475 	 * use, TSC clocksource
5476 	 */
5477 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5478 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5479 		queue_work(system_long_wq, &pvclock_gtod_work);
5480 
5481 	return 0;
5482 }
5483 
5484 static struct notifier_block pvclock_gtod_notifier = {
5485 	.notifier_call = pvclock_gtod_notify,
5486 };
5487 #endif
5488 
5489 int kvm_arch_init(void *opaque)
5490 {
5491 	int r;
5492 	struct kvm_x86_ops *ops = opaque;
5493 
5494 	if (kvm_x86_ops) {
5495 		printk(KERN_ERR "kvm: already loaded the other module\n");
5496 		r = -EEXIST;
5497 		goto out;
5498 	}
5499 
5500 	if (!ops->cpu_has_kvm_support()) {
5501 		printk(KERN_ERR "kvm: no hardware support\n");
5502 		r = -EOPNOTSUPP;
5503 		goto out;
5504 	}
5505 	if (ops->disabled_by_bios()) {
5506 		printk(KERN_ERR "kvm: disabled by bios\n");
5507 		r = -EOPNOTSUPP;
5508 		goto out;
5509 	}
5510 
5511 	r = -ENOMEM;
5512 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5513 	if (!shared_msrs) {
5514 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5515 		goto out;
5516 	}
5517 
5518 	r = kvm_mmu_module_init();
5519 	if (r)
5520 		goto out_free_percpu;
5521 
5522 	kvm_set_mmio_spte_mask();
5523 	kvm_init_msr_list();
5524 
5525 	kvm_x86_ops = ops;
5526 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5527 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5528 
5529 	kvm_timer_init();
5530 
5531 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5532 
5533 	if (cpu_has_xsave)
5534 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5535 
5536 	kvm_lapic_init();
5537 #ifdef CONFIG_X86_64
5538 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5539 #endif
5540 
5541 	return 0;
5542 
5543 out_free_percpu:
5544 	free_percpu(shared_msrs);
5545 out:
5546 	return r;
5547 }
5548 
5549 void kvm_arch_exit(void)
5550 {
5551 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5552 
5553 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5554 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5555 					    CPUFREQ_TRANSITION_NOTIFIER);
5556 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5557 #ifdef CONFIG_X86_64
5558 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5559 #endif
5560 	kvm_x86_ops = NULL;
5561 	kvm_mmu_module_exit();
5562 	free_percpu(shared_msrs);
5563 }
5564 
5565 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5566 {
5567 	++vcpu->stat.halt_exits;
5568 	if (irqchip_in_kernel(vcpu->kvm)) {
5569 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5570 		return 1;
5571 	} else {
5572 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5573 		return 0;
5574 	}
5575 }
5576 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5577 
5578 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5579 {
5580 	u64 param, ingpa, outgpa, ret;
5581 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5582 	bool fast, longmode;
5583 	int cs_db, cs_l;
5584 
5585 	/*
5586 	 * hypercall generates UD from non zero cpl and real mode
5587 	 * per HYPER-V spec
5588 	 */
5589 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5590 		kvm_queue_exception(vcpu, UD_VECTOR);
5591 		return 0;
5592 	}
5593 
5594 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5595 	longmode = is_long_mode(vcpu) && cs_l == 1;
5596 
5597 	if (!longmode) {
5598 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5599 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5600 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5601 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5602 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5603 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5604 	}
5605 #ifdef CONFIG_X86_64
5606 	else {
5607 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5608 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5609 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5610 	}
5611 #endif
5612 
5613 	code = param & 0xffff;
5614 	fast = (param >> 16) & 0x1;
5615 	rep_cnt = (param >> 32) & 0xfff;
5616 	rep_idx = (param >> 48) & 0xfff;
5617 
5618 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5619 
5620 	switch (code) {
5621 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5622 		kvm_vcpu_on_spin(vcpu);
5623 		break;
5624 	default:
5625 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5626 		break;
5627 	}
5628 
5629 	ret = res | (((u64)rep_done & 0xfff) << 32);
5630 	if (longmode) {
5631 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5632 	} else {
5633 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5634 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5635 	}
5636 
5637 	return 1;
5638 }
5639 
5640 /*
5641  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5642  *
5643  * @apicid - apicid of vcpu to be kicked.
5644  */
5645 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5646 {
5647 	struct kvm_lapic_irq lapic_irq;
5648 
5649 	lapic_irq.shorthand = 0;
5650 	lapic_irq.dest_mode = 0;
5651 	lapic_irq.dest_id = apicid;
5652 
5653 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5654 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5655 }
5656 
5657 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5658 {
5659 	unsigned long nr, a0, a1, a2, a3, ret;
5660 	int r = 1;
5661 
5662 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5663 		return kvm_hv_hypercall(vcpu);
5664 
5665 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5666 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5667 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5668 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5669 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5670 
5671 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5672 
5673 	if (!is_long_mode(vcpu)) {
5674 		nr &= 0xFFFFFFFF;
5675 		a0 &= 0xFFFFFFFF;
5676 		a1 &= 0xFFFFFFFF;
5677 		a2 &= 0xFFFFFFFF;
5678 		a3 &= 0xFFFFFFFF;
5679 	}
5680 
5681 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5682 		ret = -KVM_EPERM;
5683 		goto out;
5684 	}
5685 
5686 	switch (nr) {
5687 	case KVM_HC_VAPIC_POLL_IRQ:
5688 		ret = 0;
5689 		break;
5690 	case KVM_HC_KICK_CPU:
5691 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5692 		ret = 0;
5693 		break;
5694 	default:
5695 		ret = -KVM_ENOSYS;
5696 		break;
5697 	}
5698 out:
5699 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5700 	++vcpu->stat.hypercalls;
5701 	return r;
5702 }
5703 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5704 
5705 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5706 {
5707 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5708 	char instruction[3];
5709 	unsigned long rip = kvm_rip_read(vcpu);
5710 
5711 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5712 
5713 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5714 }
5715 
5716 /*
5717  * Check if userspace requested an interrupt window, and that the
5718  * interrupt window is open.
5719  *
5720  * No need to exit to userspace if we already have an interrupt queued.
5721  */
5722 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5723 {
5724 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5725 		vcpu->run->request_interrupt_window &&
5726 		kvm_arch_interrupt_allowed(vcpu));
5727 }
5728 
5729 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5730 {
5731 	struct kvm_run *kvm_run = vcpu->run;
5732 
5733 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5734 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5735 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5736 	if (irqchip_in_kernel(vcpu->kvm))
5737 		kvm_run->ready_for_interrupt_injection = 1;
5738 	else
5739 		kvm_run->ready_for_interrupt_injection =
5740 			kvm_arch_interrupt_allowed(vcpu) &&
5741 			!kvm_cpu_has_interrupt(vcpu) &&
5742 			!kvm_event_needs_reinjection(vcpu);
5743 }
5744 
5745 static int vapic_enter(struct kvm_vcpu *vcpu)
5746 {
5747 	struct kvm_lapic *apic = vcpu->arch.apic;
5748 	struct page *page;
5749 
5750 	if (!apic || !apic->vapic_addr)
5751 		return 0;
5752 
5753 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5754 	if (is_error_page(page))
5755 		return -EFAULT;
5756 
5757 	vcpu->arch.apic->vapic_page = page;
5758 	return 0;
5759 }
5760 
5761 static void vapic_exit(struct kvm_vcpu *vcpu)
5762 {
5763 	struct kvm_lapic *apic = vcpu->arch.apic;
5764 	int idx;
5765 
5766 	if (!apic || !apic->vapic_addr)
5767 		return;
5768 
5769 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5770 	kvm_release_page_dirty(apic->vapic_page);
5771 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5772 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5773 }
5774 
5775 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5776 {
5777 	int max_irr, tpr;
5778 
5779 	if (!kvm_x86_ops->update_cr8_intercept)
5780 		return;
5781 
5782 	if (!vcpu->arch.apic)
5783 		return;
5784 
5785 	if (!vcpu->arch.apic->vapic_addr)
5786 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5787 	else
5788 		max_irr = -1;
5789 
5790 	if (max_irr != -1)
5791 		max_irr >>= 4;
5792 
5793 	tpr = kvm_lapic_get_cr8(vcpu);
5794 
5795 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5796 }
5797 
5798 static void inject_pending_event(struct kvm_vcpu *vcpu)
5799 {
5800 	/* try to reinject previous events if any */
5801 	if (vcpu->arch.exception.pending) {
5802 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5803 					vcpu->arch.exception.has_error_code,
5804 					vcpu->arch.exception.error_code);
5805 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5806 					  vcpu->arch.exception.has_error_code,
5807 					  vcpu->arch.exception.error_code,
5808 					  vcpu->arch.exception.reinject);
5809 		return;
5810 	}
5811 
5812 	if (vcpu->arch.nmi_injected) {
5813 		kvm_x86_ops->set_nmi(vcpu);
5814 		return;
5815 	}
5816 
5817 	if (vcpu->arch.interrupt.pending) {
5818 		kvm_x86_ops->set_irq(vcpu);
5819 		return;
5820 	}
5821 
5822 	/* try to inject new event if pending */
5823 	if (vcpu->arch.nmi_pending) {
5824 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5825 			--vcpu->arch.nmi_pending;
5826 			vcpu->arch.nmi_injected = true;
5827 			kvm_x86_ops->set_nmi(vcpu);
5828 		}
5829 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5830 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5831 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5832 					    false);
5833 			kvm_x86_ops->set_irq(vcpu);
5834 		}
5835 	}
5836 }
5837 
5838 static void process_nmi(struct kvm_vcpu *vcpu)
5839 {
5840 	unsigned limit = 2;
5841 
5842 	/*
5843 	 * x86 is limited to one NMI running, and one NMI pending after it.
5844 	 * If an NMI is already in progress, limit further NMIs to just one.
5845 	 * Otherwise, allow two (and we'll inject the first one immediately).
5846 	 */
5847 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5848 		limit = 1;
5849 
5850 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5851 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5852 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5853 }
5854 
5855 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5856 {
5857 	u64 eoi_exit_bitmap[4];
5858 	u32 tmr[8];
5859 
5860 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5861 		return;
5862 
5863 	memset(eoi_exit_bitmap, 0, 32);
5864 	memset(tmr, 0, 32);
5865 
5866 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5867 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5868 	kvm_apic_update_tmr(vcpu, tmr);
5869 }
5870 
5871 /*
5872  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5873  * exiting to the userspace.  Otherwise, the value will be returned to the
5874  * userspace.
5875  */
5876 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5877 {
5878 	int r;
5879 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5880 		vcpu->run->request_interrupt_window;
5881 	bool req_immediate_exit = false;
5882 
5883 	if (vcpu->requests) {
5884 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5885 			kvm_mmu_unload(vcpu);
5886 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5887 			__kvm_migrate_timers(vcpu);
5888 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5889 			kvm_gen_update_masterclock(vcpu->kvm);
5890 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5891 			kvm_gen_kvmclock_update(vcpu);
5892 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5893 			r = kvm_guest_time_update(vcpu);
5894 			if (unlikely(r))
5895 				goto out;
5896 		}
5897 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5898 			kvm_mmu_sync_roots(vcpu);
5899 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5900 			kvm_x86_ops->tlb_flush(vcpu);
5901 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5902 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5903 			r = 0;
5904 			goto out;
5905 		}
5906 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5907 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5908 			r = 0;
5909 			goto out;
5910 		}
5911 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5912 			vcpu->fpu_active = 0;
5913 			kvm_x86_ops->fpu_deactivate(vcpu);
5914 		}
5915 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5916 			/* Page is swapped out. Do synthetic halt */
5917 			vcpu->arch.apf.halted = true;
5918 			r = 1;
5919 			goto out;
5920 		}
5921 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5922 			record_steal_time(vcpu);
5923 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5924 			process_nmi(vcpu);
5925 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5926 			kvm_handle_pmu_event(vcpu);
5927 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5928 			kvm_deliver_pmi(vcpu);
5929 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5930 			vcpu_scan_ioapic(vcpu);
5931 	}
5932 
5933 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5934 		kvm_apic_accept_events(vcpu);
5935 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5936 			r = 1;
5937 			goto out;
5938 		}
5939 
5940 		inject_pending_event(vcpu);
5941 
5942 		/* enable NMI/IRQ window open exits if needed */
5943 		if (vcpu->arch.nmi_pending)
5944 			req_immediate_exit =
5945 				kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5946 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5947 			req_immediate_exit =
5948 				kvm_x86_ops->enable_irq_window(vcpu) != 0;
5949 
5950 		if (kvm_lapic_enabled(vcpu)) {
5951 			/*
5952 			 * Update architecture specific hints for APIC
5953 			 * virtual interrupt delivery.
5954 			 */
5955 			if (kvm_x86_ops->hwapic_irr_update)
5956 				kvm_x86_ops->hwapic_irr_update(vcpu,
5957 					kvm_lapic_find_highest_irr(vcpu));
5958 			update_cr8_intercept(vcpu);
5959 			kvm_lapic_sync_to_vapic(vcpu);
5960 		}
5961 	}
5962 
5963 	r = kvm_mmu_reload(vcpu);
5964 	if (unlikely(r)) {
5965 		goto cancel_injection;
5966 	}
5967 
5968 	preempt_disable();
5969 
5970 	kvm_x86_ops->prepare_guest_switch(vcpu);
5971 	if (vcpu->fpu_active)
5972 		kvm_load_guest_fpu(vcpu);
5973 	kvm_load_guest_xcr0(vcpu);
5974 
5975 	vcpu->mode = IN_GUEST_MODE;
5976 
5977 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5978 
5979 	/* We should set ->mode before check ->requests,
5980 	 * see the comment in make_all_cpus_request.
5981 	 */
5982 	smp_mb__after_srcu_read_unlock();
5983 
5984 	local_irq_disable();
5985 
5986 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5987 	    || need_resched() || signal_pending(current)) {
5988 		vcpu->mode = OUTSIDE_GUEST_MODE;
5989 		smp_wmb();
5990 		local_irq_enable();
5991 		preempt_enable();
5992 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5993 		r = 1;
5994 		goto cancel_injection;
5995 	}
5996 
5997 	if (req_immediate_exit)
5998 		smp_send_reschedule(vcpu->cpu);
5999 
6000 	kvm_guest_enter();
6001 
6002 	if (unlikely(vcpu->arch.switch_db_regs)) {
6003 		set_debugreg(0, 7);
6004 		set_debugreg(vcpu->arch.eff_db[0], 0);
6005 		set_debugreg(vcpu->arch.eff_db[1], 1);
6006 		set_debugreg(vcpu->arch.eff_db[2], 2);
6007 		set_debugreg(vcpu->arch.eff_db[3], 3);
6008 	}
6009 
6010 	trace_kvm_entry(vcpu->vcpu_id);
6011 	kvm_x86_ops->run(vcpu);
6012 
6013 	/*
6014 	 * If the guest has used debug registers, at least dr7
6015 	 * will be disabled while returning to the host.
6016 	 * If we don't have active breakpoints in the host, we don't
6017 	 * care about the messed up debug address registers. But if
6018 	 * we have some of them active, restore the old state.
6019 	 */
6020 	if (hw_breakpoint_active())
6021 		hw_breakpoint_restore();
6022 
6023 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6024 							   native_read_tsc());
6025 
6026 	vcpu->mode = OUTSIDE_GUEST_MODE;
6027 	smp_wmb();
6028 
6029 	/* Interrupt is enabled by handle_external_intr() */
6030 	kvm_x86_ops->handle_external_intr(vcpu);
6031 
6032 	++vcpu->stat.exits;
6033 
6034 	/*
6035 	 * We must have an instruction between local_irq_enable() and
6036 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6037 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6038 	 * But we need to prevent reordering, hence this barrier():
6039 	 */
6040 	barrier();
6041 
6042 	kvm_guest_exit();
6043 
6044 	preempt_enable();
6045 
6046 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6047 
6048 	/*
6049 	 * Profile KVM exit RIPs:
6050 	 */
6051 	if (unlikely(prof_on == KVM_PROFILING)) {
6052 		unsigned long rip = kvm_rip_read(vcpu);
6053 		profile_hit(KVM_PROFILING, (void *)rip);
6054 	}
6055 
6056 	if (unlikely(vcpu->arch.tsc_always_catchup))
6057 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6058 
6059 	if (vcpu->arch.apic_attention)
6060 		kvm_lapic_sync_from_vapic(vcpu);
6061 
6062 	r = kvm_x86_ops->handle_exit(vcpu);
6063 	return r;
6064 
6065 cancel_injection:
6066 	kvm_x86_ops->cancel_injection(vcpu);
6067 	if (unlikely(vcpu->arch.apic_attention))
6068 		kvm_lapic_sync_from_vapic(vcpu);
6069 out:
6070 	return r;
6071 }
6072 
6073 
6074 static int __vcpu_run(struct kvm_vcpu *vcpu)
6075 {
6076 	int r;
6077 	struct kvm *kvm = vcpu->kvm;
6078 
6079 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6080 	r = vapic_enter(vcpu);
6081 	if (r) {
6082 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6083 		return r;
6084 	}
6085 
6086 	r = 1;
6087 	while (r > 0) {
6088 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6089 		    !vcpu->arch.apf.halted)
6090 			r = vcpu_enter_guest(vcpu);
6091 		else {
6092 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6093 			kvm_vcpu_block(vcpu);
6094 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6095 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6096 				kvm_apic_accept_events(vcpu);
6097 				switch(vcpu->arch.mp_state) {
6098 				case KVM_MP_STATE_HALTED:
6099 					vcpu->arch.pv.pv_unhalted = false;
6100 					vcpu->arch.mp_state =
6101 						KVM_MP_STATE_RUNNABLE;
6102 				case KVM_MP_STATE_RUNNABLE:
6103 					vcpu->arch.apf.halted = false;
6104 					break;
6105 				case KVM_MP_STATE_INIT_RECEIVED:
6106 					break;
6107 				default:
6108 					r = -EINTR;
6109 					break;
6110 				}
6111 			}
6112 		}
6113 
6114 		if (r <= 0)
6115 			break;
6116 
6117 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6118 		if (kvm_cpu_has_pending_timer(vcpu))
6119 			kvm_inject_pending_timer_irqs(vcpu);
6120 
6121 		if (dm_request_for_irq_injection(vcpu)) {
6122 			r = -EINTR;
6123 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6124 			++vcpu->stat.request_irq_exits;
6125 		}
6126 
6127 		kvm_check_async_pf_completion(vcpu);
6128 
6129 		if (signal_pending(current)) {
6130 			r = -EINTR;
6131 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6132 			++vcpu->stat.signal_exits;
6133 		}
6134 		if (need_resched()) {
6135 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6136 			cond_resched();
6137 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6138 		}
6139 	}
6140 
6141 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6142 
6143 	vapic_exit(vcpu);
6144 
6145 	return r;
6146 }
6147 
6148 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6149 {
6150 	int r;
6151 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6152 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6153 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6154 	if (r != EMULATE_DONE)
6155 		return 0;
6156 	return 1;
6157 }
6158 
6159 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6160 {
6161 	BUG_ON(!vcpu->arch.pio.count);
6162 
6163 	return complete_emulated_io(vcpu);
6164 }
6165 
6166 /*
6167  * Implements the following, as a state machine:
6168  *
6169  * read:
6170  *   for each fragment
6171  *     for each mmio piece in the fragment
6172  *       write gpa, len
6173  *       exit
6174  *       copy data
6175  *   execute insn
6176  *
6177  * write:
6178  *   for each fragment
6179  *     for each mmio piece in the fragment
6180  *       write gpa, len
6181  *       copy data
6182  *       exit
6183  */
6184 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6185 {
6186 	struct kvm_run *run = vcpu->run;
6187 	struct kvm_mmio_fragment *frag;
6188 	unsigned len;
6189 
6190 	BUG_ON(!vcpu->mmio_needed);
6191 
6192 	/* Complete previous fragment */
6193 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6194 	len = min(8u, frag->len);
6195 	if (!vcpu->mmio_is_write)
6196 		memcpy(frag->data, run->mmio.data, len);
6197 
6198 	if (frag->len <= 8) {
6199 		/* Switch to the next fragment. */
6200 		frag++;
6201 		vcpu->mmio_cur_fragment++;
6202 	} else {
6203 		/* Go forward to the next mmio piece. */
6204 		frag->data += len;
6205 		frag->gpa += len;
6206 		frag->len -= len;
6207 	}
6208 
6209 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6210 		vcpu->mmio_needed = 0;
6211 
6212 		/* FIXME: return into emulator if single-stepping.  */
6213 		if (vcpu->mmio_is_write)
6214 			return 1;
6215 		vcpu->mmio_read_completed = 1;
6216 		return complete_emulated_io(vcpu);
6217 	}
6218 
6219 	run->exit_reason = KVM_EXIT_MMIO;
6220 	run->mmio.phys_addr = frag->gpa;
6221 	if (vcpu->mmio_is_write)
6222 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6223 	run->mmio.len = min(8u, frag->len);
6224 	run->mmio.is_write = vcpu->mmio_is_write;
6225 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6226 	return 0;
6227 }
6228 
6229 
6230 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6231 {
6232 	int r;
6233 	sigset_t sigsaved;
6234 
6235 	if (!tsk_used_math(current) && init_fpu(current))
6236 		return -ENOMEM;
6237 
6238 	if (vcpu->sigset_active)
6239 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6240 
6241 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6242 		kvm_vcpu_block(vcpu);
6243 		kvm_apic_accept_events(vcpu);
6244 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6245 		r = -EAGAIN;
6246 		goto out;
6247 	}
6248 
6249 	/* re-sync apic's tpr */
6250 	if (!irqchip_in_kernel(vcpu->kvm)) {
6251 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6252 			r = -EINVAL;
6253 			goto out;
6254 		}
6255 	}
6256 
6257 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6258 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6259 		vcpu->arch.complete_userspace_io = NULL;
6260 		r = cui(vcpu);
6261 		if (r <= 0)
6262 			goto out;
6263 	} else
6264 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6265 
6266 	r = __vcpu_run(vcpu);
6267 
6268 out:
6269 	post_kvm_run_save(vcpu);
6270 	if (vcpu->sigset_active)
6271 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6272 
6273 	return r;
6274 }
6275 
6276 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6277 {
6278 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6279 		/*
6280 		 * We are here if userspace calls get_regs() in the middle of
6281 		 * instruction emulation. Registers state needs to be copied
6282 		 * back from emulation context to vcpu. Userspace shouldn't do
6283 		 * that usually, but some bad designed PV devices (vmware
6284 		 * backdoor interface) need this to work
6285 		 */
6286 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6287 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6288 	}
6289 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6290 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6291 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6292 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6293 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6294 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6295 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6296 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6297 #ifdef CONFIG_X86_64
6298 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6299 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6300 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6301 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6302 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6303 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6304 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6305 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6306 #endif
6307 
6308 	regs->rip = kvm_rip_read(vcpu);
6309 	regs->rflags = kvm_get_rflags(vcpu);
6310 
6311 	return 0;
6312 }
6313 
6314 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6315 {
6316 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6317 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6318 
6319 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6320 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6321 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6322 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6323 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6324 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6325 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6326 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6327 #ifdef CONFIG_X86_64
6328 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6329 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6330 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6331 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6332 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6333 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6334 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6335 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6336 #endif
6337 
6338 	kvm_rip_write(vcpu, regs->rip);
6339 	kvm_set_rflags(vcpu, regs->rflags);
6340 
6341 	vcpu->arch.exception.pending = false;
6342 
6343 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6344 
6345 	return 0;
6346 }
6347 
6348 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6349 {
6350 	struct kvm_segment cs;
6351 
6352 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6353 	*db = cs.db;
6354 	*l = cs.l;
6355 }
6356 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6357 
6358 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6359 				  struct kvm_sregs *sregs)
6360 {
6361 	struct desc_ptr dt;
6362 
6363 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6364 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6365 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6366 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6367 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6368 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6369 
6370 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6371 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6372 
6373 	kvm_x86_ops->get_idt(vcpu, &dt);
6374 	sregs->idt.limit = dt.size;
6375 	sregs->idt.base = dt.address;
6376 	kvm_x86_ops->get_gdt(vcpu, &dt);
6377 	sregs->gdt.limit = dt.size;
6378 	sregs->gdt.base = dt.address;
6379 
6380 	sregs->cr0 = kvm_read_cr0(vcpu);
6381 	sregs->cr2 = vcpu->arch.cr2;
6382 	sregs->cr3 = kvm_read_cr3(vcpu);
6383 	sregs->cr4 = kvm_read_cr4(vcpu);
6384 	sregs->cr8 = kvm_get_cr8(vcpu);
6385 	sregs->efer = vcpu->arch.efer;
6386 	sregs->apic_base = kvm_get_apic_base(vcpu);
6387 
6388 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6389 
6390 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6391 		set_bit(vcpu->arch.interrupt.nr,
6392 			(unsigned long *)sregs->interrupt_bitmap);
6393 
6394 	return 0;
6395 }
6396 
6397 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6398 				    struct kvm_mp_state *mp_state)
6399 {
6400 	kvm_apic_accept_events(vcpu);
6401 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6402 					vcpu->arch.pv.pv_unhalted)
6403 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6404 	else
6405 		mp_state->mp_state = vcpu->arch.mp_state;
6406 
6407 	return 0;
6408 }
6409 
6410 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6411 				    struct kvm_mp_state *mp_state)
6412 {
6413 	if (!kvm_vcpu_has_lapic(vcpu) &&
6414 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6415 		return -EINVAL;
6416 
6417 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6418 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6419 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6420 	} else
6421 		vcpu->arch.mp_state = mp_state->mp_state;
6422 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6423 	return 0;
6424 }
6425 
6426 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6427 		    int reason, bool has_error_code, u32 error_code)
6428 {
6429 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6430 	int ret;
6431 
6432 	init_emulate_ctxt(vcpu);
6433 
6434 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6435 				   has_error_code, error_code);
6436 
6437 	if (ret)
6438 		return EMULATE_FAIL;
6439 
6440 	kvm_rip_write(vcpu, ctxt->eip);
6441 	kvm_set_rflags(vcpu, ctxt->eflags);
6442 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6443 	return EMULATE_DONE;
6444 }
6445 EXPORT_SYMBOL_GPL(kvm_task_switch);
6446 
6447 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6448 				  struct kvm_sregs *sregs)
6449 {
6450 	int mmu_reset_needed = 0;
6451 	int pending_vec, max_bits, idx;
6452 	struct desc_ptr dt;
6453 
6454 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6455 		return -EINVAL;
6456 
6457 	dt.size = sregs->idt.limit;
6458 	dt.address = sregs->idt.base;
6459 	kvm_x86_ops->set_idt(vcpu, &dt);
6460 	dt.size = sregs->gdt.limit;
6461 	dt.address = sregs->gdt.base;
6462 	kvm_x86_ops->set_gdt(vcpu, &dt);
6463 
6464 	vcpu->arch.cr2 = sregs->cr2;
6465 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6466 	vcpu->arch.cr3 = sregs->cr3;
6467 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6468 
6469 	kvm_set_cr8(vcpu, sregs->cr8);
6470 
6471 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6472 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6473 	kvm_set_apic_base(vcpu, sregs->apic_base);
6474 
6475 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6476 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6477 	vcpu->arch.cr0 = sregs->cr0;
6478 
6479 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6480 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6481 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6482 		kvm_update_cpuid(vcpu);
6483 
6484 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6485 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6486 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6487 		mmu_reset_needed = 1;
6488 	}
6489 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6490 
6491 	if (mmu_reset_needed)
6492 		kvm_mmu_reset_context(vcpu);
6493 
6494 	max_bits = KVM_NR_INTERRUPTS;
6495 	pending_vec = find_first_bit(
6496 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6497 	if (pending_vec < max_bits) {
6498 		kvm_queue_interrupt(vcpu, pending_vec, false);
6499 		pr_debug("Set back pending irq %d\n", pending_vec);
6500 	}
6501 
6502 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6503 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6504 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6505 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6506 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6507 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6508 
6509 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6510 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6511 
6512 	update_cr8_intercept(vcpu);
6513 
6514 	/* Older userspace won't unhalt the vcpu on reset. */
6515 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6516 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6517 	    !is_protmode(vcpu))
6518 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6519 
6520 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6521 
6522 	return 0;
6523 }
6524 
6525 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6526 					struct kvm_guest_debug *dbg)
6527 {
6528 	unsigned long rflags;
6529 	int i, r;
6530 
6531 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6532 		r = -EBUSY;
6533 		if (vcpu->arch.exception.pending)
6534 			goto out;
6535 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6536 			kvm_queue_exception(vcpu, DB_VECTOR);
6537 		else
6538 			kvm_queue_exception(vcpu, BP_VECTOR);
6539 	}
6540 
6541 	/*
6542 	 * Read rflags as long as potentially injected trace flags are still
6543 	 * filtered out.
6544 	 */
6545 	rflags = kvm_get_rflags(vcpu);
6546 
6547 	vcpu->guest_debug = dbg->control;
6548 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6549 		vcpu->guest_debug = 0;
6550 
6551 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6552 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6553 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6554 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6555 	} else {
6556 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6557 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6558 	}
6559 	kvm_update_dr7(vcpu);
6560 
6561 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6562 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6563 			get_segment_base(vcpu, VCPU_SREG_CS);
6564 
6565 	/*
6566 	 * Trigger an rflags update that will inject or remove the trace
6567 	 * flags.
6568 	 */
6569 	kvm_set_rflags(vcpu, rflags);
6570 
6571 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6572 
6573 	r = 0;
6574 
6575 out:
6576 
6577 	return r;
6578 }
6579 
6580 /*
6581  * Translate a guest virtual address to a guest physical address.
6582  */
6583 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6584 				    struct kvm_translation *tr)
6585 {
6586 	unsigned long vaddr = tr->linear_address;
6587 	gpa_t gpa;
6588 	int idx;
6589 
6590 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6591 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6592 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6593 	tr->physical_address = gpa;
6594 	tr->valid = gpa != UNMAPPED_GVA;
6595 	tr->writeable = 1;
6596 	tr->usermode = 0;
6597 
6598 	return 0;
6599 }
6600 
6601 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6602 {
6603 	struct i387_fxsave_struct *fxsave =
6604 			&vcpu->arch.guest_fpu.state->fxsave;
6605 
6606 	memcpy(fpu->fpr, fxsave->st_space, 128);
6607 	fpu->fcw = fxsave->cwd;
6608 	fpu->fsw = fxsave->swd;
6609 	fpu->ftwx = fxsave->twd;
6610 	fpu->last_opcode = fxsave->fop;
6611 	fpu->last_ip = fxsave->rip;
6612 	fpu->last_dp = fxsave->rdp;
6613 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6614 
6615 	return 0;
6616 }
6617 
6618 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6619 {
6620 	struct i387_fxsave_struct *fxsave =
6621 			&vcpu->arch.guest_fpu.state->fxsave;
6622 
6623 	memcpy(fxsave->st_space, fpu->fpr, 128);
6624 	fxsave->cwd = fpu->fcw;
6625 	fxsave->swd = fpu->fsw;
6626 	fxsave->twd = fpu->ftwx;
6627 	fxsave->fop = fpu->last_opcode;
6628 	fxsave->rip = fpu->last_ip;
6629 	fxsave->rdp = fpu->last_dp;
6630 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6631 
6632 	return 0;
6633 }
6634 
6635 int fx_init(struct kvm_vcpu *vcpu)
6636 {
6637 	int err;
6638 
6639 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6640 	if (err)
6641 		return err;
6642 
6643 	fpu_finit(&vcpu->arch.guest_fpu);
6644 
6645 	/*
6646 	 * Ensure guest xcr0 is valid for loading
6647 	 */
6648 	vcpu->arch.xcr0 = XSTATE_FP;
6649 
6650 	vcpu->arch.cr0 |= X86_CR0_ET;
6651 
6652 	return 0;
6653 }
6654 EXPORT_SYMBOL_GPL(fx_init);
6655 
6656 static void fx_free(struct kvm_vcpu *vcpu)
6657 {
6658 	fpu_free(&vcpu->arch.guest_fpu);
6659 }
6660 
6661 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6662 {
6663 	if (vcpu->guest_fpu_loaded)
6664 		return;
6665 
6666 	/*
6667 	 * Restore all possible states in the guest,
6668 	 * and assume host would use all available bits.
6669 	 * Guest xcr0 would be loaded later.
6670 	 */
6671 	kvm_put_guest_xcr0(vcpu);
6672 	vcpu->guest_fpu_loaded = 1;
6673 	__kernel_fpu_begin();
6674 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6675 	trace_kvm_fpu(1);
6676 }
6677 
6678 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6679 {
6680 	kvm_put_guest_xcr0(vcpu);
6681 
6682 	if (!vcpu->guest_fpu_loaded)
6683 		return;
6684 
6685 	vcpu->guest_fpu_loaded = 0;
6686 	fpu_save_init(&vcpu->arch.guest_fpu);
6687 	__kernel_fpu_end();
6688 	++vcpu->stat.fpu_reload;
6689 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6690 	trace_kvm_fpu(0);
6691 }
6692 
6693 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6694 {
6695 	kvmclock_reset(vcpu);
6696 
6697 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6698 	fx_free(vcpu);
6699 	kvm_x86_ops->vcpu_free(vcpu);
6700 }
6701 
6702 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6703 						unsigned int id)
6704 {
6705 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6706 		printk_once(KERN_WARNING
6707 		"kvm: SMP vm created on host with unstable TSC; "
6708 		"guest TSC will not be reliable\n");
6709 	return kvm_x86_ops->vcpu_create(kvm, id);
6710 }
6711 
6712 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6713 {
6714 	int r;
6715 
6716 	vcpu->arch.mtrr_state.have_fixed = 1;
6717 	r = vcpu_load(vcpu);
6718 	if (r)
6719 		return r;
6720 	kvm_vcpu_reset(vcpu);
6721 	kvm_mmu_setup(vcpu);
6722 	vcpu_put(vcpu);
6723 
6724 	return r;
6725 }
6726 
6727 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6728 {
6729 	int r;
6730 	struct msr_data msr;
6731 
6732 	r = vcpu_load(vcpu);
6733 	if (r)
6734 		return r;
6735 	msr.data = 0x0;
6736 	msr.index = MSR_IA32_TSC;
6737 	msr.host_initiated = true;
6738 	kvm_write_tsc(vcpu, &msr);
6739 	vcpu_put(vcpu);
6740 
6741 	return r;
6742 }
6743 
6744 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6745 {
6746 	int r;
6747 	vcpu->arch.apf.msr_val = 0;
6748 
6749 	r = vcpu_load(vcpu);
6750 	BUG_ON(r);
6751 	kvm_mmu_unload(vcpu);
6752 	vcpu_put(vcpu);
6753 
6754 	fx_free(vcpu);
6755 	kvm_x86_ops->vcpu_free(vcpu);
6756 }
6757 
6758 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6759 {
6760 	atomic_set(&vcpu->arch.nmi_queued, 0);
6761 	vcpu->arch.nmi_pending = 0;
6762 	vcpu->arch.nmi_injected = false;
6763 
6764 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6765 	vcpu->arch.dr6 = DR6_FIXED_1;
6766 	vcpu->arch.dr7 = DR7_FIXED_1;
6767 	kvm_update_dr7(vcpu);
6768 
6769 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6770 	vcpu->arch.apf.msr_val = 0;
6771 	vcpu->arch.st.msr_val = 0;
6772 
6773 	kvmclock_reset(vcpu);
6774 
6775 	kvm_clear_async_pf_completion_queue(vcpu);
6776 	kvm_async_pf_hash_reset(vcpu);
6777 	vcpu->arch.apf.halted = false;
6778 
6779 	kvm_pmu_reset(vcpu);
6780 
6781 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6782 	vcpu->arch.regs_avail = ~0;
6783 	vcpu->arch.regs_dirty = ~0;
6784 
6785 	kvm_x86_ops->vcpu_reset(vcpu);
6786 }
6787 
6788 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6789 {
6790 	struct kvm_segment cs;
6791 
6792 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6793 	cs.selector = vector << 8;
6794 	cs.base = vector << 12;
6795 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6796 	kvm_rip_write(vcpu, 0);
6797 }
6798 
6799 int kvm_arch_hardware_enable(void *garbage)
6800 {
6801 	struct kvm *kvm;
6802 	struct kvm_vcpu *vcpu;
6803 	int i;
6804 	int ret;
6805 	u64 local_tsc;
6806 	u64 max_tsc = 0;
6807 	bool stable, backwards_tsc = false;
6808 
6809 	kvm_shared_msr_cpu_online();
6810 	ret = kvm_x86_ops->hardware_enable(garbage);
6811 	if (ret != 0)
6812 		return ret;
6813 
6814 	local_tsc = native_read_tsc();
6815 	stable = !check_tsc_unstable();
6816 	list_for_each_entry(kvm, &vm_list, vm_list) {
6817 		kvm_for_each_vcpu(i, vcpu, kvm) {
6818 			if (!stable && vcpu->cpu == smp_processor_id())
6819 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6820 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6821 				backwards_tsc = true;
6822 				if (vcpu->arch.last_host_tsc > max_tsc)
6823 					max_tsc = vcpu->arch.last_host_tsc;
6824 			}
6825 		}
6826 	}
6827 
6828 	/*
6829 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6830 	 * platforms that reset TSC during suspend or hibernate actions, but
6831 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6832 	 * detect that condition here, which happens early in CPU bringup,
6833 	 * before any KVM threads can be running.  Unfortunately, we can't
6834 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6835 	 * enough into CPU bringup that we know how much real time has actually
6836 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6837 	 * variables that haven't been updated yet.
6838 	 *
6839 	 * So we simply find the maximum observed TSC above, then record the
6840 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6841 	 * the adjustment will be applied.  Note that we accumulate
6842 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6843 	 * gets a chance to run again.  In the event that no KVM threads get a
6844 	 * chance to run, we will miss the entire elapsed period, as we'll have
6845 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6846 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6847 	 * uniform across all VCPUs (not to mention the scenario is extremely
6848 	 * unlikely). It is possible that a second hibernate recovery happens
6849 	 * much faster than a first, causing the observed TSC here to be
6850 	 * smaller; this would require additional padding adjustment, which is
6851 	 * why we set last_host_tsc to the local tsc observed here.
6852 	 *
6853 	 * N.B. - this code below runs only on platforms with reliable TSC,
6854 	 * as that is the only way backwards_tsc is set above.  Also note
6855 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6856 	 * have the same delta_cyc adjustment applied if backwards_tsc
6857 	 * is detected.  Note further, this adjustment is only done once,
6858 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6859 	 * called multiple times (one for each physical CPU bringup).
6860 	 *
6861 	 * Platforms with unreliable TSCs don't have to deal with this, they
6862 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6863 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6864 	 * guarantee that they stay in perfect synchronization.
6865 	 */
6866 	if (backwards_tsc) {
6867 		u64 delta_cyc = max_tsc - local_tsc;
6868 		list_for_each_entry(kvm, &vm_list, vm_list) {
6869 			kvm_for_each_vcpu(i, vcpu, kvm) {
6870 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6871 				vcpu->arch.last_host_tsc = local_tsc;
6872 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6873 					&vcpu->requests);
6874 			}
6875 
6876 			/*
6877 			 * We have to disable TSC offset matching.. if you were
6878 			 * booting a VM while issuing an S4 host suspend....
6879 			 * you may have some problem.  Solving this issue is
6880 			 * left as an exercise to the reader.
6881 			 */
6882 			kvm->arch.last_tsc_nsec = 0;
6883 			kvm->arch.last_tsc_write = 0;
6884 		}
6885 
6886 	}
6887 	return 0;
6888 }
6889 
6890 void kvm_arch_hardware_disable(void *garbage)
6891 {
6892 	kvm_x86_ops->hardware_disable(garbage);
6893 	drop_user_return_notifiers(garbage);
6894 }
6895 
6896 int kvm_arch_hardware_setup(void)
6897 {
6898 	return kvm_x86_ops->hardware_setup();
6899 }
6900 
6901 void kvm_arch_hardware_unsetup(void)
6902 {
6903 	kvm_x86_ops->hardware_unsetup();
6904 }
6905 
6906 void kvm_arch_check_processor_compat(void *rtn)
6907 {
6908 	kvm_x86_ops->check_processor_compatibility(rtn);
6909 }
6910 
6911 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6912 {
6913 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6914 }
6915 
6916 struct static_key kvm_no_apic_vcpu __read_mostly;
6917 
6918 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6919 {
6920 	struct page *page;
6921 	struct kvm *kvm;
6922 	int r;
6923 
6924 	BUG_ON(vcpu->kvm == NULL);
6925 	kvm = vcpu->kvm;
6926 
6927 	vcpu->arch.pv.pv_unhalted = false;
6928 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6929 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6930 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6931 	else
6932 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6933 
6934 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6935 	if (!page) {
6936 		r = -ENOMEM;
6937 		goto fail;
6938 	}
6939 	vcpu->arch.pio_data = page_address(page);
6940 
6941 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6942 
6943 	r = kvm_mmu_create(vcpu);
6944 	if (r < 0)
6945 		goto fail_free_pio_data;
6946 
6947 	if (irqchip_in_kernel(kvm)) {
6948 		r = kvm_create_lapic(vcpu);
6949 		if (r < 0)
6950 			goto fail_mmu_destroy;
6951 	} else
6952 		static_key_slow_inc(&kvm_no_apic_vcpu);
6953 
6954 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6955 				       GFP_KERNEL);
6956 	if (!vcpu->arch.mce_banks) {
6957 		r = -ENOMEM;
6958 		goto fail_free_lapic;
6959 	}
6960 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6961 
6962 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6963 		r = -ENOMEM;
6964 		goto fail_free_mce_banks;
6965 	}
6966 
6967 	r = fx_init(vcpu);
6968 	if (r)
6969 		goto fail_free_wbinvd_dirty_mask;
6970 
6971 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6972 	vcpu->arch.pv_time_enabled = false;
6973 
6974 	vcpu->arch.guest_supported_xcr0 = 0;
6975 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6976 
6977 	kvm_async_pf_hash_reset(vcpu);
6978 	kvm_pmu_init(vcpu);
6979 
6980 	return 0;
6981 fail_free_wbinvd_dirty_mask:
6982 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6983 fail_free_mce_banks:
6984 	kfree(vcpu->arch.mce_banks);
6985 fail_free_lapic:
6986 	kvm_free_lapic(vcpu);
6987 fail_mmu_destroy:
6988 	kvm_mmu_destroy(vcpu);
6989 fail_free_pio_data:
6990 	free_page((unsigned long)vcpu->arch.pio_data);
6991 fail:
6992 	return r;
6993 }
6994 
6995 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6996 {
6997 	int idx;
6998 
6999 	kvm_pmu_destroy(vcpu);
7000 	kfree(vcpu->arch.mce_banks);
7001 	kvm_free_lapic(vcpu);
7002 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7003 	kvm_mmu_destroy(vcpu);
7004 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7005 	free_page((unsigned long)vcpu->arch.pio_data);
7006 	if (!irqchip_in_kernel(vcpu->kvm))
7007 		static_key_slow_dec(&kvm_no_apic_vcpu);
7008 }
7009 
7010 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7011 {
7012 	if (type)
7013 		return -EINVAL;
7014 
7015 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7016 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7017 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7018 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7019 
7020 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7021 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7022 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7023 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7024 		&kvm->arch.irq_sources_bitmap);
7025 
7026 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7027 	mutex_init(&kvm->arch.apic_map_lock);
7028 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7029 
7030 	pvclock_update_vm_gtod_copy(kvm);
7031 
7032 	return 0;
7033 }
7034 
7035 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7036 {
7037 	int r;
7038 	r = vcpu_load(vcpu);
7039 	BUG_ON(r);
7040 	kvm_mmu_unload(vcpu);
7041 	vcpu_put(vcpu);
7042 }
7043 
7044 static void kvm_free_vcpus(struct kvm *kvm)
7045 {
7046 	unsigned int i;
7047 	struct kvm_vcpu *vcpu;
7048 
7049 	/*
7050 	 * Unpin any mmu pages first.
7051 	 */
7052 	kvm_for_each_vcpu(i, vcpu, kvm) {
7053 		kvm_clear_async_pf_completion_queue(vcpu);
7054 		kvm_unload_vcpu_mmu(vcpu);
7055 	}
7056 	kvm_for_each_vcpu(i, vcpu, kvm)
7057 		kvm_arch_vcpu_free(vcpu);
7058 
7059 	mutex_lock(&kvm->lock);
7060 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7061 		kvm->vcpus[i] = NULL;
7062 
7063 	atomic_set(&kvm->online_vcpus, 0);
7064 	mutex_unlock(&kvm->lock);
7065 }
7066 
7067 void kvm_arch_sync_events(struct kvm *kvm)
7068 {
7069 	kvm_free_all_assigned_devices(kvm);
7070 	kvm_free_pit(kvm);
7071 }
7072 
7073 void kvm_arch_destroy_vm(struct kvm *kvm)
7074 {
7075 	if (current->mm == kvm->mm) {
7076 		/*
7077 		 * Free memory regions allocated on behalf of userspace,
7078 		 * unless the the memory map has changed due to process exit
7079 		 * or fd copying.
7080 		 */
7081 		struct kvm_userspace_memory_region mem;
7082 		memset(&mem, 0, sizeof(mem));
7083 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7084 		kvm_set_memory_region(kvm, &mem);
7085 
7086 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7087 		kvm_set_memory_region(kvm, &mem);
7088 
7089 		mem.slot = TSS_PRIVATE_MEMSLOT;
7090 		kvm_set_memory_region(kvm, &mem);
7091 	}
7092 	kvm_iommu_unmap_guest(kvm);
7093 	kfree(kvm->arch.vpic);
7094 	kfree(kvm->arch.vioapic);
7095 	kvm_free_vcpus(kvm);
7096 	if (kvm->arch.apic_access_page)
7097 		put_page(kvm->arch.apic_access_page);
7098 	if (kvm->arch.ept_identity_pagetable)
7099 		put_page(kvm->arch.ept_identity_pagetable);
7100 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7101 }
7102 
7103 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7104 			   struct kvm_memory_slot *dont)
7105 {
7106 	int i;
7107 
7108 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7109 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7110 			kvm_kvfree(free->arch.rmap[i]);
7111 			free->arch.rmap[i] = NULL;
7112 		}
7113 		if (i == 0)
7114 			continue;
7115 
7116 		if (!dont || free->arch.lpage_info[i - 1] !=
7117 			     dont->arch.lpage_info[i - 1]) {
7118 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7119 			free->arch.lpage_info[i - 1] = NULL;
7120 		}
7121 	}
7122 }
7123 
7124 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7125 			    unsigned long npages)
7126 {
7127 	int i;
7128 
7129 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7130 		unsigned long ugfn;
7131 		int lpages;
7132 		int level = i + 1;
7133 
7134 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7135 				      slot->base_gfn, level) + 1;
7136 
7137 		slot->arch.rmap[i] =
7138 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7139 		if (!slot->arch.rmap[i])
7140 			goto out_free;
7141 		if (i == 0)
7142 			continue;
7143 
7144 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7145 					sizeof(*slot->arch.lpage_info[i - 1]));
7146 		if (!slot->arch.lpage_info[i - 1])
7147 			goto out_free;
7148 
7149 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7150 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7151 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7152 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7153 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7154 		/*
7155 		 * If the gfn and userspace address are not aligned wrt each
7156 		 * other, or if explicitly asked to, disable large page
7157 		 * support for this slot
7158 		 */
7159 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7160 		    !kvm_largepages_enabled()) {
7161 			unsigned long j;
7162 
7163 			for (j = 0; j < lpages; ++j)
7164 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7165 		}
7166 	}
7167 
7168 	return 0;
7169 
7170 out_free:
7171 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7172 		kvm_kvfree(slot->arch.rmap[i]);
7173 		slot->arch.rmap[i] = NULL;
7174 		if (i == 0)
7175 			continue;
7176 
7177 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7178 		slot->arch.lpage_info[i - 1] = NULL;
7179 	}
7180 	return -ENOMEM;
7181 }
7182 
7183 void kvm_arch_memslots_updated(struct kvm *kvm)
7184 {
7185 	/*
7186 	 * memslots->generation has been incremented.
7187 	 * mmio generation may have reached its maximum value.
7188 	 */
7189 	kvm_mmu_invalidate_mmio_sptes(kvm);
7190 }
7191 
7192 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7193 				struct kvm_memory_slot *memslot,
7194 				struct kvm_userspace_memory_region *mem,
7195 				enum kvm_mr_change change)
7196 {
7197 	/*
7198 	 * Only private memory slots need to be mapped here since
7199 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7200 	 */
7201 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7202 		unsigned long userspace_addr;
7203 
7204 		/*
7205 		 * MAP_SHARED to prevent internal slot pages from being moved
7206 		 * by fork()/COW.
7207 		 */
7208 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7209 					 PROT_READ | PROT_WRITE,
7210 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7211 
7212 		if (IS_ERR((void *)userspace_addr))
7213 			return PTR_ERR((void *)userspace_addr);
7214 
7215 		memslot->userspace_addr = userspace_addr;
7216 	}
7217 
7218 	return 0;
7219 }
7220 
7221 void kvm_arch_commit_memory_region(struct kvm *kvm,
7222 				struct kvm_userspace_memory_region *mem,
7223 				const struct kvm_memory_slot *old,
7224 				enum kvm_mr_change change)
7225 {
7226 
7227 	int nr_mmu_pages = 0;
7228 
7229 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7230 		int ret;
7231 
7232 		ret = vm_munmap(old->userspace_addr,
7233 				old->npages * PAGE_SIZE);
7234 		if (ret < 0)
7235 			printk(KERN_WARNING
7236 			       "kvm_vm_ioctl_set_memory_region: "
7237 			       "failed to munmap memory\n");
7238 	}
7239 
7240 	if (!kvm->arch.n_requested_mmu_pages)
7241 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7242 
7243 	if (nr_mmu_pages)
7244 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7245 	/*
7246 	 * Write protect all pages for dirty logging.
7247 	 * Existing largepage mappings are destroyed here and new ones will
7248 	 * not be created until the end of the logging.
7249 	 */
7250 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7251 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7252 }
7253 
7254 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7255 {
7256 	kvm_mmu_invalidate_zap_all_pages(kvm);
7257 }
7258 
7259 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7260 				   struct kvm_memory_slot *slot)
7261 {
7262 	kvm_mmu_invalidate_zap_all_pages(kvm);
7263 }
7264 
7265 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7266 {
7267 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7268 		!vcpu->arch.apf.halted)
7269 		|| !list_empty_careful(&vcpu->async_pf.done)
7270 		|| kvm_apic_has_events(vcpu)
7271 		|| vcpu->arch.pv.pv_unhalted
7272 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7273 		(kvm_arch_interrupt_allowed(vcpu) &&
7274 		 kvm_cpu_has_interrupt(vcpu));
7275 }
7276 
7277 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7278 {
7279 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7280 }
7281 
7282 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7283 {
7284 	return kvm_x86_ops->interrupt_allowed(vcpu);
7285 }
7286 
7287 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7288 {
7289 	unsigned long current_rip = kvm_rip_read(vcpu) +
7290 		get_segment_base(vcpu, VCPU_SREG_CS);
7291 
7292 	return current_rip == linear_rip;
7293 }
7294 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7295 
7296 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7297 {
7298 	unsigned long rflags;
7299 
7300 	rflags = kvm_x86_ops->get_rflags(vcpu);
7301 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7302 		rflags &= ~X86_EFLAGS_TF;
7303 	return rflags;
7304 }
7305 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7306 
7307 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7308 {
7309 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7310 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7311 		rflags |= X86_EFLAGS_TF;
7312 	kvm_x86_ops->set_rflags(vcpu, rflags);
7313 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7314 }
7315 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7316 
7317 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7318 {
7319 	int r;
7320 
7321 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7322 	      work->wakeup_all)
7323 		return;
7324 
7325 	r = kvm_mmu_reload(vcpu);
7326 	if (unlikely(r))
7327 		return;
7328 
7329 	if (!vcpu->arch.mmu.direct_map &&
7330 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7331 		return;
7332 
7333 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7334 }
7335 
7336 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7337 {
7338 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7339 }
7340 
7341 static inline u32 kvm_async_pf_next_probe(u32 key)
7342 {
7343 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7344 }
7345 
7346 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7347 {
7348 	u32 key = kvm_async_pf_hash_fn(gfn);
7349 
7350 	while (vcpu->arch.apf.gfns[key] != ~0)
7351 		key = kvm_async_pf_next_probe(key);
7352 
7353 	vcpu->arch.apf.gfns[key] = gfn;
7354 }
7355 
7356 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7357 {
7358 	int i;
7359 	u32 key = kvm_async_pf_hash_fn(gfn);
7360 
7361 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7362 		     (vcpu->arch.apf.gfns[key] != gfn &&
7363 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7364 		key = kvm_async_pf_next_probe(key);
7365 
7366 	return key;
7367 }
7368 
7369 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7370 {
7371 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7372 }
7373 
7374 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7375 {
7376 	u32 i, j, k;
7377 
7378 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7379 	while (true) {
7380 		vcpu->arch.apf.gfns[i] = ~0;
7381 		do {
7382 			j = kvm_async_pf_next_probe(j);
7383 			if (vcpu->arch.apf.gfns[j] == ~0)
7384 				return;
7385 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7386 			/*
7387 			 * k lies cyclically in ]i,j]
7388 			 * |    i.k.j |
7389 			 * |....j i.k.| or  |.k..j i...|
7390 			 */
7391 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7392 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7393 		i = j;
7394 	}
7395 }
7396 
7397 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7398 {
7399 
7400 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7401 				      sizeof(val));
7402 }
7403 
7404 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7405 				     struct kvm_async_pf *work)
7406 {
7407 	struct x86_exception fault;
7408 
7409 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7410 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7411 
7412 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7413 	    (vcpu->arch.apf.send_user_only &&
7414 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7415 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7416 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7417 		fault.vector = PF_VECTOR;
7418 		fault.error_code_valid = true;
7419 		fault.error_code = 0;
7420 		fault.nested_page_fault = false;
7421 		fault.address = work->arch.token;
7422 		kvm_inject_page_fault(vcpu, &fault);
7423 	}
7424 }
7425 
7426 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7427 				 struct kvm_async_pf *work)
7428 {
7429 	struct x86_exception fault;
7430 
7431 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7432 	if (work->wakeup_all)
7433 		work->arch.token = ~0; /* broadcast wakeup */
7434 	else
7435 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7436 
7437 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7438 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7439 		fault.vector = PF_VECTOR;
7440 		fault.error_code_valid = true;
7441 		fault.error_code = 0;
7442 		fault.nested_page_fault = false;
7443 		fault.address = work->arch.token;
7444 		kvm_inject_page_fault(vcpu, &fault);
7445 	}
7446 	vcpu->arch.apf.halted = false;
7447 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7448 }
7449 
7450 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7451 {
7452 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7453 		return true;
7454 	else
7455 		return !kvm_event_needs_reinjection(vcpu) &&
7456 			kvm_x86_ops->interrupt_allowed(vcpu);
7457 }
7458 
7459 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7460 {
7461 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7462 }
7463 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7464 
7465 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7466 {
7467 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7468 }
7469 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7470 
7471 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7472 {
7473 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7474 }
7475 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7476 
7477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7490