1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 unsigned int min_timer_period_us = 500; 98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 99 100 bool kvm_has_tsc_control; 101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 102 u32 kvm_max_guest_tsc_khz; 103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 104 105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 106 static u32 tsc_tolerance_ppm = 250; 107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 108 109 #define KVM_NR_SHARED_MSRS 16 110 111 struct kvm_shared_msrs_global { 112 int nr; 113 u32 msrs[KVM_NR_SHARED_MSRS]; 114 }; 115 116 struct kvm_shared_msrs { 117 struct user_return_notifier urn; 118 bool registered; 119 struct kvm_shared_msr_values { 120 u64 host; 121 u64 curr; 122 } values[KVM_NR_SHARED_MSRS]; 123 }; 124 125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 126 static struct kvm_shared_msrs __percpu *shared_msrs; 127 128 struct kvm_stats_debugfs_item debugfs_entries[] = { 129 { "pf_fixed", VCPU_STAT(pf_fixed) }, 130 { "pf_guest", VCPU_STAT(pf_guest) }, 131 { "tlb_flush", VCPU_STAT(tlb_flush) }, 132 { "invlpg", VCPU_STAT(invlpg) }, 133 { "exits", VCPU_STAT(exits) }, 134 { "io_exits", VCPU_STAT(io_exits) }, 135 { "mmio_exits", VCPU_STAT(mmio_exits) }, 136 { "signal_exits", VCPU_STAT(signal_exits) }, 137 { "irq_window", VCPU_STAT(irq_window_exits) }, 138 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 139 { "halt_exits", VCPU_STAT(halt_exits) }, 140 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 141 { "hypercalls", VCPU_STAT(hypercalls) }, 142 { "request_irq", VCPU_STAT(request_irq_exits) }, 143 { "irq_exits", VCPU_STAT(irq_exits) }, 144 { "host_state_reload", VCPU_STAT(host_state_reload) }, 145 { "efer_reload", VCPU_STAT(efer_reload) }, 146 { "fpu_reload", VCPU_STAT(fpu_reload) }, 147 { "insn_emulation", VCPU_STAT(insn_emulation) }, 148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 149 { "irq_injections", VCPU_STAT(irq_injections) }, 150 { "nmi_injections", VCPU_STAT(nmi_injections) }, 151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 152 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 155 { "mmu_flooded", VM_STAT(mmu_flooded) }, 156 { "mmu_recycled", VM_STAT(mmu_recycled) }, 157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 158 { "mmu_unsync", VM_STAT(mmu_unsync) }, 159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 160 { "largepages", VM_STAT(lpages) }, 161 { NULL } 162 }; 163 164 u64 __read_mostly host_xcr0; 165 166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 167 168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 169 { 170 int i; 171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 172 vcpu->arch.apf.gfns[i] = ~0; 173 } 174 175 static void kvm_on_user_return(struct user_return_notifier *urn) 176 { 177 unsigned slot; 178 struct kvm_shared_msrs *locals 179 = container_of(urn, struct kvm_shared_msrs, urn); 180 struct kvm_shared_msr_values *values; 181 182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 183 values = &locals->values[slot]; 184 if (values->host != values->curr) { 185 wrmsrl(shared_msrs_global.msrs[slot], values->host); 186 values->curr = values->host; 187 } 188 } 189 locals->registered = false; 190 user_return_notifier_unregister(urn); 191 } 192 193 static void shared_msr_update(unsigned slot, u32 msr) 194 { 195 u64 value; 196 unsigned int cpu = smp_processor_id(); 197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 198 199 /* only read, and nobody should modify it at this time, 200 * so don't need lock */ 201 if (slot >= shared_msrs_global.nr) { 202 printk(KERN_ERR "kvm: invalid MSR slot!"); 203 return; 204 } 205 rdmsrl_safe(msr, &value); 206 smsr->values[slot].host = value; 207 smsr->values[slot].curr = value; 208 } 209 210 void kvm_define_shared_msr(unsigned slot, u32 msr) 211 { 212 if (slot >= shared_msrs_global.nr) 213 shared_msrs_global.nr = slot + 1; 214 shared_msrs_global.msrs[slot] = msr; 215 /* we need ensured the shared_msr_global have been updated */ 216 smp_wmb(); 217 } 218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 219 220 static void kvm_shared_msr_cpu_online(void) 221 { 222 unsigned i; 223 224 for (i = 0; i < shared_msrs_global.nr; ++i) 225 shared_msr_update(i, shared_msrs_global.msrs[i]); 226 } 227 228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 229 { 230 unsigned int cpu = smp_processor_id(); 231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 232 233 if (((value ^ smsr->values[slot].curr) & mask) == 0) 234 return; 235 smsr->values[slot].curr = value; 236 wrmsrl(shared_msrs_global.msrs[slot], value); 237 if (!smsr->registered) { 238 smsr->urn.on_user_return = kvm_on_user_return; 239 user_return_notifier_register(&smsr->urn); 240 smsr->registered = true; 241 } 242 } 243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 244 245 static void drop_user_return_notifiers(void *ignore) 246 { 247 unsigned int cpu = smp_processor_id(); 248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 249 250 if (smsr->registered) 251 kvm_on_user_return(&smsr->urn); 252 } 253 254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 255 { 256 return vcpu->arch.apic_base; 257 } 258 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 259 260 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 261 { 262 /* TODO: reserve bits check */ 263 kvm_lapic_set_base(vcpu, data); 264 } 265 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 266 267 asmlinkage void kvm_spurious_fault(void) 268 { 269 /* Fault while not rebooting. We want the trace. */ 270 BUG(); 271 } 272 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 273 274 #define EXCPT_BENIGN 0 275 #define EXCPT_CONTRIBUTORY 1 276 #define EXCPT_PF 2 277 278 static int exception_class(int vector) 279 { 280 switch (vector) { 281 case PF_VECTOR: 282 return EXCPT_PF; 283 case DE_VECTOR: 284 case TS_VECTOR: 285 case NP_VECTOR: 286 case SS_VECTOR: 287 case GP_VECTOR: 288 return EXCPT_CONTRIBUTORY; 289 default: 290 break; 291 } 292 return EXCPT_BENIGN; 293 } 294 295 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 296 unsigned nr, bool has_error, u32 error_code, 297 bool reinject) 298 { 299 u32 prev_nr; 300 int class1, class2; 301 302 kvm_make_request(KVM_REQ_EVENT, vcpu); 303 304 if (!vcpu->arch.exception.pending) { 305 queue: 306 vcpu->arch.exception.pending = true; 307 vcpu->arch.exception.has_error_code = has_error; 308 vcpu->arch.exception.nr = nr; 309 vcpu->arch.exception.error_code = error_code; 310 vcpu->arch.exception.reinject = reinject; 311 return; 312 } 313 314 /* to check exception */ 315 prev_nr = vcpu->arch.exception.nr; 316 if (prev_nr == DF_VECTOR) { 317 /* triple fault -> shutdown */ 318 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 319 return; 320 } 321 class1 = exception_class(prev_nr); 322 class2 = exception_class(nr); 323 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 324 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 325 /* generate double fault per SDM Table 5-5 */ 326 vcpu->arch.exception.pending = true; 327 vcpu->arch.exception.has_error_code = true; 328 vcpu->arch.exception.nr = DF_VECTOR; 329 vcpu->arch.exception.error_code = 0; 330 } else 331 /* replace previous exception with a new one in a hope 332 that instruction re-execution will regenerate lost 333 exception */ 334 goto queue; 335 } 336 337 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 338 { 339 kvm_multiple_exception(vcpu, nr, false, 0, false); 340 } 341 EXPORT_SYMBOL_GPL(kvm_queue_exception); 342 343 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 344 { 345 kvm_multiple_exception(vcpu, nr, false, 0, true); 346 } 347 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 348 349 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 350 { 351 if (err) 352 kvm_inject_gp(vcpu, 0); 353 else 354 kvm_x86_ops->skip_emulated_instruction(vcpu); 355 } 356 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 357 358 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 ++vcpu->stat.pf_guest; 361 vcpu->arch.cr2 = fault->address; 362 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 363 } 364 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 365 366 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 367 { 368 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 369 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 370 else 371 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 372 } 373 374 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 375 { 376 atomic_inc(&vcpu->arch.nmi_queued); 377 kvm_make_request(KVM_REQ_NMI, vcpu); 378 } 379 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 380 381 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 382 { 383 kvm_multiple_exception(vcpu, nr, true, error_code, false); 384 } 385 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 386 387 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 388 { 389 kvm_multiple_exception(vcpu, nr, true, error_code, true); 390 } 391 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 392 393 /* 394 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 395 * a #GP and return false. 396 */ 397 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 398 { 399 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 400 return true; 401 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 402 return false; 403 } 404 EXPORT_SYMBOL_GPL(kvm_require_cpl); 405 406 /* 407 * This function will be used to read from the physical memory of the currently 408 * running guest. The difference to kvm_read_guest_page is that this function 409 * can read from guest physical or from the guest's guest physical memory. 410 */ 411 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 412 gfn_t ngfn, void *data, int offset, int len, 413 u32 access) 414 { 415 gfn_t real_gfn; 416 gpa_t ngpa; 417 418 ngpa = gfn_to_gpa(ngfn); 419 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 420 if (real_gfn == UNMAPPED_GVA) 421 return -EFAULT; 422 423 real_gfn = gpa_to_gfn(real_gfn); 424 425 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 426 } 427 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 428 429 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 430 void *data, int offset, int len, u32 access) 431 { 432 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 433 data, offset, len, access); 434 } 435 436 /* 437 * Load the pae pdptrs. Return true is they are all valid. 438 */ 439 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 440 { 441 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 442 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 443 int i; 444 int ret; 445 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 446 447 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 448 offset * sizeof(u64), sizeof(pdpte), 449 PFERR_USER_MASK|PFERR_WRITE_MASK); 450 if (ret < 0) { 451 ret = 0; 452 goto out; 453 } 454 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 455 if (is_present_gpte(pdpte[i]) && 456 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 457 ret = 0; 458 goto out; 459 } 460 } 461 ret = 1; 462 463 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 464 __set_bit(VCPU_EXREG_PDPTR, 465 (unsigned long *)&vcpu->arch.regs_avail); 466 __set_bit(VCPU_EXREG_PDPTR, 467 (unsigned long *)&vcpu->arch.regs_dirty); 468 out: 469 470 return ret; 471 } 472 EXPORT_SYMBOL_GPL(load_pdptrs); 473 474 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 475 { 476 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 477 bool changed = true; 478 int offset; 479 gfn_t gfn; 480 int r; 481 482 if (is_long_mode(vcpu) || !is_pae(vcpu)) 483 return false; 484 485 if (!test_bit(VCPU_EXREG_PDPTR, 486 (unsigned long *)&vcpu->arch.regs_avail)) 487 return true; 488 489 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 490 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 491 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 492 PFERR_USER_MASK | PFERR_WRITE_MASK); 493 if (r < 0) 494 goto out; 495 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 496 out: 497 498 return changed; 499 } 500 501 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 502 { 503 unsigned long old_cr0 = kvm_read_cr0(vcpu); 504 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 505 X86_CR0_CD | X86_CR0_NW; 506 507 cr0 |= X86_CR0_ET; 508 509 #ifdef CONFIG_X86_64 510 if (cr0 & 0xffffffff00000000UL) 511 return 1; 512 #endif 513 514 cr0 &= ~CR0_RESERVED_BITS; 515 516 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 517 return 1; 518 519 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 520 return 1; 521 522 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 523 #ifdef CONFIG_X86_64 524 if ((vcpu->arch.efer & EFER_LME)) { 525 int cs_db, cs_l; 526 527 if (!is_pae(vcpu)) 528 return 1; 529 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 530 if (cs_l) 531 return 1; 532 } else 533 #endif 534 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 535 kvm_read_cr3(vcpu))) 536 return 1; 537 } 538 539 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 540 return 1; 541 542 kvm_x86_ops->set_cr0(vcpu, cr0); 543 544 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 545 kvm_clear_async_pf_completion_queue(vcpu); 546 kvm_async_pf_hash_reset(vcpu); 547 } 548 549 if ((cr0 ^ old_cr0) & update_bits) 550 kvm_mmu_reset_context(vcpu); 551 return 0; 552 } 553 EXPORT_SYMBOL_GPL(kvm_set_cr0); 554 555 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 556 { 557 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 558 } 559 EXPORT_SYMBOL_GPL(kvm_lmsw); 560 561 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 562 { 563 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 564 !vcpu->guest_xcr0_loaded) { 565 /* kvm_set_xcr() also depends on this */ 566 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 567 vcpu->guest_xcr0_loaded = 1; 568 } 569 } 570 571 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 572 { 573 if (vcpu->guest_xcr0_loaded) { 574 if (vcpu->arch.xcr0 != host_xcr0) 575 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 576 vcpu->guest_xcr0_loaded = 0; 577 } 578 } 579 580 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 581 { 582 u64 xcr0; 583 u64 valid_bits; 584 585 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 586 if (index != XCR_XFEATURE_ENABLED_MASK) 587 return 1; 588 xcr0 = xcr; 589 if (!(xcr0 & XSTATE_FP)) 590 return 1; 591 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 592 return 1; 593 594 /* 595 * Do not allow the guest to set bits that we do not support 596 * saving. However, xcr0 bit 0 is always set, even if the 597 * emulated CPU does not support XSAVE (see fx_init). 598 */ 599 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; 600 if (xcr0 & ~valid_bits) 601 return 1; 602 603 kvm_put_guest_xcr0(vcpu); 604 vcpu->arch.xcr0 = xcr0; 605 return 0; 606 } 607 608 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 609 { 610 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 611 __kvm_set_xcr(vcpu, index, xcr)) { 612 kvm_inject_gp(vcpu, 0); 613 return 1; 614 } 615 return 0; 616 } 617 EXPORT_SYMBOL_GPL(kvm_set_xcr); 618 619 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 620 { 621 unsigned long old_cr4 = kvm_read_cr4(vcpu); 622 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 623 X86_CR4_PAE | X86_CR4_SMEP; 624 if (cr4 & CR4_RESERVED_BITS) 625 return 1; 626 627 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 628 return 1; 629 630 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 631 return 1; 632 633 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 634 return 1; 635 636 if (is_long_mode(vcpu)) { 637 if (!(cr4 & X86_CR4_PAE)) 638 return 1; 639 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 640 && ((cr4 ^ old_cr4) & pdptr_bits) 641 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 642 kvm_read_cr3(vcpu))) 643 return 1; 644 645 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 646 if (!guest_cpuid_has_pcid(vcpu)) 647 return 1; 648 649 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 650 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 651 return 1; 652 } 653 654 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 655 return 1; 656 657 if (((cr4 ^ old_cr4) & pdptr_bits) || 658 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 659 kvm_mmu_reset_context(vcpu); 660 661 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 662 kvm_update_cpuid(vcpu); 663 664 return 0; 665 } 666 EXPORT_SYMBOL_GPL(kvm_set_cr4); 667 668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 669 { 670 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 671 kvm_mmu_sync_roots(vcpu); 672 kvm_mmu_flush_tlb(vcpu); 673 return 0; 674 } 675 676 if (is_long_mode(vcpu)) { 677 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 678 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 679 return 1; 680 } else 681 if (cr3 & CR3_L_MODE_RESERVED_BITS) 682 return 1; 683 } else { 684 if (is_pae(vcpu)) { 685 if (cr3 & CR3_PAE_RESERVED_BITS) 686 return 1; 687 if (is_paging(vcpu) && 688 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 689 return 1; 690 } 691 /* 692 * We don't check reserved bits in nonpae mode, because 693 * this isn't enforced, and VMware depends on this. 694 */ 695 } 696 697 vcpu->arch.cr3 = cr3; 698 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 699 kvm_mmu_new_cr3(vcpu); 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(kvm_set_cr3); 703 704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 705 { 706 if (cr8 & CR8_RESERVED_BITS) 707 return 1; 708 if (irqchip_in_kernel(vcpu->kvm)) 709 kvm_lapic_set_tpr(vcpu, cr8); 710 else 711 vcpu->arch.cr8 = cr8; 712 return 0; 713 } 714 EXPORT_SYMBOL_GPL(kvm_set_cr8); 715 716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 717 { 718 if (irqchip_in_kernel(vcpu->kvm)) 719 return kvm_lapic_get_cr8(vcpu); 720 else 721 return vcpu->arch.cr8; 722 } 723 EXPORT_SYMBOL_GPL(kvm_get_cr8); 724 725 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 726 { 727 unsigned long dr7; 728 729 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 730 dr7 = vcpu->arch.guest_debug_dr7; 731 else 732 dr7 = vcpu->arch.dr7; 733 kvm_x86_ops->set_dr7(vcpu, dr7); 734 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 735 } 736 737 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 738 { 739 switch (dr) { 740 case 0 ... 3: 741 vcpu->arch.db[dr] = val; 742 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 743 vcpu->arch.eff_db[dr] = val; 744 break; 745 case 4: 746 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 747 return 1; /* #UD */ 748 /* fall through */ 749 case 6: 750 if (val & 0xffffffff00000000ULL) 751 return -1; /* #GP */ 752 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 753 break; 754 case 5: 755 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 756 return 1; /* #UD */ 757 /* fall through */ 758 default: /* 7 */ 759 if (val & 0xffffffff00000000ULL) 760 return -1; /* #GP */ 761 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 762 kvm_update_dr7(vcpu); 763 break; 764 } 765 766 return 0; 767 } 768 769 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 770 { 771 int res; 772 773 res = __kvm_set_dr(vcpu, dr, val); 774 if (res > 0) 775 kvm_queue_exception(vcpu, UD_VECTOR); 776 else if (res < 0) 777 kvm_inject_gp(vcpu, 0); 778 779 return res; 780 } 781 EXPORT_SYMBOL_GPL(kvm_set_dr); 782 783 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 784 { 785 switch (dr) { 786 case 0 ... 3: 787 *val = vcpu->arch.db[dr]; 788 break; 789 case 4: 790 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 791 return 1; 792 /* fall through */ 793 case 6: 794 *val = vcpu->arch.dr6; 795 break; 796 case 5: 797 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 798 return 1; 799 /* fall through */ 800 default: /* 7 */ 801 *val = vcpu->arch.dr7; 802 break; 803 } 804 805 return 0; 806 } 807 808 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 809 { 810 if (_kvm_get_dr(vcpu, dr, val)) { 811 kvm_queue_exception(vcpu, UD_VECTOR); 812 return 1; 813 } 814 return 0; 815 } 816 EXPORT_SYMBOL_GPL(kvm_get_dr); 817 818 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 819 { 820 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 821 u64 data; 822 int err; 823 824 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 825 if (err) 826 return err; 827 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 828 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 829 return err; 830 } 831 EXPORT_SYMBOL_GPL(kvm_rdpmc); 832 833 /* 834 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 835 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 836 * 837 * This list is modified at module load time to reflect the 838 * capabilities of the host cpu. This capabilities test skips MSRs that are 839 * kvm-specific. Those are put in the beginning of the list. 840 */ 841 842 #define KVM_SAVE_MSRS_BEGIN 10 843 static u32 msrs_to_save[] = { 844 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 845 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 846 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 847 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 848 MSR_KVM_PV_EOI_EN, 849 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 850 MSR_STAR, 851 #ifdef CONFIG_X86_64 852 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 853 #endif 854 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 855 MSR_IA32_FEATURE_CONTROL 856 }; 857 858 static unsigned num_msrs_to_save; 859 860 static const u32 emulated_msrs[] = { 861 MSR_IA32_TSC_ADJUST, 862 MSR_IA32_TSCDEADLINE, 863 MSR_IA32_MISC_ENABLE, 864 MSR_IA32_MCG_STATUS, 865 MSR_IA32_MCG_CTL, 866 }; 867 868 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 869 { 870 if (efer & efer_reserved_bits) 871 return false; 872 873 if (efer & EFER_FFXSR) { 874 struct kvm_cpuid_entry2 *feat; 875 876 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 877 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 878 return false; 879 } 880 881 if (efer & EFER_SVME) { 882 struct kvm_cpuid_entry2 *feat; 883 884 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 885 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 886 return false; 887 } 888 889 return true; 890 } 891 EXPORT_SYMBOL_GPL(kvm_valid_efer); 892 893 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 894 { 895 u64 old_efer = vcpu->arch.efer; 896 897 if (!kvm_valid_efer(vcpu, efer)) 898 return 1; 899 900 if (is_paging(vcpu) 901 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 902 return 1; 903 904 efer &= ~EFER_LMA; 905 efer |= vcpu->arch.efer & EFER_LMA; 906 907 kvm_x86_ops->set_efer(vcpu, efer); 908 909 /* Update reserved bits */ 910 if ((efer ^ old_efer) & EFER_NX) 911 kvm_mmu_reset_context(vcpu); 912 913 return 0; 914 } 915 916 void kvm_enable_efer_bits(u64 mask) 917 { 918 efer_reserved_bits &= ~mask; 919 } 920 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 921 922 923 /* 924 * Writes msr value into into the appropriate "register". 925 * Returns 0 on success, non-0 otherwise. 926 * Assumes vcpu_load() was already called. 927 */ 928 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 929 { 930 return kvm_x86_ops->set_msr(vcpu, msr); 931 } 932 933 /* 934 * Adapt set_msr() to msr_io()'s calling convention 935 */ 936 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 937 { 938 struct msr_data msr; 939 940 msr.data = *data; 941 msr.index = index; 942 msr.host_initiated = true; 943 return kvm_set_msr(vcpu, &msr); 944 } 945 946 #ifdef CONFIG_X86_64 947 struct pvclock_gtod_data { 948 seqcount_t seq; 949 950 struct { /* extract of a clocksource struct */ 951 int vclock_mode; 952 cycle_t cycle_last; 953 cycle_t mask; 954 u32 mult; 955 u32 shift; 956 } clock; 957 958 /* open coded 'struct timespec' */ 959 u64 monotonic_time_snsec; 960 time_t monotonic_time_sec; 961 }; 962 963 static struct pvclock_gtod_data pvclock_gtod_data; 964 965 static void update_pvclock_gtod(struct timekeeper *tk) 966 { 967 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 968 969 write_seqcount_begin(&vdata->seq); 970 971 /* copy pvclock gtod data */ 972 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 973 vdata->clock.cycle_last = tk->clock->cycle_last; 974 vdata->clock.mask = tk->clock->mask; 975 vdata->clock.mult = tk->mult; 976 vdata->clock.shift = tk->shift; 977 978 vdata->monotonic_time_sec = tk->xtime_sec 979 + tk->wall_to_monotonic.tv_sec; 980 vdata->monotonic_time_snsec = tk->xtime_nsec 981 + (tk->wall_to_monotonic.tv_nsec 982 << tk->shift); 983 while (vdata->monotonic_time_snsec >= 984 (((u64)NSEC_PER_SEC) << tk->shift)) { 985 vdata->monotonic_time_snsec -= 986 ((u64)NSEC_PER_SEC) << tk->shift; 987 vdata->monotonic_time_sec++; 988 } 989 990 write_seqcount_end(&vdata->seq); 991 } 992 #endif 993 994 995 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 996 { 997 int version; 998 int r; 999 struct pvclock_wall_clock wc; 1000 struct timespec boot; 1001 1002 if (!wall_clock) 1003 return; 1004 1005 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1006 if (r) 1007 return; 1008 1009 if (version & 1) 1010 ++version; /* first time write, random junk */ 1011 1012 ++version; 1013 1014 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1015 1016 /* 1017 * The guest calculates current wall clock time by adding 1018 * system time (updated by kvm_guest_time_update below) to the 1019 * wall clock specified here. guest system time equals host 1020 * system time for us, thus we must fill in host boot time here. 1021 */ 1022 getboottime(&boot); 1023 1024 if (kvm->arch.kvmclock_offset) { 1025 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1026 boot = timespec_sub(boot, ts); 1027 } 1028 wc.sec = boot.tv_sec; 1029 wc.nsec = boot.tv_nsec; 1030 wc.version = version; 1031 1032 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1033 1034 version++; 1035 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1036 } 1037 1038 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1039 { 1040 uint32_t quotient, remainder; 1041 1042 /* Don't try to replace with do_div(), this one calculates 1043 * "(dividend << 32) / divisor" */ 1044 __asm__ ( "divl %4" 1045 : "=a" (quotient), "=d" (remainder) 1046 : "0" (0), "1" (dividend), "r" (divisor) ); 1047 return quotient; 1048 } 1049 1050 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1051 s8 *pshift, u32 *pmultiplier) 1052 { 1053 uint64_t scaled64; 1054 int32_t shift = 0; 1055 uint64_t tps64; 1056 uint32_t tps32; 1057 1058 tps64 = base_khz * 1000LL; 1059 scaled64 = scaled_khz * 1000LL; 1060 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1061 tps64 >>= 1; 1062 shift--; 1063 } 1064 1065 tps32 = (uint32_t)tps64; 1066 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1067 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1068 scaled64 >>= 1; 1069 else 1070 tps32 <<= 1; 1071 shift++; 1072 } 1073 1074 *pshift = shift; 1075 *pmultiplier = div_frac(scaled64, tps32); 1076 1077 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1078 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1079 } 1080 1081 static inline u64 get_kernel_ns(void) 1082 { 1083 struct timespec ts; 1084 1085 WARN_ON(preemptible()); 1086 ktime_get_ts(&ts); 1087 monotonic_to_bootbased(&ts); 1088 return timespec_to_ns(&ts); 1089 } 1090 1091 #ifdef CONFIG_X86_64 1092 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1093 #endif 1094 1095 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1096 unsigned long max_tsc_khz; 1097 1098 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1099 { 1100 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1101 vcpu->arch.virtual_tsc_shift); 1102 } 1103 1104 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1105 { 1106 u64 v = (u64)khz * (1000000 + ppm); 1107 do_div(v, 1000000); 1108 return v; 1109 } 1110 1111 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1112 { 1113 u32 thresh_lo, thresh_hi; 1114 int use_scaling = 0; 1115 1116 /* tsc_khz can be zero if TSC calibration fails */ 1117 if (this_tsc_khz == 0) 1118 return; 1119 1120 /* Compute a scale to convert nanoseconds in TSC cycles */ 1121 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1122 &vcpu->arch.virtual_tsc_shift, 1123 &vcpu->arch.virtual_tsc_mult); 1124 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1125 1126 /* 1127 * Compute the variation in TSC rate which is acceptable 1128 * within the range of tolerance and decide if the 1129 * rate being applied is within that bounds of the hardware 1130 * rate. If so, no scaling or compensation need be done. 1131 */ 1132 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1133 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1134 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1135 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1136 use_scaling = 1; 1137 } 1138 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1139 } 1140 1141 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1142 { 1143 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1144 vcpu->arch.virtual_tsc_mult, 1145 vcpu->arch.virtual_tsc_shift); 1146 tsc += vcpu->arch.this_tsc_write; 1147 return tsc; 1148 } 1149 1150 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1151 { 1152 #ifdef CONFIG_X86_64 1153 bool vcpus_matched; 1154 bool do_request = false; 1155 struct kvm_arch *ka = &vcpu->kvm->arch; 1156 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1157 1158 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1159 atomic_read(&vcpu->kvm->online_vcpus)); 1160 1161 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1162 if (!ka->use_master_clock) 1163 do_request = 1; 1164 1165 if (!vcpus_matched && ka->use_master_clock) 1166 do_request = 1; 1167 1168 if (do_request) 1169 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1170 1171 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1172 atomic_read(&vcpu->kvm->online_vcpus), 1173 ka->use_master_clock, gtod->clock.vclock_mode); 1174 #endif 1175 } 1176 1177 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1178 { 1179 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1180 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1181 } 1182 1183 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1184 { 1185 struct kvm *kvm = vcpu->kvm; 1186 u64 offset, ns, elapsed; 1187 unsigned long flags; 1188 s64 usdiff; 1189 bool matched; 1190 u64 data = msr->data; 1191 1192 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1193 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1194 ns = get_kernel_ns(); 1195 elapsed = ns - kvm->arch.last_tsc_nsec; 1196 1197 if (vcpu->arch.virtual_tsc_khz) { 1198 int faulted = 0; 1199 1200 /* n.b - signed multiplication and division required */ 1201 usdiff = data - kvm->arch.last_tsc_write; 1202 #ifdef CONFIG_X86_64 1203 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1204 #else 1205 /* do_div() only does unsigned */ 1206 asm("1: idivl %[divisor]\n" 1207 "2: xor %%edx, %%edx\n" 1208 " movl $0, %[faulted]\n" 1209 "3:\n" 1210 ".section .fixup,\"ax\"\n" 1211 "4: movl $1, %[faulted]\n" 1212 " jmp 3b\n" 1213 ".previous\n" 1214 1215 _ASM_EXTABLE(1b, 4b) 1216 1217 : "=A"(usdiff), [faulted] "=r" (faulted) 1218 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1219 1220 #endif 1221 do_div(elapsed, 1000); 1222 usdiff -= elapsed; 1223 if (usdiff < 0) 1224 usdiff = -usdiff; 1225 1226 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1227 if (faulted) 1228 usdiff = USEC_PER_SEC; 1229 } else 1230 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1231 1232 /* 1233 * Special case: TSC write with a small delta (1 second) of virtual 1234 * cycle time against real time is interpreted as an attempt to 1235 * synchronize the CPU. 1236 * 1237 * For a reliable TSC, we can match TSC offsets, and for an unstable 1238 * TSC, we add elapsed time in this computation. We could let the 1239 * compensation code attempt to catch up if we fall behind, but 1240 * it's better to try to match offsets from the beginning. 1241 */ 1242 if (usdiff < USEC_PER_SEC && 1243 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1244 if (!check_tsc_unstable()) { 1245 offset = kvm->arch.cur_tsc_offset; 1246 pr_debug("kvm: matched tsc offset for %llu\n", data); 1247 } else { 1248 u64 delta = nsec_to_cycles(vcpu, elapsed); 1249 data += delta; 1250 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1251 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1252 } 1253 matched = true; 1254 } else { 1255 /* 1256 * We split periods of matched TSC writes into generations. 1257 * For each generation, we track the original measured 1258 * nanosecond time, offset, and write, so if TSCs are in 1259 * sync, we can match exact offset, and if not, we can match 1260 * exact software computation in compute_guest_tsc() 1261 * 1262 * These values are tracked in kvm->arch.cur_xxx variables. 1263 */ 1264 kvm->arch.cur_tsc_generation++; 1265 kvm->arch.cur_tsc_nsec = ns; 1266 kvm->arch.cur_tsc_write = data; 1267 kvm->arch.cur_tsc_offset = offset; 1268 matched = false; 1269 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1270 kvm->arch.cur_tsc_generation, data); 1271 } 1272 1273 /* 1274 * We also track th most recent recorded KHZ, write and time to 1275 * allow the matching interval to be extended at each write. 1276 */ 1277 kvm->arch.last_tsc_nsec = ns; 1278 kvm->arch.last_tsc_write = data; 1279 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1280 1281 /* Reset of TSC must disable overshoot protection below */ 1282 vcpu->arch.hv_clock.tsc_timestamp = 0; 1283 vcpu->arch.last_guest_tsc = data; 1284 1285 /* Keep track of which generation this VCPU has synchronized to */ 1286 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1287 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1288 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1289 1290 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1291 update_ia32_tsc_adjust_msr(vcpu, offset); 1292 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1293 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1294 1295 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1296 if (matched) 1297 kvm->arch.nr_vcpus_matched_tsc++; 1298 else 1299 kvm->arch.nr_vcpus_matched_tsc = 0; 1300 1301 kvm_track_tsc_matching(vcpu); 1302 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1303 } 1304 1305 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1306 1307 #ifdef CONFIG_X86_64 1308 1309 static cycle_t read_tsc(void) 1310 { 1311 cycle_t ret; 1312 u64 last; 1313 1314 /* 1315 * Empirically, a fence (of type that depends on the CPU) 1316 * before rdtsc is enough to ensure that rdtsc is ordered 1317 * with respect to loads. The various CPU manuals are unclear 1318 * as to whether rdtsc can be reordered with later loads, 1319 * but no one has ever seen it happen. 1320 */ 1321 rdtsc_barrier(); 1322 ret = (cycle_t)vget_cycles(); 1323 1324 last = pvclock_gtod_data.clock.cycle_last; 1325 1326 if (likely(ret >= last)) 1327 return ret; 1328 1329 /* 1330 * GCC likes to generate cmov here, but this branch is extremely 1331 * predictable (it's just a funciton of time and the likely is 1332 * very likely) and there's a data dependence, so force GCC 1333 * to generate a branch instead. I don't barrier() because 1334 * we don't actually need a barrier, and if this function 1335 * ever gets inlined it will generate worse code. 1336 */ 1337 asm volatile (""); 1338 return last; 1339 } 1340 1341 static inline u64 vgettsc(cycle_t *cycle_now) 1342 { 1343 long v; 1344 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1345 1346 *cycle_now = read_tsc(); 1347 1348 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1349 return v * gtod->clock.mult; 1350 } 1351 1352 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1353 { 1354 unsigned long seq; 1355 u64 ns; 1356 int mode; 1357 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1358 1359 ts->tv_nsec = 0; 1360 do { 1361 seq = read_seqcount_begin(>od->seq); 1362 mode = gtod->clock.vclock_mode; 1363 ts->tv_sec = gtod->monotonic_time_sec; 1364 ns = gtod->monotonic_time_snsec; 1365 ns += vgettsc(cycle_now); 1366 ns >>= gtod->clock.shift; 1367 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1368 timespec_add_ns(ts, ns); 1369 1370 return mode; 1371 } 1372 1373 /* returns true if host is using tsc clocksource */ 1374 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1375 { 1376 struct timespec ts; 1377 1378 /* checked again under seqlock below */ 1379 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1380 return false; 1381 1382 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1383 return false; 1384 1385 monotonic_to_bootbased(&ts); 1386 *kernel_ns = timespec_to_ns(&ts); 1387 1388 return true; 1389 } 1390 #endif 1391 1392 /* 1393 * 1394 * Assuming a stable TSC across physical CPUS, and a stable TSC 1395 * across virtual CPUs, the following condition is possible. 1396 * Each numbered line represents an event visible to both 1397 * CPUs at the next numbered event. 1398 * 1399 * "timespecX" represents host monotonic time. "tscX" represents 1400 * RDTSC value. 1401 * 1402 * VCPU0 on CPU0 | VCPU1 on CPU1 1403 * 1404 * 1. read timespec0,tsc0 1405 * 2. | timespec1 = timespec0 + N 1406 * | tsc1 = tsc0 + M 1407 * 3. transition to guest | transition to guest 1408 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1409 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1410 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1411 * 1412 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1413 * 1414 * - ret0 < ret1 1415 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1416 * ... 1417 * - 0 < N - M => M < N 1418 * 1419 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1420 * always the case (the difference between two distinct xtime instances 1421 * might be smaller then the difference between corresponding TSC reads, 1422 * when updating guest vcpus pvclock areas). 1423 * 1424 * To avoid that problem, do not allow visibility of distinct 1425 * system_timestamp/tsc_timestamp values simultaneously: use a master 1426 * copy of host monotonic time values. Update that master copy 1427 * in lockstep. 1428 * 1429 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1430 * 1431 */ 1432 1433 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1434 { 1435 #ifdef CONFIG_X86_64 1436 struct kvm_arch *ka = &kvm->arch; 1437 int vclock_mode; 1438 bool host_tsc_clocksource, vcpus_matched; 1439 1440 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1441 atomic_read(&kvm->online_vcpus)); 1442 1443 /* 1444 * If the host uses TSC clock, then passthrough TSC as stable 1445 * to the guest. 1446 */ 1447 host_tsc_clocksource = kvm_get_time_and_clockread( 1448 &ka->master_kernel_ns, 1449 &ka->master_cycle_now); 1450 1451 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1452 1453 if (ka->use_master_clock) 1454 atomic_set(&kvm_guest_has_master_clock, 1); 1455 1456 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1457 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1458 vcpus_matched); 1459 #endif 1460 } 1461 1462 static void kvm_gen_update_masterclock(struct kvm *kvm) 1463 { 1464 #ifdef CONFIG_X86_64 1465 int i; 1466 struct kvm_vcpu *vcpu; 1467 struct kvm_arch *ka = &kvm->arch; 1468 1469 spin_lock(&ka->pvclock_gtod_sync_lock); 1470 kvm_make_mclock_inprogress_request(kvm); 1471 /* no guest entries from this point */ 1472 pvclock_update_vm_gtod_copy(kvm); 1473 1474 kvm_for_each_vcpu(i, vcpu, kvm) 1475 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1476 1477 /* guest entries allowed */ 1478 kvm_for_each_vcpu(i, vcpu, kvm) 1479 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1480 1481 spin_unlock(&ka->pvclock_gtod_sync_lock); 1482 #endif 1483 } 1484 1485 static int kvm_guest_time_update(struct kvm_vcpu *v) 1486 { 1487 unsigned long flags, this_tsc_khz; 1488 struct kvm_vcpu_arch *vcpu = &v->arch; 1489 struct kvm_arch *ka = &v->kvm->arch; 1490 s64 kernel_ns, max_kernel_ns; 1491 u64 tsc_timestamp, host_tsc; 1492 struct pvclock_vcpu_time_info guest_hv_clock; 1493 u8 pvclock_flags; 1494 bool use_master_clock; 1495 1496 kernel_ns = 0; 1497 host_tsc = 0; 1498 1499 /* 1500 * If the host uses TSC clock, then passthrough TSC as stable 1501 * to the guest. 1502 */ 1503 spin_lock(&ka->pvclock_gtod_sync_lock); 1504 use_master_clock = ka->use_master_clock; 1505 if (use_master_clock) { 1506 host_tsc = ka->master_cycle_now; 1507 kernel_ns = ka->master_kernel_ns; 1508 } 1509 spin_unlock(&ka->pvclock_gtod_sync_lock); 1510 1511 /* Keep irq disabled to prevent changes to the clock */ 1512 local_irq_save(flags); 1513 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1514 if (unlikely(this_tsc_khz == 0)) { 1515 local_irq_restore(flags); 1516 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1517 return 1; 1518 } 1519 if (!use_master_clock) { 1520 host_tsc = native_read_tsc(); 1521 kernel_ns = get_kernel_ns(); 1522 } 1523 1524 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1525 1526 /* 1527 * We may have to catch up the TSC to match elapsed wall clock 1528 * time for two reasons, even if kvmclock is used. 1529 * 1) CPU could have been running below the maximum TSC rate 1530 * 2) Broken TSC compensation resets the base at each VCPU 1531 * entry to avoid unknown leaps of TSC even when running 1532 * again on the same CPU. This may cause apparent elapsed 1533 * time to disappear, and the guest to stand still or run 1534 * very slowly. 1535 */ 1536 if (vcpu->tsc_catchup) { 1537 u64 tsc = compute_guest_tsc(v, kernel_ns); 1538 if (tsc > tsc_timestamp) { 1539 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1540 tsc_timestamp = tsc; 1541 } 1542 } 1543 1544 local_irq_restore(flags); 1545 1546 if (!vcpu->pv_time_enabled) 1547 return 0; 1548 1549 /* 1550 * Time as measured by the TSC may go backwards when resetting the base 1551 * tsc_timestamp. The reason for this is that the TSC resolution is 1552 * higher than the resolution of the other clock scales. Thus, many 1553 * possible measurments of the TSC correspond to one measurement of any 1554 * other clock, and so a spread of values is possible. This is not a 1555 * problem for the computation of the nanosecond clock; with TSC rates 1556 * around 1GHZ, there can only be a few cycles which correspond to one 1557 * nanosecond value, and any path through this code will inevitably 1558 * take longer than that. However, with the kernel_ns value itself, 1559 * the precision may be much lower, down to HZ granularity. If the 1560 * first sampling of TSC against kernel_ns ends in the low part of the 1561 * range, and the second in the high end of the range, we can get: 1562 * 1563 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1564 * 1565 * As the sampling errors potentially range in the thousands of cycles, 1566 * it is possible such a time value has already been observed by the 1567 * guest. To protect against this, we must compute the system time as 1568 * observed by the guest and ensure the new system time is greater. 1569 */ 1570 max_kernel_ns = 0; 1571 if (vcpu->hv_clock.tsc_timestamp) { 1572 max_kernel_ns = vcpu->last_guest_tsc - 1573 vcpu->hv_clock.tsc_timestamp; 1574 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1575 vcpu->hv_clock.tsc_to_system_mul, 1576 vcpu->hv_clock.tsc_shift); 1577 max_kernel_ns += vcpu->last_kernel_ns; 1578 } 1579 1580 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1581 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1582 &vcpu->hv_clock.tsc_shift, 1583 &vcpu->hv_clock.tsc_to_system_mul); 1584 vcpu->hw_tsc_khz = this_tsc_khz; 1585 } 1586 1587 /* with a master <monotonic time, tsc value> tuple, 1588 * pvclock clock reads always increase at the (scaled) rate 1589 * of guest TSC - no need to deal with sampling errors. 1590 */ 1591 if (!use_master_clock) { 1592 if (max_kernel_ns > kernel_ns) 1593 kernel_ns = max_kernel_ns; 1594 } 1595 /* With all the info we got, fill in the values */ 1596 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1597 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1598 vcpu->last_kernel_ns = kernel_ns; 1599 vcpu->last_guest_tsc = tsc_timestamp; 1600 1601 /* 1602 * The interface expects us to write an even number signaling that the 1603 * update is finished. Since the guest won't see the intermediate 1604 * state, we just increase by 2 at the end. 1605 */ 1606 vcpu->hv_clock.version += 2; 1607 1608 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1609 &guest_hv_clock, sizeof(guest_hv_clock)))) 1610 return 0; 1611 1612 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1613 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1614 1615 if (vcpu->pvclock_set_guest_stopped_request) { 1616 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1617 vcpu->pvclock_set_guest_stopped_request = false; 1618 } 1619 1620 /* If the host uses TSC clocksource, then it is stable */ 1621 if (use_master_clock) 1622 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1623 1624 vcpu->hv_clock.flags = pvclock_flags; 1625 1626 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1627 &vcpu->hv_clock, 1628 sizeof(vcpu->hv_clock)); 1629 return 0; 1630 } 1631 1632 /* 1633 * kvmclock updates which are isolated to a given vcpu, such as 1634 * vcpu->cpu migration, should not allow system_timestamp from 1635 * the rest of the vcpus to remain static. Otherwise ntp frequency 1636 * correction applies to one vcpu's system_timestamp but not 1637 * the others. 1638 * 1639 * So in those cases, request a kvmclock update for all vcpus. 1640 * The worst case for a remote vcpu to update its kvmclock 1641 * is then bounded by maximum nohz sleep latency. 1642 */ 1643 1644 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1645 { 1646 int i; 1647 struct kvm *kvm = v->kvm; 1648 struct kvm_vcpu *vcpu; 1649 1650 kvm_for_each_vcpu(i, vcpu, kvm) { 1651 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1652 kvm_vcpu_kick(vcpu); 1653 } 1654 } 1655 1656 static bool msr_mtrr_valid(unsigned msr) 1657 { 1658 switch (msr) { 1659 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1660 case MSR_MTRRfix64K_00000: 1661 case MSR_MTRRfix16K_80000: 1662 case MSR_MTRRfix16K_A0000: 1663 case MSR_MTRRfix4K_C0000: 1664 case MSR_MTRRfix4K_C8000: 1665 case MSR_MTRRfix4K_D0000: 1666 case MSR_MTRRfix4K_D8000: 1667 case MSR_MTRRfix4K_E0000: 1668 case MSR_MTRRfix4K_E8000: 1669 case MSR_MTRRfix4K_F0000: 1670 case MSR_MTRRfix4K_F8000: 1671 case MSR_MTRRdefType: 1672 case MSR_IA32_CR_PAT: 1673 return true; 1674 case 0x2f8: 1675 return true; 1676 } 1677 return false; 1678 } 1679 1680 static bool valid_pat_type(unsigned t) 1681 { 1682 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1683 } 1684 1685 static bool valid_mtrr_type(unsigned t) 1686 { 1687 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1688 } 1689 1690 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1691 { 1692 int i; 1693 1694 if (!msr_mtrr_valid(msr)) 1695 return false; 1696 1697 if (msr == MSR_IA32_CR_PAT) { 1698 for (i = 0; i < 8; i++) 1699 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1700 return false; 1701 return true; 1702 } else if (msr == MSR_MTRRdefType) { 1703 if (data & ~0xcff) 1704 return false; 1705 return valid_mtrr_type(data & 0xff); 1706 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1707 for (i = 0; i < 8 ; i++) 1708 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1709 return false; 1710 return true; 1711 } 1712 1713 /* variable MTRRs */ 1714 return valid_mtrr_type(data & 0xff); 1715 } 1716 1717 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1718 { 1719 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1720 1721 if (!mtrr_valid(vcpu, msr, data)) 1722 return 1; 1723 1724 if (msr == MSR_MTRRdefType) { 1725 vcpu->arch.mtrr_state.def_type = data; 1726 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1727 } else if (msr == MSR_MTRRfix64K_00000) 1728 p[0] = data; 1729 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1730 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1731 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1732 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1733 else if (msr == MSR_IA32_CR_PAT) 1734 vcpu->arch.pat = data; 1735 else { /* Variable MTRRs */ 1736 int idx, is_mtrr_mask; 1737 u64 *pt; 1738 1739 idx = (msr - 0x200) / 2; 1740 is_mtrr_mask = msr - 0x200 - 2 * idx; 1741 if (!is_mtrr_mask) 1742 pt = 1743 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1744 else 1745 pt = 1746 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1747 *pt = data; 1748 } 1749 1750 kvm_mmu_reset_context(vcpu); 1751 return 0; 1752 } 1753 1754 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1755 { 1756 u64 mcg_cap = vcpu->arch.mcg_cap; 1757 unsigned bank_num = mcg_cap & 0xff; 1758 1759 switch (msr) { 1760 case MSR_IA32_MCG_STATUS: 1761 vcpu->arch.mcg_status = data; 1762 break; 1763 case MSR_IA32_MCG_CTL: 1764 if (!(mcg_cap & MCG_CTL_P)) 1765 return 1; 1766 if (data != 0 && data != ~(u64)0) 1767 return -1; 1768 vcpu->arch.mcg_ctl = data; 1769 break; 1770 default: 1771 if (msr >= MSR_IA32_MC0_CTL && 1772 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1773 u32 offset = msr - MSR_IA32_MC0_CTL; 1774 /* only 0 or all 1s can be written to IA32_MCi_CTL 1775 * some Linux kernels though clear bit 10 in bank 4 to 1776 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1777 * this to avoid an uncatched #GP in the guest 1778 */ 1779 if ((offset & 0x3) == 0 && 1780 data != 0 && (data | (1 << 10)) != ~(u64)0) 1781 return -1; 1782 vcpu->arch.mce_banks[offset] = data; 1783 break; 1784 } 1785 return 1; 1786 } 1787 return 0; 1788 } 1789 1790 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1791 { 1792 struct kvm *kvm = vcpu->kvm; 1793 int lm = is_long_mode(vcpu); 1794 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1795 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1796 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1797 : kvm->arch.xen_hvm_config.blob_size_32; 1798 u32 page_num = data & ~PAGE_MASK; 1799 u64 page_addr = data & PAGE_MASK; 1800 u8 *page; 1801 int r; 1802 1803 r = -E2BIG; 1804 if (page_num >= blob_size) 1805 goto out; 1806 r = -ENOMEM; 1807 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1808 if (IS_ERR(page)) { 1809 r = PTR_ERR(page); 1810 goto out; 1811 } 1812 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1813 goto out_free; 1814 r = 0; 1815 out_free: 1816 kfree(page); 1817 out: 1818 return r; 1819 } 1820 1821 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1822 { 1823 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1824 } 1825 1826 static bool kvm_hv_msr_partition_wide(u32 msr) 1827 { 1828 bool r = false; 1829 switch (msr) { 1830 case HV_X64_MSR_GUEST_OS_ID: 1831 case HV_X64_MSR_HYPERCALL: 1832 r = true; 1833 break; 1834 } 1835 1836 return r; 1837 } 1838 1839 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1840 { 1841 struct kvm *kvm = vcpu->kvm; 1842 1843 switch (msr) { 1844 case HV_X64_MSR_GUEST_OS_ID: 1845 kvm->arch.hv_guest_os_id = data; 1846 /* setting guest os id to zero disables hypercall page */ 1847 if (!kvm->arch.hv_guest_os_id) 1848 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1849 break; 1850 case HV_X64_MSR_HYPERCALL: { 1851 u64 gfn; 1852 unsigned long addr; 1853 u8 instructions[4]; 1854 1855 /* if guest os id is not set hypercall should remain disabled */ 1856 if (!kvm->arch.hv_guest_os_id) 1857 break; 1858 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1859 kvm->arch.hv_hypercall = data; 1860 break; 1861 } 1862 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1863 addr = gfn_to_hva(kvm, gfn); 1864 if (kvm_is_error_hva(addr)) 1865 return 1; 1866 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1867 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1868 if (__copy_to_user((void __user *)addr, instructions, 4)) 1869 return 1; 1870 kvm->arch.hv_hypercall = data; 1871 break; 1872 } 1873 default: 1874 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1875 "data 0x%llx\n", msr, data); 1876 return 1; 1877 } 1878 return 0; 1879 } 1880 1881 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1882 { 1883 switch (msr) { 1884 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1885 unsigned long addr; 1886 1887 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1888 vcpu->arch.hv_vapic = data; 1889 break; 1890 } 1891 addr = gfn_to_hva(vcpu->kvm, data >> 1892 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1893 if (kvm_is_error_hva(addr)) 1894 return 1; 1895 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1896 return 1; 1897 vcpu->arch.hv_vapic = data; 1898 break; 1899 } 1900 case HV_X64_MSR_EOI: 1901 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1902 case HV_X64_MSR_ICR: 1903 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1904 case HV_X64_MSR_TPR: 1905 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1906 default: 1907 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1908 "data 0x%llx\n", msr, data); 1909 return 1; 1910 } 1911 1912 return 0; 1913 } 1914 1915 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1916 { 1917 gpa_t gpa = data & ~0x3f; 1918 1919 /* Bits 2:5 are reserved, Should be zero */ 1920 if (data & 0x3c) 1921 return 1; 1922 1923 vcpu->arch.apf.msr_val = data; 1924 1925 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1926 kvm_clear_async_pf_completion_queue(vcpu); 1927 kvm_async_pf_hash_reset(vcpu); 1928 return 0; 1929 } 1930 1931 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1932 sizeof(u32))) 1933 return 1; 1934 1935 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1936 kvm_async_pf_wakeup_all(vcpu); 1937 return 0; 1938 } 1939 1940 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1941 { 1942 vcpu->arch.pv_time_enabled = false; 1943 } 1944 1945 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1946 { 1947 u64 delta; 1948 1949 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1950 return; 1951 1952 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1953 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1954 vcpu->arch.st.accum_steal = delta; 1955 } 1956 1957 static void record_steal_time(struct kvm_vcpu *vcpu) 1958 { 1959 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1960 return; 1961 1962 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1963 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1964 return; 1965 1966 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1967 vcpu->arch.st.steal.version += 2; 1968 vcpu->arch.st.accum_steal = 0; 1969 1970 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1971 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1972 } 1973 1974 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1975 { 1976 bool pr = false; 1977 u32 msr = msr_info->index; 1978 u64 data = msr_info->data; 1979 1980 switch (msr) { 1981 case MSR_AMD64_NB_CFG: 1982 case MSR_IA32_UCODE_REV: 1983 case MSR_IA32_UCODE_WRITE: 1984 case MSR_VM_HSAVE_PA: 1985 case MSR_AMD64_PATCH_LOADER: 1986 case MSR_AMD64_BU_CFG2: 1987 break; 1988 1989 case MSR_EFER: 1990 return set_efer(vcpu, data); 1991 case MSR_K7_HWCR: 1992 data &= ~(u64)0x40; /* ignore flush filter disable */ 1993 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1994 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1995 if (data != 0) { 1996 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1997 data); 1998 return 1; 1999 } 2000 break; 2001 case MSR_FAM10H_MMIO_CONF_BASE: 2002 if (data != 0) { 2003 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2004 "0x%llx\n", data); 2005 return 1; 2006 } 2007 break; 2008 case MSR_IA32_DEBUGCTLMSR: 2009 if (!data) { 2010 /* We support the non-activated case already */ 2011 break; 2012 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2013 /* Values other than LBR and BTF are vendor-specific, 2014 thus reserved and should throw a #GP */ 2015 return 1; 2016 } 2017 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2018 __func__, data); 2019 break; 2020 case 0x200 ... 0x2ff: 2021 return set_msr_mtrr(vcpu, msr, data); 2022 case MSR_IA32_APICBASE: 2023 kvm_set_apic_base(vcpu, data); 2024 break; 2025 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2026 return kvm_x2apic_msr_write(vcpu, msr, data); 2027 case MSR_IA32_TSCDEADLINE: 2028 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2029 break; 2030 case MSR_IA32_TSC_ADJUST: 2031 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2032 if (!msr_info->host_initiated) { 2033 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2034 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2035 } 2036 vcpu->arch.ia32_tsc_adjust_msr = data; 2037 } 2038 break; 2039 case MSR_IA32_MISC_ENABLE: 2040 vcpu->arch.ia32_misc_enable_msr = data; 2041 break; 2042 case MSR_KVM_WALL_CLOCK_NEW: 2043 case MSR_KVM_WALL_CLOCK: 2044 vcpu->kvm->arch.wall_clock = data; 2045 kvm_write_wall_clock(vcpu->kvm, data); 2046 break; 2047 case MSR_KVM_SYSTEM_TIME_NEW: 2048 case MSR_KVM_SYSTEM_TIME: { 2049 u64 gpa_offset; 2050 kvmclock_reset(vcpu); 2051 2052 vcpu->arch.time = data; 2053 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2054 2055 /* we verify if the enable bit is set... */ 2056 if (!(data & 1)) 2057 break; 2058 2059 gpa_offset = data & ~(PAGE_MASK | 1); 2060 2061 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2062 &vcpu->arch.pv_time, data & ~1ULL, 2063 sizeof(struct pvclock_vcpu_time_info))) 2064 vcpu->arch.pv_time_enabled = false; 2065 else 2066 vcpu->arch.pv_time_enabled = true; 2067 2068 break; 2069 } 2070 case MSR_KVM_ASYNC_PF_EN: 2071 if (kvm_pv_enable_async_pf(vcpu, data)) 2072 return 1; 2073 break; 2074 case MSR_KVM_STEAL_TIME: 2075 2076 if (unlikely(!sched_info_on())) 2077 return 1; 2078 2079 if (data & KVM_STEAL_RESERVED_MASK) 2080 return 1; 2081 2082 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2083 data & KVM_STEAL_VALID_BITS, 2084 sizeof(struct kvm_steal_time))) 2085 return 1; 2086 2087 vcpu->arch.st.msr_val = data; 2088 2089 if (!(data & KVM_MSR_ENABLED)) 2090 break; 2091 2092 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2093 2094 preempt_disable(); 2095 accumulate_steal_time(vcpu); 2096 preempt_enable(); 2097 2098 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2099 2100 break; 2101 case MSR_KVM_PV_EOI_EN: 2102 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2103 return 1; 2104 break; 2105 2106 case MSR_IA32_MCG_CTL: 2107 case MSR_IA32_MCG_STATUS: 2108 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2109 return set_msr_mce(vcpu, msr, data); 2110 2111 /* Performance counters are not protected by a CPUID bit, 2112 * so we should check all of them in the generic path for the sake of 2113 * cross vendor migration. 2114 * Writing a zero into the event select MSRs disables them, 2115 * which we perfectly emulate ;-). Any other value should be at least 2116 * reported, some guests depend on them. 2117 */ 2118 case MSR_K7_EVNTSEL0: 2119 case MSR_K7_EVNTSEL1: 2120 case MSR_K7_EVNTSEL2: 2121 case MSR_K7_EVNTSEL3: 2122 if (data != 0) 2123 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2124 "0x%x data 0x%llx\n", msr, data); 2125 break; 2126 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2127 * so we ignore writes to make it happy. 2128 */ 2129 case MSR_K7_PERFCTR0: 2130 case MSR_K7_PERFCTR1: 2131 case MSR_K7_PERFCTR2: 2132 case MSR_K7_PERFCTR3: 2133 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2134 "0x%x data 0x%llx\n", msr, data); 2135 break; 2136 case MSR_P6_PERFCTR0: 2137 case MSR_P6_PERFCTR1: 2138 pr = true; 2139 case MSR_P6_EVNTSEL0: 2140 case MSR_P6_EVNTSEL1: 2141 if (kvm_pmu_msr(vcpu, msr)) 2142 return kvm_pmu_set_msr(vcpu, msr_info); 2143 2144 if (pr || data != 0) 2145 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2146 "0x%x data 0x%llx\n", msr, data); 2147 break; 2148 case MSR_K7_CLK_CTL: 2149 /* 2150 * Ignore all writes to this no longer documented MSR. 2151 * Writes are only relevant for old K7 processors, 2152 * all pre-dating SVM, but a recommended workaround from 2153 * AMD for these chips. It is possible to specify the 2154 * affected processor models on the command line, hence 2155 * the need to ignore the workaround. 2156 */ 2157 break; 2158 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2159 if (kvm_hv_msr_partition_wide(msr)) { 2160 int r; 2161 mutex_lock(&vcpu->kvm->lock); 2162 r = set_msr_hyperv_pw(vcpu, msr, data); 2163 mutex_unlock(&vcpu->kvm->lock); 2164 return r; 2165 } else 2166 return set_msr_hyperv(vcpu, msr, data); 2167 break; 2168 case MSR_IA32_BBL_CR_CTL3: 2169 /* Drop writes to this legacy MSR -- see rdmsr 2170 * counterpart for further detail. 2171 */ 2172 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2173 break; 2174 case MSR_AMD64_OSVW_ID_LENGTH: 2175 if (!guest_cpuid_has_osvw(vcpu)) 2176 return 1; 2177 vcpu->arch.osvw.length = data; 2178 break; 2179 case MSR_AMD64_OSVW_STATUS: 2180 if (!guest_cpuid_has_osvw(vcpu)) 2181 return 1; 2182 vcpu->arch.osvw.status = data; 2183 break; 2184 default: 2185 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2186 return xen_hvm_config(vcpu, data); 2187 if (kvm_pmu_msr(vcpu, msr)) 2188 return kvm_pmu_set_msr(vcpu, msr_info); 2189 if (!ignore_msrs) { 2190 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2191 msr, data); 2192 return 1; 2193 } else { 2194 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2195 msr, data); 2196 break; 2197 } 2198 } 2199 return 0; 2200 } 2201 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2202 2203 2204 /* 2205 * Reads an msr value (of 'msr_index') into 'pdata'. 2206 * Returns 0 on success, non-0 otherwise. 2207 * Assumes vcpu_load() was already called. 2208 */ 2209 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2210 { 2211 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2212 } 2213 2214 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2215 { 2216 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2217 2218 if (!msr_mtrr_valid(msr)) 2219 return 1; 2220 2221 if (msr == MSR_MTRRdefType) 2222 *pdata = vcpu->arch.mtrr_state.def_type + 2223 (vcpu->arch.mtrr_state.enabled << 10); 2224 else if (msr == MSR_MTRRfix64K_00000) 2225 *pdata = p[0]; 2226 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2227 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2228 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2229 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2230 else if (msr == MSR_IA32_CR_PAT) 2231 *pdata = vcpu->arch.pat; 2232 else { /* Variable MTRRs */ 2233 int idx, is_mtrr_mask; 2234 u64 *pt; 2235 2236 idx = (msr - 0x200) / 2; 2237 is_mtrr_mask = msr - 0x200 - 2 * idx; 2238 if (!is_mtrr_mask) 2239 pt = 2240 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2241 else 2242 pt = 2243 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2244 *pdata = *pt; 2245 } 2246 2247 return 0; 2248 } 2249 2250 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2251 { 2252 u64 data; 2253 u64 mcg_cap = vcpu->arch.mcg_cap; 2254 unsigned bank_num = mcg_cap & 0xff; 2255 2256 switch (msr) { 2257 case MSR_IA32_P5_MC_ADDR: 2258 case MSR_IA32_P5_MC_TYPE: 2259 data = 0; 2260 break; 2261 case MSR_IA32_MCG_CAP: 2262 data = vcpu->arch.mcg_cap; 2263 break; 2264 case MSR_IA32_MCG_CTL: 2265 if (!(mcg_cap & MCG_CTL_P)) 2266 return 1; 2267 data = vcpu->arch.mcg_ctl; 2268 break; 2269 case MSR_IA32_MCG_STATUS: 2270 data = vcpu->arch.mcg_status; 2271 break; 2272 default: 2273 if (msr >= MSR_IA32_MC0_CTL && 2274 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2275 u32 offset = msr - MSR_IA32_MC0_CTL; 2276 data = vcpu->arch.mce_banks[offset]; 2277 break; 2278 } 2279 return 1; 2280 } 2281 *pdata = data; 2282 return 0; 2283 } 2284 2285 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2286 { 2287 u64 data = 0; 2288 struct kvm *kvm = vcpu->kvm; 2289 2290 switch (msr) { 2291 case HV_X64_MSR_GUEST_OS_ID: 2292 data = kvm->arch.hv_guest_os_id; 2293 break; 2294 case HV_X64_MSR_HYPERCALL: 2295 data = kvm->arch.hv_hypercall; 2296 break; 2297 default: 2298 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2299 return 1; 2300 } 2301 2302 *pdata = data; 2303 return 0; 2304 } 2305 2306 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2307 { 2308 u64 data = 0; 2309 2310 switch (msr) { 2311 case HV_X64_MSR_VP_INDEX: { 2312 int r; 2313 struct kvm_vcpu *v; 2314 kvm_for_each_vcpu(r, v, vcpu->kvm) 2315 if (v == vcpu) 2316 data = r; 2317 break; 2318 } 2319 case HV_X64_MSR_EOI: 2320 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2321 case HV_X64_MSR_ICR: 2322 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2323 case HV_X64_MSR_TPR: 2324 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2325 case HV_X64_MSR_APIC_ASSIST_PAGE: 2326 data = vcpu->arch.hv_vapic; 2327 break; 2328 default: 2329 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2330 return 1; 2331 } 2332 *pdata = data; 2333 return 0; 2334 } 2335 2336 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2337 { 2338 u64 data; 2339 2340 switch (msr) { 2341 case MSR_IA32_PLATFORM_ID: 2342 case MSR_IA32_EBL_CR_POWERON: 2343 case MSR_IA32_DEBUGCTLMSR: 2344 case MSR_IA32_LASTBRANCHFROMIP: 2345 case MSR_IA32_LASTBRANCHTOIP: 2346 case MSR_IA32_LASTINTFROMIP: 2347 case MSR_IA32_LASTINTTOIP: 2348 case MSR_K8_SYSCFG: 2349 case MSR_K7_HWCR: 2350 case MSR_VM_HSAVE_PA: 2351 case MSR_K7_EVNTSEL0: 2352 case MSR_K7_PERFCTR0: 2353 case MSR_K8_INT_PENDING_MSG: 2354 case MSR_AMD64_NB_CFG: 2355 case MSR_FAM10H_MMIO_CONF_BASE: 2356 case MSR_AMD64_BU_CFG2: 2357 data = 0; 2358 break; 2359 case MSR_P6_PERFCTR0: 2360 case MSR_P6_PERFCTR1: 2361 case MSR_P6_EVNTSEL0: 2362 case MSR_P6_EVNTSEL1: 2363 if (kvm_pmu_msr(vcpu, msr)) 2364 return kvm_pmu_get_msr(vcpu, msr, pdata); 2365 data = 0; 2366 break; 2367 case MSR_IA32_UCODE_REV: 2368 data = 0x100000000ULL; 2369 break; 2370 case MSR_MTRRcap: 2371 data = 0x500 | KVM_NR_VAR_MTRR; 2372 break; 2373 case 0x200 ... 0x2ff: 2374 return get_msr_mtrr(vcpu, msr, pdata); 2375 case 0xcd: /* fsb frequency */ 2376 data = 3; 2377 break; 2378 /* 2379 * MSR_EBC_FREQUENCY_ID 2380 * Conservative value valid for even the basic CPU models. 2381 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2382 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2383 * and 266MHz for model 3, or 4. Set Core Clock 2384 * Frequency to System Bus Frequency Ratio to 1 (bits 2385 * 31:24) even though these are only valid for CPU 2386 * models > 2, however guests may end up dividing or 2387 * multiplying by zero otherwise. 2388 */ 2389 case MSR_EBC_FREQUENCY_ID: 2390 data = 1 << 24; 2391 break; 2392 case MSR_IA32_APICBASE: 2393 data = kvm_get_apic_base(vcpu); 2394 break; 2395 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2396 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2397 break; 2398 case MSR_IA32_TSCDEADLINE: 2399 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2400 break; 2401 case MSR_IA32_TSC_ADJUST: 2402 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2403 break; 2404 case MSR_IA32_MISC_ENABLE: 2405 data = vcpu->arch.ia32_misc_enable_msr; 2406 break; 2407 case MSR_IA32_PERF_STATUS: 2408 /* TSC increment by tick */ 2409 data = 1000ULL; 2410 /* CPU multiplier */ 2411 data |= (((uint64_t)4ULL) << 40); 2412 break; 2413 case MSR_EFER: 2414 data = vcpu->arch.efer; 2415 break; 2416 case MSR_KVM_WALL_CLOCK: 2417 case MSR_KVM_WALL_CLOCK_NEW: 2418 data = vcpu->kvm->arch.wall_clock; 2419 break; 2420 case MSR_KVM_SYSTEM_TIME: 2421 case MSR_KVM_SYSTEM_TIME_NEW: 2422 data = vcpu->arch.time; 2423 break; 2424 case MSR_KVM_ASYNC_PF_EN: 2425 data = vcpu->arch.apf.msr_val; 2426 break; 2427 case MSR_KVM_STEAL_TIME: 2428 data = vcpu->arch.st.msr_val; 2429 break; 2430 case MSR_KVM_PV_EOI_EN: 2431 data = vcpu->arch.pv_eoi.msr_val; 2432 break; 2433 case MSR_IA32_P5_MC_ADDR: 2434 case MSR_IA32_P5_MC_TYPE: 2435 case MSR_IA32_MCG_CAP: 2436 case MSR_IA32_MCG_CTL: 2437 case MSR_IA32_MCG_STATUS: 2438 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2439 return get_msr_mce(vcpu, msr, pdata); 2440 case MSR_K7_CLK_CTL: 2441 /* 2442 * Provide expected ramp-up count for K7. All other 2443 * are set to zero, indicating minimum divisors for 2444 * every field. 2445 * 2446 * This prevents guest kernels on AMD host with CPU 2447 * type 6, model 8 and higher from exploding due to 2448 * the rdmsr failing. 2449 */ 2450 data = 0x20000000; 2451 break; 2452 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2453 if (kvm_hv_msr_partition_wide(msr)) { 2454 int r; 2455 mutex_lock(&vcpu->kvm->lock); 2456 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2457 mutex_unlock(&vcpu->kvm->lock); 2458 return r; 2459 } else 2460 return get_msr_hyperv(vcpu, msr, pdata); 2461 break; 2462 case MSR_IA32_BBL_CR_CTL3: 2463 /* This legacy MSR exists but isn't fully documented in current 2464 * silicon. It is however accessed by winxp in very narrow 2465 * scenarios where it sets bit #19, itself documented as 2466 * a "reserved" bit. Best effort attempt to source coherent 2467 * read data here should the balance of the register be 2468 * interpreted by the guest: 2469 * 2470 * L2 cache control register 3: 64GB range, 256KB size, 2471 * enabled, latency 0x1, configured 2472 */ 2473 data = 0xbe702111; 2474 break; 2475 case MSR_AMD64_OSVW_ID_LENGTH: 2476 if (!guest_cpuid_has_osvw(vcpu)) 2477 return 1; 2478 data = vcpu->arch.osvw.length; 2479 break; 2480 case MSR_AMD64_OSVW_STATUS: 2481 if (!guest_cpuid_has_osvw(vcpu)) 2482 return 1; 2483 data = vcpu->arch.osvw.status; 2484 break; 2485 default: 2486 if (kvm_pmu_msr(vcpu, msr)) 2487 return kvm_pmu_get_msr(vcpu, msr, pdata); 2488 if (!ignore_msrs) { 2489 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2490 return 1; 2491 } else { 2492 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2493 data = 0; 2494 } 2495 break; 2496 } 2497 *pdata = data; 2498 return 0; 2499 } 2500 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2501 2502 /* 2503 * Read or write a bunch of msrs. All parameters are kernel addresses. 2504 * 2505 * @return number of msrs set successfully. 2506 */ 2507 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2508 struct kvm_msr_entry *entries, 2509 int (*do_msr)(struct kvm_vcpu *vcpu, 2510 unsigned index, u64 *data)) 2511 { 2512 int i, idx; 2513 2514 idx = srcu_read_lock(&vcpu->kvm->srcu); 2515 for (i = 0; i < msrs->nmsrs; ++i) 2516 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2517 break; 2518 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2519 2520 return i; 2521 } 2522 2523 /* 2524 * Read or write a bunch of msrs. Parameters are user addresses. 2525 * 2526 * @return number of msrs set successfully. 2527 */ 2528 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2529 int (*do_msr)(struct kvm_vcpu *vcpu, 2530 unsigned index, u64 *data), 2531 int writeback) 2532 { 2533 struct kvm_msrs msrs; 2534 struct kvm_msr_entry *entries; 2535 int r, n; 2536 unsigned size; 2537 2538 r = -EFAULT; 2539 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2540 goto out; 2541 2542 r = -E2BIG; 2543 if (msrs.nmsrs >= MAX_IO_MSRS) 2544 goto out; 2545 2546 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2547 entries = memdup_user(user_msrs->entries, size); 2548 if (IS_ERR(entries)) { 2549 r = PTR_ERR(entries); 2550 goto out; 2551 } 2552 2553 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2554 if (r < 0) 2555 goto out_free; 2556 2557 r = -EFAULT; 2558 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2559 goto out_free; 2560 2561 r = n; 2562 2563 out_free: 2564 kfree(entries); 2565 out: 2566 return r; 2567 } 2568 2569 int kvm_dev_ioctl_check_extension(long ext) 2570 { 2571 int r; 2572 2573 switch (ext) { 2574 case KVM_CAP_IRQCHIP: 2575 case KVM_CAP_HLT: 2576 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2577 case KVM_CAP_SET_TSS_ADDR: 2578 case KVM_CAP_EXT_CPUID: 2579 case KVM_CAP_EXT_EMUL_CPUID: 2580 case KVM_CAP_CLOCKSOURCE: 2581 case KVM_CAP_PIT: 2582 case KVM_CAP_NOP_IO_DELAY: 2583 case KVM_CAP_MP_STATE: 2584 case KVM_CAP_SYNC_MMU: 2585 case KVM_CAP_USER_NMI: 2586 case KVM_CAP_REINJECT_CONTROL: 2587 case KVM_CAP_IRQ_INJECT_STATUS: 2588 case KVM_CAP_IRQFD: 2589 case KVM_CAP_IOEVENTFD: 2590 case KVM_CAP_PIT2: 2591 case KVM_CAP_PIT_STATE2: 2592 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2593 case KVM_CAP_XEN_HVM: 2594 case KVM_CAP_ADJUST_CLOCK: 2595 case KVM_CAP_VCPU_EVENTS: 2596 case KVM_CAP_HYPERV: 2597 case KVM_CAP_HYPERV_VAPIC: 2598 case KVM_CAP_HYPERV_SPIN: 2599 case KVM_CAP_PCI_SEGMENT: 2600 case KVM_CAP_DEBUGREGS: 2601 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2602 case KVM_CAP_XSAVE: 2603 case KVM_CAP_ASYNC_PF: 2604 case KVM_CAP_GET_TSC_KHZ: 2605 case KVM_CAP_KVMCLOCK_CTRL: 2606 case KVM_CAP_READONLY_MEM: 2607 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2608 case KVM_CAP_ASSIGN_DEV_IRQ: 2609 case KVM_CAP_PCI_2_3: 2610 #endif 2611 r = 1; 2612 break; 2613 case KVM_CAP_COALESCED_MMIO: 2614 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2615 break; 2616 case KVM_CAP_VAPIC: 2617 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2618 break; 2619 case KVM_CAP_NR_VCPUS: 2620 r = KVM_SOFT_MAX_VCPUS; 2621 break; 2622 case KVM_CAP_MAX_VCPUS: 2623 r = KVM_MAX_VCPUS; 2624 break; 2625 case KVM_CAP_NR_MEMSLOTS: 2626 r = KVM_USER_MEM_SLOTS; 2627 break; 2628 case KVM_CAP_PV_MMU: /* obsolete */ 2629 r = 0; 2630 break; 2631 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2632 case KVM_CAP_IOMMU: 2633 r = iommu_present(&pci_bus_type); 2634 break; 2635 #endif 2636 case KVM_CAP_MCE: 2637 r = KVM_MAX_MCE_BANKS; 2638 break; 2639 case KVM_CAP_XCRS: 2640 r = cpu_has_xsave; 2641 break; 2642 case KVM_CAP_TSC_CONTROL: 2643 r = kvm_has_tsc_control; 2644 break; 2645 case KVM_CAP_TSC_DEADLINE_TIMER: 2646 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2647 break; 2648 default: 2649 r = 0; 2650 break; 2651 } 2652 return r; 2653 2654 } 2655 2656 long kvm_arch_dev_ioctl(struct file *filp, 2657 unsigned int ioctl, unsigned long arg) 2658 { 2659 void __user *argp = (void __user *)arg; 2660 long r; 2661 2662 switch (ioctl) { 2663 case KVM_GET_MSR_INDEX_LIST: { 2664 struct kvm_msr_list __user *user_msr_list = argp; 2665 struct kvm_msr_list msr_list; 2666 unsigned n; 2667 2668 r = -EFAULT; 2669 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2670 goto out; 2671 n = msr_list.nmsrs; 2672 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2673 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2674 goto out; 2675 r = -E2BIG; 2676 if (n < msr_list.nmsrs) 2677 goto out; 2678 r = -EFAULT; 2679 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2680 num_msrs_to_save * sizeof(u32))) 2681 goto out; 2682 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2683 &emulated_msrs, 2684 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2685 goto out; 2686 r = 0; 2687 break; 2688 } 2689 case KVM_GET_SUPPORTED_CPUID: 2690 case KVM_GET_EMULATED_CPUID: { 2691 struct kvm_cpuid2 __user *cpuid_arg = argp; 2692 struct kvm_cpuid2 cpuid; 2693 2694 r = -EFAULT; 2695 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2696 goto out; 2697 2698 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2699 ioctl); 2700 if (r) 2701 goto out; 2702 2703 r = -EFAULT; 2704 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2705 goto out; 2706 r = 0; 2707 break; 2708 } 2709 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2710 u64 mce_cap; 2711 2712 mce_cap = KVM_MCE_CAP_SUPPORTED; 2713 r = -EFAULT; 2714 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2715 goto out; 2716 r = 0; 2717 break; 2718 } 2719 default: 2720 r = -EINVAL; 2721 } 2722 out: 2723 return r; 2724 } 2725 2726 static void wbinvd_ipi(void *garbage) 2727 { 2728 wbinvd(); 2729 } 2730 2731 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2732 { 2733 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2734 } 2735 2736 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2737 { 2738 /* Address WBINVD may be executed by guest */ 2739 if (need_emulate_wbinvd(vcpu)) { 2740 if (kvm_x86_ops->has_wbinvd_exit()) 2741 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2742 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2743 smp_call_function_single(vcpu->cpu, 2744 wbinvd_ipi, NULL, 1); 2745 } 2746 2747 kvm_x86_ops->vcpu_load(vcpu, cpu); 2748 2749 /* Apply any externally detected TSC adjustments (due to suspend) */ 2750 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2751 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2752 vcpu->arch.tsc_offset_adjustment = 0; 2753 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2754 } 2755 2756 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2757 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2758 native_read_tsc() - vcpu->arch.last_host_tsc; 2759 if (tsc_delta < 0) 2760 mark_tsc_unstable("KVM discovered backwards TSC"); 2761 if (check_tsc_unstable()) { 2762 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2763 vcpu->arch.last_guest_tsc); 2764 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2765 vcpu->arch.tsc_catchup = 1; 2766 } 2767 /* 2768 * On a host with synchronized TSC, there is no need to update 2769 * kvmclock on vcpu->cpu migration 2770 */ 2771 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2772 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2773 if (vcpu->cpu != cpu) 2774 kvm_migrate_timers(vcpu); 2775 vcpu->cpu = cpu; 2776 } 2777 2778 accumulate_steal_time(vcpu); 2779 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2780 } 2781 2782 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2783 { 2784 kvm_x86_ops->vcpu_put(vcpu); 2785 kvm_put_guest_fpu(vcpu); 2786 vcpu->arch.last_host_tsc = native_read_tsc(); 2787 } 2788 2789 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2790 struct kvm_lapic_state *s) 2791 { 2792 kvm_x86_ops->sync_pir_to_irr(vcpu); 2793 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2794 2795 return 0; 2796 } 2797 2798 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2799 struct kvm_lapic_state *s) 2800 { 2801 kvm_apic_post_state_restore(vcpu, s); 2802 update_cr8_intercept(vcpu); 2803 2804 return 0; 2805 } 2806 2807 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2808 struct kvm_interrupt *irq) 2809 { 2810 if (irq->irq >= KVM_NR_INTERRUPTS) 2811 return -EINVAL; 2812 if (irqchip_in_kernel(vcpu->kvm)) 2813 return -ENXIO; 2814 2815 kvm_queue_interrupt(vcpu, irq->irq, false); 2816 kvm_make_request(KVM_REQ_EVENT, vcpu); 2817 2818 return 0; 2819 } 2820 2821 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2822 { 2823 kvm_inject_nmi(vcpu); 2824 2825 return 0; 2826 } 2827 2828 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2829 struct kvm_tpr_access_ctl *tac) 2830 { 2831 if (tac->flags) 2832 return -EINVAL; 2833 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2834 return 0; 2835 } 2836 2837 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2838 u64 mcg_cap) 2839 { 2840 int r; 2841 unsigned bank_num = mcg_cap & 0xff, bank; 2842 2843 r = -EINVAL; 2844 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2845 goto out; 2846 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2847 goto out; 2848 r = 0; 2849 vcpu->arch.mcg_cap = mcg_cap; 2850 /* Init IA32_MCG_CTL to all 1s */ 2851 if (mcg_cap & MCG_CTL_P) 2852 vcpu->arch.mcg_ctl = ~(u64)0; 2853 /* Init IA32_MCi_CTL to all 1s */ 2854 for (bank = 0; bank < bank_num; bank++) 2855 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2856 out: 2857 return r; 2858 } 2859 2860 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2861 struct kvm_x86_mce *mce) 2862 { 2863 u64 mcg_cap = vcpu->arch.mcg_cap; 2864 unsigned bank_num = mcg_cap & 0xff; 2865 u64 *banks = vcpu->arch.mce_banks; 2866 2867 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2868 return -EINVAL; 2869 /* 2870 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2871 * reporting is disabled 2872 */ 2873 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2874 vcpu->arch.mcg_ctl != ~(u64)0) 2875 return 0; 2876 banks += 4 * mce->bank; 2877 /* 2878 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2879 * reporting is disabled for the bank 2880 */ 2881 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2882 return 0; 2883 if (mce->status & MCI_STATUS_UC) { 2884 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2885 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2886 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2887 return 0; 2888 } 2889 if (banks[1] & MCI_STATUS_VAL) 2890 mce->status |= MCI_STATUS_OVER; 2891 banks[2] = mce->addr; 2892 banks[3] = mce->misc; 2893 vcpu->arch.mcg_status = mce->mcg_status; 2894 banks[1] = mce->status; 2895 kvm_queue_exception(vcpu, MC_VECTOR); 2896 } else if (!(banks[1] & MCI_STATUS_VAL) 2897 || !(banks[1] & MCI_STATUS_UC)) { 2898 if (banks[1] & MCI_STATUS_VAL) 2899 mce->status |= MCI_STATUS_OVER; 2900 banks[2] = mce->addr; 2901 banks[3] = mce->misc; 2902 banks[1] = mce->status; 2903 } else 2904 banks[1] |= MCI_STATUS_OVER; 2905 return 0; 2906 } 2907 2908 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2909 struct kvm_vcpu_events *events) 2910 { 2911 process_nmi(vcpu); 2912 events->exception.injected = 2913 vcpu->arch.exception.pending && 2914 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2915 events->exception.nr = vcpu->arch.exception.nr; 2916 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2917 events->exception.pad = 0; 2918 events->exception.error_code = vcpu->arch.exception.error_code; 2919 2920 events->interrupt.injected = 2921 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2922 events->interrupt.nr = vcpu->arch.interrupt.nr; 2923 events->interrupt.soft = 0; 2924 events->interrupt.shadow = 2925 kvm_x86_ops->get_interrupt_shadow(vcpu, 2926 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2927 2928 events->nmi.injected = vcpu->arch.nmi_injected; 2929 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2930 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2931 events->nmi.pad = 0; 2932 2933 events->sipi_vector = 0; /* never valid when reporting to user space */ 2934 2935 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2936 | KVM_VCPUEVENT_VALID_SHADOW); 2937 memset(&events->reserved, 0, sizeof(events->reserved)); 2938 } 2939 2940 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2941 struct kvm_vcpu_events *events) 2942 { 2943 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2944 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2945 | KVM_VCPUEVENT_VALID_SHADOW)) 2946 return -EINVAL; 2947 2948 process_nmi(vcpu); 2949 vcpu->arch.exception.pending = events->exception.injected; 2950 vcpu->arch.exception.nr = events->exception.nr; 2951 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2952 vcpu->arch.exception.error_code = events->exception.error_code; 2953 2954 vcpu->arch.interrupt.pending = events->interrupt.injected; 2955 vcpu->arch.interrupt.nr = events->interrupt.nr; 2956 vcpu->arch.interrupt.soft = events->interrupt.soft; 2957 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2958 kvm_x86_ops->set_interrupt_shadow(vcpu, 2959 events->interrupt.shadow); 2960 2961 vcpu->arch.nmi_injected = events->nmi.injected; 2962 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2963 vcpu->arch.nmi_pending = events->nmi.pending; 2964 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2965 2966 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 2967 kvm_vcpu_has_lapic(vcpu)) 2968 vcpu->arch.apic->sipi_vector = events->sipi_vector; 2969 2970 kvm_make_request(KVM_REQ_EVENT, vcpu); 2971 2972 return 0; 2973 } 2974 2975 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2976 struct kvm_debugregs *dbgregs) 2977 { 2978 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2979 dbgregs->dr6 = vcpu->arch.dr6; 2980 dbgregs->dr7 = vcpu->arch.dr7; 2981 dbgregs->flags = 0; 2982 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2983 } 2984 2985 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2986 struct kvm_debugregs *dbgregs) 2987 { 2988 if (dbgregs->flags) 2989 return -EINVAL; 2990 2991 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2992 vcpu->arch.dr6 = dbgregs->dr6; 2993 vcpu->arch.dr7 = dbgregs->dr7; 2994 2995 return 0; 2996 } 2997 2998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2999 struct kvm_xsave *guest_xsave) 3000 { 3001 if (cpu_has_xsave) { 3002 memcpy(guest_xsave->region, 3003 &vcpu->arch.guest_fpu.state->xsave, 3004 vcpu->arch.guest_xstate_size); 3005 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= 3006 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; 3007 } else { 3008 memcpy(guest_xsave->region, 3009 &vcpu->arch.guest_fpu.state->fxsave, 3010 sizeof(struct i387_fxsave_struct)); 3011 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3012 XSTATE_FPSSE; 3013 } 3014 } 3015 3016 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3017 struct kvm_xsave *guest_xsave) 3018 { 3019 u64 xstate_bv = 3020 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3021 3022 if (cpu_has_xsave) { 3023 /* 3024 * Here we allow setting states that are not present in 3025 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3026 * with old userspace. 3027 */ 3028 if (xstate_bv & ~KVM_SUPPORTED_XCR0) 3029 return -EINVAL; 3030 if (xstate_bv & ~host_xcr0) 3031 return -EINVAL; 3032 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3033 guest_xsave->region, vcpu->arch.guest_xstate_size); 3034 } else { 3035 if (xstate_bv & ~XSTATE_FPSSE) 3036 return -EINVAL; 3037 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3038 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3039 } 3040 return 0; 3041 } 3042 3043 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3044 struct kvm_xcrs *guest_xcrs) 3045 { 3046 if (!cpu_has_xsave) { 3047 guest_xcrs->nr_xcrs = 0; 3048 return; 3049 } 3050 3051 guest_xcrs->nr_xcrs = 1; 3052 guest_xcrs->flags = 0; 3053 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3054 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3055 } 3056 3057 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3058 struct kvm_xcrs *guest_xcrs) 3059 { 3060 int i, r = 0; 3061 3062 if (!cpu_has_xsave) 3063 return -EINVAL; 3064 3065 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3066 return -EINVAL; 3067 3068 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3069 /* Only support XCR0 currently */ 3070 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3071 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3072 guest_xcrs->xcrs[i].value); 3073 break; 3074 } 3075 if (r) 3076 r = -EINVAL; 3077 return r; 3078 } 3079 3080 /* 3081 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3082 * stopped by the hypervisor. This function will be called from the host only. 3083 * EINVAL is returned when the host attempts to set the flag for a guest that 3084 * does not support pv clocks. 3085 */ 3086 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3087 { 3088 if (!vcpu->arch.pv_time_enabled) 3089 return -EINVAL; 3090 vcpu->arch.pvclock_set_guest_stopped_request = true; 3091 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3092 return 0; 3093 } 3094 3095 long kvm_arch_vcpu_ioctl(struct file *filp, 3096 unsigned int ioctl, unsigned long arg) 3097 { 3098 struct kvm_vcpu *vcpu = filp->private_data; 3099 void __user *argp = (void __user *)arg; 3100 int r; 3101 union { 3102 struct kvm_lapic_state *lapic; 3103 struct kvm_xsave *xsave; 3104 struct kvm_xcrs *xcrs; 3105 void *buffer; 3106 } u; 3107 3108 u.buffer = NULL; 3109 switch (ioctl) { 3110 case KVM_GET_LAPIC: { 3111 r = -EINVAL; 3112 if (!vcpu->arch.apic) 3113 goto out; 3114 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3115 3116 r = -ENOMEM; 3117 if (!u.lapic) 3118 goto out; 3119 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3120 if (r) 3121 goto out; 3122 r = -EFAULT; 3123 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3124 goto out; 3125 r = 0; 3126 break; 3127 } 3128 case KVM_SET_LAPIC: { 3129 r = -EINVAL; 3130 if (!vcpu->arch.apic) 3131 goto out; 3132 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3133 if (IS_ERR(u.lapic)) 3134 return PTR_ERR(u.lapic); 3135 3136 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3137 break; 3138 } 3139 case KVM_INTERRUPT: { 3140 struct kvm_interrupt irq; 3141 3142 r = -EFAULT; 3143 if (copy_from_user(&irq, argp, sizeof irq)) 3144 goto out; 3145 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3146 break; 3147 } 3148 case KVM_NMI: { 3149 r = kvm_vcpu_ioctl_nmi(vcpu); 3150 break; 3151 } 3152 case KVM_SET_CPUID: { 3153 struct kvm_cpuid __user *cpuid_arg = argp; 3154 struct kvm_cpuid cpuid; 3155 3156 r = -EFAULT; 3157 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3158 goto out; 3159 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3160 break; 3161 } 3162 case KVM_SET_CPUID2: { 3163 struct kvm_cpuid2 __user *cpuid_arg = argp; 3164 struct kvm_cpuid2 cpuid; 3165 3166 r = -EFAULT; 3167 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3168 goto out; 3169 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3170 cpuid_arg->entries); 3171 break; 3172 } 3173 case KVM_GET_CPUID2: { 3174 struct kvm_cpuid2 __user *cpuid_arg = argp; 3175 struct kvm_cpuid2 cpuid; 3176 3177 r = -EFAULT; 3178 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3179 goto out; 3180 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3181 cpuid_arg->entries); 3182 if (r) 3183 goto out; 3184 r = -EFAULT; 3185 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3186 goto out; 3187 r = 0; 3188 break; 3189 } 3190 case KVM_GET_MSRS: 3191 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3192 break; 3193 case KVM_SET_MSRS: 3194 r = msr_io(vcpu, argp, do_set_msr, 0); 3195 break; 3196 case KVM_TPR_ACCESS_REPORTING: { 3197 struct kvm_tpr_access_ctl tac; 3198 3199 r = -EFAULT; 3200 if (copy_from_user(&tac, argp, sizeof tac)) 3201 goto out; 3202 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3203 if (r) 3204 goto out; 3205 r = -EFAULT; 3206 if (copy_to_user(argp, &tac, sizeof tac)) 3207 goto out; 3208 r = 0; 3209 break; 3210 }; 3211 case KVM_SET_VAPIC_ADDR: { 3212 struct kvm_vapic_addr va; 3213 3214 r = -EINVAL; 3215 if (!irqchip_in_kernel(vcpu->kvm)) 3216 goto out; 3217 r = -EFAULT; 3218 if (copy_from_user(&va, argp, sizeof va)) 3219 goto out; 3220 r = 0; 3221 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3222 break; 3223 } 3224 case KVM_X86_SETUP_MCE: { 3225 u64 mcg_cap; 3226 3227 r = -EFAULT; 3228 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3229 goto out; 3230 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3231 break; 3232 } 3233 case KVM_X86_SET_MCE: { 3234 struct kvm_x86_mce mce; 3235 3236 r = -EFAULT; 3237 if (copy_from_user(&mce, argp, sizeof mce)) 3238 goto out; 3239 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3240 break; 3241 } 3242 case KVM_GET_VCPU_EVENTS: { 3243 struct kvm_vcpu_events events; 3244 3245 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3246 3247 r = -EFAULT; 3248 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3249 break; 3250 r = 0; 3251 break; 3252 } 3253 case KVM_SET_VCPU_EVENTS: { 3254 struct kvm_vcpu_events events; 3255 3256 r = -EFAULT; 3257 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3258 break; 3259 3260 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3261 break; 3262 } 3263 case KVM_GET_DEBUGREGS: { 3264 struct kvm_debugregs dbgregs; 3265 3266 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3267 3268 r = -EFAULT; 3269 if (copy_to_user(argp, &dbgregs, 3270 sizeof(struct kvm_debugregs))) 3271 break; 3272 r = 0; 3273 break; 3274 } 3275 case KVM_SET_DEBUGREGS: { 3276 struct kvm_debugregs dbgregs; 3277 3278 r = -EFAULT; 3279 if (copy_from_user(&dbgregs, argp, 3280 sizeof(struct kvm_debugregs))) 3281 break; 3282 3283 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3284 break; 3285 } 3286 case KVM_GET_XSAVE: { 3287 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3288 r = -ENOMEM; 3289 if (!u.xsave) 3290 break; 3291 3292 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3293 3294 r = -EFAULT; 3295 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3296 break; 3297 r = 0; 3298 break; 3299 } 3300 case KVM_SET_XSAVE: { 3301 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3302 if (IS_ERR(u.xsave)) 3303 return PTR_ERR(u.xsave); 3304 3305 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3306 break; 3307 } 3308 case KVM_GET_XCRS: { 3309 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3310 r = -ENOMEM; 3311 if (!u.xcrs) 3312 break; 3313 3314 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3315 3316 r = -EFAULT; 3317 if (copy_to_user(argp, u.xcrs, 3318 sizeof(struct kvm_xcrs))) 3319 break; 3320 r = 0; 3321 break; 3322 } 3323 case KVM_SET_XCRS: { 3324 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3325 if (IS_ERR(u.xcrs)) 3326 return PTR_ERR(u.xcrs); 3327 3328 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3329 break; 3330 } 3331 case KVM_SET_TSC_KHZ: { 3332 u32 user_tsc_khz; 3333 3334 r = -EINVAL; 3335 user_tsc_khz = (u32)arg; 3336 3337 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3338 goto out; 3339 3340 if (user_tsc_khz == 0) 3341 user_tsc_khz = tsc_khz; 3342 3343 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3344 3345 r = 0; 3346 goto out; 3347 } 3348 case KVM_GET_TSC_KHZ: { 3349 r = vcpu->arch.virtual_tsc_khz; 3350 goto out; 3351 } 3352 case KVM_KVMCLOCK_CTRL: { 3353 r = kvm_set_guest_paused(vcpu); 3354 goto out; 3355 } 3356 default: 3357 r = -EINVAL; 3358 } 3359 out: 3360 kfree(u.buffer); 3361 return r; 3362 } 3363 3364 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3365 { 3366 return VM_FAULT_SIGBUS; 3367 } 3368 3369 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3370 { 3371 int ret; 3372 3373 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3374 return -EINVAL; 3375 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3376 return ret; 3377 } 3378 3379 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3380 u64 ident_addr) 3381 { 3382 kvm->arch.ept_identity_map_addr = ident_addr; 3383 return 0; 3384 } 3385 3386 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3387 u32 kvm_nr_mmu_pages) 3388 { 3389 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3390 return -EINVAL; 3391 3392 mutex_lock(&kvm->slots_lock); 3393 3394 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3395 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3396 3397 mutex_unlock(&kvm->slots_lock); 3398 return 0; 3399 } 3400 3401 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3402 { 3403 return kvm->arch.n_max_mmu_pages; 3404 } 3405 3406 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3407 { 3408 int r; 3409 3410 r = 0; 3411 switch (chip->chip_id) { 3412 case KVM_IRQCHIP_PIC_MASTER: 3413 memcpy(&chip->chip.pic, 3414 &pic_irqchip(kvm)->pics[0], 3415 sizeof(struct kvm_pic_state)); 3416 break; 3417 case KVM_IRQCHIP_PIC_SLAVE: 3418 memcpy(&chip->chip.pic, 3419 &pic_irqchip(kvm)->pics[1], 3420 sizeof(struct kvm_pic_state)); 3421 break; 3422 case KVM_IRQCHIP_IOAPIC: 3423 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3424 break; 3425 default: 3426 r = -EINVAL; 3427 break; 3428 } 3429 return r; 3430 } 3431 3432 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3433 { 3434 int r; 3435 3436 r = 0; 3437 switch (chip->chip_id) { 3438 case KVM_IRQCHIP_PIC_MASTER: 3439 spin_lock(&pic_irqchip(kvm)->lock); 3440 memcpy(&pic_irqchip(kvm)->pics[0], 3441 &chip->chip.pic, 3442 sizeof(struct kvm_pic_state)); 3443 spin_unlock(&pic_irqchip(kvm)->lock); 3444 break; 3445 case KVM_IRQCHIP_PIC_SLAVE: 3446 spin_lock(&pic_irqchip(kvm)->lock); 3447 memcpy(&pic_irqchip(kvm)->pics[1], 3448 &chip->chip.pic, 3449 sizeof(struct kvm_pic_state)); 3450 spin_unlock(&pic_irqchip(kvm)->lock); 3451 break; 3452 case KVM_IRQCHIP_IOAPIC: 3453 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3454 break; 3455 default: 3456 r = -EINVAL; 3457 break; 3458 } 3459 kvm_pic_update_irq(pic_irqchip(kvm)); 3460 return r; 3461 } 3462 3463 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3464 { 3465 int r = 0; 3466 3467 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3468 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3469 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3470 return r; 3471 } 3472 3473 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3474 { 3475 int r = 0; 3476 3477 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3478 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3479 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3480 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3481 return r; 3482 } 3483 3484 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3485 { 3486 int r = 0; 3487 3488 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3489 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3490 sizeof(ps->channels)); 3491 ps->flags = kvm->arch.vpit->pit_state.flags; 3492 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3493 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3494 return r; 3495 } 3496 3497 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3498 { 3499 int r = 0, start = 0; 3500 u32 prev_legacy, cur_legacy; 3501 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3502 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3503 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3504 if (!prev_legacy && cur_legacy) 3505 start = 1; 3506 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3507 sizeof(kvm->arch.vpit->pit_state.channels)); 3508 kvm->arch.vpit->pit_state.flags = ps->flags; 3509 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3510 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3511 return r; 3512 } 3513 3514 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3515 struct kvm_reinject_control *control) 3516 { 3517 if (!kvm->arch.vpit) 3518 return -ENXIO; 3519 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3520 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3521 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3522 return 0; 3523 } 3524 3525 /** 3526 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3527 * @kvm: kvm instance 3528 * @log: slot id and address to which we copy the log 3529 * 3530 * We need to keep it in mind that VCPU threads can write to the bitmap 3531 * concurrently. So, to avoid losing data, we keep the following order for 3532 * each bit: 3533 * 3534 * 1. Take a snapshot of the bit and clear it if needed. 3535 * 2. Write protect the corresponding page. 3536 * 3. Flush TLB's if needed. 3537 * 4. Copy the snapshot to the userspace. 3538 * 3539 * Between 2 and 3, the guest may write to the page using the remaining TLB 3540 * entry. This is not a problem because the page will be reported dirty at 3541 * step 4 using the snapshot taken before and step 3 ensures that successive 3542 * writes will be logged for the next call. 3543 */ 3544 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3545 { 3546 int r; 3547 struct kvm_memory_slot *memslot; 3548 unsigned long n, i; 3549 unsigned long *dirty_bitmap; 3550 unsigned long *dirty_bitmap_buffer; 3551 bool is_dirty = false; 3552 3553 mutex_lock(&kvm->slots_lock); 3554 3555 r = -EINVAL; 3556 if (log->slot >= KVM_USER_MEM_SLOTS) 3557 goto out; 3558 3559 memslot = id_to_memslot(kvm->memslots, log->slot); 3560 3561 dirty_bitmap = memslot->dirty_bitmap; 3562 r = -ENOENT; 3563 if (!dirty_bitmap) 3564 goto out; 3565 3566 n = kvm_dirty_bitmap_bytes(memslot); 3567 3568 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3569 memset(dirty_bitmap_buffer, 0, n); 3570 3571 spin_lock(&kvm->mmu_lock); 3572 3573 for (i = 0; i < n / sizeof(long); i++) { 3574 unsigned long mask; 3575 gfn_t offset; 3576 3577 if (!dirty_bitmap[i]) 3578 continue; 3579 3580 is_dirty = true; 3581 3582 mask = xchg(&dirty_bitmap[i], 0); 3583 dirty_bitmap_buffer[i] = mask; 3584 3585 offset = i * BITS_PER_LONG; 3586 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3587 } 3588 if (is_dirty) 3589 kvm_flush_remote_tlbs(kvm); 3590 3591 spin_unlock(&kvm->mmu_lock); 3592 3593 r = -EFAULT; 3594 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3595 goto out; 3596 3597 r = 0; 3598 out: 3599 mutex_unlock(&kvm->slots_lock); 3600 return r; 3601 } 3602 3603 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3604 bool line_status) 3605 { 3606 if (!irqchip_in_kernel(kvm)) 3607 return -ENXIO; 3608 3609 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3610 irq_event->irq, irq_event->level, 3611 line_status); 3612 return 0; 3613 } 3614 3615 long kvm_arch_vm_ioctl(struct file *filp, 3616 unsigned int ioctl, unsigned long arg) 3617 { 3618 struct kvm *kvm = filp->private_data; 3619 void __user *argp = (void __user *)arg; 3620 int r = -ENOTTY; 3621 /* 3622 * This union makes it completely explicit to gcc-3.x 3623 * that these two variables' stack usage should be 3624 * combined, not added together. 3625 */ 3626 union { 3627 struct kvm_pit_state ps; 3628 struct kvm_pit_state2 ps2; 3629 struct kvm_pit_config pit_config; 3630 } u; 3631 3632 switch (ioctl) { 3633 case KVM_SET_TSS_ADDR: 3634 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3635 break; 3636 case KVM_SET_IDENTITY_MAP_ADDR: { 3637 u64 ident_addr; 3638 3639 r = -EFAULT; 3640 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3641 goto out; 3642 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3643 break; 3644 } 3645 case KVM_SET_NR_MMU_PAGES: 3646 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3647 break; 3648 case KVM_GET_NR_MMU_PAGES: 3649 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3650 break; 3651 case KVM_CREATE_IRQCHIP: { 3652 struct kvm_pic *vpic; 3653 3654 mutex_lock(&kvm->lock); 3655 r = -EEXIST; 3656 if (kvm->arch.vpic) 3657 goto create_irqchip_unlock; 3658 r = -EINVAL; 3659 if (atomic_read(&kvm->online_vcpus)) 3660 goto create_irqchip_unlock; 3661 r = -ENOMEM; 3662 vpic = kvm_create_pic(kvm); 3663 if (vpic) { 3664 r = kvm_ioapic_init(kvm); 3665 if (r) { 3666 mutex_lock(&kvm->slots_lock); 3667 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3668 &vpic->dev_master); 3669 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3670 &vpic->dev_slave); 3671 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3672 &vpic->dev_eclr); 3673 mutex_unlock(&kvm->slots_lock); 3674 kfree(vpic); 3675 goto create_irqchip_unlock; 3676 } 3677 } else 3678 goto create_irqchip_unlock; 3679 smp_wmb(); 3680 kvm->arch.vpic = vpic; 3681 smp_wmb(); 3682 r = kvm_setup_default_irq_routing(kvm); 3683 if (r) { 3684 mutex_lock(&kvm->slots_lock); 3685 mutex_lock(&kvm->irq_lock); 3686 kvm_ioapic_destroy(kvm); 3687 kvm_destroy_pic(kvm); 3688 mutex_unlock(&kvm->irq_lock); 3689 mutex_unlock(&kvm->slots_lock); 3690 } 3691 create_irqchip_unlock: 3692 mutex_unlock(&kvm->lock); 3693 break; 3694 } 3695 case KVM_CREATE_PIT: 3696 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3697 goto create_pit; 3698 case KVM_CREATE_PIT2: 3699 r = -EFAULT; 3700 if (copy_from_user(&u.pit_config, argp, 3701 sizeof(struct kvm_pit_config))) 3702 goto out; 3703 create_pit: 3704 mutex_lock(&kvm->slots_lock); 3705 r = -EEXIST; 3706 if (kvm->arch.vpit) 3707 goto create_pit_unlock; 3708 r = -ENOMEM; 3709 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3710 if (kvm->arch.vpit) 3711 r = 0; 3712 create_pit_unlock: 3713 mutex_unlock(&kvm->slots_lock); 3714 break; 3715 case KVM_GET_IRQCHIP: { 3716 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3717 struct kvm_irqchip *chip; 3718 3719 chip = memdup_user(argp, sizeof(*chip)); 3720 if (IS_ERR(chip)) { 3721 r = PTR_ERR(chip); 3722 goto out; 3723 } 3724 3725 r = -ENXIO; 3726 if (!irqchip_in_kernel(kvm)) 3727 goto get_irqchip_out; 3728 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3729 if (r) 3730 goto get_irqchip_out; 3731 r = -EFAULT; 3732 if (copy_to_user(argp, chip, sizeof *chip)) 3733 goto get_irqchip_out; 3734 r = 0; 3735 get_irqchip_out: 3736 kfree(chip); 3737 break; 3738 } 3739 case KVM_SET_IRQCHIP: { 3740 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3741 struct kvm_irqchip *chip; 3742 3743 chip = memdup_user(argp, sizeof(*chip)); 3744 if (IS_ERR(chip)) { 3745 r = PTR_ERR(chip); 3746 goto out; 3747 } 3748 3749 r = -ENXIO; 3750 if (!irqchip_in_kernel(kvm)) 3751 goto set_irqchip_out; 3752 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3753 if (r) 3754 goto set_irqchip_out; 3755 r = 0; 3756 set_irqchip_out: 3757 kfree(chip); 3758 break; 3759 } 3760 case KVM_GET_PIT: { 3761 r = -EFAULT; 3762 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3763 goto out; 3764 r = -ENXIO; 3765 if (!kvm->arch.vpit) 3766 goto out; 3767 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3768 if (r) 3769 goto out; 3770 r = -EFAULT; 3771 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3772 goto out; 3773 r = 0; 3774 break; 3775 } 3776 case KVM_SET_PIT: { 3777 r = -EFAULT; 3778 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3779 goto out; 3780 r = -ENXIO; 3781 if (!kvm->arch.vpit) 3782 goto out; 3783 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3784 break; 3785 } 3786 case KVM_GET_PIT2: { 3787 r = -ENXIO; 3788 if (!kvm->arch.vpit) 3789 goto out; 3790 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3791 if (r) 3792 goto out; 3793 r = -EFAULT; 3794 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3795 goto out; 3796 r = 0; 3797 break; 3798 } 3799 case KVM_SET_PIT2: { 3800 r = -EFAULT; 3801 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3802 goto out; 3803 r = -ENXIO; 3804 if (!kvm->arch.vpit) 3805 goto out; 3806 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3807 break; 3808 } 3809 case KVM_REINJECT_CONTROL: { 3810 struct kvm_reinject_control control; 3811 r = -EFAULT; 3812 if (copy_from_user(&control, argp, sizeof(control))) 3813 goto out; 3814 r = kvm_vm_ioctl_reinject(kvm, &control); 3815 break; 3816 } 3817 case KVM_XEN_HVM_CONFIG: { 3818 r = -EFAULT; 3819 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3820 sizeof(struct kvm_xen_hvm_config))) 3821 goto out; 3822 r = -EINVAL; 3823 if (kvm->arch.xen_hvm_config.flags) 3824 goto out; 3825 r = 0; 3826 break; 3827 } 3828 case KVM_SET_CLOCK: { 3829 struct kvm_clock_data user_ns; 3830 u64 now_ns; 3831 s64 delta; 3832 3833 r = -EFAULT; 3834 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3835 goto out; 3836 3837 r = -EINVAL; 3838 if (user_ns.flags) 3839 goto out; 3840 3841 r = 0; 3842 local_irq_disable(); 3843 now_ns = get_kernel_ns(); 3844 delta = user_ns.clock - now_ns; 3845 local_irq_enable(); 3846 kvm->arch.kvmclock_offset = delta; 3847 kvm_gen_update_masterclock(kvm); 3848 break; 3849 } 3850 case KVM_GET_CLOCK: { 3851 struct kvm_clock_data user_ns; 3852 u64 now_ns; 3853 3854 local_irq_disable(); 3855 now_ns = get_kernel_ns(); 3856 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3857 local_irq_enable(); 3858 user_ns.flags = 0; 3859 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3860 3861 r = -EFAULT; 3862 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3863 goto out; 3864 r = 0; 3865 break; 3866 } 3867 3868 default: 3869 ; 3870 } 3871 out: 3872 return r; 3873 } 3874 3875 static void kvm_init_msr_list(void) 3876 { 3877 u32 dummy[2]; 3878 unsigned i, j; 3879 3880 /* skip the first msrs in the list. KVM-specific */ 3881 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3882 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3883 continue; 3884 if (j < i) 3885 msrs_to_save[j] = msrs_to_save[i]; 3886 j++; 3887 } 3888 num_msrs_to_save = j; 3889 } 3890 3891 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3892 const void *v) 3893 { 3894 int handled = 0; 3895 int n; 3896 3897 do { 3898 n = min(len, 8); 3899 if (!(vcpu->arch.apic && 3900 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3901 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3902 break; 3903 handled += n; 3904 addr += n; 3905 len -= n; 3906 v += n; 3907 } while (len); 3908 3909 return handled; 3910 } 3911 3912 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3913 { 3914 int handled = 0; 3915 int n; 3916 3917 do { 3918 n = min(len, 8); 3919 if (!(vcpu->arch.apic && 3920 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3921 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3922 break; 3923 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3924 handled += n; 3925 addr += n; 3926 len -= n; 3927 v += n; 3928 } while (len); 3929 3930 return handled; 3931 } 3932 3933 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3934 struct kvm_segment *var, int seg) 3935 { 3936 kvm_x86_ops->set_segment(vcpu, var, seg); 3937 } 3938 3939 void kvm_get_segment(struct kvm_vcpu *vcpu, 3940 struct kvm_segment *var, int seg) 3941 { 3942 kvm_x86_ops->get_segment(vcpu, var, seg); 3943 } 3944 3945 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3946 { 3947 gpa_t t_gpa; 3948 struct x86_exception exception; 3949 3950 BUG_ON(!mmu_is_nested(vcpu)); 3951 3952 /* NPT walks are always user-walks */ 3953 access |= PFERR_USER_MASK; 3954 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3955 3956 return t_gpa; 3957 } 3958 3959 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3960 struct x86_exception *exception) 3961 { 3962 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3963 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3964 } 3965 3966 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3967 struct x86_exception *exception) 3968 { 3969 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3970 access |= PFERR_FETCH_MASK; 3971 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3972 } 3973 3974 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3975 struct x86_exception *exception) 3976 { 3977 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3978 access |= PFERR_WRITE_MASK; 3979 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3980 } 3981 3982 /* uses this to access any guest's mapped memory without checking CPL */ 3983 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3984 struct x86_exception *exception) 3985 { 3986 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3987 } 3988 3989 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3990 struct kvm_vcpu *vcpu, u32 access, 3991 struct x86_exception *exception) 3992 { 3993 void *data = val; 3994 int r = X86EMUL_CONTINUE; 3995 3996 while (bytes) { 3997 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3998 exception); 3999 unsigned offset = addr & (PAGE_SIZE-1); 4000 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4001 int ret; 4002 4003 if (gpa == UNMAPPED_GVA) 4004 return X86EMUL_PROPAGATE_FAULT; 4005 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 4006 if (ret < 0) { 4007 r = X86EMUL_IO_NEEDED; 4008 goto out; 4009 } 4010 4011 bytes -= toread; 4012 data += toread; 4013 addr += toread; 4014 } 4015 out: 4016 return r; 4017 } 4018 4019 /* used for instruction fetching */ 4020 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4021 gva_t addr, void *val, unsigned int bytes, 4022 struct x86_exception *exception) 4023 { 4024 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4025 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4026 4027 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 4028 access | PFERR_FETCH_MASK, 4029 exception); 4030 } 4031 4032 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4033 gva_t addr, void *val, unsigned int bytes, 4034 struct x86_exception *exception) 4035 { 4036 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4037 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4038 4039 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4040 exception); 4041 } 4042 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4043 4044 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4045 gva_t addr, void *val, unsigned int bytes, 4046 struct x86_exception *exception) 4047 { 4048 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4049 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4050 } 4051 4052 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4053 gva_t addr, void *val, 4054 unsigned int bytes, 4055 struct x86_exception *exception) 4056 { 4057 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4058 void *data = val; 4059 int r = X86EMUL_CONTINUE; 4060 4061 while (bytes) { 4062 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4063 PFERR_WRITE_MASK, 4064 exception); 4065 unsigned offset = addr & (PAGE_SIZE-1); 4066 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4067 int ret; 4068 4069 if (gpa == UNMAPPED_GVA) 4070 return X86EMUL_PROPAGATE_FAULT; 4071 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4072 if (ret < 0) { 4073 r = X86EMUL_IO_NEEDED; 4074 goto out; 4075 } 4076 4077 bytes -= towrite; 4078 data += towrite; 4079 addr += towrite; 4080 } 4081 out: 4082 return r; 4083 } 4084 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4085 4086 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4087 gpa_t *gpa, struct x86_exception *exception, 4088 bool write) 4089 { 4090 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4091 | (write ? PFERR_WRITE_MASK : 0); 4092 4093 if (vcpu_match_mmio_gva(vcpu, gva) 4094 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 4095 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4096 (gva & (PAGE_SIZE - 1)); 4097 trace_vcpu_match_mmio(gva, *gpa, write, false); 4098 return 1; 4099 } 4100 4101 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4102 4103 if (*gpa == UNMAPPED_GVA) 4104 return -1; 4105 4106 /* For APIC access vmexit */ 4107 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4108 return 1; 4109 4110 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4111 trace_vcpu_match_mmio(gva, *gpa, write, true); 4112 return 1; 4113 } 4114 4115 return 0; 4116 } 4117 4118 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4119 const void *val, int bytes) 4120 { 4121 int ret; 4122 4123 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4124 if (ret < 0) 4125 return 0; 4126 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4127 return 1; 4128 } 4129 4130 struct read_write_emulator_ops { 4131 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4132 int bytes); 4133 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4134 void *val, int bytes); 4135 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4136 int bytes, void *val); 4137 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4138 void *val, int bytes); 4139 bool write; 4140 }; 4141 4142 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4143 { 4144 if (vcpu->mmio_read_completed) { 4145 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4146 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4147 vcpu->mmio_read_completed = 0; 4148 return 1; 4149 } 4150 4151 return 0; 4152 } 4153 4154 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4155 void *val, int bytes) 4156 { 4157 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4158 } 4159 4160 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4161 void *val, int bytes) 4162 { 4163 return emulator_write_phys(vcpu, gpa, val, bytes); 4164 } 4165 4166 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4167 { 4168 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4169 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4170 } 4171 4172 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4173 void *val, int bytes) 4174 { 4175 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4176 return X86EMUL_IO_NEEDED; 4177 } 4178 4179 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4180 void *val, int bytes) 4181 { 4182 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4183 4184 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4185 return X86EMUL_CONTINUE; 4186 } 4187 4188 static const struct read_write_emulator_ops read_emultor = { 4189 .read_write_prepare = read_prepare, 4190 .read_write_emulate = read_emulate, 4191 .read_write_mmio = vcpu_mmio_read, 4192 .read_write_exit_mmio = read_exit_mmio, 4193 }; 4194 4195 static const struct read_write_emulator_ops write_emultor = { 4196 .read_write_emulate = write_emulate, 4197 .read_write_mmio = write_mmio, 4198 .read_write_exit_mmio = write_exit_mmio, 4199 .write = true, 4200 }; 4201 4202 static int emulator_read_write_onepage(unsigned long addr, void *val, 4203 unsigned int bytes, 4204 struct x86_exception *exception, 4205 struct kvm_vcpu *vcpu, 4206 const struct read_write_emulator_ops *ops) 4207 { 4208 gpa_t gpa; 4209 int handled, ret; 4210 bool write = ops->write; 4211 struct kvm_mmio_fragment *frag; 4212 4213 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4214 4215 if (ret < 0) 4216 return X86EMUL_PROPAGATE_FAULT; 4217 4218 /* For APIC access vmexit */ 4219 if (ret) 4220 goto mmio; 4221 4222 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4223 return X86EMUL_CONTINUE; 4224 4225 mmio: 4226 /* 4227 * Is this MMIO handled locally? 4228 */ 4229 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4230 if (handled == bytes) 4231 return X86EMUL_CONTINUE; 4232 4233 gpa += handled; 4234 bytes -= handled; 4235 val += handled; 4236 4237 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4238 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4239 frag->gpa = gpa; 4240 frag->data = val; 4241 frag->len = bytes; 4242 return X86EMUL_CONTINUE; 4243 } 4244 4245 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4246 void *val, unsigned int bytes, 4247 struct x86_exception *exception, 4248 const struct read_write_emulator_ops *ops) 4249 { 4250 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4251 gpa_t gpa; 4252 int rc; 4253 4254 if (ops->read_write_prepare && 4255 ops->read_write_prepare(vcpu, val, bytes)) 4256 return X86EMUL_CONTINUE; 4257 4258 vcpu->mmio_nr_fragments = 0; 4259 4260 /* Crossing a page boundary? */ 4261 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4262 int now; 4263 4264 now = -addr & ~PAGE_MASK; 4265 rc = emulator_read_write_onepage(addr, val, now, exception, 4266 vcpu, ops); 4267 4268 if (rc != X86EMUL_CONTINUE) 4269 return rc; 4270 addr += now; 4271 val += now; 4272 bytes -= now; 4273 } 4274 4275 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4276 vcpu, ops); 4277 if (rc != X86EMUL_CONTINUE) 4278 return rc; 4279 4280 if (!vcpu->mmio_nr_fragments) 4281 return rc; 4282 4283 gpa = vcpu->mmio_fragments[0].gpa; 4284 4285 vcpu->mmio_needed = 1; 4286 vcpu->mmio_cur_fragment = 0; 4287 4288 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4289 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4290 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4291 vcpu->run->mmio.phys_addr = gpa; 4292 4293 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4294 } 4295 4296 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4297 unsigned long addr, 4298 void *val, 4299 unsigned int bytes, 4300 struct x86_exception *exception) 4301 { 4302 return emulator_read_write(ctxt, addr, val, bytes, 4303 exception, &read_emultor); 4304 } 4305 4306 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4307 unsigned long addr, 4308 const void *val, 4309 unsigned int bytes, 4310 struct x86_exception *exception) 4311 { 4312 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4313 exception, &write_emultor); 4314 } 4315 4316 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4317 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4318 4319 #ifdef CONFIG_X86_64 4320 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4321 #else 4322 # define CMPXCHG64(ptr, old, new) \ 4323 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4324 #endif 4325 4326 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4327 unsigned long addr, 4328 const void *old, 4329 const void *new, 4330 unsigned int bytes, 4331 struct x86_exception *exception) 4332 { 4333 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4334 gpa_t gpa; 4335 struct page *page; 4336 char *kaddr; 4337 bool exchanged; 4338 4339 /* guests cmpxchg8b have to be emulated atomically */ 4340 if (bytes > 8 || (bytes & (bytes - 1))) 4341 goto emul_write; 4342 4343 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4344 4345 if (gpa == UNMAPPED_GVA || 4346 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4347 goto emul_write; 4348 4349 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4350 goto emul_write; 4351 4352 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4353 if (is_error_page(page)) 4354 goto emul_write; 4355 4356 kaddr = kmap_atomic(page); 4357 kaddr += offset_in_page(gpa); 4358 switch (bytes) { 4359 case 1: 4360 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4361 break; 4362 case 2: 4363 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4364 break; 4365 case 4: 4366 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4367 break; 4368 case 8: 4369 exchanged = CMPXCHG64(kaddr, old, new); 4370 break; 4371 default: 4372 BUG(); 4373 } 4374 kunmap_atomic(kaddr); 4375 kvm_release_page_dirty(page); 4376 4377 if (!exchanged) 4378 return X86EMUL_CMPXCHG_FAILED; 4379 4380 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4381 4382 return X86EMUL_CONTINUE; 4383 4384 emul_write: 4385 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4386 4387 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4388 } 4389 4390 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4391 { 4392 /* TODO: String I/O for in kernel device */ 4393 int r; 4394 4395 if (vcpu->arch.pio.in) 4396 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4397 vcpu->arch.pio.size, pd); 4398 else 4399 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4400 vcpu->arch.pio.port, vcpu->arch.pio.size, 4401 pd); 4402 return r; 4403 } 4404 4405 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4406 unsigned short port, void *val, 4407 unsigned int count, bool in) 4408 { 4409 trace_kvm_pio(!in, port, size, count); 4410 4411 vcpu->arch.pio.port = port; 4412 vcpu->arch.pio.in = in; 4413 vcpu->arch.pio.count = count; 4414 vcpu->arch.pio.size = size; 4415 4416 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4417 vcpu->arch.pio.count = 0; 4418 return 1; 4419 } 4420 4421 vcpu->run->exit_reason = KVM_EXIT_IO; 4422 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4423 vcpu->run->io.size = size; 4424 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4425 vcpu->run->io.count = count; 4426 vcpu->run->io.port = port; 4427 4428 return 0; 4429 } 4430 4431 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4432 int size, unsigned short port, void *val, 4433 unsigned int count) 4434 { 4435 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4436 int ret; 4437 4438 if (vcpu->arch.pio.count) 4439 goto data_avail; 4440 4441 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4442 if (ret) { 4443 data_avail: 4444 memcpy(val, vcpu->arch.pio_data, size * count); 4445 vcpu->arch.pio.count = 0; 4446 return 1; 4447 } 4448 4449 return 0; 4450 } 4451 4452 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4453 int size, unsigned short port, 4454 const void *val, unsigned int count) 4455 { 4456 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4457 4458 memcpy(vcpu->arch.pio_data, val, size * count); 4459 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4460 } 4461 4462 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4463 { 4464 return kvm_x86_ops->get_segment_base(vcpu, seg); 4465 } 4466 4467 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4468 { 4469 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4470 } 4471 4472 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4473 { 4474 if (!need_emulate_wbinvd(vcpu)) 4475 return X86EMUL_CONTINUE; 4476 4477 if (kvm_x86_ops->has_wbinvd_exit()) { 4478 int cpu = get_cpu(); 4479 4480 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4481 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4482 wbinvd_ipi, NULL, 1); 4483 put_cpu(); 4484 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4485 } else 4486 wbinvd(); 4487 return X86EMUL_CONTINUE; 4488 } 4489 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4490 4491 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4492 { 4493 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4494 } 4495 4496 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4497 { 4498 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4499 } 4500 4501 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4502 { 4503 4504 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4505 } 4506 4507 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4508 { 4509 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4510 } 4511 4512 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4513 { 4514 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4515 unsigned long value; 4516 4517 switch (cr) { 4518 case 0: 4519 value = kvm_read_cr0(vcpu); 4520 break; 4521 case 2: 4522 value = vcpu->arch.cr2; 4523 break; 4524 case 3: 4525 value = kvm_read_cr3(vcpu); 4526 break; 4527 case 4: 4528 value = kvm_read_cr4(vcpu); 4529 break; 4530 case 8: 4531 value = kvm_get_cr8(vcpu); 4532 break; 4533 default: 4534 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4535 return 0; 4536 } 4537 4538 return value; 4539 } 4540 4541 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4542 { 4543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4544 int res = 0; 4545 4546 switch (cr) { 4547 case 0: 4548 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4549 break; 4550 case 2: 4551 vcpu->arch.cr2 = val; 4552 break; 4553 case 3: 4554 res = kvm_set_cr3(vcpu, val); 4555 break; 4556 case 4: 4557 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4558 break; 4559 case 8: 4560 res = kvm_set_cr8(vcpu, val); 4561 break; 4562 default: 4563 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4564 res = -1; 4565 } 4566 4567 return res; 4568 } 4569 4570 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4571 { 4572 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4573 } 4574 4575 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4576 { 4577 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4578 } 4579 4580 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4581 { 4582 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4583 } 4584 4585 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4586 { 4587 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4588 } 4589 4590 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4591 { 4592 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4593 } 4594 4595 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4596 { 4597 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4598 } 4599 4600 static unsigned long emulator_get_cached_segment_base( 4601 struct x86_emulate_ctxt *ctxt, int seg) 4602 { 4603 return get_segment_base(emul_to_vcpu(ctxt), seg); 4604 } 4605 4606 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4607 struct desc_struct *desc, u32 *base3, 4608 int seg) 4609 { 4610 struct kvm_segment var; 4611 4612 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4613 *selector = var.selector; 4614 4615 if (var.unusable) { 4616 memset(desc, 0, sizeof(*desc)); 4617 return false; 4618 } 4619 4620 if (var.g) 4621 var.limit >>= 12; 4622 set_desc_limit(desc, var.limit); 4623 set_desc_base(desc, (unsigned long)var.base); 4624 #ifdef CONFIG_X86_64 4625 if (base3) 4626 *base3 = var.base >> 32; 4627 #endif 4628 desc->type = var.type; 4629 desc->s = var.s; 4630 desc->dpl = var.dpl; 4631 desc->p = var.present; 4632 desc->avl = var.avl; 4633 desc->l = var.l; 4634 desc->d = var.db; 4635 desc->g = var.g; 4636 4637 return true; 4638 } 4639 4640 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4641 struct desc_struct *desc, u32 base3, 4642 int seg) 4643 { 4644 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4645 struct kvm_segment var; 4646 4647 var.selector = selector; 4648 var.base = get_desc_base(desc); 4649 #ifdef CONFIG_X86_64 4650 var.base |= ((u64)base3) << 32; 4651 #endif 4652 var.limit = get_desc_limit(desc); 4653 if (desc->g) 4654 var.limit = (var.limit << 12) | 0xfff; 4655 var.type = desc->type; 4656 var.present = desc->p; 4657 var.dpl = desc->dpl; 4658 var.db = desc->d; 4659 var.s = desc->s; 4660 var.l = desc->l; 4661 var.g = desc->g; 4662 var.avl = desc->avl; 4663 var.present = desc->p; 4664 var.unusable = !var.present; 4665 var.padding = 0; 4666 4667 kvm_set_segment(vcpu, &var, seg); 4668 return; 4669 } 4670 4671 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4672 u32 msr_index, u64 *pdata) 4673 { 4674 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4675 } 4676 4677 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4678 u32 msr_index, u64 data) 4679 { 4680 struct msr_data msr; 4681 4682 msr.data = data; 4683 msr.index = msr_index; 4684 msr.host_initiated = false; 4685 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4686 } 4687 4688 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4689 u32 pmc, u64 *pdata) 4690 { 4691 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4692 } 4693 4694 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4695 { 4696 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4697 } 4698 4699 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4700 { 4701 preempt_disable(); 4702 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4703 /* 4704 * CR0.TS may reference the host fpu state, not the guest fpu state, 4705 * so it may be clear at this point. 4706 */ 4707 clts(); 4708 } 4709 4710 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4711 { 4712 preempt_enable(); 4713 } 4714 4715 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4716 struct x86_instruction_info *info, 4717 enum x86_intercept_stage stage) 4718 { 4719 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4720 } 4721 4722 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4723 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4724 { 4725 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4726 } 4727 4728 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4729 { 4730 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4731 } 4732 4733 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4734 { 4735 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4736 } 4737 4738 static const struct x86_emulate_ops emulate_ops = { 4739 .read_gpr = emulator_read_gpr, 4740 .write_gpr = emulator_write_gpr, 4741 .read_std = kvm_read_guest_virt_system, 4742 .write_std = kvm_write_guest_virt_system, 4743 .fetch = kvm_fetch_guest_virt, 4744 .read_emulated = emulator_read_emulated, 4745 .write_emulated = emulator_write_emulated, 4746 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4747 .invlpg = emulator_invlpg, 4748 .pio_in_emulated = emulator_pio_in_emulated, 4749 .pio_out_emulated = emulator_pio_out_emulated, 4750 .get_segment = emulator_get_segment, 4751 .set_segment = emulator_set_segment, 4752 .get_cached_segment_base = emulator_get_cached_segment_base, 4753 .get_gdt = emulator_get_gdt, 4754 .get_idt = emulator_get_idt, 4755 .set_gdt = emulator_set_gdt, 4756 .set_idt = emulator_set_idt, 4757 .get_cr = emulator_get_cr, 4758 .set_cr = emulator_set_cr, 4759 .set_rflags = emulator_set_rflags, 4760 .cpl = emulator_get_cpl, 4761 .get_dr = emulator_get_dr, 4762 .set_dr = emulator_set_dr, 4763 .set_msr = emulator_set_msr, 4764 .get_msr = emulator_get_msr, 4765 .read_pmc = emulator_read_pmc, 4766 .halt = emulator_halt, 4767 .wbinvd = emulator_wbinvd, 4768 .fix_hypercall = emulator_fix_hypercall, 4769 .get_fpu = emulator_get_fpu, 4770 .put_fpu = emulator_put_fpu, 4771 .intercept = emulator_intercept, 4772 .get_cpuid = emulator_get_cpuid, 4773 }; 4774 4775 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4776 { 4777 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4778 /* 4779 * an sti; sti; sequence only disable interrupts for the first 4780 * instruction. So, if the last instruction, be it emulated or 4781 * not, left the system with the INT_STI flag enabled, it 4782 * means that the last instruction is an sti. We should not 4783 * leave the flag on in this case. The same goes for mov ss 4784 */ 4785 if (!(int_shadow & mask)) 4786 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4787 } 4788 4789 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4790 { 4791 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4792 if (ctxt->exception.vector == PF_VECTOR) 4793 kvm_propagate_fault(vcpu, &ctxt->exception); 4794 else if (ctxt->exception.error_code_valid) 4795 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4796 ctxt->exception.error_code); 4797 else 4798 kvm_queue_exception(vcpu, ctxt->exception.vector); 4799 } 4800 4801 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4802 { 4803 memset(&ctxt->opcode_len, 0, 4804 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len); 4805 4806 ctxt->fetch.start = 0; 4807 ctxt->fetch.end = 0; 4808 ctxt->io_read.pos = 0; 4809 ctxt->io_read.end = 0; 4810 ctxt->mem_read.pos = 0; 4811 ctxt->mem_read.end = 0; 4812 } 4813 4814 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4815 { 4816 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4817 int cs_db, cs_l; 4818 4819 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4820 4821 ctxt->eflags = kvm_get_rflags(vcpu); 4822 ctxt->eip = kvm_rip_read(vcpu); 4823 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4824 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4825 cs_l ? X86EMUL_MODE_PROT64 : 4826 cs_db ? X86EMUL_MODE_PROT32 : 4827 X86EMUL_MODE_PROT16; 4828 ctxt->guest_mode = is_guest_mode(vcpu); 4829 4830 init_decode_cache(ctxt); 4831 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4832 } 4833 4834 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4835 { 4836 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4837 int ret; 4838 4839 init_emulate_ctxt(vcpu); 4840 4841 ctxt->op_bytes = 2; 4842 ctxt->ad_bytes = 2; 4843 ctxt->_eip = ctxt->eip + inc_eip; 4844 ret = emulate_int_real(ctxt, irq); 4845 4846 if (ret != X86EMUL_CONTINUE) 4847 return EMULATE_FAIL; 4848 4849 ctxt->eip = ctxt->_eip; 4850 kvm_rip_write(vcpu, ctxt->eip); 4851 kvm_set_rflags(vcpu, ctxt->eflags); 4852 4853 if (irq == NMI_VECTOR) 4854 vcpu->arch.nmi_pending = 0; 4855 else 4856 vcpu->arch.interrupt.pending = false; 4857 4858 return EMULATE_DONE; 4859 } 4860 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4861 4862 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4863 { 4864 int r = EMULATE_DONE; 4865 4866 ++vcpu->stat.insn_emulation_fail; 4867 trace_kvm_emulate_insn_failed(vcpu); 4868 if (!is_guest_mode(vcpu)) { 4869 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4870 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4871 vcpu->run->internal.ndata = 0; 4872 r = EMULATE_FAIL; 4873 } 4874 kvm_queue_exception(vcpu, UD_VECTOR); 4875 4876 return r; 4877 } 4878 4879 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4880 bool write_fault_to_shadow_pgtable, 4881 int emulation_type) 4882 { 4883 gpa_t gpa = cr2; 4884 pfn_t pfn; 4885 4886 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4887 return false; 4888 4889 if (!vcpu->arch.mmu.direct_map) { 4890 /* 4891 * Write permission should be allowed since only 4892 * write access need to be emulated. 4893 */ 4894 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4895 4896 /* 4897 * If the mapping is invalid in guest, let cpu retry 4898 * it to generate fault. 4899 */ 4900 if (gpa == UNMAPPED_GVA) 4901 return true; 4902 } 4903 4904 /* 4905 * Do not retry the unhandleable instruction if it faults on the 4906 * readonly host memory, otherwise it will goto a infinite loop: 4907 * retry instruction -> write #PF -> emulation fail -> retry 4908 * instruction -> ... 4909 */ 4910 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4911 4912 /* 4913 * If the instruction failed on the error pfn, it can not be fixed, 4914 * report the error to userspace. 4915 */ 4916 if (is_error_noslot_pfn(pfn)) 4917 return false; 4918 4919 kvm_release_pfn_clean(pfn); 4920 4921 /* The instructions are well-emulated on direct mmu. */ 4922 if (vcpu->arch.mmu.direct_map) { 4923 unsigned int indirect_shadow_pages; 4924 4925 spin_lock(&vcpu->kvm->mmu_lock); 4926 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 4927 spin_unlock(&vcpu->kvm->mmu_lock); 4928 4929 if (indirect_shadow_pages) 4930 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4931 4932 return true; 4933 } 4934 4935 /* 4936 * if emulation was due to access to shadowed page table 4937 * and it failed try to unshadow page and re-enter the 4938 * guest to let CPU execute the instruction. 4939 */ 4940 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4941 4942 /* 4943 * If the access faults on its page table, it can not 4944 * be fixed by unprotecting shadow page and it should 4945 * be reported to userspace. 4946 */ 4947 return !write_fault_to_shadow_pgtable; 4948 } 4949 4950 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4951 unsigned long cr2, int emulation_type) 4952 { 4953 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4954 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4955 4956 last_retry_eip = vcpu->arch.last_retry_eip; 4957 last_retry_addr = vcpu->arch.last_retry_addr; 4958 4959 /* 4960 * If the emulation is caused by #PF and it is non-page_table 4961 * writing instruction, it means the VM-EXIT is caused by shadow 4962 * page protected, we can zap the shadow page and retry this 4963 * instruction directly. 4964 * 4965 * Note: if the guest uses a non-page-table modifying instruction 4966 * on the PDE that points to the instruction, then we will unmap 4967 * the instruction and go to an infinite loop. So, we cache the 4968 * last retried eip and the last fault address, if we meet the eip 4969 * and the address again, we can break out of the potential infinite 4970 * loop. 4971 */ 4972 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4973 4974 if (!(emulation_type & EMULTYPE_RETRY)) 4975 return false; 4976 4977 if (x86_page_table_writing_insn(ctxt)) 4978 return false; 4979 4980 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4981 return false; 4982 4983 vcpu->arch.last_retry_eip = ctxt->eip; 4984 vcpu->arch.last_retry_addr = cr2; 4985 4986 if (!vcpu->arch.mmu.direct_map) 4987 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4988 4989 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4990 4991 return true; 4992 } 4993 4994 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 4995 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 4996 4997 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 4998 unsigned long *db) 4999 { 5000 u32 dr6 = 0; 5001 int i; 5002 u32 enable, rwlen; 5003 5004 enable = dr7; 5005 rwlen = dr7 >> 16; 5006 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5007 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5008 dr6 |= (1 << i); 5009 return dr6; 5010 } 5011 5012 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) 5013 { 5014 struct kvm_run *kvm_run = vcpu->run; 5015 5016 /* 5017 * Use the "raw" value to see if TF was passed to the processor. 5018 * Note that the new value of the flags has not been saved yet. 5019 * 5020 * This is correct even for TF set by the guest, because "the 5021 * processor will not generate this exception after the instruction 5022 * that sets the TF flag". 5023 */ 5024 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5025 5026 if (unlikely(rflags & X86_EFLAGS_TF)) { 5027 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5028 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; 5029 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5030 kvm_run->debug.arch.exception = DB_VECTOR; 5031 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5032 *r = EMULATE_USER_EXIT; 5033 } else { 5034 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5035 /* 5036 * "Certain debug exceptions may clear bit 0-3. The 5037 * remaining contents of the DR6 register are never 5038 * cleared by the processor". 5039 */ 5040 vcpu->arch.dr6 &= ~15; 5041 vcpu->arch.dr6 |= DR6_BS; 5042 kvm_queue_exception(vcpu, DB_VECTOR); 5043 } 5044 } 5045 } 5046 5047 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5048 { 5049 struct kvm_run *kvm_run = vcpu->run; 5050 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5051 u32 dr6 = 0; 5052 5053 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5054 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5055 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5056 vcpu->arch.guest_debug_dr7, 5057 vcpu->arch.eff_db); 5058 5059 if (dr6 != 0) { 5060 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 5061 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5062 get_segment_base(vcpu, VCPU_SREG_CS); 5063 5064 kvm_run->debug.arch.exception = DB_VECTOR; 5065 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5066 *r = EMULATE_USER_EXIT; 5067 return true; 5068 } 5069 } 5070 5071 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { 5072 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5073 vcpu->arch.dr7, 5074 vcpu->arch.db); 5075 5076 if (dr6 != 0) { 5077 vcpu->arch.dr6 &= ~15; 5078 vcpu->arch.dr6 |= dr6; 5079 kvm_queue_exception(vcpu, DB_VECTOR); 5080 *r = EMULATE_DONE; 5081 return true; 5082 } 5083 } 5084 5085 return false; 5086 } 5087 5088 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5089 unsigned long cr2, 5090 int emulation_type, 5091 void *insn, 5092 int insn_len) 5093 { 5094 int r; 5095 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5096 bool writeback = true; 5097 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5098 5099 /* 5100 * Clear write_fault_to_shadow_pgtable here to ensure it is 5101 * never reused. 5102 */ 5103 vcpu->arch.write_fault_to_shadow_pgtable = false; 5104 kvm_clear_exception_queue(vcpu); 5105 5106 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5107 init_emulate_ctxt(vcpu); 5108 5109 /* 5110 * We will reenter on the same instruction since 5111 * we do not set complete_userspace_io. This does not 5112 * handle watchpoints yet, those would be handled in 5113 * the emulate_ops. 5114 */ 5115 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5116 return r; 5117 5118 ctxt->interruptibility = 0; 5119 ctxt->have_exception = false; 5120 ctxt->perm_ok = false; 5121 5122 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5123 5124 r = x86_decode_insn(ctxt, insn, insn_len); 5125 5126 trace_kvm_emulate_insn_start(vcpu); 5127 ++vcpu->stat.insn_emulation; 5128 if (r != EMULATION_OK) { 5129 if (emulation_type & EMULTYPE_TRAP_UD) 5130 return EMULATE_FAIL; 5131 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5132 emulation_type)) 5133 return EMULATE_DONE; 5134 if (emulation_type & EMULTYPE_SKIP) 5135 return EMULATE_FAIL; 5136 return handle_emulation_failure(vcpu); 5137 } 5138 } 5139 5140 if (emulation_type & EMULTYPE_SKIP) { 5141 kvm_rip_write(vcpu, ctxt->_eip); 5142 return EMULATE_DONE; 5143 } 5144 5145 if (retry_instruction(ctxt, cr2, emulation_type)) 5146 return EMULATE_DONE; 5147 5148 /* this is needed for vmware backdoor interface to work since it 5149 changes registers values during IO operation */ 5150 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5151 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5152 emulator_invalidate_register_cache(ctxt); 5153 } 5154 5155 restart: 5156 r = x86_emulate_insn(ctxt); 5157 5158 if (r == EMULATION_INTERCEPTED) 5159 return EMULATE_DONE; 5160 5161 if (r == EMULATION_FAILED) { 5162 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5163 emulation_type)) 5164 return EMULATE_DONE; 5165 5166 return handle_emulation_failure(vcpu); 5167 } 5168 5169 if (ctxt->have_exception) { 5170 inject_emulated_exception(vcpu); 5171 r = EMULATE_DONE; 5172 } else if (vcpu->arch.pio.count) { 5173 if (!vcpu->arch.pio.in) { 5174 /* FIXME: return into emulator if single-stepping. */ 5175 vcpu->arch.pio.count = 0; 5176 } else { 5177 writeback = false; 5178 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5179 } 5180 r = EMULATE_USER_EXIT; 5181 } else if (vcpu->mmio_needed) { 5182 if (!vcpu->mmio_is_write) 5183 writeback = false; 5184 r = EMULATE_USER_EXIT; 5185 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5186 } else if (r == EMULATION_RESTART) 5187 goto restart; 5188 else 5189 r = EMULATE_DONE; 5190 5191 if (writeback) { 5192 toggle_interruptibility(vcpu, ctxt->interruptibility); 5193 kvm_make_request(KVM_REQ_EVENT, vcpu); 5194 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5195 kvm_rip_write(vcpu, ctxt->eip); 5196 if (r == EMULATE_DONE) 5197 kvm_vcpu_check_singlestep(vcpu, &r); 5198 kvm_set_rflags(vcpu, ctxt->eflags); 5199 } else 5200 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5201 5202 return r; 5203 } 5204 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5205 5206 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5207 { 5208 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5209 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5210 size, port, &val, 1); 5211 /* do not return to emulator after return from userspace */ 5212 vcpu->arch.pio.count = 0; 5213 return ret; 5214 } 5215 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5216 5217 static void tsc_bad(void *info) 5218 { 5219 __this_cpu_write(cpu_tsc_khz, 0); 5220 } 5221 5222 static void tsc_khz_changed(void *data) 5223 { 5224 struct cpufreq_freqs *freq = data; 5225 unsigned long khz = 0; 5226 5227 if (data) 5228 khz = freq->new; 5229 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5230 khz = cpufreq_quick_get(raw_smp_processor_id()); 5231 if (!khz) 5232 khz = tsc_khz; 5233 __this_cpu_write(cpu_tsc_khz, khz); 5234 } 5235 5236 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5237 void *data) 5238 { 5239 struct cpufreq_freqs *freq = data; 5240 struct kvm *kvm; 5241 struct kvm_vcpu *vcpu; 5242 int i, send_ipi = 0; 5243 5244 /* 5245 * We allow guests to temporarily run on slowing clocks, 5246 * provided we notify them after, or to run on accelerating 5247 * clocks, provided we notify them before. Thus time never 5248 * goes backwards. 5249 * 5250 * However, we have a problem. We can't atomically update 5251 * the frequency of a given CPU from this function; it is 5252 * merely a notifier, which can be called from any CPU. 5253 * Changing the TSC frequency at arbitrary points in time 5254 * requires a recomputation of local variables related to 5255 * the TSC for each VCPU. We must flag these local variables 5256 * to be updated and be sure the update takes place with the 5257 * new frequency before any guests proceed. 5258 * 5259 * Unfortunately, the combination of hotplug CPU and frequency 5260 * change creates an intractable locking scenario; the order 5261 * of when these callouts happen is undefined with respect to 5262 * CPU hotplug, and they can race with each other. As such, 5263 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5264 * undefined; you can actually have a CPU frequency change take 5265 * place in between the computation of X and the setting of the 5266 * variable. To protect against this problem, all updates of 5267 * the per_cpu tsc_khz variable are done in an interrupt 5268 * protected IPI, and all callers wishing to update the value 5269 * must wait for a synchronous IPI to complete (which is trivial 5270 * if the caller is on the CPU already). This establishes the 5271 * necessary total order on variable updates. 5272 * 5273 * Note that because a guest time update may take place 5274 * anytime after the setting of the VCPU's request bit, the 5275 * correct TSC value must be set before the request. However, 5276 * to ensure the update actually makes it to any guest which 5277 * starts running in hardware virtualization between the set 5278 * and the acquisition of the spinlock, we must also ping the 5279 * CPU after setting the request bit. 5280 * 5281 */ 5282 5283 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5284 return 0; 5285 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5286 return 0; 5287 5288 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5289 5290 spin_lock(&kvm_lock); 5291 list_for_each_entry(kvm, &vm_list, vm_list) { 5292 kvm_for_each_vcpu(i, vcpu, kvm) { 5293 if (vcpu->cpu != freq->cpu) 5294 continue; 5295 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5296 if (vcpu->cpu != smp_processor_id()) 5297 send_ipi = 1; 5298 } 5299 } 5300 spin_unlock(&kvm_lock); 5301 5302 if (freq->old < freq->new && send_ipi) { 5303 /* 5304 * We upscale the frequency. Must make the guest 5305 * doesn't see old kvmclock values while running with 5306 * the new frequency, otherwise we risk the guest sees 5307 * time go backwards. 5308 * 5309 * In case we update the frequency for another cpu 5310 * (which might be in guest context) send an interrupt 5311 * to kick the cpu out of guest context. Next time 5312 * guest context is entered kvmclock will be updated, 5313 * so the guest will not see stale values. 5314 */ 5315 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5316 } 5317 return 0; 5318 } 5319 5320 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5321 .notifier_call = kvmclock_cpufreq_notifier 5322 }; 5323 5324 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5325 unsigned long action, void *hcpu) 5326 { 5327 unsigned int cpu = (unsigned long)hcpu; 5328 5329 switch (action) { 5330 case CPU_ONLINE: 5331 case CPU_DOWN_FAILED: 5332 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5333 break; 5334 case CPU_DOWN_PREPARE: 5335 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5336 break; 5337 } 5338 return NOTIFY_OK; 5339 } 5340 5341 static struct notifier_block kvmclock_cpu_notifier_block = { 5342 .notifier_call = kvmclock_cpu_notifier, 5343 .priority = -INT_MAX 5344 }; 5345 5346 static void kvm_timer_init(void) 5347 { 5348 int cpu; 5349 5350 max_tsc_khz = tsc_khz; 5351 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5352 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5353 #ifdef CONFIG_CPU_FREQ 5354 struct cpufreq_policy policy; 5355 memset(&policy, 0, sizeof(policy)); 5356 cpu = get_cpu(); 5357 cpufreq_get_policy(&policy, cpu); 5358 if (policy.cpuinfo.max_freq) 5359 max_tsc_khz = policy.cpuinfo.max_freq; 5360 put_cpu(); 5361 #endif 5362 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5363 CPUFREQ_TRANSITION_NOTIFIER); 5364 } 5365 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5366 for_each_online_cpu(cpu) 5367 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5368 } 5369 5370 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5371 5372 int kvm_is_in_guest(void) 5373 { 5374 return __this_cpu_read(current_vcpu) != NULL; 5375 } 5376 5377 static int kvm_is_user_mode(void) 5378 { 5379 int user_mode = 3; 5380 5381 if (__this_cpu_read(current_vcpu)) 5382 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5383 5384 return user_mode != 0; 5385 } 5386 5387 static unsigned long kvm_get_guest_ip(void) 5388 { 5389 unsigned long ip = 0; 5390 5391 if (__this_cpu_read(current_vcpu)) 5392 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5393 5394 return ip; 5395 } 5396 5397 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5398 .is_in_guest = kvm_is_in_guest, 5399 .is_user_mode = kvm_is_user_mode, 5400 .get_guest_ip = kvm_get_guest_ip, 5401 }; 5402 5403 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5404 { 5405 __this_cpu_write(current_vcpu, vcpu); 5406 } 5407 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5408 5409 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5410 { 5411 __this_cpu_write(current_vcpu, NULL); 5412 } 5413 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5414 5415 static void kvm_set_mmio_spte_mask(void) 5416 { 5417 u64 mask; 5418 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5419 5420 /* 5421 * Set the reserved bits and the present bit of an paging-structure 5422 * entry to generate page fault with PFER.RSV = 1. 5423 */ 5424 /* Mask the reserved physical address bits. */ 5425 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; 5426 5427 /* Bit 62 is always reserved for 32bit host. */ 5428 mask |= 0x3ull << 62; 5429 5430 /* Set the present bit. */ 5431 mask |= 1ull; 5432 5433 #ifdef CONFIG_X86_64 5434 /* 5435 * If reserved bit is not supported, clear the present bit to disable 5436 * mmio page fault. 5437 */ 5438 if (maxphyaddr == 52) 5439 mask &= ~1ull; 5440 #endif 5441 5442 kvm_mmu_set_mmio_spte_mask(mask); 5443 } 5444 5445 #ifdef CONFIG_X86_64 5446 static void pvclock_gtod_update_fn(struct work_struct *work) 5447 { 5448 struct kvm *kvm; 5449 5450 struct kvm_vcpu *vcpu; 5451 int i; 5452 5453 spin_lock(&kvm_lock); 5454 list_for_each_entry(kvm, &vm_list, vm_list) 5455 kvm_for_each_vcpu(i, vcpu, kvm) 5456 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5457 atomic_set(&kvm_guest_has_master_clock, 0); 5458 spin_unlock(&kvm_lock); 5459 } 5460 5461 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5462 5463 /* 5464 * Notification about pvclock gtod data update. 5465 */ 5466 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5467 void *priv) 5468 { 5469 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5470 struct timekeeper *tk = priv; 5471 5472 update_pvclock_gtod(tk); 5473 5474 /* disable master clock if host does not trust, or does not 5475 * use, TSC clocksource 5476 */ 5477 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5478 atomic_read(&kvm_guest_has_master_clock) != 0) 5479 queue_work(system_long_wq, &pvclock_gtod_work); 5480 5481 return 0; 5482 } 5483 5484 static struct notifier_block pvclock_gtod_notifier = { 5485 .notifier_call = pvclock_gtod_notify, 5486 }; 5487 #endif 5488 5489 int kvm_arch_init(void *opaque) 5490 { 5491 int r; 5492 struct kvm_x86_ops *ops = opaque; 5493 5494 if (kvm_x86_ops) { 5495 printk(KERN_ERR "kvm: already loaded the other module\n"); 5496 r = -EEXIST; 5497 goto out; 5498 } 5499 5500 if (!ops->cpu_has_kvm_support()) { 5501 printk(KERN_ERR "kvm: no hardware support\n"); 5502 r = -EOPNOTSUPP; 5503 goto out; 5504 } 5505 if (ops->disabled_by_bios()) { 5506 printk(KERN_ERR "kvm: disabled by bios\n"); 5507 r = -EOPNOTSUPP; 5508 goto out; 5509 } 5510 5511 r = -ENOMEM; 5512 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5513 if (!shared_msrs) { 5514 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5515 goto out; 5516 } 5517 5518 r = kvm_mmu_module_init(); 5519 if (r) 5520 goto out_free_percpu; 5521 5522 kvm_set_mmio_spte_mask(); 5523 kvm_init_msr_list(); 5524 5525 kvm_x86_ops = ops; 5526 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5527 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5528 5529 kvm_timer_init(); 5530 5531 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5532 5533 if (cpu_has_xsave) 5534 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5535 5536 kvm_lapic_init(); 5537 #ifdef CONFIG_X86_64 5538 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5539 #endif 5540 5541 return 0; 5542 5543 out_free_percpu: 5544 free_percpu(shared_msrs); 5545 out: 5546 return r; 5547 } 5548 5549 void kvm_arch_exit(void) 5550 { 5551 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5552 5553 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5554 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5555 CPUFREQ_TRANSITION_NOTIFIER); 5556 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5557 #ifdef CONFIG_X86_64 5558 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5559 #endif 5560 kvm_x86_ops = NULL; 5561 kvm_mmu_module_exit(); 5562 free_percpu(shared_msrs); 5563 } 5564 5565 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5566 { 5567 ++vcpu->stat.halt_exits; 5568 if (irqchip_in_kernel(vcpu->kvm)) { 5569 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5570 return 1; 5571 } else { 5572 vcpu->run->exit_reason = KVM_EXIT_HLT; 5573 return 0; 5574 } 5575 } 5576 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5577 5578 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5579 { 5580 u64 param, ingpa, outgpa, ret; 5581 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5582 bool fast, longmode; 5583 int cs_db, cs_l; 5584 5585 /* 5586 * hypercall generates UD from non zero cpl and real mode 5587 * per HYPER-V spec 5588 */ 5589 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5590 kvm_queue_exception(vcpu, UD_VECTOR); 5591 return 0; 5592 } 5593 5594 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5595 longmode = is_long_mode(vcpu) && cs_l == 1; 5596 5597 if (!longmode) { 5598 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5599 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5600 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5601 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5602 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5603 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5604 } 5605 #ifdef CONFIG_X86_64 5606 else { 5607 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5608 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5609 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5610 } 5611 #endif 5612 5613 code = param & 0xffff; 5614 fast = (param >> 16) & 0x1; 5615 rep_cnt = (param >> 32) & 0xfff; 5616 rep_idx = (param >> 48) & 0xfff; 5617 5618 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5619 5620 switch (code) { 5621 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5622 kvm_vcpu_on_spin(vcpu); 5623 break; 5624 default: 5625 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5626 break; 5627 } 5628 5629 ret = res | (((u64)rep_done & 0xfff) << 32); 5630 if (longmode) { 5631 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5632 } else { 5633 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5634 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5635 } 5636 5637 return 1; 5638 } 5639 5640 /* 5641 * kvm_pv_kick_cpu_op: Kick a vcpu. 5642 * 5643 * @apicid - apicid of vcpu to be kicked. 5644 */ 5645 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5646 { 5647 struct kvm_lapic_irq lapic_irq; 5648 5649 lapic_irq.shorthand = 0; 5650 lapic_irq.dest_mode = 0; 5651 lapic_irq.dest_id = apicid; 5652 5653 lapic_irq.delivery_mode = APIC_DM_REMRD; 5654 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5655 } 5656 5657 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5658 { 5659 unsigned long nr, a0, a1, a2, a3, ret; 5660 int r = 1; 5661 5662 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5663 return kvm_hv_hypercall(vcpu); 5664 5665 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5666 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5667 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5668 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5669 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5670 5671 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5672 5673 if (!is_long_mode(vcpu)) { 5674 nr &= 0xFFFFFFFF; 5675 a0 &= 0xFFFFFFFF; 5676 a1 &= 0xFFFFFFFF; 5677 a2 &= 0xFFFFFFFF; 5678 a3 &= 0xFFFFFFFF; 5679 } 5680 5681 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5682 ret = -KVM_EPERM; 5683 goto out; 5684 } 5685 5686 switch (nr) { 5687 case KVM_HC_VAPIC_POLL_IRQ: 5688 ret = 0; 5689 break; 5690 case KVM_HC_KICK_CPU: 5691 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5692 ret = 0; 5693 break; 5694 default: 5695 ret = -KVM_ENOSYS; 5696 break; 5697 } 5698 out: 5699 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5700 ++vcpu->stat.hypercalls; 5701 return r; 5702 } 5703 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5704 5705 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5706 { 5707 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5708 char instruction[3]; 5709 unsigned long rip = kvm_rip_read(vcpu); 5710 5711 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5712 5713 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5714 } 5715 5716 /* 5717 * Check if userspace requested an interrupt window, and that the 5718 * interrupt window is open. 5719 * 5720 * No need to exit to userspace if we already have an interrupt queued. 5721 */ 5722 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5723 { 5724 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5725 vcpu->run->request_interrupt_window && 5726 kvm_arch_interrupt_allowed(vcpu)); 5727 } 5728 5729 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5730 { 5731 struct kvm_run *kvm_run = vcpu->run; 5732 5733 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5734 kvm_run->cr8 = kvm_get_cr8(vcpu); 5735 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5736 if (irqchip_in_kernel(vcpu->kvm)) 5737 kvm_run->ready_for_interrupt_injection = 1; 5738 else 5739 kvm_run->ready_for_interrupt_injection = 5740 kvm_arch_interrupt_allowed(vcpu) && 5741 !kvm_cpu_has_interrupt(vcpu) && 5742 !kvm_event_needs_reinjection(vcpu); 5743 } 5744 5745 static int vapic_enter(struct kvm_vcpu *vcpu) 5746 { 5747 struct kvm_lapic *apic = vcpu->arch.apic; 5748 struct page *page; 5749 5750 if (!apic || !apic->vapic_addr) 5751 return 0; 5752 5753 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5754 if (is_error_page(page)) 5755 return -EFAULT; 5756 5757 vcpu->arch.apic->vapic_page = page; 5758 return 0; 5759 } 5760 5761 static void vapic_exit(struct kvm_vcpu *vcpu) 5762 { 5763 struct kvm_lapic *apic = vcpu->arch.apic; 5764 int idx; 5765 5766 if (!apic || !apic->vapic_addr) 5767 return; 5768 5769 idx = srcu_read_lock(&vcpu->kvm->srcu); 5770 kvm_release_page_dirty(apic->vapic_page); 5771 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5772 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5773 } 5774 5775 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5776 { 5777 int max_irr, tpr; 5778 5779 if (!kvm_x86_ops->update_cr8_intercept) 5780 return; 5781 5782 if (!vcpu->arch.apic) 5783 return; 5784 5785 if (!vcpu->arch.apic->vapic_addr) 5786 max_irr = kvm_lapic_find_highest_irr(vcpu); 5787 else 5788 max_irr = -1; 5789 5790 if (max_irr != -1) 5791 max_irr >>= 4; 5792 5793 tpr = kvm_lapic_get_cr8(vcpu); 5794 5795 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5796 } 5797 5798 static void inject_pending_event(struct kvm_vcpu *vcpu) 5799 { 5800 /* try to reinject previous events if any */ 5801 if (vcpu->arch.exception.pending) { 5802 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5803 vcpu->arch.exception.has_error_code, 5804 vcpu->arch.exception.error_code); 5805 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5806 vcpu->arch.exception.has_error_code, 5807 vcpu->arch.exception.error_code, 5808 vcpu->arch.exception.reinject); 5809 return; 5810 } 5811 5812 if (vcpu->arch.nmi_injected) { 5813 kvm_x86_ops->set_nmi(vcpu); 5814 return; 5815 } 5816 5817 if (vcpu->arch.interrupt.pending) { 5818 kvm_x86_ops->set_irq(vcpu); 5819 return; 5820 } 5821 5822 /* try to inject new event if pending */ 5823 if (vcpu->arch.nmi_pending) { 5824 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5825 --vcpu->arch.nmi_pending; 5826 vcpu->arch.nmi_injected = true; 5827 kvm_x86_ops->set_nmi(vcpu); 5828 } 5829 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5830 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5831 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5832 false); 5833 kvm_x86_ops->set_irq(vcpu); 5834 } 5835 } 5836 } 5837 5838 static void process_nmi(struct kvm_vcpu *vcpu) 5839 { 5840 unsigned limit = 2; 5841 5842 /* 5843 * x86 is limited to one NMI running, and one NMI pending after it. 5844 * If an NMI is already in progress, limit further NMIs to just one. 5845 * Otherwise, allow two (and we'll inject the first one immediately). 5846 */ 5847 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5848 limit = 1; 5849 5850 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5851 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5852 kvm_make_request(KVM_REQ_EVENT, vcpu); 5853 } 5854 5855 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5856 { 5857 u64 eoi_exit_bitmap[4]; 5858 u32 tmr[8]; 5859 5860 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5861 return; 5862 5863 memset(eoi_exit_bitmap, 0, 32); 5864 memset(tmr, 0, 32); 5865 5866 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5867 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5868 kvm_apic_update_tmr(vcpu, tmr); 5869 } 5870 5871 /* 5872 * Returns 1 to let __vcpu_run() continue the guest execution loop without 5873 * exiting to the userspace. Otherwise, the value will be returned to the 5874 * userspace. 5875 */ 5876 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5877 { 5878 int r; 5879 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5880 vcpu->run->request_interrupt_window; 5881 bool req_immediate_exit = false; 5882 5883 if (vcpu->requests) { 5884 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5885 kvm_mmu_unload(vcpu); 5886 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5887 __kvm_migrate_timers(vcpu); 5888 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5889 kvm_gen_update_masterclock(vcpu->kvm); 5890 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 5891 kvm_gen_kvmclock_update(vcpu); 5892 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5893 r = kvm_guest_time_update(vcpu); 5894 if (unlikely(r)) 5895 goto out; 5896 } 5897 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5898 kvm_mmu_sync_roots(vcpu); 5899 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5900 kvm_x86_ops->tlb_flush(vcpu); 5901 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5902 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5903 r = 0; 5904 goto out; 5905 } 5906 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5907 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5908 r = 0; 5909 goto out; 5910 } 5911 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5912 vcpu->fpu_active = 0; 5913 kvm_x86_ops->fpu_deactivate(vcpu); 5914 } 5915 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5916 /* Page is swapped out. Do synthetic halt */ 5917 vcpu->arch.apf.halted = true; 5918 r = 1; 5919 goto out; 5920 } 5921 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5922 record_steal_time(vcpu); 5923 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5924 process_nmi(vcpu); 5925 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5926 kvm_handle_pmu_event(vcpu); 5927 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5928 kvm_deliver_pmi(vcpu); 5929 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5930 vcpu_scan_ioapic(vcpu); 5931 } 5932 5933 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5934 kvm_apic_accept_events(vcpu); 5935 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 5936 r = 1; 5937 goto out; 5938 } 5939 5940 inject_pending_event(vcpu); 5941 5942 /* enable NMI/IRQ window open exits if needed */ 5943 if (vcpu->arch.nmi_pending) 5944 req_immediate_exit = 5945 kvm_x86_ops->enable_nmi_window(vcpu) != 0; 5946 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 5947 req_immediate_exit = 5948 kvm_x86_ops->enable_irq_window(vcpu) != 0; 5949 5950 if (kvm_lapic_enabled(vcpu)) { 5951 /* 5952 * Update architecture specific hints for APIC 5953 * virtual interrupt delivery. 5954 */ 5955 if (kvm_x86_ops->hwapic_irr_update) 5956 kvm_x86_ops->hwapic_irr_update(vcpu, 5957 kvm_lapic_find_highest_irr(vcpu)); 5958 update_cr8_intercept(vcpu); 5959 kvm_lapic_sync_to_vapic(vcpu); 5960 } 5961 } 5962 5963 r = kvm_mmu_reload(vcpu); 5964 if (unlikely(r)) { 5965 goto cancel_injection; 5966 } 5967 5968 preempt_disable(); 5969 5970 kvm_x86_ops->prepare_guest_switch(vcpu); 5971 if (vcpu->fpu_active) 5972 kvm_load_guest_fpu(vcpu); 5973 kvm_load_guest_xcr0(vcpu); 5974 5975 vcpu->mode = IN_GUEST_MODE; 5976 5977 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5978 5979 /* We should set ->mode before check ->requests, 5980 * see the comment in make_all_cpus_request. 5981 */ 5982 smp_mb__after_srcu_read_unlock(); 5983 5984 local_irq_disable(); 5985 5986 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5987 || need_resched() || signal_pending(current)) { 5988 vcpu->mode = OUTSIDE_GUEST_MODE; 5989 smp_wmb(); 5990 local_irq_enable(); 5991 preempt_enable(); 5992 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5993 r = 1; 5994 goto cancel_injection; 5995 } 5996 5997 if (req_immediate_exit) 5998 smp_send_reschedule(vcpu->cpu); 5999 6000 kvm_guest_enter(); 6001 6002 if (unlikely(vcpu->arch.switch_db_regs)) { 6003 set_debugreg(0, 7); 6004 set_debugreg(vcpu->arch.eff_db[0], 0); 6005 set_debugreg(vcpu->arch.eff_db[1], 1); 6006 set_debugreg(vcpu->arch.eff_db[2], 2); 6007 set_debugreg(vcpu->arch.eff_db[3], 3); 6008 } 6009 6010 trace_kvm_entry(vcpu->vcpu_id); 6011 kvm_x86_ops->run(vcpu); 6012 6013 /* 6014 * If the guest has used debug registers, at least dr7 6015 * will be disabled while returning to the host. 6016 * If we don't have active breakpoints in the host, we don't 6017 * care about the messed up debug address registers. But if 6018 * we have some of them active, restore the old state. 6019 */ 6020 if (hw_breakpoint_active()) 6021 hw_breakpoint_restore(); 6022 6023 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 6024 native_read_tsc()); 6025 6026 vcpu->mode = OUTSIDE_GUEST_MODE; 6027 smp_wmb(); 6028 6029 /* Interrupt is enabled by handle_external_intr() */ 6030 kvm_x86_ops->handle_external_intr(vcpu); 6031 6032 ++vcpu->stat.exits; 6033 6034 /* 6035 * We must have an instruction between local_irq_enable() and 6036 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6037 * the interrupt shadow. The stat.exits increment will do nicely. 6038 * But we need to prevent reordering, hence this barrier(): 6039 */ 6040 barrier(); 6041 6042 kvm_guest_exit(); 6043 6044 preempt_enable(); 6045 6046 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6047 6048 /* 6049 * Profile KVM exit RIPs: 6050 */ 6051 if (unlikely(prof_on == KVM_PROFILING)) { 6052 unsigned long rip = kvm_rip_read(vcpu); 6053 profile_hit(KVM_PROFILING, (void *)rip); 6054 } 6055 6056 if (unlikely(vcpu->arch.tsc_always_catchup)) 6057 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6058 6059 if (vcpu->arch.apic_attention) 6060 kvm_lapic_sync_from_vapic(vcpu); 6061 6062 r = kvm_x86_ops->handle_exit(vcpu); 6063 return r; 6064 6065 cancel_injection: 6066 kvm_x86_ops->cancel_injection(vcpu); 6067 if (unlikely(vcpu->arch.apic_attention)) 6068 kvm_lapic_sync_from_vapic(vcpu); 6069 out: 6070 return r; 6071 } 6072 6073 6074 static int __vcpu_run(struct kvm_vcpu *vcpu) 6075 { 6076 int r; 6077 struct kvm *kvm = vcpu->kvm; 6078 6079 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6080 r = vapic_enter(vcpu); 6081 if (r) { 6082 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6083 return r; 6084 } 6085 6086 r = 1; 6087 while (r > 0) { 6088 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6089 !vcpu->arch.apf.halted) 6090 r = vcpu_enter_guest(vcpu); 6091 else { 6092 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6093 kvm_vcpu_block(vcpu); 6094 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6095 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6096 kvm_apic_accept_events(vcpu); 6097 switch(vcpu->arch.mp_state) { 6098 case KVM_MP_STATE_HALTED: 6099 vcpu->arch.pv.pv_unhalted = false; 6100 vcpu->arch.mp_state = 6101 KVM_MP_STATE_RUNNABLE; 6102 case KVM_MP_STATE_RUNNABLE: 6103 vcpu->arch.apf.halted = false; 6104 break; 6105 case KVM_MP_STATE_INIT_RECEIVED: 6106 break; 6107 default: 6108 r = -EINTR; 6109 break; 6110 } 6111 } 6112 } 6113 6114 if (r <= 0) 6115 break; 6116 6117 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6118 if (kvm_cpu_has_pending_timer(vcpu)) 6119 kvm_inject_pending_timer_irqs(vcpu); 6120 6121 if (dm_request_for_irq_injection(vcpu)) { 6122 r = -EINTR; 6123 vcpu->run->exit_reason = KVM_EXIT_INTR; 6124 ++vcpu->stat.request_irq_exits; 6125 } 6126 6127 kvm_check_async_pf_completion(vcpu); 6128 6129 if (signal_pending(current)) { 6130 r = -EINTR; 6131 vcpu->run->exit_reason = KVM_EXIT_INTR; 6132 ++vcpu->stat.signal_exits; 6133 } 6134 if (need_resched()) { 6135 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6136 cond_resched(); 6137 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6138 } 6139 } 6140 6141 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6142 6143 vapic_exit(vcpu); 6144 6145 return r; 6146 } 6147 6148 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6149 { 6150 int r; 6151 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6152 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6153 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6154 if (r != EMULATE_DONE) 6155 return 0; 6156 return 1; 6157 } 6158 6159 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6160 { 6161 BUG_ON(!vcpu->arch.pio.count); 6162 6163 return complete_emulated_io(vcpu); 6164 } 6165 6166 /* 6167 * Implements the following, as a state machine: 6168 * 6169 * read: 6170 * for each fragment 6171 * for each mmio piece in the fragment 6172 * write gpa, len 6173 * exit 6174 * copy data 6175 * execute insn 6176 * 6177 * write: 6178 * for each fragment 6179 * for each mmio piece in the fragment 6180 * write gpa, len 6181 * copy data 6182 * exit 6183 */ 6184 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6185 { 6186 struct kvm_run *run = vcpu->run; 6187 struct kvm_mmio_fragment *frag; 6188 unsigned len; 6189 6190 BUG_ON(!vcpu->mmio_needed); 6191 6192 /* Complete previous fragment */ 6193 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6194 len = min(8u, frag->len); 6195 if (!vcpu->mmio_is_write) 6196 memcpy(frag->data, run->mmio.data, len); 6197 6198 if (frag->len <= 8) { 6199 /* Switch to the next fragment. */ 6200 frag++; 6201 vcpu->mmio_cur_fragment++; 6202 } else { 6203 /* Go forward to the next mmio piece. */ 6204 frag->data += len; 6205 frag->gpa += len; 6206 frag->len -= len; 6207 } 6208 6209 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 6210 vcpu->mmio_needed = 0; 6211 6212 /* FIXME: return into emulator if single-stepping. */ 6213 if (vcpu->mmio_is_write) 6214 return 1; 6215 vcpu->mmio_read_completed = 1; 6216 return complete_emulated_io(vcpu); 6217 } 6218 6219 run->exit_reason = KVM_EXIT_MMIO; 6220 run->mmio.phys_addr = frag->gpa; 6221 if (vcpu->mmio_is_write) 6222 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6223 run->mmio.len = min(8u, frag->len); 6224 run->mmio.is_write = vcpu->mmio_is_write; 6225 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6226 return 0; 6227 } 6228 6229 6230 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6231 { 6232 int r; 6233 sigset_t sigsaved; 6234 6235 if (!tsk_used_math(current) && init_fpu(current)) 6236 return -ENOMEM; 6237 6238 if (vcpu->sigset_active) 6239 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6240 6241 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6242 kvm_vcpu_block(vcpu); 6243 kvm_apic_accept_events(vcpu); 6244 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6245 r = -EAGAIN; 6246 goto out; 6247 } 6248 6249 /* re-sync apic's tpr */ 6250 if (!irqchip_in_kernel(vcpu->kvm)) { 6251 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6252 r = -EINVAL; 6253 goto out; 6254 } 6255 } 6256 6257 if (unlikely(vcpu->arch.complete_userspace_io)) { 6258 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6259 vcpu->arch.complete_userspace_io = NULL; 6260 r = cui(vcpu); 6261 if (r <= 0) 6262 goto out; 6263 } else 6264 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6265 6266 r = __vcpu_run(vcpu); 6267 6268 out: 6269 post_kvm_run_save(vcpu); 6270 if (vcpu->sigset_active) 6271 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6272 6273 return r; 6274 } 6275 6276 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6277 { 6278 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6279 /* 6280 * We are here if userspace calls get_regs() in the middle of 6281 * instruction emulation. Registers state needs to be copied 6282 * back from emulation context to vcpu. Userspace shouldn't do 6283 * that usually, but some bad designed PV devices (vmware 6284 * backdoor interface) need this to work 6285 */ 6286 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6287 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6288 } 6289 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6290 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6291 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6292 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6293 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6294 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6295 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6296 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6297 #ifdef CONFIG_X86_64 6298 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6299 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6300 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6301 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6302 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6303 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6304 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6305 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6306 #endif 6307 6308 regs->rip = kvm_rip_read(vcpu); 6309 regs->rflags = kvm_get_rflags(vcpu); 6310 6311 return 0; 6312 } 6313 6314 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6315 { 6316 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6317 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6318 6319 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6320 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6321 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6322 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6323 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6324 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6325 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6326 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6327 #ifdef CONFIG_X86_64 6328 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6329 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6330 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6331 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6332 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6333 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6334 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6335 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6336 #endif 6337 6338 kvm_rip_write(vcpu, regs->rip); 6339 kvm_set_rflags(vcpu, regs->rflags); 6340 6341 vcpu->arch.exception.pending = false; 6342 6343 kvm_make_request(KVM_REQ_EVENT, vcpu); 6344 6345 return 0; 6346 } 6347 6348 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6349 { 6350 struct kvm_segment cs; 6351 6352 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6353 *db = cs.db; 6354 *l = cs.l; 6355 } 6356 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6357 6358 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6359 struct kvm_sregs *sregs) 6360 { 6361 struct desc_ptr dt; 6362 6363 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6364 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6365 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6366 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6367 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6368 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6369 6370 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6371 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6372 6373 kvm_x86_ops->get_idt(vcpu, &dt); 6374 sregs->idt.limit = dt.size; 6375 sregs->idt.base = dt.address; 6376 kvm_x86_ops->get_gdt(vcpu, &dt); 6377 sregs->gdt.limit = dt.size; 6378 sregs->gdt.base = dt.address; 6379 6380 sregs->cr0 = kvm_read_cr0(vcpu); 6381 sregs->cr2 = vcpu->arch.cr2; 6382 sregs->cr3 = kvm_read_cr3(vcpu); 6383 sregs->cr4 = kvm_read_cr4(vcpu); 6384 sregs->cr8 = kvm_get_cr8(vcpu); 6385 sregs->efer = vcpu->arch.efer; 6386 sregs->apic_base = kvm_get_apic_base(vcpu); 6387 6388 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6389 6390 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6391 set_bit(vcpu->arch.interrupt.nr, 6392 (unsigned long *)sregs->interrupt_bitmap); 6393 6394 return 0; 6395 } 6396 6397 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6398 struct kvm_mp_state *mp_state) 6399 { 6400 kvm_apic_accept_events(vcpu); 6401 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6402 vcpu->arch.pv.pv_unhalted) 6403 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6404 else 6405 mp_state->mp_state = vcpu->arch.mp_state; 6406 6407 return 0; 6408 } 6409 6410 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6411 struct kvm_mp_state *mp_state) 6412 { 6413 if (!kvm_vcpu_has_lapic(vcpu) && 6414 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6415 return -EINVAL; 6416 6417 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6418 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6419 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6420 } else 6421 vcpu->arch.mp_state = mp_state->mp_state; 6422 kvm_make_request(KVM_REQ_EVENT, vcpu); 6423 return 0; 6424 } 6425 6426 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6427 int reason, bool has_error_code, u32 error_code) 6428 { 6429 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6430 int ret; 6431 6432 init_emulate_ctxt(vcpu); 6433 6434 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6435 has_error_code, error_code); 6436 6437 if (ret) 6438 return EMULATE_FAIL; 6439 6440 kvm_rip_write(vcpu, ctxt->eip); 6441 kvm_set_rflags(vcpu, ctxt->eflags); 6442 kvm_make_request(KVM_REQ_EVENT, vcpu); 6443 return EMULATE_DONE; 6444 } 6445 EXPORT_SYMBOL_GPL(kvm_task_switch); 6446 6447 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6448 struct kvm_sregs *sregs) 6449 { 6450 int mmu_reset_needed = 0; 6451 int pending_vec, max_bits, idx; 6452 struct desc_ptr dt; 6453 6454 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6455 return -EINVAL; 6456 6457 dt.size = sregs->idt.limit; 6458 dt.address = sregs->idt.base; 6459 kvm_x86_ops->set_idt(vcpu, &dt); 6460 dt.size = sregs->gdt.limit; 6461 dt.address = sregs->gdt.base; 6462 kvm_x86_ops->set_gdt(vcpu, &dt); 6463 6464 vcpu->arch.cr2 = sregs->cr2; 6465 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6466 vcpu->arch.cr3 = sregs->cr3; 6467 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6468 6469 kvm_set_cr8(vcpu, sregs->cr8); 6470 6471 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6472 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6473 kvm_set_apic_base(vcpu, sregs->apic_base); 6474 6475 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6476 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6477 vcpu->arch.cr0 = sregs->cr0; 6478 6479 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6480 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6481 if (sregs->cr4 & X86_CR4_OSXSAVE) 6482 kvm_update_cpuid(vcpu); 6483 6484 idx = srcu_read_lock(&vcpu->kvm->srcu); 6485 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6486 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6487 mmu_reset_needed = 1; 6488 } 6489 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6490 6491 if (mmu_reset_needed) 6492 kvm_mmu_reset_context(vcpu); 6493 6494 max_bits = KVM_NR_INTERRUPTS; 6495 pending_vec = find_first_bit( 6496 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6497 if (pending_vec < max_bits) { 6498 kvm_queue_interrupt(vcpu, pending_vec, false); 6499 pr_debug("Set back pending irq %d\n", pending_vec); 6500 } 6501 6502 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6503 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6504 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6505 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6506 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6507 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6508 6509 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6510 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6511 6512 update_cr8_intercept(vcpu); 6513 6514 /* Older userspace won't unhalt the vcpu on reset. */ 6515 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6516 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6517 !is_protmode(vcpu)) 6518 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6519 6520 kvm_make_request(KVM_REQ_EVENT, vcpu); 6521 6522 return 0; 6523 } 6524 6525 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6526 struct kvm_guest_debug *dbg) 6527 { 6528 unsigned long rflags; 6529 int i, r; 6530 6531 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6532 r = -EBUSY; 6533 if (vcpu->arch.exception.pending) 6534 goto out; 6535 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6536 kvm_queue_exception(vcpu, DB_VECTOR); 6537 else 6538 kvm_queue_exception(vcpu, BP_VECTOR); 6539 } 6540 6541 /* 6542 * Read rflags as long as potentially injected trace flags are still 6543 * filtered out. 6544 */ 6545 rflags = kvm_get_rflags(vcpu); 6546 6547 vcpu->guest_debug = dbg->control; 6548 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6549 vcpu->guest_debug = 0; 6550 6551 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6552 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6553 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6554 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6555 } else { 6556 for (i = 0; i < KVM_NR_DB_REGS; i++) 6557 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6558 } 6559 kvm_update_dr7(vcpu); 6560 6561 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6562 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6563 get_segment_base(vcpu, VCPU_SREG_CS); 6564 6565 /* 6566 * Trigger an rflags update that will inject or remove the trace 6567 * flags. 6568 */ 6569 kvm_set_rflags(vcpu, rflags); 6570 6571 kvm_x86_ops->update_db_bp_intercept(vcpu); 6572 6573 r = 0; 6574 6575 out: 6576 6577 return r; 6578 } 6579 6580 /* 6581 * Translate a guest virtual address to a guest physical address. 6582 */ 6583 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6584 struct kvm_translation *tr) 6585 { 6586 unsigned long vaddr = tr->linear_address; 6587 gpa_t gpa; 6588 int idx; 6589 6590 idx = srcu_read_lock(&vcpu->kvm->srcu); 6591 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6592 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6593 tr->physical_address = gpa; 6594 tr->valid = gpa != UNMAPPED_GVA; 6595 tr->writeable = 1; 6596 tr->usermode = 0; 6597 6598 return 0; 6599 } 6600 6601 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6602 { 6603 struct i387_fxsave_struct *fxsave = 6604 &vcpu->arch.guest_fpu.state->fxsave; 6605 6606 memcpy(fpu->fpr, fxsave->st_space, 128); 6607 fpu->fcw = fxsave->cwd; 6608 fpu->fsw = fxsave->swd; 6609 fpu->ftwx = fxsave->twd; 6610 fpu->last_opcode = fxsave->fop; 6611 fpu->last_ip = fxsave->rip; 6612 fpu->last_dp = fxsave->rdp; 6613 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6614 6615 return 0; 6616 } 6617 6618 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6619 { 6620 struct i387_fxsave_struct *fxsave = 6621 &vcpu->arch.guest_fpu.state->fxsave; 6622 6623 memcpy(fxsave->st_space, fpu->fpr, 128); 6624 fxsave->cwd = fpu->fcw; 6625 fxsave->swd = fpu->fsw; 6626 fxsave->twd = fpu->ftwx; 6627 fxsave->fop = fpu->last_opcode; 6628 fxsave->rip = fpu->last_ip; 6629 fxsave->rdp = fpu->last_dp; 6630 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6631 6632 return 0; 6633 } 6634 6635 int fx_init(struct kvm_vcpu *vcpu) 6636 { 6637 int err; 6638 6639 err = fpu_alloc(&vcpu->arch.guest_fpu); 6640 if (err) 6641 return err; 6642 6643 fpu_finit(&vcpu->arch.guest_fpu); 6644 6645 /* 6646 * Ensure guest xcr0 is valid for loading 6647 */ 6648 vcpu->arch.xcr0 = XSTATE_FP; 6649 6650 vcpu->arch.cr0 |= X86_CR0_ET; 6651 6652 return 0; 6653 } 6654 EXPORT_SYMBOL_GPL(fx_init); 6655 6656 static void fx_free(struct kvm_vcpu *vcpu) 6657 { 6658 fpu_free(&vcpu->arch.guest_fpu); 6659 } 6660 6661 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6662 { 6663 if (vcpu->guest_fpu_loaded) 6664 return; 6665 6666 /* 6667 * Restore all possible states in the guest, 6668 * and assume host would use all available bits. 6669 * Guest xcr0 would be loaded later. 6670 */ 6671 kvm_put_guest_xcr0(vcpu); 6672 vcpu->guest_fpu_loaded = 1; 6673 __kernel_fpu_begin(); 6674 fpu_restore_checking(&vcpu->arch.guest_fpu); 6675 trace_kvm_fpu(1); 6676 } 6677 6678 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6679 { 6680 kvm_put_guest_xcr0(vcpu); 6681 6682 if (!vcpu->guest_fpu_loaded) 6683 return; 6684 6685 vcpu->guest_fpu_loaded = 0; 6686 fpu_save_init(&vcpu->arch.guest_fpu); 6687 __kernel_fpu_end(); 6688 ++vcpu->stat.fpu_reload; 6689 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6690 trace_kvm_fpu(0); 6691 } 6692 6693 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6694 { 6695 kvmclock_reset(vcpu); 6696 6697 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6698 fx_free(vcpu); 6699 kvm_x86_ops->vcpu_free(vcpu); 6700 } 6701 6702 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6703 unsigned int id) 6704 { 6705 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6706 printk_once(KERN_WARNING 6707 "kvm: SMP vm created on host with unstable TSC; " 6708 "guest TSC will not be reliable\n"); 6709 return kvm_x86_ops->vcpu_create(kvm, id); 6710 } 6711 6712 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6713 { 6714 int r; 6715 6716 vcpu->arch.mtrr_state.have_fixed = 1; 6717 r = vcpu_load(vcpu); 6718 if (r) 6719 return r; 6720 kvm_vcpu_reset(vcpu); 6721 kvm_mmu_setup(vcpu); 6722 vcpu_put(vcpu); 6723 6724 return r; 6725 } 6726 6727 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6728 { 6729 int r; 6730 struct msr_data msr; 6731 6732 r = vcpu_load(vcpu); 6733 if (r) 6734 return r; 6735 msr.data = 0x0; 6736 msr.index = MSR_IA32_TSC; 6737 msr.host_initiated = true; 6738 kvm_write_tsc(vcpu, &msr); 6739 vcpu_put(vcpu); 6740 6741 return r; 6742 } 6743 6744 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6745 { 6746 int r; 6747 vcpu->arch.apf.msr_val = 0; 6748 6749 r = vcpu_load(vcpu); 6750 BUG_ON(r); 6751 kvm_mmu_unload(vcpu); 6752 vcpu_put(vcpu); 6753 6754 fx_free(vcpu); 6755 kvm_x86_ops->vcpu_free(vcpu); 6756 } 6757 6758 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6759 { 6760 atomic_set(&vcpu->arch.nmi_queued, 0); 6761 vcpu->arch.nmi_pending = 0; 6762 vcpu->arch.nmi_injected = false; 6763 6764 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6765 vcpu->arch.dr6 = DR6_FIXED_1; 6766 vcpu->arch.dr7 = DR7_FIXED_1; 6767 kvm_update_dr7(vcpu); 6768 6769 kvm_make_request(KVM_REQ_EVENT, vcpu); 6770 vcpu->arch.apf.msr_val = 0; 6771 vcpu->arch.st.msr_val = 0; 6772 6773 kvmclock_reset(vcpu); 6774 6775 kvm_clear_async_pf_completion_queue(vcpu); 6776 kvm_async_pf_hash_reset(vcpu); 6777 vcpu->arch.apf.halted = false; 6778 6779 kvm_pmu_reset(vcpu); 6780 6781 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6782 vcpu->arch.regs_avail = ~0; 6783 vcpu->arch.regs_dirty = ~0; 6784 6785 kvm_x86_ops->vcpu_reset(vcpu); 6786 } 6787 6788 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6789 { 6790 struct kvm_segment cs; 6791 6792 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6793 cs.selector = vector << 8; 6794 cs.base = vector << 12; 6795 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6796 kvm_rip_write(vcpu, 0); 6797 } 6798 6799 int kvm_arch_hardware_enable(void *garbage) 6800 { 6801 struct kvm *kvm; 6802 struct kvm_vcpu *vcpu; 6803 int i; 6804 int ret; 6805 u64 local_tsc; 6806 u64 max_tsc = 0; 6807 bool stable, backwards_tsc = false; 6808 6809 kvm_shared_msr_cpu_online(); 6810 ret = kvm_x86_ops->hardware_enable(garbage); 6811 if (ret != 0) 6812 return ret; 6813 6814 local_tsc = native_read_tsc(); 6815 stable = !check_tsc_unstable(); 6816 list_for_each_entry(kvm, &vm_list, vm_list) { 6817 kvm_for_each_vcpu(i, vcpu, kvm) { 6818 if (!stable && vcpu->cpu == smp_processor_id()) 6819 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6820 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6821 backwards_tsc = true; 6822 if (vcpu->arch.last_host_tsc > max_tsc) 6823 max_tsc = vcpu->arch.last_host_tsc; 6824 } 6825 } 6826 } 6827 6828 /* 6829 * Sometimes, even reliable TSCs go backwards. This happens on 6830 * platforms that reset TSC during suspend or hibernate actions, but 6831 * maintain synchronization. We must compensate. Fortunately, we can 6832 * detect that condition here, which happens early in CPU bringup, 6833 * before any KVM threads can be running. Unfortunately, we can't 6834 * bring the TSCs fully up to date with real time, as we aren't yet far 6835 * enough into CPU bringup that we know how much real time has actually 6836 * elapsed; our helper function, get_kernel_ns() will be using boot 6837 * variables that haven't been updated yet. 6838 * 6839 * So we simply find the maximum observed TSC above, then record the 6840 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6841 * the adjustment will be applied. Note that we accumulate 6842 * adjustments, in case multiple suspend cycles happen before some VCPU 6843 * gets a chance to run again. In the event that no KVM threads get a 6844 * chance to run, we will miss the entire elapsed period, as we'll have 6845 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6846 * loose cycle time. This isn't too big a deal, since the loss will be 6847 * uniform across all VCPUs (not to mention the scenario is extremely 6848 * unlikely). It is possible that a second hibernate recovery happens 6849 * much faster than a first, causing the observed TSC here to be 6850 * smaller; this would require additional padding adjustment, which is 6851 * why we set last_host_tsc to the local tsc observed here. 6852 * 6853 * N.B. - this code below runs only on platforms with reliable TSC, 6854 * as that is the only way backwards_tsc is set above. Also note 6855 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6856 * have the same delta_cyc adjustment applied if backwards_tsc 6857 * is detected. Note further, this adjustment is only done once, 6858 * as we reset last_host_tsc on all VCPUs to stop this from being 6859 * called multiple times (one for each physical CPU bringup). 6860 * 6861 * Platforms with unreliable TSCs don't have to deal with this, they 6862 * will be compensated by the logic in vcpu_load, which sets the TSC to 6863 * catchup mode. This will catchup all VCPUs to real time, but cannot 6864 * guarantee that they stay in perfect synchronization. 6865 */ 6866 if (backwards_tsc) { 6867 u64 delta_cyc = max_tsc - local_tsc; 6868 list_for_each_entry(kvm, &vm_list, vm_list) { 6869 kvm_for_each_vcpu(i, vcpu, kvm) { 6870 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6871 vcpu->arch.last_host_tsc = local_tsc; 6872 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6873 &vcpu->requests); 6874 } 6875 6876 /* 6877 * We have to disable TSC offset matching.. if you were 6878 * booting a VM while issuing an S4 host suspend.... 6879 * you may have some problem. Solving this issue is 6880 * left as an exercise to the reader. 6881 */ 6882 kvm->arch.last_tsc_nsec = 0; 6883 kvm->arch.last_tsc_write = 0; 6884 } 6885 6886 } 6887 return 0; 6888 } 6889 6890 void kvm_arch_hardware_disable(void *garbage) 6891 { 6892 kvm_x86_ops->hardware_disable(garbage); 6893 drop_user_return_notifiers(garbage); 6894 } 6895 6896 int kvm_arch_hardware_setup(void) 6897 { 6898 return kvm_x86_ops->hardware_setup(); 6899 } 6900 6901 void kvm_arch_hardware_unsetup(void) 6902 { 6903 kvm_x86_ops->hardware_unsetup(); 6904 } 6905 6906 void kvm_arch_check_processor_compat(void *rtn) 6907 { 6908 kvm_x86_ops->check_processor_compatibility(rtn); 6909 } 6910 6911 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6912 { 6913 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6914 } 6915 6916 struct static_key kvm_no_apic_vcpu __read_mostly; 6917 6918 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6919 { 6920 struct page *page; 6921 struct kvm *kvm; 6922 int r; 6923 6924 BUG_ON(vcpu->kvm == NULL); 6925 kvm = vcpu->kvm; 6926 6927 vcpu->arch.pv.pv_unhalted = false; 6928 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6929 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6930 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6931 else 6932 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6933 6934 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6935 if (!page) { 6936 r = -ENOMEM; 6937 goto fail; 6938 } 6939 vcpu->arch.pio_data = page_address(page); 6940 6941 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6942 6943 r = kvm_mmu_create(vcpu); 6944 if (r < 0) 6945 goto fail_free_pio_data; 6946 6947 if (irqchip_in_kernel(kvm)) { 6948 r = kvm_create_lapic(vcpu); 6949 if (r < 0) 6950 goto fail_mmu_destroy; 6951 } else 6952 static_key_slow_inc(&kvm_no_apic_vcpu); 6953 6954 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6955 GFP_KERNEL); 6956 if (!vcpu->arch.mce_banks) { 6957 r = -ENOMEM; 6958 goto fail_free_lapic; 6959 } 6960 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6961 6962 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 6963 r = -ENOMEM; 6964 goto fail_free_mce_banks; 6965 } 6966 6967 r = fx_init(vcpu); 6968 if (r) 6969 goto fail_free_wbinvd_dirty_mask; 6970 6971 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 6972 vcpu->arch.pv_time_enabled = false; 6973 6974 vcpu->arch.guest_supported_xcr0 = 0; 6975 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 6976 6977 kvm_async_pf_hash_reset(vcpu); 6978 kvm_pmu_init(vcpu); 6979 6980 return 0; 6981 fail_free_wbinvd_dirty_mask: 6982 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6983 fail_free_mce_banks: 6984 kfree(vcpu->arch.mce_banks); 6985 fail_free_lapic: 6986 kvm_free_lapic(vcpu); 6987 fail_mmu_destroy: 6988 kvm_mmu_destroy(vcpu); 6989 fail_free_pio_data: 6990 free_page((unsigned long)vcpu->arch.pio_data); 6991 fail: 6992 return r; 6993 } 6994 6995 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6996 { 6997 int idx; 6998 6999 kvm_pmu_destroy(vcpu); 7000 kfree(vcpu->arch.mce_banks); 7001 kvm_free_lapic(vcpu); 7002 idx = srcu_read_lock(&vcpu->kvm->srcu); 7003 kvm_mmu_destroy(vcpu); 7004 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7005 free_page((unsigned long)vcpu->arch.pio_data); 7006 if (!irqchip_in_kernel(vcpu->kvm)) 7007 static_key_slow_dec(&kvm_no_apic_vcpu); 7008 } 7009 7010 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7011 { 7012 if (type) 7013 return -EINVAL; 7014 7015 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7016 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7017 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7018 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7019 7020 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7021 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7022 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7023 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7024 &kvm->arch.irq_sources_bitmap); 7025 7026 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7027 mutex_init(&kvm->arch.apic_map_lock); 7028 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7029 7030 pvclock_update_vm_gtod_copy(kvm); 7031 7032 return 0; 7033 } 7034 7035 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7036 { 7037 int r; 7038 r = vcpu_load(vcpu); 7039 BUG_ON(r); 7040 kvm_mmu_unload(vcpu); 7041 vcpu_put(vcpu); 7042 } 7043 7044 static void kvm_free_vcpus(struct kvm *kvm) 7045 { 7046 unsigned int i; 7047 struct kvm_vcpu *vcpu; 7048 7049 /* 7050 * Unpin any mmu pages first. 7051 */ 7052 kvm_for_each_vcpu(i, vcpu, kvm) { 7053 kvm_clear_async_pf_completion_queue(vcpu); 7054 kvm_unload_vcpu_mmu(vcpu); 7055 } 7056 kvm_for_each_vcpu(i, vcpu, kvm) 7057 kvm_arch_vcpu_free(vcpu); 7058 7059 mutex_lock(&kvm->lock); 7060 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7061 kvm->vcpus[i] = NULL; 7062 7063 atomic_set(&kvm->online_vcpus, 0); 7064 mutex_unlock(&kvm->lock); 7065 } 7066 7067 void kvm_arch_sync_events(struct kvm *kvm) 7068 { 7069 kvm_free_all_assigned_devices(kvm); 7070 kvm_free_pit(kvm); 7071 } 7072 7073 void kvm_arch_destroy_vm(struct kvm *kvm) 7074 { 7075 if (current->mm == kvm->mm) { 7076 /* 7077 * Free memory regions allocated on behalf of userspace, 7078 * unless the the memory map has changed due to process exit 7079 * or fd copying. 7080 */ 7081 struct kvm_userspace_memory_region mem; 7082 memset(&mem, 0, sizeof(mem)); 7083 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7084 kvm_set_memory_region(kvm, &mem); 7085 7086 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7087 kvm_set_memory_region(kvm, &mem); 7088 7089 mem.slot = TSS_PRIVATE_MEMSLOT; 7090 kvm_set_memory_region(kvm, &mem); 7091 } 7092 kvm_iommu_unmap_guest(kvm); 7093 kfree(kvm->arch.vpic); 7094 kfree(kvm->arch.vioapic); 7095 kvm_free_vcpus(kvm); 7096 if (kvm->arch.apic_access_page) 7097 put_page(kvm->arch.apic_access_page); 7098 if (kvm->arch.ept_identity_pagetable) 7099 put_page(kvm->arch.ept_identity_pagetable); 7100 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7101 } 7102 7103 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7104 struct kvm_memory_slot *dont) 7105 { 7106 int i; 7107 7108 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7109 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7110 kvm_kvfree(free->arch.rmap[i]); 7111 free->arch.rmap[i] = NULL; 7112 } 7113 if (i == 0) 7114 continue; 7115 7116 if (!dont || free->arch.lpage_info[i - 1] != 7117 dont->arch.lpage_info[i - 1]) { 7118 kvm_kvfree(free->arch.lpage_info[i - 1]); 7119 free->arch.lpage_info[i - 1] = NULL; 7120 } 7121 } 7122 } 7123 7124 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7125 unsigned long npages) 7126 { 7127 int i; 7128 7129 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7130 unsigned long ugfn; 7131 int lpages; 7132 int level = i + 1; 7133 7134 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7135 slot->base_gfn, level) + 1; 7136 7137 slot->arch.rmap[i] = 7138 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7139 if (!slot->arch.rmap[i]) 7140 goto out_free; 7141 if (i == 0) 7142 continue; 7143 7144 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7145 sizeof(*slot->arch.lpage_info[i - 1])); 7146 if (!slot->arch.lpage_info[i - 1]) 7147 goto out_free; 7148 7149 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7150 slot->arch.lpage_info[i - 1][0].write_count = 1; 7151 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7152 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7153 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7154 /* 7155 * If the gfn and userspace address are not aligned wrt each 7156 * other, or if explicitly asked to, disable large page 7157 * support for this slot 7158 */ 7159 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7160 !kvm_largepages_enabled()) { 7161 unsigned long j; 7162 7163 for (j = 0; j < lpages; ++j) 7164 slot->arch.lpage_info[i - 1][j].write_count = 1; 7165 } 7166 } 7167 7168 return 0; 7169 7170 out_free: 7171 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7172 kvm_kvfree(slot->arch.rmap[i]); 7173 slot->arch.rmap[i] = NULL; 7174 if (i == 0) 7175 continue; 7176 7177 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7178 slot->arch.lpage_info[i - 1] = NULL; 7179 } 7180 return -ENOMEM; 7181 } 7182 7183 void kvm_arch_memslots_updated(struct kvm *kvm) 7184 { 7185 /* 7186 * memslots->generation has been incremented. 7187 * mmio generation may have reached its maximum value. 7188 */ 7189 kvm_mmu_invalidate_mmio_sptes(kvm); 7190 } 7191 7192 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7193 struct kvm_memory_slot *memslot, 7194 struct kvm_userspace_memory_region *mem, 7195 enum kvm_mr_change change) 7196 { 7197 /* 7198 * Only private memory slots need to be mapped here since 7199 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7200 */ 7201 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7202 unsigned long userspace_addr; 7203 7204 /* 7205 * MAP_SHARED to prevent internal slot pages from being moved 7206 * by fork()/COW. 7207 */ 7208 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7209 PROT_READ | PROT_WRITE, 7210 MAP_SHARED | MAP_ANONYMOUS, 0); 7211 7212 if (IS_ERR((void *)userspace_addr)) 7213 return PTR_ERR((void *)userspace_addr); 7214 7215 memslot->userspace_addr = userspace_addr; 7216 } 7217 7218 return 0; 7219 } 7220 7221 void kvm_arch_commit_memory_region(struct kvm *kvm, 7222 struct kvm_userspace_memory_region *mem, 7223 const struct kvm_memory_slot *old, 7224 enum kvm_mr_change change) 7225 { 7226 7227 int nr_mmu_pages = 0; 7228 7229 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7230 int ret; 7231 7232 ret = vm_munmap(old->userspace_addr, 7233 old->npages * PAGE_SIZE); 7234 if (ret < 0) 7235 printk(KERN_WARNING 7236 "kvm_vm_ioctl_set_memory_region: " 7237 "failed to munmap memory\n"); 7238 } 7239 7240 if (!kvm->arch.n_requested_mmu_pages) 7241 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7242 7243 if (nr_mmu_pages) 7244 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7245 /* 7246 * Write protect all pages for dirty logging. 7247 * Existing largepage mappings are destroyed here and new ones will 7248 * not be created until the end of the logging. 7249 */ 7250 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7251 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7252 } 7253 7254 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7255 { 7256 kvm_mmu_invalidate_zap_all_pages(kvm); 7257 } 7258 7259 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7260 struct kvm_memory_slot *slot) 7261 { 7262 kvm_mmu_invalidate_zap_all_pages(kvm); 7263 } 7264 7265 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7266 { 7267 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7268 !vcpu->arch.apf.halted) 7269 || !list_empty_careful(&vcpu->async_pf.done) 7270 || kvm_apic_has_events(vcpu) 7271 || vcpu->arch.pv.pv_unhalted 7272 || atomic_read(&vcpu->arch.nmi_queued) || 7273 (kvm_arch_interrupt_allowed(vcpu) && 7274 kvm_cpu_has_interrupt(vcpu)); 7275 } 7276 7277 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7278 { 7279 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7280 } 7281 7282 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7283 { 7284 return kvm_x86_ops->interrupt_allowed(vcpu); 7285 } 7286 7287 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7288 { 7289 unsigned long current_rip = kvm_rip_read(vcpu) + 7290 get_segment_base(vcpu, VCPU_SREG_CS); 7291 7292 return current_rip == linear_rip; 7293 } 7294 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7295 7296 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7297 { 7298 unsigned long rflags; 7299 7300 rflags = kvm_x86_ops->get_rflags(vcpu); 7301 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7302 rflags &= ~X86_EFLAGS_TF; 7303 return rflags; 7304 } 7305 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7306 7307 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7308 { 7309 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7310 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7311 rflags |= X86_EFLAGS_TF; 7312 kvm_x86_ops->set_rflags(vcpu, rflags); 7313 kvm_make_request(KVM_REQ_EVENT, vcpu); 7314 } 7315 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7316 7317 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7318 { 7319 int r; 7320 7321 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7322 work->wakeup_all) 7323 return; 7324 7325 r = kvm_mmu_reload(vcpu); 7326 if (unlikely(r)) 7327 return; 7328 7329 if (!vcpu->arch.mmu.direct_map && 7330 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7331 return; 7332 7333 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7334 } 7335 7336 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7337 { 7338 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7339 } 7340 7341 static inline u32 kvm_async_pf_next_probe(u32 key) 7342 { 7343 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7344 } 7345 7346 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7347 { 7348 u32 key = kvm_async_pf_hash_fn(gfn); 7349 7350 while (vcpu->arch.apf.gfns[key] != ~0) 7351 key = kvm_async_pf_next_probe(key); 7352 7353 vcpu->arch.apf.gfns[key] = gfn; 7354 } 7355 7356 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7357 { 7358 int i; 7359 u32 key = kvm_async_pf_hash_fn(gfn); 7360 7361 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7362 (vcpu->arch.apf.gfns[key] != gfn && 7363 vcpu->arch.apf.gfns[key] != ~0); i++) 7364 key = kvm_async_pf_next_probe(key); 7365 7366 return key; 7367 } 7368 7369 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7370 { 7371 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7372 } 7373 7374 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7375 { 7376 u32 i, j, k; 7377 7378 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7379 while (true) { 7380 vcpu->arch.apf.gfns[i] = ~0; 7381 do { 7382 j = kvm_async_pf_next_probe(j); 7383 if (vcpu->arch.apf.gfns[j] == ~0) 7384 return; 7385 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7386 /* 7387 * k lies cyclically in ]i,j] 7388 * | i.k.j | 7389 * |....j i.k.| or |.k..j i...| 7390 */ 7391 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7392 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7393 i = j; 7394 } 7395 } 7396 7397 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7398 { 7399 7400 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7401 sizeof(val)); 7402 } 7403 7404 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7405 struct kvm_async_pf *work) 7406 { 7407 struct x86_exception fault; 7408 7409 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7410 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7411 7412 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7413 (vcpu->arch.apf.send_user_only && 7414 kvm_x86_ops->get_cpl(vcpu) == 0)) 7415 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7416 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7417 fault.vector = PF_VECTOR; 7418 fault.error_code_valid = true; 7419 fault.error_code = 0; 7420 fault.nested_page_fault = false; 7421 fault.address = work->arch.token; 7422 kvm_inject_page_fault(vcpu, &fault); 7423 } 7424 } 7425 7426 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7427 struct kvm_async_pf *work) 7428 { 7429 struct x86_exception fault; 7430 7431 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7432 if (work->wakeup_all) 7433 work->arch.token = ~0; /* broadcast wakeup */ 7434 else 7435 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7436 7437 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7438 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7439 fault.vector = PF_VECTOR; 7440 fault.error_code_valid = true; 7441 fault.error_code = 0; 7442 fault.nested_page_fault = false; 7443 fault.address = work->arch.token; 7444 kvm_inject_page_fault(vcpu, &fault); 7445 } 7446 vcpu->arch.apf.halted = false; 7447 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7448 } 7449 7450 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7451 { 7452 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7453 return true; 7454 else 7455 return !kvm_event_needs_reinjection(vcpu) && 7456 kvm_x86_ops->interrupt_allowed(vcpu); 7457 } 7458 7459 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 7460 { 7461 atomic_inc(&kvm->arch.noncoherent_dma_count); 7462 } 7463 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 7464 7465 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 7466 { 7467 atomic_dec(&kvm->arch.noncoherent_dma_count); 7468 } 7469 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 7470 7471 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 7472 { 7473 return atomic_read(&kvm->arch.noncoherent_dma_count); 7474 } 7475 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 7476 7477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7490