1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 #include "smm.h" 34 35 #include <linux/clocksource.h> 36 #include <linux/interrupt.h> 37 #include <linux/kvm.h> 38 #include <linux/fs.h> 39 #include <linux/vmalloc.h> 40 #include <linux/export.h> 41 #include <linux/moduleparam.h> 42 #include <linux/mman.h> 43 #include <linux/highmem.h> 44 #include <linux/iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 91 struct kvm_caps kvm_caps __read_mostly = { 92 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 93 }; 94 EXPORT_SYMBOL_GPL(kvm_caps); 95 96 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 97 98 #define emul_to_vcpu(ctxt) \ 99 ((struct kvm_vcpu *)(ctxt)->vcpu) 100 101 /* EFER defaults: 102 * - enable syscall per default because its emulated by KVM 103 * - enable LME and LMA per default on 64 bit KVM 104 */ 105 #ifdef CONFIG_X86_64 106 static 107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 108 #else 109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 110 #endif 111 112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 113 114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 115 116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 117 118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 119 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 120 121 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 122 static void process_nmi(struct kvm_vcpu *vcpu); 123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 124 static void store_regs(struct kvm_vcpu *vcpu); 125 static int sync_regs(struct kvm_vcpu *vcpu); 126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 127 128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 131 struct kvm_x86_ops kvm_x86_ops __read_mostly; 132 133 #define KVM_X86_OP(func) \ 134 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 135 *(((struct kvm_x86_ops *)0)->func)); 136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 138 #include <asm/kvm-x86-ops.h> 139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 141 142 static bool __read_mostly ignore_msrs = 0; 143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 144 145 bool __read_mostly report_ignored_msrs = true; 146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 147 EXPORT_SYMBOL_GPL(report_ignored_msrs); 148 149 unsigned int min_timer_period_us = 200; 150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly kvmclock_periodic_sync = true; 153 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 154 155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 156 static u32 __read_mostly tsc_tolerance_ppm = 250; 157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 158 159 /* 160 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 161 * adaptive tuning starting from default advancement of 1000ns. '0' disables 162 * advancement entirely. Any other value is used as-is and disables adaptive 163 * tuning, i.e. allows privileged userspace to set an exact advancement time. 164 */ 165 static int __read_mostly lapic_timer_advance_ns = -1; 166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, S_IRUGO); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, S_IRUGO); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* 195 * Restoring the host value for MSRs that are only consumed when running in 196 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 197 * returns to userspace, i.e. the kernel can run with the guest's value. 198 */ 199 #define KVM_MAX_NR_USER_RETURN_MSRS 16 200 201 struct kvm_user_return_msrs { 202 struct user_return_notifier urn; 203 bool registered; 204 struct kvm_user_return_msr_values { 205 u64 host; 206 u64 curr; 207 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 208 }; 209 210 u32 __read_mostly kvm_nr_uret_msrs; 211 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 212 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 213 static struct kvm_user_return_msrs __percpu *user_return_msrs; 214 215 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 216 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 217 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 218 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 219 220 u64 __read_mostly host_efer; 221 EXPORT_SYMBOL_GPL(host_efer); 222 223 bool __read_mostly allow_smaller_maxphyaddr = 0; 224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 225 226 bool __read_mostly enable_apicv = true; 227 EXPORT_SYMBOL_GPL(enable_apicv); 228 229 u64 __read_mostly host_xss; 230 EXPORT_SYMBOL_GPL(host_xss); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 u64 __read_mostly host_xcr0; 306 307 static struct kmem_cache *x86_emulator_cache; 308 309 /* 310 * When called, it means the previous get/set msr reached an invalid msr. 311 * Return true if we want to ignore/silent this failed msr access. 312 */ 313 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 314 { 315 const char *op = write ? "wrmsr" : "rdmsr"; 316 317 if (ignore_msrs) { 318 if (report_ignored_msrs) 319 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 320 op, msr, data); 321 /* Mask the error */ 322 return true; 323 } else { 324 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 325 op, msr, data); 326 return false; 327 } 328 } 329 330 static struct kmem_cache *kvm_alloc_emulator_cache(void) 331 { 332 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 333 unsigned int size = sizeof(struct x86_emulate_ctxt); 334 335 return kmem_cache_create_usercopy("x86_emulator", size, 336 __alignof__(struct x86_emulate_ctxt), 337 SLAB_ACCOUNT, useroffset, 338 size - useroffset, NULL); 339 } 340 341 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 342 343 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 344 { 345 int i; 346 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 347 vcpu->arch.apf.gfns[i] = ~0; 348 } 349 350 static void kvm_on_user_return(struct user_return_notifier *urn) 351 { 352 unsigned slot; 353 struct kvm_user_return_msrs *msrs 354 = container_of(urn, struct kvm_user_return_msrs, urn); 355 struct kvm_user_return_msr_values *values; 356 unsigned long flags; 357 358 /* 359 * Disabling irqs at this point since the following code could be 360 * interrupted and executed through kvm_arch_hardware_disable() 361 */ 362 local_irq_save(flags); 363 if (msrs->registered) { 364 msrs->registered = false; 365 user_return_notifier_unregister(urn); 366 } 367 local_irq_restore(flags); 368 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 369 values = &msrs->values[slot]; 370 if (values->host != values->curr) { 371 wrmsrl(kvm_uret_msrs_list[slot], values->host); 372 values->curr = values->host; 373 } 374 } 375 } 376 377 static int kvm_probe_user_return_msr(u32 msr) 378 { 379 u64 val; 380 int ret; 381 382 preempt_disable(); 383 ret = rdmsrl_safe(msr, &val); 384 if (ret) 385 goto out; 386 ret = wrmsrl_safe(msr, val); 387 out: 388 preempt_enable(); 389 return ret; 390 } 391 392 int kvm_add_user_return_msr(u32 msr) 393 { 394 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 395 396 if (kvm_probe_user_return_msr(msr)) 397 return -1; 398 399 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 400 return kvm_nr_uret_msrs++; 401 } 402 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 403 404 int kvm_find_user_return_msr(u32 msr) 405 { 406 int i; 407 408 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 409 if (kvm_uret_msrs_list[i] == msr) 410 return i; 411 } 412 return -1; 413 } 414 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 415 416 static void kvm_user_return_msr_cpu_online(void) 417 { 418 unsigned int cpu = smp_processor_id(); 419 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 420 u64 value; 421 int i; 422 423 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 424 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 425 msrs->values[i].host = value; 426 msrs->values[i].curr = value; 427 } 428 } 429 430 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 431 { 432 unsigned int cpu = smp_processor_id(); 433 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 434 int err; 435 436 value = (value & mask) | (msrs->values[slot].host & ~mask); 437 if (value == msrs->values[slot].curr) 438 return 0; 439 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 440 if (err) 441 return 1; 442 443 msrs->values[slot].curr = value; 444 if (!msrs->registered) { 445 msrs->urn.on_user_return = kvm_on_user_return; 446 user_return_notifier_register(&msrs->urn); 447 msrs->registered = true; 448 } 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 452 453 static void drop_user_return_notifiers(void) 454 { 455 unsigned int cpu = smp_processor_id(); 456 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 457 458 if (msrs->registered) 459 kvm_on_user_return(&msrs->urn); 460 } 461 462 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 463 { 464 return vcpu->arch.apic_base; 465 } 466 467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 468 { 469 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 470 } 471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 472 473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 474 { 475 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 476 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 477 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 478 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 479 480 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 481 return 1; 482 if (!msr_info->host_initiated) { 483 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 484 return 1; 485 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 486 return 1; 487 } 488 489 kvm_lapic_set_base(vcpu, msr_info->data); 490 kvm_recalculate_apic_map(vcpu->kvm); 491 return 0; 492 } 493 494 /* 495 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 496 * 497 * Hardware virtualization extension instructions may fault if a reboot turns 498 * off virtualization while processes are running. Usually after catching the 499 * fault we just panic; during reboot instead the instruction is ignored. 500 */ 501 noinstr void kvm_spurious_fault(void) 502 { 503 /* Fault while not rebooting. We want the trace. */ 504 BUG_ON(!kvm_rebooting); 505 } 506 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 507 508 #define EXCPT_BENIGN 0 509 #define EXCPT_CONTRIBUTORY 1 510 #define EXCPT_PF 2 511 512 static int exception_class(int vector) 513 { 514 switch (vector) { 515 case PF_VECTOR: 516 return EXCPT_PF; 517 case DE_VECTOR: 518 case TS_VECTOR: 519 case NP_VECTOR: 520 case SS_VECTOR: 521 case GP_VECTOR: 522 return EXCPT_CONTRIBUTORY; 523 default: 524 break; 525 } 526 return EXCPT_BENIGN; 527 } 528 529 #define EXCPT_FAULT 0 530 #define EXCPT_TRAP 1 531 #define EXCPT_ABORT 2 532 #define EXCPT_INTERRUPT 3 533 #define EXCPT_DB 4 534 535 static int exception_type(int vector) 536 { 537 unsigned int mask; 538 539 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 540 return EXCPT_INTERRUPT; 541 542 mask = 1 << vector; 543 544 /* 545 * #DBs can be trap-like or fault-like, the caller must check other CPU 546 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 547 */ 548 if (mask & (1 << DB_VECTOR)) 549 return EXCPT_DB; 550 551 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 552 return EXCPT_TRAP; 553 554 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 555 return EXCPT_ABORT; 556 557 /* Reserved exceptions will result in fault */ 558 return EXCPT_FAULT; 559 } 560 561 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 562 struct kvm_queued_exception *ex) 563 { 564 if (!ex->has_payload) 565 return; 566 567 switch (ex->vector) { 568 case DB_VECTOR: 569 /* 570 * "Certain debug exceptions may clear bit 0-3. The 571 * remaining contents of the DR6 register are never 572 * cleared by the processor". 573 */ 574 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 575 /* 576 * In order to reflect the #DB exception payload in guest 577 * dr6, three components need to be considered: active low 578 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 579 * DR6_BS and DR6_BT) 580 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 581 * In the target guest dr6: 582 * FIXED_1 bits should always be set. 583 * Active low bits should be cleared if 1-setting in payload. 584 * Active high bits should be set if 1-setting in payload. 585 * 586 * Note, the payload is compatible with the pending debug 587 * exceptions/exit qualification under VMX, that active_low bits 588 * are active high in payload. 589 * So they need to be flipped for DR6. 590 */ 591 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 592 vcpu->arch.dr6 |= ex->payload; 593 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 594 595 /* 596 * The #DB payload is defined as compatible with the 'pending 597 * debug exceptions' field under VMX, not DR6. While bit 12 is 598 * defined in the 'pending debug exceptions' field (enabled 599 * breakpoint), it is reserved and must be zero in DR6. 600 */ 601 vcpu->arch.dr6 &= ~BIT(12); 602 break; 603 case PF_VECTOR: 604 vcpu->arch.cr2 = ex->payload; 605 break; 606 } 607 608 ex->has_payload = false; 609 ex->payload = 0; 610 } 611 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 612 613 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 614 bool has_error_code, u32 error_code, 615 bool has_payload, unsigned long payload) 616 { 617 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 618 619 ex->vector = vector; 620 ex->injected = false; 621 ex->pending = true; 622 ex->has_error_code = has_error_code; 623 ex->error_code = error_code; 624 ex->has_payload = has_payload; 625 ex->payload = payload; 626 } 627 628 /* Forcibly leave the nested mode in cases like a vCPU reset */ 629 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 630 { 631 kvm_x86_ops.nested_ops->leave_nested(vcpu); 632 } 633 634 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 635 unsigned nr, bool has_error, u32 error_code, 636 bool has_payload, unsigned long payload, bool reinject) 637 { 638 u32 prev_nr; 639 int class1, class2; 640 641 kvm_make_request(KVM_REQ_EVENT, vcpu); 642 643 /* 644 * If the exception is destined for L2 and isn't being reinjected, 645 * morph it to a VM-Exit if L1 wants to intercept the exception. A 646 * previously injected exception is not checked because it was checked 647 * when it was original queued, and re-checking is incorrect if _L1_ 648 * injected the exception, in which case it's exempt from interception. 649 */ 650 if (!reinject && is_guest_mode(vcpu) && 651 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 652 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 653 has_payload, payload); 654 return; 655 } 656 657 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 658 queue: 659 if (reinject) { 660 /* 661 * On VM-Entry, an exception can be pending if and only 662 * if event injection was blocked by nested_run_pending. 663 * In that case, however, vcpu_enter_guest() requests an 664 * immediate exit, and the guest shouldn't proceed far 665 * enough to need reinjection. 666 */ 667 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 668 vcpu->arch.exception.injected = true; 669 if (WARN_ON_ONCE(has_payload)) { 670 /* 671 * A reinjected event has already 672 * delivered its payload. 673 */ 674 has_payload = false; 675 payload = 0; 676 } 677 } else { 678 vcpu->arch.exception.pending = true; 679 vcpu->arch.exception.injected = false; 680 } 681 vcpu->arch.exception.has_error_code = has_error; 682 vcpu->arch.exception.vector = nr; 683 vcpu->arch.exception.error_code = error_code; 684 vcpu->arch.exception.has_payload = has_payload; 685 vcpu->arch.exception.payload = payload; 686 if (!is_guest_mode(vcpu)) 687 kvm_deliver_exception_payload(vcpu, 688 &vcpu->arch.exception); 689 return; 690 } 691 692 /* to check exception */ 693 prev_nr = vcpu->arch.exception.vector; 694 if (prev_nr == DF_VECTOR) { 695 /* triple fault -> shutdown */ 696 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 697 return; 698 } 699 class1 = exception_class(prev_nr); 700 class2 = exception_class(nr); 701 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 702 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 703 /* 704 * Synthesize #DF. Clear the previously injected or pending 705 * exception so as not to incorrectly trigger shutdown. 706 */ 707 vcpu->arch.exception.injected = false; 708 vcpu->arch.exception.pending = false; 709 710 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 711 } else { 712 /* replace previous exception with a new one in a hope 713 that instruction re-execution will regenerate lost 714 exception */ 715 goto queue; 716 } 717 } 718 719 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 720 { 721 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 722 } 723 EXPORT_SYMBOL_GPL(kvm_queue_exception); 724 725 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 726 { 727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 728 } 729 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 730 731 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 732 unsigned long payload) 733 { 734 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 735 } 736 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 737 738 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 739 u32 error_code, unsigned long payload) 740 { 741 kvm_multiple_exception(vcpu, nr, true, error_code, 742 true, payload, false); 743 } 744 745 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 746 { 747 if (err) 748 kvm_inject_gp(vcpu, 0); 749 else 750 return kvm_skip_emulated_instruction(vcpu); 751 752 return 1; 753 } 754 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 755 756 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 757 { 758 if (err) { 759 kvm_inject_gp(vcpu, 0); 760 return 1; 761 } 762 763 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 764 EMULTYPE_COMPLETE_USER_EXIT); 765 } 766 767 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 768 { 769 ++vcpu->stat.pf_guest; 770 771 /* 772 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 773 * whether or not L1 wants to intercept "regular" #PF. 774 */ 775 if (is_guest_mode(vcpu) && fault->async_page_fault) 776 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 777 true, fault->error_code, 778 true, fault->address); 779 else 780 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 781 fault->address); 782 } 783 784 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 785 struct x86_exception *fault) 786 { 787 struct kvm_mmu *fault_mmu; 788 WARN_ON_ONCE(fault->vector != PF_VECTOR); 789 790 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 791 vcpu->arch.walk_mmu; 792 793 /* 794 * Invalidate the TLB entry for the faulting address, if it exists, 795 * else the access will fault indefinitely (and to emulate hardware). 796 */ 797 if ((fault->error_code & PFERR_PRESENT_MASK) && 798 !(fault->error_code & PFERR_RSVD_MASK)) 799 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 800 fault_mmu->root.hpa); 801 802 fault_mmu->inject_page_fault(vcpu, fault); 803 } 804 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 805 806 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 807 { 808 atomic_inc(&vcpu->arch.nmi_queued); 809 kvm_make_request(KVM_REQ_NMI, vcpu); 810 } 811 812 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 813 { 814 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 815 } 816 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 817 818 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 819 { 820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 821 } 822 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 823 824 /* 825 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 826 * a #GP and return false. 827 */ 828 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 829 { 830 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 831 return true; 832 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 833 return false; 834 } 835 836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837 { 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843 } 844 EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847 { 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849 } 850 851 /* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855 { 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == INVALID_GPA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898 } 899 EXPORT_SYMBOL_GPL(load_pdptrs); 900 901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902 { 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922 } 923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926 { 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931 #ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934 #endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944 #ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955 #endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974 { 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976 } 977 EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980 { 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005 { 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032 #ifdef CONFIG_X86_64 1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1034 { 1035 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1036 } 1037 #endif 1038 1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1040 { 1041 u64 xcr0 = xcr; 1042 u64 old_xcr0 = vcpu->arch.xcr0; 1043 u64 valid_bits; 1044 1045 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1046 if (index != XCR_XFEATURE_ENABLED_MASK) 1047 return 1; 1048 if (!(xcr0 & XFEATURE_MASK_FP)) 1049 return 1; 1050 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1051 return 1; 1052 1053 /* 1054 * Do not allow the guest to set bits that we do not support 1055 * saving. However, xcr0 bit 0 is always set, even if the 1056 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1057 */ 1058 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1059 if (xcr0 & ~valid_bits) 1060 return 1; 1061 1062 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1063 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1064 return 1; 1065 1066 if (xcr0 & XFEATURE_MASK_AVX512) { 1067 if (!(xcr0 & XFEATURE_MASK_YMM)) 1068 return 1; 1069 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1070 return 1; 1071 } 1072 1073 if ((xcr0 & XFEATURE_MASK_XTILE) && 1074 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1075 return 1; 1076 1077 vcpu->arch.xcr0 = xcr0; 1078 1079 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1080 kvm_update_cpuid_runtime(vcpu); 1081 return 0; 1082 } 1083 1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1085 { 1086 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return true; 1106 } 1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1108 1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1110 { 1111 return __kvm_is_valid_cr4(vcpu, cr4) && 1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1113 } 1114 1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1116 { 1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1118 kvm_mmu_reset_context(vcpu); 1119 1120 /* 1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1122 * according to the SDM; however, stale prev_roots could be reused 1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1126 * so fall through. 1127 */ 1128 if (!tdp_enabled && 1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1130 kvm_mmu_unload(vcpu); 1131 1132 /* 1133 * The TLB has to be flushed for all PCIDs if any of the following 1134 * (architecturally required) changes happen: 1135 * - CR4.PCIDE is changed from 1 to 0 1136 * - CR4.PGE is toggled 1137 * 1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1139 */ 1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1143 1144 /* 1145 * The TLB has to be flushed for the current PCID if any of the 1146 * following (architecturally required) changes happen: 1147 * - CR4.SMEP is changed from 0 to 1 1148 * - CR4.PAE is toggled 1149 */ 1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1153 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1156 1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1158 { 1159 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1160 1161 if (!kvm_is_valid_cr4(vcpu, cr4)) 1162 return 1; 1163 1164 if (is_long_mode(vcpu)) { 1165 if (!(cr4 & X86_CR4_PAE)) 1166 return 1; 1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1168 return 1; 1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1172 return 1; 1173 1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1176 return 1; 1177 1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1180 return 1; 1181 } 1182 1183 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1184 1185 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1190 1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1192 { 1193 struct kvm_mmu *mmu = vcpu->arch.mmu; 1194 unsigned long roots_to_free = 0; 1195 int i; 1196 1197 /* 1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1200 * also via the emulator. KVM's TDP page tables are not in the scope of 1201 * the invalidation, but the guest's TLB entries need to be flushed as 1202 * the CPU may have cached entries in its TLB for the target PCID. 1203 */ 1204 if (unlikely(tdp_enabled)) { 1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1206 return; 1207 } 1208 1209 /* 1210 * If neither the current CR3 nor any of the prev_roots use the given 1211 * PCID, then nothing needs to be done here because a resync will 1212 * happen anyway before switching to any other CR3. 1213 */ 1214 if (kvm_get_active_pcid(vcpu) == pcid) { 1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1217 } 1218 1219 /* 1220 * If PCID is disabled, there is no need to free prev_roots even if the 1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1222 * with PCIDE=0. 1223 */ 1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1225 return; 1226 1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1230 1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1232 } 1233 1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1235 { 1236 bool skip_tlb_flush = false; 1237 unsigned long pcid = 0; 1238 #ifdef CONFIG_X86_64 1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1240 1241 if (pcid_enabled) { 1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1243 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1244 pcid = cr3 & X86_CR3_PCID_MASK; 1245 } 1246 #endif 1247 1248 /* PDPTRs are always reloaded for PAE paging. */ 1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1250 goto handle_tlb_flush; 1251 1252 /* 1253 * Do not condition the GPA check on long mode, this helper is used to 1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1255 * the current vCPU mode is accurate. 1256 */ 1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1258 return 1; 1259 1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1261 return 1; 1262 1263 if (cr3 != kvm_read_cr3(vcpu)) 1264 kvm_mmu_new_pgd(vcpu, cr3); 1265 1266 vcpu->arch.cr3 = cr3; 1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1269 1270 handle_tlb_flush: 1271 /* 1272 * A load of CR3 that flushes the TLB flushes only the current PCID, 1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1274 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1275 * and it's impossible to use a non-zero PCID when PCID is disabled, 1276 * i.e. only PCID=0 can be relevant. 1277 */ 1278 if (!skip_tlb_flush) 1279 kvm_invalidate_pcid(vcpu, pcid); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1284 1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1286 { 1287 if (cr8 & CR8_RESERVED_BITS) 1288 return 1; 1289 if (lapic_in_kernel(vcpu)) 1290 kvm_lapic_set_tpr(vcpu, cr8); 1291 else 1292 vcpu->arch.cr8 = cr8; 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1296 1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1298 { 1299 if (lapic_in_kernel(vcpu)) 1300 return kvm_lapic_get_cr8(vcpu); 1301 else 1302 return vcpu->arch.cr8; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1305 1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1307 { 1308 int i; 1309 1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1311 for (i = 0; i < KVM_NR_DB_REGS; i++) 1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1313 } 1314 } 1315 1316 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1317 { 1318 unsigned long dr7; 1319 1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1321 dr7 = vcpu->arch.guest_debug_dr7; 1322 else 1323 dr7 = vcpu->arch.dr7; 1324 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1326 if (dr7 & DR7_BP_EN_MASK) 1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1330 1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1332 { 1333 u64 fixed = DR6_FIXED_1; 1334 1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1336 fixed |= DR6_RTM; 1337 1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1339 fixed |= DR6_BUS_LOCK; 1340 return fixed; 1341 } 1342 1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1344 { 1345 size_t size = ARRAY_SIZE(vcpu->arch.db); 1346 1347 switch (dr) { 1348 case 0 ... 3: 1349 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1351 vcpu->arch.eff_db[dr] = val; 1352 break; 1353 case 4: 1354 case 6: 1355 if (!kvm_dr6_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1358 break; 1359 case 5: 1360 default: /* 7 */ 1361 if (!kvm_dr7_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1364 kvm_update_dr7(vcpu); 1365 break; 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_set_dr); 1371 1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1373 { 1374 size_t size = ARRAY_SIZE(vcpu->arch.db); 1375 1376 switch (dr) { 1377 case 0 ... 3: 1378 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1379 break; 1380 case 4: 1381 case 6: 1382 *val = vcpu->arch.dr6; 1383 break; 1384 case 5: 1385 default: /* 7 */ 1386 *val = vcpu->arch.dr7; 1387 break; 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_get_dr); 1391 1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1393 { 1394 u32 ecx = kvm_rcx_read(vcpu); 1395 u64 data; 1396 1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1398 kvm_inject_gp(vcpu, 0); 1399 return 1; 1400 } 1401 1402 kvm_rax_write(vcpu, (u32)data); 1403 kvm_rdx_write(vcpu, data >> 32); 1404 return kvm_skip_emulated_instruction(vcpu); 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1407 1408 /* 1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1411 * 1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1413 * extract the supported MSRs from the related const lists. 1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1415 * capabilities of the host cpu. This capabilities test skips MSRs that are 1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1417 * may depend on host virtualization features rather than host cpu features. 1418 */ 1419 1420 static const u32 msrs_to_save_all[] = { 1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1422 MSR_STAR, 1423 #ifdef CONFIG_X86_64 1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1425 #endif 1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1428 MSR_IA32_SPEC_CTRL, 1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1435 MSR_IA32_UMWAIT_CONTROL, 1436 1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1441 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1442 1443 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1444 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1448 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1452 1453 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1454 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1455 1456 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1457 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1458 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1459 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1460 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1461 1462 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1463 }; 1464 1465 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1466 static unsigned num_msrs_to_save; 1467 1468 static const u32 emulated_msrs_all[] = { 1469 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1470 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1471 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1472 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1473 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1474 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1475 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1476 HV_X64_MSR_RESET, 1477 HV_X64_MSR_VP_INDEX, 1478 HV_X64_MSR_VP_RUNTIME, 1479 HV_X64_MSR_SCONTROL, 1480 HV_X64_MSR_STIMER0_CONFIG, 1481 HV_X64_MSR_VP_ASSIST_PAGE, 1482 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1483 HV_X64_MSR_TSC_EMULATION_STATUS, 1484 HV_X64_MSR_SYNDBG_OPTIONS, 1485 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1486 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1487 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1488 1489 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1490 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1491 1492 MSR_IA32_TSC_ADJUST, 1493 MSR_IA32_TSC_DEADLINE, 1494 MSR_IA32_ARCH_CAPABILITIES, 1495 MSR_IA32_PERF_CAPABILITIES, 1496 MSR_IA32_MISC_ENABLE, 1497 MSR_IA32_MCG_STATUS, 1498 MSR_IA32_MCG_CTL, 1499 MSR_IA32_MCG_EXT_CTL, 1500 MSR_IA32_SMBASE, 1501 MSR_SMI_COUNT, 1502 MSR_PLATFORM_INFO, 1503 MSR_MISC_FEATURES_ENABLES, 1504 MSR_AMD64_VIRT_SPEC_CTRL, 1505 MSR_AMD64_TSC_RATIO, 1506 MSR_IA32_POWER_CTL, 1507 MSR_IA32_UCODE_REV, 1508 1509 /* 1510 * The following list leaves out MSRs whose values are determined 1511 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1512 * We always support the "true" VMX control MSRs, even if the host 1513 * processor does not, so I am putting these registers here rather 1514 * than in msrs_to_save_all. 1515 */ 1516 MSR_IA32_VMX_BASIC, 1517 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1518 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1519 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1520 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1521 MSR_IA32_VMX_MISC, 1522 MSR_IA32_VMX_CR0_FIXED0, 1523 MSR_IA32_VMX_CR4_FIXED0, 1524 MSR_IA32_VMX_VMCS_ENUM, 1525 MSR_IA32_VMX_PROCBASED_CTLS2, 1526 MSR_IA32_VMX_EPT_VPID_CAP, 1527 MSR_IA32_VMX_VMFUNC, 1528 1529 MSR_K7_HWCR, 1530 MSR_KVM_POLL_CONTROL, 1531 }; 1532 1533 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1534 static unsigned num_emulated_msrs; 1535 1536 /* 1537 * List of msr numbers which are used to expose MSR-based features that 1538 * can be used by a hypervisor to validate requested CPU features. 1539 */ 1540 static const u32 msr_based_features_all[] = { 1541 MSR_IA32_VMX_BASIC, 1542 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1543 MSR_IA32_VMX_PINBASED_CTLS, 1544 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1545 MSR_IA32_VMX_PROCBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1547 MSR_IA32_VMX_EXIT_CTLS, 1548 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1549 MSR_IA32_VMX_ENTRY_CTLS, 1550 MSR_IA32_VMX_MISC, 1551 MSR_IA32_VMX_CR0_FIXED0, 1552 MSR_IA32_VMX_CR0_FIXED1, 1553 MSR_IA32_VMX_CR4_FIXED0, 1554 MSR_IA32_VMX_CR4_FIXED1, 1555 MSR_IA32_VMX_VMCS_ENUM, 1556 MSR_IA32_VMX_PROCBASED_CTLS2, 1557 MSR_IA32_VMX_EPT_VPID_CAP, 1558 MSR_IA32_VMX_VMFUNC, 1559 1560 MSR_AMD64_DE_CFG, 1561 MSR_IA32_UCODE_REV, 1562 MSR_IA32_ARCH_CAPABILITIES, 1563 MSR_IA32_PERF_CAPABILITIES, 1564 }; 1565 1566 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1567 static unsigned int num_msr_based_features; 1568 1569 /* 1570 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1571 * does not yet virtualize. These include: 1572 * 10 - MISC_PACKAGE_CTRLS 1573 * 11 - ENERGY_FILTERING_CTL 1574 * 12 - DOITM 1575 * 18 - FB_CLEAR_CTRL 1576 * 21 - XAPIC_DISABLE_STATUS 1577 * 23 - OVERCLOCKING_STATUS 1578 */ 1579 1580 #define KVM_SUPPORTED_ARCH_CAP \ 1581 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1582 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1583 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1584 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1585 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1586 1587 static u64 kvm_get_arch_capabilities(void) 1588 { 1589 u64 data = 0; 1590 1591 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1592 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1593 data &= KVM_SUPPORTED_ARCH_CAP; 1594 } 1595 1596 /* 1597 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1598 * the nested hypervisor runs with NX huge pages. If it is not, 1599 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1600 * L1 guests, so it need not worry about its own (L2) guests. 1601 */ 1602 data |= ARCH_CAP_PSCHANGE_MC_NO; 1603 1604 /* 1605 * If we're doing cache flushes (either "always" or "cond") 1606 * we will do one whenever the guest does a vmlaunch/vmresume. 1607 * If an outer hypervisor is doing the cache flush for us 1608 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1609 * capability to the guest too, and if EPT is disabled we're not 1610 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1611 * require a nested hypervisor to do a flush of its own. 1612 */ 1613 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1614 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1615 1616 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1617 data |= ARCH_CAP_RDCL_NO; 1618 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1619 data |= ARCH_CAP_SSB_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1621 data |= ARCH_CAP_MDS_NO; 1622 1623 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1624 /* 1625 * If RTM=0 because the kernel has disabled TSX, the host might 1626 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1627 * and therefore knows that there cannot be TAA) but keep 1628 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1629 * and we want to allow migrating those guests to tsx=off hosts. 1630 */ 1631 data &= ~ARCH_CAP_TAA_NO; 1632 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1633 data |= ARCH_CAP_TAA_NO; 1634 } else { 1635 /* 1636 * Nothing to do here; we emulate TSX_CTRL if present on the 1637 * host so the guest can choose between disabling TSX or 1638 * using VERW to clear CPU buffers. 1639 */ 1640 } 1641 1642 return data; 1643 } 1644 1645 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1646 { 1647 switch (msr->index) { 1648 case MSR_IA32_ARCH_CAPABILITIES: 1649 msr->data = kvm_get_arch_capabilities(); 1650 break; 1651 case MSR_IA32_PERF_CAPABILITIES: 1652 msr->data = kvm_caps.supported_perf_cap; 1653 break; 1654 case MSR_IA32_UCODE_REV: 1655 rdmsrl_safe(msr->index, &msr->data); 1656 break; 1657 default: 1658 return static_call(kvm_x86_get_msr_feature)(msr); 1659 } 1660 return 0; 1661 } 1662 1663 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1664 { 1665 struct kvm_msr_entry msr; 1666 int r; 1667 1668 msr.index = index; 1669 r = kvm_get_msr_feature(&msr); 1670 1671 if (r == KVM_MSR_RET_INVALID) { 1672 /* Unconditionally clear the output for simplicity */ 1673 *data = 0; 1674 if (kvm_msr_ignored_check(index, 0, false)) 1675 r = 0; 1676 } 1677 1678 if (r) 1679 return r; 1680 1681 *data = msr.data; 1682 1683 return 0; 1684 } 1685 1686 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1687 { 1688 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1689 return false; 1690 1691 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1692 return false; 1693 1694 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1695 return false; 1696 1697 if (efer & (EFER_LME | EFER_LMA) && 1698 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1699 return false; 1700 1701 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1702 return false; 1703 1704 return true; 1705 1706 } 1707 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1708 { 1709 if (efer & efer_reserved_bits) 1710 return false; 1711 1712 return __kvm_valid_efer(vcpu, efer); 1713 } 1714 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1715 1716 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1717 { 1718 u64 old_efer = vcpu->arch.efer; 1719 u64 efer = msr_info->data; 1720 int r; 1721 1722 if (efer & efer_reserved_bits) 1723 return 1; 1724 1725 if (!msr_info->host_initiated) { 1726 if (!__kvm_valid_efer(vcpu, efer)) 1727 return 1; 1728 1729 if (is_paging(vcpu) && 1730 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1731 return 1; 1732 } 1733 1734 efer &= ~EFER_LMA; 1735 efer |= vcpu->arch.efer & EFER_LMA; 1736 1737 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1738 if (r) { 1739 WARN_ON(r > 0); 1740 return r; 1741 } 1742 1743 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1744 kvm_mmu_reset_context(vcpu); 1745 1746 return 0; 1747 } 1748 1749 void kvm_enable_efer_bits(u64 mask) 1750 { 1751 efer_reserved_bits &= ~mask; 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1754 1755 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1756 { 1757 struct kvm_x86_msr_filter *msr_filter; 1758 struct msr_bitmap_range *ranges; 1759 struct kvm *kvm = vcpu->kvm; 1760 bool allowed; 1761 int idx; 1762 u32 i; 1763 1764 /* x2APIC MSRs do not support filtering. */ 1765 if (index >= 0x800 && index <= 0x8ff) 1766 return true; 1767 1768 idx = srcu_read_lock(&kvm->srcu); 1769 1770 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1771 if (!msr_filter) { 1772 allowed = true; 1773 goto out; 1774 } 1775 1776 allowed = msr_filter->default_allow; 1777 ranges = msr_filter->ranges; 1778 1779 for (i = 0; i < msr_filter->count; i++) { 1780 u32 start = ranges[i].base; 1781 u32 end = start + ranges[i].nmsrs; 1782 u32 flags = ranges[i].flags; 1783 unsigned long *bitmap = ranges[i].bitmap; 1784 1785 if ((index >= start) && (index < end) && (flags & type)) { 1786 allowed = !!test_bit(index - start, bitmap); 1787 break; 1788 } 1789 } 1790 1791 out: 1792 srcu_read_unlock(&kvm->srcu, idx); 1793 1794 return allowed; 1795 } 1796 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1797 1798 /* 1799 * Write @data into the MSR specified by @index. Select MSR specific fault 1800 * checks are bypassed if @host_initiated is %true. 1801 * Returns 0 on success, non-0 otherwise. 1802 * Assumes vcpu_load() was already called. 1803 */ 1804 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1805 bool host_initiated) 1806 { 1807 struct msr_data msr; 1808 1809 switch (index) { 1810 case MSR_FS_BASE: 1811 case MSR_GS_BASE: 1812 case MSR_KERNEL_GS_BASE: 1813 case MSR_CSTAR: 1814 case MSR_LSTAR: 1815 if (is_noncanonical_address(data, vcpu)) 1816 return 1; 1817 break; 1818 case MSR_IA32_SYSENTER_EIP: 1819 case MSR_IA32_SYSENTER_ESP: 1820 /* 1821 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1822 * non-canonical address is written on Intel but not on 1823 * AMD (which ignores the top 32-bits, because it does 1824 * not implement 64-bit SYSENTER). 1825 * 1826 * 64-bit code should hence be able to write a non-canonical 1827 * value on AMD. Making the address canonical ensures that 1828 * vmentry does not fail on Intel after writing a non-canonical 1829 * value, and that something deterministic happens if the guest 1830 * invokes 64-bit SYSENTER. 1831 */ 1832 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1833 break; 1834 case MSR_TSC_AUX: 1835 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1836 return 1; 1837 1838 if (!host_initiated && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1840 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1841 return 1; 1842 1843 /* 1844 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1845 * incomplete and conflicting architectural behavior. Current 1846 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1847 * reserved and always read as zeros. Enforce Intel's reserved 1848 * bits check if and only if the guest CPU is Intel, and clear 1849 * the bits in all other cases. This ensures cross-vendor 1850 * migration will provide consistent behavior for the guest. 1851 */ 1852 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1853 return 1; 1854 1855 data = (u32)data; 1856 break; 1857 } 1858 1859 msr.data = data; 1860 msr.index = index; 1861 msr.host_initiated = host_initiated; 1862 1863 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1864 } 1865 1866 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1867 u32 index, u64 data, bool host_initiated) 1868 { 1869 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1870 1871 if (ret == KVM_MSR_RET_INVALID) 1872 if (kvm_msr_ignored_check(index, data, true)) 1873 ret = 0; 1874 1875 return ret; 1876 } 1877 1878 /* 1879 * Read the MSR specified by @index into @data. Select MSR specific fault 1880 * checks are bypassed if @host_initiated is %true. 1881 * Returns 0 on success, non-0 otherwise. 1882 * Assumes vcpu_load() was already called. 1883 */ 1884 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1885 bool host_initiated) 1886 { 1887 struct msr_data msr; 1888 int ret; 1889 1890 switch (index) { 1891 case MSR_TSC_AUX: 1892 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1893 return 1; 1894 1895 if (!host_initiated && 1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1897 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1898 return 1; 1899 break; 1900 } 1901 1902 msr.index = index; 1903 msr.host_initiated = host_initiated; 1904 1905 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1906 if (!ret) 1907 *data = msr.data; 1908 return ret; 1909 } 1910 1911 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1912 u32 index, u64 *data, bool host_initiated) 1913 { 1914 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1915 1916 if (ret == KVM_MSR_RET_INVALID) { 1917 /* Unconditionally clear *data for simplicity */ 1918 *data = 0; 1919 if (kvm_msr_ignored_check(index, 0, false)) 1920 ret = 0; 1921 } 1922 1923 return ret; 1924 } 1925 1926 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1927 { 1928 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1929 return KVM_MSR_RET_FILTERED; 1930 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1931 } 1932 1933 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1934 { 1935 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1936 return KVM_MSR_RET_FILTERED; 1937 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1938 } 1939 1940 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1941 { 1942 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1943 } 1944 EXPORT_SYMBOL_GPL(kvm_get_msr); 1945 1946 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1947 { 1948 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1949 } 1950 EXPORT_SYMBOL_GPL(kvm_set_msr); 1951 1952 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1953 { 1954 if (!vcpu->run->msr.error) { 1955 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1956 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1957 } 1958 } 1959 1960 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1961 { 1962 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1963 } 1964 1965 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1966 { 1967 complete_userspace_rdmsr(vcpu); 1968 return complete_emulated_msr_access(vcpu); 1969 } 1970 1971 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1972 { 1973 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1974 } 1975 1976 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1977 { 1978 complete_userspace_rdmsr(vcpu); 1979 return complete_fast_msr_access(vcpu); 1980 } 1981 1982 static u64 kvm_msr_reason(int r) 1983 { 1984 switch (r) { 1985 case KVM_MSR_RET_INVALID: 1986 return KVM_MSR_EXIT_REASON_UNKNOWN; 1987 case KVM_MSR_RET_FILTERED: 1988 return KVM_MSR_EXIT_REASON_FILTER; 1989 default: 1990 return KVM_MSR_EXIT_REASON_INVAL; 1991 } 1992 } 1993 1994 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1995 u32 exit_reason, u64 data, 1996 int (*completion)(struct kvm_vcpu *vcpu), 1997 int r) 1998 { 1999 u64 msr_reason = kvm_msr_reason(r); 2000 2001 /* Check if the user wanted to know about this MSR fault */ 2002 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2003 return 0; 2004 2005 vcpu->run->exit_reason = exit_reason; 2006 vcpu->run->msr.error = 0; 2007 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2008 vcpu->run->msr.reason = msr_reason; 2009 vcpu->run->msr.index = index; 2010 vcpu->run->msr.data = data; 2011 vcpu->arch.complete_userspace_io = completion; 2012 2013 return 1; 2014 } 2015 2016 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2017 { 2018 u32 ecx = kvm_rcx_read(vcpu); 2019 u64 data; 2020 int r; 2021 2022 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2023 2024 if (!r) { 2025 trace_kvm_msr_read(ecx, data); 2026 2027 kvm_rax_write(vcpu, data & -1u); 2028 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2029 } else { 2030 /* MSR read failed? See if we should ask user space */ 2031 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2032 complete_fast_rdmsr, r)) 2033 return 0; 2034 trace_kvm_msr_read_ex(ecx); 2035 } 2036 2037 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2038 } 2039 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2040 2041 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2042 { 2043 u32 ecx = kvm_rcx_read(vcpu); 2044 u64 data = kvm_read_edx_eax(vcpu); 2045 int r; 2046 2047 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2048 2049 if (!r) { 2050 trace_kvm_msr_write(ecx, data); 2051 } else { 2052 /* MSR write failed? See if we should ask user space */ 2053 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2054 complete_fast_msr_access, r)) 2055 return 0; 2056 /* Signal all other negative errors to userspace */ 2057 if (r < 0) 2058 return r; 2059 trace_kvm_msr_write_ex(ecx, data); 2060 } 2061 2062 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2063 } 2064 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2065 2066 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2067 { 2068 return kvm_skip_emulated_instruction(vcpu); 2069 } 2070 2071 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2072 { 2073 /* Treat an INVD instruction as a NOP and just skip it. */ 2074 return kvm_emulate_as_nop(vcpu); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2077 2078 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2079 { 2080 kvm_queue_exception(vcpu, UD_VECTOR); 2081 return 1; 2082 } 2083 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2084 2085 2086 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2087 { 2088 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2089 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2090 return kvm_handle_invalid_op(vcpu); 2091 2092 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2093 return kvm_emulate_as_nop(vcpu); 2094 } 2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2096 { 2097 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2098 } 2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2100 2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2102 { 2103 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2106 2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2108 { 2109 xfer_to_guest_mode_prepare(); 2110 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2111 xfer_to_guest_mode_work_pending(); 2112 } 2113 2114 /* 2115 * The fast path for frequent and performance sensitive wrmsr emulation, 2116 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2117 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2118 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2119 * other cases which must be called after interrupts are enabled on the host. 2120 */ 2121 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2122 { 2123 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2124 return 1; 2125 2126 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2127 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2128 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2129 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2130 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2131 2132 return 1; 2133 } 2134 2135 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2136 { 2137 if (!kvm_can_use_hv_timer(vcpu)) 2138 return 1; 2139 2140 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2141 return 0; 2142 } 2143 2144 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2145 { 2146 u32 msr = kvm_rcx_read(vcpu); 2147 u64 data; 2148 fastpath_t ret = EXIT_FASTPATH_NONE; 2149 2150 switch (msr) { 2151 case APIC_BASE_MSR + (APIC_ICR >> 4): 2152 data = kvm_read_edx_eax(vcpu); 2153 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2154 kvm_skip_emulated_instruction(vcpu); 2155 ret = EXIT_FASTPATH_EXIT_HANDLED; 2156 } 2157 break; 2158 case MSR_IA32_TSC_DEADLINE: 2159 data = kvm_read_edx_eax(vcpu); 2160 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2161 kvm_skip_emulated_instruction(vcpu); 2162 ret = EXIT_FASTPATH_REENTER_GUEST; 2163 } 2164 break; 2165 default: 2166 break; 2167 } 2168 2169 if (ret != EXIT_FASTPATH_NONE) 2170 trace_kvm_msr_write(msr, data); 2171 2172 return ret; 2173 } 2174 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2175 2176 /* 2177 * Adapt set_msr() to msr_io()'s calling convention 2178 */ 2179 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2180 { 2181 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2182 } 2183 2184 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2185 { 2186 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2187 } 2188 2189 #ifdef CONFIG_X86_64 2190 struct pvclock_clock { 2191 int vclock_mode; 2192 u64 cycle_last; 2193 u64 mask; 2194 u32 mult; 2195 u32 shift; 2196 u64 base_cycles; 2197 u64 offset; 2198 }; 2199 2200 struct pvclock_gtod_data { 2201 seqcount_t seq; 2202 2203 struct pvclock_clock clock; /* extract of a clocksource struct */ 2204 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2205 2206 ktime_t offs_boot; 2207 u64 wall_time_sec; 2208 }; 2209 2210 static struct pvclock_gtod_data pvclock_gtod_data; 2211 2212 static void update_pvclock_gtod(struct timekeeper *tk) 2213 { 2214 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2215 2216 write_seqcount_begin(&vdata->seq); 2217 2218 /* copy pvclock gtod data */ 2219 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2220 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2221 vdata->clock.mask = tk->tkr_mono.mask; 2222 vdata->clock.mult = tk->tkr_mono.mult; 2223 vdata->clock.shift = tk->tkr_mono.shift; 2224 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2225 vdata->clock.offset = tk->tkr_mono.base; 2226 2227 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2228 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2229 vdata->raw_clock.mask = tk->tkr_raw.mask; 2230 vdata->raw_clock.mult = tk->tkr_raw.mult; 2231 vdata->raw_clock.shift = tk->tkr_raw.shift; 2232 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2233 vdata->raw_clock.offset = tk->tkr_raw.base; 2234 2235 vdata->wall_time_sec = tk->xtime_sec; 2236 2237 vdata->offs_boot = tk->offs_boot; 2238 2239 write_seqcount_end(&vdata->seq); 2240 } 2241 2242 static s64 get_kvmclock_base_ns(void) 2243 { 2244 /* Count up from boot time, but with the frequency of the raw clock. */ 2245 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2246 } 2247 #else 2248 static s64 get_kvmclock_base_ns(void) 2249 { 2250 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2251 return ktime_get_boottime_ns(); 2252 } 2253 #endif 2254 2255 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2256 { 2257 int version; 2258 int r; 2259 struct pvclock_wall_clock wc; 2260 u32 wc_sec_hi; 2261 u64 wall_nsec; 2262 2263 if (!wall_clock) 2264 return; 2265 2266 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2267 if (r) 2268 return; 2269 2270 if (version & 1) 2271 ++version; /* first time write, random junk */ 2272 2273 ++version; 2274 2275 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2276 return; 2277 2278 /* 2279 * The guest calculates current wall clock time by adding 2280 * system time (updated by kvm_guest_time_update below) to the 2281 * wall clock specified here. We do the reverse here. 2282 */ 2283 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2284 2285 wc.nsec = do_div(wall_nsec, 1000000000); 2286 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2287 wc.version = version; 2288 2289 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2290 2291 if (sec_hi_ofs) { 2292 wc_sec_hi = wall_nsec >> 32; 2293 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2294 &wc_sec_hi, sizeof(wc_sec_hi)); 2295 } 2296 2297 version++; 2298 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2299 } 2300 2301 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2302 bool old_msr, bool host_initiated) 2303 { 2304 struct kvm_arch *ka = &vcpu->kvm->arch; 2305 2306 if (vcpu->vcpu_id == 0 && !host_initiated) { 2307 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2308 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2309 2310 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2311 } 2312 2313 vcpu->arch.time = system_time; 2314 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2315 2316 /* we verify if the enable bit is set... */ 2317 if (system_time & 1) 2318 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2319 sizeof(struct pvclock_vcpu_time_info)); 2320 else 2321 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2322 2323 return; 2324 } 2325 2326 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2327 { 2328 do_shl32_div32(dividend, divisor); 2329 return dividend; 2330 } 2331 2332 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2333 s8 *pshift, u32 *pmultiplier) 2334 { 2335 uint64_t scaled64; 2336 int32_t shift = 0; 2337 uint64_t tps64; 2338 uint32_t tps32; 2339 2340 tps64 = base_hz; 2341 scaled64 = scaled_hz; 2342 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2343 tps64 >>= 1; 2344 shift--; 2345 } 2346 2347 tps32 = (uint32_t)tps64; 2348 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2349 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2350 scaled64 >>= 1; 2351 else 2352 tps32 <<= 1; 2353 shift++; 2354 } 2355 2356 *pshift = shift; 2357 *pmultiplier = div_frac(scaled64, tps32); 2358 } 2359 2360 #ifdef CONFIG_X86_64 2361 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2362 #endif 2363 2364 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2365 static unsigned long max_tsc_khz; 2366 2367 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2368 { 2369 u64 v = (u64)khz * (1000000 + ppm); 2370 do_div(v, 1000000); 2371 return v; 2372 } 2373 2374 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2375 2376 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2377 { 2378 u64 ratio; 2379 2380 /* Guest TSC same frequency as host TSC? */ 2381 if (!scale) { 2382 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2383 return 0; 2384 } 2385 2386 /* TSC scaling supported? */ 2387 if (!kvm_caps.has_tsc_control) { 2388 if (user_tsc_khz > tsc_khz) { 2389 vcpu->arch.tsc_catchup = 1; 2390 vcpu->arch.tsc_always_catchup = 1; 2391 return 0; 2392 } else { 2393 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2394 return -1; 2395 } 2396 } 2397 2398 /* TSC scaling required - calculate ratio */ 2399 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2400 user_tsc_khz, tsc_khz); 2401 2402 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2403 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2404 user_tsc_khz); 2405 return -1; 2406 } 2407 2408 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2409 return 0; 2410 } 2411 2412 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2413 { 2414 u32 thresh_lo, thresh_hi; 2415 int use_scaling = 0; 2416 2417 /* tsc_khz can be zero if TSC calibration fails */ 2418 if (user_tsc_khz == 0) { 2419 /* set tsc_scaling_ratio to a safe value */ 2420 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2421 return -1; 2422 } 2423 2424 /* Compute a scale to convert nanoseconds in TSC cycles */ 2425 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2426 &vcpu->arch.virtual_tsc_shift, 2427 &vcpu->arch.virtual_tsc_mult); 2428 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2429 2430 /* 2431 * Compute the variation in TSC rate which is acceptable 2432 * within the range of tolerance and decide if the 2433 * rate being applied is within that bounds of the hardware 2434 * rate. If so, no scaling or compensation need be done. 2435 */ 2436 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2437 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2438 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2439 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2440 use_scaling = 1; 2441 } 2442 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2443 } 2444 2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2446 { 2447 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2448 vcpu->arch.virtual_tsc_mult, 2449 vcpu->arch.virtual_tsc_shift); 2450 tsc += vcpu->arch.this_tsc_write; 2451 return tsc; 2452 } 2453 2454 #ifdef CONFIG_X86_64 2455 static inline int gtod_is_based_on_tsc(int mode) 2456 { 2457 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2458 } 2459 #endif 2460 2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2462 { 2463 #ifdef CONFIG_X86_64 2464 bool vcpus_matched; 2465 struct kvm_arch *ka = &vcpu->kvm->arch; 2466 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2467 2468 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2469 atomic_read(&vcpu->kvm->online_vcpus)); 2470 2471 /* 2472 * Once the masterclock is enabled, always perform request in 2473 * order to update it. 2474 * 2475 * In order to enable masterclock, the host clocksource must be TSC 2476 * and the vcpus need to have matched TSCs. When that happens, 2477 * perform request to enable masterclock. 2478 */ 2479 if (ka->use_master_clock || 2480 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2481 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2482 2483 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2484 atomic_read(&vcpu->kvm->online_vcpus), 2485 ka->use_master_clock, gtod->clock.vclock_mode); 2486 #endif 2487 } 2488 2489 /* 2490 * Multiply tsc by a fixed point number represented by ratio. 2491 * 2492 * The most significant 64-N bits (mult) of ratio represent the 2493 * integral part of the fixed point number; the remaining N bits 2494 * (frac) represent the fractional part, ie. ratio represents a fixed 2495 * point number (mult + frac * 2^(-N)). 2496 * 2497 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2498 */ 2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2500 { 2501 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2502 } 2503 2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2505 { 2506 u64 _tsc = tsc; 2507 2508 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2509 _tsc = __scale_tsc(ratio, tsc); 2510 2511 return _tsc; 2512 } 2513 2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2515 { 2516 u64 tsc; 2517 2518 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2519 2520 return target_tsc - tsc; 2521 } 2522 2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2524 { 2525 return vcpu->arch.l1_tsc_offset + 2526 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2527 } 2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2529 2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2531 { 2532 u64 nested_offset; 2533 2534 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2535 nested_offset = l1_offset; 2536 else 2537 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2538 kvm_caps.tsc_scaling_ratio_frac_bits); 2539 2540 nested_offset += l2_offset; 2541 return nested_offset; 2542 } 2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2544 2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2546 { 2547 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2548 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2549 kvm_caps.tsc_scaling_ratio_frac_bits); 2550 2551 return l1_multiplier; 2552 } 2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2554 2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2556 { 2557 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2558 vcpu->arch.l1_tsc_offset, 2559 l1_offset); 2560 2561 vcpu->arch.l1_tsc_offset = l1_offset; 2562 2563 /* 2564 * If we are here because L1 chose not to trap WRMSR to TSC then 2565 * according to the spec this should set L1's TSC (as opposed to 2566 * setting L1's offset for L2). 2567 */ 2568 if (is_guest_mode(vcpu)) 2569 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2570 l1_offset, 2571 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2572 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2573 else 2574 vcpu->arch.tsc_offset = l1_offset; 2575 2576 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2577 } 2578 2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2580 { 2581 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2582 2583 /* Userspace is changing the multiplier while L2 is active */ 2584 if (is_guest_mode(vcpu)) 2585 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2586 l1_multiplier, 2587 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2588 else 2589 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2590 2591 if (kvm_caps.has_tsc_control) 2592 static_call(kvm_x86_write_tsc_multiplier)( 2593 vcpu, vcpu->arch.tsc_scaling_ratio); 2594 } 2595 2596 static inline bool kvm_check_tsc_unstable(void) 2597 { 2598 #ifdef CONFIG_X86_64 2599 /* 2600 * TSC is marked unstable when we're running on Hyper-V, 2601 * 'TSC page' clocksource is good. 2602 */ 2603 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2604 return false; 2605 #endif 2606 return check_tsc_unstable(); 2607 } 2608 2609 /* 2610 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2611 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2612 * participates in. 2613 */ 2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2615 u64 ns, bool matched) 2616 { 2617 struct kvm *kvm = vcpu->kvm; 2618 2619 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2620 2621 /* 2622 * We also track th most recent recorded KHZ, write and time to 2623 * allow the matching interval to be extended at each write. 2624 */ 2625 kvm->arch.last_tsc_nsec = ns; 2626 kvm->arch.last_tsc_write = tsc; 2627 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2628 kvm->arch.last_tsc_offset = offset; 2629 2630 vcpu->arch.last_guest_tsc = tsc; 2631 2632 kvm_vcpu_write_tsc_offset(vcpu, offset); 2633 2634 if (!matched) { 2635 /* 2636 * We split periods of matched TSC writes into generations. 2637 * For each generation, we track the original measured 2638 * nanosecond time, offset, and write, so if TSCs are in 2639 * sync, we can match exact offset, and if not, we can match 2640 * exact software computation in compute_guest_tsc() 2641 * 2642 * These values are tracked in kvm->arch.cur_xxx variables. 2643 */ 2644 kvm->arch.cur_tsc_generation++; 2645 kvm->arch.cur_tsc_nsec = ns; 2646 kvm->arch.cur_tsc_write = tsc; 2647 kvm->arch.cur_tsc_offset = offset; 2648 kvm->arch.nr_vcpus_matched_tsc = 0; 2649 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2650 kvm->arch.nr_vcpus_matched_tsc++; 2651 } 2652 2653 /* Keep track of which generation this VCPU has synchronized to */ 2654 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2655 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2656 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2657 2658 kvm_track_tsc_matching(vcpu); 2659 } 2660 2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2662 { 2663 struct kvm *kvm = vcpu->kvm; 2664 u64 offset, ns, elapsed; 2665 unsigned long flags; 2666 bool matched = false; 2667 bool synchronizing = false; 2668 2669 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2670 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2671 ns = get_kvmclock_base_ns(); 2672 elapsed = ns - kvm->arch.last_tsc_nsec; 2673 2674 if (vcpu->arch.virtual_tsc_khz) { 2675 if (data == 0) { 2676 /* 2677 * detection of vcpu initialization -- need to sync 2678 * with other vCPUs. This particularly helps to keep 2679 * kvm_clock stable after CPU hotplug 2680 */ 2681 synchronizing = true; 2682 } else { 2683 u64 tsc_exp = kvm->arch.last_tsc_write + 2684 nsec_to_cycles(vcpu, elapsed); 2685 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2686 /* 2687 * Special case: TSC write with a small delta (1 second) 2688 * of virtual cycle time against real time is 2689 * interpreted as an attempt to synchronize the CPU. 2690 */ 2691 synchronizing = data < tsc_exp + tsc_hz && 2692 data + tsc_hz > tsc_exp; 2693 } 2694 } 2695 2696 /* 2697 * For a reliable TSC, we can match TSC offsets, and for an unstable 2698 * TSC, we add elapsed time in this computation. We could let the 2699 * compensation code attempt to catch up if we fall behind, but 2700 * it's better to try to match offsets from the beginning. 2701 */ 2702 if (synchronizing && 2703 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2704 if (!kvm_check_tsc_unstable()) { 2705 offset = kvm->arch.cur_tsc_offset; 2706 } else { 2707 u64 delta = nsec_to_cycles(vcpu, elapsed); 2708 data += delta; 2709 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2710 } 2711 matched = true; 2712 } 2713 2714 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2715 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2716 } 2717 2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2719 s64 adjustment) 2720 { 2721 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2722 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2723 } 2724 2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2726 { 2727 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2728 WARN_ON(adjustment < 0); 2729 adjustment = kvm_scale_tsc((u64) adjustment, 2730 vcpu->arch.l1_tsc_scaling_ratio); 2731 adjust_tsc_offset_guest(vcpu, adjustment); 2732 } 2733 2734 #ifdef CONFIG_X86_64 2735 2736 static u64 read_tsc(void) 2737 { 2738 u64 ret = (u64)rdtsc_ordered(); 2739 u64 last = pvclock_gtod_data.clock.cycle_last; 2740 2741 if (likely(ret >= last)) 2742 return ret; 2743 2744 /* 2745 * GCC likes to generate cmov here, but this branch is extremely 2746 * predictable (it's just a function of time and the likely is 2747 * very likely) and there's a data dependence, so force GCC 2748 * to generate a branch instead. I don't barrier() because 2749 * we don't actually need a barrier, and if this function 2750 * ever gets inlined it will generate worse code. 2751 */ 2752 asm volatile (""); 2753 return last; 2754 } 2755 2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2757 int *mode) 2758 { 2759 long v; 2760 u64 tsc_pg_val; 2761 2762 switch (clock->vclock_mode) { 2763 case VDSO_CLOCKMODE_HVCLOCK: 2764 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2765 tsc_timestamp); 2766 if (tsc_pg_val != U64_MAX) { 2767 /* TSC page valid */ 2768 *mode = VDSO_CLOCKMODE_HVCLOCK; 2769 v = (tsc_pg_val - clock->cycle_last) & 2770 clock->mask; 2771 } else { 2772 /* TSC page invalid */ 2773 *mode = VDSO_CLOCKMODE_NONE; 2774 } 2775 break; 2776 case VDSO_CLOCKMODE_TSC: 2777 *mode = VDSO_CLOCKMODE_TSC; 2778 *tsc_timestamp = read_tsc(); 2779 v = (*tsc_timestamp - clock->cycle_last) & 2780 clock->mask; 2781 break; 2782 default: 2783 *mode = VDSO_CLOCKMODE_NONE; 2784 } 2785 2786 if (*mode == VDSO_CLOCKMODE_NONE) 2787 *tsc_timestamp = v = 0; 2788 2789 return v * clock->mult; 2790 } 2791 2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2793 { 2794 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2795 unsigned long seq; 2796 int mode; 2797 u64 ns; 2798 2799 do { 2800 seq = read_seqcount_begin(>od->seq); 2801 ns = gtod->raw_clock.base_cycles; 2802 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2803 ns >>= gtod->raw_clock.shift; 2804 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2805 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2806 *t = ns; 2807 2808 return mode; 2809 } 2810 2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2812 { 2813 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2814 unsigned long seq; 2815 int mode; 2816 u64 ns; 2817 2818 do { 2819 seq = read_seqcount_begin(>od->seq); 2820 ts->tv_sec = gtod->wall_time_sec; 2821 ns = gtod->clock.base_cycles; 2822 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2823 ns >>= gtod->clock.shift; 2824 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2825 2826 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2827 ts->tv_nsec = ns; 2828 2829 return mode; 2830 } 2831 2832 /* returns true if host is using TSC based clocksource */ 2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2834 { 2835 /* checked again under seqlock below */ 2836 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2837 return false; 2838 2839 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2840 tsc_timestamp)); 2841 } 2842 2843 /* returns true if host is using TSC based clocksource */ 2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2845 u64 *tsc_timestamp) 2846 { 2847 /* checked again under seqlock below */ 2848 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2849 return false; 2850 2851 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2852 } 2853 #endif 2854 2855 /* 2856 * 2857 * Assuming a stable TSC across physical CPUS, and a stable TSC 2858 * across virtual CPUs, the following condition is possible. 2859 * Each numbered line represents an event visible to both 2860 * CPUs at the next numbered event. 2861 * 2862 * "timespecX" represents host monotonic time. "tscX" represents 2863 * RDTSC value. 2864 * 2865 * VCPU0 on CPU0 | VCPU1 on CPU1 2866 * 2867 * 1. read timespec0,tsc0 2868 * 2. | timespec1 = timespec0 + N 2869 * | tsc1 = tsc0 + M 2870 * 3. transition to guest | transition to guest 2871 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2872 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2873 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2874 * 2875 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2876 * 2877 * - ret0 < ret1 2878 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2879 * ... 2880 * - 0 < N - M => M < N 2881 * 2882 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2883 * always the case (the difference between two distinct xtime instances 2884 * might be smaller then the difference between corresponding TSC reads, 2885 * when updating guest vcpus pvclock areas). 2886 * 2887 * To avoid that problem, do not allow visibility of distinct 2888 * system_timestamp/tsc_timestamp values simultaneously: use a master 2889 * copy of host monotonic time values. Update that master copy 2890 * in lockstep. 2891 * 2892 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2893 * 2894 */ 2895 2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2897 { 2898 #ifdef CONFIG_X86_64 2899 struct kvm_arch *ka = &kvm->arch; 2900 int vclock_mode; 2901 bool host_tsc_clocksource, vcpus_matched; 2902 2903 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2904 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2905 atomic_read(&kvm->online_vcpus)); 2906 2907 /* 2908 * If the host uses TSC clock, then passthrough TSC as stable 2909 * to the guest. 2910 */ 2911 host_tsc_clocksource = kvm_get_time_and_clockread( 2912 &ka->master_kernel_ns, 2913 &ka->master_cycle_now); 2914 2915 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2916 && !ka->backwards_tsc_observed 2917 && !ka->boot_vcpu_runs_old_kvmclock; 2918 2919 if (ka->use_master_clock) 2920 atomic_set(&kvm_guest_has_master_clock, 1); 2921 2922 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2923 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2924 vcpus_matched); 2925 #endif 2926 } 2927 2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2929 { 2930 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2931 } 2932 2933 static void __kvm_start_pvclock_update(struct kvm *kvm) 2934 { 2935 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2936 write_seqcount_begin(&kvm->arch.pvclock_sc); 2937 } 2938 2939 static void kvm_start_pvclock_update(struct kvm *kvm) 2940 { 2941 kvm_make_mclock_inprogress_request(kvm); 2942 2943 /* no guest entries from this point */ 2944 __kvm_start_pvclock_update(kvm); 2945 } 2946 2947 static void kvm_end_pvclock_update(struct kvm *kvm) 2948 { 2949 struct kvm_arch *ka = &kvm->arch; 2950 struct kvm_vcpu *vcpu; 2951 unsigned long i; 2952 2953 write_seqcount_end(&ka->pvclock_sc); 2954 raw_spin_unlock_irq(&ka->tsc_write_lock); 2955 kvm_for_each_vcpu(i, vcpu, kvm) 2956 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2957 2958 /* guest entries allowed */ 2959 kvm_for_each_vcpu(i, vcpu, kvm) 2960 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2961 } 2962 2963 static void kvm_update_masterclock(struct kvm *kvm) 2964 { 2965 kvm_hv_request_tsc_page_update(kvm); 2966 kvm_start_pvclock_update(kvm); 2967 pvclock_update_vm_gtod_copy(kvm); 2968 kvm_end_pvclock_update(kvm); 2969 } 2970 2971 /* 2972 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2973 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2974 * can change during boot even if the TSC is constant, as it's possible for KVM 2975 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2976 * notification when calibration completes, but practically speaking calibration 2977 * will complete before userspace is alive enough to create VMs. 2978 */ 2979 static unsigned long get_cpu_tsc_khz(void) 2980 { 2981 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2982 return tsc_khz; 2983 else 2984 return __this_cpu_read(cpu_tsc_khz); 2985 } 2986 2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2989 { 2990 struct kvm_arch *ka = &kvm->arch; 2991 struct pvclock_vcpu_time_info hv_clock; 2992 2993 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2994 get_cpu(); 2995 2996 data->flags = 0; 2997 if (ka->use_master_clock && 2998 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 2999 #ifdef CONFIG_X86_64 3000 struct timespec64 ts; 3001 3002 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3003 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3004 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3005 } else 3006 #endif 3007 data->host_tsc = rdtsc(); 3008 3009 data->flags |= KVM_CLOCK_TSC_STABLE; 3010 hv_clock.tsc_timestamp = ka->master_cycle_now; 3011 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3012 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3013 &hv_clock.tsc_shift, 3014 &hv_clock.tsc_to_system_mul); 3015 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3016 } else { 3017 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3018 } 3019 3020 put_cpu(); 3021 } 3022 3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3024 { 3025 struct kvm_arch *ka = &kvm->arch; 3026 unsigned seq; 3027 3028 do { 3029 seq = read_seqcount_begin(&ka->pvclock_sc); 3030 __get_kvmclock(kvm, data); 3031 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3032 } 3033 3034 u64 get_kvmclock_ns(struct kvm *kvm) 3035 { 3036 struct kvm_clock_data data; 3037 3038 get_kvmclock(kvm, &data); 3039 return data.clock; 3040 } 3041 3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3043 struct gfn_to_pfn_cache *gpc, 3044 unsigned int offset) 3045 { 3046 struct kvm_vcpu_arch *vcpu = &v->arch; 3047 struct pvclock_vcpu_time_info *guest_hv_clock; 3048 unsigned long flags; 3049 3050 read_lock_irqsave(&gpc->lock, flags); 3051 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3052 read_unlock_irqrestore(&gpc->lock, flags); 3053 3054 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3055 return; 3056 3057 read_lock_irqsave(&gpc->lock, flags); 3058 } 3059 3060 guest_hv_clock = (void *)(gpc->khva + offset); 3061 3062 /* 3063 * This VCPU is paused, but it's legal for a guest to read another 3064 * VCPU's kvmclock, so we really have to follow the specification where 3065 * it says that version is odd if data is being modified, and even after 3066 * it is consistent. 3067 */ 3068 3069 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3070 smp_wmb(); 3071 3072 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3073 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3074 3075 if (vcpu->pvclock_set_guest_stopped_request) { 3076 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3077 vcpu->pvclock_set_guest_stopped_request = false; 3078 } 3079 3080 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3081 smp_wmb(); 3082 3083 guest_hv_clock->version = ++vcpu->hv_clock.version; 3084 3085 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3086 read_unlock_irqrestore(&gpc->lock, flags); 3087 3088 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3089 } 3090 3091 static int kvm_guest_time_update(struct kvm_vcpu *v) 3092 { 3093 unsigned long flags, tgt_tsc_khz; 3094 unsigned seq; 3095 struct kvm_vcpu_arch *vcpu = &v->arch; 3096 struct kvm_arch *ka = &v->kvm->arch; 3097 s64 kernel_ns; 3098 u64 tsc_timestamp, host_tsc; 3099 u8 pvclock_flags; 3100 bool use_master_clock; 3101 3102 kernel_ns = 0; 3103 host_tsc = 0; 3104 3105 /* 3106 * If the host uses TSC clock, then passthrough TSC as stable 3107 * to the guest. 3108 */ 3109 do { 3110 seq = read_seqcount_begin(&ka->pvclock_sc); 3111 use_master_clock = ka->use_master_clock; 3112 if (use_master_clock) { 3113 host_tsc = ka->master_cycle_now; 3114 kernel_ns = ka->master_kernel_ns; 3115 } 3116 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3117 3118 /* Keep irq disabled to prevent changes to the clock */ 3119 local_irq_save(flags); 3120 tgt_tsc_khz = get_cpu_tsc_khz(); 3121 if (unlikely(tgt_tsc_khz == 0)) { 3122 local_irq_restore(flags); 3123 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3124 return 1; 3125 } 3126 if (!use_master_clock) { 3127 host_tsc = rdtsc(); 3128 kernel_ns = get_kvmclock_base_ns(); 3129 } 3130 3131 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3132 3133 /* 3134 * We may have to catch up the TSC to match elapsed wall clock 3135 * time for two reasons, even if kvmclock is used. 3136 * 1) CPU could have been running below the maximum TSC rate 3137 * 2) Broken TSC compensation resets the base at each VCPU 3138 * entry to avoid unknown leaps of TSC even when running 3139 * again on the same CPU. This may cause apparent elapsed 3140 * time to disappear, and the guest to stand still or run 3141 * very slowly. 3142 */ 3143 if (vcpu->tsc_catchup) { 3144 u64 tsc = compute_guest_tsc(v, kernel_ns); 3145 if (tsc > tsc_timestamp) { 3146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3147 tsc_timestamp = tsc; 3148 } 3149 } 3150 3151 local_irq_restore(flags); 3152 3153 /* With all the info we got, fill in the values */ 3154 3155 if (kvm_caps.has_tsc_control) 3156 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3157 v->arch.l1_tsc_scaling_ratio); 3158 3159 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3160 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3161 &vcpu->hv_clock.tsc_shift, 3162 &vcpu->hv_clock.tsc_to_system_mul); 3163 vcpu->hw_tsc_khz = tgt_tsc_khz; 3164 } 3165 3166 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3167 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3168 vcpu->last_guest_tsc = tsc_timestamp; 3169 3170 /* If the host uses TSC clocksource, then it is stable */ 3171 pvclock_flags = 0; 3172 if (use_master_clock) 3173 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3174 3175 vcpu->hv_clock.flags = pvclock_flags; 3176 3177 if (vcpu->pv_time.active) 3178 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3179 if (vcpu->xen.vcpu_info_cache.active) 3180 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3181 offsetof(struct compat_vcpu_info, time)); 3182 if (vcpu->xen.vcpu_time_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3184 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3185 return 0; 3186 } 3187 3188 /* 3189 * kvmclock updates which are isolated to a given vcpu, such as 3190 * vcpu->cpu migration, should not allow system_timestamp from 3191 * the rest of the vcpus to remain static. Otherwise ntp frequency 3192 * correction applies to one vcpu's system_timestamp but not 3193 * the others. 3194 * 3195 * So in those cases, request a kvmclock update for all vcpus. 3196 * We need to rate-limit these requests though, as they can 3197 * considerably slow guests that have a large number of vcpus. 3198 * The time for a remote vcpu to update its kvmclock is bound 3199 * by the delay we use to rate-limit the updates. 3200 */ 3201 3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3203 3204 static void kvmclock_update_fn(struct work_struct *work) 3205 { 3206 unsigned long i; 3207 struct delayed_work *dwork = to_delayed_work(work); 3208 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3209 kvmclock_update_work); 3210 struct kvm *kvm = container_of(ka, struct kvm, arch); 3211 struct kvm_vcpu *vcpu; 3212 3213 kvm_for_each_vcpu(i, vcpu, kvm) { 3214 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3215 kvm_vcpu_kick(vcpu); 3216 } 3217 } 3218 3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3220 { 3221 struct kvm *kvm = v->kvm; 3222 3223 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3224 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3225 KVMCLOCK_UPDATE_DELAY); 3226 } 3227 3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3229 3230 static void kvmclock_sync_fn(struct work_struct *work) 3231 { 3232 struct delayed_work *dwork = to_delayed_work(work); 3233 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3234 kvmclock_sync_work); 3235 struct kvm *kvm = container_of(ka, struct kvm, arch); 3236 3237 if (!kvmclock_periodic_sync) 3238 return; 3239 3240 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3241 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3242 KVMCLOCK_SYNC_PERIOD); 3243 } 3244 3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3246 static bool is_mci_control_msr(u32 msr) 3247 { 3248 return (msr & 3) == 0; 3249 } 3250 static bool is_mci_status_msr(u32 msr) 3251 { 3252 return (msr & 3) == 1; 3253 } 3254 3255 /* 3256 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3257 */ 3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3259 { 3260 /* McStatusWrEn enabled? */ 3261 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3262 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3263 3264 return false; 3265 } 3266 3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3268 { 3269 u64 mcg_cap = vcpu->arch.mcg_cap; 3270 unsigned bank_num = mcg_cap & 0xff; 3271 u32 msr = msr_info->index; 3272 u64 data = msr_info->data; 3273 u32 offset, last_msr; 3274 3275 switch (msr) { 3276 case MSR_IA32_MCG_STATUS: 3277 vcpu->arch.mcg_status = data; 3278 break; 3279 case MSR_IA32_MCG_CTL: 3280 if (!(mcg_cap & MCG_CTL_P) && 3281 (data || !msr_info->host_initiated)) 3282 return 1; 3283 if (data != 0 && data != ~(u64)0) 3284 return 1; 3285 vcpu->arch.mcg_ctl = data; 3286 break; 3287 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3288 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3289 if (msr > last_msr) 3290 return 1; 3291 3292 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3293 return 1; 3294 /* An attempt to write a 1 to a reserved bit raises #GP */ 3295 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3296 return 1; 3297 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3298 last_msr + 1 - MSR_IA32_MC0_CTL2); 3299 vcpu->arch.mci_ctl2_banks[offset] = data; 3300 break; 3301 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3302 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3303 if (msr > last_msr) 3304 return 1; 3305 3306 /* 3307 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3308 * values are architecturally undefined. But, some Linux 3309 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3310 * issue on AMD K8s, allow bit 10 to be clear when setting all 3311 * other bits in order to avoid an uncaught #GP in the guest. 3312 * 3313 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3314 * single-bit ECC data errors. 3315 */ 3316 if (is_mci_control_msr(msr) && 3317 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3318 return 1; 3319 3320 /* 3321 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3322 * AMD-based CPUs allow non-zero values, but if and only if 3323 * HWCR[McStatusWrEn] is set. 3324 */ 3325 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3326 data != 0 && !can_set_mci_status(vcpu)) 3327 return 1; 3328 3329 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3330 last_msr + 1 - MSR_IA32_MC0_CTL); 3331 vcpu->arch.mce_banks[offset] = data; 3332 break; 3333 default: 3334 return 1; 3335 } 3336 return 0; 3337 } 3338 3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3340 { 3341 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3342 3343 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3344 } 3345 3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3347 { 3348 gpa_t gpa = data & ~0x3f; 3349 3350 /* Bits 4:5 are reserved, Should be zero */ 3351 if (data & 0x30) 3352 return 1; 3353 3354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3355 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3356 return 1; 3357 3358 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3359 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3360 return 1; 3361 3362 if (!lapic_in_kernel(vcpu)) 3363 return data ? 1 : 0; 3364 3365 vcpu->arch.apf.msr_en_val = data; 3366 3367 if (!kvm_pv_async_pf_enabled(vcpu)) { 3368 kvm_clear_async_pf_completion_queue(vcpu); 3369 kvm_async_pf_hash_reset(vcpu); 3370 return 0; 3371 } 3372 3373 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3374 sizeof(u64))) 3375 return 1; 3376 3377 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3378 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3379 3380 kvm_async_pf_wakeup_all(vcpu); 3381 3382 return 0; 3383 } 3384 3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3386 { 3387 /* Bits 8-63 are reserved */ 3388 if (data >> 8) 3389 return 1; 3390 3391 if (!lapic_in_kernel(vcpu)) 3392 return 1; 3393 3394 vcpu->arch.apf.msr_int_val = data; 3395 3396 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3397 3398 return 0; 3399 } 3400 3401 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3402 { 3403 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3404 vcpu->arch.time = 0; 3405 } 3406 3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3408 { 3409 ++vcpu->stat.tlb_flush; 3410 static_call(kvm_x86_flush_tlb_all)(vcpu); 3411 3412 /* Flushing all ASIDs flushes the current ASID... */ 3413 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3414 } 3415 3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3417 { 3418 ++vcpu->stat.tlb_flush; 3419 3420 if (!tdp_enabled) { 3421 /* 3422 * A TLB flush on behalf of the guest is equivalent to 3423 * INVPCID(all), toggling CR4.PGE, etc., which requires 3424 * a forced sync of the shadow page tables. Ensure all the 3425 * roots are synced and the guest TLB in hardware is clean. 3426 */ 3427 kvm_mmu_sync_roots(vcpu); 3428 kvm_mmu_sync_prev_roots(vcpu); 3429 } 3430 3431 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3432 3433 /* 3434 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3435 * grained flushing. 3436 */ 3437 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3438 } 3439 3440 3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3442 { 3443 ++vcpu->stat.tlb_flush; 3444 static_call(kvm_x86_flush_tlb_current)(vcpu); 3445 } 3446 3447 /* 3448 * Service "local" TLB flush requests, which are specific to the current MMU 3449 * context. In addition to the generic event handling in vcpu_enter_guest(), 3450 * TLB flushes that are targeted at an MMU context also need to be serviced 3451 * prior before nested VM-Enter/VM-Exit. 3452 */ 3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3454 { 3455 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3456 kvm_vcpu_flush_tlb_current(vcpu); 3457 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3459 kvm_vcpu_flush_tlb_guest(vcpu); 3460 } 3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3462 3463 static void record_steal_time(struct kvm_vcpu *vcpu) 3464 { 3465 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3466 struct kvm_steal_time __user *st; 3467 struct kvm_memslots *slots; 3468 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3469 u64 steal; 3470 u32 version; 3471 3472 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3473 kvm_xen_runstate_set_running(vcpu); 3474 return; 3475 } 3476 3477 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3478 return; 3479 3480 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3481 return; 3482 3483 slots = kvm_memslots(vcpu->kvm); 3484 3485 if (unlikely(slots->generation != ghc->generation || 3486 gpa != ghc->gpa || 3487 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3488 /* We rely on the fact that it fits in a single page. */ 3489 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3490 3491 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3492 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3493 return; 3494 } 3495 3496 st = (struct kvm_steal_time __user *)ghc->hva; 3497 /* 3498 * Doing a TLB flush here, on the guest's behalf, can avoid 3499 * expensive IPIs. 3500 */ 3501 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3502 u8 st_preempted = 0; 3503 int err = -EFAULT; 3504 3505 if (!user_access_begin(st, sizeof(*st))) 3506 return; 3507 3508 asm volatile("1: xchgb %0, %2\n" 3509 "xor %1, %1\n" 3510 "2:\n" 3511 _ASM_EXTABLE_UA(1b, 2b) 3512 : "+q" (st_preempted), 3513 "+&r" (err), 3514 "+m" (st->preempted)); 3515 if (err) 3516 goto out; 3517 3518 user_access_end(); 3519 3520 vcpu->arch.st.preempted = 0; 3521 3522 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3523 st_preempted & KVM_VCPU_FLUSH_TLB); 3524 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3525 kvm_vcpu_flush_tlb_guest(vcpu); 3526 3527 if (!user_access_begin(st, sizeof(*st))) 3528 goto dirty; 3529 } else { 3530 if (!user_access_begin(st, sizeof(*st))) 3531 return; 3532 3533 unsafe_put_user(0, &st->preempted, out); 3534 vcpu->arch.st.preempted = 0; 3535 } 3536 3537 unsafe_get_user(version, &st->version, out); 3538 if (version & 1) 3539 version += 1; /* first time write, random junk */ 3540 3541 version += 1; 3542 unsafe_put_user(version, &st->version, out); 3543 3544 smp_wmb(); 3545 3546 unsafe_get_user(steal, &st->steal, out); 3547 steal += current->sched_info.run_delay - 3548 vcpu->arch.st.last_steal; 3549 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3550 unsafe_put_user(steal, &st->steal, out); 3551 3552 version += 1; 3553 unsafe_put_user(version, &st->version, out); 3554 3555 out: 3556 user_access_end(); 3557 dirty: 3558 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3559 } 3560 3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3562 { 3563 bool pr = false; 3564 u32 msr = msr_info->index; 3565 u64 data = msr_info->data; 3566 3567 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3568 return kvm_xen_write_hypercall_page(vcpu, data); 3569 3570 switch (msr) { 3571 case MSR_AMD64_NB_CFG: 3572 case MSR_IA32_UCODE_WRITE: 3573 case MSR_VM_HSAVE_PA: 3574 case MSR_AMD64_PATCH_LOADER: 3575 case MSR_AMD64_BU_CFG2: 3576 case MSR_AMD64_DC_CFG: 3577 case MSR_F15H_EX_CFG: 3578 break; 3579 3580 case MSR_IA32_UCODE_REV: 3581 if (msr_info->host_initiated) 3582 vcpu->arch.microcode_version = data; 3583 break; 3584 case MSR_IA32_ARCH_CAPABILITIES: 3585 if (!msr_info->host_initiated) 3586 return 1; 3587 vcpu->arch.arch_capabilities = data; 3588 break; 3589 case MSR_IA32_PERF_CAPABILITIES: 3590 if (!msr_info->host_initiated) 3591 return 1; 3592 if (data & ~kvm_caps.supported_perf_cap) 3593 return 1; 3594 3595 vcpu->arch.perf_capabilities = data; 3596 kvm_pmu_refresh(vcpu); 3597 return 0; 3598 case MSR_EFER: 3599 return set_efer(vcpu, msr_info); 3600 case MSR_K7_HWCR: 3601 data &= ~(u64)0x40; /* ignore flush filter disable */ 3602 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3603 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3604 3605 /* Handle McStatusWrEn */ 3606 if (data == BIT_ULL(18)) { 3607 vcpu->arch.msr_hwcr = data; 3608 } else if (data != 0) { 3609 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3610 data); 3611 return 1; 3612 } 3613 break; 3614 case MSR_FAM10H_MMIO_CONF_BASE: 3615 if (data != 0) { 3616 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3617 "0x%llx\n", data); 3618 return 1; 3619 } 3620 break; 3621 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3622 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3623 return kvm_mtrr_set_msr(vcpu, msr, data); 3624 case MSR_IA32_APICBASE: 3625 return kvm_set_apic_base(vcpu, msr_info); 3626 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3627 return kvm_x2apic_msr_write(vcpu, msr, data); 3628 case MSR_IA32_TSC_DEADLINE: 3629 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3630 break; 3631 case MSR_IA32_TSC_ADJUST: 3632 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3633 if (!msr_info->host_initiated) { 3634 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3635 adjust_tsc_offset_guest(vcpu, adj); 3636 /* Before back to guest, tsc_timestamp must be adjusted 3637 * as well, otherwise guest's percpu pvclock time could jump. 3638 */ 3639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3640 } 3641 vcpu->arch.ia32_tsc_adjust_msr = data; 3642 } 3643 break; 3644 case MSR_IA32_MISC_ENABLE: { 3645 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3646 3647 if (!msr_info->host_initiated) { 3648 /* RO bits */ 3649 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3650 return 1; 3651 3652 /* R bits, i.e. writes are ignored, but don't fault. */ 3653 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3654 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3655 } 3656 3657 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3658 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3659 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3660 return 1; 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 kvm_update_cpuid_runtime(vcpu); 3663 } else { 3664 vcpu->arch.ia32_misc_enable_msr = data; 3665 } 3666 break; 3667 } 3668 case MSR_IA32_SMBASE: 3669 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3670 return 1; 3671 vcpu->arch.smbase = data; 3672 break; 3673 case MSR_IA32_POWER_CTL: 3674 vcpu->arch.msr_ia32_power_ctl = data; 3675 break; 3676 case MSR_IA32_TSC: 3677 if (msr_info->host_initiated) { 3678 kvm_synchronize_tsc(vcpu, data); 3679 } else { 3680 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3681 adjust_tsc_offset_guest(vcpu, adj); 3682 vcpu->arch.ia32_tsc_adjust_msr += adj; 3683 } 3684 break; 3685 case MSR_IA32_XSS: 3686 if (!msr_info->host_initiated && 3687 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3688 return 1; 3689 /* 3690 * KVM supports exposing PT to the guest, but does not support 3691 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3692 * XSAVES/XRSTORS to save/restore PT MSRs. 3693 */ 3694 if (data & ~kvm_caps.supported_xss) 3695 return 1; 3696 vcpu->arch.ia32_xss = data; 3697 kvm_update_cpuid_runtime(vcpu); 3698 break; 3699 case MSR_SMI_COUNT: 3700 if (!msr_info->host_initiated) 3701 return 1; 3702 vcpu->arch.smi_count = data; 3703 break; 3704 case MSR_KVM_WALL_CLOCK_NEW: 3705 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3706 return 1; 3707 3708 vcpu->kvm->arch.wall_clock = data; 3709 kvm_write_wall_clock(vcpu->kvm, data, 0); 3710 break; 3711 case MSR_KVM_WALL_CLOCK: 3712 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3713 return 1; 3714 3715 vcpu->kvm->arch.wall_clock = data; 3716 kvm_write_wall_clock(vcpu->kvm, data, 0); 3717 break; 3718 case MSR_KVM_SYSTEM_TIME_NEW: 3719 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3720 return 1; 3721 3722 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3723 break; 3724 case MSR_KVM_SYSTEM_TIME: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3726 return 1; 3727 3728 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3729 break; 3730 case MSR_KVM_ASYNC_PF_EN: 3731 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3732 return 1; 3733 3734 if (kvm_pv_enable_async_pf(vcpu, data)) 3735 return 1; 3736 break; 3737 case MSR_KVM_ASYNC_PF_INT: 3738 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3739 return 1; 3740 3741 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3742 return 1; 3743 break; 3744 case MSR_KVM_ASYNC_PF_ACK: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3746 return 1; 3747 if (data & 0x1) { 3748 vcpu->arch.apf.pageready_pending = false; 3749 kvm_check_async_pf_completion(vcpu); 3750 } 3751 break; 3752 case MSR_KVM_STEAL_TIME: 3753 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3754 return 1; 3755 3756 if (unlikely(!sched_info_on())) 3757 return 1; 3758 3759 if (data & KVM_STEAL_RESERVED_MASK) 3760 return 1; 3761 3762 vcpu->arch.st.msr_val = data; 3763 3764 if (!(data & KVM_MSR_ENABLED)) 3765 break; 3766 3767 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3768 3769 break; 3770 case MSR_KVM_PV_EOI_EN: 3771 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3772 return 1; 3773 3774 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3775 return 1; 3776 break; 3777 3778 case MSR_KVM_POLL_CONTROL: 3779 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3780 return 1; 3781 3782 /* only enable bit supported */ 3783 if (data & (-1ULL << 1)) 3784 return 1; 3785 3786 vcpu->arch.msr_kvm_poll_control = data; 3787 break; 3788 3789 case MSR_IA32_MCG_CTL: 3790 case MSR_IA32_MCG_STATUS: 3791 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3792 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3793 return set_msr_mce(vcpu, msr_info); 3794 3795 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3796 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3797 pr = true; 3798 fallthrough; 3799 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3800 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3801 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3802 return kvm_pmu_set_msr(vcpu, msr_info); 3803 3804 if (pr || data != 0) 3805 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3806 "0x%x data 0x%llx\n", msr, data); 3807 break; 3808 case MSR_K7_CLK_CTL: 3809 /* 3810 * Ignore all writes to this no longer documented MSR. 3811 * Writes are only relevant for old K7 processors, 3812 * all pre-dating SVM, but a recommended workaround from 3813 * AMD for these chips. It is possible to specify the 3814 * affected processor models on the command line, hence 3815 * the need to ignore the workaround. 3816 */ 3817 break; 3818 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3819 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3820 case HV_X64_MSR_SYNDBG_OPTIONS: 3821 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3822 case HV_X64_MSR_CRASH_CTL: 3823 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3824 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3825 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3826 case HV_X64_MSR_TSC_EMULATION_STATUS: 3827 return kvm_hv_set_msr_common(vcpu, msr, data, 3828 msr_info->host_initiated); 3829 case MSR_IA32_BBL_CR_CTL3: 3830 /* Drop writes to this legacy MSR -- see rdmsr 3831 * counterpart for further detail. 3832 */ 3833 if (report_ignored_msrs) 3834 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3835 msr, data); 3836 break; 3837 case MSR_AMD64_OSVW_ID_LENGTH: 3838 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3839 return 1; 3840 vcpu->arch.osvw.length = data; 3841 break; 3842 case MSR_AMD64_OSVW_STATUS: 3843 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3844 return 1; 3845 vcpu->arch.osvw.status = data; 3846 break; 3847 case MSR_PLATFORM_INFO: 3848 if (!msr_info->host_initiated || 3849 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3850 cpuid_fault_enabled(vcpu))) 3851 return 1; 3852 vcpu->arch.msr_platform_info = data; 3853 break; 3854 case MSR_MISC_FEATURES_ENABLES: 3855 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3856 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3857 !supports_cpuid_fault(vcpu))) 3858 return 1; 3859 vcpu->arch.msr_misc_features_enables = data; 3860 break; 3861 #ifdef CONFIG_X86_64 3862 case MSR_IA32_XFD: 3863 if (!msr_info->host_initiated && 3864 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3865 return 1; 3866 3867 if (data & ~kvm_guest_supported_xfd(vcpu)) 3868 return 1; 3869 3870 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3871 break; 3872 case MSR_IA32_XFD_ERR: 3873 if (!msr_info->host_initiated && 3874 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3875 return 1; 3876 3877 if (data & ~kvm_guest_supported_xfd(vcpu)) 3878 return 1; 3879 3880 vcpu->arch.guest_fpu.xfd_err = data; 3881 break; 3882 #endif 3883 case MSR_IA32_PEBS_ENABLE: 3884 case MSR_IA32_DS_AREA: 3885 case MSR_PEBS_DATA_CFG: 3886 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3887 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3888 return kvm_pmu_set_msr(vcpu, msr_info); 3889 /* 3890 * Userspace is allowed to write '0' to MSRs that KVM reports 3891 * as to-be-saved, even if an MSRs isn't fully supported. 3892 */ 3893 return !msr_info->host_initiated || data; 3894 default: 3895 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3896 return kvm_pmu_set_msr(vcpu, msr_info); 3897 return KVM_MSR_RET_INVALID; 3898 } 3899 return 0; 3900 } 3901 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3902 3903 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3904 { 3905 u64 data; 3906 u64 mcg_cap = vcpu->arch.mcg_cap; 3907 unsigned bank_num = mcg_cap & 0xff; 3908 u32 offset, last_msr; 3909 3910 switch (msr) { 3911 case MSR_IA32_P5_MC_ADDR: 3912 case MSR_IA32_P5_MC_TYPE: 3913 data = 0; 3914 break; 3915 case MSR_IA32_MCG_CAP: 3916 data = vcpu->arch.mcg_cap; 3917 break; 3918 case MSR_IA32_MCG_CTL: 3919 if (!(mcg_cap & MCG_CTL_P) && !host) 3920 return 1; 3921 data = vcpu->arch.mcg_ctl; 3922 break; 3923 case MSR_IA32_MCG_STATUS: 3924 data = vcpu->arch.mcg_status; 3925 break; 3926 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3927 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3928 if (msr > last_msr) 3929 return 1; 3930 3931 if (!(mcg_cap & MCG_CMCI_P) && !host) 3932 return 1; 3933 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3934 last_msr + 1 - MSR_IA32_MC0_CTL2); 3935 data = vcpu->arch.mci_ctl2_banks[offset]; 3936 break; 3937 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3938 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3939 if (msr > last_msr) 3940 return 1; 3941 3942 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3943 last_msr + 1 - MSR_IA32_MC0_CTL); 3944 data = vcpu->arch.mce_banks[offset]; 3945 break; 3946 default: 3947 return 1; 3948 } 3949 *pdata = data; 3950 return 0; 3951 } 3952 3953 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3954 { 3955 switch (msr_info->index) { 3956 case MSR_IA32_PLATFORM_ID: 3957 case MSR_IA32_EBL_CR_POWERON: 3958 case MSR_IA32_LASTBRANCHFROMIP: 3959 case MSR_IA32_LASTBRANCHTOIP: 3960 case MSR_IA32_LASTINTFROMIP: 3961 case MSR_IA32_LASTINTTOIP: 3962 case MSR_AMD64_SYSCFG: 3963 case MSR_K8_TSEG_ADDR: 3964 case MSR_K8_TSEG_MASK: 3965 case MSR_VM_HSAVE_PA: 3966 case MSR_K8_INT_PENDING_MSG: 3967 case MSR_AMD64_NB_CFG: 3968 case MSR_FAM10H_MMIO_CONF_BASE: 3969 case MSR_AMD64_BU_CFG2: 3970 case MSR_IA32_PERF_CTL: 3971 case MSR_AMD64_DC_CFG: 3972 case MSR_F15H_EX_CFG: 3973 /* 3974 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3975 * limit) MSRs. Just return 0, as we do not want to expose the host 3976 * data here. Do not conditionalize this on CPUID, as KVM does not do 3977 * so for existing CPU-specific MSRs. 3978 */ 3979 case MSR_RAPL_POWER_UNIT: 3980 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3981 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3982 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3983 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3984 msr_info->data = 0; 3985 break; 3986 case MSR_IA32_PEBS_ENABLE: 3987 case MSR_IA32_DS_AREA: 3988 case MSR_PEBS_DATA_CFG: 3989 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3990 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3991 return kvm_pmu_get_msr(vcpu, msr_info); 3992 /* 3993 * Userspace is allowed to read MSRs that KVM reports as 3994 * to-be-saved, even if an MSR isn't fully supported. 3995 */ 3996 if (!msr_info->host_initiated) 3997 return 1; 3998 msr_info->data = 0; 3999 break; 4000 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4001 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4002 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4003 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4004 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4005 return kvm_pmu_get_msr(vcpu, msr_info); 4006 msr_info->data = 0; 4007 break; 4008 case MSR_IA32_UCODE_REV: 4009 msr_info->data = vcpu->arch.microcode_version; 4010 break; 4011 case MSR_IA32_ARCH_CAPABILITIES: 4012 if (!msr_info->host_initiated && 4013 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4014 return 1; 4015 msr_info->data = vcpu->arch.arch_capabilities; 4016 break; 4017 case MSR_IA32_PERF_CAPABILITIES: 4018 if (!msr_info->host_initiated && 4019 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4020 return 1; 4021 msr_info->data = vcpu->arch.perf_capabilities; 4022 break; 4023 case MSR_IA32_POWER_CTL: 4024 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4025 break; 4026 case MSR_IA32_TSC: { 4027 /* 4028 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4029 * even when not intercepted. AMD manual doesn't explicitly 4030 * state this but appears to behave the same. 4031 * 4032 * On userspace reads and writes, however, we unconditionally 4033 * return L1's TSC value to ensure backwards-compatible 4034 * behavior for migration. 4035 */ 4036 u64 offset, ratio; 4037 4038 if (msr_info->host_initiated) { 4039 offset = vcpu->arch.l1_tsc_offset; 4040 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4041 } else { 4042 offset = vcpu->arch.tsc_offset; 4043 ratio = vcpu->arch.tsc_scaling_ratio; 4044 } 4045 4046 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4047 break; 4048 } 4049 case MSR_MTRRcap: 4050 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4051 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4052 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4053 case 0xcd: /* fsb frequency */ 4054 msr_info->data = 3; 4055 break; 4056 /* 4057 * MSR_EBC_FREQUENCY_ID 4058 * Conservative value valid for even the basic CPU models. 4059 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4060 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4061 * and 266MHz for model 3, or 4. Set Core Clock 4062 * Frequency to System Bus Frequency Ratio to 1 (bits 4063 * 31:24) even though these are only valid for CPU 4064 * models > 2, however guests may end up dividing or 4065 * multiplying by zero otherwise. 4066 */ 4067 case MSR_EBC_FREQUENCY_ID: 4068 msr_info->data = 1 << 24; 4069 break; 4070 case MSR_IA32_APICBASE: 4071 msr_info->data = kvm_get_apic_base(vcpu); 4072 break; 4073 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4074 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4075 case MSR_IA32_TSC_DEADLINE: 4076 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4077 break; 4078 case MSR_IA32_TSC_ADJUST: 4079 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4080 break; 4081 case MSR_IA32_MISC_ENABLE: 4082 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4083 break; 4084 case MSR_IA32_SMBASE: 4085 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4086 return 1; 4087 msr_info->data = vcpu->arch.smbase; 4088 break; 4089 case MSR_SMI_COUNT: 4090 msr_info->data = vcpu->arch.smi_count; 4091 break; 4092 case MSR_IA32_PERF_STATUS: 4093 /* TSC increment by tick */ 4094 msr_info->data = 1000ULL; 4095 /* CPU multiplier */ 4096 msr_info->data |= (((uint64_t)4ULL) << 40); 4097 break; 4098 case MSR_EFER: 4099 msr_info->data = vcpu->arch.efer; 4100 break; 4101 case MSR_KVM_WALL_CLOCK: 4102 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4103 return 1; 4104 4105 msr_info->data = vcpu->kvm->arch.wall_clock; 4106 break; 4107 case MSR_KVM_WALL_CLOCK_NEW: 4108 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4109 return 1; 4110 4111 msr_info->data = vcpu->kvm->arch.wall_clock; 4112 break; 4113 case MSR_KVM_SYSTEM_TIME: 4114 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4115 return 1; 4116 4117 msr_info->data = vcpu->arch.time; 4118 break; 4119 case MSR_KVM_SYSTEM_TIME_NEW: 4120 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4121 return 1; 4122 4123 msr_info->data = vcpu->arch.time; 4124 break; 4125 case MSR_KVM_ASYNC_PF_EN: 4126 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4127 return 1; 4128 4129 msr_info->data = vcpu->arch.apf.msr_en_val; 4130 break; 4131 case MSR_KVM_ASYNC_PF_INT: 4132 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4133 return 1; 4134 4135 msr_info->data = vcpu->arch.apf.msr_int_val; 4136 break; 4137 case MSR_KVM_ASYNC_PF_ACK: 4138 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4139 return 1; 4140 4141 msr_info->data = 0; 4142 break; 4143 case MSR_KVM_STEAL_TIME: 4144 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4145 return 1; 4146 4147 msr_info->data = vcpu->arch.st.msr_val; 4148 break; 4149 case MSR_KVM_PV_EOI_EN: 4150 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4151 return 1; 4152 4153 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4154 break; 4155 case MSR_KVM_POLL_CONTROL: 4156 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4157 return 1; 4158 4159 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4160 break; 4161 case MSR_IA32_P5_MC_ADDR: 4162 case MSR_IA32_P5_MC_TYPE: 4163 case MSR_IA32_MCG_CAP: 4164 case MSR_IA32_MCG_CTL: 4165 case MSR_IA32_MCG_STATUS: 4166 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4167 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4168 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4169 msr_info->host_initiated); 4170 case MSR_IA32_XSS: 4171 if (!msr_info->host_initiated && 4172 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4173 return 1; 4174 msr_info->data = vcpu->arch.ia32_xss; 4175 break; 4176 case MSR_K7_CLK_CTL: 4177 /* 4178 * Provide expected ramp-up count for K7. All other 4179 * are set to zero, indicating minimum divisors for 4180 * every field. 4181 * 4182 * This prevents guest kernels on AMD host with CPU 4183 * type 6, model 8 and higher from exploding due to 4184 * the rdmsr failing. 4185 */ 4186 msr_info->data = 0x20000000; 4187 break; 4188 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4189 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4190 case HV_X64_MSR_SYNDBG_OPTIONS: 4191 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4192 case HV_X64_MSR_CRASH_CTL: 4193 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4194 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4195 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_STATUS: 4197 return kvm_hv_get_msr_common(vcpu, 4198 msr_info->index, &msr_info->data, 4199 msr_info->host_initiated); 4200 case MSR_IA32_BBL_CR_CTL3: 4201 /* This legacy MSR exists but isn't fully documented in current 4202 * silicon. It is however accessed by winxp in very narrow 4203 * scenarios where it sets bit #19, itself documented as 4204 * a "reserved" bit. Best effort attempt to source coherent 4205 * read data here should the balance of the register be 4206 * interpreted by the guest: 4207 * 4208 * L2 cache control register 3: 64GB range, 256KB size, 4209 * enabled, latency 0x1, configured 4210 */ 4211 msr_info->data = 0xbe702111; 4212 break; 4213 case MSR_AMD64_OSVW_ID_LENGTH: 4214 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4215 return 1; 4216 msr_info->data = vcpu->arch.osvw.length; 4217 break; 4218 case MSR_AMD64_OSVW_STATUS: 4219 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4220 return 1; 4221 msr_info->data = vcpu->arch.osvw.status; 4222 break; 4223 case MSR_PLATFORM_INFO: 4224 if (!msr_info->host_initiated && 4225 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4226 return 1; 4227 msr_info->data = vcpu->arch.msr_platform_info; 4228 break; 4229 case MSR_MISC_FEATURES_ENABLES: 4230 msr_info->data = vcpu->arch.msr_misc_features_enables; 4231 break; 4232 case MSR_K7_HWCR: 4233 msr_info->data = vcpu->arch.msr_hwcr; 4234 break; 4235 #ifdef CONFIG_X86_64 4236 case MSR_IA32_XFD: 4237 if (!msr_info->host_initiated && 4238 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4239 return 1; 4240 4241 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4242 break; 4243 case MSR_IA32_XFD_ERR: 4244 if (!msr_info->host_initiated && 4245 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4246 return 1; 4247 4248 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4249 break; 4250 #endif 4251 default: 4252 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4253 return kvm_pmu_get_msr(vcpu, msr_info); 4254 return KVM_MSR_RET_INVALID; 4255 } 4256 return 0; 4257 } 4258 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4259 4260 /* 4261 * Read or write a bunch of msrs. All parameters are kernel addresses. 4262 * 4263 * @return number of msrs set successfully. 4264 */ 4265 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4266 struct kvm_msr_entry *entries, 4267 int (*do_msr)(struct kvm_vcpu *vcpu, 4268 unsigned index, u64 *data)) 4269 { 4270 int i; 4271 4272 for (i = 0; i < msrs->nmsrs; ++i) 4273 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4274 break; 4275 4276 return i; 4277 } 4278 4279 /* 4280 * Read or write a bunch of msrs. Parameters are user addresses. 4281 * 4282 * @return number of msrs set successfully. 4283 */ 4284 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4285 int (*do_msr)(struct kvm_vcpu *vcpu, 4286 unsigned index, u64 *data), 4287 int writeback) 4288 { 4289 struct kvm_msrs msrs; 4290 struct kvm_msr_entry *entries; 4291 int r, n; 4292 unsigned size; 4293 4294 r = -EFAULT; 4295 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4296 goto out; 4297 4298 r = -E2BIG; 4299 if (msrs.nmsrs >= MAX_IO_MSRS) 4300 goto out; 4301 4302 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4303 entries = memdup_user(user_msrs->entries, size); 4304 if (IS_ERR(entries)) { 4305 r = PTR_ERR(entries); 4306 goto out; 4307 } 4308 4309 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4310 if (r < 0) 4311 goto out_free; 4312 4313 r = -EFAULT; 4314 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4315 goto out_free; 4316 4317 r = n; 4318 4319 out_free: 4320 kfree(entries); 4321 out: 4322 return r; 4323 } 4324 4325 static inline bool kvm_can_mwait_in_guest(void) 4326 { 4327 return boot_cpu_has(X86_FEATURE_MWAIT) && 4328 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4329 boot_cpu_has(X86_FEATURE_ARAT); 4330 } 4331 4332 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4333 struct kvm_cpuid2 __user *cpuid_arg) 4334 { 4335 struct kvm_cpuid2 cpuid; 4336 int r; 4337 4338 r = -EFAULT; 4339 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4340 return r; 4341 4342 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4343 if (r) 4344 return r; 4345 4346 r = -EFAULT; 4347 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4348 return r; 4349 4350 return 0; 4351 } 4352 4353 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4354 { 4355 int r = 0; 4356 4357 switch (ext) { 4358 case KVM_CAP_IRQCHIP: 4359 case KVM_CAP_HLT: 4360 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4361 case KVM_CAP_SET_TSS_ADDR: 4362 case KVM_CAP_EXT_CPUID: 4363 case KVM_CAP_EXT_EMUL_CPUID: 4364 case KVM_CAP_CLOCKSOURCE: 4365 case KVM_CAP_PIT: 4366 case KVM_CAP_NOP_IO_DELAY: 4367 case KVM_CAP_MP_STATE: 4368 case KVM_CAP_SYNC_MMU: 4369 case KVM_CAP_USER_NMI: 4370 case KVM_CAP_REINJECT_CONTROL: 4371 case KVM_CAP_IRQ_INJECT_STATUS: 4372 case KVM_CAP_IOEVENTFD: 4373 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4374 case KVM_CAP_PIT2: 4375 case KVM_CAP_PIT_STATE2: 4376 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4377 case KVM_CAP_VCPU_EVENTS: 4378 case KVM_CAP_HYPERV: 4379 case KVM_CAP_HYPERV_VAPIC: 4380 case KVM_CAP_HYPERV_SPIN: 4381 case KVM_CAP_HYPERV_SYNIC: 4382 case KVM_CAP_HYPERV_SYNIC2: 4383 case KVM_CAP_HYPERV_VP_INDEX: 4384 case KVM_CAP_HYPERV_EVENTFD: 4385 case KVM_CAP_HYPERV_TLBFLUSH: 4386 case KVM_CAP_HYPERV_SEND_IPI: 4387 case KVM_CAP_HYPERV_CPUID: 4388 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4389 case KVM_CAP_SYS_HYPERV_CPUID: 4390 case KVM_CAP_PCI_SEGMENT: 4391 case KVM_CAP_DEBUGREGS: 4392 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4393 case KVM_CAP_XSAVE: 4394 case KVM_CAP_ASYNC_PF: 4395 case KVM_CAP_ASYNC_PF_INT: 4396 case KVM_CAP_GET_TSC_KHZ: 4397 case KVM_CAP_KVMCLOCK_CTRL: 4398 case KVM_CAP_READONLY_MEM: 4399 case KVM_CAP_HYPERV_TIME: 4400 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4401 case KVM_CAP_TSC_DEADLINE_TIMER: 4402 case KVM_CAP_DISABLE_QUIRKS: 4403 case KVM_CAP_SET_BOOT_CPU_ID: 4404 case KVM_CAP_SPLIT_IRQCHIP: 4405 case KVM_CAP_IMMEDIATE_EXIT: 4406 case KVM_CAP_PMU_EVENT_FILTER: 4407 case KVM_CAP_GET_MSR_FEATURES: 4408 case KVM_CAP_MSR_PLATFORM_INFO: 4409 case KVM_CAP_EXCEPTION_PAYLOAD: 4410 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4411 case KVM_CAP_SET_GUEST_DEBUG: 4412 case KVM_CAP_LAST_CPU: 4413 case KVM_CAP_X86_USER_SPACE_MSR: 4414 case KVM_CAP_X86_MSR_FILTER: 4415 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4416 #ifdef CONFIG_X86_SGX_KVM 4417 case KVM_CAP_SGX_ATTRIBUTE: 4418 #endif 4419 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4420 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4421 case KVM_CAP_SREGS2: 4422 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4423 case KVM_CAP_VCPU_ATTRIBUTES: 4424 case KVM_CAP_SYS_ATTRIBUTES: 4425 case KVM_CAP_VAPIC: 4426 case KVM_CAP_ENABLE_CAP: 4427 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4428 r = 1; 4429 break; 4430 case KVM_CAP_EXIT_HYPERCALL: 4431 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4432 break; 4433 case KVM_CAP_SET_GUEST_DEBUG2: 4434 return KVM_GUESTDBG_VALID_MASK; 4435 #ifdef CONFIG_KVM_XEN 4436 case KVM_CAP_XEN_HVM: 4437 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4438 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4439 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4440 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4441 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4442 if (sched_info_on()) 4443 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4444 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4445 break; 4446 #endif 4447 case KVM_CAP_SYNC_REGS: 4448 r = KVM_SYNC_X86_VALID_FIELDS; 4449 break; 4450 case KVM_CAP_ADJUST_CLOCK: 4451 r = KVM_CLOCK_VALID_FLAGS; 4452 break; 4453 case KVM_CAP_X86_DISABLE_EXITS: 4454 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4455 KVM_X86_DISABLE_EXITS_CSTATE; 4456 if(kvm_can_mwait_in_guest()) 4457 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4458 break; 4459 case KVM_CAP_X86_SMM: 4460 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4461 break; 4462 4463 /* SMBASE is usually relocated above 1M on modern chipsets, 4464 * and SMM handlers might indeed rely on 4G segment limits, 4465 * so do not report SMM to be available if real mode is 4466 * emulated via vm86 mode. Still, do not go to great lengths 4467 * to avoid userspace's usage of the feature, because it is a 4468 * fringe case that is not enabled except via specific settings 4469 * of the module parameters. 4470 */ 4471 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4472 break; 4473 case KVM_CAP_NR_VCPUS: 4474 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4475 break; 4476 case KVM_CAP_MAX_VCPUS: 4477 r = KVM_MAX_VCPUS; 4478 break; 4479 case KVM_CAP_MAX_VCPU_ID: 4480 r = KVM_MAX_VCPU_IDS; 4481 break; 4482 case KVM_CAP_PV_MMU: /* obsolete */ 4483 r = 0; 4484 break; 4485 case KVM_CAP_MCE: 4486 r = KVM_MAX_MCE_BANKS; 4487 break; 4488 case KVM_CAP_XCRS: 4489 r = boot_cpu_has(X86_FEATURE_XSAVE); 4490 break; 4491 case KVM_CAP_TSC_CONTROL: 4492 case KVM_CAP_VM_TSC_CONTROL: 4493 r = kvm_caps.has_tsc_control; 4494 break; 4495 case KVM_CAP_X2APIC_API: 4496 r = KVM_X2APIC_API_VALID_FLAGS; 4497 break; 4498 case KVM_CAP_NESTED_STATE: 4499 r = kvm_x86_ops.nested_ops->get_state ? 4500 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4501 break; 4502 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4503 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4504 break; 4505 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4506 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4507 break; 4508 case KVM_CAP_SMALLER_MAXPHYADDR: 4509 r = (int) allow_smaller_maxphyaddr; 4510 break; 4511 case KVM_CAP_STEAL_TIME: 4512 r = sched_info_on(); 4513 break; 4514 case KVM_CAP_X86_BUS_LOCK_EXIT: 4515 if (kvm_caps.has_bus_lock_exit) 4516 r = KVM_BUS_LOCK_DETECTION_OFF | 4517 KVM_BUS_LOCK_DETECTION_EXIT; 4518 else 4519 r = 0; 4520 break; 4521 case KVM_CAP_XSAVE2: { 4522 u64 guest_perm = xstate_get_guest_group_perm(); 4523 4524 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4525 if (r < sizeof(struct kvm_xsave)) 4526 r = sizeof(struct kvm_xsave); 4527 break; 4528 } 4529 case KVM_CAP_PMU_CAPABILITY: 4530 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4531 break; 4532 case KVM_CAP_DISABLE_QUIRKS2: 4533 r = KVM_X86_VALID_QUIRKS; 4534 break; 4535 case KVM_CAP_X86_NOTIFY_VMEXIT: 4536 r = kvm_caps.has_notify_vmexit; 4537 break; 4538 default: 4539 break; 4540 } 4541 return r; 4542 } 4543 4544 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4545 { 4546 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4547 4548 if ((u64)(unsigned long)uaddr != attr->addr) 4549 return ERR_PTR_USR(-EFAULT); 4550 return uaddr; 4551 } 4552 4553 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4554 { 4555 u64 __user *uaddr = kvm_get_attr_addr(attr); 4556 4557 if (attr->group) 4558 return -ENXIO; 4559 4560 if (IS_ERR(uaddr)) 4561 return PTR_ERR(uaddr); 4562 4563 switch (attr->attr) { 4564 case KVM_X86_XCOMP_GUEST_SUPP: 4565 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4566 return -EFAULT; 4567 return 0; 4568 default: 4569 return -ENXIO; 4570 break; 4571 } 4572 } 4573 4574 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4575 { 4576 if (attr->group) 4577 return -ENXIO; 4578 4579 switch (attr->attr) { 4580 case KVM_X86_XCOMP_GUEST_SUPP: 4581 return 0; 4582 default: 4583 return -ENXIO; 4584 } 4585 } 4586 4587 long kvm_arch_dev_ioctl(struct file *filp, 4588 unsigned int ioctl, unsigned long arg) 4589 { 4590 void __user *argp = (void __user *)arg; 4591 long r; 4592 4593 switch (ioctl) { 4594 case KVM_GET_MSR_INDEX_LIST: { 4595 struct kvm_msr_list __user *user_msr_list = argp; 4596 struct kvm_msr_list msr_list; 4597 unsigned n; 4598 4599 r = -EFAULT; 4600 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4601 goto out; 4602 n = msr_list.nmsrs; 4603 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4604 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4605 goto out; 4606 r = -E2BIG; 4607 if (n < msr_list.nmsrs) 4608 goto out; 4609 r = -EFAULT; 4610 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4611 num_msrs_to_save * sizeof(u32))) 4612 goto out; 4613 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4614 &emulated_msrs, 4615 num_emulated_msrs * sizeof(u32))) 4616 goto out; 4617 r = 0; 4618 break; 4619 } 4620 case KVM_GET_SUPPORTED_CPUID: 4621 case KVM_GET_EMULATED_CPUID: { 4622 struct kvm_cpuid2 __user *cpuid_arg = argp; 4623 struct kvm_cpuid2 cpuid; 4624 4625 r = -EFAULT; 4626 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4627 goto out; 4628 4629 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4630 ioctl); 4631 if (r) 4632 goto out; 4633 4634 r = -EFAULT; 4635 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4636 goto out; 4637 r = 0; 4638 break; 4639 } 4640 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4641 r = -EFAULT; 4642 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4643 sizeof(kvm_caps.supported_mce_cap))) 4644 goto out; 4645 r = 0; 4646 break; 4647 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4648 struct kvm_msr_list __user *user_msr_list = argp; 4649 struct kvm_msr_list msr_list; 4650 unsigned int n; 4651 4652 r = -EFAULT; 4653 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4654 goto out; 4655 n = msr_list.nmsrs; 4656 msr_list.nmsrs = num_msr_based_features; 4657 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4658 goto out; 4659 r = -E2BIG; 4660 if (n < msr_list.nmsrs) 4661 goto out; 4662 r = -EFAULT; 4663 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4664 num_msr_based_features * sizeof(u32))) 4665 goto out; 4666 r = 0; 4667 break; 4668 } 4669 case KVM_GET_MSRS: 4670 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4671 break; 4672 case KVM_GET_SUPPORTED_HV_CPUID: 4673 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4674 break; 4675 case KVM_GET_DEVICE_ATTR: { 4676 struct kvm_device_attr attr; 4677 r = -EFAULT; 4678 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4679 break; 4680 r = kvm_x86_dev_get_attr(&attr); 4681 break; 4682 } 4683 case KVM_HAS_DEVICE_ATTR: { 4684 struct kvm_device_attr attr; 4685 r = -EFAULT; 4686 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4687 break; 4688 r = kvm_x86_dev_has_attr(&attr); 4689 break; 4690 } 4691 default: 4692 r = -EINVAL; 4693 break; 4694 } 4695 out: 4696 return r; 4697 } 4698 4699 static void wbinvd_ipi(void *garbage) 4700 { 4701 wbinvd(); 4702 } 4703 4704 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4705 { 4706 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4707 } 4708 4709 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4710 { 4711 /* Address WBINVD may be executed by guest */ 4712 if (need_emulate_wbinvd(vcpu)) { 4713 if (static_call(kvm_x86_has_wbinvd_exit)()) 4714 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4715 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4716 smp_call_function_single(vcpu->cpu, 4717 wbinvd_ipi, NULL, 1); 4718 } 4719 4720 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4721 4722 /* Save host pkru register if supported */ 4723 vcpu->arch.host_pkru = read_pkru(); 4724 4725 /* Apply any externally detected TSC adjustments (due to suspend) */ 4726 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4727 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4728 vcpu->arch.tsc_offset_adjustment = 0; 4729 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4730 } 4731 4732 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4733 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4734 rdtsc() - vcpu->arch.last_host_tsc; 4735 if (tsc_delta < 0) 4736 mark_tsc_unstable("KVM discovered backwards TSC"); 4737 4738 if (kvm_check_tsc_unstable()) { 4739 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4740 vcpu->arch.last_guest_tsc); 4741 kvm_vcpu_write_tsc_offset(vcpu, offset); 4742 vcpu->arch.tsc_catchup = 1; 4743 } 4744 4745 if (kvm_lapic_hv_timer_in_use(vcpu)) 4746 kvm_lapic_restart_hv_timer(vcpu); 4747 4748 /* 4749 * On a host with synchronized TSC, there is no need to update 4750 * kvmclock on vcpu->cpu migration 4751 */ 4752 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4753 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4754 if (vcpu->cpu != cpu) 4755 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4756 vcpu->cpu = cpu; 4757 } 4758 4759 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4760 } 4761 4762 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4763 { 4764 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4765 struct kvm_steal_time __user *st; 4766 struct kvm_memslots *slots; 4767 static const u8 preempted = KVM_VCPU_PREEMPTED; 4768 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4769 4770 /* 4771 * The vCPU can be marked preempted if and only if the VM-Exit was on 4772 * an instruction boundary and will not trigger guest emulation of any 4773 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4774 * when this is true, for example allowing the vCPU to be marked 4775 * preempted if and only if the VM-Exit was due to a host interrupt. 4776 */ 4777 if (!vcpu->arch.at_instruction_boundary) { 4778 vcpu->stat.preemption_other++; 4779 return; 4780 } 4781 4782 vcpu->stat.preemption_reported++; 4783 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4784 return; 4785 4786 if (vcpu->arch.st.preempted) 4787 return; 4788 4789 /* This happens on process exit */ 4790 if (unlikely(current->mm != vcpu->kvm->mm)) 4791 return; 4792 4793 slots = kvm_memslots(vcpu->kvm); 4794 4795 if (unlikely(slots->generation != ghc->generation || 4796 gpa != ghc->gpa || 4797 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4798 return; 4799 4800 st = (struct kvm_steal_time __user *)ghc->hva; 4801 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4802 4803 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4804 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4805 4806 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4807 } 4808 4809 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4810 { 4811 int idx; 4812 4813 if (vcpu->preempted) { 4814 if (!vcpu->arch.guest_state_protected) 4815 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4816 4817 /* 4818 * Take the srcu lock as memslots will be accessed to check the gfn 4819 * cache generation against the memslots generation. 4820 */ 4821 idx = srcu_read_lock(&vcpu->kvm->srcu); 4822 if (kvm_xen_msr_enabled(vcpu->kvm)) 4823 kvm_xen_runstate_set_preempted(vcpu); 4824 else 4825 kvm_steal_time_set_preempted(vcpu); 4826 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4827 } 4828 4829 static_call(kvm_x86_vcpu_put)(vcpu); 4830 vcpu->arch.last_host_tsc = rdtsc(); 4831 } 4832 4833 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4834 struct kvm_lapic_state *s) 4835 { 4836 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4837 4838 return kvm_apic_get_state(vcpu, s); 4839 } 4840 4841 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4842 struct kvm_lapic_state *s) 4843 { 4844 int r; 4845 4846 r = kvm_apic_set_state(vcpu, s); 4847 if (r) 4848 return r; 4849 update_cr8_intercept(vcpu); 4850 4851 return 0; 4852 } 4853 4854 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4855 { 4856 /* 4857 * We can accept userspace's request for interrupt injection 4858 * as long as we have a place to store the interrupt number. 4859 * The actual injection will happen when the CPU is able to 4860 * deliver the interrupt. 4861 */ 4862 if (kvm_cpu_has_extint(vcpu)) 4863 return false; 4864 4865 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4866 return (!lapic_in_kernel(vcpu) || 4867 kvm_apic_accept_pic_intr(vcpu)); 4868 } 4869 4870 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4871 { 4872 /* 4873 * Do not cause an interrupt window exit if an exception 4874 * is pending or an event needs reinjection; userspace 4875 * might want to inject the interrupt manually using KVM_SET_REGS 4876 * or KVM_SET_SREGS. For that to work, we must be at an 4877 * instruction boundary and with no events half-injected. 4878 */ 4879 return (kvm_arch_interrupt_allowed(vcpu) && 4880 kvm_cpu_accept_dm_intr(vcpu) && 4881 !kvm_event_needs_reinjection(vcpu) && 4882 !kvm_is_exception_pending(vcpu)); 4883 } 4884 4885 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4886 struct kvm_interrupt *irq) 4887 { 4888 if (irq->irq >= KVM_NR_INTERRUPTS) 4889 return -EINVAL; 4890 4891 if (!irqchip_in_kernel(vcpu->kvm)) { 4892 kvm_queue_interrupt(vcpu, irq->irq, false); 4893 kvm_make_request(KVM_REQ_EVENT, vcpu); 4894 return 0; 4895 } 4896 4897 /* 4898 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4899 * fail for in-kernel 8259. 4900 */ 4901 if (pic_in_kernel(vcpu->kvm)) 4902 return -ENXIO; 4903 4904 if (vcpu->arch.pending_external_vector != -1) 4905 return -EEXIST; 4906 4907 vcpu->arch.pending_external_vector = irq->irq; 4908 kvm_make_request(KVM_REQ_EVENT, vcpu); 4909 return 0; 4910 } 4911 4912 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4913 { 4914 kvm_inject_nmi(vcpu); 4915 4916 return 0; 4917 } 4918 4919 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4920 struct kvm_tpr_access_ctl *tac) 4921 { 4922 if (tac->flags) 4923 return -EINVAL; 4924 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4925 return 0; 4926 } 4927 4928 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4929 u64 mcg_cap) 4930 { 4931 int r; 4932 unsigned bank_num = mcg_cap & 0xff, bank; 4933 4934 r = -EINVAL; 4935 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4936 goto out; 4937 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4938 goto out; 4939 r = 0; 4940 vcpu->arch.mcg_cap = mcg_cap; 4941 /* Init IA32_MCG_CTL to all 1s */ 4942 if (mcg_cap & MCG_CTL_P) 4943 vcpu->arch.mcg_ctl = ~(u64)0; 4944 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4945 for (bank = 0; bank < bank_num; bank++) { 4946 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4947 if (mcg_cap & MCG_CMCI_P) 4948 vcpu->arch.mci_ctl2_banks[bank] = 0; 4949 } 4950 4951 kvm_apic_after_set_mcg_cap(vcpu); 4952 4953 static_call(kvm_x86_setup_mce)(vcpu); 4954 out: 4955 return r; 4956 } 4957 4958 /* 4959 * Validate this is an UCNA (uncorrectable no action) error by checking the 4960 * MCG_STATUS and MCi_STATUS registers: 4961 * - none of the bits for Machine Check Exceptions are set 4962 * - both the VAL (valid) and UC (uncorrectable) bits are set 4963 * MCI_STATUS_PCC - Processor Context Corrupted 4964 * MCI_STATUS_S - Signaled as a Machine Check Exception 4965 * MCI_STATUS_AR - Software recoverable Action Required 4966 */ 4967 static bool is_ucna(struct kvm_x86_mce *mce) 4968 { 4969 return !mce->mcg_status && 4970 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4971 (mce->status & MCI_STATUS_VAL) && 4972 (mce->status & MCI_STATUS_UC); 4973 } 4974 4975 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4976 { 4977 u64 mcg_cap = vcpu->arch.mcg_cap; 4978 4979 banks[1] = mce->status; 4980 banks[2] = mce->addr; 4981 banks[3] = mce->misc; 4982 vcpu->arch.mcg_status = mce->mcg_status; 4983 4984 if (!(mcg_cap & MCG_CMCI_P) || 4985 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4986 return 0; 4987 4988 if (lapic_in_kernel(vcpu)) 4989 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4990 4991 return 0; 4992 } 4993 4994 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4995 struct kvm_x86_mce *mce) 4996 { 4997 u64 mcg_cap = vcpu->arch.mcg_cap; 4998 unsigned bank_num = mcg_cap & 0xff; 4999 u64 *banks = vcpu->arch.mce_banks; 5000 5001 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5002 return -EINVAL; 5003 5004 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5005 5006 if (is_ucna(mce)) 5007 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5008 5009 /* 5010 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5011 * reporting is disabled 5012 */ 5013 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5014 vcpu->arch.mcg_ctl != ~(u64)0) 5015 return 0; 5016 /* 5017 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5018 * reporting is disabled for the bank 5019 */ 5020 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5021 return 0; 5022 if (mce->status & MCI_STATUS_UC) { 5023 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5024 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5025 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5026 return 0; 5027 } 5028 if (banks[1] & MCI_STATUS_VAL) 5029 mce->status |= MCI_STATUS_OVER; 5030 banks[2] = mce->addr; 5031 banks[3] = mce->misc; 5032 vcpu->arch.mcg_status = mce->mcg_status; 5033 banks[1] = mce->status; 5034 kvm_queue_exception(vcpu, MC_VECTOR); 5035 } else if (!(banks[1] & MCI_STATUS_VAL) 5036 || !(banks[1] & MCI_STATUS_UC)) { 5037 if (banks[1] & MCI_STATUS_VAL) 5038 mce->status |= MCI_STATUS_OVER; 5039 banks[2] = mce->addr; 5040 banks[3] = mce->misc; 5041 banks[1] = mce->status; 5042 } else 5043 banks[1] |= MCI_STATUS_OVER; 5044 return 0; 5045 } 5046 5047 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5048 struct kvm_vcpu_events *events) 5049 { 5050 struct kvm_queued_exception *ex; 5051 5052 process_nmi(vcpu); 5053 5054 #ifdef CONFIG_KVM_SMM 5055 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5056 process_smi(vcpu); 5057 #endif 5058 5059 /* 5060 * KVM's ABI only allows for one exception to be migrated. Luckily, 5061 * the only time there can be two queued exceptions is if there's a 5062 * non-exiting _injected_ exception, and a pending exiting exception. 5063 * In that case, ignore the VM-Exiting exception as it's an extension 5064 * of the injected exception. 5065 */ 5066 if (vcpu->arch.exception_vmexit.pending && 5067 !vcpu->arch.exception.pending && 5068 !vcpu->arch.exception.injected) 5069 ex = &vcpu->arch.exception_vmexit; 5070 else 5071 ex = &vcpu->arch.exception; 5072 5073 /* 5074 * In guest mode, payload delivery should be deferred if the exception 5075 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5076 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5077 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5078 * propagate the payload and so it cannot be safely deferred. Deliver 5079 * the payload if the capability hasn't been requested. 5080 */ 5081 if (!vcpu->kvm->arch.exception_payload_enabled && 5082 ex->pending && ex->has_payload) 5083 kvm_deliver_exception_payload(vcpu, ex); 5084 5085 memset(events, 0, sizeof(*events)); 5086 5087 /* 5088 * The API doesn't provide the instruction length for software 5089 * exceptions, so don't report them. As long as the guest RIP 5090 * isn't advanced, we should expect to encounter the exception 5091 * again. 5092 */ 5093 if (!kvm_exception_is_soft(ex->vector)) { 5094 events->exception.injected = ex->injected; 5095 events->exception.pending = ex->pending; 5096 /* 5097 * For ABI compatibility, deliberately conflate 5098 * pending and injected exceptions when 5099 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5100 */ 5101 if (!vcpu->kvm->arch.exception_payload_enabled) 5102 events->exception.injected |= ex->pending; 5103 } 5104 events->exception.nr = ex->vector; 5105 events->exception.has_error_code = ex->has_error_code; 5106 events->exception.error_code = ex->error_code; 5107 events->exception_has_payload = ex->has_payload; 5108 events->exception_payload = ex->payload; 5109 5110 events->interrupt.injected = 5111 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5112 events->interrupt.nr = vcpu->arch.interrupt.nr; 5113 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5114 5115 events->nmi.injected = vcpu->arch.nmi_injected; 5116 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5117 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5118 5119 /* events->sipi_vector is never valid when reporting to user space */ 5120 5121 #ifdef CONFIG_KVM_SMM 5122 events->smi.smm = is_smm(vcpu); 5123 events->smi.pending = vcpu->arch.smi_pending; 5124 events->smi.smm_inside_nmi = 5125 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5126 #endif 5127 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5128 5129 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5130 | KVM_VCPUEVENT_VALID_SHADOW 5131 | KVM_VCPUEVENT_VALID_SMM); 5132 if (vcpu->kvm->arch.exception_payload_enabled) 5133 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5134 if (vcpu->kvm->arch.triple_fault_event) { 5135 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5136 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5137 } 5138 } 5139 5140 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5141 struct kvm_vcpu_events *events) 5142 { 5143 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5144 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5145 | KVM_VCPUEVENT_VALID_SHADOW 5146 | KVM_VCPUEVENT_VALID_SMM 5147 | KVM_VCPUEVENT_VALID_PAYLOAD 5148 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5149 return -EINVAL; 5150 5151 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5152 if (!vcpu->kvm->arch.exception_payload_enabled) 5153 return -EINVAL; 5154 if (events->exception.pending) 5155 events->exception.injected = 0; 5156 else 5157 events->exception_has_payload = 0; 5158 } else { 5159 events->exception.pending = 0; 5160 events->exception_has_payload = 0; 5161 } 5162 5163 if ((events->exception.injected || events->exception.pending) && 5164 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5165 return -EINVAL; 5166 5167 /* INITs are latched while in SMM */ 5168 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5169 (events->smi.smm || events->smi.pending) && 5170 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5171 return -EINVAL; 5172 5173 process_nmi(vcpu); 5174 5175 /* 5176 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5177 * morph the exception to a VM-Exit if appropriate. Do this only for 5178 * pending exceptions, already-injected exceptions are not subject to 5179 * intercpetion. Note, userspace that conflates pending and injected 5180 * is hosed, and will incorrectly convert an injected exception into a 5181 * pending exception, which in turn may cause a spurious VM-Exit. 5182 */ 5183 vcpu->arch.exception_from_userspace = events->exception.pending; 5184 5185 vcpu->arch.exception_vmexit.pending = false; 5186 5187 vcpu->arch.exception.injected = events->exception.injected; 5188 vcpu->arch.exception.pending = events->exception.pending; 5189 vcpu->arch.exception.vector = events->exception.nr; 5190 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5191 vcpu->arch.exception.error_code = events->exception.error_code; 5192 vcpu->arch.exception.has_payload = events->exception_has_payload; 5193 vcpu->arch.exception.payload = events->exception_payload; 5194 5195 vcpu->arch.interrupt.injected = events->interrupt.injected; 5196 vcpu->arch.interrupt.nr = events->interrupt.nr; 5197 vcpu->arch.interrupt.soft = events->interrupt.soft; 5198 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5199 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5200 events->interrupt.shadow); 5201 5202 vcpu->arch.nmi_injected = events->nmi.injected; 5203 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5204 vcpu->arch.nmi_pending = events->nmi.pending; 5205 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5206 5207 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5208 lapic_in_kernel(vcpu)) 5209 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5210 5211 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5212 #ifdef CONFIG_KVM_SMM 5213 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5214 kvm_leave_nested(vcpu); 5215 kvm_smm_changed(vcpu, events->smi.smm); 5216 } 5217 5218 vcpu->arch.smi_pending = events->smi.pending; 5219 5220 if (events->smi.smm) { 5221 if (events->smi.smm_inside_nmi) 5222 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5223 else 5224 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5225 } 5226 5227 #else 5228 if (events->smi.smm || events->smi.pending || 5229 events->smi.smm_inside_nmi) 5230 return -EINVAL; 5231 #endif 5232 5233 if (lapic_in_kernel(vcpu)) { 5234 if (events->smi.latched_init) 5235 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5236 else 5237 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5238 } 5239 } 5240 5241 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5242 if (!vcpu->kvm->arch.triple_fault_event) 5243 return -EINVAL; 5244 if (events->triple_fault.pending) 5245 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5246 else 5247 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5248 } 5249 5250 kvm_make_request(KVM_REQ_EVENT, vcpu); 5251 5252 return 0; 5253 } 5254 5255 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5256 struct kvm_debugregs *dbgregs) 5257 { 5258 unsigned long val; 5259 5260 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5261 kvm_get_dr(vcpu, 6, &val); 5262 dbgregs->dr6 = val; 5263 dbgregs->dr7 = vcpu->arch.dr7; 5264 dbgregs->flags = 0; 5265 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5266 } 5267 5268 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5269 struct kvm_debugregs *dbgregs) 5270 { 5271 if (dbgregs->flags) 5272 return -EINVAL; 5273 5274 if (!kvm_dr6_valid(dbgregs->dr6)) 5275 return -EINVAL; 5276 if (!kvm_dr7_valid(dbgregs->dr7)) 5277 return -EINVAL; 5278 5279 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5280 kvm_update_dr0123(vcpu); 5281 vcpu->arch.dr6 = dbgregs->dr6; 5282 vcpu->arch.dr7 = dbgregs->dr7; 5283 kvm_update_dr7(vcpu); 5284 5285 return 0; 5286 } 5287 5288 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5289 struct kvm_xsave *guest_xsave) 5290 { 5291 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5292 return; 5293 5294 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5295 guest_xsave->region, 5296 sizeof(guest_xsave->region), 5297 vcpu->arch.pkru); 5298 } 5299 5300 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5301 u8 *state, unsigned int size) 5302 { 5303 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5304 return; 5305 5306 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5307 state, size, vcpu->arch.pkru); 5308 } 5309 5310 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5311 struct kvm_xsave *guest_xsave) 5312 { 5313 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5314 return 0; 5315 5316 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5317 guest_xsave->region, 5318 kvm_caps.supported_xcr0, 5319 &vcpu->arch.pkru); 5320 } 5321 5322 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5323 struct kvm_xcrs *guest_xcrs) 5324 { 5325 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5326 guest_xcrs->nr_xcrs = 0; 5327 return; 5328 } 5329 5330 guest_xcrs->nr_xcrs = 1; 5331 guest_xcrs->flags = 0; 5332 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5333 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5334 } 5335 5336 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5337 struct kvm_xcrs *guest_xcrs) 5338 { 5339 int i, r = 0; 5340 5341 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5342 return -EINVAL; 5343 5344 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5345 return -EINVAL; 5346 5347 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5348 /* Only support XCR0 currently */ 5349 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5350 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5351 guest_xcrs->xcrs[i].value); 5352 break; 5353 } 5354 if (r) 5355 r = -EINVAL; 5356 return r; 5357 } 5358 5359 /* 5360 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5361 * stopped by the hypervisor. This function will be called from the host only. 5362 * EINVAL is returned when the host attempts to set the flag for a guest that 5363 * does not support pv clocks. 5364 */ 5365 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5366 { 5367 if (!vcpu->arch.pv_time.active) 5368 return -EINVAL; 5369 vcpu->arch.pvclock_set_guest_stopped_request = true; 5370 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5371 return 0; 5372 } 5373 5374 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5375 struct kvm_device_attr *attr) 5376 { 5377 int r; 5378 5379 switch (attr->attr) { 5380 case KVM_VCPU_TSC_OFFSET: 5381 r = 0; 5382 break; 5383 default: 5384 r = -ENXIO; 5385 } 5386 5387 return r; 5388 } 5389 5390 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5391 struct kvm_device_attr *attr) 5392 { 5393 u64 __user *uaddr = kvm_get_attr_addr(attr); 5394 int r; 5395 5396 if (IS_ERR(uaddr)) 5397 return PTR_ERR(uaddr); 5398 5399 switch (attr->attr) { 5400 case KVM_VCPU_TSC_OFFSET: 5401 r = -EFAULT; 5402 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5403 break; 5404 r = 0; 5405 break; 5406 default: 5407 r = -ENXIO; 5408 } 5409 5410 return r; 5411 } 5412 5413 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5414 struct kvm_device_attr *attr) 5415 { 5416 u64 __user *uaddr = kvm_get_attr_addr(attr); 5417 struct kvm *kvm = vcpu->kvm; 5418 int r; 5419 5420 if (IS_ERR(uaddr)) 5421 return PTR_ERR(uaddr); 5422 5423 switch (attr->attr) { 5424 case KVM_VCPU_TSC_OFFSET: { 5425 u64 offset, tsc, ns; 5426 unsigned long flags; 5427 bool matched; 5428 5429 r = -EFAULT; 5430 if (get_user(offset, uaddr)) 5431 break; 5432 5433 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5434 5435 matched = (vcpu->arch.virtual_tsc_khz && 5436 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5437 kvm->arch.last_tsc_offset == offset); 5438 5439 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5440 ns = get_kvmclock_base_ns(); 5441 5442 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5443 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5444 5445 r = 0; 5446 break; 5447 } 5448 default: 5449 r = -ENXIO; 5450 } 5451 5452 return r; 5453 } 5454 5455 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5456 unsigned int ioctl, 5457 void __user *argp) 5458 { 5459 struct kvm_device_attr attr; 5460 int r; 5461 5462 if (copy_from_user(&attr, argp, sizeof(attr))) 5463 return -EFAULT; 5464 5465 if (attr.group != KVM_VCPU_TSC_CTRL) 5466 return -ENXIO; 5467 5468 switch (ioctl) { 5469 case KVM_HAS_DEVICE_ATTR: 5470 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5471 break; 5472 case KVM_GET_DEVICE_ATTR: 5473 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5474 break; 5475 case KVM_SET_DEVICE_ATTR: 5476 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5477 break; 5478 } 5479 5480 return r; 5481 } 5482 5483 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5484 struct kvm_enable_cap *cap) 5485 { 5486 int r; 5487 uint16_t vmcs_version; 5488 void __user *user_ptr; 5489 5490 if (cap->flags) 5491 return -EINVAL; 5492 5493 switch (cap->cap) { 5494 case KVM_CAP_HYPERV_SYNIC2: 5495 if (cap->args[0]) 5496 return -EINVAL; 5497 fallthrough; 5498 5499 case KVM_CAP_HYPERV_SYNIC: 5500 if (!irqchip_in_kernel(vcpu->kvm)) 5501 return -EINVAL; 5502 return kvm_hv_activate_synic(vcpu, cap->cap == 5503 KVM_CAP_HYPERV_SYNIC2); 5504 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5505 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5506 return -ENOTTY; 5507 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5508 if (!r) { 5509 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5510 if (copy_to_user(user_ptr, &vmcs_version, 5511 sizeof(vmcs_version))) 5512 r = -EFAULT; 5513 } 5514 return r; 5515 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5516 if (!kvm_x86_ops.enable_l2_tlb_flush) 5517 return -ENOTTY; 5518 5519 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5520 5521 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5522 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5523 5524 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5525 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5526 if (vcpu->arch.pv_cpuid.enforce) 5527 kvm_update_pv_runtime(vcpu); 5528 5529 return 0; 5530 default: 5531 return -EINVAL; 5532 } 5533 } 5534 5535 long kvm_arch_vcpu_ioctl(struct file *filp, 5536 unsigned int ioctl, unsigned long arg) 5537 { 5538 struct kvm_vcpu *vcpu = filp->private_data; 5539 void __user *argp = (void __user *)arg; 5540 int r; 5541 union { 5542 struct kvm_sregs2 *sregs2; 5543 struct kvm_lapic_state *lapic; 5544 struct kvm_xsave *xsave; 5545 struct kvm_xcrs *xcrs; 5546 void *buffer; 5547 } u; 5548 5549 vcpu_load(vcpu); 5550 5551 u.buffer = NULL; 5552 switch (ioctl) { 5553 case KVM_GET_LAPIC: { 5554 r = -EINVAL; 5555 if (!lapic_in_kernel(vcpu)) 5556 goto out; 5557 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5558 GFP_KERNEL_ACCOUNT); 5559 5560 r = -ENOMEM; 5561 if (!u.lapic) 5562 goto out; 5563 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5564 if (r) 5565 goto out; 5566 r = -EFAULT; 5567 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5568 goto out; 5569 r = 0; 5570 break; 5571 } 5572 case KVM_SET_LAPIC: { 5573 r = -EINVAL; 5574 if (!lapic_in_kernel(vcpu)) 5575 goto out; 5576 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5577 if (IS_ERR(u.lapic)) { 5578 r = PTR_ERR(u.lapic); 5579 goto out_nofree; 5580 } 5581 5582 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5583 break; 5584 } 5585 case KVM_INTERRUPT: { 5586 struct kvm_interrupt irq; 5587 5588 r = -EFAULT; 5589 if (copy_from_user(&irq, argp, sizeof(irq))) 5590 goto out; 5591 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5592 break; 5593 } 5594 case KVM_NMI: { 5595 r = kvm_vcpu_ioctl_nmi(vcpu); 5596 break; 5597 } 5598 case KVM_SMI: { 5599 r = kvm_inject_smi(vcpu); 5600 break; 5601 } 5602 case KVM_SET_CPUID: { 5603 struct kvm_cpuid __user *cpuid_arg = argp; 5604 struct kvm_cpuid cpuid; 5605 5606 r = -EFAULT; 5607 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5608 goto out; 5609 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5610 break; 5611 } 5612 case KVM_SET_CPUID2: { 5613 struct kvm_cpuid2 __user *cpuid_arg = argp; 5614 struct kvm_cpuid2 cpuid; 5615 5616 r = -EFAULT; 5617 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5618 goto out; 5619 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5620 cpuid_arg->entries); 5621 break; 5622 } 5623 case KVM_GET_CPUID2: { 5624 struct kvm_cpuid2 __user *cpuid_arg = argp; 5625 struct kvm_cpuid2 cpuid; 5626 5627 r = -EFAULT; 5628 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5629 goto out; 5630 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5631 cpuid_arg->entries); 5632 if (r) 5633 goto out; 5634 r = -EFAULT; 5635 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5636 goto out; 5637 r = 0; 5638 break; 5639 } 5640 case KVM_GET_MSRS: { 5641 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5642 r = msr_io(vcpu, argp, do_get_msr, 1); 5643 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5644 break; 5645 } 5646 case KVM_SET_MSRS: { 5647 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5648 r = msr_io(vcpu, argp, do_set_msr, 0); 5649 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5650 break; 5651 } 5652 case KVM_TPR_ACCESS_REPORTING: { 5653 struct kvm_tpr_access_ctl tac; 5654 5655 r = -EFAULT; 5656 if (copy_from_user(&tac, argp, sizeof(tac))) 5657 goto out; 5658 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5659 if (r) 5660 goto out; 5661 r = -EFAULT; 5662 if (copy_to_user(argp, &tac, sizeof(tac))) 5663 goto out; 5664 r = 0; 5665 break; 5666 }; 5667 case KVM_SET_VAPIC_ADDR: { 5668 struct kvm_vapic_addr va; 5669 int idx; 5670 5671 r = -EINVAL; 5672 if (!lapic_in_kernel(vcpu)) 5673 goto out; 5674 r = -EFAULT; 5675 if (copy_from_user(&va, argp, sizeof(va))) 5676 goto out; 5677 idx = srcu_read_lock(&vcpu->kvm->srcu); 5678 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5679 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5680 break; 5681 } 5682 case KVM_X86_SETUP_MCE: { 5683 u64 mcg_cap; 5684 5685 r = -EFAULT; 5686 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5687 goto out; 5688 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5689 break; 5690 } 5691 case KVM_X86_SET_MCE: { 5692 struct kvm_x86_mce mce; 5693 5694 r = -EFAULT; 5695 if (copy_from_user(&mce, argp, sizeof(mce))) 5696 goto out; 5697 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5698 break; 5699 } 5700 case KVM_GET_VCPU_EVENTS: { 5701 struct kvm_vcpu_events events; 5702 5703 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5704 5705 r = -EFAULT; 5706 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5707 break; 5708 r = 0; 5709 break; 5710 } 5711 case KVM_SET_VCPU_EVENTS: { 5712 struct kvm_vcpu_events events; 5713 5714 r = -EFAULT; 5715 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5716 break; 5717 5718 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5719 break; 5720 } 5721 case KVM_GET_DEBUGREGS: { 5722 struct kvm_debugregs dbgregs; 5723 5724 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5725 5726 r = -EFAULT; 5727 if (copy_to_user(argp, &dbgregs, 5728 sizeof(struct kvm_debugregs))) 5729 break; 5730 r = 0; 5731 break; 5732 } 5733 case KVM_SET_DEBUGREGS: { 5734 struct kvm_debugregs dbgregs; 5735 5736 r = -EFAULT; 5737 if (copy_from_user(&dbgregs, argp, 5738 sizeof(struct kvm_debugregs))) 5739 break; 5740 5741 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5742 break; 5743 } 5744 case KVM_GET_XSAVE: { 5745 r = -EINVAL; 5746 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5747 break; 5748 5749 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5750 r = -ENOMEM; 5751 if (!u.xsave) 5752 break; 5753 5754 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5755 5756 r = -EFAULT; 5757 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5758 break; 5759 r = 0; 5760 break; 5761 } 5762 case KVM_SET_XSAVE: { 5763 int size = vcpu->arch.guest_fpu.uabi_size; 5764 5765 u.xsave = memdup_user(argp, size); 5766 if (IS_ERR(u.xsave)) { 5767 r = PTR_ERR(u.xsave); 5768 goto out_nofree; 5769 } 5770 5771 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5772 break; 5773 } 5774 5775 case KVM_GET_XSAVE2: { 5776 int size = vcpu->arch.guest_fpu.uabi_size; 5777 5778 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5779 r = -ENOMEM; 5780 if (!u.xsave) 5781 break; 5782 5783 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5784 5785 r = -EFAULT; 5786 if (copy_to_user(argp, u.xsave, size)) 5787 break; 5788 5789 r = 0; 5790 break; 5791 } 5792 5793 case KVM_GET_XCRS: { 5794 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5795 r = -ENOMEM; 5796 if (!u.xcrs) 5797 break; 5798 5799 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5800 5801 r = -EFAULT; 5802 if (copy_to_user(argp, u.xcrs, 5803 sizeof(struct kvm_xcrs))) 5804 break; 5805 r = 0; 5806 break; 5807 } 5808 case KVM_SET_XCRS: { 5809 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5810 if (IS_ERR(u.xcrs)) { 5811 r = PTR_ERR(u.xcrs); 5812 goto out_nofree; 5813 } 5814 5815 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5816 break; 5817 } 5818 case KVM_SET_TSC_KHZ: { 5819 u32 user_tsc_khz; 5820 5821 r = -EINVAL; 5822 user_tsc_khz = (u32)arg; 5823 5824 if (kvm_caps.has_tsc_control && 5825 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5826 goto out; 5827 5828 if (user_tsc_khz == 0) 5829 user_tsc_khz = tsc_khz; 5830 5831 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5832 r = 0; 5833 5834 goto out; 5835 } 5836 case KVM_GET_TSC_KHZ: { 5837 r = vcpu->arch.virtual_tsc_khz; 5838 goto out; 5839 } 5840 case KVM_KVMCLOCK_CTRL: { 5841 r = kvm_set_guest_paused(vcpu); 5842 goto out; 5843 } 5844 case KVM_ENABLE_CAP: { 5845 struct kvm_enable_cap cap; 5846 5847 r = -EFAULT; 5848 if (copy_from_user(&cap, argp, sizeof(cap))) 5849 goto out; 5850 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5851 break; 5852 } 5853 case KVM_GET_NESTED_STATE: { 5854 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5855 u32 user_data_size; 5856 5857 r = -EINVAL; 5858 if (!kvm_x86_ops.nested_ops->get_state) 5859 break; 5860 5861 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5862 r = -EFAULT; 5863 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5864 break; 5865 5866 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5867 user_data_size); 5868 if (r < 0) 5869 break; 5870 5871 if (r > user_data_size) { 5872 if (put_user(r, &user_kvm_nested_state->size)) 5873 r = -EFAULT; 5874 else 5875 r = -E2BIG; 5876 break; 5877 } 5878 5879 r = 0; 5880 break; 5881 } 5882 case KVM_SET_NESTED_STATE: { 5883 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5884 struct kvm_nested_state kvm_state; 5885 int idx; 5886 5887 r = -EINVAL; 5888 if (!kvm_x86_ops.nested_ops->set_state) 5889 break; 5890 5891 r = -EFAULT; 5892 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5893 break; 5894 5895 r = -EINVAL; 5896 if (kvm_state.size < sizeof(kvm_state)) 5897 break; 5898 5899 if (kvm_state.flags & 5900 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5901 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5902 | KVM_STATE_NESTED_GIF_SET)) 5903 break; 5904 5905 /* nested_run_pending implies guest_mode. */ 5906 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5907 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5908 break; 5909 5910 idx = srcu_read_lock(&vcpu->kvm->srcu); 5911 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5912 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5913 break; 5914 } 5915 case KVM_GET_SUPPORTED_HV_CPUID: 5916 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5917 break; 5918 #ifdef CONFIG_KVM_XEN 5919 case KVM_XEN_VCPU_GET_ATTR: { 5920 struct kvm_xen_vcpu_attr xva; 5921 5922 r = -EFAULT; 5923 if (copy_from_user(&xva, argp, sizeof(xva))) 5924 goto out; 5925 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5926 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5927 r = -EFAULT; 5928 break; 5929 } 5930 case KVM_XEN_VCPU_SET_ATTR: { 5931 struct kvm_xen_vcpu_attr xva; 5932 5933 r = -EFAULT; 5934 if (copy_from_user(&xva, argp, sizeof(xva))) 5935 goto out; 5936 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5937 break; 5938 } 5939 #endif 5940 case KVM_GET_SREGS2: { 5941 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5942 r = -ENOMEM; 5943 if (!u.sregs2) 5944 goto out; 5945 __get_sregs2(vcpu, u.sregs2); 5946 r = -EFAULT; 5947 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5948 goto out; 5949 r = 0; 5950 break; 5951 } 5952 case KVM_SET_SREGS2: { 5953 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5954 if (IS_ERR(u.sregs2)) { 5955 r = PTR_ERR(u.sregs2); 5956 u.sregs2 = NULL; 5957 goto out; 5958 } 5959 r = __set_sregs2(vcpu, u.sregs2); 5960 break; 5961 } 5962 case KVM_HAS_DEVICE_ATTR: 5963 case KVM_GET_DEVICE_ATTR: 5964 case KVM_SET_DEVICE_ATTR: 5965 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5966 break; 5967 default: 5968 r = -EINVAL; 5969 } 5970 out: 5971 kfree(u.buffer); 5972 out_nofree: 5973 vcpu_put(vcpu); 5974 return r; 5975 } 5976 5977 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5978 { 5979 return VM_FAULT_SIGBUS; 5980 } 5981 5982 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5983 { 5984 int ret; 5985 5986 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5987 return -EINVAL; 5988 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5989 return ret; 5990 } 5991 5992 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5993 u64 ident_addr) 5994 { 5995 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5996 } 5997 5998 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5999 unsigned long kvm_nr_mmu_pages) 6000 { 6001 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6002 return -EINVAL; 6003 6004 mutex_lock(&kvm->slots_lock); 6005 6006 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6007 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6008 6009 mutex_unlock(&kvm->slots_lock); 6010 return 0; 6011 } 6012 6013 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6014 { 6015 return kvm->arch.n_max_mmu_pages; 6016 } 6017 6018 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6019 { 6020 struct kvm_pic *pic = kvm->arch.vpic; 6021 int r; 6022 6023 r = 0; 6024 switch (chip->chip_id) { 6025 case KVM_IRQCHIP_PIC_MASTER: 6026 memcpy(&chip->chip.pic, &pic->pics[0], 6027 sizeof(struct kvm_pic_state)); 6028 break; 6029 case KVM_IRQCHIP_PIC_SLAVE: 6030 memcpy(&chip->chip.pic, &pic->pics[1], 6031 sizeof(struct kvm_pic_state)); 6032 break; 6033 case KVM_IRQCHIP_IOAPIC: 6034 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6035 break; 6036 default: 6037 r = -EINVAL; 6038 break; 6039 } 6040 return r; 6041 } 6042 6043 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6044 { 6045 struct kvm_pic *pic = kvm->arch.vpic; 6046 int r; 6047 6048 r = 0; 6049 switch (chip->chip_id) { 6050 case KVM_IRQCHIP_PIC_MASTER: 6051 spin_lock(&pic->lock); 6052 memcpy(&pic->pics[0], &chip->chip.pic, 6053 sizeof(struct kvm_pic_state)); 6054 spin_unlock(&pic->lock); 6055 break; 6056 case KVM_IRQCHIP_PIC_SLAVE: 6057 spin_lock(&pic->lock); 6058 memcpy(&pic->pics[1], &chip->chip.pic, 6059 sizeof(struct kvm_pic_state)); 6060 spin_unlock(&pic->lock); 6061 break; 6062 case KVM_IRQCHIP_IOAPIC: 6063 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6064 break; 6065 default: 6066 r = -EINVAL; 6067 break; 6068 } 6069 kvm_pic_update_irq(pic); 6070 return r; 6071 } 6072 6073 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6074 { 6075 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6076 6077 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6078 6079 mutex_lock(&kps->lock); 6080 memcpy(ps, &kps->channels, sizeof(*ps)); 6081 mutex_unlock(&kps->lock); 6082 return 0; 6083 } 6084 6085 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6086 { 6087 int i; 6088 struct kvm_pit *pit = kvm->arch.vpit; 6089 6090 mutex_lock(&pit->pit_state.lock); 6091 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6092 for (i = 0; i < 3; i++) 6093 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6094 mutex_unlock(&pit->pit_state.lock); 6095 return 0; 6096 } 6097 6098 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6099 { 6100 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6101 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6102 sizeof(ps->channels)); 6103 ps->flags = kvm->arch.vpit->pit_state.flags; 6104 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6105 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6106 return 0; 6107 } 6108 6109 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6110 { 6111 int start = 0; 6112 int i; 6113 u32 prev_legacy, cur_legacy; 6114 struct kvm_pit *pit = kvm->arch.vpit; 6115 6116 mutex_lock(&pit->pit_state.lock); 6117 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6118 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6119 if (!prev_legacy && cur_legacy) 6120 start = 1; 6121 memcpy(&pit->pit_state.channels, &ps->channels, 6122 sizeof(pit->pit_state.channels)); 6123 pit->pit_state.flags = ps->flags; 6124 for (i = 0; i < 3; i++) 6125 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6126 start && i == 0); 6127 mutex_unlock(&pit->pit_state.lock); 6128 return 0; 6129 } 6130 6131 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6132 struct kvm_reinject_control *control) 6133 { 6134 struct kvm_pit *pit = kvm->arch.vpit; 6135 6136 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6137 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6138 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6139 */ 6140 mutex_lock(&pit->pit_state.lock); 6141 kvm_pit_set_reinject(pit, control->pit_reinject); 6142 mutex_unlock(&pit->pit_state.lock); 6143 6144 return 0; 6145 } 6146 6147 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6148 { 6149 6150 /* 6151 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6152 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6153 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6154 * VM-Exit. 6155 */ 6156 struct kvm_vcpu *vcpu; 6157 unsigned long i; 6158 6159 kvm_for_each_vcpu(i, vcpu, kvm) 6160 kvm_vcpu_kick(vcpu); 6161 } 6162 6163 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6164 bool line_status) 6165 { 6166 if (!irqchip_in_kernel(kvm)) 6167 return -ENXIO; 6168 6169 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6170 irq_event->irq, irq_event->level, 6171 line_status); 6172 return 0; 6173 } 6174 6175 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6176 struct kvm_enable_cap *cap) 6177 { 6178 int r; 6179 6180 if (cap->flags) 6181 return -EINVAL; 6182 6183 switch (cap->cap) { 6184 case KVM_CAP_DISABLE_QUIRKS2: 6185 r = -EINVAL; 6186 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6187 break; 6188 fallthrough; 6189 case KVM_CAP_DISABLE_QUIRKS: 6190 kvm->arch.disabled_quirks = cap->args[0]; 6191 r = 0; 6192 break; 6193 case KVM_CAP_SPLIT_IRQCHIP: { 6194 mutex_lock(&kvm->lock); 6195 r = -EINVAL; 6196 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6197 goto split_irqchip_unlock; 6198 r = -EEXIST; 6199 if (irqchip_in_kernel(kvm)) 6200 goto split_irqchip_unlock; 6201 if (kvm->created_vcpus) 6202 goto split_irqchip_unlock; 6203 r = kvm_setup_empty_irq_routing(kvm); 6204 if (r) 6205 goto split_irqchip_unlock; 6206 /* Pairs with irqchip_in_kernel. */ 6207 smp_wmb(); 6208 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6209 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6210 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6211 r = 0; 6212 split_irqchip_unlock: 6213 mutex_unlock(&kvm->lock); 6214 break; 6215 } 6216 case KVM_CAP_X2APIC_API: 6217 r = -EINVAL; 6218 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6219 break; 6220 6221 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6222 kvm->arch.x2apic_format = true; 6223 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6224 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6225 6226 r = 0; 6227 break; 6228 case KVM_CAP_X86_DISABLE_EXITS: 6229 r = -EINVAL; 6230 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6231 break; 6232 6233 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6234 kvm_can_mwait_in_guest()) 6235 kvm->arch.mwait_in_guest = true; 6236 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6237 kvm->arch.hlt_in_guest = true; 6238 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6239 kvm->arch.pause_in_guest = true; 6240 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6241 kvm->arch.cstate_in_guest = true; 6242 r = 0; 6243 break; 6244 case KVM_CAP_MSR_PLATFORM_INFO: 6245 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6246 r = 0; 6247 break; 6248 case KVM_CAP_EXCEPTION_PAYLOAD: 6249 kvm->arch.exception_payload_enabled = cap->args[0]; 6250 r = 0; 6251 break; 6252 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6253 kvm->arch.triple_fault_event = cap->args[0]; 6254 r = 0; 6255 break; 6256 case KVM_CAP_X86_USER_SPACE_MSR: 6257 r = -EINVAL; 6258 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6259 break; 6260 kvm->arch.user_space_msr_mask = cap->args[0]; 6261 r = 0; 6262 break; 6263 case KVM_CAP_X86_BUS_LOCK_EXIT: 6264 r = -EINVAL; 6265 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6266 break; 6267 6268 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6269 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6270 break; 6271 6272 if (kvm_caps.has_bus_lock_exit && 6273 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6274 kvm->arch.bus_lock_detection_enabled = true; 6275 r = 0; 6276 break; 6277 #ifdef CONFIG_X86_SGX_KVM 6278 case KVM_CAP_SGX_ATTRIBUTE: { 6279 unsigned long allowed_attributes = 0; 6280 6281 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6282 if (r) 6283 break; 6284 6285 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6286 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6287 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6288 kvm->arch.sgx_provisioning_allowed = true; 6289 else 6290 r = -EINVAL; 6291 break; 6292 } 6293 #endif 6294 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6295 r = -EINVAL; 6296 if (!kvm_x86_ops.vm_copy_enc_context_from) 6297 break; 6298 6299 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6300 break; 6301 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6302 r = -EINVAL; 6303 if (!kvm_x86_ops.vm_move_enc_context_from) 6304 break; 6305 6306 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6307 break; 6308 case KVM_CAP_EXIT_HYPERCALL: 6309 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6310 r = -EINVAL; 6311 break; 6312 } 6313 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6314 r = 0; 6315 break; 6316 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6317 r = -EINVAL; 6318 if (cap->args[0] & ~1) 6319 break; 6320 kvm->arch.exit_on_emulation_error = cap->args[0]; 6321 r = 0; 6322 break; 6323 case KVM_CAP_PMU_CAPABILITY: 6324 r = -EINVAL; 6325 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6326 break; 6327 6328 mutex_lock(&kvm->lock); 6329 if (!kvm->created_vcpus) { 6330 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6331 r = 0; 6332 } 6333 mutex_unlock(&kvm->lock); 6334 break; 6335 case KVM_CAP_MAX_VCPU_ID: 6336 r = -EINVAL; 6337 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6338 break; 6339 6340 mutex_lock(&kvm->lock); 6341 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6342 r = 0; 6343 } else if (!kvm->arch.max_vcpu_ids) { 6344 kvm->arch.max_vcpu_ids = cap->args[0]; 6345 r = 0; 6346 } 6347 mutex_unlock(&kvm->lock); 6348 break; 6349 case KVM_CAP_X86_NOTIFY_VMEXIT: 6350 r = -EINVAL; 6351 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6352 break; 6353 if (!kvm_caps.has_notify_vmexit) 6354 break; 6355 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6356 break; 6357 mutex_lock(&kvm->lock); 6358 if (!kvm->created_vcpus) { 6359 kvm->arch.notify_window = cap->args[0] >> 32; 6360 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6361 r = 0; 6362 } 6363 mutex_unlock(&kvm->lock); 6364 break; 6365 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6366 r = -EINVAL; 6367 6368 /* 6369 * Since the risk of disabling NX hugepages is a guest crashing 6370 * the system, ensure the userspace process has permission to 6371 * reboot the system. 6372 * 6373 * Note that unlike the reboot() syscall, the process must have 6374 * this capability in the root namespace because exposing 6375 * /dev/kvm into a container does not limit the scope of the 6376 * iTLB multihit bug to that container. In other words, 6377 * this must use capable(), not ns_capable(). 6378 */ 6379 if (!capable(CAP_SYS_BOOT)) { 6380 r = -EPERM; 6381 break; 6382 } 6383 6384 if (cap->args[0]) 6385 break; 6386 6387 mutex_lock(&kvm->lock); 6388 if (!kvm->created_vcpus) { 6389 kvm->arch.disable_nx_huge_pages = true; 6390 r = 0; 6391 } 6392 mutex_unlock(&kvm->lock); 6393 break; 6394 default: 6395 r = -EINVAL; 6396 break; 6397 } 6398 return r; 6399 } 6400 6401 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6402 { 6403 struct kvm_x86_msr_filter *msr_filter; 6404 6405 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6406 if (!msr_filter) 6407 return NULL; 6408 6409 msr_filter->default_allow = default_allow; 6410 return msr_filter; 6411 } 6412 6413 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6414 { 6415 u32 i; 6416 6417 if (!msr_filter) 6418 return; 6419 6420 for (i = 0; i < msr_filter->count; i++) 6421 kfree(msr_filter->ranges[i].bitmap); 6422 6423 kfree(msr_filter); 6424 } 6425 6426 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6427 struct kvm_msr_filter_range *user_range) 6428 { 6429 unsigned long *bitmap = NULL; 6430 size_t bitmap_size; 6431 6432 if (!user_range->nmsrs) 6433 return 0; 6434 6435 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6436 return -EINVAL; 6437 6438 if (!user_range->flags) 6439 return -EINVAL; 6440 6441 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6442 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6443 return -EINVAL; 6444 6445 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6446 if (IS_ERR(bitmap)) 6447 return PTR_ERR(bitmap); 6448 6449 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6450 .flags = user_range->flags, 6451 .base = user_range->base, 6452 .nmsrs = user_range->nmsrs, 6453 .bitmap = bitmap, 6454 }; 6455 6456 msr_filter->count++; 6457 return 0; 6458 } 6459 6460 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6461 struct kvm_msr_filter *filter) 6462 { 6463 struct kvm_x86_msr_filter *new_filter, *old_filter; 6464 bool default_allow; 6465 bool empty = true; 6466 int r = 0; 6467 u32 i; 6468 6469 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6470 return -EINVAL; 6471 6472 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6473 empty &= !filter->ranges[i].nmsrs; 6474 6475 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6476 if (empty && !default_allow) 6477 return -EINVAL; 6478 6479 new_filter = kvm_alloc_msr_filter(default_allow); 6480 if (!new_filter) 6481 return -ENOMEM; 6482 6483 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6484 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6485 if (r) { 6486 kvm_free_msr_filter(new_filter); 6487 return r; 6488 } 6489 } 6490 6491 mutex_lock(&kvm->lock); 6492 6493 /* The per-VM filter is protected by kvm->lock... */ 6494 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6495 6496 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6497 synchronize_srcu(&kvm->srcu); 6498 6499 kvm_free_msr_filter(old_filter); 6500 6501 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6502 mutex_unlock(&kvm->lock); 6503 6504 return 0; 6505 } 6506 6507 #ifdef CONFIG_KVM_COMPAT 6508 /* for KVM_X86_SET_MSR_FILTER */ 6509 struct kvm_msr_filter_range_compat { 6510 __u32 flags; 6511 __u32 nmsrs; 6512 __u32 base; 6513 __u32 bitmap; 6514 }; 6515 6516 struct kvm_msr_filter_compat { 6517 __u32 flags; 6518 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6519 }; 6520 6521 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6522 6523 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6524 unsigned long arg) 6525 { 6526 void __user *argp = (void __user *)arg; 6527 struct kvm *kvm = filp->private_data; 6528 long r = -ENOTTY; 6529 6530 switch (ioctl) { 6531 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6532 struct kvm_msr_filter __user *user_msr_filter = argp; 6533 struct kvm_msr_filter_compat filter_compat; 6534 struct kvm_msr_filter filter; 6535 int i; 6536 6537 if (copy_from_user(&filter_compat, user_msr_filter, 6538 sizeof(filter_compat))) 6539 return -EFAULT; 6540 6541 filter.flags = filter_compat.flags; 6542 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6543 struct kvm_msr_filter_range_compat *cr; 6544 6545 cr = &filter_compat.ranges[i]; 6546 filter.ranges[i] = (struct kvm_msr_filter_range) { 6547 .flags = cr->flags, 6548 .nmsrs = cr->nmsrs, 6549 .base = cr->base, 6550 .bitmap = (__u8 *)(ulong)cr->bitmap, 6551 }; 6552 } 6553 6554 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6555 break; 6556 } 6557 } 6558 6559 return r; 6560 } 6561 #endif 6562 6563 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6564 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6565 { 6566 struct kvm_vcpu *vcpu; 6567 unsigned long i; 6568 int ret = 0; 6569 6570 mutex_lock(&kvm->lock); 6571 kvm_for_each_vcpu(i, vcpu, kvm) { 6572 if (!vcpu->arch.pv_time.active) 6573 continue; 6574 6575 ret = kvm_set_guest_paused(vcpu); 6576 if (ret) { 6577 kvm_err("Failed to pause guest VCPU%d: %d\n", 6578 vcpu->vcpu_id, ret); 6579 break; 6580 } 6581 } 6582 mutex_unlock(&kvm->lock); 6583 6584 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6585 } 6586 6587 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6588 { 6589 switch (state) { 6590 case PM_HIBERNATION_PREPARE: 6591 case PM_SUSPEND_PREPARE: 6592 return kvm_arch_suspend_notifier(kvm); 6593 } 6594 6595 return NOTIFY_DONE; 6596 } 6597 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6598 6599 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6600 { 6601 struct kvm_clock_data data = { 0 }; 6602 6603 get_kvmclock(kvm, &data); 6604 if (copy_to_user(argp, &data, sizeof(data))) 6605 return -EFAULT; 6606 6607 return 0; 6608 } 6609 6610 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6611 { 6612 struct kvm_arch *ka = &kvm->arch; 6613 struct kvm_clock_data data; 6614 u64 now_raw_ns; 6615 6616 if (copy_from_user(&data, argp, sizeof(data))) 6617 return -EFAULT; 6618 6619 /* 6620 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6621 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6622 */ 6623 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6624 return -EINVAL; 6625 6626 kvm_hv_request_tsc_page_update(kvm); 6627 kvm_start_pvclock_update(kvm); 6628 pvclock_update_vm_gtod_copy(kvm); 6629 6630 /* 6631 * This pairs with kvm_guest_time_update(): when masterclock is 6632 * in use, we use master_kernel_ns + kvmclock_offset to set 6633 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6634 * is slightly ahead) here we risk going negative on unsigned 6635 * 'system_time' when 'data.clock' is very small. 6636 */ 6637 if (data.flags & KVM_CLOCK_REALTIME) { 6638 u64 now_real_ns = ktime_get_real_ns(); 6639 6640 /* 6641 * Avoid stepping the kvmclock backwards. 6642 */ 6643 if (now_real_ns > data.realtime) 6644 data.clock += now_real_ns - data.realtime; 6645 } 6646 6647 if (ka->use_master_clock) 6648 now_raw_ns = ka->master_kernel_ns; 6649 else 6650 now_raw_ns = get_kvmclock_base_ns(); 6651 ka->kvmclock_offset = data.clock - now_raw_ns; 6652 kvm_end_pvclock_update(kvm); 6653 return 0; 6654 } 6655 6656 long kvm_arch_vm_ioctl(struct file *filp, 6657 unsigned int ioctl, unsigned long arg) 6658 { 6659 struct kvm *kvm = filp->private_data; 6660 void __user *argp = (void __user *)arg; 6661 int r = -ENOTTY; 6662 /* 6663 * This union makes it completely explicit to gcc-3.x 6664 * that these two variables' stack usage should be 6665 * combined, not added together. 6666 */ 6667 union { 6668 struct kvm_pit_state ps; 6669 struct kvm_pit_state2 ps2; 6670 struct kvm_pit_config pit_config; 6671 } u; 6672 6673 switch (ioctl) { 6674 case KVM_SET_TSS_ADDR: 6675 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6676 break; 6677 case KVM_SET_IDENTITY_MAP_ADDR: { 6678 u64 ident_addr; 6679 6680 mutex_lock(&kvm->lock); 6681 r = -EINVAL; 6682 if (kvm->created_vcpus) 6683 goto set_identity_unlock; 6684 r = -EFAULT; 6685 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6686 goto set_identity_unlock; 6687 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6688 set_identity_unlock: 6689 mutex_unlock(&kvm->lock); 6690 break; 6691 } 6692 case KVM_SET_NR_MMU_PAGES: 6693 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6694 break; 6695 case KVM_GET_NR_MMU_PAGES: 6696 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6697 break; 6698 case KVM_CREATE_IRQCHIP: { 6699 mutex_lock(&kvm->lock); 6700 6701 r = -EEXIST; 6702 if (irqchip_in_kernel(kvm)) 6703 goto create_irqchip_unlock; 6704 6705 r = -EINVAL; 6706 if (kvm->created_vcpus) 6707 goto create_irqchip_unlock; 6708 6709 r = kvm_pic_init(kvm); 6710 if (r) 6711 goto create_irqchip_unlock; 6712 6713 r = kvm_ioapic_init(kvm); 6714 if (r) { 6715 kvm_pic_destroy(kvm); 6716 goto create_irqchip_unlock; 6717 } 6718 6719 r = kvm_setup_default_irq_routing(kvm); 6720 if (r) { 6721 kvm_ioapic_destroy(kvm); 6722 kvm_pic_destroy(kvm); 6723 goto create_irqchip_unlock; 6724 } 6725 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6726 smp_wmb(); 6727 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6728 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6729 create_irqchip_unlock: 6730 mutex_unlock(&kvm->lock); 6731 break; 6732 } 6733 case KVM_CREATE_PIT: 6734 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6735 goto create_pit; 6736 case KVM_CREATE_PIT2: 6737 r = -EFAULT; 6738 if (copy_from_user(&u.pit_config, argp, 6739 sizeof(struct kvm_pit_config))) 6740 goto out; 6741 create_pit: 6742 mutex_lock(&kvm->lock); 6743 r = -EEXIST; 6744 if (kvm->arch.vpit) 6745 goto create_pit_unlock; 6746 r = -ENOMEM; 6747 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6748 if (kvm->arch.vpit) 6749 r = 0; 6750 create_pit_unlock: 6751 mutex_unlock(&kvm->lock); 6752 break; 6753 case KVM_GET_IRQCHIP: { 6754 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6755 struct kvm_irqchip *chip; 6756 6757 chip = memdup_user(argp, sizeof(*chip)); 6758 if (IS_ERR(chip)) { 6759 r = PTR_ERR(chip); 6760 goto out; 6761 } 6762 6763 r = -ENXIO; 6764 if (!irqchip_kernel(kvm)) 6765 goto get_irqchip_out; 6766 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6767 if (r) 6768 goto get_irqchip_out; 6769 r = -EFAULT; 6770 if (copy_to_user(argp, chip, sizeof(*chip))) 6771 goto get_irqchip_out; 6772 r = 0; 6773 get_irqchip_out: 6774 kfree(chip); 6775 break; 6776 } 6777 case KVM_SET_IRQCHIP: { 6778 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6779 struct kvm_irqchip *chip; 6780 6781 chip = memdup_user(argp, sizeof(*chip)); 6782 if (IS_ERR(chip)) { 6783 r = PTR_ERR(chip); 6784 goto out; 6785 } 6786 6787 r = -ENXIO; 6788 if (!irqchip_kernel(kvm)) 6789 goto set_irqchip_out; 6790 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6791 set_irqchip_out: 6792 kfree(chip); 6793 break; 6794 } 6795 case KVM_GET_PIT: { 6796 r = -EFAULT; 6797 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6798 goto out; 6799 r = -ENXIO; 6800 if (!kvm->arch.vpit) 6801 goto out; 6802 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6803 if (r) 6804 goto out; 6805 r = -EFAULT; 6806 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6807 goto out; 6808 r = 0; 6809 break; 6810 } 6811 case KVM_SET_PIT: { 6812 r = -EFAULT; 6813 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6814 goto out; 6815 mutex_lock(&kvm->lock); 6816 r = -ENXIO; 6817 if (!kvm->arch.vpit) 6818 goto set_pit_out; 6819 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6820 set_pit_out: 6821 mutex_unlock(&kvm->lock); 6822 break; 6823 } 6824 case KVM_GET_PIT2: { 6825 r = -ENXIO; 6826 if (!kvm->arch.vpit) 6827 goto out; 6828 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6829 if (r) 6830 goto out; 6831 r = -EFAULT; 6832 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6833 goto out; 6834 r = 0; 6835 break; 6836 } 6837 case KVM_SET_PIT2: { 6838 r = -EFAULT; 6839 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6840 goto out; 6841 mutex_lock(&kvm->lock); 6842 r = -ENXIO; 6843 if (!kvm->arch.vpit) 6844 goto set_pit2_out; 6845 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6846 set_pit2_out: 6847 mutex_unlock(&kvm->lock); 6848 break; 6849 } 6850 case KVM_REINJECT_CONTROL: { 6851 struct kvm_reinject_control control; 6852 r = -EFAULT; 6853 if (copy_from_user(&control, argp, sizeof(control))) 6854 goto out; 6855 r = -ENXIO; 6856 if (!kvm->arch.vpit) 6857 goto out; 6858 r = kvm_vm_ioctl_reinject(kvm, &control); 6859 break; 6860 } 6861 case KVM_SET_BOOT_CPU_ID: 6862 r = 0; 6863 mutex_lock(&kvm->lock); 6864 if (kvm->created_vcpus) 6865 r = -EBUSY; 6866 else 6867 kvm->arch.bsp_vcpu_id = arg; 6868 mutex_unlock(&kvm->lock); 6869 break; 6870 #ifdef CONFIG_KVM_XEN 6871 case KVM_XEN_HVM_CONFIG: { 6872 struct kvm_xen_hvm_config xhc; 6873 r = -EFAULT; 6874 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6875 goto out; 6876 r = kvm_xen_hvm_config(kvm, &xhc); 6877 break; 6878 } 6879 case KVM_XEN_HVM_GET_ATTR: { 6880 struct kvm_xen_hvm_attr xha; 6881 6882 r = -EFAULT; 6883 if (copy_from_user(&xha, argp, sizeof(xha))) 6884 goto out; 6885 r = kvm_xen_hvm_get_attr(kvm, &xha); 6886 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6887 r = -EFAULT; 6888 break; 6889 } 6890 case KVM_XEN_HVM_SET_ATTR: { 6891 struct kvm_xen_hvm_attr xha; 6892 6893 r = -EFAULT; 6894 if (copy_from_user(&xha, argp, sizeof(xha))) 6895 goto out; 6896 r = kvm_xen_hvm_set_attr(kvm, &xha); 6897 break; 6898 } 6899 case KVM_XEN_HVM_EVTCHN_SEND: { 6900 struct kvm_irq_routing_xen_evtchn uxe; 6901 6902 r = -EFAULT; 6903 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6904 goto out; 6905 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6906 break; 6907 } 6908 #endif 6909 case KVM_SET_CLOCK: 6910 r = kvm_vm_ioctl_set_clock(kvm, argp); 6911 break; 6912 case KVM_GET_CLOCK: 6913 r = kvm_vm_ioctl_get_clock(kvm, argp); 6914 break; 6915 case KVM_SET_TSC_KHZ: { 6916 u32 user_tsc_khz; 6917 6918 r = -EINVAL; 6919 user_tsc_khz = (u32)arg; 6920 6921 if (kvm_caps.has_tsc_control && 6922 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6923 goto out; 6924 6925 if (user_tsc_khz == 0) 6926 user_tsc_khz = tsc_khz; 6927 6928 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6929 r = 0; 6930 6931 goto out; 6932 } 6933 case KVM_GET_TSC_KHZ: { 6934 r = READ_ONCE(kvm->arch.default_tsc_khz); 6935 goto out; 6936 } 6937 case KVM_MEMORY_ENCRYPT_OP: { 6938 r = -ENOTTY; 6939 if (!kvm_x86_ops.mem_enc_ioctl) 6940 goto out; 6941 6942 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6943 break; 6944 } 6945 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6946 struct kvm_enc_region region; 6947 6948 r = -EFAULT; 6949 if (copy_from_user(®ion, argp, sizeof(region))) 6950 goto out; 6951 6952 r = -ENOTTY; 6953 if (!kvm_x86_ops.mem_enc_register_region) 6954 goto out; 6955 6956 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6957 break; 6958 } 6959 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6960 struct kvm_enc_region region; 6961 6962 r = -EFAULT; 6963 if (copy_from_user(®ion, argp, sizeof(region))) 6964 goto out; 6965 6966 r = -ENOTTY; 6967 if (!kvm_x86_ops.mem_enc_unregister_region) 6968 goto out; 6969 6970 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6971 break; 6972 } 6973 case KVM_HYPERV_EVENTFD: { 6974 struct kvm_hyperv_eventfd hvevfd; 6975 6976 r = -EFAULT; 6977 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6978 goto out; 6979 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6980 break; 6981 } 6982 case KVM_SET_PMU_EVENT_FILTER: 6983 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6984 break; 6985 case KVM_X86_SET_MSR_FILTER: { 6986 struct kvm_msr_filter __user *user_msr_filter = argp; 6987 struct kvm_msr_filter filter; 6988 6989 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6990 return -EFAULT; 6991 6992 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6993 break; 6994 } 6995 default: 6996 r = -ENOTTY; 6997 } 6998 out: 6999 return r; 7000 } 7001 7002 static void kvm_init_msr_list(void) 7003 { 7004 u32 dummy[2]; 7005 unsigned i; 7006 7007 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7008 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7009 7010 num_msrs_to_save = 0; 7011 num_emulated_msrs = 0; 7012 num_msr_based_features = 0; 7013 7014 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7015 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7016 continue; 7017 7018 /* 7019 * Even MSRs that are valid in the host may not be exposed 7020 * to the guests in some cases. 7021 */ 7022 switch (msrs_to_save_all[i]) { 7023 case MSR_IA32_BNDCFGS: 7024 if (!kvm_mpx_supported()) 7025 continue; 7026 break; 7027 case MSR_TSC_AUX: 7028 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7029 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7030 continue; 7031 break; 7032 case MSR_IA32_UMWAIT_CONTROL: 7033 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7034 continue; 7035 break; 7036 case MSR_IA32_RTIT_CTL: 7037 case MSR_IA32_RTIT_STATUS: 7038 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7039 continue; 7040 break; 7041 case MSR_IA32_RTIT_CR3_MATCH: 7042 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7043 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7044 continue; 7045 break; 7046 case MSR_IA32_RTIT_OUTPUT_BASE: 7047 case MSR_IA32_RTIT_OUTPUT_MASK: 7048 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7049 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7050 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7051 continue; 7052 break; 7053 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7054 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7055 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7056 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7057 continue; 7058 break; 7059 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7060 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7061 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7062 continue; 7063 break; 7064 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7065 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7066 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7067 continue; 7068 break; 7069 case MSR_IA32_XFD: 7070 case MSR_IA32_XFD_ERR: 7071 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7072 continue; 7073 break; 7074 default: 7075 break; 7076 } 7077 7078 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7079 } 7080 7081 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7082 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7083 continue; 7084 7085 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7086 } 7087 7088 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7089 struct kvm_msr_entry msr; 7090 7091 msr.index = msr_based_features_all[i]; 7092 if (kvm_get_msr_feature(&msr)) 7093 continue; 7094 7095 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7096 } 7097 } 7098 7099 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7100 const void *v) 7101 { 7102 int handled = 0; 7103 int n; 7104 7105 do { 7106 n = min(len, 8); 7107 if (!(lapic_in_kernel(vcpu) && 7108 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7109 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7110 break; 7111 handled += n; 7112 addr += n; 7113 len -= n; 7114 v += n; 7115 } while (len); 7116 7117 return handled; 7118 } 7119 7120 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7121 { 7122 int handled = 0; 7123 int n; 7124 7125 do { 7126 n = min(len, 8); 7127 if (!(lapic_in_kernel(vcpu) && 7128 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7129 addr, n, v)) 7130 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7131 break; 7132 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7133 handled += n; 7134 addr += n; 7135 len -= n; 7136 v += n; 7137 } while (len); 7138 7139 return handled; 7140 } 7141 7142 void kvm_set_segment(struct kvm_vcpu *vcpu, 7143 struct kvm_segment *var, int seg) 7144 { 7145 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7146 } 7147 7148 void kvm_get_segment(struct kvm_vcpu *vcpu, 7149 struct kvm_segment *var, int seg) 7150 { 7151 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7152 } 7153 7154 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7155 struct x86_exception *exception) 7156 { 7157 struct kvm_mmu *mmu = vcpu->arch.mmu; 7158 gpa_t t_gpa; 7159 7160 BUG_ON(!mmu_is_nested(vcpu)); 7161 7162 /* NPT walks are always user-walks */ 7163 access |= PFERR_USER_MASK; 7164 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7165 7166 return t_gpa; 7167 } 7168 7169 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7170 struct x86_exception *exception) 7171 { 7172 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7173 7174 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7175 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7176 } 7177 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7178 7179 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7180 struct x86_exception *exception) 7181 { 7182 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7183 7184 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7185 access |= PFERR_WRITE_MASK; 7186 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7187 } 7188 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7189 7190 /* uses this to access any guest's mapped memory without checking CPL */ 7191 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7192 struct x86_exception *exception) 7193 { 7194 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7195 7196 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7197 } 7198 7199 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7200 struct kvm_vcpu *vcpu, u64 access, 7201 struct x86_exception *exception) 7202 { 7203 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7204 void *data = val; 7205 int r = X86EMUL_CONTINUE; 7206 7207 while (bytes) { 7208 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7209 unsigned offset = addr & (PAGE_SIZE-1); 7210 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7211 int ret; 7212 7213 if (gpa == INVALID_GPA) 7214 return X86EMUL_PROPAGATE_FAULT; 7215 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7216 offset, toread); 7217 if (ret < 0) { 7218 r = X86EMUL_IO_NEEDED; 7219 goto out; 7220 } 7221 7222 bytes -= toread; 7223 data += toread; 7224 addr += toread; 7225 } 7226 out: 7227 return r; 7228 } 7229 7230 /* used for instruction fetching */ 7231 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7232 gva_t addr, void *val, unsigned int bytes, 7233 struct x86_exception *exception) 7234 { 7235 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7236 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7237 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7238 unsigned offset; 7239 int ret; 7240 7241 /* Inline kvm_read_guest_virt_helper for speed. */ 7242 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7243 exception); 7244 if (unlikely(gpa == INVALID_GPA)) 7245 return X86EMUL_PROPAGATE_FAULT; 7246 7247 offset = addr & (PAGE_SIZE-1); 7248 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7249 bytes = (unsigned)PAGE_SIZE - offset; 7250 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7251 offset, bytes); 7252 if (unlikely(ret < 0)) 7253 return X86EMUL_IO_NEEDED; 7254 7255 return X86EMUL_CONTINUE; 7256 } 7257 7258 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7259 gva_t addr, void *val, unsigned int bytes, 7260 struct x86_exception *exception) 7261 { 7262 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7263 7264 /* 7265 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7266 * is returned, but our callers are not ready for that and they blindly 7267 * call kvm_inject_page_fault. Ensure that they at least do not leak 7268 * uninitialized kernel stack memory into cr2 and error code. 7269 */ 7270 memset(exception, 0, sizeof(*exception)); 7271 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7272 exception); 7273 } 7274 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7275 7276 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7277 gva_t addr, void *val, unsigned int bytes, 7278 struct x86_exception *exception, bool system) 7279 { 7280 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7281 u64 access = 0; 7282 7283 if (system) 7284 access |= PFERR_IMPLICIT_ACCESS; 7285 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7286 access |= PFERR_USER_MASK; 7287 7288 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7289 } 7290 7291 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7292 struct kvm_vcpu *vcpu, u64 access, 7293 struct x86_exception *exception) 7294 { 7295 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7296 void *data = val; 7297 int r = X86EMUL_CONTINUE; 7298 7299 while (bytes) { 7300 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7301 unsigned offset = addr & (PAGE_SIZE-1); 7302 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7303 int ret; 7304 7305 if (gpa == INVALID_GPA) 7306 return X86EMUL_PROPAGATE_FAULT; 7307 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7308 if (ret < 0) { 7309 r = X86EMUL_IO_NEEDED; 7310 goto out; 7311 } 7312 7313 bytes -= towrite; 7314 data += towrite; 7315 addr += towrite; 7316 } 7317 out: 7318 return r; 7319 } 7320 7321 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7322 unsigned int bytes, struct x86_exception *exception, 7323 bool system) 7324 { 7325 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7326 u64 access = PFERR_WRITE_MASK; 7327 7328 if (system) 7329 access |= PFERR_IMPLICIT_ACCESS; 7330 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7331 access |= PFERR_USER_MASK; 7332 7333 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7334 access, exception); 7335 } 7336 7337 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7338 unsigned int bytes, struct x86_exception *exception) 7339 { 7340 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7341 vcpu->arch.l1tf_flush_l1d = true; 7342 7343 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7344 PFERR_WRITE_MASK, exception); 7345 } 7346 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7347 7348 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7349 void *insn, int insn_len) 7350 { 7351 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7352 insn, insn_len); 7353 } 7354 7355 int handle_ud(struct kvm_vcpu *vcpu) 7356 { 7357 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7358 int fep_flags = READ_ONCE(force_emulation_prefix); 7359 int emul_type = EMULTYPE_TRAP_UD; 7360 char sig[5]; /* ud2; .ascii "kvm" */ 7361 struct x86_exception e; 7362 7363 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7364 return 1; 7365 7366 if (fep_flags && 7367 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7368 sig, sizeof(sig), &e) == 0 && 7369 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7370 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7371 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7372 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7373 emul_type = EMULTYPE_TRAP_UD_FORCED; 7374 } 7375 7376 return kvm_emulate_instruction(vcpu, emul_type); 7377 } 7378 EXPORT_SYMBOL_GPL(handle_ud); 7379 7380 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7381 gpa_t gpa, bool write) 7382 { 7383 /* For APIC access vmexit */ 7384 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7385 return 1; 7386 7387 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7388 trace_vcpu_match_mmio(gva, gpa, write, true); 7389 return 1; 7390 } 7391 7392 return 0; 7393 } 7394 7395 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7396 gpa_t *gpa, struct x86_exception *exception, 7397 bool write) 7398 { 7399 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7400 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7401 | (write ? PFERR_WRITE_MASK : 0); 7402 7403 /* 7404 * currently PKRU is only applied to ept enabled guest so 7405 * there is no pkey in EPT page table for L1 guest or EPT 7406 * shadow page table for L2 guest. 7407 */ 7408 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7409 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7410 vcpu->arch.mmio_access, 0, access))) { 7411 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7412 (gva & (PAGE_SIZE - 1)); 7413 trace_vcpu_match_mmio(gva, *gpa, write, false); 7414 return 1; 7415 } 7416 7417 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7418 7419 if (*gpa == INVALID_GPA) 7420 return -1; 7421 7422 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7423 } 7424 7425 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7426 const void *val, int bytes) 7427 { 7428 int ret; 7429 7430 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7431 if (ret < 0) 7432 return 0; 7433 kvm_page_track_write(vcpu, gpa, val, bytes); 7434 return 1; 7435 } 7436 7437 struct read_write_emulator_ops { 7438 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7439 int bytes); 7440 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7441 void *val, int bytes); 7442 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7443 int bytes, void *val); 7444 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7445 void *val, int bytes); 7446 bool write; 7447 }; 7448 7449 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7450 { 7451 if (vcpu->mmio_read_completed) { 7452 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7453 vcpu->mmio_fragments[0].gpa, val); 7454 vcpu->mmio_read_completed = 0; 7455 return 1; 7456 } 7457 7458 return 0; 7459 } 7460 7461 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7462 void *val, int bytes) 7463 { 7464 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7465 } 7466 7467 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7468 void *val, int bytes) 7469 { 7470 return emulator_write_phys(vcpu, gpa, val, bytes); 7471 } 7472 7473 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7474 { 7475 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7476 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7477 } 7478 7479 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7480 void *val, int bytes) 7481 { 7482 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7483 return X86EMUL_IO_NEEDED; 7484 } 7485 7486 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7487 void *val, int bytes) 7488 { 7489 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7490 7491 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7492 return X86EMUL_CONTINUE; 7493 } 7494 7495 static const struct read_write_emulator_ops read_emultor = { 7496 .read_write_prepare = read_prepare, 7497 .read_write_emulate = read_emulate, 7498 .read_write_mmio = vcpu_mmio_read, 7499 .read_write_exit_mmio = read_exit_mmio, 7500 }; 7501 7502 static const struct read_write_emulator_ops write_emultor = { 7503 .read_write_emulate = write_emulate, 7504 .read_write_mmio = write_mmio, 7505 .read_write_exit_mmio = write_exit_mmio, 7506 .write = true, 7507 }; 7508 7509 static int emulator_read_write_onepage(unsigned long addr, void *val, 7510 unsigned int bytes, 7511 struct x86_exception *exception, 7512 struct kvm_vcpu *vcpu, 7513 const struct read_write_emulator_ops *ops) 7514 { 7515 gpa_t gpa; 7516 int handled, ret; 7517 bool write = ops->write; 7518 struct kvm_mmio_fragment *frag; 7519 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7520 7521 /* 7522 * If the exit was due to a NPF we may already have a GPA. 7523 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7524 * Note, this cannot be used on string operations since string 7525 * operation using rep will only have the initial GPA from the NPF 7526 * occurred. 7527 */ 7528 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7529 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7530 gpa = ctxt->gpa_val; 7531 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7532 } else { 7533 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7534 if (ret < 0) 7535 return X86EMUL_PROPAGATE_FAULT; 7536 } 7537 7538 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7539 return X86EMUL_CONTINUE; 7540 7541 /* 7542 * Is this MMIO handled locally? 7543 */ 7544 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7545 if (handled == bytes) 7546 return X86EMUL_CONTINUE; 7547 7548 gpa += handled; 7549 bytes -= handled; 7550 val += handled; 7551 7552 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7553 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7554 frag->gpa = gpa; 7555 frag->data = val; 7556 frag->len = bytes; 7557 return X86EMUL_CONTINUE; 7558 } 7559 7560 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7561 unsigned long addr, 7562 void *val, unsigned int bytes, 7563 struct x86_exception *exception, 7564 const struct read_write_emulator_ops *ops) 7565 { 7566 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7567 gpa_t gpa; 7568 int rc; 7569 7570 if (ops->read_write_prepare && 7571 ops->read_write_prepare(vcpu, val, bytes)) 7572 return X86EMUL_CONTINUE; 7573 7574 vcpu->mmio_nr_fragments = 0; 7575 7576 /* Crossing a page boundary? */ 7577 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7578 int now; 7579 7580 now = -addr & ~PAGE_MASK; 7581 rc = emulator_read_write_onepage(addr, val, now, exception, 7582 vcpu, ops); 7583 7584 if (rc != X86EMUL_CONTINUE) 7585 return rc; 7586 addr += now; 7587 if (ctxt->mode != X86EMUL_MODE_PROT64) 7588 addr = (u32)addr; 7589 val += now; 7590 bytes -= now; 7591 } 7592 7593 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7594 vcpu, ops); 7595 if (rc != X86EMUL_CONTINUE) 7596 return rc; 7597 7598 if (!vcpu->mmio_nr_fragments) 7599 return rc; 7600 7601 gpa = vcpu->mmio_fragments[0].gpa; 7602 7603 vcpu->mmio_needed = 1; 7604 vcpu->mmio_cur_fragment = 0; 7605 7606 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7607 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7608 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7609 vcpu->run->mmio.phys_addr = gpa; 7610 7611 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7612 } 7613 7614 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7615 unsigned long addr, 7616 void *val, 7617 unsigned int bytes, 7618 struct x86_exception *exception) 7619 { 7620 return emulator_read_write(ctxt, addr, val, bytes, 7621 exception, &read_emultor); 7622 } 7623 7624 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7625 unsigned long addr, 7626 const void *val, 7627 unsigned int bytes, 7628 struct x86_exception *exception) 7629 { 7630 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7631 exception, &write_emultor); 7632 } 7633 7634 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7635 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7636 7637 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7638 unsigned long addr, 7639 const void *old, 7640 const void *new, 7641 unsigned int bytes, 7642 struct x86_exception *exception) 7643 { 7644 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7645 u64 page_line_mask; 7646 unsigned long hva; 7647 gpa_t gpa; 7648 int r; 7649 7650 /* guests cmpxchg8b have to be emulated atomically */ 7651 if (bytes > 8 || (bytes & (bytes - 1))) 7652 goto emul_write; 7653 7654 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7655 7656 if (gpa == INVALID_GPA || 7657 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7658 goto emul_write; 7659 7660 /* 7661 * Emulate the atomic as a straight write to avoid #AC if SLD is 7662 * enabled in the host and the access splits a cache line. 7663 */ 7664 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7665 page_line_mask = ~(cache_line_size() - 1); 7666 else 7667 page_line_mask = PAGE_MASK; 7668 7669 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7670 goto emul_write; 7671 7672 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7673 if (kvm_is_error_hva(hva)) 7674 goto emul_write; 7675 7676 hva += offset_in_page(gpa); 7677 7678 switch (bytes) { 7679 case 1: 7680 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7681 break; 7682 case 2: 7683 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7684 break; 7685 case 4: 7686 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7687 break; 7688 case 8: 7689 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7690 break; 7691 default: 7692 BUG(); 7693 } 7694 7695 if (r < 0) 7696 return X86EMUL_UNHANDLEABLE; 7697 if (r) 7698 return X86EMUL_CMPXCHG_FAILED; 7699 7700 kvm_page_track_write(vcpu, gpa, new, bytes); 7701 7702 return X86EMUL_CONTINUE; 7703 7704 emul_write: 7705 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7706 7707 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7708 } 7709 7710 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7711 unsigned short port, void *data, 7712 unsigned int count, bool in) 7713 { 7714 unsigned i; 7715 int r; 7716 7717 WARN_ON_ONCE(vcpu->arch.pio.count); 7718 for (i = 0; i < count; i++) { 7719 if (in) 7720 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7721 else 7722 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7723 7724 if (r) { 7725 if (i == 0) 7726 goto userspace_io; 7727 7728 /* 7729 * Userspace must have unregistered the device while PIO 7730 * was running. Drop writes / read as 0. 7731 */ 7732 if (in) 7733 memset(data, 0, size * (count - i)); 7734 break; 7735 } 7736 7737 data += size; 7738 } 7739 return 1; 7740 7741 userspace_io: 7742 vcpu->arch.pio.port = port; 7743 vcpu->arch.pio.in = in; 7744 vcpu->arch.pio.count = count; 7745 vcpu->arch.pio.size = size; 7746 7747 if (in) 7748 memset(vcpu->arch.pio_data, 0, size * count); 7749 else 7750 memcpy(vcpu->arch.pio_data, data, size * count); 7751 7752 vcpu->run->exit_reason = KVM_EXIT_IO; 7753 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7754 vcpu->run->io.size = size; 7755 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7756 vcpu->run->io.count = count; 7757 vcpu->run->io.port = port; 7758 return 0; 7759 } 7760 7761 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7762 unsigned short port, void *val, unsigned int count) 7763 { 7764 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7765 if (r) 7766 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7767 7768 return r; 7769 } 7770 7771 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7772 { 7773 int size = vcpu->arch.pio.size; 7774 unsigned int count = vcpu->arch.pio.count; 7775 memcpy(val, vcpu->arch.pio_data, size * count); 7776 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7777 vcpu->arch.pio.count = 0; 7778 } 7779 7780 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7781 int size, unsigned short port, void *val, 7782 unsigned int count) 7783 { 7784 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7785 if (vcpu->arch.pio.count) { 7786 /* 7787 * Complete a previous iteration that required userspace I/O. 7788 * Note, @count isn't guaranteed to match pio.count as userspace 7789 * can modify ECX before rerunning the vCPU. Ignore any such 7790 * shenanigans as KVM doesn't support modifying the rep count, 7791 * and the emulator ensures @count doesn't overflow the buffer. 7792 */ 7793 complete_emulator_pio_in(vcpu, val); 7794 return 1; 7795 } 7796 7797 return emulator_pio_in(vcpu, size, port, val, count); 7798 } 7799 7800 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7801 unsigned short port, const void *val, 7802 unsigned int count) 7803 { 7804 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7805 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7806 } 7807 7808 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7809 int size, unsigned short port, 7810 const void *val, unsigned int count) 7811 { 7812 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7813 } 7814 7815 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7816 { 7817 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7818 } 7819 7820 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7821 { 7822 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7823 } 7824 7825 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7826 { 7827 if (!need_emulate_wbinvd(vcpu)) 7828 return X86EMUL_CONTINUE; 7829 7830 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7831 int cpu = get_cpu(); 7832 7833 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7834 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7835 wbinvd_ipi, NULL, 1); 7836 put_cpu(); 7837 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7838 } else 7839 wbinvd(); 7840 return X86EMUL_CONTINUE; 7841 } 7842 7843 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7844 { 7845 kvm_emulate_wbinvd_noskip(vcpu); 7846 return kvm_skip_emulated_instruction(vcpu); 7847 } 7848 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7849 7850 7851 7852 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7853 { 7854 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7855 } 7856 7857 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7858 unsigned long *dest) 7859 { 7860 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7861 } 7862 7863 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7864 unsigned long value) 7865 { 7866 7867 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7868 } 7869 7870 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7871 { 7872 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7873 } 7874 7875 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7876 { 7877 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7878 unsigned long value; 7879 7880 switch (cr) { 7881 case 0: 7882 value = kvm_read_cr0(vcpu); 7883 break; 7884 case 2: 7885 value = vcpu->arch.cr2; 7886 break; 7887 case 3: 7888 value = kvm_read_cr3(vcpu); 7889 break; 7890 case 4: 7891 value = kvm_read_cr4(vcpu); 7892 break; 7893 case 8: 7894 value = kvm_get_cr8(vcpu); 7895 break; 7896 default: 7897 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7898 return 0; 7899 } 7900 7901 return value; 7902 } 7903 7904 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7905 { 7906 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7907 int res = 0; 7908 7909 switch (cr) { 7910 case 0: 7911 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7912 break; 7913 case 2: 7914 vcpu->arch.cr2 = val; 7915 break; 7916 case 3: 7917 res = kvm_set_cr3(vcpu, val); 7918 break; 7919 case 4: 7920 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7921 break; 7922 case 8: 7923 res = kvm_set_cr8(vcpu, val); 7924 break; 7925 default: 7926 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7927 res = -1; 7928 } 7929 7930 return res; 7931 } 7932 7933 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7934 { 7935 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7936 } 7937 7938 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7939 { 7940 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7941 } 7942 7943 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7944 { 7945 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7946 } 7947 7948 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7949 { 7950 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7951 } 7952 7953 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7954 { 7955 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7956 } 7957 7958 static unsigned long emulator_get_cached_segment_base( 7959 struct x86_emulate_ctxt *ctxt, int seg) 7960 { 7961 return get_segment_base(emul_to_vcpu(ctxt), seg); 7962 } 7963 7964 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7965 struct desc_struct *desc, u32 *base3, 7966 int seg) 7967 { 7968 struct kvm_segment var; 7969 7970 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7971 *selector = var.selector; 7972 7973 if (var.unusable) { 7974 memset(desc, 0, sizeof(*desc)); 7975 if (base3) 7976 *base3 = 0; 7977 return false; 7978 } 7979 7980 if (var.g) 7981 var.limit >>= 12; 7982 set_desc_limit(desc, var.limit); 7983 set_desc_base(desc, (unsigned long)var.base); 7984 #ifdef CONFIG_X86_64 7985 if (base3) 7986 *base3 = var.base >> 32; 7987 #endif 7988 desc->type = var.type; 7989 desc->s = var.s; 7990 desc->dpl = var.dpl; 7991 desc->p = var.present; 7992 desc->avl = var.avl; 7993 desc->l = var.l; 7994 desc->d = var.db; 7995 desc->g = var.g; 7996 7997 return true; 7998 } 7999 8000 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8001 struct desc_struct *desc, u32 base3, 8002 int seg) 8003 { 8004 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8005 struct kvm_segment var; 8006 8007 var.selector = selector; 8008 var.base = get_desc_base(desc); 8009 #ifdef CONFIG_X86_64 8010 var.base |= ((u64)base3) << 32; 8011 #endif 8012 var.limit = get_desc_limit(desc); 8013 if (desc->g) 8014 var.limit = (var.limit << 12) | 0xfff; 8015 var.type = desc->type; 8016 var.dpl = desc->dpl; 8017 var.db = desc->d; 8018 var.s = desc->s; 8019 var.l = desc->l; 8020 var.g = desc->g; 8021 var.avl = desc->avl; 8022 var.present = desc->p; 8023 var.unusable = !var.present; 8024 var.padding = 0; 8025 8026 kvm_set_segment(vcpu, &var, seg); 8027 return; 8028 } 8029 8030 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8031 u32 msr_index, u64 *pdata) 8032 { 8033 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8034 int r; 8035 8036 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8037 if (r < 0) 8038 return X86EMUL_UNHANDLEABLE; 8039 8040 if (r) { 8041 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8042 complete_emulated_rdmsr, r)) 8043 return X86EMUL_IO_NEEDED; 8044 8045 trace_kvm_msr_read_ex(msr_index); 8046 return X86EMUL_PROPAGATE_FAULT; 8047 } 8048 8049 trace_kvm_msr_read(msr_index, *pdata); 8050 return X86EMUL_CONTINUE; 8051 } 8052 8053 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8054 u32 msr_index, u64 data) 8055 { 8056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8057 int r; 8058 8059 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8060 if (r < 0) 8061 return X86EMUL_UNHANDLEABLE; 8062 8063 if (r) { 8064 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8065 complete_emulated_msr_access, r)) 8066 return X86EMUL_IO_NEEDED; 8067 8068 trace_kvm_msr_write_ex(msr_index, data); 8069 return X86EMUL_PROPAGATE_FAULT; 8070 } 8071 8072 trace_kvm_msr_write(msr_index, data); 8073 return X86EMUL_CONTINUE; 8074 } 8075 8076 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8077 u32 msr_index, u64 *pdata) 8078 { 8079 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8080 } 8081 8082 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8083 u32 pmc) 8084 { 8085 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8086 return 0; 8087 return -EINVAL; 8088 } 8089 8090 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8091 u32 pmc, u64 *pdata) 8092 { 8093 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8094 } 8095 8096 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8097 { 8098 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8099 } 8100 8101 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8102 struct x86_instruction_info *info, 8103 enum x86_intercept_stage stage) 8104 { 8105 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8106 &ctxt->exception); 8107 } 8108 8109 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8110 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8111 bool exact_only) 8112 { 8113 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8114 } 8115 8116 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8117 { 8118 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8119 } 8120 8121 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8122 { 8123 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8124 } 8125 8126 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8127 { 8128 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8129 } 8130 8131 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8132 { 8133 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8134 } 8135 8136 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8137 { 8138 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8139 } 8140 8141 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8142 { 8143 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8144 } 8145 8146 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8147 { 8148 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8149 } 8150 8151 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8152 { 8153 return emul_to_vcpu(ctxt)->arch.hflags; 8154 } 8155 8156 #ifndef CONFIG_KVM_SMM 8157 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8158 { 8159 WARN_ON_ONCE(1); 8160 return X86EMUL_UNHANDLEABLE; 8161 } 8162 #endif 8163 8164 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8165 { 8166 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8167 } 8168 8169 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8170 { 8171 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8172 } 8173 8174 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8175 { 8176 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8177 8178 if (!kvm->vm_bugged) 8179 kvm_vm_bugged(kvm); 8180 } 8181 8182 static const struct x86_emulate_ops emulate_ops = { 8183 .vm_bugged = emulator_vm_bugged, 8184 .read_gpr = emulator_read_gpr, 8185 .write_gpr = emulator_write_gpr, 8186 .read_std = emulator_read_std, 8187 .write_std = emulator_write_std, 8188 .fetch = kvm_fetch_guest_virt, 8189 .read_emulated = emulator_read_emulated, 8190 .write_emulated = emulator_write_emulated, 8191 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8192 .invlpg = emulator_invlpg, 8193 .pio_in_emulated = emulator_pio_in_emulated, 8194 .pio_out_emulated = emulator_pio_out_emulated, 8195 .get_segment = emulator_get_segment, 8196 .set_segment = emulator_set_segment, 8197 .get_cached_segment_base = emulator_get_cached_segment_base, 8198 .get_gdt = emulator_get_gdt, 8199 .get_idt = emulator_get_idt, 8200 .set_gdt = emulator_set_gdt, 8201 .set_idt = emulator_set_idt, 8202 .get_cr = emulator_get_cr, 8203 .set_cr = emulator_set_cr, 8204 .cpl = emulator_get_cpl, 8205 .get_dr = emulator_get_dr, 8206 .set_dr = emulator_set_dr, 8207 .set_msr_with_filter = emulator_set_msr_with_filter, 8208 .get_msr_with_filter = emulator_get_msr_with_filter, 8209 .get_msr = emulator_get_msr, 8210 .check_pmc = emulator_check_pmc, 8211 .read_pmc = emulator_read_pmc, 8212 .halt = emulator_halt, 8213 .wbinvd = emulator_wbinvd, 8214 .fix_hypercall = emulator_fix_hypercall, 8215 .intercept = emulator_intercept, 8216 .get_cpuid = emulator_get_cpuid, 8217 .guest_has_long_mode = emulator_guest_has_long_mode, 8218 .guest_has_movbe = emulator_guest_has_movbe, 8219 .guest_has_fxsr = emulator_guest_has_fxsr, 8220 .guest_has_rdpid = emulator_guest_has_rdpid, 8221 .set_nmi_mask = emulator_set_nmi_mask, 8222 .get_hflags = emulator_get_hflags, 8223 .leave_smm = emulator_leave_smm, 8224 .triple_fault = emulator_triple_fault, 8225 .set_xcr = emulator_set_xcr, 8226 }; 8227 8228 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8229 { 8230 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8231 /* 8232 * an sti; sti; sequence only disable interrupts for the first 8233 * instruction. So, if the last instruction, be it emulated or 8234 * not, left the system with the INT_STI flag enabled, it 8235 * means that the last instruction is an sti. We should not 8236 * leave the flag on in this case. The same goes for mov ss 8237 */ 8238 if (int_shadow & mask) 8239 mask = 0; 8240 if (unlikely(int_shadow || mask)) { 8241 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8242 if (!mask) 8243 kvm_make_request(KVM_REQ_EVENT, vcpu); 8244 } 8245 } 8246 8247 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8248 { 8249 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8250 8251 if (ctxt->exception.vector == PF_VECTOR) 8252 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8253 else if (ctxt->exception.error_code_valid) 8254 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8255 ctxt->exception.error_code); 8256 else 8257 kvm_queue_exception(vcpu, ctxt->exception.vector); 8258 } 8259 8260 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8261 { 8262 struct x86_emulate_ctxt *ctxt; 8263 8264 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8265 if (!ctxt) { 8266 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8267 return NULL; 8268 } 8269 8270 ctxt->vcpu = vcpu; 8271 ctxt->ops = &emulate_ops; 8272 vcpu->arch.emulate_ctxt = ctxt; 8273 8274 return ctxt; 8275 } 8276 8277 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8278 { 8279 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8280 int cs_db, cs_l; 8281 8282 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8283 8284 ctxt->gpa_available = false; 8285 ctxt->eflags = kvm_get_rflags(vcpu); 8286 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8287 8288 ctxt->eip = kvm_rip_read(vcpu); 8289 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8290 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8291 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8292 cs_db ? X86EMUL_MODE_PROT32 : 8293 X86EMUL_MODE_PROT16; 8294 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8295 8296 ctxt->interruptibility = 0; 8297 ctxt->have_exception = false; 8298 ctxt->exception.vector = -1; 8299 ctxt->perm_ok = false; 8300 8301 init_decode_cache(ctxt); 8302 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8303 } 8304 8305 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8306 { 8307 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8308 int ret; 8309 8310 init_emulate_ctxt(vcpu); 8311 8312 ctxt->op_bytes = 2; 8313 ctxt->ad_bytes = 2; 8314 ctxt->_eip = ctxt->eip + inc_eip; 8315 ret = emulate_int_real(ctxt, irq); 8316 8317 if (ret != X86EMUL_CONTINUE) { 8318 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8319 } else { 8320 ctxt->eip = ctxt->_eip; 8321 kvm_rip_write(vcpu, ctxt->eip); 8322 kvm_set_rflags(vcpu, ctxt->eflags); 8323 } 8324 } 8325 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8326 8327 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8328 u8 ndata, u8 *insn_bytes, u8 insn_size) 8329 { 8330 struct kvm_run *run = vcpu->run; 8331 u64 info[5]; 8332 u8 info_start; 8333 8334 /* 8335 * Zero the whole array used to retrieve the exit info, as casting to 8336 * u32 for select entries will leave some chunks uninitialized. 8337 */ 8338 memset(&info, 0, sizeof(info)); 8339 8340 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8341 &info[2], (u32 *)&info[3], 8342 (u32 *)&info[4]); 8343 8344 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8345 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8346 8347 /* 8348 * There's currently space for 13 entries, but 5 are used for the exit 8349 * reason and info. Restrict to 4 to reduce the maintenance burden 8350 * when expanding kvm_run.emulation_failure in the future. 8351 */ 8352 if (WARN_ON_ONCE(ndata > 4)) 8353 ndata = 4; 8354 8355 /* Always include the flags as a 'data' entry. */ 8356 info_start = 1; 8357 run->emulation_failure.flags = 0; 8358 8359 if (insn_size) { 8360 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8361 sizeof(run->emulation_failure.insn_bytes) != 16)); 8362 info_start += 2; 8363 run->emulation_failure.flags |= 8364 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8365 run->emulation_failure.insn_size = insn_size; 8366 memset(run->emulation_failure.insn_bytes, 0x90, 8367 sizeof(run->emulation_failure.insn_bytes)); 8368 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8369 } 8370 8371 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8372 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8373 ndata * sizeof(data[0])); 8374 8375 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8376 } 8377 8378 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8379 { 8380 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8381 8382 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8383 ctxt->fetch.end - ctxt->fetch.data); 8384 } 8385 8386 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8387 u8 ndata) 8388 { 8389 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8390 } 8391 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8392 8393 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8394 { 8395 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8396 } 8397 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8398 8399 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8400 { 8401 struct kvm *kvm = vcpu->kvm; 8402 8403 ++vcpu->stat.insn_emulation_fail; 8404 trace_kvm_emulate_insn_failed(vcpu); 8405 8406 if (emulation_type & EMULTYPE_VMWARE_GP) { 8407 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8408 return 1; 8409 } 8410 8411 if (kvm->arch.exit_on_emulation_error || 8412 (emulation_type & EMULTYPE_SKIP)) { 8413 prepare_emulation_ctxt_failure_exit(vcpu); 8414 return 0; 8415 } 8416 8417 kvm_queue_exception(vcpu, UD_VECTOR); 8418 8419 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8420 prepare_emulation_ctxt_failure_exit(vcpu); 8421 return 0; 8422 } 8423 8424 return 1; 8425 } 8426 8427 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8428 bool write_fault_to_shadow_pgtable, 8429 int emulation_type) 8430 { 8431 gpa_t gpa = cr2_or_gpa; 8432 kvm_pfn_t pfn; 8433 8434 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8435 return false; 8436 8437 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8438 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8439 return false; 8440 8441 if (!vcpu->arch.mmu->root_role.direct) { 8442 /* 8443 * Write permission should be allowed since only 8444 * write access need to be emulated. 8445 */ 8446 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8447 8448 /* 8449 * If the mapping is invalid in guest, let cpu retry 8450 * it to generate fault. 8451 */ 8452 if (gpa == INVALID_GPA) 8453 return true; 8454 } 8455 8456 /* 8457 * Do not retry the unhandleable instruction if it faults on the 8458 * readonly host memory, otherwise it will goto a infinite loop: 8459 * retry instruction -> write #PF -> emulation fail -> retry 8460 * instruction -> ... 8461 */ 8462 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8463 8464 /* 8465 * If the instruction failed on the error pfn, it can not be fixed, 8466 * report the error to userspace. 8467 */ 8468 if (is_error_noslot_pfn(pfn)) 8469 return false; 8470 8471 kvm_release_pfn_clean(pfn); 8472 8473 /* The instructions are well-emulated on direct mmu. */ 8474 if (vcpu->arch.mmu->root_role.direct) { 8475 unsigned int indirect_shadow_pages; 8476 8477 write_lock(&vcpu->kvm->mmu_lock); 8478 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8479 write_unlock(&vcpu->kvm->mmu_lock); 8480 8481 if (indirect_shadow_pages) 8482 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8483 8484 return true; 8485 } 8486 8487 /* 8488 * if emulation was due to access to shadowed page table 8489 * and it failed try to unshadow page and re-enter the 8490 * guest to let CPU execute the instruction. 8491 */ 8492 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8493 8494 /* 8495 * If the access faults on its page table, it can not 8496 * be fixed by unprotecting shadow page and it should 8497 * be reported to userspace. 8498 */ 8499 return !write_fault_to_shadow_pgtable; 8500 } 8501 8502 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8503 gpa_t cr2_or_gpa, int emulation_type) 8504 { 8505 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8506 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8507 8508 last_retry_eip = vcpu->arch.last_retry_eip; 8509 last_retry_addr = vcpu->arch.last_retry_addr; 8510 8511 /* 8512 * If the emulation is caused by #PF and it is non-page_table 8513 * writing instruction, it means the VM-EXIT is caused by shadow 8514 * page protected, we can zap the shadow page and retry this 8515 * instruction directly. 8516 * 8517 * Note: if the guest uses a non-page-table modifying instruction 8518 * on the PDE that points to the instruction, then we will unmap 8519 * the instruction and go to an infinite loop. So, we cache the 8520 * last retried eip and the last fault address, if we meet the eip 8521 * and the address again, we can break out of the potential infinite 8522 * loop. 8523 */ 8524 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8525 8526 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8527 return false; 8528 8529 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8530 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8531 return false; 8532 8533 if (x86_page_table_writing_insn(ctxt)) 8534 return false; 8535 8536 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8537 return false; 8538 8539 vcpu->arch.last_retry_eip = ctxt->eip; 8540 vcpu->arch.last_retry_addr = cr2_or_gpa; 8541 8542 if (!vcpu->arch.mmu->root_role.direct) 8543 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8544 8545 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8546 8547 return true; 8548 } 8549 8550 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8551 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8552 8553 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8554 unsigned long *db) 8555 { 8556 u32 dr6 = 0; 8557 int i; 8558 u32 enable, rwlen; 8559 8560 enable = dr7; 8561 rwlen = dr7 >> 16; 8562 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8563 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8564 dr6 |= (1 << i); 8565 return dr6; 8566 } 8567 8568 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8569 { 8570 struct kvm_run *kvm_run = vcpu->run; 8571 8572 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8573 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8574 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8575 kvm_run->debug.arch.exception = DB_VECTOR; 8576 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8577 return 0; 8578 } 8579 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8580 return 1; 8581 } 8582 8583 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8584 { 8585 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8586 int r; 8587 8588 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8589 if (unlikely(!r)) 8590 return 0; 8591 8592 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8593 8594 /* 8595 * rflags is the old, "raw" value of the flags. The new value has 8596 * not been saved yet. 8597 * 8598 * This is correct even for TF set by the guest, because "the 8599 * processor will not generate this exception after the instruction 8600 * that sets the TF flag". 8601 */ 8602 if (unlikely(rflags & X86_EFLAGS_TF)) 8603 r = kvm_vcpu_do_singlestep(vcpu); 8604 return r; 8605 } 8606 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8607 8608 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8609 { 8610 u32 shadow; 8611 8612 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8613 return true; 8614 8615 /* 8616 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8617 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8618 * to avoid the relatively expensive CPUID lookup. 8619 */ 8620 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8621 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8622 guest_cpuid_is_intel(vcpu); 8623 } 8624 8625 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8626 int emulation_type, int *r) 8627 { 8628 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8629 8630 /* 8631 * Do not check for code breakpoints if hardware has already done the 8632 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8633 * the instruction has passed all exception checks, and all intercepted 8634 * exceptions that trigger emulation have lower priority than code 8635 * breakpoints, i.e. the fact that the intercepted exception occurred 8636 * means any code breakpoints have already been serviced. 8637 * 8638 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8639 * hardware has checked the RIP of the magic prefix, but not the RIP of 8640 * the instruction being emulated. The intent of forced emulation is 8641 * to behave as if KVM intercepted the instruction without an exception 8642 * and without a prefix. 8643 */ 8644 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8645 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8646 return false; 8647 8648 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8649 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8650 struct kvm_run *kvm_run = vcpu->run; 8651 unsigned long eip = kvm_get_linear_rip(vcpu); 8652 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8653 vcpu->arch.guest_debug_dr7, 8654 vcpu->arch.eff_db); 8655 8656 if (dr6 != 0) { 8657 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8658 kvm_run->debug.arch.pc = eip; 8659 kvm_run->debug.arch.exception = DB_VECTOR; 8660 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8661 *r = 0; 8662 return true; 8663 } 8664 } 8665 8666 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8667 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8668 unsigned long eip = kvm_get_linear_rip(vcpu); 8669 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8670 vcpu->arch.dr7, 8671 vcpu->arch.db); 8672 8673 if (dr6 != 0) { 8674 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8675 *r = 1; 8676 return true; 8677 } 8678 } 8679 8680 return false; 8681 } 8682 8683 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8684 { 8685 switch (ctxt->opcode_len) { 8686 case 1: 8687 switch (ctxt->b) { 8688 case 0xe4: /* IN */ 8689 case 0xe5: 8690 case 0xec: 8691 case 0xed: 8692 case 0xe6: /* OUT */ 8693 case 0xe7: 8694 case 0xee: 8695 case 0xef: 8696 case 0x6c: /* INS */ 8697 case 0x6d: 8698 case 0x6e: /* OUTS */ 8699 case 0x6f: 8700 return true; 8701 } 8702 break; 8703 case 2: 8704 switch (ctxt->b) { 8705 case 0x33: /* RDPMC */ 8706 return true; 8707 } 8708 break; 8709 } 8710 8711 return false; 8712 } 8713 8714 /* 8715 * Decode an instruction for emulation. The caller is responsible for handling 8716 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8717 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8718 * code breakpoints have higher priority and thus have already been done by 8719 * hardware. 8720 * 8721 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8722 * response to a machine check. 8723 */ 8724 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8725 void *insn, int insn_len) 8726 { 8727 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8728 int r; 8729 8730 init_emulate_ctxt(vcpu); 8731 8732 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8733 8734 trace_kvm_emulate_insn_start(vcpu); 8735 ++vcpu->stat.insn_emulation; 8736 8737 return r; 8738 } 8739 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8740 8741 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8742 int emulation_type, void *insn, int insn_len) 8743 { 8744 int r; 8745 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8746 bool writeback = true; 8747 bool write_fault_to_spt; 8748 8749 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8750 return 1; 8751 8752 vcpu->arch.l1tf_flush_l1d = true; 8753 8754 /* 8755 * Clear write_fault_to_shadow_pgtable here to ensure it is 8756 * never reused. 8757 */ 8758 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8759 vcpu->arch.write_fault_to_shadow_pgtable = false; 8760 8761 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8762 kvm_clear_exception_queue(vcpu); 8763 8764 /* 8765 * Return immediately if RIP hits a code breakpoint, such #DBs 8766 * are fault-like and are higher priority than any faults on 8767 * the code fetch itself. 8768 */ 8769 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8770 return r; 8771 8772 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8773 insn, insn_len); 8774 if (r != EMULATION_OK) { 8775 if ((emulation_type & EMULTYPE_TRAP_UD) || 8776 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8777 kvm_queue_exception(vcpu, UD_VECTOR); 8778 return 1; 8779 } 8780 if (reexecute_instruction(vcpu, cr2_or_gpa, 8781 write_fault_to_spt, 8782 emulation_type)) 8783 return 1; 8784 8785 if (ctxt->have_exception && 8786 !(emulation_type & EMULTYPE_SKIP)) { 8787 /* 8788 * #UD should result in just EMULATION_FAILED, and trap-like 8789 * exception should not be encountered during decode. 8790 */ 8791 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8792 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8793 inject_emulated_exception(vcpu); 8794 return 1; 8795 } 8796 return handle_emulation_failure(vcpu, emulation_type); 8797 } 8798 } 8799 8800 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8801 !is_vmware_backdoor_opcode(ctxt)) { 8802 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8803 return 1; 8804 } 8805 8806 /* 8807 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8808 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8809 * The caller is responsible for updating interruptibility state and 8810 * injecting single-step #DBs. 8811 */ 8812 if (emulation_type & EMULTYPE_SKIP) { 8813 if (ctxt->mode != X86EMUL_MODE_PROT64) 8814 ctxt->eip = (u32)ctxt->_eip; 8815 else 8816 ctxt->eip = ctxt->_eip; 8817 8818 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8819 r = 1; 8820 goto writeback; 8821 } 8822 8823 kvm_rip_write(vcpu, ctxt->eip); 8824 if (ctxt->eflags & X86_EFLAGS_RF) 8825 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8826 return 1; 8827 } 8828 8829 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8830 return 1; 8831 8832 /* this is needed for vmware backdoor interface to work since it 8833 changes registers values during IO operation */ 8834 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8835 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8836 emulator_invalidate_register_cache(ctxt); 8837 } 8838 8839 restart: 8840 if (emulation_type & EMULTYPE_PF) { 8841 /* Save the faulting GPA (cr2) in the address field */ 8842 ctxt->exception.address = cr2_or_gpa; 8843 8844 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8845 if (vcpu->arch.mmu->root_role.direct) { 8846 ctxt->gpa_available = true; 8847 ctxt->gpa_val = cr2_or_gpa; 8848 } 8849 } else { 8850 /* Sanitize the address out of an abundance of paranoia. */ 8851 ctxt->exception.address = 0; 8852 } 8853 8854 r = x86_emulate_insn(ctxt); 8855 8856 if (r == EMULATION_INTERCEPTED) 8857 return 1; 8858 8859 if (r == EMULATION_FAILED) { 8860 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8861 emulation_type)) 8862 return 1; 8863 8864 return handle_emulation_failure(vcpu, emulation_type); 8865 } 8866 8867 if (ctxt->have_exception) { 8868 r = 1; 8869 inject_emulated_exception(vcpu); 8870 } else if (vcpu->arch.pio.count) { 8871 if (!vcpu->arch.pio.in) { 8872 /* FIXME: return into emulator if single-stepping. */ 8873 vcpu->arch.pio.count = 0; 8874 } else { 8875 writeback = false; 8876 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8877 } 8878 r = 0; 8879 } else if (vcpu->mmio_needed) { 8880 ++vcpu->stat.mmio_exits; 8881 8882 if (!vcpu->mmio_is_write) 8883 writeback = false; 8884 r = 0; 8885 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8886 } else if (vcpu->arch.complete_userspace_io) { 8887 writeback = false; 8888 r = 0; 8889 } else if (r == EMULATION_RESTART) 8890 goto restart; 8891 else 8892 r = 1; 8893 8894 writeback: 8895 if (writeback) { 8896 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8897 toggle_interruptibility(vcpu, ctxt->interruptibility); 8898 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8899 8900 /* 8901 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8902 * only supports code breakpoints and general detect #DB, both 8903 * of which are fault-like. 8904 */ 8905 if (!ctxt->have_exception || 8906 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8907 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8908 if (ctxt->is_branch) 8909 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8910 kvm_rip_write(vcpu, ctxt->eip); 8911 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8912 r = kvm_vcpu_do_singlestep(vcpu); 8913 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8914 __kvm_set_rflags(vcpu, ctxt->eflags); 8915 } 8916 8917 /* 8918 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8919 * do nothing, and it will be requested again as soon as 8920 * the shadow expires. But we still need to check here, 8921 * because POPF has no interrupt shadow. 8922 */ 8923 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8924 kvm_make_request(KVM_REQ_EVENT, vcpu); 8925 } else 8926 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8927 8928 return r; 8929 } 8930 8931 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8932 { 8933 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8934 } 8935 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8936 8937 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8938 void *insn, int insn_len) 8939 { 8940 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8941 } 8942 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8943 8944 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8945 { 8946 vcpu->arch.pio.count = 0; 8947 return 1; 8948 } 8949 8950 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8951 { 8952 vcpu->arch.pio.count = 0; 8953 8954 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8955 return 1; 8956 8957 return kvm_skip_emulated_instruction(vcpu); 8958 } 8959 8960 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8961 unsigned short port) 8962 { 8963 unsigned long val = kvm_rax_read(vcpu); 8964 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8965 8966 if (ret) 8967 return ret; 8968 8969 /* 8970 * Workaround userspace that relies on old KVM behavior of %rip being 8971 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8972 */ 8973 if (port == 0x7e && 8974 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8975 vcpu->arch.complete_userspace_io = 8976 complete_fast_pio_out_port_0x7e; 8977 kvm_skip_emulated_instruction(vcpu); 8978 } else { 8979 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8980 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8981 } 8982 return 0; 8983 } 8984 8985 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8986 { 8987 unsigned long val; 8988 8989 /* We should only ever be called with arch.pio.count equal to 1 */ 8990 BUG_ON(vcpu->arch.pio.count != 1); 8991 8992 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8993 vcpu->arch.pio.count = 0; 8994 return 1; 8995 } 8996 8997 /* For size less than 4 we merge, else we zero extend */ 8998 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8999 9000 complete_emulator_pio_in(vcpu, &val); 9001 kvm_rax_write(vcpu, val); 9002 9003 return kvm_skip_emulated_instruction(vcpu); 9004 } 9005 9006 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9007 unsigned short port) 9008 { 9009 unsigned long val; 9010 int ret; 9011 9012 /* For size less than 4 we merge, else we zero extend */ 9013 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9014 9015 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9016 if (ret) { 9017 kvm_rax_write(vcpu, val); 9018 return ret; 9019 } 9020 9021 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9022 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9023 9024 return 0; 9025 } 9026 9027 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9028 { 9029 int ret; 9030 9031 if (in) 9032 ret = kvm_fast_pio_in(vcpu, size, port); 9033 else 9034 ret = kvm_fast_pio_out(vcpu, size, port); 9035 return ret && kvm_skip_emulated_instruction(vcpu); 9036 } 9037 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9038 9039 static int kvmclock_cpu_down_prep(unsigned int cpu) 9040 { 9041 __this_cpu_write(cpu_tsc_khz, 0); 9042 return 0; 9043 } 9044 9045 static void tsc_khz_changed(void *data) 9046 { 9047 struct cpufreq_freqs *freq = data; 9048 unsigned long khz = 0; 9049 9050 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9051 9052 if (data) 9053 khz = freq->new; 9054 else 9055 khz = cpufreq_quick_get(raw_smp_processor_id()); 9056 if (!khz) 9057 khz = tsc_khz; 9058 __this_cpu_write(cpu_tsc_khz, khz); 9059 } 9060 9061 #ifdef CONFIG_X86_64 9062 static void kvm_hyperv_tsc_notifier(void) 9063 { 9064 struct kvm *kvm; 9065 int cpu; 9066 9067 mutex_lock(&kvm_lock); 9068 list_for_each_entry(kvm, &vm_list, vm_list) 9069 kvm_make_mclock_inprogress_request(kvm); 9070 9071 /* no guest entries from this point */ 9072 hyperv_stop_tsc_emulation(); 9073 9074 /* TSC frequency always matches when on Hyper-V */ 9075 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9076 for_each_present_cpu(cpu) 9077 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9078 } 9079 kvm_caps.max_guest_tsc_khz = tsc_khz; 9080 9081 list_for_each_entry(kvm, &vm_list, vm_list) { 9082 __kvm_start_pvclock_update(kvm); 9083 pvclock_update_vm_gtod_copy(kvm); 9084 kvm_end_pvclock_update(kvm); 9085 } 9086 9087 mutex_unlock(&kvm_lock); 9088 } 9089 #endif 9090 9091 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9092 { 9093 struct kvm *kvm; 9094 struct kvm_vcpu *vcpu; 9095 int send_ipi = 0; 9096 unsigned long i; 9097 9098 /* 9099 * We allow guests to temporarily run on slowing clocks, 9100 * provided we notify them after, or to run on accelerating 9101 * clocks, provided we notify them before. Thus time never 9102 * goes backwards. 9103 * 9104 * However, we have a problem. We can't atomically update 9105 * the frequency of a given CPU from this function; it is 9106 * merely a notifier, which can be called from any CPU. 9107 * Changing the TSC frequency at arbitrary points in time 9108 * requires a recomputation of local variables related to 9109 * the TSC for each VCPU. We must flag these local variables 9110 * to be updated and be sure the update takes place with the 9111 * new frequency before any guests proceed. 9112 * 9113 * Unfortunately, the combination of hotplug CPU and frequency 9114 * change creates an intractable locking scenario; the order 9115 * of when these callouts happen is undefined with respect to 9116 * CPU hotplug, and they can race with each other. As such, 9117 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9118 * undefined; you can actually have a CPU frequency change take 9119 * place in between the computation of X and the setting of the 9120 * variable. To protect against this problem, all updates of 9121 * the per_cpu tsc_khz variable are done in an interrupt 9122 * protected IPI, and all callers wishing to update the value 9123 * must wait for a synchronous IPI to complete (which is trivial 9124 * if the caller is on the CPU already). This establishes the 9125 * necessary total order on variable updates. 9126 * 9127 * Note that because a guest time update may take place 9128 * anytime after the setting of the VCPU's request bit, the 9129 * correct TSC value must be set before the request. However, 9130 * to ensure the update actually makes it to any guest which 9131 * starts running in hardware virtualization between the set 9132 * and the acquisition of the spinlock, we must also ping the 9133 * CPU after setting the request bit. 9134 * 9135 */ 9136 9137 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9138 9139 mutex_lock(&kvm_lock); 9140 list_for_each_entry(kvm, &vm_list, vm_list) { 9141 kvm_for_each_vcpu(i, vcpu, kvm) { 9142 if (vcpu->cpu != cpu) 9143 continue; 9144 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9145 if (vcpu->cpu != raw_smp_processor_id()) 9146 send_ipi = 1; 9147 } 9148 } 9149 mutex_unlock(&kvm_lock); 9150 9151 if (freq->old < freq->new && send_ipi) { 9152 /* 9153 * We upscale the frequency. Must make the guest 9154 * doesn't see old kvmclock values while running with 9155 * the new frequency, otherwise we risk the guest sees 9156 * time go backwards. 9157 * 9158 * In case we update the frequency for another cpu 9159 * (which might be in guest context) send an interrupt 9160 * to kick the cpu out of guest context. Next time 9161 * guest context is entered kvmclock will be updated, 9162 * so the guest will not see stale values. 9163 */ 9164 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9165 } 9166 } 9167 9168 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9169 void *data) 9170 { 9171 struct cpufreq_freqs *freq = data; 9172 int cpu; 9173 9174 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9175 return 0; 9176 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9177 return 0; 9178 9179 for_each_cpu(cpu, freq->policy->cpus) 9180 __kvmclock_cpufreq_notifier(freq, cpu); 9181 9182 return 0; 9183 } 9184 9185 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9186 .notifier_call = kvmclock_cpufreq_notifier 9187 }; 9188 9189 static int kvmclock_cpu_online(unsigned int cpu) 9190 { 9191 tsc_khz_changed(NULL); 9192 return 0; 9193 } 9194 9195 static void kvm_timer_init(void) 9196 { 9197 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9198 max_tsc_khz = tsc_khz; 9199 9200 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9201 struct cpufreq_policy *policy; 9202 int cpu; 9203 9204 cpu = get_cpu(); 9205 policy = cpufreq_cpu_get(cpu); 9206 if (policy) { 9207 if (policy->cpuinfo.max_freq) 9208 max_tsc_khz = policy->cpuinfo.max_freq; 9209 cpufreq_cpu_put(policy); 9210 } 9211 put_cpu(); 9212 } 9213 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9214 CPUFREQ_TRANSITION_NOTIFIER); 9215 9216 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9217 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9218 } 9219 } 9220 9221 #ifdef CONFIG_X86_64 9222 static void pvclock_gtod_update_fn(struct work_struct *work) 9223 { 9224 struct kvm *kvm; 9225 struct kvm_vcpu *vcpu; 9226 unsigned long i; 9227 9228 mutex_lock(&kvm_lock); 9229 list_for_each_entry(kvm, &vm_list, vm_list) 9230 kvm_for_each_vcpu(i, vcpu, kvm) 9231 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9232 atomic_set(&kvm_guest_has_master_clock, 0); 9233 mutex_unlock(&kvm_lock); 9234 } 9235 9236 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9237 9238 /* 9239 * Indirection to move queue_work() out of the tk_core.seq write held 9240 * region to prevent possible deadlocks against time accessors which 9241 * are invoked with work related locks held. 9242 */ 9243 static void pvclock_irq_work_fn(struct irq_work *w) 9244 { 9245 queue_work(system_long_wq, &pvclock_gtod_work); 9246 } 9247 9248 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9249 9250 /* 9251 * Notification about pvclock gtod data update. 9252 */ 9253 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9254 void *priv) 9255 { 9256 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9257 struct timekeeper *tk = priv; 9258 9259 update_pvclock_gtod(tk); 9260 9261 /* 9262 * Disable master clock if host does not trust, or does not use, 9263 * TSC based clocksource. Delegate queue_work() to irq_work as 9264 * this is invoked with tk_core.seq write held. 9265 */ 9266 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9267 atomic_read(&kvm_guest_has_master_clock) != 0) 9268 irq_work_queue(&pvclock_irq_work); 9269 return 0; 9270 } 9271 9272 static struct notifier_block pvclock_gtod_notifier = { 9273 .notifier_call = pvclock_gtod_notify, 9274 }; 9275 #endif 9276 9277 int kvm_arch_init(void *opaque) 9278 { 9279 struct kvm_x86_init_ops *ops = opaque; 9280 u64 host_pat; 9281 int r; 9282 9283 if (kvm_x86_ops.hardware_enable) { 9284 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9285 return -EEXIST; 9286 } 9287 9288 if (!ops->cpu_has_kvm_support()) { 9289 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9290 ops->runtime_ops->name); 9291 return -EOPNOTSUPP; 9292 } 9293 if (ops->disabled_by_bios()) { 9294 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9295 ops->runtime_ops->name); 9296 return -EOPNOTSUPP; 9297 } 9298 9299 /* 9300 * KVM explicitly assumes that the guest has an FPU and 9301 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9302 * vCPU's FPU state as a fxregs_state struct. 9303 */ 9304 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9305 printk(KERN_ERR "kvm: inadequate fpu\n"); 9306 return -EOPNOTSUPP; 9307 } 9308 9309 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9310 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9311 return -EOPNOTSUPP; 9312 } 9313 9314 /* 9315 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9316 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9317 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9318 * with an exception. PAT[0] is set to WB on RESET and also by the 9319 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9320 */ 9321 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9322 (host_pat & GENMASK(2, 0)) != 6) { 9323 pr_err("kvm: host PAT[0] is not WB\n"); 9324 return -EIO; 9325 } 9326 9327 x86_emulator_cache = kvm_alloc_emulator_cache(); 9328 if (!x86_emulator_cache) { 9329 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9330 return -ENOMEM; 9331 } 9332 9333 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9334 if (!user_return_msrs) { 9335 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9336 r = -ENOMEM; 9337 goto out_free_x86_emulator_cache; 9338 } 9339 kvm_nr_uret_msrs = 0; 9340 9341 r = kvm_mmu_vendor_module_init(); 9342 if (r) 9343 goto out_free_percpu; 9344 9345 kvm_timer_init(); 9346 9347 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9348 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9349 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9350 } 9351 9352 if (pi_inject_timer == -1) 9353 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9354 #ifdef CONFIG_X86_64 9355 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9356 9357 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9358 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9359 #endif 9360 9361 return 0; 9362 9363 out_free_percpu: 9364 free_percpu(user_return_msrs); 9365 out_free_x86_emulator_cache: 9366 kmem_cache_destroy(x86_emulator_cache); 9367 return r; 9368 } 9369 9370 void kvm_arch_exit(void) 9371 { 9372 #ifdef CONFIG_X86_64 9373 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9374 clear_hv_tscchange_cb(); 9375 #endif 9376 kvm_lapic_exit(); 9377 9378 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9379 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9380 CPUFREQ_TRANSITION_NOTIFIER); 9381 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9382 } 9383 #ifdef CONFIG_X86_64 9384 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9385 irq_work_sync(&pvclock_irq_work); 9386 cancel_work_sync(&pvclock_gtod_work); 9387 #endif 9388 kvm_x86_ops.hardware_enable = NULL; 9389 kvm_mmu_vendor_module_exit(); 9390 free_percpu(user_return_msrs); 9391 kmem_cache_destroy(x86_emulator_cache); 9392 #ifdef CONFIG_KVM_XEN 9393 static_key_deferred_flush(&kvm_xen_enabled); 9394 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9395 #endif 9396 } 9397 9398 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9399 { 9400 /* 9401 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9402 * local APIC is in-kernel, the run loop will detect the non-runnable 9403 * state and halt the vCPU. Exit to userspace if the local APIC is 9404 * managed by userspace, in which case userspace is responsible for 9405 * handling wake events. 9406 */ 9407 ++vcpu->stat.halt_exits; 9408 if (lapic_in_kernel(vcpu)) { 9409 vcpu->arch.mp_state = state; 9410 return 1; 9411 } else { 9412 vcpu->run->exit_reason = reason; 9413 return 0; 9414 } 9415 } 9416 9417 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9418 { 9419 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9420 } 9421 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9422 9423 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9424 { 9425 int ret = kvm_skip_emulated_instruction(vcpu); 9426 /* 9427 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9428 * KVM_EXIT_DEBUG here. 9429 */ 9430 return kvm_emulate_halt_noskip(vcpu) && ret; 9431 } 9432 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9433 9434 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9435 { 9436 int ret = kvm_skip_emulated_instruction(vcpu); 9437 9438 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9439 KVM_EXIT_AP_RESET_HOLD) && ret; 9440 } 9441 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9442 9443 #ifdef CONFIG_X86_64 9444 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9445 unsigned long clock_type) 9446 { 9447 struct kvm_clock_pairing clock_pairing; 9448 struct timespec64 ts; 9449 u64 cycle; 9450 int ret; 9451 9452 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9453 return -KVM_EOPNOTSUPP; 9454 9455 /* 9456 * When tsc is in permanent catchup mode guests won't be able to use 9457 * pvclock_read_retry loop to get consistent view of pvclock 9458 */ 9459 if (vcpu->arch.tsc_always_catchup) 9460 return -KVM_EOPNOTSUPP; 9461 9462 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9463 return -KVM_EOPNOTSUPP; 9464 9465 clock_pairing.sec = ts.tv_sec; 9466 clock_pairing.nsec = ts.tv_nsec; 9467 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9468 clock_pairing.flags = 0; 9469 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9470 9471 ret = 0; 9472 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9473 sizeof(struct kvm_clock_pairing))) 9474 ret = -KVM_EFAULT; 9475 9476 return ret; 9477 } 9478 #endif 9479 9480 /* 9481 * kvm_pv_kick_cpu_op: Kick a vcpu. 9482 * 9483 * @apicid - apicid of vcpu to be kicked. 9484 */ 9485 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9486 { 9487 /* 9488 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9489 * common code, e.g. for tracing. Defer initialization to the compiler. 9490 */ 9491 struct kvm_lapic_irq lapic_irq = { 9492 .delivery_mode = APIC_DM_REMRD, 9493 .dest_mode = APIC_DEST_PHYSICAL, 9494 .shorthand = APIC_DEST_NOSHORT, 9495 .dest_id = apicid, 9496 }; 9497 9498 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9499 } 9500 9501 bool kvm_apicv_activated(struct kvm *kvm) 9502 { 9503 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9504 } 9505 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9506 9507 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9508 { 9509 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9510 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9511 9512 return (vm_reasons | vcpu_reasons) == 0; 9513 } 9514 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9515 9516 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9517 enum kvm_apicv_inhibit reason, bool set) 9518 { 9519 if (set) 9520 __set_bit(reason, inhibits); 9521 else 9522 __clear_bit(reason, inhibits); 9523 9524 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9525 } 9526 9527 static void kvm_apicv_init(struct kvm *kvm) 9528 { 9529 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9530 9531 init_rwsem(&kvm->arch.apicv_update_lock); 9532 9533 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9534 9535 if (!enable_apicv) 9536 set_or_clear_apicv_inhibit(inhibits, 9537 APICV_INHIBIT_REASON_DISABLE, true); 9538 } 9539 9540 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9541 { 9542 struct kvm_vcpu *target = NULL; 9543 struct kvm_apic_map *map; 9544 9545 vcpu->stat.directed_yield_attempted++; 9546 9547 if (single_task_running()) 9548 goto no_yield; 9549 9550 rcu_read_lock(); 9551 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9552 9553 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9554 target = map->phys_map[dest_id]->vcpu; 9555 9556 rcu_read_unlock(); 9557 9558 if (!target || !READ_ONCE(target->ready)) 9559 goto no_yield; 9560 9561 /* Ignore requests to yield to self */ 9562 if (vcpu == target) 9563 goto no_yield; 9564 9565 if (kvm_vcpu_yield_to(target) <= 0) 9566 goto no_yield; 9567 9568 vcpu->stat.directed_yield_successful++; 9569 9570 no_yield: 9571 return; 9572 } 9573 9574 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9575 { 9576 u64 ret = vcpu->run->hypercall.ret; 9577 9578 if (!is_64_bit_mode(vcpu)) 9579 ret = (u32)ret; 9580 kvm_rax_write(vcpu, ret); 9581 ++vcpu->stat.hypercalls; 9582 return kvm_skip_emulated_instruction(vcpu); 9583 } 9584 9585 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9586 { 9587 unsigned long nr, a0, a1, a2, a3, ret; 9588 int op_64_bit; 9589 9590 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9591 return kvm_xen_hypercall(vcpu); 9592 9593 if (kvm_hv_hypercall_enabled(vcpu)) 9594 return kvm_hv_hypercall(vcpu); 9595 9596 nr = kvm_rax_read(vcpu); 9597 a0 = kvm_rbx_read(vcpu); 9598 a1 = kvm_rcx_read(vcpu); 9599 a2 = kvm_rdx_read(vcpu); 9600 a3 = kvm_rsi_read(vcpu); 9601 9602 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9603 9604 op_64_bit = is_64_bit_hypercall(vcpu); 9605 if (!op_64_bit) { 9606 nr &= 0xFFFFFFFF; 9607 a0 &= 0xFFFFFFFF; 9608 a1 &= 0xFFFFFFFF; 9609 a2 &= 0xFFFFFFFF; 9610 a3 &= 0xFFFFFFFF; 9611 } 9612 9613 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9614 ret = -KVM_EPERM; 9615 goto out; 9616 } 9617 9618 ret = -KVM_ENOSYS; 9619 9620 switch (nr) { 9621 case KVM_HC_VAPIC_POLL_IRQ: 9622 ret = 0; 9623 break; 9624 case KVM_HC_KICK_CPU: 9625 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9626 break; 9627 9628 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9629 kvm_sched_yield(vcpu, a1); 9630 ret = 0; 9631 break; 9632 #ifdef CONFIG_X86_64 9633 case KVM_HC_CLOCK_PAIRING: 9634 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9635 break; 9636 #endif 9637 case KVM_HC_SEND_IPI: 9638 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9639 break; 9640 9641 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9642 break; 9643 case KVM_HC_SCHED_YIELD: 9644 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9645 break; 9646 9647 kvm_sched_yield(vcpu, a0); 9648 ret = 0; 9649 break; 9650 case KVM_HC_MAP_GPA_RANGE: { 9651 u64 gpa = a0, npages = a1, attrs = a2; 9652 9653 ret = -KVM_ENOSYS; 9654 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9655 break; 9656 9657 if (!PAGE_ALIGNED(gpa) || !npages || 9658 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9659 ret = -KVM_EINVAL; 9660 break; 9661 } 9662 9663 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9664 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9665 vcpu->run->hypercall.args[0] = gpa; 9666 vcpu->run->hypercall.args[1] = npages; 9667 vcpu->run->hypercall.args[2] = attrs; 9668 vcpu->run->hypercall.longmode = op_64_bit; 9669 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9670 return 0; 9671 } 9672 default: 9673 ret = -KVM_ENOSYS; 9674 break; 9675 } 9676 out: 9677 if (!op_64_bit) 9678 ret = (u32)ret; 9679 kvm_rax_write(vcpu, ret); 9680 9681 ++vcpu->stat.hypercalls; 9682 return kvm_skip_emulated_instruction(vcpu); 9683 } 9684 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9685 9686 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9687 { 9688 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9689 char instruction[3]; 9690 unsigned long rip = kvm_rip_read(vcpu); 9691 9692 /* 9693 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9694 * the pieces. 9695 */ 9696 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9697 ctxt->exception.error_code_valid = false; 9698 ctxt->exception.vector = UD_VECTOR; 9699 ctxt->have_exception = true; 9700 return X86EMUL_PROPAGATE_FAULT; 9701 } 9702 9703 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9704 9705 return emulator_write_emulated(ctxt, rip, instruction, 3, 9706 &ctxt->exception); 9707 } 9708 9709 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9710 { 9711 return vcpu->run->request_interrupt_window && 9712 likely(!pic_in_kernel(vcpu->kvm)); 9713 } 9714 9715 /* Called within kvm->srcu read side. */ 9716 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9717 { 9718 struct kvm_run *kvm_run = vcpu->run; 9719 9720 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9721 kvm_run->cr8 = kvm_get_cr8(vcpu); 9722 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9723 9724 kvm_run->ready_for_interrupt_injection = 9725 pic_in_kernel(vcpu->kvm) || 9726 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9727 9728 if (is_smm(vcpu)) 9729 kvm_run->flags |= KVM_RUN_X86_SMM; 9730 } 9731 9732 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9733 { 9734 int max_irr, tpr; 9735 9736 if (!kvm_x86_ops.update_cr8_intercept) 9737 return; 9738 9739 if (!lapic_in_kernel(vcpu)) 9740 return; 9741 9742 if (vcpu->arch.apic->apicv_active) 9743 return; 9744 9745 if (!vcpu->arch.apic->vapic_addr) 9746 max_irr = kvm_lapic_find_highest_irr(vcpu); 9747 else 9748 max_irr = -1; 9749 9750 if (max_irr != -1) 9751 max_irr >>= 4; 9752 9753 tpr = kvm_lapic_get_cr8(vcpu); 9754 9755 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9756 } 9757 9758 9759 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9760 { 9761 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9762 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9763 return 1; 9764 } 9765 9766 return kvm_x86_ops.nested_ops->check_events(vcpu); 9767 } 9768 9769 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9770 { 9771 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9772 vcpu->arch.exception.has_error_code, 9773 vcpu->arch.exception.error_code, 9774 vcpu->arch.exception.injected); 9775 9776 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9777 vcpu->arch.exception.error_code = false; 9778 static_call(kvm_x86_inject_exception)(vcpu); 9779 } 9780 9781 /* 9782 * Check for any event (interrupt or exception) that is ready to be injected, 9783 * and if there is at least one event, inject the event with the highest 9784 * priority. This handles both "pending" events, i.e. events that have never 9785 * been injected into the guest, and "injected" events, i.e. events that were 9786 * injected as part of a previous VM-Enter, but weren't successfully delivered 9787 * and need to be re-injected. 9788 * 9789 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9790 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9791 * be able to inject exceptions in the "middle" of an instruction, and so must 9792 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9793 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9794 * boundaries is necessary and correct. 9795 * 9796 * For simplicity, KVM uses a single path to inject all events (except events 9797 * that are injected directly from L1 to L2) and doesn't explicitly track 9798 * instruction boundaries for asynchronous events. However, because VM-Exits 9799 * that can occur during instruction execution typically result in KVM skipping 9800 * the instruction or injecting an exception, e.g. instruction and exception 9801 * intercepts, and because pending exceptions have higher priority than pending 9802 * interrupts, KVM still honors instruction boundaries in most scenarios. 9803 * 9804 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9805 * the instruction or inject an exception, then KVM can incorrecty inject a new 9806 * asynchrounous event if the event became pending after the CPU fetched the 9807 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9808 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9809 * injected on the restarted instruction instead of being deferred until the 9810 * instruction completes. 9811 * 9812 * In practice, this virtualization hole is unlikely to be observed by the 9813 * guest, and even less likely to cause functional problems. To detect the 9814 * hole, the guest would have to trigger an event on a side effect of an early 9815 * phase of instruction execution, e.g. on the instruction fetch from memory. 9816 * And for it to be a functional problem, the guest would need to depend on the 9817 * ordering between that side effect, the instruction completing, _and_ the 9818 * delivery of the asynchronous event. 9819 */ 9820 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9821 bool *req_immediate_exit) 9822 { 9823 bool can_inject; 9824 int r; 9825 9826 /* 9827 * Process nested events first, as nested VM-Exit supercedes event 9828 * re-injection. If there's an event queued for re-injection, it will 9829 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9830 */ 9831 if (is_guest_mode(vcpu)) 9832 r = kvm_check_nested_events(vcpu); 9833 else 9834 r = 0; 9835 9836 /* 9837 * Re-inject exceptions and events *especially* if immediate entry+exit 9838 * to/from L2 is needed, as any event that has already been injected 9839 * into L2 needs to complete its lifecycle before injecting a new event. 9840 * 9841 * Don't re-inject an NMI or interrupt if there is a pending exception. 9842 * This collision arises if an exception occurred while vectoring the 9843 * injected event, KVM intercepted said exception, and KVM ultimately 9844 * determined the fault belongs to the guest and queues the exception 9845 * for injection back into the guest. 9846 * 9847 * "Injected" interrupts can also collide with pending exceptions if 9848 * userspace ignores the "ready for injection" flag and blindly queues 9849 * an interrupt. In that case, prioritizing the exception is correct, 9850 * as the exception "occurred" before the exit to userspace. Trap-like 9851 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9852 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9853 * priority, they're only generated (pended) during instruction 9854 * execution, and interrupts are recognized at instruction boundaries. 9855 * Thus a pending fault-like exception means the fault occurred on the 9856 * *previous* instruction and must be serviced prior to recognizing any 9857 * new events in order to fully complete the previous instruction. 9858 */ 9859 if (vcpu->arch.exception.injected) 9860 kvm_inject_exception(vcpu); 9861 else if (kvm_is_exception_pending(vcpu)) 9862 ; /* see above */ 9863 else if (vcpu->arch.nmi_injected) 9864 static_call(kvm_x86_inject_nmi)(vcpu); 9865 else if (vcpu->arch.interrupt.injected) 9866 static_call(kvm_x86_inject_irq)(vcpu, true); 9867 9868 /* 9869 * Exceptions that morph to VM-Exits are handled above, and pending 9870 * exceptions on top of injected exceptions that do not VM-Exit should 9871 * either morph to #DF or, sadly, override the injected exception. 9872 */ 9873 WARN_ON_ONCE(vcpu->arch.exception.injected && 9874 vcpu->arch.exception.pending); 9875 9876 /* 9877 * Bail if immediate entry+exit to/from the guest is needed to complete 9878 * nested VM-Enter or event re-injection so that a different pending 9879 * event can be serviced (or if KVM needs to exit to userspace). 9880 * 9881 * Otherwise, continue processing events even if VM-Exit occurred. The 9882 * VM-Exit will have cleared exceptions that were meant for L2, but 9883 * there may now be events that can be injected into L1. 9884 */ 9885 if (r < 0) 9886 goto out; 9887 9888 /* 9889 * A pending exception VM-Exit should either result in nested VM-Exit 9890 * or force an immediate re-entry and exit to/from L2, and exception 9891 * VM-Exits cannot be injected (flag should _never_ be set). 9892 */ 9893 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9894 vcpu->arch.exception_vmexit.pending); 9895 9896 /* 9897 * New events, other than exceptions, cannot be injected if KVM needs 9898 * to re-inject a previous event. See above comments on re-injecting 9899 * for why pending exceptions get priority. 9900 */ 9901 can_inject = !kvm_event_needs_reinjection(vcpu); 9902 9903 if (vcpu->arch.exception.pending) { 9904 /* 9905 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9906 * value pushed on the stack. Trap-like exception and all #DBs 9907 * leave RF as-is (KVM follows Intel's behavior in this regard; 9908 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9909 * 9910 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9911 * describe the behavior of General Detect #DBs, which are 9912 * fault-like. They do _not_ set RF, a la code breakpoints. 9913 */ 9914 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9915 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9916 X86_EFLAGS_RF); 9917 9918 if (vcpu->arch.exception.vector == DB_VECTOR) { 9919 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9920 if (vcpu->arch.dr7 & DR7_GD) { 9921 vcpu->arch.dr7 &= ~DR7_GD; 9922 kvm_update_dr7(vcpu); 9923 } 9924 } 9925 9926 kvm_inject_exception(vcpu); 9927 9928 vcpu->arch.exception.pending = false; 9929 vcpu->arch.exception.injected = true; 9930 9931 can_inject = false; 9932 } 9933 9934 /* Don't inject interrupts if the user asked to avoid doing so */ 9935 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9936 return 0; 9937 9938 /* 9939 * Finally, inject interrupt events. If an event cannot be injected 9940 * due to architectural conditions (e.g. IF=0) a window-open exit 9941 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9942 * and can architecturally be injected, but we cannot do it right now: 9943 * an interrupt could have arrived just now and we have to inject it 9944 * as a vmexit, or there could already an event in the queue, which is 9945 * indicated by can_inject. In that case we request an immediate exit 9946 * in order to make progress and get back here for another iteration. 9947 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9948 */ 9949 #ifdef CONFIG_KVM_SMM 9950 if (vcpu->arch.smi_pending) { 9951 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9952 if (r < 0) 9953 goto out; 9954 if (r) { 9955 vcpu->arch.smi_pending = false; 9956 ++vcpu->arch.smi_count; 9957 enter_smm(vcpu); 9958 can_inject = false; 9959 } else 9960 static_call(kvm_x86_enable_smi_window)(vcpu); 9961 } 9962 #endif 9963 9964 if (vcpu->arch.nmi_pending) { 9965 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9966 if (r < 0) 9967 goto out; 9968 if (r) { 9969 --vcpu->arch.nmi_pending; 9970 vcpu->arch.nmi_injected = true; 9971 static_call(kvm_x86_inject_nmi)(vcpu); 9972 can_inject = false; 9973 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9974 } 9975 if (vcpu->arch.nmi_pending) 9976 static_call(kvm_x86_enable_nmi_window)(vcpu); 9977 } 9978 9979 if (kvm_cpu_has_injectable_intr(vcpu)) { 9980 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9981 if (r < 0) 9982 goto out; 9983 if (r) { 9984 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9985 static_call(kvm_x86_inject_irq)(vcpu, false); 9986 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9987 } 9988 if (kvm_cpu_has_injectable_intr(vcpu)) 9989 static_call(kvm_x86_enable_irq_window)(vcpu); 9990 } 9991 9992 if (is_guest_mode(vcpu) && 9993 kvm_x86_ops.nested_ops->has_events && 9994 kvm_x86_ops.nested_ops->has_events(vcpu)) 9995 *req_immediate_exit = true; 9996 9997 /* 9998 * KVM must never queue a new exception while injecting an event; KVM 9999 * is done emulating and should only propagate the to-be-injected event 10000 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10001 * infinite loop as KVM will bail from VM-Enter to inject the pending 10002 * exception and start the cycle all over. 10003 * 10004 * Exempt triple faults as they have special handling and won't put the 10005 * vCPU into an infinite loop. Triple fault can be queued when running 10006 * VMX without unrestricted guest, as that requires KVM to emulate Real 10007 * Mode events (see kvm_inject_realmode_interrupt()). 10008 */ 10009 WARN_ON_ONCE(vcpu->arch.exception.pending || 10010 vcpu->arch.exception_vmexit.pending); 10011 return 0; 10012 10013 out: 10014 if (r == -EBUSY) { 10015 *req_immediate_exit = true; 10016 r = 0; 10017 } 10018 return r; 10019 } 10020 10021 static void process_nmi(struct kvm_vcpu *vcpu) 10022 { 10023 unsigned limit = 2; 10024 10025 /* 10026 * x86 is limited to one NMI running, and one NMI pending after it. 10027 * If an NMI is already in progress, limit further NMIs to just one. 10028 * Otherwise, allow two (and we'll inject the first one immediately). 10029 */ 10030 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10031 limit = 1; 10032 10033 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10034 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10035 kvm_make_request(KVM_REQ_EVENT, vcpu); 10036 } 10037 10038 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10039 unsigned long *vcpu_bitmap) 10040 { 10041 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10042 } 10043 10044 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10045 { 10046 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10047 } 10048 10049 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10050 { 10051 struct kvm_lapic *apic = vcpu->arch.apic; 10052 bool activate; 10053 10054 if (!lapic_in_kernel(vcpu)) 10055 return; 10056 10057 down_read(&vcpu->kvm->arch.apicv_update_lock); 10058 preempt_disable(); 10059 10060 /* Do not activate APICV when APIC is disabled */ 10061 activate = kvm_vcpu_apicv_activated(vcpu) && 10062 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10063 10064 if (apic->apicv_active == activate) 10065 goto out; 10066 10067 apic->apicv_active = activate; 10068 kvm_apic_update_apicv(vcpu); 10069 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10070 10071 /* 10072 * When APICv gets disabled, we may still have injected interrupts 10073 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10074 * still active when the interrupt got accepted. Make sure 10075 * kvm_check_and_inject_events() is called to check for that. 10076 */ 10077 if (!apic->apicv_active) 10078 kvm_make_request(KVM_REQ_EVENT, vcpu); 10079 10080 out: 10081 preempt_enable(); 10082 up_read(&vcpu->kvm->arch.apicv_update_lock); 10083 } 10084 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10085 10086 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10087 enum kvm_apicv_inhibit reason, bool set) 10088 { 10089 unsigned long old, new; 10090 10091 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10092 10093 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10094 return; 10095 10096 old = new = kvm->arch.apicv_inhibit_reasons; 10097 10098 set_or_clear_apicv_inhibit(&new, reason, set); 10099 10100 if (!!old != !!new) { 10101 /* 10102 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10103 * false positives in the sanity check WARN in svm_vcpu_run(). 10104 * This task will wait for all vCPUs to ack the kick IRQ before 10105 * updating apicv_inhibit_reasons, and all other vCPUs will 10106 * block on acquiring apicv_update_lock so that vCPUs can't 10107 * redo svm_vcpu_run() without seeing the new inhibit state. 10108 * 10109 * Note, holding apicv_update_lock and taking it in the read 10110 * side (handling the request) also prevents other vCPUs from 10111 * servicing the request with a stale apicv_inhibit_reasons. 10112 */ 10113 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10114 kvm->arch.apicv_inhibit_reasons = new; 10115 if (new) { 10116 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10117 int idx = srcu_read_lock(&kvm->srcu); 10118 10119 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10120 srcu_read_unlock(&kvm->srcu, idx); 10121 } 10122 } else { 10123 kvm->arch.apicv_inhibit_reasons = new; 10124 } 10125 } 10126 10127 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10128 enum kvm_apicv_inhibit reason, bool set) 10129 { 10130 if (!enable_apicv) 10131 return; 10132 10133 down_write(&kvm->arch.apicv_update_lock); 10134 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10135 up_write(&kvm->arch.apicv_update_lock); 10136 } 10137 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10138 10139 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10140 { 10141 if (!kvm_apic_present(vcpu)) 10142 return; 10143 10144 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10145 10146 if (irqchip_split(vcpu->kvm)) 10147 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10148 else { 10149 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10150 if (ioapic_in_kernel(vcpu->kvm)) 10151 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10152 } 10153 10154 if (is_guest_mode(vcpu)) 10155 vcpu->arch.load_eoi_exitmap_pending = true; 10156 else 10157 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10158 } 10159 10160 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10161 { 10162 u64 eoi_exit_bitmap[4]; 10163 10164 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10165 return; 10166 10167 if (to_hv_vcpu(vcpu)) { 10168 bitmap_or((ulong *)eoi_exit_bitmap, 10169 vcpu->arch.ioapic_handled_vectors, 10170 to_hv_synic(vcpu)->vec_bitmap, 256); 10171 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10172 return; 10173 } 10174 10175 static_call_cond(kvm_x86_load_eoi_exitmap)( 10176 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10177 } 10178 10179 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10180 unsigned long start, unsigned long end) 10181 { 10182 unsigned long apic_address; 10183 10184 /* 10185 * The physical address of apic access page is stored in the VMCS. 10186 * Update it when it becomes invalid. 10187 */ 10188 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10189 if (start <= apic_address && apic_address < end) 10190 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10191 } 10192 10193 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10194 { 10195 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10196 } 10197 10198 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10199 { 10200 if (!lapic_in_kernel(vcpu)) 10201 return; 10202 10203 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10204 } 10205 10206 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10207 { 10208 smp_send_reschedule(vcpu->cpu); 10209 } 10210 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10211 10212 /* 10213 * Called within kvm->srcu read side. 10214 * Returns 1 to let vcpu_run() continue the guest execution loop without 10215 * exiting to the userspace. Otherwise, the value will be returned to the 10216 * userspace. 10217 */ 10218 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10219 { 10220 int r; 10221 bool req_int_win = 10222 dm_request_for_irq_injection(vcpu) && 10223 kvm_cpu_accept_dm_intr(vcpu); 10224 fastpath_t exit_fastpath; 10225 10226 bool req_immediate_exit = false; 10227 10228 if (kvm_request_pending(vcpu)) { 10229 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10230 r = -EIO; 10231 goto out; 10232 } 10233 10234 if (kvm_dirty_ring_check_request(vcpu)) { 10235 r = 0; 10236 goto out; 10237 } 10238 10239 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10240 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10241 r = 0; 10242 goto out; 10243 } 10244 } 10245 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10246 kvm_mmu_free_obsolete_roots(vcpu); 10247 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10248 __kvm_migrate_timers(vcpu); 10249 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10250 kvm_update_masterclock(vcpu->kvm); 10251 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10252 kvm_gen_kvmclock_update(vcpu); 10253 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10254 r = kvm_guest_time_update(vcpu); 10255 if (unlikely(r)) 10256 goto out; 10257 } 10258 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10259 kvm_mmu_sync_roots(vcpu); 10260 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10261 kvm_mmu_load_pgd(vcpu); 10262 10263 /* 10264 * Note, the order matters here, as flushing "all" TLB entries 10265 * also flushes the "current" TLB entries, i.e. servicing the 10266 * flush "all" will clear any request to flush "current". 10267 */ 10268 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10269 kvm_vcpu_flush_tlb_all(vcpu); 10270 10271 kvm_service_local_tlb_flush_requests(vcpu); 10272 10273 /* 10274 * Fall back to a "full" guest flush if Hyper-V's precise 10275 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10276 * the flushes are considered "remote" and not "local" because 10277 * the requests can be initiated from other vCPUs. 10278 */ 10279 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10280 kvm_hv_vcpu_flush_tlb(vcpu)) 10281 kvm_vcpu_flush_tlb_guest(vcpu); 10282 10283 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10284 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10285 r = 0; 10286 goto out; 10287 } 10288 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10289 if (is_guest_mode(vcpu)) 10290 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10291 10292 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10293 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10294 vcpu->mmio_needed = 0; 10295 r = 0; 10296 goto out; 10297 } 10298 } 10299 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10300 /* Page is swapped out. Do synthetic halt */ 10301 vcpu->arch.apf.halted = true; 10302 r = 1; 10303 goto out; 10304 } 10305 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10306 record_steal_time(vcpu); 10307 #ifdef CONFIG_KVM_SMM 10308 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10309 process_smi(vcpu); 10310 #endif 10311 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10312 process_nmi(vcpu); 10313 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10314 kvm_pmu_handle_event(vcpu); 10315 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10316 kvm_pmu_deliver_pmi(vcpu); 10317 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10318 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10319 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10320 vcpu->arch.ioapic_handled_vectors)) { 10321 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10322 vcpu->run->eoi.vector = 10323 vcpu->arch.pending_ioapic_eoi; 10324 r = 0; 10325 goto out; 10326 } 10327 } 10328 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10329 vcpu_scan_ioapic(vcpu); 10330 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10331 vcpu_load_eoi_exitmap(vcpu); 10332 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10333 kvm_vcpu_reload_apic_access_page(vcpu); 10334 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10335 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10336 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10337 vcpu->run->system_event.ndata = 0; 10338 r = 0; 10339 goto out; 10340 } 10341 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10342 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10343 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10344 vcpu->run->system_event.ndata = 0; 10345 r = 0; 10346 goto out; 10347 } 10348 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10350 10351 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10352 vcpu->run->hyperv = hv_vcpu->exit; 10353 r = 0; 10354 goto out; 10355 } 10356 10357 /* 10358 * KVM_REQ_HV_STIMER has to be processed after 10359 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10360 * depend on the guest clock being up-to-date 10361 */ 10362 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10363 kvm_hv_process_stimers(vcpu); 10364 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10365 kvm_vcpu_update_apicv(vcpu); 10366 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10367 kvm_check_async_pf_completion(vcpu); 10368 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10369 static_call(kvm_x86_msr_filter_changed)(vcpu); 10370 10371 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10372 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10373 } 10374 10375 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10376 kvm_xen_has_interrupt(vcpu)) { 10377 ++vcpu->stat.req_event; 10378 r = kvm_apic_accept_events(vcpu); 10379 if (r < 0) { 10380 r = 0; 10381 goto out; 10382 } 10383 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10384 r = 1; 10385 goto out; 10386 } 10387 10388 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10389 if (r < 0) { 10390 r = 0; 10391 goto out; 10392 } 10393 if (req_int_win) 10394 static_call(kvm_x86_enable_irq_window)(vcpu); 10395 10396 if (kvm_lapic_enabled(vcpu)) { 10397 update_cr8_intercept(vcpu); 10398 kvm_lapic_sync_to_vapic(vcpu); 10399 } 10400 } 10401 10402 r = kvm_mmu_reload(vcpu); 10403 if (unlikely(r)) { 10404 goto cancel_injection; 10405 } 10406 10407 preempt_disable(); 10408 10409 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10410 10411 /* 10412 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10413 * IPI are then delayed after guest entry, which ensures that they 10414 * result in virtual interrupt delivery. 10415 */ 10416 local_irq_disable(); 10417 10418 /* Store vcpu->apicv_active before vcpu->mode. */ 10419 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10420 10421 kvm_vcpu_srcu_read_unlock(vcpu); 10422 10423 /* 10424 * 1) We should set ->mode before checking ->requests. Please see 10425 * the comment in kvm_vcpu_exiting_guest_mode(). 10426 * 10427 * 2) For APICv, we should set ->mode before checking PID.ON. This 10428 * pairs with the memory barrier implicit in pi_test_and_set_on 10429 * (see vmx_deliver_posted_interrupt). 10430 * 10431 * 3) This also orders the write to mode from any reads to the page 10432 * tables done while the VCPU is running. Please see the comment 10433 * in kvm_flush_remote_tlbs. 10434 */ 10435 smp_mb__after_srcu_read_unlock(); 10436 10437 /* 10438 * Process pending posted interrupts to handle the case where the 10439 * notification IRQ arrived in the host, or was never sent (because the 10440 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10441 * status, KVM doesn't update assigned devices when APICv is inhibited, 10442 * i.e. they can post interrupts even if APICv is temporarily disabled. 10443 */ 10444 if (kvm_lapic_enabled(vcpu)) 10445 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10446 10447 if (kvm_vcpu_exit_request(vcpu)) { 10448 vcpu->mode = OUTSIDE_GUEST_MODE; 10449 smp_wmb(); 10450 local_irq_enable(); 10451 preempt_enable(); 10452 kvm_vcpu_srcu_read_lock(vcpu); 10453 r = 1; 10454 goto cancel_injection; 10455 } 10456 10457 if (req_immediate_exit) { 10458 kvm_make_request(KVM_REQ_EVENT, vcpu); 10459 static_call(kvm_x86_request_immediate_exit)(vcpu); 10460 } 10461 10462 fpregs_assert_state_consistent(); 10463 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10464 switch_fpu_return(); 10465 10466 if (vcpu->arch.guest_fpu.xfd_err) 10467 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10468 10469 if (unlikely(vcpu->arch.switch_db_regs)) { 10470 set_debugreg(0, 7); 10471 set_debugreg(vcpu->arch.eff_db[0], 0); 10472 set_debugreg(vcpu->arch.eff_db[1], 1); 10473 set_debugreg(vcpu->arch.eff_db[2], 2); 10474 set_debugreg(vcpu->arch.eff_db[3], 3); 10475 } else if (unlikely(hw_breakpoint_active())) { 10476 set_debugreg(0, 7); 10477 } 10478 10479 guest_timing_enter_irqoff(); 10480 10481 for (;;) { 10482 /* 10483 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10484 * update must kick and wait for all vCPUs before toggling the 10485 * per-VM state, and responsing vCPUs must wait for the update 10486 * to complete before servicing KVM_REQ_APICV_UPDATE. 10487 */ 10488 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10489 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10490 10491 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10492 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10493 break; 10494 10495 if (kvm_lapic_enabled(vcpu)) 10496 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10497 10498 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10499 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10500 break; 10501 } 10502 } 10503 10504 /* 10505 * Do this here before restoring debug registers on the host. And 10506 * since we do this before handling the vmexit, a DR access vmexit 10507 * can (a) read the correct value of the debug registers, (b) set 10508 * KVM_DEBUGREG_WONT_EXIT again. 10509 */ 10510 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10511 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10512 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10513 kvm_update_dr0123(vcpu); 10514 kvm_update_dr7(vcpu); 10515 } 10516 10517 /* 10518 * If the guest has used debug registers, at least dr7 10519 * will be disabled while returning to the host. 10520 * If we don't have active breakpoints in the host, we don't 10521 * care about the messed up debug address registers. But if 10522 * we have some of them active, restore the old state. 10523 */ 10524 if (hw_breakpoint_active()) 10525 hw_breakpoint_restore(); 10526 10527 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10528 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10529 10530 vcpu->mode = OUTSIDE_GUEST_MODE; 10531 smp_wmb(); 10532 10533 /* 10534 * Sync xfd before calling handle_exit_irqoff() which may 10535 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10536 * in #NM irqoff handler). 10537 */ 10538 if (vcpu->arch.xfd_no_write_intercept) 10539 fpu_sync_guest_vmexit_xfd_state(); 10540 10541 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10542 10543 if (vcpu->arch.guest_fpu.xfd_err) 10544 wrmsrl(MSR_IA32_XFD_ERR, 0); 10545 10546 /* 10547 * Consume any pending interrupts, including the possible source of 10548 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10549 * An instruction is required after local_irq_enable() to fully unblock 10550 * interrupts on processors that implement an interrupt shadow, the 10551 * stat.exits increment will do nicely. 10552 */ 10553 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10554 local_irq_enable(); 10555 ++vcpu->stat.exits; 10556 local_irq_disable(); 10557 kvm_after_interrupt(vcpu); 10558 10559 /* 10560 * Wait until after servicing IRQs to account guest time so that any 10561 * ticks that occurred while running the guest are properly accounted 10562 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10563 * of accounting via context tracking, but the loss of accuracy is 10564 * acceptable for all known use cases. 10565 */ 10566 guest_timing_exit_irqoff(); 10567 10568 local_irq_enable(); 10569 preempt_enable(); 10570 10571 kvm_vcpu_srcu_read_lock(vcpu); 10572 10573 /* 10574 * Profile KVM exit RIPs: 10575 */ 10576 if (unlikely(prof_on == KVM_PROFILING)) { 10577 unsigned long rip = kvm_rip_read(vcpu); 10578 profile_hit(KVM_PROFILING, (void *)rip); 10579 } 10580 10581 if (unlikely(vcpu->arch.tsc_always_catchup)) 10582 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10583 10584 if (vcpu->arch.apic_attention) 10585 kvm_lapic_sync_from_vapic(vcpu); 10586 10587 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10588 return r; 10589 10590 cancel_injection: 10591 if (req_immediate_exit) 10592 kvm_make_request(KVM_REQ_EVENT, vcpu); 10593 static_call(kvm_x86_cancel_injection)(vcpu); 10594 if (unlikely(vcpu->arch.apic_attention)) 10595 kvm_lapic_sync_from_vapic(vcpu); 10596 out: 10597 return r; 10598 } 10599 10600 /* Called within kvm->srcu read side. */ 10601 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10602 { 10603 bool hv_timer; 10604 10605 if (!kvm_arch_vcpu_runnable(vcpu)) { 10606 /* 10607 * Switch to the software timer before halt-polling/blocking as 10608 * the guest's timer may be a break event for the vCPU, and the 10609 * hypervisor timer runs only when the CPU is in guest mode. 10610 * Switch before halt-polling so that KVM recognizes an expired 10611 * timer before blocking. 10612 */ 10613 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10614 if (hv_timer) 10615 kvm_lapic_switch_to_sw_timer(vcpu); 10616 10617 kvm_vcpu_srcu_read_unlock(vcpu); 10618 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10619 kvm_vcpu_halt(vcpu); 10620 else 10621 kvm_vcpu_block(vcpu); 10622 kvm_vcpu_srcu_read_lock(vcpu); 10623 10624 if (hv_timer) 10625 kvm_lapic_switch_to_hv_timer(vcpu); 10626 10627 /* 10628 * If the vCPU is not runnable, a signal or another host event 10629 * of some kind is pending; service it without changing the 10630 * vCPU's activity state. 10631 */ 10632 if (!kvm_arch_vcpu_runnable(vcpu)) 10633 return 1; 10634 } 10635 10636 /* 10637 * Evaluate nested events before exiting the halted state. This allows 10638 * the halt state to be recorded properly in the VMCS12's activity 10639 * state field (AMD does not have a similar field and a VM-Exit always 10640 * causes a spurious wakeup from HLT). 10641 */ 10642 if (is_guest_mode(vcpu)) { 10643 if (kvm_check_nested_events(vcpu) < 0) 10644 return 0; 10645 } 10646 10647 if (kvm_apic_accept_events(vcpu) < 0) 10648 return 0; 10649 switch(vcpu->arch.mp_state) { 10650 case KVM_MP_STATE_HALTED: 10651 case KVM_MP_STATE_AP_RESET_HOLD: 10652 vcpu->arch.pv.pv_unhalted = false; 10653 vcpu->arch.mp_state = 10654 KVM_MP_STATE_RUNNABLE; 10655 fallthrough; 10656 case KVM_MP_STATE_RUNNABLE: 10657 vcpu->arch.apf.halted = false; 10658 break; 10659 case KVM_MP_STATE_INIT_RECEIVED: 10660 break; 10661 default: 10662 WARN_ON_ONCE(1); 10663 break; 10664 } 10665 return 1; 10666 } 10667 10668 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10669 { 10670 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10671 !vcpu->arch.apf.halted); 10672 } 10673 10674 /* Called within kvm->srcu read side. */ 10675 static int vcpu_run(struct kvm_vcpu *vcpu) 10676 { 10677 int r; 10678 10679 vcpu->arch.l1tf_flush_l1d = true; 10680 10681 for (;;) { 10682 /* 10683 * If another guest vCPU requests a PV TLB flush in the middle 10684 * of instruction emulation, the rest of the emulation could 10685 * use a stale page translation. Assume that any code after 10686 * this point can start executing an instruction. 10687 */ 10688 vcpu->arch.at_instruction_boundary = false; 10689 if (kvm_vcpu_running(vcpu)) { 10690 r = vcpu_enter_guest(vcpu); 10691 } else { 10692 r = vcpu_block(vcpu); 10693 } 10694 10695 if (r <= 0) 10696 break; 10697 10698 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10699 if (kvm_xen_has_pending_events(vcpu)) 10700 kvm_xen_inject_pending_events(vcpu); 10701 10702 if (kvm_cpu_has_pending_timer(vcpu)) 10703 kvm_inject_pending_timer_irqs(vcpu); 10704 10705 if (dm_request_for_irq_injection(vcpu) && 10706 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10707 r = 0; 10708 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10709 ++vcpu->stat.request_irq_exits; 10710 break; 10711 } 10712 10713 if (__xfer_to_guest_mode_work_pending()) { 10714 kvm_vcpu_srcu_read_unlock(vcpu); 10715 r = xfer_to_guest_mode_handle_work(vcpu); 10716 kvm_vcpu_srcu_read_lock(vcpu); 10717 if (r) 10718 return r; 10719 } 10720 } 10721 10722 return r; 10723 } 10724 10725 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10726 { 10727 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10728 } 10729 10730 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10731 { 10732 BUG_ON(!vcpu->arch.pio.count); 10733 10734 return complete_emulated_io(vcpu); 10735 } 10736 10737 /* 10738 * Implements the following, as a state machine: 10739 * 10740 * read: 10741 * for each fragment 10742 * for each mmio piece in the fragment 10743 * write gpa, len 10744 * exit 10745 * copy data 10746 * execute insn 10747 * 10748 * write: 10749 * for each fragment 10750 * for each mmio piece in the fragment 10751 * write gpa, len 10752 * copy data 10753 * exit 10754 */ 10755 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10756 { 10757 struct kvm_run *run = vcpu->run; 10758 struct kvm_mmio_fragment *frag; 10759 unsigned len; 10760 10761 BUG_ON(!vcpu->mmio_needed); 10762 10763 /* Complete previous fragment */ 10764 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10765 len = min(8u, frag->len); 10766 if (!vcpu->mmio_is_write) 10767 memcpy(frag->data, run->mmio.data, len); 10768 10769 if (frag->len <= 8) { 10770 /* Switch to the next fragment. */ 10771 frag++; 10772 vcpu->mmio_cur_fragment++; 10773 } else { 10774 /* Go forward to the next mmio piece. */ 10775 frag->data += len; 10776 frag->gpa += len; 10777 frag->len -= len; 10778 } 10779 10780 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10781 vcpu->mmio_needed = 0; 10782 10783 /* FIXME: return into emulator if single-stepping. */ 10784 if (vcpu->mmio_is_write) 10785 return 1; 10786 vcpu->mmio_read_completed = 1; 10787 return complete_emulated_io(vcpu); 10788 } 10789 10790 run->exit_reason = KVM_EXIT_MMIO; 10791 run->mmio.phys_addr = frag->gpa; 10792 if (vcpu->mmio_is_write) 10793 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10794 run->mmio.len = min(8u, frag->len); 10795 run->mmio.is_write = vcpu->mmio_is_write; 10796 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10797 return 0; 10798 } 10799 10800 /* Swap (qemu) user FPU context for the guest FPU context. */ 10801 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10802 { 10803 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10804 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10805 trace_kvm_fpu(1); 10806 } 10807 10808 /* When vcpu_run ends, restore user space FPU context. */ 10809 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10810 { 10811 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10812 ++vcpu->stat.fpu_reload; 10813 trace_kvm_fpu(0); 10814 } 10815 10816 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10817 { 10818 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10819 struct kvm_run *kvm_run = vcpu->run; 10820 int r; 10821 10822 vcpu_load(vcpu); 10823 kvm_sigset_activate(vcpu); 10824 kvm_run->flags = 0; 10825 kvm_load_guest_fpu(vcpu); 10826 10827 kvm_vcpu_srcu_read_lock(vcpu); 10828 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10829 if (kvm_run->immediate_exit) { 10830 r = -EINTR; 10831 goto out; 10832 } 10833 /* 10834 * It should be impossible for the hypervisor timer to be in 10835 * use before KVM has ever run the vCPU. 10836 */ 10837 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10838 10839 kvm_vcpu_srcu_read_unlock(vcpu); 10840 kvm_vcpu_block(vcpu); 10841 kvm_vcpu_srcu_read_lock(vcpu); 10842 10843 if (kvm_apic_accept_events(vcpu) < 0) { 10844 r = 0; 10845 goto out; 10846 } 10847 r = -EAGAIN; 10848 if (signal_pending(current)) { 10849 r = -EINTR; 10850 kvm_run->exit_reason = KVM_EXIT_INTR; 10851 ++vcpu->stat.signal_exits; 10852 } 10853 goto out; 10854 } 10855 10856 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10857 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10858 r = -EINVAL; 10859 goto out; 10860 } 10861 10862 if (kvm_run->kvm_dirty_regs) { 10863 r = sync_regs(vcpu); 10864 if (r != 0) 10865 goto out; 10866 } 10867 10868 /* re-sync apic's tpr */ 10869 if (!lapic_in_kernel(vcpu)) { 10870 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10871 r = -EINVAL; 10872 goto out; 10873 } 10874 } 10875 10876 /* 10877 * If userspace set a pending exception and L2 is active, convert it to 10878 * a pending VM-Exit if L1 wants to intercept the exception. 10879 */ 10880 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 10881 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 10882 ex->error_code)) { 10883 kvm_queue_exception_vmexit(vcpu, ex->vector, 10884 ex->has_error_code, ex->error_code, 10885 ex->has_payload, ex->payload); 10886 ex->injected = false; 10887 ex->pending = false; 10888 } 10889 vcpu->arch.exception_from_userspace = false; 10890 10891 if (unlikely(vcpu->arch.complete_userspace_io)) { 10892 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10893 vcpu->arch.complete_userspace_io = NULL; 10894 r = cui(vcpu); 10895 if (r <= 0) 10896 goto out; 10897 } else { 10898 WARN_ON_ONCE(vcpu->arch.pio.count); 10899 WARN_ON_ONCE(vcpu->mmio_needed); 10900 } 10901 10902 if (kvm_run->immediate_exit) { 10903 r = -EINTR; 10904 goto out; 10905 } 10906 10907 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10908 if (r <= 0) 10909 goto out; 10910 10911 r = vcpu_run(vcpu); 10912 10913 out: 10914 kvm_put_guest_fpu(vcpu); 10915 if (kvm_run->kvm_valid_regs) 10916 store_regs(vcpu); 10917 post_kvm_run_save(vcpu); 10918 kvm_vcpu_srcu_read_unlock(vcpu); 10919 10920 kvm_sigset_deactivate(vcpu); 10921 vcpu_put(vcpu); 10922 return r; 10923 } 10924 10925 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10926 { 10927 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10928 /* 10929 * We are here if userspace calls get_regs() in the middle of 10930 * instruction emulation. Registers state needs to be copied 10931 * back from emulation context to vcpu. Userspace shouldn't do 10932 * that usually, but some bad designed PV devices (vmware 10933 * backdoor interface) need this to work 10934 */ 10935 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10936 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10937 } 10938 regs->rax = kvm_rax_read(vcpu); 10939 regs->rbx = kvm_rbx_read(vcpu); 10940 regs->rcx = kvm_rcx_read(vcpu); 10941 regs->rdx = kvm_rdx_read(vcpu); 10942 regs->rsi = kvm_rsi_read(vcpu); 10943 regs->rdi = kvm_rdi_read(vcpu); 10944 regs->rsp = kvm_rsp_read(vcpu); 10945 regs->rbp = kvm_rbp_read(vcpu); 10946 #ifdef CONFIG_X86_64 10947 regs->r8 = kvm_r8_read(vcpu); 10948 regs->r9 = kvm_r9_read(vcpu); 10949 regs->r10 = kvm_r10_read(vcpu); 10950 regs->r11 = kvm_r11_read(vcpu); 10951 regs->r12 = kvm_r12_read(vcpu); 10952 regs->r13 = kvm_r13_read(vcpu); 10953 regs->r14 = kvm_r14_read(vcpu); 10954 regs->r15 = kvm_r15_read(vcpu); 10955 #endif 10956 10957 regs->rip = kvm_rip_read(vcpu); 10958 regs->rflags = kvm_get_rflags(vcpu); 10959 } 10960 10961 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10962 { 10963 vcpu_load(vcpu); 10964 __get_regs(vcpu, regs); 10965 vcpu_put(vcpu); 10966 return 0; 10967 } 10968 10969 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10970 { 10971 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10972 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10973 10974 kvm_rax_write(vcpu, regs->rax); 10975 kvm_rbx_write(vcpu, regs->rbx); 10976 kvm_rcx_write(vcpu, regs->rcx); 10977 kvm_rdx_write(vcpu, regs->rdx); 10978 kvm_rsi_write(vcpu, regs->rsi); 10979 kvm_rdi_write(vcpu, regs->rdi); 10980 kvm_rsp_write(vcpu, regs->rsp); 10981 kvm_rbp_write(vcpu, regs->rbp); 10982 #ifdef CONFIG_X86_64 10983 kvm_r8_write(vcpu, regs->r8); 10984 kvm_r9_write(vcpu, regs->r9); 10985 kvm_r10_write(vcpu, regs->r10); 10986 kvm_r11_write(vcpu, regs->r11); 10987 kvm_r12_write(vcpu, regs->r12); 10988 kvm_r13_write(vcpu, regs->r13); 10989 kvm_r14_write(vcpu, regs->r14); 10990 kvm_r15_write(vcpu, regs->r15); 10991 #endif 10992 10993 kvm_rip_write(vcpu, regs->rip); 10994 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10995 10996 vcpu->arch.exception.pending = false; 10997 vcpu->arch.exception_vmexit.pending = false; 10998 10999 kvm_make_request(KVM_REQ_EVENT, vcpu); 11000 } 11001 11002 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11003 { 11004 vcpu_load(vcpu); 11005 __set_regs(vcpu, regs); 11006 vcpu_put(vcpu); 11007 return 0; 11008 } 11009 11010 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11011 { 11012 struct desc_ptr dt; 11013 11014 if (vcpu->arch.guest_state_protected) 11015 goto skip_protected_regs; 11016 11017 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11018 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11019 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11020 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11021 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11022 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11023 11024 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11025 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11026 11027 static_call(kvm_x86_get_idt)(vcpu, &dt); 11028 sregs->idt.limit = dt.size; 11029 sregs->idt.base = dt.address; 11030 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11031 sregs->gdt.limit = dt.size; 11032 sregs->gdt.base = dt.address; 11033 11034 sregs->cr2 = vcpu->arch.cr2; 11035 sregs->cr3 = kvm_read_cr3(vcpu); 11036 11037 skip_protected_regs: 11038 sregs->cr0 = kvm_read_cr0(vcpu); 11039 sregs->cr4 = kvm_read_cr4(vcpu); 11040 sregs->cr8 = kvm_get_cr8(vcpu); 11041 sregs->efer = vcpu->arch.efer; 11042 sregs->apic_base = kvm_get_apic_base(vcpu); 11043 } 11044 11045 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11046 { 11047 __get_sregs_common(vcpu, sregs); 11048 11049 if (vcpu->arch.guest_state_protected) 11050 return; 11051 11052 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11053 set_bit(vcpu->arch.interrupt.nr, 11054 (unsigned long *)sregs->interrupt_bitmap); 11055 } 11056 11057 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11058 { 11059 int i; 11060 11061 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11062 11063 if (vcpu->arch.guest_state_protected) 11064 return; 11065 11066 if (is_pae_paging(vcpu)) { 11067 for (i = 0 ; i < 4 ; i++) 11068 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11069 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11070 } 11071 } 11072 11073 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11074 struct kvm_sregs *sregs) 11075 { 11076 vcpu_load(vcpu); 11077 __get_sregs(vcpu, sregs); 11078 vcpu_put(vcpu); 11079 return 0; 11080 } 11081 11082 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11083 struct kvm_mp_state *mp_state) 11084 { 11085 int r; 11086 11087 vcpu_load(vcpu); 11088 if (kvm_mpx_supported()) 11089 kvm_load_guest_fpu(vcpu); 11090 11091 r = kvm_apic_accept_events(vcpu); 11092 if (r < 0) 11093 goto out; 11094 r = 0; 11095 11096 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11097 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11098 vcpu->arch.pv.pv_unhalted) 11099 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11100 else 11101 mp_state->mp_state = vcpu->arch.mp_state; 11102 11103 out: 11104 if (kvm_mpx_supported()) 11105 kvm_put_guest_fpu(vcpu); 11106 vcpu_put(vcpu); 11107 return r; 11108 } 11109 11110 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11111 struct kvm_mp_state *mp_state) 11112 { 11113 int ret = -EINVAL; 11114 11115 vcpu_load(vcpu); 11116 11117 switch (mp_state->mp_state) { 11118 case KVM_MP_STATE_UNINITIALIZED: 11119 case KVM_MP_STATE_HALTED: 11120 case KVM_MP_STATE_AP_RESET_HOLD: 11121 case KVM_MP_STATE_INIT_RECEIVED: 11122 case KVM_MP_STATE_SIPI_RECEIVED: 11123 if (!lapic_in_kernel(vcpu)) 11124 goto out; 11125 break; 11126 11127 case KVM_MP_STATE_RUNNABLE: 11128 break; 11129 11130 default: 11131 goto out; 11132 } 11133 11134 /* 11135 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11136 * forcing the guest into INIT/SIPI if those events are supposed to be 11137 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11138 * if an SMI is pending as well. 11139 */ 11140 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11141 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11142 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11143 goto out; 11144 11145 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11146 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11147 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11148 } else 11149 vcpu->arch.mp_state = mp_state->mp_state; 11150 kvm_make_request(KVM_REQ_EVENT, vcpu); 11151 11152 ret = 0; 11153 out: 11154 vcpu_put(vcpu); 11155 return ret; 11156 } 11157 11158 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11159 int reason, bool has_error_code, u32 error_code) 11160 { 11161 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11162 int ret; 11163 11164 init_emulate_ctxt(vcpu); 11165 11166 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11167 has_error_code, error_code); 11168 if (ret) { 11169 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11170 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11171 vcpu->run->internal.ndata = 0; 11172 return 0; 11173 } 11174 11175 kvm_rip_write(vcpu, ctxt->eip); 11176 kvm_set_rflags(vcpu, ctxt->eflags); 11177 return 1; 11178 } 11179 EXPORT_SYMBOL_GPL(kvm_task_switch); 11180 11181 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11182 { 11183 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11184 /* 11185 * When EFER.LME and CR0.PG are set, the processor is in 11186 * 64-bit mode (though maybe in a 32-bit code segment). 11187 * CR4.PAE and EFER.LMA must be set. 11188 */ 11189 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11190 return false; 11191 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11192 return false; 11193 } else { 11194 /* 11195 * Not in 64-bit mode: EFER.LMA is clear and the code 11196 * segment cannot be 64-bit. 11197 */ 11198 if (sregs->efer & EFER_LMA || sregs->cs.l) 11199 return false; 11200 } 11201 11202 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11203 } 11204 11205 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11206 int *mmu_reset_needed, bool update_pdptrs) 11207 { 11208 struct msr_data apic_base_msr; 11209 int idx; 11210 struct desc_ptr dt; 11211 11212 if (!kvm_is_valid_sregs(vcpu, sregs)) 11213 return -EINVAL; 11214 11215 apic_base_msr.data = sregs->apic_base; 11216 apic_base_msr.host_initiated = true; 11217 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11218 return -EINVAL; 11219 11220 if (vcpu->arch.guest_state_protected) 11221 return 0; 11222 11223 dt.size = sregs->idt.limit; 11224 dt.address = sregs->idt.base; 11225 static_call(kvm_x86_set_idt)(vcpu, &dt); 11226 dt.size = sregs->gdt.limit; 11227 dt.address = sregs->gdt.base; 11228 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11229 11230 vcpu->arch.cr2 = sregs->cr2; 11231 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11232 vcpu->arch.cr3 = sregs->cr3; 11233 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11234 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11235 11236 kvm_set_cr8(vcpu, sregs->cr8); 11237 11238 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11239 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11240 11241 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11242 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11243 vcpu->arch.cr0 = sregs->cr0; 11244 11245 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11246 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11247 11248 if (update_pdptrs) { 11249 idx = srcu_read_lock(&vcpu->kvm->srcu); 11250 if (is_pae_paging(vcpu)) { 11251 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11252 *mmu_reset_needed = 1; 11253 } 11254 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11255 } 11256 11257 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11258 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11259 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11260 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11261 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11262 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11263 11264 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11265 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11266 11267 update_cr8_intercept(vcpu); 11268 11269 /* Older userspace won't unhalt the vcpu on reset. */ 11270 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11271 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11272 !is_protmode(vcpu)) 11273 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11274 11275 return 0; 11276 } 11277 11278 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11279 { 11280 int pending_vec, max_bits; 11281 int mmu_reset_needed = 0; 11282 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11283 11284 if (ret) 11285 return ret; 11286 11287 if (mmu_reset_needed) 11288 kvm_mmu_reset_context(vcpu); 11289 11290 max_bits = KVM_NR_INTERRUPTS; 11291 pending_vec = find_first_bit( 11292 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11293 11294 if (pending_vec < max_bits) { 11295 kvm_queue_interrupt(vcpu, pending_vec, false); 11296 pr_debug("Set back pending irq %d\n", pending_vec); 11297 kvm_make_request(KVM_REQ_EVENT, vcpu); 11298 } 11299 return 0; 11300 } 11301 11302 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11303 { 11304 int mmu_reset_needed = 0; 11305 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11306 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11307 !(sregs2->efer & EFER_LMA); 11308 int i, ret; 11309 11310 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11311 return -EINVAL; 11312 11313 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11314 return -EINVAL; 11315 11316 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11317 &mmu_reset_needed, !valid_pdptrs); 11318 if (ret) 11319 return ret; 11320 11321 if (valid_pdptrs) { 11322 for (i = 0; i < 4 ; i++) 11323 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11324 11325 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11326 mmu_reset_needed = 1; 11327 vcpu->arch.pdptrs_from_userspace = true; 11328 } 11329 if (mmu_reset_needed) 11330 kvm_mmu_reset_context(vcpu); 11331 return 0; 11332 } 11333 11334 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11335 struct kvm_sregs *sregs) 11336 { 11337 int ret; 11338 11339 vcpu_load(vcpu); 11340 ret = __set_sregs(vcpu, sregs); 11341 vcpu_put(vcpu); 11342 return ret; 11343 } 11344 11345 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11346 { 11347 bool set = false; 11348 struct kvm_vcpu *vcpu; 11349 unsigned long i; 11350 11351 if (!enable_apicv) 11352 return; 11353 11354 down_write(&kvm->arch.apicv_update_lock); 11355 11356 kvm_for_each_vcpu(i, vcpu, kvm) { 11357 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11358 set = true; 11359 break; 11360 } 11361 } 11362 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11363 up_write(&kvm->arch.apicv_update_lock); 11364 } 11365 11366 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11367 struct kvm_guest_debug *dbg) 11368 { 11369 unsigned long rflags; 11370 int i, r; 11371 11372 if (vcpu->arch.guest_state_protected) 11373 return -EINVAL; 11374 11375 vcpu_load(vcpu); 11376 11377 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11378 r = -EBUSY; 11379 if (kvm_is_exception_pending(vcpu)) 11380 goto out; 11381 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11382 kvm_queue_exception(vcpu, DB_VECTOR); 11383 else 11384 kvm_queue_exception(vcpu, BP_VECTOR); 11385 } 11386 11387 /* 11388 * Read rflags as long as potentially injected trace flags are still 11389 * filtered out. 11390 */ 11391 rflags = kvm_get_rflags(vcpu); 11392 11393 vcpu->guest_debug = dbg->control; 11394 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11395 vcpu->guest_debug = 0; 11396 11397 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11398 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11399 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11400 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11401 } else { 11402 for (i = 0; i < KVM_NR_DB_REGS; i++) 11403 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11404 } 11405 kvm_update_dr7(vcpu); 11406 11407 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11408 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11409 11410 /* 11411 * Trigger an rflags update that will inject or remove the trace 11412 * flags. 11413 */ 11414 kvm_set_rflags(vcpu, rflags); 11415 11416 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11417 11418 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11419 11420 r = 0; 11421 11422 out: 11423 vcpu_put(vcpu); 11424 return r; 11425 } 11426 11427 /* 11428 * Translate a guest virtual address to a guest physical address. 11429 */ 11430 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11431 struct kvm_translation *tr) 11432 { 11433 unsigned long vaddr = tr->linear_address; 11434 gpa_t gpa; 11435 int idx; 11436 11437 vcpu_load(vcpu); 11438 11439 idx = srcu_read_lock(&vcpu->kvm->srcu); 11440 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11441 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11442 tr->physical_address = gpa; 11443 tr->valid = gpa != INVALID_GPA; 11444 tr->writeable = 1; 11445 tr->usermode = 0; 11446 11447 vcpu_put(vcpu); 11448 return 0; 11449 } 11450 11451 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11452 { 11453 struct fxregs_state *fxsave; 11454 11455 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11456 return 0; 11457 11458 vcpu_load(vcpu); 11459 11460 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11461 memcpy(fpu->fpr, fxsave->st_space, 128); 11462 fpu->fcw = fxsave->cwd; 11463 fpu->fsw = fxsave->swd; 11464 fpu->ftwx = fxsave->twd; 11465 fpu->last_opcode = fxsave->fop; 11466 fpu->last_ip = fxsave->rip; 11467 fpu->last_dp = fxsave->rdp; 11468 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11469 11470 vcpu_put(vcpu); 11471 return 0; 11472 } 11473 11474 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11475 { 11476 struct fxregs_state *fxsave; 11477 11478 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11479 return 0; 11480 11481 vcpu_load(vcpu); 11482 11483 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11484 11485 memcpy(fxsave->st_space, fpu->fpr, 128); 11486 fxsave->cwd = fpu->fcw; 11487 fxsave->swd = fpu->fsw; 11488 fxsave->twd = fpu->ftwx; 11489 fxsave->fop = fpu->last_opcode; 11490 fxsave->rip = fpu->last_ip; 11491 fxsave->rdp = fpu->last_dp; 11492 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11493 11494 vcpu_put(vcpu); 11495 return 0; 11496 } 11497 11498 static void store_regs(struct kvm_vcpu *vcpu) 11499 { 11500 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11501 11502 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11503 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11504 11505 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11506 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11507 11508 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11509 kvm_vcpu_ioctl_x86_get_vcpu_events( 11510 vcpu, &vcpu->run->s.regs.events); 11511 } 11512 11513 static int sync_regs(struct kvm_vcpu *vcpu) 11514 { 11515 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11516 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11517 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11518 } 11519 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11520 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11521 return -EINVAL; 11522 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11523 } 11524 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11525 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11526 vcpu, &vcpu->run->s.regs.events)) 11527 return -EINVAL; 11528 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11529 } 11530 11531 return 0; 11532 } 11533 11534 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11535 { 11536 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11537 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11538 "guest TSC will not be reliable\n"); 11539 11540 if (!kvm->arch.max_vcpu_ids) 11541 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11542 11543 if (id >= kvm->arch.max_vcpu_ids) 11544 return -EINVAL; 11545 11546 return static_call(kvm_x86_vcpu_precreate)(kvm); 11547 } 11548 11549 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11550 { 11551 struct page *page; 11552 int r; 11553 11554 vcpu->arch.last_vmentry_cpu = -1; 11555 vcpu->arch.regs_avail = ~0; 11556 vcpu->arch.regs_dirty = ~0; 11557 11558 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11559 11560 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11561 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11562 else 11563 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11564 11565 r = kvm_mmu_create(vcpu); 11566 if (r < 0) 11567 return r; 11568 11569 if (irqchip_in_kernel(vcpu->kvm)) { 11570 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11571 if (r < 0) 11572 goto fail_mmu_destroy; 11573 11574 /* 11575 * Defer evaluating inhibits until the vCPU is first run, as 11576 * this vCPU will not get notified of any changes until this 11577 * vCPU is visible to other vCPUs (marked online and added to 11578 * the set of vCPUs). Opportunistically mark APICv active as 11579 * VMX in particularly is highly unlikely to have inhibits. 11580 * Ignore the current per-VM APICv state so that vCPU creation 11581 * is guaranteed to run with a deterministic value, the request 11582 * will ensure the vCPU gets the correct state before VM-Entry. 11583 */ 11584 if (enable_apicv) { 11585 vcpu->arch.apic->apicv_active = true; 11586 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11587 } 11588 } else 11589 static_branch_inc(&kvm_has_noapic_vcpu); 11590 11591 r = -ENOMEM; 11592 11593 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11594 if (!page) 11595 goto fail_free_lapic; 11596 vcpu->arch.pio_data = page_address(page); 11597 11598 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11599 GFP_KERNEL_ACCOUNT); 11600 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11601 GFP_KERNEL_ACCOUNT); 11602 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11603 goto fail_free_mce_banks; 11604 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11605 11606 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11607 GFP_KERNEL_ACCOUNT)) 11608 goto fail_free_mce_banks; 11609 11610 if (!alloc_emulate_ctxt(vcpu)) 11611 goto free_wbinvd_dirty_mask; 11612 11613 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11614 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11615 goto free_emulate_ctxt; 11616 } 11617 11618 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11619 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11620 11621 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11622 11623 kvm_async_pf_hash_reset(vcpu); 11624 11625 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11626 kvm_pmu_init(vcpu); 11627 11628 vcpu->arch.pending_external_vector = -1; 11629 vcpu->arch.preempted_in_kernel = false; 11630 11631 #if IS_ENABLED(CONFIG_HYPERV) 11632 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11633 #endif 11634 11635 r = static_call(kvm_x86_vcpu_create)(vcpu); 11636 if (r) 11637 goto free_guest_fpu; 11638 11639 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11640 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11641 kvm_xen_init_vcpu(vcpu); 11642 kvm_vcpu_mtrr_init(vcpu); 11643 vcpu_load(vcpu); 11644 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11645 kvm_vcpu_reset(vcpu, false); 11646 kvm_init_mmu(vcpu); 11647 vcpu_put(vcpu); 11648 return 0; 11649 11650 free_guest_fpu: 11651 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11652 free_emulate_ctxt: 11653 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11654 free_wbinvd_dirty_mask: 11655 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11656 fail_free_mce_banks: 11657 kfree(vcpu->arch.mce_banks); 11658 kfree(vcpu->arch.mci_ctl2_banks); 11659 free_page((unsigned long)vcpu->arch.pio_data); 11660 fail_free_lapic: 11661 kvm_free_lapic(vcpu); 11662 fail_mmu_destroy: 11663 kvm_mmu_destroy(vcpu); 11664 return r; 11665 } 11666 11667 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11668 { 11669 struct kvm *kvm = vcpu->kvm; 11670 11671 if (mutex_lock_killable(&vcpu->mutex)) 11672 return; 11673 vcpu_load(vcpu); 11674 kvm_synchronize_tsc(vcpu, 0); 11675 vcpu_put(vcpu); 11676 11677 /* poll control enabled by default */ 11678 vcpu->arch.msr_kvm_poll_control = 1; 11679 11680 mutex_unlock(&vcpu->mutex); 11681 11682 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11683 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11684 KVMCLOCK_SYNC_PERIOD); 11685 } 11686 11687 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11688 { 11689 int idx; 11690 11691 kvmclock_reset(vcpu); 11692 11693 static_call(kvm_x86_vcpu_free)(vcpu); 11694 11695 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11696 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11697 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11698 11699 kvm_xen_destroy_vcpu(vcpu); 11700 kvm_hv_vcpu_uninit(vcpu); 11701 kvm_pmu_destroy(vcpu); 11702 kfree(vcpu->arch.mce_banks); 11703 kfree(vcpu->arch.mci_ctl2_banks); 11704 kvm_free_lapic(vcpu); 11705 idx = srcu_read_lock(&vcpu->kvm->srcu); 11706 kvm_mmu_destroy(vcpu); 11707 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11708 free_page((unsigned long)vcpu->arch.pio_data); 11709 kvfree(vcpu->arch.cpuid_entries); 11710 if (!lapic_in_kernel(vcpu)) 11711 static_branch_dec(&kvm_has_noapic_vcpu); 11712 } 11713 11714 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11715 { 11716 struct kvm_cpuid_entry2 *cpuid_0x1; 11717 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11718 unsigned long new_cr0; 11719 11720 /* 11721 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11722 * to handle side effects. RESET emulation hits those flows and relies 11723 * on emulated/virtualized registers, including those that are loaded 11724 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11725 * to detect improper or missing initialization. 11726 */ 11727 WARN_ON_ONCE(!init_event && 11728 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11729 11730 /* 11731 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11732 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11733 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11734 * bits), i.e. virtualization is disabled. 11735 */ 11736 if (is_guest_mode(vcpu)) 11737 kvm_leave_nested(vcpu); 11738 11739 kvm_lapic_reset(vcpu, init_event); 11740 11741 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11742 vcpu->arch.hflags = 0; 11743 11744 vcpu->arch.smi_pending = 0; 11745 vcpu->arch.smi_count = 0; 11746 atomic_set(&vcpu->arch.nmi_queued, 0); 11747 vcpu->arch.nmi_pending = 0; 11748 vcpu->arch.nmi_injected = false; 11749 kvm_clear_interrupt_queue(vcpu); 11750 kvm_clear_exception_queue(vcpu); 11751 11752 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11753 kvm_update_dr0123(vcpu); 11754 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11755 vcpu->arch.dr7 = DR7_FIXED_1; 11756 kvm_update_dr7(vcpu); 11757 11758 vcpu->arch.cr2 = 0; 11759 11760 kvm_make_request(KVM_REQ_EVENT, vcpu); 11761 vcpu->arch.apf.msr_en_val = 0; 11762 vcpu->arch.apf.msr_int_val = 0; 11763 vcpu->arch.st.msr_val = 0; 11764 11765 kvmclock_reset(vcpu); 11766 11767 kvm_clear_async_pf_completion_queue(vcpu); 11768 kvm_async_pf_hash_reset(vcpu); 11769 vcpu->arch.apf.halted = false; 11770 11771 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11772 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11773 11774 /* 11775 * All paths that lead to INIT are required to load the guest's 11776 * FPU state (because most paths are buried in KVM_RUN). 11777 */ 11778 if (init_event) 11779 kvm_put_guest_fpu(vcpu); 11780 11781 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11782 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11783 11784 if (init_event) 11785 kvm_load_guest_fpu(vcpu); 11786 } 11787 11788 if (!init_event) { 11789 kvm_pmu_reset(vcpu); 11790 vcpu->arch.smbase = 0x30000; 11791 11792 vcpu->arch.msr_misc_features_enables = 0; 11793 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11794 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11795 11796 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11797 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11798 } 11799 11800 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11801 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11802 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11803 11804 /* 11805 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11806 * if no CPUID match is found. Note, it's impossible to get a match at 11807 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11808 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11809 * on RESET. But, go through the motions in case that's ever remedied. 11810 */ 11811 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11812 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11813 11814 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11815 11816 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11817 kvm_rip_write(vcpu, 0xfff0); 11818 11819 vcpu->arch.cr3 = 0; 11820 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11821 11822 /* 11823 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11824 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11825 * (or qualify) that with a footnote stating that CD/NW are preserved. 11826 */ 11827 new_cr0 = X86_CR0_ET; 11828 if (init_event) 11829 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11830 else 11831 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11832 11833 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11834 static_call(kvm_x86_set_cr4)(vcpu, 0); 11835 static_call(kvm_x86_set_efer)(vcpu, 0); 11836 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11837 11838 /* 11839 * On the standard CR0/CR4/EFER modification paths, there are several 11840 * complex conditions determining whether the MMU has to be reset and/or 11841 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11842 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11843 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11844 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11845 */ 11846 if (old_cr0 & X86_CR0_PG) { 11847 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11848 kvm_mmu_reset_context(vcpu); 11849 } 11850 11851 /* 11852 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11853 * APM states the TLBs are untouched by INIT, but it also states that 11854 * the TLBs are flushed on "External initialization of the processor." 11855 * Flush the guest TLB regardless of vendor, there is no meaningful 11856 * benefit in relying on the guest to flush the TLB immediately after 11857 * INIT. A spurious TLB flush is benign and likely negligible from a 11858 * performance perspective. 11859 */ 11860 if (init_event) 11861 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11862 } 11863 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11864 11865 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11866 { 11867 struct kvm_segment cs; 11868 11869 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11870 cs.selector = vector << 8; 11871 cs.base = vector << 12; 11872 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11873 kvm_rip_write(vcpu, 0); 11874 } 11875 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11876 11877 int kvm_arch_hardware_enable(void) 11878 { 11879 struct kvm *kvm; 11880 struct kvm_vcpu *vcpu; 11881 unsigned long i; 11882 int ret; 11883 u64 local_tsc; 11884 u64 max_tsc = 0; 11885 bool stable, backwards_tsc = false; 11886 11887 kvm_user_return_msr_cpu_online(); 11888 ret = static_call(kvm_x86_hardware_enable)(); 11889 if (ret != 0) 11890 return ret; 11891 11892 local_tsc = rdtsc(); 11893 stable = !kvm_check_tsc_unstable(); 11894 list_for_each_entry(kvm, &vm_list, vm_list) { 11895 kvm_for_each_vcpu(i, vcpu, kvm) { 11896 if (!stable && vcpu->cpu == smp_processor_id()) 11897 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11898 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11899 backwards_tsc = true; 11900 if (vcpu->arch.last_host_tsc > max_tsc) 11901 max_tsc = vcpu->arch.last_host_tsc; 11902 } 11903 } 11904 } 11905 11906 /* 11907 * Sometimes, even reliable TSCs go backwards. This happens on 11908 * platforms that reset TSC during suspend or hibernate actions, but 11909 * maintain synchronization. We must compensate. Fortunately, we can 11910 * detect that condition here, which happens early in CPU bringup, 11911 * before any KVM threads can be running. Unfortunately, we can't 11912 * bring the TSCs fully up to date with real time, as we aren't yet far 11913 * enough into CPU bringup that we know how much real time has actually 11914 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11915 * variables that haven't been updated yet. 11916 * 11917 * So we simply find the maximum observed TSC above, then record the 11918 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11919 * the adjustment will be applied. Note that we accumulate 11920 * adjustments, in case multiple suspend cycles happen before some VCPU 11921 * gets a chance to run again. In the event that no KVM threads get a 11922 * chance to run, we will miss the entire elapsed period, as we'll have 11923 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11924 * loose cycle time. This isn't too big a deal, since the loss will be 11925 * uniform across all VCPUs (not to mention the scenario is extremely 11926 * unlikely). It is possible that a second hibernate recovery happens 11927 * much faster than a first, causing the observed TSC here to be 11928 * smaller; this would require additional padding adjustment, which is 11929 * why we set last_host_tsc to the local tsc observed here. 11930 * 11931 * N.B. - this code below runs only on platforms with reliable TSC, 11932 * as that is the only way backwards_tsc is set above. Also note 11933 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11934 * have the same delta_cyc adjustment applied if backwards_tsc 11935 * is detected. Note further, this adjustment is only done once, 11936 * as we reset last_host_tsc on all VCPUs to stop this from being 11937 * called multiple times (one for each physical CPU bringup). 11938 * 11939 * Platforms with unreliable TSCs don't have to deal with this, they 11940 * will be compensated by the logic in vcpu_load, which sets the TSC to 11941 * catchup mode. This will catchup all VCPUs to real time, but cannot 11942 * guarantee that they stay in perfect synchronization. 11943 */ 11944 if (backwards_tsc) { 11945 u64 delta_cyc = max_tsc - local_tsc; 11946 list_for_each_entry(kvm, &vm_list, vm_list) { 11947 kvm->arch.backwards_tsc_observed = true; 11948 kvm_for_each_vcpu(i, vcpu, kvm) { 11949 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11950 vcpu->arch.last_host_tsc = local_tsc; 11951 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11952 } 11953 11954 /* 11955 * We have to disable TSC offset matching.. if you were 11956 * booting a VM while issuing an S4 host suspend.... 11957 * you may have some problem. Solving this issue is 11958 * left as an exercise to the reader. 11959 */ 11960 kvm->arch.last_tsc_nsec = 0; 11961 kvm->arch.last_tsc_write = 0; 11962 } 11963 11964 } 11965 return 0; 11966 } 11967 11968 void kvm_arch_hardware_disable(void) 11969 { 11970 static_call(kvm_x86_hardware_disable)(); 11971 drop_user_return_notifiers(); 11972 } 11973 11974 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11975 { 11976 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11977 11978 #define __KVM_X86_OP(func) \ 11979 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11980 #define KVM_X86_OP(func) \ 11981 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11982 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11983 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 11984 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11985 (void *)__static_call_return0); 11986 #include <asm/kvm-x86-ops.h> 11987 #undef __KVM_X86_OP 11988 11989 kvm_pmu_ops_update(ops->pmu_ops); 11990 } 11991 11992 int kvm_arch_hardware_setup(void *opaque) 11993 { 11994 struct kvm_x86_init_ops *ops = opaque; 11995 int r; 11996 11997 rdmsrl_safe(MSR_EFER, &host_efer); 11998 11999 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12000 rdmsrl(MSR_IA32_XSS, host_xss); 12001 12002 kvm_init_pmu_capability(); 12003 12004 r = ops->hardware_setup(); 12005 if (r != 0) 12006 return r; 12007 12008 kvm_ops_update(ops); 12009 12010 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12011 12012 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12013 kvm_caps.supported_xss = 0; 12014 12015 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12016 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12017 #undef __kvm_cpu_cap_has 12018 12019 if (kvm_caps.has_tsc_control) { 12020 /* 12021 * Make sure the user can only configure tsc_khz values that 12022 * fit into a signed integer. 12023 * A min value is not calculated because it will always 12024 * be 1 on all machines. 12025 */ 12026 u64 max = min(0x7fffffffULL, 12027 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12028 kvm_caps.max_guest_tsc_khz = max; 12029 } 12030 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12031 kvm_init_msr_list(); 12032 return 0; 12033 } 12034 12035 void kvm_arch_hardware_unsetup(void) 12036 { 12037 kvm_unregister_perf_callbacks(); 12038 12039 static_call(kvm_x86_hardware_unsetup)(); 12040 } 12041 12042 int kvm_arch_check_processor_compat(void *opaque) 12043 { 12044 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12045 struct kvm_x86_init_ops *ops = opaque; 12046 12047 WARN_ON(!irqs_disabled()); 12048 12049 if (__cr4_reserved_bits(cpu_has, c) != 12050 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12051 return -EIO; 12052 12053 return ops->check_processor_compatibility(); 12054 } 12055 12056 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12057 { 12058 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12059 } 12060 12061 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12062 { 12063 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12064 } 12065 12066 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12067 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12068 12069 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12070 { 12071 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12072 12073 vcpu->arch.l1tf_flush_l1d = true; 12074 if (pmu->version && unlikely(pmu->event_count)) { 12075 pmu->need_cleanup = true; 12076 kvm_make_request(KVM_REQ_PMU, vcpu); 12077 } 12078 static_call(kvm_x86_sched_in)(vcpu, cpu); 12079 } 12080 12081 void kvm_arch_free_vm(struct kvm *kvm) 12082 { 12083 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12084 __kvm_arch_free_vm(kvm); 12085 } 12086 12087 12088 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12089 { 12090 int ret; 12091 unsigned long flags; 12092 12093 if (type) 12094 return -EINVAL; 12095 12096 ret = kvm_page_track_init(kvm); 12097 if (ret) 12098 goto out; 12099 12100 ret = kvm_mmu_init_vm(kvm); 12101 if (ret) 12102 goto out_page_track; 12103 12104 ret = static_call(kvm_x86_vm_init)(kvm); 12105 if (ret) 12106 goto out_uninit_mmu; 12107 12108 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12109 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12110 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12111 12112 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12113 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12114 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12115 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12116 &kvm->arch.irq_sources_bitmap); 12117 12118 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12119 mutex_init(&kvm->arch.apic_map_lock); 12120 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12121 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12122 12123 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12124 pvclock_update_vm_gtod_copy(kvm); 12125 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12126 12127 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12128 kvm->arch.guest_can_read_msr_platform_info = true; 12129 kvm->arch.enable_pmu = enable_pmu; 12130 12131 #if IS_ENABLED(CONFIG_HYPERV) 12132 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12133 kvm->arch.hv_root_tdp = INVALID_PAGE; 12134 #endif 12135 12136 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12137 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12138 12139 kvm_apicv_init(kvm); 12140 kvm_hv_init_vm(kvm); 12141 kvm_xen_init_vm(kvm); 12142 12143 return 0; 12144 12145 out_uninit_mmu: 12146 kvm_mmu_uninit_vm(kvm); 12147 out_page_track: 12148 kvm_page_track_cleanup(kvm); 12149 out: 12150 return ret; 12151 } 12152 12153 int kvm_arch_post_init_vm(struct kvm *kvm) 12154 { 12155 return kvm_mmu_post_init_vm(kvm); 12156 } 12157 12158 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12159 { 12160 vcpu_load(vcpu); 12161 kvm_mmu_unload(vcpu); 12162 vcpu_put(vcpu); 12163 } 12164 12165 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12166 { 12167 unsigned long i; 12168 struct kvm_vcpu *vcpu; 12169 12170 kvm_for_each_vcpu(i, vcpu, kvm) { 12171 kvm_clear_async_pf_completion_queue(vcpu); 12172 kvm_unload_vcpu_mmu(vcpu); 12173 } 12174 } 12175 12176 void kvm_arch_sync_events(struct kvm *kvm) 12177 { 12178 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12179 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12180 kvm_free_pit(kvm); 12181 } 12182 12183 /** 12184 * __x86_set_memory_region: Setup KVM internal memory slot 12185 * 12186 * @kvm: the kvm pointer to the VM. 12187 * @id: the slot ID to setup. 12188 * @gpa: the GPA to install the slot (unused when @size == 0). 12189 * @size: the size of the slot. Set to zero to uninstall a slot. 12190 * 12191 * This function helps to setup a KVM internal memory slot. Specify 12192 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12193 * slot. The return code can be one of the following: 12194 * 12195 * HVA: on success (uninstall will return a bogus HVA) 12196 * -errno: on error 12197 * 12198 * The caller should always use IS_ERR() to check the return value 12199 * before use. Note, the KVM internal memory slots are guaranteed to 12200 * remain valid and unchanged until the VM is destroyed, i.e., the 12201 * GPA->HVA translation will not change. However, the HVA is a user 12202 * address, i.e. its accessibility is not guaranteed, and must be 12203 * accessed via __copy_{to,from}_user(). 12204 */ 12205 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12206 u32 size) 12207 { 12208 int i, r; 12209 unsigned long hva, old_npages; 12210 struct kvm_memslots *slots = kvm_memslots(kvm); 12211 struct kvm_memory_slot *slot; 12212 12213 /* Called with kvm->slots_lock held. */ 12214 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12215 return ERR_PTR_USR(-EINVAL); 12216 12217 slot = id_to_memslot(slots, id); 12218 if (size) { 12219 if (slot && slot->npages) 12220 return ERR_PTR_USR(-EEXIST); 12221 12222 /* 12223 * MAP_SHARED to prevent internal slot pages from being moved 12224 * by fork()/COW. 12225 */ 12226 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12227 MAP_SHARED | MAP_ANONYMOUS, 0); 12228 if (IS_ERR((void *)hva)) 12229 return (void __user *)hva; 12230 } else { 12231 if (!slot || !slot->npages) 12232 return NULL; 12233 12234 old_npages = slot->npages; 12235 hva = slot->userspace_addr; 12236 } 12237 12238 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12239 struct kvm_userspace_memory_region m; 12240 12241 m.slot = id | (i << 16); 12242 m.flags = 0; 12243 m.guest_phys_addr = gpa; 12244 m.userspace_addr = hva; 12245 m.memory_size = size; 12246 r = __kvm_set_memory_region(kvm, &m); 12247 if (r < 0) 12248 return ERR_PTR_USR(r); 12249 } 12250 12251 if (!size) 12252 vm_munmap(hva, old_npages * PAGE_SIZE); 12253 12254 return (void __user *)hva; 12255 } 12256 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12257 12258 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12259 { 12260 kvm_mmu_pre_destroy_vm(kvm); 12261 } 12262 12263 void kvm_arch_destroy_vm(struct kvm *kvm) 12264 { 12265 if (current->mm == kvm->mm) { 12266 /* 12267 * Free memory regions allocated on behalf of userspace, 12268 * unless the memory map has changed due to process exit 12269 * or fd copying. 12270 */ 12271 mutex_lock(&kvm->slots_lock); 12272 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12273 0, 0); 12274 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12275 0, 0); 12276 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12277 mutex_unlock(&kvm->slots_lock); 12278 } 12279 kvm_unload_vcpu_mmus(kvm); 12280 static_call_cond(kvm_x86_vm_destroy)(kvm); 12281 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12282 kvm_pic_destroy(kvm); 12283 kvm_ioapic_destroy(kvm); 12284 kvm_destroy_vcpus(kvm); 12285 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12286 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12287 kvm_mmu_uninit_vm(kvm); 12288 kvm_page_track_cleanup(kvm); 12289 kvm_xen_destroy_vm(kvm); 12290 kvm_hv_destroy_vm(kvm); 12291 } 12292 12293 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12294 { 12295 int i; 12296 12297 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12298 kvfree(slot->arch.rmap[i]); 12299 slot->arch.rmap[i] = NULL; 12300 } 12301 } 12302 12303 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12304 { 12305 int i; 12306 12307 memslot_rmap_free(slot); 12308 12309 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12310 kvfree(slot->arch.lpage_info[i - 1]); 12311 slot->arch.lpage_info[i - 1] = NULL; 12312 } 12313 12314 kvm_page_track_free_memslot(slot); 12315 } 12316 12317 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12318 { 12319 const int sz = sizeof(*slot->arch.rmap[0]); 12320 int i; 12321 12322 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12323 int level = i + 1; 12324 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12325 12326 if (slot->arch.rmap[i]) 12327 continue; 12328 12329 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12330 if (!slot->arch.rmap[i]) { 12331 memslot_rmap_free(slot); 12332 return -ENOMEM; 12333 } 12334 } 12335 12336 return 0; 12337 } 12338 12339 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12340 struct kvm_memory_slot *slot) 12341 { 12342 unsigned long npages = slot->npages; 12343 int i, r; 12344 12345 /* 12346 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12347 * old arrays will be freed by __kvm_set_memory_region() if installing 12348 * the new memslot is successful. 12349 */ 12350 memset(&slot->arch, 0, sizeof(slot->arch)); 12351 12352 if (kvm_memslots_have_rmaps(kvm)) { 12353 r = memslot_rmap_alloc(slot, npages); 12354 if (r) 12355 return r; 12356 } 12357 12358 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12359 struct kvm_lpage_info *linfo; 12360 unsigned long ugfn; 12361 int lpages; 12362 int level = i + 1; 12363 12364 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12365 12366 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12367 if (!linfo) 12368 goto out_free; 12369 12370 slot->arch.lpage_info[i - 1] = linfo; 12371 12372 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12373 linfo[0].disallow_lpage = 1; 12374 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12375 linfo[lpages - 1].disallow_lpage = 1; 12376 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12377 /* 12378 * If the gfn and userspace address are not aligned wrt each 12379 * other, disable large page support for this slot. 12380 */ 12381 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12382 unsigned long j; 12383 12384 for (j = 0; j < lpages; ++j) 12385 linfo[j].disallow_lpage = 1; 12386 } 12387 } 12388 12389 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12390 goto out_free; 12391 12392 return 0; 12393 12394 out_free: 12395 memslot_rmap_free(slot); 12396 12397 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12398 kvfree(slot->arch.lpage_info[i - 1]); 12399 slot->arch.lpage_info[i - 1] = NULL; 12400 } 12401 return -ENOMEM; 12402 } 12403 12404 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12405 { 12406 struct kvm_vcpu *vcpu; 12407 unsigned long i; 12408 12409 /* 12410 * memslots->generation has been incremented. 12411 * mmio generation may have reached its maximum value. 12412 */ 12413 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12414 12415 /* Force re-initialization of steal_time cache */ 12416 kvm_for_each_vcpu(i, vcpu, kvm) 12417 kvm_vcpu_kick(vcpu); 12418 } 12419 12420 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12421 const struct kvm_memory_slot *old, 12422 struct kvm_memory_slot *new, 12423 enum kvm_mr_change change) 12424 { 12425 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12426 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12427 return -EINVAL; 12428 12429 return kvm_alloc_memslot_metadata(kvm, new); 12430 } 12431 12432 if (change == KVM_MR_FLAGS_ONLY) 12433 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12434 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12435 return -EIO; 12436 12437 return 0; 12438 } 12439 12440 12441 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12442 { 12443 struct kvm_arch *ka = &kvm->arch; 12444 12445 if (!kvm_x86_ops.cpu_dirty_log_size) 12446 return; 12447 12448 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12449 (!enable && --ka->cpu_dirty_logging_count == 0)) 12450 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12451 12452 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12453 } 12454 12455 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12456 struct kvm_memory_slot *old, 12457 const struct kvm_memory_slot *new, 12458 enum kvm_mr_change change) 12459 { 12460 u32 old_flags = old ? old->flags : 0; 12461 u32 new_flags = new ? new->flags : 0; 12462 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12463 12464 /* 12465 * Update CPU dirty logging if dirty logging is being toggled. This 12466 * applies to all operations. 12467 */ 12468 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12469 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12470 12471 /* 12472 * Nothing more to do for RO slots (which can't be dirtied and can't be 12473 * made writable) or CREATE/MOVE/DELETE of a slot. 12474 * 12475 * For a memslot with dirty logging disabled: 12476 * CREATE: No dirty mappings will already exist. 12477 * MOVE/DELETE: The old mappings will already have been cleaned up by 12478 * kvm_arch_flush_shadow_memslot() 12479 * 12480 * For a memslot with dirty logging enabled: 12481 * CREATE: No shadow pages exist, thus nothing to write-protect 12482 * and no dirty bits to clear. 12483 * MOVE/DELETE: The old mappings will already have been cleaned up by 12484 * kvm_arch_flush_shadow_memslot(). 12485 */ 12486 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12487 return; 12488 12489 /* 12490 * READONLY and non-flags changes were filtered out above, and the only 12491 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12492 * logging isn't being toggled on or off. 12493 */ 12494 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12495 return; 12496 12497 if (!log_dirty_pages) { 12498 /* 12499 * Dirty logging tracks sptes in 4k granularity, meaning that 12500 * large sptes have to be split. If live migration succeeds, 12501 * the guest in the source machine will be destroyed and large 12502 * sptes will be created in the destination. However, if the 12503 * guest continues to run in the source machine (for example if 12504 * live migration fails), small sptes will remain around and 12505 * cause bad performance. 12506 * 12507 * Scan sptes if dirty logging has been stopped, dropping those 12508 * which can be collapsed into a single large-page spte. Later 12509 * page faults will create the large-page sptes. 12510 */ 12511 kvm_mmu_zap_collapsible_sptes(kvm, new); 12512 } else { 12513 /* 12514 * Initially-all-set does not require write protecting any page, 12515 * because they're all assumed to be dirty. 12516 */ 12517 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12518 return; 12519 12520 if (READ_ONCE(eager_page_split)) 12521 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12522 12523 if (kvm_x86_ops.cpu_dirty_log_size) { 12524 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12525 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12526 } else { 12527 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12528 } 12529 12530 /* 12531 * Unconditionally flush the TLBs after enabling dirty logging. 12532 * A flush is almost always going to be necessary (see below), 12533 * and unconditionally flushing allows the helpers to omit 12534 * the subtly complex checks when removing write access. 12535 * 12536 * Do the flush outside of mmu_lock to reduce the amount of 12537 * time mmu_lock is held. Flushing after dropping mmu_lock is 12538 * safe as KVM only needs to guarantee the slot is fully 12539 * write-protected before returning to userspace, i.e. before 12540 * userspace can consume the dirty status. 12541 * 12542 * Flushing outside of mmu_lock requires KVM to be careful when 12543 * making decisions based on writable status of an SPTE, e.g. a 12544 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12545 * 12546 * Specifically, KVM also write-protects guest page tables to 12547 * monitor changes when using shadow paging, and must guarantee 12548 * no CPUs can write to those page before mmu_lock is dropped. 12549 * Because CPUs may have stale TLB entries at this point, a 12550 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12551 * 12552 * KVM also allows making SPTES writable outside of mmu_lock, 12553 * e.g. to allow dirty logging without taking mmu_lock. 12554 * 12555 * To handle these scenarios, KVM uses a separate software-only 12556 * bit (MMU-writable) to track if a SPTE is !writable due to 12557 * a guest page table being write-protected (KVM clears the 12558 * MMU-writable flag when write-protecting for shadow paging). 12559 * 12560 * The use of MMU-writable is also the primary motivation for 12561 * the unconditional flush. Because KVM must guarantee that a 12562 * CPU doesn't contain stale, writable TLB entries for a 12563 * !MMU-writable SPTE, KVM must flush if it encounters any 12564 * MMU-writable SPTE regardless of whether the actual hardware 12565 * writable bit was set. I.e. KVM is almost guaranteed to need 12566 * to flush, while unconditionally flushing allows the "remove 12567 * write access" helpers to ignore MMU-writable entirely. 12568 * 12569 * See is_writable_pte() for more details (the case involving 12570 * access-tracked SPTEs is particularly relevant). 12571 */ 12572 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12573 } 12574 } 12575 12576 void kvm_arch_commit_memory_region(struct kvm *kvm, 12577 struct kvm_memory_slot *old, 12578 const struct kvm_memory_slot *new, 12579 enum kvm_mr_change change) 12580 { 12581 if (!kvm->arch.n_requested_mmu_pages && 12582 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12583 unsigned long nr_mmu_pages; 12584 12585 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12586 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12587 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12588 } 12589 12590 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12591 12592 /* Free the arrays associated with the old memslot. */ 12593 if (change == KVM_MR_MOVE) 12594 kvm_arch_free_memslot(kvm, old); 12595 } 12596 12597 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12598 { 12599 kvm_mmu_zap_all(kvm); 12600 } 12601 12602 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12603 struct kvm_memory_slot *slot) 12604 { 12605 kvm_page_track_flush_slot(kvm, slot); 12606 } 12607 12608 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12609 { 12610 return (is_guest_mode(vcpu) && 12611 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12612 } 12613 12614 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12615 { 12616 if (!list_empty_careful(&vcpu->async_pf.done)) 12617 return true; 12618 12619 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12620 kvm_apic_init_sipi_allowed(vcpu)) 12621 return true; 12622 12623 if (vcpu->arch.pv.pv_unhalted) 12624 return true; 12625 12626 if (kvm_is_exception_pending(vcpu)) 12627 return true; 12628 12629 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12630 (vcpu->arch.nmi_pending && 12631 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12632 return true; 12633 12634 #ifdef CONFIG_KVM_SMM 12635 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12636 (vcpu->arch.smi_pending && 12637 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12638 return true; 12639 #endif 12640 12641 if (kvm_arch_interrupt_allowed(vcpu) && 12642 (kvm_cpu_has_interrupt(vcpu) || 12643 kvm_guest_apic_has_interrupt(vcpu))) 12644 return true; 12645 12646 if (kvm_hv_has_stimer_pending(vcpu)) 12647 return true; 12648 12649 if (is_guest_mode(vcpu) && 12650 kvm_x86_ops.nested_ops->has_events && 12651 kvm_x86_ops.nested_ops->has_events(vcpu)) 12652 return true; 12653 12654 if (kvm_xen_has_pending_events(vcpu)) 12655 return true; 12656 12657 return false; 12658 } 12659 12660 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12661 { 12662 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12663 } 12664 12665 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12666 { 12667 if (kvm_vcpu_apicv_active(vcpu) && 12668 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12669 return true; 12670 12671 return false; 12672 } 12673 12674 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12675 { 12676 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12677 return true; 12678 12679 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12680 #ifdef CONFIG_KVM_SMM 12681 kvm_test_request(KVM_REQ_SMI, vcpu) || 12682 #endif 12683 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12684 return true; 12685 12686 return kvm_arch_dy_has_pending_interrupt(vcpu); 12687 } 12688 12689 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12690 { 12691 if (vcpu->arch.guest_state_protected) 12692 return true; 12693 12694 return vcpu->arch.preempted_in_kernel; 12695 } 12696 12697 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12698 { 12699 return kvm_rip_read(vcpu); 12700 } 12701 12702 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12703 { 12704 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12705 } 12706 12707 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12708 { 12709 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12710 } 12711 12712 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12713 { 12714 /* Can't read the RIP when guest state is protected, just return 0 */ 12715 if (vcpu->arch.guest_state_protected) 12716 return 0; 12717 12718 if (is_64_bit_mode(vcpu)) 12719 return kvm_rip_read(vcpu); 12720 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12721 kvm_rip_read(vcpu)); 12722 } 12723 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12724 12725 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12726 { 12727 return kvm_get_linear_rip(vcpu) == linear_rip; 12728 } 12729 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12730 12731 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12732 { 12733 unsigned long rflags; 12734 12735 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12736 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12737 rflags &= ~X86_EFLAGS_TF; 12738 return rflags; 12739 } 12740 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12741 12742 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12743 { 12744 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12745 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12746 rflags |= X86_EFLAGS_TF; 12747 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12748 } 12749 12750 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12751 { 12752 __kvm_set_rflags(vcpu, rflags); 12753 kvm_make_request(KVM_REQ_EVENT, vcpu); 12754 } 12755 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12756 12757 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12758 { 12759 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12760 12761 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12762 } 12763 12764 static inline u32 kvm_async_pf_next_probe(u32 key) 12765 { 12766 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12767 } 12768 12769 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12770 { 12771 u32 key = kvm_async_pf_hash_fn(gfn); 12772 12773 while (vcpu->arch.apf.gfns[key] != ~0) 12774 key = kvm_async_pf_next_probe(key); 12775 12776 vcpu->arch.apf.gfns[key] = gfn; 12777 } 12778 12779 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12780 { 12781 int i; 12782 u32 key = kvm_async_pf_hash_fn(gfn); 12783 12784 for (i = 0; i < ASYNC_PF_PER_VCPU && 12785 (vcpu->arch.apf.gfns[key] != gfn && 12786 vcpu->arch.apf.gfns[key] != ~0); i++) 12787 key = kvm_async_pf_next_probe(key); 12788 12789 return key; 12790 } 12791 12792 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12793 { 12794 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12795 } 12796 12797 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12798 { 12799 u32 i, j, k; 12800 12801 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12802 12803 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12804 return; 12805 12806 while (true) { 12807 vcpu->arch.apf.gfns[i] = ~0; 12808 do { 12809 j = kvm_async_pf_next_probe(j); 12810 if (vcpu->arch.apf.gfns[j] == ~0) 12811 return; 12812 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12813 /* 12814 * k lies cyclically in ]i,j] 12815 * | i.k.j | 12816 * |....j i.k.| or |.k..j i...| 12817 */ 12818 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12819 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12820 i = j; 12821 } 12822 } 12823 12824 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12825 { 12826 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12827 12828 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12829 sizeof(reason)); 12830 } 12831 12832 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12833 { 12834 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12835 12836 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12837 &token, offset, sizeof(token)); 12838 } 12839 12840 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12841 { 12842 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12843 u32 val; 12844 12845 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12846 &val, offset, sizeof(val))) 12847 return false; 12848 12849 return !val; 12850 } 12851 12852 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12853 { 12854 12855 if (!kvm_pv_async_pf_enabled(vcpu)) 12856 return false; 12857 12858 if (vcpu->arch.apf.send_user_only && 12859 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12860 return false; 12861 12862 if (is_guest_mode(vcpu)) { 12863 /* 12864 * L1 needs to opt into the special #PF vmexits that are 12865 * used to deliver async page faults. 12866 */ 12867 return vcpu->arch.apf.delivery_as_pf_vmexit; 12868 } else { 12869 /* 12870 * Play it safe in case the guest temporarily disables paging. 12871 * The real mode IDT in particular is unlikely to have a #PF 12872 * exception setup. 12873 */ 12874 return is_paging(vcpu); 12875 } 12876 } 12877 12878 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12879 { 12880 if (unlikely(!lapic_in_kernel(vcpu) || 12881 kvm_event_needs_reinjection(vcpu) || 12882 kvm_is_exception_pending(vcpu))) 12883 return false; 12884 12885 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12886 return false; 12887 12888 /* 12889 * If interrupts are off we cannot even use an artificial 12890 * halt state. 12891 */ 12892 return kvm_arch_interrupt_allowed(vcpu); 12893 } 12894 12895 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12896 struct kvm_async_pf *work) 12897 { 12898 struct x86_exception fault; 12899 12900 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12901 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12902 12903 if (kvm_can_deliver_async_pf(vcpu) && 12904 !apf_put_user_notpresent(vcpu)) { 12905 fault.vector = PF_VECTOR; 12906 fault.error_code_valid = true; 12907 fault.error_code = 0; 12908 fault.nested_page_fault = false; 12909 fault.address = work->arch.token; 12910 fault.async_page_fault = true; 12911 kvm_inject_page_fault(vcpu, &fault); 12912 return true; 12913 } else { 12914 /* 12915 * It is not possible to deliver a paravirtualized asynchronous 12916 * page fault, but putting the guest in an artificial halt state 12917 * can be beneficial nevertheless: if an interrupt arrives, we 12918 * can deliver it timely and perhaps the guest will schedule 12919 * another process. When the instruction that triggered a page 12920 * fault is retried, hopefully the page will be ready in the host. 12921 */ 12922 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12923 return false; 12924 } 12925 } 12926 12927 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12928 struct kvm_async_pf *work) 12929 { 12930 struct kvm_lapic_irq irq = { 12931 .delivery_mode = APIC_DM_FIXED, 12932 .vector = vcpu->arch.apf.vec 12933 }; 12934 12935 if (work->wakeup_all) 12936 work->arch.token = ~0; /* broadcast wakeup */ 12937 else 12938 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12939 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12940 12941 if ((work->wakeup_all || work->notpresent_injected) && 12942 kvm_pv_async_pf_enabled(vcpu) && 12943 !apf_put_user_ready(vcpu, work->arch.token)) { 12944 vcpu->arch.apf.pageready_pending = true; 12945 kvm_apic_set_irq(vcpu, &irq, NULL); 12946 } 12947 12948 vcpu->arch.apf.halted = false; 12949 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12950 } 12951 12952 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12953 { 12954 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12955 if (!vcpu->arch.apf.pageready_pending) 12956 kvm_vcpu_kick(vcpu); 12957 } 12958 12959 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12960 { 12961 if (!kvm_pv_async_pf_enabled(vcpu)) 12962 return true; 12963 else 12964 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12965 } 12966 12967 void kvm_arch_start_assignment(struct kvm *kvm) 12968 { 12969 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12970 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12971 } 12972 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12973 12974 void kvm_arch_end_assignment(struct kvm *kvm) 12975 { 12976 atomic_dec(&kvm->arch.assigned_device_count); 12977 } 12978 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12979 12980 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 12981 { 12982 return arch_atomic_read(&kvm->arch.assigned_device_count); 12983 } 12984 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12985 12986 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12987 { 12988 atomic_inc(&kvm->arch.noncoherent_dma_count); 12989 } 12990 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12991 12992 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12993 { 12994 atomic_dec(&kvm->arch.noncoherent_dma_count); 12995 } 12996 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12997 12998 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12999 { 13000 return atomic_read(&kvm->arch.noncoherent_dma_count); 13001 } 13002 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13003 13004 bool kvm_arch_has_irq_bypass(void) 13005 { 13006 return true; 13007 } 13008 13009 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13010 struct irq_bypass_producer *prod) 13011 { 13012 struct kvm_kernel_irqfd *irqfd = 13013 container_of(cons, struct kvm_kernel_irqfd, consumer); 13014 int ret; 13015 13016 irqfd->producer = prod; 13017 kvm_arch_start_assignment(irqfd->kvm); 13018 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13019 prod->irq, irqfd->gsi, 1); 13020 13021 if (ret) 13022 kvm_arch_end_assignment(irqfd->kvm); 13023 13024 return ret; 13025 } 13026 13027 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13028 struct irq_bypass_producer *prod) 13029 { 13030 int ret; 13031 struct kvm_kernel_irqfd *irqfd = 13032 container_of(cons, struct kvm_kernel_irqfd, consumer); 13033 13034 WARN_ON(irqfd->producer != prod); 13035 irqfd->producer = NULL; 13036 13037 /* 13038 * When producer of consumer is unregistered, we change back to 13039 * remapped mode, so we can re-use the current implementation 13040 * when the irq is masked/disabled or the consumer side (KVM 13041 * int this case doesn't want to receive the interrupts. 13042 */ 13043 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13044 if (ret) 13045 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13046 " fails: %d\n", irqfd->consumer.token, ret); 13047 13048 kvm_arch_end_assignment(irqfd->kvm); 13049 } 13050 13051 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13052 uint32_t guest_irq, bool set) 13053 { 13054 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13055 } 13056 13057 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13058 struct kvm_kernel_irq_routing_entry *new) 13059 { 13060 if (new->type != KVM_IRQ_ROUTING_MSI) 13061 return true; 13062 13063 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13064 } 13065 13066 bool kvm_vector_hashing_enabled(void) 13067 { 13068 return vector_hashing; 13069 } 13070 13071 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13072 { 13073 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13074 } 13075 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13076 13077 13078 int kvm_spec_ctrl_test_value(u64 value) 13079 { 13080 /* 13081 * test that setting IA32_SPEC_CTRL to given value 13082 * is allowed by the host processor 13083 */ 13084 13085 u64 saved_value; 13086 unsigned long flags; 13087 int ret = 0; 13088 13089 local_irq_save(flags); 13090 13091 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13092 ret = 1; 13093 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13094 ret = 1; 13095 else 13096 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13097 13098 local_irq_restore(flags); 13099 13100 return ret; 13101 } 13102 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13103 13104 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13105 { 13106 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13107 struct x86_exception fault; 13108 u64 access = error_code & 13109 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13110 13111 if (!(error_code & PFERR_PRESENT_MASK) || 13112 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13113 /* 13114 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13115 * tables probably do not match the TLB. Just proceed 13116 * with the error code that the processor gave. 13117 */ 13118 fault.vector = PF_VECTOR; 13119 fault.error_code_valid = true; 13120 fault.error_code = error_code; 13121 fault.nested_page_fault = false; 13122 fault.address = gva; 13123 fault.async_page_fault = false; 13124 } 13125 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13126 } 13127 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13128 13129 /* 13130 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13131 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13132 * indicates whether exit to userspace is needed. 13133 */ 13134 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13135 struct x86_exception *e) 13136 { 13137 if (r == X86EMUL_PROPAGATE_FAULT) { 13138 if (KVM_BUG_ON(!e, vcpu->kvm)) 13139 return -EIO; 13140 13141 kvm_inject_emulated_page_fault(vcpu, e); 13142 return 1; 13143 } 13144 13145 /* 13146 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13147 * while handling a VMX instruction KVM could've handled the request 13148 * correctly by exiting to userspace and performing I/O but there 13149 * doesn't seem to be a real use-case behind such requests, just return 13150 * KVM_EXIT_INTERNAL_ERROR for now. 13151 */ 13152 kvm_prepare_emulation_failure_exit(vcpu); 13153 13154 return 0; 13155 } 13156 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13157 13158 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13159 { 13160 bool pcid_enabled; 13161 struct x86_exception e; 13162 struct { 13163 u64 pcid; 13164 u64 gla; 13165 } operand; 13166 int r; 13167 13168 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13169 if (r != X86EMUL_CONTINUE) 13170 return kvm_handle_memory_failure(vcpu, r, &e); 13171 13172 if (operand.pcid >> 12 != 0) { 13173 kvm_inject_gp(vcpu, 0); 13174 return 1; 13175 } 13176 13177 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13178 13179 switch (type) { 13180 case INVPCID_TYPE_INDIV_ADDR: 13181 if ((!pcid_enabled && (operand.pcid != 0)) || 13182 is_noncanonical_address(operand.gla, vcpu)) { 13183 kvm_inject_gp(vcpu, 0); 13184 return 1; 13185 } 13186 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13187 return kvm_skip_emulated_instruction(vcpu); 13188 13189 case INVPCID_TYPE_SINGLE_CTXT: 13190 if (!pcid_enabled && (operand.pcid != 0)) { 13191 kvm_inject_gp(vcpu, 0); 13192 return 1; 13193 } 13194 13195 kvm_invalidate_pcid(vcpu, operand.pcid); 13196 return kvm_skip_emulated_instruction(vcpu); 13197 13198 case INVPCID_TYPE_ALL_NON_GLOBAL: 13199 /* 13200 * Currently, KVM doesn't mark global entries in the shadow 13201 * page tables, so a non-global flush just degenerates to a 13202 * global flush. If needed, we could optimize this later by 13203 * keeping track of global entries in shadow page tables. 13204 */ 13205 13206 fallthrough; 13207 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13208 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13209 return kvm_skip_emulated_instruction(vcpu); 13210 13211 default: 13212 kvm_inject_gp(vcpu, 0); 13213 return 1; 13214 } 13215 } 13216 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13217 13218 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13219 { 13220 struct kvm_run *run = vcpu->run; 13221 struct kvm_mmio_fragment *frag; 13222 unsigned int len; 13223 13224 BUG_ON(!vcpu->mmio_needed); 13225 13226 /* Complete previous fragment */ 13227 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13228 len = min(8u, frag->len); 13229 if (!vcpu->mmio_is_write) 13230 memcpy(frag->data, run->mmio.data, len); 13231 13232 if (frag->len <= 8) { 13233 /* Switch to the next fragment. */ 13234 frag++; 13235 vcpu->mmio_cur_fragment++; 13236 } else { 13237 /* Go forward to the next mmio piece. */ 13238 frag->data += len; 13239 frag->gpa += len; 13240 frag->len -= len; 13241 } 13242 13243 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13244 vcpu->mmio_needed = 0; 13245 13246 // VMG change, at this point, we're always done 13247 // RIP has already been advanced 13248 return 1; 13249 } 13250 13251 // More MMIO is needed 13252 run->mmio.phys_addr = frag->gpa; 13253 run->mmio.len = min(8u, frag->len); 13254 run->mmio.is_write = vcpu->mmio_is_write; 13255 if (run->mmio.is_write) 13256 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13257 run->exit_reason = KVM_EXIT_MMIO; 13258 13259 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13260 13261 return 0; 13262 } 13263 13264 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13265 void *data) 13266 { 13267 int handled; 13268 struct kvm_mmio_fragment *frag; 13269 13270 if (!data) 13271 return -EINVAL; 13272 13273 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13274 if (handled == bytes) 13275 return 1; 13276 13277 bytes -= handled; 13278 gpa += handled; 13279 data += handled; 13280 13281 /*TODO: Check if need to increment number of frags */ 13282 frag = vcpu->mmio_fragments; 13283 vcpu->mmio_nr_fragments = 1; 13284 frag->len = bytes; 13285 frag->gpa = gpa; 13286 frag->data = data; 13287 13288 vcpu->mmio_needed = 1; 13289 vcpu->mmio_cur_fragment = 0; 13290 13291 vcpu->run->mmio.phys_addr = gpa; 13292 vcpu->run->mmio.len = min(8u, frag->len); 13293 vcpu->run->mmio.is_write = 1; 13294 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13295 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13296 13297 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13298 13299 return 0; 13300 } 13301 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13302 13303 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13304 void *data) 13305 { 13306 int handled; 13307 struct kvm_mmio_fragment *frag; 13308 13309 if (!data) 13310 return -EINVAL; 13311 13312 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13313 if (handled == bytes) 13314 return 1; 13315 13316 bytes -= handled; 13317 gpa += handled; 13318 data += handled; 13319 13320 /*TODO: Check if need to increment number of frags */ 13321 frag = vcpu->mmio_fragments; 13322 vcpu->mmio_nr_fragments = 1; 13323 frag->len = bytes; 13324 frag->gpa = gpa; 13325 frag->data = data; 13326 13327 vcpu->mmio_needed = 1; 13328 vcpu->mmio_cur_fragment = 0; 13329 13330 vcpu->run->mmio.phys_addr = gpa; 13331 vcpu->run->mmio.len = min(8u, frag->len); 13332 vcpu->run->mmio.is_write = 0; 13333 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13334 13335 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13336 13337 return 0; 13338 } 13339 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13340 13341 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13342 { 13343 vcpu->arch.sev_pio_count -= count; 13344 vcpu->arch.sev_pio_data += count * size; 13345 } 13346 13347 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13348 unsigned int port); 13349 13350 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13351 { 13352 int size = vcpu->arch.pio.size; 13353 int port = vcpu->arch.pio.port; 13354 13355 vcpu->arch.pio.count = 0; 13356 if (vcpu->arch.sev_pio_count) 13357 return kvm_sev_es_outs(vcpu, size, port); 13358 return 1; 13359 } 13360 13361 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13362 unsigned int port) 13363 { 13364 for (;;) { 13365 unsigned int count = 13366 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13367 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13368 13369 /* memcpy done already by emulator_pio_out. */ 13370 advance_sev_es_emulated_pio(vcpu, count, size); 13371 if (!ret) 13372 break; 13373 13374 /* Emulation done by the kernel. */ 13375 if (!vcpu->arch.sev_pio_count) 13376 return 1; 13377 } 13378 13379 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13380 return 0; 13381 } 13382 13383 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13384 unsigned int port); 13385 13386 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13387 { 13388 unsigned count = vcpu->arch.pio.count; 13389 int size = vcpu->arch.pio.size; 13390 int port = vcpu->arch.pio.port; 13391 13392 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13393 advance_sev_es_emulated_pio(vcpu, count, size); 13394 if (vcpu->arch.sev_pio_count) 13395 return kvm_sev_es_ins(vcpu, size, port); 13396 return 1; 13397 } 13398 13399 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13400 unsigned int port) 13401 { 13402 for (;;) { 13403 unsigned int count = 13404 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13405 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13406 break; 13407 13408 /* Emulation done by the kernel. */ 13409 advance_sev_es_emulated_pio(vcpu, count, size); 13410 if (!vcpu->arch.sev_pio_count) 13411 return 1; 13412 } 13413 13414 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13415 return 0; 13416 } 13417 13418 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13419 unsigned int port, void *data, unsigned int count, 13420 int in) 13421 { 13422 vcpu->arch.sev_pio_data = data; 13423 vcpu->arch.sev_pio_count = count; 13424 return in ? kvm_sev_es_ins(vcpu, size, port) 13425 : kvm_sev_es_outs(vcpu, size, port); 13426 } 13427 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13428 13429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13458 13459 static int __init kvm_x86_init(void) 13460 { 13461 kvm_mmu_x86_module_init(); 13462 return 0; 13463 } 13464 module_init(kvm_x86_init); 13465 13466 static void __exit kvm_x86_exit(void) 13467 { 13468 /* 13469 * If module_init() is implemented, module_exit() must also be 13470 * implemented to allow module unload. 13471 */ 13472 } 13473 module_exit(kvm_x86_exit); 13474