1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* 197 * Restoring the host value for MSRs that are only consumed when running in 198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 199 * returns to userspace, i.e. the kernel can run with the guest's value. 200 */ 201 #define KVM_MAX_NR_USER_RETURN_MSRS 16 202 203 struct kvm_user_return_msrs { 204 struct user_return_notifier urn; 205 bool registered; 206 struct kvm_user_return_msr_values { 207 u64 host; 208 u64 curr; 209 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 210 }; 211 212 u32 __read_mostly kvm_nr_uret_msrs; 213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 215 static struct kvm_user_return_msrs __percpu *user_return_msrs; 216 217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 221 222 u64 __read_mostly host_efer; 223 EXPORT_SYMBOL_GPL(host_efer); 224 225 bool __read_mostly allow_smaller_maxphyaddr = 0; 226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 227 228 bool __read_mostly enable_apicv = true; 229 EXPORT_SYMBOL_GPL(enable_apicv); 230 231 u64 __read_mostly host_xss; 232 EXPORT_SYMBOL_GPL(host_xss); 233 234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 235 KVM_GENERIC_VM_STATS(), 236 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 237 STATS_DESC_COUNTER(VM, mmu_pte_write), 238 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 239 STATS_DESC_COUNTER(VM, mmu_flooded), 240 STATS_DESC_COUNTER(VM, mmu_recycled), 241 STATS_DESC_COUNTER(VM, mmu_cache_miss), 242 STATS_DESC_ICOUNTER(VM, mmu_unsync), 243 STATS_DESC_ICOUNTER(VM, pages_4k), 244 STATS_DESC_ICOUNTER(VM, pages_2m), 245 STATS_DESC_ICOUNTER(VM, pages_1g), 246 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 247 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 248 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 249 }; 250 251 const struct kvm_stats_header kvm_vm_stats_header = { 252 .name_size = KVM_STATS_NAME_SIZE, 253 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 254 .id_offset = sizeof(struct kvm_stats_header), 255 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 256 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 257 sizeof(kvm_vm_stats_desc), 258 }; 259 260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 261 KVM_GENERIC_VCPU_STATS(), 262 STATS_DESC_COUNTER(VCPU, pf_taken), 263 STATS_DESC_COUNTER(VCPU, pf_fixed), 264 STATS_DESC_COUNTER(VCPU, pf_emulate), 265 STATS_DESC_COUNTER(VCPU, pf_spurious), 266 STATS_DESC_COUNTER(VCPU, pf_fast), 267 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 268 STATS_DESC_COUNTER(VCPU, pf_guest), 269 STATS_DESC_COUNTER(VCPU, tlb_flush), 270 STATS_DESC_COUNTER(VCPU, invlpg), 271 STATS_DESC_COUNTER(VCPU, exits), 272 STATS_DESC_COUNTER(VCPU, io_exits), 273 STATS_DESC_COUNTER(VCPU, mmio_exits), 274 STATS_DESC_COUNTER(VCPU, signal_exits), 275 STATS_DESC_COUNTER(VCPU, irq_window_exits), 276 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 277 STATS_DESC_COUNTER(VCPU, l1d_flush), 278 STATS_DESC_COUNTER(VCPU, halt_exits), 279 STATS_DESC_COUNTER(VCPU, request_irq_exits), 280 STATS_DESC_COUNTER(VCPU, irq_exits), 281 STATS_DESC_COUNTER(VCPU, host_state_reload), 282 STATS_DESC_COUNTER(VCPU, fpu_reload), 283 STATS_DESC_COUNTER(VCPU, insn_emulation), 284 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 285 STATS_DESC_COUNTER(VCPU, hypercalls), 286 STATS_DESC_COUNTER(VCPU, irq_injections), 287 STATS_DESC_COUNTER(VCPU, nmi_injections), 288 STATS_DESC_COUNTER(VCPU, req_event), 289 STATS_DESC_COUNTER(VCPU, nested_run), 290 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 291 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 292 STATS_DESC_COUNTER(VCPU, preemption_reported), 293 STATS_DESC_COUNTER(VCPU, preemption_other), 294 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 295 STATS_DESC_COUNTER(VCPU, notify_window_exits), 296 }; 297 298 const struct kvm_stats_header kvm_vcpu_stats_header = { 299 .name_size = KVM_STATS_NAME_SIZE, 300 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 301 .id_offset = sizeof(struct kvm_stats_header), 302 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 303 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 304 sizeof(kvm_vcpu_stats_desc), 305 }; 306 307 u64 __read_mostly host_xcr0; 308 309 static struct kmem_cache *x86_emulator_cache; 310 311 /* 312 * When called, it means the previous get/set msr reached an invalid msr. 313 * Return true if we want to ignore/silent this failed msr access. 314 */ 315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 316 { 317 const char *op = write ? "wrmsr" : "rdmsr"; 318 319 if (ignore_msrs) { 320 if (report_ignored_msrs) 321 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 322 op, msr, data); 323 /* Mask the error */ 324 return true; 325 } else { 326 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 327 op, msr, data); 328 return false; 329 } 330 } 331 332 static struct kmem_cache *kvm_alloc_emulator_cache(void) 333 { 334 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 335 unsigned int size = sizeof(struct x86_emulate_ctxt); 336 337 return kmem_cache_create_usercopy("x86_emulator", size, 338 __alignof__(struct x86_emulate_ctxt), 339 SLAB_ACCOUNT, useroffset, 340 size - useroffset, NULL); 341 } 342 343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 344 345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 346 { 347 int i; 348 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 349 vcpu->arch.apf.gfns[i] = ~0; 350 } 351 352 static void kvm_on_user_return(struct user_return_notifier *urn) 353 { 354 unsigned slot; 355 struct kvm_user_return_msrs *msrs 356 = container_of(urn, struct kvm_user_return_msrs, urn); 357 struct kvm_user_return_msr_values *values; 358 unsigned long flags; 359 360 /* 361 * Disabling irqs at this point since the following code could be 362 * interrupted and executed through kvm_arch_hardware_disable() 363 */ 364 local_irq_save(flags); 365 if (msrs->registered) { 366 msrs->registered = false; 367 user_return_notifier_unregister(urn); 368 } 369 local_irq_restore(flags); 370 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 371 values = &msrs->values[slot]; 372 if (values->host != values->curr) { 373 wrmsrl(kvm_uret_msrs_list[slot], values->host); 374 values->curr = values->host; 375 } 376 } 377 } 378 379 static int kvm_probe_user_return_msr(u32 msr) 380 { 381 u64 val; 382 int ret; 383 384 preempt_disable(); 385 ret = rdmsrl_safe(msr, &val); 386 if (ret) 387 goto out; 388 ret = wrmsrl_safe(msr, val); 389 out: 390 preempt_enable(); 391 return ret; 392 } 393 394 int kvm_add_user_return_msr(u32 msr) 395 { 396 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 397 398 if (kvm_probe_user_return_msr(msr)) 399 return -1; 400 401 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 402 return kvm_nr_uret_msrs++; 403 } 404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 405 406 int kvm_find_user_return_msr(u32 msr) 407 { 408 int i; 409 410 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 411 if (kvm_uret_msrs_list[i] == msr) 412 return i; 413 } 414 return -1; 415 } 416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 417 418 static void kvm_user_return_msr_cpu_online(void) 419 { 420 unsigned int cpu = smp_processor_id(); 421 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 422 u64 value; 423 int i; 424 425 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 426 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 427 msrs->values[i].host = value; 428 msrs->values[i].curr = value; 429 } 430 } 431 432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 433 { 434 unsigned int cpu = smp_processor_id(); 435 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 436 int err; 437 438 value = (value & mask) | (msrs->values[slot].host & ~mask); 439 if (value == msrs->values[slot].curr) 440 return 0; 441 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 442 if (err) 443 return 1; 444 445 msrs->values[slot].curr = value; 446 if (!msrs->registered) { 447 msrs->urn.on_user_return = kvm_on_user_return; 448 user_return_notifier_register(&msrs->urn); 449 msrs->registered = true; 450 } 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 454 455 static void drop_user_return_notifiers(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 459 460 if (msrs->registered) 461 kvm_on_user_return(&msrs->urn); 462 } 463 464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 465 { 466 return vcpu->arch.apic_base; 467 } 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 496 /* 497 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 498 * 499 * Hardware virtualization extension instructions may fault if a reboot turns 500 * off virtualization while processes are running. Usually after catching the 501 * fault we just panic; during reboot instead the instruction is ignored. 502 */ 503 noinstr void kvm_spurious_fault(void) 504 { 505 /* Fault while not rebooting. We want the trace. */ 506 BUG_ON(!kvm_rebooting); 507 } 508 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 509 510 #define EXCPT_BENIGN 0 511 #define EXCPT_CONTRIBUTORY 1 512 #define EXCPT_PF 2 513 514 static int exception_class(int vector) 515 { 516 switch (vector) { 517 case PF_VECTOR: 518 return EXCPT_PF; 519 case DE_VECTOR: 520 case TS_VECTOR: 521 case NP_VECTOR: 522 case SS_VECTOR: 523 case GP_VECTOR: 524 return EXCPT_CONTRIBUTORY; 525 default: 526 break; 527 } 528 return EXCPT_BENIGN; 529 } 530 531 #define EXCPT_FAULT 0 532 #define EXCPT_TRAP 1 533 #define EXCPT_ABORT 2 534 #define EXCPT_INTERRUPT 3 535 #define EXCPT_DB 4 536 537 static int exception_type(int vector) 538 { 539 unsigned int mask; 540 541 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 542 return EXCPT_INTERRUPT; 543 544 mask = 1 << vector; 545 546 /* 547 * #DBs can be trap-like or fault-like, the caller must check other CPU 548 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 549 */ 550 if (mask & (1 << DB_VECTOR)) 551 return EXCPT_DB; 552 553 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 554 return EXCPT_TRAP; 555 556 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 557 return EXCPT_ABORT; 558 559 /* Reserved exceptions will result in fault */ 560 return EXCPT_FAULT; 561 } 562 563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 564 struct kvm_queued_exception *ex) 565 { 566 if (!ex->has_payload) 567 return; 568 569 switch (ex->vector) { 570 case DB_VECTOR: 571 /* 572 * "Certain debug exceptions may clear bit 0-3. The 573 * remaining contents of the DR6 register are never 574 * cleared by the processor". 575 */ 576 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 577 /* 578 * In order to reflect the #DB exception payload in guest 579 * dr6, three components need to be considered: active low 580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 581 * DR6_BS and DR6_BT) 582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 583 * In the target guest dr6: 584 * FIXED_1 bits should always be set. 585 * Active low bits should be cleared if 1-setting in payload. 586 * Active high bits should be set if 1-setting in payload. 587 * 588 * Note, the payload is compatible with the pending debug 589 * exceptions/exit qualification under VMX, that active_low bits 590 * are active high in payload. 591 * So they need to be flipped for DR6. 592 */ 593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 594 vcpu->arch.dr6 |= ex->payload; 595 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 596 597 /* 598 * The #DB payload is defined as compatible with the 'pending 599 * debug exceptions' field under VMX, not DR6. While bit 12 is 600 * defined in the 'pending debug exceptions' field (enabled 601 * breakpoint), it is reserved and must be zero in DR6. 602 */ 603 vcpu->arch.dr6 &= ~BIT(12); 604 break; 605 case PF_VECTOR: 606 vcpu->arch.cr2 = ex->payload; 607 break; 608 } 609 610 ex->has_payload = false; 611 ex->payload = 0; 612 } 613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 614 615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 616 bool has_error_code, u32 error_code, 617 bool has_payload, unsigned long payload) 618 { 619 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 620 621 ex->vector = vector; 622 ex->injected = false; 623 ex->pending = true; 624 ex->has_error_code = has_error_code; 625 ex->error_code = error_code; 626 ex->has_payload = has_payload; 627 ex->payload = payload; 628 } 629 630 /* Forcibly leave the nested mode in cases like a vCPU reset */ 631 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 632 { 633 kvm_x86_ops.nested_ops->leave_nested(vcpu); 634 } 635 636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 637 unsigned nr, bool has_error, u32 error_code, 638 bool has_payload, unsigned long payload, bool reinject) 639 { 640 u32 prev_nr; 641 int class1, class2; 642 643 kvm_make_request(KVM_REQ_EVENT, vcpu); 644 645 /* 646 * If the exception is destined for L2 and isn't being reinjected, 647 * morph it to a VM-Exit if L1 wants to intercept the exception. A 648 * previously injected exception is not checked because it was checked 649 * when it was original queued, and re-checking is incorrect if _L1_ 650 * injected the exception, in which case it's exempt from interception. 651 */ 652 if (!reinject && is_guest_mode(vcpu) && 653 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 654 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 655 has_payload, payload); 656 return; 657 } 658 659 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 660 queue: 661 if (reinject) { 662 /* 663 * On VM-Entry, an exception can be pending if and only 664 * if event injection was blocked by nested_run_pending. 665 * In that case, however, vcpu_enter_guest() requests an 666 * immediate exit, and the guest shouldn't proceed far 667 * enough to need reinjection. 668 */ 669 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 670 vcpu->arch.exception.injected = true; 671 if (WARN_ON_ONCE(has_payload)) { 672 /* 673 * A reinjected event has already 674 * delivered its payload. 675 */ 676 has_payload = false; 677 payload = 0; 678 } 679 } else { 680 vcpu->arch.exception.pending = true; 681 vcpu->arch.exception.injected = false; 682 } 683 vcpu->arch.exception.has_error_code = has_error; 684 vcpu->arch.exception.vector = nr; 685 vcpu->arch.exception.error_code = error_code; 686 vcpu->arch.exception.has_payload = has_payload; 687 vcpu->arch.exception.payload = payload; 688 if (!is_guest_mode(vcpu)) 689 kvm_deliver_exception_payload(vcpu, 690 &vcpu->arch.exception); 691 return; 692 } 693 694 /* to check exception */ 695 prev_nr = vcpu->arch.exception.vector; 696 if (prev_nr == DF_VECTOR) { 697 /* triple fault -> shutdown */ 698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 699 return; 700 } 701 class1 = exception_class(prev_nr); 702 class2 = exception_class(nr); 703 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 704 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 705 /* 706 * Synthesize #DF. Clear the previously injected or pending 707 * exception so as not to incorrectly trigger shutdown. 708 */ 709 vcpu->arch.exception.injected = false; 710 vcpu->arch.exception.pending = false; 711 712 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 713 } else { 714 /* replace previous exception with a new one in a hope 715 that instruction re-execution will regenerate lost 716 exception */ 717 goto queue; 718 } 719 } 720 721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 724 } 725 EXPORT_SYMBOL_GPL(kvm_queue_exception); 726 727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 730 } 731 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 732 733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 734 unsigned long payload) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 739 740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 741 u32 error_code, unsigned long payload) 742 { 743 kvm_multiple_exception(vcpu, nr, true, error_code, 744 true, payload, false); 745 } 746 747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 748 { 749 if (err) 750 kvm_inject_gp(vcpu, 0); 751 else 752 return kvm_skip_emulated_instruction(vcpu); 753 754 return 1; 755 } 756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 757 758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 759 { 760 if (err) { 761 kvm_inject_gp(vcpu, 0); 762 return 1; 763 } 764 765 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 766 EMULTYPE_COMPLETE_USER_EXIT); 767 } 768 769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 770 { 771 ++vcpu->stat.pf_guest; 772 773 /* 774 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 775 * whether or not L1 wants to intercept "regular" #PF. 776 */ 777 if (is_guest_mode(vcpu) && fault->async_page_fault) 778 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 779 true, fault->error_code, 780 true, fault->address); 781 else 782 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 783 fault->address); 784 } 785 786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 787 struct x86_exception *fault) 788 { 789 struct kvm_mmu *fault_mmu; 790 WARN_ON_ONCE(fault->vector != PF_VECTOR); 791 792 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 793 vcpu->arch.walk_mmu; 794 795 /* 796 * Invalidate the TLB entry for the faulting address, if it exists, 797 * else the access will fault indefinitely (and to emulate hardware). 798 */ 799 if ((fault->error_code & PFERR_PRESENT_MASK) && 800 !(fault->error_code & PFERR_RSVD_MASK)) 801 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 802 fault_mmu->root.hpa); 803 804 fault_mmu->inject_page_fault(vcpu, fault); 805 } 806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 807 808 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 809 { 810 atomic_inc(&vcpu->arch.nmi_queued); 811 kvm_make_request(KVM_REQ_NMI, vcpu); 812 } 813 814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 817 } 818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 819 820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 823 } 824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 825 826 /* 827 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 828 * a #GP and return false. 829 */ 830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 831 { 832 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 833 return true; 834 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 835 return false; 836 } 837 838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 839 { 840 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 841 return true; 842 843 kvm_queue_exception(vcpu, UD_VECTOR); 844 return false; 845 } 846 EXPORT_SYMBOL_GPL(kvm_require_dr); 847 848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 849 { 850 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 851 } 852 853 /* 854 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 855 */ 856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 857 { 858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 859 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 860 gpa_t real_gpa; 861 int i; 862 int ret; 863 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 864 865 /* 866 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 867 * to an L1 GPA. 868 */ 869 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 870 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 871 if (real_gpa == INVALID_GPA) 872 return 0; 873 874 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 875 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 876 cr3 & GENMASK(11, 5), sizeof(pdpte)); 877 if (ret < 0) 878 return 0; 879 880 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 881 if ((pdpte[i] & PT_PRESENT_MASK) && 882 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 883 return 0; 884 } 885 } 886 887 /* 888 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 889 * Shadow page roots need to be reconstructed instead. 890 */ 891 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 892 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 893 894 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 895 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 896 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 897 vcpu->arch.pdptrs_from_userspace = false; 898 899 return 1; 900 } 901 EXPORT_SYMBOL_GPL(load_pdptrs); 902 903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 904 { 905 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 906 kvm_clear_async_pf_completion_queue(vcpu); 907 kvm_async_pf_hash_reset(vcpu); 908 909 /* 910 * Clearing CR0.PG is defined to flush the TLB from the guest's 911 * perspective. 912 */ 913 if (!(cr0 & X86_CR0_PG)) 914 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 915 } 916 917 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 918 kvm_mmu_reset_context(vcpu); 919 920 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 921 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 922 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 923 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 924 } 925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 926 927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 928 { 929 unsigned long old_cr0 = kvm_read_cr0(vcpu); 930 931 cr0 |= X86_CR0_ET; 932 933 #ifdef CONFIG_X86_64 934 if (cr0 & 0xffffffff00000000UL) 935 return 1; 936 #endif 937 938 cr0 &= ~CR0_RESERVED_BITS; 939 940 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 941 return 1; 942 943 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 944 return 1; 945 946 #ifdef CONFIG_X86_64 947 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 948 (cr0 & X86_CR0_PG)) { 949 int cs_db, cs_l; 950 951 if (!is_pae(vcpu)) 952 return 1; 953 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 954 if (cs_l) 955 return 1; 956 } 957 #endif 958 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 959 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 960 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 961 return 1; 962 963 if (!(cr0 & X86_CR0_PG) && 964 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 965 return 1; 966 967 static_call(kvm_x86_set_cr0)(vcpu, cr0); 968 969 kvm_post_set_cr0(vcpu, old_cr0, cr0); 970 971 return 0; 972 } 973 EXPORT_SYMBOL_GPL(kvm_set_cr0); 974 975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 976 { 977 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 978 } 979 EXPORT_SYMBOL_GPL(kvm_lmsw); 980 981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.guest_state_protected) 984 return; 985 986 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 987 988 if (vcpu->arch.xcr0 != host_xcr0) 989 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 990 991 if (vcpu->arch.xsaves_enabled && 992 vcpu->arch.ia32_xss != host_xss) 993 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 994 } 995 996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 997 if (static_cpu_has(X86_FEATURE_PKU) && 998 vcpu->arch.pkru != vcpu->arch.host_pkru && 999 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1000 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1001 write_pkru(vcpu->arch.pkru); 1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1005 1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1007 { 1008 if (vcpu->arch.guest_state_protected) 1009 return; 1010 1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1012 if (static_cpu_has(X86_FEATURE_PKU) && 1013 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1014 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1015 vcpu->arch.pkru = rdpkru(); 1016 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1017 write_pkru(vcpu->arch.host_pkru); 1018 } 1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1020 1021 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, host_xss); 1029 } 1030 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1033 1034 #ifdef CONFIG_X86_64 1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1036 { 1037 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1038 } 1039 #endif 1040 1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1042 { 1043 u64 xcr0 = xcr; 1044 u64 old_xcr0 = vcpu->arch.xcr0; 1045 u64 valid_bits; 1046 1047 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1048 if (index != XCR_XFEATURE_ENABLED_MASK) 1049 return 1; 1050 if (!(xcr0 & XFEATURE_MASK_FP)) 1051 return 1; 1052 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1053 return 1; 1054 1055 /* 1056 * Do not allow the guest to set bits that we do not support 1057 * saving. However, xcr0 bit 0 is always set, even if the 1058 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1059 */ 1060 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1061 if (xcr0 & ~valid_bits) 1062 return 1; 1063 1064 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1065 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1066 return 1; 1067 1068 if (xcr0 & XFEATURE_MASK_AVX512) { 1069 if (!(xcr0 & XFEATURE_MASK_YMM)) 1070 return 1; 1071 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1072 return 1; 1073 } 1074 1075 if ((xcr0 & XFEATURE_MASK_XTILE) && 1076 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1077 return 1; 1078 1079 vcpu->arch.xcr0 = xcr0; 1080 1081 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1082 kvm_update_cpuid_runtime(vcpu); 1083 return 0; 1084 } 1085 1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1087 { 1088 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1089 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1090 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1091 kvm_inject_gp(vcpu, 0); 1092 return 1; 1093 } 1094 1095 return kvm_skip_emulated_instruction(vcpu); 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1098 1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1100 { 1101 if (cr4 & cr4_reserved_bits) 1102 return false; 1103 1104 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1105 return false; 1106 1107 return true; 1108 } 1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1110 1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 return __kvm_is_valid_cr4(vcpu, cr4) && 1114 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1115 } 1116 1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1118 { 1119 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1120 kvm_mmu_reset_context(vcpu); 1121 1122 /* 1123 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1124 * according to the SDM; however, stale prev_roots could be reused 1125 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1126 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1127 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1128 * so fall through. 1129 */ 1130 if (!tdp_enabled && 1131 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1132 kvm_mmu_unload(vcpu); 1133 1134 /* 1135 * The TLB has to be flushed for all PCIDs if any of the following 1136 * (architecturally required) changes happen: 1137 * - CR4.PCIDE is changed from 1 to 0 1138 * - CR4.PGE is toggled 1139 * 1140 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1141 */ 1142 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1143 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for the current PCID if any of the 1148 * following (architecturally required) changes happen: 1149 * - CR4.SMEP is changed from 0 to 1 1150 * - CR4.PAE is toggled 1151 */ 1152 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1153 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1158 1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1160 { 1161 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1162 1163 if (!kvm_is_valid_cr4(vcpu, cr4)) 1164 return 1; 1165 1166 if (is_long_mode(vcpu)) { 1167 if (!(cr4 & X86_CR4_PAE)) 1168 return 1; 1169 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1170 return 1; 1171 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1172 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1173 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1174 return 1; 1175 1176 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1178 return 1; 1179 1180 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1181 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1182 return 1; 1183 } 1184 1185 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1186 1187 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1188 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1192 1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1194 { 1195 struct kvm_mmu *mmu = vcpu->arch.mmu; 1196 unsigned long roots_to_free = 0; 1197 int i; 1198 1199 /* 1200 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1201 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1202 * also via the emulator. KVM's TDP page tables are not in the scope of 1203 * the invalidation, but the guest's TLB entries need to be flushed as 1204 * the CPU may have cached entries in its TLB for the target PCID. 1205 */ 1206 if (unlikely(tdp_enabled)) { 1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1208 return; 1209 } 1210 1211 /* 1212 * If neither the current CR3 nor any of the prev_roots use the given 1213 * PCID, then nothing needs to be done here because a resync will 1214 * happen anyway before switching to any other CR3. 1215 */ 1216 if (kvm_get_active_pcid(vcpu) == pcid) { 1217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1219 } 1220 1221 /* 1222 * If PCID is disabled, there is no need to free prev_roots even if the 1223 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1224 * with PCIDE=0. 1225 */ 1226 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1227 return; 1228 1229 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1230 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1231 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1232 1233 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1234 } 1235 1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1237 { 1238 bool skip_tlb_flush = false; 1239 unsigned long pcid = 0; 1240 #ifdef CONFIG_X86_64 1241 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1242 1243 if (pcid_enabled) { 1244 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1245 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1246 pcid = cr3 & X86_CR3_PCID_MASK; 1247 } 1248 #endif 1249 1250 /* PDPTRs are always reloaded for PAE paging. */ 1251 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1252 goto handle_tlb_flush; 1253 1254 /* 1255 * Do not condition the GPA check on long mode, this helper is used to 1256 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1257 * the current vCPU mode is accurate. 1258 */ 1259 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1260 return 1; 1261 1262 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1263 return 1; 1264 1265 if (cr3 != kvm_read_cr3(vcpu)) 1266 kvm_mmu_new_pgd(vcpu, cr3); 1267 1268 vcpu->arch.cr3 = cr3; 1269 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1270 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1271 1272 handle_tlb_flush: 1273 /* 1274 * A load of CR3 that flushes the TLB flushes only the current PCID, 1275 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1276 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1277 * and it's impossible to use a non-zero PCID when PCID is disabled, 1278 * i.e. only PCID=0 can be relevant. 1279 */ 1280 if (!skip_tlb_flush) 1281 kvm_invalidate_pcid(vcpu, pcid); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1286 1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1288 { 1289 if (cr8 & CR8_RESERVED_BITS) 1290 return 1; 1291 if (lapic_in_kernel(vcpu)) 1292 kvm_lapic_set_tpr(vcpu, cr8); 1293 else 1294 vcpu->arch.cr8 = cr8; 1295 return 0; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1298 1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1300 { 1301 if (lapic_in_kernel(vcpu)) 1302 return kvm_lapic_get_cr8(vcpu); 1303 else 1304 return vcpu->arch.cr8; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1307 1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1309 { 1310 int i; 1311 1312 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1313 for (i = 0; i < KVM_NR_DB_REGS; i++) 1314 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1315 } 1316 } 1317 1318 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1319 { 1320 unsigned long dr7; 1321 1322 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1323 dr7 = vcpu->arch.guest_debug_dr7; 1324 else 1325 dr7 = vcpu->arch.dr7; 1326 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1327 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1328 if (dr7 & DR7_BP_EN_MASK) 1329 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1332 1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1334 { 1335 u64 fixed = DR6_FIXED_1; 1336 1337 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1338 fixed |= DR6_RTM; 1339 1340 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1341 fixed |= DR6_BUS_LOCK; 1342 return fixed; 1343 } 1344 1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1346 { 1347 size_t size = ARRAY_SIZE(vcpu->arch.db); 1348 1349 switch (dr) { 1350 case 0 ... 3: 1351 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1352 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1353 vcpu->arch.eff_db[dr] = val; 1354 break; 1355 case 4: 1356 case 6: 1357 if (!kvm_dr6_valid(val)) 1358 return 1; /* #GP */ 1359 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1360 break; 1361 case 5: 1362 default: /* 7 */ 1363 if (!kvm_dr7_valid(val)) 1364 return 1; /* #GP */ 1365 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1366 kvm_update_dr7(vcpu); 1367 break; 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_set_dr); 1373 1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1375 { 1376 size_t size = ARRAY_SIZE(vcpu->arch.db); 1377 1378 switch (dr) { 1379 case 0 ... 3: 1380 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1381 break; 1382 case 4: 1383 case 6: 1384 *val = vcpu->arch.dr6; 1385 break; 1386 case 5: 1387 default: /* 7 */ 1388 *val = vcpu->arch.dr7; 1389 break; 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_get_dr); 1393 1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1395 { 1396 u32 ecx = kvm_rcx_read(vcpu); 1397 u64 data; 1398 1399 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1400 kvm_inject_gp(vcpu, 0); 1401 return 1; 1402 } 1403 1404 kvm_rax_write(vcpu, (u32)data); 1405 kvm_rdx_write(vcpu, data >> 32); 1406 return kvm_skip_emulated_instruction(vcpu); 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1409 1410 /* 1411 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1412 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1413 * 1414 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1415 * extract the supported MSRs from the related const lists. 1416 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1417 * capabilities of the host cpu. This capabilities test skips MSRs that are 1418 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1419 * may depend on host virtualization features rather than host cpu features. 1420 */ 1421 1422 static const u32 msrs_to_save_all[] = { 1423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1424 MSR_STAR, 1425 #ifdef CONFIG_X86_64 1426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1427 #endif 1428 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1429 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1430 MSR_IA32_SPEC_CTRL, 1431 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1432 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1433 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1434 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1435 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1436 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1437 MSR_IA32_UMWAIT_CONTROL, 1438 1439 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1440 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1441 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1442 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1443 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1444 1445 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1446 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1448 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1450 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1454 1455 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1456 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1457 1458 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1459 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1460 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1461 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1462 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1463 1464 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1465 }; 1466 1467 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1468 static unsigned num_msrs_to_save; 1469 1470 static const u32 emulated_msrs_all[] = { 1471 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1472 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1473 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1474 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1475 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1476 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1477 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1478 HV_X64_MSR_RESET, 1479 HV_X64_MSR_VP_INDEX, 1480 HV_X64_MSR_VP_RUNTIME, 1481 HV_X64_MSR_SCONTROL, 1482 HV_X64_MSR_STIMER0_CONFIG, 1483 HV_X64_MSR_VP_ASSIST_PAGE, 1484 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1485 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1486 HV_X64_MSR_SYNDBG_OPTIONS, 1487 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1488 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1489 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1490 1491 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1492 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1493 1494 MSR_IA32_TSC_ADJUST, 1495 MSR_IA32_TSC_DEADLINE, 1496 MSR_IA32_ARCH_CAPABILITIES, 1497 MSR_IA32_PERF_CAPABILITIES, 1498 MSR_IA32_MISC_ENABLE, 1499 MSR_IA32_MCG_STATUS, 1500 MSR_IA32_MCG_CTL, 1501 MSR_IA32_MCG_EXT_CTL, 1502 MSR_IA32_SMBASE, 1503 MSR_SMI_COUNT, 1504 MSR_PLATFORM_INFO, 1505 MSR_MISC_FEATURES_ENABLES, 1506 MSR_AMD64_VIRT_SPEC_CTRL, 1507 MSR_AMD64_TSC_RATIO, 1508 MSR_IA32_POWER_CTL, 1509 MSR_IA32_UCODE_REV, 1510 1511 /* 1512 * The following list leaves out MSRs whose values are determined 1513 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1514 * We always support the "true" VMX control MSRs, even if the host 1515 * processor does not, so I am putting these registers here rather 1516 * than in msrs_to_save_all. 1517 */ 1518 MSR_IA32_VMX_BASIC, 1519 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1520 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1521 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1522 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1523 MSR_IA32_VMX_MISC, 1524 MSR_IA32_VMX_CR0_FIXED0, 1525 MSR_IA32_VMX_CR4_FIXED0, 1526 MSR_IA32_VMX_VMCS_ENUM, 1527 MSR_IA32_VMX_PROCBASED_CTLS2, 1528 MSR_IA32_VMX_EPT_VPID_CAP, 1529 MSR_IA32_VMX_VMFUNC, 1530 1531 MSR_K7_HWCR, 1532 MSR_KVM_POLL_CONTROL, 1533 }; 1534 1535 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1536 static unsigned num_emulated_msrs; 1537 1538 /* 1539 * List of msr numbers which are used to expose MSR-based features that 1540 * can be used by a hypervisor to validate requested CPU features. 1541 */ 1542 static const u32 msr_based_features_all[] = { 1543 MSR_IA32_VMX_BASIC, 1544 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1545 MSR_IA32_VMX_PINBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1547 MSR_IA32_VMX_PROCBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1549 MSR_IA32_VMX_EXIT_CTLS, 1550 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1551 MSR_IA32_VMX_ENTRY_CTLS, 1552 MSR_IA32_VMX_MISC, 1553 MSR_IA32_VMX_CR0_FIXED0, 1554 MSR_IA32_VMX_CR0_FIXED1, 1555 MSR_IA32_VMX_CR4_FIXED0, 1556 MSR_IA32_VMX_CR4_FIXED1, 1557 MSR_IA32_VMX_VMCS_ENUM, 1558 MSR_IA32_VMX_PROCBASED_CTLS2, 1559 MSR_IA32_VMX_EPT_VPID_CAP, 1560 MSR_IA32_VMX_VMFUNC, 1561 1562 MSR_AMD64_DE_CFG, 1563 MSR_IA32_UCODE_REV, 1564 MSR_IA32_ARCH_CAPABILITIES, 1565 MSR_IA32_PERF_CAPABILITIES, 1566 }; 1567 1568 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1569 static unsigned int num_msr_based_features; 1570 1571 /* 1572 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1573 * does not yet virtualize. These include: 1574 * 10 - MISC_PACKAGE_CTRLS 1575 * 11 - ENERGY_FILTERING_CTL 1576 * 12 - DOITM 1577 * 18 - FB_CLEAR_CTRL 1578 * 21 - XAPIC_DISABLE_STATUS 1579 * 23 - OVERCLOCKING_STATUS 1580 */ 1581 1582 #define KVM_SUPPORTED_ARCH_CAP \ 1583 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1584 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1585 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1586 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1587 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1588 1589 static u64 kvm_get_arch_capabilities(void) 1590 { 1591 u64 data = 0; 1592 1593 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1594 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1595 data &= KVM_SUPPORTED_ARCH_CAP; 1596 } 1597 1598 /* 1599 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1600 * the nested hypervisor runs with NX huge pages. If it is not, 1601 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1602 * L1 guests, so it need not worry about its own (L2) guests. 1603 */ 1604 data |= ARCH_CAP_PSCHANGE_MC_NO; 1605 1606 /* 1607 * If we're doing cache flushes (either "always" or "cond") 1608 * we will do one whenever the guest does a vmlaunch/vmresume. 1609 * If an outer hypervisor is doing the cache flush for us 1610 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1611 * capability to the guest too, and if EPT is disabled we're not 1612 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1613 * require a nested hypervisor to do a flush of its own. 1614 */ 1615 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1616 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1617 1618 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1619 data |= ARCH_CAP_RDCL_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1621 data |= ARCH_CAP_SSB_NO; 1622 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1623 data |= ARCH_CAP_MDS_NO; 1624 1625 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1626 /* 1627 * If RTM=0 because the kernel has disabled TSX, the host might 1628 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1629 * and therefore knows that there cannot be TAA) but keep 1630 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1631 * and we want to allow migrating those guests to tsx=off hosts. 1632 */ 1633 data &= ~ARCH_CAP_TAA_NO; 1634 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1635 data |= ARCH_CAP_TAA_NO; 1636 } else { 1637 /* 1638 * Nothing to do here; we emulate TSX_CTRL if present on the 1639 * host so the guest can choose between disabling TSX or 1640 * using VERW to clear CPU buffers. 1641 */ 1642 } 1643 1644 return data; 1645 } 1646 1647 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1648 { 1649 switch (msr->index) { 1650 case MSR_IA32_ARCH_CAPABILITIES: 1651 msr->data = kvm_get_arch_capabilities(); 1652 break; 1653 case MSR_IA32_PERF_CAPABILITIES: 1654 msr->data = kvm_caps.supported_perf_cap; 1655 break; 1656 case MSR_IA32_UCODE_REV: 1657 rdmsrl_safe(msr->index, &msr->data); 1658 break; 1659 default: 1660 return static_call(kvm_x86_get_msr_feature)(msr); 1661 } 1662 return 0; 1663 } 1664 1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1666 { 1667 struct kvm_msr_entry msr; 1668 int r; 1669 1670 msr.index = index; 1671 r = kvm_get_msr_feature(&msr); 1672 1673 if (r == KVM_MSR_RET_INVALID) { 1674 /* Unconditionally clear the output for simplicity */ 1675 *data = 0; 1676 if (kvm_msr_ignored_check(index, 0, false)) 1677 r = 0; 1678 } 1679 1680 if (r) 1681 return r; 1682 1683 *data = msr.data; 1684 1685 return 0; 1686 } 1687 1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1689 { 1690 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1691 return false; 1692 1693 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1694 return false; 1695 1696 if (efer & (EFER_LME | EFER_LMA) && 1697 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1698 return false; 1699 1700 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1701 return false; 1702 1703 return true; 1704 1705 } 1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1707 { 1708 if (efer & efer_reserved_bits) 1709 return false; 1710 1711 return __kvm_valid_efer(vcpu, efer); 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1714 1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1716 { 1717 u64 old_efer = vcpu->arch.efer; 1718 u64 efer = msr_info->data; 1719 int r; 1720 1721 if (efer & efer_reserved_bits) 1722 return 1; 1723 1724 if (!msr_info->host_initiated) { 1725 if (!__kvm_valid_efer(vcpu, efer)) 1726 return 1; 1727 1728 if (is_paging(vcpu) && 1729 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1730 return 1; 1731 } 1732 1733 efer &= ~EFER_LMA; 1734 efer |= vcpu->arch.efer & EFER_LMA; 1735 1736 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1737 if (r) { 1738 WARN_ON(r > 0); 1739 return r; 1740 } 1741 1742 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1743 kvm_mmu_reset_context(vcpu); 1744 1745 return 0; 1746 } 1747 1748 void kvm_enable_efer_bits(u64 mask) 1749 { 1750 efer_reserved_bits &= ~mask; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1753 1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1755 { 1756 struct kvm_x86_msr_filter *msr_filter; 1757 struct msr_bitmap_range *ranges; 1758 struct kvm *kvm = vcpu->kvm; 1759 bool allowed; 1760 int idx; 1761 u32 i; 1762 1763 /* x2APIC MSRs do not support filtering. */ 1764 if (index >= 0x800 && index <= 0x8ff) 1765 return true; 1766 1767 idx = srcu_read_lock(&kvm->srcu); 1768 1769 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1770 if (!msr_filter) { 1771 allowed = true; 1772 goto out; 1773 } 1774 1775 allowed = msr_filter->default_allow; 1776 ranges = msr_filter->ranges; 1777 1778 for (i = 0; i < msr_filter->count; i++) { 1779 u32 start = ranges[i].base; 1780 u32 end = start + ranges[i].nmsrs; 1781 u32 flags = ranges[i].flags; 1782 unsigned long *bitmap = ranges[i].bitmap; 1783 1784 if ((index >= start) && (index < end) && (flags & type)) { 1785 allowed = !!test_bit(index - start, bitmap); 1786 break; 1787 } 1788 } 1789 1790 out: 1791 srcu_read_unlock(&kvm->srcu, idx); 1792 1793 return allowed; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1796 1797 /* 1798 * Write @data into the MSR specified by @index. Select MSR specific fault 1799 * checks are bypassed if @host_initiated is %true. 1800 * Returns 0 on success, non-0 otherwise. 1801 * Assumes vcpu_load() was already called. 1802 */ 1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1804 bool host_initiated) 1805 { 1806 struct msr_data msr; 1807 1808 switch (index) { 1809 case MSR_FS_BASE: 1810 case MSR_GS_BASE: 1811 case MSR_KERNEL_GS_BASE: 1812 case MSR_CSTAR: 1813 case MSR_LSTAR: 1814 if (is_noncanonical_address(data, vcpu)) 1815 return 1; 1816 break; 1817 case MSR_IA32_SYSENTER_EIP: 1818 case MSR_IA32_SYSENTER_ESP: 1819 /* 1820 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1821 * non-canonical address is written on Intel but not on 1822 * AMD (which ignores the top 32-bits, because it does 1823 * not implement 64-bit SYSENTER). 1824 * 1825 * 64-bit code should hence be able to write a non-canonical 1826 * value on AMD. Making the address canonical ensures that 1827 * vmentry does not fail on Intel after writing a non-canonical 1828 * value, and that something deterministic happens if the guest 1829 * invokes 64-bit SYSENTER. 1830 */ 1831 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1832 break; 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 1842 /* 1843 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1844 * incomplete and conflicting architectural behavior. Current 1845 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1846 * reserved and always read as zeros. Enforce Intel's reserved 1847 * bits check if and only if the guest CPU is Intel, and clear 1848 * the bits in all other cases. This ensures cross-vendor 1849 * migration will provide consistent behavior for the guest. 1850 */ 1851 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1852 return 1; 1853 1854 data = (u32)data; 1855 break; 1856 } 1857 1858 msr.data = data; 1859 msr.index = index; 1860 msr.host_initiated = host_initiated; 1861 1862 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1863 } 1864 1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1866 u32 index, u64 data, bool host_initiated) 1867 { 1868 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1869 1870 if (ret == KVM_MSR_RET_INVALID) 1871 if (kvm_msr_ignored_check(index, data, true)) 1872 ret = 0; 1873 1874 return ret; 1875 } 1876 1877 /* 1878 * Read the MSR specified by @index into @data. Select MSR specific fault 1879 * checks are bypassed if @host_initiated is %true. 1880 * Returns 0 on success, non-0 otherwise. 1881 * Assumes vcpu_load() was already called. 1882 */ 1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1884 bool host_initiated) 1885 { 1886 struct msr_data msr; 1887 int ret; 1888 1889 switch (index) { 1890 case MSR_TSC_AUX: 1891 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1892 return 1; 1893 1894 if (!host_initiated && 1895 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1897 return 1; 1898 break; 1899 } 1900 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1905 if (!ret) 1906 *data = msr.data; 1907 return ret; 1908 } 1909 1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1911 u32 index, u64 *data, bool host_initiated) 1912 { 1913 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1914 1915 if (ret == KVM_MSR_RET_INVALID) { 1916 /* Unconditionally clear *data for simplicity */ 1917 *data = 0; 1918 if (kvm_msr_ignored_check(index, 0, false)) 1919 ret = 0; 1920 } 1921 1922 return ret; 1923 } 1924 1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1926 { 1927 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1928 return KVM_MSR_RET_FILTERED; 1929 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1930 } 1931 1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1933 { 1934 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1935 return KVM_MSR_RET_FILTERED; 1936 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1937 } 1938 1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1940 { 1941 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1942 } 1943 EXPORT_SYMBOL_GPL(kvm_get_msr); 1944 1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1946 { 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr); 1950 1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1952 { 1953 if (!vcpu->run->msr.error) { 1954 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1955 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1956 } 1957 } 1958 1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1960 { 1961 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1962 } 1963 1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1965 { 1966 complete_userspace_rdmsr(vcpu); 1967 return complete_emulated_msr_access(vcpu); 1968 } 1969 1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1971 { 1972 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1973 } 1974 1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1976 { 1977 complete_userspace_rdmsr(vcpu); 1978 return complete_fast_msr_access(vcpu); 1979 } 1980 1981 static u64 kvm_msr_reason(int r) 1982 { 1983 switch (r) { 1984 case KVM_MSR_RET_INVALID: 1985 return KVM_MSR_EXIT_REASON_UNKNOWN; 1986 case KVM_MSR_RET_FILTERED: 1987 return KVM_MSR_EXIT_REASON_FILTER; 1988 default: 1989 return KVM_MSR_EXIT_REASON_INVAL; 1990 } 1991 } 1992 1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1994 u32 exit_reason, u64 data, 1995 int (*completion)(struct kvm_vcpu *vcpu), 1996 int r) 1997 { 1998 u64 msr_reason = kvm_msr_reason(r); 1999 2000 /* Check if the user wanted to know about this MSR fault */ 2001 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2002 return 0; 2003 2004 vcpu->run->exit_reason = exit_reason; 2005 vcpu->run->msr.error = 0; 2006 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2007 vcpu->run->msr.reason = msr_reason; 2008 vcpu->run->msr.index = index; 2009 vcpu->run->msr.data = data; 2010 vcpu->arch.complete_userspace_io = completion; 2011 2012 return 1; 2013 } 2014 2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 u32 ecx = kvm_rcx_read(vcpu); 2018 u64 data; 2019 int r; 2020 2021 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2022 2023 if (!r) { 2024 trace_kvm_msr_read(ecx, data); 2025 2026 kvm_rax_write(vcpu, data & -1u); 2027 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2028 } else { 2029 /* MSR read failed? See if we should ask user space */ 2030 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2031 complete_fast_rdmsr, r)) 2032 return 0; 2033 trace_kvm_msr_read_ex(ecx); 2034 } 2035 2036 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2039 2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2041 { 2042 u32 ecx = kvm_rcx_read(vcpu); 2043 u64 data = kvm_read_edx_eax(vcpu); 2044 int r; 2045 2046 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2047 2048 if (!r) { 2049 trace_kvm_msr_write(ecx, data); 2050 } else { 2051 /* MSR write failed? See if we should ask user space */ 2052 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2053 complete_fast_msr_access, r)) 2054 return 0; 2055 /* Signal all other negative errors to userspace */ 2056 if (r < 0) 2057 return r; 2058 trace_kvm_msr_write_ex(ecx, data); 2059 } 2060 2061 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2064 2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2066 { 2067 return kvm_skip_emulated_instruction(vcpu); 2068 } 2069 2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2071 { 2072 /* Treat an INVD instruction as a NOP and just skip it. */ 2073 return kvm_emulate_as_nop(vcpu); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2076 2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2078 { 2079 kvm_queue_exception(vcpu, UD_VECTOR); 2080 return 1; 2081 } 2082 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2083 2084 2085 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2086 { 2087 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2088 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2089 return kvm_handle_invalid_op(vcpu); 2090 2091 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2092 return kvm_emulate_as_nop(vcpu); 2093 } 2094 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2095 { 2096 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2097 } 2098 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2099 2100 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2101 { 2102 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2103 } 2104 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2105 2106 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2107 { 2108 xfer_to_guest_mode_prepare(); 2109 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2110 xfer_to_guest_mode_work_pending(); 2111 } 2112 2113 /* 2114 * The fast path for frequent and performance sensitive wrmsr emulation, 2115 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2116 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2117 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2118 * other cases which must be called after interrupts are enabled on the host. 2119 */ 2120 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2121 { 2122 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2123 return 1; 2124 2125 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2126 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2127 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2128 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2129 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2130 2131 return 1; 2132 } 2133 2134 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2135 { 2136 if (!kvm_can_use_hv_timer(vcpu)) 2137 return 1; 2138 2139 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2140 return 0; 2141 } 2142 2143 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2144 { 2145 u32 msr = kvm_rcx_read(vcpu); 2146 u64 data; 2147 fastpath_t ret = EXIT_FASTPATH_NONE; 2148 2149 switch (msr) { 2150 case APIC_BASE_MSR + (APIC_ICR >> 4): 2151 data = kvm_read_edx_eax(vcpu); 2152 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2153 kvm_skip_emulated_instruction(vcpu); 2154 ret = EXIT_FASTPATH_EXIT_HANDLED; 2155 } 2156 break; 2157 case MSR_IA32_TSC_DEADLINE: 2158 data = kvm_read_edx_eax(vcpu); 2159 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2160 kvm_skip_emulated_instruction(vcpu); 2161 ret = EXIT_FASTPATH_REENTER_GUEST; 2162 } 2163 break; 2164 default: 2165 break; 2166 } 2167 2168 if (ret != EXIT_FASTPATH_NONE) 2169 trace_kvm_msr_write(msr, data); 2170 2171 return ret; 2172 } 2173 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2174 2175 /* 2176 * Adapt set_msr() to msr_io()'s calling convention 2177 */ 2178 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2179 { 2180 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2181 } 2182 2183 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2184 { 2185 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2186 } 2187 2188 #ifdef CONFIG_X86_64 2189 struct pvclock_clock { 2190 int vclock_mode; 2191 u64 cycle_last; 2192 u64 mask; 2193 u32 mult; 2194 u32 shift; 2195 u64 base_cycles; 2196 u64 offset; 2197 }; 2198 2199 struct pvclock_gtod_data { 2200 seqcount_t seq; 2201 2202 struct pvclock_clock clock; /* extract of a clocksource struct */ 2203 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2204 2205 ktime_t offs_boot; 2206 u64 wall_time_sec; 2207 }; 2208 2209 static struct pvclock_gtod_data pvclock_gtod_data; 2210 2211 static void update_pvclock_gtod(struct timekeeper *tk) 2212 { 2213 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2214 2215 write_seqcount_begin(&vdata->seq); 2216 2217 /* copy pvclock gtod data */ 2218 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2219 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2220 vdata->clock.mask = tk->tkr_mono.mask; 2221 vdata->clock.mult = tk->tkr_mono.mult; 2222 vdata->clock.shift = tk->tkr_mono.shift; 2223 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2224 vdata->clock.offset = tk->tkr_mono.base; 2225 2226 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2227 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2228 vdata->raw_clock.mask = tk->tkr_raw.mask; 2229 vdata->raw_clock.mult = tk->tkr_raw.mult; 2230 vdata->raw_clock.shift = tk->tkr_raw.shift; 2231 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2232 vdata->raw_clock.offset = tk->tkr_raw.base; 2233 2234 vdata->wall_time_sec = tk->xtime_sec; 2235 2236 vdata->offs_boot = tk->offs_boot; 2237 2238 write_seqcount_end(&vdata->seq); 2239 } 2240 2241 static s64 get_kvmclock_base_ns(void) 2242 { 2243 /* Count up from boot time, but with the frequency of the raw clock. */ 2244 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2245 } 2246 #else 2247 static s64 get_kvmclock_base_ns(void) 2248 { 2249 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2250 return ktime_get_boottime_ns(); 2251 } 2252 #endif 2253 2254 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2255 { 2256 int version; 2257 int r; 2258 struct pvclock_wall_clock wc; 2259 u32 wc_sec_hi; 2260 u64 wall_nsec; 2261 2262 if (!wall_clock) 2263 return; 2264 2265 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2266 if (r) 2267 return; 2268 2269 if (version & 1) 2270 ++version; /* first time write, random junk */ 2271 2272 ++version; 2273 2274 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2275 return; 2276 2277 /* 2278 * The guest calculates current wall clock time by adding 2279 * system time (updated by kvm_guest_time_update below) to the 2280 * wall clock specified here. We do the reverse here. 2281 */ 2282 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2283 2284 wc.nsec = do_div(wall_nsec, 1000000000); 2285 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2286 wc.version = version; 2287 2288 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2289 2290 if (sec_hi_ofs) { 2291 wc_sec_hi = wall_nsec >> 32; 2292 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2293 &wc_sec_hi, sizeof(wc_sec_hi)); 2294 } 2295 2296 version++; 2297 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2298 } 2299 2300 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2301 bool old_msr, bool host_initiated) 2302 { 2303 struct kvm_arch *ka = &vcpu->kvm->arch; 2304 2305 if (vcpu->vcpu_id == 0 && !host_initiated) { 2306 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2307 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2308 2309 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2310 } 2311 2312 vcpu->arch.time = system_time; 2313 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2314 2315 /* we verify if the enable bit is set... */ 2316 if (system_time & 1) 2317 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2318 sizeof(struct pvclock_vcpu_time_info)); 2319 else 2320 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2321 2322 return; 2323 } 2324 2325 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2326 { 2327 do_shl32_div32(dividend, divisor); 2328 return dividend; 2329 } 2330 2331 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2332 s8 *pshift, u32 *pmultiplier) 2333 { 2334 uint64_t scaled64; 2335 int32_t shift = 0; 2336 uint64_t tps64; 2337 uint32_t tps32; 2338 2339 tps64 = base_hz; 2340 scaled64 = scaled_hz; 2341 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2342 tps64 >>= 1; 2343 shift--; 2344 } 2345 2346 tps32 = (uint32_t)tps64; 2347 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2348 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2349 scaled64 >>= 1; 2350 else 2351 tps32 <<= 1; 2352 shift++; 2353 } 2354 2355 *pshift = shift; 2356 *pmultiplier = div_frac(scaled64, tps32); 2357 } 2358 2359 #ifdef CONFIG_X86_64 2360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2361 #endif 2362 2363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2364 static unsigned long max_tsc_khz; 2365 2366 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2367 { 2368 u64 v = (u64)khz * (1000000 + ppm); 2369 do_div(v, 1000000); 2370 return v; 2371 } 2372 2373 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2374 2375 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2376 { 2377 u64 ratio; 2378 2379 /* Guest TSC same frequency as host TSC? */ 2380 if (!scale) { 2381 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2382 return 0; 2383 } 2384 2385 /* TSC scaling supported? */ 2386 if (!kvm_caps.has_tsc_control) { 2387 if (user_tsc_khz > tsc_khz) { 2388 vcpu->arch.tsc_catchup = 1; 2389 vcpu->arch.tsc_always_catchup = 1; 2390 return 0; 2391 } else { 2392 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2393 return -1; 2394 } 2395 } 2396 2397 /* TSC scaling required - calculate ratio */ 2398 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2399 user_tsc_khz, tsc_khz); 2400 2401 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2402 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2403 user_tsc_khz); 2404 return -1; 2405 } 2406 2407 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2408 return 0; 2409 } 2410 2411 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2412 { 2413 u32 thresh_lo, thresh_hi; 2414 int use_scaling = 0; 2415 2416 /* tsc_khz can be zero if TSC calibration fails */ 2417 if (user_tsc_khz == 0) { 2418 /* set tsc_scaling_ratio to a safe value */ 2419 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2420 return -1; 2421 } 2422 2423 /* Compute a scale to convert nanoseconds in TSC cycles */ 2424 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2425 &vcpu->arch.virtual_tsc_shift, 2426 &vcpu->arch.virtual_tsc_mult); 2427 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2428 2429 /* 2430 * Compute the variation in TSC rate which is acceptable 2431 * within the range of tolerance and decide if the 2432 * rate being applied is within that bounds of the hardware 2433 * rate. If so, no scaling or compensation need be done. 2434 */ 2435 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2436 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2437 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2438 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2439 user_tsc_khz, thresh_lo, thresh_hi); 2440 use_scaling = 1; 2441 } 2442 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2443 } 2444 2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2446 { 2447 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2448 vcpu->arch.virtual_tsc_mult, 2449 vcpu->arch.virtual_tsc_shift); 2450 tsc += vcpu->arch.this_tsc_write; 2451 return tsc; 2452 } 2453 2454 #ifdef CONFIG_X86_64 2455 static inline int gtod_is_based_on_tsc(int mode) 2456 { 2457 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2458 } 2459 #endif 2460 2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2462 { 2463 #ifdef CONFIG_X86_64 2464 bool vcpus_matched; 2465 struct kvm_arch *ka = &vcpu->kvm->arch; 2466 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2467 2468 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2469 atomic_read(&vcpu->kvm->online_vcpus)); 2470 2471 /* 2472 * Once the masterclock is enabled, always perform request in 2473 * order to update it. 2474 * 2475 * In order to enable masterclock, the host clocksource must be TSC 2476 * and the vcpus need to have matched TSCs. When that happens, 2477 * perform request to enable masterclock. 2478 */ 2479 if (ka->use_master_clock || 2480 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2481 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2482 2483 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2484 atomic_read(&vcpu->kvm->online_vcpus), 2485 ka->use_master_clock, gtod->clock.vclock_mode); 2486 #endif 2487 } 2488 2489 /* 2490 * Multiply tsc by a fixed point number represented by ratio. 2491 * 2492 * The most significant 64-N bits (mult) of ratio represent the 2493 * integral part of the fixed point number; the remaining N bits 2494 * (frac) represent the fractional part, ie. ratio represents a fixed 2495 * point number (mult + frac * 2^(-N)). 2496 * 2497 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2498 */ 2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2500 { 2501 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2502 } 2503 2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2505 { 2506 u64 _tsc = tsc; 2507 2508 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2509 _tsc = __scale_tsc(ratio, tsc); 2510 2511 return _tsc; 2512 } 2513 2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2515 { 2516 u64 tsc; 2517 2518 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2519 2520 return target_tsc - tsc; 2521 } 2522 2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2524 { 2525 return vcpu->arch.l1_tsc_offset + 2526 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2527 } 2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2529 2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2531 { 2532 u64 nested_offset; 2533 2534 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2535 nested_offset = l1_offset; 2536 else 2537 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2538 kvm_caps.tsc_scaling_ratio_frac_bits); 2539 2540 nested_offset += l2_offset; 2541 return nested_offset; 2542 } 2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2544 2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2546 { 2547 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2548 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2549 kvm_caps.tsc_scaling_ratio_frac_bits); 2550 2551 return l1_multiplier; 2552 } 2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2554 2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2556 { 2557 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2558 vcpu->arch.l1_tsc_offset, 2559 l1_offset); 2560 2561 vcpu->arch.l1_tsc_offset = l1_offset; 2562 2563 /* 2564 * If we are here because L1 chose not to trap WRMSR to TSC then 2565 * according to the spec this should set L1's TSC (as opposed to 2566 * setting L1's offset for L2). 2567 */ 2568 if (is_guest_mode(vcpu)) 2569 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2570 l1_offset, 2571 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2572 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2573 else 2574 vcpu->arch.tsc_offset = l1_offset; 2575 2576 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2577 } 2578 2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2580 { 2581 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2582 2583 /* Userspace is changing the multiplier while L2 is active */ 2584 if (is_guest_mode(vcpu)) 2585 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2586 l1_multiplier, 2587 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2588 else 2589 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2590 2591 if (kvm_caps.has_tsc_control) 2592 static_call(kvm_x86_write_tsc_multiplier)( 2593 vcpu, vcpu->arch.tsc_scaling_ratio); 2594 } 2595 2596 static inline bool kvm_check_tsc_unstable(void) 2597 { 2598 #ifdef CONFIG_X86_64 2599 /* 2600 * TSC is marked unstable when we're running on Hyper-V, 2601 * 'TSC page' clocksource is good. 2602 */ 2603 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2604 return false; 2605 #endif 2606 return check_tsc_unstable(); 2607 } 2608 2609 /* 2610 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2611 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2612 * participates in. 2613 */ 2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2615 u64 ns, bool matched) 2616 { 2617 struct kvm *kvm = vcpu->kvm; 2618 2619 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2620 2621 /* 2622 * We also track th most recent recorded KHZ, write and time to 2623 * allow the matching interval to be extended at each write. 2624 */ 2625 kvm->arch.last_tsc_nsec = ns; 2626 kvm->arch.last_tsc_write = tsc; 2627 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2628 kvm->arch.last_tsc_offset = offset; 2629 2630 vcpu->arch.last_guest_tsc = tsc; 2631 2632 kvm_vcpu_write_tsc_offset(vcpu, offset); 2633 2634 if (!matched) { 2635 /* 2636 * We split periods of matched TSC writes into generations. 2637 * For each generation, we track the original measured 2638 * nanosecond time, offset, and write, so if TSCs are in 2639 * sync, we can match exact offset, and if not, we can match 2640 * exact software computation in compute_guest_tsc() 2641 * 2642 * These values are tracked in kvm->arch.cur_xxx variables. 2643 */ 2644 kvm->arch.cur_tsc_generation++; 2645 kvm->arch.cur_tsc_nsec = ns; 2646 kvm->arch.cur_tsc_write = tsc; 2647 kvm->arch.cur_tsc_offset = offset; 2648 kvm->arch.nr_vcpus_matched_tsc = 0; 2649 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2650 kvm->arch.nr_vcpus_matched_tsc++; 2651 } 2652 2653 /* Keep track of which generation this VCPU has synchronized to */ 2654 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2655 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2656 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2657 2658 kvm_track_tsc_matching(vcpu); 2659 } 2660 2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2662 { 2663 struct kvm *kvm = vcpu->kvm; 2664 u64 offset, ns, elapsed; 2665 unsigned long flags; 2666 bool matched = false; 2667 bool synchronizing = false; 2668 2669 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2670 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2671 ns = get_kvmclock_base_ns(); 2672 elapsed = ns - kvm->arch.last_tsc_nsec; 2673 2674 if (vcpu->arch.virtual_tsc_khz) { 2675 if (data == 0) { 2676 /* 2677 * detection of vcpu initialization -- need to sync 2678 * with other vCPUs. This particularly helps to keep 2679 * kvm_clock stable after CPU hotplug 2680 */ 2681 synchronizing = true; 2682 } else { 2683 u64 tsc_exp = kvm->arch.last_tsc_write + 2684 nsec_to_cycles(vcpu, elapsed); 2685 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2686 /* 2687 * Special case: TSC write with a small delta (1 second) 2688 * of virtual cycle time against real time is 2689 * interpreted as an attempt to synchronize the CPU. 2690 */ 2691 synchronizing = data < tsc_exp + tsc_hz && 2692 data + tsc_hz > tsc_exp; 2693 } 2694 } 2695 2696 /* 2697 * For a reliable TSC, we can match TSC offsets, and for an unstable 2698 * TSC, we add elapsed time in this computation. We could let the 2699 * compensation code attempt to catch up if we fall behind, but 2700 * it's better to try to match offsets from the beginning. 2701 */ 2702 if (synchronizing && 2703 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2704 if (!kvm_check_tsc_unstable()) { 2705 offset = kvm->arch.cur_tsc_offset; 2706 } else { 2707 u64 delta = nsec_to_cycles(vcpu, elapsed); 2708 data += delta; 2709 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2710 } 2711 matched = true; 2712 } 2713 2714 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2715 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2716 } 2717 2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2719 s64 adjustment) 2720 { 2721 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2722 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2723 } 2724 2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2726 { 2727 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2728 WARN_ON(adjustment < 0); 2729 adjustment = kvm_scale_tsc((u64) adjustment, 2730 vcpu->arch.l1_tsc_scaling_ratio); 2731 adjust_tsc_offset_guest(vcpu, adjustment); 2732 } 2733 2734 #ifdef CONFIG_X86_64 2735 2736 static u64 read_tsc(void) 2737 { 2738 u64 ret = (u64)rdtsc_ordered(); 2739 u64 last = pvclock_gtod_data.clock.cycle_last; 2740 2741 if (likely(ret >= last)) 2742 return ret; 2743 2744 /* 2745 * GCC likes to generate cmov here, but this branch is extremely 2746 * predictable (it's just a function of time and the likely is 2747 * very likely) and there's a data dependence, so force GCC 2748 * to generate a branch instead. I don't barrier() because 2749 * we don't actually need a barrier, and if this function 2750 * ever gets inlined it will generate worse code. 2751 */ 2752 asm volatile (""); 2753 return last; 2754 } 2755 2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2757 int *mode) 2758 { 2759 long v; 2760 u64 tsc_pg_val; 2761 2762 switch (clock->vclock_mode) { 2763 case VDSO_CLOCKMODE_HVCLOCK: 2764 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2765 tsc_timestamp); 2766 if (tsc_pg_val != U64_MAX) { 2767 /* TSC page valid */ 2768 *mode = VDSO_CLOCKMODE_HVCLOCK; 2769 v = (tsc_pg_val - clock->cycle_last) & 2770 clock->mask; 2771 } else { 2772 /* TSC page invalid */ 2773 *mode = VDSO_CLOCKMODE_NONE; 2774 } 2775 break; 2776 case VDSO_CLOCKMODE_TSC: 2777 *mode = VDSO_CLOCKMODE_TSC; 2778 *tsc_timestamp = read_tsc(); 2779 v = (*tsc_timestamp - clock->cycle_last) & 2780 clock->mask; 2781 break; 2782 default: 2783 *mode = VDSO_CLOCKMODE_NONE; 2784 } 2785 2786 if (*mode == VDSO_CLOCKMODE_NONE) 2787 *tsc_timestamp = v = 0; 2788 2789 return v * clock->mult; 2790 } 2791 2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2793 { 2794 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2795 unsigned long seq; 2796 int mode; 2797 u64 ns; 2798 2799 do { 2800 seq = read_seqcount_begin(>od->seq); 2801 ns = gtod->raw_clock.base_cycles; 2802 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2803 ns >>= gtod->raw_clock.shift; 2804 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2805 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2806 *t = ns; 2807 2808 return mode; 2809 } 2810 2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2812 { 2813 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2814 unsigned long seq; 2815 int mode; 2816 u64 ns; 2817 2818 do { 2819 seq = read_seqcount_begin(>od->seq); 2820 ts->tv_sec = gtod->wall_time_sec; 2821 ns = gtod->clock.base_cycles; 2822 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2823 ns >>= gtod->clock.shift; 2824 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2825 2826 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2827 ts->tv_nsec = ns; 2828 2829 return mode; 2830 } 2831 2832 /* returns true if host is using TSC based clocksource */ 2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2834 { 2835 /* checked again under seqlock below */ 2836 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2837 return false; 2838 2839 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2840 tsc_timestamp)); 2841 } 2842 2843 /* returns true if host is using TSC based clocksource */ 2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2845 u64 *tsc_timestamp) 2846 { 2847 /* checked again under seqlock below */ 2848 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2849 return false; 2850 2851 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2852 } 2853 #endif 2854 2855 /* 2856 * 2857 * Assuming a stable TSC across physical CPUS, and a stable TSC 2858 * across virtual CPUs, the following condition is possible. 2859 * Each numbered line represents an event visible to both 2860 * CPUs at the next numbered event. 2861 * 2862 * "timespecX" represents host monotonic time. "tscX" represents 2863 * RDTSC value. 2864 * 2865 * VCPU0 on CPU0 | VCPU1 on CPU1 2866 * 2867 * 1. read timespec0,tsc0 2868 * 2. | timespec1 = timespec0 + N 2869 * | tsc1 = tsc0 + M 2870 * 3. transition to guest | transition to guest 2871 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2872 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2873 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2874 * 2875 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2876 * 2877 * - ret0 < ret1 2878 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2879 * ... 2880 * - 0 < N - M => M < N 2881 * 2882 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2883 * always the case (the difference between two distinct xtime instances 2884 * might be smaller then the difference between corresponding TSC reads, 2885 * when updating guest vcpus pvclock areas). 2886 * 2887 * To avoid that problem, do not allow visibility of distinct 2888 * system_timestamp/tsc_timestamp values simultaneously: use a master 2889 * copy of host monotonic time values. Update that master copy 2890 * in lockstep. 2891 * 2892 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2893 * 2894 */ 2895 2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2897 { 2898 #ifdef CONFIG_X86_64 2899 struct kvm_arch *ka = &kvm->arch; 2900 int vclock_mode; 2901 bool host_tsc_clocksource, vcpus_matched; 2902 2903 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2904 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2905 atomic_read(&kvm->online_vcpus)); 2906 2907 /* 2908 * If the host uses TSC clock, then passthrough TSC as stable 2909 * to the guest. 2910 */ 2911 host_tsc_clocksource = kvm_get_time_and_clockread( 2912 &ka->master_kernel_ns, 2913 &ka->master_cycle_now); 2914 2915 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2916 && !ka->backwards_tsc_observed 2917 && !ka->boot_vcpu_runs_old_kvmclock; 2918 2919 if (ka->use_master_clock) 2920 atomic_set(&kvm_guest_has_master_clock, 1); 2921 2922 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2923 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2924 vcpus_matched); 2925 #endif 2926 } 2927 2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2929 { 2930 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2931 } 2932 2933 static void __kvm_start_pvclock_update(struct kvm *kvm) 2934 { 2935 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2936 write_seqcount_begin(&kvm->arch.pvclock_sc); 2937 } 2938 2939 static void kvm_start_pvclock_update(struct kvm *kvm) 2940 { 2941 kvm_make_mclock_inprogress_request(kvm); 2942 2943 /* no guest entries from this point */ 2944 __kvm_start_pvclock_update(kvm); 2945 } 2946 2947 static void kvm_end_pvclock_update(struct kvm *kvm) 2948 { 2949 struct kvm_arch *ka = &kvm->arch; 2950 struct kvm_vcpu *vcpu; 2951 unsigned long i; 2952 2953 write_seqcount_end(&ka->pvclock_sc); 2954 raw_spin_unlock_irq(&ka->tsc_write_lock); 2955 kvm_for_each_vcpu(i, vcpu, kvm) 2956 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2957 2958 /* guest entries allowed */ 2959 kvm_for_each_vcpu(i, vcpu, kvm) 2960 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2961 } 2962 2963 static void kvm_update_masterclock(struct kvm *kvm) 2964 { 2965 kvm_hv_request_tsc_page_update(kvm); 2966 kvm_start_pvclock_update(kvm); 2967 pvclock_update_vm_gtod_copy(kvm); 2968 kvm_end_pvclock_update(kvm); 2969 } 2970 2971 /* 2972 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2973 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2974 * can change during boot even if the TSC is constant, as it's possible for KVM 2975 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2976 * notification when calibration completes, but practically speaking calibration 2977 * will complete before userspace is alive enough to create VMs. 2978 */ 2979 static unsigned long get_cpu_tsc_khz(void) 2980 { 2981 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2982 return tsc_khz; 2983 else 2984 return __this_cpu_read(cpu_tsc_khz); 2985 } 2986 2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2989 { 2990 struct kvm_arch *ka = &kvm->arch; 2991 struct pvclock_vcpu_time_info hv_clock; 2992 2993 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2994 get_cpu(); 2995 2996 data->flags = 0; 2997 if (ka->use_master_clock && 2998 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 2999 #ifdef CONFIG_X86_64 3000 struct timespec64 ts; 3001 3002 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3003 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3004 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3005 } else 3006 #endif 3007 data->host_tsc = rdtsc(); 3008 3009 data->flags |= KVM_CLOCK_TSC_STABLE; 3010 hv_clock.tsc_timestamp = ka->master_cycle_now; 3011 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3012 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3013 &hv_clock.tsc_shift, 3014 &hv_clock.tsc_to_system_mul); 3015 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3016 } else { 3017 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3018 } 3019 3020 put_cpu(); 3021 } 3022 3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3024 { 3025 struct kvm_arch *ka = &kvm->arch; 3026 unsigned seq; 3027 3028 do { 3029 seq = read_seqcount_begin(&ka->pvclock_sc); 3030 __get_kvmclock(kvm, data); 3031 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3032 } 3033 3034 u64 get_kvmclock_ns(struct kvm *kvm) 3035 { 3036 struct kvm_clock_data data; 3037 3038 get_kvmclock(kvm, &data); 3039 return data.clock; 3040 } 3041 3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3043 struct gfn_to_pfn_cache *gpc, 3044 unsigned int offset) 3045 { 3046 struct kvm_vcpu_arch *vcpu = &v->arch; 3047 struct pvclock_vcpu_time_info *guest_hv_clock; 3048 unsigned long flags; 3049 3050 read_lock_irqsave(&gpc->lock, flags); 3051 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3052 read_unlock_irqrestore(&gpc->lock, flags); 3053 3054 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3055 return; 3056 3057 read_lock_irqsave(&gpc->lock, flags); 3058 } 3059 3060 guest_hv_clock = (void *)(gpc->khva + offset); 3061 3062 /* 3063 * This VCPU is paused, but it's legal for a guest to read another 3064 * VCPU's kvmclock, so we really have to follow the specification where 3065 * it says that version is odd if data is being modified, and even after 3066 * it is consistent. 3067 */ 3068 3069 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3070 smp_wmb(); 3071 3072 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3073 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3074 3075 if (vcpu->pvclock_set_guest_stopped_request) { 3076 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3077 vcpu->pvclock_set_guest_stopped_request = false; 3078 } 3079 3080 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3081 smp_wmb(); 3082 3083 guest_hv_clock->version = ++vcpu->hv_clock.version; 3084 3085 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3086 read_unlock_irqrestore(&gpc->lock, flags); 3087 3088 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3089 } 3090 3091 static int kvm_guest_time_update(struct kvm_vcpu *v) 3092 { 3093 unsigned long flags, tgt_tsc_khz; 3094 unsigned seq; 3095 struct kvm_vcpu_arch *vcpu = &v->arch; 3096 struct kvm_arch *ka = &v->kvm->arch; 3097 s64 kernel_ns; 3098 u64 tsc_timestamp, host_tsc; 3099 u8 pvclock_flags; 3100 bool use_master_clock; 3101 3102 kernel_ns = 0; 3103 host_tsc = 0; 3104 3105 /* 3106 * If the host uses TSC clock, then passthrough TSC as stable 3107 * to the guest. 3108 */ 3109 do { 3110 seq = read_seqcount_begin(&ka->pvclock_sc); 3111 use_master_clock = ka->use_master_clock; 3112 if (use_master_clock) { 3113 host_tsc = ka->master_cycle_now; 3114 kernel_ns = ka->master_kernel_ns; 3115 } 3116 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3117 3118 /* Keep irq disabled to prevent changes to the clock */ 3119 local_irq_save(flags); 3120 tgt_tsc_khz = get_cpu_tsc_khz(); 3121 if (unlikely(tgt_tsc_khz == 0)) { 3122 local_irq_restore(flags); 3123 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3124 return 1; 3125 } 3126 if (!use_master_clock) { 3127 host_tsc = rdtsc(); 3128 kernel_ns = get_kvmclock_base_ns(); 3129 } 3130 3131 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3132 3133 /* 3134 * We may have to catch up the TSC to match elapsed wall clock 3135 * time for two reasons, even if kvmclock is used. 3136 * 1) CPU could have been running below the maximum TSC rate 3137 * 2) Broken TSC compensation resets the base at each VCPU 3138 * entry to avoid unknown leaps of TSC even when running 3139 * again on the same CPU. This may cause apparent elapsed 3140 * time to disappear, and the guest to stand still or run 3141 * very slowly. 3142 */ 3143 if (vcpu->tsc_catchup) { 3144 u64 tsc = compute_guest_tsc(v, kernel_ns); 3145 if (tsc > tsc_timestamp) { 3146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3147 tsc_timestamp = tsc; 3148 } 3149 } 3150 3151 local_irq_restore(flags); 3152 3153 /* With all the info we got, fill in the values */ 3154 3155 if (kvm_caps.has_tsc_control) 3156 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3157 v->arch.l1_tsc_scaling_ratio); 3158 3159 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3160 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3161 &vcpu->hv_clock.tsc_shift, 3162 &vcpu->hv_clock.tsc_to_system_mul); 3163 vcpu->hw_tsc_khz = tgt_tsc_khz; 3164 } 3165 3166 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3167 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3168 vcpu->last_guest_tsc = tsc_timestamp; 3169 3170 /* If the host uses TSC clocksource, then it is stable */ 3171 pvclock_flags = 0; 3172 if (use_master_clock) 3173 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3174 3175 vcpu->hv_clock.flags = pvclock_flags; 3176 3177 if (vcpu->pv_time.active) 3178 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3179 if (vcpu->xen.vcpu_info_cache.active) 3180 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3181 offsetof(struct compat_vcpu_info, time)); 3182 if (vcpu->xen.vcpu_time_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3184 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3185 return 0; 3186 } 3187 3188 /* 3189 * kvmclock updates which are isolated to a given vcpu, such as 3190 * vcpu->cpu migration, should not allow system_timestamp from 3191 * the rest of the vcpus to remain static. Otherwise ntp frequency 3192 * correction applies to one vcpu's system_timestamp but not 3193 * the others. 3194 * 3195 * So in those cases, request a kvmclock update for all vcpus. 3196 * We need to rate-limit these requests though, as they can 3197 * considerably slow guests that have a large number of vcpus. 3198 * The time for a remote vcpu to update its kvmclock is bound 3199 * by the delay we use to rate-limit the updates. 3200 */ 3201 3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3203 3204 static void kvmclock_update_fn(struct work_struct *work) 3205 { 3206 unsigned long i; 3207 struct delayed_work *dwork = to_delayed_work(work); 3208 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3209 kvmclock_update_work); 3210 struct kvm *kvm = container_of(ka, struct kvm, arch); 3211 struct kvm_vcpu *vcpu; 3212 3213 kvm_for_each_vcpu(i, vcpu, kvm) { 3214 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3215 kvm_vcpu_kick(vcpu); 3216 } 3217 } 3218 3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3220 { 3221 struct kvm *kvm = v->kvm; 3222 3223 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3224 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3225 KVMCLOCK_UPDATE_DELAY); 3226 } 3227 3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3229 3230 static void kvmclock_sync_fn(struct work_struct *work) 3231 { 3232 struct delayed_work *dwork = to_delayed_work(work); 3233 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3234 kvmclock_sync_work); 3235 struct kvm *kvm = container_of(ka, struct kvm, arch); 3236 3237 if (!kvmclock_periodic_sync) 3238 return; 3239 3240 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3241 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3242 KVMCLOCK_SYNC_PERIOD); 3243 } 3244 3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3246 static bool is_mci_control_msr(u32 msr) 3247 { 3248 return (msr & 3) == 0; 3249 } 3250 static bool is_mci_status_msr(u32 msr) 3251 { 3252 return (msr & 3) == 1; 3253 } 3254 3255 /* 3256 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3257 */ 3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3259 { 3260 /* McStatusWrEn enabled? */ 3261 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3262 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3263 3264 return false; 3265 } 3266 3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3268 { 3269 u64 mcg_cap = vcpu->arch.mcg_cap; 3270 unsigned bank_num = mcg_cap & 0xff; 3271 u32 msr = msr_info->index; 3272 u64 data = msr_info->data; 3273 u32 offset, last_msr; 3274 3275 switch (msr) { 3276 case MSR_IA32_MCG_STATUS: 3277 vcpu->arch.mcg_status = data; 3278 break; 3279 case MSR_IA32_MCG_CTL: 3280 if (!(mcg_cap & MCG_CTL_P) && 3281 (data || !msr_info->host_initiated)) 3282 return 1; 3283 if (data != 0 && data != ~(u64)0) 3284 return 1; 3285 vcpu->arch.mcg_ctl = data; 3286 break; 3287 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3288 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3289 if (msr > last_msr) 3290 return 1; 3291 3292 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3293 return 1; 3294 /* An attempt to write a 1 to a reserved bit raises #GP */ 3295 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3296 return 1; 3297 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3298 last_msr + 1 - MSR_IA32_MC0_CTL2); 3299 vcpu->arch.mci_ctl2_banks[offset] = data; 3300 break; 3301 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3302 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3303 if (msr > last_msr) 3304 return 1; 3305 3306 /* 3307 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3308 * values are architecturally undefined. But, some Linux 3309 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3310 * issue on AMD K8s, allow bit 10 to be clear when setting all 3311 * other bits in order to avoid an uncaught #GP in the guest. 3312 * 3313 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3314 * single-bit ECC data errors. 3315 */ 3316 if (is_mci_control_msr(msr) && 3317 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3318 return 1; 3319 3320 /* 3321 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3322 * AMD-based CPUs allow non-zero values, but if and only if 3323 * HWCR[McStatusWrEn] is set. 3324 */ 3325 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3326 data != 0 && !can_set_mci_status(vcpu)) 3327 return 1; 3328 3329 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3330 last_msr + 1 - MSR_IA32_MC0_CTL); 3331 vcpu->arch.mce_banks[offset] = data; 3332 break; 3333 default: 3334 return 1; 3335 } 3336 return 0; 3337 } 3338 3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3340 { 3341 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3342 3343 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3344 } 3345 3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3347 { 3348 gpa_t gpa = data & ~0x3f; 3349 3350 /* Bits 4:5 are reserved, Should be zero */ 3351 if (data & 0x30) 3352 return 1; 3353 3354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3355 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3356 return 1; 3357 3358 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3359 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3360 return 1; 3361 3362 if (!lapic_in_kernel(vcpu)) 3363 return data ? 1 : 0; 3364 3365 vcpu->arch.apf.msr_en_val = data; 3366 3367 if (!kvm_pv_async_pf_enabled(vcpu)) { 3368 kvm_clear_async_pf_completion_queue(vcpu); 3369 kvm_async_pf_hash_reset(vcpu); 3370 return 0; 3371 } 3372 3373 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3374 sizeof(u64))) 3375 return 1; 3376 3377 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3378 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3379 3380 kvm_async_pf_wakeup_all(vcpu); 3381 3382 return 0; 3383 } 3384 3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3386 { 3387 /* Bits 8-63 are reserved */ 3388 if (data >> 8) 3389 return 1; 3390 3391 if (!lapic_in_kernel(vcpu)) 3392 return 1; 3393 3394 vcpu->arch.apf.msr_int_val = data; 3395 3396 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3397 3398 return 0; 3399 } 3400 3401 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3402 { 3403 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3404 vcpu->arch.time = 0; 3405 } 3406 3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3408 { 3409 ++vcpu->stat.tlb_flush; 3410 static_call(kvm_x86_flush_tlb_all)(vcpu); 3411 3412 /* Flushing all ASIDs flushes the current ASID... */ 3413 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3414 } 3415 3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3417 { 3418 ++vcpu->stat.tlb_flush; 3419 3420 if (!tdp_enabled) { 3421 /* 3422 * A TLB flush on behalf of the guest is equivalent to 3423 * INVPCID(all), toggling CR4.PGE, etc., which requires 3424 * a forced sync of the shadow page tables. Ensure all the 3425 * roots are synced and the guest TLB in hardware is clean. 3426 */ 3427 kvm_mmu_sync_roots(vcpu); 3428 kvm_mmu_sync_prev_roots(vcpu); 3429 } 3430 3431 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3432 3433 /* 3434 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3435 * grained flushing. 3436 */ 3437 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3438 } 3439 3440 3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3442 { 3443 ++vcpu->stat.tlb_flush; 3444 static_call(kvm_x86_flush_tlb_current)(vcpu); 3445 } 3446 3447 /* 3448 * Service "local" TLB flush requests, which are specific to the current MMU 3449 * context. In addition to the generic event handling in vcpu_enter_guest(), 3450 * TLB flushes that are targeted at an MMU context also need to be serviced 3451 * prior before nested VM-Enter/VM-Exit. 3452 */ 3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3454 { 3455 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3456 kvm_vcpu_flush_tlb_current(vcpu); 3457 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3459 kvm_vcpu_flush_tlb_guest(vcpu); 3460 } 3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3462 3463 static void record_steal_time(struct kvm_vcpu *vcpu) 3464 { 3465 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3466 struct kvm_steal_time __user *st; 3467 struct kvm_memslots *slots; 3468 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3469 u64 steal; 3470 u32 version; 3471 3472 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3473 kvm_xen_runstate_set_running(vcpu); 3474 return; 3475 } 3476 3477 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3478 return; 3479 3480 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3481 return; 3482 3483 slots = kvm_memslots(vcpu->kvm); 3484 3485 if (unlikely(slots->generation != ghc->generation || 3486 gpa != ghc->gpa || 3487 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3488 /* We rely on the fact that it fits in a single page. */ 3489 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3490 3491 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3492 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3493 return; 3494 } 3495 3496 st = (struct kvm_steal_time __user *)ghc->hva; 3497 /* 3498 * Doing a TLB flush here, on the guest's behalf, can avoid 3499 * expensive IPIs. 3500 */ 3501 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3502 u8 st_preempted = 0; 3503 int err = -EFAULT; 3504 3505 if (!user_access_begin(st, sizeof(*st))) 3506 return; 3507 3508 asm volatile("1: xchgb %0, %2\n" 3509 "xor %1, %1\n" 3510 "2:\n" 3511 _ASM_EXTABLE_UA(1b, 2b) 3512 : "+q" (st_preempted), 3513 "+&r" (err), 3514 "+m" (st->preempted)); 3515 if (err) 3516 goto out; 3517 3518 user_access_end(); 3519 3520 vcpu->arch.st.preempted = 0; 3521 3522 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3523 st_preempted & KVM_VCPU_FLUSH_TLB); 3524 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3525 kvm_vcpu_flush_tlb_guest(vcpu); 3526 3527 if (!user_access_begin(st, sizeof(*st))) 3528 goto dirty; 3529 } else { 3530 if (!user_access_begin(st, sizeof(*st))) 3531 return; 3532 3533 unsafe_put_user(0, &st->preempted, out); 3534 vcpu->arch.st.preempted = 0; 3535 } 3536 3537 unsafe_get_user(version, &st->version, out); 3538 if (version & 1) 3539 version += 1; /* first time write, random junk */ 3540 3541 version += 1; 3542 unsafe_put_user(version, &st->version, out); 3543 3544 smp_wmb(); 3545 3546 unsafe_get_user(steal, &st->steal, out); 3547 steal += current->sched_info.run_delay - 3548 vcpu->arch.st.last_steal; 3549 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3550 unsafe_put_user(steal, &st->steal, out); 3551 3552 version += 1; 3553 unsafe_put_user(version, &st->version, out); 3554 3555 out: 3556 user_access_end(); 3557 dirty: 3558 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3559 } 3560 3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3562 { 3563 bool pr = false; 3564 u32 msr = msr_info->index; 3565 u64 data = msr_info->data; 3566 3567 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3568 return kvm_xen_write_hypercall_page(vcpu, data); 3569 3570 switch (msr) { 3571 case MSR_AMD64_NB_CFG: 3572 case MSR_IA32_UCODE_WRITE: 3573 case MSR_VM_HSAVE_PA: 3574 case MSR_AMD64_PATCH_LOADER: 3575 case MSR_AMD64_BU_CFG2: 3576 case MSR_AMD64_DC_CFG: 3577 case MSR_F15H_EX_CFG: 3578 break; 3579 3580 case MSR_IA32_UCODE_REV: 3581 if (msr_info->host_initiated) 3582 vcpu->arch.microcode_version = data; 3583 break; 3584 case MSR_IA32_ARCH_CAPABILITIES: 3585 if (!msr_info->host_initiated) 3586 return 1; 3587 vcpu->arch.arch_capabilities = data; 3588 break; 3589 case MSR_IA32_PERF_CAPABILITIES: 3590 if (!msr_info->host_initiated) 3591 return 1; 3592 if (data & ~kvm_caps.supported_perf_cap) 3593 return 1; 3594 3595 vcpu->arch.perf_capabilities = data; 3596 kvm_pmu_refresh(vcpu); 3597 return 0; 3598 case MSR_EFER: 3599 return set_efer(vcpu, msr_info); 3600 case MSR_K7_HWCR: 3601 data &= ~(u64)0x40; /* ignore flush filter disable */ 3602 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3603 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3604 3605 /* Handle McStatusWrEn */ 3606 if (data == BIT_ULL(18)) { 3607 vcpu->arch.msr_hwcr = data; 3608 } else if (data != 0) { 3609 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3610 data); 3611 return 1; 3612 } 3613 break; 3614 case MSR_FAM10H_MMIO_CONF_BASE: 3615 if (data != 0) { 3616 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3617 "0x%llx\n", data); 3618 return 1; 3619 } 3620 break; 3621 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3622 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3623 return kvm_mtrr_set_msr(vcpu, msr, data); 3624 case MSR_IA32_APICBASE: 3625 return kvm_set_apic_base(vcpu, msr_info); 3626 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3627 return kvm_x2apic_msr_write(vcpu, msr, data); 3628 case MSR_IA32_TSC_DEADLINE: 3629 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3630 break; 3631 case MSR_IA32_TSC_ADJUST: 3632 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3633 if (!msr_info->host_initiated) { 3634 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3635 adjust_tsc_offset_guest(vcpu, adj); 3636 /* Before back to guest, tsc_timestamp must be adjusted 3637 * as well, otherwise guest's percpu pvclock time could jump. 3638 */ 3639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3640 } 3641 vcpu->arch.ia32_tsc_adjust_msr = data; 3642 } 3643 break; 3644 case MSR_IA32_MISC_ENABLE: { 3645 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3646 3647 if (!msr_info->host_initiated) { 3648 /* RO bits */ 3649 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3650 return 1; 3651 3652 /* R bits, i.e. writes are ignored, but don't fault. */ 3653 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3654 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3655 } 3656 3657 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3658 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3659 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3660 return 1; 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 kvm_update_cpuid_runtime(vcpu); 3663 } else { 3664 vcpu->arch.ia32_misc_enable_msr = data; 3665 } 3666 break; 3667 } 3668 case MSR_IA32_SMBASE: 3669 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3670 return 1; 3671 vcpu->arch.smbase = data; 3672 break; 3673 case MSR_IA32_POWER_CTL: 3674 vcpu->arch.msr_ia32_power_ctl = data; 3675 break; 3676 case MSR_IA32_TSC: 3677 if (msr_info->host_initiated) { 3678 kvm_synchronize_tsc(vcpu, data); 3679 } else { 3680 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3681 adjust_tsc_offset_guest(vcpu, adj); 3682 vcpu->arch.ia32_tsc_adjust_msr += adj; 3683 } 3684 break; 3685 case MSR_IA32_XSS: 3686 if (!msr_info->host_initiated && 3687 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3688 return 1; 3689 /* 3690 * KVM supports exposing PT to the guest, but does not support 3691 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3692 * XSAVES/XRSTORS to save/restore PT MSRs. 3693 */ 3694 if (data & ~kvm_caps.supported_xss) 3695 return 1; 3696 vcpu->arch.ia32_xss = data; 3697 kvm_update_cpuid_runtime(vcpu); 3698 break; 3699 case MSR_SMI_COUNT: 3700 if (!msr_info->host_initiated) 3701 return 1; 3702 vcpu->arch.smi_count = data; 3703 break; 3704 case MSR_KVM_WALL_CLOCK_NEW: 3705 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3706 return 1; 3707 3708 vcpu->kvm->arch.wall_clock = data; 3709 kvm_write_wall_clock(vcpu->kvm, data, 0); 3710 break; 3711 case MSR_KVM_WALL_CLOCK: 3712 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3713 return 1; 3714 3715 vcpu->kvm->arch.wall_clock = data; 3716 kvm_write_wall_clock(vcpu->kvm, data, 0); 3717 break; 3718 case MSR_KVM_SYSTEM_TIME_NEW: 3719 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3720 return 1; 3721 3722 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3723 break; 3724 case MSR_KVM_SYSTEM_TIME: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3726 return 1; 3727 3728 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3729 break; 3730 case MSR_KVM_ASYNC_PF_EN: 3731 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3732 return 1; 3733 3734 if (kvm_pv_enable_async_pf(vcpu, data)) 3735 return 1; 3736 break; 3737 case MSR_KVM_ASYNC_PF_INT: 3738 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3739 return 1; 3740 3741 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3742 return 1; 3743 break; 3744 case MSR_KVM_ASYNC_PF_ACK: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3746 return 1; 3747 if (data & 0x1) { 3748 vcpu->arch.apf.pageready_pending = false; 3749 kvm_check_async_pf_completion(vcpu); 3750 } 3751 break; 3752 case MSR_KVM_STEAL_TIME: 3753 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3754 return 1; 3755 3756 if (unlikely(!sched_info_on())) 3757 return 1; 3758 3759 if (data & KVM_STEAL_RESERVED_MASK) 3760 return 1; 3761 3762 vcpu->arch.st.msr_val = data; 3763 3764 if (!(data & KVM_MSR_ENABLED)) 3765 break; 3766 3767 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3768 3769 break; 3770 case MSR_KVM_PV_EOI_EN: 3771 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3772 return 1; 3773 3774 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3775 return 1; 3776 break; 3777 3778 case MSR_KVM_POLL_CONTROL: 3779 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3780 return 1; 3781 3782 /* only enable bit supported */ 3783 if (data & (-1ULL << 1)) 3784 return 1; 3785 3786 vcpu->arch.msr_kvm_poll_control = data; 3787 break; 3788 3789 case MSR_IA32_MCG_CTL: 3790 case MSR_IA32_MCG_STATUS: 3791 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3792 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3793 return set_msr_mce(vcpu, msr_info); 3794 3795 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3796 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3797 pr = true; 3798 fallthrough; 3799 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3800 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3801 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3802 return kvm_pmu_set_msr(vcpu, msr_info); 3803 3804 if (pr || data != 0) 3805 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3806 "0x%x data 0x%llx\n", msr, data); 3807 break; 3808 case MSR_K7_CLK_CTL: 3809 /* 3810 * Ignore all writes to this no longer documented MSR. 3811 * Writes are only relevant for old K7 processors, 3812 * all pre-dating SVM, but a recommended workaround from 3813 * AMD for these chips. It is possible to specify the 3814 * affected processor models on the command line, hence 3815 * the need to ignore the workaround. 3816 */ 3817 break; 3818 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3819 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3820 case HV_X64_MSR_SYNDBG_OPTIONS: 3821 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3822 case HV_X64_MSR_CRASH_CTL: 3823 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3824 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3825 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3826 case HV_X64_MSR_TSC_EMULATION_STATUS: 3827 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3828 return kvm_hv_set_msr_common(vcpu, msr, data, 3829 msr_info->host_initiated); 3830 case MSR_IA32_BBL_CR_CTL3: 3831 /* Drop writes to this legacy MSR -- see rdmsr 3832 * counterpart for further detail. 3833 */ 3834 if (report_ignored_msrs) 3835 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3836 msr, data); 3837 break; 3838 case MSR_AMD64_OSVW_ID_LENGTH: 3839 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3840 return 1; 3841 vcpu->arch.osvw.length = data; 3842 break; 3843 case MSR_AMD64_OSVW_STATUS: 3844 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3845 return 1; 3846 vcpu->arch.osvw.status = data; 3847 break; 3848 case MSR_PLATFORM_INFO: 3849 if (!msr_info->host_initiated || 3850 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3851 cpuid_fault_enabled(vcpu))) 3852 return 1; 3853 vcpu->arch.msr_platform_info = data; 3854 break; 3855 case MSR_MISC_FEATURES_ENABLES: 3856 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3857 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3858 !supports_cpuid_fault(vcpu))) 3859 return 1; 3860 vcpu->arch.msr_misc_features_enables = data; 3861 break; 3862 #ifdef CONFIG_X86_64 3863 case MSR_IA32_XFD: 3864 if (!msr_info->host_initiated && 3865 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3866 return 1; 3867 3868 if (data & ~kvm_guest_supported_xfd(vcpu)) 3869 return 1; 3870 3871 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3872 break; 3873 case MSR_IA32_XFD_ERR: 3874 if (!msr_info->host_initiated && 3875 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3876 return 1; 3877 3878 if (data & ~kvm_guest_supported_xfd(vcpu)) 3879 return 1; 3880 3881 vcpu->arch.guest_fpu.xfd_err = data; 3882 break; 3883 #endif 3884 case MSR_IA32_PEBS_ENABLE: 3885 case MSR_IA32_DS_AREA: 3886 case MSR_PEBS_DATA_CFG: 3887 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3888 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3889 return kvm_pmu_set_msr(vcpu, msr_info); 3890 /* 3891 * Userspace is allowed to write '0' to MSRs that KVM reports 3892 * as to-be-saved, even if an MSRs isn't fully supported. 3893 */ 3894 return !msr_info->host_initiated || data; 3895 default: 3896 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3897 return kvm_pmu_set_msr(vcpu, msr_info); 3898 return KVM_MSR_RET_INVALID; 3899 } 3900 return 0; 3901 } 3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3903 3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3905 { 3906 u64 data; 3907 u64 mcg_cap = vcpu->arch.mcg_cap; 3908 unsigned bank_num = mcg_cap & 0xff; 3909 u32 offset, last_msr; 3910 3911 switch (msr) { 3912 case MSR_IA32_P5_MC_ADDR: 3913 case MSR_IA32_P5_MC_TYPE: 3914 data = 0; 3915 break; 3916 case MSR_IA32_MCG_CAP: 3917 data = vcpu->arch.mcg_cap; 3918 break; 3919 case MSR_IA32_MCG_CTL: 3920 if (!(mcg_cap & MCG_CTL_P) && !host) 3921 return 1; 3922 data = vcpu->arch.mcg_ctl; 3923 break; 3924 case MSR_IA32_MCG_STATUS: 3925 data = vcpu->arch.mcg_status; 3926 break; 3927 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3928 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3929 if (msr > last_msr) 3930 return 1; 3931 3932 if (!(mcg_cap & MCG_CMCI_P) && !host) 3933 return 1; 3934 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3935 last_msr + 1 - MSR_IA32_MC0_CTL2); 3936 data = vcpu->arch.mci_ctl2_banks[offset]; 3937 break; 3938 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3939 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3940 if (msr > last_msr) 3941 return 1; 3942 3943 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3944 last_msr + 1 - MSR_IA32_MC0_CTL); 3945 data = vcpu->arch.mce_banks[offset]; 3946 break; 3947 default: 3948 return 1; 3949 } 3950 *pdata = data; 3951 return 0; 3952 } 3953 3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3955 { 3956 switch (msr_info->index) { 3957 case MSR_IA32_PLATFORM_ID: 3958 case MSR_IA32_EBL_CR_POWERON: 3959 case MSR_IA32_LASTBRANCHFROMIP: 3960 case MSR_IA32_LASTBRANCHTOIP: 3961 case MSR_IA32_LASTINTFROMIP: 3962 case MSR_IA32_LASTINTTOIP: 3963 case MSR_AMD64_SYSCFG: 3964 case MSR_K8_TSEG_ADDR: 3965 case MSR_K8_TSEG_MASK: 3966 case MSR_VM_HSAVE_PA: 3967 case MSR_K8_INT_PENDING_MSG: 3968 case MSR_AMD64_NB_CFG: 3969 case MSR_FAM10H_MMIO_CONF_BASE: 3970 case MSR_AMD64_BU_CFG2: 3971 case MSR_IA32_PERF_CTL: 3972 case MSR_AMD64_DC_CFG: 3973 case MSR_F15H_EX_CFG: 3974 /* 3975 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3976 * limit) MSRs. Just return 0, as we do not want to expose the host 3977 * data here. Do not conditionalize this on CPUID, as KVM does not do 3978 * so for existing CPU-specific MSRs. 3979 */ 3980 case MSR_RAPL_POWER_UNIT: 3981 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3982 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3983 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3984 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3985 msr_info->data = 0; 3986 break; 3987 case MSR_IA32_PEBS_ENABLE: 3988 case MSR_IA32_DS_AREA: 3989 case MSR_PEBS_DATA_CFG: 3990 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3991 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3992 return kvm_pmu_get_msr(vcpu, msr_info); 3993 /* 3994 * Userspace is allowed to read MSRs that KVM reports as 3995 * to-be-saved, even if an MSR isn't fully supported. 3996 */ 3997 if (!msr_info->host_initiated) 3998 return 1; 3999 msr_info->data = 0; 4000 break; 4001 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4002 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4003 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4004 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4005 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4006 return kvm_pmu_get_msr(vcpu, msr_info); 4007 msr_info->data = 0; 4008 break; 4009 case MSR_IA32_UCODE_REV: 4010 msr_info->data = vcpu->arch.microcode_version; 4011 break; 4012 case MSR_IA32_ARCH_CAPABILITIES: 4013 if (!msr_info->host_initiated && 4014 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4015 return 1; 4016 msr_info->data = vcpu->arch.arch_capabilities; 4017 break; 4018 case MSR_IA32_PERF_CAPABILITIES: 4019 if (!msr_info->host_initiated && 4020 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4021 return 1; 4022 msr_info->data = vcpu->arch.perf_capabilities; 4023 break; 4024 case MSR_IA32_POWER_CTL: 4025 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4026 break; 4027 case MSR_IA32_TSC: { 4028 /* 4029 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4030 * even when not intercepted. AMD manual doesn't explicitly 4031 * state this but appears to behave the same. 4032 * 4033 * On userspace reads and writes, however, we unconditionally 4034 * return L1's TSC value to ensure backwards-compatible 4035 * behavior for migration. 4036 */ 4037 u64 offset, ratio; 4038 4039 if (msr_info->host_initiated) { 4040 offset = vcpu->arch.l1_tsc_offset; 4041 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4042 } else { 4043 offset = vcpu->arch.tsc_offset; 4044 ratio = vcpu->arch.tsc_scaling_ratio; 4045 } 4046 4047 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4048 break; 4049 } 4050 case MSR_MTRRcap: 4051 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4052 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4053 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4054 case 0xcd: /* fsb frequency */ 4055 msr_info->data = 3; 4056 break; 4057 /* 4058 * MSR_EBC_FREQUENCY_ID 4059 * Conservative value valid for even the basic CPU models. 4060 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4061 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4062 * and 266MHz for model 3, or 4. Set Core Clock 4063 * Frequency to System Bus Frequency Ratio to 1 (bits 4064 * 31:24) even though these are only valid for CPU 4065 * models > 2, however guests may end up dividing or 4066 * multiplying by zero otherwise. 4067 */ 4068 case MSR_EBC_FREQUENCY_ID: 4069 msr_info->data = 1 << 24; 4070 break; 4071 case MSR_IA32_APICBASE: 4072 msr_info->data = kvm_get_apic_base(vcpu); 4073 break; 4074 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4075 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4076 case MSR_IA32_TSC_DEADLINE: 4077 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4078 break; 4079 case MSR_IA32_TSC_ADJUST: 4080 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4081 break; 4082 case MSR_IA32_MISC_ENABLE: 4083 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4084 break; 4085 case MSR_IA32_SMBASE: 4086 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4087 return 1; 4088 msr_info->data = vcpu->arch.smbase; 4089 break; 4090 case MSR_SMI_COUNT: 4091 msr_info->data = vcpu->arch.smi_count; 4092 break; 4093 case MSR_IA32_PERF_STATUS: 4094 /* TSC increment by tick */ 4095 msr_info->data = 1000ULL; 4096 /* CPU multiplier */ 4097 msr_info->data |= (((uint64_t)4ULL) << 40); 4098 break; 4099 case MSR_EFER: 4100 msr_info->data = vcpu->arch.efer; 4101 break; 4102 case MSR_KVM_WALL_CLOCK: 4103 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4104 return 1; 4105 4106 msr_info->data = vcpu->kvm->arch.wall_clock; 4107 break; 4108 case MSR_KVM_WALL_CLOCK_NEW: 4109 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4110 return 1; 4111 4112 msr_info->data = vcpu->kvm->arch.wall_clock; 4113 break; 4114 case MSR_KVM_SYSTEM_TIME: 4115 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4116 return 1; 4117 4118 msr_info->data = vcpu->arch.time; 4119 break; 4120 case MSR_KVM_SYSTEM_TIME_NEW: 4121 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4122 return 1; 4123 4124 msr_info->data = vcpu->arch.time; 4125 break; 4126 case MSR_KVM_ASYNC_PF_EN: 4127 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4128 return 1; 4129 4130 msr_info->data = vcpu->arch.apf.msr_en_val; 4131 break; 4132 case MSR_KVM_ASYNC_PF_INT: 4133 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4134 return 1; 4135 4136 msr_info->data = vcpu->arch.apf.msr_int_val; 4137 break; 4138 case MSR_KVM_ASYNC_PF_ACK: 4139 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4140 return 1; 4141 4142 msr_info->data = 0; 4143 break; 4144 case MSR_KVM_STEAL_TIME: 4145 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4146 return 1; 4147 4148 msr_info->data = vcpu->arch.st.msr_val; 4149 break; 4150 case MSR_KVM_PV_EOI_EN: 4151 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4152 return 1; 4153 4154 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4155 break; 4156 case MSR_KVM_POLL_CONTROL: 4157 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4158 return 1; 4159 4160 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4161 break; 4162 case MSR_IA32_P5_MC_ADDR: 4163 case MSR_IA32_P5_MC_TYPE: 4164 case MSR_IA32_MCG_CAP: 4165 case MSR_IA32_MCG_CTL: 4166 case MSR_IA32_MCG_STATUS: 4167 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4168 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4169 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4170 msr_info->host_initiated); 4171 case MSR_IA32_XSS: 4172 if (!msr_info->host_initiated && 4173 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4174 return 1; 4175 msr_info->data = vcpu->arch.ia32_xss; 4176 break; 4177 case MSR_K7_CLK_CTL: 4178 /* 4179 * Provide expected ramp-up count for K7. All other 4180 * are set to zero, indicating minimum divisors for 4181 * every field. 4182 * 4183 * This prevents guest kernels on AMD host with CPU 4184 * type 6, model 8 and higher from exploding due to 4185 * the rdmsr failing. 4186 */ 4187 msr_info->data = 0x20000000; 4188 break; 4189 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4190 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4191 case HV_X64_MSR_SYNDBG_OPTIONS: 4192 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4193 case HV_X64_MSR_CRASH_CTL: 4194 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4195 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4197 case HV_X64_MSR_TSC_EMULATION_STATUS: 4198 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4199 return kvm_hv_get_msr_common(vcpu, 4200 msr_info->index, &msr_info->data, 4201 msr_info->host_initiated); 4202 case MSR_IA32_BBL_CR_CTL3: 4203 /* This legacy MSR exists but isn't fully documented in current 4204 * silicon. It is however accessed by winxp in very narrow 4205 * scenarios where it sets bit #19, itself documented as 4206 * a "reserved" bit. Best effort attempt to source coherent 4207 * read data here should the balance of the register be 4208 * interpreted by the guest: 4209 * 4210 * L2 cache control register 3: 64GB range, 256KB size, 4211 * enabled, latency 0x1, configured 4212 */ 4213 msr_info->data = 0xbe702111; 4214 break; 4215 case MSR_AMD64_OSVW_ID_LENGTH: 4216 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4217 return 1; 4218 msr_info->data = vcpu->arch.osvw.length; 4219 break; 4220 case MSR_AMD64_OSVW_STATUS: 4221 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4222 return 1; 4223 msr_info->data = vcpu->arch.osvw.status; 4224 break; 4225 case MSR_PLATFORM_INFO: 4226 if (!msr_info->host_initiated && 4227 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4228 return 1; 4229 msr_info->data = vcpu->arch.msr_platform_info; 4230 break; 4231 case MSR_MISC_FEATURES_ENABLES: 4232 msr_info->data = vcpu->arch.msr_misc_features_enables; 4233 break; 4234 case MSR_K7_HWCR: 4235 msr_info->data = vcpu->arch.msr_hwcr; 4236 break; 4237 #ifdef CONFIG_X86_64 4238 case MSR_IA32_XFD: 4239 if (!msr_info->host_initiated && 4240 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4241 return 1; 4242 4243 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4244 break; 4245 case MSR_IA32_XFD_ERR: 4246 if (!msr_info->host_initiated && 4247 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4248 return 1; 4249 4250 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4251 break; 4252 #endif 4253 default: 4254 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4255 return kvm_pmu_get_msr(vcpu, msr_info); 4256 return KVM_MSR_RET_INVALID; 4257 } 4258 return 0; 4259 } 4260 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4261 4262 /* 4263 * Read or write a bunch of msrs. All parameters are kernel addresses. 4264 * 4265 * @return number of msrs set successfully. 4266 */ 4267 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4268 struct kvm_msr_entry *entries, 4269 int (*do_msr)(struct kvm_vcpu *vcpu, 4270 unsigned index, u64 *data)) 4271 { 4272 int i; 4273 4274 for (i = 0; i < msrs->nmsrs; ++i) 4275 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4276 break; 4277 4278 return i; 4279 } 4280 4281 /* 4282 * Read or write a bunch of msrs. Parameters are user addresses. 4283 * 4284 * @return number of msrs set successfully. 4285 */ 4286 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4287 int (*do_msr)(struct kvm_vcpu *vcpu, 4288 unsigned index, u64 *data), 4289 int writeback) 4290 { 4291 struct kvm_msrs msrs; 4292 struct kvm_msr_entry *entries; 4293 int r, n; 4294 unsigned size; 4295 4296 r = -EFAULT; 4297 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4298 goto out; 4299 4300 r = -E2BIG; 4301 if (msrs.nmsrs >= MAX_IO_MSRS) 4302 goto out; 4303 4304 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4305 entries = memdup_user(user_msrs->entries, size); 4306 if (IS_ERR(entries)) { 4307 r = PTR_ERR(entries); 4308 goto out; 4309 } 4310 4311 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4312 if (r < 0) 4313 goto out_free; 4314 4315 r = -EFAULT; 4316 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4317 goto out_free; 4318 4319 r = n; 4320 4321 out_free: 4322 kfree(entries); 4323 out: 4324 return r; 4325 } 4326 4327 static inline bool kvm_can_mwait_in_guest(void) 4328 { 4329 return boot_cpu_has(X86_FEATURE_MWAIT) && 4330 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4331 boot_cpu_has(X86_FEATURE_ARAT); 4332 } 4333 4334 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4335 struct kvm_cpuid2 __user *cpuid_arg) 4336 { 4337 struct kvm_cpuid2 cpuid; 4338 int r; 4339 4340 r = -EFAULT; 4341 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4342 return r; 4343 4344 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4345 if (r) 4346 return r; 4347 4348 r = -EFAULT; 4349 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4350 return r; 4351 4352 return 0; 4353 } 4354 4355 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4356 { 4357 int r = 0; 4358 4359 switch (ext) { 4360 case KVM_CAP_IRQCHIP: 4361 case KVM_CAP_HLT: 4362 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4363 case KVM_CAP_SET_TSS_ADDR: 4364 case KVM_CAP_EXT_CPUID: 4365 case KVM_CAP_EXT_EMUL_CPUID: 4366 case KVM_CAP_CLOCKSOURCE: 4367 case KVM_CAP_PIT: 4368 case KVM_CAP_NOP_IO_DELAY: 4369 case KVM_CAP_MP_STATE: 4370 case KVM_CAP_SYNC_MMU: 4371 case KVM_CAP_USER_NMI: 4372 case KVM_CAP_REINJECT_CONTROL: 4373 case KVM_CAP_IRQ_INJECT_STATUS: 4374 case KVM_CAP_IOEVENTFD: 4375 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4376 case KVM_CAP_PIT2: 4377 case KVM_CAP_PIT_STATE2: 4378 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4379 case KVM_CAP_VCPU_EVENTS: 4380 case KVM_CAP_HYPERV: 4381 case KVM_CAP_HYPERV_VAPIC: 4382 case KVM_CAP_HYPERV_SPIN: 4383 case KVM_CAP_HYPERV_SYNIC: 4384 case KVM_CAP_HYPERV_SYNIC2: 4385 case KVM_CAP_HYPERV_VP_INDEX: 4386 case KVM_CAP_HYPERV_EVENTFD: 4387 case KVM_CAP_HYPERV_TLBFLUSH: 4388 case KVM_CAP_HYPERV_SEND_IPI: 4389 case KVM_CAP_HYPERV_CPUID: 4390 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4391 case KVM_CAP_SYS_HYPERV_CPUID: 4392 case KVM_CAP_PCI_SEGMENT: 4393 case KVM_CAP_DEBUGREGS: 4394 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4395 case KVM_CAP_XSAVE: 4396 case KVM_CAP_ASYNC_PF: 4397 case KVM_CAP_ASYNC_PF_INT: 4398 case KVM_CAP_GET_TSC_KHZ: 4399 case KVM_CAP_KVMCLOCK_CTRL: 4400 case KVM_CAP_READONLY_MEM: 4401 case KVM_CAP_HYPERV_TIME: 4402 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4403 case KVM_CAP_TSC_DEADLINE_TIMER: 4404 case KVM_CAP_DISABLE_QUIRKS: 4405 case KVM_CAP_SET_BOOT_CPU_ID: 4406 case KVM_CAP_SPLIT_IRQCHIP: 4407 case KVM_CAP_IMMEDIATE_EXIT: 4408 case KVM_CAP_PMU_EVENT_FILTER: 4409 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4410 case KVM_CAP_GET_MSR_FEATURES: 4411 case KVM_CAP_MSR_PLATFORM_INFO: 4412 case KVM_CAP_EXCEPTION_PAYLOAD: 4413 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4414 case KVM_CAP_SET_GUEST_DEBUG: 4415 case KVM_CAP_LAST_CPU: 4416 case KVM_CAP_X86_USER_SPACE_MSR: 4417 case KVM_CAP_X86_MSR_FILTER: 4418 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4419 #ifdef CONFIG_X86_SGX_KVM 4420 case KVM_CAP_SGX_ATTRIBUTE: 4421 #endif 4422 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4423 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4424 case KVM_CAP_SREGS2: 4425 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4426 case KVM_CAP_VCPU_ATTRIBUTES: 4427 case KVM_CAP_SYS_ATTRIBUTES: 4428 case KVM_CAP_VAPIC: 4429 case KVM_CAP_ENABLE_CAP: 4430 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4431 r = 1; 4432 break; 4433 case KVM_CAP_EXIT_HYPERCALL: 4434 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4435 break; 4436 case KVM_CAP_SET_GUEST_DEBUG2: 4437 return KVM_GUESTDBG_VALID_MASK; 4438 #ifdef CONFIG_KVM_XEN 4439 case KVM_CAP_XEN_HVM: 4440 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4441 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4442 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4443 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4444 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4445 if (sched_info_on()) 4446 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4447 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4448 break; 4449 #endif 4450 case KVM_CAP_SYNC_REGS: 4451 r = KVM_SYNC_X86_VALID_FIELDS; 4452 break; 4453 case KVM_CAP_ADJUST_CLOCK: 4454 r = KVM_CLOCK_VALID_FLAGS; 4455 break; 4456 case KVM_CAP_X86_DISABLE_EXITS: 4457 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4458 KVM_X86_DISABLE_EXITS_CSTATE; 4459 if(kvm_can_mwait_in_guest()) 4460 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4461 break; 4462 case KVM_CAP_X86_SMM: 4463 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4464 break; 4465 4466 /* SMBASE is usually relocated above 1M on modern chipsets, 4467 * and SMM handlers might indeed rely on 4G segment limits, 4468 * so do not report SMM to be available if real mode is 4469 * emulated via vm86 mode. Still, do not go to great lengths 4470 * to avoid userspace's usage of the feature, because it is a 4471 * fringe case that is not enabled except via specific settings 4472 * of the module parameters. 4473 */ 4474 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4475 break; 4476 case KVM_CAP_NR_VCPUS: 4477 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4478 break; 4479 case KVM_CAP_MAX_VCPUS: 4480 r = KVM_MAX_VCPUS; 4481 break; 4482 case KVM_CAP_MAX_VCPU_ID: 4483 r = KVM_MAX_VCPU_IDS; 4484 break; 4485 case KVM_CAP_PV_MMU: /* obsolete */ 4486 r = 0; 4487 break; 4488 case KVM_CAP_MCE: 4489 r = KVM_MAX_MCE_BANKS; 4490 break; 4491 case KVM_CAP_XCRS: 4492 r = boot_cpu_has(X86_FEATURE_XSAVE); 4493 break; 4494 case KVM_CAP_TSC_CONTROL: 4495 case KVM_CAP_VM_TSC_CONTROL: 4496 r = kvm_caps.has_tsc_control; 4497 break; 4498 case KVM_CAP_X2APIC_API: 4499 r = KVM_X2APIC_API_VALID_FLAGS; 4500 break; 4501 case KVM_CAP_NESTED_STATE: 4502 r = kvm_x86_ops.nested_ops->get_state ? 4503 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4504 break; 4505 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4506 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4507 break; 4508 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4509 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4510 break; 4511 case KVM_CAP_SMALLER_MAXPHYADDR: 4512 r = (int) allow_smaller_maxphyaddr; 4513 break; 4514 case KVM_CAP_STEAL_TIME: 4515 r = sched_info_on(); 4516 break; 4517 case KVM_CAP_X86_BUS_LOCK_EXIT: 4518 if (kvm_caps.has_bus_lock_exit) 4519 r = KVM_BUS_LOCK_DETECTION_OFF | 4520 KVM_BUS_LOCK_DETECTION_EXIT; 4521 else 4522 r = 0; 4523 break; 4524 case KVM_CAP_XSAVE2: { 4525 u64 guest_perm = xstate_get_guest_group_perm(); 4526 4527 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4528 if (r < sizeof(struct kvm_xsave)) 4529 r = sizeof(struct kvm_xsave); 4530 break; 4531 } 4532 case KVM_CAP_PMU_CAPABILITY: 4533 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4534 break; 4535 case KVM_CAP_DISABLE_QUIRKS2: 4536 r = KVM_X86_VALID_QUIRKS; 4537 break; 4538 case KVM_CAP_X86_NOTIFY_VMEXIT: 4539 r = kvm_caps.has_notify_vmexit; 4540 break; 4541 default: 4542 break; 4543 } 4544 return r; 4545 } 4546 4547 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4548 { 4549 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4550 4551 if ((u64)(unsigned long)uaddr != attr->addr) 4552 return ERR_PTR_USR(-EFAULT); 4553 return uaddr; 4554 } 4555 4556 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4557 { 4558 u64 __user *uaddr = kvm_get_attr_addr(attr); 4559 4560 if (attr->group) 4561 return -ENXIO; 4562 4563 if (IS_ERR(uaddr)) 4564 return PTR_ERR(uaddr); 4565 4566 switch (attr->attr) { 4567 case KVM_X86_XCOMP_GUEST_SUPP: 4568 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4569 return -EFAULT; 4570 return 0; 4571 default: 4572 return -ENXIO; 4573 break; 4574 } 4575 } 4576 4577 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4578 { 4579 if (attr->group) 4580 return -ENXIO; 4581 4582 switch (attr->attr) { 4583 case KVM_X86_XCOMP_GUEST_SUPP: 4584 return 0; 4585 default: 4586 return -ENXIO; 4587 } 4588 } 4589 4590 long kvm_arch_dev_ioctl(struct file *filp, 4591 unsigned int ioctl, unsigned long arg) 4592 { 4593 void __user *argp = (void __user *)arg; 4594 long r; 4595 4596 switch (ioctl) { 4597 case KVM_GET_MSR_INDEX_LIST: { 4598 struct kvm_msr_list __user *user_msr_list = argp; 4599 struct kvm_msr_list msr_list; 4600 unsigned n; 4601 4602 r = -EFAULT; 4603 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4604 goto out; 4605 n = msr_list.nmsrs; 4606 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4607 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4608 goto out; 4609 r = -E2BIG; 4610 if (n < msr_list.nmsrs) 4611 goto out; 4612 r = -EFAULT; 4613 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4614 num_msrs_to_save * sizeof(u32))) 4615 goto out; 4616 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4617 &emulated_msrs, 4618 num_emulated_msrs * sizeof(u32))) 4619 goto out; 4620 r = 0; 4621 break; 4622 } 4623 case KVM_GET_SUPPORTED_CPUID: 4624 case KVM_GET_EMULATED_CPUID: { 4625 struct kvm_cpuid2 __user *cpuid_arg = argp; 4626 struct kvm_cpuid2 cpuid; 4627 4628 r = -EFAULT; 4629 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4630 goto out; 4631 4632 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4633 ioctl); 4634 if (r) 4635 goto out; 4636 4637 r = -EFAULT; 4638 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4639 goto out; 4640 r = 0; 4641 break; 4642 } 4643 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4644 r = -EFAULT; 4645 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4646 sizeof(kvm_caps.supported_mce_cap))) 4647 goto out; 4648 r = 0; 4649 break; 4650 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4651 struct kvm_msr_list __user *user_msr_list = argp; 4652 struct kvm_msr_list msr_list; 4653 unsigned int n; 4654 4655 r = -EFAULT; 4656 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4657 goto out; 4658 n = msr_list.nmsrs; 4659 msr_list.nmsrs = num_msr_based_features; 4660 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4661 goto out; 4662 r = -E2BIG; 4663 if (n < msr_list.nmsrs) 4664 goto out; 4665 r = -EFAULT; 4666 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4667 num_msr_based_features * sizeof(u32))) 4668 goto out; 4669 r = 0; 4670 break; 4671 } 4672 case KVM_GET_MSRS: 4673 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4674 break; 4675 case KVM_GET_SUPPORTED_HV_CPUID: 4676 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4677 break; 4678 case KVM_GET_DEVICE_ATTR: { 4679 struct kvm_device_attr attr; 4680 r = -EFAULT; 4681 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4682 break; 4683 r = kvm_x86_dev_get_attr(&attr); 4684 break; 4685 } 4686 case KVM_HAS_DEVICE_ATTR: { 4687 struct kvm_device_attr attr; 4688 r = -EFAULT; 4689 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4690 break; 4691 r = kvm_x86_dev_has_attr(&attr); 4692 break; 4693 } 4694 default: 4695 r = -EINVAL; 4696 break; 4697 } 4698 out: 4699 return r; 4700 } 4701 4702 static void wbinvd_ipi(void *garbage) 4703 { 4704 wbinvd(); 4705 } 4706 4707 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4708 { 4709 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4710 } 4711 4712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4713 { 4714 /* Address WBINVD may be executed by guest */ 4715 if (need_emulate_wbinvd(vcpu)) { 4716 if (static_call(kvm_x86_has_wbinvd_exit)()) 4717 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4718 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4719 smp_call_function_single(vcpu->cpu, 4720 wbinvd_ipi, NULL, 1); 4721 } 4722 4723 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4724 4725 /* Save host pkru register if supported */ 4726 vcpu->arch.host_pkru = read_pkru(); 4727 4728 /* Apply any externally detected TSC adjustments (due to suspend) */ 4729 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4730 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4731 vcpu->arch.tsc_offset_adjustment = 0; 4732 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4733 } 4734 4735 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4736 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4737 rdtsc() - vcpu->arch.last_host_tsc; 4738 if (tsc_delta < 0) 4739 mark_tsc_unstable("KVM discovered backwards TSC"); 4740 4741 if (kvm_check_tsc_unstable()) { 4742 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4743 vcpu->arch.last_guest_tsc); 4744 kvm_vcpu_write_tsc_offset(vcpu, offset); 4745 vcpu->arch.tsc_catchup = 1; 4746 } 4747 4748 if (kvm_lapic_hv_timer_in_use(vcpu)) 4749 kvm_lapic_restart_hv_timer(vcpu); 4750 4751 /* 4752 * On a host with synchronized TSC, there is no need to update 4753 * kvmclock on vcpu->cpu migration 4754 */ 4755 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4756 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4757 if (vcpu->cpu != cpu) 4758 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4759 vcpu->cpu = cpu; 4760 } 4761 4762 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4763 } 4764 4765 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4766 { 4767 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4768 struct kvm_steal_time __user *st; 4769 struct kvm_memslots *slots; 4770 static const u8 preempted = KVM_VCPU_PREEMPTED; 4771 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4772 4773 /* 4774 * The vCPU can be marked preempted if and only if the VM-Exit was on 4775 * an instruction boundary and will not trigger guest emulation of any 4776 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4777 * when this is true, for example allowing the vCPU to be marked 4778 * preempted if and only if the VM-Exit was due to a host interrupt. 4779 */ 4780 if (!vcpu->arch.at_instruction_boundary) { 4781 vcpu->stat.preemption_other++; 4782 return; 4783 } 4784 4785 vcpu->stat.preemption_reported++; 4786 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4787 return; 4788 4789 if (vcpu->arch.st.preempted) 4790 return; 4791 4792 /* This happens on process exit */ 4793 if (unlikely(current->mm != vcpu->kvm->mm)) 4794 return; 4795 4796 slots = kvm_memslots(vcpu->kvm); 4797 4798 if (unlikely(slots->generation != ghc->generation || 4799 gpa != ghc->gpa || 4800 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4801 return; 4802 4803 st = (struct kvm_steal_time __user *)ghc->hva; 4804 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4805 4806 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4807 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4808 4809 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4810 } 4811 4812 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4813 { 4814 int idx; 4815 4816 if (vcpu->preempted) { 4817 if (!vcpu->arch.guest_state_protected) 4818 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4819 4820 /* 4821 * Take the srcu lock as memslots will be accessed to check the gfn 4822 * cache generation against the memslots generation. 4823 */ 4824 idx = srcu_read_lock(&vcpu->kvm->srcu); 4825 if (kvm_xen_msr_enabled(vcpu->kvm)) 4826 kvm_xen_runstate_set_preempted(vcpu); 4827 else 4828 kvm_steal_time_set_preempted(vcpu); 4829 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4830 } 4831 4832 static_call(kvm_x86_vcpu_put)(vcpu); 4833 vcpu->arch.last_host_tsc = rdtsc(); 4834 } 4835 4836 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4837 struct kvm_lapic_state *s) 4838 { 4839 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4840 4841 return kvm_apic_get_state(vcpu, s); 4842 } 4843 4844 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4845 struct kvm_lapic_state *s) 4846 { 4847 int r; 4848 4849 r = kvm_apic_set_state(vcpu, s); 4850 if (r) 4851 return r; 4852 update_cr8_intercept(vcpu); 4853 4854 return 0; 4855 } 4856 4857 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4858 { 4859 /* 4860 * We can accept userspace's request for interrupt injection 4861 * as long as we have a place to store the interrupt number. 4862 * The actual injection will happen when the CPU is able to 4863 * deliver the interrupt. 4864 */ 4865 if (kvm_cpu_has_extint(vcpu)) 4866 return false; 4867 4868 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4869 return (!lapic_in_kernel(vcpu) || 4870 kvm_apic_accept_pic_intr(vcpu)); 4871 } 4872 4873 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4874 { 4875 /* 4876 * Do not cause an interrupt window exit if an exception 4877 * is pending or an event needs reinjection; userspace 4878 * might want to inject the interrupt manually using KVM_SET_REGS 4879 * or KVM_SET_SREGS. For that to work, we must be at an 4880 * instruction boundary and with no events half-injected. 4881 */ 4882 return (kvm_arch_interrupt_allowed(vcpu) && 4883 kvm_cpu_accept_dm_intr(vcpu) && 4884 !kvm_event_needs_reinjection(vcpu) && 4885 !kvm_is_exception_pending(vcpu)); 4886 } 4887 4888 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4889 struct kvm_interrupt *irq) 4890 { 4891 if (irq->irq >= KVM_NR_INTERRUPTS) 4892 return -EINVAL; 4893 4894 if (!irqchip_in_kernel(vcpu->kvm)) { 4895 kvm_queue_interrupt(vcpu, irq->irq, false); 4896 kvm_make_request(KVM_REQ_EVENT, vcpu); 4897 return 0; 4898 } 4899 4900 /* 4901 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4902 * fail for in-kernel 8259. 4903 */ 4904 if (pic_in_kernel(vcpu->kvm)) 4905 return -ENXIO; 4906 4907 if (vcpu->arch.pending_external_vector != -1) 4908 return -EEXIST; 4909 4910 vcpu->arch.pending_external_vector = irq->irq; 4911 kvm_make_request(KVM_REQ_EVENT, vcpu); 4912 return 0; 4913 } 4914 4915 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4916 { 4917 kvm_inject_nmi(vcpu); 4918 4919 return 0; 4920 } 4921 4922 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4923 struct kvm_tpr_access_ctl *tac) 4924 { 4925 if (tac->flags) 4926 return -EINVAL; 4927 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4928 return 0; 4929 } 4930 4931 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4932 u64 mcg_cap) 4933 { 4934 int r; 4935 unsigned bank_num = mcg_cap & 0xff, bank; 4936 4937 r = -EINVAL; 4938 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4939 goto out; 4940 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4941 goto out; 4942 r = 0; 4943 vcpu->arch.mcg_cap = mcg_cap; 4944 /* Init IA32_MCG_CTL to all 1s */ 4945 if (mcg_cap & MCG_CTL_P) 4946 vcpu->arch.mcg_ctl = ~(u64)0; 4947 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4948 for (bank = 0; bank < bank_num; bank++) { 4949 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4950 if (mcg_cap & MCG_CMCI_P) 4951 vcpu->arch.mci_ctl2_banks[bank] = 0; 4952 } 4953 4954 kvm_apic_after_set_mcg_cap(vcpu); 4955 4956 static_call(kvm_x86_setup_mce)(vcpu); 4957 out: 4958 return r; 4959 } 4960 4961 /* 4962 * Validate this is an UCNA (uncorrectable no action) error by checking the 4963 * MCG_STATUS and MCi_STATUS registers: 4964 * - none of the bits for Machine Check Exceptions are set 4965 * - both the VAL (valid) and UC (uncorrectable) bits are set 4966 * MCI_STATUS_PCC - Processor Context Corrupted 4967 * MCI_STATUS_S - Signaled as a Machine Check Exception 4968 * MCI_STATUS_AR - Software recoverable Action Required 4969 */ 4970 static bool is_ucna(struct kvm_x86_mce *mce) 4971 { 4972 return !mce->mcg_status && 4973 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4974 (mce->status & MCI_STATUS_VAL) && 4975 (mce->status & MCI_STATUS_UC); 4976 } 4977 4978 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4979 { 4980 u64 mcg_cap = vcpu->arch.mcg_cap; 4981 4982 banks[1] = mce->status; 4983 banks[2] = mce->addr; 4984 banks[3] = mce->misc; 4985 vcpu->arch.mcg_status = mce->mcg_status; 4986 4987 if (!(mcg_cap & MCG_CMCI_P) || 4988 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4989 return 0; 4990 4991 if (lapic_in_kernel(vcpu)) 4992 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4993 4994 return 0; 4995 } 4996 4997 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4998 struct kvm_x86_mce *mce) 4999 { 5000 u64 mcg_cap = vcpu->arch.mcg_cap; 5001 unsigned bank_num = mcg_cap & 0xff; 5002 u64 *banks = vcpu->arch.mce_banks; 5003 5004 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5005 return -EINVAL; 5006 5007 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5008 5009 if (is_ucna(mce)) 5010 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5011 5012 /* 5013 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5014 * reporting is disabled 5015 */ 5016 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5017 vcpu->arch.mcg_ctl != ~(u64)0) 5018 return 0; 5019 /* 5020 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5021 * reporting is disabled for the bank 5022 */ 5023 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5024 return 0; 5025 if (mce->status & MCI_STATUS_UC) { 5026 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5027 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5028 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5029 return 0; 5030 } 5031 if (banks[1] & MCI_STATUS_VAL) 5032 mce->status |= MCI_STATUS_OVER; 5033 banks[2] = mce->addr; 5034 banks[3] = mce->misc; 5035 vcpu->arch.mcg_status = mce->mcg_status; 5036 banks[1] = mce->status; 5037 kvm_queue_exception(vcpu, MC_VECTOR); 5038 } else if (!(banks[1] & MCI_STATUS_VAL) 5039 || !(banks[1] & MCI_STATUS_UC)) { 5040 if (banks[1] & MCI_STATUS_VAL) 5041 mce->status |= MCI_STATUS_OVER; 5042 banks[2] = mce->addr; 5043 banks[3] = mce->misc; 5044 banks[1] = mce->status; 5045 } else 5046 banks[1] |= MCI_STATUS_OVER; 5047 return 0; 5048 } 5049 5050 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5051 struct kvm_vcpu_events *events) 5052 { 5053 struct kvm_queued_exception *ex; 5054 5055 process_nmi(vcpu); 5056 5057 #ifdef CONFIG_KVM_SMM 5058 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5059 process_smi(vcpu); 5060 #endif 5061 5062 /* 5063 * KVM's ABI only allows for one exception to be migrated. Luckily, 5064 * the only time there can be two queued exceptions is if there's a 5065 * non-exiting _injected_ exception, and a pending exiting exception. 5066 * In that case, ignore the VM-Exiting exception as it's an extension 5067 * of the injected exception. 5068 */ 5069 if (vcpu->arch.exception_vmexit.pending && 5070 !vcpu->arch.exception.pending && 5071 !vcpu->arch.exception.injected) 5072 ex = &vcpu->arch.exception_vmexit; 5073 else 5074 ex = &vcpu->arch.exception; 5075 5076 /* 5077 * In guest mode, payload delivery should be deferred if the exception 5078 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5079 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5080 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5081 * propagate the payload and so it cannot be safely deferred. Deliver 5082 * the payload if the capability hasn't been requested. 5083 */ 5084 if (!vcpu->kvm->arch.exception_payload_enabled && 5085 ex->pending && ex->has_payload) 5086 kvm_deliver_exception_payload(vcpu, ex); 5087 5088 memset(events, 0, sizeof(*events)); 5089 5090 /* 5091 * The API doesn't provide the instruction length for software 5092 * exceptions, so don't report them. As long as the guest RIP 5093 * isn't advanced, we should expect to encounter the exception 5094 * again. 5095 */ 5096 if (!kvm_exception_is_soft(ex->vector)) { 5097 events->exception.injected = ex->injected; 5098 events->exception.pending = ex->pending; 5099 /* 5100 * For ABI compatibility, deliberately conflate 5101 * pending and injected exceptions when 5102 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5103 */ 5104 if (!vcpu->kvm->arch.exception_payload_enabled) 5105 events->exception.injected |= ex->pending; 5106 } 5107 events->exception.nr = ex->vector; 5108 events->exception.has_error_code = ex->has_error_code; 5109 events->exception.error_code = ex->error_code; 5110 events->exception_has_payload = ex->has_payload; 5111 events->exception_payload = ex->payload; 5112 5113 events->interrupt.injected = 5114 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5115 events->interrupt.nr = vcpu->arch.interrupt.nr; 5116 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5117 5118 events->nmi.injected = vcpu->arch.nmi_injected; 5119 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5120 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5121 5122 /* events->sipi_vector is never valid when reporting to user space */ 5123 5124 #ifdef CONFIG_KVM_SMM 5125 events->smi.smm = is_smm(vcpu); 5126 events->smi.pending = vcpu->arch.smi_pending; 5127 events->smi.smm_inside_nmi = 5128 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5129 #endif 5130 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5131 5132 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5133 | KVM_VCPUEVENT_VALID_SHADOW 5134 | KVM_VCPUEVENT_VALID_SMM); 5135 if (vcpu->kvm->arch.exception_payload_enabled) 5136 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5137 if (vcpu->kvm->arch.triple_fault_event) { 5138 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5139 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5140 } 5141 } 5142 5143 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5144 struct kvm_vcpu_events *events) 5145 { 5146 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5147 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5148 | KVM_VCPUEVENT_VALID_SHADOW 5149 | KVM_VCPUEVENT_VALID_SMM 5150 | KVM_VCPUEVENT_VALID_PAYLOAD 5151 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5152 return -EINVAL; 5153 5154 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5155 if (!vcpu->kvm->arch.exception_payload_enabled) 5156 return -EINVAL; 5157 if (events->exception.pending) 5158 events->exception.injected = 0; 5159 else 5160 events->exception_has_payload = 0; 5161 } else { 5162 events->exception.pending = 0; 5163 events->exception_has_payload = 0; 5164 } 5165 5166 if ((events->exception.injected || events->exception.pending) && 5167 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5168 return -EINVAL; 5169 5170 /* INITs are latched while in SMM */ 5171 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5172 (events->smi.smm || events->smi.pending) && 5173 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5174 return -EINVAL; 5175 5176 process_nmi(vcpu); 5177 5178 /* 5179 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5180 * morph the exception to a VM-Exit if appropriate. Do this only for 5181 * pending exceptions, already-injected exceptions are not subject to 5182 * intercpetion. Note, userspace that conflates pending and injected 5183 * is hosed, and will incorrectly convert an injected exception into a 5184 * pending exception, which in turn may cause a spurious VM-Exit. 5185 */ 5186 vcpu->arch.exception_from_userspace = events->exception.pending; 5187 5188 vcpu->arch.exception_vmexit.pending = false; 5189 5190 vcpu->arch.exception.injected = events->exception.injected; 5191 vcpu->arch.exception.pending = events->exception.pending; 5192 vcpu->arch.exception.vector = events->exception.nr; 5193 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5194 vcpu->arch.exception.error_code = events->exception.error_code; 5195 vcpu->arch.exception.has_payload = events->exception_has_payload; 5196 vcpu->arch.exception.payload = events->exception_payload; 5197 5198 vcpu->arch.interrupt.injected = events->interrupt.injected; 5199 vcpu->arch.interrupt.nr = events->interrupt.nr; 5200 vcpu->arch.interrupt.soft = events->interrupt.soft; 5201 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5202 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5203 events->interrupt.shadow); 5204 5205 vcpu->arch.nmi_injected = events->nmi.injected; 5206 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5207 vcpu->arch.nmi_pending = events->nmi.pending; 5208 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5209 5210 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5211 lapic_in_kernel(vcpu)) 5212 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5213 5214 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5215 #ifdef CONFIG_KVM_SMM 5216 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5217 kvm_leave_nested(vcpu); 5218 kvm_smm_changed(vcpu, events->smi.smm); 5219 } 5220 5221 vcpu->arch.smi_pending = events->smi.pending; 5222 5223 if (events->smi.smm) { 5224 if (events->smi.smm_inside_nmi) 5225 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5226 else 5227 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5228 } 5229 5230 #else 5231 if (events->smi.smm || events->smi.pending || 5232 events->smi.smm_inside_nmi) 5233 return -EINVAL; 5234 #endif 5235 5236 if (lapic_in_kernel(vcpu)) { 5237 if (events->smi.latched_init) 5238 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5239 else 5240 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5241 } 5242 } 5243 5244 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5245 if (!vcpu->kvm->arch.triple_fault_event) 5246 return -EINVAL; 5247 if (events->triple_fault.pending) 5248 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5249 else 5250 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5251 } 5252 5253 kvm_make_request(KVM_REQ_EVENT, vcpu); 5254 5255 return 0; 5256 } 5257 5258 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5259 struct kvm_debugregs *dbgregs) 5260 { 5261 unsigned long val; 5262 5263 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5264 kvm_get_dr(vcpu, 6, &val); 5265 dbgregs->dr6 = val; 5266 dbgregs->dr7 = vcpu->arch.dr7; 5267 dbgregs->flags = 0; 5268 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5269 } 5270 5271 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5272 struct kvm_debugregs *dbgregs) 5273 { 5274 if (dbgregs->flags) 5275 return -EINVAL; 5276 5277 if (!kvm_dr6_valid(dbgregs->dr6)) 5278 return -EINVAL; 5279 if (!kvm_dr7_valid(dbgregs->dr7)) 5280 return -EINVAL; 5281 5282 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5283 kvm_update_dr0123(vcpu); 5284 vcpu->arch.dr6 = dbgregs->dr6; 5285 vcpu->arch.dr7 = dbgregs->dr7; 5286 kvm_update_dr7(vcpu); 5287 5288 return 0; 5289 } 5290 5291 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5292 struct kvm_xsave *guest_xsave) 5293 { 5294 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5295 return; 5296 5297 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5298 guest_xsave->region, 5299 sizeof(guest_xsave->region), 5300 vcpu->arch.pkru); 5301 } 5302 5303 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5304 u8 *state, unsigned int size) 5305 { 5306 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5307 return; 5308 5309 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5310 state, size, vcpu->arch.pkru); 5311 } 5312 5313 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5314 struct kvm_xsave *guest_xsave) 5315 { 5316 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5317 return 0; 5318 5319 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5320 guest_xsave->region, 5321 kvm_caps.supported_xcr0, 5322 &vcpu->arch.pkru); 5323 } 5324 5325 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5326 struct kvm_xcrs *guest_xcrs) 5327 { 5328 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5329 guest_xcrs->nr_xcrs = 0; 5330 return; 5331 } 5332 5333 guest_xcrs->nr_xcrs = 1; 5334 guest_xcrs->flags = 0; 5335 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5336 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5337 } 5338 5339 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5340 struct kvm_xcrs *guest_xcrs) 5341 { 5342 int i, r = 0; 5343 5344 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5345 return -EINVAL; 5346 5347 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5348 return -EINVAL; 5349 5350 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5351 /* Only support XCR0 currently */ 5352 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5353 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5354 guest_xcrs->xcrs[i].value); 5355 break; 5356 } 5357 if (r) 5358 r = -EINVAL; 5359 return r; 5360 } 5361 5362 /* 5363 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5364 * stopped by the hypervisor. This function will be called from the host only. 5365 * EINVAL is returned when the host attempts to set the flag for a guest that 5366 * does not support pv clocks. 5367 */ 5368 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5369 { 5370 if (!vcpu->arch.pv_time.active) 5371 return -EINVAL; 5372 vcpu->arch.pvclock_set_guest_stopped_request = true; 5373 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5374 return 0; 5375 } 5376 5377 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5378 struct kvm_device_attr *attr) 5379 { 5380 int r; 5381 5382 switch (attr->attr) { 5383 case KVM_VCPU_TSC_OFFSET: 5384 r = 0; 5385 break; 5386 default: 5387 r = -ENXIO; 5388 } 5389 5390 return r; 5391 } 5392 5393 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5394 struct kvm_device_attr *attr) 5395 { 5396 u64 __user *uaddr = kvm_get_attr_addr(attr); 5397 int r; 5398 5399 if (IS_ERR(uaddr)) 5400 return PTR_ERR(uaddr); 5401 5402 switch (attr->attr) { 5403 case KVM_VCPU_TSC_OFFSET: 5404 r = -EFAULT; 5405 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5406 break; 5407 r = 0; 5408 break; 5409 default: 5410 r = -ENXIO; 5411 } 5412 5413 return r; 5414 } 5415 5416 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5417 struct kvm_device_attr *attr) 5418 { 5419 u64 __user *uaddr = kvm_get_attr_addr(attr); 5420 struct kvm *kvm = vcpu->kvm; 5421 int r; 5422 5423 if (IS_ERR(uaddr)) 5424 return PTR_ERR(uaddr); 5425 5426 switch (attr->attr) { 5427 case KVM_VCPU_TSC_OFFSET: { 5428 u64 offset, tsc, ns; 5429 unsigned long flags; 5430 bool matched; 5431 5432 r = -EFAULT; 5433 if (get_user(offset, uaddr)) 5434 break; 5435 5436 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5437 5438 matched = (vcpu->arch.virtual_tsc_khz && 5439 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5440 kvm->arch.last_tsc_offset == offset); 5441 5442 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5443 ns = get_kvmclock_base_ns(); 5444 5445 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5446 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5447 5448 r = 0; 5449 break; 5450 } 5451 default: 5452 r = -ENXIO; 5453 } 5454 5455 return r; 5456 } 5457 5458 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5459 unsigned int ioctl, 5460 void __user *argp) 5461 { 5462 struct kvm_device_attr attr; 5463 int r; 5464 5465 if (copy_from_user(&attr, argp, sizeof(attr))) 5466 return -EFAULT; 5467 5468 if (attr.group != KVM_VCPU_TSC_CTRL) 5469 return -ENXIO; 5470 5471 switch (ioctl) { 5472 case KVM_HAS_DEVICE_ATTR: 5473 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5474 break; 5475 case KVM_GET_DEVICE_ATTR: 5476 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5477 break; 5478 case KVM_SET_DEVICE_ATTR: 5479 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5480 break; 5481 } 5482 5483 return r; 5484 } 5485 5486 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5487 struct kvm_enable_cap *cap) 5488 { 5489 int r; 5490 uint16_t vmcs_version; 5491 void __user *user_ptr; 5492 5493 if (cap->flags) 5494 return -EINVAL; 5495 5496 switch (cap->cap) { 5497 case KVM_CAP_HYPERV_SYNIC2: 5498 if (cap->args[0]) 5499 return -EINVAL; 5500 fallthrough; 5501 5502 case KVM_CAP_HYPERV_SYNIC: 5503 if (!irqchip_in_kernel(vcpu->kvm)) 5504 return -EINVAL; 5505 return kvm_hv_activate_synic(vcpu, cap->cap == 5506 KVM_CAP_HYPERV_SYNIC2); 5507 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5508 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5509 return -ENOTTY; 5510 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5511 if (!r) { 5512 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5513 if (copy_to_user(user_ptr, &vmcs_version, 5514 sizeof(vmcs_version))) 5515 r = -EFAULT; 5516 } 5517 return r; 5518 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5519 if (!kvm_x86_ops.enable_l2_tlb_flush) 5520 return -ENOTTY; 5521 5522 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5523 5524 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5525 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5526 5527 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5528 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5529 if (vcpu->arch.pv_cpuid.enforce) 5530 kvm_update_pv_runtime(vcpu); 5531 5532 return 0; 5533 default: 5534 return -EINVAL; 5535 } 5536 } 5537 5538 long kvm_arch_vcpu_ioctl(struct file *filp, 5539 unsigned int ioctl, unsigned long arg) 5540 { 5541 struct kvm_vcpu *vcpu = filp->private_data; 5542 void __user *argp = (void __user *)arg; 5543 int r; 5544 union { 5545 struct kvm_sregs2 *sregs2; 5546 struct kvm_lapic_state *lapic; 5547 struct kvm_xsave *xsave; 5548 struct kvm_xcrs *xcrs; 5549 void *buffer; 5550 } u; 5551 5552 vcpu_load(vcpu); 5553 5554 u.buffer = NULL; 5555 switch (ioctl) { 5556 case KVM_GET_LAPIC: { 5557 r = -EINVAL; 5558 if (!lapic_in_kernel(vcpu)) 5559 goto out; 5560 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5561 GFP_KERNEL_ACCOUNT); 5562 5563 r = -ENOMEM; 5564 if (!u.lapic) 5565 goto out; 5566 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5567 if (r) 5568 goto out; 5569 r = -EFAULT; 5570 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5571 goto out; 5572 r = 0; 5573 break; 5574 } 5575 case KVM_SET_LAPIC: { 5576 r = -EINVAL; 5577 if (!lapic_in_kernel(vcpu)) 5578 goto out; 5579 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5580 if (IS_ERR(u.lapic)) { 5581 r = PTR_ERR(u.lapic); 5582 goto out_nofree; 5583 } 5584 5585 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5586 break; 5587 } 5588 case KVM_INTERRUPT: { 5589 struct kvm_interrupt irq; 5590 5591 r = -EFAULT; 5592 if (copy_from_user(&irq, argp, sizeof(irq))) 5593 goto out; 5594 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5595 break; 5596 } 5597 case KVM_NMI: { 5598 r = kvm_vcpu_ioctl_nmi(vcpu); 5599 break; 5600 } 5601 case KVM_SMI: { 5602 r = kvm_inject_smi(vcpu); 5603 break; 5604 } 5605 case KVM_SET_CPUID: { 5606 struct kvm_cpuid __user *cpuid_arg = argp; 5607 struct kvm_cpuid cpuid; 5608 5609 r = -EFAULT; 5610 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5611 goto out; 5612 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5613 break; 5614 } 5615 case KVM_SET_CPUID2: { 5616 struct kvm_cpuid2 __user *cpuid_arg = argp; 5617 struct kvm_cpuid2 cpuid; 5618 5619 r = -EFAULT; 5620 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5621 goto out; 5622 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5623 cpuid_arg->entries); 5624 break; 5625 } 5626 case KVM_GET_CPUID2: { 5627 struct kvm_cpuid2 __user *cpuid_arg = argp; 5628 struct kvm_cpuid2 cpuid; 5629 5630 r = -EFAULT; 5631 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5632 goto out; 5633 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5634 cpuid_arg->entries); 5635 if (r) 5636 goto out; 5637 r = -EFAULT; 5638 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5639 goto out; 5640 r = 0; 5641 break; 5642 } 5643 case KVM_GET_MSRS: { 5644 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5645 r = msr_io(vcpu, argp, do_get_msr, 1); 5646 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5647 break; 5648 } 5649 case KVM_SET_MSRS: { 5650 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5651 r = msr_io(vcpu, argp, do_set_msr, 0); 5652 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5653 break; 5654 } 5655 case KVM_TPR_ACCESS_REPORTING: { 5656 struct kvm_tpr_access_ctl tac; 5657 5658 r = -EFAULT; 5659 if (copy_from_user(&tac, argp, sizeof(tac))) 5660 goto out; 5661 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5662 if (r) 5663 goto out; 5664 r = -EFAULT; 5665 if (copy_to_user(argp, &tac, sizeof(tac))) 5666 goto out; 5667 r = 0; 5668 break; 5669 }; 5670 case KVM_SET_VAPIC_ADDR: { 5671 struct kvm_vapic_addr va; 5672 int idx; 5673 5674 r = -EINVAL; 5675 if (!lapic_in_kernel(vcpu)) 5676 goto out; 5677 r = -EFAULT; 5678 if (copy_from_user(&va, argp, sizeof(va))) 5679 goto out; 5680 idx = srcu_read_lock(&vcpu->kvm->srcu); 5681 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5682 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5683 break; 5684 } 5685 case KVM_X86_SETUP_MCE: { 5686 u64 mcg_cap; 5687 5688 r = -EFAULT; 5689 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5690 goto out; 5691 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5692 break; 5693 } 5694 case KVM_X86_SET_MCE: { 5695 struct kvm_x86_mce mce; 5696 5697 r = -EFAULT; 5698 if (copy_from_user(&mce, argp, sizeof(mce))) 5699 goto out; 5700 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5701 break; 5702 } 5703 case KVM_GET_VCPU_EVENTS: { 5704 struct kvm_vcpu_events events; 5705 5706 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5707 5708 r = -EFAULT; 5709 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5710 break; 5711 r = 0; 5712 break; 5713 } 5714 case KVM_SET_VCPU_EVENTS: { 5715 struct kvm_vcpu_events events; 5716 5717 r = -EFAULT; 5718 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5719 break; 5720 5721 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5722 break; 5723 } 5724 case KVM_GET_DEBUGREGS: { 5725 struct kvm_debugregs dbgregs; 5726 5727 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5728 5729 r = -EFAULT; 5730 if (copy_to_user(argp, &dbgregs, 5731 sizeof(struct kvm_debugregs))) 5732 break; 5733 r = 0; 5734 break; 5735 } 5736 case KVM_SET_DEBUGREGS: { 5737 struct kvm_debugregs dbgregs; 5738 5739 r = -EFAULT; 5740 if (copy_from_user(&dbgregs, argp, 5741 sizeof(struct kvm_debugregs))) 5742 break; 5743 5744 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5745 break; 5746 } 5747 case KVM_GET_XSAVE: { 5748 r = -EINVAL; 5749 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5750 break; 5751 5752 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5753 r = -ENOMEM; 5754 if (!u.xsave) 5755 break; 5756 5757 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5758 5759 r = -EFAULT; 5760 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5761 break; 5762 r = 0; 5763 break; 5764 } 5765 case KVM_SET_XSAVE: { 5766 int size = vcpu->arch.guest_fpu.uabi_size; 5767 5768 u.xsave = memdup_user(argp, size); 5769 if (IS_ERR(u.xsave)) { 5770 r = PTR_ERR(u.xsave); 5771 goto out_nofree; 5772 } 5773 5774 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5775 break; 5776 } 5777 5778 case KVM_GET_XSAVE2: { 5779 int size = vcpu->arch.guest_fpu.uabi_size; 5780 5781 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5782 r = -ENOMEM; 5783 if (!u.xsave) 5784 break; 5785 5786 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5787 5788 r = -EFAULT; 5789 if (copy_to_user(argp, u.xsave, size)) 5790 break; 5791 5792 r = 0; 5793 break; 5794 } 5795 5796 case KVM_GET_XCRS: { 5797 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5798 r = -ENOMEM; 5799 if (!u.xcrs) 5800 break; 5801 5802 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5803 5804 r = -EFAULT; 5805 if (copy_to_user(argp, u.xcrs, 5806 sizeof(struct kvm_xcrs))) 5807 break; 5808 r = 0; 5809 break; 5810 } 5811 case KVM_SET_XCRS: { 5812 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5813 if (IS_ERR(u.xcrs)) { 5814 r = PTR_ERR(u.xcrs); 5815 goto out_nofree; 5816 } 5817 5818 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5819 break; 5820 } 5821 case KVM_SET_TSC_KHZ: { 5822 u32 user_tsc_khz; 5823 5824 r = -EINVAL; 5825 user_tsc_khz = (u32)arg; 5826 5827 if (kvm_caps.has_tsc_control && 5828 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5829 goto out; 5830 5831 if (user_tsc_khz == 0) 5832 user_tsc_khz = tsc_khz; 5833 5834 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5835 r = 0; 5836 5837 goto out; 5838 } 5839 case KVM_GET_TSC_KHZ: { 5840 r = vcpu->arch.virtual_tsc_khz; 5841 goto out; 5842 } 5843 case KVM_KVMCLOCK_CTRL: { 5844 r = kvm_set_guest_paused(vcpu); 5845 goto out; 5846 } 5847 case KVM_ENABLE_CAP: { 5848 struct kvm_enable_cap cap; 5849 5850 r = -EFAULT; 5851 if (copy_from_user(&cap, argp, sizeof(cap))) 5852 goto out; 5853 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5854 break; 5855 } 5856 case KVM_GET_NESTED_STATE: { 5857 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5858 u32 user_data_size; 5859 5860 r = -EINVAL; 5861 if (!kvm_x86_ops.nested_ops->get_state) 5862 break; 5863 5864 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5865 r = -EFAULT; 5866 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5867 break; 5868 5869 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5870 user_data_size); 5871 if (r < 0) 5872 break; 5873 5874 if (r > user_data_size) { 5875 if (put_user(r, &user_kvm_nested_state->size)) 5876 r = -EFAULT; 5877 else 5878 r = -E2BIG; 5879 break; 5880 } 5881 5882 r = 0; 5883 break; 5884 } 5885 case KVM_SET_NESTED_STATE: { 5886 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5887 struct kvm_nested_state kvm_state; 5888 int idx; 5889 5890 r = -EINVAL; 5891 if (!kvm_x86_ops.nested_ops->set_state) 5892 break; 5893 5894 r = -EFAULT; 5895 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5896 break; 5897 5898 r = -EINVAL; 5899 if (kvm_state.size < sizeof(kvm_state)) 5900 break; 5901 5902 if (kvm_state.flags & 5903 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5904 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5905 | KVM_STATE_NESTED_GIF_SET)) 5906 break; 5907 5908 /* nested_run_pending implies guest_mode. */ 5909 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5910 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5911 break; 5912 5913 idx = srcu_read_lock(&vcpu->kvm->srcu); 5914 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5915 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5916 break; 5917 } 5918 case KVM_GET_SUPPORTED_HV_CPUID: 5919 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5920 break; 5921 #ifdef CONFIG_KVM_XEN 5922 case KVM_XEN_VCPU_GET_ATTR: { 5923 struct kvm_xen_vcpu_attr xva; 5924 5925 r = -EFAULT; 5926 if (copy_from_user(&xva, argp, sizeof(xva))) 5927 goto out; 5928 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5929 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5930 r = -EFAULT; 5931 break; 5932 } 5933 case KVM_XEN_VCPU_SET_ATTR: { 5934 struct kvm_xen_vcpu_attr xva; 5935 5936 r = -EFAULT; 5937 if (copy_from_user(&xva, argp, sizeof(xva))) 5938 goto out; 5939 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5940 break; 5941 } 5942 #endif 5943 case KVM_GET_SREGS2: { 5944 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5945 r = -ENOMEM; 5946 if (!u.sregs2) 5947 goto out; 5948 __get_sregs2(vcpu, u.sregs2); 5949 r = -EFAULT; 5950 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5951 goto out; 5952 r = 0; 5953 break; 5954 } 5955 case KVM_SET_SREGS2: { 5956 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5957 if (IS_ERR(u.sregs2)) { 5958 r = PTR_ERR(u.sregs2); 5959 u.sregs2 = NULL; 5960 goto out; 5961 } 5962 r = __set_sregs2(vcpu, u.sregs2); 5963 break; 5964 } 5965 case KVM_HAS_DEVICE_ATTR: 5966 case KVM_GET_DEVICE_ATTR: 5967 case KVM_SET_DEVICE_ATTR: 5968 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5969 break; 5970 default: 5971 r = -EINVAL; 5972 } 5973 out: 5974 kfree(u.buffer); 5975 out_nofree: 5976 vcpu_put(vcpu); 5977 return r; 5978 } 5979 5980 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5981 { 5982 return VM_FAULT_SIGBUS; 5983 } 5984 5985 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5986 { 5987 int ret; 5988 5989 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5990 return -EINVAL; 5991 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5992 return ret; 5993 } 5994 5995 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5996 u64 ident_addr) 5997 { 5998 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5999 } 6000 6001 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6002 unsigned long kvm_nr_mmu_pages) 6003 { 6004 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6005 return -EINVAL; 6006 6007 mutex_lock(&kvm->slots_lock); 6008 6009 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6010 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6011 6012 mutex_unlock(&kvm->slots_lock); 6013 return 0; 6014 } 6015 6016 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6017 { 6018 return kvm->arch.n_max_mmu_pages; 6019 } 6020 6021 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6022 { 6023 struct kvm_pic *pic = kvm->arch.vpic; 6024 int r; 6025 6026 r = 0; 6027 switch (chip->chip_id) { 6028 case KVM_IRQCHIP_PIC_MASTER: 6029 memcpy(&chip->chip.pic, &pic->pics[0], 6030 sizeof(struct kvm_pic_state)); 6031 break; 6032 case KVM_IRQCHIP_PIC_SLAVE: 6033 memcpy(&chip->chip.pic, &pic->pics[1], 6034 sizeof(struct kvm_pic_state)); 6035 break; 6036 case KVM_IRQCHIP_IOAPIC: 6037 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6038 break; 6039 default: 6040 r = -EINVAL; 6041 break; 6042 } 6043 return r; 6044 } 6045 6046 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6047 { 6048 struct kvm_pic *pic = kvm->arch.vpic; 6049 int r; 6050 6051 r = 0; 6052 switch (chip->chip_id) { 6053 case KVM_IRQCHIP_PIC_MASTER: 6054 spin_lock(&pic->lock); 6055 memcpy(&pic->pics[0], &chip->chip.pic, 6056 sizeof(struct kvm_pic_state)); 6057 spin_unlock(&pic->lock); 6058 break; 6059 case KVM_IRQCHIP_PIC_SLAVE: 6060 spin_lock(&pic->lock); 6061 memcpy(&pic->pics[1], &chip->chip.pic, 6062 sizeof(struct kvm_pic_state)); 6063 spin_unlock(&pic->lock); 6064 break; 6065 case KVM_IRQCHIP_IOAPIC: 6066 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6067 break; 6068 default: 6069 r = -EINVAL; 6070 break; 6071 } 6072 kvm_pic_update_irq(pic); 6073 return r; 6074 } 6075 6076 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6077 { 6078 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6079 6080 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6081 6082 mutex_lock(&kps->lock); 6083 memcpy(ps, &kps->channels, sizeof(*ps)); 6084 mutex_unlock(&kps->lock); 6085 return 0; 6086 } 6087 6088 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6089 { 6090 int i; 6091 struct kvm_pit *pit = kvm->arch.vpit; 6092 6093 mutex_lock(&pit->pit_state.lock); 6094 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6095 for (i = 0; i < 3; i++) 6096 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6097 mutex_unlock(&pit->pit_state.lock); 6098 return 0; 6099 } 6100 6101 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6102 { 6103 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6104 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6105 sizeof(ps->channels)); 6106 ps->flags = kvm->arch.vpit->pit_state.flags; 6107 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6108 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6109 return 0; 6110 } 6111 6112 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6113 { 6114 int start = 0; 6115 int i; 6116 u32 prev_legacy, cur_legacy; 6117 struct kvm_pit *pit = kvm->arch.vpit; 6118 6119 mutex_lock(&pit->pit_state.lock); 6120 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6121 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6122 if (!prev_legacy && cur_legacy) 6123 start = 1; 6124 memcpy(&pit->pit_state.channels, &ps->channels, 6125 sizeof(pit->pit_state.channels)); 6126 pit->pit_state.flags = ps->flags; 6127 for (i = 0; i < 3; i++) 6128 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6129 start && i == 0); 6130 mutex_unlock(&pit->pit_state.lock); 6131 return 0; 6132 } 6133 6134 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6135 struct kvm_reinject_control *control) 6136 { 6137 struct kvm_pit *pit = kvm->arch.vpit; 6138 6139 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6140 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6141 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6142 */ 6143 mutex_lock(&pit->pit_state.lock); 6144 kvm_pit_set_reinject(pit, control->pit_reinject); 6145 mutex_unlock(&pit->pit_state.lock); 6146 6147 return 0; 6148 } 6149 6150 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6151 { 6152 6153 /* 6154 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6155 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6156 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6157 * VM-Exit. 6158 */ 6159 struct kvm_vcpu *vcpu; 6160 unsigned long i; 6161 6162 kvm_for_each_vcpu(i, vcpu, kvm) 6163 kvm_vcpu_kick(vcpu); 6164 } 6165 6166 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6167 bool line_status) 6168 { 6169 if (!irqchip_in_kernel(kvm)) 6170 return -ENXIO; 6171 6172 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6173 irq_event->irq, irq_event->level, 6174 line_status); 6175 return 0; 6176 } 6177 6178 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6179 struct kvm_enable_cap *cap) 6180 { 6181 int r; 6182 6183 if (cap->flags) 6184 return -EINVAL; 6185 6186 switch (cap->cap) { 6187 case KVM_CAP_DISABLE_QUIRKS2: 6188 r = -EINVAL; 6189 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6190 break; 6191 fallthrough; 6192 case KVM_CAP_DISABLE_QUIRKS: 6193 kvm->arch.disabled_quirks = cap->args[0]; 6194 r = 0; 6195 break; 6196 case KVM_CAP_SPLIT_IRQCHIP: { 6197 mutex_lock(&kvm->lock); 6198 r = -EINVAL; 6199 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6200 goto split_irqchip_unlock; 6201 r = -EEXIST; 6202 if (irqchip_in_kernel(kvm)) 6203 goto split_irqchip_unlock; 6204 if (kvm->created_vcpus) 6205 goto split_irqchip_unlock; 6206 r = kvm_setup_empty_irq_routing(kvm); 6207 if (r) 6208 goto split_irqchip_unlock; 6209 /* Pairs with irqchip_in_kernel. */ 6210 smp_wmb(); 6211 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6212 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6213 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6214 r = 0; 6215 split_irqchip_unlock: 6216 mutex_unlock(&kvm->lock); 6217 break; 6218 } 6219 case KVM_CAP_X2APIC_API: 6220 r = -EINVAL; 6221 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6222 break; 6223 6224 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6225 kvm->arch.x2apic_format = true; 6226 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6227 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6228 6229 r = 0; 6230 break; 6231 case KVM_CAP_X86_DISABLE_EXITS: 6232 r = -EINVAL; 6233 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6234 break; 6235 6236 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6237 kvm_can_mwait_in_guest()) 6238 kvm->arch.mwait_in_guest = true; 6239 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6240 kvm->arch.hlt_in_guest = true; 6241 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6242 kvm->arch.pause_in_guest = true; 6243 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6244 kvm->arch.cstate_in_guest = true; 6245 r = 0; 6246 break; 6247 case KVM_CAP_MSR_PLATFORM_INFO: 6248 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6249 r = 0; 6250 break; 6251 case KVM_CAP_EXCEPTION_PAYLOAD: 6252 kvm->arch.exception_payload_enabled = cap->args[0]; 6253 r = 0; 6254 break; 6255 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6256 kvm->arch.triple_fault_event = cap->args[0]; 6257 r = 0; 6258 break; 6259 case KVM_CAP_X86_USER_SPACE_MSR: 6260 r = -EINVAL; 6261 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6262 break; 6263 kvm->arch.user_space_msr_mask = cap->args[0]; 6264 r = 0; 6265 break; 6266 case KVM_CAP_X86_BUS_LOCK_EXIT: 6267 r = -EINVAL; 6268 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6269 break; 6270 6271 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6272 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6273 break; 6274 6275 if (kvm_caps.has_bus_lock_exit && 6276 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6277 kvm->arch.bus_lock_detection_enabled = true; 6278 r = 0; 6279 break; 6280 #ifdef CONFIG_X86_SGX_KVM 6281 case KVM_CAP_SGX_ATTRIBUTE: { 6282 unsigned long allowed_attributes = 0; 6283 6284 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6285 if (r) 6286 break; 6287 6288 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6289 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6290 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6291 kvm->arch.sgx_provisioning_allowed = true; 6292 else 6293 r = -EINVAL; 6294 break; 6295 } 6296 #endif 6297 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6298 r = -EINVAL; 6299 if (!kvm_x86_ops.vm_copy_enc_context_from) 6300 break; 6301 6302 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6303 break; 6304 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6305 r = -EINVAL; 6306 if (!kvm_x86_ops.vm_move_enc_context_from) 6307 break; 6308 6309 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6310 break; 6311 case KVM_CAP_EXIT_HYPERCALL: 6312 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6313 r = -EINVAL; 6314 break; 6315 } 6316 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6317 r = 0; 6318 break; 6319 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6320 r = -EINVAL; 6321 if (cap->args[0] & ~1) 6322 break; 6323 kvm->arch.exit_on_emulation_error = cap->args[0]; 6324 r = 0; 6325 break; 6326 case KVM_CAP_PMU_CAPABILITY: 6327 r = -EINVAL; 6328 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6329 break; 6330 6331 mutex_lock(&kvm->lock); 6332 if (!kvm->created_vcpus) { 6333 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6334 r = 0; 6335 } 6336 mutex_unlock(&kvm->lock); 6337 break; 6338 case KVM_CAP_MAX_VCPU_ID: 6339 r = -EINVAL; 6340 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6341 break; 6342 6343 mutex_lock(&kvm->lock); 6344 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6345 r = 0; 6346 } else if (!kvm->arch.max_vcpu_ids) { 6347 kvm->arch.max_vcpu_ids = cap->args[0]; 6348 r = 0; 6349 } 6350 mutex_unlock(&kvm->lock); 6351 break; 6352 case KVM_CAP_X86_NOTIFY_VMEXIT: 6353 r = -EINVAL; 6354 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6355 break; 6356 if (!kvm_caps.has_notify_vmexit) 6357 break; 6358 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6359 break; 6360 mutex_lock(&kvm->lock); 6361 if (!kvm->created_vcpus) { 6362 kvm->arch.notify_window = cap->args[0] >> 32; 6363 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6364 r = 0; 6365 } 6366 mutex_unlock(&kvm->lock); 6367 break; 6368 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6369 r = -EINVAL; 6370 6371 /* 6372 * Since the risk of disabling NX hugepages is a guest crashing 6373 * the system, ensure the userspace process has permission to 6374 * reboot the system. 6375 * 6376 * Note that unlike the reboot() syscall, the process must have 6377 * this capability in the root namespace because exposing 6378 * /dev/kvm into a container does not limit the scope of the 6379 * iTLB multihit bug to that container. In other words, 6380 * this must use capable(), not ns_capable(). 6381 */ 6382 if (!capable(CAP_SYS_BOOT)) { 6383 r = -EPERM; 6384 break; 6385 } 6386 6387 if (cap->args[0]) 6388 break; 6389 6390 mutex_lock(&kvm->lock); 6391 if (!kvm->created_vcpus) { 6392 kvm->arch.disable_nx_huge_pages = true; 6393 r = 0; 6394 } 6395 mutex_unlock(&kvm->lock); 6396 break; 6397 default: 6398 r = -EINVAL; 6399 break; 6400 } 6401 return r; 6402 } 6403 6404 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6405 { 6406 struct kvm_x86_msr_filter *msr_filter; 6407 6408 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6409 if (!msr_filter) 6410 return NULL; 6411 6412 msr_filter->default_allow = default_allow; 6413 return msr_filter; 6414 } 6415 6416 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6417 { 6418 u32 i; 6419 6420 if (!msr_filter) 6421 return; 6422 6423 for (i = 0; i < msr_filter->count; i++) 6424 kfree(msr_filter->ranges[i].bitmap); 6425 6426 kfree(msr_filter); 6427 } 6428 6429 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6430 struct kvm_msr_filter_range *user_range) 6431 { 6432 unsigned long *bitmap = NULL; 6433 size_t bitmap_size; 6434 6435 if (!user_range->nmsrs) 6436 return 0; 6437 6438 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6439 return -EINVAL; 6440 6441 if (!user_range->flags) 6442 return -EINVAL; 6443 6444 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6445 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6446 return -EINVAL; 6447 6448 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6449 if (IS_ERR(bitmap)) 6450 return PTR_ERR(bitmap); 6451 6452 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6453 .flags = user_range->flags, 6454 .base = user_range->base, 6455 .nmsrs = user_range->nmsrs, 6456 .bitmap = bitmap, 6457 }; 6458 6459 msr_filter->count++; 6460 return 0; 6461 } 6462 6463 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6464 struct kvm_msr_filter *filter) 6465 { 6466 struct kvm_x86_msr_filter *new_filter, *old_filter; 6467 bool default_allow; 6468 bool empty = true; 6469 int r = 0; 6470 u32 i; 6471 6472 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6473 return -EINVAL; 6474 6475 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6476 empty &= !filter->ranges[i].nmsrs; 6477 6478 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6479 if (empty && !default_allow) 6480 return -EINVAL; 6481 6482 new_filter = kvm_alloc_msr_filter(default_allow); 6483 if (!new_filter) 6484 return -ENOMEM; 6485 6486 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6487 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6488 if (r) { 6489 kvm_free_msr_filter(new_filter); 6490 return r; 6491 } 6492 } 6493 6494 mutex_lock(&kvm->lock); 6495 6496 /* The per-VM filter is protected by kvm->lock... */ 6497 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6498 6499 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6500 synchronize_srcu(&kvm->srcu); 6501 6502 kvm_free_msr_filter(old_filter); 6503 6504 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6505 mutex_unlock(&kvm->lock); 6506 6507 return 0; 6508 } 6509 6510 #ifdef CONFIG_KVM_COMPAT 6511 /* for KVM_X86_SET_MSR_FILTER */ 6512 struct kvm_msr_filter_range_compat { 6513 __u32 flags; 6514 __u32 nmsrs; 6515 __u32 base; 6516 __u32 bitmap; 6517 }; 6518 6519 struct kvm_msr_filter_compat { 6520 __u32 flags; 6521 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6522 }; 6523 6524 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6525 6526 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6527 unsigned long arg) 6528 { 6529 void __user *argp = (void __user *)arg; 6530 struct kvm *kvm = filp->private_data; 6531 long r = -ENOTTY; 6532 6533 switch (ioctl) { 6534 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6535 struct kvm_msr_filter __user *user_msr_filter = argp; 6536 struct kvm_msr_filter_compat filter_compat; 6537 struct kvm_msr_filter filter; 6538 int i; 6539 6540 if (copy_from_user(&filter_compat, user_msr_filter, 6541 sizeof(filter_compat))) 6542 return -EFAULT; 6543 6544 filter.flags = filter_compat.flags; 6545 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6546 struct kvm_msr_filter_range_compat *cr; 6547 6548 cr = &filter_compat.ranges[i]; 6549 filter.ranges[i] = (struct kvm_msr_filter_range) { 6550 .flags = cr->flags, 6551 .nmsrs = cr->nmsrs, 6552 .base = cr->base, 6553 .bitmap = (__u8 *)(ulong)cr->bitmap, 6554 }; 6555 } 6556 6557 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6558 break; 6559 } 6560 } 6561 6562 return r; 6563 } 6564 #endif 6565 6566 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6567 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6568 { 6569 struct kvm_vcpu *vcpu; 6570 unsigned long i; 6571 int ret = 0; 6572 6573 mutex_lock(&kvm->lock); 6574 kvm_for_each_vcpu(i, vcpu, kvm) { 6575 if (!vcpu->arch.pv_time.active) 6576 continue; 6577 6578 ret = kvm_set_guest_paused(vcpu); 6579 if (ret) { 6580 kvm_err("Failed to pause guest VCPU%d: %d\n", 6581 vcpu->vcpu_id, ret); 6582 break; 6583 } 6584 } 6585 mutex_unlock(&kvm->lock); 6586 6587 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6588 } 6589 6590 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6591 { 6592 switch (state) { 6593 case PM_HIBERNATION_PREPARE: 6594 case PM_SUSPEND_PREPARE: 6595 return kvm_arch_suspend_notifier(kvm); 6596 } 6597 6598 return NOTIFY_DONE; 6599 } 6600 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6601 6602 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6603 { 6604 struct kvm_clock_data data = { 0 }; 6605 6606 get_kvmclock(kvm, &data); 6607 if (copy_to_user(argp, &data, sizeof(data))) 6608 return -EFAULT; 6609 6610 return 0; 6611 } 6612 6613 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6614 { 6615 struct kvm_arch *ka = &kvm->arch; 6616 struct kvm_clock_data data; 6617 u64 now_raw_ns; 6618 6619 if (copy_from_user(&data, argp, sizeof(data))) 6620 return -EFAULT; 6621 6622 /* 6623 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6624 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6625 */ 6626 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6627 return -EINVAL; 6628 6629 kvm_hv_request_tsc_page_update(kvm); 6630 kvm_start_pvclock_update(kvm); 6631 pvclock_update_vm_gtod_copy(kvm); 6632 6633 /* 6634 * This pairs with kvm_guest_time_update(): when masterclock is 6635 * in use, we use master_kernel_ns + kvmclock_offset to set 6636 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6637 * is slightly ahead) here we risk going negative on unsigned 6638 * 'system_time' when 'data.clock' is very small. 6639 */ 6640 if (data.flags & KVM_CLOCK_REALTIME) { 6641 u64 now_real_ns = ktime_get_real_ns(); 6642 6643 /* 6644 * Avoid stepping the kvmclock backwards. 6645 */ 6646 if (now_real_ns > data.realtime) 6647 data.clock += now_real_ns - data.realtime; 6648 } 6649 6650 if (ka->use_master_clock) 6651 now_raw_ns = ka->master_kernel_ns; 6652 else 6653 now_raw_ns = get_kvmclock_base_ns(); 6654 ka->kvmclock_offset = data.clock - now_raw_ns; 6655 kvm_end_pvclock_update(kvm); 6656 return 0; 6657 } 6658 6659 long kvm_arch_vm_ioctl(struct file *filp, 6660 unsigned int ioctl, unsigned long arg) 6661 { 6662 struct kvm *kvm = filp->private_data; 6663 void __user *argp = (void __user *)arg; 6664 int r = -ENOTTY; 6665 /* 6666 * This union makes it completely explicit to gcc-3.x 6667 * that these two variables' stack usage should be 6668 * combined, not added together. 6669 */ 6670 union { 6671 struct kvm_pit_state ps; 6672 struct kvm_pit_state2 ps2; 6673 struct kvm_pit_config pit_config; 6674 } u; 6675 6676 switch (ioctl) { 6677 case KVM_SET_TSS_ADDR: 6678 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6679 break; 6680 case KVM_SET_IDENTITY_MAP_ADDR: { 6681 u64 ident_addr; 6682 6683 mutex_lock(&kvm->lock); 6684 r = -EINVAL; 6685 if (kvm->created_vcpus) 6686 goto set_identity_unlock; 6687 r = -EFAULT; 6688 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6689 goto set_identity_unlock; 6690 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6691 set_identity_unlock: 6692 mutex_unlock(&kvm->lock); 6693 break; 6694 } 6695 case KVM_SET_NR_MMU_PAGES: 6696 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6697 break; 6698 case KVM_GET_NR_MMU_PAGES: 6699 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6700 break; 6701 case KVM_CREATE_IRQCHIP: { 6702 mutex_lock(&kvm->lock); 6703 6704 r = -EEXIST; 6705 if (irqchip_in_kernel(kvm)) 6706 goto create_irqchip_unlock; 6707 6708 r = -EINVAL; 6709 if (kvm->created_vcpus) 6710 goto create_irqchip_unlock; 6711 6712 r = kvm_pic_init(kvm); 6713 if (r) 6714 goto create_irqchip_unlock; 6715 6716 r = kvm_ioapic_init(kvm); 6717 if (r) { 6718 kvm_pic_destroy(kvm); 6719 goto create_irqchip_unlock; 6720 } 6721 6722 r = kvm_setup_default_irq_routing(kvm); 6723 if (r) { 6724 kvm_ioapic_destroy(kvm); 6725 kvm_pic_destroy(kvm); 6726 goto create_irqchip_unlock; 6727 } 6728 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6729 smp_wmb(); 6730 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6731 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6732 create_irqchip_unlock: 6733 mutex_unlock(&kvm->lock); 6734 break; 6735 } 6736 case KVM_CREATE_PIT: 6737 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6738 goto create_pit; 6739 case KVM_CREATE_PIT2: 6740 r = -EFAULT; 6741 if (copy_from_user(&u.pit_config, argp, 6742 sizeof(struct kvm_pit_config))) 6743 goto out; 6744 create_pit: 6745 mutex_lock(&kvm->lock); 6746 r = -EEXIST; 6747 if (kvm->arch.vpit) 6748 goto create_pit_unlock; 6749 r = -ENOMEM; 6750 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6751 if (kvm->arch.vpit) 6752 r = 0; 6753 create_pit_unlock: 6754 mutex_unlock(&kvm->lock); 6755 break; 6756 case KVM_GET_IRQCHIP: { 6757 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6758 struct kvm_irqchip *chip; 6759 6760 chip = memdup_user(argp, sizeof(*chip)); 6761 if (IS_ERR(chip)) { 6762 r = PTR_ERR(chip); 6763 goto out; 6764 } 6765 6766 r = -ENXIO; 6767 if (!irqchip_kernel(kvm)) 6768 goto get_irqchip_out; 6769 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6770 if (r) 6771 goto get_irqchip_out; 6772 r = -EFAULT; 6773 if (copy_to_user(argp, chip, sizeof(*chip))) 6774 goto get_irqchip_out; 6775 r = 0; 6776 get_irqchip_out: 6777 kfree(chip); 6778 break; 6779 } 6780 case KVM_SET_IRQCHIP: { 6781 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6782 struct kvm_irqchip *chip; 6783 6784 chip = memdup_user(argp, sizeof(*chip)); 6785 if (IS_ERR(chip)) { 6786 r = PTR_ERR(chip); 6787 goto out; 6788 } 6789 6790 r = -ENXIO; 6791 if (!irqchip_kernel(kvm)) 6792 goto set_irqchip_out; 6793 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6794 set_irqchip_out: 6795 kfree(chip); 6796 break; 6797 } 6798 case KVM_GET_PIT: { 6799 r = -EFAULT; 6800 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6801 goto out; 6802 r = -ENXIO; 6803 if (!kvm->arch.vpit) 6804 goto out; 6805 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6806 if (r) 6807 goto out; 6808 r = -EFAULT; 6809 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6810 goto out; 6811 r = 0; 6812 break; 6813 } 6814 case KVM_SET_PIT: { 6815 r = -EFAULT; 6816 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6817 goto out; 6818 mutex_lock(&kvm->lock); 6819 r = -ENXIO; 6820 if (!kvm->arch.vpit) 6821 goto set_pit_out; 6822 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6823 set_pit_out: 6824 mutex_unlock(&kvm->lock); 6825 break; 6826 } 6827 case KVM_GET_PIT2: { 6828 r = -ENXIO; 6829 if (!kvm->arch.vpit) 6830 goto out; 6831 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6832 if (r) 6833 goto out; 6834 r = -EFAULT; 6835 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6836 goto out; 6837 r = 0; 6838 break; 6839 } 6840 case KVM_SET_PIT2: { 6841 r = -EFAULT; 6842 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6843 goto out; 6844 mutex_lock(&kvm->lock); 6845 r = -ENXIO; 6846 if (!kvm->arch.vpit) 6847 goto set_pit2_out; 6848 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6849 set_pit2_out: 6850 mutex_unlock(&kvm->lock); 6851 break; 6852 } 6853 case KVM_REINJECT_CONTROL: { 6854 struct kvm_reinject_control control; 6855 r = -EFAULT; 6856 if (copy_from_user(&control, argp, sizeof(control))) 6857 goto out; 6858 r = -ENXIO; 6859 if (!kvm->arch.vpit) 6860 goto out; 6861 r = kvm_vm_ioctl_reinject(kvm, &control); 6862 break; 6863 } 6864 case KVM_SET_BOOT_CPU_ID: 6865 r = 0; 6866 mutex_lock(&kvm->lock); 6867 if (kvm->created_vcpus) 6868 r = -EBUSY; 6869 else 6870 kvm->arch.bsp_vcpu_id = arg; 6871 mutex_unlock(&kvm->lock); 6872 break; 6873 #ifdef CONFIG_KVM_XEN 6874 case KVM_XEN_HVM_CONFIG: { 6875 struct kvm_xen_hvm_config xhc; 6876 r = -EFAULT; 6877 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6878 goto out; 6879 r = kvm_xen_hvm_config(kvm, &xhc); 6880 break; 6881 } 6882 case KVM_XEN_HVM_GET_ATTR: { 6883 struct kvm_xen_hvm_attr xha; 6884 6885 r = -EFAULT; 6886 if (copy_from_user(&xha, argp, sizeof(xha))) 6887 goto out; 6888 r = kvm_xen_hvm_get_attr(kvm, &xha); 6889 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6890 r = -EFAULT; 6891 break; 6892 } 6893 case KVM_XEN_HVM_SET_ATTR: { 6894 struct kvm_xen_hvm_attr xha; 6895 6896 r = -EFAULT; 6897 if (copy_from_user(&xha, argp, sizeof(xha))) 6898 goto out; 6899 r = kvm_xen_hvm_set_attr(kvm, &xha); 6900 break; 6901 } 6902 case KVM_XEN_HVM_EVTCHN_SEND: { 6903 struct kvm_irq_routing_xen_evtchn uxe; 6904 6905 r = -EFAULT; 6906 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6907 goto out; 6908 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6909 break; 6910 } 6911 #endif 6912 case KVM_SET_CLOCK: 6913 r = kvm_vm_ioctl_set_clock(kvm, argp); 6914 break; 6915 case KVM_GET_CLOCK: 6916 r = kvm_vm_ioctl_get_clock(kvm, argp); 6917 break; 6918 case KVM_SET_TSC_KHZ: { 6919 u32 user_tsc_khz; 6920 6921 r = -EINVAL; 6922 user_tsc_khz = (u32)arg; 6923 6924 if (kvm_caps.has_tsc_control && 6925 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6926 goto out; 6927 6928 if (user_tsc_khz == 0) 6929 user_tsc_khz = tsc_khz; 6930 6931 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6932 r = 0; 6933 6934 goto out; 6935 } 6936 case KVM_GET_TSC_KHZ: { 6937 r = READ_ONCE(kvm->arch.default_tsc_khz); 6938 goto out; 6939 } 6940 case KVM_MEMORY_ENCRYPT_OP: { 6941 r = -ENOTTY; 6942 if (!kvm_x86_ops.mem_enc_ioctl) 6943 goto out; 6944 6945 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6946 break; 6947 } 6948 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6949 struct kvm_enc_region region; 6950 6951 r = -EFAULT; 6952 if (copy_from_user(®ion, argp, sizeof(region))) 6953 goto out; 6954 6955 r = -ENOTTY; 6956 if (!kvm_x86_ops.mem_enc_register_region) 6957 goto out; 6958 6959 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6960 break; 6961 } 6962 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6963 struct kvm_enc_region region; 6964 6965 r = -EFAULT; 6966 if (copy_from_user(®ion, argp, sizeof(region))) 6967 goto out; 6968 6969 r = -ENOTTY; 6970 if (!kvm_x86_ops.mem_enc_unregister_region) 6971 goto out; 6972 6973 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6974 break; 6975 } 6976 case KVM_HYPERV_EVENTFD: { 6977 struct kvm_hyperv_eventfd hvevfd; 6978 6979 r = -EFAULT; 6980 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6981 goto out; 6982 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6983 break; 6984 } 6985 case KVM_SET_PMU_EVENT_FILTER: 6986 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6987 break; 6988 case KVM_X86_SET_MSR_FILTER: { 6989 struct kvm_msr_filter __user *user_msr_filter = argp; 6990 struct kvm_msr_filter filter; 6991 6992 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6993 return -EFAULT; 6994 6995 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6996 break; 6997 } 6998 default: 6999 r = -ENOTTY; 7000 } 7001 out: 7002 return r; 7003 } 7004 7005 static void kvm_init_msr_list(void) 7006 { 7007 u32 dummy[2]; 7008 unsigned i; 7009 7010 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7011 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7012 7013 num_msrs_to_save = 0; 7014 num_emulated_msrs = 0; 7015 num_msr_based_features = 0; 7016 7017 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7018 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7019 continue; 7020 7021 /* 7022 * Even MSRs that are valid in the host may not be exposed 7023 * to the guests in some cases. 7024 */ 7025 switch (msrs_to_save_all[i]) { 7026 case MSR_IA32_BNDCFGS: 7027 if (!kvm_mpx_supported()) 7028 continue; 7029 break; 7030 case MSR_TSC_AUX: 7031 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7032 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7033 continue; 7034 break; 7035 case MSR_IA32_UMWAIT_CONTROL: 7036 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7037 continue; 7038 break; 7039 case MSR_IA32_RTIT_CTL: 7040 case MSR_IA32_RTIT_STATUS: 7041 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7042 continue; 7043 break; 7044 case MSR_IA32_RTIT_CR3_MATCH: 7045 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7046 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7047 continue; 7048 break; 7049 case MSR_IA32_RTIT_OUTPUT_BASE: 7050 case MSR_IA32_RTIT_OUTPUT_MASK: 7051 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7052 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7053 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7054 continue; 7055 break; 7056 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7057 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7058 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7059 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7060 continue; 7061 break; 7062 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7063 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7064 kvm_pmu_cap.num_counters_gp) 7065 continue; 7066 break; 7067 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7068 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7069 kvm_pmu_cap.num_counters_gp) 7070 continue; 7071 break; 7072 case MSR_IA32_XFD: 7073 case MSR_IA32_XFD_ERR: 7074 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7075 continue; 7076 break; 7077 default: 7078 break; 7079 } 7080 7081 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7082 } 7083 7084 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7085 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7086 continue; 7087 7088 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7089 } 7090 7091 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7092 struct kvm_msr_entry msr; 7093 7094 msr.index = msr_based_features_all[i]; 7095 if (kvm_get_msr_feature(&msr)) 7096 continue; 7097 7098 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7099 } 7100 } 7101 7102 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7103 const void *v) 7104 { 7105 int handled = 0; 7106 int n; 7107 7108 do { 7109 n = min(len, 8); 7110 if (!(lapic_in_kernel(vcpu) && 7111 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7112 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7113 break; 7114 handled += n; 7115 addr += n; 7116 len -= n; 7117 v += n; 7118 } while (len); 7119 7120 return handled; 7121 } 7122 7123 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7124 { 7125 int handled = 0; 7126 int n; 7127 7128 do { 7129 n = min(len, 8); 7130 if (!(lapic_in_kernel(vcpu) && 7131 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7132 addr, n, v)) 7133 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7134 break; 7135 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7136 handled += n; 7137 addr += n; 7138 len -= n; 7139 v += n; 7140 } while (len); 7141 7142 return handled; 7143 } 7144 7145 void kvm_set_segment(struct kvm_vcpu *vcpu, 7146 struct kvm_segment *var, int seg) 7147 { 7148 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7149 } 7150 7151 void kvm_get_segment(struct kvm_vcpu *vcpu, 7152 struct kvm_segment *var, int seg) 7153 { 7154 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7155 } 7156 7157 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7158 struct x86_exception *exception) 7159 { 7160 struct kvm_mmu *mmu = vcpu->arch.mmu; 7161 gpa_t t_gpa; 7162 7163 BUG_ON(!mmu_is_nested(vcpu)); 7164 7165 /* NPT walks are always user-walks */ 7166 access |= PFERR_USER_MASK; 7167 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7168 7169 return t_gpa; 7170 } 7171 7172 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7173 struct x86_exception *exception) 7174 { 7175 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7176 7177 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7178 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7179 } 7180 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7181 7182 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7183 struct x86_exception *exception) 7184 { 7185 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7186 7187 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7188 access |= PFERR_WRITE_MASK; 7189 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7190 } 7191 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7192 7193 /* uses this to access any guest's mapped memory without checking CPL */ 7194 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7195 struct x86_exception *exception) 7196 { 7197 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7198 7199 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7200 } 7201 7202 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7203 struct kvm_vcpu *vcpu, u64 access, 7204 struct x86_exception *exception) 7205 { 7206 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7207 void *data = val; 7208 int r = X86EMUL_CONTINUE; 7209 7210 while (bytes) { 7211 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7212 unsigned offset = addr & (PAGE_SIZE-1); 7213 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7214 int ret; 7215 7216 if (gpa == INVALID_GPA) 7217 return X86EMUL_PROPAGATE_FAULT; 7218 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7219 offset, toread); 7220 if (ret < 0) { 7221 r = X86EMUL_IO_NEEDED; 7222 goto out; 7223 } 7224 7225 bytes -= toread; 7226 data += toread; 7227 addr += toread; 7228 } 7229 out: 7230 return r; 7231 } 7232 7233 /* used for instruction fetching */ 7234 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7235 gva_t addr, void *val, unsigned int bytes, 7236 struct x86_exception *exception) 7237 { 7238 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7239 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7240 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7241 unsigned offset; 7242 int ret; 7243 7244 /* Inline kvm_read_guest_virt_helper for speed. */ 7245 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7246 exception); 7247 if (unlikely(gpa == INVALID_GPA)) 7248 return X86EMUL_PROPAGATE_FAULT; 7249 7250 offset = addr & (PAGE_SIZE-1); 7251 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7252 bytes = (unsigned)PAGE_SIZE - offset; 7253 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7254 offset, bytes); 7255 if (unlikely(ret < 0)) 7256 return X86EMUL_IO_NEEDED; 7257 7258 return X86EMUL_CONTINUE; 7259 } 7260 7261 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7262 gva_t addr, void *val, unsigned int bytes, 7263 struct x86_exception *exception) 7264 { 7265 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7266 7267 /* 7268 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7269 * is returned, but our callers are not ready for that and they blindly 7270 * call kvm_inject_page_fault. Ensure that they at least do not leak 7271 * uninitialized kernel stack memory into cr2 and error code. 7272 */ 7273 memset(exception, 0, sizeof(*exception)); 7274 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7275 exception); 7276 } 7277 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7278 7279 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7280 gva_t addr, void *val, unsigned int bytes, 7281 struct x86_exception *exception, bool system) 7282 { 7283 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7284 u64 access = 0; 7285 7286 if (system) 7287 access |= PFERR_IMPLICIT_ACCESS; 7288 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7289 access |= PFERR_USER_MASK; 7290 7291 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7292 } 7293 7294 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7295 struct kvm_vcpu *vcpu, u64 access, 7296 struct x86_exception *exception) 7297 { 7298 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7299 void *data = val; 7300 int r = X86EMUL_CONTINUE; 7301 7302 while (bytes) { 7303 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7304 unsigned offset = addr & (PAGE_SIZE-1); 7305 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7306 int ret; 7307 7308 if (gpa == INVALID_GPA) 7309 return X86EMUL_PROPAGATE_FAULT; 7310 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7311 if (ret < 0) { 7312 r = X86EMUL_IO_NEEDED; 7313 goto out; 7314 } 7315 7316 bytes -= towrite; 7317 data += towrite; 7318 addr += towrite; 7319 } 7320 out: 7321 return r; 7322 } 7323 7324 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7325 unsigned int bytes, struct x86_exception *exception, 7326 bool system) 7327 { 7328 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7329 u64 access = PFERR_WRITE_MASK; 7330 7331 if (system) 7332 access |= PFERR_IMPLICIT_ACCESS; 7333 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7334 access |= PFERR_USER_MASK; 7335 7336 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7337 access, exception); 7338 } 7339 7340 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7341 unsigned int bytes, struct x86_exception *exception) 7342 { 7343 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7344 vcpu->arch.l1tf_flush_l1d = true; 7345 7346 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7347 PFERR_WRITE_MASK, exception); 7348 } 7349 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7350 7351 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7352 void *insn, int insn_len) 7353 { 7354 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7355 insn, insn_len); 7356 } 7357 7358 int handle_ud(struct kvm_vcpu *vcpu) 7359 { 7360 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7361 int fep_flags = READ_ONCE(force_emulation_prefix); 7362 int emul_type = EMULTYPE_TRAP_UD; 7363 char sig[5]; /* ud2; .ascii "kvm" */ 7364 struct x86_exception e; 7365 7366 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7367 return 1; 7368 7369 if (fep_flags && 7370 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7371 sig, sizeof(sig), &e) == 0 && 7372 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7373 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7374 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7375 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7376 emul_type = EMULTYPE_TRAP_UD_FORCED; 7377 } 7378 7379 return kvm_emulate_instruction(vcpu, emul_type); 7380 } 7381 EXPORT_SYMBOL_GPL(handle_ud); 7382 7383 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7384 gpa_t gpa, bool write) 7385 { 7386 /* For APIC access vmexit */ 7387 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7388 return 1; 7389 7390 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7391 trace_vcpu_match_mmio(gva, gpa, write, true); 7392 return 1; 7393 } 7394 7395 return 0; 7396 } 7397 7398 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7399 gpa_t *gpa, struct x86_exception *exception, 7400 bool write) 7401 { 7402 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7403 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7404 | (write ? PFERR_WRITE_MASK : 0); 7405 7406 /* 7407 * currently PKRU is only applied to ept enabled guest so 7408 * there is no pkey in EPT page table for L1 guest or EPT 7409 * shadow page table for L2 guest. 7410 */ 7411 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7412 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7413 vcpu->arch.mmio_access, 0, access))) { 7414 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7415 (gva & (PAGE_SIZE - 1)); 7416 trace_vcpu_match_mmio(gva, *gpa, write, false); 7417 return 1; 7418 } 7419 7420 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7421 7422 if (*gpa == INVALID_GPA) 7423 return -1; 7424 7425 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7426 } 7427 7428 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7429 const void *val, int bytes) 7430 { 7431 int ret; 7432 7433 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7434 if (ret < 0) 7435 return 0; 7436 kvm_page_track_write(vcpu, gpa, val, bytes); 7437 return 1; 7438 } 7439 7440 struct read_write_emulator_ops { 7441 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7442 int bytes); 7443 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7444 void *val, int bytes); 7445 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7446 int bytes, void *val); 7447 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7448 void *val, int bytes); 7449 bool write; 7450 }; 7451 7452 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7453 { 7454 if (vcpu->mmio_read_completed) { 7455 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7456 vcpu->mmio_fragments[0].gpa, val); 7457 vcpu->mmio_read_completed = 0; 7458 return 1; 7459 } 7460 7461 return 0; 7462 } 7463 7464 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7465 void *val, int bytes) 7466 { 7467 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7468 } 7469 7470 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7471 void *val, int bytes) 7472 { 7473 return emulator_write_phys(vcpu, gpa, val, bytes); 7474 } 7475 7476 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7477 { 7478 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7479 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7480 } 7481 7482 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7483 void *val, int bytes) 7484 { 7485 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7486 return X86EMUL_IO_NEEDED; 7487 } 7488 7489 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7490 void *val, int bytes) 7491 { 7492 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7493 7494 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7495 return X86EMUL_CONTINUE; 7496 } 7497 7498 static const struct read_write_emulator_ops read_emultor = { 7499 .read_write_prepare = read_prepare, 7500 .read_write_emulate = read_emulate, 7501 .read_write_mmio = vcpu_mmio_read, 7502 .read_write_exit_mmio = read_exit_mmio, 7503 }; 7504 7505 static const struct read_write_emulator_ops write_emultor = { 7506 .read_write_emulate = write_emulate, 7507 .read_write_mmio = write_mmio, 7508 .read_write_exit_mmio = write_exit_mmio, 7509 .write = true, 7510 }; 7511 7512 static int emulator_read_write_onepage(unsigned long addr, void *val, 7513 unsigned int bytes, 7514 struct x86_exception *exception, 7515 struct kvm_vcpu *vcpu, 7516 const struct read_write_emulator_ops *ops) 7517 { 7518 gpa_t gpa; 7519 int handled, ret; 7520 bool write = ops->write; 7521 struct kvm_mmio_fragment *frag; 7522 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7523 7524 /* 7525 * If the exit was due to a NPF we may already have a GPA. 7526 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7527 * Note, this cannot be used on string operations since string 7528 * operation using rep will only have the initial GPA from the NPF 7529 * occurred. 7530 */ 7531 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7532 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7533 gpa = ctxt->gpa_val; 7534 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7535 } else { 7536 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7537 if (ret < 0) 7538 return X86EMUL_PROPAGATE_FAULT; 7539 } 7540 7541 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7542 return X86EMUL_CONTINUE; 7543 7544 /* 7545 * Is this MMIO handled locally? 7546 */ 7547 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7548 if (handled == bytes) 7549 return X86EMUL_CONTINUE; 7550 7551 gpa += handled; 7552 bytes -= handled; 7553 val += handled; 7554 7555 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7556 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7557 frag->gpa = gpa; 7558 frag->data = val; 7559 frag->len = bytes; 7560 return X86EMUL_CONTINUE; 7561 } 7562 7563 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7564 unsigned long addr, 7565 void *val, unsigned int bytes, 7566 struct x86_exception *exception, 7567 const struct read_write_emulator_ops *ops) 7568 { 7569 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7570 gpa_t gpa; 7571 int rc; 7572 7573 if (ops->read_write_prepare && 7574 ops->read_write_prepare(vcpu, val, bytes)) 7575 return X86EMUL_CONTINUE; 7576 7577 vcpu->mmio_nr_fragments = 0; 7578 7579 /* Crossing a page boundary? */ 7580 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7581 int now; 7582 7583 now = -addr & ~PAGE_MASK; 7584 rc = emulator_read_write_onepage(addr, val, now, exception, 7585 vcpu, ops); 7586 7587 if (rc != X86EMUL_CONTINUE) 7588 return rc; 7589 addr += now; 7590 if (ctxt->mode != X86EMUL_MODE_PROT64) 7591 addr = (u32)addr; 7592 val += now; 7593 bytes -= now; 7594 } 7595 7596 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7597 vcpu, ops); 7598 if (rc != X86EMUL_CONTINUE) 7599 return rc; 7600 7601 if (!vcpu->mmio_nr_fragments) 7602 return rc; 7603 7604 gpa = vcpu->mmio_fragments[0].gpa; 7605 7606 vcpu->mmio_needed = 1; 7607 vcpu->mmio_cur_fragment = 0; 7608 7609 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7610 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7611 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7612 vcpu->run->mmio.phys_addr = gpa; 7613 7614 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7615 } 7616 7617 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7618 unsigned long addr, 7619 void *val, 7620 unsigned int bytes, 7621 struct x86_exception *exception) 7622 { 7623 return emulator_read_write(ctxt, addr, val, bytes, 7624 exception, &read_emultor); 7625 } 7626 7627 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7628 unsigned long addr, 7629 const void *val, 7630 unsigned int bytes, 7631 struct x86_exception *exception) 7632 { 7633 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7634 exception, &write_emultor); 7635 } 7636 7637 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7638 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7639 7640 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7641 unsigned long addr, 7642 const void *old, 7643 const void *new, 7644 unsigned int bytes, 7645 struct x86_exception *exception) 7646 { 7647 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7648 u64 page_line_mask; 7649 unsigned long hva; 7650 gpa_t gpa; 7651 int r; 7652 7653 /* guests cmpxchg8b have to be emulated atomically */ 7654 if (bytes > 8 || (bytes & (bytes - 1))) 7655 goto emul_write; 7656 7657 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7658 7659 if (gpa == INVALID_GPA || 7660 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7661 goto emul_write; 7662 7663 /* 7664 * Emulate the atomic as a straight write to avoid #AC if SLD is 7665 * enabled in the host and the access splits a cache line. 7666 */ 7667 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7668 page_line_mask = ~(cache_line_size() - 1); 7669 else 7670 page_line_mask = PAGE_MASK; 7671 7672 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7673 goto emul_write; 7674 7675 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7676 if (kvm_is_error_hva(hva)) 7677 goto emul_write; 7678 7679 hva += offset_in_page(gpa); 7680 7681 switch (bytes) { 7682 case 1: 7683 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7684 break; 7685 case 2: 7686 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7687 break; 7688 case 4: 7689 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7690 break; 7691 case 8: 7692 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7693 break; 7694 default: 7695 BUG(); 7696 } 7697 7698 if (r < 0) 7699 return X86EMUL_UNHANDLEABLE; 7700 if (r) 7701 return X86EMUL_CMPXCHG_FAILED; 7702 7703 kvm_page_track_write(vcpu, gpa, new, bytes); 7704 7705 return X86EMUL_CONTINUE; 7706 7707 emul_write: 7708 pr_warn_once("emulating exchange as write\n"); 7709 7710 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7711 } 7712 7713 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7714 unsigned short port, void *data, 7715 unsigned int count, bool in) 7716 { 7717 unsigned i; 7718 int r; 7719 7720 WARN_ON_ONCE(vcpu->arch.pio.count); 7721 for (i = 0; i < count; i++) { 7722 if (in) 7723 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7724 else 7725 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7726 7727 if (r) { 7728 if (i == 0) 7729 goto userspace_io; 7730 7731 /* 7732 * Userspace must have unregistered the device while PIO 7733 * was running. Drop writes / read as 0. 7734 */ 7735 if (in) 7736 memset(data, 0, size * (count - i)); 7737 break; 7738 } 7739 7740 data += size; 7741 } 7742 return 1; 7743 7744 userspace_io: 7745 vcpu->arch.pio.port = port; 7746 vcpu->arch.pio.in = in; 7747 vcpu->arch.pio.count = count; 7748 vcpu->arch.pio.size = size; 7749 7750 if (in) 7751 memset(vcpu->arch.pio_data, 0, size * count); 7752 else 7753 memcpy(vcpu->arch.pio_data, data, size * count); 7754 7755 vcpu->run->exit_reason = KVM_EXIT_IO; 7756 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7757 vcpu->run->io.size = size; 7758 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7759 vcpu->run->io.count = count; 7760 vcpu->run->io.port = port; 7761 return 0; 7762 } 7763 7764 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7765 unsigned short port, void *val, unsigned int count) 7766 { 7767 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7768 if (r) 7769 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7770 7771 return r; 7772 } 7773 7774 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7775 { 7776 int size = vcpu->arch.pio.size; 7777 unsigned int count = vcpu->arch.pio.count; 7778 memcpy(val, vcpu->arch.pio_data, size * count); 7779 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7780 vcpu->arch.pio.count = 0; 7781 } 7782 7783 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7784 int size, unsigned short port, void *val, 7785 unsigned int count) 7786 { 7787 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7788 if (vcpu->arch.pio.count) { 7789 /* 7790 * Complete a previous iteration that required userspace I/O. 7791 * Note, @count isn't guaranteed to match pio.count as userspace 7792 * can modify ECX before rerunning the vCPU. Ignore any such 7793 * shenanigans as KVM doesn't support modifying the rep count, 7794 * and the emulator ensures @count doesn't overflow the buffer. 7795 */ 7796 complete_emulator_pio_in(vcpu, val); 7797 return 1; 7798 } 7799 7800 return emulator_pio_in(vcpu, size, port, val, count); 7801 } 7802 7803 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7804 unsigned short port, const void *val, 7805 unsigned int count) 7806 { 7807 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7808 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7809 } 7810 7811 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7812 int size, unsigned short port, 7813 const void *val, unsigned int count) 7814 { 7815 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7816 } 7817 7818 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7819 { 7820 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7821 } 7822 7823 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7824 { 7825 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7826 } 7827 7828 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7829 { 7830 if (!need_emulate_wbinvd(vcpu)) 7831 return X86EMUL_CONTINUE; 7832 7833 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7834 int cpu = get_cpu(); 7835 7836 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7837 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7838 wbinvd_ipi, NULL, 1); 7839 put_cpu(); 7840 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7841 } else 7842 wbinvd(); 7843 return X86EMUL_CONTINUE; 7844 } 7845 7846 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7847 { 7848 kvm_emulate_wbinvd_noskip(vcpu); 7849 return kvm_skip_emulated_instruction(vcpu); 7850 } 7851 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7852 7853 7854 7855 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7856 { 7857 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7858 } 7859 7860 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7861 unsigned long *dest) 7862 { 7863 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7864 } 7865 7866 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7867 unsigned long value) 7868 { 7869 7870 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7871 } 7872 7873 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7874 { 7875 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7876 } 7877 7878 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7879 { 7880 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7881 unsigned long value; 7882 7883 switch (cr) { 7884 case 0: 7885 value = kvm_read_cr0(vcpu); 7886 break; 7887 case 2: 7888 value = vcpu->arch.cr2; 7889 break; 7890 case 3: 7891 value = kvm_read_cr3(vcpu); 7892 break; 7893 case 4: 7894 value = kvm_read_cr4(vcpu); 7895 break; 7896 case 8: 7897 value = kvm_get_cr8(vcpu); 7898 break; 7899 default: 7900 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7901 return 0; 7902 } 7903 7904 return value; 7905 } 7906 7907 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7908 { 7909 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7910 int res = 0; 7911 7912 switch (cr) { 7913 case 0: 7914 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7915 break; 7916 case 2: 7917 vcpu->arch.cr2 = val; 7918 break; 7919 case 3: 7920 res = kvm_set_cr3(vcpu, val); 7921 break; 7922 case 4: 7923 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7924 break; 7925 case 8: 7926 res = kvm_set_cr8(vcpu, val); 7927 break; 7928 default: 7929 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7930 res = -1; 7931 } 7932 7933 return res; 7934 } 7935 7936 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7937 { 7938 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7939 } 7940 7941 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7942 { 7943 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7944 } 7945 7946 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7947 { 7948 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7949 } 7950 7951 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7952 { 7953 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7954 } 7955 7956 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7957 { 7958 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7959 } 7960 7961 static unsigned long emulator_get_cached_segment_base( 7962 struct x86_emulate_ctxt *ctxt, int seg) 7963 { 7964 return get_segment_base(emul_to_vcpu(ctxt), seg); 7965 } 7966 7967 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7968 struct desc_struct *desc, u32 *base3, 7969 int seg) 7970 { 7971 struct kvm_segment var; 7972 7973 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7974 *selector = var.selector; 7975 7976 if (var.unusable) { 7977 memset(desc, 0, sizeof(*desc)); 7978 if (base3) 7979 *base3 = 0; 7980 return false; 7981 } 7982 7983 if (var.g) 7984 var.limit >>= 12; 7985 set_desc_limit(desc, var.limit); 7986 set_desc_base(desc, (unsigned long)var.base); 7987 #ifdef CONFIG_X86_64 7988 if (base3) 7989 *base3 = var.base >> 32; 7990 #endif 7991 desc->type = var.type; 7992 desc->s = var.s; 7993 desc->dpl = var.dpl; 7994 desc->p = var.present; 7995 desc->avl = var.avl; 7996 desc->l = var.l; 7997 desc->d = var.db; 7998 desc->g = var.g; 7999 8000 return true; 8001 } 8002 8003 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8004 struct desc_struct *desc, u32 base3, 8005 int seg) 8006 { 8007 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8008 struct kvm_segment var; 8009 8010 var.selector = selector; 8011 var.base = get_desc_base(desc); 8012 #ifdef CONFIG_X86_64 8013 var.base |= ((u64)base3) << 32; 8014 #endif 8015 var.limit = get_desc_limit(desc); 8016 if (desc->g) 8017 var.limit = (var.limit << 12) | 0xfff; 8018 var.type = desc->type; 8019 var.dpl = desc->dpl; 8020 var.db = desc->d; 8021 var.s = desc->s; 8022 var.l = desc->l; 8023 var.g = desc->g; 8024 var.avl = desc->avl; 8025 var.present = desc->p; 8026 var.unusable = !var.present; 8027 var.padding = 0; 8028 8029 kvm_set_segment(vcpu, &var, seg); 8030 return; 8031 } 8032 8033 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8034 u32 msr_index, u64 *pdata) 8035 { 8036 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8037 int r; 8038 8039 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8040 if (r < 0) 8041 return X86EMUL_UNHANDLEABLE; 8042 8043 if (r) { 8044 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8045 complete_emulated_rdmsr, r)) 8046 return X86EMUL_IO_NEEDED; 8047 8048 trace_kvm_msr_read_ex(msr_index); 8049 return X86EMUL_PROPAGATE_FAULT; 8050 } 8051 8052 trace_kvm_msr_read(msr_index, *pdata); 8053 return X86EMUL_CONTINUE; 8054 } 8055 8056 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8057 u32 msr_index, u64 data) 8058 { 8059 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8060 int r; 8061 8062 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8063 if (r < 0) 8064 return X86EMUL_UNHANDLEABLE; 8065 8066 if (r) { 8067 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8068 complete_emulated_msr_access, r)) 8069 return X86EMUL_IO_NEEDED; 8070 8071 trace_kvm_msr_write_ex(msr_index, data); 8072 return X86EMUL_PROPAGATE_FAULT; 8073 } 8074 8075 trace_kvm_msr_write(msr_index, data); 8076 return X86EMUL_CONTINUE; 8077 } 8078 8079 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8080 u32 msr_index, u64 *pdata) 8081 { 8082 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8083 } 8084 8085 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8086 u32 pmc) 8087 { 8088 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8089 return 0; 8090 return -EINVAL; 8091 } 8092 8093 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8094 u32 pmc, u64 *pdata) 8095 { 8096 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8097 } 8098 8099 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8100 { 8101 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8102 } 8103 8104 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8105 struct x86_instruction_info *info, 8106 enum x86_intercept_stage stage) 8107 { 8108 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8109 &ctxt->exception); 8110 } 8111 8112 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8113 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8114 bool exact_only) 8115 { 8116 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8117 } 8118 8119 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8120 { 8121 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8122 } 8123 8124 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8125 { 8126 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8127 } 8128 8129 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8130 { 8131 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8132 } 8133 8134 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8135 { 8136 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8137 } 8138 8139 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8140 { 8141 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8142 } 8143 8144 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8145 { 8146 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8147 } 8148 8149 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8150 { 8151 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8152 } 8153 8154 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8155 { 8156 return emul_to_vcpu(ctxt)->arch.hflags; 8157 } 8158 8159 #ifndef CONFIG_KVM_SMM 8160 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8161 { 8162 WARN_ON_ONCE(1); 8163 return X86EMUL_UNHANDLEABLE; 8164 } 8165 #endif 8166 8167 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8168 { 8169 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8170 } 8171 8172 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8173 { 8174 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8175 } 8176 8177 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8178 { 8179 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8180 8181 if (!kvm->vm_bugged) 8182 kvm_vm_bugged(kvm); 8183 } 8184 8185 static const struct x86_emulate_ops emulate_ops = { 8186 .vm_bugged = emulator_vm_bugged, 8187 .read_gpr = emulator_read_gpr, 8188 .write_gpr = emulator_write_gpr, 8189 .read_std = emulator_read_std, 8190 .write_std = emulator_write_std, 8191 .fetch = kvm_fetch_guest_virt, 8192 .read_emulated = emulator_read_emulated, 8193 .write_emulated = emulator_write_emulated, 8194 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8195 .invlpg = emulator_invlpg, 8196 .pio_in_emulated = emulator_pio_in_emulated, 8197 .pio_out_emulated = emulator_pio_out_emulated, 8198 .get_segment = emulator_get_segment, 8199 .set_segment = emulator_set_segment, 8200 .get_cached_segment_base = emulator_get_cached_segment_base, 8201 .get_gdt = emulator_get_gdt, 8202 .get_idt = emulator_get_idt, 8203 .set_gdt = emulator_set_gdt, 8204 .set_idt = emulator_set_idt, 8205 .get_cr = emulator_get_cr, 8206 .set_cr = emulator_set_cr, 8207 .cpl = emulator_get_cpl, 8208 .get_dr = emulator_get_dr, 8209 .set_dr = emulator_set_dr, 8210 .set_msr_with_filter = emulator_set_msr_with_filter, 8211 .get_msr_with_filter = emulator_get_msr_with_filter, 8212 .get_msr = emulator_get_msr, 8213 .check_pmc = emulator_check_pmc, 8214 .read_pmc = emulator_read_pmc, 8215 .halt = emulator_halt, 8216 .wbinvd = emulator_wbinvd, 8217 .fix_hypercall = emulator_fix_hypercall, 8218 .intercept = emulator_intercept, 8219 .get_cpuid = emulator_get_cpuid, 8220 .guest_has_long_mode = emulator_guest_has_long_mode, 8221 .guest_has_movbe = emulator_guest_has_movbe, 8222 .guest_has_fxsr = emulator_guest_has_fxsr, 8223 .guest_has_rdpid = emulator_guest_has_rdpid, 8224 .set_nmi_mask = emulator_set_nmi_mask, 8225 .get_hflags = emulator_get_hflags, 8226 .leave_smm = emulator_leave_smm, 8227 .triple_fault = emulator_triple_fault, 8228 .set_xcr = emulator_set_xcr, 8229 }; 8230 8231 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8232 { 8233 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8234 /* 8235 * an sti; sti; sequence only disable interrupts for the first 8236 * instruction. So, if the last instruction, be it emulated or 8237 * not, left the system with the INT_STI flag enabled, it 8238 * means that the last instruction is an sti. We should not 8239 * leave the flag on in this case. The same goes for mov ss 8240 */ 8241 if (int_shadow & mask) 8242 mask = 0; 8243 if (unlikely(int_shadow || mask)) { 8244 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8245 if (!mask) 8246 kvm_make_request(KVM_REQ_EVENT, vcpu); 8247 } 8248 } 8249 8250 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8251 { 8252 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8253 8254 if (ctxt->exception.vector == PF_VECTOR) 8255 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8256 else if (ctxt->exception.error_code_valid) 8257 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8258 ctxt->exception.error_code); 8259 else 8260 kvm_queue_exception(vcpu, ctxt->exception.vector); 8261 } 8262 8263 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8264 { 8265 struct x86_emulate_ctxt *ctxt; 8266 8267 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8268 if (!ctxt) { 8269 pr_err("failed to allocate vcpu's emulator\n"); 8270 return NULL; 8271 } 8272 8273 ctxt->vcpu = vcpu; 8274 ctxt->ops = &emulate_ops; 8275 vcpu->arch.emulate_ctxt = ctxt; 8276 8277 return ctxt; 8278 } 8279 8280 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8281 { 8282 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8283 int cs_db, cs_l; 8284 8285 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8286 8287 ctxt->gpa_available = false; 8288 ctxt->eflags = kvm_get_rflags(vcpu); 8289 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8290 8291 ctxt->eip = kvm_rip_read(vcpu); 8292 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8293 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8294 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8295 cs_db ? X86EMUL_MODE_PROT32 : 8296 X86EMUL_MODE_PROT16; 8297 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8298 8299 ctxt->interruptibility = 0; 8300 ctxt->have_exception = false; 8301 ctxt->exception.vector = -1; 8302 ctxt->perm_ok = false; 8303 8304 init_decode_cache(ctxt); 8305 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8306 } 8307 8308 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8309 { 8310 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8311 int ret; 8312 8313 init_emulate_ctxt(vcpu); 8314 8315 ctxt->op_bytes = 2; 8316 ctxt->ad_bytes = 2; 8317 ctxt->_eip = ctxt->eip + inc_eip; 8318 ret = emulate_int_real(ctxt, irq); 8319 8320 if (ret != X86EMUL_CONTINUE) { 8321 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8322 } else { 8323 ctxt->eip = ctxt->_eip; 8324 kvm_rip_write(vcpu, ctxt->eip); 8325 kvm_set_rflags(vcpu, ctxt->eflags); 8326 } 8327 } 8328 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8329 8330 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8331 u8 ndata, u8 *insn_bytes, u8 insn_size) 8332 { 8333 struct kvm_run *run = vcpu->run; 8334 u64 info[5]; 8335 u8 info_start; 8336 8337 /* 8338 * Zero the whole array used to retrieve the exit info, as casting to 8339 * u32 for select entries will leave some chunks uninitialized. 8340 */ 8341 memset(&info, 0, sizeof(info)); 8342 8343 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8344 &info[2], (u32 *)&info[3], 8345 (u32 *)&info[4]); 8346 8347 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8348 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8349 8350 /* 8351 * There's currently space for 13 entries, but 5 are used for the exit 8352 * reason and info. Restrict to 4 to reduce the maintenance burden 8353 * when expanding kvm_run.emulation_failure in the future. 8354 */ 8355 if (WARN_ON_ONCE(ndata > 4)) 8356 ndata = 4; 8357 8358 /* Always include the flags as a 'data' entry. */ 8359 info_start = 1; 8360 run->emulation_failure.flags = 0; 8361 8362 if (insn_size) { 8363 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8364 sizeof(run->emulation_failure.insn_bytes) != 16)); 8365 info_start += 2; 8366 run->emulation_failure.flags |= 8367 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8368 run->emulation_failure.insn_size = insn_size; 8369 memset(run->emulation_failure.insn_bytes, 0x90, 8370 sizeof(run->emulation_failure.insn_bytes)); 8371 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8372 } 8373 8374 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8375 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8376 ndata * sizeof(data[0])); 8377 8378 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8379 } 8380 8381 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8382 { 8383 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8384 8385 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8386 ctxt->fetch.end - ctxt->fetch.data); 8387 } 8388 8389 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8390 u8 ndata) 8391 { 8392 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8393 } 8394 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8395 8396 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8397 { 8398 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8399 } 8400 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8401 8402 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8403 { 8404 struct kvm *kvm = vcpu->kvm; 8405 8406 ++vcpu->stat.insn_emulation_fail; 8407 trace_kvm_emulate_insn_failed(vcpu); 8408 8409 if (emulation_type & EMULTYPE_VMWARE_GP) { 8410 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8411 return 1; 8412 } 8413 8414 if (kvm->arch.exit_on_emulation_error || 8415 (emulation_type & EMULTYPE_SKIP)) { 8416 prepare_emulation_ctxt_failure_exit(vcpu); 8417 return 0; 8418 } 8419 8420 kvm_queue_exception(vcpu, UD_VECTOR); 8421 8422 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8423 prepare_emulation_ctxt_failure_exit(vcpu); 8424 return 0; 8425 } 8426 8427 return 1; 8428 } 8429 8430 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8431 bool write_fault_to_shadow_pgtable, 8432 int emulation_type) 8433 { 8434 gpa_t gpa = cr2_or_gpa; 8435 kvm_pfn_t pfn; 8436 8437 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8438 return false; 8439 8440 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8441 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8442 return false; 8443 8444 if (!vcpu->arch.mmu->root_role.direct) { 8445 /* 8446 * Write permission should be allowed since only 8447 * write access need to be emulated. 8448 */ 8449 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8450 8451 /* 8452 * If the mapping is invalid in guest, let cpu retry 8453 * it to generate fault. 8454 */ 8455 if (gpa == INVALID_GPA) 8456 return true; 8457 } 8458 8459 /* 8460 * Do not retry the unhandleable instruction if it faults on the 8461 * readonly host memory, otherwise it will goto a infinite loop: 8462 * retry instruction -> write #PF -> emulation fail -> retry 8463 * instruction -> ... 8464 */ 8465 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8466 8467 /* 8468 * If the instruction failed on the error pfn, it can not be fixed, 8469 * report the error to userspace. 8470 */ 8471 if (is_error_noslot_pfn(pfn)) 8472 return false; 8473 8474 kvm_release_pfn_clean(pfn); 8475 8476 /* The instructions are well-emulated on direct mmu. */ 8477 if (vcpu->arch.mmu->root_role.direct) { 8478 unsigned int indirect_shadow_pages; 8479 8480 write_lock(&vcpu->kvm->mmu_lock); 8481 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8482 write_unlock(&vcpu->kvm->mmu_lock); 8483 8484 if (indirect_shadow_pages) 8485 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8486 8487 return true; 8488 } 8489 8490 /* 8491 * if emulation was due to access to shadowed page table 8492 * and it failed try to unshadow page and re-enter the 8493 * guest to let CPU execute the instruction. 8494 */ 8495 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8496 8497 /* 8498 * If the access faults on its page table, it can not 8499 * be fixed by unprotecting shadow page and it should 8500 * be reported to userspace. 8501 */ 8502 return !write_fault_to_shadow_pgtable; 8503 } 8504 8505 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8506 gpa_t cr2_or_gpa, int emulation_type) 8507 { 8508 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8509 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8510 8511 last_retry_eip = vcpu->arch.last_retry_eip; 8512 last_retry_addr = vcpu->arch.last_retry_addr; 8513 8514 /* 8515 * If the emulation is caused by #PF and it is non-page_table 8516 * writing instruction, it means the VM-EXIT is caused by shadow 8517 * page protected, we can zap the shadow page and retry this 8518 * instruction directly. 8519 * 8520 * Note: if the guest uses a non-page-table modifying instruction 8521 * on the PDE that points to the instruction, then we will unmap 8522 * the instruction and go to an infinite loop. So, we cache the 8523 * last retried eip and the last fault address, if we meet the eip 8524 * and the address again, we can break out of the potential infinite 8525 * loop. 8526 */ 8527 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8528 8529 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8530 return false; 8531 8532 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8533 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8534 return false; 8535 8536 if (x86_page_table_writing_insn(ctxt)) 8537 return false; 8538 8539 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8540 return false; 8541 8542 vcpu->arch.last_retry_eip = ctxt->eip; 8543 vcpu->arch.last_retry_addr = cr2_or_gpa; 8544 8545 if (!vcpu->arch.mmu->root_role.direct) 8546 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8547 8548 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8549 8550 return true; 8551 } 8552 8553 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8554 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8555 8556 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8557 unsigned long *db) 8558 { 8559 u32 dr6 = 0; 8560 int i; 8561 u32 enable, rwlen; 8562 8563 enable = dr7; 8564 rwlen = dr7 >> 16; 8565 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8566 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8567 dr6 |= (1 << i); 8568 return dr6; 8569 } 8570 8571 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8572 { 8573 struct kvm_run *kvm_run = vcpu->run; 8574 8575 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8576 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8577 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8578 kvm_run->debug.arch.exception = DB_VECTOR; 8579 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8580 return 0; 8581 } 8582 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8583 return 1; 8584 } 8585 8586 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8587 { 8588 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8589 int r; 8590 8591 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8592 if (unlikely(!r)) 8593 return 0; 8594 8595 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8596 8597 /* 8598 * rflags is the old, "raw" value of the flags. The new value has 8599 * not been saved yet. 8600 * 8601 * This is correct even for TF set by the guest, because "the 8602 * processor will not generate this exception after the instruction 8603 * that sets the TF flag". 8604 */ 8605 if (unlikely(rflags & X86_EFLAGS_TF)) 8606 r = kvm_vcpu_do_singlestep(vcpu); 8607 return r; 8608 } 8609 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8610 8611 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8612 { 8613 u32 shadow; 8614 8615 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8616 return true; 8617 8618 /* 8619 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8620 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8621 * to avoid the relatively expensive CPUID lookup. 8622 */ 8623 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8624 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8625 guest_cpuid_is_intel(vcpu); 8626 } 8627 8628 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8629 int emulation_type, int *r) 8630 { 8631 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8632 8633 /* 8634 * Do not check for code breakpoints if hardware has already done the 8635 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8636 * the instruction has passed all exception checks, and all intercepted 8637 * exceptions that trigger emulation have lower priority than code 8638 * breakpoints, i.e. the fact that the intercepted exception occurred 8639 * means any code breakpoints have already been serviced. 8640 * 8641 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8642 * hardware has checked the RIP of the magic prefix, but not the RIP of 8643 * the instruction being emulated. The intent of forced emulation is 8644 * to behave as if KVM intercepted the instruction without an exception 8645 * and without a prefix. 8646 */ 8647 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8648 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8649 return false; 8650 8651 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8652 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8653 struct kvm_run *kvm_run = vcpu->run; 8654 unsigned long eip = kvm_get_linear_rip(vcpu); 8655 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8656 vcpu->arch.guest_debug_dr7, 8657 vcpu->arch.eff_db); 8658 8659 if (dr6 != 0) { 8660 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8661 kvm_run->debug.arch.pc = eip; 8662 kvm_run->debug.arch.exception = DB_VECTOR; 8663 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8664 *r = 0; 8665 return true; 8666 } 8667 } 8668 8669 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8670 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8671 unsigned long eip = kvm_get_linear_rip(vcpu); 8672 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8673 vcpu->arch.dr7, 8674 vcpu->arch.db); 8675 8676 if (dr6 != 0) { 8677 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8678 *r = 1; 8679 return true; 8680 } 8681 } 8682 8683 return false; 8684 } 8685 8686 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8687 { 8688 switch (ctxt->opcode_len) { 8689 case 1: 8690 switch (ctxt->b) { 8691 case 0xe4: /* IN */ 8692 case 0xe5: 8693 case 0xec: 8694 case 0xed: 8695 case 0xe6: /* OUT */ 8696 case 0xe7: 8697 case 0xee: 8698 case 0xef: 8699 case 0x6c: /* INS */ 8700 case 0x6d: 8701 case 0x6e: /* OUTS */ 8702 case 0x6f: 8703 return true; 8704 } 8705 break; 8706 case 2: 8707 switch (ctxt->b) { 8708 case 0x33: /* RDPMC */ 8709 return true; 8710 } 8711 break; 8712 } 8713 8714 return false; 8715 } 8716 8717 /* 8718 * Decode an instruction for emulation. The caller is responsible for handling 8719 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8720 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8721 * code breakpoints have higher priority and thus have already been done by 8722 * hardware. 8723 * 8724 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8725 * response to a machine check. 8726 */ 8727 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8728 void *insn, int insn_len) 8729 { 8730 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8731 int r; 8732 8733 init_emulate_ctxt(vcpu); 8734 8735 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8736 8737 trace_kvm_emulate_insn_start(vcpu); 8738 ++vcpu->stat.insn_emulation; 8739 8740 return r; 8741 } 8742 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8743 8744 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8745 int emulation_type, void *insn, int insn_len) 8746 { 8747 int r; 8748 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8749 bool writeback = true; 8750 bool write_fault_to_spt; 8751 8752 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8753 return 1; 8754 8755 vcpu->arch.l1tf_flush_l1d = true; 8756 8757 /* 8758 * Clear write_fault_to_shadow_pgtable here to ensure it is 8759 * never reused. 8760 */ 8761 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8762 vcpu->arch.write_fault_to_shadow_pgtable = false; 8763 8764 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8765 kvm_clear_exception_queue(vcpu); 8766 8767 /* 8768 * Return immediately if RIP hits a code breakpoint, such #DBs 8769 * are fault-like and are higher priority than any faults on 8770 * the code fetch itself. 8771 */ 8772 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8773 return r; 8774 8775 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8776 insn, insn_len); 8777 if (r != EMULATION_OK) { 8778 if ((emulation_type & EMULTYPE_TRAP_UD) || 8779 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8780 kvm_queue_exception(vcpu, UD_VECTOR); 8781 return 1; 8782 } 8783 if (reexecute_instruction(vcpu, cr2_or_gpa, 8784 write_fault_to_spt, 8785 emulation_type)) 8786 return 1; 8787 8788 if (ctxt->have_exception && 8789 !(emulation_type & EMULTYPE_SKIP)) { 8790 /* 8791 * #UD should result in just EMULATION_FAILED, and trap-like 8792 * exception should not be encountered during decode. 8793 */ 8794 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8795 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8796 inject_emulated_exception(vcpu); 8797 return 1; 8798 } 8799 return handle_emulation_failure(vcpu, emulation_type); 8800 } 8801 } 8802 8803 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8804 !is_vmware_backdoor_opcode(ctxt)) { 8805 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8806 return 1; 8807 } 8808 8809 /* 8810 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8811 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8812 * The caller is responsible for updating interruptibility state and 8813 * injecting single-step #DBs. 8814 */ 8815 if (emulation_type & EMULTYPE_SKIP) { 8816 if (ctxt->mode != X86EMUL_MODE_PROT64) 8817 ctxt->eip = (u32)ctxt->_eip; 8818 else 8819 ctxt->eip = ctxt->_eip; 8820 8821 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8822 r = 1; 8823 goto writeback; 8824 } 8825 8826 kvm_rip_write(vcpu, ctxt->eip); 8827 if (ctxt->eflags & X86_EFLAGS_RF) 8828 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8829 return 1; 8830 } 8831 8832 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8833 return 1; 8834 8835 /* this is needed for vmware backdoor interface to work since it 8836 changes registers values during IO operation */ 8837 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8838 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8839 emulator_invalidate_register_cache(ctxt); 8840 } 8841 8842 restart: 8843 if (emulation_type & EMULTYPE_PF) { 8844 /* Save the faulting GPA (cr2) in the address field */ 8845 ctxt->exception.address = cr2_or_gpa; 8846 8847 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8848 if (vcpu->arch.mmu->root_role.direct) { 8849 ctxt->gpa_available = true; 8850 ctxt->gpa_val = cr2_or_gpa; 8851 } 8852 } else { 8853 /* Sanitize the address out of an abundance of paranoia. */ 8854 ctxt->exception.address = 0; 8855 } 8856 8857 r = x86_emulate_insn(ctxt); 8858 8859 if (r == EMULATION_INTERCEPTED) 8860 return 1; 8861 8862 if (r == EMULATION_FAILED) { 8863 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8864 emulation_type)) 8865 return 1; 8866 8867 return handle_emulation_failure(vcpu, emulation_type); 8868 } 8869 8870 if (ctxt->have_exception) { 8871 r = 1; 8872 inject_emulated_exception(vcpu); 8873 } else if (vcpu->arch.pio.count) { 8874 if (!vcpu->arch.pio.in) { 8875 /* FIXME: return into emulator if single-stepping. */ 8876 vcpu->arch.pio.count = 0; 8877 } else { 8878 writeback = false; 8879 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8880 } 8881 r = 0; 8882 } else if (vcpu->mmio_needed) { 8883 ++vcpu->stat.mmio_exits; 8884 8885 if (!vcpu->mmio_is_write) 8886 writeback = false; 8887 r = 0; 8888 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8889 } else if (vcpu->arch.complete_userspace_io) { 8890 writeback = false; 8891 r = 0; 8892 } else if (r == EMULATION_RESTART) 8893 goto restart; 8894 else 8895 r = 1; 8896 8897 writeback: 8898 if (writeback) { 8899 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8900 toggle_interruptibility(vcpu, ctxt->interruptibility); 8901 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8902 8903 /* 8904 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8905 * only supports code breakpoints and general detect #DB, both 8906 * of which are fault-like. 8907 */ 8908 if (!ctxt->have_exception || 8909 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8910 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8911 if (ctxt->is_branch) 8912 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8913 kvm_rip_write(vcpu, ctxt->eip); 8914 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8915 r = kvm_vcpu_do_singlestep(vcpu); 8916 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8917 __kvm_set_rflags(vcpu, ctxt->eflags); 8918 } 8919 8920 /* 8921 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8922 * do nothing, and it will be requested again as soon as 8923 * the shadow expires. But we still need to check here, 8924 * because POPF has no interrupt shadow. 8925 */ 8926 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8927 kvm_make_request(KVM_REQ_EVENT, vcpu); 8928 } else 8929 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8930 8931 return r; 8932 } 8933 8934 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8935 { 8936 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8937 } 8938 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8939 8940 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8941 void *insn, int insn_len) 8942 { 8943 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8944 } 8945 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8946 8947 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8948 { 8949 vcpu->arch.pio.count = 0; 8950 return 1; 8951 } 8952 8953 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8954 { 8955 vcpu->arch.pio.count = 0; 8956 8957 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8958 return 1; 8959 8960 return kvm_skip_emulated_instruction(vcpu); 8961 } 8962 8963 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8964 unsigned short port) 8965 { 8966 unsigned long val = kvm_rax_read(vcpu); 8967 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8968 8969 if (ret) 8970 return ret; 8971 8972 /* 8973 * Workaround userspace that relies on old KVM behavior of %rip being 8974 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8975 */ 8976 if (port == 0x7e && 8977 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8978 vcpu->arch.complete_userspace_io = 8979 complete_fast_pio_out_port_0x7e; 8980 kvm_skip_emulated_instruction(vcpu); 8981 } else { 8982 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8983 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8984 } 8985 return 0; 8986 } 8987 8988 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8989 { 8990 unsigned long val; 8991 8992 /* We should only ever be called with arch.pio.count equal to 1 */ 8993 BUG_ON(vcpu->arch.pio.count != 1); 8994 8995 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8996 vcpu->arch.pio.count = 0; 8997 return 1; 8998 } 8999 9000 /* For size less than 4 we merge, else we zero extend */ 9001 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9002 9003 complete_emulator_pio_in(vcpu, &val); 9004 kvm_rax_write(vcpu, val); 9005 9006 return kvm_skip_emulated_instruction(vcpu); 9007 } 9008 9009 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9010 unsigned short port) 9011 { 9012 unsigned long val; 9013 int ret; 9014 9015 /* For size less than 4 we merge, else we zero extend */ 9016 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9017 9018 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9019 if (ret) { 9020 kvm_rax_write(vcpu, val); 9021 return ret; 9022 } 9023 9024 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9025 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9026 9027 return 0; 9028 } 9029 9030 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9031 { 9032 int ret; 9033 9034 if (in) 9035 ret = kvm_fast_pio_in(vcpu, size, port); 9036 else 9037 ret = kvm_fast_pio_out(vcpu, size, port); 9038 return ret && kvm_skip_emulated_instruction(vcpu); 9039 } 9040 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9041 9042 static int kvmclock_cpu_down_prep(unsigned int cpu) 9043 { 9044 __this_cpu_write(cpu_tsc_khz, 0); 9045 return 0; 9046 } 9047 9048 static void tsc_khz_changed(void *data) 9049 { 9050 struct cpufreq_freqs *freq = data; 9051 unsigned long khz = 0; 9052 9053 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9054 9055 if (data) 9056 khz = freq->new; 9057 else 9058 khz = cpufreq_quick_get(raw_smp_processor_id()); 9059 if (!khz) 9060 khz = tsc_khz; 9061 __this_cpu_write(cpu_tsc_khz, khz); 9062 } 9063 9064 #ifdef CONFIG_X86_64 9065 static void kvm_hyperv_tsc_notifier(void) 9066 { 9067 struct kvm *kvm; 9068 int cpu; 9069 9070 mutex_lock(&kvm_lock); 9071 list_for_each_entry(kvm, &vm_list, vm_list) 9072 kvm_make_mclock_inprogress_request(kvm); 9073 9074 /* no guest entries from this point */ 9075 hyperv_stop_tsc_emulation(); 9076 9077 /* TSC frequency always matches when on Hyper-V */ 9078 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9079 for_each_present_cpu(cpu) 9080 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9081 } 9082 kvm_caps.max_guest_tsc_khz = tsc_khz; 9083 9084 list_for_each_entry(kvm, &vm_list, vm_list) { 9085 __kvm_start_pvclock_update(kvm); 9086 pvclock_update_vm_gtod_copy(kvm); 9087 kvm_end_pvclock_update(kvm); 9088 } 9089 9090 mutex_unlock(&kvm_lock); 9091 } 9092 #endif 9093 9094 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9095 { 9096 struct kvm *kvm; 9097 struct kvm_vcpu *vcpu; 9098 int send_ipi = 0; 9099 unsigned long i; 9100 9101 /* 9102 * We allow guests to temporarily run on slowing clocks, 9103 * provided we notify them after, or to run on accelerating 9104 * clocks, provided we notify them before. Thus time never 9105 * goes backwards. 9106 * 9107 * However, we have a problem. We can't atomically update 9108 * the frequency of a given CPU from this function; it is 9109 * merely a notifier, which can be called from any CPU. 9110 * Changing the TSC frequency at arbitrary points in time 9111 * requires a recomputation of local variables related to 9112 * the TSC for each VCPU. We must flag these local variables 9113 * to be updated and be sure the update takes place with the 9114 * new frequency before any guests proceed. 9115 * 9116 * Unfortunately, the combination of hotplug CPU and frequency 9117 * change creates an intractable locking scenario; the order 9118 * of when these callouts happen is undefined with respect to 9119 * CPU hotplug, and they can race with each other. As such, 9120 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9121 * undefined; you can actually have a CPU frequency change take 9122 * place in between the computation of X and the setting of the 9123 * variable. To protect against this problem, all updates of 9124 * the per_cpu tsc_khz variable are done in an interrupt 9125 * protected IPI, and all callers wishing to update the value 9126 * must wait for a synchronous IPI to complete (which is trivial 9127 * if the caller is on the CPU already). This establishes the 9128 * necessary total order on variable updates. 9129 * 9130 * Note that because a guest time update may take place 9131 * anytime after the setting of the VCPU's request bit, the 9132 * correct TSC value must be set before the request. However, 9133 * to ensure the update actually makes it to any guest which 9134 * starts running in hardware virtualization between the set 9135 * and the acquisition of the spinlock, we must also ping the 9136 * CPU after setting the request bit. 9137 * 9138 */ 9139 9140 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9141 9142 mutex_lock(&kvm_lock); 9143 list_for_each_entry(kvm, &vm_list, vm_list) { 9144 kvm_for_each_vcpu(i, vcpu, kvm) { 9145 if (vcpu->cpu != cpu) 9146 continue; 9147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9148 if (vcpu->cpu != raw_smp_processor_id()) 9149 send_ipi = 1; 9150 } 9151 } 9152 mutex_unlock(&kvm_lock); 9153 9154 if (freq->old < freq->new && send_ipi) { 9155 /* 9156 * We upscale the frequency. Must make the guest 9157 * doesn't see old kvmclock values while running with 9158 * the new frequency, otherwise we risk the guest sees 9159 * time go backwards. 9160 * 9161 * In case we update the frequency for another cpu 9162 * (which might be in guest context) send an interrupt 9163 * to kick the cpu out of guest context. Next time 9164 * guest context is entered kvmclock will be updated, 9165 * so the guest will not see stale values. 9166 */ 9167 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9168 } 9169 } 9170 9171 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9172 void *data) 9173 { 9174 struct cpufreq_freqs *freq = data; 9175 int cpu; 9176 9177 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9178 return 0; 9179 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9180 return 0; 9181 9182 for_each_cpu(cpu, freq->policy->cpus) 9183 __kvmclock_cpufreq_notifier(freq, cpu); 9184 9185 return 0; 9186 } 9187 9188 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9189 .notifier_call = kvmclock_cpufreq_notifier 9190 }; 9191 9192 static int kvmclock_cpu_online(unsigned int cpu) 9193 { 9194 tsc_khz_changed(NULL); 9195 return 0; 9196 } 9197 9198 static void kvm_timer_init(void) 9199 { 9200 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9201 max_tsc_khz = tsc_khz; 9202 9203 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9204 struct cpufreq_policy *policy; 9205 int cpu; 9206 9207 cpu = get_cpu(); 9208 policy = cpufreq_cpu_get(cpu); 9209 if (policy) { 9210 if (policy->cpuinfo.max_freq) 9211 max_tsc_khz = policy->cpuinfo.max_freq; 9212 cpufreq_cpu_put(policy); 9213 } 9214 put_cpu(); 9215 } 9216 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9217 CPUFREQ_TRANSITION_NOTIFIER); 9218 9219 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9220 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9221 } 9222 } 9223 9224 #ifdef CONFIG_X86_64 9225 static void pvclock_gtod_update_fn(struct work_struct *work) 9226 { 9227 struct kvm *kvm; 9228 struct kvm_vcpu *vcpu; 9229 unsigned long i; 9230 9231 mutex_lock(&kvm_lock); 9232 list_for_each_entry(kvm, &vm_list, vm_list) 9233 kvm_for_each_vcpu(i, vcpu, kvm) 9234 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9235 atomic_set(&kvm_guest_has_master_clock, 0); 9236 mutex_unlock(&kvm_lock); 9237 } 9238 9239 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9240 9241 /* 9242 * Indirection to move queue_work() out of the tk_core.seq write held 9243 * region to prevent possible deadlocks against time accessors which 9244 * are invoked with work related locks held. 9245 */ 9246 static void pvclock_irq_work_fn(struct irq_work *w) 9247 { 9248 queue_work(system_long_wq, &pvclock_gtod_work); 9249 } 9250 9251 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9252 9253 /* 9254 * Notification about pvclock gtod data update. 9255 */ 9256 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9257 void *priv) 9258 { 9259 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9260 struct timekeeper *tk = priv; 9261 9262 update_pvclock_gtod(tk); 9263 9264 /* 9265 * Disable master clock if host does not trust, or does not use, 9266 * TSC based clocksource. Delegate queue_work() to irq_work as 9267 * this is invoked with tk_core.seq write held. 9268 */ 9269 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9270 atomic_read(&kvm_guest_has_master_clock) != 0) 9271 irq_work_queue(&pvclock_irq_work); 9272 return 0; 9273 } 9274 9275 static struct notifier_block pvclock_gtod_notifier = { 9276 .notifier_call = pvclock_gtod_notify, 9277 }; 9278 #endif 9279 9280 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9281 { 9282 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9283 9284 #define __KVM_X86_OP(func) \ 9285 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9286 #define KVM_X86_OP(func) \ 9287 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9288 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9289 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9290 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9291 (void *)__static_call_return0); 9292 #include <asm/kvm-x86-ops.h> 9293 #undef __KVM_X86_OP 9294 9295 kvm_pmu_ops_update(ops->pmu_ops); 9296 } 9297 9298 static int kvm_x86_check_processor_compatibility(void) 9299 { 9300 int cpu = smp_processor_id(); 9301 struct cpuinfo_x86 *c = &cpu_data(cpu); 9302 9303 /* 9304 * Compatibility checks are done when loading KVM and when enabling 9305 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9306 * compatible, i.e. KVM should never perform a compatibility check on 9307 * an offline CPU. 9308 */ 9309 WARN_ON(!cpu_online(cpu)); 9310 9311 if (__cr4_reserved_bits(cpu_has, c) != 9312 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9313 return -EIO; 9314 9315 return static_call(kvm_x86_check_processor_compatibility)(); 9316 } 9317 9318 static void kvm_x86_check_cpu_compat(void *ret) 9319 { 9320 *(int *)ret = kvm_x86_check_processor_compatibility(); 9321 } 9322 9323 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9324 { 9325 u64 host_pat; 9326 int r, cpu; 9327 9328 if (kvm_x86_ops.hardware_enable) { 9329 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9330 return -EEXIST; 9331 } 9332 9333 /* 9334 * KVM explicitly assumes that the guest has an FPU and 9335 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9336 * vCPU's FPU state as a fxregs_state struct. 9337 */ 9338 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9339 pr_err("inadequate fpu\n"); 9340 return -EOPNOTSUPP; 9341 } 9342 9343 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9344 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9345 return -EOPNOTSUPP; 9346 } 9347 9348 /* 9349 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9350 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9351 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9352 * with an exception. PAT[0] is set to WB on RESET and also by the 9353 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9354 */ 9355 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9356 (host_pat & GENMASK(2, 0)) != 6) { 9357 pr_err("host PAT[0] is not WB\n"); 9358 return -EIO; 9359 } 9360 9361 x86_emulator_cache = kvm_alloc_emulator_cache(); 9362 if (!x86_emulator_cache) { 9363 pr_err("failed to allocate cache for x86 emulator\n"); 9364 return -ENOMEM; 9365 } 9366 9367 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9368 if (!user_return_msrs) { 9369 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9370 r = -ENOMEM; 9371 goto out_free_x86_emulator_cache; 9372 } 9373 kvm_nr_uret_msrs = 0; 9374 9375 r = kvm_mmu_vendor_module_init(); 9376 if (r) 9377 goto out_free_percpu; 9378 9379 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9380 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9381 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9382 } 9383 9384 rdmsrl_safe(MSR_EFER, &host_efer); 9385 9386 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9387 rdmsrl(MSR_IA32_XSS, host_xss); 9388 9389 kvm_init_pmu_capability(ops->pmu_ops); 9390 9391 r = ops->hardware_setup(); 9392 if (r != 0) 9393 goto out_mmu_exit; 9394 9395 kvm_ops_update(ops); 9396 9397 for_each_online_cpu(cpu) { 9398 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9399 if (r < 0) 9400 goto out_unwind_ops; 9401 } 9402 9403 /* 9404 * Point of no return! DO NOT add error paths below this point unless 9405 * absolutely necessary, as most operations from this point forward 9406 * require unwinding. 9407 */ 9408 kvm_timer_init(); 9409 9410 if (pi_inject_timer == -1) 9411 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9412 #ifdef CONFIG_X86_64 9413 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9414 9415 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9416 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9417 #endif 9418 9419 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9420 9421 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9422 kvm_caps.supported_xss = 0; 9423 9424 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9425 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9426 #undef __kvm_cpu_cap_has 9427 9428 if (kvm_caps.has_tsc_control) { 9429 /* 9430 * Make sure the user can only configure tsc_khz values that 9431 * fit into a signed integer. 9432 * A min value is not calculated because it will always 9433 * be 1 on all machines. 9434 */ 9435 u64 max = min(0x7fffffffULL, 9436 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9437 kvm_caps.max_guest_tsc_khz = max; 9438 } 9439 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9440 kvm_init_msr_list(); 9441 return 0; 9442 9443 out_unwind_ops: 9444 kvm_x86_ops.hardware_enable = NULL; 9445 static_call(kvm_x86_hardware_unsetup)(); 9446 out_mmu_exit: 9447 kvm_mmu_vendor_module_exit(); 9448 out_free_percpu: 9449 free_percpu(user_return_msrs); 9450 out_free_x86_emulator_cache: 9451 kmem_cache_destroy(x86_emulator_cache); 9452 return r; 9453 } 9454 9455 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9456 { 9457 int r; 9458 9459 mutex_lock(&vendor_module_lock); 9460 r = __kvm_x86_vendor_init(ops); 9461 mutex_unlock(&vendor_module_lock); 9462 9463 return r; 9464 } 9465 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9466 9467 void kvm_x86_vendor_exit(void) 9468 { 9469 kvm_unregister_perf_callbacks(); 9470 9471 #ifdef CONFIG_X86_64 9472 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9473 clear_hv_tscchange_cb(); 9474 #endif 9475 kvm_lapic_exit(); 9476 9477 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9478 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9479 CPUFREQ_TRANSITION_NOTIFIER); 9480 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9481 } 9482 #ifdef CONFIG_X86_64 9483 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9484 irq_work_sync(&pvclock_irq_work); 9485 cancel_work_sync(&pvclock_gtod_work); 9486 #endif 9487 static_call(kvm_x86_hardware_unsetup)(); 9488 kvm_mmu_vendor_module_exit(); 9489 free_percpu(user_return_msrs); 9490 kmem_cache_destroy(x86_emulator_cache); 9491 #ifdef CONFIG_KVM_XEN 9492 static_key_deferred_flush(&kvm_xen_enabled); 9493 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9494 #endif 9495 mutex_lock(&vendor_module_lock); 9496 kvm_x86_ops.hardware_enable = NULL; 9497 mutex_unlock(&vendor_module_lock); 9498 } 9499 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9500 9501 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9502 { 9503 /* 9504 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9505 * local APIC is in-kernel, the run loop will detect the non-runnable 9506 * state and halt the vCPU. Exit to userspace if the local APIC is 9507 * managed by userspace, in which case userspace is responsible for 9508 * handling wake events. 9509 */ 9510 ++vcpu->stat.halt_exits; 9511 if (lapic_in_kernel(vcpu)) { 9512 vcpu->arch.mp_state = state; 9513 return 1; 9514 } else { 9515 vcpu->run->exit_reason = reason; 9516 return 0; 9517 } 9518 } 9519 9520 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9521 { 9522 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9523 } 9524 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9525 9526 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9527 { 9528 int ret = kvm_skip_emulated_instruction(vcpu); 9529 /* 9530 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9531 * KVM_EXIT_DEBUG here. 9532 */ 9533 return kvm_emulate_halt_noskip(vcpu) && ret; 9534 } 9535 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9536 9537 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9538 { 9539 int ret = kvm_skip_emulated_instruction(vcpu); 9540 9541 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9542 KVM_EXIT_AP_RESET_HOLD) && ret; 9543 } 9544 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9545 9546 #ifdef CONFIG_X86_64 9547 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9548 unsigned long clock_type) 9549 { 9550 struct kvm_clock_pairing clock_pairing; 9551 struct timespec64 ts; 9552 u64 cycle; 9553 int ret; 9554 9555 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9556 return -KVM_EOPNOTSUPP; 9557 9558 /* 9559 * When tsc is in permanent catchup mode guests won't be able to use 9560 * pvclock_read_retry loop to get consistent view of pvclock 9561 */ 9562 if (vcpu->arch.tsc_always_catchup) 9563 return -KVM_EOPNOTSUPP; 9564 9565 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9566 return -KVM_EOPNOTSUPP; 9567 9568 clock_pairing.sec = ts.tv_sec; 9569 clock_pairing.nsec = ts.tv_nsec; 9570 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9571 clock_pairing.flags = 0; 9572 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9573 9574 ret = 0; 9575 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9576 sizeof(struct kvm_clock_pairing))) 9577 ret = -KVM_EFAULT; 9578 9579 return ret; 9580 } 9581 #endif 9582 9583 /* 9584 * kvm_pv_kick_cpu_op: Kick a vcpu. 9585 * 9586 * @apicid - apicid of vcpu to be kicked. 9587 */ 9588 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9589 { 9590 /* 9591 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9592 * common code, e.g. for tracing. Defer initialization to the compiler. 9593 */ 9594 struct kvm_lapic_irq lapic_irq = { 9595 .delivery_mode = APIC_DM_REMRD, 9596 .dest_mode = APIC_DEST_PHYSICAL, 9597 .shorthand = APIC_DEST_NOSHORT, 9598 .dest_id = apicid, 9599 }; 9600 9601 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9602 } 9603 9604 bool kvm_apicv_activated(struct kvm *kvm) 9605 { 9606 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9607 } 9608 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9609 9610 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9611 { 9612 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9613 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9614 9615 return (vm_reasons | vcpu_reasons) == 0; 9616 } 9617 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9618 9619 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9620 enum kvm_apicv_inhibit reason, bool set) 9621 { 9622 if (set) 9623 __set_bit(reason, inhibits); 9624 else 9625 __clear_bit(reason, inhibits); 9626 9627 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9628 } 9629 9630 static void kvm_apicv_init(struct kvm *kvm) 9631 { 9632 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9633 9634 init_rwsem(&kvm->arch.apicv_update_lock); 9635 9636 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9637 9638 if (!enable_apicv) 9639 set_or_clear_apicv_inhibit(inhibits, 9640 APICV_INHIBIT_REASON_DISABLE, true); 9641 } 9642 9643 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9644 { 9645 struct kvm_vcpu *target = NULL; 9646 struct kvm_apic_map *map; 9647 9648 vcpu->stat.directed_yield_attempted++; 9649 9650 if (single_task_running()) 9651 goto no_yield; 9652 9653 rcu_read_lock(); 9654 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9655 9656 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9657 target = map->phys_map[dest_id]->vcpu; 9658 9659 rcu_read_unlock(); 9660 9661 if (!target || !READ_ONCE(target->ready)) 9662 goto no_yield; 9663 9664 /* Ignore requests to yield to self */ 9665 if (vcpu == target) 9666 goto no_yield; 9667 9668 if (kvm_vcpu_yield_to(target) <= 0) 9669 goto no_yield; 9670 9671 vcpu->stat.directed_yield_successful++; 9672 9673 no_yield: 9674 return; 9675 } 9676 9677 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9678 { 9679 u64 ret = vcpu->run->hypercall.ret; 9680 9681 if (!is_64_bit_mode(vcpu)) 9682 ret = (u32)ret; 9683 kvm_rax_write(vcpu, ret); 9684 ++vcpu->stat.hypercalls; 9685 return kvm_skip_emulated_instruction(vcpu); 9686 } 9687 9688 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9689 { 9690 unsigned long nr, a0, a1, a2, a3, ret; 9691 int op_64_bit; 9692 9693 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9694 return kvm_xen_hypercall(vcpu); 9695 9696 if (kvm_hv_hypercall_enabled(vcpu)) 9697 return kvm_hv_hypercall(vcpu); 9698 9699 nr = kvm_rax_read(vcpu); 9700 a0 = kvm_rbx_read(vcpu); 9701 a1 = kvm_rcx_read(vcpu); 9702 a2 = kvm_rdx_read(vcpu); 9703 a3 = kvm_rsi_read(vcpu); 9704 9705 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9706 9707 op_64_bit = is_64_bit_hypercall(vcpu); 9708 if (!op_64_bit) { 9709 nr &= 0xFFFFFFFF; 9710 a0 &= 0xFFFFFFFF; 9711 a1 &= 0xFFFFFFFF; 9712 a2 &= 0xFFFFFFFF; 9713 a3 &= 0xFFFFFFFF; 9714 } 9715 9716 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9717 ret = -KVM_EPERM; 9718 goto out; 9719 } 9720 9721 ret = -KVM_ENOSYS; 9722 9723 switch (nr) { 9724 case KVM_HC_VAPIC_POLL_IRQ: 9725 ret = 0; 9726 break; 9727 case KVM_HC_KICK_CPU: 9728 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9729 break; 9730 9731 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9732 kvm_sched_yield(vcpu, a1); 9733 ret = 0; 9734 break; 9735 #ifdef CONFIG_X86_64 9736 case KVM_HC_CLOCK_PAIRING: 9737 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9738 break; 9739 #endif 9740 case KVM_HC_SEND_IPI: 9741 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9742 break; 9743 9744 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9745 break; 9746 case KVM_HC_SCHED_YIELD: 9747 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9748 break; 9749 9750 kvm_sched_yield(vcpu, a0); 9751 ret = 0; 9752 break; 9753 case KVM_HC_MAP_GPA_RANGE: { 9754 u64 gpa = a0, npages = a1, attrs = a2; 9755 9756 ret = -KVM_ENOSYS; 9757 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9758 break; 9759 9760 if (!PAGE_ALIGNED(gpa) || !npages || 9761 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9762 ret = -KVM_EINVAL; 9763 break; 9764 } 9765 9766 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9767 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9768 vcpu->run->hypercall.args[0] = gpa; 9769 vcpu->run->hypercall.args[1] = npages; 9770 vcpu->run->hypercall.args[2] = attrs; 9771 vcpu->run->hypercall.longmode = op_64_bit; 9772 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9773 return 0; 9774 } 9775 default: 9776 ret = -KVM_ENOSYS; 9777 break; 9778 } 9779 out: 9780 if (!op_64_bit) 9781 ret = (u32)ret; 9782 kvm_rax_write(vcpu, ret); 9783 9784 ++vcpu->stat.hypercalls; 9785 return kvm_skip_emulated_instruction(vcpu); 9786 } 9787 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9788 9789 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9790 { 9791 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9792 char instruction[3]; 9793 unsigned long rip = kvm_rip_read(vcpu); 9794 9795 /* 9796 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9797 * the pieces. 9798 */ 9799 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9800 ctxt->exception.error_code_valid = false; 9801 ctxt->exception.vector = UD_VECTOR; 9802 ctxt->have_exception = true; 9803 return X86EMUL_PROPAGATE_FAULT; 9804 } 9805 9806 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9807 9808 return emulator_write_emulated(ctxt, rip, instruction, 3, 9809 &ctxt->exception); 9810 } 9811 9812 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9813 { 9814 return vcpu->run->request_interrupt_window && 9815 likely(!pic_in_kernel(vcpu->kvm)); 9816 } 9817 9818 /* Called within kvm->srcu read side. */ 9819 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9820 { 9821 struct kvm_run *kvm_run = vcpu->run; 9822 9823 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9824 kvm_run->cr8 = kvm_get_cr8(vcpu); 9825 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9826 9827 kvm_run->ready_for_interrupt_injection = 9828 pic_in_kernel(vcpu->kvm) || 9829 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9830 9831 if (is_smm(vcpu)) 9832 kvm_run->flags |= KVM_RUN_X86_SMM; 9833 } 9834 9835 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9836 { 9837 int max_irr, tpr; 9838 9839 if (!kvm_x86_ops.update_cr8_intercept) 9840 return; 9841 9842 if (!lapic_in_kernel(vcpu)) 9843 return; 9844 9845 if (vcpu->arch.apic->apicv_active) 9846 return; 9847 9848 if (!vcpu->arch.apic->vapic_addr) 9849 max_irr = kvm_lapic_find_highest_irr(vcpu); 9850 else 9851 max_irr = -1; 9852 9853 if (max_irr != -1) 9854 max_irr >>= 4; 9855 9856 tpr = kvm_lapic_get_cr8(vcpu); 9857 9858 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9859 } 9860 9861 9862 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9863 { 9864 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9865 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9866 return 1; 9867 } 9868 9869 return kvm_x86_ops.nested_ops->check_events(vcpu); 9870 } 9871 9872 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9873 { 9874 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9875 vcpu->arch.exception.has_error_code, 9876 vcpu->arch.exception.error_code, 9877 vcpu->arch.exception.injected); 9878 9879 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9880 vcpu->arch.exception.error_code = false; 9881 static_call(kvm_x86_inject_exception)(vcpu); 9882 } 9883 9884 /* 9885 * Check for any event (interrupt or exception) that is ready to be injected, 9886 * and if there is at least one event, inject the event with the highest 9887 * priority. This handles both "pending" events, i.e. events that have never 9888 * been injected into the guest, and "injected" events, i.e. events that were 9889 * injected as part of a previous VM-Enter, but weren't successfully delivered 9890 * and need to be re-injected. 9891 * 9892 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9893 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9894 * be able to inject exceptions in the "middle" of an instruction, and so must 9895 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9896 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9897 * boundaries is necessary and correct. 9898 * 9899 * For simplicity, KVM uses a single path to inject all events (except events 9900 * that are injected directly from L1 to L2) and doesn't explicitly track 9901 * instruction boundaries for asynchronous events. However, because VM-Exits 9902 * that can occur during instruction execution typically result in KVM skipping 9903 * the instruction or injecting an exception, e.g. instruction and exception 9904 * intercepts, and because pending exceptions have higher priority than pending 9905 * interrupts, KVM still honors instruction boundaries in most scenarios. 9906 * 9907 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9908 * the instruction or inject an exception, then KVM can incorrecty inject a new 9909 * asynchrounous event if the event became pending after the CPU fetched the 9910 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9911 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9912 * injected on the restarted instruction instead of being deferred until the 9913 * instruction completes. 9914 * 9915 * In practice, this virtualization hole is unlikely to be observed by the 9916 * guest, and even less likely to cause functional problems. To detect the 9917 * hole, the guest would have to trigger an event on a side effect of an early 9918 * phase of instruction execution, e.g. on the instruction fetch from memory. 9919 * And for it to be a functional problem, the guest would need to depend on the 9920 * ordering between that side effect, the instruction completing, _and_ the 9921 * delivery of the asynchronous event. 9922 */ 9923 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9924 bool *req_immediate_exit) 9925 { 9926 bool can_inject; 9927 int r; 9928 9929 /* 9930 * Process nested events first, as nested VM-Exit supercedes event 9931 * re-injection. If there's an event queued for re-injection, it will 9932 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9933 */ 9934 if (is_guest_mode(vcpu)) 9935 r = kvm_check_nested_events(vcpu); 9936 else 9937 r = 0; 9938 9939 /* 9940 * Re-inject exceptions and events *especially* if immediate entry+exit 9941 * to/from L2 is needed, as any event that has already been injected 9942 * into L2 needs to complete its lifecycle before injecting a new event. 9943 * 9944 * Don't re-inject an NMI or interrupt if there is a pending exception. 9945 * This collision arises if an exception occurred while vectoring the 9946 * injected event, KVM intercepted said exception, and KVM ultimately 9947 * determined the fault belongs to the guest and queues the exception 9948 * for injection back into the guest. 9949 * 9950 * "Injected" interrupts can also collide with pending exceptions if 9951 * userspace ignores the "ready for injection" flag and blindly queues 9952 * an interrupt. In that case, prioritizing the exception is correct, 9953 * as the exception "occurred" before the exit to userspace. Trap-like 9954 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9955 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9956 * priority, they're only generated (pended) during instruction 9957 * execution, and interrupts are recognized at instruction boundaries. 9958 * Thus a pending fault-like exception means the fault occurred on the 9959 * *previous* instruction and must be serviced prior to recognizing any 9960 * new events in order to fully complete the previous instruction. 9961 */ 9962 if (vcpu->arch.exception.injected) 9963 kvm_inject_exception(vcpu); 9964 else if (kvm_is_exception_pending(vcpu)) 9965 ; /* see above */ 9966 else if (vcpu->arch.nmi_injected) 9967 static_call(kvm_x86_inject_nmi)(vcpu); 9968 else if (vcpu->arch.interrupt.injected) 9969 static_call(kvm_x86_inject_irq)(vcpu, true); 9970 9971 /* 9972 * Exceptions that morph to VM-Exits are handled above, and pending 9973 * exceptions on top of injected exceptions that do not VM-Exit should 9974 * either morph to #DF or, sadly, override the injected exception. 9975 */ 9976 WARN_ON_ONCE(vcpu->arch.exception.injected && 9977 vcpu->arch.exception.pending); 9978 9979 /* 9980 * Bail if immediate entry+exit to/from the guest is needed to complete 9981 * nested VM-Enter or event re-injection so that a different pending 9982 * event can be serviced (or if KVM needs to exit to userspace). 9983 * 9984 * Otherwise, continue processing events even if VM-Exit occurred. The 9985 * VM-Exit will have cleared exceptions that were meant for L2, but 9986 * there may now be events that can be injected into L1. 9987 */ 9988 if (r < 0) 9989 goto out; 9990 9991 /* 9992 * A pending exception VM-Exit should either result in nested VM-Exit 9993 * or force an immediate re-entry and exit to/from L2, and exception 9994 * VM-Exits cannot be injected (flag should _never_ be set). 9995 */ 9996 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9997 vcpu->arch.exception_vmexit.pending); 9998 9999 /* 10000 * New events, other than exceptions, cannot be injected if KVM needs 10001 * to re-inject a previous event. See above comments on re-injecting 10002 * for why pending exceptions get priority. 10003 */ 10004 can_inject = !kvm_event_needs_reinjection(vcpu); 10005 10006 if (vcpu->arch.exception.pending) { 10007 /* 10008 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10009 * value pushed on the stack. Trap-like exception and all #DBs 10010 * leave RF as-is (KVM follows Intel's behavior in this regard; 10011 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10012 * 10013 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10014 * describe the behavior of General Detect #DBs, which are 10015 * fault-like. They do _not_ set RF, a la code breakpoints. 10016 */ 10017 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10018 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10019 X86_EFLAGS_RF); 10020 10021 if (vcpu->arch.exception.vector == DB_VECTOR) { 10022 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10023 if (vcpu->arch.dr7 & DR7_GD) { 10024 vcpu->arch.dr7 &= ~DR7_GD; 10025 kvm_update_dr7(vcpu); 10026 } 10027 } 10028 10029 kvm_inject_exception(vcpu); 10030 10031 vcpu->arch.exception.pending = false; 10032 vcpu->arch.exception.injected = true; 10033 10034 can_inject = false; 10035 } 10036 10037 /* Don't inject interrupts if the user asked to avoid doing so */ 10038 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10039 return 0; 10040 10041 /* 10042 * Finally, inject interrupt events. If an event cannot be injected 10043 * due to architectural conditions (e.g. IF=0) a window-open exit 10044 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10045 * and can architecturally be injected, but we cannot do it right now: 10046 * an interrupt could have arrived just now and we have to inject it 10047 * as a vmexit, or there could already an event in the queue, which is 10048 * indicated by can_inject. In that case we request an immediate exit 10049 * in order to make progress and get back here for another iteration. 10050 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10051 */ 10052 #ifdef CONFIG_KVM_SMM 10053 if (vcpu->arch.smi_pending) { 10054 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10055 if (r < 0) 10056 goto out; 10057 if (r) { 10058 vcpu->arch.smi_pending = false; 10059 ++vcpu->arch.smi_count; 10060 enter_smm(vcpu); 10061 can_inject = false; 10062 } else 10063 static_call(kvm_x86_enable_smi_window)(vcpu); 10064 } 10065 #endif 10066 10067 if (vcpu->arch.nmi_pending) { 10068 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10069 if (r < 0) 10070 goto out; 10071 if (r) { 10072 --vcpu->arch.nmi_pending; 10073 vcpu->arch.nmi_injected = true; 10074 static_call(kvm_x86_inject_nmi)(vcpu); 10075 can_inject = false; 10076 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10077 } 10078 if (vcpu->arch.nmi_pending) 10079 static_call(kvm_x86_enable_nmi_window)(vcpu); 10080 } 10081 10082 if (kvm_cpu_has_injectable_intr(vcpu)) { 10083 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10084 if (r < 0) 10085 goto out; 10086 if (r) { 10087 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10088 static_call(kvm_x86_inject_irq)(vcpu, false); 10089 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10090 } 10091 if (kvm_cpu_has_injectable_intr(vcpu)) 10092 static_call(kvm_x86_enable_irq_window)(vcpu); 10093 } 10094 10095 if (is_guest_mode(vcpu) && 10096 kvm_x86_ops.nested_ops->has_events && 10097 kvm_x86_ops.nested_ops->has_events(vcpu)) 10098 *req_immediate_exit = true; 10099 10100 /* 10101 * KVM must never queue a new exception while injecting an event; KVM 10102 * is done emulating and should only propagate the to-be-injected event 10103 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10104 * infinite loop as KVM will bail from VM-Enter to inject the pending 10105 * exception and start the cycle all over. 10106 * 10107 * Exempt triple faults as they have special handling and won't put the 10108 * vCPU into an infinite loop. Triple fault can be queued when running 10109 * VMX without unrestricted guest, as that requires KVM to emulate Real 10110 * Mode events (see kvm_inject_realmode_interrupt()). 10111 */ 10112 WARN_ON_ONCE(vcpu->arch.exception.pending || 10113 vcpu->arch.exception_vmexit.pending); 10114 return 0; 10115 10116 out: 10117 if (r == -EBUSY) { 10118 *req_immediate_exit = true; 10119 r = 0; 10120 } 10121 return r; 10122 } 10123 10124 static void process_nmi(struct kvm_vcpu *vcpu) 10125 { 10126 unsigned limit = 2; 10127 10128 /* 10129 * x86 is limited to one NMI running, and one NMI pending after it. 10130 * If an NMI is already in progress, limit further NMIs to just one. 10131 * Otherwise, allow two (and we'll inject the first one immediately). 10132 */ 10133 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10134 limit = 1; 10135 10136 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10137 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10138 kvm_make_request(KVM_REQ_EVENT, vcpu); 10139 } 10140 10141 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10142 unsigned long *vcpu_bitmap) 10143 { 10144 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10145 } 10146 10147 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10148 { 10149 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10150 } 10151 10152 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10153 { 10154 struct kvm_lapic *apic = vcpu->arch.apic; 10155 bool activate; 10156 10157 if (!lapic_in_kernel(vcpu)) 10158 return; 10159 10160 down_read(&vcpu->kvm->arch.apicv_update_lock); 10161 preempt_disable(); 10162 10163 /* Do not activate APICV when APIC is disabled */ 10164 activate = kvm_vcpu_apicv_activated(vcpu) && 10165 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10166 10167 if (apic->apicv_active == activate) 10168 goto out; 10169 10170 apic->apicv_active = activate; 10171 kvm_apic_update_apicv(vcpu); 10172 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10173 10174 /* 10175 * When APICv gets disabled, we may still have injected interrupts 10176 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10177 * still active when the interrupt got accepted. Make sure 10178 * kvm_check_and_inject_events() is called to check for that. 10179 */ 10180 if (!apic->apicv_active) 10181 kvm_make_request(KVM_REQ_EVENT, vcpu); 10182 10183 out: 10184 preempt_enable(); 10185 up_read(&vcpu->kvm->arch.apicv_update_lock); 10186 } 10187 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10188 10189 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10190 { 10191 if (!lapic_in_kernel(vcpu)) 10192 return; 10193 10194 /* 10195 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10196 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10197 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10198 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10199 * this case so that KVM can the AVIC doorbell to inject interrupts to 10200 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10201 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10202 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10203 * access page is sticky. 10204 */ 10205 if (apic_x2apic_mode(vcpu->arch.apic) && 10206 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10207 kvm_inhibit_apic_access_page(vcpu); 10208 10209 __kvm_vcpu_update_apicv(vcpu); 10210 } 10211 10212 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10213 enum kvm_apicv_inhibit reason, bool set) 10214 { 10215 unsigned long old, new; 10216 10217 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10218 10219 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10220 return; 10221 10222 old = new = kvm->arch.apicv_inhibit_reasons; 10223 10224 set_or_clear_apicv_inhibit(&new, reason, set); 10225 10226 if (!!old != !!new) { 10227 /* 10228 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10229 * false positives in the sanity check WARN in svm_vcpu_run(). 10230 * This task will wait for all vCPUs to ack the kick IRQ before 10231 * updating apicv_inhibit_reasons, and all other vCPUs will 10232 * block on acquiring apicv_update_lock so that vCPUs can't 10233 * redo svm_vcpu_run() without seeing the new inhibit state. 10234 * 10235 * Note, holding apicv_update_lock and taking it in the read 10236 * side (handling the request) also prevents other vCPUs from 10237 * servicing the request with a stale apicv_inhibit_reasons. 10238 */ 10239 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10240 kvm->arch.apicv_inhibit_reasons = new; 10241 if (new) { 10242 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10243 int idx = srcu_read_lock(&kvm->srcu); 10244 10245 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10246 srcu_read_unlock(&kvm->srcu, idx); 10247 } 10248 } else { 10249 kvm->arch.apicv_inhibit_reasons = new; 10250 } 10251 } 10252 10253 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10254 enum kvm_apicv_inhibit reason, bool set) 10255 { 10256 if (!enable_apicv) 10257 return; 10258 10259 down_write(&kvm->arch.apicv_update_lock); 10260 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10261 up_write(&kvm->arch.apicv_update_lock); 10262 } 10263 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10264 10265 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10266 { 10267 if (!kvm_apic_present(vcpu)) 10268 return; 10269 10270 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10271 10272 if (irqchip_split(vcpu->kvm)) 10273 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10274 else { 10275 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10276 if (ioapic_in_kernel(vcpu->kvm)) 10277 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10278 } 10279 10280 if (is_guest_mode(vcpu)) 10281 vcpu->arch.load_eoi_exitmap_pending = true; 10282 else 10283 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10284 } 10285 10286 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10287 { 10288 u64 eoi_exit_bitmap[4]; 10289 10290 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10291 return; 10292 10293 if (to_hv_vcpu(vcpu)) { 10294 bitmap_or((ulong *)eoi_exit_bitmap, 10295 vcpu->arch.ioapic_handled_vectors, 10296 to_hv_synic(vcpu)->vec_bitmap, 256); 10297 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10298 return; 10299 } 10300 10301 static_call_cond(kvm_x86_load_eoi_exitmap)( 10302 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10303 } 10304 10305 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10306 unsigned long start, unsigned long end) 10307 { 10308 unsigned long apic_address; 10309 10310 /* 10311 * The physical address of apic access page is stored in the VMCS. 10312 * Update it when it becomes invalid. 10313 */ 10314 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10315 if (start <= apic_address && apic_address < end) 10316 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10317 } 10318 10319 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10320 { 10321 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10322 } 10323 10324 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10325 { 10326 if (!lapic_in_kernel(vcpu)) 10327 return; 10328 10329 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10330 } 10331 10332 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10333 { 10334 smp_send_reschedule(vcpu->cpu); 10335 } 10336 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10337 10338 /* 10339 * Called within kvm->srcu read side. 10340 * Returns 1 to let vcpu_run() continue the guest execution loop without 10341 * exiting to the userspace. Otherwise, the value will be returned to the 10342 * userspace. 10343 */ 10344 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10345 { 10346 int r; 10347 bool req_int_win = 10348 dm_request_for_irq_injection(vcpu) && 10349 kvm_cpu_accept_dm_intr(vcpu); 10350 fastpath_t exit_fastpath; 10351 10352 bool req_immediate_exit = false; 10353 10354 if (kvm_request_pending(vcpu)) { 10355 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10356 r = -EIO; 10357 goto out; 10358 } 10359 10360 if (kvm_dirty_ring_check_request(vcpu)) { 10361 r = 0; 10362 goto out; 10363 } 10364 10365 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10366 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10367 r = 0; 10368 goto out; 10369 } 10370 } 10371 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10372 kvm_mmu_free_obsolete_roots(vcpu); 10373 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10374 __kvm_migrate_timers(vcpu); 10375 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10376 kvm_update_masterclock(vcpu->kvm); 10377 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10378 kvm_gen_kvmclock_update(vcpu); 10379 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10380 r = kvm_guest_time_update(vcpu); 10381 if (unlikely(r)) 10382 goto out; 10383 } 10384 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10385 kvm_mmu_sync_roots(vcpu); 10386 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10387 kvm_mmu_load_pgd(vcpu); 10388 10389 /* 10390 * Note, the order matters here, as flushing "all" TLB entries 10391 * also flushes the "current" TLB entries, i.e. servicing the 10392 * flush "all" will clear any request to flush "current". 10393 */ 10394 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10395 kvm_vcpu_flush_tlb_all(vcpu); 10396 10397 kvm_service_local_tlb_flush_requests(vcpu); 10398 10399 /* 10400 * Fall back to a "full" guest flush if Hyper-V's precise 10401 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10402 * the flushes are considered "remote" and not "local" because 10403 * the requests can be initiated from other vCPUs. 10404 */ 10405 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10406 kvm_hv_vcpu_flush_tlb(vcpu)) 10407 kvm_vcpu_flush_tlb_guest(vcpu); 10408 10409 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10410 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10411 r = 0; 10412 goto out; 10413 } 10414 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10415 if (is_guest_mode(vcpu)) 10416 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10417 10418 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10419 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10420 vcpu->mmio_needed = 0; 10421 r = 0; 10422 goto out; 10423 } 10424 } 10425 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10426 /* Page is swapped out. Do synthetic halt */ 10427 vcpu->arch.apf.halted = true; 10428 r = 1; 10429 goto out; 10430 } 10431 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10432 record_steal_time(vcpu); 10433 #ifdef CONFIG_KVM_SMM 10434 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10435 process_smi(vcpu); 10436 #endif 10437 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10438 process_nmi(vcpu); 10439 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10440 kvm_pmu_handle_event(vcpu); 10441 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10442 kvm_pmu_deliver_pmi(vcpu); 10443 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10444 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10445 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10446 vcpu->arch.ioapic_handled_vectors)) { 10447 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10448 vcpu->run->eoi.vector = 10449 vcpu->arch.pending_ioapic_eoi; 10450 r = 0; 10451 goto out; 10452 } 10453 } 10454 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10455 vcpu_scan_ioapic(vcpu); 10456 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10457 vcpu_load_eoi_exitmap(vcpu); 10458 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10459 kvm_vcpu_reload_apic_access_page(vcpu); 10460 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10461 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10462 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10463 vcpu->run->system_event.ndata = 0; 10464 r = 0; 10465 goto out; 10466 } 10467 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10468 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10469 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10470 vcpu->run->system_event.ndata = 0; 10471 r = 0; 10472 goto out; 10473 } 10474 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10475 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10476 10477 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10478 vcpu->run->hyperv = hv_vcpu->exit; 10479 r = 0; 10480 goto out; 10481 } 10482 10483 /* 10484 * KVM_REQ_HV_STIMER has to be processed after 10485 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10486 * depend on the guest clock being up-to-date 10487 */ 10488 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10489 kvm_hv_process_stimers(vcpu); 10490 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10491 kvm_vcpu_update_apicv(vcpu); 10492 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10493 kvm_check_async_pf_completion(vcpu); 10494 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10495 static_call(kvm_x86_msr_filter_changed)(vcpu); 10496 10497 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10498 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10499 } 10500 10501 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10502 kvm_xen_has_interrupt(vcpu)) { 10503 ++vcpu->stat.req_event; 10504 r = kvm_apic_accept_events(vcpu); 10505 if (r < 0) { 10506 r = 0; 10507 goto out; 10508 } 10509 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10510 r = 1; 10511 goto out; 10512 } 10513 10514 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10515 if (r < 0) { 10516 r = 0; 10517 goto out; 10518 } 10519 if (req_int_win) 10520 static_call(kvm_x86_enable_irq_window)(vcpu); 10521 10522 if (kvm_lapic_enabled(vcpu)) { 10523 update_cr8_intercept(vcpu); 10524 kvm_lapic_sync_to_vapic(vcpu); 10525 } 10526 } 10527 10528 r = kvm_mmu_reload(vcpu); 10529 if (unlikely(r)) { 10530 goto cancel_injection; 10531 } 10532 10533 preempt_disable(); 10534 10535 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10536 10537 /* 10538 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10539 * IPI are then delayed after guest entry, which ensures that they 10540 * result in virtual interrupt delivery. 10541 */ 10542 local_irq_disable(); 10543 10544 /* Store vcpu->apicv_active before vcpu->mode. */ 10545 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10546 10547 kvm_vcpu_srcu_read_unlock(vcpu); 10548 10549 /* 10550 * 1) We should set ->mode before checking ->requests. Please see 10551 * the comment in kvm_vcpu_exiting_guest_mode(). 10552 * 10553 * 2) For APICv, we should set ->mode before checking PID.ON. This 10554 * pairs with the memory barrier implicit in pi_test_and_set_on 10555 * (see vmx_deliver_posted_interrupt). 10556 * 10557 * 3) This also orders the write to mode from any reads to the page 10558 * tables done while the VCPU is running. Please see the comment 10559 * in kvm_flush_remote_tlbs. 10560 */ 10561 smp_mb__after_srcu_read_unlock(); 10562 10563 /* 10564 * Process pending posted interrupts to handle the case where the 10565 * notification IRQ arrived in the host, or was never sent (because the 10566 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10567 * status, KVM doesn't update assigned devices when APICv is inhibited, 10568 * i.e. they can post interrupts even if APICv is temporarily disabled. 10569 */ 10570 if (kvm_lapic_enabled(vcpu)) 10571 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10572 10573 if (kvm_vcpu_exit_request(vcpu)) { 10574 vcpu->mode = OUTSIDE_GUEST_MODE; 10575 smp_wmb(); 10576 local_irq_enable(); 10577 preempt_enable(); 10578 kvm_vcpu_srcu_read_lock(vcpu); 10579 r = 1; 10580 goto cancel_injection; 10581 } 10582 10583 if (req_immediate_exit) { 10584 kvm_make_request(KVM_REQ_EVENT, vcpu); 10585 static_call(kvm_x86_request_immediate_exit)(vcpu); 10586 } 10587 10588 fpregs_assert_state_consistent(); 10589 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10590 switch_fpu_return(); 10591 10592 if (vcpu->arch.guest_fpu.xfd_err) 10593 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10594 10595 if (unlikely(vcpu->arch.switch_db_regs)) { 10596 set_debugreg(0, 7); 10597 set_debugreg(vcpu->arch.eff_db[0], 0); 10598 set_debugreg(vcpu->arch.eff_db[1], 1); 10599 set_debugreg(vcpu->arch.eff_db[2], 2); 10600 set_debugreg(vcpu->arch.eff_db[3], 3); 10601 } else if (unlikely(hw_breakpoint_active())) { 10602 set_debugreg(0, 7); 10603 } 10604 10605 guest_timing_enter_irqoff(); 10606 10607 for (;;) { 10608 /* 10609 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10610 * update must kick and wait for all vCPUs before toggling the 10611 * per-VM state, and responsing vCPUs must wait for the update 10612 * to complete before servicing KVM_REQ_APICV_UPDATE. 10613 */ 10614 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10615 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10616 10617 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10618 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10619 break; 10620 10621 if (kvm_lapic_enabled(vcpu)) 10622 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10623 10624 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10625 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10626 break; 10627 } 10628 } 10629 10630 /* 10631 * Do this here before restoring debug registers on the host. And 10632 * since we do this before handling the vmexit, a DR access vmexit 10633 * can (a) read the correct value of the debug registers, (b) set 10634 * KVM_DEBUGREG_WONT_EXIT again. 10635 */ 10636 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10637 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10638 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10639 kvm_update_dr0123(vcpu); 10640 kvm_update_dr7(vcpu); 10641 } 10642 10643 /* 10644 * If the guest has used debug registers, at least dr7 10645 * will be disabled while returning to the host. 10646 * If we don't have active breakpoints in the host, we don't 10647 * care about the messed up debug address registers. But if 10648 * we have some of them active, restore the old state. 10649 */ 10650 if (hw_breakpoint_active()) 10651 hw_breakpoint_restore(); 10652 10653 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10654 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10655 10656 vcpu->mode = OUTSIDE_GUEST_MODE; 10657 smp_wmb(); 10658 10659 /* 10660 * Sync xfd before calling handle_exit_irqoff() which may 10661 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10662 * in #NM irqoff handler). 10663 */ 10664 if (vcpu->arch.xfd_no_write_intercept) 10665 fpu_sync_guest_vmexit_xfd_state(); 10666 10667 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10668 10669 if (vcpu->arch.guest_fpu.xfd_err) 10670 wrmsrl(MSR_IA32_XFD_ERR, 0); 10671 10672 /* 10673 * Consume any pending interrupts, including the possible source of 10674 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10675 * An instruction is required after local_irq_enable() to fully unblock 10676 * interrupts on processors that implement an interrupt shadow, the 10677 * stat.exits increment will do nicely. 10678 */ 10679 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10680 local_irq_enable(); 10681 ++vcpu->stat.exits; 10682 local_irq_disable(); 10683 kvm_after_interrupt(vcpu); 10684 10685 /* 10686 * Wait until after servicing IRQs to account guest time so that any 10687 * ticks that occurred while running the guest are properly accounted 10688 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10689 * of accounting via context tracking, but the loss of accuracy is 10690 * acceptable for all known use cases. 10691 */ 10692 guest_timing_exit_irqoff(); 10693 10694 local_irq_enable(); 10695 preempt_enable(); 10696 10697 kvm_vcpu_srcu_read_lock(vcpu); 10698 10699 /* 10700 * Profile KVM exit RIPs: 10701 */ 10702 if (unlikely(prof_on == KVM_PROFILING)) { 10703 unsigned long rip = kvm_rip_read(vcpu); 10704 profile_hit(KVM_PROFILING, (void *)rip); 10705 } 10706 10707 if (unlikely(vcpu->arch.tsc_always_catchup)) 10708 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10709 10710 if (vcpu->arch.apic_attention) 10711 kvm_lapic_sync_from_vapic(vcpu); 10712 10713 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10714 return r; 10715 10716 cancel_injection: 10717 if (req_immediate_exit) 10718 kvm_make_request(KVM_REQ_EVENT, vcpu); 10719 static_call(kvm_x86_cancel_injection)(vcpu); 10720 if (unlikely(vcpu->arch.apic_attention)) 10721 kvm_lapic_sync_from_vapic(vcpu); 10722 out: 10723 return r; 10724 } 10725 10726 /* Called within kvm->srcu read side. */ 10727 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10728 { 10729 bool hv_timer; 10730 10731 if (!kvm_arch_vcpu_runnable(vcpu)) { 10732 /* 10733 * Switch to the software timer before halt-polling/blocking as 10734 * the guest's timer may be a break event for the vCPU, and the 10735 * hypervisor timer runs only when the CPU is in guest mode. 10736 * Switch before halt-polling so that KVM recognizes an expired 10737 * timer before blocking. 10738 */ 10739 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10740 if (hv_timer) 10741 kvm_lapic_switch_to_sw_timer(vcpu); 10742 10743 kvm_vcpu_srcu_read_unlock(vcpu); 10744 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10745 kvm_vcpu_halt(vcpu); 10746 else 10747 kvm_vcpu_block(vcpu); 10748 kvm_vcpu_srcu_read_lock(vcpu); 10749 10750 if (hv_timer) 10751 kvm_lapic_switch_to_hv_timer(vcpu); 10752 10753 /* 10754 * If the vCPU is not runnable, a signal or another host event 10755 * of some kind is pending; service it without changing the 10756 * vCPU's activity state. 10757 */ 10758 if (!kvm_arch_vcpu_runnable(vcpu)) 10759 return 1; 10760 } 10761 10762 /* 10763 * Evaluate nested events before exiting the halted state. This allows 10764 * the halt state to be recorded properly in the VMCS12's activity 10765 * state field (AMD does not have a similar field and a VM-Exit always 10766 * causes a spurious wakeup from HLT). 10767 */ 10768 if (is_guest_mode(vcpu)) { 10769 if (kvm_check_nested_events(vcpu) < 0) 10770 return 0; 10771 } 10772 10773 if (kvm_apic_accept_events(vcpu) < 0) 10774 return 0; 10775 switch(vcpu->arch.mp_state) { 10776 case KVM_MP_STATE_HALTED: 10777 case KVM_MP_STATE_AP_RESET_HOLD: 10778 vcpu->arch.pv.pv_unhalted = false; 10779 vcpu->arch.mp_state = 10780 KVM_MP_STATE_RUNNABLE; 10781 fallthrough; 10782 case KVM_MP_STATE_RUNNABLE: 10783 vcpu->arch.apf.halted = false; 10784 break; 10785 case KVM_MP_STATE_INIT_RECEIVED: 10786 break; 10787 default: 10788 WARN_ON_ONCE(1); 10789 break; 10790 } 10791 return 1; 10792 } 10793 10794 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10795 { 10796 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10797 !vcpu->arch.apf.halted); 10798 } 10799 10800 /* Called within kvm->srcu read side. */ 10801 static int vcpu_run(struct kvm_vcpu *vcpu) 10802 { 10803 int r; 10804 10805 vcpu->arch.l1tf_flush_l1d = true; 10806 10807 for (;;) { 10808 /* 10809 * If another guest vCPU requests a PV TLB flush in the middle 10810 * of instruction emulation, the rest of the emulation could 10811 * use a stale page translation. Assume that any code after 10812 * this point can start executing an instruction. 10813 */ 10814 vcpu->arch.at_instruction_boundary = false; 10815 if (kvm_vcpu_running(vcpu)) { 10816 r = vcpu_enter_guest(vcpu); 10817 } else { 10818 r = vcpu_block(vcpu); 10819 } 10820 10821 if (r <= 0) 10822 break; 10823 10824 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10825 if (kvm_xen_has_pending_events(vcpu)) 10826 kvm_xen_inject_pending_events(vcpu); 10827 10828 if (kvm_cpu_has_pending_timer(vcpu)) 10829 kvm_inject_pending_timer_irqs(vcpu); 10830 10831 if (dm_request_for_irq_injection(vcpu) && 10832 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10833 r = 0; 10834 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10835 ++vcpu->stat.request_irq_exits; 10836 break; 10837 } 10838 10839 if (__xfer_to_guest_mode_work_pending()) { 10840 kvm_vcpu_srcu_read_unlock(vcpu); 10841 r = xfer_to_guest_mode_handle_work(vcpu); 10842 kvm_vcpu_srcu_read_lock(vcpu); 10843 if (r) 10844 return r; 10845 } 10846 } 10847 10848 return r; 10849 } 10850 10851 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10852 { 10853 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10854 } 10855 10856 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10857 { 10858 BUG_ON(!vcpu->arch.pio.count); 10859 10860 return complete_emulated_io(vcpu); 10861 } 10862 10863 /* 10864 * Implements the following, as a state machine: 10865 * 10866 * read: 10867 * for each fragment 10868 * for each mmio piece in the fragment 10869 * write gpa, len 10870 * exit 10871 * copy data 10872 * execute insn 10873 * 10874 * write: 10875 * for each fragment 10876 * for each mmio piece in the fragment 10877 * write gpa, len 10878 * copy data 10879 * exit 10880 */ 10881 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10882 { 10883 struct kvm_run *run = vcpu->run; 10884 struct kvm_mmio_fragment *frag; 10885 unsigned len; 10886 10887 BUG_ON(!vcpu->mmio_needed); 10888 10889 /* Complete previous fragment */ 10890 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10891 len = min(8u, frag->len); 10892 if (!vcpu->mmio_is_write) 10893 memcpy(frag->data, run->mmio.data, len); 10894 10895 if (frag->len <= 8) { 10896 /* Switch to the next fragment. */ 10897 frag++; 10898 vcpu->mmio_cur_fragment++; 10899 } else { 10900 /* Go forward to the next mmio piece. */ 10901 frag->data += len; 10902 frag->gpa += len; 10903 frag->len -= len; 10904 } 10905 10906 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10907 vcpu->mmio_needed = 0; 10908 10909 /* FIXME: return into emulator if single-stepping. */ 10910 if (vcpu->mmio_is_write) 10911 return 1; 10912 vcpu->mmio_read_completed = 1; 10913 return complete_emulated_io(vcpu); 10914 } 10915 10916 run->exit_reason = KVM_EXIT_MMIO; 10917 run->mmio.phys_addr = frag->gpa; 10918 if (vcpu->mmio_is_write) 10919 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10920 run->mmio.len = min(8u, frag->len); 10921 run->mmio.is_write = vcpu->mmio_is_write; 10922 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10923 return 0; 10924 } 10925 10926 /* Swap (qemu) user FPU context for the guest FPU context. */ 10927 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10928 { 10929 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10930 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10931 trace_kvm_fpu(1); 10932 } 10933 10934 /* When vcpu_run ends, restore user space FPU context. */ 10935 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10936 { 10937 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10938 ++vcpu->stat.fpu_reload; 10939 trace_kvm_fpu(0); 10940 } 10941 10942 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10943 { 10944 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10945 struct kvm_run *kvm_run = vcpu->run; 10946 int r; 10947 10948 vcpu_load(vcpu); 10949 kvm_sigset_activate(vcpu); 10950 kvm_run->flags = 0; 10951 kvm_load_guest_fpu(vcpu); 10952 10953 kvm_vcpu_srcu_read_lock(vcpu); 10954 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10955 if (kvm_run->immediate_exit) { 10956 r = -EINTR; 10957 goto out; 10958 } 10959 /* 10960 * It should be impossible for the hypervisor timer to be in 10961 * use before KVM has ever run the vCPU. 10962 */ 10963 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10964 10965 kvm_vcpu_srcu_read_unlock(vcpu); 10966 kvm_vcpu_block(vcpu); 10967 kvm_vcpu_srcu_read_lock(vcpu); 10968 10969 if (kvm_apic_accept_events(vcpu) < 0) { 10970 r = 0; 10971 goto out; 10972 } 10973 r = -EAGAIN; 10974 if (signal_pending(current)) { 10975 r = -EINTR; 10976 kvm_run->exit_reason = KVM_EXIT_INTR; 10977 ++vcpu->stat.signal_exits; 10978 } 10979 goto out; 10980 } 10981 10982 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10983 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10984 r = -EINVAL; 10985 goto out; 10986 } 10987 10988 if (kvm_run->kvm_dirty_regs) { 10989 r = sync_regs(vcpu); 10990 if (r != 0) 10991 goto out; 10992 } 10993 10994 /* re-sync apic's tpr */ 10995 if (!lapic_in_kernel(vcpu)) { 10996 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10997 r = -EINVAL; 10998 goto out; 10999 } 11000 } 11001 11002 /* 11003 * If userspace set a pending exception and L2 is active, convert it to 11004 * a pending VM-Exit if L1 wants to intercept the exception. 11005 */ 11006 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11007 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11008 ex->error_code)) { 11009 kvm_queue_exception_vmexit(vcpu, ex->vector, 11010 ex->has_error_code, ex->error_code, 11011 ex->has_payload, ex->payload); 11012 ex->injected = false; 11013 ex->pending = false; 11014 } 11015 vcpu->arch.exception_from_userspace = false; 11016 11017 if (unlikely(vcpu->arch.complete_userspace_io)) { 11018 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11019 vcpu->arch.complete_userspace_io = NULL; 11020 r = cui(vcpu); 11021 if (r <= 0) 11022 goto out; 11023 } else { 11024 WARN_ON_ONCE(vcpu->arch.pio.count); 11025 WARN_ON_ONCE(vcpu->mmio_needed); 11026 } 11027 11028 if (kvm_run->immediate_exit) { 11029 r = -EINTR; 11030 goto out; 11031 } 11032 11033 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11034 if (r <= 0) 11035 goto out; 11036 11037 r = vcpu_run(vcpu); 11038 11039 out: 11040 kvm_put_guest_fpu(vcpu); 11041 if (kvm_run->kvm_valid_regs) 11042 store_regs(vcpu); 11043 post_kvm_run_save(vcpu); 11044 kvm_vcpu_srcu_read_unlock(vcpu); 11045 11046 kvm_sigset_deactivate(vcpu); 11047 vcpu_put(vcpu); 11048 return r; 11049 } 11050 11051 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11052 { 11053 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11054 /* 11055 * We are here if userspace calls get_regs() in the middle of 11056 * instruction emulation. Registers state needs to be copied 11057 * back from emulation context to vcpu. Userspace shouldn't do 11058 * that usually, but some bad designed PV devices (vmware 11059 * backdoor interface) need this to work 11060 */ 11061 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11062 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11063 } 11064 regs->rax = kvm_rax_read(vcpu); 11065 regs->rbx = kvm_rbx_read(vcpu); 11066 regs->rcx = kvm_rcx_read(vcpu); 11067 regs->rdx = kvm_rdx_read(vcpu); 11068 regs->rsi = kvm_rsi_read(vcpu); 11069 regs->rdi = kvm_rdi_read(vcpu); 11070 regs->rsp = kvm_rsp_read(vcpu); 11071 regs->rbp = kvm_rbp_read(vcpu); 11072 #ifdef CONFIG_X86_64 11073 regs->r8 = kvm_r8_read(vcpu); 11074 regs->r9 = kvm_r9_read(vcpu); 11075 regs->r10 = kvm_r10_read(vcpu); 11076 regs->r11 = kvm_r11_read(vcpu); 11077 regs->r12 = kvm_r12_read(vcpu); 11078 regs->r13 = kvm_r13_read(vcpu); 11079 regs->r14 = kvm_r14_read(vcpu); 11080 regs->r15 = kvm_r15_read(vcpu); 11081 #endif 11082 11083 regs->rip = kvm_rip_read(vcpu); 11084 regs->rflags = kvm_get_rflags(vcpu); 11085 } 11086 11087 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11088 { 11089 vcpu_load(vcpu); 11090 __get_regs(vcpu, regs); 11091 vcpu_put(vcpu); 11092 return 0; 11093 } 11094 11095 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11096 { 11097 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11098 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11099 11100 kvm_rax_write(vcpu, regs->rax); 11101 kvm_rbx_write(vcpu, regs->rbx); 11102 kvm_rcx_write(vcpu, regs->rcx); 11103 kvm_rdx_write(vcpu, regs->rdx); 11104 kvm_rsi_write(vcpu, regs->rsi); 11105 kvm_rdi_write(vcpu, regs->rdi); 11106 kvm_rsp_write(vcpu, regs->rsp); 11107 kvm_rbp_write(vcpu, regs->rbp); 11108 #ifdef CONFIG_X86_64 11109 kvm_r8_write(vcpu, regs->r8); 11110 kvm_r9_write(vcpu, regs->r9); 11111 kvm_r10_write(vcpu, regs->r10); 11112 kvm_r11_write(vcpu, regs->r11); 11113 kvm_r12_write(vcpu, regs->r12); 11114 kvm_r13_write(vcpu, regs->r13); 11115 kvm_r14_write(vcpu, regs->r14); 11116 kvm_r15_write(vcpu, regs->r15); 11117 #endif 11118 11119 kvm_rip_write(vcpu, regs->rip); 11120 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11121 11122 vcpu->arch.exception.pending = false; 11123 vcpu->arch.exception_vmexit.pending = false; 11124 11125 kvm_make_request(KVM_REQ_EVENT, vcpu); 11126 } 11127 11128 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11129 { 11130 vcpu_load(vcpu); 11131 __set_regs(vcpu, regs); 11132 vcpu_put(vcpu); 11133 return 0; 11134 } 11135 11136 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11137 { 11138 struct desc_ptr dt; 11139 11140 if (vcpu->arch.guest_state_protected) 11141 goto skip_protected_regs; 11142 11143 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11144 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11145 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11146 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11147 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11148 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11149 11150 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11151 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11152 11153 static_call(kvm_x86_get_idt)(vcpu, &dt); 11154 sregs->idt.limit = dt.size; 11155 sregs->idt.base = dt.address; 11156 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11157 sregs->gdt.limit = dt.size; 11158 sregs->gdt.base = dt.address; 11159 11160 sregs->cr2 = vcpu->arch.cr2; 11161 sregs->cr3 = kvm_read_cr3(vcpu); 11162 11163 skip_protected_regs: 11164 sregs->cr0 = kvm_read_cr0(vcpu); 11165 sregs->cr4 = kvm_read_cr4(vcpu); 11166 sregs->cr8 = kvm_get_cr8(vcpu); 11167 sregs->efer = vcpu->arch.efer; 11168 sregs->apic_base = kvm_get_apic_base(vcpu); 11169 } 11170 11171 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11172 { 11173 __get_sregs_common(vcpu, sregs); 11174 11175 if (vcpu->arch.guest_state_protected) 11176 return; 11177 11178 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11179 set_bit(vcpu->arch.interrupt.nr, 11180 (unsigned long *)sregs->interrupt_bitmap); 11181 } 11182 11183 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11184 { 11185 int i; 11186 11187 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11188 11189 if (vcpu->arch.guest_state_protected) 11190 return; 11191 11192 if (is_pae_paging(vcpu)) { 11193 for (i = 0 ; i < 4 ; i++) 11194 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11195 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11196 } 11197 } 11198 11199 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11200 struct kvm_sregs *sregs) 11201 { 11202 vcpu_load(vcpu); 11203 __get_sregs(vcpu, sregs); 11204 vcpu_put(vcpu); 11205 return 0; 11206 } 11207 11208 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11209 struct kvm_mp_state *mp_state) 11210 { 11211 int r; 11212 11213 vcpu_load(vcpu); 11214 if (kvm_mpx_supported()) 11215 kvm_load_guest_fpu(vcpu); 11216 11217 r = kvm_apic_accept_events(vcpu); 11218 if (r < 0) 11219 goto out; 11220 r = 0; 11221 11222 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11223 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11224 vcpu->arch.pv.pv_unhalted) 11225 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11226 else 11227 mp_state->mp_state = vcpu->arch.mp_state; 11228 11229 out: 11230 if (kvm_mpx_supported()) 11231 kvm_put_guest_fpu(vcpu); 11232 vcpu_put(vcpu); 11233 return r; 11234 } 11235 11236 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11237 struct kvm_mp_state *mp_state) 11238 { 11239 int ret = -EINVAL; 11240 11241 vcpu_load(vcpu); 11242 11243 switch (mp_state->mp_state) { 11244 case KVM_MP_STATE_UNINITIALIZED: 11245 case KVM_MP_STATE_HALTED: 11246 case KVM_MP_STATE_AP_RESET_HOLD: 11247 case KVM_MP_STATE_INIT_RECEIVED: 11248 case KVM_MP_STATE_SIPI_RECEIVED: 11249 if (!lapic_in_kernel(vcpu)) 11250 goto out; 11251 break; 11252 11253 case KVM_MP_STATE_RUNNABLE: 11254 break; 11255 11256 default: 11257 goto out; 11258 } 11259 11260 /* 11261 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11262 * forcing the guest into INIT/SIPI if those events are supposed to be 11263 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11264 * if an SMI is pending as well. 11265 */ 11266 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11267 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11268 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11269 goto out; 11270 11271 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11272 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11273 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11274 } else 11275 vcpu->arch.mp_state = mp_state->mp_state; 11276 kvm_make_request(KVM_REQ_EVENT, vcpu); 11277 11278 ret = 0; 11279 out: 11280 vcpu_put(vcpu); 11281 return ret; 11282 } 11283 11284 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11285 int reason, bool has_error_code, u32 error_code) 11286 { 11287 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11288 int ret; 11289 11290 init_emulate_ctxt(vcpu); 11291 11292 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11293 has_error_code, error_code); 11294 if (ret) { 11295 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11296 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11297 vcpu->run->internal.ndata = 0; 11298 return 0; 11299 } 11300 11301 kvm_rip_write(vcpu, ctxt->eip); 11302 kvm_set_rflags(vcpu, ctxt->eflags); 11303 return 1; 11304 } 11305 EXPORT_SYMBOL_GPL(kvm_task_switch); 11306 11307 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11308 { 11309 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11310 /* 11311 * When EFER.LME and CR0.PG are set, the processor is in 11312 * 64-bit mode (though maybe in a 32-bit code segment). 11313 * CR4.PAE and EFER.LMA must be set. 11314 */ 11315 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11316 return false; 11317 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11318 return false; 11319 } else { 11320 /* 11321 * Not in 64-bit mode: EFER.LMA is clear and the code 11322 * segment cannot be 64-bit. 11323 */ 11324 if (sregs->efer & EFER_LMA || sregs->cs.l) 11325 return false; 11326 } 11327 11328 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11329 } 11330 11331 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11332 int *mmu_reset_needed, bool update_pdptrs) 11333 { 11334 struct msr_data apic_base_msr; 11335 int idx; 11336 struct desc_ptr dt; 11337 11338 if (!kvm_is_valid_sregs(vcpu, sregs)) 11339 return -EINVAL; 11340 11341 apic_base_msr.data = sregs->apic_base; 11342 apic_base_msr.host_initiated = true; 11343 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11344 return -EINVAL; 11345 11346 if (vcpu->arch.guest_state_protected) 11347 return 0; 11348 11349 dt.size = sregs->idt.limit; 11350 dt.address = sregs->idt.base; 11351 static_call(kvm_x86_set_idt)(vcpu, &dt); 11352 dt.size = sregs->gdt.limit; 11353 dt.address = sregs->gdt.base; 11354 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11355 11356 vcpu->arch.cr2 = sregs->cr2; 11357 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11358 vcpu->arch.cr3 = sregs->cr3; 11359 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11360 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11361 11362 kvm_set_cr8(vcpu, sregs->cr8); 11363 11364 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11365 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11366 11367 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11368 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11369 vcpu->arch.cr0 = sregs->cr0; 11370 11371 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11372 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11373 11374 if (update_pdptrs) { 11375 idx = srcu_read_lock(&vcpu->kvm->srcu); 11376 if (is_pae_paging(vcpu)) { 11377 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11378 *mmu_reset_needed = 1; 11379 } 11380 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11381 } 11382 11383 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11384 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11385 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11386 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11387 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11388 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11389 11390 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11391 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11392 11393 update_cr8_intercept(vcpu); 11394 11395 /* Older userspace won't unhalt the vcpu on reset. */ 11396 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11397 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11398 !is_protmode(vcpu)) 11399 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11400 11401 return 0; 11402 } 11403 11404 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11405 { 11406 int pending_vec, max_bits; 11407 int mmu_reset_needed = 0; 11408 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11409 11410 if (ret) 11411 return ret; 11412 11413 if (mmu_reset_needed) 11414 kvm_mmu_reset_context(vcpu); 11415 11416 max_bits = KVM_NR_INTERRUPTS; 11417 pending_vec = find_first_bit( 11418 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11419 11420 if (pending_vec < max_bits) { 11421 kvm_queue_interrupt(vcpu, pending_vec, false); 11422 pr_debug("Set back pending irq %d\n", pending_vec); 11423 kvm_make_request(KVM_REQ_EVENT, vcpu); 11424 } 11425 return 0; 11426 } 11427 11428 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11429 { 11430 int mmu_reset_needed = 0; 11431 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11432 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11433 !(sregs2->efer & EFER_LMA); 11434 int i, ret; 11435 11436 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11437 return -EINVAL; 11438 11439 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11440 return -EINVAL; 11441 11442 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11443 &mmu_reset_needed, !valid_pdptrs); 11444 if (ret) 11445 return ret; 11446 11447 if (valid_pdptrs) { 11448 for (i = 0; i < 4 ; i++) 11449 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11450 11451 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11452 mmu_reset_needed = 1; 11453 vcpu->arch.pdptrs_from_userspace = true; 11454 } 11455 if (mmu_reset_needed) 11456 kvm_mmu_reset_context(vcpu); 11457 return 0; 11458 } 11459 11460 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11461 struct kvm_sregs *sregs) 11462 { 11463 int ret; 11464 11465 vcpu_load(vcpu); 11466 ret = __set_sregs(vcpu, sregs); 11467 vcpu_put(vcpu); 11468 return ret; 11469 } 11470 11471 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11472 { 11473 bool set = false; 11474 struct kvm_vcpu *vcpu; 11475 unsigned long i; 11476 11477 if (!enable_apicv) 11478 return; 11479 11480 down_write(&kvm->arch.apicv_update_lock); 11481 11482 kvm_for_each_vcpu(i, vcpu, kvm) { 11483 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11484 set = true; 11485 break; 11486 } 11487 } 11488 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11489 up_write(&kvm->arch.apicv_update_lock); 11490 } 11491 11492 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11493 struct kvm_guest_debug *dbg) 11494 { 11495 unsigned long rflags; 11496 int i, r; 11497 11498 if (vcpu->arch.guest_state_protected) 11499 return -EINVAL; 11500 11501 vcpu_load(vcpu); 11502 11503 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11504 r = -EBUSY; 11505 if (kvm_is_exception_pending(vcpu)) 11506 goto out; 11507 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11508 kvm_queue_exception(vcpu, DB_VECTOR); 11509 else 11510 kvm_queue_exception(vcpu, BP_VECTOR); 11511 } 11512 11513 /* 11514 * Read rflags as long as potentially injected trace flags are still 11515 * filtered out. 11516 */ 11517 rflags = kvm_get_rflags(vcpu); 11518 11519 vcpu->guest_debug = dbg->control; 11520 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11521 vcpu->guest_debug = 0; 11522 11523 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11524 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11525 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11526 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11527 } else { 11528 for (i = 0; i < KVM_NR_DB_REGS; i++) 11529 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11530 } 11531 kvm_update_dr7(vcpu); 11532 11533 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11534 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11535 11536 /* 11537 * Trigger an rflags update that will inject or remove the trace 11538 * flags. 11539 */ 11540 kvm_set_rflags(vcpu, rflags); 11541 11542 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11543 11544 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11545 11546 r = 0; 11547 11548 out: 11549 vcpu_put(vcpu); 11550 return r; 11551 } 11552 11553 /* 11554 * Translate a guest virtual address to a guest physical address. 11555 */ 11556 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11557 struct kvm_translation *tr) 11558 { 11559 unsigned long vaddr = tr->linear_address; 11560 gpa_t gpa; 11561 int idx; 11562 11563 vcpu_load(vcpu); 11564 11565 idx = srcu_read_lock(&vcpu->kvm->srcu); 11566 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11567 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11568 tr->physical_address = gpa; 11569 tr->valid = gpa != INVALID_GPA; 11570 tr->writeable = 1; 11571 tr->usermode = 0; 11572 11573 vcpu_put(vcpu); 11574 return 0; 11575 } 11576 11577 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11578 { 11579 struct fxregs_state *fxsave; 11580 11581 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11582 return 0; 11583 11584 vcpu_load(vcpu); 11585 11586 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11587 memcpy(fpu->fpr, fxsave->st_space, 128); 11588 fpu->fcw = fxsave->cwd; 11589 fpu->fsw = fxsave->swd; 11590 fpu->ftwx = fxsave->twd; 11591 fpu->last_opcode = fxsave->fop; 11592 fpu->last_ip = fxsave->rip; 11593 fpu->last_dp = fxsave->rdp; 11594 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11595 11596 vcpu_put(vcpu); 11597 return 0; 11598 } 11599 11600 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11601 { 11602 struct fxregs_state *fxsave; 11603 11604 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11605 return 0; 11606 11607 vcpu_load(vcpu); 11608 11609 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11610 11611 memcpy(fxsave->st_space, fpu->fpr, 128); 11612 fxsave->cwd = fpu->fcw; 11613 fxsave->swd = fpu->fsw; 11614 fxsave->twd = fpu->ftwx; 11615 fxsave->fop = fpu->last_opcode; 11616 fxsave->rip = fpu->last_ip; 11617 fxsave->rdp = fpu->last_dp; 11618 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11619 11620 vcpu_put(vcpu); 11621 return 0; 11622 } 11623 11624 static void store_regs(struct kvm_vcpu *vcpu) 11625 { 11626 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11627 11628 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11629 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11630 11631 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11632 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11633 11634 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11635 kvm_vcpu_ioctl_x86_get_vcpu_events( 11636 vcpu, &vcpu->run->s.regs.events); 11637 } 11638 11639 static int sync_regs(struct kvm_vcpu *vcpu) 11640 { 11641 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11642 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11643 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11644 } 11645 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11646 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11647 return -EINVAL; 11648 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11649 } 11650 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11651 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11652 vcpu, &vcpu->run->s.regs.events)) 11653 return -EINVAL; 11654 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11655 } 11656 11657 return 0; 11658 } 11659 11660 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11661 { 11662 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11663 pr_warn_once("SMP vm created on host with unstable TSC; " 11664 "guest TSC will not be reliable\n"); 11665 11666 if (!kvm->arch.max_vcpu_ids) 11667 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11668 11669 if (id >= kvm->arch.max_vcpu_ids) 11670 return -EINVAL; 11671 11672 return static_call(kvm_x86_vcpu_precreate)(kvm); 11673 } 11674 11675 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11676 { 11677 struct page *page; 11678 int r; 11679 11680 vcpu->arch.last_vmentry_cpu = -1; 11681 vcpu->arch.regs_avail = ~0; 11682 vcpu->arch.regs_dirty = ~0; 11683 11684 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11685 11686 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11687 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11688 else 11689 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11690 11691 r = kvm_mmu_create(vcpu); 11692 if (r < 0) 11693 return r; 11694 11695 if (irqchip_in_kernel(vcpu->kvm)) { 11696 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11697 if (r < 0) 11698 goto fail_mmu_destroy; 11699 11700 /* 11701 * Defer evaluating inhibits until the vCPU is first run, as 11702 * this vCPU will not get notified of any changes until this 11703 * vCPU is visible to other vCPUs (marked online and added to 11704 * the set of vCPUs). Opportunistically mark APICv active as 11705 * VMX in particularly is highly unlikely to have inhibits. 11706 * Ignore the current per-VM APICv state so that vCPU creation 11707 * is guaranteed to run with a deterministic value, the request 11708 * will ensure the vCPU gets the correct state before VM-Entry. 11709 */ 11710 if (enable_apicv) { 11711 vcpu->arch.apic->apicv_active = true; 11712 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11713 } 11714 } else 11715 static_branch_inc(&kvm_has_noapic_vcpu); 11716 11717 r = -ENOMEM; 11718 11719 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11720 if (!page) 11721 goto fail_free_lapic; 11722 vcpu->arch.pio_data = page_address(page); 11723 11724 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11725 GFP_KERNEL_ACCOUNT); 11726 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11727 GFP_KERNEL_ACCOUNT); 11728 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11729 goto fail_free_mce_banks; 11730 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11731 11732 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11733 GFP_KERNEL_ACCOUNT)) 11734 goto fail_free_mce_banks; 11735 11736 if (!alloc_emulate_ctxt(vcpu)) 11737 goto free_wbinvd_dirty_mask; 11738 11739 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11740 pr_err("failed to allocate vcpu's fpu\n"); 11741 goto free_emulate_ctxt; 11742 } 11743 11744 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11745 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11746 11747 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11748 11749 kvm_async_pf_hash_reset(vcpu); 11750 11751 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11752 kvm_pmu_init(vcpu); 11753 11754 vcpu->arch.pending_external_vector = -1; 11755 vcpu->arch.preempted_in_kernel = false; 11756 11757 #if IS_ENABLED(CONFIG_HYPERV) 11758 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11759 #endif 11760 11761 r = static_call(kvm_x86_vcpu_create)(vcpu); 11762 if (r) 11763 goto free_guest_fpu; 11764 11765 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11766 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11767 kvm_xen_init_vcpu(vcpu); 11768 kvm_vcpu_mtrr_init(vcpu); 11769 vcpu_load(vcpu); 11770 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11771 kvm_vcpu_reset(vcpu, false); 11772 kvm_init_mmu(vcpu); 11773 vcpu_put(vcpu); 11774 return 0; 11775 11776 free_guest_fpu: 11777 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11778 free_emulate_ctxt: 11779 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11780 free_wbinvd_dirty_mask: 11781 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11782 fail_free_mce_banks: 11783 kfree(vcpu->arch.mce_banks); 11784 kfree(vcpu->arch.mci_ctl2_banks); 11785 free_page((unsigned long)vcpu->arch.pio_data); 11786 fail_free_lapic: 11787 kvm_free_lapic(vcpu); 11788 fail_mmu_destroy: 11789 kvm_mmu_destroy(vcpu); 11790 return r; 11791 } 11792 11793 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11794 { 11795 struct kvm *kvm = vcpu->kvm; 11796 11797 if (mutex_lock_killable(&vcpu->mutex)) 11798 return; 11799 vcpu_load(vcpu); 11800 kvm_synchronize_tsc(vcpu, 0); 11801 vcpu_put(vcpu); 11802 11803 /* poll control enabled by default */ 11804 vcpu->arch.msr_kvm_poll_control = 1; 11805 11806 mutex_unlock(&vcpu->mutex); 11807 11808 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11809 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11810 KVMCLOCK_SYNC_PERIOD); 11811 } 11812 11813 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11814 { 11815 int idx; 11816 11817 kvmclock_reset(vcpu); 11818 11819 static_call(kvm_x86_vcpu_free)(vcpu); 11820 11821 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11822 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11823 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11824 11825 kvm_xen_destroy_vcpu(vcpu); 11826 kvm_hv_vcpu_uninit(vcpu); 11827 kvm_pmu_destroy(vcpu); 11828 kfree(vcpu->arch.mce_banks); 11829 kfree(vcpu->arch.mci_ctl2_banks); 11830 kvm_free_lapic(vcpu); 11831 idx = srcu_read_lock(&vcpu->kvm->srcu); 11832 kvm_mmu_destroy(vcpu); 11833 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11834 free_page((unsigned long)vcpu->arch.pio_data); 11835 kvfree(vcpu->arch.cpuid_entries); 11836 if (!lapic_in_kernel(vcpu)) 11837 static_branch_dec(&kvm_has_noapic_vcpu); 11838 } 11839 11840 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11841 { 11842 struct kvm_cpuid_entry2 *cpuid_0x1; 11843 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11844 unsigned long new_cr0; 11845 11846 /* 11847 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11848 * to handle side effects. RESET emulation hits those flows and relies 11849 * on emulated/virtualized registers, including those that are loaded 11850 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11851 * to detect improper or missing initialization. 11852 */ 11853 WARN_ON_ONCE(!init_event && 11854 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11855 11856 /* 11857 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11858 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11859 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11860 * bits), i.e. virtualization is disabled. 11861 */ 11862 if (is_guest_mode(vcpu)) 11863 kvm_leave_nested(vcpu); 11864 11865 kvm_lapic_reset(vcpu, init_event); 11866 11867 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11868 vcpu->arch.hflags = 0; 11869 11870 vcpu->arch.smi_pending = 0; 11871 vcpu->arch.smi_count = 0; 11872 atomic_set(&vcpu->arch.nmi_queued, 0); 11873 vcpu->arch.nmi_pending = 0; 11874 vcpu->arch.nmi_injected = false; 11875 kvm_clear_interrupt_queue(vcpu); 11876 kvm_clear_exception_queue(vcpu); 11877 11878 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11879 kvm_update_dr0123(vcpu); 11880 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11881 vcpu->arch.dr7 = DR7_FIXED_1; 11882 kvm_update_dr7(vcpu); 11883 11884 vcpu->arch.cr2 = 0; 11885 11886 kvm_make_request(KVM_REQ_EVENT, vcpu); 11887 vcpu->arch.apf.msr_en_val = 0; 11888 vcpu->arch.apf.msr_int_val = 0; 11889 vcpu->arch.st.msr_val = 0; 11890 11891 kvmclock_reset(vcpu); 11892 11893 kvm_clear_async_pf_completion_queue(vcpu); 11894 kvm_async_pf_hash_reset(vcpu); 11895 vcpu->arch.apf.halted = false; 11896 11897 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11898 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11899 11900 /* 11901 * All paths that lead to INIT are required to load the guest's 11902 * FPU state (because most paths are buried in KVM_RUN). 11903 */ 11904 if (init_event) 11905 kvm_put_guest_fpu(vcpu); 11906 11907 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11908 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11909 11910 if (init_event) 11911 kvm_load_guest_fpu(vcpu); 11912 } 11913 11914 if (!init_event) { 11915 kvm_pmu_reset(vcpu); 11916 vcpu->arch.smbase = 0x30000; 11917 11918 vcpu->arch.msr_misc_features_enables = 0; 11919 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11920 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11921 11922 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11923 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11924 } 11925 11926 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11927 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11928 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11929 11930 /* 11931 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11932 * if no CPUID match is found. Note, it's impossible to get a match at 11933 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11934 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11935 * on RESET. But, go through the motions in case that's ever remedied. 11936 */ 11937 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11938 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11939 11940 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11941 11942 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11943 kvm_rip_write(vcpu, 0xfff0); 11944 11945 vcpu->arch.cr3 = 0; 11946 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11947 11948 /* 11949 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11950 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11951 * (or qualify) that with a footnote stating that CD/NW are preserved. 11952 */ 11953 new_cr0 = X86_CR0_ET; 11954 if (init_event) 11955 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11956 else 11957 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11958 11959 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11960 static_call(kvm_x86_set_cr4)(vcpu, 0); 11961 static_call(kvm_x86_set_efer)(vcpu, 0); 11962 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11963 11964 /* 11965 * On the standard CR0/CR4/EFER modification paths, there are several 11966 * complex conditions determining whether the MMU has to be reset and/or 11967 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11968 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11969 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11970 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11971 */ 11972 if (old_cr0 & X86_CR0_PG) { 11973 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11974 kvm_mmu_reset_context(vcpu); 11975 } 11976 11977 /* 11978 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11979 * APM states the TLBs are untouched by INIT, but it also states that 11980 * the TLBs are flushed on "External initialization of the processor." 11981 * Flush the guest TLB regardless of vendor, there is no meaningful 11982 * benefit in relying on the guest to flush the TLB immediately after 11983 * INIT. A spurious TLB flush is benign and likely negligible from a 11984 * performance perspective. 11985 */ 11986 if (init_event) 11987 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11988 } 11989 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11990 11991 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11992 { 11993 struct kvm_segment cs; 11994 11995 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11996 cs.selector = vector << 8; 11997 cs.base = vector << 12; 11998 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11999 kvm_rip_write(vcpu, 0); 12000 } 12001 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12002 12003 int kvm_arch_hardware_enable(void) 12004 { 12005 struct kvm *kvm; 12006 struct kvm_vcpu *vcpu; 12007 unsigned long i; 12008 int ret; 12009 u64 local_tsc; 12010 u64 max_tsc = 0; 12011 bool stable, backwards_tsc = false; 12012 12013 kvm_user_return_msr_cpu_online(); 12014 12015 ret = kvm_x86_check_processor_compatibility(); 12016 if (ret) 12017 return ret; 12018 12019 ret = static_call(kvm_x86_hardware_enable)(); 12020 if (ret != 0) 12021 return ret; 12022 12023 local_tsc = rdtsc(); 12024 stable = !kvm_check_tsc_unstable(); 12025 list_for_each_entry(kvm, &vm_list, vm_list) { 12026 kvm_for_each_vcpu(i, vcpu, kvm) { 12027 if (!stable && vcpu->cpu == smp_processor_id()) 12028 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12029 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12030 backwards_tsc = true; 12031 if (vcpu->arch.last_host_tsc > max_tsc) 12032 max_tsc = vcpu->arch.last_host_tsc; 12033 } 12034 } 12035 } 12036 12037 /* 12038 * Sometimes, even reliable TSCs go backwards. This happens on 12039 * platforms that reset TSC during suspend or hibernate actions, but 12040 * maintain synchronization. We must compensate. Fortunately, we can 12041 * detect that condition here, which happens early in CPU bringup, 12042 * before any KVM threads can be running. Unfortunately, we can't 12043 * bring the TSCs fully up to date with real time, as we aren't yet far 12044 * enough into CPU bringup that we know how much real time has actually 12045 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12046 * variables that haven't been updated yet. 12047 * 12048 * So we simply find the maximum observed TSC above, then record the 12049 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12050 * the adjustment will be applied. Note that we accumulate 12051 * adjustments, in case multiple suspend cycles happen before some VCPU 12052 * gets a chance to run again. In the event that no KVM threads get a 12053 * chance to run, we will miss the entire elapsed period, as we'll have 12054 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12055 * loose cycle time. This isn't too big a deal, since the loss will be 12056 * uniform across all VCPUs (not to mention the scenario is extremely 12057 * unlikely). It is possible that a second hibernate recovery happens 12058 * much faster than a first, causing the observed TSC here to be 12059 * smaller; this would require additional padding adjustment, which is 12060 * why we set last_host_tsc to the local tsc observed here. 12061 * 12062 * N.B. - this code below runs only on platforms with reliable TSC, 12063 * as that is the only way backwards_tsc is set above. Also note 12064 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12065 * have the same delta_cyc adjustment applied if backwards_tsc 12066 * is detected. Note further, this adjustment is only done once, 12067 * as we reset last_host_tsc on all VCPUs to stop this from being 12068 * called multiple times (one for each physical CPU bringup). 12069 * 12070 * Platforms with unreliable TSCs don't have to deal with this, they 12071 * will be compensated by the logic in vcpu_load, which sets the TSC to 12072 * catchup mode. This will catchup all VCPUs to real time, but cannot 12073 * guarantee that they stay in perfect synchronization. 12074 */ 12075 if (backwards_tsc) { 12076 u64 delta_cyc = max_tsc - local_tsc; 12077 list_for_each_entry(kvm, &vm_list, vm_list) { 12078 kvm->arch.backwards_tsc_observed = true; 12079 kvm_for_each_vcpu(i, vcpu, kvm) { 12080 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12081 vcpu->arch.last_host_tsc = local_tsc; 12082 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12083 } 12084 12085 /* 12086 * We have to disable TSC offset matching.. if you were 12087 * booting a VM while issuing an S4 host suspend.... 12088 * you may have some problem. Solving this issue is 12089 * left as an exercise to the reader. 12090 */ 12091 kvm->arch.last_tsc_nsec = 0; 12092 kvm->arch.last_tsc_write = 0; 12093 } 12094 12095 } 12096 return 0; 12097 } 12098 12099 void kvm_arch_hardware_disable(void) 12100 { 12101 static_call(kvm_x86_hardware_disable)(); 12102 drop_user_return_notifiers(); 12103 } 12104 12105 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12106 { 12107 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12108 } 12109 12110 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12111 { 12112 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12113 } 12114 12115 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12116 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12117 12118 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12119 { 12120 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12121 12122 vcpu->arch.l1tf_flush_l1d = true; 12123 if (pmu->version && unlikely(pmu->event_count)) { 12124 pmu->need_cleanup = true; 12125 kvm_make_request(KVM_REQ_PMU, vcpu); 12126 } 12127 static_call(kvm_x86_sched_in)(vcpu, cpu); 12128 } 12129 12130 void kvm_arch_free_vm(struct kvm *kvm) 12131 { 12132 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12133 __kvm_arch_free_vm(kvm); 12134 } 12135 12136 12137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12138 { 12139 int ret; 12140 unsigned long flags; 12141 12142 if (type) 12143 return -EINVAL; 12144 12145 ret = kvm_page_track_init(kvm); 12146 if (ret) 12147 goto out; 12148 12149 ret = kvm_mmu_init_vm(kvm); 12150 if (ret) 12151 goto out_page_track; 12152 12153 ret = static_call(kvm_x86_vm_init)(kvm); 12154 if (ret) 12155 goto out_uninit_mmu; 12156 12157 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12158 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12159 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12160 12161 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12162 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12163 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12164 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12165 &kvm->arch.irq_sources_bitmap); 12166 12167 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12168 mutex_init(&kvm->arch.apic_map_lock); 12169 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12170 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12171 12172 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12173 pvclock_update_vm_gtod_copy(kvm); 12174 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12175 12176 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12177 kvm->arch.guest_can_read_msr_platform_info = true; 12178 kvm->arch.enable_pmu = enable_pmu; 12179 12180 #if IS_ENABLED(CONFIG_HYPERV) 12181 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12182 kvm->arch.hv_root_tdp = INVALID_PAGE; 12183 #endif 12184 12185 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12186 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12187 12188 kvm_apicv_init(kvm); 12189 kvm_hv_init_vm(kvm); 12190 kvm_xen_init_vm(kvm); 12191 12192 return 0; 12193 12194 out_uninit_mmu: 12195 kvm_mmu_uninit_vm(kvm); 12196 out_page_track: 12197 kvm_page_track_cleanup(kvm); 12198 out: 12199 return ret; 12200 } 12201 12202 int kvm_arch_post_init_vm(struct kvm *kvm) 12203 { 12204 return kvm_mmu_post_init_vm(kvm); 12205 } 12206 12207 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12208 { 12209 vcpu_load(vcpu); 12210 kvm_mmu_unload(vcpu); 12211 vcpu_put(vcpu); 12212 } 12213 12214 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12215 { 12216 unsigned long i; 12217 struct kvm_vcpu *vcpu; 12218 12219 kvm_for_each_vcpu(i, vcpu, kvm) { 12220 kvm_clear_async_pf_completion_queue(vcpu); 12221 kvm_unload_vcpu_mmu(vcpu); 12222 } 12223 } 12224 12225 void kvm_arch_sync_events(struct kvm *kvm) 12226 { 12227 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12228 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12229 kvm_free_pit(kvm); 12230 } 12231 12232 /** 12233 * __x86_set_memory_region: Setup KVM internal memory slot 12234 * 12235 * @kvm: the kvm pointer to the VM. 12236 * @id: the slot ID to setup. 12237 * @gpa: the GPA to install the slot (unused when @size == 0). 12238 * @size: the size of the slot. Set to zero to uninstall a slot. 12239 * 12240 * This function helps to setup a KVM internal memory slot. Specify 12241 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12242 * slot. The return code can be one of the following: 12243 * 12244 * HVA: on success (uninstall will return a bogus HVA) 12245 * -errno: on error 12246 * 12247 * The caller should always use IS_ERR() to check the return value 12248 * before use. Note, the KVM internal memory slots are guaranteed to 12249 * remain valid and unchanged until the VM is destroyed, i.e., the 12250 * GPA->HVA translation will not change. However, the HVA is a user 12251 * address, i.e. its accessibility is not guaranteed, and must be 12252 * accessed via __copy_{to,from}_user(). 12253 */ 12254 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12255 u32 size) 12256 { 12257 int i, r; 12258 unsigned long hva, old_npages; 12259 struct kvm_memslots *slots = kvm_memslots(kvm); 12260 struct kvm_memory_slot *slot; 12261 12262 /* Called with kvm->slots_lock held. */ 12263 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12264 return ERR_PTR_USR(-EINVAL); 12265 12266 slot = id_to_memslot(slots, id); 12267 if (size) { 12268 if (slot && slot->npages) 12269 return ERR_PTR_USR(-EEXIST); 12270 12271 /* 12272 * MAP_SHARED to prevent internal slot pages from being moved 12273 * by fork()/COW. 12274 */ 12275 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12276 MAP_SHARED | MAP_ANONYMOUS, 0); 12277 if (IS_ERR((void *)hva)) 12278 return (void __user *)hva; 12279 } else { 12280 if (!slot || !slot->npages) 12281 return NULL; 12282 12283 old_npages = slot->npages; 12284 hva = slot->userspace_addr; 12285 } 12286 12287 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12288 struct kvm_userspace_memory_region m; 12289 12290 m.slot = id | (i << 16); 12291 m.flags = 0; 12292 m.guest_phys_addr = gpa; 12293 m.userspace_addr = hva; 12294 m.memory_size = size; 12295 r = __kvm_set_memory_region(kvm, &m); 12296 if (r < 0) 12297 return ERR_PTR_USR(r); 12298 } 12299 12300 if (!size) 12301 vm_munmap(hva, old_npages * PAGE_SIZE); 12302 12303 return (void __user *)hva; 12304 } 12305 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12306 12307 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12308 { 12309 kvm_mmu_pre_destroy_vm(kvm); 12310 } 12311 12312 void kvm_arch_destroy_vm(struct kvm *kvm) 12313 { 12314 if (current->mm == kvm->mm) { 12315 /* 12316 * Free memory regions allocated on behalf of userspace, 12317 * unless the memory map has changed due to process exit 12318 * or fd copying. 12319 */ 12320 mutex_lock(&kvm->slots_lock); 12321 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12322 0, 0); 12323 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12324 0, 0); 12325 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12326 mutex_unlock(&kvm->slots_lock); 12327 } 12328 kvm_unload_vcpu_mmus(kvm); 12329 static_call_cond(kvm_x86_vm_destroy)(kvm); 12330 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12331 kvm_pic_destroy(kvm); 12332 kvm_ioapic_destroy(kvm); 12333 kvm_destroy_vcpus(kvm); 12334 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12335 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12336 kvm_mmu_uninit_vm(kvm); 12337 kvm_page_track_cleanup(kvm); 12338 kvm_xen_destroy_vm(kvm); 12339 kvm_hv_destroy_vm(kvm); 12340 } 12341 12342 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12343 { 12344 int i; 12345 12346 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12347 kvfree(slot->arch.rmap[i]); 12348 slot->arch.rmap[i] = NULL; 12349 } 12350 } 12351 12352 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12353 { 12354 int i; 12355 12356 memslot_rmap_free(slot); 12357 12358 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12359 kvfree(slot->arch.lpage_info[i - 1]); 12360 slot->arch.lpage_info[i - 1] = NULL; 12361 } 12362 12363 kvm_page_track_free_memslot(slot); 12364 } 12365 12366 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12367 { 12368 const int sz = sizeof(*slot->arch.rmap[0]); 12369 int i; 12370 12371 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12372 int level = i + 1; 12373 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12374 12375 if (slot->arch.rmap[i]) 12376 continue; 12377 12378 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12379 if (!slot->arch.rmap[i]) { 12380 memslot_rmap_free(slot); 12381 return -ENOMEM; 12382 } 12383 } 12384 12385 return 0; 12386 } 12387 12388 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12389 struct kvm_memory_slot *slot) 12390 { 12391 unsigned long npages = slot->npages; 12392 int i, r; 12393 12394 /* 12395 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12396 * old arrays will be freed by __kvm_set_memory_region() if installing 12397 * the new memslot is successful. 12398 */ 12399 memset(&slot->arch, 0, sizeof(slot->arch)); 12400 12401 if (kvm_memslots_have_rmaps(kvm)) { 12402 r = memslot_rmap_alloc(slot, npages); 12403 if (r) 12404 return r; 12405 } 12406 12407 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12408 struct kvm_lpage_info *linfo; 12409 unsigned long ugfn; 12410 int lpages; 12411 int level = i + 1; 12412 12413 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12414 12415 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12416 if (!linfo) 12417 goto out_free; 12418 12419 slot->arch.lpage_info[i - 1] = linfo; 12420 12421 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12422 linfo[0].disallow_lpage = 1; 12423 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12424 linfo[lpages - 1].disallow_lpage = 1; 12425 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12426 /* 12427 * If the gfn and userspace address are not aligned wrt each 12428 * other, disable large page support for this slot. 12429 */ 12430 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12431 unsigned long j; 12432 12433 for (j = 0; j < lpages; ++j) 12434 linfo[j].disallow_lpage = 1; 12435 } 12436 } 12437 12438 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12439 goto out_free; 12440 12441 return 0; 12442 12443 out_free: 12444 memslot_rmap_free(slot); 12445 12446 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12447 kvfree(slot->arch.lpage_info[i - 1]); 12448 slot->arch.lpage_info[i - 1] = NULL; 12449 } 12450 return -ENOMEM; 12451 } 12452 12453 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12454 { 12455 struct kvm_vcpu *vcpu; 12456 unsigned long i; 12457 12458 /* 12459 * memslots->generation has been incremented. 12460 * mmio generation may have reached its maximum value. 12461 */ 12462 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12463 12464 /* Force re-initialization of steal_time cache */ 12465 kvm_for_each_vcpu(i, vcpu, kvm) 12466 kvm_vcpu_kick(vcpu); 12467 } 12468 12469 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12470 const struct kvm_memory_slot *old, 12471 struct kvm_memory_slot *new, 12472 enum kvm_mr_change change) 12473 { 12474 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12475 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12476 return -EINVAL; 12477 12478 return kvm_alloc_memslot_metadata(kvm, new); 12479 } 12480 12481 if (change == KVM_MR_FLAGS_ONLY) 12482 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12483 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12484 return -EIO; 12485 12486 return 0; 12487 } 12488 12489 12490 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12491 { 12492 struct kvm_arch *ka = &kvm->arch; 12493 12494 if (!kvm_x86_ops.cpu_dirty_log_size) 12495 return; 12496 12497 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12498 (!enable && --ka->cpu_dirty_logging_count == 0)) 12499 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12500 12501 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12502 } 12503 12504 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12505 struct kvm_memory_slot *old, 12506 const struct kvm_memory_slot *new, 12507 enum kvm_mr_change change) 12508 { 12509 u32 old_flags = old ? old->flags : 0; 12510 u32 new_flags = new ? new->flags : 0; 12511 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12512 12513 /* 12514 * Update CPU dirty logging if dirty logging is being toggled. This 12515 * applies to all operations. 12516 */ 12517 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12518 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12519 12520 /* 12521 * Nothing more to do for RO slots (which can't be dirtied and can't be 12522 * made writable) or CREATE/MOVE/DELETE of a slot. 12523 * 12524 * For a memslot with dirty logging disabled: 12525 * CREATE: No dirty mappings will already exist. 12526 * MOVE/DELETE: The old mappings will already have been cleaned up by 12527 * kvm_arch_flush_shadow_memslot() 12528 * 12529 * For a memslot with dirty logging enabled: 12530 * CREATE: No shadow pages exist, thus nothing to write-protect 12531 * and no dirty bits to clear. 12532 * MOVE/DELETE: The old mappings will already have been cleaned up by 12533 * kvm_arch_flush_shadow_memslot(). 12534 */ 12535 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12536 return; 12537 12538 /* 12539 * READONLY and non-flags changes were filtered out above, and the only 12540 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12541 * logging isn't being toggled on or off. 12542 */ 12543 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12544 return; 12545 12546 if (!log_dirty_pages) { 12547 /* 12548 * Dirty logging tracks sptes in 4k granularity, meaning that 12549 * large sptes have to be split. If live migration succeeds, 12550 * the guest in the source machine will be destroyed and large 12551 * sptes will be created in the destination. However, if the 12552 * guest continues to run in the source machine (for example if 12553 * live migration fails), small sptes will remain around and 12554 * cause bad performance. 12555 * 12556 * Scan sptes if dirty logging has been stopped, dropping those 12557 * which can be collapsed into a single large-page spte. Later 12558 * page faults will create the large-page sptes. 12559 */ 12560 kvm_mmu_zap_collapsible_sptes(kvm, new); 12561 } else { 12562 /* 12563 * Initially-all-set does not require write protecting any page, 12564 * because they're all assumed to be dirty. 12565 */ 12566 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12567 return; 12568 12569 if (READ_ONCE(eager_page_split)) 12570 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12571 12572 if (kvm_x86_ops.cpu_dirty_log_size) { 12573 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12574 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12575 } else { 12576 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12577 } 12578 12579 /* 12580 * Unconditionally flush the TLBs after enabling dirty logging. 12581 * A flush is almost always going to be necessary (see below), 12582 * and unconditionally flushing allows the helpers to omit 12583 * the subtly complex checks when removing write access. 12584 * 12585 * Do the flush outside of mmu_lock to reduce the amount of 12586 * time mmu_lock is held. Flushing after dropping mmu_lock is 12587 * safe as KVM only needs to guarantee the slot is fully 12588 * write-protected before returning to userspace, i.e. before 12589 * userspace can consume the dirty status. 12590 * 12591 * Flushing outside of mmu_lock requires KVM to be careful when 12592 * making decisions based on writable status of an SPTE, e.g. a 12593 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12594 * 12595 * Specifically, KVM also write-protects guest page tables to 12596 * monitor changes when using shadow paging, and must guarantee 12597 * no CPUs can write to those page before mmu_lock is dropped. 12598 * Because CPUs may have stale TLB entries at this point, a 12599 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12600 * 12601 * KVM also allows making SPTES writable outside of mmu_lock, 12602 * e.g. to allow dirty logging without taking mmu_lock. 12603 * 12604 * To handle these scenarios, KVM uses a separate software-only 12605 * bit (MMU-writable) to track if a SPTE is !writable due to 12606 * a guest page table being write-protected (KVM clears the 12607 * MMU-writable flag when write-protecting for shadow paging). 12608 * 12609 * The use of MMU-writable is also the primary motivation for 12610 * the unconditional flush. Because KVM must guarantee that a 12611 * CPU doesn't contain stale, writable TLB entries for a 12612 * !MMU-writable SPTE, KVM must flush if it encounters any 12613 * MMU-writable SPTE regardless of whether the actual hardware 12614 * writable bit was set. I.e. KVM is almost guaranteed to need 12615 * to flush, while unconditionally flushing allows the "remove 12616 * write access" helpers to ignore MMU-writable entirely. 12617 * 12618 * See is_writable_pte() for more details (the case involving 12619 * access-tracked SPTEs is particularly relevant). 12620 */ 12621 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12622 } 12623 } 12624 12625 void kvm_arch_commit_memory_region(struct kvm *kvm, 12626 struct kvm_memory_slot *old, 12627 const struct kvm_memory_slot *new, 12628 enum kvm_mr_change change) 12629 { 12630 if (!kvm->arch.n_requested_mmu_pages && 12631 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12632 unsigned long nr_mmu_pages; 12633 12634 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12635 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12636 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12637 } 12638 12639 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12640 12641 /* Free the arrays associated with the old memslot. */ 12642 if (change == KVM_MR_MOVE) 12643 kvm_arch_free_memslot(kvm, old); 12644 } 12645 12646 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12647 { 12648 kvm_mmu_zap_all(kvm); 12649 } 12650 12651 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12652 struct kvm_memory_slot *slot) 12653 { 12654 kvm_page_track_flush_slot(kvm, slot); 12655 } 12656 12657 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12658 { 12659 return (is_guest_mode(vcpu) && 12660 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12661 } 12662 12663 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12664 { 12665 if (!list_empty_careful(&vcpu->async_pf.done)) 12666 return true; 12667 12668 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12669 kvm_apic_init_sipi_allowed(vcpu)) 12670 return true; 12671 12672 if (vcpu->arch.pv.pv_unhalted) 12673 return true; 12674 12675 if (kvm_is_exception_pending(vcpu)) 12676 return true; 12677 12678 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12679 (vcpu->arch.nmi_pending && 12680 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12681 return true; 12682 12683 #ifdef CONFIG_KVM_SMM 12684 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12685 (vcpu->arch.smi_pending && 12686 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12687 return true; 12688 #endif 12689 12690 if (kvm_arch_interrupt_allowed(vcpu) && 12691 (kvm_cpu_has_interrupt(vcpu) || 12692 kvm_guest_apic_has_interrupt(vcpu))) 12693 return true; 12694 12695 if (kvm_hv_has_stimer_pending(vcpu)) 12696 return true; 12697 12698 if (is_guest_mode(vcpu) && 12699 kvm_x86_ops.nested_ops->has_events && 12700 kvm_x86_ops.nested_ops->has_events(vcpu)) 12701 return true; 12702 12703 if (kvm_xen_has_pending_events(vcpu)) 12704 return true; 12705 12706 return false; 12707 } 12708 12709 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12710 { 12711 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12712 } 12713 12714 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12715 { 12716 if (kvm_vcpu_apicv_active(vcpu) && 12717 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12718 return true; 12719 12720 return false; 12721 } 12722 12723 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12724 { 12725 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12726 return true; 12727 12728 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12729 #ifdef CONFIG_KVM_SMM 12730 kvm_test_request(KVM_REQ_SMI, vcpu) || 12731 #endif 12732 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12733 return true; 12734 12735 return kvm_arch_dy_has_pending_interrupt(vcpu); 12736 } 12737 12738 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12739 { 12740 if (vcpu->arch.guest_state_protected) 12741 return true; 12742 12743 return vcpu->arch.preempted_in_kernel; 12744 } 12745 12746 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12747 { 12748 return kvm_rip_read(vcpu); 12749 } 12750 12751 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12752 { 12753 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12754 } 12755 12756 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12757 { 12758 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12759 } 12760 12761 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12762 { 12763 /* Can't read the RIP when guest state is protected, just return 0 */ 12764 if (vcpu->arch.guest_state_protected) 12765 return 0; 12766 12767 if (is_64_bit_mode(vcpu)) 12768 return kvm_rip_read(vcpu); 12769 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12770 kvm_rip_read(vcpu)); 12771 } 12772 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12773 12774 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12775 { 12776 return kvm_get_linear_rip(vcpu) == linear_rip; 12777 } 12778 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12779 12780 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12781 { 12782 unsigned long rflags; 12783 12784 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12785 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12786 rflags &= ~X86_EFLAGS_TF; 12787 return rflags; 12788 } 12789 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12790 12791 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12792 { 12793 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12794 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12795 rflags |= X86_EFLAGS_TF; 12796 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12797 } 12798 12799 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12800 { 12801 __kvm_set_rflags(vcpu, rflags); 12802 kvm_make_request(KVM_REQ_EVENT, vcpu); 12803 } 12804 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12805 12806 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12807 { 12808 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12809 12810 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12811 } 12812 12813 static inline u32 kvm_async_pf_next_probe(u32 key) 12814 { 12815 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12816 } 12817 12818 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12819 { 12820 u32 key = kvm_async_pf_hash_fn(gfn); 12821 12822 while (vcpu->arch.apf.gfns[key] != ~0) 12823 key = kvm_async_pf_next_probe(key); 12824 12825 vcpu->arch.apf.gfns[key] = gfn; 12826 } 12827 12828 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12829 { 12830 int i; 12831 u32 key = kvm_async_pf_hash_fn(gfn); 12832 12833 for (i = 0; i < ASYNC_PF_PER_VCPU && 12834 (vcpu->arch.apf.gfns[key] != gfn && 12835 vcpu->arch.apf.gfns[key] != ~0); i++) 12836 key = kvm_async_pf_next_probe(key); 12837 12838 return key; 12839 } 12840 12841 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12842 { 12843 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12844 } 12845 12846 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12847 { 12848 u32 i, j, k; 12849 12850 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12851 12852 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12853 return; 12854 12855 while (true) { 12856 vcpu->arch.apf.gfns[i] = ~0; 12857 do { 12858 j = kvm_async_pf_next_probe(j); 12859 if (vcpu->arch.apf.gfns[j] == ~0) 12860 return; 12861 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12862 /* 12863 * k lies cyclically in ]i,j] 12864 * | i.k.j | 12865 * |....j i.k.| or |.k..j i...| 12866 */ 12867 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12868 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12869 i = j; 12870 } 12871 } 12872 12873 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12874 { 12875 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12876 12877 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12878 sizeof(reason)); 12879 } 12880 12881 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12882 { 12883 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12884 12885 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12886 &token, offset, sizeof(token)); 12887 } 12888 12889 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12890 { 12891 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12892 u32 val; 12893 12894 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12895 &val, offset, sizeof(val))) 12896 return false; 12897 12898 return !val; 12899 } 12900 12901 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12902 { 12903 12904 if (!kvm_pv_async_pf_enabled(vcpu)) 12905 return false; 12906 12907 if (vcpu->arch.apf.send_user_only && 12908 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12909 return false; 12910 12911 if (is_guest_mode(vcpu)) { 12912 /* 12913 * L1 needs to opt into the special #PF vmexits that are 12914 * used to deliver async page faults. 12915 */ 12916 return vcpu->arch.apf.delivery_as_pf_vmexit; 12917 } else { 12918 /* 12919 * Play it safe in case the guest temporarily disables paging. 12920 * The real mode IDT in particular is unlikely to have a #PF 12921 * exception setup. 12922 */ 12923 return is_paging(vcpu); 12924 } 12925 } 12926 12927 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12928 { 12929 if (unlikely(!lapic_in_kernel(vcpu) || 12930 kvm_event_needs_reinjection(vcpu) || 12931 kvm_is_exception_pending(vcpu))) 12932 return false; 12933 12934 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12935 return false; 12936 12937 /* 12938 * If interrupts are off we cannot even use an artificial 12939 * halt state. 12940 */ 12941 return kvm_arch_interrupt_allowed(vcpu); 12942 } 12943 12944 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12945 struct kvm_async_pf *work) 12946 { 12947 struct x86_exception fault; 12948 12949 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12950 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12951 12952 if (kvm_can_deliver_async_pf(vcpu) && 12953 !apf_put_user_notpresent(vcpu)) { 12954 fault.vector = PF_VECTOR; 12955 fault.error_code_valid = true; 12956 fault.error_code = 0; 12957 fault.nested_page_fault = false; 12958 fault.address = work->arch.token; 12959 fault.async_page_fault = true; 12960 kvm_inject_page_fault(vcpu, &fault); 12961 return true; 12962 } else { 12963 /* 12964 * It is not possible to deliver a paravirtualized asynchronous 12965 * page fault, but putting the guest in an artificial halt state 12966 * can be beneficial nevertheless: if an interrupt arrives, we 12967 * can deliver it timely and perhaps the guest will schedule 12968 * another process. When the instruction that triggered a page 12969 * fault is retried, hopefully the page will be ready in the host. 12970 */ 12971 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12972 return false; 12973 } 12974 } 12975 12976 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12977 struct kvm_async_pf *work) 12978 { 12979 struct kvm_lapic_irq irq = { 12980 .delivery_mode = APIC_DM_FIXED, 12981 .vector = vcpu->arch.apf.vec 12982 }; 12983 12984 if (work->wakeup_all) 12985 work->arch.token = ~0; /* broadcast wakeup */ 12986 else 12987 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12988 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12989 12990 if ((work->wakeup_all || work->notpresent_injected) && 12991 kvm_pv_async_pf_enabled(vcpu) && 12992 !apf_put_user_ready(vcpu, work->arch.token)) { 12993 vcpu->arch.apf.pageready_pending = true; 12994 kvm_apic_set_irq(vcpu, &irq, NULL); 12995 } 12996 12997 vcpu->arch.apf.halted = false; 12998 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12999 } 13000 13001 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13002 { 13003 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13004 if (!vcpu->arch.apf.pageready_pending) 13005 kvm_vcpu_kick(vcpu); 13006 } 13007 13008 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13009 { 13010 if (!kvm_pv_async_pf_enabled(vcpu)) 13011 return true; 13012 else 13013 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13014 } 13015 13016 void kvm_arch_start_assignment(struct kvm *kvm) 13017 { 13018 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13019 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13020 } 13021 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13022 13023 void kvm_arch_end_assignment(struct kvm *kvm) 13024 { 13025 atomic_dec(&kvm->arch.assigned_device_count); 13026 } 13027 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13028 13029 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13030 { 13031 return arch_atomic_read(&kvm->arch.assigned_device_count); 13032 } 13033 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13034 13035 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13036 { 13037 atomic_inc(&kvm->arch.noncoherent_dma_count); 13038 } 13039 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13040 13041 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13042 { 13043 atomic_dec(&kvm->arch.noncoherent_dma_count); 13044 } 13045 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13046 13047 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13048 { 13049 return atomic_read(&kvm->arch.noncoherent_dma_count); 13050 } 13051 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13052 13053 bool kvm_arch_has_irq_bypass(void) 13054 { 13055 return true; 13056 } 13057 13058 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13059 struct irq_bypass_producer *prod) 13060 { 13061 struct kvm_kernel_irqfd *irqfd = 13062 container_of(cons, struct kvm_kernel_irqfd, consumer); 13063 int ret; 13064 13065 irqfd->producer = prod; 13066 kvm_arch_start_assignment(irqfd->kvm); 13067 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13068 prod->irq, irqfd->gsi, 1); 13069 13070 if (ret) 13071 kvm_arch_end_assignment(irqfd->kvm); 13072 13073 return ret; 13074 } 13075 13076 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13077 struct irq_bypass_producer *prod) 13078 { 13079 int ret; 13080 struct kvm_kernel_irqfd *irqfd = 13081 container_of(cons, struct kvm_kernel_irqfd, consumer); 13082 13083 WARN_ON(irqfd->producer != prod); 13084 irqfd->producer = NULL; 13085 13086 /* 13087 * When producer of consumer is unregistered, we change back to 13088 * remapped mode, so we can re-use the current implementation 13089 * when the irq is masked/disabled or the consumer side (KVM 13090 * int this case doesn't want to receive the interrupts. 13091 */ 13092 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13093 if (ret) 13094 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13095 " fails: %d\n", irqfd->consumer.token, ret); 13096 13097 kvm_arch_end_assignment(irqfd->kvm); 13098 } 13099 13100 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13101 uint32_t guest_irq, bool set) 13102 { 13103 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13104 } 13105 13106 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13107 struct kvm_kernel_irq_routing_entry *new) 13108 { 13109 if (new->type != KVM_IRQ_ROUTING_MSI) 13110 return true; 13111 13112 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13113 } 13114 13115 bool kvm_vector_hashing_enabled(void) 13116 { 13117 return vector_hashing; 13118 } 13119 13120 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13121 { 13122 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13123 } 13124 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13125 13126 13127 int kvm_spec_ctrl_test_value(u64 value) 13128 { 13129 /* 13130 * test that setting IA32_SPEC_CTRL to given value 13131 * is allowed by the host processor 13132 */ 13133 13134 u64 saved_value; 13135 unsigned long flags; 13136 int ret = 0; 13137 13138 local_irq_save(flags); 13139 13140 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13141 ret = 1; 13142 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13143 ret = 1; 13144 else 13145 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13146 13147 local_irq_restore(flags); 13148 13149 return ret; 13150 } 13151 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13152 13153 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13154 { 13155 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13156 struct x86_exception fault; 13157 u64 access = error_code & 13158 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13159 13160 if (!(error_code & PFERR_PRESENT_MASK) || 13161 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13162 /* 13163 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13164 * tables probably do not match the TLB. Just proceed 13165 * with the error code that the processor gave. 13166 */ 13167 fault.vector = PF_VECTOR; 13168 fault.error_code_valid = true; 13169 fault.error_code = error_code; 13170 fault.nested_page_fault = false; 13171 fault.address = gva; 13172 fault.async_page_fault = false; 13173 } 13174 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13175 } 13176 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13177 13178 /* 13179 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13180 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13181 * indicates whether exit to userspace is needed. 13182 */ 13183 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13184 struct x86_exception *e) 13185 { 13186 if (r == X86EMUL_PROPAGATE_FAULT) { 13187 if (KVM_BUG_ON(!e, vcpu->kvm)) 13188 return -EIO; 13189 13190 kvm_inject_emulated_page_fault(vcpu, e); 13191 return 1; 13192 } 13193 13194 /* 13195 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13196 * while handling a VMX instruction KVM could've handled the request 13197 * correctly by exiting to userspace and performing I/O but there 13198 * doesn't seem to be a real use-case behind such requests, just return 13199 * KVM_EXIT_INTERNAL_ERROR for now. 13200 */ 13201 kvm_prepare_emulation_failure_exit(vcpu); 13202 13203 return 0; 13204 } 13205 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13206 13207 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13208 { 13209 bool pcid_enabled; 13210 struct x86_exception e; 13211 struct { 13212 u64 pcid; 13213 u64 gla; 13214 } operand; 13215 int r; 13216 13217 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13218 if (r != X86EMUL_CONTINUE) 13219 return kvm_handle_memory_failure(vcpu, r, &e); 13220 13221 if (operand.pcid >> 12 != 0) { 13222 kvm_inject_gp(vcpu, 0); 13223 return 1; 13224 } 13225 13226 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13227 13228 switch (type) { 13229 case INVPCID_TYPE_INDIV_ADDR: 13230 if ((!pcid_enabled && (operand.pcid != 0)) || 13231 is_noncanonical_address(operand.gla, vcpu)) { 13232 kvm_inject_gp(vcpu, 0); 13233 return 1; 13234 } 13235 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13236 return kvm_skip_emulated_instruction(vcpu); 13237 13238 case INVPCID_TYPE_SINGLE_CTXT: 13239 if (!pcid_enabled && (operand.pcid != 0)) { 13240 kvm_inject_gp(vcpu, 0); 13241 return 1; 13242 } 13243 13244 kvm_invalidate_pcid(vcpu, operand.pcid); 13245 return kvm_skip_emulated_instruction(vcpu); 13246 13247 case INVPCID_TYPE_ALL_NON_GLOBAL: 13248 /* 13249 * Currently, KVM doesn't mark global entries in the shadow 13250 * page tables, so a non-global flush just degenerates to a 13251 * global flush. If needed, we could optimize this later by 13252 * keeping track of global entries in shadow page tables. 13253 */ 13254 13255 fallthrough; 13256 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13257 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13258 return kvm_skip_emulated_instruction(vcpu); 13259 13260 default: 13261 kvm_inject_gp(vcpu, 0); 13262 return 1; 13263 } 13264 } 13265 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13266 13267 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13268 { 13269 struct kvm_run *run = vcpu->run; 13270 struct kvm_mmio_fragment *frag; 13271 unsigned int len; 13272 13273 BUG_ON(!vcpu->mmio_needed); 13274 13275 /* Complete previous fragment */ 13276 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13277 len = min(8u, frag->len); 13278 if (!vcpu->mmio_is_write) 13279 memcpy(frag->data, run->mmio.data, len); 13280 13281 if (frag->len <= 8) { 13282 /* Switch to the next fragment. */ 13283 frag++; 13284 vcpu->mmio_cur_fragment++; 13285 } else { 13286 /* Go forward to the next mmio piece. */ 13287 frag->data += len; 13288 frag->gpa += len; 13289 frag->len -= len; 13290 } 13291 13292 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13293 vcpu->mmio_needed = 0; 13294 13295 // VMG change, at this point, we're always done 13296 // RIP has already been advanced 13297 return 1; 13298 } 13299 13300 // More MMIO is needed 13301 run->mmio.phys_addr = frag->gpa; 13302 run->mmio.len = min(8u, frag->len); 13303 run->mmio.is_write = vcpu->mmio_is_write; 13304 if (run->mmio.is_write) 13305 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13306 run->exit_reason = KVM_EXIT_MMIO; 13307 13308 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13309 13310 return 0; 13311 } 13312 13313 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13314 void *data) 13315 { 13316 int handled; 13317 struct kvm_mmio_fragment *frag; 13318 13319 if (!data) 13320 return -EINVAL; 13321 13322 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13323 if (handled == bytes) 13324 return 1; 13325 13326 bytes -= handled; 13327 gpa += handled; 13328 data += handled; 13329 13330 /*TODO: Check if need to increment number of frags */ 13331 frag = vcpu->mmio_fragments; 13332 vcpu->mmio_nr_fragments = 1; 13333 frag->len = bytes; 13334 frag->gpa = gpa; 13335 frag->data = data; 13336 13337 vcpu->mmio_needed = 1; 13338 vcpu->mmio_cur_fragment = 0; 13339 13340 vcpu->run->mmio.phys_addr = gpa; 13341 vcpu->run->mmio.len = min(8u, frag->len); 13342 vcpu->run->mmio.is_write = 1; 13343 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13344 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13345 13346 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13347 13348 return 0; 13349 } 13350 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13351 13352 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13353 void *data) 13354 { 13355 int handled; 13356 struct kvm_mmio_fragment *frag; 13357 13358 if (!data) 13359 return -EINVAL; 13360 13361 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13362 if (handled == bytes) 13363 return 1; 13364 13365 bytes -= handled; 13366 gpa += handled; 13367 data += handled; 13368 13369 /*TODO: Check if need to increment number of frags */ 13370 frag = vcpu->mmio_fragments; 13371 vcpu->mmio_nr_fragments = 1; 13372 frag->len = bytes; 13373 frag->gpa = gpa; 13374 frag->data = data; 13375 13376 vcpu->mmio_needed = 1; 13377 vcpu->mmio_cur_fragment = 0; 13378 13379 vcpu->run->mmio.phys_addr = gpa; 13380 vcpu->run->mmio.len = min(8u, frag->len); 13381 vcpu->run->mmio.is_write = 0; 13382 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13383 13384 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13385 13386 return 0; 13387 } 13388 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13389 13390 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13391 { 13392 vcpu->arch.sev_pio_count -= count; 13393 vcpu->arch.sev_pio_data += count * size; 13394 } 13395 13396 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13397 unsigned int port); 13398 13399 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13400 { 13401 int size = vcpu->arch.pio.size; 13402 int port = vcpu->arch.pio.port; 13403 13404 vcpu->arch.pio.count = 0; 13405 if (vcpu->arch.sev_pio_count) 13406 return kvm_sev_es_outs(vcpu, size, port); 13407 return 1; 13408 } 13409 13410 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13411 unsigned int port) 13412 { 13413 for (;;) { 13414 unsigned int count = 13415 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13416 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13417 13418 /* memcpy done already by emulator_pio_out. */ 13419 advance_sev_es_emulated_pio(vcpu, count, size); 13420 if (!ret) 13421 break; 13422 13423 /* Emulation done by the kernel. */ 13424 if (!vcpu->arch.sev_pio_count) 13425 return 1; 13426 } 13427 13428 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13429 return 0; 13430 } 13431 13432 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13433 unsigned int port); 13434 13435 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13436 { 13437 unsigned count = vcpu->arch.pio.count; 13438 int size = vcpu->arch.pio.size; 13439 int port = vcpu->arch.pio.port; 13440 13441 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13442 advance_sev_es_emulated_pio(vcpu, count, size); 13443 if (vcpu->arch.sev_pio_count) 13444 return kvm_sev_es_ins(vcpu, size, port); 13445 return 1; 13446 } 13447 13448 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13449 unsigned int port) 13450 { 13451 for (;;) { 13452 unsigned int count = 13453 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13454 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13455 break; 13456 13457 /* Emulation done by the kernel. */ 13458 advance_sev_es_emulated_pio(vcpu, count, size); 13459 if (!vcpu->arch.sev_pio_count) 13460 return 1; 13461 } 13462 13463 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13464 return 0; 13465 } 13466 13467 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13468 unsigned int port, void *data, unsigned int count, 13469 int in) 13470 { 13471 vcpu->arch.sev_pio_data = data; 13472 vcpu->arch.sev_pio_count = count; 13473 return in ? kvm_sev_es_ins(vcpu, size, port) 13474 : kvm_sev_es_outs(vcpu, size, port); 13475 } 13476 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13477 13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13507 13508 static int __init kvm_x86_init(void) 13509 { 13510 kvm_mmu_x86_module_init(); 13511 return 0; 13512 } 13513 module_init(kvm_x86_init); 13514 13515 static void __exit kvm_x86_exit(void) 13516 { 13517 /* 13518 * If module_init() is implemented, module_exit() must also be 13519 * implemented to allow module unload. 13520 */ 13521 } 13522 module_exit(kvm_x86_exit); 13523