xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 7ca4282ade77de53b6e9ffa2695566e5d35dab1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112 
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115 
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121 
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124 
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127 
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138 
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154 
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158 
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161 
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164 
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171 
172 struct kvm_user_return_msrs_global {
173 	int nr;
174 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176 
177 struct kvm_user_return_msrs {
178 	struct user_return_notifier urn;
179 	bool registered;
180 	struct kvm_user_return_msr_values {
181 		u64 host;
182 		u64 curr;
183 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185 
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188 
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192 				| XFEATURE_MASK_PKRU)
193 
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196 
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199 
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203 
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205 	VCPU_STAT("pf_fixed", pf_fixed),
206 	VCPU_STAT("pf_guest", pf_guest),
207 	VCPU_STAT("tlb_flush", tlb_flush),
208 	VCPU_STAT("invlpg", invlpg),
209 	VCPU_STAT("exits", exits),
210 	VCPU_STAT("io_exits", io_exits),
211 	VCPU_STAT("mmio_exits", mmio_exits),
212 	VCPU_STAT("signal_exits", signal_exits),
213 	VCPU_STAT("irq_window", irq_window_exits),
214 	VCPU_STAT("nmi_window", nmi_window_exits),
215 	VCPU_STAT("halt_exits", halt_exits),
216 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
217 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219 	VCPU_STAT("halt_wakeup", halt_wakeup),
220 	VCPU_STAT("hypercalls", hypercalls),
221 	VCPU_STAT("request_irq", request_irq_exits),
222 	VCPU_STAT("irq_exits", irq_exits),
223 	VCPU_STAT("host_state_reload", host_state_reload),
224 	VCPU_STAT("fpu_reload", fpu_reload),
225 	VCPU_STAT("insn_emulation", insn_emulation),
226 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227 	VCPU_STAT("irq_injections", irq_injections),
228 	VCPU_STAT("nmi_injections", nmi_injections),
229 	VCPU_STAT("req_event", req_event),
230 	VCPU_STAT("l1d_flush", l1d_flush),
231 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234 	VM_STAT("mmu_pte_write", mmu_pte_write),
235 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
236 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237 	VM_STAT("mmu_flooded", mmu_flooded),
238 	VM_STAT("mmu_recycled", mmu_recycled),
239 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
240 	VM_STAT("mmu_unsync", mmu_unsync),
241 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
242 	VM_STAT("largepages", lpages, .mode = 0444),
243 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245 	{ NULL }
246 };
247 
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251 
252 static struct kmem_cache *x86_fpu_cache;
253 
254 static struct kmem_cache *x86_emulator_cache;
255 
256 /*
257  * When called, it means the previous get/set msr reached an invalid msr.
258  * Return true if we want to ignore/silent this failed msr access.
259  */
260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261 				  u64 data, bool write)
262 {
263 	const char *op = write ? "wrmsr" : "rdmsr";
264 
265 	if (ignore_msrs) {
266 		if (report_ignored_msrs)
267 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268 				      op, msr, data);
269 		/* Mask the error */
270 		return true;
271 	} else {
272 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273 				      op, msr, data);
274 		return false;
275 	}
276 }
277 
278 static struct kmem_cache *kvm_alloc_emulator_cache(void)
279 {
280 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281 	unsigned int size = sizeof(struct x86_emulate_ctxt);
282 
283 	return kmem_cache_create_usercopy("x86_emulator", size,
284 					  __alignof__(struct x86_emulate_ctxt),
285 					  SLAB_ACCOUNT, useroffset,
286 					  size - useroffset, NULL);
287 }
288 
289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
290 
291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292 {
293 	int i;
294 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
295 		vcpu->arch.apf.gfns[i] = ~0;
296 }
297 
298 static void kvm_on_user_return(struct user_return_notifier *urn)
299 {
300 	unsigned slot;
301 	struct kvm_user_return_msrs *msrs
302 		= container_of(urn, struct kvm_user_return_msrs, urn);
303 	struct kvm_user_return_msr_values *values;
304 	unsigned long flags;
305 
306 	/*
307 	 * Disabling irqs at this point since the following code could be
308 	 * interrupted and executed through kvm_arch_hardware_disable()
309 	 */
310 	local_irq_save(flags);
311 	if (msrs->registered) {
312 		msrs->registered = false;
313 		user_return_notifier_unregister(urn);
314 	}
315 	local_irq_restore(flags);
316 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317 		values = &msrs->values[slot];
318 		if (values->host != values->curr) {
319 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
320 			values->curr = values->host;
321 		}
322 	}
323 }
324 
325 void kvm_define_user_return_msr(unsigned slot, u32 msr)
326 {
327 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328 	user_return_msrs_global.msrs[slot] = msr;
329 	if (slot >= user_return_msrs_global.nr)
330 		user_return_msrs_global.nr = slot + 1;
331 }
332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
333 
334 static void kvm_user_return_msr_cpu_online(void)
335 {
336 	unsigned int cpu = smp_processor_id();
337 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
338 	u64 value;
339 	int i;
340 
341 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
342 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343 		msrs->values[i].host = value;
344 		msrs->values[i].curr = value;
345 	}
346 }
347 
348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
349 {
350 	unsigned int cpu = smp_processor_id();
351 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352 	int err;
353 
354 	value = (value & mask) | (msrs->values[slot].host & ~mask);
355 	if (value == msrs->values[slot].curr)
356 		return 0;
357 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
358 	if (err)
359 		return 1;
360 
361 	msrs->values[slot].curr = value;
362 	if (!msrs->registered) {
363 		msrs->urn.on_user_return = kvm_on_user_return;
364 		user_return_notifier_register(&msrs->urn);
365 		msrs->registered = true;
366 	}
367 	return 0;
368 }
369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
370 
371 static void drop_user_return_notifiers(void)
372 {
373 	unsigned int cpu = smp_processor_id();
374 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
375 
376 	if (msrs->registered)
377 		kvm_on_user_return(&msrs->urn);
378 }
379 
380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381 {
382 	return vcpu->arch.apic_base;
383 }
384 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385 
386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387 {
388 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
389 }
390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391 
392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393 {
394 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
396 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
398 
399 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
400 		return 1;
401 	if (!msr_info->host_initiated) {
402 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403 			return 1;
404 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405 			return 1;
406 	}
407 
408 	kvm_lapic_set_base(vcpu, msr_info->data);
409 	kvm_recalculate_apic_map(vcpu->kvm);
410 	return 0;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413 
414 asmlinkage __visible noinstr void kvm_spurious_fault(void)
415 {
416 	/* Fault while not rebooting.  We want the trace. */
417 	BUG_ON(!kvm_rebooting);
418 }
419 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420 
421 #define EXCPT_BENIGN		0
422 #define EXCPT_CONTRIBUTORY	1
423 #define EXCPT_PF		2
424 
425 static int exception_class(int vector)
426 {
427 	switch (vector) {
428 	case PF_VECTOR:
429 		return EXCPT_PF;
430 	case DE_VECTOR:
431 	case TS_VECTOR:
432 	case NP_VECTOR:
433 	case SS_VECTOR:
434 	case GP_VECTOR:
435 		return EXCPT_CONTRIBUTORY;
436 	default:
437 		break;
438 	}
439 	return EXCPT_BENIGN;
440 }
441 
442 #define EXCPT_FAULT		0
443 #define EXCPT_TRAP		1
444 #define EXCPT_ABORT		2
445 #define EXCPT_INTERRUPT		3
446 
447 static int exception_type(int vector)
448 {
449 	unsigned int mask;
450 
451 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452 		return EXCPT_INTERRUPT;
453 
454 	mask = 1 << vector;
455 
456 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
457 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458 		return EXCPT_TRAP;
459 
460 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461 		return EXCPT_ABORT;
462 
463 	/* Reserved exceptions will result in fault */
464 	return EXCPT_FAULT;
465 }
466 
467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468 {
469 	unsigned nr = vcpu->arch.exception.nr;
470 	bool has_payload = vcpu->arch.exception.has_payload;
471 	unsigned long payload = vcpu->arch.exception.payload;
472 
473 	if (!has_payload)
474 		return;
475 
476 	switch (nr) {
477 	case DB_VECTOR:
478 		/*
479 		 * "Certain debug exceptions may clear bit 0-3.  The
480 		 * remaining contents of the DR6 register are never
481 		 * cleared by the processor".
482 		 */
483 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484 		/*
485 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
486 		 */
487 		vcpu->arch.dr6 |= DR6_RTM;
488 		vcpu->arch.dr6 |= payload;
489 		/*
490 		 * Bit 16 should be set in the payload whenever the #DB
491 		 * exception should clear DR6.RTM. This makes the payload
492 		 * compatible with the pending debug exceptions under VMX.
493 		 * Though not currently documented in the SDM, this also
494 		 * makes the payload compatible with the exit qualification
495 		 * for #DB exceptions under VMX.
496 		 */
497 		vcpu->arch.dr6 ^= payload & DR6_RTM;
498 
499 		/*
500 		 * The #DB payload is defined as compatible with the 'pending
501 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
502 		 * defined in the 'pending debug exceptions' field (enabled
503 		 * breakpoint), it is reserved and must be zero in DR6.
504 		 */
505 		vcpu->arch.dr6 &= ~BIT(12);
506 		break;
507 	case PF_VECTOR:
508 		vcpu->arch.cr2 = payload;
509 		break;
510 	}
511 
512 	vcpu->arch.exception.has_payload = false;
513 	vcpu->arch.exception.payload = 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516 
517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
518 		unsigned nr, bool has_error, u32 error_code,
519 	        bool has_payload, unsigned long payload, bool reinject)
520 {
521 	u32 prev_nr;
522 	int class1, class2;
523 
524 	kvm_make_request(KVM_REQ_EVENT, vcpu);
525 
526 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
527 	queue:
528 		if (has_error && !is_protmode(vcpu))
529 			has_error = false;
530 		if (reinject) {
531 			/*
532 			 * On vmentry, vcpu->arch.exception.pending is only
533 			 * true if an event injection was blocked by
534 			 * nested_run_pending.  In that case, however,
535 			 * vcpu_enter_guest requests an immediate exit,
536 			 * and the guest shouldn't proceed far enough to
537 			 * need reinjection.
538 			 */
539 			WARN_ON_ONCE(vcpu->arch.exception.pending);
540 			vcpu->arch.exception.injected = true;
541 			if (WARN_ON_ONCE(has_payload)) {
542 				/*
543 				 * A reinjected event has already
544 				 * delivered its payload.
545 				 */
546 				has_payload = false;
547 				payload = 0;
548 			}
549 		} else {
550 			vcpu->arch.exception.pending = true;
551 			vcpu->arch.exception.injected = false;
552 		}
553 		vcpu->arch.exception.has_error_code = has_error;
554 		vcpu->arch.exception.nr = nr;
555 		vcpu->arch.exception.error_code = error_code;
556 		vcpu->arch.exception.has_payload = has_payload;
557 		vcpu->arch.exception.payload = payload;
558 		if (!is_guest_mode(vcpu))
559 			kvm_deliver_exception_payload(vcpu);
560 		return;
561 	}
562 
563 	/* to check exception */
564 	prev_nr = vcpu->arch.exception.nr;
565 	if (prev_nr == DF_VECTOR) {
566 		/* triple fault -> shutdown */
567 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
568 		return;
569 	}
570 	class1 = exception_class(prev_nr);
571 	class2 = exception_class(nr);
572 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
574 		/*
575 		 * Generate double fault per SDM Table 5-5.  Set
576 		 * exception.pending = true so that the double fault
577 		 * can trigger a nested vmexit.
578 		 */
579 		vcpu->arch.exception.pending = true;
580 		vcpu->arch.exception.injected = false;
581 		vcpu->arch.exception.has_error_code = true;
582 		vcpu->arch.exception.nr = DF_VECTOR;
583 		vcpu->arch.exception.error_code = 0;
584 		vcpu->arch.exception.has_payload = false;
585 		vcpu->arch.exception.payload = 0;
586 	} else
587 		/* replace previous exception with a new one in a hope
588 		   that instruction re-execution will regenerate lost
589 		   exception */
590 		goto queue;
591 }
592 
593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594 {
595 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
596 }
597 EXPORT_SYMBOL_GPL(kvm_queue_exception);
598 
599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600 {
601 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
602 }
603 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604 
605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606 			   unsigned long payload)
607 {
608 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
611 
612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613 				    u32 error_code, unsigned long payload)
614 {
615 	kvm_multiple_exception(vcpu, nr, true, error_code,
616 			       true, payload, false);
617 }
618 
619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
620 {
621 	if (err)
622 		kvm_inject_gp(vcpu, 0);
623 	else
624 		return kvm_skip_emulated_instruction(vcpu);
625 
626 	return 1;
627 }
628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
629 
630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
631 {
632 	++vcpu->stat.pf_guest;
633 	vcpu->arch.exception.nested_apf =
634 		is_guest_mode(vcpu) && fault->async_page_fault;
635 	if (vcpu->arch.exception.nested_apf) {
636 		vcpu->arch.apf.nested_apf_token = fault->address;
637 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638 	} else {
639 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640 					fault->address);
641 	}
642 }
643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
644 
645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646 				    struct x86_exception *fault)
647 {
648 	struct kvm_mmu *fault_mmu;
649 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
650 
651 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652 					       vcpu->arch.walk_mmu;
653 
654 	/*
655 	 * Invalidate the TLB entry for the faulting address, if it exists,
656 	 * else the access will fault indefinitely (and to emulate hardware).
657 	 */
658 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
659 	    !(fault->error_code & PFERR_RSVD_MASK))
660 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661 				       fault_mmu->root_hpa);
662 
663 	fault_mmu->inject_page_fault(vcpu, fault);
664 	return fault->nested_page_fault;
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
667 
668 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669 {
670 	atomic_inc(&vcpu->arch.nmi_queued);
671 	kvm_make_request(KVM_REQ_NMI, vcpu);
672 }
673 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674 
675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676 {
677 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
678 }
679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680 
681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682 {
683 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
684 }
685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686 
687 /*
688  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
689  * a #GP and return false.
690  */
691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
692 {
693 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
694 		return true;
695 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696 	return false;
697 }
698 EXPORT_SYMBOL_GPL(kvm_require_cpl);
699 
700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701 {
702 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703 		return true;
704 
705 	kvm_queue_exception(vcpu, UD_VECTOR);
706 	return false;
707 }
708 EXPORT_SYMBOL_GPL(kvm_require_dr);
709 
710 /*
711  * This function will be used to read from the physical memory of the currently
712  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
713  * can read from guest physical or from the guest's guest physical memory.
714  */
715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716 			    gfn_t ngfn, void *data, int offset, int len,
717 			    u32 access)
718 {
719 	struct x86_exception exception;
720 	gfn_t real_gfn;
721 	gpa_t ngpa;
722 
723 	ngpa     = gfn_to_gpa(ngfn);
724 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
725 	if (real_gfn == UNMAPPED_GVA)
726 		return -EFAULT;
727 
728 	real_gfn = gpa_to_gfn(real_gfn);
729 
730 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733 
734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
735 			       void *data, int offset, int len, u32 access)
736 {
737 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738 				       data, offset, len, access);
739 }
740 
741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742 {
743 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744 	       rsvd_bits(1, 2);
745 }
746 
747 /*
748  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
749  */
750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
751 {
752 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754 	int i;
755 	int ret;
756 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
757 
758 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759 				      offset * sizeof(u64), sizeof(pdpte),
760 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
761 	if (ret < 0) {
762 		ret = 0;
763 		goto out;
764 	}
765 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
766 		if ((pdpte[i] & PT_PRESENT_MASK) &&
767 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
768 			ret = 0;
769 			goto out;
770 		}
771 	}
772 	ret = 1;
773 
774 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
775 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776 
777 out:
778 
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(load_pdptrs);
782 
783 bool pdptrs_changed(struct kvm_vcpu *vcpu)
784 {
785 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
786 	int offset;
787 	gfn_t gfn;
788 	int r;
789 
790 	if (!is_pae_paging(vcpu))
791 		return false;
792 
793 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
794 		return true;
795 
796 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
798 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
800 	if (r < 0)
801 		return true;
802 
803 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
804 }
805 EXPORT_SYMBOL_GPL(pdptrs_changed);
806 
807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
808 {
809 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
810 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
811 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812 
813 	cr0 |= X86_CR0_ET;
814 
815 #ifdef CONFIG_X86_64
816 	if (cr0 & 0xffffffff00000000UL)
817 		return 1;
818 #endif
819 
820 	cr0 &= ~CR0_RESERVED_BITS;
821 
822 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
823 		return 1;
824 
825 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
826 		return 1;
827 
828 #ifdef CONFIG_X86_64
829 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
830 	    (cr0 & X86_CR0_PG)) {
831 		int cs_db, cs_l;
832 
833 		if (!is_pae(vcpu))
834 			return 1;
835 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
836 		if (cs_l)
837 			return 1;
838 	}
839 #endif
840 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
841 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
842 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
843 		return 1;
844 
845 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
846 		return 1;
847 
848 	kvm_x86_ops.set_cr0(vcpu, cr0);
849 
850 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
851 		kvm_clear_async_pf_completion_queue(vcpu);
852 		kvm_async_pf_hash_reset(vcpu);
853 	}
854 
855 	if ((cr0 ^ old_cr0) & update_bits)
856 		kvm_mmu_reset_context(vcpu);
857 
858 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
859 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
860 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
861 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
862 
863 	return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr0);
866 
867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
868 {
869 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
870 }
871 EXPORT_SYMBOL_GPL(kvm_lmsw);
872 
873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
874 {
875 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
876 
877 		if (vcpu->arch.xcr0 != host_xcr0)
878 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
879 
880 		if (vcpu->arch.xsaves_enabled &&
881 		    vcpu->arch.ia32_xss != host_xss)
882 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
883 	}
884 
885 	if (static_cpu_has(X86_FEATURE_PKU) &&
886 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
887 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
888 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
889 		__write_pkru(vcpu->arch.pkru);
890 }
891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
892 
893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
894 {
895 	if (static_cpu_has(X86_FEATURE_PKU) &&
896 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
897 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
898 		vcpu->arch.pkru = rdpkru();
899 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
900 			__write_pkru(vcpu->arch.host_pkru);
901 	}
902 
903 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904 
905 		if (vcpu->arch.xcr0 != host_xcr0)
906 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
907 
908 		if (vcpu->arch.xsaves_enabled &&
909 		    vcpu->arch.ia32_xss != host_xss)
910 			wrmsrl(MSR_IA32_XSS, host_xss);
911 	}
912 
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
915 
916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
917 {
918 	u64 xcr0 = xcr;
919 	u64 old_xcr0 = vcpu->arch.xcr0;
920 	u64 valid_bits;
921 
922 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
923 	if (index != XCR_XFEATURE_ENABLED_MASK)
924 		return 1;
925 	if (!(xcr0 & XFEATURE_MASK_FP))
926 		return 1;
927 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
928 		return 1;
929 
930 	/*
931 	 * Do not allow the guest to set bits that we do not support
932 	 * saving.  However, xcr0 bit 0 is always set, even if the
933 	 * emulated CPU does not support XSAVE (see fx_init).
934 	 */
935 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
936 	if (xcr0 & ~valid_bits)
937 		return 1;
938 
939 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
940 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
941 		return 1;
942 
943 	if (xcr0 & XFEATURE_MASK_AVX512) {
944 		if (!(xcr0 & XFEATURE_MASK_YMM))
945 			return 1;
946 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
947 			return 1;
948 	}
949 	vcpu->arch.xcr0 = xcr0;
950 
951 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
952 		kvm_update_cpuid_runtime(vcpu);
953 	return 0;
954 }
955 
956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
957 {
958 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
959 	    __kvm_set_xcr(vcpu, index, xcr)) {
960 		kvm_inject_gp(vcpu, 0);
961 		return 1;
962 	}
963 	return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_xcr);
966 
967 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
968 {
969 	if (cr4 & cr4_reserved_bits)
970 		return -EINVAL;
971 
972 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
973 		return -EINVAL;
974 
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
978 
979 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
980 {
981 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
982 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
983 				   X86_CR4_SMEP;
984 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
985 
986 	if (kvm_valid_cr4(vcpu, cr4))
987 		return 1;
988 
989 	if (is_long_mode(vcpu)) {
990 		if (!(cr4 & X86_CR4_PAE))
991 			return 1;
992 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
993 			return 1;
994 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
995 		   && ((cr4 ^ old_cr4) & pdptr_bits)
996 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
997 				   kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1001 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1002 			return 1;
1003 
1004 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1005 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1006 			return 1;
1007 	}
1008 
1009 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
1010 		return 1;
1011 
1012 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1013 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1014 		kvm_mmu_reset_context(vcpu);
1015 
1016 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1017 		kvm_update_cpuid_runtime(vcpu);
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1022 
1023 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025 	bool skip_tlb_flush = false;
1026 #ifdef CONFIG_X86_64
1027 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1028 
1029 	if (pcid_enabled) {
1030 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1031 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1032 	}
1033 #endif
1034 
1035 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1036 		if (!skip_tlb_flush) {
1037 			kvm_mmu_sync_roots(vcpu);
1038 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1039 		}
1040 		return 0;
1041 	}
1042 
1043 	if (is_long_mode(vcpu) &&
1044 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1045 		return 1;
1046 	else if (is_pae_paging(vcpu) &&
1047 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1048 		return 1;
1049 
1050 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1051 	vcpu->arch.cr3 = cr3;
1052 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1053 
1054 	return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1057 
1058 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1059 {
1060 	if (cr8 & CR8_RESERVED_BITS)
1061 		return 1;
1062 	if (lapic_in_kernel(vcpu))
1063 		kvm_lapic_set_tpr(vcpu, cr8);
1064 	else
1065 		vcpu->arch.cr8 = cr8;
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1069 
1070 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1071 {
1072 	if (lapic_in_kernel(vcpu))
1073 		return kvm_lapic_get_cr8(vcpu);
1074 	else
1075 		return vcpu->arch.cr8;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1078 
1079 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1080 {
1081 	int i;
1082 
1083 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1084 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1085 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1086 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1087 	}
1088 }
1089 
1090 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1091 {
1092 	unsigned long dr7;
1093 
1094 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1095 		dr7 = vcpu->arch.guest_debug_dr7;
1096 	else
1097 		dr7 = vcpu->arch.dr7;
1098 	kvm_x86_ops.set_dr7(vcpu, dr7);
1099 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1100 	if (dr7 & DR7_BP_EN_MASK)
1101 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1104 
1105 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1106 {
1107 	u64 fixed = DR6_FIXED_1;
1108 
1109 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1110 		fixed |= DR6_RTM;
1111 	return fixed;
1112 }
1113 
1114 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1115 {
1116 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1117 
1118 	switch (dr) {
1119 	case 0 ... 3:
1120 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1121 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1122 			vcpu->arch.eff_db[dr] = val;
1123 		break;
1124 	case 4:
1125 	case 6:
1126 		if (!kvm_dr6_valid(val))
1127 			return -1; /* #GP */
1128 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1129 		break;
1130 	case 5:
1131 	default: /* 7 */
1132 		if (!kvm_dr7_valid(val))
1133 			return -1; /* #GP */
1134 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1135 		kvm_update_dr7(vcpu);
1136 		break;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1143 {
1144 	if (__kvm_set_dr(vcpu, dr, val)) {
1145 		kvm_inject_gp(vcpu, 0);
1146 		return 1;
1147 	}
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(kvm_set_dr);
1151 
1152 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1153 {
1154 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1155 
1156 	switch (dr) {
1157 	case 0 ... 3:
1158 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1159 		break;
1160 	case 4:
1161 	case 6:
1162 		*val = vcpu->arch.dr6;
1163 		break;
1164 	case 5:
1165 	default: /* 7 */
1166 		*val = vcpu->arch.dr7;
1167 		break;
1168 	}
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_get_dr);
1172 
1173 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1174 {
1175 	u32 ecx = kvm_rcx_read(vcpu);
1176 	u64 data;
1177 	int err;
1178 
1179 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1180 	if (err)
1181 		return err;
1182 	kvm_rax_write(vcpu, (u32)data);
1183 	kvm_rdx_write(vcpu, data >> 32);
1184 	return err;
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1187 
1188 /*
1189  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1190  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1191  *
1192  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1193  * extract the supported MSRs from the related const lists.
1194  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1195  * capabilities of the host cpu. This capabilities test skips MSRs that are
1196  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1197  * may depend on host virtualization features rather than host cpu features.
1198  */
1199 
1200 static const u32 msrs_to_save_all[] = {
1201 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1202 	MSR_STAR,
1203 #ifdef CONFIG_X86_64
1204 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1205 #endif
1206 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1207 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1208 	MSR_IA32_SPEC_CTRL,
1209 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1210 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1211 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1212 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1213 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1214 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1215 	MSR_IA32_UMWAIT_CONTROL,
1216 
1217 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1218 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1219 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1220 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1221 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1222 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1223 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1224 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1225 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1226 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1227 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1228 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1229 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1230 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1231 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1232 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1233 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1234 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1235 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1236 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1237 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1238 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1239 };
1240 
1241 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1242 static unsigned num_msrs_to_save;
1243 
1244 static const u32 emulated_msrs_all[] = {
1245 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1246 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1247 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1248 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1249 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1250 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1251 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1252 	HV_X64_MSR_RESET,
1253 	HV_X64_MSR_VP_INDEX,
1254 	HV_X64_MSR_VP_RUNTIME,
1255 	HV_X64_MSR_SCONTROL,
1256 	HV_X64_MSR_STIMER0_CONFIG,
1257 	HV_X64_MSR_VP_ASSIST_PAGE,
1258 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1259 	HV_X64_MSR_TSC_EMULATION_STATUS,
1260 	HV_X64_MSR_SYNDBG_OPTIONS,
1261 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1262 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1263 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1264 
1265 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1266 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1267 
1268 	MSR_IA32_TSC_ADJUST,
1269 	MSR_IA32_TSCDEADLINE,
1270 	MSR_IA32_ARCH_CAPABILITIES,
1271 	MSR_IA32_PERF_CAPABILITIES,
1272 	MSR_IA32_MISC_ENABLE,
1273 	MSR_IA32_MCG_STATUS,
1274 	MSR_IA32_MCG_CTL,
1275 	MSR_IA32_MCG_EXT_CTL,
1276 	MSR_IA32_SMBASE,
1277 	MSR_SMI_COUNT,
1278 	MSR_PLATFORM_INFO,
1279 	MSR_MISC_FEATURES_ENABLES,
1280 	MSR_AMD64_VIRT_SPEC_CTRL,
1281 	MSR_IA32_POWER_CTL,
1282 	MSR_IA32_UCODE_REV,
1283 
1284 	/*
1285 	 * The following list leaves out MSRs whose values are determined
1286 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1287 	 * We always support the "true" VMX control MSRs, even if the host
1288 	 * processor does not, so I am putting these registers here rather
1289 	 * than in msrs_to_save_all.
1290 	 */
1291 	MSR_IA32_VMX_BASIC,
1292 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1293 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1294 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1295 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1296 	MSR_IA32_VMX_MISC,
1297 	MSR_IA32_VMX_CR0_FIXED0,
1298 	MSR_IA32_VMX_CR4_FIXED0,
1299 	MSR_IA32_VMX_VMCS_ENUM,
1300 	MSR_IA32_VMX_PROCBASED_CTLS2,
1301 	MSR_IA32_VMX_EPT_VPID_CAP,
1302 	MSR_IA32_VMX_VMFUNC,
1303 
1304 	MSR_K7_HWCR,
1305 	MSR_KVM_POLL_CONTROL,
1306 };
1307 
1308 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1309 static unsigned num_emulated_msrs;
1310 
1311 /*
1312  * List of msr numbers which are used to expose MSR-based features that
1313  * can be used by a hypervisor to validate requested CPU features.
1314  */
1315 static const u32 msr_based_features_all[] = {
1316 	MSR_IA32_VMX_BASIC,
1317 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1318 	MSR_IA32_VMX_PINBASED_CTLS,
1319 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1320 	MSR_IA32_VMX_PROCBASED_CTLS,
1321 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1322 	MSR_IA32_VMX_EXIT_CTLS,
1323 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1324 	MSR_IA32_VMX_ENTRY_CTLS,
1325 	MSR_IA32_VMX_MISC,
1326 	MSR_IA32_VMX_CR0_FIXED0,
1327 	MSR_IA32_VMX_CR0_FIXED1,
1328 	MSR_IA32_VMX_CR4_FIXED0,
1329 	MSR_IA32_VMX_CR4_FIXED1,
1330 	MSR_IA32_VMX_VMCS_ENUM,
1331 	MSR_IA32_VMX_PROCBASED_CTLS2,
1332 	MSR_IA32_VMX_EPT_VPID_CAP,
1333 	MSR_IA32_VMX_VMFUNC,
1334 
1335 	MSR_F10H_DECFG,
1336 	MSR_IA32_UCODE_REV,
1337 	MSR_IA32_ARCH_CAPABILITIES,
1338 	MSR_IA32_PERF_CAPABILITIES,
1339 };
1340 
1341 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1342 static unsigned int num_msr_based_features;
1343 
1344 static u64 kvm_get_arch_capabilities(void)
1345 {
1346 	u64 data = 0;
1347 
1348 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1349 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1350 
1351 	/*
1352 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1353 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1354 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1355 	 * L1 guests, so it need not worry about its own (L2) guests.
1356 	 */
1357 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1358 
1359 	/*
1360 	 * If we're doing cache flushes (either "always" or "cond")
1361 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1362 	 * If an outer hypervisor is doing the cache flush for us
1363 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1364 	 * capability to the guest too, and if EPT is disabled we're not
1365 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1366 	 * require a nested hypervisor to do a flush of its own.
1367 	 */
1368 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1369 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1370 
1371 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1372 		data |= ARCH_CAP_RDCL_NO;
1373 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1374 		data |= ARCH_CAP_SSB_NO;
1375 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1376 		data |= ARCH_CAP_MDS_NO;
1377 
1378 	/*
1379 	 * On TAA affected systems:
1380 	 *      - nothing to do if TSX is disabled on the host.
1381 	 *      - we emulate TSX_CTRL if present on the host.
1382 	 *	  This lets the guest use VERW to clear CPU buffers.
1383 	 */
1384 	if (!boot_cpu_has(X86_FEATURE_RTM))
1385 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1386 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1387 		data |= ARCH_CAP_TAA_NO;
1388 
1389 	return data;
1390 }
1391 
1392 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1393 {
1394 	switch (msr->index) {
1395 	case MSR_IA32_ARCH_CAPABILITIES:
1396 		msr->data = kvm_get_arch_capabilities();
1397 		break;
1398 	case MSR_IA32_UCODE_REV:
1399 		rdmsrl_safe(msr->index, &msr->data);
1400 		break;
1401 	default:
1402 		return kvm_x86_ops.get_msr_feature(msr);
1403 	}
1404 	return 0;
1405 }
1406 
1407 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409 	struct kvm_msr_entry msr;
1410 	int r;
1411 
1412 	msr.index = index;
1413 	r = kvm_get_msr_feature(&msr);
1414 
1415 	if (r == KVM_MSR_RET_INVALID) {
1416 		/* Unconditionally clear the output for simplicity */
1417 		*data = 0;
1418 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1419 			r = 0;
1420 	}
1421 
1422 	if (r)
1423 		return r;
1424 
1425 	*data = msr.data;
1426 
1427 	return 0;
1428 }
1429 
1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1431 {
1432 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1433 		return false;
1434 
1435 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1436 		return false;
1437 
1438 	if (efer & (EFER_LME | EFER_LMA) &&
1439 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1440 		return false;
1441 
1442 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1443 		return false;
1444 
1445 	return true;
1446 
1447 }
1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1449 {
1450 	if (efer & efer_reserved_bits)
1451 		return false;
1452 
1453 	return __kvm_valid_efer(vcpu, efer);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1456 
1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1458 {
1459 	u64 old_efer = vcpu->arch.efer;
1460 	u64 efer = msr_info->data;
1461 	int r;
1462 
1463 	if (efer & efer_reserved_bits)
1464 		return 1;
1465 
1466 	if (!msr_info->host_initiated) {
1467 		if (!__kvm_valid_efer(vcpu, efer))
1468 			return 1;
1469 
1470 		if (is_paging(vcpu) &&
1471 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1472 			return 1;
1473 	}
1474 
1475 	efer &= ~EFER_LMA;
1476 	efer |= vcpu->arch.efer & EFER_LMA;
1477 
1478 	r = kvm_x86_ops.set_efer(vcpu, efer);
1479 	if (r) {
1480 		WARN_ON(r > 0);
1481 		return r;
1482 	}
1483 
1484 	/* Update reserved bits */
1485 	if ((efer ^ old_efer) & EFER_NX)
1486 		kvm_mmu_reset_context(vcpu);
1487 
1488 	return 0;
1489 }
1490 
1491 void kvm_enable_efer_bits(u64 mask)
1492 {
1493        efer_reserved_bits &= ~mask;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1496 
1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1498 {
1499 	struct kvm *kvm = vcpu->kvm;
1500 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1501 	u32 count = kvm->arch.msr_filter.count;
1502 	u32 i;
1503 	bool r = kvm->arch.msr_filter.default_allow;
1504 	int idx;
1505 
1506 	/* MSR filtering not set up or x2APIC enabled, allow everything */
1507 	if (!count || (index >= 0x800 && index <= 0x8ff))
1508 		return true;
1509 
1510 	/* Prevent collision with set_msr_filter */
1511 	idx = srcu_read_lock(&kvm->srcu);
1512 
1513 	for (i = 0; i < count; i++) {
1514 		u32 start = ranges[i].base;
1515 		u32 end = start + ranges[i].nmsrs;
1516 		u32 flags = ranges[i].flags;
1517 		unsigned long *bitmap = ranges[i].bitmap;
1518 
1519 		if ((index >= start) && (index < end) && (flags & type)) {
1520 			r = !!test_bit(index - start, bitmap);
1521 			break;
1522 		}
1523 	}
1524 
1525 	srcu_read_unlock(&kvm->srcu, idx);
1526 
1527 	return r;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1530 
1531 /*
1532  * Write @data into the MSR specified by @index.  Select MSR specific fault
1533  * checks are bypassed if @host_initiated is %true.
1534  * Returns 0 on success, non-0 otherwise.
1535  * Assumes vcpu_load() was already called.
1536  */
1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1538 			 bool host_initiated)
1539 {
1540 	struct msr_data msr;
1541 
1542 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1543 		return KVM_MSR_RET_FILTERED;
1544 
1545 	switch (index) {
1546 	case MSR_FS_BASE:
1547 	case MSR_GS_BASE:
1548 	case MSR_KERNEL_GS_BASE:
1549 	case MSR_CSTAR:
1550 	case MSR_LSTAR:
1551 		if (is_noncanonical_address(data, vcpu))
1552 			return 1;
1553 		break;
1554 	case MSR_IA32_SYSENTER_EIP:
1555 	case MSR_IA32_SYSENTER_ESP:
1556 		/*
1557 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1558 		 * non-canonical address is written on Intel but not on
1559 		 * AMD (which ignores the top 32-bits, because it does
1560 		 * not implement 64-bit SYSENTER).
1561 		 *
1562 		 * 64-bit code should hence be able to write a non-canonical
1563 		 * value on AMD.  Making the address canonical ensures that
1564 		 * vmentry does not fail on Intel after writing a non-canonical
1565 		 * value, and that something deterministic happens if the guest
1566 		 * invokes 64-bit SYSENTER.
1567 		 */
1568 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1569 	}
1570 
1571 	msr.data = data;
1572 	msr.index = index;
1573 	msr.host_initiated = host_initiated;
1574 
1575 	return kvm_x86_ops.set_msr(vcpu, &msr);
1576 }
1577 
1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1579 				     u32 index, u64 data, bool host_initiated)
1580 {
1581 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1582 
1583 	if (ret == KVM_MSR_RET_INVALID)
1584 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1585 			ret = 0;
1586 
1587 	return ret;
1588 }
1589 
1590 /*
1591  * Read the MSR specified by @index into @data.  Select MSR specific fault
1592  * checks are bypassed if @host_initiated is %true.
1593  * Returns 0 on success, non-0 otherwise.
1594  * Assumes vcpu_load() was already called.
1595  */
1596 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1597 		  bool host_initiated)
1598 {
1599 	struct msr_data msr;
1600 	int ret;
1601 
1602 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1603 		return KVM_MSR_RET_FILTERED;
1604 
1605 	msr.index = index;
1606 	msr.host_initiated = host_initiated;
1607 
1608 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1609 	if (!ret)
1610 		*data = msr.data;
1611 	return ret;
1612 }
1613 
1614 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1615 				     u32 index, u64 *data, bool host_initiated)
1616 {
1617 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1618 
1619 	if (ret == KVM_MSR_RET_INVALID) {
1620 		/* Unconditionally clear *data for simplicity */
1621 		*data = 0;
1622 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1623 			ret = 0;
1624 	}
1625 
1626 	return ret;
1627 }
1628 
1629 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1630 {
1631 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_get_msr);
1634 
1635 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1636 {
1637 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_set_msr);
1640 
1641 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1642 {
1643 	if (vcpu->run->msr.error) {
1644 		kvm_inject_gp(vcpu, 0);
1645 		return 1;
1646 	} else if (is_read) {
1647 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1648 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1649 	}
1650 
1651 	return kvm_skip_emulated_instruction(vcpu);
1652 }
1653 
1654 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1655 {
1656 	return complete_emulated_msr(vcpu, true);
1657 }
1658 
1659 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1660 {
1661 	return complete_emulated_msr(vcpu, false);
1662 }
1663 
1664 static u64 kvm_msr_reason(int r)
1665 {
1666 	switch (r) {
1667 	case KVM_MSR_RET_INVALID:
1668 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1669 	case KVM_MSR_RET_FILTERED:
1670 		return KVM_MSR_EXIT_REASON_FILTER;
1671 	default:
1672 		return KVM_MSR_EXIT_REASON_INVAL;
1673 	}
1674 }
1675 
1676 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1677 			      u32 exit_reason, u64 data,
1678 			      int (*completion)(struct kvm_vcpu *vcpu),
1679 			      int r)
1680 {
1681 	u64 msr_reason = kvm_msr_reason(r);
1682 
1683 	/* Check if the user wanted to know about this MSR fault */
1684 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1685 		return 0;
1686 
1687 	vcpu->run->exit_reason = exit_reason;
1688 	vcpu->run->msr.error = 0;
1689 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1690 	vcpu->run->msr.reason = msr_reason;
1691 	vcpu->run->msr.index = index;
1692 	vcpu->run->msr.data = data;
1693 	vcpu->arch.complete_userspace_io = completion;
1694 
1695 	return 1;
1696 }
1697 
1698 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1699 {
1700 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1701 				   complete_emulated_rdmsr, r);
1702 }
1703 
1704 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1705 {
1706 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1707 				   complete_emulated_wrmsr, r);
1708 }
1709 
1710 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1711 {
1712 	u32 ecx = kvm_rcx_read(vcpu);
1713 	u64 data;
1714 	int r;
1715 
1716 	r = kvm_get_msr(vcpu, ecx, &data);
1717 
1718 	/* MSR read failed? See if we should ask user space */
1719 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1720 		/* Bounce to user space */
1721 		return 0;
1722 	}
1723 
1724 	/* MSR read failed? Inject a #GP */
1725 	if (r) {
1726 		trace_kvm_msr_read_ex(ecx);
1727 		kvm_inject_gp(vcpu, 0);
1728 		return 1;
1729 	}
1730 
1731 	trace_kvm_msr_read(ecx, data);
1732 
1733 	kvm_rax_write(vcpu, data & -1u);
1734 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1735 	return kvm_skip_emulated_instruction(vcpu);
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1738 
1739 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1740 {
1741 	u32 ecx = kvm_rcx_read(vcpu);
1742 	u64 data = kvm_read_edx_eax(vcpu);
1743 	int r;
1744 
1745 	r = kvm_set_msr(vcpu, ecx, data);
1746 
1747 	/* MSR write failed? See if we should ask user space */
1748 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1749 		/* Bounce to user space */
1750 		return 0;
1751 
1752 	/* Signal all other negative errors to userspace */
1753 	if (r < 0)
1754 		return r;
1755 
1756 	/* MSR write failed? Inject a #GP */
1757 	if (r > 0) {
1758 		trace_kvm_msr_write_ex(ecx, data);
1759 		kvm_inject_gp(vcpu, 0);
1760 		return 1;
1761 	}
1762 
1763 	trace_kvm_msr_write(ecx, data);
1764 	return kvm_skip_emulated_instruction(vcpu);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1767 
1768 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1769 {
1770 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1771 		xfer_to_guest_mode_work_pending();
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1774 
1775 /*
1776  * The fast path for frequent and performance sensitive wrmsr emulation,
1777  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1778  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1779  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1780  * other cases which must be called after interrupts are enabled on the host.
1781  */
1782 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1783 {
1784 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1785 		return 1;
1786 
1787 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1788 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1789 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1790 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1791 
1792 		data &= ~(1 << 12);
1793 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1794 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1795 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1796 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1797 		return 0;
1798 	}
1799 
1800 	return 1;
1801 }
1802 
1803 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1804 {
1805 	if (!kvm_can_use_hv_timer(vcpu))
1806 		return 1;
1807 
1808 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1809 	return 0;
1810 }
1811 
1812 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1813 {
1814 	u32 msr = kvm_rcx_read(vcpu);
1815 	u64 data;
1816 	fastpath_t ret = EXIT_FASTPATH_NONE;
1817 
1818 	switch (msr) {
1819 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1820 		data = kvm_read_edx_eax(vcpu);
1821 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1822 			kvm_skip_emulated_instruction(vcpu);
1823 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1824 		}
1825 		break;
1826 	case MSR_IA32_TSCDEADLINE:
1827 		data = kvm_read_edx_eax(vcpu);
1828 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1829 			kvm_skip_emulated_instruction(vcpu);
1830 			ret = EXIT_FASTPATH_REENTER_GUEST;
1831 		}
1832 		break;
1833 	default:
1834 		break;
1835 	}
1836 
1837 	if (ret != EXIT_FASTPATH_NONE)
1838 		trace_kvm_msr_write(msr, data);
1839 
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1843 
1844 /*
1845  * Adapt set_msr() to msr_io()'s calling convention
1846  */
1847 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1848 {
1849 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1850 }
1851 
1852 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1853 {
1854 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1855 }
1856 
1857 #ifdef CONFIG_X86_64
1858 struct pvclock_clock {
1859 	int vclock_mode;
1860 	u64 cycle_last;
1861 	u64 mask;
1862 	u32 mult;
1863 	u32 shift;
1864 	u64 base_cycles;
1865 	u64 offset;
1866 };
1867 
1868 struct pvclock_gtod_data {
1869 	seqcount_t	seq;
1870 
1871 	struct pvclock_clock clock; /* extract of a clocksource struct */
1872 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1873 
1874 	ktime_t		offs_boot;
1875 	u64		wall_time_sec;
1876 };
1877 
1878 static struct pvclock_gtod_data pvclock_gtod_data;
1879 
1880 static void update_pvclock_gtod(struct timekeeper *tk)
1881 {
1882 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1883 
1884 	write_seqcount_begin(&vdata->seq);
1885 
1886 	/* copy pvclock gtod data */
1887 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1888 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1889 	vdata->clock.mask		= tk->tkr_mono.mask;
1890 	vdata->clock.mult		= tk->tkr_mono.mult;
1891 	vdata->clock.shift		= tk->tkr_mono.shift;
1892 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1893 	vdata->clock.offset		= tk->tkr_mono.base;
1894 
1895 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1896 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1897 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1898 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1899 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1900 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1901 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1902 
1903 	vdata->wall_time_sec            = tk->xtime_sec;
1904 
1905 	vdata->offs_boot		= tk->offs_boot;
1906 
1907 	write_seqcount_end(&vdata->seq);
1908 }
1909 
1910 static s64 get_kvmclock_base_ns(void)
1911 {
1912 	/* Count up from boot time, but with the frequency of the raw clock.  */
1913 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1914 }
1915 #else
1916 static s64 get_kvmclock_base_ns(void)
1917 {
1918 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1919 	return ktime_get_boottime_ns();
1920 }
1921 #endif
1922 
1923 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1924 {
1925 	int version;
1926 	int r;
1927 	struct pvclock_wall_clock wc;
1928 	u64 wall_nsec;
1929 
1930 	kvm->arch.wall_clock = wall_clock;
1931 
1932 	if (!wall_clock)
1933 		return;
1934 
1935 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1936 	if (r)
1937 		return;
1938 
1939 	if (version & 1)
1940 		++version;  /* first time write, random junk */
1941 
1942 	++version;
1943 
1944 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1945 		return;
1946 
1947 	/*
1948 	 * The guest calculates current wall clock time by adding
1949 	 * system time (updated by kvm_guest_time_update below) to the
1950 	 * wall clock specified here.  We do the reverse here.
1951 	 */
1952 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1953 
1954 	wc.nsec = do_div(wall_nsec, 1000000000);
1955 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1956 	wc.version = version;
1957 
1958 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1959 
1960 	version++;
1961 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1962 }
1963 
1964 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1965 				  bool old_msr, bool host_initiated)
1966 {
1967 	struct kvm_arch *ka = &vcpu->kvm->arch;
1968 
1969 	if (vcpu->vcpu_id == 0 && !host_initiated) {
1970 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1971 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1972 
1973 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
1974 	}
1975 
1976 	vcpu->arch.time = system_time;
1977 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1978 
1979 	/* we verify if the enable bit is set... */
1980 	vcpu->arch.pv_time_enabled = false;
1981 	if (!(system_time & 1))
1982 		return;
1983 
1984 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1985 				       &vcpu->arch.pv_time, system_time & ~1ULL,
1986 				       sizeof(struct pvclock_vcpu_time_info)))
1987 		vcpu->arch.pv_time_enabled = true;
1988 
1989 	return;
1990 }
1991 
1992 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1993 {
1994 	do_shl32_div32(dividend, divisor);
1995 	return dividend;
1996 }
1997 
1998 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1999 			       s8 *pshift, u32 *pmultiplier)
2000 {
2001 	uint64_t scaled64;
2002 	int32_t  shift = 0;
2003 	uint64_t tps64;
2004 	uint32_t tps32;
2005 
2006 	tps64 = base_hz;
2007 	scaled64 = scaled_hz;
2008 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2009 		tps64 >>= 1;
2010 		shift--;
2011 	}
2012 
2013 	tps32 = (uint32_t)tps64;
2014 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2015 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2016 			scaled64 >>= 1;
2017 		else
2018 			tps32 <<= 1;
2019 		shift++;
2020 	}
2021 
2022 	*pshift = shift;
2023 	*pmultiplier = div_frac(scaled64, tps32);
2024 }
2025 
2026 #ifdef CONFIG_X86_64
2027 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2028 #endif
2029 
2030 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2031 static unsigned long max_tsc_khz;
2032 
2033 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2034 {
2035 	u64 v = (u64)khz * (1000000 + ppm);
2036 	do_div(v, 1000000);
2037 	return v;
2038 }
2039 
2040 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2041 {
2042 	u64 ratio;
2043 
2044 	/* Guest TSC same frequency as host TSC? */
2045 	if (!scale) {
2046 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2047 		return 0;
2048 	}
2049 
2050 	/* TSC scaling supported? */
2051 	if (!kvm_has_tsc_control) {
2052 		if (user_tsc_khz > tsc_khz) {
2053 			vcpu->arch.tsc_catchup = 1;
2054 			vcpu->arch.tsc_always_catchup = 1;
2055 			return 0;
2056 		} else {
2057 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2058 			return -1;
2059 		}
2060 	}
2061 
2062 	/* TSC scaling required  - calculate ratio */
2063 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2064 				user_tsc_khz, tsc_khz);
2065 
2066 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2067 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2068 			            user_tsc_khz);
2069 		return -1;
2070 	}
2071 
2072 	vcpu->arch.tsc_scaling_ratio = ratio;
2073 	return 0;
2074 }
2075 
2076 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2077 {
2078 	u32 thresh_lo, thresh_hi;
2079 	int use_scaling = 0;
2080 
2081 	/* tsc_khz can be zero if TSC calibration fails */
2082 	if (user_tsc_khz == 0) {
2083 		/* set tsc_scaling_ratio to a safe value */
2084 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2085 		return -1;
2086 	}
2087 
2088 	/* Compute a scale to convert nanoseconds in TSC cycles */
2089 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2090 			   &vcpu->arch.virtual_tsc_shift,
2091 			   &vcpu->arch.virtual_tsc_mult);
2092 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2093 
2094 	/*
2095 	 * Compute the variation in TSC rate which is acceptable
2096 	 * within the range of tolerance and decide if the
2097 	 * rate being applied is within that bounds of the hardware
2098 	 * rate.  If so, no scaling or compensation need be done.
2099 	 */
2100 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2101 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2102 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2103 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2104 		use_scaling = 1;
2105 	}
2106 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2107 }
2108 
2109 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2110 {
2111 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2112 				      vcpu->arch.virtual_tsc_mult,
2113 				      vcpu->arch.virtual_tsc_shift);
2114 	tsc += vcpu->arch.this_tsc_write;
2115 	return tsc;
2116 }
2117 
2118 static inline int gtod_is_based_on_tsc(int mode)
2119 {
2120 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2121 }
2122 
2123 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2124 {
2125 #ifdef CONFIG_X86_64
2126 	bool vcpus_matched;
2127 	struct kvm_arch *ka = &vcpu->kvm->arch;
2128 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2129 
2130 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2131 			 atomic_read(&vcpu->kvm->online_vcpus));
2132 
2133 	/*
2134 	 * Once the masterclock is enabled, always perform request in
2135 	 * order to update it.
2136 	 *
2137 	 * In order to enable masterclock, the host clocksource must be TSC
2138 	 * and the vcpus need to have matched TSCs.  When that happens,
2139 	 * perform request to enable masterclock.
2140 	 */
2141 	if (ka->use_master_clock ||
2142 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2143 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2144 
2145 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2146 			    atomic_read(&vcpu->kvm->online_vcpus),
2147 		            ka->use_master_clock, gtod->clock.vclock_mode);
2148 #endif
2149 }
2150 
2151 /*
2152  * Multiply tsc by a fixed point number represented by ratio.
2153  *
2154  * The most significant 64-N bits (mult) of ratio represent the
2155  * integral part of the fixed point number; the remaining N bits
2156  * (frac) represent the fractional part, ie. ratio represents a fixed
2157  * point number (mult + frac * 2^(-N)).
2158  *
2159  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2160  */
2161 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2162 {
2163 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2164 }
2165 
2166 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2167 {
2168 	u64 _tsc = tsc;
2169 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2170 
2171 	if (ratio != kvm_default_tsc_scaling_ratio)
2172 		_tsc = __scale_tsc(ratio, tsc);
2173 
2174 	return _tsc;
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2177 
2178 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2179 {
2180 	u64 tsc;
2181 
2182 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2183 
2184 	return target_tsc - tsc;
2185 }
2186 
2187 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2188 {
2189 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2192 
2193 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2194 {
2195 	vcpu->arch.l1_tsc_offset = offset;
2196 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2197 }
2198 
2199 static inline bool kvm_check_tsc_unstable(void)
2200 {
2201 #ifdef CONFIG_X86_64
2202 	/*
2203 	 * TSC is marked unstable when we're running on Hyper-V,
2204 	 * 'TSC page' clocksource is good.
2205 	 */
2206 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2207 		return false;
2208 #endif
2209 	return check_tsc_unstable();
2210 }
2211 
2212 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2213 {
2214 	struct kvm *kvm = vcpu->kvm;
2215 	u64 offset, ns, elapsed;
2216 	unsigned long flags;
2217 	bool matched;
2218 	bool already_matched;
2219 	bool synchronizing = false;
2220 
2221 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2222 	offset = kvm_compute_tsc_offset(vcpu, data);
2223 	ns = get_kvmclock_base_ns();
2224 	elapsed = ns - kvm->arch.last_tsc_nsec;
2225 
2226 	if (vcpu->arch.virtual_tsc_khz) {
2227 		if (data == 0) {
2228 			/*
2229 			 * detection of vcpu initialization -- need to sync
2230 			 * with other vCPUs. This particularly helps to keep
2231 			 * kvm_clock stable after CPU hotplug
2232 			 */
2233 			synchronizing = true;
2234 		} else {
2235 			u64 tsc_exp = kvm->arch.last_tsc_write +
2236 						nsec_to_cycles(vcpu, elapsed);
2237 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2238 			/*
2239 			 * Special case: TSC write with a small delta (1 second)
2240 			 * of virtual cycle time against real time is
2241 			 * interpreted as an attempt to synchronize the CPU.
2242 			 */
2243 			synchronizing = data < tsc_exp + tsc_hz &&
2244 					data + tsc_hz > tsc_exp;
2245 		}
2246 	}
2247 
2248 	/*
2249 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2250 	 * TSC, we add elapsed time in this computation.  We could let the
2251 	 * compensation code attempt to catch up if we fall behind, but
2252 	 * it's better to try to match offsets from the beginning.
2253          */
2254 	if (synchronizing &&
2255 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2256 		if (!kvm_check_tsc_unstable()) {
2257 			offset = kvm->arch.cur_tsc_offset;
2258 		} else {
2259 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2260 			data += delta;
2261 			offset = kvm_compute_tsc_offset(vcpu, data);
2262 		}
2263 		matched = true;
2264 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2265 	} else {
2266 		/*
2267 		 * We split periods of matched TSC writes into generations.
2268 		 * For each generation, we track the original measured
2269 		 * nanosecond time, offset, and write, so if TSCs are in
2270 		 * sync, we can match exact offset, and if not, we can match
2271 		 * exact software computation in compute_guest_tsc()
2272 		 *
2273 		 * These values are tracked in kvm->arch.cur_xxx variables.
2274 		 */
2275 		kvm->arch.cur_tsc_generation++;
2276 		kvm->arch.cur_tsc_nsec = ns;
2277 		kvm->arch.cur_tsc_write = data;
2278 		kvm->arch.cur_tsc_offset = offset;
2279 		matched = false;
2280 	}
2281 
2282 	/*
2283 	 * We also track th most recent recorded KHZ, write and time to
2284 	 * allow the matching interval to be extended at each write.
2285 	 */
2286 	kvm->arch.last_tsc_nsec = ns;
2287 	kvm->arch.last_tsc_write = data;
2288 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2289 
2290 	vcpu->arch.last_guest_tsc = data;
2291 
2292 	/* Keep track of which generation this VCPU has synchronized to */
2293 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2294 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2295 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2296 
2297 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2298 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2299 
2300 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2301 	if (!matched) {
2302 		kvm->arch.nr_vcpus_matched_tsc = 0;
2303 	} else if (!already_matched) {
2304 		kvm->arch.nr_vcpus_matched_tsc++;
2305 	}
2306 
2307 	kvm_track_tsc_matching(vcpu);
2308 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2309 }
2310 
2311 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2312 					   s64 adjustment)
2313 {
2314 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2315 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2316 }
2317 
2318 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2319 {
2320 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2321 		WARN_ON(adjustment < 0);
2322 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2323 	adjust_tsc_offset_guest(vcpu, adjustment);
2324 }
2325 
2326 #ifdef CONFIG_X86_64
2327 
2328 static u64 read_tsc(void)
2329 {
2330 	u64 ret = (u64)rdtsc_ordered();
2331 	u64 last = pvclock_gtod_data.clock.cycle_last;
2332 
2333 	if (likely(ret >= last))
2334 		return ret;
2335 
2336 	/*
2337 	 * GCC likes to generate cmov here, but this branch is extremely
2338 	 * predictable (it's just a function of time and the likely is
2339 	 * very likely) and there's a data dependence, so force GCC
2340 	 * to generate a branch instead.  I don't barrier() because
2341 	 * we don't actually need a barrier, and if this function
2342 	 * ever gets inlined it will generate worse code.
2343 	 */
2344 	asm volatile ("");
2345 	return last;
2346 }
2347 
2348 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2349 			  int *mode)
2350 {
2351 	long v;
2352 	u64 tsc_pg_val;
2353 
2354 	switch (clock->vclock_mode) {
2355 	case VDSO_CLOCKMODE_HVCLOCK:
2356 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2357 						  tsc_timestamp);
2358 		if (tsc_pg_val != U64_MAX) {
2359 			/* TSC page valid */
2360 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2361 			v = (tsc_pg_val - clock->cycle_last) &
2362 				clock->mask;
2363 		} else {
2364 			/* TSC page invalid */
2365 			*mode = VDSO_CLOCKMODE_NONE;
2366 		}
2367 		break;
2368 	case VDSO_CLOCKMODE_TSC:
2369 		*mode = VDSO_CLOCKMODE_TSC;
2370 		*tsc_timestamp = read_tsc();
2371 		v = (*tsc_timestamp - clock->cycle_last) &
2372 			clock->mask;
2373 		break;
2374 	default:
2375 		*mode = VDSO_CLOCKMODE_NONE;
2376 	}
2377 
2378 	if (*mode == VDSO_CLOCKMODE_NONE)
2379 		*tsc_timestamp = v = 0;
2380 
2381 	return v * clock->mult;
2382 }
2383 
2384 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2385 {
2386 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2387 	unsigned long seq;
2388 	int mode;
2389 	u64 ns;
2390 
2391 	do {
2392 		seq = read_seqcount_begin(&gtod->seq);
2393 		ns = gtod->raw_clock.base_cycles;
2394 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2395 		ns >>= gtod->raw_clock.shift;
2396 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2397 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2398 	*t = ns;
2399 
2400 	return mode;
2401 }
2402 
2403 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2404 {
2405 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2406 	unsigned long seq;
2407 	int mode;
2408 	u64 ns;
2409 
2410 	do {
2411 		seq = read_seqcount_begin(&gtod->seq);
2412 		ts->tv_sec = gtod->wall_time_sec;
2413 		ns = gtod->clock.base_cycles;
2414 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2415 		ns >>= gtod->clock.shift;
2416 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2417 
2418 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2419 	ts->tv_nsec = ns;
2420 
2421 	return mode;
2422 }
2423 
2424 /* returns true if host is using TSC based clocksource */
2425 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2426 {
2427 	/* checked again under seqlock below */
2428 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2429 		return false;
2430 
2431 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2432 						      tsc_timestamp));
2433 }
2434 
2435 /* returns true if host is using TSC based clocksource */
2436 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2437 					   u64 *tsc_timestamp)
2438 {
2439 	/* checked again under seqlock below */
2440 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2441 		return false;
2442 
2443 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2444 }
2445 #endif
2446 
2447 /*
2448  *
2449  * Assuming a stable TSC across physical CPUS, and a stable TSC
2450  * across virtual CPUs, the following condition is possible.
2451  * Each numbered line represents an event visible to both
2452  * CPUs at the next numbered event.
2453  *
2454  * "timespecX" represents host monotonic time. "tscX" represents
2455  * RDTSC value.
2456  *
2457  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2458  *
2459  * 1.  read timespec0,tsc0
2460  * 2.					| timespec1 = timespec0 + N
2461  * 					| tsc1 = tsc0 + M
2462  * 3. transition to guest		| transition to guest
2463  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2464  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2465  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2466  *
2467  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2468  *
2469  * 	- ret0 < ret1
2470  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2471  *		...
2472  *	- 0 < N - M => M < N
2473  *
2474  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2475  * always the case (the difference between two distinct xtime instances
2476  * might be smaller then the difference between corresponding TSC reads,
2477  * when updating guest vcpus pvclock areas).
2478  *
2479  * To avoid that problem, do not allow visibility of distinct
2480  * system_timestamp/tsc_timestamp values simultaneously: use a master
2481  * copy of host monotonic time values. Update that master copy
2482  * in lockstep.
2483  *
2484  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2485  *
2486  */
2487 
2488 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2489 {
2490 #ifdef CONFIG_X86_64
2491 	struct kvm_arch *ka = &kvm->arch;
2492 	int vclock_mode;
2493 	bool host_tsc_clocksource, vcpus_matched;
2494 
2495 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2496 			atomic_read(&kvm->online_vcpus));
2497 
2498 	/*
2499 	 * If the host uses TSC clock, then passthrough TSC as stable
2500 	 * to the guest.
2501 	 */
2502 	host_tsc_clocksource = kvm_get_time_and_clockread(
2503 					&ka->master_kernel_ns,
2504 					&ka->master_cycle_now);
2505 
2506 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2507 				&& !ka->backwards_tsc_observed
2508 				&& !ka->boot_vcpu_runs_old_kvmclock;
2509 
2510 	if (ka->use_master_clock)
2511 		atomic_set(&kvm_guest_has_master_clock, 1);
2512 
2513 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2514 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2515 					vcpus_matched);
2516 #endif
2517 }
2518 
2519 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2520 {
2521 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2522 }
2523 
2524 static void kvm_gen_update_masterclock(struct kvm *kvm)
2525 {
2526 #ifdef CONFIG_X86_64
2527 	int i;
2528 	struct kvm_vcpu *vcpu;
2529 	struct kvm_arch *ka = &kvm->arch;
2530 
2531 	spin_lock(&ka->pvclock_gtod_sync_lock);
2532 	kvm_make_mclock_inprogress_request(kvm);
2533 	/* no guest entries from this point */
2534 	pvclock_update_vm_gtod_copy(kvm);
2535 
2536 	kvm_for_each_vcpu(i, vcpu, kvm)
2537 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2538 
2539 	/* guest entries allowed */
2540 	kvm_for_each_vcpu(i, vcpu, kvm)
2541 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2542 
2543 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2544 #endif
2545 }
2546 
2547 u64 get_kvmclock_ns(struct kvm *kvm)
2548 {
2549 	struct kvm_arch *ka = &kvm->arch;
2550 	struct pvclock_vcpu_time_info hv_clock;
2551 	u64 ret;
2552 
2553 	spin_lock(&ka->pvclock_gtod_sync_lock);
2554 	if (!ka->use_master_clock) {
2555 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2556 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2557 	}
2558 
2559 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2560 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2561 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2562 
2563 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2564 	get_cpu();
2565 
2566 	if (__this_cpu_read(cpu_tsc_khz)) {
2567 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2568 				   &hv_clock.tsc_shift,
2569 				   &hv_clock.tsc_to_system_mul);
2570 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2571 	} else
2572 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2573 
2574 	put_cpu();
2575 
2576 	return ret;
2577 }
2578 
2579 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2580 {
2581 	struct kvm_vcpu_arch *vcpu = &v->arch;
2582 	struct pvclock_vcpu_time_info guest_hv_clock;
2583 
2584 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2585 		&guest_hv_clock, sizeof(guest_hv_clock))))
2586 		return;
2587 
2588 	/* This VCPU is paused, but it's legal for a guest to read another
2589 	 * VCPU's kvmclock, so we really have to follow the specification where
2590 	 * it says that version is odd if data is being modified, and even after
2591 	 * it is consistent.
2592 	 *
2593 	 * Version field updates must be kept separate.  This is because
2594 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2595 	 * writes within a string instruction are weakly ordered.  So there
2596 	 * are three writes overall.
2597 	 *
2598 	 * As a small optimization, only write the version field in the first
2599 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2600 	 * version field is the first in the struct.
2601 	 */
2602 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2603 
2604 	if (guest_hv_clock.version & 1)
2605 		++guest_hv_clock.version;  /* first time write, random junk */
2606 
2607 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2608 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2609 				&vcpu->hv_clock,
2610 				sizeof(vcpu->hv_clock.version));
2611 
2612 	smp_wmb();
2613 
2614 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2615 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2616 
2617 	if (vcpu->pvclock_set_guest_stopped_request) {
2618 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2619 		vcpu->pvclock_set_guest_stopped_request = false;
2620 	}
2621 
2622 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2623 
2624 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2625 				&vcpu->hv_clock,
2626 				sizeof(vcpu->hv_clock));
2627 
2628 	smp_wmb();
2629 
2630 	vcpu->hv_clock.version++;
2631 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2632 				&vcpu->hv_clock,
2633 				sizeof(vcpu->hv_clock.version));
2634 }
2635 
2636 static int kvm_guest_time_update(struct kvm_vcpu *v)
2637 {
2638 	unsigned long flags, tgt_tsc_khz;
2639 	struct kvm_vcpu_arch *vcpu = &v->arch;
2640 	struct kvm_arch *ka = &v->kvm->arch;
2641 	s64 kernel_ns;
2642 	u64 tsc_timestamp, host_tsc;
2643 	u8 pvclock_flags;
2644 	bool use_master_clock;
2645 
2646 	kernel_ns = 0;
2647 	host_tsc = 0;
2648 
2649 	/*
2650 	 * If the host uses TSC clock, then passthrough TSC as stable
2651 	 * to the guest.
2652 	 */
2653 	spin_lock(&ka->pvclock_gtod_sync_lock);
2654 	use_master_clock = ka->use_master_clock;
2655 	if (use_master_clock) {
2656 		host_tsc = ka->master_cycle_now;
2657 		kernel_ns = ka->master_kernel_ns;
2658 	}
2659 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2660 
2661 	/* Keep irq disabled to prevent changes to the clock */
2662 	local_irq_save(flags);
2663 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2664 	if (unlikely(tgt_tsc_khz == 0)) {
2665 		local_irq_restore(flags);
2666 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2667 		return 1;
2668 	}
2669 	if (!use_master_clock) {
2670 		host_tsc = rdtsc();
2671 		kernel_ns = get_kvmclock_base_ns();
2672 	}
2673 
2674 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2675 
2676 	/*
2677 	 * We may have to catch up the TSC to match elapsed wall clock
2678 	 * time for two reasons, even if kvmclock is used.
2679 	 *   1) CPU could have been running below the maximum TSC rate
2680 	 *   2) Broken TSC compensation resets the base at each VCPU
2681 	 *      entry to avoid unknown leaps of TSC even when running
2682 	 *      again on the same CPU.  This may cause apparent elapsed
2683 	 *      time to disappear, and the guest to stand still or run
2684 	 *	very slowly.
2685 	 */
2686 	if (vcpu->tsc_catchup) {
2687 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2688 		if (tsc > tsc_timestamp) {
2689 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2690 			tsc_timestamp = tsc;
2691 		}
2692 	}
2693 
2694 	local_irq_restore(flags);
2695 
2696 	/* With all the info we got, fill in the values */
2697 
2698 	if (kvm_has_tsc_control)
2699 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2700 
2701 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2702 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2703 				   &vcpu->hv_clock.tsc_shift,
2704 				   &vcpu->hv_clock.tsc_to_system_mul);
2705 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2706 	}
2707 
2708 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2709 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2710 	vcpu->last_guest_tsc = tsc_timestamp;
2711 
2712 	/* If the host uses TSC clocksource, then it is stable */
2713 	pvclock_flags = 0;
2714 	if (use_master_clock)
2715 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2716 
2717 	vcpu->hv_clock.flags = pvclock_flags;
2718 
2719 	if (vcpu->pv_time_enabled)
2720 		kvm_setup_pvclock_page(v);
2721 	if (v == kvm_get_vcpu(v->kvm, 0))
2722 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2723 	return 0;
2724 }
2725 
2726 /*
2727  * kvmclock updates which are isolated to a given vcpu, such as
2728  * vcpu->cpu migration, should not allow system_timestamp from
2729  * the rest of the vcpus to remain static. Otherwise ntp frequency
2730  * correction applies to one vcpu's system_timestamp but not
2731  * the others.
2732  *
2733  * So in those cases, request a kvmclock update for all vcpus.
2734  * We need to rate-limit these requests though, as they can
2735  * considerably slow guests that have a large number of vcpus.
2736  * The time for a remote vcpu to update its kvmclock is bound
2737  * by the delay we use to rate-limit the updates.
2738  */
2739 
2740 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2741 
2742 static void kvmclock_update_fn(struct work_struct *work)
2743 {
2744 	int i;
2745 	struct delayed_work *dwork = to_delayed_work(work);
2746 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2747 					   kvmclock_update_work);
2748 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2749 	struct kvm_vcpu *vcpu;
2750 
2751 	kvm_for_each_vcpu(i, vcpu, kvm) {
2752 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2753 		kvm_vcpu_kick(vcpu);
2754 	}
2755 }
2756 
2757 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2758 {
2759 	struct kvm *kvm = v->kvm;
2760 
2761 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2762 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2763 					KVMCLOCK_UPDATE_DELAY);
2764 }
2765 
2766 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2767 
2768 static void kvmclock_sync_fn(struct work_struct *work)
2769 {
2770 	struct delayed_work *dwork = to_delayed_work(work);
2771 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2772 					   kvmclock_sync_work);
2773 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2774 
2775 	if (!kvmclock_periodic_sync)
2776 		return;
2777 
2778 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2779 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2780 					KVMCLOCK_SYNC_PERIOD);
2781 }
2782 
2783 /*
2784  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2785  */
2786 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2787 {
2788 	/* McStatusWrEn enabled? */
2789 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2790 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2791 
2792 	return false;
2793 }
2794 
2795 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2796 {
2797 	u64 mcg_cap = vcpu->arch.mcg_cap;
2798 	unsigned bank_num = mcg_cap & 0xff;
2799 	u32 msr = msr_info->index;
2800 	u64 data = msr_info->data;
2801 
2802 	switch (msr) {
2803 	case MSR_IA32_MCG_STATUS:
2804 		vcpu->arch.mcg_status = data;
2805 		break;
2806 	case MSR_IA32_MCG_CTL:
2807 		if (!(mcg_cap & MCG_CTL_P) &&
2808 		    (data || !msr_info->host_initiated))
2809 			return 1;
2810 		if (data != 0 && data != ~(u64)0)
2811 			return 1;
2812 		vcpu->arch.mcg_ctl = data;
2813 		break;
2814 	default:
2815 		if (msr >= MSR_IA32_MC0_CTL &&
2816 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2817 			u32 offset = array_index_nospec(
2818 				msr - MSR_IA32_MC0_CTL,
2819 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2820 
2821 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2822 			 * some Linux kernels though clear bit 10 in bank 4 to
2823 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2824 			 * this to avoid an uncatched #GP in the guest
2825 			 */
2826 			if ((offset & 0x3) == 0 &&
2827 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2828 				return -1;
2829 
2830 			/* MCi_STATUS */
2831 			if (!msr_info->host_initiated &&
2832 			    (offset & 0x3) == 1 && data != 0) {
2833 				if (!can_set_mci_status(vcpu))
2834 					return -1;
2835 			}
2836 
2837 			vcpu->arch.mce_banks[offset] = data;
2838 			break;
2839 		}
2840 		return 1;
2841 	}
2842 	return 0;
2843 }
2844 
2845 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2846 {
2847 	struct kvm *kvm = vcpu->kvm;
2848 	int lm = is_long_mode(vcpu);
2849 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2850 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2851 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2852 		: kvm->arch.xen_hvm_config.blob_size_32;
2853 	u32 page_num = data & ~PAGE_MASK;
2854 	u64 page_addr = data & PAGE_MASK;
2855 	u8 *page;
2856 
2857 	if (page_num >= blob_size)
2858 		return 1;
2859 
2860 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2861 	if (IS_ERR(page))
2862 		return PTR_ERR(page);
2863 
2864 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2865 		kfree(page);
2866 		return 1;
2867 	}
2868 	return 0;
2869 }
2870 
2871 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2872 {
2873 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2874 
2875 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2876 }
2877 
2878 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2879 {
2880 	gpa_t gpa = data & ~0x3f;
2881 
2882 	/* Bits 4:5 are reserved, Should be zero */
2883 	if (data & 0x30)
2884 		return 1;
2885 
2886 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2887 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2888 		return 1;
2889 
2890 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2891 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2892 		return 1;
2893 
2894 	if (!lapic_in_kernel(vcpu))
2895 		return data ? 1 : 0;
2896 
2897 	vcpu->arch.apf.msr_en_val = data;
2898 
2899 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2900 		kvm_clear_async_pf_completion_queue(vcpu);
2901 		kvm_async_pf_hash_reset(vcpu);
2902 		return 0;
2903 	}
2904 
2905 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2906 					sizeof(u64)))
2907 		return 1;
2908 
2909 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2910 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2911 
2912 	kvm_async_pf_wakeup_all(vcpu);
2913 
2914 	return 0;
2915 }
2916 
2917 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2918 {
2919 	/* Bits 8-63 are reserved */
2920 	if (data >> 8)
2921 		return 1;
2922 
2923 	if (!lapic_in_kernel(vcpu))
2924 		return 1;
2925 
2926 	vcpu->arch.apf.msr_int_val = data;
2927 
2928 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2929 
2930 	return 0;
2931 }
2932 
2933 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2934 {
2935 	vcpu->arch.pv_time_enabled = false;
2936 	vcpu->arch.time = 0;
2937 }
2938 
2939 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2940 {
2941 	++vcpu->stat.tlb_flush;
2942 	kvm_x86_ops.tlb_flush_all(vcpu);
2943 }
2944 
2945 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2946 {
2947 	++vcpu->stat.tlb_flush;
2948 	kvm_x86_ops.tlb_flush_guest(vcpu);
2949 }
2950 
2951 static void record_steal_time(struct kvm_vcpu *vcpu)
2952 {
2953 	struct kvm_host_map map;
2954 	struct kvm_steal_time *st;
2955 
2956 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2957 		return;
2958 
2959 	/* -EAGAIN is returned in atomic context so we can just return. */
2960 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2961 			&map, &vcpu->arch.st.cache, false))
2962 		return;
2963 
2964 	st = map.hva +
2965 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2966 
2967 	/*
2968 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2969 	 * expensive IPIs.
2970 	 */
2971 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2972 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2973 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2974 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2975 			kvm_vcpu_flush_tlb_guest(vcpu);
2976 	}
2977 
2978 	vcpu->arch.st.preempted = 0;
2979 
2980 	if (st->version & 1)
2981 		st->version += 1;  /* first time write, random junk */
2982 
2983 	st->version += 1;
2984 
2985 	smp_wmb();
2986 
2987 	st->steal += current->sched_info.run_delay -
2988 		vcpu->arch.st.last_steal;
2989 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2990 
2991 	smp_wmb();
2992 
2993 	st->version += 1;
2994 
2995 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2996 }
2997 
2998 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2999 {
3000 	bool pr = false;
3001 	u32 msr = msr_info->index;
3002 	u64 data = msr_info->data;
3003 
3004 	switch (msr) {
3005 	case MSR_AMD64_NB_CFG:
3006 	case MSR_IA32_UCODE_WRITE:
3007 	case MSR_VM_HSAVE_PA:
3008 	case MSR_AMD64_PATCH_LOADER:
3009 	case MSR_AMD64_BU_CFG2:
3010 	case MSR_AMD64_DC_CFG:
3011 	case MSR_F15H_EX_CFG:
3012 		break;
3013 
3014 	case MSR_IA32_UCODE_REV:
3015 		if (msr_info->host_initiated)
3016 			vcpu->arch.microcode_version = data;
3017 		break;
3018 	case MSR_IA32_ARCH_CAPABILITIES:
3019 		if (!msr_info->host_initiated)
3020 			return 1;
3021 		vcpu->arch.arch_capabilities = data;
3022 		break;
3023 	case MSR_IA32_PERF_CAPABILITIES: {
3024 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3025 
3026 		if (!msr_info->host_initiated)
3027 			return 1;
3028 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3029 			return 1;
3030 		if (data & ~msr_ent.data)
3031 			return 1;
3032 
3033 		vcpu->arch.perf_capabilities = data;
3034 
3035 		return 0;
3036 		}
3037 	case MSR_EFER:
3038 		return set_efer(vcpu, msr_info);
3039 	case MSR_K7_HWCR:
3040 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3041 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3042 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3043 
3044 		/* Handle McStatusWrEn */
3045 		if (data == BIT_ULL(18)) {
3046 			vcpu->arch.msr_hwcr = data;
3047 		} else if (data != 0) {
3048 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3049 				    data);
3050 			return 1;
3051 		}
3052 		break;
3053 	case MSR_FAM10H_MMIO_CONF_BASE:
3054 		if (data != 0) {
3055 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3056 				    "0x%llx\n", data);
3057 			return 1;
3058 		}
3059 		break;
3060 	case MSR_IA32_DEBUGCTLMSR:
3061 		if (!data) {
3062 			/* We support the non-activated case already */
3063 			break;
3064 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3065 			/* Values other than LBR and BTF are vendor-specific,
3066 			   thus reserved and should throw a #GP */
3067 			return 1;
3068 		} else if (report_ignored_msrs)
3069 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3070 				    __func__, data);
3071 		break;
3072 	case 0x200 ... 0x2ff:
3073 		return kvm_mtrr_set_msr(vcpu, msr, data);
3074 	case MSR_IA32_APICBASE:
3075 		return kvm_set_apic_base(vcpu, msr_info);
3076 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3077 		return kvm_x2apic_msr_write(vcpu, msr, data);
3078 	case MSR_IA32_TSCDEADLINE:
3079 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3080 		break;
3081 	case MSR_IA32_TSC_ADJUST:
3082 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3083 			if (!msr_info->host_initiated) {
3084 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3085 				adjust_tsc_offset_guest(vcpu, adj);
3086 			}
3087 			vcpu->arch.ia32_tsc_adjust_msr = data;
3088 		}
3089 		break;
3090 	case MSR_IA32_MISC_ENABLE:
3091 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3092 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3093 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3094 				return 1;
3095 			vcpu->arch.ia32_misc_enable_msr = data;
3096 			kvm_update_cpuid_runtime(vcpu);
3097 		} else {
3098 			vcpu->arch.ia32_misc_enable_msr = data;
3099 		}
3100 		break;
3101 	case MSR_IA32_SMBASE:
3102 		if (!msr_info->host_initiated)
3103 			return 1;
3104 		vcpu->arch.smbase = data;
3105 		break;
3106 	case MSR_IA32_POWER_CTL:
3107 		vcpu->arch.msr_ia32_power_ctl = data;
3108 		break;
3109 	case MSR_IA32_TSC:
3110 		if (msr_info->host_initiated) {
3111 			kvm_synchronize_tsc(vcpu, data);
3112 		} else {
3113 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3114 			adjust_tsc_offset_guest(vcpu, adj);
3115 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3116 		}
3117 		break;
3118 	case MSR_IA32_XSS:
3119 		if (!msr_info->host_initiated &&
3120 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3121 			return 1;
3122 		/*
3123 		 * KVM supports exposing PT to the guest, but does not support
3124 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3125 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3126 		 */
3127 		if (data & ~supported_xss)
3128 			return 1;
3129 		vcpu->arch.ia32_xss = data;
3130 		break;
3131 	case MSR_SMI_COUNT:
3132 		if (!msr_info->host_initiated)
3133 			return 1;
3134 		vcpu->arch.smi_count = data;
3135 		break;
3136 	case MSR_KVM_WALL_CLOCK_NEW:
3137 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3138 			return 1;
3139 
3140 		kvm_write_wall_clock(vcpu->kvm, data);
3141 		break;
3142 	case MSR_KVM_WALL_CLOCK:
3143 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3144 			return 1;
3145 
3146 		kvm_write_wall_clock(vcpu->kvm, data);
3147 		break;
3148 	case MSR_KVM_SYSTEM_TIME_NEW:
3149 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3150 			return 1;
3151 
3152 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3153 		break;
3154 	case MSR_KVM_SYSTEM_TIME:
3155 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3156 			return 1;
3157 
3158 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3159 		break;
3160 	case MSR_KVM_ASYNC_PF_EN:
3161 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3162 			return 1;
3163 
3164 		if (kvm_pv_enable_async_pf(vcpu, data))
3165 			return 1;
3166 		break;
3167 	case MSR_KVM_ASYNC_PF_INT:
3168 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3169 			return 1;
3170 
3171 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3172 			return 1;
3173 		break;
3174 	case MSR_KVM_ASYNC_PF_ACK:
3175 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3176 			return 1;
3177 		if (data & 0x1) {
3178 			vcpu->arch.apf.pageready_pending = false;
3179 			kvm_check_async_pf_completion(vcpu);
3180 		}
3181 		break;
3182 	case MSR_KVM_STEAL_TIME:
3183 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3184 			return 1;
3185 
3186 		if (unlikely(!sched_info_on()))
3187 			return 1;
3188 
3189 		if (data & KVM_STEAL_RESERVED_MASK)
3190 			return 1;
3191 
3192 		vcpu->arch.st.msr_val = data;
3193 
3194 		if (!(data & KVM_MSR_ENABLED))
3195 			break;
3196 
3197 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3198 
3199 		break;
3200 	case MSR_KVM_PV_EOI_EN:
3201 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3202 			return 1;
3203 
3204 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3205 			return 1;
3206 		break;
3207 
3208 	case MSR_KVM_POLL_CONTROL:
3209 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3210 			return 1;
3211 
3212 		/* only enable bit supported */
3213 		if (data & (-1ULL << 1))
3214 			return 1;
3215 
3216 		vcpu->arch.msr_kvm_poll_control = data;
3217 		break;
3218 
3219 	case MSR_IA32_MCG_CTL:
3220 	case MSR_IA32_MCG_STATUS:
3221 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3222 		return set_msr_mce(vcpu, msr_info);
3223 
3224 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3225 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3226 		pr = true;
3227 		fallthrough;
3228 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3229 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3230 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3231 			return kvm_pmu_set_msr(vcpu, msr_info);
3232 
3233 		if (pr || data != 0)
3234 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3235 				    "0x%x data 0x%llx\n", msr, data);
3236 		break;
3237 	case MSR_K7_CLK_CTL:
3238 		/*
3239 		 * Ignore all writes to this no longer documented MSR.
3240 		 * Writes are only relevant for old K7 processors,
3241 		 * all pre-dating SVM, but a recommended workaround from
3242 		 * AMD for these chips. It is possible to specify the
3243 		 * affected processor models on the command line, hence
3244 		 * the need to ignore the workaround.
3245 		 */
3246 		break;
3247 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3248 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3249 	case HV_X64_MSR_SYNDBG_OPTIONS:
3250 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3251 	case HV_X64_MSR_CRASH_CTL:
3252 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3253 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3254 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3255 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3256 		return kvm_hv_set_msr_common(vcpu, msr, data,
3257 					     msr_info->host_initiated);
3258 	case MSR_IA32_BBL_CR_CTL3:
3259 		/* Drop writes to this legacy MSR -- see rdmsr
3260 		 * counterpart for further detail.
3261 		 */
3262 		if (report_ignored_msrs)
3263 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3264 				msr, data);
3265 		break;
3266 	case MSR_AMD64_OSVW_ID_LENGTH:
3267 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3268 			return 1;
3269 		vcpu->arch.osvw.length = data;
3270 		break;
3271 	case MSR_AMD64_OSVW_STATUS:
3272 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3273 			return 1;
3274 		vcpu->arch.osvw.status = data;
3275 		break;
3276 	case MSR_PLATFORM_INFO:
3277 		if (!msr_info->host_initiated ||
3278 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3279 		     cpuid_fault_enabled(vcpu)))
3280 			return 1;
3281 		vcpu->arch.msr_platform_info = data;
3282 		break;
3283 	case MSR_MISC_FEATURES_ENABLES:
3284 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3285 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3286 		     !supports_cpuid_fault(vcpu)))
3287 			return 1;
3288 		vcpu->arch.msr_misc_features_enables = data;
3289 		break;
3290 	default:
3291 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3292 			return xen_hvm_config(vcpu, data);
3293 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3294 			return kvm_pmu_set_msr(vcpu, msr_info);
3295 		return KVM_MSR_RET_INVALID;
3296 	}
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3300 
3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3302 {
3303 	u64 data;
3304 	u64 mcg_cap = vcpu->arch.mcg_cap;
3305 	unsigned bank_num = mcg_cap & 0xff;
3306 
3307 	switch (msr) {
3308 	case MSR_IA32_P5_MC_ADDR:
3309 	case MSR_IA32_P5_MC_TYPE:
3310 		data = 0;
3311 		break;
3312 	case MSR_IA32_MCG_CAP:
3313 		data = vcpu->arch.mcg_cap;
3314 		break;
3315 	case MSR_IA32_MCG_CTL:
3316 		if (!(mcg_cap & MCG_CTL_P) && !host)
3317 			return 1;
3318 		data = vcpu->arch.mcg_ctl;
3319 		break;
3320 	case MSR_IA32_MCG_STATUS:
3321 		data = vcpu->arch.mcg_status;
3322 		break;
3323 	default:
3324 		if (msr >= MSR_IA32_MC0_CTL &&
3325 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3326 			u32 offset = array_index_nospec(
3327 				msr - MSR_IA32_MC0_CTL,
3328 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3329 
3330 			data = vcpu->arch.mce_banks[offset];
3331 			break;
3332 		}
3333 		return 1;
3334 	}
3335 	*pdata = data;
3336 	return 0;
3337 }
3338 
3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3340 {
3341 	switch (msr_info->index) {
3342 	case MSR_IA32_PLATFORM_ID:
3343 	case MSR_IA32_EBL_CR_POWERON:
3344 	case MSR_IA32_DEBUGCTLMSR:
3345 	case MSR_IA32_LASTBRANCHFROMIP:
3346 	case MSR_IA32_LASTBRANCHTOIP:
3347 	case MSR_IA32_LASTINTFROMIP:
3348 	case MSR_IA32_LASTINTTOIP:
3349 	case MSR_K8_SYSCFG:
3350 	case MSR_K8_TSEG_ADDR:
3351 	case MSR_K8_TSEG_MASK:
3352 	case MSR_VM_HSAVE_PA:
3353 	case MSR_K8_INT_PENDING_MSG:
3354 	case MSR_AMD64_NB_CFG:
3355 	case MSR_FAM10H_MMIO_CONF_BASE:
3356 	case MSR_AMD64_BU_CFG2:
3357 	case MSR_IA32_PERF_CTL:
3358 	case MSR_AMD64_DC_CFG:
3359 	case MSR_F15H_EX_CFG:
3360 	/*
3361 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3362 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3363 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3364 	 * so for existing CPU-specific MSRs.
3365 	 */
3366 	case MSR_RAPL_POWER_UNIT:
3367 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3368 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3369 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3370 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3371 		msr_info->data = 0;
3372 		break;
3373 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3374 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3375 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3376 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3377 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3378 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3379 			return kvm_pmu_get_msr(vcpu, msr_info);
3380 		msr_info->data = 0;
3381 		break;
3382 	case MSR_IA32_UCODE_REV:
3383 		msr_info->data = vcpu->arch.microcode_version;
3384 		break;
3385 	case MSR_IA32_ARCH_CAPABILITIES:
3386 		if (!msr_info->host_initiated &&
3387 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3388 			return 1;
3389 		msr_info->data = vcpu->arch.arch_capabilities;
3390 		break;
3391 	case MSR_IA32_PERF_CAPABILITIES:
3392 		if (!msr_info->host_initiated &&
3393 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3394 			return 1;
3395 		msr_info->data = vcpu->arch.perf_capabilities;
3396 		break;
3397 	case MSR_IA32_POWER_CTL:
3398 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3399 		break;
3400 	case MSR_IA32_TSC: {
3401 		/*
3402 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3403 		 * even when not intercepted. AMD manual doesn't explicitly
3404 		 * state this but appears to behave the same.
3405 		 *
3406 		 * On userspace reads and writes, however, we unconditionally
3407 		 * return L1's TSC value to ensure backwards-compatible
3408 		 * behavior for migration.
3409 		 */
3410 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3411 							    vcpu->arch.tsc_offset;
3412 
3413 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3414 		break;
3415 	}
3416 	case MSR_MTRRcap:
3417 	case 0x200 ... 0x2ff:
3418 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3419 	case 0xcd: /* fsb frequency */
3420 		msr_info->data = 3;
3421 		break;
3422 		/*
3423 		 * MSR_EBC_FREQUENCY_ID
3424 		 * Conservative value valid for even the basic CPU models.
3425 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3426 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3427 		 * and 266MHz for model 3, or 4. Set Core Clock
3428 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3429 		 * 31:24) even though these are only valid for CPU
3430 		 * models > 2, however guests may end up dividing or
3431 		 * multiplying by zero otherwise.
3432 		 */
3433 	case MSR_EBC_FREQUENCY_ID:
3434 		msr_info->data = 1 << 24;
3435 		break;
3436 	case MSR_IA32_APICBASE:
3437 		msr_info->data = kvm_get_apic_base(vcpu);
3438 		break;
3439 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3440 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3441 	case MSR_IA32_TSCDEADLINE:
3442 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3443 		break;
3444 	case MSR_IA32_TSC_ADJUST:
3445 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3446 		break;
3447 	case MSR_IA32_MISC_ENABLE:
3448 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3449 		break;
3450 	case MSR_IA32_SMBASE:
3451 		if (!msr_info->host_initiated)
3452 			return 1;
3453 		msr_info->data = vcpu->arch.smbase;
3454 		break;
3455 	case MSR_SMI_COUNT:
3456 		msr_info->data = vcpu->arch.smi_count;
3457 		break;
3458 	case MSR_IA32_PERF_STATUS:
3459 		/* TSC increment by tick */
3460 		msr_info->data = 1000ULL;
3461 		/* CPU multiplier */
3462 		msr_info->data |= (((uint64_t)4ULL) << 40);
3463 		break;
3464 	case MSR_EFER:
3465 		msr_info->data = vcpu->arch.efer;
3466 		break;
3467 	case MSR_KVM_WALL_CLOCK:
3468 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3469 			return 1;
3470 
3471 		msr_info->data = vcpu->kvm->arch.wall_clock;
3472 		break;
3473 	case MSR_KVM_WALL_CLOCK_NEW:
3474 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3475 			return 1;
3476 
3477 		msr_info->data = vcpu->kvm->arch.wall_clock;
3478 		break;
3479 	case MSR_KVM_SYSTEM_TIME:
3480 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3481 			return 1;
3482 
3483 		msr_info->data = vcpu->arch.time;
3484 		break;
3485 	case MSR_KVM_SYSTEM_TIME_NEW:
3486 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3487 			return 1;
3488 
3489 		msr_info->data = vcpu->arch.time;
3490 		break;
3491 	case MSR_KVM_ASYNC_PF_EN:
3492 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3493 			return 1;
3494 
3495 		msr_info->data = vcpu->arch.apf.msr_en_val;
3496 		break;
3497 	case MSR_KVM_ASYNC_PF_INT:
3498 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3499 			return 1;
3500 
3501 		msr_info->data = vcpu->arch.apf.msr_int_val;
3502 		break;
3503 	case MSR_KVM_ASYNC_PF_ACK:
3504 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3505 			return 1;
3506 
3507 		msr_info->data = 0;
3508 		break;
3509 	case MSR_KVM_STEAL_TIME:
3510 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3511 			return 1;
3512 
3513 		msr_info->data = vcpu->arch.st.msr_val;
3514 		break;
3515 	case MSR_KVM_PV_EOI_EN:
3516 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3517 			return 1;
3518 
3519 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3520 		break;
3521 	case MSR_KVM_POLL_CONTROL:
3522 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3523 			return 1;
3524 
3525 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3526 		break;
3527 	case MSR_IA32_P5_MC_ADDR:
3528 	case MSR_IA32_P5_MC_TYPE:
3529 	case MSR_IA32_MCG_CAP:
3530 	case MSR_IA32_MCG_CTL:
3531 	case MSR_IA32_MCG_STATUS:
3532 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3533 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3534 				   msr_info->host_initiated);
3535 	case MSR_IA32_XSS:
3536 		if (!msr_info->host_initiated &&
3537 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3538 			return 1;
3539 		msr_info->data = vcpu->arch.ia32_xss;
3540 		break;
3541 	case MSR_K7_CLK_CTL:
3542 		/*
3543 		 * Provide expected ramp-up count for K7. All other
3544 		 * are set to zero, indicating minimum divisors for
3545 		 * every field.
3546 		 *
3547 		 * This prevents guest kernels on AMD host with CPU
3548 		 * type 6, model 8 and higher from exploding due to
3549 		 * the rdmsr failing.
3550 		 */
3551 		msr_info->data = 0x20000000;
3552 		break;
3553 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3554 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3555 	case HV_X64_MSR_SYNDBG_OPTIONS:
3556 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3557 	case HV_X64_MSR_CRASH_CTL:
3558 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3559 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3560 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3561 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3562 		return kvm_hv_get_msr_common(vcpu,
3563 					     msr_info->index, &msr_info->data,
3564 					     msr_info->host_initiated);
3565 	case MSR_IA32_BBL_CR_CTL3:
3566 		/* This legacy MSR exists but isn't fully documented in current
3567 		 * silicon.  It is however accessed by winxp in very narrow
3568 		 * scenarios where it sets bit #19, itself documented as
3569 		 * a "reserved" bit.  Best effort attempt to source coherent
3570 		 * read data here should the balance of the register be
3571 		 * interpreted by the guest:
3572 		 *
3573 		 * L2 cache control register 3: 64GB range, 256KB size,
3574 		 * enabled, latency 0x1, configured
3575 		 */
3576 		msr_info->data = 0xbe702111;
3577 		break;
3578 	case MSR_AMD64_OSVW_ID_LENGTH:
3579 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3580 			return 1;
3581 		msr_info->data = vcpu->arch.osvw.length;
3582 		break;
3583 	case MSR_AMD64_OSVW_STATUS:
3584 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3585 			return 1;
3586 		msr_info->data = vcpu->arch.osvw.status;
3587 		break;
3588 	case MSR_PLATFORM_INFO:
3589 		if (!msr_info->host_initiated &&
3590 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3591 			return 1;
3592 		msr_info->data = vcpu->arch.msr_platform_info;
3593 		break;
3594 	case MSR_MISC_FEATURES_ENABLES:
3595 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3596 		break;
3597 	case MSR_K7_HWCR:
3598 		msr_info->data = vcpu->arch.msr_hwcr;
3599 		break;
3600 	default:
3601 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3602 			return kvm_pmu_get_msr(vcpu, msr_info);
3603 		return KVM_MSR_RET_INVALID;
3604 	}
3605 	return 0;
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3608 
3609 /*
3610  * Read or write a bunch of msrs. All parameters are kernel addresses.
3611  *
3612  * @return number of msrs set successfully.
3613  */
3614 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3615 		    struct kvm_msr_entry *entries,
3616 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3617 				  unsigned index, u64 *data))
3618 {
3619 	int i;
3620 
3621 	for (i = 0; i < msrs->nmsrs; ++i)
3622 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3623 			break;
3624 
3625 	return i;
3626 }
3627 
3628 /*
3629  * Read or write a bunch of msrs. Parameters are user addresses.
3630  *
3631  * @return number of msrs set successfully.
3632  */
3633 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3634 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3635 				unsigned index, u64 *data),
3636 		  int writeback)
3637 {
3638 	struct kvm_msrs msrs;
3639 	struct kvm_msr_entry *entries;
3640 	int r, n;
3641 	unsigned size;
3642 
3643 	r = -EFAULT;
3644 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3645 		goto out;
3646 
3647 	r = -E2BIG;
3648 	if (msrs.nmsrs >= MAX_IO_MSRS)
3649 		goto out;
3650 
3651 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3652 	entries = memdup_user(user_msrs->entries, size);
3653 	if (IS_ERR(entries)) {
3654 		r = PTR_ERR(entries);
3655 		goto out;
3656 	}
3657 
3658 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3659 	if (r < 0)
3660 		goto out_free;
3661 
3662 	r = -EFAULT;
3663 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3664 		goto out_free;
3665 
3666 	r = n;
3667 
3668 out_free:
3669 	kfree(entries);
3670 out:
3671 	return r;
3672 }
3673 
3674 static inline bool kvm_can_mwait_in_guest(void)
3675 {
3676 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3677 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3678 		boot_cpu_has(X86_FEATURE_ARAT);
3679 }
3680 
3681 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3682 {
3683 	int r = 0;
3684 
3685 	switch (ext) {
3686 	case KVM_CAP_IRQCHIP:
3687 	case KVM_CAP_HLT:
3688 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3689 	case KVM_CAP_SET_TSS_ADDR:
3690 	case KVM_CAP_EXT_CPUID:
3691 	case KVM_CAP_EXT_EMUL_CPUID:
3692 	case KVM_CAP_CLOCKSOURCE:
3693 	case KVM_CAP_PIT:
3694 	case KVM_CAP_NOP_IO_DELAY:
3695 	case KVM_CAP_MP_STATE:
3696 	case KVM_CAP_SYNC_MMU:
3697 	case KVM_CAP_USER_NMI:
3698 	case KVM_CAP_REINJECT_CONTROL:
3699 	case KVM_CAP_IRQ_INJECT_STATUS:
3700 	case KVM_CAP_IOEVENTFD:
3701 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3702 	case KVM_CAP_PIT2:
3703 	case KVM_CAP_PIT_STATE2:
3704 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3705 	case KVM_CAP_XEN_HVM:
3706 	case KVM_CAP_VCPU_EVENTS:
3707 	case KVM_CAP_HYPERV:
3708 	case KVM_CAP_HYPERV_VAPIC:
3709 	case KVM_CAP_HYPERV_SPIN:
3710 	case KVM_CAP_HYPERV_SYNIC:
3711 	case KVM_CAP_HYPERV_SYNIC2:
3712 	case KVM_CAP_HYPERV_VP_INDEX:
3713 	case KVM_CAP_HYPERV_EVENTFD:
3714 	case KVM_CAP_HYPERV_TLBFLUSH:
3715 	case KVM_CAP_HYPERV_SEND_IPI:
3716 	case KVM_CAP_HYPERV_CPUID:
3717 	case KVM_CAP_PCI_SEGMENT:
3718 	case KVM_CAP_DEBUGREGS:
3719 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3720 	case KVM_CAP_XSAVE:
3721 	case KVM_CAP_ASYNC_PF:
3722 	case KVM_CAP_ASYNC_PF_INT:
3723 	case KVM_CAP_GET_TSC_KHZ:
3724 	case KVM_CAP_KVMCLOCK_CTRL:
3725 	case KVM_CAP_READONLY_MEM:
3726 	case KVM_CAP_HYPERV_TIME:
3727 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3728 	case KVM_CAP_TSC_DEADLINE_TIMER:
3729 	case KVM_CAP_DISABLE_QUIRKS:
3730 	case KVM_CAP_SET_BOOT_CPU_ID:
3731  	case KVM_CAP_SPLIT_IRQCHIP:
3732 	case KVM_CAP_IMMEDIATE_EXIT:
3733 	case KVM_CAP_PMU_EVENT_FILTER:
3734 	case KVM_CAP_GET_MSR_FEATURES:
3735 	case KVM_CAP_MSR_PLATFORM_INFO:
3736 	case KVM_CAP_EXCEPTION_PAYLOAD:
3737 	case KVM_CAP_SET_GUEST_DEBUG:
3738 	case KVM_CAP_LAST_CPU:
3739 	case KVM_CAP_X86_USER_SPACE_MSR:
3740 	case KVM_CAP_X86_MSR_FILTER:
3741 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3742 		r = 1;
3743 		break;
3744 	case KVM_CAP_SYNC_REGS:
3745 		r = KVM_SYNC_X86_VALID_FIELDS;
3746 		break;
3747 	case KVM_CAP_ADJUST_CLOCK:
3748 		r = KVM_CLOCK_TSC_STABLE;
3749 		break;
3750 	case KVM_CAP_X86_DISABLE_EXITS:
3751 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3752 		      KVM_X86_DISABLE_EXITS_CSTATE;
3753 		if(kvm_can_mwait_in_guest())
3754 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3755 		break;
3756 	case KVM_CAP_X86_SMM:
3757 		/* SMBASE is usually relocated above 1M on modern chipsets,
3758 		 * and SMM handlers might indeed rely on 4G segment limits,
3759 		 * so do not report SMM to be available if real mode is
3760 		 * emulated via vm86 mode.  Still, do not go to great lengths
3761 		 * to avoid userspace's usage of the feature, because it is a
3762 		 * fringe case that is not enabled except via specific settings
3763 		 * of the module parameters.
3764 		 */
3765 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3766 		break;
3767 	case KVM_CAP_VAPIC:
3768 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3769 		break;
3770 	case KVM_CAP_NR_VCPUS:
3771 		r = KVM_SOFT_MAX_VCPUS;
3772 		break;
3773 	case KVM_CAP_MAX_VCPUS:
3774 		r = KVM_MAX_VCPUS;
3775 		break;
3776 	case KVM_CAP_MAX_VCPU_ID:
3777 		r = KVM_MAX_VCPU_ID;
3778 		break;
3779 	case KVM_CAP_PV_MMU:	/* obsolete */
3780 		r = 0;
3781 		break;
3782 	case KVM_CAP_MCE:
3783 		r = KVM_MAX_MCE_BANKS;
3784 		break;
3785 	case KVM_CAP_XCRS:
3786 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3787 		break;
3788 	case KVM_CAP_TSC_CONTROL:
3789 		r = kvm_has_tsc_control;
3790 		break;
3791 	case KVM_CAP_X2APIC_API:
3792 		r = KVM_X2APIC_API_VALID_FLAGS;
3793 		break;
3794 	case KVM_CAP_NESTED_STATE:
3795 		r = kvm_x86_ops.nested_ops->get_state ?
3796 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3797 		break;
3798 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3799 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3800 		break;
3801 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3802 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3803 		break;
3804 	case KVM_CAP_SMALLER_MAXPHYADDR:
3805 		r = (int) allow_smaller_maxphyaddr;
3806 		break;
3807 	case KVM_CAP_STEAL_TIME:
3808 		r = sched_info_on();
3809 		break;
3810 	default:
3811 		break;
3812 	}
3813 	return r;
3814 
3815 }
3816 
3817 long kvm_arch_dev_ioctl(struct file *filp,
3818 			unsigned int ioctl, unsigned long arg)
3819 {
3820 	void __user *argp = (void __user *)arg;
3821 	long r;
3822 
3823 	switch (ioctl) {
3824 	case KVM_GET_MSR_INDEX_LIST: {
3825 		struct kvm_msr_list __user *user_msr_list = argp;
3826 		struct kvm_msr_list msr_list;
3827 		unsigned n;
3828 
3829 		r = -EFAULT;
3830 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3831 			goto out;
3832 		n = msr_list.nmsrs;
3833 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3834 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3835 			goto out;
3836 		r = -E2BIG;
3837 		if (n < msr_list.nmsrs)
3838 			goto out;
3839 		r = -EFAULT;
3840 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3841 				 num_msrs_to_save * sizeof(u32)))
3842 			goto out;
3843 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3844 				 &emulated_msrs,
3845 				 num_emulated_msrs * sizeof(u32)))
3846 			goto out;
3847 		r = 0;
3848 		break;
3849 	}
3850 	case KVM_GET_SUPPORTED_CPUID:
3851 	case KVM_GET_EMULATED_CPUID: {
3852 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3853 		struct kvm_cpuid2 cpuid;
3854 
3855 		r = -EFAULT;
3856 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3857 			goto out;
3858 
3859 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3860 					    ioctl);
3861 		if (r)
3862 			goto out;
3863 
3864 		r = -EFAULT;
3865 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3866 			goto out;
3867 		r = 0;
3868 		break;
3869 	}
3870 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3871 		r = -EFAULT;
3872 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3873 				 sizeof(kvm_mce_cap_supported)))
3874 			goto out;
3875 		r = 0;
3876 		break;
3877 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3878 		struct kvm_msr_list __user *user_msr_list = argp;
3879 		struct kvm_msr_list msr_list;
3880 		unsigned int n;
3881 
3882 		r = -EFAULT;
3883 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3884 			goto out;
3885 		n = msr_list.nmsrs;
3886 		msr_list.nmsrs = num_msr_based_features;
3887 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3888 			goto out;
3889 		r = -E2BIG;
3890 		if (n < msr_list.nmsrs)
3891 			goto out;
3892 		r = -EFAULT;
3893 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3894 				 num_msr_based_features * sizeof(u32)))
3895 			goto out;
3896 		r = 0;
3897 		break;
3898 	}
3899 	case KVM_GET_MSRS:
3900 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3901 		break;
3902 	default:
3903 		r = -EINVAL;
3904 		break;
3905 	}
3906 out:
3907 	return r;
3908 }
3909 
3910 static void wbinvd_ipi(void *garbage)
3911 {
3912 	wbinvd();
3913 }
3914 
3915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3916 {
3917 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3918 }
3919 
3920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3921 {
3922 	/* Address WBINVD may be executed by guest */
3923 	if (need_emulate_wbinvd(vcpu)) {
3924 		if (kvm_x86_ops.has_wbinvd_exit())
3925 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3926 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3927 			smp_call_function_single(vcpu->cpu,
3928 					wbinvd_ipi, NULL, 1);
3929 	}
3930 
3931 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3932 
3933 	/* Save host pkru register if supported */
3934 	vcpu->arch.host_pkru = read_pkru();
3935 
3936 	/* Apply any externally detected TSC adjustments (due to suspend) */
3937 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3938 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3939 		vcpu->arch.tsc_offset_adjustment = 0;
3940 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3941 	}
3942 
3943 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3944 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3945 				rdtsc() - vcpu->arch.last_host_tsc;
3946 		if (tsc_delta < 0)
3947 			mark_tsc_unstable("KVM discovered backwards TSC");
3948 
3949 		if (kvm_check_tsc_unstable()) {
3950 			u64 offset = kvm_compute_tsc_offset(vcpu,
3951 						vcpu->arch.last_guest_tsc);
3952 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3953 			vcpu->arch.tsc_catchup = 1;
3954 		}
3955 
3956 		if (kvm_lapic_hv_timer_in_use(vcpu))
3957 			kvm_lapic_restart_hv_timer(vcpu);
3958 
3959 		/*
3960 		 * On a host with synchronized TSC, there is no need to update
3961 		 * kvmclock on vcpu->cpu migration
3962 		 */
3963 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3964 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3965 		if (vcpu->cpu != cpu)
3966 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3967 		vcpu->cpu = cpu;
3968 	}
3969 
3970 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3971 }
3972 
3973 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3974 {
3975 	struct kvm_host_map map;
3976 	struct kvm_steal_time *st;
3977 
3978 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3979 		return;
3980 
3981 	if (vcpu->arch.st.preempted)
3982 		return;
3983 
3984 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3985 			&vcpu->arch.st.cache, true))
3986 		return;
3987 
3988 	st = map.hva +
3989 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3990 
3991 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3992 
3993 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3994 }
3995 
3996 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3997 {
3998 	int idx;
3999 
4000 	if (vcpu->preempted)
4001 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4002 
4003 	/*
4004 	 * Disable page faults because we're in atomic context here.
4005 	 * kvm_write_guest_offset_cached() would call might_fault()
4006 	 * that relies on pagefault_disable() to tell if there's a
4007 	 * bug. NOTE: the write to guest memory may not go through if
4008 	 * during postcopy live migration or if there's heavy guest
4009 	 * paging.
4010 	 */
4011 	pagefault_disable();
4012 	/*
4013 	 * kvm_memslots() will be called by
4014 	 * kvm_write_guest_offset_cached() so take the srcu lock.
4015 	 */
4016 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4017 	kvm_steal_time_set_preempted(vcpu);
4018 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4019 	pagefault_enable();
4020 	kvm_x86_ops.vcpu_put(vcpu);
4021 	vcpu->arch.last_host_tsc = rdtsc();
4022 	/*
4023 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4024 	 * on every vmexit, but if not, we might have a stale dr6 from the
4025 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4026 	 */
4027 	set_debugreg(0, 6);
4028 }
4029 
4030 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4031 				    struct kvm_lapic_state *s)
4032 {
4033 	if (vcpu->arch.apicv_active)
4034 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4035 
4036 	return kvm_apic_get_state(vcpu, s);
4037 }
4038 
4039 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4040 				    struct kvm_lapic_state *s)
4041 {
4042 	int r;
4043 
4044 	r = kvm_apic_set_state(vcpu, s);
4045 	if (r)
4046 		return r;
4047 	update_cr8_intercept(vcpu);
4048 
4049 	return 0;
4050 }
4051 
4052 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4053 {
4054 	return (!lapic_in_kernel(vcpu) ||
4055 		kvm_apic_accept_pic_intr(vcpu));
4056 }
4057 
4058 /*
4059  * if userspace requested an interrupt window, check that the
4060  * interrupt window is open.
4061  *
4062  * No need to exit to userspace if we already have an interrupt queued.
4063  */
4064 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4065 {
4066 	return kvm_arch_interrupt_allowed(vcpu) &&
4067 		!kvm_cpu_has_interrupt(vcpu) &&
4068 		!kvm_event_needs_reinjection(vcpu) &&
4069 		kvm_cpu_accept_dm_intr(vcpu);
4070 }
4071 
4072 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4073 				    struct kvm_interrupt *irq)
4074 {
4075 	if (irq->irq >= KVM_NR_INTERRUPTS)
4076 		return -EINVAL;
4077 
4078 	if (!irqchip_in_kernel(vcpu->kvm)) {
4079 		kvm_queue_interrupt(vcpu, irq->irq, false);
4080 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4081 		return 0;
4082 	}
4083 
4084 	/*
4085 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4086 	 * fail for in-kernel 8259.
4087 	 */
4088 	if (pic_in_kernel(vcpu->kvm))
4089 		return -ENXIO;
4090 
4091 	if (vcpu->arch.pending_external_vector != -1)
4092 		return -EEXIST;
4093 
4094 	vcpu->arch.pending_external_vector = irq->irq;
4095 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4096 	return 0;
4097 }
4098 
4099 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4100 {
4101 	kvm_inject_nmi(vcpu);
4102 
4103 	return 0;
4104 }
4105 
4106 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4107 {
4108 	kvm_make_request(KVM_REQ_SMI, vcpu);
4109 
4110 	return 0;
4111 }
4112 
4113 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4114 					   struct kvm_tpr_access_ctl *tac)
4115 {
4116 	if (tac->flags)
4117 		return -EINVAL;
4118 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4119 	return 0;
4120 }
4121 
4122 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4123 					u64 mcg_cap)
4124 {
4125 	int r;
4126 	unsigned bank_num = mcg_cap & 0xff, bank;
4127 
4128 	r = -EINVAL;
4129 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4130 		goto out;
4131 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4132 		goto out;
4133 	r = 0;
4134 	vcpu->arch.mcg_cap = mcg_cap;
4135 	/* Init IA32_MCG_CTL to all 1s */
4136 	if (mcg_cap & MCG_CTL_P)
4137 		vcpu->arch.mcg_ctl = ~(u64)0;
4138 	/* Init IA32_MCi_CTL to all 1s */
4139 	for (bank = 0; bank < bank_num; bank++)
4140 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4141 
4142 	kvm_x86_ops.setup_mce(vcpu);
4143 out:
4144 	return r;
4145 }
4146 
4147 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4148 				      struct kvm_x86_mce *mce)
4149 {
4150 	u64 mcg_cap = vcpu->arch.mcg_cap;
4151 	unsigned bank_num = mcg_cap & 0xff;
4152 	u64 *banks = vcpu->arch.mce_banks;
4153 
4154 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4155 		return -EINVAL;
4156 	/*
4157 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4158 	 * reporting is disabled
4159 	 */
4160 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4161 	    vcpu->arch.mcg_ctl != ~(u64)0)
4162 		return 0;
4163 	banks += 4 * mce->bank;
4164 	/*
4165 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4166 	 * reporting is disabled for the bank
4167 	 */
4168 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4169 		return 0;
4170 	if (mce->status & MCI_STATUS_UC) {
4171 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4172 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4173 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4174 			return 0;
4175 		}
4176 		if (banks[1] & MCI_STATUS_VAL)
4177 			mce->status |= MCI_STATUS_OVER;
4178 		banks[2] = mce->addr;
4179 		banks[3] = mce->misc;
4180 		vcpu->arch.mcg_status = mce->mcg_status;
4181 		banks[1] = mce->status;
4182 		kvm_queue_exception(vcpu, MC_VECTOR);
4183 	} else if (!(banks[1] & MCI_STATUS_VAL)
4184 		   || !(banks[1] & MCI_STATUS_UC)) {
4185 		if (banks[1] & MCI_STATUS_VAL)
4186 			mce->status |= MCI_STATUS_OVER;
4187 		banks[2] = mce->addr;
4188 		banks[3] = mce->misc;
4189 		banks[1] = mce->status;
4190 	} else
4191 		banks[1] |= MCI_STATUS_OVER;
4192 	return 0;
4193 }
4194 
4195 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4196 					       struct kvm_vcpu_events *events)
4197 {
4198 	process_nmi(vcpu);
4199 
4200 	/*
4201 	 * In guest mode, payload delivery should be deferred,
4202 	 * so that the L1 hypervisor can intercept #PF before
4203 	 * CR2 is modified (or intercept #DB before DR6 is
4204 	 * modified under nVMX). Unless the per-VM capability,
4205 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4206 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4207 	 * opportunistically defer the exception payload, deliver it if the
4208 	 * capability hasn't been requested before processing a
4209 	 * KVM_GET_VCPU_EVENTS.
4210 	 */
4211 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4212 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4213 		kvm_deliver_exception_payload(vcpu);
4214 
4215 	/*
4216 	 * The API doesn't provide the instruction length for software
4217 	 * exceptions, so don't report them. As long as the guest RIP
4218 	 * isn't advanced, we should expect to encounter the exception
4219 	 * again.
4220 	 */
4221 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4222 		events->exception.injected = 0;
4223 		events->exception.pending = 0;
4224 	} else {
4225 		events->exception.injected = vcpu->arch.exception.injected;
4226 		events->exception.pending = vcpu->arch.exception.pending;
4227 		/*
4228 		 * For ABI compatibility, deliberately conflate
4229 		 * pending and injected exceptions when
4230 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4231 		 */
4232 		if (!vcpu->kvm->arch.exception_payload_enabled)
4233 			events->exception.injected |=
4234 				vcpu->arch.exception.pending;
4235 	}
4236 	events->exception.nr = vcpu->arch.exception.nr;
4237 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4238 	events->exception.error_code = vcpu->arch.exception.error_code;
4239 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4240 	events->exception_payload = vcpu->arch.exception.payload;
4241 
4242 	events->interrupt.injected =
4243 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4244 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4245 	events->interrupt.soft = 0;
4246 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4247 
4248 	events->nmi.injected = vcpu->arch.nmi_injected;
4249 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4250 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4251 	events->nmi.pad = 0;
4252 
4253 	events->sipi_vector = 0; /* never valid when reporting to user space */
4254 
4255 	events->smi.smm = is_smm(vcpu);
4256 	events->smi.pending = vcpu->arch.smi_pending;
4257 	events->smi.smm_inside_nmi =
4258 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4259 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4260 
4261 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4262 			 | KVM_VCPUEVENT_VALID_SHADOW
4263 			 | KVM_VCPUEVENT_VALID_SMM);
4264 	if (vcpu->kvm->arch.exception_payload_enabled)
4265 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4266 
4267 	memset(&events->reserved, 0, sizeof(events->reserved));
4268 }
4269 
4270 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4271 
4272 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4273 					      struct kvm_vcpu_events *events)
4274 {
4275 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4276 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4277 			      | KVM_VCPUEVENT_VALID_SHADOW
4278 			      | KVM_VCPUEVENT_VALID_SMM
4279 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4280 		return -EINVAL;
4281 
4282 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4283 		if (!vcpu->kvm->arch.exception_payload_enabled)
4284 			return -EINVAL;
4285 		if (events->exception.pending)
4286 			events->exception.injected = 0;
4287 		else
4288 			events->exception_has_payload = 0;
4289 	} else {
4290 		events->exception.pending = 0;
4291 		events->exception_has_payload = 0;
4292 	}
4293 
4294 	if ((events->exception.injected || events->exception.pending) &&
4295 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4296 		return -EINVAL;
4297 
4298 	/* INITs are latched while in SMM */
4299 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4300 	    (events->smi.smm || events->smi.pending) &&
4301 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4302 		return -EINVAL;
4303 
4304 	process_nmi(vcpu);
4305 	vcpu->arch.exception.injected = events->exception.injected;
4306 	vcpu->arch.exception.pending = events->exception.pending;
4307 	vcpu->arch.exception.nr = events->exception.nr;
4308 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4309 	vcpu->arch.exception.error_code = events->exception.error_code;
4310 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4311 	vcpu->arch.exception.payload = events->exception_payload;
4312 
4313 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4314 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4315 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4316 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4317 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4318 						  events->interrupt.shadow);
4319 
4320 	vcpu->arch.nmi_injected = events->nmi.injected;
4321 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4322 		vcpu->arch.nmi_pending = events->nmi.pending;
4323 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4324 
4325 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4326 	    lapic_in_kernel(vcpu))
4327 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4328 
4329 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4330 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4331 			if (events->smi.smm)
4332 				vcpu->arch.hflags |= HF_SMM_MASK;
4333 			else
4334 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4335 			kvm_smm_changed(vcpu);
4336 		}
4337 
4338 		vcpu->arch.smi_pending = events->smi.pending;
4339 
4340 		if (events->smi.smm) {
4341 			if (events->smi.smm_inside_nmi)
4342 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4343 			else
4344 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4345 		}
4346 
4347 		if (lapic_in_kernel(vcpu)) {
4348 			if (events->smi.latched_init)
4349 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4350 			else
4351 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4352 		}
4353 	}
4354 
4355 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4356 
4357 	return 0;
4358 }
4359 
4360 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4361 					     struct kvm_debugregs *dbgregs)
4362 {
4363 	unsigned long val;
4364 
4365 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4366 	kvm_get_dr(vcpu, 6, &val);
4367 	dbgregs->dr6 = val;
4368 	dbgregs->dr7 = vcpu->arch.dr7;
4369 	dbgregs->flags = 0;
4370 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4371 }
4372 
4373 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4374 					    struct kvm_debugregs *dbgregs)
4375 {
4376 	if (dbgregs->flags)
4377 		return -EINVAL;
4378 
4379 	if (dbgregs->dr6 & ~0xffffffffull)
4380 		return -EINVAL;
4381 	if (dbgregs->dr7 & ~0xffffffffull)
4382 		return -EINVAL;
4383 
4384 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4385 	kvm_update_dr0123(vcpu);
4386 	vcpu->arch.dr6 = dbgregs->dr6;
4387 	vcpu->arch.dr7 = dbgregs->dr7;
4388 	kvm_update_dr7(vcpu);
4389 
4390 	return 0;
4391 }
4392 
4393 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4394 
4395 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4396 {
4397 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4398 	u64 xstate_bv = xsave->header.xfeatures;
4399 	u64 valid;
4400 
4401 	/*
4402 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4403 	 * leaves 0 and 1 in the loop below.
4404 	 */
4405 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4406 
4407 	/* Set XSTATE_BV */
4408 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4409 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4410 
4411 	/*
4412 	 * Copy each region from the possibly compacted offset to the
4413 	 * non-compacted offset.
4414 	 */
4415 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4416 	while (valid) {
4417 		u64 xfeature_mask = valid & -valid;
4418 		int xfeature_nr = fls64(xfeature_mask) - 1;
4419 		void *src = get_xsave_addr(xsave, xfeature_nr);
4420 
4421 		if (src) {
4422 			u32 size, offset, ecx, edx;
4423 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4424 				    &size, &offset, &ecx, &edx);
4425 			if (xfeature_nr == XFEATURE_PKRU)
4426 				memcpy(dest + offset, &vcpu->arch.pkru,
4427 				       sizeof(vcpu->arch.pkru));
4428 			else
4429 				memcpy(dest + offset, src, size);
4430 
4431 		}
4432 
4433 		valid -= xfeature_mask;
4434 	}
4435 }
4436 
4437 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4438 {
4439 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4440 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4441 	u64 valid;
4442 
4443 	/*
4444 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4445 	 * leaves 0 and 1 in the loop below.
4446 	 */
4447 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4448 
4449 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4450 	xsave->header.xfeatures = xstate_bv;
4451 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4452 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4453 
4454 	/*
4455 	 * Copy each region from the non-compacted offset to the
4456 	 * possibly compacted offset.
4457 	 */
4458 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4459 	while (valid) {
4460 		u64 xfeature_mask = valid & -valid;
4461 		int xfeature_nr = fls64(xfeature_mask) - 1;
4462 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4463 
4464 		if (dest) {
4465 			u32 size, offset, ecx, edx;
4466 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4467 				    &size, &offset, &ecx, &edx);
4468 			if (xfeature_nr == XFEATURE_PKRU)
4469 				memcpy(&vcpu->arch.pkru, src + offset,
4470 				       sizeof(vcpu->arch.pkru));
4471 			else
4472 				memcpy(dest, src + offset, size);
4473 		}
4474 
4475 		valid -= xfeature_mask;
4476 	}
4477 }
4478 
4479 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4480 					 struct kvm_xsave *guest_xsave)
4481 {
4482 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4483 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4484 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4485 	} else {
4486 		memcpy(guest_xsave->region,
4487 			&vcpu->arch.guest_fpu->state.fxsave,
4488 			sizeof(struct fxregs_state));
4489 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4490 			XFEATURE_MASK_FPSSE;
4491 	}
4492 }
4493 
4494 #define XSAVE_MXCSR_OFFSET 24
4495 
4496 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4497 					struct kvm_xsave *guest_xsave)
4498 {
4499 	u64 xstate_bv =
4500 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4501 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4502 
4503 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4504 		/*
4505 		 * Here we allow setting states that are not present in
4506 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4507 		 * with old userspace.
4508 		 */
4509 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4510 			return -EINVAL;
4511 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4512 	} else {
4513 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4514 			mxcsr & ~mxcsr_feature_mask)
4515 			return -EINVAL;
4516 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4517 			guest_xsave->region, sizeof(struct fxregs_state));
4518 	}
4519 	return 0;
4520 }
4521 
4522 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4523 					struct kvm_xcrs *guest_xcrs)
4524 {
4525 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4526 		guest_xcrs->nr_xcrs = 0;
4527 		return;
4528 	}
4529 
4530 	guest_xcrs->nr_xcrs = 1;
4531 	guest_xcrs->flags = 0;
4532 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4533 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4534 }
4535 
4536 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4537 				       struct kvm_xcrs *guest_xcrs)
4538 {
4539 	int i, r = 0;
4540 
4541 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4542 		return -EINVAL;
4543 
4544 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4545 		return -EINVAL;
4546 
4547 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4548 		/* Only support XCR0 currently */
4549 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4550 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4551 				guest_xcrs->xcrs[i].value);
4552 			break;
4553 		}
4554 	if (r)
4555 		r = -EINVAL;
4556 	return r;
4557 }
4558 
4559 /*
4560  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4561  * stopped by the hypervisor.  This function will be called from the host only.
4562  * EINVAL is returned when the host attempts to set the flag for a guest that
4563  * does not support pv clocks.
4564  */
4565 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4566 {
4567 	if (!vcpu->arch.pv_time_enabled)
4568 		return -EINVAL;
4569 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4570 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4571 	return 0;
4572 }
4573 
4574 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4575 				     struct kvm_enable_cap *cap)
4576 {
4577 	int r;
4578 	uint16_t vmcs_version;
4579 	void __user *user_ptr;
4580 
4581 	if (cap->flags)
4582 		return -EINVAL;
4583 
4584 	switch (cap->cap) {
4585 	case KVM_CAP_HYPERV_SYNIC2:
4586 		if (cap->args[0])
4587 			return -EINVAL;
4588 		fallthrough;
4589 
4590 	case KVM_CAP_HYPERV_SYNIC:
4591 		if (!irqchip_in_kernel(vcpu->kvm))
4592 			return -EINVAL;
4593 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4594 					     KVM_CAP_HYPERV_SYNIC2);
4595 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4596 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4597 			return -ENOTTY;
4598 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4599 		if (!r) {
4600 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4601 			if (copy_to_user(user_ptr, &vmcs_version,
4602 					 sizeof(vmcs_version)))
4603 				r = -EFAULT;
4604 		}
4605 		return r;
4606 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4607 		if (!kvm_x86_ops.enable_direct_tlbflush)
4608 			return -ENOTTY;
4609 
4610 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4611 
4612 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4613 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4614 		if (vcpu->arch.pv_cpuid.enforce)
4615 			kvm_update_pv_runtime(vcpu);
4616 
4617 		return 0;
4618 
4619 	default:
4620 		return -EINVAL;
4621 	}
4622 }
4623 
4624 long kvm_arch_vcpu_ioctl(struct file *filp,
4625 			 unsigned int ioctl, unsigned long arg)
4626 {
4627 	struct kvm_vcpu *vcpu = filp->private_data;
4628 	void __user *argp = (void __user *)arg;
4629 	int r;
4630 	union {
4631 		struct kvm_lapic_state *lapic;
4632 		struct kvm_xsave *xsave;
4633 		struct kvm_xcrs *xcrs;
4634 		void *buffer;
4635 	} u;
4636 
4637 	vcpu_load(vcpu);
4638 
4639 	u.buffer = NULL;
4640 	switch (ioctl) {
4641 	case KVM_GET_LAPIC: {
4642 		r = -EINVAL;
4643 		if (!lapic_in_kernel(vcpu))
4644 			goto out;
4645 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4646 				GFP_KERNEL_ACCOUNT);
4647 
4648 		r = -ENOMEM;
4649 		if (!u.lapic)
4650 			goto out;
4651 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4652 		if (r)
4653 			goto out;
4654 		r = -EFAULT;
4655 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4656 			goto out;
4657 		r = 0;
4658 		break;
4659 	}
4660 	case KVM_SET_LAPIC: {
4661 		r = -EINVAL;
4662 		if (!lapic_in_kernel(vcpu))
4663 			goto out;
4664 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4665 		if (IS_ERR(u.lapic)) {
4666 			r = PTR_ERR(u.lapic);
4667 			goto out_nofree;
4668 		}
4669 
4670 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4671 		break;
4672 	}
4673 	case KVM_INTERRUPT: {
4674 		struct kvm_interrupt irq;
4675 
4676 		r = -EFAULT;
4677 		if (copy_from_user(&irq, argp, sizeof(irq)))
4678 			goto out;
4679 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4680 		break;
4681 	}
4682 	case KVM_NMI: {
4683 		r = kvm_vcpu_ioctl_nmi(vcpu);
4684 		break;
4685 	}
4686 	case KVM_SMI: {
4687 		r = kvm_vcpu_ioctl_smi(vcpu);
4688 		break;
4689 	}
4690 	case KVM_SET_CPUID: {
4691 		struct kvm_cpuid __user *cpuid_arg = argp;
4692 		struct kvm_cpuid cpuid;
4693 
4694 		r = -EFAULT;
4695 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4696 			goto out;
4697 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4698 		break;
4699 	}
4700 	case KVM_SET_CPUID2: {
4701 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4702 		struct kvm_cpuid2 cpuid;
4703 
4704 		r = -EFAULT;
4705 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4706 			goto out;
4707 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4708 					      cpuid_arg->entries);
4709 		break;
4710 	}
4711 	case KVM_GET_CPUID2: {
4712 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4713 		struct kvm_cpuid2 cpuid;
4714 
4715 		r = -EFAULT;
4716 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4717 			goto out;
4718 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4719 					      cpuid_arg->entries);
4720 		if (r)
4721 			goto out;
4722 		r = -EFAULT;
4723 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4724 			goto out;
4725 		r = 0;
4726 		break;
4727 	}
4728 	case KVM_GET_MSRS: {
4729 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4730 		r = msr_io(vcpu, argp, do_get_msr, 1);
4731 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4732 		break;
4733 	}
4734 	case KVM_SET_MSRS: {
4735 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4736 		r = msr_io(vcpu, argp, do_set_msr, 0);
4737 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4738 		break;
4739 	}
4740 	case KVM_TPR_ACCESS_REPORTING: {
4741 		struct kvm_tpr_access_ctl tac;
4742 
4743 		r = -EFAULT;
4744 		if (copy_from_user(&tac, argp, sizeof(tac)))
4745 			goto out;
4746 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4747 		if (r)
4748 			goto out;
4749 		r = -EFAULT;
4750 		if (copy_to_user(argp, &tac, sizeof(tac)))
4751 			goto out;
4752 		r = 0;
4753 		break;
4754 	};
4755 	case KVM_SET_VAPIC_ADDR: {
4756 		struct kvm_vapic_addr va;
4757 		int idx;
4758 
4759 		r = -EINVAL;
4760 		if (!lapic_in_kernel(vcpu))
4761 			goto out;
4762 		r = -EFAULT;
4763 		if (copy_from_user(&va, argp, sizeof(va)))
4764 			goto out;
4765 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4766 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4767 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4768 		break;
4769 	}
4770 	case KVM_X86_SETUP_MCE: {
4771 		u64 mcg_cap;
4772 
4773 		r = -EFAULT;
4774 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4775 			goto out;
4776 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4777 		break;
4778 	}
4779 	case KVM_X86_SET_MCE: {
4780 		struct kvm_x86_mce mce;
4781 
4782 		r = -EFAULT;
4783 		if (copy_from_user(&mce, argp, sizeof(mce)))
4784 			goto out;
4785 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4786 		break;
4787 	}
4788 	case KVM_GET_VCPU_EVENTS: {
4789 		struct kvm_vcpu_events events;
4790 
4791 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4792 
4793 		r = -EFAULT;
4794 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4795 			break;
4796 		r = 0;
4797 		break;
4798 	}
4799 	case KVM_SET_VCPU_EVENTS: {
4800 		struct kvm_vcpu_events events;
4801 
4802 		r = -EFAULT;
4803 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4804 			break;
4805 
4806 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4807 		break;
4808 	}
4809 	case KVM_GET_DEBUGREGS: {
4810 		struct kvm_debugregs dbgregs;
4811 
4812 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4813 
4814 		r = -EFAULT;
4815 		if (copy_to_user(argp, &dbgregs,
4816 				 sizeof(struct kvm_debugregs)))
4817 			break;
4818 		r = 0;
4819 		break;
4820 	}
4821 	case KVM_SET_DEBUGREGS: {
4822 		struct kvm_debugregs dbgregs;
4823 
4824 		r = -EFAULT;
4825 		if (copy_from_user(&dbgregs, argp,
4826 				   sizeof(struct kvm_debugregs)))
4827 			break;
4828 
4829 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4830 		break;
4831 	}
4832 	case KVM_GET_XSAVE: {
4833 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4834 		r = -ENOMEM;
4835 		if (!u.xsave)
4836 			break;
4837 
4838 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4839 
4840 		r = -EFAULT;
4841 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4842 			break;
4843 		r = 0;
4844 		break;
4845 	}
4846 	case KVM_SET_XSAVE: {
4847 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4848 		if (IS_ERR(u.xsave)) {
4849 			r = PTR_ERR(u.xsave);
4850 			goto out_nofree;
4851 		}
4852 
4853 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4854 		break;
4855 	}
4856 	case KVM_GET_XCRS: {
4857 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4858 		r = -ENOMEM;
4859 		if (!u.xcrs)
4860 			break;
4861 
4862 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4863 
4864 		r = -EFAULT;
4865 		if (copy_to_user(argp, u.xcrs,
4866 				 sizeof(struct kvm_xcrs)))
4867 			break;
4868 		r = 0;
4869 		break;
4870 	}
4871 	case KVM_SET_XCRS: {
4872 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4873 		if (IS_ERR(u.xcrs)) {
4874 			r = PTR_ERR(u.xcrs);
4875 			goto out_nofree;
4876 		}
4877 
4878 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4879 		break;
4880 	}
4881 	case KVM_SET_TSC_KHZ: {
4882 		u32 user_tsc_khz;
4883 
4884 		r = -EINVAL;
4885 		user_tsc_khz = (u32)arg;
4886 
4887 		if (kvm_has_tsc_control &&
4888 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4889 			goto out;
4890 
4891 		if (user_tsc_khz == 0)
4892 			user_tsc_khz = tsc_khz;
4893 
4894 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4895 			r = 0;
4896 
4897 		goto out;
4898 	}
4899 	case KVM_GET_TSC_KHZ: {
4900 		r = vcpu->arch.virtual_tsc_khz;
4901 		goto out;
4902 	}
4903 	case KVM_KVMCLOCK_CTRL: {
4904 		r = kvm_set_guest_paused(vcpu);
4905 		goto out;
4906 	}
4907 	case KVM_ENABLE_CAP: {
4908 		struct kvm_enable_cap cap;
4909 
4910 		r = -EFAULT;
4911 		if (copy_from_user(&cap, argp, sizeof(cap)))
4912 			goto out;
4913 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4914 		break;
4915 	}
4916 	case KVM_GET_NESTED_STATE: {
4917 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4918 		u32 user_data_size;
4919 
4920 		r = -EINVAL;
4921 		if (!kvm_x86_ops.nested_ops->get_state)
4922 			break;
4923 
4924 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4925 		r = -EFAULT;
4926 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4927 			break;
4928 
4929 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4930 						     user_data_size);
4931 		if (r < 0)
4932 			break;
4933 
4934 		if (r > user_data_size) {
4935 			if (put_user(r, &user_kvm_nested_state->size))
4936 				r = -EFAULT;
4937 			else
4938 				r = -E2BIG;
4939 			break;
4940 		}
4941 
4942 		r = 0;
4943 		break;
4944 	}
4945 	case KVM_SET_NESTED_STATE: {
4946 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4947 		struct kvm_nested_state kvm_state;
4948 		int idx;
4949 
4950 		r = -EINVAL;
4951 		if (!kvm_x86_ops.nested_ops->set_state)
4952 			break;
4953 
4954 		r = -EFAULT;
4955 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4956 			break;
4957 
4958 		r = -EINVAL;
4959 		if (kvm_state.size < sizeof(kvm_state))
4960 			break;
4961 
4962 		if (kvm_state.flags &
4963 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4964 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4965 		      | KVM_STATE_NESTED_GIF_SET))
4966 			break;
4967 
4968 		/* nested_run_pending implies guest_mode.  */
4969 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4970 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4971 			break;
4972 
4973 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4974 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4975 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4976 		break;
4977 	}
4978 	case KVM_GET_SUPPORTED_HV_CPUID: {
4979 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4980 		struct kvm_cpuid2 cpuid;
4981 
4982 		r = -EFAULT;
4983 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4984 			goto out;
4985 
4986 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4987 						cpuid_arg->entries);
4988 		if (r)
4989 			goto out;
4990 
4991 		r = -EFAULT;
4992 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4993 			goto out;
4994 		r = 0;
4995 		break;
4996 	}
4997 	default:
4998 		r = -EINVAL;
4999 	}
5000 out:
5001 	kfree(u.buffer);
5002 out_nofree:
5003 	vcpu_put(vcpu);
5004 	return r;
5005 }
5006 
5007 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5008 {
5009 	return VM_FAULT_SIGBUS;
5010 }
5011 
5012 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5013 {
5014 	int ret;
5015 
5016 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5017 		return -EINVAL;
5018 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5019 	return ret;
5020 }
5021 
5022 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5023 					      u64 ident_addr)
5024 {
5025 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5026 }
5027 
5028 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5029 					 unsigned long kvm_nr_mmu_pages)
5030 {
5031 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5032 		return -EINVAL;
5033 
5034 	mutex_lock(&kvm->slots_lock);
5035 
5036 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5037 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5038 
5039 	mutex_unlock(&kvm->slots_lock);
5040 	return 0;
5041 }
5042 
5043 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5044 {
5045 	return kvm->arch.n_max_mmu_pages;
5046 }
5047 
5048 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5049 {
5050 	struct kvm_pic *pic = kvm->arch.vpic;
5051 	int r;
5052 
5053 	r = 0;
5054 	switch (chip->chip_id) {
5055 	case KVM_IRQCHIP_PIC_MASTER:
5056 		memcpy(&chip->chip.pic, &pic->pics[0],
5057 			sizeof(struct kvm_pic_state));
5058 		break;
5059 	case KVM_IRQCHIP_PIC_SLAVE:
5060 		memcpy(&chip->chip.pic, &pic->pics[1],
5061 			sizeof(struct kvm_pic_state));
5062 		break;
5063 	case KVM_IRQCHIP_IOAPIC:
5064 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5065 		break;
5066 	default:
5067 		r = -EINVAL;
5068 		break;
5069 	}
5070 	return r;
5071 }
5072 
5073 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5074 {
5075 	struct kvm_pic *pic = kvm->arch.vpic;
5076 	int r;
5077 
5078 	r = 0;
5079 	switch (chip->chip_id) {
5080 	case KVM_IRQCHIP_PIC_MASTER:
5081 		spin_lock(&pic->lock);
5082 		memcpy(&pic->pics[0], &chip->chip.pic,
5083 			sizeof(struct kvm_pic_state));
5084 		spin_unlock(&pic->lock);
5085 		break;
5086 	case KVM_IRQCHIP_PIC_SLAVE:
5087 		spin_lock(&pic->lock);
5088 		memcpy(&pic->pics[1], &chip->chip.pic,
5089 			sizeof(struct kvm_pic_state));
5090 		spin_unlock(&pic->lock);
5091 		break;
5092 	case KVM_IRQCHIP_IOAPIC:
5093 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5094 		break;
5095 	default:
5096 		r = -EINVAL;
5097 		break;
5098 	}
5099 	kvm_pic_update_irq(pic);
5100 	return r;
5101 }
5102 
5103 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5104 {
5105 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5106 
5107 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5108 
5109 	mutex_lock(&kps->lock);
5110 	memcpy(ps, &kps->channels, sizeof(*ps));
5111 	mutex_unlock(&kps->lock);
5112 	return 0;
5113 }
5114 
5115 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5116 {
5117 	int i;
5118 	struct kvm_pit *pit = kvm->arch.vpit;
5119 
5120 	mutex_lock(&pit->pit_state.lock);
5121 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5122 	for (i = 0; i < 3; i++)
5123 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5124 	mutex_unlock(&pit->pit_state.lock);
5125 	return 0;
5126 }
5127 
5128 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5129 {
5130 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5131 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5132 		sizeof(ps->channels));
5133 	ps->flags = kvm->arch.vpit->pit_state.flags;
5134 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5135 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5136 	return 0;
5137 }
5138 
5139 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5140 {
5141 	int start = 0;
5142 	int i;
5143 	u32 prev_legacy, cur_legacy;
5144 	struct kvm_pit *pit = kvm->arch.vpit;
5145 
5146 	mutex_lock(&pit->pit_state.lock);
5147 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5148 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5149 	if (!prev_legacy && cur_legacy)
5150 		start = 1;
5151 	memcpy(&pit->pit_state.channels, &ps->channels,
5152 	       sizeof(pit->pit_state.channels));
5153 	pit->pit_state.flags = ps->flags;
5154 	for (i = 0; i < 3; i++)
5155 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5156 				   start && i == 0);
5157 	mutex_unlock(&pit->pit_state.lock);
5158 	return 0;
5159 }
5160 
5161 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5162 				 struct kvm_reinject_control *control)
5163 {
5164 	struct kvm_pit *pit = kvm->arch.vpit;
5165 
5166 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5167 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5168 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5169 	 */
5170 	mutex_lock(&pit->pit_state.lock);
5171 	kvm_pit_set_reinject(pit, control->pit_reinject);
5172 	mutex_unlock(&pit->pit_state.lock);
5173 
5174 	return 0;
5175 }
5176 
5177 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5178 {
5179 	/*
5180 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5181 	 */
5182 	if (kvm_x86_ops.flush_log_dirty)
5183 		kvm_x86_ops.flush_log_dirty(kvm);
5184 }
5185 
5186 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5187 			bool line_status)
5188 {
5189 	if (!irqchip_in_kernel(kvm))
5190 		return -ENXIO;
5191 
5192 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5193 					irq_event->irq, irq_event->level,
5194 					line_status);
5195 	return 0;
5196 }
5197 
5198 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5199 			    struct kvm_enable_cap *cap)
5200 {
5201 	int r;
5202 
5203 	if (cap->flags)
5204 		return -EINVAL;
5205 
5206 	switch (cap->cap) {
5207 	case KVM_CAP_DISABLE_QUIRKS:
5208 		kvm->arch.disabled_quirks = cap->args[0];
5209 		r = 0;
5210 		break;
5211 	case KVM_CAP_SPLIT_IRQCHIP: {
5212 		mutex_lock(&kvm->lock);
5213 		r = -EINVAL;
5214 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5215 			goto split_irqchip_unlock;
5216 		r = -EEXIST;
5217 		if (irqchip_in_kernel(kvm))
5218 			goto split_irqchip_unlock;
5219 		if (kvm->created_vcpus)
5220 			goto split_irqchip_unlock;
5221 		r = kvm_setup_empty_irq_routing(kvm);
5222 		if (r)
5223 			goto split_irqchip_unlock;
5224 		/* Pairs with irqchip_in_kernel. */
5225 		smp_wmb();
5226 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5227 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5228 		r = 0;
5229 split_irqchip_unlock:
5230 		mutex_unlock(&kvm->lock);
5231 		break;
5232 	}
5233 	case KVM_CAP_X2APIC_API:
5234 		r = -EINVAL;
5235 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5236 			break;
5237 
5238 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5239 			kvm->arch.x2apic_format = true;
5240 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5241 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5242 
5243 		r = 0;
5244 		break;
5245 	case KVM_CAP_X86_DISABLE_EXITS:
5246 		r = -EINVAL;
5247 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5248 			break;
5249 
5250 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5251 			kvm_can_mwait_in_guest())
5252 			kvm->arch.mwait_in_guest = true;
5253 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5254 			kvm->arch.hlt_in_guest = true;
5255 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5256 			kvm->arch.pause_in_guest = true;
5257 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5258 			kvm->arch.cstate_in_guest = true;
5259 		r = 0;
5260 		break;
5261 	case KVM_CAP_MSR_PLATFORM_INFO:
5262 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5263 		r = 0;
5264 		break;
5265 	case KVM_CAP_EXCEPTION_PAYLOAD:
5266 		kvm->arch.exception_payload_enabled = cap->args[0];
5267 		r = 0;
5268 		break;
5269 	case KVM_CAP_X86_USER_SPACE_MSR:
5270 		kvm->arch.user_space_msr_mask = cap->args[0];
5271 		r = 0;
5272 		break;
5273 	default:
5274 		r = -EINVAL;
5275 		break;
5276 	}
5277 	return r;
5278 }
5279 
5280 static void kvm_clear_msr_filter(struct kvm *kvm)
5281 {
5282 	u32 i;
5283 	u32 count = kvm->arch.msr_filter.count;
5284 	struct msr_bitmap_range ranges[16];
5285 
5286 	mutex_lock(&kvm->lock);
5287 	kvm->arch.msr_filter.count = 0;
5288 	memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5289 	mutex_unlock(&kvm->lock);
5290 	synchronize_srcu(&kvm->srcu);
5291 
5292 	for (i = 0; i < count; i++)
5293 		kfree(ranges[i].bitmap);
5294 }
5295 
5296 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5297 {
5298 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5299 	struct msr_bitmap_range range;
5300 	unsigned long *bitmap = NULL;
5301 	size_t bitmap_size;
5302 	int r;
5303 
5304 	if (!user_range->nmsrs)
5305 		return 0;
5306 
5307 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5308 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5309 		return -EINVAL;
5310 
5311 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5312 	if (IS_ERR(bitmap))
5313 		return PTR_ERR(bitmap);
5314 
5315 	range = (struct msr_bitmap_range) {
5316 		.flags = user_range->flags,
5317 		.base = user_range->base,
5318 		.nmsrs = user_range->nmsrs,
5319 		.bitmap = bitmap,
5320 	};
5321 
5322 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5323 		r = -EINVAL;
5324 		goto err;
5325 	}
5326 
5327 	if (!range.flags) {
5328 		r = -EINVAL;
5329 		goto err;
5330 	}
5331 
5332 	/* Everything ok, add this range identifier to our global pool */
5333 	ranges[kvm->arch.msr_filter.count] = range;
5334 	/* Make sure we filled the array before we tell anyone to walk it */
5335 	smp_wmb();
5336 	kvm->arch.msr_filter.count++;
5337 
5338 	return 0;
5339 err:
5340 	kfree(bitmap);
5341 	return r;
5342 }
5343 
5344 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5345 {
5346 	struct kvm_msr_filter __user *user_msr_filter = argp;
5347 	struct kvm_msr_filter filter;
5348 	bool default_allow;
5349 	int r = 0;
5350 	bool empty = true;
5351 	u32 i;
5352 
5353 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5354 		return -EFAULT;
5355 
5356 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5357 		empty &= !filter.ranges[i].nmsrs;
5358 
5359 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5360 	if (empty && !default_allow)
5361 		return -EINVAL;
5362 
5363 	kvm_clear_msr_filter(kvm);
5364 
5365 	kvm->arch.msr_filter.default_allow = default_allow;
5366 
5367 	/*
5368 	 * Protect from concurrent calls to this function that could trigger
5369 	 * a TOCTOU violation on kvm->arch.msr_filter.count.
5370 	 */
5371 	mutex_lock(&kvm->lock);
5372 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5373 		r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5374 		if (r)
5375 			break;
5376 	}
5377 
5378 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5379 	mutex_unlock(&kvm->lock);
5380 
5381 	return r;
5382 }
5383 
5384 long kvm_arch_vm_ioctl(struct file *filp,
5385 		       unsigned int ioctl, unsigned long arg)
5386 {
5387 	struct kvm *kvm = filp->private_data;
5388 	void __user *argp = (void __user *)arg;
5389 	int r = -ENOTTY;
5390 	/*
5391 	 * This union makes it completely explicit to gcc-3.x
5392 	 * that these two variables' stack usage should be
5393 	 * combined, not added together.
5394 	 */
5395 	union {
5396 		struct kvm_pit_state ps;
5397 		struct kvm_pit_state2 ps2;
5398 		struct kvm_pit_config pit_config;
5399 	} u;
5400 
5401 	switch (ioctl) {
5402 	case KVM_SET_TSS_ADDR:
5403 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5404 		break;
5405 	case KVM_SET_IDENTITY_MAP_ADDR: {
5406 		u64 ident_addr;
5407 
5408 		mutex_lock(&kvm->lock);
5409 		r = -EINVAL;
5410 		if (kvm->created_vcpus)
5411 			goto set_identity_unlock;
5412 		r = -EFAULT;
5413 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5414 			goto set_identity_unlock;
5415 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5416 set_identity_unlock:
5417 		mutex_unlock(&kvm->lock);
5418 		break;
5419 	}
5420 	case KVM_SET_NR_MMU_PAGES:
5421 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5422 		break;
5423 	case KVM_GET_NR_MMU_PAGES:
5424 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5425 		break;
5426 	case KVM_CREATE_IRQCHIP: {
5427 		mutex_lock(&kvm->lock);
5428 
5429 		r = -EEXIST;
5430 		if (irqchip_in_kernel(kvm))
5431 			goto create_irqchip_unlock;
5432 
5433 		r = -EINVAL;
5434 		if (kvm->created_vcpus)
5435 			goto create_irqchip_unlock;
5436 
5437 		r = kvm_pic_init(kvm);
5438 		if (r)
5439 			goto create_irqchip_unlock;
5440 
5441 		r = kvm_ioapic_init(kvm);
5442 		if (r) {
5443 			kvm_pic_destroy(kvm);
5444 			goto create_irqchip_unlock;
5445 		}
5446 
5447 		r = kvm_setup_default_irq_routing(kvm);
5448 		if (r) {
5449 			kvm_ioapic_destroy(kvm);
5450 			kvm_pic_destroy(kvm);
5451 			goto create_irqchip_unlock;
5452 		}
5453 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5454 		smp_wmb();
5455 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5456 	create_irqchip_unlock:
5457 		mutex_unlock(&kvm->lock);
5458 		break;
5459 	}
5460 	case KVM_CREATE_PIT:
5461 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5462 		goto create_pit;
5463 	case KVM_CREATE_PIT2:
5464 		r = -EFAULT;
5465 		if (copy_from_user(&u.pit_config, argp,
5466 				   sizeof(struct kvm_pit_config)))
5467 			goto out;
5468 	create_pit:
5469 		mutex_lock(&kvm->lock);
5470 		r = -EEXIST;
5471 		if (kvm->arch.vpit)
5472 			goto create_pit_unlock;
5473 		r = -ENOMEM;
5474 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5475 		if (kvm->arch.vpit)
5476 			r = 0;
5477 	create_pit_unlock:
5478 		mutex_unlock(&kvm->lock);
5479 		break;
5480 	case KVM_GET_IRQCHIP: {
5481 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5482 		struct kvm_irqchip *chip;
5483 
5484 		chip = memdup_user(argp, sizeof(*chip));
5485 		if (IS_ERR(chip)) {
5486 			r = PTR_ERR(chip);
5487 			goto out;
5488 		}
5489 
5490 		r = -ENXIO;
5491 		if (!irqchip_kernel(kvm))
5492 			goto get_irqchip_out;
5493 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5494 		if (r)
5495 			goto get_irqchip_out;
5496 		r = -EFAULT;
5497 		if (copy_to_user(argp, chip, sizeof(*chip)))
5498 			goto get_irqchip_out;
5499 		r = 0;
5500 	get_irqchip_out:
5501 		kfree(chip);
5502 		break;
5503 	}
5504 	case KVM_SET_IRQCHIP: {
5505 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5506 		struct kvm_irqchip *chip;
5507 
5508 		chip = memdup_user(argp, sizeof(*chip));
5509 		if (IS_ERR(chip)) {
5510 			r = PTR_ERR(chip);
5511 			goto out;
5512 		}
5513 
5514 		r = -ENXIO;
5515 		if (!irqchip_kernel(kvm))
5516 			goto set_irqchip_out;
5517 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5518 	set_irqchip_out:
5519 		kfree(chip);
5520 		break;
5521 	}
5522 	case KVM_GET_PIT: {
5523 		r = -EFAULT;
5524 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5525 			goto out;
5526 		r = -ENXIO;
5527 		if (!kvm->arch.vpit)
5528 			goto out;
5529 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5530 		if (r)
5531 			goto out;
5532 		r = -EFAULT;
5533 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5534 			goto out;
5535 		r = 0;
5536 		break;
5537 	}
5538 	case KVM_SET_PIT: {
5539 		r = -EFAULT;
5540 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5541 			goto out;
5542 		mutex_lock(&kvm->lock);
5543 		r = -ENXIO;
5544 		if (!kvm->arch.vpit)
5545 			goto set_pit_out;
5546 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5547 set_pit_out:
5548 		mutex_unlock(&kvm->lock);
5549 		break;
5550 	}
5551 	case KVM_GET_PIT2: {
5552 		r = -ENXIO;
5553 		if (!kvm->arch.vpit)
5554 			goto out;
5555 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5556 		if (r)
5557 			goto out;
5558 		r = -EFAULT;
5559 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5560 			goto out;
5561 		r = 0;
5562 		break;
5563 	}
5564 	case KVM_SET_PIT2: {
5565 		r = -EFAULT;
5566 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5567 			goto out;
5568 		mutex_lock(&kvm->lock);
5569 		r = -ENXIO;
5570 		if (!kvm->arch.vpit)
5571 			goto set_pit2_out;
5572 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5573 set_pit2_out:
5574 		mutex_unlock(&kvm->lock);
5575 		break;
5576 	}
5577 	case KVM_REINJECT_CONTROL: {
5578 		struct kvm_reinject_control control;
5579 		r =  -EFAULT;
5580 		if (copy_from_user(&control, argp, sizeof(control)))
5581 			goto out;
5582 		r = -ENXIO;
5583 		if (!kvm->arch.vpit)
5584 			goto out;
5585 		r = kvm_vm_ioctl_reinject(kvm, &control);
5586 		break;
5587 	}
5588 	case KVM_SET_BOOT_CPU_ID:
5589 		r = 0;
5590 		mutex_lock(&kvm->lock);
5591 		if (kvm->created_vcpus)
5592 			r = -EBUSY;
5593 		else
5594 			kvm->arch.bsp_vcpu_id = arg;
5595 		mutex_unlock(&kvm->lock);
5596 		break;
5597 	case KVM_XEN_HVM_CONFIG: {
5598 		struct kvm_xen_hvm_config xhc;
5599 		r = -EFAULT;
5600 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5601 			goto out;
5602 		r = -EINVAL;
5603 		if (xhc.flags)
5604 			goto out;
5605 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5606 		r = 0;
5607 		break;
5608 	}
5609 	case KVM_SET_CLOCK: {
5610 		struct kvm_clock_data user_ns;
5611 		u64 now_ns;
5612 
5613 		r = -EFAULT;
5614 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5615 			goto out;
5616 
5617 		r = -EINVAL;
5618 		if (user_ns.flags)
5619 			goto out;
5620 
5621 		r = 0;
5622 		/*
5623 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5624 		 * kvm_gen_update_masterclock() can be cut down to locked
5625 		 * pvclock_update_vm_gtod_copy().
5626 		 */
5627 		kvm_gen_update_masterclock(kvm);
5628 		now_ns = get_kvmclock_ns(kvm);
5629 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5630 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5631 		break;
5632 	}
5633 	case KVM_GET_CLOCK: {
5634 		struct kvm_clock_data user_ns;
5635 		u64 now_ns;
5636 
5637 		now_ns = get_kvmclock_ns(kvm);
5638 		user_ns.clock = now_ns;
5639 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5640 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5641 
5642 		r = -EFAULT;
5643 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5644 			goto out;
5645 		r = 0;
5646 		break;
5647 	}
5648 	case KVM_MEMORY_ENCRYPT_OP: {
5649 		r = -ENOTTY;
5650 		if (kvm_x86_ops.mem_enc_op)
5651 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5652 		break;
5653 	}
5654 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5655 		struct kvm_enc_region region;
5656 
5657 		r = -EFAULT;
5658 		if (copy_from_user(&region, argp, sizeof(region)))
5659 			goto out;
5660 
5661 		r = -ENOTTY;
5662 		if (kvm_x86_ops.mem_enc_reg_region)
5663 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5664 		break;
5665 	}
5666 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5667 		struct kvm_enc_region region;
5668 
5669 		r = -EFAULT;
5670 		if (copy_from_user(&region, argp, sizeof(region)))
5671 			goto out;
5672 
5673 		r = -ENOTTY;
5674 		if (kvm_x86_ops.mem_enc_unreg_region)
5675 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5676 		break;
5677 	}
5678 	case KVM_HYPERV_EVENTFD: {
5679 		struct kvm_hyperv_eventfd hvevfd;
5680 
5681 		r = -EFAULT;
5682 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5683 			goto out;
5684 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5685 		break;
5686 	}
5687 	case KVM_SET_PMU_EVENT_FILTER:
5688 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5689 		break;
5690 	case KVM_X86_SET_MSR_FILTER:
5691 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5692 		break;
5693 	default:
5694 		r = -ENOTTY;
5695 	}
5696 out:
5697 	return r;
5698 }
5699 
5700 static void kvm_init_msr_list(void)
5701 {
5702 	struct x86_pmu_capability x86_pmu;
5703 	u32 dummy[2];
5704 	unsigned i;
5705 
5706 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5707 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5708 
5709 	perf_get_x86_pmu_capability(&x86_pmu);
5710 
5711 	num_msrs_to_save = 0;
5712 	num_emulated_msrs = 0;
5713 	num_msr_based_features = 0;
5714 
5715 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5716 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5717 			continue;
5718 
5719 		/*
5720 		 * Even MSRs that are valid in the host may not be exposed
5721 		 * to the guests in some cases.
5722 		 */
5723 		switch (msrs_to_save_all[i]) {
5724 		case MSR_IA32_BNDCFGS:
5725 			if (!kvm_mpx_supported())
5726 				continue;
5727 			break;
5728 		case MSR_TSC_AUX:
5729 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5730 				continue;
5731 			break;
5732 		case MSR_IA32_UMWAIT_CONTROL:
5733 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5734 				continue;
5735 			break;
5736 		case MSR_IA32_RTIT_CTL:
5737 		case MSR_IA32_RTIT_STATUS:
5738 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5739 				continue;
5740 			break;
5741 		case MSR_IA32_RTIT_CR3_MATCH:
5742 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5743 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5744 				continue;
5745 			break;
5746 		case MSR_IA32_RTIT_OUTPUT_BASE:
5747 		case MSR_IA32_RTIT_OUTPUT_MASK:
5748 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5749 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5750 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5751 				continue;
5752 			break;
5753 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5754 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5755 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5756 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5757 				continue;
5758 			break;
5759 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5760 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5761 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5762 				continue;
5763 			break;
5764 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5765 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5766 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5767 				continue;
5768 			break;
5769 		default:
5770 			break;
5771 		}
5772 
5773 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5774 	}
5775 
5776 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5777 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5778 			continue;
5779 
5780 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5781 	}
5782 
5783 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5784 		struct kvm_msr_entry msr;
5785 
5786 		msr.index = msr_based_features_all[i];
5787 		if (kvm_get_msr_feature(&msr))
5788 			continue;
5789 
5790 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5791 	}
5792 }
5793 
5794 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5795 			   const void *v)
5796 {
5797 	int handled = 0;
5798 	int n;
5799 
5800 	do {
5801 		n = min(len, 8);
5802 		if (!(lapic_in_kernel(vcpu) &&
5803 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5804 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5805 			break;
5806 		handled += n;
5807 		addr += n;
5808 		len -= n;
5809 		v += n;
5810 	} while (len);
5811 
5812 	return handled;
5813 }
5814 
5815 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5816 {
5817 	int handled = 0;
5818 	int n;
5819 
5820 	do {
5821 		n = min(len, 8);
5822 		if (!(lapic_in_kernel(vcpu) &&
5823 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5824 					 addr, n, v))
5825 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5826 			break;
5827 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5828 		handled += n;
5829 		addr += n;
5830 		len -= n;
5831 		v += n;
5832 	} while (len);
5833 
5834 	return handled;
5835 }
5836 
5837 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5838 			struct kvm_segment *var, int seg)
5839 {
5840 	kvm_x86_ops.set_segment(vcpu, var, seg);
5841 }
5842 
5843 void kvm_get_segment(struct kvm_vcpu *vcpu,
5844 		     struct kvm_segment *var, int seg)
5845 {
5846 	kvm_x86_ops.get_segment(vcpu, var, seg);
5847 }
5848 
5849 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5850 			   struct x86_exception *exception)
5851 {
5852 	gpa_t t_gpa;
5853 
5854 	BUG_ON(!mmu_is_nested(vcpu));
5855 
5856 	/* NPT walks are always user-walks */
5857 	access |= PFERR_USER_MASK;
5858 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5859 
5860 	return t_gpa;
5861 }
5862 
5863 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5864 			      struct x86_exception *exception)
5865 {
5866 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5867 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5868 }
5869 
5870  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5871 				struct x86_exception *exception)
5872 {
5873 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5874 	access |= PFERR_FETCH_MASK;
5875 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5876 }
5877 
5878 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5879 			       struct x86_exception *exception)
5880 {
5881 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5882 	access |= PFERR_WRITE_MASK;
5883 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5884 }
5885 
5886 /* uses this to access any guest's mapped memory without checking CPL */
5887 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5888 				struct x86_exception *exception)
5889 {
5890 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5891 }
5892 
5893 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5894 				      struct kvm_vcpu *vcpu, u32 access,
5895 				      struct x86_exception *exception)
5896 {
5897 	void *data = val;
5898 	int r = X86EMUL_CONTINUE;
5899 
5900 	while (bytes) {
5901 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5902 							    exception);
5903 		unsigned offset = addr & (PAGE_SIZE-1);
5904 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5905 		int ret;
5906 
5907 		if (gpa == UNMAPPED_GVA)
5908 			return X86EMUL_PROPAGATE_FAULT;
5909 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5910 					       offset, toread);
5911 		if (ret < 0) {
5912 			r = X86EMUL_IO_NEEDED;
5913 			goto out;
5914 		}
5915 
5916 		bytes -= toread;
5917 		data += toread;
5918 		addr += toread;
5919 	}
5920 out:
5921 	return r;
5922 }
5923 
5924 /* used for instruction fetching */
5925 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5926 				gva_t addr, void *val, unsigned int bytes,
5927 				struct x86_exception *exception)
5928 {
5929 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5930 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5931 	unsigned offset;
5932 	int ret;
5933 
5934 	/* Inline kvm_read_guest_virt_helper for speed.  */
5935 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5936 						    exception);
5937 	if (unlikely(gpa == UNMAPPED_GVA))
5938 		return X86EMUL_PROPAGATE_FAULT;
5939 
5940 	offset = addr & (PAGE_SIZE-1);
5941 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5942 		bytes = (unsigned)PAGE_SIZE - offset;
5943 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5944 				       offset, bytes);
5945 	if (unlikely(ret < 0))
5946 		return X86EMUL_IO_NEEDED;
5947 
5948 	return X86EMUL_CONTINUE;
5949 }
5950 
5951 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5952 			       gva_t addr, void *val, unsigned int bytes,
5953 			       struct x86_exception *exception)
5954 {
5955 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5956 
5957 	/*
5958 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5959 	 * is returned, but our callers are not ready for that and they blindly
5960 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5961 	 * uninitialized kernel stack memory into cr2 and error code.
5962 	 */
5963 	memset(exception, 0, sizeof(*exception));
5964 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5965 					  exception);
5966 }
5967 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5968 
5969 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5970 			     gva_t addr, void *val, unsigned int bytes,
5971 			     struct x86_exception *exception, bool system)
5972 {
5973 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5974 	u32 access = 0;
5975 
5976 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5977 		access |= PFERR_USER_MASK;
5978 
5979 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5980 }
5981 
5982 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5983 		unsigned long addr, void *val, unsigned int bytes)
5984 {
5985 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5986 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5987 
5988 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5989 }
5990 
5991 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5992 				      struct kvm_vcpu *vcpu, u32 access,
5993 				      struct x86_exception *exception)
5994 {
5995 	void *data = val;
5996 	int r = X86EMUL_CONTINUE;
5997 
5998 	while (bytes) {
5999 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6000 							     access,
6001 							     exception);
6002 		unsigned offset = addr & (PAGE_SIZE-1);
6003 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6004 		int ret;
6005 
6006 		if (gpa == UNMAPPED_GVA)
6007 			return X86EMUL_PROPAGATE_FAULT;
6008 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6009 		if (ret < 0) {
6010 			r = X86EMUL_IO_NEEDED;
6011 			goto out;
6012 		}
6013 
6014 		bytes -= towrite;
6015 		data += towrite;
6016 		addr += towrite;
6017 	}
6018 out:
6019 	return r;
6020 }
6021 
6022 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6023 			      unsigned int bytes, struct x86_exception *exception,
6024 			      bool system)
6025 {
6026 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6027 	u32 access = PFERR_WRITE_MASK;
6028 
6029 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6030 		access |= PFERR_USER_MASK;
6031 
6032 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6033 					   access, exception);
6034 }
6035 
6036 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6037 				unsigned int bytes, struct x86_exception *exception)
6038 {
6039 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6040 	vcpu->arch.l1tf_flush_l1d = true;
6041 
6042 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6043 					   PFERR_WRITE_MASK, exception);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6046 
6047 int handle_ud(struct kvm_vcpu *vcpu)
6048 {
6049 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6050 	int emul_type = EMULTYPE_TRAP_UD;
6051 	char sig[5]; /* ud2; .ascii "kvm" */
6052 	struct x86_exception e;
6053 
6054 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6055 		return 1;
6056 
6057 	if (force_emulation_prefix &&
6058 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6059 				sig, sizeof(sig), &e) == 0 &&
6060 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6061 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6062 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6063 	}
6064 
6065 	return kvm_emulate_instruction(vcpu, emul_type);
6066 }
6067 EXPORT_SYMBOL_GPL(handle_ud);
6068 
6069 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6070 			    gpa_t gpa, bool write)
6071 {
6072 	/* For APIC access vmexit */
6073 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6074 		return 1;
6075 
6076 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6077 		trace_vcpu_match_mmio(gva, gpa, write, true);
6078 		return 1;
6079 	}
6080 
6081 	return 0;
6082 }
6083 
6084 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6085 				gpa_t *gpa, struct x86_exception *exception,
6086 				bool write)
6087 {
6088 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6089 		| (write ? PFERR_WRITE_MASK : 0);
6090 
6091 	/*
6092 	 * currently PKRU is only applied to ept enabled guest so
6093 	 * there is no pkey in EPT page table for L1 guest or EPT
6094 	 * shadow page table for L2 guest.
6095 	 */
6096 	if (vcpu_match_mmio_gva(vcpu, gva)
6097 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6098 				 vcpu->arch.mmio_access, 0, access)) {
6099 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6100 					(gva & (PAGE_SIZE - 1));
6101 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6102 		return 1;
6103 	}
6104 
6105 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6106 
6107 	if (*gpa == UNMAPPED_GVA)
6108 		return -1;
6109 
6110 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6111 }
6112 
6113 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6114 			const void *val, int bytes)
6115 {
6116 	int ret;
6117 
6118 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6119 	if (ret < 0)
6120 		return 0;
6121 	kvm_page_track_write(vcpu, gpa, val, bytes);
6122 	return 1;
6123 }
6124 
6125 struct read_write_emulator_ops {
6126 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6127 				  int bytes);
6128 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6129 				  void *val, int bytes);
6130 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6131 			       int bytes, void *val);
6132 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6133 				    void *val, int bytes);
6134 	bool write;
6135 };
6136 
6137 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6138 {
6139 	if (vcpu->mmio_read_completed) {
6140 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6141 			       vcpu->mmio_fragments[0].gpa, val);
6142 		vcpu->mmio_read_completed = 0;
6143 		return 1;
6144 	}
6145 
6146 	return 0;
6147 }
6148 
6149 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6150 			void *val, int bytes)
6151 {
6152 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6153 }
6154 
6155 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6156 			 void *val, int bytes)
6157 {
6158 	return emulator_write_phys(vcpu, gpa, val, bytes);
6159 }
6160 
6161 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6162 {
6163 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6164 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6165 }
6166 
6167 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6168 			  void *val, int bytes)
6169 {
6170 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6171 	return X86EMUL_IO_NEEDED;
6172 }
6173 
6174 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6175 			   void *val, int bytes)
6176 {
6177 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6178 
6179 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6180 	return X86EMUL_CONTINUE;
6181 }
6182 
6183 static const struct read_write_emulator_ops read_emultor = {
6184 	.read_write_prepare = read_prepare,
6185 	.read_write_emulate = read_emulate,
6186 	.read_write_mmio = vcpu_mmio_read,
6187 	.read_write_exit_mmio = read_exit_mmio,
6188 };
6189 
6190 static const struct read_write_emulator_ops write_emultor = {
6191 	.read_write_emulate = write_emulate,
6192 	.read_write_mmio = write_mmio,
6193 	.read_write_exit_mmio = write_exit_mmio,
6194 	.write = true,
6195 };
6196 
6197 static int emulator_read_write_onepage(unsigned long addr, void *val,
6198 				       unsigned int bytes,
6199 				       struct x86_exception *exception,
6200 				       struct kvm_vcpu *vcpu,
6201 				       const struct read_write_emulator_ops *ops)
6202 {
6203 	gpa_t gpa;
6204 	int handled, ret;
6205 	bool write = ops->write;
6206 	struct kvm_mmio_fragment *frag;
6207 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6208 
6209 	/*
6210 	 * If the exit was due to a NPF we may already have a GPA.
6211 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6212 	 * Note, this cannot be used on string operations since string
6213 	 * operation using rep will only have the initial GPA from the NPF
6214 	 * occurred.
6215 	 */
6216 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6217 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6218 		gpa = ctxt->gpa_val;
6219 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6220 	} else {
6221 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6222 		if (ret < 0)
6223 			return X86EMUL_PROPAGATE_FAULT;
6224 	}
6225 
6226 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6227 		return X86EMUL_CONTINUE;
6228 
6229 	/*
6230 	 * Is this MMIO handled locally?
6231 	 */
6232 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6233 	if (handled == bytes)
6234 		return X86EMUL_CONTINUE;
6235 
6236 	gpa += handled;
6237 	bytes -= handled;
6238 	val += handled;
6239 
6240 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6241 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6242 	frag->gpa = gpa;
6243 	frag->data = val;
6244 	frag->len = bytes;
6245 	return X86EMUL_CONTINUE;
6246 }
6247 
6248 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6249 			unsigned long addr,
6250 			void *val, unsigned int bytes,
6251 			struct x86_exception *exception,
6252 			const struct read_write_emulator_ops *ops)
6253 {
6254 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6255 	gpa_t gpa;
6256 	int rc;
6257 
6258 	if (ops->read_write_prepare &&
6259 		  ops->read_write_prepare(vcpu, val, bytes))
6260 		return X86EMUL_CONTINUE;
6261 
6262 	vcpu->mmio_nr_fragments = 0;
6263 
6264 	/* Crossing a page boundary? */
6265 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6266 		int now;
6267 
6268 		now = -addr & ~PAGE_MASK;
6269 		rc = emulator_read_write_onepage(addr, val, now, exception,
6270 						 vcpu, ops);
6271 
6272 		if (rc != X86EMUL_CONTINUE)
6273 			return rc;
6274 		addr += now;
6275 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6276 			addr = (u32)addr;
6277 		val += now;
6278 		bytes -= now;
6279 	}
6280 
6281 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6282 					 vcpu, ops);
6283 	if (rc != X86EMUL_CONTINUE)
6284 		return rc;
6285 
6286 	if (!vcpu->mmio_nr_fragments)
6287 		return rc;
6288 
6289 	gpa = vcpu->mmio_fragments[0].gpa;
6290 
6291 	vcpu->mmio_needed = 1;
6292 	vcpu->mmio_cur_fragment = 0;
6293 
6294 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6295 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6296 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6297 	vcpu->run->mmio.phys_addr = gpa;
6298 
6299 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6300 }
6301 
6302 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6303 				  unsigned long addr,
6304 				  void *val,
6305 				  unsigned int bytes,
6306 				  struct x86_exception *exception)
6307 {
6308 	return emulator_read_write(ctxt, addr, val, bytes,
6309 				   exception, &read_emultor);
6310 }
6311 
6312 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6313 			    unsigned long addr,
6314 			    const void *val,
6315 			    unsigned int bytes,
6316 			    struct x86_exception *exception)
6317 {
6318 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6319 				   exception, &write_emultor);
6320 }
6321 
6322 #define CMPXCHG_TYPE(t, ptr, old, new) \
6323 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6324 
6325 #ifdef CONFIG_X86_64
6326 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6327 #else
6328 #  define CMPXCHG64(ptr, old, new) \
6329 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6330 #endif
6331 
6332 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6333 				     unsigned long addr,
6334 				     const void *old,
6335 				     const void *new,
6336 				     unsigned int bytes,
6337 				     struct x86_exception *exception)
6338 {
6339 	struct kvm_host_map map;
6340 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6341 	u64 page_line_mask;
6342 	gpa_t gpa;
6343 	char *kaddr;
6344 	bool exchanged;
6345 
6346 	/* guests cmpxchg8b have to be emulated atomically */
6347 	if (bytes > 8 || (bytes & (bytes - 1)))
6348 		goto emul_write;
6349 
6350 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6351 
6352 	if (gpa == UNMAPPED_GVA ||
6353 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6354 		goto emul_write;
6355 
6356 	/*
6357 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6358 	 * enabled in the host and the access splits a cache line.
6359 	 */
6360 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6361 		page_line_mask = ~(cache_line_size() - 1);
6362 	else
6363 		page_line_mask = PAGE_MASK;
6364 
6365 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6366 		goto emul_write;
6367 
6368 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6369 		goto emul_write;
6370 
6371 	kaddr = map.hva + offset_in_page(gpa);
6372 
6373 	switch (bytes) {
6374 	case 1:
6375 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6376 		break;
6377 	case 2:
6378 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6379 		break;
6380 	case 4:
6381 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6382 		break;
6383 	case 8:
6384 		exchanged = CMPXCHG64(kaddr, old, new);
6385 		break;
6386 	default:
6387 		BUG();
6388 	}
6389 
6390 	kvm_vcpu_unmap(vcpu, &map, true);
6391 
6392 	if (!exchanged)
6393 		return X86EMUL_CMPXCHG_FAILED;
6394 
6395 	kvm_page_track_write(vcpu, gpa, new, bytes);
6396 
6397 	return X86EMUL_CONTINUE;
6398 
6399 emul_write:
6400 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6401 
6402 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6403 }
6404 
6405 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6406 {
6407 	int r = 0, i;
6408 
6409 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6410 		if (vcpu->arch.pio.in)
6411 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6412 					    vcpu->arch.pio.size, pd);
6413 		else
6414 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6415 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6416 					     pd);
6417 		if (r)
6418 			break;
6419 		pd += vcpu->arch.pio.size;
6420 	}
6421 	return r;
6422 }
6423 
6424 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6425 			       unsigned short port, void *val,
6426 			       unsigned int count, bool in)
6427 {
6428 	vcpu->arch.pio.port = port;
6429 	vcpu->arch.pio.in = in;
6430 	vcpu->arch.pio.count  = count;
6431 	vcpu->arch.pio.size = size;
6432 
6433 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6434 		vcpu->arch.pio.count = 0;
6435 		return 1;
6436 	}
6437 
6438 	vcpu->run->exit_reason = KVM_EXIT_IO;
6439 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6440 	vcpu->run->io.size = size;
6441 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6442 	vcpu->run->io.count = count;
6443 	vcpu->run->io.port = port;
6444 
6445 	return 0;
6446 }
6447 
6448 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6449 			   unsigned short port, void *val, unsigned int count)
6450 {
6451 	int ret;
6452 
6453 	if (vcpu->arch.pio.count)
6454 		goto data_avail;
6455 
6456 	memset(vcpu->arch.pio_data, 0, size * count);
6457 
6458 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6459 	if (ret) {
6460 data_avail:
6461 		memcpy(val, vcpu->arch.pio_data, size * count);
6462 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6463 		vcpu->arch.pio.count = 0;
6464 		return 1;
6465 	}
6466 
6467 	return 0;
6468 }
6469 
6470 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6471 				    int size, unsigned short port, void *val,
6472 				    unsigned int count)
6473 {
6474 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6475 
6476 }
6477 
6478 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6479 			    unsigned short port, const void *val,
6480 			    unsigned int count)
6481 {
6482 	memcpy(vcpu->arch.pio_data, val, size * count);
6483 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6484 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6485 }
6486 
6487 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6488 				     int size, unsigned short port,
6489 				     const void *val, unsigned int count)
6490 {
6491 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6492 }
6493 
6494 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6495 {
6496 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6497 }
6498 
6499 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6500 {
6501 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6502 }
6503 
6504 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6505 {
6506 	if (!need_emulate_wbinvd(vcpu))
6507 		return X86EMUL_CONTINUE;
6508 
6509 	if (kvm_x86_ops.has_wbinvd_exit()) {
6510 		int cpu = get_cpu();
6511 
6512 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6513 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6514 				wbinvd_ipi, NULL, 1);
6515 		put_cpu();
6516 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6517 	} else
6518 		wbinvd();
6519 	return X86EMUL_CONTINUE;
6520 }
6521 
6522 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6523 {
6524 	kvm_emulate_wbinvd_noskip(vcpu);
6525 	return kvm_skip_emulated_instruction(vcpu);
6526 }
6527 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6528 
6529 
6530 
6531 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6532 {
6533 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6534 }
6535 
6536 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6537 			   unsigned long *dest)
6538 {
6539 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6540 }
6541 
6542 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6543 			   unsigned long value)
6544 {
6545 
6546 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6547 }
6548 
6549 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6550 {
6551 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6552 }
6553 
6554 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6555 {
6556 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6557 	unsigned long value;
6558 
6559 	switch (cr) {
6560 	case 0:
6561 		value = kvm_read_cr0(vcpu);
6562 		break;
6563 	case 2:
6564 		value = vcpu->arch.cr2;
6565 		break;
6566 	case 3:
6567 		value = kvm_read_cr3(vcpu);
6568 		break;
6569 	case 4:
6570 		value = kvm_read_cr4(vcpu);
6571 		break;
6572 	case 8:
6573 		value = kvm_get_cr8(vcpu);
6574 		break;
6575 	default:
6576 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6577 		return 0;
6578 	}
6579 
6580 	return value;
6581 }
6582 
6583 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6584 {
6585 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6586 	int res = 0;
6587 
6588 	switch (cr) {
6589 	case 0:
6590 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6591 		break;
6592 	case 2:
6593 		vcpu->arch.cr2 = val;
6594 		break;
6595 	case 3:
6596 		res = kvm_set_cr3(vcpu, val);
6597 		break;
6598 	case 4:
6599 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6600 		break;
6601 	case 8:
6602 		res = kvm_set_cr8(vcpu, val);
6603 		break;
6604 	default:
6605 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6606 		res = -1;
6607 	}
6608 
6609 	return res;
6610 }
6611 
6612 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6613 {
6614 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6615 }
6616 
6617 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6618 {
6619 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6620 }
6621 
6622 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6623 {
6624 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6625 }
6626 
6627 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6628 {
6629 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6630 }
6631 
6632 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6633 {
6634 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6635 }
6636 
6637 static unsigned long emulator_get_cached_segment_base(
6638 	struct x86_emulate_ctxt *ctxt, int seg)
6639 {
6640 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6641 }
6642 
6643 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6644 				 struct desc_struct *desc, u32 *base3,
6645 				 int seg)
6646 {
6647 	struct kvm_segment var;
6648 
6649 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6650 	*selector = var.selector;
6651 
6652 	if (var.unusable) {
6653 		memset(desc, 0, sizeof(*desc));
6654 		if (base3)
6655 			*base3 = 0;
6656 		return false;
6657 	}
6658 
6659 	if (var.g)
6660 		var.limit >>= 12;
6661 	set_desc_limit(desc, var.limit);
6662 	set_desc_base(desc, (unsigned long)var.base);
6663 #ifdef CONFIG_X86_64
6664 	if (base3)
6665 		*base3 = var.base >> 32;
6666 #endif
6667 	desc->type = var.type;
6668 	desc->s = var.s;
6669 	desc->dpl = var.dpl;
6670 	desc->p = var.present;
6671 	desc->avl = var.avl;
6672 	desc->l = var.l;
6673 	desc->d = var.db;
6674 	desc->g = var.g;
6675 
6676 	return true;
6677 }
6678 
6679 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6680 				 struct desc_struct *desc, u32 base3,
6681 				 int seg)
6682 {
6683 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6684 	struct kvm_segment var;
6685 
6686 	var.selector = selector;
6687 	var.base = get_desc_base(desc);
6688 #ifdef CONFIG_X86_64
6689 	var.base |= ((u64)base3) << 32;
6690 #endif
6691 	var.limit = get_desc_limit(desc);
6692 	if (desc->g)
6693 		var.limit = (var.limit << 12) | 0xfff;
6694 	var.type = desc->type;
6695 	var.dpl = desc->dpl;
6696 	var.db = desc->d;
6697 	var.s = desc->s;
6698 	var.l = desc->l;
6699 	var.g = desc->g;
6700 	var.avl = desc->avl;
6701 	var.present = desc->p;
6702 	var.unusable = !var.present;
6703 	var.padding = 0;
6704 
6705 	kvm_set_segment(vcpu, &var, seg);
6706 	return;
6707 }
6708 
6709 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6710 			    u32 msr_index, u64 *pdata)
6711 {
6712 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713 	int r;
6714 
6715 	r = kvm_get_msr(vcpu, msr_index, pdata);
6716 
6717 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6718 		/* Bounce to user space */
6719 		return X86EMUL_IO_NEEDED;
6720 	}
6721 
6722 	return r;
6723 }
6724 
6725 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6726 			    u32 msr_index, u64 data)
6727 {
6728 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6729 	int r;
6730 
6731 	r = kvm_set_msr(vcpu, msr_index, data);
6732 
6733 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6734 		/* Bounce to user space */
6735 		return X86EMUL_IO_NEEDED;
6736 	}
6737 
6738 	return r;
6739 }
6740 
6741 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6742 {
6743 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6744 
6745 	return vcpu->arch.smbase;
6746 }
6747 
6748 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6749 {
6750 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6751 
6752 	vcpu->arch.smbase = smbase;
6753 }
6754 
6755 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6756 			      u32 pmc)
6757 {
6758 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6759 }
6760 
6761 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6762 			     u32 pmc, u64 *pdata)
6763 {
6764 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6765 }
6766 
6767 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6768 {
6769 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6770 }
6771 
6772 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6773 			      struct x86_instruction_info *info,
6774 			      enum x86_intercept_stage stage)
6775 {
6776 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6777 					    &ctxt->exception);
6778 }
6779 
6780 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6781 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6782 			      bool exact_only)
6783 {
6784 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6785 }
6786 
6787 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6788 {
6789 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6790 }
6791 
6792 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6793 {
6794 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6795 }
6796 
6797 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6798 {
6799 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6800 }
6801 
6802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6803 {
6804 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6805 }
6806 
6807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6808 {
6809 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6810 }
6811 
6812 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6813 {
6814 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6815 }
6816 
6817 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6818 {
6819 	return emul_to_vcpu(ctxt)->arch.hflags;
6820 }
6821 
6822 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6823 {
6824 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6825 }
6826 
6827 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6828 				  const char *smstate)
6829 {
6830 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6831 }
6832 
6833 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6834 {
6835 	kvm_smm_changed(emul_to_vcpu(ctxt));
6836 }
6837 
6838 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6839 {
6840 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6841 }
6842 
6843 static const struct x86_emulate_ops emulate_ops = {
6844 	.read_gpr            = emulator_read_gpr,
6845 	.write_gpr           = emulator_write_gpr,
6846 	.read_std            = emulator_read_std,
6847 	.write_std           = emulator_write_std,
6848 	.read_phys           = kvm_read_guest_phys_system,
6849 	.fetch               = kvm_fetch_guest_virt,
6850 	.read_emulated       = emulator_read_emulated,
6851 	.write_emulated      = emulator_write_emulated,
6852 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6853 	.invlpg              = emulator_invlpg,
6854 	.pio_in_emulated     = emulator_pio_in_emulated,
6855 	.pio_out_emulated    = emulator_pio_out_emulated,
6856 	.get_segment         = emulator_get_segment,
6857 	.set_segment         = emulator_set_segment,
6858 	.get_cached_segment_base = emulator_get_cached_segment_base,
6859 	.get_gdt             = emulator_get_gdt,
6860 	.get_idt	     = emulator_get_idt,
6861 	.set_gdt             = emulator_set_gdt,
6862 	.set_idt	     = emulator_set_idt,
6863 	.get_cr              = emulator_get_cr,
6864 	.set_cr              = emulator_set_cr,
6865 	.cpl                 = emulator_get_cpl,
6866 	.get_dr              = emulator_get_dr,
6867 	.set_dr              = emulator_set_dr,
6868 	.get_smbase          = emulator_get_smbase,
6869 	.set_smbase          = emulator_set_smbase,
6870 	.set_msr             = emulator_set_msr,
6871 	.get_msr             = emulator_get_msr,
6872 	.check_pmc	     = emulator_check_pmc,
6873 	.read_pmc            = emulator_read_pmc,
6874 	.halt                = emulator_halt,
6875 	.wbinvd              = emulator_wbinvd,
6876 	.fix_hypercall       = emulator_fix_hypercall,
6877 	.intercept           = emulator_intercept,
6878 	.get_cpuid           = emulator_get_cpuid,
6879 	.guest_has_long_mode = emulator_guest_has_long_mode,
6880 	.guest_has_movbe     = emulator_guest_has_movbe,
6881 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6882 	.set_nmi_mask        = emulator_set_nmi_mask,
6883 	.get_hflags          = emulator_get_hflags,
6884 	.set_hflags          = emulator_set_hflags,
6885 	.pre_leave_smm       = emulator_pre_leave_smm,
6886 	.post_leave_smm      = emulator_post_leave_smm,
6887 	.set_xcr             = emulator_set_xcr,
6888 };
6889 
6890 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6891 {
6892 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6893 	/*
6894 	 * an sti; sti; sequence only disable interrupts for the first
6895 	 * instruction. So, if the last instruction, be it emulated or
6896 	 * not, left the system with the INT_STI flag enabled, it
6897 	 * means that the last instruction is an sti. We should not
6898 	 * leave the flag on in this case. The same goes for mov ss
6899 	 */
6900 	if (int_shadow & mask)
6901 		mask = 0;
6902 	if (unlikely(int_shadow || mask)) {
6903 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6904 		if (!mask)
6905 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6906 	}
6907 }
6908 
6909 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6910 {
6911 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6912 	if (ctxt->exception.vector == PF_VECTOR)
6913 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6914 
6915 	if (ctxt->exception.error_code_valid)
6916 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6917 				      ctxt->exception.error_code);
6918 	else
6919 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6920 	return false;
6921 }
6922 
6923 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6924 {
6925 	struct x86_emulate_ctxt *ctxt;
6926 
6927 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6928 	if (!ctxt) {
6929 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6930 		return NULL;
6931 	}
6932 
6933 	ctxt->vcpu = vcpu;
6934 	ctxt->ops = &emulate_ops;
6935 	vcpu->arch.emulate_ctxt = ctxt;
6936 
6937 	return ctxt;
6938 }
6939 
6940 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6941 {
6942 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6943 	int cs_db, cs_l;
6944 
6945 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6946 
6947 	ctxt->gpa_available = false;
6948 	ctxt->eflags = kvm_get_rflags(vcpu);
6949 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6950 
6951 	ctxt->eip = kvm_rip_read(vcpu);
6952 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6953 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6954 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6955 		     cs_db				? X86EMUL_MODE_PROT32 :
6956 							  X86EMUL_MODE_PROT16;
6957 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6958 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6959 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6960 
6961 	init_decode_cache(ctxt);
6962 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6963 }
6964 
6965 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6966 {
6967 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6968 	int ret;
6969 
6970 	init_emulate_ctxt(vcpu);
6971 
6972 	ctxt->op_bytes = 2;
6973 	ctxt->ad_bytes = 2;
6974 	ctxt->_eip = ctxt->eip + inc_eip;
6975 	ret = emulate_int_real(ctxt, irq);
6976 
6977 	if (ret != X86EMUL_CONTINUE) {
6978 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6979 	} else {
6980 		ctxt->eip = ctxt->_eip;
6981 		kvm_rip_write(vcpu, ctxt->eip);
6982 		kvm_set_rflags(vcpu, ctxt->eflags);
6983 	}
6984 }
6985 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6986 
6987 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6988 {
6989 	++vcpu->stat.insn_emulation_fail;
6990 	trace_kvm_emulate_insn_failed(vcpu);
6991 
6992 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6993 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6994 		return 1;
6995 	}
6996 
6997 	if (emulation_type & EMULTYPE_SKIP) {
6998 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6999 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7000 		vcpu->run->internal.ndata = 0;
7001 		return 0;
7002 	}
7003 
7004 	kvm_queue_exception(vcpu, UD_VECTOR);
7005 
7006 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7007 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7008 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7009 		vcpu->run->internal.ndata = 0;
7010 		return 0;
7011 	}
7012 
7013 	return 1;
7014 }
7015 
7016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7017 				  bool write_fault_to_shadow_pgtable,
7018 				  int emulation_type)
7019 {
7020 	gpa_t gpa = cr2_or_gpa;
7021 	kvm_pfn_t pfn;
7022 
7023 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7024 		return false;
7025 
7026 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7027 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7028 		return false;
7029 
7030 	if (!vcpu->arch.mmu->direct_map) {
7031 		/*
7032 		 * Write permission should be allowed since only
7033 		 * write access need to be emulated.
7034 		 */
7035 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7036 
7037 		/*
7038 		 * If the mapping is invalid in guest, let cpu retry
7039 		 * it to generate fault.
7040 		 */
7041 		if (gpa == UNMAPPED_GVA)
7042 			return true;
7043 	}
7044 
7045 	/*
7046 	 * Do not retry the unhandleable instruction if it faults on the
7047 	 * readonly host memory, otherwise it will goto a infinite loop:
7048 	 * retry instruction -> write #PF -> emulation fail -> retry
7049 	 * instruction -> ...
7050 	 */
7051 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7052 
7053 	/*
7054 	 * If the instruction failed on the error pfn, it can not be fixed,
7055 	 * report the error to userspace.
7056 	 */
7057 	if (is_error_noslot_pfn(pfn))
7058 		return false;
7059 
7060 	kvm_release_pfn_clean(pfn);
7061 
7062 	/* The instructions are well-emulated on direct mmu. */
7063 	if (vcpu->arch.mmu->direct_map) {
7064 		unsigned int indirect_shadow_pages;
7065 
7066 		spin_lock(&vcpu->kvm->mmu_lock);
7067 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7068 		spin_unlock(&vcpu->kvm->mmu_lock);
7069 
7070 		if (indirect_shadow_pages)
7071 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7072 
7073 		return true;
7074 	}
7075 
7076 	/*
7077 	 * if emulation was due to access to shadowed page table
7078 	 * and it failed try to unshadow page and re-enter the
7079 	 * guest to let CPU execute the instruction.
7080 	 */
7081 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7082 
7083 	/*
7084 	 * If the access faults on its page table, it can not
7085 	 * be fixed by unprotecting shadow page and it should
7086 	 * be reported to userspace.
7087 	 */
7088 	return !write_fault_to_shadow_pgtable;
7089 }
7090 
7091 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7092 			      gpa_t cr2_or_gpa,  int emulation_type)
7093 {
7094 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7095 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7096 
7097 	last_retry_eip = vcpu->arch.last_retry_eip;
7098 	last_retry_addr = vcpu->arch.last_retry_addr;
7099 
7100 	/*
7101 	 * If the emulation is caused by #PF and it is non-page_table
7102 	 * writing instruction, it means the VM-EXIT is caused by shadow
7103 	 * page protected, we can zap the shadow page and retry this
7104 	 * instruction directly.
7105 	 *
7106 	 * Note: if the guest uses a non-page-table modifying instruction
7107 	 * on the PDE that points to the instruction, then we will unmap
7108 	 * the instruction and go to an infinite loop. So, we cache the
7109 	 * last retried eip and the last fault address, if we meet the eip
7110 	 * and the address again, we can break out of the potential infinite
7111 	 * loop.
7112 	 */
7113 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7114 
7115 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7116 		return false;
7117 
7118 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7119 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7120 		return false;
7121 
7122 	if (x86_page_table_writing_insn(ctxt))
7123 		return false;
7124 
7125 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7126 		return false;
7127 
7128 	vcpu->arch.last_retry_eip = ctxt->eip;
7129 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7130 
7131 	if (!vcpu->arch.mmu->direct_map)
7132 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7133 
7134 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7135 
7136 	return true;
7137 }
7138 
7139 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7140 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7141 
7142 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7143 {
7144 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7145 		/* This is a good place to trace that we are exiting SMM.  */
7146 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7147 
7148 		/* Process a latched INIT or SMI, if any.  */
7149 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7150 	}
7151 
7152 	kvm_mmu_reset_context(vcpu);
7153 }
7154 
7155 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7156 				unsigned long *db)
7157 {
7158 	u32 dr6 = 0;
7159 	int i;
7160 	u32 enable, rwlen;
7161 
7162 	enable = dr7;
7163 	rwlen = dr7 >> 16;
7164 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7165 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7166 			dr6 |= (1 << i);
7167 	return dr6;
7168 }
7169 
7170 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7171 {
7172 	struct kvm_run *kvm_run = vcpu->run;
7173 
7174 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7175 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7176 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7177 		kvm_run->debug.arch.exception = DB_VECTOR;
7178 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7179 		return 0;
7180 	}
7181 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7182 	return 1;
7183 }
7184 
7185 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7186 {
7187 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7188 	int r;
7189 
7190 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7191 	if (unlikely(!r))
7192 		return 0;
7193 
7194 	/*
7195 	 * rflags is the old, "raw" value of the flags.  The new value has
7196 	 * not been saved yet.
7197 	 *
7198 	 * This is correct even for TF set by the guest, because "the
7199 	 * processor will not generate this exception after the instruction
7200 	 * that sets the TF flag".
7201 	 */
7202 	if (unlikely(rflags & X86_EFLAGS_TF))
7203 		r = kvm_vcpu_do_singlestep(vcpu);
7204 	return r;
7205 }
7206 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7207 
7208 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7209 {
7210 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7211 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7212 		struct kvm_run *kvm_run = vcpu->run;
7213 		unsigned long eip = kvm_get_linear_rip(vcpu);
7214 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7215 					   vcpu->arch.guest_debug_dr7,
7216 					   vcpu->arch.eff_db);
7217 
7218 		if (dr6 != 0) {
7219 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7220 			kvm_run->debug.arch.pc = eip;
7221 			kvm_run->debug.arch.exception = DB_VECTOR;
7222 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7223 			*r = 0;
7224 			return true;
7225 		}
7226 	}
7227 
7228 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7229 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7230 		unsigned long eip = kvm_get_linear_rip(vcpu);
7231 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7232 					   vcpu->arch.dr7,
7233 					   vcpu->arch.db);
7234 
7235 		if (dr6 != 0) {
7236 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7237 			*r = 1;
7238 			return true;
7239 		}
7240 	}
7241 
7242 	return false;
7243 }
7244 
7245 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7246 {
7247 	switch (ctxt->opcode_len) {
7248 	case 1:
7249 		switch (ctxt->b) {
7250 		case 0xe4:	/* IN */
7251 		case 0xe5:
7252 		case 0xec:
7253 		case 0xed:
7254 		case 0xe6:	/* OUT */
7255 		case 0xe7:
7256 		case 0xee:
7257 		case 0xef:
7258 		case 0x6c:	/* INS */
7259 		case 0x6d:
7260 		case 0x6e:	/* OUTS */
7261 		case 0x6f:
7262 			return true;
7263 		}
7264 		break;
7265 	case 2:
7266 		switch (ctxt->b) {
7267 		case 0x33:	/* RDPMC */
7268 			return true;
7269 		}
7270 		break;
7271 	}
7272 
7273 	return false;
7274 }
7275 
7276 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7277 			    int emulation_type, void *insn, int insn_len)
7278 {
7279 	int r;
7280 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7281 	bool writeback = true;
7282 	bool write_fault_to_spt;
7283 
7284 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7285 		return 1;
7286 
7287 	vcpu->arch.l1tf_flush_l1d = true;
7288 
7289 	/*
7290 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7291 	 * never reused.
7292 	 */
7293 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7294 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7295 	kvm_clear_exception_queue(vcpu);
7296 
7297 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7298 		init_emulate_ctxt(vcpu);
7299 
7300 		/*
7301 		 * We will reenter on the same instruction since
7302 		 * we do not set complete_userspace_io.  This does not
7303 		 * handle watchpoints yet, those would be handled in
7304 		 * the emulate_ops.
7305 		 */
7306 		if (!(emulation_type & EMULTYPE_SKIP) &&
7307 		    kvm_vcpu_check_breakpoint(vcpu, &r))
7308 			return r;
7309 
7310 		ctxt->interruptibility = 0;
7311 		ctxt->have_exception = false;
7312 		ctxt->exception.vector = -1;
7313 		ctxt->perm_ok = false;
7314 
7315 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7316 
7317 		r = x86_decode_insn(ctxt, insn, insn_len);
7318 
7319 		trace_kvm_emulate_insn_start(vcpu);
7320 		++vcpu->stat.insn_emulation;
7321 		if (r != EMULATION_OK)  {
7322 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7323 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7324 				kvm_queue_exception(vcpu, UD_VECTOR);
7325 				return 1;
7326 			}
7327 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7328 						  write_fault_to_spt,
7329 						  emulation_type))
7330 				return 1;
7331 			if (ctxt->have_exception) {
7332 				/*
7333 				 * #UD should result in just EMULATION_FAILED, and trap-like
7334 				 * exception should not be encountered during decode.
7335 				 */
7336 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7337 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7338 				inject_emulated_exception(vcpu);
7339 				return 1;
7340 			}
7341 			return handle_emulation_failure(vcpu, emulation_type);
7342 		}
7343 	}
7344 
7345 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7346 	    !is_vmware_backdoor_opcode(ctxt)) {
7347 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7348 		return 1;
7349 	}
7350 
7351 	/*
7352 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7353 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7354 	 * updating interruptibility state and injecting single-step #DBs.
7355 	 */
7356 	if (emulation_type & EMULTYPE_SKIP) {
7357 		kvm_rip_write(vcpu, ctxt->_eip);
7358 		if (ctxt->eflags & X86_EFLAGS_RF)
7359 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7360 		return 1;
7361 	}
7362 
7363 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7364 		return 1;
7365 
7366 	/* this is needed for vmware backdoor interface to work since it
7367 	   changes registers values  during IO operation */
7368 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7369 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7370 		emulator_invalidate_register_cache(ctxt);
7371 	}
7372 
7373 restart:
7374 	if (emulation_type & EMULTYPE_PF) {
7375 		/* Save the faulting GPA (cr2) in the address field */
7376 		ctxt->exception.address = cr2_or_gpa;
7377 
7378 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7379 		if (vcpu->arch.mmu->direct_map) {
7380 			ctxt->gpa_available = true;
7381 			ctxt->gpa_val = cr2_or_gpa;
7382 		}
7383 	} else {
7384 		/* Sanitize the address out of an abundance of paranoia. */
7385 		ctxt->exception.address = 0;
7386 	}
7387 
7388 	r = x86_emulate_insn(ctxt);
7389 
7390 	if (r == EMULATION_INTERCEPTED)
7391 		return 1;
7392 
7393 	if (r == EMULATION_FAILED) {
7394 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7395 					emulation_type))
7396 			return 1;
7397 
7398 		return handle_emulation_failure(vcpu, emulation_type);
7399 	}
7400 
7401 	if (ctxt->have_exception) {
7402 		r = 1;
7403 		if (inject_emulated_exception(vcpu))
7404 			return r;
7405 	} else if (vcpu->arch.pio.count) {
7406 		if (!vcpu->arch.pio.in) {
7407 			/* FIXME: return into emulator if single-stepping.  */
7408 			vcpu->arch.pio.count = 0;
7409 		} else {
7410 			writeback = false;
7411 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7412 		}
7413 		r = 0;
7414 	} else if (vcpu->mmio_needed) {
7415 		++vcpu->stat.mmio_exits;
7416 
7417 		if (!vcpu->mmio_is_write)
7418 			writeback = false;
7419 		r = 0;
7420 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7421 	} else if (r == EMULATION_RESTART)
7422 		goto restart;
7423 	else
7424 		r = 1;
7425 
7426 	if (writeback) {
7427 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7428 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7429 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7430 		if (!ctxt->have_exception ||
7431 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7432 			kvm_rip_write(vcpu, ctxt->eip);
7433 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7434 				r = kvm_vcpu_do_singlestep(vcpu);
7435 			if (kvm_x86_ops.update_emulated_instruction)
7436 				kvm_x86_ops.update_emulated_instruction(vcpu);
7437 			__kvm_set_rflags(vcpu, ctxt->eflags);
7438 		}
7439 
7440 		/*
7441 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7442 		 * do nothing, and it will be requested again as soon as
7443 		 * the shadow expires.  But we still need to check here,
7444 		 * because POPF has no interrupt shadow.
7445 		 */
7446 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7447 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7448 	} else
7449 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7450 
7451 	return r;
7452 }
7453 
7454 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7455 {
7456 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7457 }
7458 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7459 
7460 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7461 					void *insn, int insn_len)
7462 {
7463 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7464 }
7465 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7466 
7467 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7468 {
7469 	vcpu->arch.pio.count = 0;
7470 	return 1;
7471 }
7472 
7473 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7474 {
7475 	vcpu->arch.pio.count = 0;
7476 
7477 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7478 		return 1;
7479 
7480 	return kvm_skip_emulated_instruction(vcpu);
7481 }
7482 
7483 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7484 			    unsigned short port)
7485 {
7486 	unsigned long val = kvm_rax_read(vcpu);
7487 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7488 
7489 	if (ret)
7490 		return ret;
7491 
7492 	/*
7493 	 * Workaround userspace that relies on old KVM behavior of %rip being
7494 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7495 	 */
7496 	if (port == 0x7e &&
7497 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7498 		vcpu->arch.complete_userspace_io =
7499 			complete_fast_pio_out_port_0x7e;
7500 		kvm_skip_emulated_instruction(vcpu);
7501 	} else {
7502 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7503 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7504 	}
7505 	return 0;
7506 }
7507 
7508 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7509 {
7510 	unsigned long val;
7511 
7512 	/* We should only ever be called with arch.pio.count equal to 1 */
7513 	BUG_ON(vcpu->arch.pio.count != 1);
7514 
7515 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7516 		vcpu->arch.pio.count = 0;
7517 		return 1;
7518 	}
7519 
7520 	/* For size less than 4 we merge, else we zero extend */
7521 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7522 
7523 	/*
7524 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7525 	 * the copy and tracing
7526 	 */
7527 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7528 	kvm_rax_write(vcpu, val);
7529 
7530 	return kvm_skip_emulated_instruction(vcpu);
7531 }
7532 
7533 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7534 			   unsigned short port)
7535 {
7536 	unsigned long val;
7537 	int ret;
7538 
7539 	/* For size less than 4 we merge, else we zero extend */
7540 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7541 
7542 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7543 	if (ret) {
7544 		kvm_rax_write(vcpu, val);
7545 		return ret;
7546 	}
7547 
7548 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7549 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7550 
7551 	return 0;
7552 }
7553 
7554 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7555 {
7556 	int ret;
7557 
7558 	if (in)
7559 		ret = kvm_fast_pio_in(vcpu, size, port);
7560 	else
7561 		ret = kvm_fast_pio_out(vcpu, size, port);
7562 	return ret && kvm_skip_emulated_instruction(vcpu);
7563 }
7564 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7565 
7566 static int kvmclock_cpu_down_prep(unsigned int cpu)
7567 {
7568 	__this_cpu_write(cpu_tsc_khz, 0);
7569 	return 0;
7570 }
7571 
7572 static void tsc_khz_changed(void *data)
7573 {
7574 	struct cpufreq_freqs *freq = data;
7575 	unsigned long khz = 0;
7576 
7577 	if (data)
7578 		khz = freq->new;
7579 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7580 		khz = cpufreq_quick_get(raw_smp_processor_id());
7581 	if (!khz)
7582 		khz = tsc_khz;
7583 	__this_cpu_write(cpu_tsc_khz, khz);
7584 }
7585 
7586 #ifdef CONFIG_X86_64
7587 static void kvm_hyperv_tsc_notifier(void)
7588 {
7589 	struct kvm *kvm;
7590 	struct kvm_vcpu *vcpu;
7591 	int cpu;
7592 
7593 	mutex_lock(&kvm_lock);
7594 	list_for_each_entry(kvm, &vm_list, vm_list)
7595 		kvm_make_mclock_inprogress_request(kvm);
7596 
7597 	hyperv_stop_tsc_emulation();
7598 
7599 	/* TSC frequency always matches when on Hyper-V */
7600 	for_each_present_cpu(cpu)
7601 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7602 	kvm_max_guest_tsc_khz = tsc_khz;
7603 
7604 	list_for_each_entry(kvm, &vm_list, vm_list) {
7605 		struct kvm_arch *ka = &kvm->arch;
7606 
7607 		spin_lock(&ka->pvclock_gtod_sync_lock);
7608 
7609 		pvclock_update_vm_gtod_copy(kvm);
7610 
7611 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7612 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7613 
7614 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7615 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7616 
7617 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7618 	}
7619 	mutex_unlock(&kvm_lock);
7620 }
7621 #endif
7622 
7623 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7624 {
7625 	struct kvm *kvm;
7626 	struct kvm_vcpu *vcpu;
7627 	int i, send_ipi = 0;
7628 
7629 	/*
7630 	 * We allow guests to temporarily run on slowing clocks,
7631 	 * provided we notify them after, or to run on accelerating
7632 	 * clocks, provided we notify them before.  Thus time never
7633 	 * goes backwards.
7634 	 *
7635 	 * However, we have a problem.  We can't atomically update
7636 	 * the frequency of a given CPU from this function; it is
7637 	 * merely a notifier, which can be called from any CPU.
7638 	 * Changing the TSC frequency at arbitrary points in time
7639 	 * requires a recomputation of local variables related to
7640 	 * the TSC for each VCPU.  We must flag these local variables
7641 	 * to be updated and be sure the update takes place with the
7642 	 * new frequency before any guests proceed.
7643 	 *
7644 	 * Unfortunately, the combination of hotplug CPU and frequency
7645 	 * change creates an intractable locking scenario; the order
7646 	 * of when these callouts happen is undefined with respect to
7647 	 * CPU hotplug, and they can race with each other.  As such,
7648 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7649 	 * undefined; you can actually have a CPU frequency change take
7650 	 * place in between the computation of X and the setting of the
7651 	 * variable.  To protect against this problem, all updates of
7652 	 * the per_cpu tsc_khz variable are done in an interrupt
7653 	 * protected IPI, and all callers wishing to update the value
7654 	 * must wait for a synchronous IPI to complete (which is trivial
7655 	 * if the caller is on the CPU already).  This establishes the
7656 	 * necessary total order on variable updates.
7657 	 *
7658 	 * Note that because a guest time update may take place
7659 	 * anytime after the setting of the VCPU's request bit, the
7660 	 * correct TSC value must be set before the request.  However,
7661 	 * to ensure the update actually makes it to any guest which
7662 	 * starts running in hardware virtualization between the set
7663 	 * and the acquisition of the spinlock, we must also ping the
7664 	 * CPU after setting the request bit.
7665 	 *
7666 	 */
7667 
7668 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7669 
7670 	mutex_lock(&kvm_lock);
7671 	list_for_each_entry(kvm, &vm_list, vm_list) {
7672 		kvm_for_each_vcpu(i, vcpu, kvm) {
7673 			if (vcpu->cpu != cpu)
7674 				continue;
7675 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7676 			if (vcpu->cpu != raw_smp_processor_id())
7677 				send_ipi = 1;
7678 		}
7679 	}
7680 	mutex_unlock(&kvm_lock);
7681 
7682 	if (freq->old < freq->new && send_ipi) {
7683 		/*
7684 		 * We upscale the frequency.  Must make the guest
7685 		 * doesn't see old kvmclock values while running with
7686 		 * the new frequency, otherwise we risk the guest sees
7687 		 * time go backwards.
7688 		 *
7689 		 * In case we update the frequency for another cpu
7690 		 * (which might be in guest context) send an interrupt
7691 		 * to kick the cpu out of guest context.  Next time
7692 		 * guest context is entered kvmclock will be updated,
7693 		 * so the guest will not see stale values.
7694 		 */
7695 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7696 	}
7697 }
7698 
7699 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7700 				     void *data)
7701 {
7702 	struct cpufreq_freqs *freq = data;
7703 	int cpu;
7704 
7705 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7706 		return 0;
7707 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7708 		return 0;
7709 
7710 	for_each_cpu(cpu, freq->policy->cpus)
7711 		__kvmclock_cpufreq_notifier(freq, cpu);
7712 
7713 	return 0;
7714 }
7715 
7716 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7717 	.notifier_call  = kvmclock_cpufreq_notifier
7718 };
7719 
7720 static int kvmclock_cpu_online(unsigned int cpu)
7721 {
7722 	tsc_khz_changed(NULL);
7723 	return 0;
7724 }
7725 
7726 static void kvm_timer_init(void)
7727 {
7728 	max_tsc_khz = tsc_khz;
7729 
7730 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7731 #ifdef CONFIG_CPU_FREQ
7732 		struct cpufreq_policy *policy;
7733 		int cpu;
7734 
7735 		cpu = get_cpu();
7736 		policy = cpufreq_cpu_get(cpu);
7737 		if (policy) {
7738 			if (policy->cpuinfo.max_freq)
7739 				max_tsc_khz = policy->cpuinfo.max_freq;
7740 			cpufreq_cpu_put(policy);
7741 		}
7742 		put_cpu();
7743 #endif
7744 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7745 					  CPUFREQ_TRANSITION_NOTIFIER);
7746 	}
7747 
7748 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7749 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7750 }
7751 
7752 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7753 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7754 
7755 int kvm_is_in_guest(void)
7756 {
7757 	return __this_cpu_read(current_vcpu) != NULL;
7758 }
7759 
7760 static int kvm_is_user_mode(void)
7761 {
7762 	int user_mode = 3;
7763 
7764 	if (__this_cpu_read(current_vcpu))
7765 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7766 
7767 	return user_mode != 0;
7768 }
7769 
7770 static unsigned long kvm_get_guest_ip(void)
7771 {
7772 	unsigned long ip = 0;
7773 
7774 	if (__this_cpu_read(current_vcpu))
7775 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7776 
7777 	return ip;
7778 }
7779 
7780 static void kvm_handle_intel_pt_intr(void)
7781 {
7782 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7783 
7784 	kvm_make_request(KVM_REQ_PMI, vcpu);
7785 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7786 			(unsigned long *)&vcpu->arch.pmu.global_status);
7787 }
7788 
7789 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7790 	.is_in_guest		= kvm_is_in_guest,
7791 	.is_user_mode		= kvm_is_user_mode,
7792 	.get_guest_ip		= kvm_get_guest_ip,
7793 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7794 };
7795 
7796 #ifdef CONFIG_X86_64
7797 static void pvclock_gtod_update_fn(struct work_struct *work)
7798 {
7799 	struct kvm *kvm;
7800 
7801 	struct kvm_vcpu *vcpu;
7802 	int i;
7803 
7804 	mutex_lock(&kvm_lock);
7805 	list_for_each_entry(kvm, &vm_list, vm_list)
7806 		kvm_for_each_vcpu(i, vcpu, kvm)
7807 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7808 	atomic_set(&kvm_guest_has_master_clock, 0);
7809 	mutex_unlock(&kvm_lock);
7810 }
7811 
7812 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7813 
7814 /*
7815  * Notification about pvclock gtod data update.
7816  */
7817 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7818 			       void *priv)
7819 {
7820 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7821 	struct timekeeper *tk = priv;
7822 
7823 	update_pvclock_gtod(tk);
7824 
7825 	/* disable master clock if host does not trust, or does not
7826 	 * use, TSC based clocksource.
7827 	 */
7828 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7829 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7830 		queue_work(system_long_wq, &pvclock_gtod_work);
7831 
7832 	return 0;
7833 }
7834 
7835 static struct notifier_block pvclock_gtod_notifier = {
7836 	.notifier_call = pvclock_gtod_notify,
7837 };
7838 #endif
7839 
7840 int kvm_arch_init(void *opaque)
7841 {
7842 	struct kvm_x86_init_ops *ops = opaque;
7843 	int r;
7844 
7845 	if (kvm_x86_ops.hardware_enable) {
7846 		printk(KERN_ERR "kvm: already loaded the other module\n");
7847 		r = -EEXIST;
7848 		goto out;
7849 	}
7850 
7851 	if (!ops->cpu_has_kvm_support()) {
7852 		pr_err_ratelimited("kvm: no hardware support\n");
7853 		r = -EOPNOTSUPP;
7854 		goto out;
7855 	}
7856 	if (ops->disabled_by_bios()) {
7857 		pr_err_ratelimited("kvm: disabled by bios\n");
7858 		r = -EOPNOTSUPP;
7859 		goto out;
7860 	}
7861 
7862 	/*
7863 	 * KVM explicitly assumes that the guest has an FPU and
7864 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7865 	 * vCPU's FPU state as a fxregs_state struct.
7866 	 */
7867 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7868 		printk(KERN_ERR "kvm: inadequate fpu\n");
7869 		r = -EOPNOTSUPP;
7870 		goto out;
7871 	}
7872 
7873 	r = -ENOMEM;
7874 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7875 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7876 					  NULL);
7877 	if (!x86_fpu_cache) {
7878 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7879 		goto out;
7880 	}
7881 
7882 	x86_emulator_cache = kvm_alloc_emulator_cache();
7883 	if (!x86_emulator_cache) {
7884 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7885 		goto out_free_x86_fpu_cache;
7886 	}
7887 
7888 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7889 	if (!user_return_msrs) {
7890 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7891 		goto out_free_x86_emulator_cache;
7892 	}
7893 
7894 	r = kvm_mmu_module_init();
7895 	if (r)
7896 		goto out_free_percpu;
7897 
7898 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7899 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7900 			PT_PRESENT_MASK, 0, sme_me_mask);
7901 	kvm_timer_init();
7902 
7903 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7904 
7905 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7906 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7907 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7908 	}
7909 
7910 	kvm_lapic_init();
7911 	if (pi_inject_timer == -1)
7912 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7913 #ifdef CONFIG_X86_64
7914 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7915 
7916 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7917 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7918 #endif
7919 
7920 	return 0;
7921 
7922 out_free_percpu:
7923 	free_percpu(user_return_msrs);
7924 out_free_x86_emulator_cache:
7925 	kmem_cache_destroy(x86_emulator_cache);
7926 out_free_x86_fpu_cache:
7927 	kmem_cache_destroy(x86_fpu_cache);
7928 out:
7929 	return r;
7930 }
7931 
7932 void kvm_arch_exit(void)
7933 {
7934 #ifdef CONFIG_X86_64
7935 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7936 		clear_hv_tscchange_cb();
7937 #endif
7938 	kvm_lapic_exit();
7939 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7940 
7941 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7942 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7943 					    CPUFREQ_TRANSITION_NOTIFIER);
7944 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7945 #ifdef CONFIG_X86_64
7946 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7947 #endif
7948 	kvm_x86_ops.hardware_enable = NULL;
7949 	kvm_mmu_module_exit();
7950 	free_percpu(user_return_msrs);
7951 	kmem_cache_destroy(x86_fpu_cache);
7952 }
7953 
7954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7955 {
7956 	++vcpu->stat.halt_exits;
7957 	if (lapic_in_kernel(vcpu)) {
7958 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7959 		return 1;
7960 	} else {
7961 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7962 		return 0;
7963 	}
7964 }
7965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7966 
7967 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7968 {
7969 	int ret = kvm_skip_emulated_instruction(vcpu);
7970 	/*
7971 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7972 	 * KVM_EXIT_DEBUG here.
7973 	 */
7974 	return kvm_vcpu_halt(vcpu) && ret;
7975 }
7976 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7977 
7978 #ifdef CONFIG_X86_64
7979 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7980 			        unsigned long clock_type)
7981 {
7982 	struct kvm_clock_pairing clock_pairing;
7983 	struct timespec64 ts;
7984 	u64 cycle;
7985 	int ret;
7986 
7987 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7988 		return -KVM_EOPNOTSUPP;
7989 
7990 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7991 		return -KVM_EOPNOTSUPP;
7992 
7993 	clock_pairing.sec = ts.tv_sec;
7994 	clock_pairing.nsec = ts.tv_nsec;
7995 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7996 	clock_pairing.flags = 0;
7997 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7998 
7999 	ret = 0;
8000 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8001 			    sizeof(struct kvm_clock_pairing)))
8002 		ret = -KVM_EFAULT;
8003 
8004 	return ret;
8005 }
8006 #endif
8007 
8008 /*
8009  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8010  *
8011  * @apicid - apicid of vcpu to be kicked.
8012  */
8013 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8014 {
8015 	struct kvm_lapic_irq lapic_irq;
8016 
8017 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8018 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8019 	lapic_irq.level = 0;
8020 	lapic_irq.dest_id = apicid;
8021 	lapic_irq.msi_redir_hint = false;
8022 
8023 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8024 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8025 }
8026 
8027 bool kvm_apicv_activated(struct kvm *kvm)
8028 {
8029 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8030 }
8031 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8032 
8033 void kvm_apicv_init(struct kvm *kvm, bool enable)
8034 {
8035 	if (enable)
8036 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8037 			  &kvm->arch.apicv_inhibit_reasons);
8038 	else
8039 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8040 			&kvm->arch.apicv_inhibit_reasons);
8041 }
8042 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8043 
8044 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8045 {
8046 	struct kvm_vcpu *target = NULL;
8047 	struct kvm_apic_map *map;
8048 
8049 	rcu_read_lock();
8050 	map = rcu_dereference(kvm->arch.apic_map);
8051 
8052 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8053 		target = map->phys_map[dest_id]->vcpu;
8054 
8055 	rcu_read_unlock();
8056 
8057 	if (target && READ_ONCE(target->ready))
8058 		kvm_vcpu_yield_to(target);
8059 }
8060 
8061 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8062 {
8063 	unsigned long nr, a0, a1, a2, a3, ret;
8064 	int op_64_bit;
8065 
8066 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8067 		return kvm_hv_hypercall(vcpu);
8068 
8069 	nr = kvm_rax_read(vcpu);
8070 	a0 = kvm_rbx_read(vcpu);
8071 	a1 = kvm_rcx_read(vcpu);
8072 	a2 = kvm_rdx_read(vcpu);
8073 	a3 = kvm_rsi_read(vcpu);
8074 
8075 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8076 
8077 	op_64_bit = is_64_bit_mode(vcpu);
8078 	if (!op_64_bit) {
8079 		nr &= 0xFFFFFFFF;
8080 		a0 &= 0xFFFFFFFF;
8081 		a1 &= 0xFFFFFFFF;
8082 		a2 &= 0xFFFFFFFF;
8083 		a3 &= 0xFFFFFFFF;
8084 	}
8085 
8086 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8087 		ret = -KVM_EPERM;
8088 		goto out;
8089 	}
8090 
8091 	ret = -KVM_ENOSYS;
8092 
8093 	switch (nr) {
8094 	case KVM_HC_VAPIC_POLL_IRQ:
8095 		ret = 0;
8096 		break;
8097 	case KVM_HC_KICK_CPU:
8098 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8099 			break;
8100 
8101 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8102 		kvm_sched_yield(vcpu->kvm, a1);
8103 		ret = 0;
8104 		break;
8105 #ifdef CONFIG_X86_64
8106 	case KVM_HC_CLOCK_PAIRING:
8107 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8108 		break;
8109 #endif
8110 	case KVM_HC_SEND_IPI:
8111 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8112 			break;
8113 
8114 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8115 		break;
8116 	case KVM_HC_SCHED_YIELD:
8117 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8118 			break;
8119 
8120 		kvm_sched_yield(vcpu->kvm, a0);
8121 		ret = 0;
8122 		break;
8123 	default:
8124 		ret = -KVM_ENOSYS;
8125 		break;
8126 	}
8127 out:
8128 	if (!op_64_bit)
8129 		ret = (u32)ret;
8130 	kvm_rax_write(vcpu, ret);
8131 
8132 	++vcpu->stat.hypercalls;
8133 	return kvm_skip_emulated_instruction(vcpu);
8134 }
8135 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8136 
8137 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8138 {
8139 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8140 	char instruction[3];
8141 	unsigned long rip = kvm_rip_read(vcpu);
8142 
8143 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8144 
8145 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8146 		&ctxt->exception);
8147 }
8148 
8149 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8150 {
8151 	return vcpu->run->request_interrupt_window &&
8152 		likely(!pic_in_kernel(vcpu->kvm));
8153 }
8154 
8155 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8156 {
8157 	struct kvm_run *kvm_run = vcpu->run;
8158 
8159 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8160 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8161 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8162 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8163 	kvm_run->ready_for_interrupt_injection =
8164 		pic_in_kernel(vcpu->kvm) ||
8165 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8166 }
8167 
8168 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8169 {
8170 	int max_irr, tpr;
8171 
8172 	if (!kvm_x86_ops.update_cr8_intercept)
8173 		return;
8174 
8175 	if (!lapic_in_kernel(vcpu))
8176 		return;
8177 
8178 	if (vcpu->arch.apicv_active)
8179 		return;
8180 
8181 	if (!vcpu->arch.apic->vapic_addr)
8182 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8183 	else
8184 		max_irr = -1;
8185 
8186 	if (max_irr != -1)
8187 		max_irr >>= 4;
8188 
8189 	tpr = kvm_lapic_get_cr8(vcpu);
8190 
8191 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8192 }
8193 
8194 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8195 {
8196 	int r;
8197 	bool can_inject = true;
8198 
8199 	/* try to reinject previous events if any */
8200 
8201 	if (vcpu->arch.exception.injected) {
8202 		kvm_x86_ops.queue_exception(vcpu);
8203 		can_inject = false;
8204 	}
8205 	/*
8206 	 * Do not inject an NMI or interrupt if there is a pending
8207 	 * exception.  Exceptions and interrupts are recognized at
8208 	 * instruction boundaries, i.e. the start of an instruction.
8209 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8210 	 * NMIs and interrupts, i.e. traps are recognized before an
8211 	 * NMI/interrupt that's pending on the same instruction.
8212 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8213 	 * priority, but are only generated (pended) during instruction
8214 	 * execution, i.e. a pending fault-like exception means the
8215 	 * fault occurred on the *previous* instruction and must be
8216 	 * serviced prior to recognizing any new events in order to
8217 	 * fully complete the previous instruction.
8218 	 */
8219 	else if (!vcpu->arch.exception.pending) {
8220 		if (vcpu->arch.nmi_injected) {
8221 			kvm_x86_ops.set_nmi(vcpu);
8222 			can_inject = false;
8223 		} else if (vcpu->arch.interrupt.injected) {
8224 			kvm_x86_ops.set_irq(vcpu);
8225 			can_inject = false;
8226 		}
8227 	}
8228 
8229 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8230 		     vcpu->arch.exception.pending);
8231 
8232 	/*
8233 	 * Call check_nested_events() even if we reinjected a previous event
8234 	 * in order for caller to determine if it should require immediate-exit
8235 	 * from L2 to L1 due to pending L1 events which require exit
8236 	 * from L2 to L1.
8237 	 */
8238 	if (is_guest_mode(vcpu)) {
8239 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8240 		if (r < 0)
8241 			goto busy;
8242 	}
8243 
8244 	/* try to inject new event if pending */
8245 	if (vcpu->arch.exception.pending) {
8246 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8247 					vcpu->arch.exception.has_error_code,
8248 					vcpu->arch.exception.error_code);
8249 
8250 		vcpu->arch.exception.pending = false;
8251 		vcpu->arch.exception.injected = true;
8252 
8253 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8254 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8255 					     X86_EFLAGS_RF);
8256 
8257 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8258 			kvm_deliver_exception_payload(vcpu);
8259 			if (vcpu->arch.dr7 & DR7_GD) {
8260 				vcpu->arch.dr7 &= ~DR7_GD;
8261 				kvm_update_dr7(vcpu);
8262 			}
8263 		}
8264 
8265 		kvm_x86_ops.queue_exception(vcpu);
8266 		can_inject = false;
8267 	}
8268 
8269 	/*
8270 	 * Finally, inject interrupt events.  If an event cannot be injected
8271 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8272 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8273 	 * and can architecturally be injected, but we cannot do it right now:
8274 	 * an interrupt could have arrived just now and we have to inject it
8275 	 * as a vmexit, or there could already an event in the queue, which is
8276 	 * indicated by can_inject.  In that case we request an immediate exit
8277 	 * in order to make progress and get back here for another iteration.
8278 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8279 	 */
8280 	if (vcpu->arch.smi_pending) {
8281 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8282 		if (r < 0)
8283 			goto busy;
8284 		if (r) {
8285 			vcpu->arch.smi_pending = false;
8286 			++vcpu->arch.smi_count;
8287 			enter_smm(vcpu);
8288 			can_inject = false;
8289 		} else
8290 			kvm_x86_ops.enable_smi_window(vcpu);
8291 	}
8292 
8293 	if (vcpu->arch.nmi_pending) {
8294 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8295 		if (r < 0)
8296 			goto busy;
8297 		if (r) {
8298 			--vcpu->arch.nmi_pending;
8299 			vcpu->arch.nmi_injected = true;
8300 			kvm_x86_ops.set_nmi(vcpu);
8301 			can_inject = false;
8302 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8303 		}
8304 		if (vcpu->arch.nmi_pending)
8305 			kvm_x86_ops.enable_nmi_window(vcpu);
8306 	}
8307 
8308 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8309 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8310 		if (r < 0)
8311 			goto busy;
8312 		if (r) {
8313 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8314 			kvm_x86_ops.set_irq(vcpu);
8315 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8316 		}
8317 		if (kvm_cpu_has_injectable_intr(vcpu))
8318 			kvm_x86_ops.enable_irq_window(vcpu);
8319 	}
8320 
8321 	if (is_guest_mode(vcpu) &&
8322 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8323 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8324 		*req_immediate_exit = true;
8325 
8326 	WARN_ON(vcpu->arch.exception.pending);
8327 	return;
8328 
8329 busy:
8330 	*req_immediate_exit = true;
8331 	return;
8332 }
8333 
8334 static void process_nmi(struct kvm_vcpu *vcpu)
8335 {
8336 	unsigned limit = 2;
8337 
8338 	/*
8339 	 * x86 is limited to one NMI running, and one NMI pending after it.
8340 	 * If an NMI is already in progress, limit further NMIs to just one.
8341 	 * Otherwise, allow two (and we'll inject the first one immediately).
8342 	 */
8343 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8344 		limit = 1;
8345 
8346 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8347 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8348 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8349 }
8350 
8351 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8352 {
8353 	u32 flags = 0;
8354 	flags |= seg->g       << 23;
8355 	flags |= seg->db      << 22;
8356 	flags |= seg->l       << 21;
8357 	flags |= seg->avl     << 20;
8358 	flags |= seg->present << 15;
8359 	flags |= seg->dpl     << 13;
8360 	flags |= seg->s       << 12;
8361 	flags |= seg->type    << 8;
8362 	return flags;
8363 }
8364 
8365 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8366 {
8367 	struct kvm_segment seg;
8368 	int offset;
8369 
8370 	kvm_get_segment(vcpu, &seg, n);
8371 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8372 
8373 	if (n < 3)
8374 		offset = 0x7f84 + n * 12;
8375 	else
8376 		offset = 0x7f2c + (n - 3) * 12;
8377 
8378 	put_smstate(u32, buf, offset + 8, seg.base);
8379 	put_smstate(u32, buf, offset + 4, seg.limit);
8380 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8381 }
8382 
8383 #ifdef CONFIG_X86_64
8384 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8385 {
8386 	struct kvm_segment seg;
8387 	int offset;
8388 	u16 flags;
8389 
8390 	kvm_get_segment(vcpu, &seg, n);
8391 	offset = 0x7e00 + n * 16;
8392 
8393 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8394 	put_smstate(u16, buf, offset, seg.selector);
8395 	put_smstate(u16, buf, offset + 2, flags);
8396 	put_smstate(u32, buf, offset + 4, seg.limit);
8397 	put_smstate(u64, buf, offset + 8, seg.base);
8398 }
8399 #endif
8400 
8401 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8402 {
8403 	struct desc_ptr dt;
8404 	struct kvm_segment seg;
8405 	unsigned long val;
8406 	int i;
8407 
8408 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8409 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8410 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8411 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8412 
8413 	for (i = 0; i < 8; i++)
8414 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8415 
8416 	kvm_get_dr(vcpu, 6, &val);
8417 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8418 	kvm_get_dr(vcpu, 7, &val);
8419 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8420 
8421 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8422 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8423 	put_smstate(u32, buf, 0x7f64, seg.base);
8424 	put_smstate(u32, buf, 0x7f60, seg.limit);
8425 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8426 
8427 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8428 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8429 	put_smstate(u32, buf, 0x7f80, seg.base);
8430 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8431 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8432 
8433 	kvm_x86_ops.get_gdt(vcpu, &dt);
8434 	put_smstate(u32, buf, 0x7f74, dt.address);
8435 	put_smstate(u32, buf, 0x7f70, dt.size);
8436 
8437 	kvm_x86_ops.get_idt(vcpu, &dt);
8438 	put_smstate(u32, buf, 0x7f58, dt.address);
8439 	put_smstate(u32, buf, 0x7f54, dt.size);
8440 
8441 	for (i = 0; i < 6; i++)
8442 		enter_smm_save_seg_32(vcpu, buf, i);
8443 
8444 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8445 
8446 	/* revision id */
8447 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8448 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8449 }
8450 
8451 #ifdef CONFIG_X86_64
8452 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8453 {
8454 	struct desc_ptr dt;
8455 	struct kvm_segment seg;
8456 	unsigned long val;
8457 	int i;
8458 
8459 	for (i = 0; i < 16; i++)
8460 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8461 
8462 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8463 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8464 
8465 	kvm_get_dr(vcpu, 6, &val);
8466 	put_smstate(u64, buf, 0x7f68, val);
8467 	kvm_get_dr(vcpu, 7, &val);
8468 	put_smstate(u64, buf, 0x7f60, val);
8469 
8470 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8471 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8472 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8473 
8474 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8475 
8476 	/* revision id */
8477 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8478 
8479 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8480 
8481 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8482 	put_smstate(u16, buf, 0x7e90, seg.selector);
8483 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8484 	put_smstate(u32, buf, 0x7e94, seg.limit);
8485 	put_smstate(u64, buf, 0x7e98, seg.base);
8486 
8487 	kvm_x86_ops.get_idt(vcpu, &dt);
8488 	put_smstate(u32, buf, 0x7e84, dt.size);
8489 	put_smstate(u64, buf, 0x7e88, dt.address);
8490 
8491 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8492 	put_smstate(u16, buf, 0x7e70, seg.selector);
8493 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8494 	put_smstate(u32, buf, 0x7e74, seg.limit);
8495 	put_smstate(u64, buf, 0x7e78, seg.base);
8496 
8497 	kvm_x86_ops.get_gdt(vcpu, &dt);
8498 	put_smstate(u32, buf, 0x7e64, dt.size);
8499 	put_smstate(u64, buf, 0x7e68, dt.address);
8500 
8501 	for (i = 0; i < 6; i++)
8502 		enter_smm_save_seg_64(vcpu, buf, i);
8503 }
8504 #endif
8505 
8506 static void enter_smm(struct kvm_vcpu *vcpu)
8507 {
8508 	struct kvm_segment cs, ds;
8509 	struct desc_ptr dt;
8510 	char buf[512];
8511 	u32 cr0;
8512 
8513 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8514 	memset(buf, 0, 512);
8515 #ifdef CONFIG_X86_64
8516 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8517 		enter_smm_save_state_64(vcpu, buf);
8518 	else
8519 #endif
8520 		enter_smm_save_state_32(vcpu, buf);
8521 
8522 	/*
8523 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8524 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8525 	 * the SMM state-save area.
8526 	 */
8527 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8528 
8529 	vcpu->arch.hflags |= HF_SMM_MASK;
8530 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8531 
8532 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8533 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8534 	else
8535 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8536 
8537 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8538 	kvm_rip_write(vcpu, 0x8000);
8539 
8540 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8541 	kvm_x86_ops.set_cr0(vcpu, cr0);
8542 	vcpu->arch.cr0 = cr0;
8543 
8544 	kvm_x86_ops.set_cr4(vcpu, 0);
8545 
8546 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8547 	dt.address = dt.size = 0;
8548 	kvm_x86_ops.set_idt(vcpu, &dt);
8549 
8550 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8551 
8552 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8553 	cs.base = vcpu->arch.smbase;
8554 
8555 	ds.selector = 0;
8556 	ds.base = 0;
8557 
8558 	cs.limit    = ds.limit = 0xffffffff;
8559 	cs.type     = ds.type = 0x3;
8560 	cs.dpl      = ds.dpl = 0;
8561 	cs.db       = ds.db = 0;
8562 	cs.s        = ds.s = 1;
8563 	cs.l        = ds.l = 0;
8564 	cs.g        = ds.g = 1;
8565 	cs.avl      = ds.avl = 0;
8566 	cs.present  = ds.present = 1;
8567 	cs.unusable = ds.unusable = 0;
8568 	cs.padding  = ds.padding = 0;
8569 
8570 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8571 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8572 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8573 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8574 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8575 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8576 
8577 #ifdef CONFIG_X86_64
8578 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8579 		kvm_x86_ops.set_efer(vcpu, 0);
8580 #endif
8581 
8582 	kvm_update_cpuid_runtime(vcpu);
8583 	kvm_mmu_reset_context(vcpu);
8584 }
8585 
8586 static void process_smi(struct kvm_vcpu *vcpu)
8587 {
8588 	vcpu->arch.smi_pending = true;
8589 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8590 }
8591 
8592 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8593 				       unsigned long *vcpu_bitmap)
8594 {
8595 	cpumask_var_t cpus;
8596 
8597 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8598 
8599 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8600 				    NULL, vcpu_bitmap, cpus);
8601 
8602 	free_cpumask_var(cpus);
8603 }
8604 
8605 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8606 {
8607 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8608 }
8609 
8610 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8611 {
8612 	if (!lapic_in_kernel(vcpu))
8613 		return;
8614 
8615 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8616 	kvm_apic_update_apicv(vcpu);
8617 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8618 }
8619 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8620 
8621 /*
8622  * NOTE: Do not hold any lock prior to calling this.
8623  *
8624  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8625  * locked, because it calls __x86_set_memory_region() which does
8626  * synchronize_srcu(&kvm->srcu).
8627  */
8628 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8629 {
8630 	struct kvm_vcpu *except;
8631 	unsigned long old, new, expected;
8632 
8633 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8634 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8635 		return;
8636 
8637 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8638 	do {
8639 		expected = new = old;
8640 		if (activate)
8641 			__clear_bit(bit, &new);
8642 		else
8643 			__set_bit(bit, &new);
8644 		if (new == old)
8645 			break;
8646 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8647 	} while (old != expected);
8648 
8649 	if (!!old == !!new)
8650 		return;
8651 
8652 	trace_kvm_apicv_update_request(activate, bit);
8653 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8654 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8655 
8656 	/*
8657 	 * Sending request to update APICV for all other vcpus,
8658 	 * while update the calling vcpu immediately instead of
8659 	 * waiting for another #VMEXIT to handle the request.
8660 	 */
8661 	except = kvm_get_running_vcpu();
8662 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8663 					 except);
8664 	if (except)
8665 		kvm_vcpu_update_apicv(except);
8666 }
8667 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8668 
8669 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8670 {
8671 	if (!kvm_apic_present(vcpu))
8672 		return;
8673 
8674 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8675 
8676 	if (irqchip_split(vcpu->kvm))
8677 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8678 	else {
8679 		if (vcpu->arch.apicv_active)
8680 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8681 		if (ioapic_in_kernel(vcpu->kvm))
8682 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8683 	}
8684 
8685 	if (is_guest_mode(vcpu))
8686 		vcpu->arch.load_eoi_exitmap_pending = true;
8687 	else
8688 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8689 }
8690 
8691 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8692 {
8693 	u64 eoi_exit_bitmap[4];
8694 
8695 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8696 		return;
8697 
8698 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8699 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8700 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8701 }
8702 
8703 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8704 					    unsigned long start, unsigned long end)
8705 {
8706 	unsigned long apic_address;
8707 
8708 	/*
8709 	 * The physical address of apic access page is stored in the VMCS.
8710 	 * Update it when it becomes invalid.
8711 	 */
8712 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8713 	if (start <= apic_address && apic_address < end)
8714 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8715 }
8716 
8717 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8718 {
8719 	if (!lapic_in_kernel(vcpu))
8720 		return;
8721 
8722 	if (!kvm_x86_ops.set_apic_access_page_addr)
8723 		return;
8724 
8725 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8726 }
8727 
8728 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8729 {
8730 	smp_send_reschedule(vcpu->cpu);
8731 }
8732 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8733 
8734 /*
8735  * Returns 1 to let vcpu_run() continue the guest execution loop without
8736  * exiting to the userspace.  Otherwise, the value will be returned to the
8737  * userspace.
8738  */
8739 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8740 {
8741 	int r;
8742 	bool req_int_win =
8743 		dm_request_for_irq_injection(vcpu) &&
8744 		kvm_cpu_accept_dm_intr(vcpu);
8745 	fastpath_t exit_fastpath;
8746 
8747 	bool req_immediate_exit = false;
8748 
8749 	if (kvm_request_pending(vcpu)) {
8750 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8751 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8752 				r = 0;
8753 				goto out;
8754 			}
8755 		}
8756 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8757 			kvm_mmu_unload(vcpu);
8758 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8759 			__kvm_migrate_timers(vcpu);
8760 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8761 			kvm_gen_update_masterclock(vcpu->kvm);
8762 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8763 			kvm_gen_kvmclock_update(vcpu);
8764 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8765 			r = kvm_guest_time_update(vcpu);
8766 			if (unlikely(r))
8767 				goto out;
8768 		}
8769 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8770 			kvm_mmu_sync_roots(vcpu);
8771 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8772 			kvm_mmu_load_pgd(vcpu);
8773 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8774 			kvm_vcpu_flush_tlb_all(vcpu);
8775 
8776 			/* Flushing all ASIDs flushes the current ASID... */
8777 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8778 		}
8779 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8780 			kvm_vcpu_flush_tlb_current(vcpu);
8781 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8782 			kvm_vcpu_flush_tlb_guest(vcpu);
8783 
8784 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8785 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8786 			r = 0;
8787 			goto out;
8788 		}
8789 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8790 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8791 			vcpu->mmio_needed = 0;
8792 			r = 0;
8793 			goto out;
8794 		}
8795 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8796 			/* Page is swapped out. Do synthetic halt */
8797 			vcpu->arch.apf.halted = true;
8798 			r = 1;
8799 			goto out;
8800 		}
8801 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8802 			record_steal_time(vcpu);
8803 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8804 			process_smi(vcpu);
8805 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8806 			process_nmi(vcpu);
8807 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8808 			kvm_pmu_handle_event(vcpu);
8809 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8810 			kvm_pmu_deliver_pmi(vcpu);
8811 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8812 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8813 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8814 				     vcpu->arch.ioapic_handled_vectors)) {
8815 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8816 				vcpu->run->eoi.vector =
8817 						vcpu->arch.pending_ioapic_eoi;
8818 				r = 0;
8819 				goto out;
8820 			}
8821 		}
8822 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8823 			vcpu_scan_ioapic(vcpu);
8824 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8825 			vcpu_load_eoi_exitmap(vcpu);
8826 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8827 			kvm_vcpu_reload_apic_access_page(vcpu);
8828 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8829 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8830 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8831 			r = 0;
8832 			goto out;
8833 		}
8834 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8835 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8836 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8837 			r = 0;
8838 			goto out;
8839 		}
8840 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8841 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8842 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8843 			r = 0;
8844 			goto out;
8845 		}
8846 
8847 		/*
8848 		 * KVM_REQ_HV_STIMER has to be processed after
8849 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8850 		 * depend on the guest clock being up-to-date
8851 		 */
8852 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8853 			kvm_hv_process_stimers(vcpu);
8854 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8855 			kvm_vcpu_update_apicv(vcpu);
8856 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8857 			kvm_check_async_pf_completion(vcpu);
8858 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8859 			kvm_x86_ops.msr_filter_changed(vcpu);
8860 	}
8861 
8862 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8863 		++vcpu->stat.req_event;
8864 		kvm_apic_accept_events(vcpu);
8865 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8866 			r = 1;
8867 			goto out;
8868 		}
8869 
8870 		inject_pending_event(vcpu, &req_immediate_exit);
8871 		if (req_int_win)
8872 			kvm_x86_ops.enable_irq_window(vcpu);
8873 
8874 		if (kvm_lapic_enabled(vcpu)) {
8875 			update_cr8_intercept(vcpu);
8876 			kvm_lapic_sync_to_vapic(vcpu);
8877 		}
8878 	}
8879 
8880 	r = kvm_mmu_reload(vcpu);
8881 	if (unlikely(r)) {
8882 		goto cancel_injection;
8883 	}
8884 
8885 	preempt_disable();
8886 
8887 	kvm_x86_ops.prepare_guest_switch(vcpu);
8888 
8889 	/*
8890 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8891 	 * IPI are then delayed after guest entry, which ensures that they
8892 	 * result in virtual interrupt delivery.
8893 	 */
8894 	local_irq_disable();
8895 	vcpu->mode = IN_GUEST_MODE;
8896 
8897 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8898 
8899 	/*
8900 	 * 1) We should set ->mode before checking ->requests.  Please see
8901 	 * the comment in kvm_vcpu_exiting_guest_mode().
8902 	 *
8903 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8904 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8905 	 * (see vmx_deliver_posted_interrupt).
8906 	 *
8907 	 * 3) This also orders the write to mode from any reads to the page
8908 	 * tables done while the VCPU is running.  Please see the comment
8909 	 * in kvm_flush_remote_tlbs.
8910 	 */
8911 	smp_mb__after_srcu_read_unlock();
8912 
8913 	/*
8914 	 * This handles the case where a posted interrupt was
8915 	 * notified with kvm_vcpu_kick.
8916 	 */
8917 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8918 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8919 
8920 	if (kvm_vcpu_exit_request(vcpu)) {
8921 		vcpu->mode = OUTSIDE_GUEST_MODE;
8922 		smp_wmb();
8923 		local_irq_enable();
8924 		preempt_enable();
8925 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8926 		r = 1;
8927 		goto cancel_injection;
8928 	}
8929 
8930 	if (req_immediate_exit) {
8931 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8932 		kvm_x86_ops.request_immediate_exit(vcpu);
8933 	}
8934 
8935 	trace_kvm_entry(vcpu);
8936 
8937 	fpregs_assert_state_consistent();
8938 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8939 		switch_fpu_return();
8940 
8941 	if (unlikely(vcpu->arch.switch_db_regs)) {
8942 		set_debugreg(0, 7);
8943 		set_debugreg(vcpu->arch.eff_db[0], 0);
8944 		set_debugreg(vcpu->arch.eff_db[1], 1);
8945 		set_debugreg(vcpu->arch.eff_db[2], 2);
8946 		set_debugreg(vcpu->arch.eff_db[3], 3);
8947 		set_debugreg(vcpu->arch.dr6, 6);
8948 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8949 	}
8950 
8951 	exit_fastpath = kvm_x86_ops.run(vcpu);
8952 
8953 	/*
8954 	 * Do this here before restoring debug registers on the host.  And
8955 	 * since we do this before handling the vmexit, a DR access vmexit
8956 	 * can (a) read the correct value of the debug registers, (b) set
8957 	 * KVM_DEBUGREG_WONT_EXIT again.
8958 	 */
8959 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8960 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8961 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8962 		kvm_update_dr0123(vcpu);
8963 		kvm_update_dr7(vcpu);
8964 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8965 	}
8966 
8967 	/*
8968 	 * If the guest has used debug registers, at least dr7
8969 	 * will be disabled while returning to the host.
8970 	 * If we don't have active breakpoints in the host, we don't
8971 	 * care about the messed up debug address registers. But if
8972 	 * we have some of them active, restore the old state.
8973 	 */
8974 	if (hw_breakpoint_active())
8975 		hw_breakpoint_restore();
8976 
8977 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8978 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8979 
8980 	vcpu->mode = OUTSIDE_GUEST_MODE;
8981 	smp_wmb();
8982 
8983 	kvm_x86_ops.handle_exit_irqoff(vcpu);
8984 
8985 	/*
8986 	 * Consume any pending interrupts, including the possible source of
8987 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8988 	 * An instruction is required after local_irq_enable() to fully unblock
8989 	 * interrupts on processors that implement an interrupt shadow, the
8990 	 * stat.exits increment will do nicely.
8991 	 */
8992 	kvm_before_interrupt(vcpu);
8993 	local_irq_enable();
8994 	++vcpu->stat.exits;
8995 	local_irq_disable();
8996 	kvm_after_interrupt(vcpu);
8997 
8998 	if (lapic_in_kernel(vcpu)) {
8999 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9000 		if (delta != S64_MIN) {
9001 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9002 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9003 		}
9004 	}
9005 
9006 	local_irq_enable();
9007 	preempt_enable();
9008 
9009 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9010 
9011 	/*
9012 	 * Profile KVM exit RIPs:
9013 	 */
9014 	if (unlikely(prof_on == KVM_PROFILING)) {
9015 		unsigned long rip = kvm_rip_read(vcpu);
9016 		profile_hit(KVM_PROFILING, (void *)rip);
9017 	}
9018 
9019 	if (unlikely(vcpu->arch.tsc_always_catchup))
9020 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9021 
9022 	if (vcpu->arch.apic_attention)
9023 		kvm_lapic_sync_from_vapic(vcpu);
9024 
9025 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9026 	return r;
9027 
9028 cancel_injection:
9029 	if (req_immediate_exit)
9030 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9031 	kvm_x86_ops.cancel_injection(vcpu);
9032 	if (unlikely(vcpu->arch.apic_attention))
9033 		kvm_lapic_sync_from_vapic(vcpu);
9034 out:
9035 	return r;
9036 }
9037 
9038 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9039 {
9040 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9041 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9042 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9043 		kvm_vcpu_block(vcpu);
9044 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9045 
9046 		if (kvm_x86_ops.post_block)
9047 			kvm_x86_ops.post_block(vcpu);
9048 
9049 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9050 			return 1;
9051 	}
9052 
9053 	kvm_apic_accept_events(vcpu);
9054 	switch(vcpu->arch.mp_state) {
9055 	case KVM_MP_STATE_HALTED:
9056 		vcpu->arch.pv.pv_unhalted = false;
9057 		vcpu->arch.mp_state =
9058 			KVM_MP_STATE_RUNNABLE;
9059 		fallthrough;
9060 	case KVM_MP_STATE_RUNNABLE:
9061 		vcpu->arch.apf.halted = false;
9062 		break;
9063 	case KVM_MP_STATE_INIT_RECEIVED:
9064 		break;
9065 	default:
9066 		return -EINTR;
9067 	}
9068 	return 1;
9069 }
9070 
9071 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9072 {
9073 	if (is_guest_mode(vcpu))
9074 		kvm_x86_ops.nested_ops->check_events(vcpu);
9075 
9076 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9077 		!vcpu->arch.apf.halted);
9078 }
9079 
9080 static int vcpu_run(struct kvm_vcpu *vcpu)
9081 {
9082 	int r;
9083 	struct kvm *kvm = vcpu->kvm;
9084 
9085 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9086 	vcpu->arch.l1tf_flush_l1d = true;
9087 
9088 	for (;;) {
9089 		if (kvm_vcpu_running(vcpu)) {
9090 			r = vcpu_enter_guest(vcpu);
9091 		} else {
9092 			r = vcpu_block(kvm, vcpu);
9093 		}
9094 
9095 		if (r <= 0)
9096 			break;
9097 
9098 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9099 		if (kvm_cpu_has_pending_timer(vcpu))
9100 			kvm_inject_pending_timer_irqs(vcpu);
9101 
9102 		if (dm_request_for_irq_injection(vcpu) &&
9103 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9104 			r = 0;
9105 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9106 			++vcpu->stat.request_irq_exits;
9107 			break;
9108 		}
9109 
9110 		if (__xfer_to_guest_mode_work_pending()) {
9111 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9112 			r = xfer_to_guest_mode_handle_work(vcpu);
9113 			if (r)
9114 				return r;
9115 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9116 		}
9117 	}
9118 
9119 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9120 
9121 	return r;
9122 }
9123 
9124 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9125 {
9126 	int r;
9127 
9128 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9129 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9130 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9131 	return r;
9132 }
9133 
9134 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9135 {
9136 	BUG_ON(!vcpu->arch.pio.count);
9137 
9138 	return complete_emulated_io(vcpu);
9139 }
9140 
9141 /*
9142  * Implements the following, as a state machine:
9143  *
9144  * read:
9145  *   for each fragment
9146  *     for each mmio piece in the fragment
9147  *       write gpa, len
9148  *       exit
9149  *       copy data
9150  *   execute insn
9151  *
9152  * write:
9153  *   for each fragment
9154  *     for each mmio piece in the fragment
9155  *       write gpa, len
9156  *       copy data
9157  *       exit
9158  */
9159 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9160 {
9161 	struct kvm_run *run = vcpu->run;
9162 	struct kvm_mmio_fragment *frag;
9163 	unsigned len;
9164 
9165 	BUG_ON(!vcpu->mmio_needed);
9166 
9167 	/* Complete previous fragment */
9168 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9169 	len = min(8u, frag->len);
9170 	if (!vcpu->mmio_is_write)
9171 		memcpy(frag->data, run->mmio.data, len);
9172 
9173 	if (frag->len <= 8) {
9174 		/* Switch to the next fragment. */
9175 		frag++;
9176 		vcpu->mmio_cur_fragment++;
9177 	} else {
9178 		/* Go forward to the next mmio piece. */
9179 		frag->data += len;
9180 		frag->gpa += len;
9181 		frag->len -= len;
9182 	}
9183 
9184 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9185 		vcpu->mmio_needed = 0;
9186 
9187 		/* FIXME: return into emulator if single-stepping.  */
9188 		if (vcpu->mmio_is_write)
9189 			return 1;
9190 		vcpu->mmio_read_completed = 1;
9191 		return complete_emulated_io(vcpu);
9192 	}
9193 
9194 	run->exit_reason = KVM_EXIT_MMIO;
9195 	run->mmio.phys_addr = frag->gpa;
9196 	if (vcpu->mmio_is_write)
9197 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9198 	run->mmio.len = min(8u, frag->len);
9199 	run->mmio.is_write = vcpu->mmio_is_write;
9200 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9201 	return 0;
9202 }
9203 
9204 static void kvm_save_current_fpu(struct fpu *fpu)
9205 {
9206 	/*
9207 	 * If the target FPU state is not resident in the CPU registers, just
9208 	 * memcpy() from current, else save CPU state directly to the target.
9209 	 */
9210 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9211 		memcpy(&fpu->state, &current->thread.fpu.state,
9212 		       fpu_kernel_xstate_size);
9213 	else
9214 		copy_fpregs_to_fpstate(fpu);
9215 }
9216 
9217 /* Swap (qemu) user FPU context for the guest FPU context. */
9218 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9219 {
9220 	fpregs_lock();
9221 
9222 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9223 
9224 	/* PKRU is separately restored in kvm_x86_ops.run.  */
9225 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9226 				~XFEATURE_MASK_PKRU);
9227 
9228 	fpregs_mark_activate();
9229 	fpregs_unlock();
9230 
9231 	trace_kvm_fpu(1);
9232 }
9233 
9234 /* When vcpu_run ends, restore user space FPU context. */
9235 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9236 {
9237 	fpregs_lock();
9238 
9239 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
9240 
9241 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9242 
9243 	fpregs_mark_activate();
9244 	fpregs_unlock();
9245 
9246 	++vcpu->stat.fpu_reload;
9247 	trace_kvm_fpu(0);
9248 }
9249 
9250 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9251 {
9252 	struct kvm_run *kvm_run = vcpu->run;
9253 	int r;
9254 
9255 	vcpu_load(vcpu);
9256 	kvm_sigset_activate(vcpu);
9257 	kvm_load_guest_fpu(vcpu);
9258 
9259 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9260 		if (kvm_run->immediate_exit) {
9261 			r = -EINTR;
9262 			goto out;
9263 		}
9264 		kvm_vcpu_block(vcpu);
9265 		kvm_apic_accept_events(vcpu);
9266 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9267 		r = -EAGAIN;
9268 		if (signal_pending(current)) {
9269 			r = -EINTR;
9270 			kvm_run->exit_reason = KVM_EXIT_INTR;
9271 			++vcpu->stat.signal_exits;
9272 		}
9273 		goto out;
9274 	}
9275 
9276 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9277 		r = -EINVAL;
9278 		goto out;
9279 	}
9280 
9281 	if (kvm_run->kvm_dirty_regs) {
9282 		r = sync_regs(vcpu);
9283 		if (r != 0)
9284 			goto out;
9285 	}
9286 
9287 	/* re-sync apic's tpr */
9288 	if (!lapic_in_kernel(vcpu)) {
9289 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9290 			r = -EINVAL;
9291 			goto out;
9292 		}
9293 	}
9294 
9295 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9296 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9297 		vcpu->arch.complete_userspace_io = NULL;
9298 		r = cui(vcpu);
9299 		if (r <= 0)
9300 			goto out;
9301 	} else
9302 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9303 
9304 	if (kvm_run->immediate_exit)
9305 		r = -EINTR;
9306 	else
9307 		r = vcpu_run(vcpu);
9308 
9309 out:
9310 	kvm_put_guest_fpu(vcpu);
9311 	if (kvm_run->kvm_valid_regs)
9312 		store_regs(vcpu);
9313 	post_kvm_run_save(vcpu);
9314 	kvm_sigset_deactivate(vcpu);
9315 
9316 	vcpu_put(vcpu);
9317 	return r;
9318 }
9319 
9320 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9321 {
9322 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9323 		/*
9324 		 * We are here if userspace calls get_regs() in the middle of
9325 		 * instruction emulation. Registers state needs to be copied
9326 		 * back from emulation context to vcpu. Userspace shouldn't do
9327 		 * that usually, but some bad designed PV devices (vmware
9328 		 * backdoor interface) need this to work
9329 		 */
9330 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9331 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9332 	}
9333 	regs->rax = kvm_rax_read(vcpu);
9334 	regs->rbx = kvm_rbx_read(vcpu);
9335 	regs->rcx = kvm_rcx_read(vcpu);
9336 	regs->rdx = kvm_rdx_read(vcpu);
9337 	regs->rsi = kvm_rsi_read(vcpu);
9338 	regs->rdi = kvm_rdi_read(vcpu);
9339 	regs->rsp = kvm_rsp_read(vcpu);
9340 	regs->rbp = kvm_rbp_read(vcpu);
9341 #ifdef CONFIG_X86_64
9342 	regs->r8 = kvm_r8_read(vcpu);
9343 	regs->r9 = kvm_r9_read(vcpu);
9344 	regs->r10 = kvm_r10_read(vcpu);
9345 	regs->r11 = kvm_r11_read(vcpu);
9346 	regs->r12 = kvm_r12_read(vcpu);
9347 	regs->r13 = kvm_r13_read(vcpu);
9348 	regs->r14 = kvm_r14_read(vcpu);
9349 	regs->r15 = kvm_r15_read(vcpu);
9350 #endif
9351 
9352 	regs->rip = kvm_rip_read(vcpu);
9353 	regs->rflags = kvm_get_rflags(vcpu);
9354 }
9355 
9356 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9357 {
9358 	vcpu_load(vcpu);
9359 	__get_regs(vcpu, regs);
9360 	vcpu_put(vcpu);
9361 	return 0;
9362 }
9363 
9364 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9365 {
9366 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9367 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9368 
9369 	kvm_rax_write(vcpu, regs->rax);
9370 	kvm_rbx_write(vcpu, regs->rbx);
9371 	kvm_rcx_write(vcpu, regs->rcx);
9372 	kvm_rdx_write(vcpu, regs->rdx);
9373 	kvm_rsi_write(vcpu, regs->rsi);
9374 	kvm_rdi_write(vcpu, regs->rdi);
9375 	kvm_rsp_write(vcpu, regs->rsp);
9376 	kvm_rbp_write(vcpu, regs->rbp);
9377 #ifdef CONFIG_X86_64
9378 	kvm_r8_write(vcpu, regs->r8);
9379 	kvm_r9_write(vcpu, regs->r9);
9380 	kvm_r10_write(vcpu, regs->r10);
9381 	kvm_r11_write(vcpu, regs->r11);
9382 	kvm_r12_write(vcpu, regs->r12);
9383 	kvm_r13_write(vcpu, regs->r13);
9384 	kvm_r14_write(vcpu, regs->r14);
9385 	kvm_r15_write(vcpu, regs->r15);
9386 #endif
9387 
9388 	kvm_rip_write(vcpu, regs->rip);
9389 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9390 
9391 	vcpu->arch.exception.pending = false;
9392 
9393 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9394 }
9395 
9396 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9397 {
9398 	vcpu_load(vcpu);
9399 	__set_regs(vcpu, regs);
9400 	vcpu_put(vcpu);
9401 	return 0;
9402 }
9403 
9404 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9405 {
9406 	struct kvm_segment cs;
9407 
9408 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9409 	*db = cs.db;
9410 	*l = cs.l;
9411 }
9412 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9413 
9414 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9415 {
9416 	struct desc_ptr dt;
9417 
9418 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9419 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9420 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9421 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9422 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9423 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9424 
9425 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9426 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9427 
9428 	kvm_x86_ops.get_idt(vcpu, &dt);
9429 	sregs->idt.limit = dt.size;
9430 	sregs->idt.base = dt.address;
9431 	kvm_x86_ops.get_gdt(vcpu, &dt);
9432 	sregs->gdt.limit = dt.size;
9433 	sregs->gdt.base = dt.address;
9434 
9435 	sregs->cr0 = kvm_read_cr0(vcpu);
9436 	sregs->cr2 = vcpu->arch.cr2;
9437 	sregs->cr3 = kvm_read_cr3(vcpu);
9438 	sregs->cr4 = kvm_read_cr4(vcpu);
9439 	sregs->cr8 = kvm_get_cr8(vcpu);
9440 	sregs->efer = vcpu->arch.efer;
9441 	sregs->apic_base = kvm_get_apic_base(vcpu);
9442 
9443 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9444 
9445 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9446 		set_bit(vcpu->arch.interrupt.nr,
9447 			(unsigned long *)sregs->interrupt_bitmap);
9448 }
9449 
9450 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9451 				  struct kvm_sregs *sregs)
9452 {
9453 	vcpu_load(vcpu);
9454 	__get_sregs(vcpu, sregs);
9455 	vcpu_put(vcpu);
9456 	return 0;
9457 }
9458 
9459 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9460 				    struct kvm_mp_state *mp_state)
9461 {
9462 	vcpu_load(vcpu);
9463 	if (kvm_mpx_supported())
9464 		kvm_load_guest_fpu(vcpu);
9465 
9466 	kvm_apic_accept_events(vcpu);
9467 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9468 					vcpu->arch.pv.pv_unhalted)
9469 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9470 	else
9471 		mp_state->mp_state = vcpu->arch.mp_state;
9472 
9473 	if (kvm_mpx_supported())
9474 		kvm_put_guest_fpu(vcpu);
9475 	vcpu_put(vcpu);
9476 	return 0;
9477 }
9478 
9479 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9480 				    struct kvm_mp_state *mp_state)
9481 {
9482 	int ret = -EINVAL;
9483 
9484 	vcpu_load(vcpu);
9485 
9486 	if (!lapic_in_kernel(vcpu) &&
9487 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9488 		goto out;
9489 
9490 	/*
9491 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9492 	 * INIT state; latched init should be reported using
9493 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9494 	 */
9495 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9496 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9497 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9498 		goto out;
9499 
9500 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9501 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9502 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9503 	} else
9504 		vcpu->arch.mp_state = mp_state->mp_state;
9505 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9506 
9507 	ret = 0;
9508 out:
9509 	vcpu_put(vcpu);
9510 	return ret;
9511 }
9512 
9513 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9514 		    int reason, bool has_error_code, u32 error_code)
9515 {
9516 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9517 	int ret;
9518 
9519 	init_emulate_ctxt(vcpu);
9520 
9521 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9522 				   has_error_code, error_code);
9523 	if (ret) {
9524 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9525 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9526 		vcpu->run->internal.ndata = 0;
9527 		return 0;
9528 	}
9529 
9530 	kvm_rip_write(vcpu, ctxt->eip);
9531 	kvm_set_rflags(vcpu, ctxt->eflags);
9532 	return 1;
9533 }
9534 EXPORT_SYMBOL_GPL(kvm_task_switch);
9535 
9536 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9537 {
9538 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9539 		/*
9540 		 * When EFER.LME and CR0.PG are set, the processor is in
9541 		 * 64-bit mode (though maybe in a 32-bit code segment).
9542 		 * CR4.PAE and EFER.LMA must be set.
9543 		 */
9544 		if (!(sregs->cr4 & X86_CR4_PAE)
9545 		    || !(sregs->efer & EFER_LMA))
9546 			return -EINVAL;
9547 	} else {
9548 		/*
9549 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9550 		 * segment cannot be 64-bit.
9551 		 */
9552 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9553 			return -EINVAL;
9554 	}
9555 
9556 	return kvm_valid_cr4(vcpu, sregs->cr4);
9557 }
9558 
9559 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9560 {
9561 	struct msr_data apic_base_msr;
9562 	int mmu_reset_needed = 0;
9563 	int cpuid_update_needed = 0;
9564 	int pending_vec, max_bits, idx;
9565 	struct desc_ptr dt;
9566 	int ret = -EINVAL;
9567 
9568 	if (kvm_valid_sregs(vcpu, sregs))
9569 		goto out;
9570 
9571 	apic_base_msr.data = sregs->apic_base;
9572 	apic_base_msr.host_initiated = true;
9573 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9574 		goto out;
9575 
9576 	dt.size = sregs->idt.limit;
9577 	dt.address = sregs->idt.base;
9578 	kvm_x86_ops.set_idt(vcpu, &dt);
9579 	dt.size = sregs->gdt.limit;
9580 	dt.address = sregs->gdt.base;
9581 	kvm_x86_ops.set_gdt(vcpu, &dt);
9582 
9583 	vcpu->arch.cr2 = sregs->cr2;
9584 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9585 	vcpu->arch.cr3 = sregs->cr3;
9586 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9587 
9588 	kvm_set_cr8(vcpu, sregs->cr8);
9589 
9590 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9591 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9592 
9593 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9594 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9595 	vcpu->arch.cr0 = sregs->cr0;
9596 
9597 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9598 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9599 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9600 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9601 	if (cpuid_update_needed)
9602 		kvm_update_cpuid_runtime(vcpu);
9603 
9604 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9605 	if (is_pae_paging(vcpu)) {
9606 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9607 		mmu_reset_needed = 1;
9608 	}
9609 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9610 
9611 	if (mmu_reset_needed)
9612 		kvm_mmu_reset_context(vcpu);
9613 
9614 	max_bits = KVM_NR_INTERRUPTS;
9615 	pending_vec = find_first_bit(
9616 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9617 	if (pending_vec < max_bits) {
9618 		kvm_queue_interrupt(vcpu, pending_vec, false);
9619 		pr_debug("Set back pending irq %d\n", pending_vec);
9620 	}
9621 
9622 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9623 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9624 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9625 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9626 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9627 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9628 
9629 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9630 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9631 
9632 	update_cr8_intercept(vcpu);
9633 
9634 	/* Older userspace won't unhalt the vcpu on reset. */
9635 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9636 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9637 	    !is_protmode(vcpu))
9638 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9639 
9640 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9641 
9642 	ret = 0;
9643 out:
9644 	return ret;
9645 }
9646 
9647 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9648 				  struct kvm_sregs *sregs)
9649 {
9650 	int ret;
9651 
9652 	vcpu_load(vcpu);
9653 	ret = __set_sregs(vcpu, sregs);
9654 	vcpu_put(vcpu);
9655 	return ret;
9656 }
9657 
9658 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9659 					struct kvm_guest_debug *dbg)
9660 {
9661 	unsigned long rflags;
9662 	int i, r;
9663 
9664 	vcpu_load(vcpu);
9665 
9666 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9667 		r = -EBUSY;
9668 		if (vcpu->arch.exception.pending)
9669 			goto out;
9670 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9671 			kvm_queue_exception(vcpu, DB_VECTOR);
9672 		else
9673 			kvm_queue_exception(vcpu, BP_VECTOR);
9674 	}
9675 
9676 	/*
9677 	 * Read rflags as long as potentially injected trace flags are still
9678 	 * filtered out.
9679 	 */
9680 	rflags = kvm_get_rflags(vcpu);
9681 
9682 	vcpu->guest_debug = dbg->control;
9683 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9684 		vcpu->guest_debug = 0;
9685 
9686 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9687 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9688 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9689 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9690 	} else {
9691 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9692 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9693 	}
9694 	kvm_update_dr7(vcpu);
9695 
9696 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9697 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9698 			get_segment_base(vcpu, VCPU_SREG_CS);
9699 
9700 	/*
9701 	 * Trigger an rflags update that will inject or remove the trace
9702 	 * flags.
9703 	 */
9704 	kvm_set_rflags(vcpu, rflags);
9705 
9706 	kvm_x86_ops.update_exception_bitmap(vcpu);
9707 
9708 	r = 0;
9709 
9710 out:
9711 	vcpu_put(vcpu);
9712 	return r;
9713 }
9714 
9715 /*
9716  * Translate a guest virtual address to a guest physical address.
9717  */
9718 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9719 				    struct kvm_translation *tr)
9720 {
9721 	unsigned long vaddr = tr->linear_address;
9722 	gpa_t gpa;
9723 	int idx;
9724 
9725 	vcpu_load(vcpu);
9726 
9727 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9728 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9729 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9730 	tr->physical_address = gpa;
9731 	tr->valid = gpa != UNMAPPED_GVA;
9732 	tr->writeable = 1;
9733 	tr->usermode = 0;
9734 
9735 	vcpu_put(vcpu);
9736 	return 0;
9737 }
9738 
9739 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9740 {
9741 	struct fxregs_state *fxsave;
9742 
9743 	vcpu_load(vcpu);
9744 
9745 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9746 	memcpy(fpu->fpr, fxsave->st_space, 128);
9747 	fpu->fcw = fxsave->cwd;
9748 	fpu->fsw = fxsave->swd;
9749 	fpu->ftwx = fxsave->twd;
9750 	fpu->last_opcode = fxsave->fop;
9751 	fpu->last_ip = fxsave->rip;
9752 	fpu->last_dp = fxsave->rdp;
9753 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9754 
9755 	vcpu_put(vcpu);
9756 	return 0;
9757 }
9758 
9759 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9760 {
9761 	struct fxregs_state *fxsave;
9762 
9763 	vcpu_load(vcpu);
9764 
9765 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9766 
9767 	memcpy(fxsave->st_space, fpu->fpr, 128);
9768 	fxsave->cwd = fpu->fcw;
9769 	fxsave->swd = fpu->fsw;
9770 	fxsave->twd = fpu->ftwx;
9771 	fxsave->fop = fpu->last_opcode;
9772 	fxsave->rip = fpu->last_ip;
9773 	fxsave->rdp = fpu->last_dp;
9774 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9775 
9776 	vcpu_put(vcpu);
9777 	return 0;
9778 }
9779 
9780 static void store_regs(struct kvm_vcpu *vcpu)
9781 {
9782 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9783 
9784 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9785 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9786 
9787 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9788 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9789 
9790 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9791 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9792 				vcpu, &vcpu->run->s.regs.events);
9793 }
9794 
9795 static int sync_regs(struct kvm_vcpu *vcpu)
9796 {
9797 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9798 		return -EINVAL;
9799 
9800 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9801 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9802 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9803 	}
9804 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9805 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9806 			return -EINVAL;
9807 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9808 	}
9809 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9810 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9811 				vcpu, &vcpu->run->s.regs.events))
9812 			return -EINVAL;
9813 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9814 	}
9815 
9816 	return 0;
9817 }
9818 
9819 static void fx_init(struct kvm_vcpu *vcpu)
9820 {
9821 	fpstate_init(&vcpu->arch.guest_fpu->state);
9822 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9823 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9824 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9825 
9826 	/*
9827 	 * Ensure guest xcr0 is valid for loading
9828 	 */
9829 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9830 
9831 	vcpu->arch.cr0 |= X86_CR0_ET;
9832 }
9833 
9834 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9835 {
9836 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9837 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9838 			     "guest TSC will not be reliable\n");
9839 
9840 	return 0;
9841 }
9842 
9843 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9844 {
9845 	struct page *page;
9846 	int r;
9847 
9848 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9849 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9850 	else
9851 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9852 
9853 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9854 
9855 	r = kvm_mmu_create(vcpu);
9856 	if (r < 0)
9857 		return r;
9858 
9859 	if (irqchip_in_kernel(vcpu->kvm)) {
9860 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9861 		if (r < 0)
9862 			goto fail_mmu_destroy;
9863 		if (kvm_apicv_activated(vcpu->kvm))
9864 			vcpu->arch.apicv_active = true;
9865 	} else
9866 		static_key_slow_inc(&kvm_no_apic_vcpu);
9867 
9868 	r = -ENOMEM;
9869 
9870 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9871 	if (!page)
9872 		goto fail_free_lapic;
9873 	vcpu->arch.pio_data = page_address(page);
9874 
9875 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9876 				       GFP_KERNEL_ACCOUNT);
9877 	if (!vcpu->arch.mce_banks)
9878 		goto fail_free_pio_data;
9879 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9880 
9881 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9882 				GFP_KERNEL_ACCOUNT))
9883 		goto fail_free_mce_banks;
9884 
9885 	if (!alloc_emulate_ctxt(vcpu))
9886 		goto free_wbinvd_dirty_mask;
9887 
9888 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9889 						GFP_KERNEL_ACCOUNT);
9890 	if (!vcpu->arch.user_fpu) {
9891 		pr_err("kvm: failed to allocate userspace's fpu\n");
9892 		goto free_emulate_ctxt;
9893 	}
9894 
9895 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9896 						 GFP_KERNEL_ACCOUNT);
9897 	if (!vcpu->arch.guest_fpu) {
9898 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9899 		goto free_user_fpu;
9900 	}
9901 	fx_init(vcpu);
9902 
9903 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9904 
9905 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9906 
9907 	kvm_async_pf_hash_reset(vcpu);
9908 	kvm_pmu_init(vcpu);
9909 
9910 	vcpu->arch.pending_external_vector = -1;
9911 	vcpu->arch.preempted_in_kernel = false;
9912 
9913 	kvm_hv_vcpu_init(vcpu);
9914 
9915 	r = kvm_x86_ops.vcpu_create(vcpu);
9916 	if (r)
9917 		goto free_guest_fpu;
9918 
9919 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9920 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9921 	kvm_vcpu_mtrr_init(vcpu);
9922 	vcpu_load(vcpu);
9923 	kvm_vcpu_reset(vcpu, false);
9924 	kvm_init_mmu(vcpu, false);
9925 	vcpu_put(vcpu);
9926 	return 0;
9927 
9928 free_guest_fpu:
9929 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9930 free_user_fpu:
9931 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9932 free_emulate_ctxt:
9933 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9934 free_wbinvd_dirty_mask:
9935 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9936 fail_free_mce_banks:
9937 	kfree(vcpu->arch.mce_banks);
9938 fail_free_pio_data:
9939 	free_page((unsigned long)vcpu->arch.pio_data);
9940 fail_free_lapic:
9941 	kvm_free_lapic(vcpu);
9942 fail_mmu_destroy:
9943 	kvm_mmu_destroy(vcpu);
9944 	return r;
9945 }
9946 
9947 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9948 {
9949 	struct kvm *kvm = vcpu->kvm;
9950 
9951 	kvm_hv_vcpu_postcreate(vcpu);
9952 
9953 	if (mutex_lock_killable(&vcpu->mutex))
9954 		return;
9955 	vcpu_load(vcpu);
9956 	kvm_synchronize_tsc(vcpu, 0);
9957 	vcpu_put(vcpu);
9958 
9959 	/* poll control enabled by default */
9960 	vcpu->arch.msr_kvm_poll_control = 1;
9961 
9962 	mutex_unlock(&vcpu->mutex);
9963 
9964 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9965 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9966 						KVMCLOCK_SYNC_PERIOD);
9967 }
9968 
9969 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9970 {
9971 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9972 	int idx;
9973 
9974 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9975 
9976 	kvmclock_reset(vcpu);
9977 
9978 	kvm_x86_ops.vcpu_free(vcpu);
9979 
9980 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9981 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9982 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9983 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9984 
9985 	kvm_hv_vcpu_uninit(vcpu);
9986 	kvm_pmu_destroy(vcpu);
9987 	kfree(vcpu->arch.mce_banks);
9988 	kvm_free_lapic(vcpu);
9989 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9990 	kvm_mmu_destroy(vcpu);
9991 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9992 	free_page((unsigned long)vcpu->arch.pio_data);
9993 	kvfree(vcpu->arch.cpuid_entries);
9994 	if (!lapic_in_kernel(vcpu))
9995 		static_key_slow_dec(&kvm_no_apic_vcpu);
9996 }
9997 
9998 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9999 {
10000 	kvm_lapic_reset(vcpu, init_event);
10001 
10002 	vcpu->arch.hflags = 0;
10003 
10004 	vcpu->arch.smi_pending = 0;
10005 	vcpu->arch.smi_count = 0;
10006 	atomic_set(&vcpu->arch.nmi_queued, 0);
10007 	vcpu->arch.nmi_pending = 0;
10008 	vcpu->arch.nmi_injected = false;
10009 	kvm_clear_interrupt_queue(vcpu);
10010 	kvm_clear_exception_queue(vcpu);
10011 
10012 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10013 	kvm_update_dr0123(vcpu);
10014 	vcpu->arch.dr6 = DR6_INIT;
10015 	vcpu->arch.dr7 = DR7_FIXED_1;
10016 	kvm_update_dr7(vcpu);
10017 
10018 	vcpu->arch.cr2 = 0;
10019 
10020 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10021 	vcpu->arch.apf.msr_en_val = 0;
10022 	vcpu->arch.apf.msr_int_val = 0;
10023 	vcpu->arch.st.msr_val = 0;
10024 
10025 	kvmclock_reset(vcpu);
10026 
10027 	kvm_clear_async_pf_completion_queue(vcpu);
10028 	kvm_async_pf_hash_reset(vcpu);
10029 	vcpu->arch.apf.halted = false;
10030 
10031 	if (kvm_mpx_supported()) {
10032 		void *mpx_state_buffer;
10033 
10034 		/*
10035 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10036 		 * called with loaded FPU and does not let userspace fix the state.
10037 		 */
10038 		if (init_event)
10039 			kvm_put_guest_fpu(vcpu);
10040 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10041 					XFEATURE_BNDREGS);
10042 		if (mpx_state_buffer)
10043 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10044 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10045 					XFEATURE_BNDCSR);
10046 		if (mpx_state_buffer)
10047 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10048 		if (init_event)
10049 			kvm_load_guest_fpu(vcpu);
10050 	}
10051 
10052 	if (!init_event) {
10053 		kvm_pmu_reset(vcpu);
10054 		vcpu->arch.smbase = 0x30000;
10055 
10056 		vcpu->arch.msr_misc_features_enables = 0;
10057 
10058 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10059 	}
10060 
10061 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10062 	vcpu->arch.regs_avail = ~0;
10063 	vcpu->arch.regs_dirty = ~0;
10064 
10065 	vcpu->arch.ia32_xss = 0;
10066 
10067 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10068 }
10069 
10070 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10071 {
10072 	struct kvm_segment cs;
10073 
10074 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10075 	cs.selector = vector << 8;
10076 	cs.base = vector << 12;
10077 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10078 	kvm_rip_write(vcpu, 0);
10079 }
10080 
10081 int kvm_arch_hardware_enable(void)
10082 {
10083 	struct kvm *kvm;
10084 	struct kvm_vcpu *vcpu;
10085 	int i;
10086 	int ret;
10087 	u64 local_tsc;
10088 	u64 max_tsc = 0;
10089 	bool stable, backwards_tsc = false;
10090 
10091 	kvm_user_return_msr_cpu_online();
10092 	ret = kvm_x86_ops.hardware_enable();
10093 	if (ret != 0)
10094 		return ret;
10095 
10096 	local_tsc = rdtsc();
10097 	stable = !kvm_check_tsc_unstable();
10098 	list_for_each_entry(kvm, &vm_list, vm_list) {
10099 		kvm_for_each_vcpu(i, vcpu, kvm) {
10100 			if (!stable && vcpu->cpu == smp_processor_id())
10101 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10102 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10103 				backwards_tsc = true;
10104 				if (vcpu->arch.last_host_tsc > max_tsc)
10105 					max_tsc = vcpu->arch.last_host_tsc;
10106 			}
10107 		}
10108 	}
10109 
10110 	/*
10111 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10112 	 * platforms that reset TSC during suspend or hibernate actions, but
10113 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10114 	 * detect that condition here, which happens early in CPU bringup,
10115 	 * before any KVM threads can be running.  Unfortunately, we can't
10116 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10117 	 * enough into CPU bringup that we know how much real time has actually
10118 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10119 	 * variables that haven't been updated yet.
10120 	 *
10121 	 * So we simply find the maximum observed TSC above, then record the
10122 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10123 	 * the adjustment will be applied.  Note that we accumulate
10124 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10125 	 * gets a chance to run again.  In the event that no KVM threads get a
10126 	 * chance to run, we will miss the entire elapsed period, as we'll have
10127 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10128 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10129 	 * uniform across all VCPUs (not to mention the scenario is extremely
10130 	 * unlikely). It is possible that a second hibernate recovery happens
10131 	 * much faster than a first, causing the observed TSC here to be
10132 	 * smaller; this would require additional padding adjustment, which is
10133 	 * why we set last_host_tsc to the local tsc observed here.
10134 	 *
10135 	 * N.B. - this code below runs only on platforms with reliable TSC,
10136 	 * as that is the only way backwards_tsc is set above.  Also note
10137 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10138 	 * have the same delta_cyc adjustment applied if backwards_tsc
10139 	 * is detected.  Note further, this adjustment is only done once,
10140 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10141 	 * called multiple times (one for each physical CPU bringup).
10142 	 *
10143 	 * Platforms with unreliable TSCs don't have to deal with this, they
10144 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10145 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10146 	 * guarantee that they stay in perfect synchronization.
10147 	 */
10148 	if (backwards_tsc) {
10149 		u64 delta_cyc = max_tsc - local_tsc;
10150 		list_for_each_entry(kvm, &vm_list, vm_list) {
10151 			kvm->arch.backwards_tsc_observed = true;
10152 			kvm_for_each_vcpu(i, vcpu, kvm) {
10153 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10154 				vcpu->arch.last_host_tsc = local_tsc;
10155 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10156 			}
10157 
10158 			/*
10159 			 * We have to disable TSC offset matching.. if you were
10160 			 * booting a VM while issuing an S4 host suspend....
10161 			 * you may have some problem.  Solving this issue is
10162 			 * left as an exercise to the reader.
10163 			 */
10164 			kvm->arch.last_tsc_nsec = 0;
10165 			kvm->arch.last_tsc_write = 0;
10166 		}
10167 
10168 	}
10169 	return 0;
10170 }
10171 
10172 void kvm_arch_hardware_disable(void)
10173 {
10174 	kvm_x86_ops.hardware_disable();
10175 	drop_user_return_notifiers();
10176 }
10177 
10178 int kvm_arch_hardware_setup(void *opaque)
10179 {
10180 	struct kvm_x86_init_ops *ops = opaque;
10181 	int r;
10182 
10183 	rdmsrl_safe(MSR_EFER, &host_efer);
10184 
10185 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10186 		rdmsrl(MSR_IA32_XSS, host_xss);
10187 
10188 	r = ops->hardware_setup();
10189 	if (r != 0)
10190 		return r;
10191 
10192 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10193 
10194 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10195 		supported_xss = 0;
10196 
10197 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10198 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10199 #undef __kvm_cpu_cap_has
10200 
10201 	if (kvm_has_tsc_control) {
10202 		/*
10203 		 * Make sure the user can only configure tsc_khz values that
10204 		 * fit into a signed integer.
10205 		 * A min value is not calculated because it will always
10206 		 * be 1 on all machines.
10207 		 */
10208 		u64 max = min(0x7fffffffULL,
10209 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10210 		kvm_max_guest_tsc_khz = max;
10211 
10212 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10213 	}
10214 
10215 	kvm_init_msr_list();
10216 	return 0;
10217 }
10218 
10219 void kvm_arch_hardware_unsetup(void)
10220 {
10221 	kvm_x86_ops.hardware_unsetup();
10222 }
10223 
10224 int kvm_arch_check_processor_compat(void *opaque)
10225 {
10226 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10227 	struct kvm_x86_init_ops *ops = opaque;
10228 
10229 	WARN_ON(!irqs_disabled());
10230 
10231 	if (__cr4_reserved_bits(cpu_has, c) !=
10232 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10233 		return -EIO;
10234 
10235 	return ops->check_processor_compatibility();
10236 }
10237 
10238 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10239 {
10240 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10241 }
10242 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10243 
10244 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10245 {
10246 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10247 }
10248 
10249 struct static_key kvm_no_apic_vcpu __read_mostly;
10250 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10251 
10252 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10253 {
10254 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10255 
10256 	vcpu->arch.l1tf_flush_l1d = true;
10257 	if (pmu->version && unlikely(pmu->event_count)) {
10258 		pmu->need_cleanup = true;
10259 		kvm_make_request(KVM_REQ_PMU, vcpu);
10260 	}
10261 	kvm_x86_ops.sched_in(vcpu, cpu);
10262 }
10263 
10264 void kvm_arch_free_vm(struct kvm *kvm)
10265 {
10266 	kfree(kvm->arch.hyperv.hv_pa_pg);
10267 	vfree(kvm);
10268 }
10269 
10270 
10271 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10272 {
10273 	if (type)
10274 		return -EINVAL;
10275 
10276 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10277 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10278 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10279 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10280 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10281 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10282 
10283 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10284 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10285 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10286 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10287 		&kvm->arch.irq_sources_bitmap);
10288 
10289 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10290 	mutex_init(&kvm->arch.apic_map_lock);
10291 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10292 
10293 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10294 	pvclock_update_vm_gtod_copy(kvm);
10295 
10296 	kvm->arch.guest_can_read_msr_platform_info = true;
10297 
10298 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10299 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10300 
10301 	kvm_hv_init_vm(kvm);
10302 	kvm_page_track_init(kvm);
10303 	kvm_mmu_init_vm(kvm);
10304 
10305 	return kvm_x86_ops.vm_init(kvm);
10306 }
10307 
10308 int kvm_arch_post_init_vm(struct kvm *kvm)
10309 {
10310 	return kvm_mmu_post_init_vm(kvm);
10311 }
10312 
10313 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10314 {
10315 	vcpu_load(vcpu);
10316 	kvm_mmu_unload(vcpu);
10317 	vcpu_put(vcpu);
10318 }
10319 
10320 static void kvm_free_vcpus(struct kvm *kvm)
10321 {
10322 	unsigned int i;
10323 	struct kvm_vcpu *vcpu;
10324 
10325 	/*
10326 	 * Unpin any mmu pages first.
10327 	 */
10328 	kvm_for_each_vcpu(i, vcpu, kvm) {
10329 		kvm_clear_async_pf_completion_queue(vcpu);
10330 		kvm_unload_vcpu_mmu(vcpu);
10331 	}
10332 	kvm_for_each_vcpu(i, vcpu, kvm)
10333 		kvm_vcpu_destroy(vcpu);
10334 
10335 	mutex_lock(&kvm->lock);
10336 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10337 		kvm->vcpus[i] = NULL;
10338 
10339 	atomic_set(&kvm->online_vcpus, 0);
10340 	mutex_unlock(&kvm->lock);
10341 }
10342 
10343 void kvm_arch_sync_events(struct kvm *kvm)
10344 {
10345 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10346 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10347 	kvm_free_pit(kvm);
10348 }
10349 
10350 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10351 {
10352 	int i, r;
10353 	unsigned long hva, old_npages;
10354 	struct kvm_memslots *slots = kvm_memslots(kvm);
10355 	struct kvm_memory_slot *slot;
10356 
10357 	/* Called with kvm->slots_lock held.  */
10358 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10359 		return -EINVAL;
10360 
10361 	slot = id_to_memslot(slots, id);
10362 	if (size) {
10363 		if (slot && slot->npages)
10364 			return -EEXIST;
10365 
10366 		/*
10367 		 * MAP_SHARED to prevent internal slot pages from being moved
10368 		 * by fork()/COW.
10369 		 */
10370 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10371 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10372 		if (IS_ERR((void *)hva))
10373 			return PTR_ERR((void *)hva);
10374 	} else {
10375 		if (!slot || !slot->npages)
10376 			return 0;
10377 
10378 		old_npages = slot->npages;
10379 		hva = 0;
10380 	}
10381 
10382 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10383 		struct kvm_userspace_memory_region m;
10384 
10385 		m.slot = id | (i << 16);
10386 		m.flags = 0;
10387 		m.guest_phys_addr = gpa;
10388 		m.userspace_addr = hva;
10389 		m.memory_size = size;
10390 		r = __kvm_set_memory_region(kvm, &m);
10391 		if (r < 0)
10392 			return r;
10393 	}
10394 
10395 	if (!size)
10396 		vm_munmap(hva, old_npages * PAGE_SIZE);
10397 
10398 	return 0;
10399 }
10400 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10401 
10402 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10403 {
10404 	kvm_mmu_pre_destroy_vm(kvm);
10405 }
10406 
10407 void kvm_arch_destroy_vm(struct kvm *kvm)
10408 {
10409 	u32 i;
10410 
10411 	if (current->mm == kvm->mm) {
10412 		/*
10413 		 * Free memory regions allocated on behalf of userspace,
10414 		 * unless the the memory map has changed due to process exit
10415 		 * or fd copying.
10416 		 */
10417 		mutex_lock(&kvm->slots_lock);
10418 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10419 					0, 0);
10420 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10421 					0, 0);
10422 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10423 		mutex_unlock(&kvm->slots_lock);
10424 	}
10425 	if (kvm_x86_ops.vm_destroy)
10426 		kvm_x86_ops.vm_destroy(kvm);
10427 	for (i = 0; i < kvm->arch.msr_filter.count; i++)
10428 		kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10429 	kvm_pic_destroy(kvm);
10430 	kvm_ioapic_destroy(kvm);
10431 	kvm_free_vcpus(kvm);
10432 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10433 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10434 	kvm_mmu_uninit_vm(kvm);
10435 	kvm_page_track_cleanup(kvm);
10436 	kvm_hv_destroy_vm(kvm);
10437 }
10438 
10439 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10440 {
10441 	int i;
10442 
10443 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10444 		kvfree(slot->arch.rmap[i]);
10445 		slot->arch.rmap[i] = NULL;
10446 
10447 		if (i == 0)
10448 			continue;
10449 
10450 		kvfree(slot->arch.lpage_info[i - 1]);
10451 		slot->arch.lpage_info[i - 1] = NULL;
10452 	}
10453 
10454 	kvm_page_track_free_memslot(slot);
10455 }
10456 
10457 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10458 				      unsigned long npages)
10459 {
10460 	int i;
10461 
10462 	/*
10463 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10464 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10465 	 * the new memslot is successful.
10466 	 */
10467 	memset(&slot->arch, 0, sizeof(slot->arch));
10468 
10469 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10470 		struct kvm_lpage_info *linfo;
10471 		unsigned long ugfn;
10472 		int lpages;
10473 		int level = i + 1;
10474 
10475 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10476 				      slot->base_gfn, level) + 1;
10477 
10478 		slot->arch.rmap[i] =
10479 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10480 				 GFP_KERNEL_ACCOUNT);
10481 		if (!slot->arch.rmap[i])
10482 			goto out_free;
10483 		if (i == 0)
10484 			continue;
10485 
10486 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10487 		if (!linfo)
10488 			goto out_free;
10489 
10490 		slot->arch.lpage_info[i - 1] = linfo;
10491 
10492 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10493 			linfo[0].disallow_lpage = 1;
10494 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10495 			linfo[lpages - 1].disallow_lpage = 1;
10496 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10497 		/*
10498 		 * If the gfn and userspace address are not aligned wrt each
10499 		 * other, disable large page support for this slot.
10500 		 */
10501 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10502 			unsigned long j;
10503 
10504 			for (j = 0; j < lpages; ++j)
10505 				linfo[j].disallow_lpage = 1;
10506 		}
10507 	}
10508 
10509 	if (kvm_page_track_create_memslot(slot, npages))
10510 		goto out_free;
10511 
10512 	return 0;
10513 
10514 out_free:
10515 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10516 		kvfree(slot->arch.rmap[i]);
10517 		slot->arch.rmap[i] = NULL;
10518 		if (i == 0)
10519 			continue;
10520 
10521 		kvfree(slot->arch.lpage_info[i - 1]);
10522 		slot->arch.lpage_info[i - 1] = NULL;
10523 	}
10524 	return -ENOMEM;
10525 }
10526 
10527 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10528 {
10529 	struct kvm_vcpu *vcpu;
10530 	int i;
10531 
10532 	/*
10533 	 * memslots->generation has been incremented.
10534 	 * mmio generation may have reached its maximum value.
10535 	 */
10536 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10537 
10538 	/* Force re-initialization of steal_time cache */
10539 	kvm_for_each_vcpu(i, vcpu, kvm)
10540 		kvm_vcpu_kick(vcpu);
10541 }
10542 
10543 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10544 				struct kvm_memory_slot *memslot,
10545 				const struct kvm_userspace_memory_region *mem,
10546 				enum kvm_mr_change change)
10547 {
10548 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10549 		return kvm_alloc_memslot_metadata(memslot,
10550 						  mem->memory_size >> PAGE_SHIFT);
10551 	return 0;
10552 }
10553 
10554 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10555 				     struct kvm_memory_slot *old,
10556 				     struct kvm_memory_slot *new,
10557 				     enum kvm_mr_change change)
10558 {
10559 	/*
10560 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10561 	 * See comments below.
10562 	 */
10563 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10564 		return;
10565 
10566 	/*
10567 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10568 	 * sptes have to be split.  If live migration is successful, the guest
10569 	 * in the source machine will be destroyed and large sptes will be
10570 	 * created in the destination. However, if the guest continues to run
10571 	 * in the source machine (for example if live migration fails), small
10572 	 * sptes will remain around and cause bad performance.
10573 	 *
10574 	 * Scan sptes if dirty logging has been stopped, dropping those
10575 	 * which can be collapsed into a single large-page spte.  Later
10576 	 * page faults will create the large-page sptes.
10577 	 *
10578 	 * There is no need to do this in any of the following cases:
10579 	 * CREATE:      No dirty mappings will already exist.
10580 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10581 	 *		kvm_arch_flush_shadow_memslot()
10582 	 */
10583 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10584 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10585 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10586 
10587 	/*
10588 	 * Enable or disable dirty logging for the slot.
10589 	 *
10590 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10591 	 * slot have been zapped so no dirty logging updates are needed for
10592 	 * the old slot.
10593 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10594 	 * any mappings that might be created in it will consume the
10595 	 * properties of the new slot and do not need to be updated here.
10596 	 *
10597 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10598 	 * called to enable/disable dirty logging.
10599 	 *
10600 	 * When disabling dirty logging with PML enabled, the D-bit is set
10601 	 * for sptes in the slot in order to prevent unnecessary GPA
10602 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10603 	 * This guarantees leaving PML enabled for the guest's lifetime
10604 	 * won't have any additional overhead from PML when the guest is
10605 	 * running with dirty logging disabled.
10606 	 *
10607 	 * When enabling dirty logging, large sptes are write-protected
10608 	 * so they can be split on first write.  New large sptes cannot
10609 	 * be created for this slot until the end of the logging.
10610 	 * See the comments in fast_page_fault().
10611 	 * For small sptes, nothing is done if the dirty log is in the
10612 	 * initial-all-set state.  Otherwise, depending on whether pml
10613 	 * is enabled the D-bit or the W-bit will be cleared.
10614 	 */
10615 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10616 		if (kvm_x86_ops.slot_enable_log_dirty) {
10617 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10618 		} else {
10619 			int level =
10620 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10621 				PG_LEVEL_2M : PG_LEVEL_4K;
10622 
10623 			/*
10624 			 * If we're with initial-all-set, we don't need
10625 			 * to write protect any small page because
10626 			 * they're reported as dirty already.  However
10627 			 * we still need to write-protect huge pages
10628 			 * so that the page split can happen lazily on
10629 			 * the first write to the huge page.
10630 			 */
10631 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10632 		}
10633 	} else {
10634 		if (kvm_x86_ops.slot_disable_log_dirty)
10635 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10636 	}
10637 }
10638 
10639 void kvm_arch_commit_memory_region(struct kvm *kvm,
10640 				const struct kvm_userspace_memory_region *mem,
10641 				struct kvm_memory_slot *old,
10642 				const struct kvm_memory_slot *new,
10643 				enum kvm_mr_change change)
10644 {
10645 	if (!kvm->arch.n_requested_mmu_pages)
10646 		kvm_mmu_change_mmu_pages(kvm,
10647 				kvm_mmu_calculate_default_mmu_pages(kvm));
10648 
10649 	/*
10650 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10651 	 */
10652 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10653 
10654 	/* Free the arrays associated with the old memslot. */
10655 	if (change == KVM_MR_MOVE)
10656 		kvm_arch_free_memslot(kvm, old);
10657 }
10658 
10659 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10660 {
10661 	kvm_mmu_zap_all(kvm);
10662 }
10663 
10664 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10665 				   struct kvm_memory_slot *slot)
10666 {
10667 	kvm_page_track_flush_slot(kvm, slot);
10668 }
10669 
10670 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10671 {
10672 	return (is_guest_mode(vcpu) &&
10673 			kvm_x86_ops.guest_apic_has_interrupt &&
10674 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10675 }
10676 
10677 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10678 {
10679 	if (!list_empty_careful(&vcpu->async_pf.done))
10680 		return true;
10681 
10682 	if (kvm_apic_has_events(vcpu))
10683 		return true;
10684 
10685 	if (vcpu->arch.pv.pv_unhalted)
10686 		return true;
10687 
10688 	if (vcpu->arch.exception.pending)
10689 		return true;
10690 
10691 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10692 	    (vcpu->arch.nmi_pending &&
10693 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10694 		return true;
10695 
10696 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10697 	    (vcpu->arch.smi_pending &&
10698 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10699 		return true;
10700 
10701 	if (kvm_arch_interrupt_allowed(vcpu) &&
10702 	    (kvm_cpu_has_interrupt(vcpu) ||
10703 	    kvm_guest_apic_has_interrupt(vcpu)))
10704 		return true;
10705 
10706 	if (kvm_hv_has_stimer_pending(vcpu))
10707 		return true;
10708 
10709 	if (is_guest_mode(vcpu) &&
10710 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10711 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10712 		return true;
10713 
10714 	return false;
10715 }
10716 
10717 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10718 {
10719 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10720 }
10721 
10722 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10723 {
10724 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10725 		return true;
10726 
10727 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10728 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10729 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10730 		return true;
10731 
10732 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10733 		return true;
10734 
10735 	return false;
10736 }
10737 
10738 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10739 {
10740 	return vcpu->arch.preempted_in_kernel;
10741 }
10742 
10743 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10744 {
10745 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10746 }
10747 
10748 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10749 {
10750 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10751 }
10752 
10753 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10754 {
10755 	if (is_64_bit_mode(vcpu))
10756 		return kvm_rip_read(vcpu);
10757 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10758 		     kvm_rip_read(vcpu));
10759 }
10760 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10761 
10762 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10763 {
10764 	return kvm_get_linear_rip(vcpu) == linear_rip;
10765 }
10766 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10767 
10768 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10769 {
10770 	unsigned long rflags;
10771 
10772 	rflags = kvm_x86_ops.get_rflags(vcpu);
10773 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10774 		rflags &= ~X86_EFLAGS_TF;
10775 	return rflags;
10776 }
10777 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10778 
10779 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10780 {
10781 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10782 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10783 		rflags |= X86_EFLAGS_TF;
10784 	kvm_x86_ops.set_rflags(vcpu, rflags);
10785 }
10786 
10787 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10788 {
10789 	__kvm_set_rflags(vcpu, rflags);
10790 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10791 }
10792 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10793 
10794 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10795 {
10796 	int r;
10797 
10798 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10799 	      work->wakeup_all)
10800 		return;
10801 
10802 	r = kvm_mmu_reload(vcpu);
10803 	if (unlikely(r))
10804 		return;
10805 
10806 	if (!vcpu->arch.mmu->direct_map &&
10807 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10808 		return;
10809 
10810 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10811 }
10812 
10813 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10814 {
10815 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10816 
10817 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10818 }
10819 
10820 static inline u32 kvm_async_pf_next_probe(u32 key)
10821 {
10822 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10823 }
10824 
10825 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10826 {
10827 	u32 key = kvm_async_pf_hash_fn(gfn);
10828 
10829 	while (vcpu->arch.apf.gfns[key] != ~0)
10830 		key = kvm_async_pf_next_probe(key);
10831 
10832 	vcpu->arch.apf.gfns[key] = gfn;
10833 }
10834 
10835 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10836 {
10837 	int i;
10838 	u32 key = kvm_async_pf_hash_fn(gfn);
10839 
10840 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10841 		     (vcpu->arch.apf.gfns[key] != gfn &&
10842 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10843 		key = kvm_async_pf_next_probe(key);
10844 
10845 	return key;
10846 }
10847 
10848 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10849 {
10850 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10851 }
10852 
10853 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10854 {
10855 	u32 i, j, k;
10856 
10857 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10858 
10859 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10860 		return;
10861 
10862 	while (true) {
10863 		vcpu->arch.apf.gfns[i] = ~0;
10864 		do {
10865 			j = kvm_async_pf_next_probe(j);
10866 			if (vcpu->arch.apf.gfns[j] == ~0)
10867 				return;
10868 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10869 			/*
10870 			 * k lies cyclically in ]i,j]
10871 			 * |    i.k.j |
10872 			 * |....j i.k.| or  |.k..j i...|
10873 			 */
10874 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10875 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10876 		i = j;
10877 	}
10878 }
10879 
10880 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10881 {
10882 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10883 
10884 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10885 				      sizeof(reason));
10886 }
10887 
10888 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10889 {
10890 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10891 
10892 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10893 					     &token, offset, sizeof(token));
10894 }
10895 
10896 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10897 {
10898 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10899 	u32 val;
10900 
10901 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10902 					 &val, offset, sizeof(val)))
10903 		return false;
10904 
10905 	return !val;
10906 }
10907 
10908 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10909 {
10910 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10911 		return false;
10912 
10913 	if (!kvm_pv_async_pf_enabled(vcpu) ||
10914 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10915 		return false;
10916 
10917 	return true;
10918 }
10919 
10920 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10921 {
10922 	if (unlikely(!lapic_in_kernel(vcpu) ||
10923 		     kvm_event_needs_reinjection(vcpu) ||
10924 		     vcpu->arch.exception.pending))
10925 		return false;
10926 
10927 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10928 		return false;
10929 
10930 	/*
10931 	 * If interrupts are off we cannot even use an artificial
10932 	 * halt state.
10933 	 */
10934 	return kvm_arch_interrupt_allowed(vcpu);
10935 }
10936 
10937 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10938 				     struct kvm_async_pf *work)
10939 {
10940 	struct x86_exception fault;
10941 
10942 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10943 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10944 
10945 	if (kvm_can_deliver_async_pf(vcpu) &&
10946 	    !apf_put_user_notpresent(vcpu)) {
10947 		fault.vector = PF_VECTOR;
10948 		fault.error_code_valid = true;
10949 		fault.error_code = 0;
10950 		fault.nested_page_fault = false;
10951 		fault.address = work->arch.token;
10952 		fault.async_page_fault = true;
10953 		kvm_inject_page_fault(vcpu, &fault);
10954 		return true;
10955 	} else {
10956 		/*
10957 		 * It is not possible to deliver a paravirtualized asynchronous
10958 		 * page fault, but putting the guest in an artificial halt state
10959 		 * can be beneficial nevertheless: if an interrupt arrives, we
10960 		 * can deliver it timely and perhaps the guest will schedule
10961 		 * another process.  When the instruction that triggered a page
10962 		 * fault is retried, hopefully the page will be ready in the host.
10963 		 */
10964 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10965 		return false;
10966 	}
10967 }
10968 
10969 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10970 				 struct kvm_async_pf *work)
10971 {
10972 	struct kvm_lapic_irq irq = {
10973 		.delivery_mode = APIC_DM_FIXED,
10974 		.vector = vcpu->arch.apf.vec
10975 	};
10976 
10977 	if (work->wakeup_all)
10978 		work->arch.token = ~0; /* broadcast wakeup */
10979 	else
10980 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10981 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10982 
10983 	if ((work->wakeup_all || work->notpresent_injected) &&
10984 	    kvm_pv_async_pf_enabled(vcpu) &&
10985 	    !apf_put_user_ready(vcpu, work->arch.token)) {
10986 		vcpu->arch.apf.pageready_pending = true;
10987 		kvm_apic_set_irq(vcpu, &irq, NULL);
10988 	}
10989 
10990 	vcpu->arch.apf.halted = false;
10991 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10992 }
10993 
10994 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10995 {
10996 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
10997 	if (!vcpu->arch.apf.pageready_pending)
10998 		kvm_vcpu_kick(vcpu);
10999 }
11000 
11001 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11002 {
11003 	if (!kvm_pv_async_pf_enabled(vcpu))
11004 		return true;
11005 	else
11006 		return apf_pageready_slot_free(vcpu);
11007 }
11008 
11009 void kvm_arch_start_assignment(struct kvm *kvm)
11010 {
11011 	atomic_inc(&kvm->arch.assigned_device_count);
11012 }
11013 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11014 
11015 void kvm_arch_end_assignment(struct kvm *kvm)
11016 {
11017 	atomic_dec(&kvm->arch.assigned_device_count);
11018 }
11019 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11020 
11021 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11022 {
11023 	return atomic_read(&kvm->arch.assigned_device_count);
11024 }
11025 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11026 
11027 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11028 {
11029 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11030 }
11031 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11032 
11033 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11034 {
11035 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11036 }
11037 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11038 
11039 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11040 {
11041 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11042 }
11043 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11044 
11045 bool kvm_arch_has_irq_bypass(void)
11046 {
11047 	return true;
11048 }
11049 
11050 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11051 				      struct irq_bypass_producer *prod)
11052 {
11053 	struct kvm_kernel_irqfd *irqfd =
11054 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11055 	int ret;
11056 
11057 	irqfd->producer = prod;
11058 	kvm_arch_start_assignment(irqfd->kvm);
11059 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11060 					 prod->irq, irqfd->gsi, 1);
11061 
11062 	if (ret)
11063 		kvm_arch_end_assignment(irqfd->kvm);
11064 
11065 	return ret;
11066 }
11067 
11068 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11069 				      struct irq_bypass_producer *prod)
11070 {
11071 	int ret;
11072 	struct kvm_kernel_irqfd *irqfd =
11073 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11074 
11075 	WARN_ON(irqfd->producer != prod);
11076 	irqfd->producer = NULL;
11077 
11078 	/*
11079 	 * When producer of consumer is unregistered, we change back to
11080 	 * remapped mode, so we can re-use the current implementation
11081 	 * when the irq is masked/disabled or the consumer side (KVM
11082 	 * int this case doesn't want to receive the interrupts.
11083 	*/
11084 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11085 	if (ret)
11086 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11087 		       " fails: %d\n", irqfd->consumer.token, ret);
11088 
11089 	kvm_arch_end_assignment(irqfd->kvm);
11090 }
11091 
11092 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11093 				   uint32_t guest_irq, bool set)
11094 {
11095 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11096 }
11097 
11098 bool kvm_vector_hashing_enabled(void)
11099 {
11100 	return vector_hashing;
11101 }
11102 
11103 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11104 {
11105 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11106 }
11107 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11108 
11109 
11110 int kvm_spec_ctrl_test_value(u64 value)
11111 {
11112 	/*
11113 	 * test that setting IA32_SPEC_CTRL to given value
11114 	 * is allowed by the host processor
11115 	 */
11116 
11117 	u64 saved_value;
11118 	unsigned long flags;
11119 	int ret = 0;
11120 
11121 	local_irq_save(flags);
11122 
11123 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11124 		ret = 1;
11125 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11126 		ret = 1;
11127 	else
11128 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11129 
11130 	local_irq_restore(flags);
11131 
11132 	return ret;
11133 }
11134 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11135 
11136 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11137 {
11138 	struct x86_exception fault;
11139 	u32 access = error_code &
11140 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11141 
11142 	if (!(error_code & PFERR_PRESENT_MASK) ||
11143 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11144 		/*
11145 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11146 		 * tables probably do not match the TLB.  Just proceed
11147 		 * with the error code that the processor gave.
11148 		 */
11149 		fault.vector = PF_VECTOR;
11150 		fault.error_code_valid = true;
11151 		fault.error_code = error_code;
11152 		fault.nested_page_fault = false;
11153 		fault.address = gva;
11154 	}
11155 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11156 }
11157 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11158 
11159 /*
11160  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11161  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11162  * indicates whether exit to userspace is needed.
11163  */
11164 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11165 			      struct x86_exception *e)
11166 {
11167 	if (r == X86EMUL_PROPAGATE_FAULT) {
11168 		kvm_inject_emulated_page_fault(vcpu, e);
11169 		return 1;
11170 	}
11171 
11172 	/*
11173 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11174 	 * while handling a VMX instruction KVM could've handled the request
11175 	 * correctly by exiting to userspace and performing I/O but there
11176 	 * doesn't seem to be a real use-case behind such requests, just return
11177 	 * KVM_EXIT_INTERNAL_ERROR for now.
11178 	 */
11179 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11180 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11181 	vcpu->run->internal.ndata = 0;
11182 
11183 	return 0;
11184 }
11185 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11186 
11187 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11188 {
11189 	bool pcid_enabled;
11190 	struct x86_exception e;
11191 	unsigned i;
11192 	unsigned long roots_to_free = 0;
11193 	struct {
11194 		u64 pcid;
11195 		u64 gla;
11196 	} operand;
11197 	int r;
11198 
11199 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11200 	if (r != X86EMUL_CONTINUE)
11201 		return kvm_handle_memory_failure(vcpu, r, &e);
11202 
11203 	if (operand.pcid >> 12 != 0) {
11204 		kvm_inject_gp(vcpu, 0);
11205 		return 1;
11206 	}
11207 
11208 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11209 
11210 	switch (type) {
11211 	case INVPCID_TYPE_INDIV_ADDR:
11212 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11213 		    is_noncanonical_address(operand.gla, vcpu)) {
11214 			kvm_inject_gp(vcpu, 0);
11215 			return 1;
11216 		}
11217 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11218 		return kvm_skip_emulated_instruction(vcpu);
11219 
11220 	case INVPCID_TYPE_SINGLE_CTXT:
11221 		if (!pcid_enabled && (operand.pcid != 0)) {
11222 			kvm_inject_gp(vcpu, 0);
11223 			return 1;
11224 		}
11225 
11226 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11227 			kvm_mmu_sync_roots(vcpu);
11228 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11229 		}
11230 
11231 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11232 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11233 			    == operand.pcid)
11234 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11235 
11236 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11237 		/*
11238 		 * If neither the current cr3 nor any of the prev_roots use the
11239 		 * given PCID, then nothing needs to be done here because a
11240 		 * resync will happen anyway before switching to any other CR3.
11241 		 */
11242 
11243 		return kvm_skip_emulated_instruction(vcpu);
11244 
11245 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11246 		/*
11247 		 * Currently, KVM doesn't mark global entries in the shadow
11248 		 * page tables, so a non-global flush just degenerates to a
11249 		 * global flush. If needed, we could optimize this later by
11250 		 * keeping track of global entries in shadow page tables.
11251 		 */
11252 
11253 		fallthrough;
11254 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11255 		kvm_mmu_unload(vcpu);
11256 		return kvm_skip_emulated_instruction(vcpu);
11257 
11258 	default:
11259 		BUG(); /* We have already checked above that type <= 3 */
11260 	}
11261 }
11262 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11263 
11264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11277 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11286