1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 61 #include <trace/events/kvm.h> 62 63 #include <asm/debugreg.h> 64 #include <asm/msr.h> 65 #include <asm/desc.h> 66 #include <asm/mce.h> 67 #include <linux/kernel_stat.h> 68 #include <asm/fpu/internal.h> /* Ugh! */ 69 #include <asm/pvclock.h> 70 #include <asm/div64.h> 71 #include <asm/irq_remapping.h> 72 #include <asm/mshyperv.h> 73 #include <asm/hypervisor.h> 74 #include <asm/tlbflush.h> 75 #include <asm/intel_pt.h> 76 #include <asm/emulate_prefix.h> 77 #include <clocksource/hyperv_timer.h> 78 79 #define CREATE_TRACE_POINTS 80 #include "trace.h" 81 82 #define MAX_IO_MSRS 256 83 #define KVM_MAX_MCE_BANKS 32 84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 86 87 #define emul_to_vcpu(ctxt) \ 88 ((struct kvm_vcpu *)(ctxt)->vcpu) 89 90 /* EFER defaults: 91 * - enable syscall per default because its emulated by KVM 92 * - enable LME and LMA per default on 64 bit KVM 93 */ 94 #ifdef CONFIG_X86_64 95 static 96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 97 #else 98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 99 #endif 100 101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 102 103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107 static void process_nmi(struct kvm_vcpu *vcpu); 108 static void enter_smm(struct kvm_vcpu *vcpu); 109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 110 static void store_regs(struct kvm_vcpu *vcpu); 111 static int sync_regs(struct kvm_vcpu *vcpu); 112 113 struct kvm_x86_ops kvm_x86_ops __read_mostly; 114 EXPORT_SYMBOL_GPL(kvm_x86_ops); 115 116 static bool __read_mostly ignore_msrs = 0; 117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 118 119 static bool __read_mostly report_ignored_msrs = true; 120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 121 122 unsigned int min_timer_period_us = 200; 123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 124 125 static bool __read_mostly kvmclock_periodic_sync = true; 126 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 127 128 bool __read_mostly kvm_has_tsc_control; 129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 130 u32 __read_mostly kvm_max_guest_tsc_khz; 131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 134 u64 __read_mostly kvm_max_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 136 u64 __read_mostly kvm_default_tsc_scaling_ratio; 137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 138 139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 140 static u32 __read_mostly tsc_tolerance_ppm = 250; 141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 142 143 /* 144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 145 * adaptive tuning starting from default advancment of 1000ns. '0' disables 146 * advancement entirely. Any other value is used as-is and disables adaptive 147 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 148 */ 149 static int __read_mostly lapic_timer_advance_ns = -1; 150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly vector_hashing = true; 153 module_param(vector_hashing, bool, S_IRUGO); 154 155 bool __read_mostly enable_vmware_backdoor = false; 156 module_param(enable_vmware_backdoor, bool, S_IRUGO); 157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 158 159 static bool __read_mostly force_emulation_prefix = false; 160 module_param(force_emulation_prefix, bool, S_IRUGO); 161 162 int __read_mostly pi_inject_timer = -1; 163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 164 165 /* 166 * Restoring the host value for MSRs that are only consumed when running in 167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 168 * returns to userspace, i.e. the kernel can run with the guest's value. 169 */ 170 #define KVM_MAX_NR_USER_RETURN_MSRS 16 171 172 struct kvm_user_return_msrs_global { 173 int nr; 174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS]; 175 }; 176 177 struct kvm_user_return_msrs { 178 struct user_return_notifier urn; 179 bool registered; 180 struct kvm_user_return_msr_values { 181 u64 host; 182 u64 curr; 183 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 184 }; 185 186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global; 187 static struct kvm_user_return_msrs __percpu *user_return_msrs; 188 189 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 192 | XFEATURE_MASK_PKRU) 193 194 u64 __read_mostly host_efer; 195 EXPORT_SYMBOL_GPL(host_efer); 196 197 bool __read_mostly allow_smaller_maxphyaddr = 0; 198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 199 200 static u64 __read_mostly host_xss; 201 u64 __read_mostly supported_xss; 202 EXPORT_SYMBOL_GPL(supported_xss); 203 204 struct kvm_stats_debugfs_item debugfs_entries[] = { 205 VCPU_STAT("pf_fixed", pf_fixed), 206 VCPU_STAT("pf_guest", pf_guest), 207 VCPU_STAT("tlb_flush", tlb_flush), 208 VCPU_STAT("invlpg", invlpg), 209 VCPU_STAT("exits", exits), 210 VCPU_STAT("io_exits", io_exits), 211 VCPU_STAT("mmio_exits", mmio_exits), 212 VCPU_STAT("signal_exits", signal_exits), 213 VCPU_STAT("irq_window", irq_window_exits), 214 VCPU_STAT("nmi_window", nmi_window_exits), 215 VCPU_STAT("halt_exits", halt_exits), 216 VCPU_STAT("halt_successful_poll", halt_successful_poll), 217 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 218 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 219 VCPU_STAT("halt_wakeup", halt_wakeup), 220 VCPU_STAT("hypercalls", hypercalls), 221 VCPU_STAT("request_irq", request_irq_exits), 222 VCPU_STAT("irq_exits", irq_exits), 223 VCPU_STAT("host_state_reload", host_state_reload), 224 VCPU_STAT("fpu_reload", fpu_reload), 225 VCPU_STAT("insn_emulation", insn_emulation), 226 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 227 VCPU_STAT("irq_injections", irq_injections), 228 VCPU_STAT("nmi_injections", nmi_injections), 229 VCPU_STAT("req_event", req_event), 230 VCPU_STAT("l1d_flush", l1d_flush), 231 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 232 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 233 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 234 VM_STAT("mmu_pte_write", mmu_pte_write), 235 VM_STAT("mmu_pte_updated", mmu_pte_updated), 236 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 237 VM_STAT("mmu_flooded", mmu_flooded), 238 VM_STAT("mmu_recycled", mmu_recycled), 239 VM_STAT("mmu_cache_miss", mmu_cache_miss), 240 VM_STAT("mmu_unsync", mmu_unsync), 241 VM_STAT("remote_tlb_flush", remote_tlb_flush), 242 VM_STAT("largepages", lpages, .mode = 0444), 243 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 244 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 245 { NULL } 246 }; 247 248 u64 __read_mostly host_xcr0; 249 u64 __read_mostly supported_xcr0; 250 EXPORT_SYMBOL_GPL(supported_xcr0); 251 252 static struct kmem_cache *x86_fpu_cache; 253 254 static struct kmem_cache *x86_emulator_cache; 255 256 /* 257 * When called, it means the previous get/set msr reached an invalid msr. 258 * Return true if we want to ignore/silent this failed msr access. 259 */ 260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 261 u64 data, bool write) 262 { 263 const char *op = write ? "wrmsr" : "rdmsr"; 264 265 if (ignore_msrs) { 266 if (report_ignored_msrs) 267 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 268 op, msr, data); 269 /* Mask the error */ 270 return true; 271 } else { 272 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 273 op, msr, data); 274 return false; 275 } 276 } 277 278 static struct kmem_cache *kvm_alloc_emulator_cache(void) 279 { 280 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 281 unsigned int size = sizeof(struct x86_emulate_ctxt); 282 283 return kmem_cache_create_usercopy("x86_emulator", size, 284 __alignof__(struct x86_emulate_ctxt), 285 SLAB_ACCOUNT, useroffset, 286 size - useroffset, NULL); 287 } 288 289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 290 291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 292 { 293 int i; 294 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 295 vcpu->arch.apf.gfns[i] = ~0; 296 } 297 298 static void kvm_on_user_return(struct user_return_notifier *urn) 299 { 300 unsigned slot; 301 struct kvm_user_return_msrs *msrs 302 = container_of(urn, struct kvm_user_return_msrs, urn); 303 struct kvm_user_return_msr_values *values; 304 unsigned long flags; 305 306 /* 307 * Disabling irqs at this point since the following code could be 308 * interrupted and executed through kvm_arch_hardware_disable() 309 */ 310 local_irq_save(flags); 311 if (msrs->registered) { 312 msrs->registered = false; 313 user_return_notifier_unregister(urn); 314 } 315 local_irq_restore(flags); 316 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) { 317 values = &msrs->values[slot]; 318 if (values->host != values->curr) { 319 wrmsrl(user_return_msrs_global.msrs[slot], values->host); 320 values->curr = values->host; 321 } 322 } 323 } 324 325 void kvm_define_user_return_msr(unsigned slot, u32 msr) 326 { 327 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS); 328 user_return_msrs_global.msrs[slot] = msr; 329 if (slot >= user_return_msrs_global.nr) 330 user_return_msrs_global.nr = slot + 1; 331 } 332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr); 333 334 static void kvm_user_return_msr_cpu_online(void) 335 { 336 unsigned int cpu = smp_processor_id(); 337 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 338 u64 value; 339 int i; 340 341 for (i = 0; i < user_return_msrs_global.nr; ++i) { 342 rdmsrl_safe(user_return_msrs_global.msrs[i], &value); 343 msrs->values[i].host = value; 344 msrs->values[i].curr = value; 345 } 346 } 347 348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 349 { 350 unsigned int cpu = smp_processor_id(); 351 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 352 int err; 353 354 value = (value & mask) | (msrs->values[slot].host & ~mask); 355 if (value == msrs->values[slot].curr) 356 return 0; 357 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value); 358 if (err) 359 return 1; 360 361 msrs->values[slot].curr = value; 362 if (!msrs->registered) { 363 msrs->urn.on_user_return = kvm_on_user_return; 364 user_return_notifier_register(&msrs->urn); 365 msrs->registered = true; 366 } 367 return 0; 368 } 369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 370 371 static void drop_user_return_notifiers(void) 372 { 373 unsigned int cpu = smp_processor_id(); 374 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 375 376 if (msrs->registered) 377 kvm_on_user_return(&msrs->urn); 378 } 379 380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 381 { 382 return vcpu->arch.apic_base; 383 } 384 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 385 386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 387 { 388 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 389 } 390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 391 392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 393 { 394 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 395 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 396 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 397 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 398 399 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 400 return 1; 401 if (!msr_info->host_initiated) { 402 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 403 return 1; 404 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 405 return 1; 406 } 407 408 kvm_lapic_set_base(vcpu, msr_info->data); 409 kvm_recalculate_apic_map(vcpu->kvm); 410 return 0; 411 } 412 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 413 414 asmlinkage __visible noinstr void kvm_spurious_fault(void) 415 { 416 /* Fault while not rebooting. We want the trace. */ 417 BUG_ON(!kvm_rebooting); 418 } 419 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 420 421 #define EXCPT_BENIGN 0 422 #define EXCPT_CONTRIBUTORY 1 423 #define EXCPT_PF 2 424 425 static int exception_class(int vector) 426 { 427 switch (vector) { 428 case PF_VECTOR: 429 return EXCPT_PF; 430 case DE_VECTOR: 431 case TS_VECTOR: 432 case NP_VECTOR: 433 case SS_VECTOR: 434 case GP_VECTOR: 435 return EXCPT_CONTRIBUTORY; 436 default: 437 break; 438 } 439 return EXCPT_BENIGN; 440 } 441 442 #define EXCPT_FAULT 0 443 #define EXCPT_TRAP 1 444 #define EXCPT_ABORT 2 445 #define EXCPT_INTERRUPT 3 446 447 static int exception_type(int vector) 448 { 449 unsigned int mask; 450 451 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 452 return EXCPT_INTERRUPT; 453 454 mask = 1 << vector; 455 456 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 457 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 458 return EXCPT_TRAP; 459 460 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 461 return EXCPT_ABORT; 462 463 /* Reserved exceptions will result in fault */ 464 return EXCPT_FAULT; 465 } 466 467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 468 { 469 unsigned nr = vcpu->arch.exception.nr; 470 bool has_payload = vcpu->arch.exception.has_payload; 471 unsigned long payload = vcpu->arch.exception.payload; 472 473 if (!has_payload) 474 return; 475 476 switch (nr) { 477 case DB_VECTOR: 478 /* 479 * "Certain debug exceptions may clear bit 0-3. The 480 * remaining contents of the DR6 register are never 481 * cleared by the processor". 482 */ 483 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 484 /* 485 * DR6.RTM is set by all #DB exceptions that don't clear it. 486 */ 487 vcpu->arch.dr6 |= DR6_RTM; 488 vcpu->arch.dr6 |= payload; 489 /* 490 * Bit 16 should be set in the payload whenever the #DB 491 * exception should clear DR6.RTM. This makes the payload 492 * compatible with the pending debug exceptions under VMX. 493 * Though not currently documented in the SDM, this also 494 * makes the payload compatible with the exit qualification 495 * for #DB exceptions under VMX. 496 */ 497 vcpu->arch.dr6 ^= payload & DR6_RTM; 498 499 /* 500 * The #DB payload is defined as compatible with the 'pending 501 * debug exceptions' field under VMX, not DR6. While bit 12 is 502 * defined in the 'pending debug exceptions' field (enabled 503 * breakpoint), it is reserved and must be zero in DR6. 504 */ 505 vcpu->arch.dr6 &= ~BIT(12); 506 break; 507 case PF_VECTOR: 508 vcpu->arch.cr2 = payload; 509 break; 510 } 511 512 vcpu->arch.exception.has_payload = false; 513 vcpu->arch.exception.payload = 0; 514 } 515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 516 517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 518 unsigned nr, bool has_error, u32 error_code, 519 bool has_payload, unsigned long payload, bool reinject) 520 { 521 u32 prev_nr; 522 int class1, class2; 523 524 kvm_make_request(KVM_REQ_EVENT, vcpu); 525 526 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 527 queue: 528 if (has_error && !is_protmode(vcpu)) 529 has_error = false; 530 if (reinject) { 531 /* 532 * On vmentry, vcpu->arch.exception.pending is only 533 * true if an event injection was blocked by 534 * nested_run_pending. In that case, however, 535 * vcpu_enter_guest requests an immediate exit, 536 * and the guest shouldn't proceed far enough to 537 * need reinjection. 538 */ 539 WARN_ON_ONCE(vcpu->arch.exception.pending); 540 vcpu->arch.exception.injected = true; 541 if (WARN_ON_ONCE(has_payload)) { 542 /* 543 * A reinjected event has already 544 * delivered its payload. 545 */ 546 has_payload = false; 547 payload = 0; 548 } 549 } else { 550 vcpu->arch.exception.pending = true; 551 vcpu->arch.exception.injected = false; 552 } 553 vcpu->arch.exception.has_error_code = has_error; 554 vcpu->arch.exception.nr = nr; 555 vcpu->arch.exception.error_code = error_code; 556 vcpu->arch.exception.has_payload = has_payload; 557 vcpu->arch.exception.payload = payload; 558 if (!is_guest_mode(vcpu)) 559 kvm_deliver_exception_payload(vcpu); 560 return; 561 } 562 563 /* to check exception */ 564 prev_nr = vcpu->arch.exception.nr; 565 if (prev_nr == DF_VECTOR) { 566 /* triple fault -> shutdown */ 567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 568 return; 569 } 570 class1 = exception_class(prev_nr); 571 class2 = exception_class(nr); 572 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 573 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 574 /* 575 * Generate double fault per SDM Table 5-5. Set 576 * exception.pending = true so that the double fault 577 * can trigger a nested vmexit. 578 */ 579 vcpu->arch.exception.pending = true; 580 vcpu->arch.exception.injected = false; 581 vcpu->arch.exception.has_error_code = true; 582 vcpu->arch.exception.nr = DF_VECTOR; 583 vcpu->arch.exception.error_code = 0; 584 vcpu->arch.exception.has_payload = false; 585 vcpu->arch.exception.payload = 0; 586 } else 587 /* replace previous exception with a new one in a hope 588 that instruction re-execution will regenerate lost 589 exception */ 590 goto queue; 591 } 592 593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 594 { 595 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 596 } 597 EXPORT_SYMBOL_GPL(kvm_queue_exception); 598 599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 600 { 601 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 602 } 603 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 604 605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 606 unsigned long payload) 607 { 608 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 609 } 610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 611 612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 613 u32 error_code, unsigned long payload) 614 { 615 kvm_multiple_exception(vcpu, nr, true, error_code, 616 true, payload, false); 617 } 618 619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 620 { 621 if (err) 622 kvm_inject_gp(vcpu, 0); 623 else 624 return kvm_skip_emulated_instruction(vcpu); 625 626 return 1; 627 } 628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 629 630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 631 { 632 ++vcpu->stat.pf_guest; 633 vcpu->arch.exception.nested_apf = 634 is_guest_mode(vcpu) && fault->async_page_fault; 635 if (vcpu->arch.exception.nested_apf) { 636 vcpu->arch.apf.nested_apf_token = fault->address; 637 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 638 } else { 639 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 640 fault->address); 641 } 642 } 643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 644 645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 646 struct x86_exception *fault) 647 { 648 struct kvm_mmu *fault_mmu; 649 WARN_ON_ONCE(fault->vector != PF_VECTOR); 650 651 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 652 vcpu->arch.walk_mmu; 653 654 /* 655 * Invalidate the TLB entry for the faulting address, if it exists, 656 * else the access will fault indefinitely (and to emulate hardware). 657 */ 658 if ((fault->error_code & PFERR_PRESENT_MASK) && 659 !(fault->error_code & PFERR_RSVD_MASK)) 660 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 661 fault_mmu->root_hpa); 662 663 fault_mmu->inject_page_fault(vcpu, fault); 664 return fault->nested_page_fault; 665 } 666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 667 668 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 669 { 670 atomic_inc(&vcpu->arch.nmi_queued); 671 kvm_make_request(KVM_REQ_NMI, vcpu); 672 } 673 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 674 675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 676 { 677 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 678 } 679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 680 681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 682 { 683 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 684 } 685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 686 687 /* 688 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 689 * a #GP and return false. 690 */ 691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 692 { 693 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 694 return true; 695 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 696 return false; 697 } 698 EXPORT_SYMBOL_GPL(kvm_require_cpl); 699 700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 701 { 702 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 703 return true; 704 705 kvm_queue_exception(vcpu, UD_VECTOR); 706 return false; 707 } 708 EXPORT_SYMBOL_GPL(kvm_require_dr); 709 710 /* 711 * This function will be used to read from the physical memory of the currently 712 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 713 * can read from guest physical or from the guest's guest physical memory. 714 */ 715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 716 gfn_t ngfn, void *data, int offset, int len, 717 u32 access) 718 { 719 struct x86_exception exception; 720 gfn_t real_gfn; 721 gpa_t ngpa; 722 723 ngpa = gfn_to_gpa(ngfn); 724 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 725 if (real_gfn == UNMAPPED_GVA) 726 return -EFAULT; 727 728 real_gfn = gpa_to_gfn(real_gfn); 729 730 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 731 } 732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 733 734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 735 void *data, int offset, int len, u32 access) 736 { 737 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 738 data, offset, len, access); 739 } 740 741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 742 { 743 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 744 rsvd_bits(1, 2); 745 } 746 747 /* 748 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 749 */ 750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 751 { 752 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 753 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 754 int i; 755 int ret; 756 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 757 758 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 759 offset * sizeof(u64), sizeof(pdpte), 760 PFERR_USER_MASK|PFERR_WRITE_MASK); 761 if (ret < 0) { 762 ret = 0; 763 goto out; 764 } 765 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 766 if ((pdpte[i] & PT_PRESENT_MASK) && 767 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 768 ret = 0; 769 goto out; 770 } 771 } 772 ret = 1; 773 774 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 775 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 776 777 out: 778 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(load_pdptrs); 782 783 bool pdptrs_changed(struct kvm_vcpu *vcpu) 784 { 785 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 786 int offset; 787 gfn_t gfn; 788 int r; 789 790 if (!is_pae_paging(vcpu)) 791 return false; 792 793 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 794 return true; 795 796 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 797 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 798 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 799 PFERR_USER_MASK | PFERR_WRITE_MASK); 800 if (r < 0) 801 return true; 802 803 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 804 } 805 EXPORT_SYMBOL_GPL(pdptrs_changed); 806 807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 808 { 809 unsigned long old_cr0 = kvm_read_cr0(vcpu); 810 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 811 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 812 813 cr0 |= X86_CR0_ET; 814 815 #ifdef CONFIG_X86_64 816 if (cr0 & 0xffffffff00000000UL) 817 return 1; 818 #endif 819 820 cr0 &= ~CR0_RESERVED_BITS; 821 822 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 823 return 1; 824 825 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 826 return 1; 827 828 #ifdef CONFIG_X86_64 829 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 830 (cr0 & X86_CR0_PG)) { 831 int cs_db, cs_l; 832 833 if (!is_pae(vcpu)) 834 return 1; 835 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 836 if (cs_l) 837 return 1; 838 } 839 #endif 840 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 841 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 842 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 843 return 1; 844 845 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 846 return 1; 847 848 kvm_x86_ops.set_cr0(vcpu, cr0); 849 850 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 851 kvm_clear_async_pf_completion_queue(vcpu); 852 kvm_async_pf_hash_reset(vcpu); 853 } 854 855 if ((cr0 ^ old_cr0) & update_bits) 856 kvm_mmu_reset_context(vcpu); 857 858 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 859 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 860 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 861 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 862 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(kvm_set_cr0); 866 867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 868 { 869 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 870 } 871 EXPORT_SYMBOL_GPL(kvm_lmsw); 872 873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 874 { 875 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 876 877 if (vcpu->arch.xcr0 != host_xcr0) 878 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 879 880 if (vcpu->arch.xsaves_enabled && 881 vcpu->arch.ia32_xss != host_xss) 882 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 883 } 884 885 if (static_cpu_has(X86_FEATURE_PKU) && 886 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 887 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 888 vcpu->arch.pkru != vcpu->arch.host_pkru) 889 __write_pkru(vcpu->arch.pkru); 890 } 891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 892 893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 894 { 895 if (static_cpu_has(X86_FEATURE_PKU) && 896 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 897 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 898 vcpu->arch.pkru = rdpkru(); 899 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 900 __write_pkru(vcpu->arch.host_pkru); 901 } 902 903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 904 905 if (vcpu->arch.xcr0 != host_xcr0) 906 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 907 908 if (vcpu->arch.xsaves_enabled && 909 vcpu->arch.ia32_xss != host_xss) 910 wrmsrl(MSR_IA32_XSS, host_xss); 911 } 912 913 } 914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 915 916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 917 { 918 u64 xcr0 = xcr; 919 u64 old_xcr0 = vcpu->arch.xcr0; 920 u64 valid_bits; 921 922 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 923 if (index != XCR_XFEATURE_ENABLED_MASK) 924 return 1; 925 if (!(xcr0 & XFEATURE_MASK_FP)) 926 return 1; 927 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 928 return 1; 929 930 /* 931 * Do not allow the guest to set bits that we do not support 932 * saving. However, xcr0 bit 0 is always set, even if the 933 * emulated CPU does not support XSAVE (see fx_init). 934 */ 935 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 936 if (xcr0 & ~valid_bits) 937 return 1; 938 939 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 940 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 941 return 1; 942 943 if (xcr0 & XFEATURE_MASK_AVX512) { 944 if (!(xcr0 & XFEATURE_MASK_YMM)) 945 return 1; 946 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 947 return 1; 948 } 949 vcpu->arch.xcr0 = xcr0; 950 951 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 952 kvm_update_cpuid_runtime(vcpu); 953 return 0; 954 } 955 956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 957 { 958 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 959 __kvm_set_xcr(vcpu, index, xcr)) { 960 kvm_inject_gp(vcpu, 0); 961 return 1; 962 } 963 return 0; 964 } 965 EXPORT_SYMBOL_GPL(kvm_set_xcr); 966 967 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 968 { 969 if (cr4 & cr4_reserved_bits) 970 return -EINVAL; 971 972 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 973 return -EINVAL; 974 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvm_valid_cr4); 978 979 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 980 { 981 unsigned long old_cr4 = kvm_read_cr4(vcpu); 982 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 983 X86_CR4_SMEP; 984 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE; 985 986 if (kvm_valid_cr4(vcpu, cr4)) 987 return 1; 988 989 if (is_long_mode(vcpu)) { 990 if (!(cr4 & X86_CR4_PAE)) 991 return 1; 992 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 993 return 1; 994 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 995 && ((cr4 ^ old_cr4) & pdptr_bits) 996 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 997 kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1001 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1002 return 1; 1003 1004 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1005 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1006 return 1; 1007 } 1008 1009 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 1010 return 1; 1011 1012 if (((cr4 ^ old_cr4) & mmu_role_bits) || 1013 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1014 kvm_mmu_reset_context(vcpu); 1015 1016 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1017 kvm_update_cpuid_runtime(vcpu); 1018 1019 return 0; 1020 } 1021 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1022 1023 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1024 { 1025 bool skip_tlb_flush = false; 1026 #ifdef CONFIG_X86_64 1027 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1028 1029 if (pcid_enabled) { 1030 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1031 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1032 } 1033 #endif 1034 1035 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1036 if (!skip_tlb_flush) { 1037 kvm_mmu_sync_roots(vcpu); 1038 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1039 } 1040 return 0; 1041 } 1042 1043 if (is_long_mode(vcpu) && 1044 (cr3 & vcpu->arch.cr3_lm_rsvd_bits)) 1045 return 1; 1046 else if (is_pae_paging(vcpu) && 1047 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1048 return 1; 1049 1050 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1051 vcpu->arch.cr3 = cr3; 1052 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1053 1054 return 0; 1055 } 1056 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1057 1058 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1059 { 1060 if (cr8 & CR8_RESERVED_BITS) 1061 return 1; 1062 if (lapic_in_kernel(vcpu)) 1063 kvm_lapic_set_tpr(vcpu, cr8); 1064 else 1065 vcpu->arch.cr8 = cr8; 1066 return 0; 1067 } 1068 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1069 1070 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1071 { 1072 if (lapic_in_kernel(vcpu)) 1073 return kvm_lapic_get_cr8(vcpu); 1074 else 1075 return vcpu->arch.cr8; 1076 } 1077 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1078 1079 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1080 { 1081 int i; 1082 1083 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1084 for (i = 0; i < KVM_NR_DB_REGS; i++) 1085 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1086 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1087 } 1088 } 1089 1090 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1091 { 1092 unsigned long dr7; 1093 1094 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1095 dr7 = vcpu->arch.guest_debug_dr7; 1096 else 1097 dr7 = vcpu->arch.dr7; 1098 kvm_x86_ops.set_dr7(vcpu, dr7); 1099 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1100 if (dr7 & DR7_BP_EN_MASK) 1101 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1102 } 1103 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1104 1105 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1106 { 1107 u64 fixed = DR6_FIXED_1; 1108 1109 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1110 fixed |= DR6_RTM; 1111 return fixed; 1112 } 1113 1114 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1115 { 1116 size_t size = ARRAY_SIZE(vcpu->arch.db); 1117 1118 switch (dr) { 1119 case 0 ... 3: 1120 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1121 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1122 vcpu->arch.eff_db[dr] = val; 1123 break; 1124 case 4: 1125 case 6: 1126 if (!kvm_dr6_valid(val)) 1127 return -1; /* #GP */ 1128 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1129 break; 1130 case 5: 1131 default: /* 7 */ 1132 if (!kvm_dr7_valid(val)) 1133 return -1; /* #GP */ 1134 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1135 kvm_update_dr7(vcpu); 1136 break; 1137 } 1138 1139 return 0; 1140 } 1141 1142 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1143 { 1144 if (__kvm_set_dr(vcpu, dr, val)) { 1145 kvm_inject_gp(vcpu, 0); 1146 return 1; 1147 } 1148 return 0; 1149 } 1150 EXPORT_SYMBOL_GPL(kvm_set_dr); 1151 1152 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1153 { 1154 size_t size = ARRAY_SIZE(vcpu->arch.db); 1155 1156 switch (dr) { 1157 case 0 ... 3: 1158 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1159 break; 1160 case 4: 1161 case 6: 1162 *val = vcpu->arch.dr6; 1163 break; 1164 case 5: 1165 default: /* 7 */ 1166 *val = vcpu->arch.dr7; 1167 break; 1168 } 1169 return 0; 1170 } 1171 EXPORT_SYMBOL_GPL(kvm_get_dr); 1172 1173 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1174 { 1175 u32 ecx = kvm_rcx_read(vcpu); 1176 u64 data; 1177 int err; 1178 1179 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1180 if (err) 1181 return err; 1182 kvm_rax_write(vcpu, (u32)data); 1183 kvm_rdx_write(vcpu, data >> 32); 1184 return err; 1185 } 1186 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1187 1188 /* 1189 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1190 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1191 * 1192 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1193 * extract the supported MSRs from the related const lists. 1194 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1195 * capabilities of the host cpu. This capabilities test skips MSRs that are 1196 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1197 * may depend on host virtualization features rather than host cpu features. 1198 */ 1199 1200 static const u32 msrs_to_save_all[] = { 1201 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1202 MSR_STAR, 1203 #ifdef CONFIG_X86_64 1204 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1205 #endif 1206 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1207 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1208 MSR_IA32_SPEC_CTRL, 1209 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1210 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1211 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1212 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1213 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1214 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1215 MSR_IA32_UMWAIT_CONTROL, 1216 1217 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1218 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1219 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1220 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1221 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1222 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1223 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1224 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1225 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1226 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1227 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1228 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1229 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1230 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1231 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1232 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1233 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1234 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1235 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1236 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1237 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1238 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1239 }; 1240 1241 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1242 static unsigned num_msrs_to_save; 1243 1244 static const u32 emulated_msrs_all[] = { 1245 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1246 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1247 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1248 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1249 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1250 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1251 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1252 HV_X64_MSR_RESET, 1253 HV_X64_MSR_VP_INDEX, 1254 HV_X64_MSR_VP_RUNTIME, 1255 HV_X64_MSR_SCONTROL, 1256 HV_X64_MSR_STIMER0_CONFIG, 1257 HV_X64_MSR_VP_ASSIST_PAGE, 1258 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1259 HV_X64_MSR_TSC_EMULATION_STATUS, 1260 HV_X64_MSR_SYNDBG_OPTIONS, 1261 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1262 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1263 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1264 1265 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1266 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1267 1268 MSR_IA32_TSC_ADJUST, 1269 MSR_IA32_TSCDEADLINE, 1270 MSR_IA32_ARCH_CAPABILITIES, 1271 MSR_IA32_PERF_CAPABILITIES, 1272 MSR_IA32_MISC_ENABLE, 1273 MSR_IA32_MCG_STATUS, 1274 MSR_IA32_MCG_CTL, 1275 MSR_IA32_MCG_EXT_CTL, 1276 MSR_IA32_SMBASE, 1277 MSR_SMI_COUNT, 1278 MSR_PLATFORM_INFO, 1279 MSR_MISC_FEATURES_ENABLES, 1280 MSR_AMD64_VIRT_SPEC_CTRL, 1281 MSR_IA32_POWER_CTL, 1282 MSR_IA32_UCODE_REV, 1283 1284 /* 1285 * The following list leaves out MSRs whose values are determined 1286 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1287 * We always support the "true" VMX control MSRs, even if the host 1288 * processor does not, so I am putting these registers here rather 1289 * than in msrs_to_save_all. 1290 */ 1291 MSR_IA32_VMX_BASIC, 1292 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1293 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1294 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1295 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1296 MSR_IA32_VMX_MISC, 1297 MSR_IA32_VMX_CR0_FIXED0, 1298 MSR_IA32_VMX_CR4_FIXED0, 1299 MSR_IA32_VMX_VMCS_ENUM, 1300 MSR_IA32_VMX_PROCBASED_CTLS2, 1301 MSR_IA32_VMX_EPT_VPID_CAP, 1302 MSR_IA32_VMX_VMFUNC, 1303 1304 MSR_K7_HWCR, 1305 MSR_KVM_POLL_CONTROL, 1306 }; 1307 1308 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1309 static unsigned num_emulated_msrs; 1310 1311 /* 1312 * List of msr numbers which are used to expose MSR-based features that 1313 * can be used by a hypervisor to validate requested CPU features. 1314 */ 1315 static const u32 msr_based_features_all[] = { 1316 MSR_IA32_VMX_BASIC, 1317 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1318 MSR_IA32_VMX_PINBASED_CTLS, 1319 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1320 MSR_IA32_VMX_PROCBASED_CTLS, 1321 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1322 MSR_IA32_VMX_EXIT_CTLS, 1323 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1324 MSR_IA32_VMX_ENTRY_CTLS, 1325 MSR_IA32_VMX_MISC, 1326 MSR_IA32_VMX_CR0_FIXED0, 1327 MSR_IA32_VMX_CR0_FIXED1, 1328 MSR_IA32_VMX_CR4_FIXED0, 1329 MSR_IA32_VMX_CR4_FIXED1, 1330 MSR_IA32_VMX_VMCS_ENUM, 1331 MSR_IA32_VMX_PROCBASED_CTLS2, 1332 MSR_IA32_VMX_EPT_VPID_CAP, 1333 MSR_IA32_VMX_VMFUNC, 1334 1335 MSR_F10H_DECFG, 1336 MSR_IA32_UCODE_REV, 1337 MSR_IA32_ARCH_CAPABILITIES, 1338 MSR_IA32_PERF_CAPABILITIES, 1339 }; 1340 1341 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1342 static unsigned int num_msr_based_features; 1343 1344 static u64 kvm_get_arch_capabilities(void) 1345 { 1346 u64 data = 0; 1347 1348 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1349 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1350 1351 /* 1352 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1353 * the nested hypervisor runs with NX huge pages. If it is not, 1354 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1355 * L1 guests, so it need not worry about its own (L2) guests. 1356 */ 1357 data |= ARCH_CAP_PSCHANGE_MC_NO; 1358 1359 /* 1360 * If we're doing cache flushes (either "always" or "cond") 1361 * we will do one whenever the guest does a vmlaunch/vmresume. 1362 * If an outer hypervisor is doing the cache flush for us 1363 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1364 * capability to the guest too, and if EPT is disabled we're not 1365 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1366 * require a nested hypervisor to do a flush of its own. 1367 */ 1368 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1369 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1370 1371 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1372 data |= ARCH_CAP_RDCL_NO; 1373 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1374 data |= ARCH_CAP_SSB_NO; 1375 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1376 data |= ARCH_CAP_MDS_NO; 1377 1378 /* 1379 * On TAA affected systems: 1380 * - nothing to do if TSX is disabled on the host. 1381 * - we emulate TSX_CTRL if present on the host. 1382 * This lets the guest use VERW to clear CPU buffers. 1383 */ 1384 if (!boot_cpu_has(X86_FEATURE_RTM)) 1385 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1386 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1387 data |= ARCH_CAP_TAA_NO; 1388 1389 return data; 1390 } 1391 1392 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1393 { 1394 switch (msr->index) { 1395 case MSR_IA32_ARCH_CAPABILITIES: 1396 msr->data = kvm_get_arch_capabilities(); 1397 break; 1398 case MSR_IA32_UCODE_REV: 1399 rdmsrl_safe(msr->index, &msr->data); 1400 break; 1401 default: 1402 return kvm_x86_ops.get_msr_feature(msr); 1403 } 1404 return 0; 1405 } 1406 1407 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1408 { 1409 struct kvm_msr_entry msr; 1410 int r; 1411 1412 msr.index = index; 1413 r = kvm_get_msr_feature(&msr); 1414 1415 if (r == KVM_MSR_RET_INVALID) { 1416 /* Unconditionally clear the output for simplicity */ 1417 *data = 0; 1418 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1419 r = 0; 1420 } 1421 1422 if (r) 1423 return r; 1424 1425 *data = msr.data; 1426 1427 return 0; 1428 } 1429 1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1431 { 1432 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1433 return false; 1434 1435 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1436 return false; 1437 1438 if (efer & (EFER_LME | EFER_LMA) && 1439 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1440 return false; 1441 1442 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1443 return false; 1444 1445 return true; 1446 1447 } 1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1449 { 1450 if (efer & efer_reserved_bits) 1451 return false; 1452 1453 return __kvm_valid_efer(vcpu, efer); 1454 } 1455 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1456 1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1458 { 1459 u64 old_efer = vcpu->arch.efer; 1460 u64 efer = msr_info->data; 1461 int r; 1462 1463 if (efer & efer_reserved_bits) 1464 return 1; 1465 1466 if (!msr_info->host_initiated) { 1467 if (!__kvm_valid_efer(vcpu, efer)) 1468 return 1; 1469 1470 if (is_paging(vcpu) && 1471 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1472 return 1; 1473 } 1474 1475 efer &= ~EFER_LMA; 1476 efer |= vcpu->arch.efer & EFER_LMA; 1477 1478 r = kvm_x86_ops.set_efer(vcpu, efer); 1479 if (r) { 1480 WARN_ON(r > 0); 1481 return r; 1482 } 1483 1484 /* Update reserved bits */ 1485 if ((efer ^ old_efer) & EFER_NX) 1486 kvm_mmu_reset_context(vcpu); 1487 1488 return 0; 1489 } 1490 1491 void kvm_enable_efer_bits(u64 mask) 1492 { 1493 efer_reserved_bits &= ~mask; 1494 } 1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1496 1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1498 { 1499 struct kvm *kvm = vcpu->kvm; 1500 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 1501 u32 count = kvm->arch.msr_filter.count; 1502 u32 i; 1503 bool r = kvm->arch.msr_filter.default_allow; 1504 int idx; 1505 1506 /* MSR filtering not set up or x2APIC enabled, allow everything */ 1507 if (!count || (index >= 0x800 && index <= 0x8ff)) 1508 return true; 1509 1510 /* Prevent collision with set_msr_filter */ 1511 idx = srcu_read_lock(&kvm->srcu); 1512 1513 for (i = 0; i < count; i++) { 1514 u32 start = ranges[i].base; 1515 u32 end = start + ranges[i].nmsrs; 1516 u32 flags = ranges[i].flags; 1517 unsigned long *bitmap = ranges[i].bitmap; 1518 1519 if ((index >= start) && (index < end) && (flags & type)) { 1520 r = !!test_bit(index - start, bitmap); 1521 break; 1522 } 1523 } 1524 1525 srcu_read_unlock(&kvm->srcu, idx); 1526 1527 return r; 1528 } 1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1530 1531 /* 1532 * Write @data into the MSR specified by @index. Select MSR specific fault 1533 * checks are bypassed if @host_initiated is %true. 1534 * Returns 0 on success, non-0 otherwise. 1535 * Assumes vcpu_load() was already called. 1536 */ 1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1538 bool host_initiated) 1539 { 1540 struct msr_data msr; 1541 1542 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1543 return KVM_MSR_RET_FILTERED; 1544 1545 switch (index) { 1546 case MSR_FS_BASE: 1547 case MSR_GS_BASE: 1548 case MSR_KERNEL_GS_BASE: 1549 case MSR_CSTAR: 1550 case MSR_LSTAR: 1551 if (is_noncanonical_address(data, vcpu)) 1552 return 1; 1553 break; 1554 case MSR_IA32_SYSENTER_EIP: 1555 case MSR_IA32_SYSENTER_ESP: 1556 /* 1557 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1558 * non-canonical address is written on Intel but not on 1559 * AMD (which ignores the top 32-bits, because it does 1560 * not implement 64-bit SYSENTER). 1561 * 1562 * 64-bit code should hence be able to write a non-canonical 1563 * value on AMD. Making the address canonical ensures that 1564 * vmentry does not fail on Intel after writing a non-canonical 1565 * value, and that something deterministic happens if the guest 1566 * invokes 64-bit SYSENTER. 1567 */ 1568 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1569 } 1570 1571 msr.data = data; 1572 msr.index = index; 1573 msr.host_initiated = host_initiated; 1574 1575 return kvm_x86_ops.set_msr(vcpu, &msr); 1576 } 1577 1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1579 u32 index, u64 data, bool host_initiated) 1580 { 1581 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1582 1583 if (ret == KVM_MSR_RET_INVALID) 1584 if (kvm_msr_ignored_check(vcpu, index, data, true)) 1585 ret = 0; 1586 1587 return ret; 1588 } 1589 1590 /* 1591 * Read the MSR specified by @index into @data. Select MSR specific fault 1592 * checks are bypassed if @host_initiated is %true. 1593 * Returns 0 on success, non-0 otherwise. 1594 * Assumes vcpu_load() was already called. 1595 */ 1596 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1597 bool host_initiated) 1598 { 1599 struct msr_data msr; 1600 int ret; 1601 1602 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1603 return KVM_MSR_RET_FILTERED; 1604 1605 msr.index = index; 1606 msr.host_initiated = host_initiated; 1607 1608 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1609 if (!ret) 1610 *data = msr.data; 1611 return ret; 1612 } 1613 1614 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1615 u32 index, u64 *data, bool host_initiated) 1616 { 1617 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1618 1619 if (ret == KVM_MSR_RET_INVALID) { 1620 /* Unconditionally clear *data for simplicity */ 1621 *data = 0; 1622 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1623 ret = 0; 1624 } 1625 1626 return ret; 1627 } 1628 1629 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1630 { 1631 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1632 } 1633 EXPORT_SYMBOL_GPL(kvm_get_msr); 1634 1635 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1636 { 1637 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1638 } 1639 EXPORT_SYMBOL_GPL(kvm_set_msr); 1640 1641 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read) 1642 { 1643 if (vcpu->run->msr.error) { 1644 kvm_inject_gp(vcpu, 0); 1645 return 1; 1646 } else if (is_read) { 1647 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1648 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1649 } 1650 1651 return kvm_skip_emulated_instruction(vcpu); 1652 } 1653 1654 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1655 { 1656 return complete_emulated_msr(vcpu, true); 1657 } 1658 1659 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1660 { 1661 return complete_emulated_msr(vcpu, false); 1662 } 1663 1664 static u64 kvm_msr_reason(int r) 1665 { 1666 switch (r) { 1667 case KVM_MSR_RET_INVALID: 1668 return KVM_MSR_EXIT_REASON_UNKNOWN; 1669 case KVM_MSR_RET_FILTERED: 1670 return KVM_MSR_EXIT_REASON_FILTER; 1671 default: 1672 return KVM_MSR_EXIT_REASON_INVAL; 1673 } 1674 } 1675 1676 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1677 u32 exit_reason, u64 data, 1678 int (*completion)(struct kvm_vcpu *vcpu), 1679 int r) 1680 { 1681 u64 msr_reason = kvm_msr_reason(r); 1682 1683 /* Check if the user wanted to know about this MSR fault */ 1684 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1685 return 0; 1686 1687 vcpu->run->exit_reason = exit_reason; 1688 vcpu->run->msr.error = 0; 1689 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1690 vcpu->run->msr.reason = msr_reason; 1691 vcpu->run->msr.index = index; 1692 vcpu->run->msr.data = data; 1693 vcpu->arch.complete_userspace_io = completion; 1694 1695 return 1; 1696 } 1697 1698 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1699 { 1700 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1701 complete_emulated_rdmsr, r); 1702 } 1703 1704 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1705 { 1706 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1707 complete_emulated_wrmsr, r); 1708 } 1709 1710 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1711 { 1712 u32 ecx = kvm_rcx_read(vcpu); 1713 u64 data; 1714 int r; 1715 1716 r = kvm_get_msr(vcpu, ecx, &data); 1717 1718 /* MSR read failed? See if we should ask user space */ 1719 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1720 /* Bounce to user space */ 1721 return 0; 1722 } 1723 1724 /* MSR read failed? Inject a #GP */ 1725 if (r) { 1726 trace_kvm_msr_read_ex(ecx); 1727 kvm_inject_gp(vcpu, 0); 1728 return 1; 1729 } 1730 1731 trace_kvm_msr_read(ecx, data); 1732 1733 kvm_rax_write(vcpu, data & -1u); 1734 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1735 return kvm_skip_emulated_instruction(vcpu); 1736 } 1737 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1738 1739 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1740 { 1741 u32 ecx = kvm_rcx_read(vcpu); 1742 u64 data = kvm_read_edx_eax(vcpu); 1743 int r; 1744 1745 r = kvm_set_msr(vcpu, ecx, data); 1746 1747 /* MSR write failed? See if we should ask user space */ 1748 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1749 /* Bounce to user space */ 1750 return 0; 1751 1752 /* Signal all other negative errors to userspace */ 1753 if (r < 0) 1754 return r; 1755 1756 /* MSR write failed? Inject a #GP */ 1757 if (r > 0) { 1758 trace_kvm_msr_write_ex(ecx, data); 1759 kvm_inject_gp(vcpu, 0); 1760 return 1; 1761 } 1762 1763 trace_kvm_msr_write(ecx, data); 1764 return kvm_skip_emulated_instruction(vcpu); 1765 } 1766 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1767 1768 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1769 { 1770 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1771 xfer_to_guest_mode_work_pending(); 1772 } 1773 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1774 1775 /* 1776 * The fast path for frequent and performance sensitive wrmsr emulation, 1777 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1778 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1779 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1780 * other cases which must be called after interrupts are enabled on the host. 1781 */ 1782 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1783 { 1784 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1785 return 1; 1786 1787 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1788 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1789 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1790 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1791 1792 data &= ~(1 << 12); 1793 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1794 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1795 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1796 trace_kvm_apic_write(APIC_ICR, (u32)data); 1797 return 0; 1798 } 1799 1800 return 1; 1801 } 1802 1803 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1804 { 1805 if (!kvm_can_use_hv_timer(vcpu)) 1806 return 1; 1807 1808 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1809 return 0; 1810 } 1811 1812 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1813 { 1814 u32 msr = kvm_rcx_read(vcpu); 1815 u64 data; 1816 fastpath_t ret = EXIT_FASTPATH_NONE; 1817 1818 switch (msr) { 1819 case APIC_BASE_MSR + (APIC_ICR >> 4): 1820 data = kvm_read_edx_eax(vcpu); 1821 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1822 kvm_skip_emulated_instruction(vcpu); 1823 ret = EXIT_FASTPATH_EXIT_HANDLED; 1824 } 1825 break; 1826 case MSR_IA32_TSCDEADLINE: 1827 data = kvm_read_edx_eax(vcpu); 1828 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1829 kvm_skip_emulated_instruction(vcpu); 1830 ret = EXIT_FASTPATH_REENTER_GUEST; 1831 } 1832 break; 1833 default: 1834 break; 1835 } 1836 1837 if (ret != EXIT_FASTPATH_NONE) 1838 trace_kvm_msr_write(msr, data); 1839 1840 return ret; 1841 } 1842 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1843 1844 /* 1845 * Adapt set_msr() to msr_io()'s calling convention 1846 */ 1847 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1848 { 1849 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1850 } 1851 1852 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1853 { 1854 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1855 } 1856 1857 #ifdef CONFIG_X86_64 1858 struct pvclock_clock { 1859 int vclock_mode; 1860 u64 cycle_last; 1861 u64 mask; 1862 u32 mult; 1863 u32 shift; 1864 u64 base_cycles; 1865 u64 offset; 1866 }; 1867 1868 struct pvclock_gtod_data { 1869 seqcount_t seq; 1870 1871 struct pvclock_clock clock; /* extract of a clocksource struct */ 1872 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1873 1874 ktime_t offs_boot; 1875 u64 wall_time_sec; 1876 }; 1877 1878 static struct pvclock_gtod_data pvclock_gtod_data; 1879 1880 static void update_pvclock_gtod(struct timekeeper *tk) 1881 { 1882 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1883 1884 write_seqcount_begin(&vdata->seq); 1885 1886 /* copy pvclock gtod data */ 1887 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1888 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1889 vdata->clock.mask = tk->tkr_mono.mask; 1890 vdata->clock.mult = tk->tkr_mono.mult; 1891 vdata->clock.shift = tk->tkr_mono.shift; 1892 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1893 vdata->clock.offset = tk->tkr_mono.base; 1894 1895 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1896 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1897 vdata->raw_clock.mask = tk->tkr_raw.mask; 1898 vdata->raw_clock.mult = tk->tkr_raw.mult; 1899 vdata->raw_clock.shift = tk->tkr_raw.shift; 1900 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1901 vdata->raw_clock.offset = tk->tkr_raw.base; 1902 1903 vdata->wall_time_sec = tk->xtime_sec; 1904 1905 vdata->offs_boot = tk->offs_boot; 1906 1907 write_seqcount_end(&vdata->seq); 1908 } 1909 1910 static s64 get_kvmclock_base_ns(void) 1911 { 1912 /* Count up from boot time, but with the frequency of the raw clock. */ 1913 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1914 } 1915 #else 1916 static s64 get_kvmclock_base_ns(void) 1917 { 1918 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1919 return ktime_get_boottime_ns(); 1920 } 1921 #endif 1922 1923 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1924 { 1925 int version; 1926 int r; 1927 struct pvclock_wall_clock wc; 1928 u64 wall_nsec; 1929 1930 kvm->arch.wall_clock = wall_clock; 1931 1932 if (!wall_clock) 1933 return; 1934 1935 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1936 if (r) 1937 return; 1938 1939 if (version & 1) 1940 ++version; /* first time write, random junk */ 1941 1942 ++version; 1943 1944 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1945 return; 1946 1947 /* 1948 * The guest calculates current wall clock time by adding 1949 * system time (updated by kvm_guest_time_update below) to the 1950 * wall clock specified here. We do the reverse here. 1951 */ 1952 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1953 1954 wc.nsec = do_div(wall_nsec, 1000000000); 1955 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1956 wc.version = version; 1957 1958 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1959 1960 version++; 1961 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1962 } 1963 1964 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 1965 bool old_msr, bool host_initiated) 1966 { 1967 struct kvm_arch *ka = &vcpu->kvm->arch; 1968 1969 if (vcpu->vcpu_id == 0 && !host_initiated) { 1970 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 1971 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1972 1973 ka->boot_vcpu_runs_old_kvmclock = old_msr; 1974 } 1975 1976 vcpu->arch.time = system_time; 1977 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 1978 1979 /* we verify if the enable bit is set... */ 1980 vcpu->arch.pv_time_enabled = false; 1981 if (!(system_time & 1)) 1982 return; 1983 1984 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 1985 &vcpu->arch.pv_time, system_time & ~1ULL, 1986 sizeof(struct pvclock_vcpu_time_info))) 1987 vcpu->arch.pv_time_enabled = true; 1988 1989 return; 1990 } 1991 1992 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1993 { 1994 do_shl32_div32(dividend, divisor); 1995 return dividend; 1996 } 1997 1998 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1999 s8 *pshift, u32 *pmultiplier) 2000 { 2001 uint64_t scaled64; 2002 int32_t shift = 0; 2003 uint64_t tps64; 2004 uint32_t tps32; 2005 2006 tps64 = base_hz; 2007 scaled64 = scaled_hz; 2008 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2009 tps64 >>= 1; 2010 shift--; 2011 } 2012 2013 tps32 = (uint32_t)tps64; 2014 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2015 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2016 scaled64 >>= 1; 2017 else 2018 tps32 <<= 1; 2019 shift++; 2020 } 2021 2022 *pshift = shift; 2023 *pmultiplier = div_frac(scaled64, tps32); 2024 } 2025 2026 #ifdef CONFIG_X86_64 2027 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2028 #endif 2029 2030 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2031 static unsigned long max_tsc_khz; 2032 2033 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2034 { 2035 u64 v = (u64)khz * (1000000 + ppm); 2036 do_div(v, 1000000); 2037 return v; 2038 } 2039 2040 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2041 { 2042 u64 ratio; 2043 2044 /* Guest TSC same frequency as host TSC? */ 2045 if (!scale) { 2046 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2047 return 0; 2048 } 2049 2050 /* TSC scaling supported? */ 2051 if (!kvm_has_tsc_control) { 2052 if (user_tsc_khz > tsc_khz) { 2053 vcpu->arch.tsc_catchup = 1; 2054 vcpu->arch.tsc_always_catchup = 1; 2055 return 0; 2056 } else { 2057 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2058 return -1; 2059 } 2060 } 2061 2062 /* TSC scaling required - calculate ratio */ 2063 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2064 user_tsc_khz, tsc_khz); 2065 2066 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2067 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2068 user_tsc_khz); 2069 return -1; 2070 } 2071 2072 vcpu->arch.tsc_scaling_ratio = ratio; 2073 return 0; 2074 } 2075 2076 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2077 { 2078 u32 thresh_lo, thresh_hi; 2079 int use_scaling = 0; 2080 2081 /* tsc_khz can be zero if TSC calibration fails */ 2082 if (user_tsc_khz == 0) { 2083 /* set tsc_scaling_ratio to a safe value */ 2084 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2085 return -1; 2086 } 2087 2088 /* Compute a scale to convert nanoseconds in TSC cycles */ 2089 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2090 &vcpu->arch.virtual_tsc_shift, 2091 &vcpu->arch.virtual_tsc_mult); 2092 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2093 2094 /* 2095 * Compute the variation in TSC rate which is acceptable 2096 * within the range of tolerance and decide if the 2097 * rate being applied is within that bounds of the hardware 2098 * rate. If so, no scaling or compensation need be done. 2099 */ 2100 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2101 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2102 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2103 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2104 use_scaling = 1; 2105 } 2106 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2107 } 2108 2109 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2110 { 2111 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2112 vcpu->arch.virtual_tsc_mult, 2113 vcpu->arch.virtual_tsc_shift); 2114 tsc += vcpu->arch.this_tsc_write; 2115 return tsc; 2116 } 2117 2118 static inline int gtod_is_based_on_tsc(int mode) 2119 { 2120 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2121 } 2122 2123 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2124 { 2125 #ifdef CONFIG_X86_64 2126 bool vcpus_matched; 2127 struct kvm_arch *ka = &vcpu->kvm->arch; 2128 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2129 2130 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2131 atomic_read(&vcpu->kvm->online_vcpus)); 2132 2133 /* 2134 * Once the masterclock is enabled, always perform request in 2135 * order to update it. 2136 * 2137 * In order to enable masterclock, the host clocksource must be TSC 2138 * and the vcpus need to have matched TSCs. When that happens, 2139 * perform request to enable masterclock. 2140 */ 2141 if (ka->use_master_clock || 2142 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2143 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2144 2145 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2146 atomic_read(&vcpu->kvm->online_vcpus), 2147 ka->use_master_clock, gtod->clock.vclock_mode); 2148 #endif 2149 } 2150 2151 /* 2152 * Multiply tsc by a fixed point number represented by ratio. 2153 * 2154 * The most significant 64-N bits (mult) of ratio represent the 2155 * integral part of the fixed point number; the remaining N bits 2156 * (frac) represent the fractional part, ie. ratio represents a fixed 2157 * point number (mult + frac * 2^(-N)). 2158 * 2159 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2160 */ 2161 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2162 { 2163 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2164 } 2165 2166 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2167 { 2168 u64 _tsc = tsc; 2169 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2170 2171 if (ratio != kvm_default_tsc_scaling_ratio) 2172 _tsc = __scale_tsc(ratio, tsc); 2173 2174 return _tsc; 2175 } 2176 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2177 2178 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2179 { 2180 u64 tsc; 2181 2182 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2183 2184 return target_tsc - tsc; 2185 } 2186 2187 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2188 { 2189 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2190 } 2191 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2192 2193 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2194 { 2195 vcpu->arch.l1_tsc_offset = offset; 2196 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 2197 } 2198 2199 static inline bool kvm_check_tsc_unstable(void) 2200 { 2201 #ifdef CONFIG_X86_64 2202 /* 2203 * TSC is marked unstable when we're running on Hyper-V, 2204 * 'TSC page' clocksource is good. 2205 */ 2206 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2207 return false; 2208 #endif 2209 return check_tsc_unstable(); 2210 } 2211 2212 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2213 { 2214 struct kvm *kvm = vcpu->kvm; 2215 u64 offset, ns, elapsed; 2216 unsigned long flags; 2217 bool matched; 2218 bool already_matched; 2219 bool synchronizing = false; 2220 2221 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2222 offset = kvm_compute_tsc_offset(vcpu, data); 2223 ns = get_kvmclock_base_ns(); 2224 elapsed = ns - kvm->arch.last_tsc_nsec; 2225 2226 if (vcpu->arch.virtual_tsc_khz) { 2227 if (data == 0) { 2228 /* 2229 * detection of vcpu initialization -- need to sync 2230 * with other vCPUs. This particularly helps to keep 2231 * kvm_clock stable after CPU hotplug 2232 */ 2233 synchronizing = true; 2234 } else { 2235 u64 tsc_exp = kvm->arch.last_tsc_write + 2236 nsec_to_cycles(vcpu, elapsed); 2237 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2238 /* 2239 * Special case: TSC write with a small delta (1 second) 2240 * of virtual cycle time against real time is 2241 * interpreted as an attempt to synchronize the CPU. 2242 */ 2243 synchronizing = data < tsc_exp + tsc_hz && 2244 data + tsc_hz > tsc_exp; 2245 } 2246 } 2247 2248 /* 2249 * For a reliable TSC, we can match TSC offsets, and for an unstable 2250 * TSC, we add elapsed time in this computation. We could let the 2251 * compensation code attempt to catch up if we fall behind, but 2252 * it's better to try to match offsets from the beginning. 2253 */ 2254 if (synchronizing && 2255 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2256 if (!kvm_check_tsc_unstable()) { 2257 offset = kvm->arch.cur_tsc_offset; 2258 } else { 2259 u64 delta = nsec_to_cycles(vcpu, elapsed); 2260 data += delta; 2261 offset = kvm_compute_tsc_offset(vcpu, data); 2262 } 2263 matched = true; 2264 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2265 } else { 2266 /* 2267 * We split periods of matched TSC writes into generations. 2268 * For each generation, we track the original measured 2269 * nanosecond time, offset, and write, so if TSCs are in 2270 * sync, we can match exact offset, and if not, we can match 2271 * exact software computation in compute_guest_tsc() 2272 * 2273 * These values are tracked in kvm->arch.cur_xxx variables. 2274 */ 2275 kvm->arch.cur_tsc_generation++; 2276 kvm->arch.cur_tsc_nsec = ns; 2277 kvm->arch.cur_tsc_write = data; 2278 kvm->arch.cur_tsc_offset = offset; 2279 matched = false; 2280 } 2281 2282 /* 2283 * We also track th most recent recorded KHZ, write and time to 2284 * allow the matching interval to be extended at each write. 2285 */ 2286 kvm->arch.last_tsc_nsec = ns; 2287 kvm->arch.last_tsc_write = data; 2288 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2289 2290 vcpu->arch.last_guest_tsc = data; 2291 2292 /* Keep track of which generation this VCPU has synchronized to */ 2293 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2294 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2295 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2296 2297 kvm_vcpu_write_tsc_offset(vcpu, offset); 2298 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2299 2300 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2301 if (!matched) { 2302 kvm->arch.nr_vcpus_matched_tsc = 0; 2303 } else if (!already_matched) { 2304 kvm->arch.nr_vcpus_matched_tsc++; 2305 } 2306 2307 kvm_track_tsc_matching(vcpu); 2308 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2309 } 2310 2311 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2312 s64 adjustment) 2313 { 2314 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2315 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2316 } 2317 2318 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2319 { 2320 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2321 WARN_ON(adjustment < 0); 2322 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2323 adjust_tsc_offset_guest(vcpu, adjustment); 2324 } 2325 2326 #ifdef CONFIG_X86_64 2327 2328 static u64 read_tsc(void) 2329 { 2330 u64 ret = (u64)rdtsc_ordered(); 2331 u64 last = pvclock_gtod_data.clock.cycle_last; 2332 2333 if (likely(ret >= last)) 2334 return ret; 2335 2336 /* 2337 * GCC likes to generate cmov here, but this branch is extremely 2338 * predictable (it's just a function of time and the likely is 2339 * very likely) and there's a data dependence, so force GCC 2340 * to generate a branch instead. I don't barrier() because 2341 * we don't actually need a barrier, and if this function 2342 * ever gets inlined it will generate worse code. 2343 */ 2344 asm volatile (""); 2345 return last; 2346 } 2347 2348 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2349 int *mode) 2350 { 2351 long v; 2352 u64 tsc_pg_val; 2353 2354 switch (clock->vclock_mode) { 2355 case VDSO_CLOCKMODE_HVCLOCK: 2356 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2357 tsc_timestamp); 2358 if (tsc_pg_val != U64_MAX) { 2359 /* TSC page valid */ 2360 *mode = VDSO_CLOCKMODE_HVCLOCK; 2361 v = (tsc_pg_val - clock->cycle_last) & 2362 clock->mask; 2363 } else { 2364 /* TSC page invalid */ 2365 *mode = VDSO_CLOCKMODE_NONE; 2366 } 2367 break; 2368 case VDSO_CLOCKMODE_TSC: 2369 *mode = VDSO_CLOCKMODE_TSC; 2370 *tsc_timestamp = read_tsc(); 2371 v = (*tsc_timestamp - clock->cycle_last) & 2372 clock->mask; 2373 break; 2374 default: 2375 *mode = VDSO_CLOCKMODE_NONE; 2376 } 2377 2378 if (*mode == VDSO_CLOCKMODE_NONE) 2379 *tsc_timestamp = v = 0; 2380 2381 return v * clock->mult; 2382 } 2383 2384 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2385 { 2386 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2387 unsigned long seq; 2388 int mode; 2389 u64 ns; 2390 2391 do { 2392 seq = read_seqcount_begin(>od->seq); 2393 ns = gtod->raw_clock.base_cycles; 2394 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2395 ns >>= gtod->raw_clock.shift; 2396 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2397 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2398 *t = ns; 2399 2400 return mode; 2401 } 2402 2403 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2404 { 2405 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2406 unsigned long seq; 2407 int mode; 2408 u64 ns; 2409 2410 do { 2411 seq = read_seqcount_begin(>od->seq); 2412 ts->tv_sec = gtod->wall_time_sec; 2413 ns = gtod->clock.base_cycles; 2414 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2415 ns >>= gtod->clock.shift; 2416 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2417 2418 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2419 ts->tv_nsec = ns; 2420 2421 return mode; 2422 } 2423 2424 /* returns true if host is using TSC based clocksource */ 2425 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2426 { 2427 /* checked again under seqlock below */ 2428 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2429 return false; 2430 2431 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2432 tsc_timestamp)); 2433 } 2434 2435 /* returns true if host is using TSC based clocksource */ 2436 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2437 u64 *tsc_timestamp) 2438 { 2439 /* checked again under seqlock below */ 2440 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2441 return false; 2442 2443 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2444 } 2445 #endif 2446 2447 /* 2448 * 2449 * Assuming a stable TSC across physical CPUS, and a stable TSC 2450 * across virtual CPUs, the following condition is possible. 2451 * Each numbered line represents an event visible to both 2452 * CPUs at the next numbered event. 2453 * 2454 * "timespecX" represents host monotonic time. "tscX" represents 2455 * RDTSC value. 2456 * 2457 * VCPU0 on CPU0 | VCPU1 on CPU1 2458 * 2459 * 1. read timespec0,tsc0 2460 * 2. | timespec1 = timespec0 + N 2461 * | tsc1 = tsc0 + M 2462 * 3. transition to guest | transition to guest 2463 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2464 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2465 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2466 * 2467 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2468 * 2469 * - ret0 < ret1 2470 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2471 * ... 2472 * - 0 < N - M => M < N 2473 * 2474 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2475 * always the case (the difference between two distinct xtime instances 2476 * might be smaller then the difference between corresponding TSC reads, 2477 * when updating guest vcpus pvclock areas). 2478 * 2479 * To avoid that problem, do not allow visibility of distinct 2480 * system_timestamp/tsc_timestamp values simultaneously: use a master 2481 * copy of host monotonic time values. Update that master copy 2482 * in lockstep. 2483 * 2484 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2485 * 2486 */ 2487 2488 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2489 { 2490 #ifdef CONFIG_X86_64 2491 struct kvm_arch *ka = &kvm->arch; 2492 int vclock_mode; 2493 bool host_tsc_clocksource, vcpus_matched; 2494 2495 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2496 atomic_read(&kvm->online_vcpus)); 2497 2498 /* 2499 * If the host uses TSC clock, then passthrough TSC as stable 2500 * to the guest. 2501 */ 2502 host_tsc_clocksource = kvm_get_time_and_clockread( 2503 &ka->master_kernel_ns, 2504 &ka->master_cycle_now); 2505 2506 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2507 && !ka->backwards_tsc_observed 2508 && !ka->boot_vcpu_runs_old_kvmclock; 2509 2510 if (ka->use_master_clock) 2511 atomic_set(&kvm_guest_has_master_clock, 1); 2512 2513 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2514 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2515 vcpus_matched); 2516 #endif 2517 } 2518 2519 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2520 { 2521 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2522 } 2523 2524 static void kvm_gen_update_masterclock(struct kvm *kvm) 2525 { 2526 #ifdef CONFIG_X86_64 2527 int i; 2528 struct kvm_vcpu *vcpu; 2529 struct kvm_arch *ka = &kvm->arch; 2530 2531 spin_lock(&ka->pvclock_gtod_sync_lock); 2532 kvm_make_mclock_inprogress_request(kvm); 2533 /* no guest entries from this point */ 2534 pvclock_update_vm_gtod_copy(kvm); 2535 2536 kvm_for_each_vcpu(i, vcpu, kvm) 2537 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2538 2539 /* guest entries allowed */ 2540 kvm_for_each_vcpu(i, vcpu, kvm) 2541 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2542 2543 spin_unlock(&ka->pvclock_gtod_sync_lock); 2544 #endif 2545 } 2546 2547 u64 get_kvmclock_ns(struct kvm *kvm) 2548 { 2549 struct kvm_arch *ka = &kvm->arch; 2550 struct pvclock_vcpu_time_info hv_clock; 2551 u64 ret; 2552 2553 spin_lock(&ka->pvclock_gtod_sync_lock); 2554 if (!ka->use_master_clock) { 2555 spin_unlock(&ka->pvclock_gtod_sync_lock); 2556 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2557 } 2558 2559 hv_clock.tsc_timestamp = ka->master_cycle_now; 2560 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2561 spin_unlock(&ka->pvclock_gtod_sync_lock); 2562 2563 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2564 get_cpu(); 2565 2566 if (__this_cpu_read(cpu_tsc_khz)) { 2567 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2568 &hv_clock.tsc_shift, 2569 &hv_clock.tsc_to_system_mul); 2570 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2571 } else 2572 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2573 2574 put_cpu(); 2575 2576 return ret; 2577 } 2578 2579 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2580 { 2581 struct kvm_vcpu_arch *vcpu = &v->arch; 2582 struct pvclock_vcpu_time_info guest_hv_clock; 2583 2584 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2585 &guest_hv_clock, sizeof(guest_hv_clock)))) 2586 return; 2587 2588 /* This VCPU is paused, but it's legal for a guest to read another 2589 * VCPU's kvmclock, so we really have to follow the specification where 2590 * it says that version is odd if data is being modified, and even after 2591 * it is consistent. 2592 * 2593 * Version field updates must be kept separate. This is because 2594 * kvm_write_guest_cached might use a "rep movs" instruction, and 2595 * writes within a string instruction are weakly ordered. So there 2596 * are three writes overall. 2597 * 2598 * As a small optimization, only write the version field in the first 2599 * and third write. The vcpu->pv_time cache is still valid, because the 2600 * version field is the first in the struct. 2601 */ 2602 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2603 2604 if (guest_hv_clock.version & 1) 2605 ++guest_hv_clock.version; /* first time write, random junk */ 2606 2607 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2608 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2609 &vcpu->hv_clock, 2610 sizeof(vcpu->hv_clock.version)); 2611 2612 smp_wmb(); 2613 2614 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2615 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2616 2617 if (vcpu->pvclock_set_guest_stopped_request) { 2618 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2619 vcpu->pvclock_set_guest_stopped_request = false; 2620 } 2621 2622 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2623 2624 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2625 &vcpu->hv_clock, 2626 sizeof(vcpu->hv_clock)); 2627 2628 smp_wmb(); 2629 2630 vcpu->hv_clock.version++; 2631 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2632 &vcpu->hv_clock, 2633 sizeof(vcpu->hv_clock.version)); 2634 } 2635 2636 static int kvm_guest_time_update(struct kvm_vcpu *v) 2637 { 2638 unsigned long flags, tgt_tsc_khz; 2639 struct kvm_vcpu_arch *vcpu = &v->arch; 2640 struct kvm_arch *ka = &v->kvm->arch; 2641 s64 kernel_ns; 2642 u64 tsc_timestamp, host_tsc; 2643 u8 pvclock_flags; 2644 bool use_master_clock; 2645 2646 kernel_ns = 0; 2647 host_tsc = 0; 2648 2649 /* 2650 * If the host uses TSC clock, then passthrough TSC as stable 2651 * to the guest. 2652 */ 2653 spin_lock(&ka->pvclock_gtod_sync_lock); 2654 use_master_clock = ka->use_master_clock; 2655 if (use_master_clock) { 2656 host_tsc = ka->master_cycle_now; 2657 kernel_ns = ka->master_kernel_ns; 2658 } 2659 spin_unlock(&ka->pvclock_gtod_sync_lock); 2660 2661 /* Keep irq disabled to prevent changes to the clock */ 2662 local_irq_save(flags); 2663 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2664 if (unlikely(tgt_tsc_khz == 0)) { 2665 local_irq_restore(flags); 2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2667 return 1; 2668 } 2669 if (!use_master_clock) { 2670 host_tsc = rdtsc(); 2671 kernel_ns = get_kvmclock_base_ns(); 2672 } 2673 2674 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2675 2676 /* 2677 * We may have to catch up the TSC to match elapsed wall clock 2678 * time for two reasons, even if kvmclock is used. 2679 * 1) CPU could have been running below the maximum TSC rate 2680 * 2) Broken TSC compensation resets the base at each VCPU 2681 * entry to avoid unknown leaps of TSC even when running 2682 * again on the same CPU. This may cause apparent elapsed 2683 * time to disappear, and the guest to stand still or run 2684 * very slowly. 2685 */ 2686 if (vcpu->tsc_catchup) { 2687 u64 tsc = compute_guest_tsc(v, kernel_ns); 2688 if (tsc > tsc_timestamp) { 2689 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2690 tsc_timestamp = tsc; 2691 } 2692 } 2693 2694 local_irq_restore(flags); 2695 2696 /* With all the info we got, fill in the values */ 2697 2698 if (kvm_has_tsc_control) 2699 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2700 2701 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2702 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2703 &vcpu->hv_clock.tsc_shift, 2704 &vcpu->hv_clock.tsc_to_system_mul); 2705 vcpu->hw_tsc_khz = tgt_tsc_khz; 2706 } 2707 2708 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2709 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2710 vcpu->last_guest_tsc = tsc_timestamp; 2711 2712 /* If the host uses TSC clocksource, then it is stable */ 2713 pvclock_flags = 0; 2714 if (use_master_clock) 2715 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2716 2717 vcpu->hv_clock.flags = pvclock_flags; 2718 2719 if (vcpu->pv_time_enabled) 2720 kvm_setup_pvclock_page(v); 2721 if (v == kvm_get_vcpu(v->kvm, 0)) 2722 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2723 return 0; 2724 } 2725 2726 /* 2727 * kvmclock updates which are isolated to a given vcpu, such as 2728 * vcpu->cpu migration, should not allow system_timestamp from 2729 * the rest of the vcpus to remain static. Otherwise ntp frequency 2730 * correction applies to one vcpu's system_timestamp but not 2731 * the others. 2732 * 2733 * So in those cases, request a kvmclock update for all vcpus. 2734 * We need to rate-limit these requests though, as they can 2735 * considerably slow guests that have a large number of vcpus. 2736 * The time for a remote vcpu to update its kvmclock is bound 2737 * by the delay we use to rate-limit the updates. 2738 */ 2739 2740 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2741 2742 static void kvmclock_update_fn(struct work_struct *work) 2743 { 2744 int i; 2745 struct delayed_work *dwork = to_delayed_work(work); 2746 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2747 kvmclock_update_work); 2748 struct kvm *kvm = container_of(ka, struct kvm, arch); 2749 struct kvm_vcpu *vcpu; 2750 2751 kvm_for_each_vcpu(i, vcpu, kvm) { 2752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2753 kvm_vcpu_kick(vcpu); 2754 } 2755 } 2756 2757 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2758 { 2759 struct kvm *kvm = v->kvm; 2760 2761 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2762 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2763 KVMCLOCK_UPDATE_DELAY); 2764 } 2765 2766 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2767 2768 static void kvmclock_sync_fn(struct work_struct *work) 2769 { 2770 struct delayed_work *dwork = to_delayed_work(work); 2771 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2772 kvmclock_sync_work); 2773 struct kvm *kvm = container_of(ka, struct kvm, arch); 2774 2775 if (!kvmclock_periodic_sync) 2776 return; 2777 2778 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2779 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2780 KVMCLOCK_SYNC_PERIOD); 2781 } 2782 2783 /* 2784 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2785 */ 2786 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2787 { 2788 /* McStatusWrEn enabled? */ 2789 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2790 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2791 2792 return false; 2793 } 2794 2795 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2796 { 2797 u64 mcg_cap = vcpu->arch.mcg_cap; 2798 unsigned bank_num = mcg_cap & 0xff; 2799 u32 msr = msr_info->index; 2800 u64 data = msr_info->data; 2801 2802 switch (msr) { 2803 case MSR_IA32_MCG_STATUS: 2804 vcpu->arch.mcg_status = data; 2805 break; 2806 case MSR_IA32_MCG_CTL: 2807 if (!(mcg_cap & MCG_CTL_P) && 2808 (data || !msr_info->host_initiated)) 2809 return 1; 2810 if (data != 0 && data != ~(u64)0) 2811 return 1; 2812 vcpu->arch.mcg_ctl = data; 2813 break; 2814 default: 2815 if (msr >= MSR_IA32_MC0_CTL && 2816 msr < MSR_IA32_MCx_CTL(bank_num)) { 2817 u32 offset = array_index_nospec( 2818 msr - MSR_IA32_MC0_CTL, 2819 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2820 2821 /* only 0 or all 1s can be written to IA32_MCi_CTL 2822 * some Linux kernels though clear bit 10 in bank 4 to 2823 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2824 * this to avoid an uncatched #GP in the guest 2825 */ 2826 if ((offset & 0x3) == 0 && 2827 data != 0 && (data | (1 << 10)) != ~(u64)0) 2828 return -1; 2829 2830 /* MCi_STATUS */ 2831 if (!msr_info->host_initiated && 2832 (offset & 0x3) == 1 && data != 0) { 2833 if (!can_set_mci_status(vcpu)) 2834 return -1; 2835 } 2836 2837 vcpu->arch.mce_banks[offset] = data; 2838 break; 2839 } 2840 return 1; 2841 } 2842 return 0; 2843 } 2844 2845 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2846 { 2847 struct kvm *kvm = vcpu->kvm; 2848 int lm = is_long_mode(vcpu); 2849 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2850 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2851 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2852 : kvm->arch.xen_hvm_config.blob_size_32; 2853 u32 page_num = data & ~PAGE_MASK; 2854 u64 page_addr = data & PAGE_MASK; 2855 u8 *page; 2856 2857 if (page_num >= blob_size) 2858 return 1; 2859 2860 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2861 if (IS_ERR(page)) 2862 return PTR_ERR(page); 2863 2864 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 2865 kfree(page); 2866 return 1; 2867 } 2868 return 0; 2869 } 2870 2871 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2872 { 2873 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2874 2875 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2876 } 2877 2878 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2879 { 2880 gpa_t gpa = data & ~0x3f; 2881 2882 /* Bits 4:5 are reserved, Should be zero */ 2883 if (data & 0x30) 2884 return 1; 2885 2886 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 2887 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 2888 return 1; 2889 2890 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 2891 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 2892 return 1; 2893 2894 if (!lapic_in_kernel(vcpu)) 2895 return data ? 1 : 0; 2896 2897 vcpu->arch.apf.msr_en_val = data; 2898 2899 if (!kvm_pv_async_pf_enabled(vcpu)) { 2900 kvm_clear_async_pf_completion_queue(vcpu); 2901 kvm_async_pf_hash_reset(vcpu); 2902 return 0; 2903 } 2904 2905 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2906 sizeof(u64))) 2907 return 1; 2908 2909 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2910 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2911 2912 kvm_async_pf_wakeup_all(vcpu); 2913 2914 return 0; 2915 } 2916 2917 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2918 { 2919 /* Bits 8-63 are reserved */ 2920 if (data >> 8) 2921 return 1; 2922 2923 if (!lapic_in_kernel(vcpu)) 2924 return 1; 2925 2926 vcpu->arch.apf.msr_int_val = data; 2927 2928 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2929 2930 return 0; 2931 } 2932 2933 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2934 { 2935 vcpu->arch.pv_time_enabled = false; 2936 vcpu->arch.time = 0; 2937 } 2938 2939 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2940 { 2941 ++vcpu->stat.tlb_flush; 2942 kvm_x86_ops.tlb_flush_all(vcpu); 2943 } 2944 2945 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2946 { 2947 ++vcpu->stat.tlb_flush; 2948 kvm_x86_ops.tlb_flush_guest(vcpu); 2949 } 2950 2951 static void record_steal_time(struct kvm_vcpu *vcpu) 2952 { 2953 struct kvm_host_map map; 2954 struct kvm_steal_time *st; 2955 2956 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2957 return; 2958 2959 /* -EAGAIN is returned in atomic context so we can just return. */ 2960 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2961 &map, &vcpu->arch.st.cache, false)) 2962 return; 2963 2964 st = map.hva + 2965 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2966 2967 /* 2968 * Doing a TLB flush here, on the guest's behalf, can avoid 2969 * expensive IPIs. 2970 */ 2971 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 2972 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2973 st->preempted & KVM_VCPU_FLUSH_TLB); 2974 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2975 kvm_vcpu_flush_tlb_guest(vcpu); 2976 } 2977 2978 vcpu->arch.st.preempted = 0; 2979 2980 if (st->version & 1) 2981 st->version += 1; /* first time write, random junk */ 2982 2983 st->version += 1; 2984 2985 smp_wmb(); 2986 2987 st->steal += current->sched_info.run_delay - 2988 vcpu->arch.st.last_steal; 2989 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2990 2991 smp_wmb(); 2992 2993 st->version += 1; 2994 2995 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2996 } 2997 2998 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2999 { 3000 bool pr = false; 3001 u32 msr = msr_info->index; 3002 u64 data = msr_info->data; 3003 3004 switch (msr) { 3005 case MSR_AMD64_NB_CFG: 3006 case MSR_IA32_UCODE_WRITE: 3007 case MSR_VM_HSAVE_PA: 3008 case MSR_AMD64_PATCH_LOADER: 3009 case MSR_AMD64_BU_CFG2: 3010 case MSR_AMD64_DC_CFG: 3011 case MSR_F15H_EX_CFG: 3012 break; 3013 3014 case MSR_IA32_UCODE_REV: 3015 if (msr_info->host_initiated) 3016 vcpu->arch.microcode_version = data; 3017 break; 3018 case MSR_IA32_ARCH_CAPABILITIES: 3019 if (!msr_info->host_initiated) 3020 return 1; 3021 vcpu->arch.arch_capabilities = data; 3022 break; 3023 case MSR_IA32_PERF_CAPABILITIES: { 3024 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3025 3026 if (!msr_info->host_initiated) 3027 return 1; 3028 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 3029 return 1; 3030 if (data & ~msr_ent.data) 3031 return 1; 3032 3033 vcpu->arch.perf_capabilities = data; 3034 3035 return 0; 3036 } 3037 case MSR_EFER: 3038 return set_efer(vcpu, msr_info); 3039 case MSR_K7_HWCR: 3040 data &= ~(u64)0x40; /* ignore flush filter disable */ 3041 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3042 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3043 3044 /* Handle McStatusWrEn */ 3045 if (data == BIT_ULL(18)) { 3046 vcpu->arch.msr_hwcr = data; 3047 } else if (data != 0) { 3048 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3049 data); 3050 return 1; 3051 } 3052 break; 3053 case MSR_FAM10H_MMIO_CONF_BASE: 3054 if (data != 0) { 3055 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3056 "0x%llx\n", data); 3057 return 1; 3058 } 3059 break; 3060 case MSR_IA32_DEBUGCTLMSR: 3061 if (!data) { 3062 /* We support the non-activated case already */ 3063 break; 3064 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 3065 /* Values other than LBR and BTF are vendor-specific, 3066 thus reserved and should throw a #GP */ 3067 return 1; 3068 } else if (report_ignored_msrs) 3069 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 3070 __func__, data); 3071 break; 3072 case 0x200 ... 0x2ff: 3073 return kvm_mtrr_set_msr(vcpu, msr, data); 3074 case MSR_IA32_APICBASE: 3075 return kvm_set_apic_base(vcpu, msr_info); 3076 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3077 return kvm_x2apic_msr_write(vcpu, msr, data); 3078 case MSR_IA32_TSCDEADLINE: 3079 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3080 break; 3081 case MSR_IA32_TSC_ADJUST: 3082 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3083 if (!msr_info->host_initiated) { 3084 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3085 adjust_tsc_offset_guest(vcpu, adj); 3086 } 3087 vcpu->arch.ia32_tsc_adjust_msr = data; 3088 } 3089 break; 3090 case MSR_IA32_MISC_ENABLE: 3091 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3092 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3093 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3094 return 1; 3095 vcpu->arch.ia32_misc_enable_msr = data; 3096 kvm_update_cpuid_runtime(vcpu); 3097 } else { 3098 vcpu->arch.ia32_misc_enable_msr = data; 3099 } 3100 break; 3101 case MSR_IA32_SMBASE: 3102 if (!msr_info->host_initiated) 3103 return 1; 3104 vcpu->arch.smbase = data; 3105 break; 3106 case MSR_IA32_POWER_CTL: 3107 vcpu->arch.msr_ia32_power_ctl = data; 3108 break; 3109 case MSR_IA32_TSC: 3110 if (msr_info->host_initiated) { 3111 kvm_synchronize_tsc(vcpu, data); 3112 } else { 3113 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3114 adjust_tsc_offset_guest(vcpu, adj); 3115 vcpu->arch.ia32_tsc_adjust_msr += adj; 3116 } 3117 break; 3118 case MSR_IA32_XSS: 3119 if (!msr_info->host_initiated && 3120 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3121 return 1; 3122 /* 3123 * KVM supports exposing PT to the guest, but does not support 3124 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3125 * XSAVES/XRSTORS to save/restore PT MSRs. 3126 */ 3127 if (data & ~supported_xss) 3128 return 1; 3129 vcpu->arch.ia32_xss = data; 3130 break; 3131 case MSR_SMI_COUNT: 3132 if (!msr_info->host_initiated) 3133 return 1; 3134 vcpu->arch.smi_count = data; 3135 break; 3136 case MSR_KVM_WALL_CLOCK_NEW: 3137 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3138 return 1; 3139 3140 kvm_write_wall_clock(vcpu->kvm, data); 3141 break; 3142 case MSR_KVM_WALL_CLOCK: 3143 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3144 return 1; 3145 3146 kvm_write_wall_clock(vcpu->kvm, data); 3147 break; 3148 case MSR_KVM_SYSTEM_TIME_NEW: 3149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3150 return 1; 3151 3152 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3153 break; 3154 case MSR_KVM_SYSTEM_TIME: 3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3156 return 1; 3157 3158 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3159 break; 3160 case MSR_KVM_ASYNC_PF_EN: 3161 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3162 return 1; 3163 3164 if (kvm_pv_enable_async_pf(vcpu, data)) 3165 return 1; 3166 break; 3167 case MSR_KVM_ASYNC_PF_INT: 3168 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3169 return 1; 3170 3171 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3172 return 1; 3173 break; 3174 case MSR_KVM_ASYNC_PF_ACK: 3175 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3176 return 1; 3177 if (data & 0x1) { 3178 vcpu->arch.apf.pageready_pending = false; 3179 kvm_check_async_pf_completion(vcpu); 3180 } 3181 break; 3182 case MSR_KVM_STEAL_TIME: 3183 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3184 return 1; 3185 3186 if (unlikely(!sched_info_on())) 3187 return 1; 3188 3189 if (data & KVM_STEAL_RESERVED_MASK) 3190 return 1; 3191 3192 vcpu->arch.st.msr_val = data; 3193 3194 if (!(data & KVM_MSR_ENABLED)) 3195 break; 3196 3197 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3198 3199 break; 3200 case MSR_KVM_PV_EOI_EN: 3201 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3202 return 1; 3203 3204 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3205 return 1; 3206 break; 3207 3208 case MSR_KVM_POLL_CONTROL: 3209 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3210 return 1; 3211 3212 /* only enable bit supported */ 3213 if (data & (-1ULL << 1)) 3214 return 1; 3215 3216 vcpu->arch.msr_kvm_poll_control = data; 3217 break; 3218 3219 case MSR_IA32_MCG_CTL: 3220 case MSR_IA32_MCG_STATUS: 3221 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3222 return set_msr_mce(vcpu, msr_info); 3223 3224 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3225 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3226 pr = true; 3227 fallthrough; 3228 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3229 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3230 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3231 return kvm_pmu_set_msr(vcpu, msr_info); 3232 3233 if (pr || data != 0) 3234 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3235 "0x%x data 0x%llx\n", msr, data); 3236 break; 3237 case MSR_K7_CLK_CTL: 3238 /* 3239 * Ignore all writes to this no longer documented MSR. 3240 * Writes are only relevant for old K7 processors, 3241 * all pre-dating SVM, but a recommended workaround from 3242 * AMD for these chips. It is possible to specify the 3243 * affected processor models on the command line, hence 3244 * the need to ignore the workaround. 3245 */ 3246 break; 3247 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3248 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3249 case HV_X64_MSR_SYNDBG_OPTIONS: 3250 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3251 case HV_X64_MSR_CRASH_CTL: 3252 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3253 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3254 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3255 case HV_X64_MSR_TSC_EMULATION_STATUS: 3256 return kvm_hv_set_msr_common(vcpu, msr, data, 3257 msr_info->host_initiated); 3258 case MSR_IA32_BBL_CR_CTL3: 3259 /* Drop writes to this legacy MSR -- see rdmsr 3260 * counterpart for further detail. 3261 */ 3262 if (report_ignored_msrs) 3263 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3264 msr, data); 3265 break; 3266 case MSR_AMD64_OSVW_ID_LENGTH: 3267 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3268 return 1; 3269 vcpu->arch.osvw.length = data; 3270 break; 3271 case MSR_AMD64_OSVW_STATUS: 3272 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3273 return 1; 3274 vcpu->arch.osvw.status = data; 3275 break; 3276 case MSR_PLATFORM_INFO: 3277 if (!msr_info->host_initiated || 3278 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3279 cpuid_fault_enabled(vcpu))) 3280 return 1; 3281 vcpu->arch.msr_platform_info = data; 3282 break; 3283 case MSR_MISC_FEATURES_ENABLES: 3284 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3285 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3286 !supports_cpuid_fault(vcpu))) 3287 return 1; 3288 vcpu->arch.msr_misc_features_enables = data; 3289 break; 3290 default: 3291 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3292 return xen_hvm_config(vcpu, data); 3293 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3294 return kvm_pmu_set_msr(vcpu, msr_info); 3295 return KVM_MSR_RET_INVALID; 3296 } 3297 return 0; 3298 } 3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3300 3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3302 { 3303 u64 data; 3304 u64 mcg_cap = vcpu->arch.mcg_cap; 3305 unsigned bank_num = mcg_cap & 0xff; 3306 3307 switch (msr) { 3308 case MSR_IA32_P5_MC_ADDR: 3309 case MSR_IA32_P5_MC_TYPE: 3310 data = 0; 3311 break; 3312 case MSR_IA32_MCG_CAP: 3313 data = vcpu->arch.mcg_cap; 3314 break; 3315 case MSR_IA32_MCG_CTL: 3316 if (!(mcg_cap & MCG_CTL_P) && !host) 3317 return 1; 3318 data = vcpu->arch.mcg_ctl; 3319 break; 3320 case MSR_IA32_MCG_STATUS: 3321 data = vcpu->arch.mcg_status; 3322 break; 3323 default: 3324 if (msr >= MSR_IA32_MC0_CTL && 3325 msr < MSR_IA32_MCx_CTL(bank_num)) { 3326 u32 offset = array_index_nospec( 3327 msr - MSR_IA32_MC0_CTL, 3328 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3329 3330 data = vcpu->arch.mce_banks[offset]; 3331 break; 3332 } 3333 return 1; 3334 } 3335 *pdata = data; 3336 return 0; 3337 } 3338 3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3340 { 3341 switch (msr_info->index) { 3342 case MSR_IA32_PLATFORM_ID: 3343 case MSR_IA32_EBL_CR_POWERON: 3344 case MSR_IA32_DEBUGCTLMSR: 3345 case MSR_IA32_LASTBRANCHFROMIP: 3346 case MSR_IA32_LASTBRANCHTOIP: 3347 case MSR_IA32_LASTINTFROMIP: 3348 case MSR_IA32_LASTINTTOIP: 3349 case MSR_K8_SYSCFG: 3350 case MSR_K8_TSEG_ADDR: 3351 case MSR_K8_TSEG_MASK: 3352 case MSR_VM_HSAVE_PA: 3353 case MSR_K8_INT_PENDING_MSG: 3354 case MSR_AMD64_NB_CFG: 3355 case MSR_FAM10H_MMIO_CONF_BASE: 3356 case MSR_AMD64_BU_CFG2: 3357 case MSR_IA32_PERF_CTL: 3358 case MSR_AMD64_DC_CFG: 3359 case MSR_F15H_EX_CFG: 3360 /* 3361 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3362 * limit) MSRs. Just return 0, as we do not want to expose the host 3363 * data here. Do not conditionalize this on CPUID, as KVM does not do 3364 * so for existing CPU-specific MSRs. 3365 */ 3366 case MSR_RAPL_POWER_UNIT: 3367 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3368 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3369 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3370 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3371 msr_info->data = 0; 3372 break; 3373 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3374 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3375 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3376 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3377 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3378 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3379 return kvm_pmu_get_msr(vcpu, msr_info); 3380 msr_info->data = 0; 3381 break; 3382 case MSR_IA32_UCODE_REV: 3383 msr_info->data = vcpu->arch.microcode_version; 3384 break; 3385 case MSR_IA32_ARCH_CAPABILITIES: 3386 if (!msr_info->host_initiated && 3387 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3388 return 1; 3389 msr_info->data = vcpu->arch.arch_capabilities; 3390 break; 3391 case MSR_IA32_PERF_CAPABILITIES: 3392 if (!msr_info->host_initiated && 3393 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3394 return 1; 3395 msr_info->data = vcpu->arch.perf_capabilities; 3396 break; 3397 case MSR_IA32_POWER_CTL: 3398 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3399 break; 3400 case MSR_IA32_TSC: { 3401 /* 3402 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3403 * even when not intercepted. AMD manual doesn't explicitly 3404 * state this but appears to behave the same. 3405 * 3406 * On userspace reads and writes, however, we unconditionally 3407 * return L1's TSC value to ensure backwards-compatible 3408 * behavior for migration. 3409 */ 3410 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset : 3411 vcpu->arch.tsc_offset; 3412 3413 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset; 3414 break; 3415 } 3416 case MSR_MTRRcap: 3417 case 0x200 ... 0x2ff: 3418 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3419 case 0xcd: /* fsb frequency */ 3420 msr_info->data = 3; 3421 break; 3422 /* 3423 * MSR_EBC_FREQUENCY_ID 3424 * Conservative value valid for even the basic CPU models. 3425 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3426 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3427 * and 266MHz for model 3, or 4. Set Core Clock 3428 * Frequency to System Bus Frequency Ratio to 1 (bits 3429 * 31:24) even though these are only valid for CPU 3430 * models > 2, however guests may end up dividing or 3431 * multiplying by zero otherwise. 3432 */ 3433 case MSR_EBC_FREQUENCY_ID: 3434 msr_info->data = 1 << 24; 3435 break; 3436 case MSR_IA32_APICBASE: 3437 msr_info->data = kvm_get_apic_base(vcpu); 3438 break; 3439 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3440 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3441 case MSR_IA32_TSCDEADLINE: 3442 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3443 break; 3444 case MSR_IA32_TSC_ADJUST: 3445 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3446 break; 3447 case MSR_IA32_MISC_ENABLE: 3448 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3449 break; 3450 case MSR_IA32_SMBASE: 3451 if (!msr_info->host_initiated) 3452 return 1; 3453 msr_info->data = vcpu->arch.smbase; 3454 break; 3455 case MSR_SMI_COUNT: 3456 msr_info->data = vcpu->arch.smi_count; 3457 break; 3458 case MSR_IA32_PERF_STATUS: 3459 /* TSC increment by tick */ 3460 msr_info->data = 1000ULL; 3461 /* CPU multiplier */ 3462 msr_info->data |= (((uint64_t)4ULL) << 40); 3463 break; 3464 case MSR_EFER: 3465 msr_info->data = vcpu->arch.efer; 3466 break; 3467 case MSR_KVM_WALL_CLOCK: 3468 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3469 return 1; 3470 3471 msr_info->data = vcpu->kvm->arch.wall_clock; 3472 break; 3473 case MSR_KVM_WALL_CLOCK_NEW: 3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3475 return 1; 3476 3477 msr_info->data = vcpu->kvm->arch.wall_clock; 3478 break; 3479 case MSR_KVM_SYSTEM_TIME: 3480 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3481 return 1; 3482 3483 msr_info->data = vcpu->arch.time; 3484 break; 3485 case MSR_KVM_SYSTEM_TIME_NEW: 3486 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3487 return 1; 3488 3489 msr_info->data = vcpu->arch.time; 3490 break; 3491 case MSR_KVM_ASYNC_PF_EN: 3492 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3493 return 1; 3494 3495 msr_info->data = vcpu->arch.apf.msr_en_val; 3496 break; 3497 case MSR_KVM_ASYNC_PF_INT: 3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3499 return 1; 3500 3501 msr_info->data = vcpu->arch.apf.msr_int_val; 3502 break; 3503 case MSR_KVM_ASYNC_PF_ACK: 3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3505 return 1; 3506 3507 msr_info->data = 0; 3508 break; 3509 case MSR_KVM_STEAL_TIME: 3510 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3511 return 1; 3512 3513 msr_info->data = vcpu->arch.st.msr_val; 3514 break; 3515 case MSR_KVM_PV_EOI_EN: 3516 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3517 return 1; 3518 3519 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3520 break; 3521 case MSR_KVM_POLL_CONTROL: 3522 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3523 return 1; 3524 3525 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3526 break; 3527 case MSR_IA32_P5_MC_ADDR: 3528 case MSR_IA32_P5_MC_TYPE: 3529 case MSR_IA32_MCG_CAP: 3530 case MSR_IA32_MCG_CTL: 3531 case MSR_IA32_MCG_STATUS: 3532 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3533 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3534 msr_info->host_initiated); 3535 case MSR_IA32_XSS: 3536 if (!msr_info->host_initiated && 3537 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3538 return 1; 3539 msr_info->data = vcpu->arch.ia32_xss; 3540 break; 3541 case MSR_K7_CLK_CTL: 3542 /* 3543 * Provide expected ramp-up count for K7. All other 3544 * are set to zero, indicating minimum divisors for 3545 * every field. 3546 * 3547 * This prevents guest kernels on AMD host with CPU 3548 * type 6, model 8 and higher from exploding due to 3549 * the rdmsr failing. 3550 */ 3551 msr_info->data = 0x20000000; 3552 break; 3553 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3554 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3555 case HV_X64_MSR_SYNDBG_OPTIONS: 3556 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3557 case HV_X64_MSR_CRASH_CTL: 3558 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3559 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3560 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3561 case HV_X64_MSR_TSC_EMULATION_STATUS: 3562 return kvm_hv_get_msr_common(vcpu, 3563 msr_info->index, &msr_info->data, 3564 msr_info->host_initiated); 3565 case MSR_IA32_BBL_CR_CTL3: 3566 /* This legacy MSR exists but isn't fully documented in current 3567 * silicon. It is however accessed by winxp in very narrow 3568 * scenarios where it sets bit #19, itself documented as 3569 * a "reserved" bit. Best effort attempt to source coherent 3570 * read data here should the balance of the register be 3571 * interpreted by the guest: 3572 * 3573 * L2 cache control register 3: 64GB range, 256KB size, 3574 * enabled, latency 0x1, configured 3575 */ 3576 msr_info->data = 0xbe702111; 3577 break; 3578 case MSR_AMD64_OSVW_ID_LENGTH: 3579 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3580 return 1; 3581 msr_info->data = vcpu->arch.osvw.length; 3582 break; 3583 case MSR_AMD64_OSVW_STATUS: 3584 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3585 return 1; 3586 msr_info->data = vcpu->arch.osvw.status; 3587 break; 3588 case MSR_PLATFORM_INFO: 3589 if (!msr_info->host_initiated && 3590 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3591 return 1; 3592 msr_info->data = vcpu->arch.msr_platform_info; 3593 break; 3594 case MSR_MISC_FEATURES_ENABLES: 3595 msr_info->data = vcpu->arch.msr_misc_features_enables; 3596 break; 3597 case MSR_K7_HWCR: 3598 msr_info->data = vcpu->arch.msr_hwcr; 3599 break; 3600 default: 3601 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3602 return kvm_pmu_get_msr(vcpu, msr_info); 3603 return KVM_MSR_RET_INVALID; 3604 } 3605 return 0; 3606 } 3607 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3608 3609 /* 3610 * Read or write a bunch of msrs. All parameters are kernel addresses. 3611 * 3612 * @return number of msrs set successfully. 3613 */ 3614 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3615 struct kvm_msr_entry *entries, 3616 int (*do_msr)(struct kvm_vcpu *vcpu, 3617 unsigned index, u64 *data)) 3618 { 3619 int i; 3620 3621 for (i = 0; i < msrs->nmsrs; ++i) 3622 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3623 break; 3624 3625 return i; 3626 } 3627 3628 /* 3629 * Read or write a bunch of msrs. Parameters are user addresses. 3630 * 3631 * @return number of msrs set successfully. 3632 */ 3633 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3634 int (*do_msr)(struct kvm_vcpu *vcpu, 3635 unsigned index, u64 *data), 3636 int writeback) 3637 { 3638 struct kvm_msrs msrs; 3639 struct kvm_msr_entry *entries; 3640 int r, n; 3641 unsigned size; 3642 3643 r = -EFAULT; 3644 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3645 goto out; 3646 3647 r = -E2BIG; 3648 if (msrs.nmsrs >= MAX_IO_MSRS) 3649 goto out; 3650 3651 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3652 entries = memdup_user(user_msrs->entries, size); 3653 if (IS_ERR(entries)) { 3654 r = PTR_ERR(entries); 3655 goto out; 3656 } 3657 3658 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3659 if (r < 0) 3660 goto out_free; 3661 3662 r = -EFAULT; 3663 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3664 goto out_free; 3665 3666 r = n; 3667 3668 out_free: 3669 kfree(entries); 3670 out: 3671 return r; 3672 } 3673 3674 static inline bool kvm_can_mwait_in_guest(void) 3675 { 3676 return boot_cpu_has(X86_FEATURE_MWAIT) && 3677 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3678 boot_cpu_has(X86_FEATURE_ARAT); 3679 } 3680 3681 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3682 { 3683 int r = 0; 3684 3685 switch (ext) { 3686 case KVM_CAP_IRQCHIP: 3687 case KVM_CAP_HLT: 3688 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3689 case KVM_CAP_SET_TSS_ADDR: 3690 case KVM_CAP_EXT_CPUID: 3691 case KVM_CAP_EXT_EMUL_CPUID: 3692 case KVM_CAP_CLOCKSOURCE: 3693 case KVM_CAP_PIT: 3694 case KVM_CAP_NOP_IO_DELAY: 3695 case KVM_CAP_MP_STATE: 3696 case KVM_CAP_SYNC_MMU: 3697 case KVM_CAP_USER_NMI: 3698 case KVM_CAP_REINJECT_CONTROL: 3699 case KVM_CAP_IRQ_INJECT_STATUS: 3700 case KVM_CAP_IOEVENTFD: 3701 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3702 case KVM_CAP_PIT2: 3703 case KVM_CAP_PIT_STATE2: 3704 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3705 case KVM_CAP_XEN_HVM: 3706 case KVM_CAP_VCPU_EVENTS: 3707 case KVM_CAP_HYPERV: 3708 case KVM_CAP_HYPERV_VAPIC: 3709 case KVM_CAP_HYPERV_SPIN: 3710 case KVM_CAP_HYPERV_SYNIC: 3711 case KVM_CAP_HYPERV_SYNIC2: 3712 case KVM_CAP_HYPERV_VP_INDEX: 3713 case KVM_CAP_HYPERV_EVENTFD: 3714 case KVM_CAP_HYPERV_TLBFLUSH: 3715 case KVM_CAP_HYPERV_SEND_IPI: 3716 case KVM_CAP_HYPERV_CPUID: 3717 case KVM_CAP_PCI_SEGMENT: 3718 case KVM_CAP_DEBUGREGS: 3719 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3720 case KVM_CAP_XSAVE: 3721 case KVM_CAP_ASYNC_PF: 3722 case KVM_CAP_ASYNC_PF_INT: 3723 case KVM_CAP_GET_TSC_KHZ: 3724 case KVM_CAP_KVMCLOCK_CTRL: 3725 case KVM_CAP_READONLY_MEM: 3726 case KVM_CAP_HYPERV_TIME: 3727 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3728 case KVM_CAP_TSC_DEADLINE_TIMER: 3729 case KVM_CAP_DISABLE_QUIRKS: 3730 case KVM_CAP_SET_BOOT_CPU_ID: 3731 case KVM_CAP_SPLIT_IRQCHIP: 3732 case KVM_CAP_IMMEDIATE_EXIT: 3733 case KVM_CAP_PMU_EVENT_FILTER: 3734 case KVM_CAP_GET_MSR_FEATURES: 3735 case KVM_CAP_MSR_PLATFORM_INFO: 3736 case KVM_CAP_EXCEPTION_PAYLOAD: 3737 case KVM_CAP_SET_GUEST_DEBUG: 3738 case KVM_CAP_LAST_CPU: 3739 case KVM_CAP_X86_USER_SPACE_MSR: 3740 case KVM_CAP_X86_MSR_FILTER: 3741 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 3742 r = 1; 3743 break; 3744 case KVM_CAP_SYNC_REGS: 3745 r = KVM_SYNC_X86_VALID_FIELDS; 3746 break; 3747 case KVM_CAP_ADJUST_CLOCK: 3748 r = KVM_CLOCK_TSC_STABLE; 3749 break; 3750 case KVM_CAP_X86_DISABLE_EXITS: 3751 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3752 KVM_X86_DISABLE_EXITS_CSTATE; 3753 if(kvm_can_mwait_in_guest()) 3754 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3755 break; 3756 case KVM_CAP_X86_SMM: 3757 /* SMBASE is usually relocated above 1M on modern chipsets, 3758 * and SMM handlers might indeed rely on 4G segment limits, 3759 * so do not report SMM to be available if real mode is 3760 * emulated via vm86 mode. Still, do not go to great lengths 3761 * to avoid userspace's usage of the feature, because it is a 3762 * fringe case that is not enabled except via specific settings 3763 * of the module parameters. 3764 */ 3765 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3766 break; 3767 case KVM_CAP_VAPIC: 3768 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3769 break; 3770 case KVM_CAP_NR_VCPUS: 3771 r = KVM_SOFT_MAX_VCPUS; 3772 break; 3773 case KVM_CAP_MAX_VCPUS: 3774 r = KVM_MAX_VCPUS; 3775 break; 3776 case KVM_CAP_MAX_VCPU_ID: 3777 r = KVM_MAX_VCPU_ID; 3778 break; 3779 case KVM_CAP_PV_MMU: /* obsolete */ 3780 r = 0; 3781 break; 3782 case KVM_CAP_MCE: 3783 r = KVM_MAX_MCE_BANKS; 3784 break; 3785 case KVM_CAP_XCRS: 3786 r = boot_cpu_has(X86_FEATURE_XSAVE); 3787 break; 3788 case KVM_CAP_TSC_CONTROL: 3789 r = kvm_has_tsc_control; 3790 break; 3791 case KVM_CAP_X2APIC_API: 3792 r = KVM_X2APIC_API_VALID_FLAGS; 3793 break; 3794 case KVM_CAP_NESTED_STATE: 3795 r = kvm_x86_ops.nested_ops->get_state ? 3796 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3797 break; 3798 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3799 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3800 break; 3801 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3802 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3803 break; 3804 case KVM_CAP_SMALLER_MAXPHYADDR: 3805 r = (int) allow_smaller_maxphyaddr; 3806 break; 3807 case KVM_CAP_STEAL_TIME: 3808 r = sched_info_on(); 3809 break; 3810 default: 3811 break; 3812 } 3813 return r; 3814 3815 } 3816 3817 long kvm_arch_dev_ioctl(struct file *filp, 3818 unsigned int ioctl, unsigned long arg) 3819 { 3820 void __user *argp = (void __user *)arg; 3821 long r; 3822 3823 switch (ioctl) { 3824 case KVM_GET_MSR_INDEX_LIST: { 3825 struct kvm_msr_list __user *user_msr_list = argp; 3826 struct kvm_msr_list msr_list; 3827 unsigned n; 3828 3829 r = -EFAULT; 3830 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3831 goto out; 3832 n = msr_list.nmsrs; 3833 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3834 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3835 goto out; 3836 r = -E2BIG; 3837 if (n < msr_list.nmsrs) 3838 goto out; 3839 r = -EFAULT; 3840 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3841 num_msrs_to_save * sizeof(u32))) 3842 goto out; 3843 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3844 &emulated_msrs, 3845 num_emulated_msrs * sizeof(u32))) 3846 goto out; 3847 r = 0; 3848 break; 3849 } 3850 case KVM_GET_SUPPORTED_CPUID: 3851 case KVM_GET_EMULATED_CPUID: { 3852 struct kvm_cpuid2 __user *cpuid_arg = argp; 3853 struct kvm_cpuid2 cpuid; 3854 3855 r = -EFAULT; 3856 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3857 goto out; 3858 3859 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3860 ioctl); 3861 if (r) 3862 goto out; 3863 3864 r = -EFAULT; 3865 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3866 goto out; 3867 r = 0; 3868 break; 3869 } 3870 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3871 r = -EFAULT; 3872 if (copy_to_user(argp, &kvm_mce_cap_supported, 3873 sizeof(kvm_mce_cap_supported))) 3874 goto out; 3875 r = 0; 3876 break; 3877 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3878 struct kvm_msr_list __user *user_msr_list = argp; 3879 struct kvm_msr_list msr_list; 3880 unsigned int n; 3881 3882 r = -EFAULT; 3883 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3884 goto out; 3885 n = msr_list.nmsrs; 3886 msr_list.nmsrs = num_msr_based_features; 3887 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3888 goto out; 3889 r = -E2BIG; 3890 if (n < msr_list.nmsrs) 3891 goto out; 3892 r = -EFAULT; 3893 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3894 num_msr_based_features * sizeof(u32))) 3895 goto out; 3896 r = 0; 3897 break; 3898 } 3899 case KVM_GET_MSRS: 3900 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3901 break; 3902 default: 3903 r = -EINVAL; 3904 break; 3905 } 3906 out: 3907 return r; 3908 } 3909 3910 static void wbinvd_ipi(void *garbage) 3911 { 3912 wbinvd(); 3913 } 3914 3915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3916 { 3917 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3918 } 3919 3920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3921 { 3922 /* Address WBINVD may be executed by guest */ 3923 if (need_emulate_wbinvd(vcpu)) { 3924 if (kvm_x86_ops.has_wbinvd_exit()) 3925 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3926 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3927 smp_call_function_single(vcpu->cpu, 3928 wbinvd_ipi, NULL, 1); 3929 } 3930 3931 kvm_x86_ops.vcpu_load(vcpu, cpu); 3932 3933 /* Save host pkru register if supported */ 3934 vcpu->arch.host_pkru = read_pkru(); 3935 3936 /* Apply any externally detected TSC adjustments (due to suspend) */ 3937 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3938 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3939 vcpu->arch.tsc_offset_adjustment = 0; 3940 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3941 } 3942 3943 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3944 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3945 rdtsc() - vcpu->arch.last_host_tsc; 3946 if (tsc_delta < 0) 3947 mark_tsc_unstable("KVM discovered backwards TSC"); 3948 3949 if (kvm_check_tsc_unstable()) { 3950 u64 offset = kvm_compute_tsc_offset(vcpu, 3951 vcpu->arch.last_guest_tsc); 3952 kvm_vcpu_write_tsc_offset(vcpu, offset); 3953 vcpu->arch.tsc_catchup = 1; 3954 } 3955 3956 if (kvm_lapic_hv_timer_in_use(vcpu)) 3957 kvm_lapic_restart_hv_timer(vcpu); 3958 3959 /* 3960 * On a host with synchronized TSC, there is no need to update 3961 * kvmclock on vcpu->cpu migration 3962 */ 3963 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3964 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3965 if (vcpu->cpu != cpu) 3966 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3967 vcpu->cpu = cpu; 3968 } 3969 3970 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3971 } 3972 3973 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3974 { 3975 struct kvm_host_map map; 3976 struct kvm_steal_time *st; 3977 3978 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3979 return; 3980 3981 if (vcpu->arch.st.preempted) 3982 return; 3983 3984 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3985 &vcpu->arch.st.cache, true)) 3986 return; 3987 3988 st = map.hva + 3989 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3990 3991 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3992 3993 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3994 } 3995 3996 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3997 { 3998 int idx; 3999 4000 if (vcpu->preempted) 4001 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 4002 4003 /* 4004 * Disable page faults because we're in atomic context here. 4005 * kvm_write_guest_offset_cached() would call might_fault() 4006 * that relies on pagefault_disable() to tell if there's a 4007 * bug. NOTE: the write to guest memory may not go through if 4008 * during postcopy live migration or if there's heavy guest 4009 * paging. 4010 */ 4011 pagefault_disable(); 4012 /* 4013 * kvm_memslots() will be called by 4014 * kvm_write_guest_offset_cached() so take the srcu lock. 4015 */ 4016 idx = srcu_read_lock(&vcpu->kvm->srcu); 4017 kvm_steal_time_set_preempted(vcpu); 4018 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4019 pagefault_enable(); 4020 kvm_x86_ops.vcpu_put(vcpu); 4021 vcpu->arch.last_host_tsc = rdtsc(); 4022 /* 4023 * If userspace has set any breakpoints or watchpoints, dr6 is restored 4024 * on every vmexit, but if not, we might have a stale dr6 from the 4025 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 4026 */ 4027 set_debugreg(0, 6); 4028 } 4029 4030 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4031 struct kvm_lapic_state *s) 4032 { 4033 if (vcpu->arch.apicv_active) 4034 kvm_x86_ops.sync_pir_to_irr(vcpu); 4035 4036 return kvm_apic_get_state(vcpu, s); 4037 } 4038 4039 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4040 struct kvm_lapic_state *s) 4041 { 4042 int r; 4043 4044 r = kvm_apic_set_state(vcpu, s); 4045 if (r) 4046 return r; 4047 update_cr8_intercept(vcpu); 4048 4049 return 0; 4050 } 4051 4052 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4053 { 4054 return (!lapic_in_kernel(vcpu) || 4055 kvm_apic_accept_pic_intr(vcpu)); 4056 } 4057 4058 /* 4059 * if userspace requested an interrupt window, check that the 4060 * interrupt window is open. 4061 * 4062 * No need to exit to userspace if we already have an interrupt queued. 4063 */ 4064 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4065 { 4066 return kvm_arch_interrupt_allowed(vcpu) && 4067 !kvm_cpu_has_interrupt(vcpu) && 4068 !kvm_event_needs_reinjection(vcpu) && 4069 kvm_cpu_accept_dm_intr(vcpu); 4070 } 4071 4072 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4073 struct kvm_interrupt *irq) 4074 { 4075 if (irq->irq >= KVM_NR_INTERRUPTS) 4076 return -EINVAL; 4077 4078 if (!irqchip_in_kernel(vcpu->kvm)) { 4079 kvm_queue_interrupt(vcpu, irq->irq, false); 4080 kvm_make_request(KVM_REQ_EVENT, vcpu); 4081 return 0; 4082 } 4083 4084 /* 4085 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4086 * fail for in-kernel 8259. 4087 */ 4088 if (pic_in_kernel(vcpu->kvm)) 4089 return -ENXIO; 4090 4091 if (vcpu->arch.pending_external_vector != -1) 4092 return -EEXIST; 4093 4094 vcpu->arch.pending_external_vector = irq->irq; 4095 kvm_make_request(KVM_REQ_EVENT, vcpu); 4096 return 0; 4097 } 4098 4099 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4100 { 4101 kvm_inject_nmi(vcpu); 4102 4103 return 0; 4104 } 4105 4106 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4107 { 4108 kvm_make_request(KVM_REQ_SMI, vcpu); 4109 4110 return 0; 4111 } 4112 4113 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4114 struct kvm_tpr_access_ctl *tac) 4115 { 4116 if (tac->flags) 4117 return -EINVAL; 4118 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4119 return 0; 4120 } 4121 4122 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4123 u64 mcg_cap) 4124 { 4125 int r; 4126 unsigned bank_num = mcg_cap & 0xff, bank; 4127 4128 r = -EINVAL; 4129 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4130 goto out; 4131 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4132 goto out; 4133 r = 0; 4134 vcpu->arch.mcg_cap = mcg_cap; 4135 /* Init IA32_MCG_CTL to all 1s */ 4136 if (mcg_cap & MCG_CTL_P) 4137 vcpu->arch.mcg_ctl = ~(u64)0; 4138 /* Init IA32_MCi_CTL to all 1s */ 4139 for (bank = 0; bank < bank_num; bank++) 4140 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4141 4142 kvm_x86_ops.setup_mce(vcpu); 4143 out: 4144 return r; 4145 } 4146 4147 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4148 struct kvm_x86_mce *mce) 4149 { 4150 u64 mcg_cap = vcpu->arch.mcg_cap; 4151 unsigned bank_num = mcg_cap & 0xff; 4152 u64 *banks = vcpu->arch.mce_banks; 4153 4154 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4155 return -EINVAL; 4156 /* 4157 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4158 * reporting is disabled 4159 */ 4160 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4161 vcpu->arch.mcg_ctl != ~(u64)0) 4162 return 0; 4163 banks += 4 * mce->bank; 4164 /* 4165 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4166 * reporting is disabled for the bank 4167 */ 4168 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4169 return 0; 4170 if (mce->status & MCI_STATUS_UC) { 4171 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4172 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4173 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4174 return 0; 4175 } 4176 if (banks[1] & MCI_STATUS_VAL) 4177 mce->status |= MCI_STATUS_OVER; 4178 banks[2] = mce->addr; 4179 banks[3] = mce->misc; 4180 vcpu->arch.mcg_status = mce->mcg_status; 4181 banks[1] = mce->status; 4182 kvm_queue_exception(vcpu, MC_VECTOR); 4183 } else if (!(banks[1] & MCI_STATUS_VAL) 4184 || !(banks[1] & MCI_STATUS_UC)) { 4185 if (banks[1] & MCI_STATUS_VAL) 4186 mce->status |= MCI_STATUS_OVER; 4187 banks[2] = mce->addr; 4188 banks[3] = mce->misc; 4189 banks[1] = mce->status; 4190 } else 4191 banks[1] |= MCI_STATUS_OVER; 4192 return 0; 4193 } 4194 4195 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4196 struct kvm_vcpu_events *events) 4197 { 4198 process_nmi(vcpu); 4199 4200 /* 4201 * In guest mode, payload delivery should be deferred, 4202 * so that the L1 hypervisor can intercept #PF before 4203 * CR2 is modified (or intercept #DB before DR6 is 4204 * modified under nVMX). Unless the per-VM capability, 4205 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4206 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4207 * opportunistically defer the exception payload, deliver it if the 4208 * capability hasn't been requested before processing a 4209 * KVM_GET_VCPU_EVENTS. 4210 */ 4211 if (!vcpu->kvm->arch.exception_payload_enabled && 4212 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4213 kvm_deliver_exception_payload(vcpu); 4214 4215 /* 4216 * The API doesn't provide the instruction length for software 4217 * exceptions, so don't report them. As long as the guest RIP 4218 * isn't advanced, we should expect to encounter the exception 4219 * again. 4220 */ 4221 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4222 events->exception.injected = 0; 4223 events->exception.pending = 0; 4224 } else { 4225 events->exception.injected = vcpu->arch.exception.injected; 4226 events->exception.pending = vcpu->arch.exception.pending; 4227 /* 4228 * For ABI compatibility, deliberately conflate 4229 * pending and injected exceptions when 4230 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4231 */ 4232 if (!vcpu->kvm->arch.exception_payload_enabled) 4233 events->exception.injected |= 4234 vcpu->arch.exception.pending; 4235 } 4236 events->exception.nr = vcpu->arch.exception.nr; 4237 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4238 events->exception.error_code = vcpu->arch.exception.error_code; 4239 events->exception_has_payload = vcpu->arch.exception.has_payload; 4240 events->exception_payload = vcpu->arch.exception.payload; 4241 4242 events->interrupt.injected = 4243 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4244 events->interrupt.nr = vcpu->arch.interrupt.nr; 4245 events->interrupt.soft = 0; 4246 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 4247 4248 events->nmi.injected = vcpu->arch.nmi_injected; 4249 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4250 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 4251 events->nmi.pad = 0; 4252 4253 events->sipi_vector = 0; /* never valid when reporting to user space */ 4254 4255 events->smi.smm = is_smm(vcpu); 4256 events->smi.pending = vcpu->arch.smi_pending; 4257 events->smi.smm_inside_nmi = 4258 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4259 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4260 4261 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4262 | KVM_VCPUEVENT_VALID_SHADOW 4263 | KVM_VCPUEVENT_VALID_SMM); 4264 if (vcpu->kvm->arch.exception_payload_enabled) 4265 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4266 4267 memset(&events->reserved, 0, sizeof(events->reserved)); 4268 } 4269 4270 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4271 4272 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4273 struct kvm_vcpu_events *events) 4274 { 4275 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4276 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4277 | KVM_VCPUEVENT_VALID_SHADOW 4278 | KVM_VCPUEVENT_VALID_SMM 4279 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4280 return -EINVAL; 4281 4282 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4283 if (!vcpu->kvm->arch.exception_payload_enabled) 4284 return -EINVAL; 4285 if (events->exception.pending) 4286 events->exception.injected = 0; 4287 else 4288 events->exception_has_payload = 0; 4289 } else { 4290 events->exception.pending = 0; 4291 events->exception_has_payload = 0; 4292 } 4293 4294 if ((events->exception.injected || events->exception.pending) && 4295 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4296 return -EINVAL; 4297 4298 /* INITs are latched while in SMM */ 4299 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4300 (events->smi.smm || events->smi.pending) && 4301 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4302 return -EINVAL; 4303 4304 process_nmi(vcpu); 4305 vcpu->arch.exception.injected = events->exception.injected; 4306 vcpu->arch.exception.pending = events->exception.pending; 4307 vcpu->arch.exception.nr = events->exception.nr; 4308 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4309 vcpu->arch.exception.error_code = events->exception.error_code; 4310 vcpu->arch.exception.has_payload = events->exception_has_payload; 4311 vcpu->arch.exception.payload = events->exception_payload; 4312 4313 vcpu->arch.interrupt.injected = events->interrupt.injected; 4314 vcpu->arch.interrupt.nr = events->interrupt.nr; 4315 vcpu->arch.interrupt.soft = events->interrupt.soft; 4316 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4317 kvm_x86_ops.set_interrupt_shadow(vcpu, 4318 events->interrupt.shadow); 4319 4320 vcpu->arch.nmi_injected = events->nmi.injected; 4321 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4322 vcpu->arch.nmi_pending = events->nmi.pending; 4323 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4324 4325 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4326 lapic_in_kernel(vcpu)) 4327 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4328 4329 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4330 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4331 if (events->smi.smm) 4332 vcpu->arch.hflags |= HF_SMM_MASK; 4333 else 4334 vcpu->arch.hflags &= ~HF_SMM_MASK; 4335 kvm_smm_changed(vcpu); 4336 } 4337 4338 vcpu->arch.smi_pending = events->smi.pending; 4339 4340 if (events->smi.smm) { 4341 if (events->smi.smm_inside_nmi) 4342 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4343 else 4344 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4345 } 4346 4347 if (lapic_in_kernel(vcpu)) { 4348 if (events->smi.latched_init) 4349 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4350 else 4351 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4352 } 4353 } 4354 4355 kvm_make_request(KVM_REQ_EVENT, vcpu); 4356 4357 return 0; 4358 } 4359 4360 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4361 struct kvm_debugregs *dbgregs) 4362 { 4363 unsigned long val; 4364 4365 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4366 kvm_get_dr(vcpu, 6, &val); 4367 dbgregs->dr6 = val; 4368 dbgregs->dr7 = vcpu->arch.dr7; 4369 dbgregs->flags = 0; 4370 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4371 } 4372 4373 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4374 struct kvm_debugregs *dbgregs) 4375 { 4376 if (dbgregs->flags) 4377 return -EINVAL; 4378 4379 if (dbgregs->dr6 & ~0xffffffffull) 4380 return -EINVAL; 4381 if (dbgregs->dr7 & ~0xffffffffull) 4382 return -EINVAL; 4383 4384 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4385 kvm_update_dr0123(vcpu); 4386 vcpu->arch.dr6 = dbgregs->dr6; 4387 vcpu->arch.dr7 = dbgregs->dr7; 4388 kvm_update_dr7(vcpu); 4389 4390 return 0; 4391 } 4392 4393 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4394 4395 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4396 { 4397 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4398 u64 xstate_bv = xsave->header.xfeatures; 4399 u64 valid; 4400 4401 /* 4402 * Copy legacy XSAVE area, to avoid complications with CPUID 4403 * leaves 0 and 1 in the loop below. 4404 */ 4405 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4406 4407 /* Set XSTATE_BV */ 4408 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4409 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4410 4411 /* 4412 * Copy each region from the possibly compacted offset to the 4413 * non-compacted offset. 4414 */ 4415 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4416 while (valid) { 4417 u64 xfeature_mask = valid & -valid; 4418 int xfeature_nr = fls64(xfeature_mask) - 1; 4419 void *src = get_xsave_addr(xsave, xfeature_nr); 4420 4421 if (src) { 4422 u32 size, offset, ecx, edx; 4423 cpuid_count(XSTATE_CPUID, xfeature_nr, 4424 &size, &offset, &ecx, &edx); 4425 if (xfeature_nr == XFEATURE_PKRU) 4426 memcpy(dest + offset, &vcpu->arch.pkru, 4427 sizeof(vcpu->arch.pkru)); 4428 else 4429 memcpy(dest + offset, src, size); 4430 4431 } 4432 4433 valid -= xfeature_mask; 4434 } 4435 } 4436 4437 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4438 { 4439 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4440 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4441 u64 valid; 4442 4443 /* 4444 * Copy legacy XSAVE area, to avoid complications with CPUID 4445 * leaves 0 and 1 in the loop below. 4446 */ 4447 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4448 4449 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4450 xsave->header.xfeatures = xstate_bv; 4451 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4452 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4453 4454 /* 4455 * Copy each region from the non-compacted offset to the 4456 * possibly compacted offset. 4457 */ 4458 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4459 while (valid) { 4460 u64 xfeature_mask = valid & -valid; 4461 int xfeature_nr = fls64(xfeature_mask) - 1; 4462 void *dest = get_xsave_addr(xsave, xfeature_nr); 4463 4464 if (dest) { 4465 u32 size, offset, ecx, edx; 4466 cpuid_count(XSTATE_CPUID, xfeature_nr, 4467 &size, &offset, &ecx, &edx); 4468 if (xfeature_nr == XFEATURE_PKRU) 4469 memcpy(&vcpu->arch.pkru, src + offset, 4470 sizeof(vcpu->arch.pkru)); 4471 else 4472 memcpy(dest, src + offset, size); 4473 } 4474 4475 valid -= xfeature_mask; 4476 } 4477 } 4478 4479 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4480 struct kvm_xsave *guest_xsave) 4481 { 4482 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4483 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4484 fill_xsave((u8 *) guest_xsave->region, vcpu); 4485 } else { 4486 memcpy(guest_xsave->region, 4487 &vcpu->arch.guest_fpu->state.fxsave, 4488 sizeof(struct fxregs_state)); 4489 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4490 XFEATURE_MASK_FPSSE; 4491 } 4492 } 4493 4494 #define XSAVE_MXCSR_OFFSET 24 4495 4496 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4497 struct kvm_xsave *guest_xsave) 4498 { 4499 u64 xstate_bv = 4500 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4501 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4502 4503 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4504 /* 4505 * Here we allow setting states that are not present in 4506 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4507 * with old userspace. 4508 */ 4509 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4510 return -EINVAL; 4511 load_xsave(vcpu, (u8 *)guest_xsave->region); 4512 } else { 4513 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4514 mxcsr & ~mxcsr_feature_mask) 4515 return -EINVAL; 4516 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4517 guest_xsave->region, sizeof(struct fxregs_state)); 4518 } 4519 return 0; 4520 } 4521 4522 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4523 struct kvm_xcrs *guest_xcrs) 4524 { 4525 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4526 guest_xcrs->nr_xcrs = 0; 4527 return; 4528 } 4529 4530 guest_xcrs->nr_xcrs = 1; 4531 guest_xcrs->flags = 0; 4532 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4533 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4534 } 4535 4536 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4537 struct kvm_xcrs *guest_xcrs) 4538 { 4539 int i, r = 0; 4540 4541 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4542 return -EINVAL; 4543 4544 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4545 return -EINVAL; 4546 4547 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4548 /* Only support XCR0 currently */ 4549 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4550 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4551 guest_xcrs->xcrs[i].value); 4552 break; 4553 } 4554 if (r) 4555 r = -EINVAL; 4556 return r; 4557 } 4558 4559 /* 4560 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4561 * stopped by the hypervisor. This function will be called from the host only. 4562 * EINVAL is returned when the host attempts to set the flag for a guest that 4563 * does not support pv clocks. 4564 */ 4565 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4566 { 4567 if (!vcpu->arch.pv_time_enabled) 4568 return -EINVAL; 4569 vcpu->arch.pvclock_set_guest_stopped_request = true; 4570 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4571 return 0; 4572 } 4573 4574 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4575 struct kvm_enable_cap *cap) 4576 { 4577 int r; 4578 uint16_t vmcs_version; 4579 void __user *user_ptr; 4580 4581 if (cap->flags) 4582 return -EINVAL; 4583 4584 switch (cap->cap) { 4585 case KVM_CAP_HYPERV_SYNIC2: 4586 if (cap->args[0]) 4587 return -EINVAL; 4588 fallthrough; 4589 4590 case KVM_CAP_HYPERV_SYNIC: 4591 if (!irqchip_in_kernel(vcpu->kvm)) 4592 return -EINVAL; 4593 return kvm_hv_activate_synic(vcpu, cap->cap == 4594 KVM_CAP_HYPERV_SYNIC2); 4595 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4596 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4597 return -ENOTTY; 4598 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4599 if (!r) { 4600 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4601 if (copy_to_user(user_ptr, &vmcs_version, 4602 sizeof(vmcs_version))) 4603 r = -EFAULT; 4604 } 4605 return r; 4606 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4607 if (!kvm_x86_ops.enable_direct_tlbflush) 4608 return -ENOTTY; 4609 4610 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4611 4612 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4613 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4614 if (vcpu->arch.pv_cpuid.enforce) 4615 kvm_update_pv_runtime(vcpu); 4616 4617 return 0; 4618 4619 default: 4620 return -EINVAL; 4621 } 4622 } 4623 4624 long kvm_arch_vcpu_ioctl(struct file *filp, 4625 unsigned int ioctl, unsigned long arg) 4626 { 4627 struct kvm_vcpu *vcpu = filp->private_data; 4628 void __user *argp = (void __user *)arg; 4629 int r; 4630 union { 4631 struct kvm_lapic_state *lapic; 4632 struct kvm_xsave *xsave; 4633 struct kvm_xcrs *xcrs; 4634 void *buffer; 4635 } u; 4636 4637 vcpu_load(vcpu); 4638 4639 u.buffer = NULL; 4640 switch (ioctl) { 4641 case KVM_GET_LAPIC: { 4642 r = -EINVAL; 4643 if (!lapic_in_kernel(vcpu)) 4644 goto out; 4645 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4646 GFP_KERNEL_ACCOUNT); 4647 4648 r = -ENOMEM; 4649 if (!u.lapic) 4650 goto out; 4651 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4652 if (r) 4653 goto out; 4654 r = -EFAULT; 4655 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4656 goto out; 4657 r = 0; 4658 break; 4659 } 4660 case KVM_SET_LAPIC: { 4661 r = -EINVAL; 4662 if (!lapic_in_kernel(vcpu)) 4663 goto out; 4664 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4665 if (IS_ERR(u.lapic)) { 4666 r = PTR_ERR(u.lapic); 4667 goto out_nofree; 4668 } 4669 4670 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4671 break; 4672 } 4673 case KVM_INTERRUPT: { 4674 struct kvm_interrupt irq; 4675 4676 r = -EFAULT; 4677 if (copy_from_user(&irq, argp, sizeof(irq))) 4678 goto out; 4679 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4680 break; 4681 } 4682 case KVM_NMI: { 4683 r = kvm_vcpu_ioctl_nmi(vcpu); 4684 break; 4685 } 4686 case KVM_SMI: { 4687 r = kvm_vcpu_ioctl_smi(vcpu); 4688 break; 4689 } 4690 case KVM_SET_CPUID: { 4691 struct kvm_cpuid __user *cpuid_arg = argp; 4692 struct kvm_cpuid cpuid; 4693 4694 r = -EFAULT; 4695 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4696 goto out; 4697 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4698 break; 4699 } 4700 case KVM_SET_CPUID2: { 4701 struct kvm_cpuid2 __user *cpuid_arg = argp; 4702 struct kvm_cpuid2 cpuid; 4703 4704 r = -EFAULT; 4705 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4706 goto out; 4707 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4708 cpuid_arg->entries); 4709 break; 4710 } 4711 case KVM_GET_CPUID2: { 4712 struct kvm_cpuid2 __user *cpuid_arg = argp; 4713 struct kvm_cpuid2 cpuid; 4714 4715 r = -EFAULT; 4716 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4717 goto out; 4718 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4719 cpuid_arg->entries); 4720 if (r) 4721 goto out; 4722 r = -EFAULT; 4723 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4724 goto out; 4725 r = 0; 4726 break; 4727 } 4728 case KVM_GET_MSRS: { 4729 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4730 r = msr_io(vcpu, argp, do_get_msr, 1); 4731 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4732 break; 4733 } 4734 case KVM_SET_MSRS: { 4735 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4736 r = msr_io(vcpu, argp, do_set_msr, 0); 4737 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4738 break; 4739 } 4740 case KVM_TPR_ACCESS_REPORTING: { 4741 struct kvm_tpr_access_ctl tac; 4742 4743 r = -EFAULT; 4744 if (copy_from_user(&tac, argp, sizeof(tac))) 4745 goto out; 4746 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4747 if (r) 4748 goto out; 4749 r = -EFAULT; 4750 if (copy_to_user(argp, &tac, sizeof(tac))) 4751 goto out; 4752 r = 0; 4753 break; 4754 }; 4755 case KVM_SET_VAPIC_ADDR: { 4756 struct kvm_vapic_addr va; 4757 int idx; 4758 4759 r = -EINVAL; 4760 if (!lapic_in_kernel(vcpu)) 4761 goto out; 4762 r = -EFAULT; 4763 if (copy_from_user(&va, argp, sizeof(va))) 4764 goto out; 4765 idx = srcu_read_lock(&vcpu->kvm->srcu); 4766 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4767 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4768 break; 4769 } 4770 case KVM_X86_SETUP_MCE: { 4771 u64 mcg_cap; 4772 4773 r = -EFAULT; 4774 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4775 goto out; 4776 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4777 break; 4778 } 4779 case KVM_X86_SET_MCE: { 4780 struct kvm_x86_mce mce; 4781 4782 r = -EFAULT; 4783 if (copy_from_user(&mce, argp, sizeof(mce))) 4784 goto out; 4785 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4786 break; 4787 } 4788 case KVM_GET_VCPU_EVENTS: { 4789 struct kvm_vcpu_events events; 4790 4791 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4792 4793 r = -EFAULT; 4794 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4795 break; 4796 r = 0; 4797 break; 4798 } 4799 case KVM_SET_VCPU_EVENTS: { 4800 struct kvm_vcpu_events events; 4801 4802 r = -EFAULT; 4803 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4804 break; 4805 4806 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4807 break; 4808 } 4809 case KVM_GET_DEBUGREGS: { 4810 struct kvm_debugregs dbgregs; 4811 4812 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4813 4814 r = -EFAULT; 4815 if (copy_to_user(argp, &dbgregs, 4816 sizeof(struct kvm_debugregs))) 4817 break; 4818 r = 0; 4819 break; 4820 } 4821 case KVM_SET_DEBUGREGS: { 4822 struct kvm_debugregs dbgregs; 4823 4824 r = -EFAULT; 4825 if (copy_from_user(&dbgregs, argp, 4826 sizeof(struct kvm_debugregs))) 4827 break; 4828 4829 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4830 break; 4831 } 4832 case KVM_GET_XSAVE: { 4833 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4834 r = -ENOMEM; 4835 if (!u.xsave) 4836 break; 4837 4838 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4839 4840 r = -EFAULT; 4841 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4842 break; 4843 r = 0; 4844 break; 4845 } 4846 case KVM_SET_XSAVE: { 4847 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4848 if (IS_ERR(u.xsave)) { 4849 r = PTR_ERR(u.xsave); 4850 goto out_nofree; 4851 } 4852 4853 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4854 break; 4855 } 4856 case KVM_GET_XCRS: { 4857 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4858 r = -ENOMEM; 4859 if (!u.xcrs) 4860 break; 4861 4862 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4863 4864 r = -EFAULT; 4865 if (copy_to_user(argp, u.xcrs, 4866 sizeof(struct kvm_xcrs))) 4867 break; 4868 r = 0; 4869 break; 4870 } 4871 case KVM_SET_XCRS: { 4872 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4873 if (IS_ERR(u.xcrs)) { 4874 r = PTR_ERR(u.xcrs); 4875 goto out_nofree; 4876 } 4877 4878 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4879 break; 4880 } 4881 case KVM_SET_TSC_KHZ: { 4882 u32 user_tsc_khz; 4883 4884 r = -EINVAL; 4885 user_tsc_khz = (u32)arg; 4886 4887 if (kvm_has_tsc_control && 4888 user_tsc_khz >= kvm_max_guest_tsc_khz) 4889 goto out; 4890 4891 if (user_tsc_khz == 0) 4892 user_tsc_khz = tsc_khz; 4893 4894 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4895 r = 0; 4896 4897 goto out; 4898 } 4899 case KVM_GET_TSC_KHZ: { 4900 r = vcpu->arch.virtual_tsc_khz; 4901 goto out; 4902 } 4903 case KVM_KVMCLOCK_CTRL: { 4904 r = kvm_set_guest_paused(vcpu); 4905 goto out; 4906 } 4907 case KVM_ENABLE_CAP: { 4908 struct kvm_enable_cap cap; 4909 4910 r = -EFAULT; 4911 if (copy_from_user(&cap, argp, sizeof(cap))) 4912 goto out; 4913 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4914 break; 4915 } 4916 case KVM_GET_NESTED_STATE: { 4917 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4918 u32 user_data_size; 4919 4920 r = -EINVAL; 4921 if (!kvm_x86_ops.nested_ops->get_state) 4922 break; 4923 4924 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4925 r = -EFAULT; 4926 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4927 break; 4928 4929 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4930 user_data_size); 4931 if (r < 0) 4932 break; 4933 4934 if (r > user_data_size) { 4935 if (put_user(r, &user_kvm_nested_state->size)) 4936 r = -EFAULT; 4937 else 4938 r = -E2BIG; 4939 break; 4940 } 4941 4942 r = 0; 4943 break; 4944 } 4945 case KVM_SET_NESTED_STATE: { 4946 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4947 struct kvm_nested_state kvm_state; 4948 int idx; 4949 4950 r = -EINVAL; 4951 if (!kvm_x86_ops.nested_ops->set_state) 4952 break; 4953 4954 r = -EFAULT; 4955 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4956 break; 4957 4958 r = -EINVAL; 4959 if (kvm_state.size < sizeof(kvm_state)) 4960 break; 4961 4962 if (kvm_state.flags & 4963 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4964 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4965 | KVM_STATE_NESTED_GIF_SET)) 4966 break; 4967 4968 /* nested_run_pending implies guest_mode. */ 4969 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4970 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4971 break; 4972 4973 idx = srcu_read_lock(&vcpu->kvm->srcu); 4974 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4975 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4976 break; 4977 } 4978 case KVM_GET_SUPPORTED_HV_CPUID: { 4979 struct kvm_cpuid2 __user *cpuid_arg = argp; 4980 struct kvm_cpuid2 cpuid; 4981 4982 r = -EFAULT; 4983 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4984 goto out; 4985 4986 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4987 cpuid_arg->entries); 4988 if (r) 4989 goto out; 4990 4991 r = -EFAULT; 4992 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4993 goto out; 4994 r = 0; 4995 break; 4996 } 4997 default: 4998 r = -EINVAL; 4999 } 5000 out: 5001 kfree(u.buffer); 5002 out_nofree: 5003 vcpu_put(vcpu); 5004 return r; 5005 } 5006 5007 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5008 { 5009 return VM_FAULT_SIGBUS; 5010 } 5011 5012 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5013 { 5014 int ret; 5015 5016 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5017 return -EINVAL; 5018 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 5019 return ret; 5020 } 5021 5022 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5023 u64 ident_addr) 5024 { 5025 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 5026 } 5027 5028 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5029 unsigned long kvm_nr_mmu_pages) 5030 { 5031 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5032 return -EINVAL; 5033 5034 mutex_lock(&kvm->slots_lock); 5035 5036 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5037 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5038 5039 mutex_unlock(&kvm->slots_lock); 5040 return 0; 5041 } 5042 5043 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5044 { 5045 return kvm->arch.n_max_mmu_pages; 5046 } 5047 5048 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5049 { 5050 struct kvm_pic *pic = kvm->arch.vpic; 5051 int r; 5052 5053 r = 0; 5054 switch (chip->chip_id) { 5055 case KVM_IRQCHIP_PIC_MASTER: 5056 memcpy(&chip->chip.pic, &pic->pics[0], 5057 sizeof(struct kvm_pic_state)); 5058 break; 5059 case KVM_IRQCHIP_PIC_SLAVE: 5060 memcpy(&chip->chip.pic, &pic->pics[1], 5061 sizeof(struct kvm_pic_state)); 5062 break; 5063 case KVM_IRQCHIP_IOAPIC: 5064 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5065 break; 5066 default: 5067 r = -EINVAL; 5068 break; 5069 } 5070 return r; 5071 } 5072 5073 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5074 { 5075 struct kvm_pic *pic = kvm->arch.vpic; 5076 int r; 5077 5078 r = 0; 5079 switch (chip->chip_id) { 5080 case KVM_IRQCHIP_PIC_MASTER: 5081 spin_lock(&pic->lock); 5082 memcpy(&pic->pics[0], &chip->chip.pic, 5083 sizeof(struct kvm_pic_state)); 5084 spin_unlock(&pic->lock); 5085 break; 5086 case KVM_IRQCHIP_PIC_SLAVE: 5087 spin_lock(&pic->lock); 5088 memcpy(&pic->pics[1], &chip->chip.pic, 5089 sizeof(struct kvm_pic_state)); 5090 spin_unlock(&pic->lock); 5091 break; 5092 case KVM_IRQCHIP_IOAPIC: 5093 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5094 break; 5095 default: 5096 r = -EINVAL; 5097 break; 5098 } 5099 kvm_pic_update_irq(pic); 5100 return r; 5101 } 5102 5103 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5104 { 5105 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5106 5107 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5108 5109 mutex_lock(&kps->lock); 5110 memcpy(ps, &kps->channels, sizeof(*ps)); 5111 mutex_unlock(&kps->lock); 5112 return 0; 5113 } 5114 5115 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5116 { 5117 int i; 5118 struct kvm_pit *pit = kvm->arch.vpit; 5119 5120 mutex_lock(&pit->pit_state.lock); 5121 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5122 for (i = 0; i < 3; i++) 5123 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5124 mutex_unlock(&pit->pit_state.lock); 5125 return 0; 5126 } 5127 5128 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5129 { 5130 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5131 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5132 sizeof(ps->channels)); 5133 ps->flags = kvm->arch.vpit->pit_state.flags; 5134 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5135 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5136 return 0; 5137 } 5138 5139 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5140 { 5141 int start = 0; 5142 int i; 5143 u32 prev_legacy, cur_legacy; 5144 struct kvm_pit *pit = kvm->arch.vpit; 5145 5146 mutex_lock(&pit->pit_state.lock); 5147 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5148 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5149 if (!prev_legacy && cur_legacy) 5150 start = 1; 5151 memcpy(&pit->pit_state.channels, &ps->channels, 5152 sizeof(pit->pit_state.channels)); 5153 pit->pit_state.flags = ps->flags; 5154 for (i = 0; i < 3; i++) 5155 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5156 start && i == 0); 5157 mutex_unlock(&pit->pit_state.lock); 5158 return 0; 5159 } 5160 5161 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5162 struct kvm_reinject_control *control) 5163 { 5164 struct kvm_pit *pit = kvm->arch.vpit; 5165 5166 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5167 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5168 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5169 */ 5170 mutex_lock(&pit->pit_state.lock); 5171 kvm_pit_set_reinject(pit, control->pit_reinject); 5172 mutex_unlock(&pit->pit_state.lock); 5173 5174 return 0; 5175 } 5176 5177 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5178 { 5179 /* 5180 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 5181 */ 5182 if (kvm_x86_ops.flush_log_dirty) 5183 kvm_x86_ops.flush_log_dirty(kvm); 5184 } 5185 5186 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5187 bool line_status) 5188 { 5189 if (!irqchip_in_kernel(kvm)) 5190 return -ENXIO; 5191 5192 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5193 irq_event->irq, irq_event->level, 5194 line_status); 5195 return 0; 5196 } 5197 5198 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5199 struct kvm_enable_cap *cap) 5200 { 5201 int r; 5202 5203 if (cap->flags) 5204 return -EINVAL; 5205 5206 switch (cap->cap) { 5207 case KVM_CAP_DISABLE_QUIRKS: 5208 kvm->arch.disabled_quirks = cap->args[0]; 5209 r = 0; 5210 break; 5211 case KVM_CAP_SPLIT_IRQCHIP: { 5212 mutex_lock(&kvm->lock); 5213 r = -EINVAL; 5214 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5215 goto split_irqchip_unlock; 5216 r = -EEXIST; 5217 if (irqchip_in_kernel(kvm)) 5218 goto split_irqchip_unlock; 5219 if (kvm->created_vcpus) 5220 goto split_irqchip_unlock; 5221 r = kvm_setup_empty_irq_routing(kvm); 5222 if (r) 5223 goto split_irqchip_unlock; 5224 /* Pairs with irqchip_in_kernel. */ 5225 smp_wmb(); 5226 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5227 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5228 r = 0; 5229 split_irqchip_unlock: 5230 mutex_unlock(&kvm->lock); 5231 break; 5232 } 5233 case KVM_CAP_X2APIC_API: 5234 r = -EINVAL; 5235 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5236 break; 5237 5238 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5239 kvm->arch.x2apic_format = true; 5240 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5241 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5242 5243 r = 0; 5244 break; 5245 case KVM_CAP_X86_DISABLE_EXITS: 5246 r = -EINVAL; 5247 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5248 break; 5249 5250 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5251 kvm_can_mwait_in_guest()) 5252 kvm->arch.mwait_in_guest = true; 5253 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5254 kvm->arch.hlt_in_guest = true; 5255 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5256 kvm->arch.pause_in_guest = true; 5257 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5258 kvm->arch.cstate_in_guest = true; 5259 r = 0; 5260 break; 5261 case KVM_CAP_MSR_PLATFORM_INFO: 5262 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5263 r = 0; 5264 break; 5265 case KVM_CAP_EXCEPTION_PAYLOAD: 5266 kvm->arch.exception_payload_enabled = cap->args[0]; 5267 r = 0; 5268 break; 5269 case KVM_CAP_X86_USER_SPACE_MSR: 5270 kvm->arch.user_space_msr_mask = cap->args[0]; 5271 r = 0; 5272 break; 5273 default: 5274 r = -EINVAL; 5275 break; 5276 } 5277 return r; 5278 } 5279 5280 static void kvm_clear_msr_filter(struct kvm *kvm) 5281 { 5282 u32 i; 5283 u32 count = kvm->arch.msr_filter.count; 5284 struct msr_bitmap_range ranges[16]; 5285 5286 mutex_lock(&kvm->lock); 5287 kvm->arch.msr_filter.count = 0; 5288 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0])); 5289 mutex_unlock(&kvm->lock); 5290 synchronize_srcu(&kvm->srcu); 5291 5292 for (i = 0; i < count; i++) 5293 kfree(ranges[i].bitmap); 5294 } 5295 5296 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range) 5297 { 5298 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 5299 struct msr_bitmap_range range; 5300 unsigned long *bitmap = NULL; 5301 size_t bitmap_size; 5302 int r; 5303 5304 if (!user_range->nmsrs) 5305 return 0; 5306 5307 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5308 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5309 return -EINVAL; 5310 5311 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5312 if (IS_ERR(bitmap)) 5313 return PTR_ERR(bitmap); 5314 5315 range = (struct msr_bitmap_range) { 5316 .flags = user_range->flags, 5317 .base = user_range->base, 5318 .nmsrs = user_range->nmsrs, 5319 .bitmap = bitmap, 5320 }; 5321 5322 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) { 5323 r = -EINVAL; 5324 goto err; 5325 } 5326 5327 if (!range.flags) { 5328 r = -EINVAL; 5329 goto err; 5330 } 5331 5332 /* Everything ok, add this range identifier to our global pool */ 5333 ranges[kvm->arch.msr_filter.count] = range; 5334 /* Make sure we filled the array before we tell anyone to walk it */ 5335 smp_wmb(); 5336 kvm->arch.msr_filter.count++; 5337 5338 return 0; 5339 err: 5340 kfree(bitmap); 5341 return r; 5342 } 5343 5344 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 5345 { 5346 struct kvm_msr_filter __user *user_msr_filter = argp; 5347 struct kvm_msr_filter filter; 5348 bool default_allow; 5349 int r = 0; 5350 bool empty = true; 5351 u32 i; 5352 5353 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5354 return -EFAULT; 5355 5356 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 5357 empty &= !filter.ranges[i].nmsrs; 5358 5359 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 5360 if (empty && !default_allow) 5361 return -EINVAL; 5362 5363 kvm_clear_msr_filter(kvm); 5364 5365 kvm->arch.msr_filter.default_allow = default_allow; 5366 5367 /* 5368 * Protect from concurrent calls to this function that could trigger 5369 * a TOCTOU violation on kvm->arch.msr_filter.count. 5370 */ 5371 mutex_lock(&kvm->lock); 5372 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5373 r = kvm_add_msr_filter(kvm, &filter.ranges[i]); 5374 if (r) 5375 break; 5376 } 5377 5378 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5379 mutex_unlock(&kvm->lock); 5380 5381 return r; 5382 } 5383 5384 long kvm_arch_vm_ioctl(struct file *filp, 5385 unsigned int ioctl, unsigned long arg) 5386 { 5387 struct kvm *kvm = filp->private_data; 5388 void __user *argp = (void __user *)arg; 5389 int r = -ENOTTY; 5390 /* 5391 * This union makes it completely explicit to gcc-3.x 5392 * that these two variables' stack usage should be 5393 * combined, not added together. 5394 */ 5395 union { 5396 struct kvm_pit_state ps; 5397 struct kvm_pit_state2 ps2; 5398 struct kvm_pit_config pit_config; 5399 } u; 5400 5401 switch (ioctl) { 5402 case KVM_SET_TSS_ADDR: 5403 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5404 break; 5405 case KVM_SET_IDENTITY_MAP_ADDR: { 5406 u64 ident_addr; 5407 5408 mutex_lock(&kvm->lock); 5409 r = -EINVAL; 5410 if (kvm->created_vcpus) 5411 goto set_identity_unlock; 5412 r = -EFAULT; 5413 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5414 goto set_identity_unlock; 5415 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5416 set_identity_unlock: 5417 mutex_unlock(&kvm->lock); 5418 break; 5419 } 5420 case KVM_SET_NR_MMU_PAGES: 5421 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5422 break; 5423 case KVM_GET_NR_MMU_PAGES: 5424 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5425 break; 5426 case KVM_CREATE_IRQCHIP: { 5427 mutex_lock(&kvm->lock); 5428 5429 r = -EEXIST; 5430 if (irqchip_in_kernel(kvm)) 5431 goto create_irqchip_unlock; 5432 5433 r = -EINVAL; 5434 if (kvm->created_vcpus) 5435 goto create_irqchip_unlock; 5436 5437 r = kvm_pic_init(kvm); 5438 if (r) 5439 goto create_irqchip_unlock; 5440 5441 r = kvm_ioapic_init(kvm); 5442 if (r) { 5443 kvm_pic_destroy(kvm); 5444 goto create_irqchip_unlock; 5445 } 5446 5447 r = kvm_setup_default_irq_routing(kvm); 5448 if (r) { 5449 kvm_ioapic_destroy(kvm); 5450 kvm_pic_destroy(kvm); 5451 goto create_irqchip_unlock; 5452 } 5453 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5454 smp_wmb(); 5455 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5456 create_irqchip_unlock: 5457 mutex_unlock(&kvm->lock); 5458 break; 5459 } 5460 case KVM_CREATE_PIT: 5461 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5462 goto create_pit; 5463 case KVM_CREATE_PIT2: 5464 r = -EFAULT; 5465 if (copy_from_user(&u.pit_config, argp, 5466 sizeof(struct kvm_pit_config))) 5467 goto out; 5468 create_pit: 5469 mutex_lock(&kvm->lock); 5470 r = -EEXIST; 5471 if (kvm->arch.vpit) 5472 goto create_pit_unlock; 5473 r = -ENOMEM; 5474 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5475 if (kvm->arch.vpit) 5476 r = 0; 5477 create_pit_unlock: 5478 mutex_unlock(&kvm->lock); 5479 break; 5480 case KVM_GET_IRQCHIP: { 5481 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5482 struct kvm_irqchip *chip; 5483 5484 chip = memdup_user(argp, sizeof(*chip)); 5485 if (IS_ERR(chip)) { 5486 r = PTR_ERR(chip); 5487 goto out; 5488 } 5489 5490 r = -ENXIO; 5491 if (!irqchip_kernel(kvm)) 5492 goto get_irqchip_out; 5493 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5494 if (r) 5495 goto get_irqchip_out; 5496 r = -EFAULT; 5497 if (copy_to_user(argp, chip, sizeof(*chip))) 5498 goto get_irqchip_out; 5499 r = 0; 5500 get_irqchip_out: 5501 kfree(chip); 5502 break; 5503 } 5504 case KVM_SET_IRQCHIP: { 5505 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5506 struct kvm_irqchip *chip; 5507 5508 chip = memdup_user(argp, sizeof(*chip)); 5509 if (IS_ERR(chip)) { 5510 r = PTR_ERR(chip); 5511 goto out; 5512 } 5513 5514 r = -ENXIO; 5515 if (!irqchip_kernel(kvm)) 5516 goto set_irqchip_out; 5517 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5518 set_irqchip_out: 5519 kfree(chip); 5520 break; 5521 } 5522 case KVM_GET_PIT: { 5523 r = -EFAULT; 5524 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5525 goto out; 5526 r = -ENXIO; 5527 if (!kvm->arch.vpit) 5528 goto out; 5529 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5530 if (r) 5531 goto out; 5532 r = -EFAULT; 5533 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5534 goto out; 5535 r = 0; 5536 break; 5537 } 5538 case KVM_SET_PIT: { 5539 r = -EFAULT; 5540 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5541 goto out; 5542 mutex_lock(&kvm->lock); 5543 r = -ENXIO; 5544 if (!kvm->arch.vpit) 5545 goto set_pit_out; 5546 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5547 set_pit_out: 5548 mutex_unlock(&kvm->lock); 5549 break; 5550 } 5551 case KVM_GET_PIT2: { 5552 r = -ENXIO; 5553 if (!kvm->arch.vpit) 5554 goto out; 5555 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5556 if (r) 5557 goto out; 5558 r = -EFAULT; 5559 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5560 goto out; 5561 r = 0; 5562 break; 5563 } 5564 case KVM_SET_PIT2: { 5565 r = -EFAULT; 5566 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5567 goto out; 5568 mutex_lock(&kvm->lock); 5569 r = -ENXIO; 5570 if (!kvm->arch.vpit) 5571 goto set_pit2_out; 5572 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5573 set_pit2_out: 5574 mutex_unlock(&kvm->lock); 5575 break; 5576 } 5577 case KVM_REINJECT_CONTROL: { 5578 struct kvm_reinject_control control; 5579 r = -EFAULT; 5580 if (copy_from_user(&control, argp, sizeof(control))) 5581 goto out; 5582 r = -ENXIO; 5583 if (!kvm->arch.vpit) 5584 goto out; 5585 r = kvm_vm_ioctl_reinject(kvm, &control); 5586 break; 5587 } 5588 case KVM_SET_BOOT_CPU_ID: 5589 r = 0; 5590 mutex_lock(&kvm->lock); 5591 if (kvm->created_vcpus) 5592 r = -EBUSY; 5593 else 5594 kvm->arch.bsp_vcpu_id = arg; 5595 mutex_unlock(&kvm->lock); 5596 break; 5597 case KVM_XEN_HVM_CONFIG: { 5598 struct kvm_xen_hvm_config xhc; 5599 r = -EFAULT; 5600 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5601 goto out; 5602 r = -EINVAL; 5603 if (xhc.flags) 5604 goto out; 5605 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5606 r = 0; 5607 break; 5608 } 5609 case KVM_SET_CLOCK: { 5610 struct kvm_clock_data user_ns; 5611 u64 now_ns; 5612 5613 r = -EFAULT; 5614 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5615 goto out; 5616 5617 r = -EINVAL; 5618 if (user_ns.flags) 5619 goto out; 5620 5621 r = 0; 5622 /* 5623 * TODO: userspace has to take care of races with VCPU_RUN, so 5624 * kvm_gen_update_masterclock() can be cut down to locked 5625 * pvclock_update_vm_gtod_copy(). 5626 */ 5627 kvm_gen_update_masterclock(kvm); 5628 now_ns = get_kvmclock_ns(kvm); 5629 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5630 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5631 break; 5632 } 5633 case KVM_GET_CLOCK: { 5634 struct kvm_clock_data user_ns; 5635 u64 now_ns; 5636 5637 now_ns = get_kvmclock_ns(kvm); 5638 user_ns.clock = now_ns; 5639 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5640 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5641 5642 r = -EFAULT; 5643 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5644 goto out; 5645 r = 0; 5646 break; 5647 } 5648 case KVM_MEMORY_ENCRYPT_OP: { 5649 r = -ENOTTY; 5650 if (kvm_x86_ops.mem_enc_op) 5651 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5652 break; 5653 } 5654 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5655 struct kvm_enc_region region; 5656 5657 r = -EFAULT; 5658 if (copy_from_user(®ion, argp, sizeof(region))) 5659 goto out; 5660 5661 r = -ENOTTY; 5662 if (kvm_x86_ops.mem_enc_reg_region) 5663 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5664 break; 5665 } 5666 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5667 struct kvm_enc_region region; 5668 5669 r = -EFAULT; 5670 if (copy_from_user(®ion, argp, sizeof(region))) 5671 goto out; 5672 5673 r = -ENOTTY; 5674 if (kvm_x86_ops.mem_enc_unreg_region) 5675 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5676 break; 5677 } 5678 case KVM_HYPERV_EVENTFD: { 5679 struct kvm_hyperv_eventfd hvevfd; 5680 5681 r = -EFAULT; 5682 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5683 goto out; 5684 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5685 break; 5686 } 5687 case KVM_SET_PMU_EVENT_FILTER: 5688 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5689 break; 5690 case KVM_X86_SET_MSR_FILTER: 5691 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 5692 break; 5693 default: 5694 r = -ENOTTY; 5695 } 5696 out: 5697 return r; 5698 } 5699 5700 static void kvm_init_msr_list(void) 5701 { 5702 struct x86_pmu_capability x86_pmu; 5703 u32 dummy[2]; 5704 unsigned i; 5705 5706 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5707 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5708 5709 perf_get_x86_pmu_capability(&x86_pmu); 5710 5711 num_msrs_to_save = 0; 5712 num_emulated_msrs = 0; 5713 num_msr_based_features = 0; 5714 5715 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5716 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5717 continue; 5718 5719 /* 5720 * Even MSRs that are valid in the host may not be exposed 5721 * to the guests in some cases. 5722 */ 5723 switch (msrs_to_save_all[i]) { 5724 case MSR_IA32_BNDCFGS: 5725 if (!kvm_mpx_supported()) 5726 continue; 5727 break; 5728 case MSR_TSC_AUX: 5729 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5730 continue; 5731 break; 5732 case MSR_IA32_UMWAIT_CONTROL: 5733 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5734 continue; 5735 break; 5736 case MSR_IA32_RTIT_CTL: 5737 case MSR_IA32_RTIT_STATUS: 5738 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5739 continue; 5740 break; 5741 case MSR_IA32_RTIT_CR3_MATCH: 5742 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5743 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5744 continue; 5745 break; 5746 case MSR_IA32_RTIT_OUTPUT_BASE: 5747 case MSR_IA32_RTIT_OUTPUT_MASK: 5748 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5749 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5750 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5751 continue; 5752 break; 5753 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5754 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5755 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5756 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5757 continue; 5758 break; 5759 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5760 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5761 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5762 continue; 5763 break; 5764 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5765 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5766 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5767 continue; 5768 break; 5769 default: 5770 break; 5771 } 5772 5773 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5774 } 5775 5776 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5777 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5778 continue; 5779 5780 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5781 } 5782 5783 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5784 struct kvm_msr_entry msr; 5785 5786 msr.index = msr_based_features_all[i]; 5787 if (kvm_get_msr_feature(&msr)) 5788 continue; 5789 5790 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5791 } 5792 } 5793 5794 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5795 const void *v) 5796 { 5797 int handled = 0; 5798 int n; 5799 5800 do { 5801 n = min(len, 8); 5802 if (!(lapic_in_kernel(vcpu) && 5803 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5804 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5805 break; 5806 handled += n; 5807 addr += n; 5808 len -= n; 5809 v += n; 5810 } while (len); 5811 5812 return handled; 5813 } 5814 5815 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5816 { 5817 int handled = 0; 5818 int n; 5819 5820 do { 5821 n = min(len, 8); 5822 if (!(lapic_in_kernel(vcpu) && 5823 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5824 addr, n, v)) 5825 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5826 break; 5827 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5828 handled += n; 5829 addr += n; 5830 len -= n; 5831 v += n; 5832 } while (len); 5833 5834 return handled; 5835 } 5836 5837 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5838 struct kvm_segment *var, int seg) 5839 { 5840 kvm_x86_ops.set_segment(vcpu, var, seg); 5841 } 5842 5843 void kvm_get_segment(struct kvm_vcpu *vcpu, 5844 struct kvm_segment *var, int seg) 5845 { 5846 kvm_x86_ops.get_segment(vcpu, var, seg); 5847 } 5848 5849 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5850 struct x86_exception *exception) 5851 { 5852 gpa_t t_gpa; 5853 5854 BUG_ON(!mmu_is_nested(vcpu)); 5855 5856 /* NPT walks are always user-walks */ 5857 access |= PFERR_USER_MASK; 5858 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5859 5860 return t_gpa; 5861 } 5862 5863 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5864 struct x86_exception *exception) 5865 { 5866 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5867 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5868 } 5869 5870 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5871 struct x86_exception *exception) 5872 { 5873 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5874 access |= PFERR_FETCH_MASK; 5875 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5876 } 5877 5878 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5879 struct x86_exception *exception) 5880 { 5881 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5882 access |= PFERR_WRITE_MASK; 5883 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5884 } 5885 5886 /* uses this to access any guest's mapped memory without checking CPL */ 5887 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5888 struct x86_exception *exception) 5889 { 5890 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5891 } 5892 5893 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5894 struct kvm_vcpu *vcpu, u32 access, 5895 struct x86_exception *exception) 5896 { 5897 void *data = val; 5898 int r = X86EMUL_CONTINUE; 5899 5900 while (bytes) { 5901 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5902 exception); 5903 unsigned offset = addr & (PAGE_SIZE-1); 5904 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5905 int ret; 5906 5907 if (gpa == UNMAPPED_GVA) 5908 return X86EMUL_PROPAGATE_FAULT; 5909 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5910 offset, toread); 5911 if (ret < 0) { 5912 r = X86EMUL_IO_NEEDED; 5913 goto out; 5914 } 5915 5916 bytes -= toread; 5917 data += toread; 5918 addr += toread; 5919 } 5920 out: 5921 return r; 5922 } 5923 5924 /* used for instruction fetching */ 5925 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5926 gva_t addr, void *val, unsigned int bytes, 5927 struct x86_exception *exception) 5928 { 5929 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5930 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5931 unsigned offset; 5932 int ret; 5933 5934 /* Inline kvm_read_guest_virt_helper for speed. */ 5935 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5936 exception); 5937 if (unlikely(gpa == UNMAPPED_GVA)) 5938 return X86EMUL_PROPAGATE_FAULT; 5939 5940 offset = addr & (PAGE_SIZE-1); 5941 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5942 bytes = (unsigned)PAGE_SIZE - offset; 5943 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5944 offset, bytes); 5945 if (unlikely(ret < 0)) 5946 return X86EMUL_IO_NEEDED; 5947 5948 return X86EMUL_CONTINUE; 5949 } 5950 5951 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5952 gva_t addr, void *val, unsigned int bytes, 5953 struct x86_exception *exception) 5954 { 5955 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5956 5957 /* 5958 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5959 * is returned, but our callers are not ready for that and they blindly 5960 * call kvm_inject_page_fault. Ensure that they at least do not leak 5961 * uninitialized kernel stack memory into cr2 and error code. 5962 */ 5963 memset(exception, 0, sizeof(*exception)); 5964 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5965 exception); 5966 } 5967 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5968 5969 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5970 gva_t addr, void *val, unsigned int bytes, 5971 struct x86_exception *exception, bool system) 5972 { 5973 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5974 u32 access = 0; 5975 5976 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5977 access |= PFERR_USER_MASK; 5978 5979 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5980 } 5981 5982 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5983 unsigned long addr, void *val, unsigned int bytes) 5984 { 5985 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5986 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5987 5988 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5989 } 5990 5991 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5992 struct kvm_vcpu *vcpu, u32 access, 5993 struct x86_exception *exception) 5994 { 5995 void *data = val; 5996 int r = X86EMUL_CONTINUE; 5997 5998 while (bytes) { 5999 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 6000 access, 6001 exception); 6002 unsigned offset = addr & (PAGE_SIZE-1); 6003 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6004 int ret; 6005 6006 if (gpa == UNMAPPED_GVA) 6007 return X86EMUL_PROPAGATE_FAULT; 6008 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6009 if (ret < 0) { 6010 r = X86EMUL_IO_NEEDED; 6011 goto out; 6012 } 6013 6014 bytes -= towrite; 6015 data += towrite; 6016 addr += towrite; 6017 } 6018 out: 6019 return r; 6020 } 6021 6022 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6023 unsigned int bytes, struct x86_exception *exception, 6024 bool system) 6025 { 6026 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6027 u32 access = PFERR_WRITE_MASK; 6028 6029 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 6030 access |= PFERR_USER_MASK; 6031 6032 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6033 access, exception); 6034 } 6035 6036 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6037 unsigned int bytes, struct x86_exception *exception) 6038 { 6039 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6040 vcpu->arch.l1tf_flush_l1d = true; 6041 6042 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6043 PFERR_WRITE_MASK, exception); 6044 } 6045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6046 6047 int handle_ud(struct kvm_vcpu *vcpu) 6048 { 6049 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6050 int emul_type = EMULTYPE_TRAP_UD; 6051 char sig[5]; /* ud2; .ascii "kvm" */ 6052 struct x86_exception e; 6053 6054 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0))) 6055 return 1; 6056 6057 if (force_emulation_prefix && 6058 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6059 sig, sizeof(sig), &e) == 0 && 6060 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6061 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6062 emul_type = EMULTYPE_TRAP_UD_FORCED; 6063 } 6064 6065 return kvm_emulate_instruction(vcpu, emul_type); 6066 } 6067 EXPORT_SYMBOL_GPL(handle_ud); 6068 6069 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6070 gpa_t gpa, bool write) 6071 { 6072 /* For APIC access vmexit */ 6073 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6074 return 1; 6075 6076 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6077 trace_vcpu_match_mmio(gva, gpa, write, true); 6078 return 1; 6079 } 6080 6081 return 0; 6082 } 6083 6084 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6085 gpa_t *gpa, struct x86_exception *exception, 6086 bool write) 6087 { 6088 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 6089 | (write ? PFERR_WRITE_MASK : 0); 6090 6091 /* 6092 * currently PKRU is only applied to ept enabled guest so 6093 * there is no pkey in EPT page table for L1 guest or EPT 6094 * shadow page table for L2 guest. 6095 */ 6096 if (vcpu_match_mmio_gva(vcpu, gva) 6097 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6098 vcpu->arch.mmio_access, 0, access)) { 6099 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6100 (gva & (PAGE_SIZE - 1)); 6101 trace_vcpu_match_mmio(gva, *gpa, write, false); 6102 return 1; 6103 } 6104 6105 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6106 6107 if (*gpa == UNMAPPED_GVA) 6108 return -1; 6109 6110 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6111 } 6112 6113 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6114 const void *val, int bytes) 6115 { 6116 int ret; 6117 6118 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6119 if (ret < 0) 6120 return 0; 6121 kvm_page_track_write(vcpu, gpa, val, bytes); 6122 return 1; 6123 } 6124 6125 struct read_write_emulator_ops { 6126 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6127 int bytes); 6128 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6129 void *val, int bytes); 6130 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6131 int bytes, void *val); 6132 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6133 void *val, int bytes); 6134 bool write; 6135 }; 6136 6137 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6138 { 6139 if (vcpu->mmio_read_completed) { 6140 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6141 vcpu->mmio_fragments[0].gpa, val); 6142 vcpu->mmio_read_completed = 0; 6143 return 1; 6144 } 6145 6146 return 0; 6147 } 6148 6149 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6150 void *val, int bytes) 6151 { 6152 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6153 } 6154 6155 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6156 void *val, int bytes) 6157 { 6158 return emulator_write_phys(vcpu, gpa, val, bytes); 6159 } 6160 6161 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6162 { 6163 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6164 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6165 } 6166 6167 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6168 void *val, int bytes) 6169 { 6170 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6171 return X86EMUL_IO_NEEDED; 6172 } 6173 6174 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6175 void *val, int bytes) 6176 { 6177 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6178 6179 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6180 return X86EMUL_CONTINUE; 6181 } 6182 6183 static const struct read_write_emulator_ops read_emultor = { 6184 .read_write_prepare = read_prepare, 6185 .read_write_emulate = read_emulate, 6186 .read_write_mmio = vcpu_mmio_read, 6187 .read_write_exit_mmio = read_exit_mmio, 6188 }; 6189 6190 static const struct read_write_emulator_ops write_emultor = { 6191 .read_write_emulate = write_emulate, 6192 .read_write_mmio = write_mmio, 6193 .read_write_exit_mmio = write_exit_mmio, 6194 .write = true, 6195 }; 6196 6197 static int emulator_read_write_onepage(unsigned long addr, void *val, 6198 unsigned int bytes, 6199 struct x86_exception *exception, 6200 struct kvm_vcpu *vcpu, 6201 const struct read_write_emulator_ops *ops) 6202 { 6203 gpa_t gpa; 6204 int handled, ret; 6205 bool write = ops->write; 6206 struct kvm_mmio_fragment *frag; 6207 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6208 6209 /* 6210 * If the exit was due to a NPF we may already have a GPA. 6211 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6212 * Note, this cannot be used on string operations since string 6213 * operation using rep will only have the initial GPA from the NPF 6214 * occurred. 6215 */ 6216 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6217 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6218 gpa = ctxt->gpa_val; 6219 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6220 } else { 6221 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6222 if (ret < 0) 6223 return X86EMUL_PROPAGATE_FAULT; 6224 } 6225 6226 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6227 return X86EMUL_CONTINUE; 6228 6229 /* 6230 * Is this MMIO handled locally? 6231 */ 6232 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6233 if (handled == bytes) 6234 return X86EMUL_CONTINUE; 6235 6236 gpa += handled; 6237 bytes -= handled; 6238 val += handled; 6239 6240 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6241 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6242 frag->gpa = gpa; 6243 frag->data = val; 6244 frag->len = bytes; 6245 return X86EMUL_CONTINUE; 6246 } 6247 6248 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6249 unsigned long addr, 6250 void *val, unsigned int bytes, 6251 struct x86_exception *exception, 6252 const struct read_write_emulator_ops *ops) 6253 { 6254 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6255 gpa_t gpa; 6256 int rc; 6257 6258 if (ops->read_write_prepare && 6259 ops->read_write_prepare(vcpu, val, bytes)) 6260 return X86EMUL_CONTINUE; 6261 6262 vcpu->mmio_nr_fragments = 0; 6263 6264 /* Crossing a page boundary? */ 6265 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6266 int now; 6267 6268 now = -addr & ~PAGE_MASK; 6269 rc = emulator_read_write_onepage(addr, val, now, exception, 6270 vcpu, ops); 6271 6272 if (rc != X86EMUL_CONTINUE) 6273 return rc; 6274 addr += now; 6275 if (ctxt->mode != X86EMUL_MODE_PROT64) 6276 addr = (u32)addr; 6277 val += now; 6278 bytes -= now; 6279 } 6280 6281 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6282 vcpu, ops); 6283 if (rc != X86EMUL_CONTINUE) 6284 return rc; 6285 6286 if (!vcpu->mmio_nr_fragments) 6287 return rc; 6288 6289 gpa = vcpu->mmio_fragments[0].gpa; 6290 6291 vcpu->mmio_needed = 1; 6292 vcpu->mmio_cur_fragment = 0; 6293 6294 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6295 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6296 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6297 vcpu->run->mmio.phys_addr = gpa; 6298 6299 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6300 } 6301 6302 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6303 unsigned long addr, 6304 void *val, 6305 unsigned int bytes, 6306 struct x86_exception *exception) 6307 { 6308 return emulator_read_write(ctxt, addr, val, bytes, 6309 exception, &read_emultor); 6310 } 6311 6312 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6313 unsigned long addr, 6314 const void *val, 6315 unsigned int bytes, 6316 struct x86_exception *exception) 6317 { 6318 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6319 exception, &write_emultor); 6320 } 6321 6322 #define CMPXCHG_TYPE(t, ptr, old, new) \ 6323 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6324 6325 #ifdef CONFIG_X86_64 6326 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6327 #else 6328 # define CMPXCHG64(ptr, old, new) \ 6329 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6330 #endif 6331 6332 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6333 unsigned long addr, 6334 const void *old, 6335 const void *new, 6336 unsigned int bytes, 6337 struct x86_exception *exception) 6338 { 6339 struct kvm_host_map map; 6340 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6341 u64 page_line_mask; 6342 gpa_t gpa; 6343 char *kaddr; 6344 bool exchanged; 6345 6346 /* guests cmpxchg8b have to be emulated atomically */ 6347 if (bytes > 8 || (bytes & (bytes - 1))) 6348 goto emul_write; 6349 6350 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6351 6352 if (gpa == UNMAPPED_GVA || 6353 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6354 goto emul_write; 6355 6356 /* 6357 * Emulate the atomic as a straight write to avoid #AC if SLD is 6358 * enabled in the host and the access splits a cache line. 6359 */ 6360 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6361 page_line_mask = ~(cache_line_size() - 1); 6362 else 6363 page_line_mask = PAGE_MASK; 6364 6365 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6366 goto emul_write; 6367 6368 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6369 goto emul_write; 6370 6371 kaddr = map.hva + offset_in_page(gpa); 6372 6373 switch (bytes) { 6374 case 1: 6375 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6376 break; 6377 case 2: 6378 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6379 break; 6380 case 4: 6381 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6382 break; 6383 case 8: 6384 exchanged = CMPXCHG64(kaddr, old, new); 6385 break; 6386 default: 6387 BUG(); 6388 } 6389 6390 kvm_vcpu_unmap(vcpu, &map, true); 6391 6392 if (!exchanged) 6393 return X86EMUL_CMPXCHG_FAILED; 6394 6395 kvm_page_track_write(vcpu, gpa, new, bytes); 6396 6397 return X86EMUL_CONTINUE; 6398 6399 emul_write: 6400 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6401 6402 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6403 } 6404 6405 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6406 { 6407 int r = 0, i; 6408 6409 for (i = 0; i < vcpu->arch.pio.count; i++) { 6410 if (vcpu->arch.pio.in) 6411 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6412 vcpu->arch.pio.size, pd); 6413 else 6414 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6415 vcpu->arch.pio.port, vcpu->arch.pio.size, 6416 pd); 6417 if (r) 6418 break; 6419 pd += vcpu->arch.pio.size; 6420 } 6421 return r; 6422 } 6423 6424 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6425 unsigned short port, void *val, 6426 unsigned int count, bool in) 6427 { 6428 vcpu->arch.pio.port = port; 6429 vcpu->arch.pio.in = in; 6430 vcpu->arch.pio.count = count; 6431 vcpu->arch.pio.size = size; 6432 6433 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6434 vcpu->arch.pio.count = 0; 6435 return 1; 6436 } 6437 6438 vcpu->run->exit_reason = KVM_EXIT_IO; 6439 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6440 vcpu->run->io.size = size; 6441 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6442 vcpu->run->io.count = count; 6443 vcpu->run->io.port = port; 6444 6445 return 0; 6446 } 6447 6448 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6449 unsigned short port, void *val, unsigned int count) 6450 { 6451 int ret; 6452 6453 if (vcpu->arch.pio.count) 6454 goto data_avail; 6455 6456 memset(vcpu->arch.pio_data, 0, size * count); 6457 6458 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6459 if (ret) { 6460 data_avail: 6461 memcpy(val, vcpu->arch.pio_data, size * count); 6462 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6463 vcpu->arch.pio.count = 0; 6464 return 1; 6465 } 6466 6467 return 0; 6468 } 6469 6470 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6471 int size, unsigned short port, void *val, 6472 unsigned int count) 6473 { 6474 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6475 6476 } 6477 6478 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6479 unsigned short port, const void *val, 6480 unsigned int count) 6481 { 6482 memcpy(vcpu->arch.pio_data, val, size * count); 6483 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6484 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6485 } 6486 6487 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6488 int size, unsigned short port, 6489 const void *val, unsigned int count) 6490 { 6491 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6492 } 6493 6494 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6495 { 6496 return kvm_x86_ops.get_segment_base(vcpu, seg); 6497 } 6498 6499 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6500 { 6501 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6502 } 6503 6504 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6505 { 6506 if (!need_emulate_wbinvd(vcpu)) 6507 return X86EMUL_CONTINUE; 6508 6509 if (kvm_x86_ops.has_wbinvd_exit()) { 6510 int cpu = get_cpu(); 6511 6512 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6513 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6514 wbinvd_ipi, NULL, 1); 6515 put_cpu(); 6516 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6517 } else 6518 wbinvd(); 6519 return X86EMUL_CONTINUE; 6520 } 6521 6522 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6523 { 6524 kvm_emulate_wbinvd_noskip(vcpu); 6525 return kvm_skip_emulated_instruction(vcpu); 6526 } 6527 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6528 6529 6530 6531 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6532 { 6533 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6534 } 6535 6536 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6537 unsigned long *dest) 6538 { 6539 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6540 } 6541 6542 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6543 unsigned long value) 6544 { 6545 6546 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6547 } 6548 6549 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6550 { 6551 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6552 } 6553 6554 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6555 { 6556 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6557 unsigned long value; 6558 6559 switch (cr) { 6560 case 0: 6561 value = kvm_read_cr0(vcpu); 6562 break; 6563 case 2: 6564 value = vcpu->arch.cr2; 6565 break; 6566 case 3: 6567 value = kvm_read_cr3(vcpu); 6568 break; 6569 case 4: 6570 value = kvm_read_cr4(vcpu); 6571 break; 6572 case 8: 6573 value = kvm_get_cr8(vcpu); 6574 break; 6575 default: 6576 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6577 return 0; 6578 } 6579 6580 return value; 6581 } 6582 6583 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6584 { 6585 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6586 int res = 0; 6587 6588 switch (cr) { 6589 case 0: 6590 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6591 break; 6592 case 2: 6593 vcpu->arch.cr2 = val; 6594 break; 6595 case 3: 6596 res = kvm_set_cr3(vcpu, val); 6597 break; 6598 case 4: 6599 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6600 break; 6601 case 8: 6602 res = kvm_set_cr8(vcpu, val); 6603 break; 6604 default: 6605 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6606 res = -1; 6607 } 6608 6609 return res; 6610 } 6611 6612 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6613 { 6614 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6615 } 6616 6617 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6618 { 6619 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6620 } 6621 6622 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6623 { 6624 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6625 } 6626 6627 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6628 { 6629 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6630 } 6631 6632 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6633 { 6634 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6635 } 6636 6637 static unsigned long emulator_get_cached_segment_base( 6638 struct x86_emulate_ctxt *ctxt, int seg) 6639 { 6640 return get_segment_base(emul_to_vcpu(ctxt), seg); 6641 } 6642 6643 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6644 struct desc_struct *desc, u32 *base3, 6645 int seg) 6646 { 6647 struct kvm_segment var; 6648 6649 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6650 *selector = var.selector; 6651 6652 if (var.unusable) { 6653 memset(desc, 0, sizeof(*desc)); 6654 if (base3) 6655 *base3 = 0; 6656 return false; 6657 } 6658 6659 if (var.g) 6660 var.limit >>= 12; 6661 set_desc_limit(desc, var.limit); 6662 set_desc_base(desc, (unsigned long)var.base); 6663 #ifdef CONFIG_X86_64 6664 if (base3) 6665 *base3 = var.base >> 32; 6666 #endif 6667 desc->type = var.type; 6668 desc->s = var.s; 6669 desc->dpl = var.dpl; 6670 desc->p = var.present; 6671 desc->avl = var.avl; 6672 desc->l = var.l; 6673 desc->d = var.db; 6674 desc->g = var.g; 6675 6676 return true; 6677 } 6678 6679 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6680 struct desc_struct *desc, u32 base3, 6681 int seg) 6682 { 6683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6684 struct kvm_segment var; 6685 6686 var.selector = selector; 6687 var.base = get_desc_base(desc); 6688 #ifdef CONFIG_X86_64 6689 var.base |= ((u64)base3) << 32; 6690 #endif 6691 var.limit = get_desc_limit(desc); 6692 if (desc->g) 6693 var.limit = (var.limit << 12) | 0xfff; 6694 var.type = desc->type; 6695 var.dpl = desc->dpl; 6696 var.db = desc->d; 6697 var.s = desc->s; 6698 var.l = desc->l; 6699 var.g = desc->g; 6700 var.avl = desc->avl; 6701 var.present = desc->p; 6702 var.unusable = !var.present; 6703 var.padding = 0; 6704 6705 kvm_set_segment(vcpu, &var, seg); 6706 return; 6707 } 6708 6709 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6710 u32 msr_index, u64 *pdata) 6711 { 6712 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6713 int r; 6714 6715 r = kvm_get_msr(vcpu, msr_index, pdata); 6716 6717 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 6718 /* Bounce to user space */ 6719 return X86EMUL_IO_NEEDED; 6720 } 6721 6722 return r; 6723 } 6724 6725 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6726 u32 msr_index, u64 data) 6727 { 6728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6729 int r; 6730 6731 r = kvm_set_msr(vcpu, msr_index, data); 6732 6733 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 6734 /* Bounce to user space */ 6735 return X86EMUL_IO_NEEDED; 6736 } 6737 6738 return r; 6739 } 6740 6741 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6742 { 6743 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6744 6745 return vcpu->arch.smbase; 6746 } 6747 6748 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6749 { 6750 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6751 6752 vcpu->arch.smbase = smbase; 6753 } 6754 6755 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6756 u32 pmc) 6757 { 6758 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6759 } 6760 6761 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6762 u32 pmc, u64 *pdata) 6763 { 6764 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6765 } 6766 6767 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6768 { 6769 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6770 } 6771 6772 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6773 struct x86_instruction_info *info, 6774 enum x86_intercept_stage stage) 6775 { 6776 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6777 &ctxt->exception); 6778 } 6779 6780 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6781 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6782 bool exact_only) 6783 { 6784 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6785 } 6786 6787 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6788 { 6789 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6790 } 6791 6792 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6793 { 6794 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6795 } 6796 6797 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6798 { 6799 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6800 } 6801 6802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6803 { 6804 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6805 } 6806 6807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6808 { 6809 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6810 } 6811 6812 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6813 { 6814 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6815 } 6816 6817 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6818 { 6819 return emul_to_vcpu(ctxt)->arch.hflags; 6820 } 6821 6822 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6823 { 6824 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6825 } 6826 6827 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6828 const char *smstate) 6829 { 6830 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6831 } 6832 6833 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6834 { 6835 kvm_smm_changed(emul_to_vcpu(ctxt)); 6836 } 6837 6838 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6839 { 6840 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6841 } 6842 6843 static const struct x86_emulate_ops emulate_ops = { 6844 .read_gpr = emulator_read_gpr, 6845 .write_gpr = emulator_write_gpr, 6846 .read_std = emulator_read_std, 6847 .write_std = emulator_write_std, 6848 .read_phys = kvm_read_guest_phys_system, 6849 .fetch = kvm_fetch_guest_virt, 6850 .read_emulated = emulator_read_emulated, 6851 .write_emulated = emulator_write_emulated, 6852 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6853 .invlpg = emulator_invlpg, 6854 .pio_in_emulated = emulator_pio_in_emulated, 6855 .pio_out_emulated = emulator_pio_out_emulated, 6856 .get_segment = emulator_get_segment, 6857 .set_segment = emulator_set_segment, 6858 .get_cached_segment_base = emulator_get_cached_segment_base, 6859 .get_gdt = emulator_get_gdt, 6860 .get_idt = emulator_get_idt, 6861 .set_gdt = emulator_set_gdt, 6862 .set_idt = emulator_set_idt, 6863 .get_cr = emulator_get_cr, 6864 .set_cr = emulator_set_cr, 6865 .cpl = emulator_get_cpl, 6866 .get_dr = emulator_get_dr, 6867 .set_dr = emulator_set_dr, 6868 .get_smbase = emulator_get_smbase, 6869 .set_smbase = emulator_set_smbase, 6870 .set_msr = emulator_set_msr, 6871 .get_msr = emulator_get_msr, 6872 .check_pmc = emulator_check_pmc, 6873 .read_pmc = emulator_read_pmc, 6874 .halt = emulator_halt, 6875 .wbinvd = emulator_wbinvd, 6876 .fix_hypercall = emulator_fix_hypercall, 6877 .intercept = emulator_intercept, 6878 .get_cpuid = emulator_get_cpuid, 6879 .guest_has_long_mode = emulator_guest_has_long_mode, 6880 .guest_has_movbe = emulator_guest_has_movbe, 6881 .guest_has_fxsr = emulator_guest_has_fxsr, 6882 .set_nmi_mask = emulator_set_nmi_mask, 6883 .get_hflags = emulator_get_hflags, 6884 .set_hflags = emulator_set_hflags, 6885 .pre_leave_smm = emulator_pre_leave_smm, 6886 .post_leave_smm = emulator_post_leave_smm, 6887 .set_xcr = emulator_set_xcr, 6888 }; 6889 6890 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6891 { 6892 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6893 /* 6894 * an sti; sti; sequence only disable interrupts for the first 6895 * instruction. So, if the last instruction, be it emulated or 6896 * not, left the system with the INT_STI flag enabled, it 6897 * means that the last instruction is an sti. We should not 6898 * leave the flag on in this case. The same goes for mov ss 6899 */ 6900 if (int_shadow & mask) 6901 mask = 0; 6902 if (unlikely(int_shadow || mask)) { 6903 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6904 if (!mask) 6905 kvm_make_request(KVM_REQ_EVENT, vcpu); 6906 } 6907 } 6908 6909 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6910 { 6911 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6912 if (ctxt->exception.vector == PF_VECTOR) 6913 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6914 6915 if (ctxt->exception.error_code_valid) 6916 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6917 ctxt->exception.error_code); 6918 else 6919 kvm_queue_exception(vcpu, ctxt->exception.vector); 6920 return false; 6921 } 6922 6923 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6924 { 6925 struct x86_emulate_ctxt *ctxt; 6926 6927 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6928 if (!ctxt) { 6929 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6930 return NULL; 6931 } 6932 6933 ctxt->vcpu = vcpu; 6934 ctxt->ops = &emulate_ops; 6935 vcpu->arch.emulate_ctxt = ctxt; 6936 6937 return ctxt; 6938 } 6939 6940 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6941 { 6942 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6943 int cs_db, cs_l; 6944 6945 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6946 6947 ctxt->gpa_available = false; 6948 ctxt->eflags = kvm_get_rflags(vcpu); 6949 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6950 6951 ctxt->eip = kvm_rip_read(vcpu); 6952 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6953 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6954 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6955 cs_db ? X86EMUL_MODE_PROT32 : 6956 X86EMUL_MODE_PROT16; 6957 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6958 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6959 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6960 6961 init_decode_cache(ctxt); 6962 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6963 } 6964 6965 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6966 { 6967 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6968 int ret; 6969 6970 init_emulate_ctxt(vcpu); 6971 6972 ctxt->op_bytes = 2; 6973 ctxt->ad_bytes = 2; 6974 ctxt->_eip = ctxt->eip + inc_eip; 6975 ret = emulate_int_real(ctxt, irq); 6976 6977 if (ret != X86EMUL_CONTINUE) { 6978 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6979 } else { 6980 ctxt->eip = ctxt->_eip; 6981 kvm_rip_write(vcpu, ctxt->eip); 6982 kvm_set_rflags(vcpu, ctxt->eflags); 6983 } 6984 } 6985 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6986 6987 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6988 { 6989 ++vcpu->stat.insn_emulation_fail; 6990 trace_kvm_emulate_insn_failed(vcpu); 6991 6992 if (emulation_type & EMULTYPE_VMWARE_GP) { 6993 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6994 return 1; 6995 } 6996 6997 if (emulation_type & EMULTYPE_SKIP) { 6998 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6999 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7000 vcpu->run->internal.ndata = 0; 7001 return 0; 7002 } 7003 7004 kvm_queue_exception(vcpu, UD_VECTOR); 7005 7006 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 7007 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7008 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7009 vcpu->run->internal.ndata = 0; 7010 return 0; 7011 } 7012 7013 return 1; 7014 } 7015 7016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7017 bool write_fault_to_shadow_pgtable, 7018 int emulation_type) 7019 { 7020 gpa_t gpa = cr2_or_gpa; 7021 kvm_pfn_t pfn; 7022 7023 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7024 return false; 7025 7026 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7027 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7028 return false; 7029 7030 if (!vcpu->arch.mmu->direct_map) { 7031 /* 7032 * Write permission should be allowed since only 7033 * write access need to be emulated. 7034 */ 7035 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7036 7037 /* 7038 * If the mapping is invalid in guest, let cpu retry 7039 * it to generate fault. 7040 */ 7041 if (gpa == UNMAPPED_GVA) 7042 return true; 7043 } 7044 7045 /* 7046 * Do not retry the unhandleable instruction if it faults on the 7047 * readonly host memory, otherwise it will goto a infinite loop: 7048 * retry instruction -> write #PF -> emulation fail -> retry 7049 * instruction -> ... 7050 */ 7051 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7052 7053 /* 7054 * If the instruction failed on the error pfn, it can not be fixed, 7055 * report the error to userspace. 7056 */ 7057 if (is_error_noslot_pfn(pfn)) 7058 return false; 7059 7060 kvm_release_pfn_clean(pfn); 7061 7062 /* The instructions are well-emulated on direct mmu. */ 7063 if (vcpu->arch.mmu->direct_map) { 7064 unsigned int indirect_shadow_pages; 7065 7066 spin_lock(&vcpu->kvm->mmu_lock); 7067 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7068 spin_unlock(&vcpu->kvm->mmu_lock); 7069 7070 if (indirect_shadow_pages) 7071 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7072 7073 return true; 7074 } 7075 7076 /* 7077 * if emulation was due to access to shadowed page table 7078 * and it failed try to unshadow page and re-enter the 7079 * guest to let CPU execute the instruction. 7080 */ 7081 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7082 7083 /* 7084 * If the access faults on its page table, it can not 7085 * be fixed by unprotecting shadow page and it should 7086 * be reported to userspace. 7087 */ 7088 return !write_fault_to_shadow_pgtable; 7089 } 7090 7091 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7092 gpa_t cr2_or_gpa, int emulation_type) 7093 { 7094 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7095 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7096 7097 last_retry_eip = vcpu->arch.last_retry_eip; 7098 last_retry_addr = vcpu->arch.last_retry_addr; 7099 7100 /* 7101 * If the emulation is caused by #PF and it is non-page_table 7102 * writing instruction, it means the VM-EXIT is caused by shadow 7103 * page protected, we can zap the shadow page and retry this 7104 * instruction directly. 7105 * 7106 * Note: if the guest uses a non-page-table modifying instruction 7107 * on the PDE that points to the instruction, then we will unmap 7108 * the instruction and go to an infinite loop. So, we cache the 7109 * last retried eip and the last fault address, if we meet the eip 7110 * and the address again, we can break out of the potential infinite 7111 * loop. 7112 */ 7113 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7114 7115 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7116 return false; 7117 7118 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7119 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7120 return false; 7121 7122 if (x86_page_table_writing_insn(ctxt)) 7123 return false; 7124 7125 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7126 return false; 7127 7128 vcpu->arch.last_retry_eip = ctxt->eip; 7129 vcpu->arch.last_retry_addr = cr2_or_gpa; 7130 7131 if (!vcpu->arch.mmu->direct_map) 7132 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7133 7134 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7135 7136 return true; 7137 } 7138 7139 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7140 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7141 7142 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 7143 { 7144 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 7145 /* This is a good place to trace that we are exiting SMM. */ 7146 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 7147 7148 /* Process a latched INIT or SMI, if any. */ 7149 kvm_make_request(KVM_REQ_EVENT, vcpu); 7150 } 7151 7152 kvm_mmu_reset_context(vcpu); 7153 } 7154 7155 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7156 unsigned long *db) 7157 { 7158 u32 dr6 = 0; 7159 int i; 7160 u32 enable, rwlen; 7161 7162 enable = dr7; 7163 rwlen = dr7 >> 16; 7164 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7165 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7166 dr6 |= (1 << i); 7167 return dr6; 7168 } 7169 7170 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7171 { 7172 struct kvm_run *kvm_run = vcpu->run; 7173 7174 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7175 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 7176 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7177 kvm_run->debug.arch.exception = DB_VECTOR; 7178 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7179 return 0; 7180 } 7181 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7182 return 1; 7183 } 7184 7185 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7186 { 7187 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7188 int r; 7189 7190 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 7191 if (unlikely(!r)) 7192 return 0; 7193 7194 /* 7195 * rflags is the old, "raw" value of the flags. The new value has 7196 * not been saved yet. 7197 * 7198 * This is correct even for TF set by the guest, because "the 7199 * processor will not generate this exception after the instruction 7200 * that sets the TF flag". 7201 */ 7202 if (unlikely(rflags & X86_EFLAGS_TF)) 7203 r = kvm_vcpu_do_singlestep(vcpu); 7204 return r; 7205 } 7206 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7207 7208 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 7209 { 7210 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7211 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7212 struct kvm_run *kvm_run = vcpu->run; 7213 unsigned long eip = kvm_get_linear_rip(vcpu); 7214 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7215 vcpu->arch.guest_debug_dr7, 7216 vcpu->arch.eff_db); 7217 7218 if (dr6 != 0) { 7219 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 7220 kvm_run->debug.arch.pc = eip; 7221 kvm_run->debug.arch.exception = DB_VECTOR; 7222 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7223 *r = 0; 7224 return true; 7225 } 7226 } 7227 7228 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7229 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7230 unsigned long eip = kvm_get_linear_rip(vcpu); 7231 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7232 vcpu->arch.dr7, 7233 vcpu->arch.db); 7234 7235 if (dr6 != 0) { 7236 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7237 *r = 1; 7238 return true; 7239 } 7240 } 7241 7242 return false; 7243 } 7244 7245 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7246 { 7247 switch (ctxt->opcode_len) { 7248 case 1: 7249 switch (ctxt->b) { 7250 case 0xe4: /* IN */ 7251 case 0xe5: 7252 case 0xec: 7253 case 0xed: 7254 case 0xe6: /* OUT */ 7255 case 0xe7: 7256 case 0xee: 7257 case 0xef: 7258 case 0x6c: /* INS */ 7259 case 0x6d: 7260 case 0x6e: /* OUTS */ 7261 case 0x6f: 7262 return true; 7263 } 7264 break; 7265 case 2: 7266 switch (ctxt->b) { 7267 case 0x33: /* RDPMC */ 7268 return true; 7269 } 7270 break; 7271 } 7272 7273 return false; 7274 } 7275 7276 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7277 int emulation_type, void *insn, int insn_len) 7278 { 7279 int r; 7280 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7281 bool writeback = true; 7282 bool write_fault_to_spt; 7283 7284 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len))) 7285 return 1; 7286 7287 vcpu->arch.l1tf_flush_l1d = true; 7288 7289 /* 7290 * Clear write_fault_to_shadow_pgtable here to ensure it is 7291 * never reused. 7292 */ 7293 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7294 vcpu->arch.write_fault_to_shadow_pgtable = false; 7295 kvm_clear_exception_queue(vcpu); 7296 7297 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7298 init_emulate_ctxt(vcpu); 7299 7300 /* 7301 * We will reenter on the same instruction since 7302 * we do not set complete_userspace_io. This does not 7303 * handle watchpoints yet, those would be handled in 7304 * the emulate_ops. 7305 */ 7306 if (!(emulation_type & EMULTYPE_SKIP) && 7307 kvm_vcpu_check_breakpoint(vcpu, &r)) 7308 return r; 7309 7310 ctxt->interruptibility = 0; 7311 ctxt->have_exception = false; 7312 ctxt->exception.vector = -1; 7313 ctxt->perm_ok = false; 7314 7315 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 7316 7317 r = x86_decode_insn(ctxt, insn, insn_len); 7318 7319 trace_kvm_emulate_insn_start(vcpu); 7320 ++vcpu->stat.insn_emulation; 7321 if (r != EMULATION_OK) { 7322 if ((emulation_type & EMULTYPE_TRAP_UD) || 7323 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7324 kvm_queue_exception(vcpu, UD_VECTOR); 7325 return 1; 7326 } 7327 if (reexecute_instruction(vcpu, cr2_or_gpa, 7328 write_fault_to_spt, 7329 emulation_type)) 7330 return 1; 7331 if (ctxt->have_exception) { 7332 /* 7333 * #UD should result in just EMULATION_FAILED, and trap-like 7334 * exception should not be encountered during decode. 7335 */ 7336 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7337 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7338 inject_emulated_exception(vcpu); 7339 return 1; 7340 } 7341 return handle_emulation_failure(vcpu, emulation_type); 7342 } 7343 } 7344 7345 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7346 !is_vmware_backdoor_opcode(ctxt)) { 7347 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7348 return 1; 7349 } 7350 7351 /* 7352 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7353 * for kvm_skip_emulated_instruction(). The caller is responsible for 7354 * updating interruptibility state and injecting single-step #DBs. 7355 */ 7356 if (emulation_type & EMULTYPE_SKIP) { 7357 kvm_rip_write(vcpu, ctxt->_eip); 7358 if (ctxt->eflags & X86_EFLAGS_RF) 7359 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7360 return 1; 7361 } 7362 7363 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7364 return 1; 7365 7366 /* this is needed for vmware backdoor interface to work since it 7367 changes registers values during IO operation */ 7368 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7369 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7370 emulator_invalidate_register_cache(ctxt); 7371 } 7372 7373 restart: 7374 if (emulation_type & EMULTYPE_PF) { 7375 /* Save the faulting GPA (cr2) in the address field */ 7376 ctxt->exception.address = cr2_or_gpa; 7377 7378 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7379 if (vcpu->arch.mmu->direct_map) { 7380 ctxt->gpa_available = true; 7381 ctxt->gpa_val = cr2_or_gpa; 7382 } 7383 } else { 7384 /* Sanitize the address out of an abundance of paranoia. */ 7385 ctxt->exception.address = 0; 7386 } 7387 7388 r = x86_emulate_insn(ctxt); 7389 7390 if (r == EMULATION_INTERCEPTED) 7391 return 1; 7392 7393 if (r == EMULATION_FAILED) { 7394 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7395 emulation_type)) 7396 return 1; 7397 7398 return handle_emulation_failure(vcpu, emulation_type); 7399 } 7400 7401 if (ctxt->have_exception) { 7402 r = 1; 7403 if (inject_emulated_exception(vcpu)) 7404 return r; 7405 } else if (vcpu->arch.pio.count) { 7406 if (!vcpu->arch.pio.in) { 7407 /* FIXME: return into emulator if single-stepping. */ 7408 vcpu->arch.pio.count = 0; 7409 } else { 7410 writeback = false; 7411 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7412 } 7413 r = 0; 7414 } else if (vcpu->mmio_needed) { 7415 ++vcpu->stat.mmio_exits; 7416 7417 if (!vcpu->mmio_is_write) 7418 writeback = false; 7419 r = 0; 7420 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7421 } else if (r == EMULATION_RESTART) 7422 goto restart; 7423 else 7424 r = 1; 7425 7426 if (writeback) { 7427 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7428 toggle_interruptibility(vcpu, ctxt->interruptibility); 7429 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7430 if (!ctxt->have_exception || 7431 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7432 kvm_rip_write(vcpu, ctxt->eip); 7433 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7434 r = kvm_vcpu_do_singlestep(vcpu); 7435 if (kvm_x86_ops.update_emulated_instruction) 7436 kvm_x86_ops.update_emulated_instruction(vcpu); 7437 __kvm_set_rflags(vcpu, ctxt->eflags); 7438 } 7439 7440 /* 7441 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7442 * do nothing, and it will be requested again as soon as 7443 * the shadow expires. But we still need to check here, 7444 * because POPF has no interrupt shadow. 7445 */ 7446 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7447 kvm_make_request(KVM_REQ_EVENT, vcpu); 7448 } else 7449 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7450 7451 return r; 7452 } 7453 7454 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7455 { 7456 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7457 } 7458 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7459 7460 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7461 void *insn, int insn_len) 7462 { 7463 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7464 } 7465 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7466 7467 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7468 { 7469 vcpu->arch.pio.count = 0; 7470 return 1; 7471 } 7472 7473 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7474 { 7475 vcpu->arch.pio.count = 0; 7476 7477 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7478 return 1; 7479 7480 return kvm_skip_emulated_instruction(vcpu); 7481 } 7482 7483 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7484 unsigned short port) 7485 { 7486 unsigned long val = kvm_rax_read(vcpu); 7487 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7488 7489 if (ret) 7490 return ret; 7491 7492 /* 7493 * Workaround userspace that relies on old KVM behavior of %rip being 7494 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7495 */ 7496 if (port == 0x7e && 7497 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7498 vcpu->arch.complete_userspace_io = 7499 complete_fast_pio_out_port_0x7e; 7500 kvm_skip_emulated_instruction(vcpu); 7501 } else { 7502 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7503 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7504 } 7505 return 0; 7506 } 7507 7508 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7509 { 7510 unsigned long val; 7511 7512 /* We should only ever be called with arch.pio.count equal to 1 */ 7513 BUG_ON(vcpu->arch.pio.count != 1); 7514 7515 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7516 vcpu->arch.pio.count = 0; 7517 return 1; 7518 } 7519 7520 /* For size less than 4 we merge, else we zero extend */ 7521 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7522 7523 /* 7524 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7525 * the copy and tracing 7526 */ 7527 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7528 kvm_rax_write(vcpu, val); 7529 7530 return kvm_skip_emulated_instruction(vcpu); 7531 } 7532 7533 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7534 unsigned short port) 7535 { 7536 unsigned long val; 7537 int ret; 7538 7539 /* For size less than 4 we merge, else we zero extend */ 7540 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7541 7542 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7543 if (ret) { 7544 kvm_rax_write(vcpu, val); 7545 return ret; 7546 } 7547 7548 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7549 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7550 7551 return 0; 7552 } 7553 7554 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7555 { 7556 int ret; 7557 7558 if (in) 7559 ret = kvm_fast_pio_in(vcpu, size, port); 7560 else 7561 ret = kvm_fast_pio_out(vcpu, size, port); 7562 return ret && kvm_skip_emulated_instruction(vcpu); 7563 } 7564 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7565 7566 static int kvmclock_cpu_down_prep(unsigned int cpu) 7567 { 7568 __this_cpu_write(cpu_tsc_khz, 0); 7569 return 0; 7570 } 7571 7572 static void tsc_khz_changed(void *data) 7573 { 7574 struct cpufreq_freqs *freq = data; 7575 unsigned long khz = 0; 7576 7577 if (data) 7578 khz = freq->new; 7579 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7580 khz = cpufreq_quick_get(raw_smp_processor_id()); 7581 if (!khz) 7582 khz = tsc_khz; 7583 __this_cpu_write(cpu_tsc_khz, khz); 7584 } 7585 7586 #ifdef CONFIG_X86_64 7587 static void kvm_hyperv_tsc_notifier(void) 7588 { 7589 struct kvm *kvm; 7590 struct kvm_vcpu *vcpu; 7591 int cpu; 7592 7593 mutex_lock(&kvm_lock); 7594 list_for_each_entry(kvm, &vm_list, vm_list) 7595 kvm_make_mclock_inprogress_request(kvm); 7596 7597 hyperv_stop_tsc_emulation(); 7598 7599 /* TSC frequency always matches when on Hyper-V */ 7600 for_each_present_cpu(cpu) 7601 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7602 kvm_max_guest_tsc_khz = tsc_khz; 7603 7604 list_for_each_entry(kvm, &vm_list, vm_list) { 7605 struct kvm_arch *ka = &kvm->arch; 7606 7607 spin_lock(&ka->pvclock_gtod_sync_lock); 7608 7609 pvclock_update_vm_gtod_copy(kvm); 7610 7611 kvm_for_each_vcpu(cpu, vcpu, kvm) 7612 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7613 7614 kvm_for_each_vcpu(cpu, vcpu, kvm) 7615 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7616 7617 spin_unlock(&ka->pvclock_gtod_sync_lock); 7618 } 7619 mutex_unlock(&kvm_lock); 7620 } 7621 #endif 7622 7623 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7624 { 7625 struct kvm *kvm; 7626 struct kvm_vcpu *vcpu; 7627 int i, send_ipi = 0; 7628 7629 /* 7630 * We allow guests to temporarily run on slowing clocks, 7631 * provided we notify them after, or to run on accelerating 7632 * clocks, provided we notify them before. Thus time never 7633 * goes backwards. 7634 * 7635 * However, we have a problem. We can't atomically update 7636 * the frequency of a given CPU from this function; it is 7637 * merely a notifier, which can be called from any CPU. 7638 * Changing the TSC frequency at arbitrary points in time 7639 * requires a recomputation of local variables related to 7640 * the TSC for each VCPU. We must flag these local variables 7641 * to be updated and be sure the update takes place with the 7642 * new frequency before any guests proceed. 7643 * 7644 * Unfortunately, the combination of hotplug CPU and frequency 7645 * change creates an intractable locking scenario; the order 7646 * of when these callouts happen is undefined with respect to 7647 * CPU hotplug, and they can race with each other. As such, 7648 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7649 * undefined; you can actually have a CPU frequency change take 7650 * place in between the computation of X and the setting of the 7651 * variable. To protect against this problem, all updates of 7652 * the per_cpu tsc_khz variable are done in an interrupt 7653 * protected IPI, and all callers wishing to update the value 7654 * must wait for a synchronous IPI to complete (which is trivial 7655 * if the caller is on the CPU already). This establishes the 7656 * necessary total order on variable updates. 7657 * 7658 * Note that because a guest time update may take place 7659 * anytime after the setting of the VCPU's request bit, the 7660 * correct TSC value must be set before the request. However, 7661 * to ensure the update actually makes it to any guest which 7662 * starts running in hardware virtualization between the set 7663 * and the acquisition of the spinlock, we must also ping the 7664 * CPU after setting the request bit. 7665 * 7666 */ 7667 7668 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7669 7670 mutex_lock(&kvm_lock); 7671 list_for_each_entry(kvm, &vm_list, vm_list) { 7672 kvm_for_each_vcpu(i, vcpu, kvm) { 7673 if (vcpu->cpu != cpu) 7674 continue; 7675 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7676 if (vcpu->cpu != raw_smp_processor_id()) 7677 send_ipi = 1; 7678 } 7679 } 7680 mutex_unlock(&kvm_lock); 7681 7682 if (freq->old < freq->new && send_ipi) { 7683 /* 7684 * We upscale the frequency. Must make the guest 7685 * doesn't see old kvmclock values while running with 7686 * the new frequency, otherwise we risk the guest sees 7687 * time go backwards. 7688 * 7689 * In case we update the frequency for another cpu 7690 * (which might be in guest context) send an interrupt 7691 * to kick the cpu out of guest context. Next time 7692 * guest context is entered kvmclock will be updated, 7693 * so the guest will not see stale values. 7694 */ 7695 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7696 } 7697 } 7698 7699 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7700 void *data) 7701 { 7702 struct cpufreq_freqs *freq = data; 7703 int cpu; 7704 7705 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7706 return 0; 7707 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7708 return 0; 7709 7710 for_each_cpu(cpu, freq->policy->cpus) 7711 __kvmclock_cpufreq_notifier(freq, cpu); 7712 7713 return 0; 7714 } 7715 7716 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7717 .notifier_call = kvmclock_cpufreq_notifier 7718 }; 7719 7720 static int kvmclock_cpu_online(unsigned int cpu) 7721 { 7722 tsc_khz_changed(NULL); 7723 return 0; 7724 } 7725 7726 static void kvm_timer_init(void) 7727 { 7728 max_tsc_khz = tsc_khz; 7729 7730 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7731 #ifdef CONFIG_CPU_FREQ 7732 struct cpufreq_policy *policy; 7733 int cpu; 7734 7735 cpu = get_cpu(); 7736 policy = cpufreq_cpu_get(cpu); 7737 if (policy) { 7738 if (policy->cpuinfo.max_freq) 7739 max_tsc_khz = policy->cpuinfo.max_freq; 7740 cpufreq_cpu_put(policy); 7741 } 7742 put_cpu(); 7743 #endif 7744 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7745 CPUFREQ_TRANSITION_NOTIFIER); 7746 } 7747 7748 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7749 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7750 } 7751 7752 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7753 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7754 7755 int kvm_is_in_guest(void) 7756 { 7757 return __this_cpu_read(current_vcpu) != NULL; 7758 } 7759 7760 static int kvm_is_user_mode(void) 7761 { 7762 int user_mode = 3; 7763 7764 if (__this_cpu_read(current_vcpu)) 7765 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7766 7767 return user_mode != 0; 7768 } 7769 7770 static unsigned long kvm_get_guest_ip(void) 7771 { 7772 unsigned long ip = 0; 7773 7774 if (__this_cpu_read(current_vcpu)) 7775 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7776 7777 return ip; 7778 } 7779 7780 static void kvm_handle_intel_pt_intr(void) 7781 { 7782 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7783 7784 kvm_make_request(KVM_REQ_PMI, vcpu); 7785 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7786 (unsigned long *)&vcpu->arch.pmu.global_status); 7787 } 7788 7789 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7790 .is_in_guest = kvm_is_in_guest, 7791 .is_user_mode = kvm_is_user_mode, 7792 .get_guest_ip = kvm_get_guest_ip, 7793 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7794 }; 7795 7796 #ifdef CONFIG_X86_64 7797 static void pvclock_gtod_update_fn(struct work_struct *work) 7798 { 7799 struct kvm *kvm; 7800 7801 struct kvm_vcpu *vcpu; 7802 int i; 7803 7804 mutex_lock(&kvm_lock); 7805 list_for_each_entry(kvm, &vm_list, vm_list) 7806 kvm_for_each_vcpu(i, vcpu, kvm) 7807 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7808 atomic_set(&kvm_guest_has_master_clock, 0); 7809 mutex_unlock(&kvm_lock); 7810 } 7811 7812 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7813 7814 /* 7815 * Notification about pvclock gtod data update. 7816 */ 7817 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7818 void *priv) 7819 { 7820 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7821 struct timekeeper *tk = priv; 7822 7823 update_pvclock_gtod(tk); 7824 7825 /* disable master clock if host does not trust, or does not 7826 * use, TSC based clocksource. 7827 */ 7828 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7829 atomic_read(&kvm_guest_has_master_clock) != 0) 7830 queue_work(system_long_wq, &pvclock_gtod_work); 7831 7832 return 0; 7833 } 7834 7835 static struct notifier_block pvclock_gtod_notifier = { 7836 .notifier_call = pvclock_gtod_notify, 7837 }; 7838 #endif 7839 7840 int kvm_arch_init(void *opaque) 7841 { 7842 struct kvm_x86_init_ops *ops = opaque; 7843 int r; 7844 7845 if (kvm_x86_ops.hardware_enable) { 7846 printk(KERN_ERR "kvm: already loaded the other module\n"); 7847 r = -EEXIST; 7848 goto out; 7849 } 7850 7851 if (!ops->cpu_has_kvm_support()) { 7852 pr_err_ratelimited("kvm: no hardware support\n"); 7853 r = -EOPNOTSUPP; 7854 goto out; 7855 } 7856 if (ops->disabled_by_bios()) { 7857 pr_err_ratelimited("kvm: disabled by bios\n"); 7858 r = -EOPNOTSUPP; 7859 goto out; 7860 } 7861 7862 /* 7863 * KVM explicitly assumes that the guest has an FPU and 7864 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7865 * vCPU's FPU state as a fxregs_state struct. 7866 */ 7867 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7868 printk(KERN_ERR "kvm: inadequate fpu\n"); 7869 r = -EOPNOTSUPP; 7870 goto out; 7871 } 7872 7873 r = -ENOMEM; 7874 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7875 __alignof__(struct fpu), SLAB_ACCOUNT, 7876 NULL); 7877 if (!x86_fpu_cache) { 7878 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7879 goto out; 7880 } 7881 7882 x86_emulator_cache = kvm_alloc_emulator_cache(); 7883 if (!x86_emulator_cache) { 7884 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7885 goto out_free_x86_fpu_cache; 7886 } 7887 7888 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 7889 if (!user_return_msrs) { 7890 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 7891 goto out_free_x86_emulator_cache; 7892 } 7893 7894 r = kvm_mmu_module_init(); 7895 if (r) 7896 goto out_free_percpu; 7897 7898 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7899 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7900 PT_PRESENT_MASK, 0, sme_me_mask); 7901 kvm_timer_init(); 7902 7903 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7904 7905 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7906 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7907 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7908 } 7909 7910 kvm_lapic_init(); 7911 if (pi_inject_timer == -1) 7912 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7913 #ifdef CONFIG_X86_64 7914 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7915 7916 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7917 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7918 #endif 7919 7920 return 0; 7921 7922 out_free_percpu: 7923 free_percpu(user_return_msrs); 7924 out_free_x86_emulator_cache: 7925 kmem_cache_destroy(x86_emulator_cache); 7926 out_free_x86_fpu_cache: 7927 kmem_cache_destroy(x86_fpu_cache); 7928 out: 7929 return r; 7930 } 7931 7932 void kvm_arch_exit(void) 7933 { 7934 #ifdef CONFIG_X86_64 7935 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7936 clear_hv_tscchange_cb(); 7937 #endif 7938 kvm_lapic_exit(); 7939 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7940 7941 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7942 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7943 CPUFREQ_TRANSITION_NOTIFIER); 7944 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7945 #ifdef CONFIG_X86_64 7946 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7947 #endif 7948 kvm_x86_ops.hardware_enable = NULL; 7949 kvm_mmu_module_exit(); 7950 free_percpu(user_return_msrs); 7951 kmem_cache_destroy(x86_fpu_cache); 7952 } 7953 7954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7955 { 7956 ++vcpu->stat.halt_exits; 7957 if (lapic_in_kernel(vcpu)) { 7958 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7959 return 1; 7960 } else { 7961 vcpu->run->exit_reason = KVM_EXIT_HLT; 7962 return 0; 7963 } 7964 } 7965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7966 7967 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7968 { 7969 int ret = kvm_skip_emulated_instruction(vcpu); 7970 /* 7971 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7972 * KVM_EXIT_DEBUG here. 7973 */ 7974 return kvm_vcpu_halt(vcpu) && ret; 7975 } 7976 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7977 7978 #ifdef CONFIG_X86_64 7979 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7980 unsigned long clock_type) 7981 { 7982 struct kvm_clock_pairing clock_pairing; 7983 struct timespec64 ts; 7984 u64 cycle; 7985 int ret; 7986 7987 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7988 return -KVM_EOPNOTSUPP; 7989 7990 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7991 return -KVM_EOPNOTSUPP; 7992 7993 clock_pairing.sec = ts.tv_sec; 7994 clock_pairing.nsec = ts.tv_nsec; 7995 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7996 clock_pairing.flags = 0; 7997 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7998 7999 ret = 0; 8000 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8001 sizeof(struct kvm_clock_pairing))) 8002 ret = -KVM_EFAULT; 8003 8004 return ret; 8005 } 8006 #endif 8007 8008 /* 8009 * kvm_pv_kick_cpu_op: Kick a vcpu. 8010 * 8011 * @apicid - apicid of vcpu to be kicked. 8012 */ 8013 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8014 { 8015 struct kvm_lapic_irq lapic_irq; 8016 8017 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8018 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8019 lapic_irq.level = 0; 8020 lapic_irq.dest_id = apicid; 8021 lapic_irq.msi_redir_hint = false; 8022 8023 lapic_irq.delivery_mode = APIC_DM_REMRD; 8024 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8025 } 8026 8027 bool kvm_apicv_activated(struct kvm *kvm) 8028 { 8029 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8030 } 8031 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8032 8033 void kvm_apicv_init(struct kvm *kvm, bool enable) 8034 { 8035 if (enable) 8036 clear_bit(APICV_INHIBIT_REASON_DISABLE, 8037 &kvm->arch.apicv_inhibit_reasons); 8038 else 8039 set_bit(APICV_INHIBIT_REASON_DISABLE, 8040 &kvm->arch.apicv_inhibit_reasons); 8041 } 8042 EXPORT_SYMBOL_GPL(kvm_apicv_init); 8043 8044 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 8045 { 8046 struct kvm_vcpu *target = NULL; 8047 struct kvm_apic_map *map; 8048 8049 rcu_read_lock(); 8050 map = rcu_dereference(kvm->arch.apic_map); 8051 8052 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8053 target = map->phys_map[dest_id]->vcpu; 8054 8055 rcu_read_unlock(); 8056 8057 if (target && READ_ONCE(target->ready)) 8058 kvm_vcpu_yield_to(target); 8059 } 8060 8061 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8062 { 8063 unsigned long nr, a0, a1, a2, a3, ret; 8064 int op_64_bit; 8065 8066 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 8067 return kvm_hv_hypercall(vcpu); 8068 8069 nr = kvm_rax_read(vcpu); 8070 a0 = kvm_rbx_read(vcpu); 8071 a1 = kvm_rcx_read(vcpu); 8072 a2 = kvm_rdx_read(vcpu); 8073 a3 = kvm_rsi_read(vcpu); 8074 8075 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8076 8077 op_64_bit = is_64_bit_mode(vcpu); 8078 if (!op_64_bit) { 8079 nr &= 0xFFFFFFFF; 8080 a0 &= 0xFFFFFFFF; 8081 a1 &= 0xFFFFFFFF; 8082 a2 &= 0xFFFFFFFF; 8083 a3 &= 0xFFFFFFFF; 8084 } 8085 8086 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 8087 ret = -KVM_EPERM; 8088 goto out; 8089 } 8090 8091 ret = -KVM_ENOSYS; 8092 8093 switch (nr) { 8094 case KVM_HC_VAPIC_POLL_IRQ: 8095 ret = 0; 8096 break; 8097 case KVM_HC_KICK_CPU: 8098 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8099 break; 8100 8101 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8102 kvm_sched_yield(vcpu->kvm, a1); 8103 ret = 0; 8104 break; 8105 #ifdef CONFIG_X86_64 8106 case KVM_HC_CLOCK_PAIRING: 8107 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8108 break; 8109 #endif 8110 case KVM_HC_SEND_IPI: 8111 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8112 break; 8113 8114 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8115 break; 8116 case KVM_HC_SCHED_YIELD: 8117 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8118 break; 8119 8120 kvm_sched_yield(vcpu->kvm, a0); 8121 ret = 0; 8122 break; 8123 default: 8124 ret = -KVM_ENOSYS; 8125 break; 8126 } 8127 out: 8128 if (!op_64_bit) 8129 ret = (u32)ret; 8130 kvm_rax_write(vcpu, ret); 8131 8132 ++vcpu->stat.hypercalls; 8133 return kvm_skip_emulated_instruction(vcpu); 8134 } 8135 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8136 8137 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8138 { 8139 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8140 char instruction[3]; 8141 unsigned long rip = kvm_rip_read(vcpu); 8142 8143 kvm_x86_ops.patch_hypercall(vcpu, instruction); 8144 8145 return emulator_write_emulated(ctxt, rip, instruction, 3, 8146 &ctxt->exception); 8147 } 8148 8149 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8150 { 8151 return vcpu->run->request_interrupt_window && 8152 likely(!pic_in_kernel(vcpu->kvm)); 8153 } 8154 8155 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8156 { 8157 struct kvm_run *kvm_run = vcpu->run; 8158 8159 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8160 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 8161 kvm_run->cr8 = kvm_get_cr8(vcpu); 8162 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8163 kvm_run->ready_for_interrupt_injection = 8164 pic_in_kernel(vcpu->kvm) || 8165 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8166 } 8167 8168 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8169 { 8170 int max_irr, tpr; 8171 8172 if (!kvm_x86_ops.update_cr8_intercept) 8173 return; 8174 8175 if (!lapic_in_kernel(vcpu)) 8176 return; 8177 8178 if (vcpu->arch.apicv_active) 8179 return; 8180 8181 if (!vcpu->arch.apic->vapic_addr) 8182 max_irr = kvm_lapic_find_highest_irr(vcpu); 8183 else 8184 max_irr = -1; 8185 8186 if (max_irr != -1) 8187 max_irr >>= 4; 8188 8189 tpr = kvm_lapic_get_cr8(vcpu); 8190 8191 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 8192 } 8193 8194 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8195 { 8196 int r; 8197 bool can_inject = true; 8198 8199 /* try to reinject previous events if any */ 8200 8201 if (vcpu->arch.exception.injected) { 8202 kvm_x86_ops.queue_exception(vcpu); 8203 can_inject = false; 8204 } 8205 /* 8206 * Do not inject an NMI or interrupt if there is a pending 8207 * exception. Exceptions and interrupts are recognized at 8208 * instruction boundaries, i.e. the start of an instruction. 8209 * Trap-like exceptions, e.g. #DB, have higher priority than 8210 * NMIs and interrupts, i.e. traps are recognized before an 8211 * NMI/interrupt that's pending on the same instruction. 8212 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8213 * priority, but are only generated (pended) during instruction 8214 * execution, i.e. a pending fault-like exception means the 8215 * fault occurred on the *previous* instruction and must be 8216 * serviced prior to recognizing any new events in order to 8217 * fully complete the previous instruction. 8218 */ 8219 else if (!vcpu->arch.exception.pending) { 8220 if (vcpu->arch.nmi_injected) { 8221 kvm_x86_ops.set_nmi(vcpu); 8222 can_inject = false; 8223 } else if (vcpu->arch.interrupt.injected) { 8224 kvm_x86_ops.set_irq(vcpu); 8225 can_inject = false; 8226 } 8227 } 8228 8229 WARN_ON_ONCE(vcpu->arch.exception.injected && 8230 vcpu->arch.exception.pending); 8231 8232 /* 8233 * Call check_nested_events() even if we reinjected a previous event 8234 * in order for caller to determine if it should require immediate-exit 8235 * from L2 to L1 due to pending L1 events which require exit 8236 * from L2 to L1. 8237 */ 8238 if (is_guest_mode(vcpu)) { 8239 r = kvm_x86_ops.nested_ops->check_events(vcpu); 8240 if (r < 0) 8241 goto busy; 8242 } 8243 8244 /* try to inject new event if pending */ 8245 if (vcpu->arch.exception.pending) { 8246 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8247 vcpu->arch.exception.has_error_code, 8248 vcpu->arch.exception.error_code); 8249 8250 vcpu->arch.exception.pending = false; 8251 vcpu->arch.exception.injected = true; 8252 8253 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8254 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8255 X86_EFLAGS_RF); 8256 8257 if (vcpu->arch.exception.nr == DB_VECTOR) { 8258 kvm_deliver_exception_payload(vcpu); 8259 if (vcpu->arch.dr7 & DR7_GD) { 8260 vcpu->arch.dr7 &= ~DR7_GD; 8261 kvm_update_dr7(vcpu); 8262 } 8263 } 8264 8265 kvm_x86_ops.queue_exception(vcpu); 8266 can_inject = false; 8267 } 8268 8269 /* 8270 * Finally, inject interrupt events. If an event cannot be injected 8271 * due to architectural conditions (e.g. IF=0) a window-open exit 8272 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8273 * and can architecturally be injected, but we cannot do it right now: 8274 * an interrupt could have arrived just now and we have to inject it 8275 * as a vmexit, or there could already an event in the queue, which is 8276 * indicated by can_inject. In that case we request an immediate exit 8277 * in order to make progress and get back here for another iteration. 8278 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8279 */ 8280 if (vcpu->arch.smi_pending) { 8281 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 8282 if (r < 0) 8283 goto busy; 8284 if (r) { 8285 vcpu->arch.smi_pending = false; 8286 ++vcpu->arch.smi_count; 8287 enter_smm(vcpu); 8288 can_inject = false; 8289 } else 8290 kvm_x86_ops.enable_smi_window(vcpu); 8291 } 8292 8293 if (vcpu->arch.nmi_pending) { 8294 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 8295 if (r < 0) 8296 goto busy; 8297 if (r) { 8298 --vcpu->arch.nmi_pending; 8299 vcpu->arch.nmi_injected = true; 8300 kvm_x86_ops.set_nmi(vcpu); 8301 can_inject = false; 8302 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 8303 } 8304 if (vcpu->arch.nmi_pending) 8305 kvm_x86_ops.enable_nmi_window(vcpu); 8306 } 8307 8308 if (kvm_cpu_has_injectable_intr(vcpu)) { 8309 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 8310 if (r < 0) 8311 goto busy; 8312 if (r) { 8313 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8314 kvm_x86_ops.set_irq(vcpu); 8315 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 8316 } 8317 if (kvm_cpu_has_injectable_intr(vcpu)) 8318 kvm_x86_ops.enable_irq_window(vcpu); 8319 } 8320 8321 if (is_guest_mode(vcpu) && 8322 kvm_x86_ops.nested_ops->hv_timer_pending && 8323 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8324 *req_immediate_exit = true; 8325 8326 WARN_ON(vcpu->arch.exception.pending); 8327 return; 8328 8329 busy: 8330 *req_immediate_exit = true; 8331 return; 8332 } 8333 8334 static void process_nmi(struct kvm_vcpu *vcpu) 8335 { 8336 unsigned limit = 2; 8337 8338 /* 8339 * x86 is limited to one NMI running, and one NMI pending after it. 8340 * If an NMI is already in progress, limit further NMIs to just one. 8341 * Otherwise, allow two (and we'll inject the first one immediately). 8342 */ 8343 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 8344 limit = 1; 8345 8346 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8347 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8348 kvm_make_request(KVM_REQ_EVENT, vcpu); 8349 } 8350 8351 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8352 { 8353 u32 flags = 0; 8354 flags |= seg->g << 23; 8355 flags |= seg->db << 22; 8356 flags |= seg->l << 21; 8357 flags |= seg->avl << 20; 8358 flags |= seg->present << 15; 8359 flags |= seg->dpl << 13; 8360 flags |= seg->s << 12; 8361 flags |= seg->type << 8; 8362 return flags; 8363 } 8364 8365 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8366 { 8367 struct kvm_segment seg; 8368 int offset; 8369 8370 kvm_get_segment(vcpu, &seg, n); 8371 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8372 8373 if (n < 3) 8374 offset = 0x7f84 + n * 12; 8375 else 8376 offset = 0x7f2c + (n - 3) * 12; 8377 8378 put_smstate(u32, buf, offset + 8, seg.base); 8379 put_smstate(u32, buf, offset + 4, seg.limit); 8380 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8381 } 8382 8383 #ifdef CONFIG_X86_64 8384 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8385 { 8386 struct kvm_segment seg; 8387 int offset; 8388 u16 flags; 8389 8390 kvm_get_segment(vcpu, &seg, n); 8391 offset = 0x7e00 + n * 16; 8392 8393 flags = enter_smm_get_segment_flags(&seg) >> 8; 8394 put_smstate(u16, buf, offset, seg.selector); 8395 put_smstate(u16, buf, offset + 2, flags); 8396 put_smstate(u32, buf, offset + 4, seg.limit); 8397 put_smstate(u64, buf, offset + 8, seg.base); 8398 } 8399 #endif 8400 8401 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8402 { 8403 struct desc_ptr dt; 8404 struct kvm_segment seg; 8405 unsigned long val; 8406 int i; 8407 8408 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8409 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8410 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8411 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8412 8413 for (i = 0; i < 8; i++) 8414 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8415 8416 kvm_get_dr(vcpu, 6, &val); 8417 put_smstate(u32, buf, 0x7fcc, (u32)val); 8418 kvm_get_dr(vcpu, 7, &val); 8419 put_smstate(u32, buf, 0x7fc8, (u32)val); 8420 8421 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8422 put_smstate(u32, buf, 0x7fc4, seg.selector); 8423 put_smstate(u32, buf, 0x7f64, seg.base); 8424 put_smstate(u32, buf, 0x7f60, seg.limit); 8425 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8426 8427 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8428 put_smstate(u32, buf, 0x7fc0, seg.selector); 8429 put_smstate(u32, buf, 0x7f80, seg.base); 8430 put_smstate(u32, buf, 0x7f7c, seg.limit); 8431 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8432 8433 kvm_x86_ops.get_gdt(vcpu, &dt); 8434 put_smstate(u32, buf, 0x7f74, dt.address); 8435 put_smstate(u32, buf, 0x7f70, dt.size); 8436 8437 kvm_x86_ops.get_idt(vcpu, &dt); 8438 put_smstate(u32, buf, 0x7f58, dt.address); 8439 put_smstate(u32, buf, 0x7f54, dt.size); 8440 8441 for (i = 0; i < 6; i++) 8442 enter_smm_save_seg_32(vcpu, buf, i); 8443 8444 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8445 8446 /* revision id */ 8447 put_smstate(u32, buf, 0x7efc, 0x00020000); 8448 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8449 } 8450 8451 #ifdef CONFIG_X86_64 8452 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8453 { 8454 struct desc_ptr dt; 8455 struct kvm_segment seg; 8456 unsigned long val; 8457 int i; 8458 8459 for (i = 0; i < 16; i++) 8460 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8461 8462 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8463 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8464 8465 kvm_get_dr(vcpu, 6, &val); 8466 put_smstate(u64, buf, 0x7f68, val); 8467 kvm_get_dr(vcpu, 7, &val); 8468 put_smstate(u64, buf, 0x7f60, val); 8469 8470 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8471 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8472 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8473 8474 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8475 8476 /* revision id */ 8477 put_smstate(u32, buf, 0x7efc, 0x00020064); 8478 8479 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8480 8481 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8482 put_smstate(u16, buf, 0x7e90, seg.selector); 8483 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8484 put_smstate(u32, buf, 0x7e94, seg.limit); 8485 put_smstate(u64, buf, 0x7e98, seg.base); 8486 8487 kvm_x86_ops.get_idt(vcpu, &dt); 8488 put_smstate(u32, buf, 0x7e84, dt.size); 8489 put_smstate(u64, buf, 0x7e88, dt.address); 8490 8491 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8492 put_smstate(u16, buf, 0x7e70, seg.selector); 8493 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8494 put_smstate(u32, buf, 0x7e74, seg.limit); 8495 put_smstate(u64, buf, 0x7e78, seg.base); 8496 8497 kvm_x86_ops.get_gdt(vcpu, &dt); 8498 put_smstate(u32, buf, 0x7e64, dt.size); 8499 put_smstate(u64, buf, 0x7e68, dt.address); 8500 8501 for (i = 0; i < 6; i++) 8502 enter_smm_save_seg_64(vcpu, buf, i); 8503 } 8504 #endif 8505 8506 static void enter_smm(struct kvm_vcpu *vcpu) 8507 { 8508 struct kvm_segment cs, ds; 8509 struct desc_ptr dt; 8510 char buf[512]; 8511 u32 cr0; 8512 8513 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8514 memset(buf, 0, 512); 8515 #ifdef CONFIG_X86_64 8516 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8517 enter_smm_save_state_64(vcpu, buf); 8518 else 8519 #endif 8520 enter_smm_save_state_32(vcpu, buf); 8521 8522 /* 8523 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8524 * vCPU state (e.g. leave guest mode) after we've saved the state into 8525 * the SMM state-save area. 8526 */ 8527 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8528 8529 vcpu->arch.hflags |= HF_SMM_MASK; 8530 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8531 8532 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8533 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8534 else 8535 kvm_x86_ops.set_nmi_mask(vcpu, true); 8536 8537 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8538 kvm_rip_write(vcpu, 0x8000); 8539 8540 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8541 kvm_x86_ops.set_cr0(vcpu, cr0); 8542 vcpu->arch.cr0 = cr0; 8543 8544 kvm_x86_ops.set_cr4(vcpu, 0); 8545 8546 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8547 dt.address = dt.size = 0; 8548 kvm_x86_ops.set_idt(vcpu, &dt); 8549 8550 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8551 8552 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8553 cs.base = vcpu->arch.smbase; 8554 8555 ds.selector = 0; 8556 ds.base = 0; 8557 8558 cs.limit = ds.limit = 0xffffffff; 8559 cs.type = ds.type = 0x3; 8560 cs.dpl = ds.dpl = 0; 8561 cs.db = ds.db = 0; 8562 cs.s = ds.s = 1; 8563 cs.l = ds.l = 0; 8564 cs.g = ds.g = 1; 8565 cs.avl = ds.avl = 0; 8566 cs.present = ds.present = 1; 8567 cs.unusable = ds.unusable = 0; 8568 cs.padding = ds.padding = 0; 8569 8570 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8571 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8572 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8573 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8574 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8575 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8576 8577 #ifdef CONFIG_X86_64 8578 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8579 kvm_x86_ops.set_efer(vcpu, 0); 8580 #endif 8581 8582 kvm_update_cpuid_runtime(vcpu); 8583 kvm_mmu_reset_context(vcpu); 8584 } 8585 8586 static void process_smi(struct kvm_vcpu *vcpu) 8587 { 8588 vcpu->arch.smi_pending = true; 8589 kvm_make_request(KVM_REQ_EVENT, vcpu); 8590 } 8591 8592 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8593 unsigned long *vcpu_bitmap) 8594 { 8595 cpumask_var_t cpus; 8596 8597 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8598 8599 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8600 NULL, vcpu_bitmap, cpus); 8601 8602 free_cpumask_var(cpus); 8603 } 8604 8605 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8606 { 8607 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8608 } 8609 8610 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8611 { 8612 if (!lapic_in_kernel(vcpu)) 8613 return; 8614 8615 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8616 kvm_apic_update_apicv(vcpu); 8617 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8618 } 8619 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8620 8621 /* 8622 * NOTE: Do not hold any lock prior to calling this. 8623 * 8624 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8625 * locked, because it calls __x86_set_memory_region() which does 8626 * synchronize_srcu(&kvm->srcu). 8627 */ 8628 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8629 { 8630 struct kvm_vcpu *except; 8631 unsigned long old, new, expected; 8632 8633 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8634 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8635 return; 8636 8637 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8638 do { 8639 expected = new = old; 8640 if (activate) 8641 __clear_bit(bit, &new); 8642 else 8643 __set_bit(bit, &new); 8644 if (new == old) 8645 break; 8646 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8647 } while (old != expected); 8648 8649 if (!!old == !!new) 8650 return; 8651 8652 trace_kvm_apicv_update_request(activate, bit); 8653 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8654 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8655 8656 /* 8657 * Sending request to update APICV for all other vcpus, 8658 * while update the calling vcpu immediately instead of 8659 * waiting for another #VMEXIT to handle the request. 8660 */ 8661 except = kvm_get_running_vcpu(); 8662 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8663 except); 8664 if (except) 8665 kvm_vcpu_update_apicv(except); 8666 } 8667 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8668 8669 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8670 { 8671 if (!kvm_apic_present(vcpu)) 8672 return; 8673 8674 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8675 8676 if (irqchip_split(vcpu->kvm)) 8677 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8678 else { 8679 if (vcpu->arch.apicv_active) 8680 kvm_x86_ops.sync_pir_to_irr(vcpu); 8681 if (ioapic_in_kernel(vcpu->kvm)) 8682 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8683 } 8684 8685 if (is_guest_mode(vcpu)) 8686 vcpu->arch.load_eoi_exitmap_pending = true; 8687 else 8688 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8689 } 8690 8691 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8692 { 8693 u64 eoi_exit_bitmap[4]; 8694 8695 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8696 return; 8697 8698 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8699 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8700 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8701 } 8702 8703 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8704 unsigned long start, unsigned long end) 8705 { 8706 unsigned long apic_address; 8707 8708 /* 8709 * The physical address of apic access page is stored in the VMCS. 8710 * Update it when it becomes invalid. 8711 */ 8712 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8713 if (start <= apic_address && apic_address < end) 8714 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8715 } 8716 8717 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8718 { 8719 if (!lapic_in_kernel(vcpu)) 8720 return; 8721 8722 if (!kvm_x86_ops.set_apic_access_page_addr) 8723 return; 8724 8725 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8726 } 8727 8728 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8729 { 8730 smp_send_reschedule(vcpu->cpu); 8731 } 8732 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8733 8734 /* 8735 * Returns 1 to let vcpu_run() continue the guest execution loop without 8736 * exiting to the userspace. Otherwise, the value will be returned to the 8737 * userspace. 8738 */ 8739 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8740 { 8741 int r; 8742 bool req_int_win = 8743 dm_request_for_irq_injection(vcpu) && 8744 kvm_cpu_accept_dm_intr(vcpu); 8745 fastpath_t exit_fastpath; 8746 8747 bool req_immediate_exit = false; 8748 8749 if (kvm_request_pending(vcpu)) { 8750 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 8751 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 8752 r = 0; 8753 goto out; 8754 } 8755 } 8756 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8757 kvm_mmu_unload(vcpu); 8758 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8759 __kvm_migrate_timers(vcpu); 8760 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8761 kvm_gen_update_masterclock(vcpu->kvm); 8762 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8763 kvm_gen_kvmclock_update(vcpu); 8764 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8765 r = kvm_guest_time_update(vcpu); 8766 if (unlikely(r)) 8767 goto out; 8768 } 8769 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8770 kvm_mmu_sync_roots(vcpu); 8771 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8772 kvm_mmu_load_pgd(vcpu); 8773 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8774 kvm_vcpu_flush_tlb_all(vcpu); 8775 8776 /* Flushing all ASIDs flushes the current ASID... */ 8777 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8778 } 8779 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8780 kvm_vcpu_flush_tlb_current(vcpu); 8781 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8782 kvm_vcpu_flush_tlb_guest(vcpu); 8783 8784 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8785 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8786 r = 0; 8787 goto out; 8788 } 8789 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8790 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8791 vcpu->mmio_needed = 0; 8792 r = 0; 8793 goto out; 8794 } 8795 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8796 /* Page is swapped out. Do synthetic halt */ 8797 vcpu->arch.apf.halted = true; 8798 r = 1; 8799 goto out; 8800 } 8801 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8802 record_steal_time(vcpu); 8803 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8804 process_smi(vcpu); 8805 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8806 process_nmi(vcpu); 8807 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8808 kvm_pmu_handle_event(vcpu); 8809 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8810 kvm_pmu_deliver_pmi(vcpu); 8811 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8812 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8813 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8814 vcpu->arch.ioapic_handled_vectors)) { 8815 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8816 vcpu->run->eoi.vector = 8817 vcpu->arch.pending_ioapic_eoi; 8818 r = 0; 8819 goto out; 8820 } 8821 } 8822 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8823 vcpu_scan_ioapic(vcpu); 8824 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8825 vcpu_load_eoi_exitmap(vcpu); 8826 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8827 kvm_vcpu_reload_apic_access_page(vcpu); 8828 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8829 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8830 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8831 r = 0; 8832 goto out; 8833 } 8834 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8835 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8836 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8837 r = 0; 8838 goto out; 8839 } 8840 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8841 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8842 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8843 r = 0; 8844 goto out; 8845 } 8846 8847 /* 8848 * KVM_REQ_HV_STIMER has to be processed after 8849 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8850 * depend on the guest clock being up-to-date 8851 */ 8852 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8853 kvm_hv_process_stimers(vcpu); 8854 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8855 kvm_vcpu_update_apicv(vcpu); 8856 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8857 kvm_check_async_pf_completion(vcpu); 8858 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 8859 kvm_x86_ops.msr_filter_changed(vcpu); 8860 } 8861 8862 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8863 ++vcpu->stat.req_event; 8864 kvm_apic_accept_events(vcpu); 8865 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8866 r = 1; 8867 goto out; 8868 } 8869 8870 inject_pending_event(vcpu, &req_immediate_exit); 8871 if (req_int_win) 8872 kvm_x86_ops.enable_irq_window(vcpu); 8873 8874 if (kvm_lapic_enabled(vcpu)) { 8875 update_cr8_intercept(vcpu); 8876 kvm_lapic_sync_to_vapic(vcpu); 8877 } 8878 } 8879 8880 r = kvm_mmu_reload(vcpu); 8881 if (unlikely(r)) { 8882 goto cancel_injection; 8883 } 8884 8885 preempt_disable(); 8886 8887 kvm_x86_ops.prepare_guest_switch(vcpu); 8888 8889 /* 8890 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8891 * IPI are then delayed after guest entry, which ensures that they 8892 * result in virtual interrupt delivery. 8893 */ 8894 local_irq_disable(); 8895 vcpu->mode = IN_GUEST_MODE; 8896 8897 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8898 8899 /* 8900 * 1) We should set ->mode before checking ->requests. Please see 8901 * the comment in kvm_vcpu_exiting_guest_mode(). 8902 * 8903 * 2) For APICv, we should set ->mode before checking PID.ON. This 8904 * pairs with the memory barrier implicit in pi_test_and_set_on 8905 * (see vmx_deliver_posted_interrupt). 8906 * 8907 * 3) This also orders the write to mode from any reads to the page 8908 * tables done while the VCPU is running. Please see the comment 8909 * in kvm_flush_remote_tlbs. 8910 */ 8911 smp_mb__after_srcu_read_unlock(); 8912 8913 /* 8914 * This handles the case where a posted interrupt was 8915 * notified with kvm_vcpu_kick. 8916 */ 8917 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8918 kvm_x86_ops.sync_pir_to_irr(vcpu); 8919 8920 if (kvm_vcpu_exit_request(vcpu)) { 8921 vcpu->mode = OUTSIDE_GUEST_MODE; 8922 smp_wmb(); 8923 local_irq_enable(); 8924 preempt_enable(); 8925 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8926 r = 1; 8927 goto cancel_injection; 8928 } 8929 8930 if (req_immediate_exit) { 8931 kvm_make_request(KVM_REQ_EVENT, vcpu); 8932 kvm_x86_ops.request_immediate_exit(vcpu); 8933 } 8934 8935 trace_kvm_entry(vcpu); 8936 8937 fpregs_assert_state_consistent(); 8938 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8939 switch_fpu_return(); 8940 8941 if (unlikely(vcpu->arch.switch_db_regs)) { 8942 set_debugreg(0, 7); 8943 set_debugreg(vcpu->arch.eff_db[0], 0); 8944 set_debugreg(vcpu->arch.eff_db[1], 1); 8945 set_debugreg(vcpu->arch.eff_db[2], 2); 8946 set_debugreg(vcpu->arch.eff_db[3], 3); 8947 set_debugreg(vcpu->arch.dr6, 6); 8948 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8949 } 8950 8951 exit_fastpath = kvm_x86_ops.run(vcpu); 8952 8953 /* 8954 * Do this here before restoring debug registers on the host. And 8955 * since we do this before handling the vmexit, a DR access vmexit 8956 * can (a) read the correct value of the debug registers, (b) set 8957 * KVM_DEBUGREG_WONT_EXIT again. 8958 */ 8959 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8960 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8961 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8962 kvm_update_dr0123(vcpu); 8963 kvm_update_dr7(vcpu); 8964 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8965 } 8966 8967 /* 8968 * If the guest has used debug registers, at least dr7 8969 * will be disabled while returning to the host. 8970 * If we don't have active breakpoints in the host, we don't 8971 * care about the messed up debug address registers. But if 8972 * we have some of them active, restore the old state. 8973 */ 8974 if (hw_breakpoint_active()) 8975 hw_breakpoint_restore(); 8976 8977 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 8978 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8979 8980 vcpu->mode = OUTSIDE_GUEST_MODE; 8981 smp_wmb(); 8982 8983 kvm_x86_ops.handle_exit_irqoff(vcpu); 8984 8985 /* 8986 * Consume any pending interrupts, including the possible source of 8987 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8988 * An instruction is required after local_irq_enable() to fully unblock 8989 * interrupts on processors that implement an interrupt shadow, the 8990 * stat.exits increment will do nicely. 8991 */ 8992 kvm_before_interrupt(vcpu); 8993 local_irq_enable(); 8994 ++vcpu->stat.exits; 8995 local_irq_disable(); 8996 kvm_after_interrupt(vcpu); 8997 8998 if (lapic_in_kernel(vcpu)) { 8999 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 9000 if (delta != S64_MIN) { 9001 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 9002 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 9003 } 9004 } 9005 9006 local_irq_enable(); 9007 preempt_enable(); 9008 9009 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9010 9011 /* 9012 * Profile KVM exit RIPs: 9013 */ 9014 if (unlikely(prof_on == KVM_PROFILING)) { 9015 unsigned long rip = kvm_rip_read(vcpu); 9016 profile_hit(KVM_PROFILING, (void *)rip); 9017 } 9018 9019 if (unlikely(vcpu->arch.tsc_always_catchup)) 9020 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9021 9022 if (vcpu->arch.apic_attention) 9023 kvm_lapic_sync_from_vapic(vcpu); 9024 9025 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 9026 return r; 9027 9028 cancel_injection: 9029 if (req_immediate_exit) 9030 kvm_make_request(KVM_REQ_EVENT, vcpu); 9031 kvm_x86_ops.cancel_injection(vcpu); 9032 if (unlikely(vcpu->arch.apic_attention)) 9033 kvm_lapic_sync_from_vapic(vcpu); 9034 out: 9035 return r; 9036 } 9037 9038 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9039 { 9040 if (!kvm_arch_vcpu_runnable(vcpu) && 9041 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 9042 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9043 kvm_vcpu_block(vcpu); 9044 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9045 9046 if (kvm_x86_ops.post_block) 9047 kvm_x86_ops.post_block(vcpu); 9048 9049 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9050 return 1; 9051 } 9052 9053 kvm_apic_accept_events(vcpu); 9054 switch(vcpu->arch.mp_state) { 9055 case KVM_MP_STATE_HALTED: 9056 vcpu->arch.pv.pv_unhalted = false; 9057 vcpu->arch.mp_state = 9058 KVM_MP_STATE_RUNNABLE; 9059 fallthrough; 9060 case KVM_MP_STATE_RUNNABLE: 9061 vcpu->arch.apf.halted = false; 9062 break; 9063 case KVM_MP_STATE_INIT_RECEIVED: 9064 break; 9065 default: 9066 return -EINTR; 9067 } 9068 return 1; 9069 } 9070 9071 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9072 { 9073 if (is_guest_mode(vcpu)) 9074 kvm_x86_ops.nested_ops->check_events(vcpu); 9075 9076 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9077 !vcpu->arch.apf.halted); 9078 } 9079 9080 static int vcpu_run(struct kvm_vcpu *vcpu) 9081 { 9082 int r; 9083 struct kvm *kvm = vcpu->kvm; 9084 9085 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9086 vcpu->arch.l1tf_flush_l1d = true; 9087 9088 for (;;) { 9089 if (kvm_vcpu_running(vcpu)) { 9090 r = vcpu_enter_guest(vcpu); 9091 } else { 9092 r = vcpu_block(kvm, vcpu); 9093 } 9094 9095 if (r <= 0) 9096 break; 9097 9098 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 9099 if (kvm_cpu_has_pending_timer(vcpu)) 9100 kvm_inject_pending_timer_irqs(vcpu); 9101 9102 if (dm_request_for_irq_injection(vcpu) && 9103 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9104 r = 0; 9105 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9106 ++vcpu->stat.request_irq_exits; 9107 break; 9108 } 9109 9110 if (__xfer_to_guest_mode_work_pending()) { 9111 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9112 r = xfer_to_guest_mode_handle_work(vcpu); 9113 if (r) 9114 return r; 9115 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9116 } 9117 } 9118 9119 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9120 9121 return r; 9122 } 9123 9124 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9125 { 9126 int r; 9127 9128 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9129 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9130 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9131 return r; 9132 } 9133 9134 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9135 { 9136 BUG_ON(!vcpu->arch.pio.count); 9137 9138 return complete_emulated_io(vcpu); 9139 } 9140 9141 /* 9142 * Implements the following, as a state machine: 9143 * 9144 * read: 9145 * for each fragment 9146 * for each mmio piece in the fragment 9147 * write gpa, len 9148 * exit 9149 * copy data 9150 * execute insn 9151 * 9152 * write: 9153 * for each fragment 9154 * for each mmio piece in the fragment 9155 * write gpa, len 9156 * copy data 9157 * exit 9158 */ 9159 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9160 { 9161 struct kvm_run *run = vcpu->run; 9162 struct kvm_mmio_fragment *frag; 9163 unsigned len; 9164 9165 BUG_ON(!vcpu->mmio_needed); 9166 9167 /* Complete previous fragment */ 9168 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9169 len = min(8u, frag->len); 9170 if (!vcpu->mmio_is_write) 9171 memcpy(frag->data, run->mmio.data, len); 9172 9173 if (frag->len <= 8) { 9174 /* Switch to the next fragment. */ 9175 frag++; 9176 vcpu->mmio_cur_fragment++; 9177 } else { 9178 /* Go forward to the next mmio piece. */ 9179 frag->data += len; 9180 frag->gpa += len; 9181 frag->len -= len; 9182 } 9183 9184 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9185 vcpu->mmio_needed = 0; 9186 9187 /* FIXME: return into emulator if single-stepping. */ 9188 if (vcpu->mmio_is_write) 9189 return 1; 9190 vcpu->mmio_read_completed = 1; 9191 return complete_emulated_io(vcpu); 9192 } 9193 9194 run->exit_reason = KVM_EXIT_MMIO; 9195 run->mmio.phys_addr = frag->gpa; 9196 if (vcpu->mmio_is_write) 9197 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9198 run->mmio.len = min(8u, frag->len); 9199 run->mmio.is_write = vcpu->mmio_is_write; 9200 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9201 return 0; 9202 } 9203 9204 static void kvm_save_current_fpu(struct fpu *fpu) 9205 { 9206 /* 9207 * If the target FPU state is not resident in the CPU registers, just 9208 * memcpy() from current, else save CPU state directly to the target. 9209 */ 9210 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9211 memcpy(&fpu->state, ¤t->thread.fpu.state, 9212 fpu_kernel_xstate_size); 9213 else 9214 copy_fpregs_to_fpstate(fpu); 9215 } 9216 9217 /* Swap (qemu) user FPU context for the guest FPU context. */ 9218 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9219 { 9220 fpregs_lock(); 9221 9222 kvm_save_current_fpu(vcpu->arch.user_fpu); 9223 9224 /* PKRU is separately restored in kvm_x86_ops.run. */ 9225 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9226 ~XFEATURE_MASK_PKRU); 9227 9228 fpregs_mark_activate(); 9229 fpregs_unlock(); 9230 9231 trace_kvm_fpu(1); 9232 } 9233 9234 /* When vcpu_run ends, restore user space FPU context. */ 9235 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9236 { 9237 fpregs_lock(); 9238 9239 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9240 9241 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9242 9243 fpregs_mark_activate(); 9244 fpregs_unlock(); 9245 9246 ++vcpu->stat.fpu_reload; 9247 trace_kvm_fpu(0); 9248 } 9249 9250 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9251 { 9252 struct kvm_run *kvm_run = vcpu->run; 9253 int r; 9254 9255 vcpu_load(vcpu); 9256 kvm_sigset_activate(vcpu); 9257 kvm_load_guest_fpu(vcpu); 9258 9259 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9260 if (kvm_run->immediate_exit) { 9261 r = -EINTR; 9262 goto out; 9263 } 9264 kvm_vcpu_block(vcpu); 9265 kvm_apic_accept_events(vcpu); 9266 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9267 r = -EAGAIN; 9268 if (signal_pending(current)) { 9269 r = -EINTR; 9270 kvm_run->exit_reason = KVM_EXIT_INTR; 9271 ++vcpu->stat.signal_exits; 9272 } 9273 goto out; 9274 } 9275 9276 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9277 r = -EINVAL; 9278 goto out; 9279 } 9280 9281 if (kvm_run->kvm_dirty_regs) { 9282 r = sync_regs(vcpu); 9283 if (r != 0) 9284 goto out; 9285 } 9286 9287 /* re-sync apic's tpr */ 9288 if (!lapic_in_kernel(vcpu)) { 9289 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9290 r = -EINVAL; 9291 goto out; 9292 } 9293 } 9294 9295 if (unlikely(vcpu->arch.complete_userspace_io)) { 9296 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9297 vcpu->arch.complete_userspace_io = NULL; 9298 r = cui(vcpu); 9299 if (r <= 0) 9300 goto out; 9301 } else 9302 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9303 9304 if (kvm_run->immediate_exit) 9305 r = -EINTR; 9306 else 9307 r = vcpu_run(vcpu); 9308 9309 out: 9310 kvm_put_guest_fpu(vcpu); 9311 if (kvm_run->kvm_valid_regs) 9312 store_regs(vcpu); 9313 post_kvm_run_save(vcpu); 9314 kvm_sigset_deactivate(vcpu); 9315 9316 vcpu_put(vcpu); 9317 return r; 9318 } 9319 9320 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9321 { 9322 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 9323 /* 9324 * We are here if userspace calls get_regs() in the middle of 9325 * instruction emulation. Registers state needs to be copied 9326 * back from emulation context to vcpu. Userspace shouldn't do 9327 * that usually, but some bad designed PV devices (vmware 9328 * backdoor interface) need this to work 9329 */ 9330 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 9331 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9332 } 9333 regs->rax = kvm_rax_read(vcpu); 9334 regs->rbx = kvm_rbx_read(vcpu); 9335 regs->rcx = kvm_rcx_read(vcpu); 9336 regs->rdx = kvm_rdx_read(vcpu); 9337 regs->rsi = kvm_rsi_read(vcpu); 9338 regs->rdi = kvm_rdi_read(vcpu); 9339 regs->rsp = kvm_rsp_read(vcpu); 9340 regs->rbp = kvm_rbp_read(vcpu); 9341 #ifdef CONFIG_X86_64 9342 regs->r8 = kvm_r8_read(vcpu); 9343 regs->r9 = kvm_r9_read(vcpu); 9344 regs->r10 = kvm_r10_read(vcpu); 9345 regs->r11 = kvm_r11_read(vcpu); 9346 regs->r12 = kvm_r12_read(vcpu); 9347 regs->r13 = kvm_r13_read(vcpu); 9348 regs->r14 = kvm_r14_read(vcpu); 9349 regs->r15 = kvm_r15_read(vcpu); 9350 #endif 9351 9352 regs->rip = kvm_rip_read(vcpu); 9353 regs->rflags = kvm_get_rflags(vcpu); 9354 } 9355 9356 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9357 { 9358 vcpu_load(vcpu); 9359 __get_regs(vcpu, regs); 9360 vcpu_put(vcpu); 9361 return 0; 9362 } 9363 9364 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9365 { 9366 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 9367 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9368 9369 kvm_rax_write(vcpu, regs->rax); 9370 kvm_rbx_write(vcpu, regs->rbx); 9371 kvm_rcx_write(vcpu, regs->rcx); 9372 kvm_rdx_write(vcpu, regs->rdx); 9373 kvm_rsi_write(vcpu, regs->rsi); 9374 kvm_rdi_write(vcpu, regs->rdi); 9375 kvm_rsp_write(vcpu, regs->rsp); 9376 kvm_rbp_write(vcpu, regs->rbp); 9377 #ifdef CONFIG_X86_64 9378 kvm_r8_write(vcpu, regs->r8); 9379 kvm_r9_write(vcpu, regs->r9); 9380 kvm_r10_write(vcpu, regs->r10); 9381 kvm_r11_write(vcpu, regs->r11); 9382 kvm_r12_write(vcpu, regs->r12); 9383 kvm_r13_write(vcpu, regs->r13); 9384 kvm_r14_write(vcpu, regs->r14); 9385 kvm_r15_write(vcpu, regs->r15); 9386 #endif 9387 9388 kvm_rip_write(vcpu, regs->rip); 9389 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9390 9391 vcpu->arch.exception.pending = false; 9392 9393 kvm_make_request(KVM_REQ_EVENT, vcpu); 9394 } 9395 9396 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9397 { 9398 vcpu_load(vcpu); 9399 __set_regs(vcpu, regs); 9400 vcpu_put(vcpu); 9401 return 0; 9402 } 9403 9404 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9405 { 9406 struct kvm_segment cs; 9407 9408 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9409 *db = cs.db; 9410 *l = cs.l; 9411 } 9412 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9413 9414 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9415 { 9416 struct desc_ptr dt; 9417 9418 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9419 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9420 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9421 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9422 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9423 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9424 9425 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9426 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9427 9428 kvm_x86_ops.get_idt(vcpu, &dt); 9429 sregs->idt.limit = dt.size; 9430 sregs->idt.base = dt.address; 9431 kvm_x86_ops.get_gdt(vcpu, &dt); 9432 sregs->gdt.limit = dt.size; 9433 sregs->gdt.base = dt.address; 9434 9435 sregs->cr0 = kvm_read_cr0(vcpu); 9436 sregs->cr2 = vcpu->arch.cr2; 9437 sregs->cr3 = kvm_read_cr3(vcpu); 9438 sregs->cr4 = kvm_read_cr4(vcpu); 9439 sregs->cr8 = kvm_get_cr8(vcpu); 9440 sregs->efer = vcpu->arch.efer; 9441 sregs->apic_base = kvm_get_apic_base(vcpu); 9442 9443 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9444 9445 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9446 set_bit(vcpu->arch.interrupt.nr, 9447 (unsigned long *)sregs->interrupt_bitmap); 9448 } 9449 9450 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9451 struct kvm_sregs *sregs) 9452 { 9453 vcpu_load(vcpu); 9454 __get_sregs(vcpu, sregs); 9455 vcpu_put(vcpu); 9456 return 0; 9457 } 9458 9459 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9460 struct kvm_mp_state *mp_state) 9461 { 9462 vcpu_load(vcpu); 9463 if (kvm_mpx_supported()) 9464 kvm_load_guest_fpu(vcpu); 9465 9466 kvm_apic_accept_events(vcpu); 9467 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9468 vcpu->arch.pv.pv_unhalted) 9469 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9470 else 9471 mp_state->mp_state = vcpu->arch.mp_state; 9472 9473 if (kvm_mpx_supported()) 9474 kvm_put_guest_fpu(vcpu); 9475 vcpu_put(vcpu); 9476 return 0; 9477 } 9478 9479 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9480 struct kvm_mp_state *mp_state) 9481 { 9482 int ret = -EINVAL; 9483 9484 vcpu_load(vcpu); 9485 9486 if (!lapic_in_kernel(vcpu) && 9487 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9488 goto out; 9489 9490 /* 9491 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9492 * INIT state; latched init should be reported using 9493 * KVM_SET_VCPU_EVENTS, so reject it here. 9494 */ 9495 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9496 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9497 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9498 goto out; 9499 9500 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9501 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9502 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9503 } else 9504 vcpu->arch.mp_state = mp_state->mp_state; 9505 kvm_make_request(KVM_REQ_EVENT, vcpu); 9506 9507 ret = 0; 9508 out: 9509 vcpu_put(vcpu); 9510 return ret; 9511 } 9512 9513 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9514 int reason, bool has_error_code, u32 error_code) 9515 { 9516 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9517 int ret; 9518 9519 init_emulate_ctxt(vcpu); 9520 9521 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9522 has_error_code, error_code); 9523 if (ret) { 9524 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9525 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9526 vcpu->run->internal.ndata = 0; 9527 return 0; 9528 } 9529 9530 kvm_rip_write(vcpu, ctxt->eip); 9531 kvm_set_rflags(vcpu, ctxt->eflags); 9532 return 1; 9533 } 9534 EXPORT_SYMBOL_GPL(kvm_task_switch); 9535 9536 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9537 { 9538 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9539 /* 9540 * When EFER.LME and CR0.PG are set, the processor is in 9541 * 64-bit mode (though maybe in a 32-bit code segment). 9542 * CR4.PAE and EFER.LMA must be set. 9543 */ 9544 if (!(sregs->cr4 & X86_CR4_PAE) 9545 || !(sregs->efer & EFER_LMA)) 9546 return -EINVAL; 9547 } else { 9548 /* 9549 * Not in 64-bit mode: EFER.LMA is clear and the code 9550 * segment cannot be 64-bit. 9551 */ 9552 if (sregs->efer & EFER_LMA || sregs->cs.l) 9553 return -EINVAL; 9554 } 9555 9556 return kvm_valid_cr4(vcpu, sregs->cr4); 9557 } 9558 9559 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9560 { 9561 struct msr_data apic_base_msr; 9562 int mmu_reset_needed = 0; 9563 int cpuid_update_needed = 0; 9564 int pending_vec, max_bits, idx; 9565 struct desc_ptr dt; 9566 int ret = -EINVAL; 9567 9568 if (kvm_valid_sregs(vcpu, sregs)) 9569 goto out; 9570 9571 apic_base_msr.data = sregs->apic_base; 9572 apic_base_msr.host_initiated = true; 9573 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9574 goto out; 9575 9576 dt.size = sregs->idt.limit; 9577 dt.address = sregs->idt.base; 9578 kvm_x86_ops.set_idt(vcpu, &dt); 9579 dt.size = sregs->gdt.limit; 9580 dt.address = sregs->gdt.base; 9581 kvm_x86_ops.set_gdt(vcpu, &dt); 9582 9583 vcpu->arch.cr2 = sregs->cr2; 9584 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9585 vcpu->arch.cr3 = sregs->cr3; 9586 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9587 9588 kvm_set_cr8(vcpu, sregs->cr8); 9589 9590 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9591 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9592 9593 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9594 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9595 vcpu->arch.cr0 = sregs->cr0; 9596 9597 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9598 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9599 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9600 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9601 if (cpuid_update_needed) 9602 kvm_update_cpuid_runtime(vcpu); 9603 9604 idx = srcu_read_lock(&vcpu->kvm->srcu); 9605 if (is_pae_paging(vcpu)) { 9606 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9607 mmu_reset_needed = 1; 9608 } 9609 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9610 9611 if (mmu_reset_needed) 9612 kvm_mmu_reset_context(vcpu); 9613 9614 max_bits = KVM_NR_INTERRUPTS; 9615 pending_vec = find_first_bit( 9616 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9617 if (pending_vec < max_bits) { 9618 kvm_queue_interrupt(vcpu, pending_vec, false); 9619 pr_debug("Set back pending irq %d\n", pending_vec); 9620 } 9621 9622 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9623 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9624 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9625 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9626 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9627 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9628 9629 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9630 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9631 9632 update_cr8_intercept(vcpu); 9633 9634 /* Older userspace won't unhalt the vcpu on reset. */ 9635 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9636 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9637 !is_protmode(vcpu)) 9638 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9639 9640 kvm_make_request(KVM_REQ_EVENT, vcpu); 9641 9642 ret = 0; 9643 out: 9644 return ret; 9645 } 9646 9647 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9648 struct kvm_sregs *sregs) 9649 { 9650 int ret; 9651 9652 vcpu_load(vcpu); 9653 ret = __set_sregs(vcpu, sregs); 9654 vcpu_put(vcpu); 9655 return ret; 9656 } 9657 9658 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9659 struct kvm_guest_debug *dbg) 9660 { 9661 unsigned long rflags; 9662 int i, r; 9663 9664 vcpu_load(vcpu); 9665 9666 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9667 r = -EBUSY; 9668 if (vcpu->arch.exception.pending) 9669 goto out; 9670 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9671 kvm_queue_exception(vcpu, DB_VECTOR); 9672 else 9673 kvm_queue_exception(vcpu, BP_VECTOR); 9674 } 9675 9676 /* 9677 * Read rflags as long as potentially injected trace flags are still 9678 * filtered out. 9679 */ 9680 rflags = kvm_get_rflags(vcpu); 9681 9682 vcpu->guest_debug = dbg->control; 9683 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9684 vcpu->guest_debug = 0; 9685 9686 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9687 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9688 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9689 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9690 } else { 9691 for (i = 0; i < KVM_NR_DB_REGS; i++) 9692 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9693 } 9694 kvm_update_dr7(vcpu); 9695 9696 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9697 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9698 get_segment_base(vcpu, VCPU_SREG_CS); 9699 9700 /* 9701 * Trigger an rflags update that will inject or remove the trace 9702 * flags. 9703 */ 9704 kvm_set_rflags(vcpu, rflags); 9705 9706 kvm_x86_ops.update_exception_bitmap(vcpu); 9707 9708 r = 0; 9709 9710 out: 9711 vcpu_put(vcpu); 9712 return r; 9713 } 9714 9715 /* 9716 * Translate a guest virtual address to a guest physical address. 9717 */ 9718 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9719 struct kvm_translation *tr) 9720 { 9721 unsigned long vaddr = tr->linear_address; 9722 gpa_t gpa; 9723 int idx; 9724 9725 vcpu_load(vcpu); 9726 9727 idx = srcu_read_lock(&vcpu->kvm->srcu); 9728 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9729 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9730 tr->physical_address = gpa; 9731 tr->valid = gpa != UNMAPPED_GVA; 9732 tr->writeable = 1; 9733 tr->usermode = 0; 9734 9735 vcpu_put(vcpu); 9736 return 0; 9737 } 9738 9739 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9740 { 9741 struct fxregs_state *fxsave; 9742 9743 vcpu_load(vcpu); 9744 9745 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9746 memcpy(fpu->fpr, fxsave->st_space, 128); 9747 fpu->fcw = fxsave->cwd; 9748 fpu->fsw = fxsave->swd; 9749 fpu->ftwx = fxsave->twd; 9750 fpu->last_opcode = fxsave->fop; 9751 fpu->last_ip = fxsave->rip; 9752 fpu->last_dp = fxsave->rdp; 9753 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9754 9755 vcpu_put(vcpu); 9756 return 0; 9757 } 9758 9759 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9760 { 9761 struct fxregs_state *fxsave; 9762 9763 vcpu_load(vcpu); 9764 9765 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9766 9767 memcpy(fxsave->st_space, fpu->fpr, 128); 9768 fxsave->cwd = fpu->fcw; 9769 fxsave->swd = fpu->fsw; 9770 fxsave->twd = fpu->ftwx; 9771 fxsave->fop = fpu->last_opcode; 9772 fxsave->rip = fpu->last_ip; 9773 fxsave->rdp = fpu->last_dp; 9774 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9775 9776 vcpu_put(vcpu); 9777 return 0; 9778 } 9779 9780 static void store_regs(struct kvm_vcpu *vcpu) 9781 { 9782 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9783 9784 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9785 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9786 9787 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9788 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9789 9790 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9791 kvm_vcpu_ioctl_x86_get_vcpu_events( 9792 vcpu, &vcpu->run->s.regs.events); 9793 } 9794 9795 static int sync_regs(struct kvm_vcpu *vcpu) 9796 { 9797 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9798 return -EINVAL; 9799 9800 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9801 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9802 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9803 } 9804 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9805 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9806 return -EINVAL; 9807 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9808 } 9809 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9810 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9811 vcpu, &vcpu->run->s.regs.events)) 9812 return -EINVAL; 9813 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9814 } 9815 9816 return 0; 9817 } 9818 9819 static void fx_init(struct kvm_vcpu *vcpu) 9820 { 9821 fpstate_init(&vcpu->arch.guest_fpu->state); 9822 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9823 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9824 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9825 9826 /* 9827 * Ensure guest xcr0 is valid for loading 9828 */ 9829 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9830 9831 vcpu->arch.cr0 |= X86_CR0_ET; 9832 } 9833 9834 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9835 { 9836 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9837 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9838 "guest TSC will not be reliable\n"); 9839 9840 return 0; 9841 } 9842 9843 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9844 { 9845 struct page *page; 9846 int r; 9847 9848 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9849 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9850 else 9851 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9852 9853 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9854 9855 r = kvm_mmu_create(vcpu); 9856 if (r < 0) 9857 return r; 9858 9859 if (irqchip_in_kernel(vcpu->kvm)) { 9860 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9861 if (r < 0) 9862 goto fail_mmu_destroy; 9863 if (kvm_apicv_activated(vcpu->kvm)) 9864 vcpu->arch.apicv_active = true; 9865 } else 9866 static_key_slow_inc(&kvm_no_apic_vcpu); 9867 9868 r = -ENOMEM; 9869 9870 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9871 if (!page) 9872 goto fail_free_lapic; 9873 vcpu->arch.pio_data = page_address(page); 9874 9875 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9876 GFP_KERNEL_ACCOUNT); 9877 if (!vcpu->arch.mce_banks) 9878 goto fail_free_pio_data; 9879 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9880 9881 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9882 GFP_KERNEL_ACCOUNT)) 9883 goto fail_free_mce_banks; 9884 9885 if (!alloc_emulate_ctxt(vcpu)) 9886 goto free_wbinvd_dirty_mask; 9887 9888 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9889 GFP_KERNEL_ACCOUNT); 9890 if (!vcpu->arch.user_fpu) { 9891 pr_err("kvm: failed to allocate userspace's fpu\n"); 9892 goto free_emulate_ctxt; 9893 } 9894 9895 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9896 GFP_KERNEL_ACCOUNT); 9897 if (!vcpu->arch.guest_fpu) { 9898 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9899 goto free_user_fpu; 9900 } 9901 fx_init(vcpu); 9902 9903 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9904 9905 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9906 9907 kvm_async_pf_hash_reset(vcpu); 9908 kvm_pmu_init(vcpu); 9909 9910 vcpu->arch.pending_external_vector = -1; 9911 vcpu->arch.preempted_in_kernel = false; 9912 9913 kvm_hv_vcpu_init(vcpu); 9914 9915 r = kvm_x86_ops.vcpu_create(vcpu); 9916 if (r) 9917 goto free_guest_fpu; 9918 9919 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9920 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9921 kvm_vcpu_mtrr_init(vcpu); 9922 vcpu_load(vcpu); 9923 kvm_vcpu_reset(vcpu, false); 9924 kvm_init_mmu(vcpu, false); 9925 vcpu_put(vcpu); 9926 return 0; 9927 9928 free_guest_fpu: 9929 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9930 free_user_fpu: 9931 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9932 free_emulate_ctxt: 9933 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9934 free_wbinvd_dirty_mask: 9935 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9936 fail_free_mce_banks: 9937 kfree(vcpu->arch.mce_banks); 9938 fail_free_pio_data: 9939 free_page((unsigned long)vcpu->arch.pio_data); 9940 fail_free_lapic: 9941 kvm_free_lapic(vcpu); 9942 fail_mmu_destroy: 9943 kvm_mmu_destroy(vcpu); 9944 return r; 9945 } 9946 9947 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9948 { 9949 struct kvm *kvm = vcpu->kvm; 9950 9951 kvm_hv_vcpu_postcreate(vcpu); 9952 9953 if (mutex_lock_killable(&vcpu->mutex)) 9954 return; 9955 vcpu_load(vcpu); 9956 kvm_synchronize_tsc(vcpu, 0); 9957 vcpu_put(vcpu); 9958 9959 /* poll control enabled by default */ 9960 vcpu->arch.msr_kvm_poll_control = 1; 9961 9962 mutex_unlock(&vcpu->mutex); 9963 9964 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9965 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9966 KVMCLOCK_SYNC_PERIOD); 9967 } 9968 9969 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9970 { 9971 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9972 int idx; 9973 9974 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9975 9976 kvmclock_reset(vcpu); 9977 9978 kvm_x86_ops.vcpu_free(vcpu); 9979 9980 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9981 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9982 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9983 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9984 9985 kvm_hv_vcpu_uninit(vcpu); 9986 kvm_pmu_destroy(vcpu); 9987 kfree(vcpu->arch.mce_banks); 9988 kvm_free_lapic(vcpu); 9989 idx = srcu_read_lock(&vcpu->kvm->srcu); 9990 kvm_mmu_destroy(vcpu); 9991 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9992 free_page((unsigned long)vcpu->arch.pio_data); 9993 kvfree(vcpu->arch.cpuid_entries); 9994 if (!lapic_in_kernel(vcpu)) 9995 static_key_slow_dec(&kvm_no_apic_vcpu); 9996 } 9997 9998 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9999 { 10000 kvm_lapic_reset(vcpu, init_event); 10001 10002 vcpu->arch.hflags = 0; 10003 10004 vcpu->arch.smi_pending = 0; 10005 vcpu->arch.smi_count = 0; 10006 atomic_set(&vcpu->arch.nmi_queued, 0); 10007 vcpu->arch.nmi_pending = 0; 10008 vcpu->arch.nmi_injected = false; 10009 kvm_clear_interrupt_queue(vcpu); 10010 kvm_clear_exception_queue(vcpu); 10011 10012 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 10013 kvm_update_dr0123(vcpu); 10014 vcpu->arch.dr6 = DR6_INIT; 10015 vcpu->arch.dr7 = DR7_FIXED_1; 10016 kvm_update_dr7(vcpu); 10017 10018 vcpu->arch.cr2 = 0; 10019 10020 kvm_make_request(KVM_REQ_EVENT, vcpu); 10021 vcpu->arch.apf.msr_en_val = 0; 10022 vcpu->arch.apf.msr_int_val = 0; 10023 vcpu->arch.st.msr_val = 0; 10024 10025 kvmclock_reset(vcpu); 10026 10027 kvm_clear_async_pf_completion_queue(vcpu); 10028 kvm_async_pf_hash_reset(vcpu); 10029 vcpu->arch.apf.halted = false; 10030 10031 if (kvm_mpx_supported()) { 10032 void *mpx_state_buffer; 10033 10034 /* 10035 * To avoid have the INIT path from kvm_apic_has_events() that be 10036 * called with loaded FPU and does not let userspace fix the state. 10037 */ 10038 if (init_event) 10039 kvm_put_guest_fpu(vcpu); 10040 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10041 XFEATURE_BNDREGS); 10042 if (mpx_state_buffer) 10043 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10044 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10045 XFEATURE_BNDCSR); 10046 if (mpx_state_buffer) 10047 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10048 if (init_event) 10049 kvm_load_guest_fpu(vcpu); 10050 } 10051 10052 if (!init_event) { 10053 kvm_pmu_reset(vcpu); 10054 vcpu->arch.smbase = 0x30000; 10055 10056 vcpu->arch.msr_misc_features_enables = 0; 10057 10058 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10059 } 10060 10061 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10062 vcpu->arch.regs_avail = ~0; 10063 vcpu->arch.regs_dirty = ~0; 10064 10065 vcpu->arch.ia32_xss = 0; 10066 10067 kvm_x86_ops.vcpu_reset(vcpu, init_event); 10068 } 10069 10070 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10071 { 10072 struct kvm_segment cs; 10073 10074 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10075 cs.selector = vector << 8; 10076 cs.base = vector << 12; 10077 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10078 kvm_rip_write(vcpu, 0); 10079 } 10080 10081 int kvm_arch_hardware_enable(void) 10082 { 10083 struct kvm *kvm; 10084 struct kvm_vcpu *vcpu; 10085 int i; 10086 int ret; 10087 u64 local_tsc; 10088 u64 max_tsc = 0; 10089 bool stable, backwards_tsc = false; 10090 10091 kvm_user_return_msr_cpu_online(); 10092 ret = kvm_x86_ops.hardware_enable(); 10093 if (ret != 0) 10094 return ret; 10095 10096 local_tsc = rdtsc(); 10097 stable = !kvm_check_tsc_unstable(); 10098 list_for_each_entry(kvm, &vm_list, vm_list) { 10099 kvm_for_each_vcpu(i, vcpu, kvm) { 10100 if (!stable && vcpu->cpu == smp_processor_id()) 10101 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10102 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10103 backwards_tsc = true; 10104 if (vcpu->arch.last_host_tsc > max_tsc) 10105 max_tsc = vcpu->arch.last_host_tsc; 10106 } 10107 } 10108 } 10109 10110 /* 10111 * Sometimes, even reliable TSCs go backwards. This happens on 10112 * platforms that reset TSC during suspend or hibernate actions, but 10113 * maintain synchronization. We must compensate. Fortunately, we can 10114 * detect that condition here, which happens early in CPU bringup, 10115 * before any KVM threads can be running. Unfortunately, we can't 10116 * bring the TSCs fully up to date with real time, as we aren't yet far 10117 * enough into CPU bringup that we know how much real time has actually 10118 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10119 * variables that haven't been updated yet. 10120 * 10121 * So we simply find the maximum observed TSC above, then record the 10122 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10123 * the adjustment will be applied. Note that we accumulate 10124 * adjustments, in case multiple suspend cycles happen before some VCPU 10125 * gets a chance to run again. In the event that no KVM threads get a 10126 * chance to run, we will miss the entire elapsed period, as we'll have 10127 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10128 * loose cycle time. This isn't too big a deal, since the loss will be 10129 * uniform across all VCPUs (not to mention the scenario is extremely 10130 * unlikely). It is possible that a second hibernate recovery happens 10131 * much faster than a first, causing the observed TSC here to be 10132 * smaller; this would require additional padding adjustment, which is 10133 * why we set last_host_tsc to the local tsc observed here. 10134 * 10135 * N.B. - this code below runs only on platforms with reliable TSC, 10136 * as that is the only way backwards_tsc is set above. Also note 10137 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10138 * have the same delta_cyc adjustment applied if backwards_tsc 10139 * is detected. Note further, this adjustment is only done once, 10140 * as we reset last_host_tsc on all VCPUs to stop this from being 10141 * called multiple times (one for each physical CPU bringup). 10142 * 10143 * Platforms with unreliable TSCs don't have to deal with this, they 10144 * will be compensated by the logic in vcpu_load, which sets the TSC to 10145 * catchup mode. This will catchup all VCPUs to real time, but cannot 10146 * guarantee that they stay in perfect synchronization. 10147 */ 10148 if (backwards_tsc) { 10149 u64 delta_cyc = max_tsc - local_tsc; 10150 list_for_each_entry(kvm, &vm_list, vm_list) { 10151 kvm->arch.backwards_tsc_observed = true; 10152 kvm_for_each_vcpu(i, vcpu, kvm) { 10153 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10154 vcpu->arch.last_host_tsc = local_tsc; 10155 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10156 } 10157 10158 /* 10159 * We have to disable TSC offset matching.. if you were 10160 * booting a VM while issuing an S4 host suspend.... 10161 * you may have some problem. Solving this issue is 10162 * left as an exercise to the reader. 10163 */ 10164 kvm->arch.last_tsc_nsec = 0; 10165 kvm->arch.last_tsc_write = 0; 10166 } 10167 10168 } 10169 return 0; 10170 } 10171 10172 void kvm_arch_hardware_disable(void) 10173 { 10174 kvm_x86_ops.hardware_disable(); 10175 drop_user_return_notifiers(); 10176 } 10177 10178 int kvm_arch_hardware_setup(void *opaque) 10179 { 10180 struct kvm_x86_init_ops *ops = opaque; 10181 int r; 10182 10183 rdmsrl_safe(MSR_EFER, &host_efer); 10184 10185 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10186 rdmsrl(MSR_IA32_XSS, host_xss); 10187 10188 r = ops->hardware_setup(); 10189 if (r != 0) 10190 return r; 10191 10192 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10193 10194 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10195 supported_xss = 0; 10196 10197 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 10198 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 10199 #undef __kvm_cpu_cap_has 10200 10201 if (kvm_has_tsc_control) { 10202 /* 10203 * Make sure the user can only configure tsc_khz values that 10204 * fit into a signed integer. 10205 * A min value is not calculated because it will always 10206 * be 1 on all machines. 10207 */ 10208 u64 max = min(0x7fffffffULL, 10209 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 10210 kvm_max_guest_tsc_khz = max; 10211 10212 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 10213 } 10214 10215 kvm_init_msr_list(); 10216 return 0; 10217 } 10218 10219 void kvm_arch_hardware_unsetup(void) 10220 { 10221 kvm_x86_ops.hardware_unsetup(); 10222 } 10223 10224 int kvm_arch_check_processor_compat(void *opaque) 10225 { 10226 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 10227 struct kvm_x86_init_ops *ops = opaque; 10228 10229 WARN_ON(!irqs_disabled()); 10230 10231 if (__cr4_reserved_bits(cpu_has, c) != 10232 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 10233 return -EIO; 10234 10235 return ops->check_processor_compatibility(); 10236 } 10237 10238 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 10239 { 10240 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 10241 } 10242 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 10243 10244 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 10245 { 10246 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 10247 } 10248 10249 struct static_key kvm_no_apic_vcpu __read_mostly; 10250 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 10251 10252 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 10253 { 10254 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 10255 10256 vcpu->arch.l1tf_flush_l1d = true; 10257 if (pmu->version && unlikely(pmu->event_count)) { 10258 pmu->need_cleanup = true; 10259 kvm_make_request(KVM_REQ_PMU, vcpu); 10260 } 10261 kvm_x86_ops.sched_in(vcpu, cpu); 10262 } 10263 10264 void kvm_arch_free_vm(struct kvm *kvm) 10265 { 10266 kfree(kvm->arch.hyperv.hv_pa_pg); 10267 vfree(kvm); 10268 } 10269 10270 10271 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 10272 { 10273 if (type) 10274 return -EINVAL; 10275 10276 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 10277 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 10278 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 10279 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 10280 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 10281 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 10282 10283 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 10284 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 10285 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 10286 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 10287 &kvm->arch.irq_sources_bitmap); 10288 10289 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 10290 mutex_init(&kvm->arch.apic_map_lock); 10291 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 10292 10293 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 10294 pvclock_update_vm_gtod_copy(kvm); 10295 10296 kvm->arch.guest_can_read_msr_platform_info = true; 10297 10298 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 10299 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 10300 10301 kvm_hv_init_vm(kvm); 10302 kvm_page_track_init(kvm); 10303 kvm_mmu_init_vm(kvm); 10304 10305 return kvm_x86_ops.vm_init(kvm); 10306 } 10307 10308 int kvm_arch_post_init_vm(struct kvm *kvm) 10309 { 10310 return kvm_mmu_post_init_vm(kvm); 10311 } 10312 10313 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 10314 { 10315 vcpu_load(vcpu); 10316 kvm_mmu_unload(vcpu); 10317 vcpu_put(vcpu); 10318 } 10319 10320 static void kvm_free_vcpus(struct kvm *kvm) 10321 { 10322 unsigned int i; 10323 struct kvm_vcpu *vcpu; 10324 10325 /* 10326 * Unpin any mmu pages first. 10327 */ 10328 kvm_for_each_vcpu(i, vcpu, kvm) { 10329 kvm_clear_async_pf_completion_queue(vcpu); 10330 kvm_unload_vcpu_mmu(vcpu); 10331 } 10332 kvm_for_each_vcpu(i, vcpu, kvm) 10333 kvm_vcpu_destroy(vcpu); 10334 10335 mutex_lock(&kvm->lock); 10336 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 10337 kvm->vcpus[i] = NULL; 10338 10339 atomic_set(&kvm->online_vcpus, 0); 10340 mutex_unlock(&kvm->lock); 10341 } 10342 10343 void kvm_arch_sync_events(struct kvm *kvm) 10344 { 10345 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 10346 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 10347 kvm_free_pit(kvm); 10348 } 10349 10350 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 10351 { 10352 int i, r; 10353 unsigned long hva, old_npages; 10354 struct kvm_memslots *slots = kvm_memslots(kvm); 10355 struct kvm_memory_slot *slot; 10356 10357 /* Called with kvm->slots_lock held. */ 10358 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 10359 return -EINVAL; 10360 10361 slot = id_to_memslot(slots, id); 10362 if (size) { 10363 if (slot && slot->npages) 10364 return -EEXIST; 10365 10366 /* 10367 * MAP_SHARED to prevent internal slot pages from being moved 10368 * by fork()/COW. 10369 */ 10370 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 10371 MAP_SHARED | MAP_ANONYMOUS, 0); 10372 if (IS_ERR((void *)hva)) 10373 return PTR_ERR((void *)hva); 10374 } else { 10375 if (!slot || !slot->npages) 10376 return 0; 10377 10378 old_npages = slot->npages; 10379 hva = 0; 10380 } 10381 10382 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10383 struct kvm_userspace_memory_region m; 10384 10385 m.slot = id | (i << 16); 10386 m.flags = 0; 10387 m.guest_phys_addr = gpa; 10388 m.userspace_addr = hva; 10389 m.memory_size = size; 10390 r = __kvm_set_memory_region(kvm, &m); 10391 if (r < 0) 10392 return r; 10393 } 10394 10395 if (!size) 10396 vm_munmap(hva, old_npages * PAGE_SIZE); 10397 10398 return 0; 10399 } 10400 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10401 10402 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10403 { 10404 kvm_mmu_pre_destroy_vm(kvm); 10405 } 10406 10407 void kvm_arch_destroy_vm(struct kvm *kvm) 10408 { 10409 u32 i; 10410 10411 if (current->mm == kvm->mm) { 10412 /* 10413 * Free memory regions allocated on behalf of userspace, 10414 * unless the the memory map has changed due to process exit 10415 * or fd copying. 10416 */ 10417 mutex_lock(&kvm->slots_lock); 10418 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10419 0, 0); 10420 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10421 0, 0); 10422 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10423 mutex_unlock(&kvm->slots_lock); 10424 } 10425 if (kvm_x86_ops.vm_destroy) 10426 kvm_x86_ops.vm_destroy(kvm); 10427 for (i = 0; i < kvm->arch.msr_filter.count; i++) 10428 kfree(kvm->arch.msr_filter.ranges[i].bitmap); 10429 kvm_pic_destroy(kvm); 10430 kvm_ioapic_destroy(kvm); 10431 kvm_free_vcpus(kvm); 10432 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10433 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10434 kvm_mmu_uninit_vm(kvm); 10435 kvm_page_track_cleanup(kvm); 10436 kvm_hv_destroy_vm(kvm); 10437 } 10438 10439 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10440 { 10441 int i; 10442 10443 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10444 kvfree(slot->arch.rmap[i]); 10445 slot->arch.rmap[i] = NULL; 10446 10447 if (i == 0) 10448 continue; 10449 10450 kvfree(slot->arch.lpage_info[i - 1]); 10451 slot->arch.lpage_info[i - 1] = NULL; 10452 } 10453 10454 kvm_page_track_free_memslot(slot); 10455 } 10456 10457 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10458 unsigned long npages) 10459 { 10460 int i; 10461 10462 /* 10463 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10464 * old arrays will be freed by __kvm_set_memory_region() if installing 10465 * the new memslot is successful. 10466 */ 10467 memset(&slot->arch, 0, sizeof(slot->arch)); 10468 10469 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10470 struct kvm_lpage_info *linfo; 10471 unsigned long ugfn; 10472 int lpages; 10473 int level = i + 1; 10474 10475 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10476 slot->base_gfn, level) + 1; 10477 10478 slot->arch.rmap[i] = 10479 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10480 GFP_KERNEL_ACCOUNT); 10481 if (!slot->arch.rmap[i]) 10482 goto out_free; 10483 if (i == 0) 10484 continue; 10485 10486 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10487 if (!linfo) 10488 goto out_free; 10489 10490 slot->arch.lpage_info[i - 1] = linfo; 10491 10492 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10493 linfo[0].disallow_lpage = 1; 10494 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10495 linfo[lpages - 1].disallow_lpage = 1; 10496 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10497 /* 10498 * If the gfn and userspace address are not aligned wrt each 10499 * other, disable large page support for this slot. 10500 */ 10501 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10502 unsigned long j; 10503 10504 for (j = 0; j < lpages; ++j) 10505 linfo[j].disallow_lpage = 1; 10506 } 10507 } 10508 10509 if (kvm_page_track_create_memslot(slot, npages)) 10510 goto out_free; 10511 10512 return 0; 10513 10514 out_free: 10515 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10516 kvfree(slot->arch.rmap[i]); 10517 slot->arch.rmap[i] = NULL; 10518 if (i == 0) 10519 continue; 10520 10521 kvfree(slot->arch.lpage_info[i - 1]); 10522 slot->arch.lpage_info[i - 1] = NULL; 10523 } 10524 return -ENOMEM; 10525 } 10526 10527 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10528 { 10529 struct kvm_vcpu *vcpu; 10530 int i; 10531 10532 /* 10533 * memslots->generation has been incremented. 10534 * mmio generation may have reached its maximum value. 10535 */ 10536 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10537 10538 /* Force re-initialization of steal_time cache */ 10539 kvm_for_each_vcpu(i, vcpu, kvm) 10540 kvm_vcpu_kick(vcpu); 10541 } 10542 10543 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10544 struct kvm_memory_slot *memslot, 10545 const struct kvm_userspace_memory_region *mem, 10546 enum kvm_mr_change change) 10547 { 10548 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10549 return kvm_alloc_memslot_metadata(memslot, 10550 mem->memory_size >> PAGE_SHIFT); 10551 return 0; 10552 } 10553 10554 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10555 struct kvm_memory_slot *old, 10556 struct kvm_memory_slot *new, 10557 enum kvm_mr_change change) 10558 { 10559 /* 10560 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10561 * See comments below. 10562 */ 10563 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10564 return; 10565 10566 /* 10567 * Dirty logging tracks sptes in 4k granularity, meaning that large 10568 * sptes have to be split. If live migration is successful, the guest 10569 * in the source machine will be destroyed and large sptes will be 10570 * created in the destination. However, if the guest continues to run 10571 * in the source machine (for example if live migration fails), small 10572 * sptes will remain around and cause bad performance. 10573 * 10574 * Scan sptes if dirty logging has been stopped, dropping those 10575 * which can be collapsed into a single large-page spte. Later 10576 * page faults will create the large-page sptes. 10577 * 10578 * There is no need to do this in any of the following cases: 10579 * CREATE: No dirty mappings will already exist. 10580 * MOVE/DELETE: The old mappings will already have been cleaned up by 10581 * kvm_arch_flush_shadow_memslot() 10582 */ 10583 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10584 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10585 kvm_mmu_zap_collapsible_sptes(kvm, new); 10586 10587 /* 10588 * Enable or disable dirty logging for the slot. 10589 * 10590 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10591 * slot have been zapped so no dirty logging updates are needed for 10592 * the old slot. 10593 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10594 * any mappings that might be created in it will consume the 10595 * properties of the new slot and do not need to be updated here. 10596 * 10597 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10598 * called to enable/disable dirty logging. 10599 * 10600 * When disabling dirty logging with PML enabled, the D-bit is set 10601 * for sptes in the slot in order to prevent unnecessary GPA 10602 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10603 * This guarantees leaving PML enabled for the guest's lifetime 10604 * won't have any additional overhead from PML when the guest is 10605 * running with dirty logging disabled. 10606 * 10607 * When enabling dirty logging, large sptes are write-protected 10608 * so they can be split on first write. New large sptes cannot 10609 * be created for this slot until the end of the logging. 10610 * See the comments in fast_page_fault(). 10611 * For small sptes, nothing is done if the dirty log is in the 10612 * initial-all-set state. Otherwise, depending on whether pml 10613 * is enabled the D-bit or the W-bit will be cleared. 10614 */ 10615 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10616 if (kvm_x86_ops.slot_enable_log_dirty) { 10617 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10618 } else { 10619 int level = 10620 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10621 PG_LEVEL_2M : PG_LEVEL_4K; 10622 10623 /* 10624 * If we're with initial-all-set, we don't need 10625 * to write protect any small page because 10626 * they're reported as dirty already. However 10627 * we still need to write-protect huge pages 10628 * so that the page split can happen lazily on 10629 * the first write to the huge page. 10630 */ 10631 kvm_mmu_slot_remove_write_access(kvm, new, level); 10632 } 10633 } else { 10634 if (kvm_x86_ops.slot_disable_log_dirty) 10635 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10636 } 10637 } 10638 10639 void kvm_arch_commit_memory_region(struct kvm *kvm, 10640 const struct kvm_userspace_memory_region *mem, 10641 struct kvm_memory_slot *old, 10642 const struct kvm_memory_slot *new, 10643 enum kvm_mr_change change) 10644 { 10645 if (!kvm->arch.n_requested_mmu_pages) 10646 kvm_mmu_change_mmu_pages(kvm, 10647 kvm_mmu_calculate_default_mmu_pages(kvm)); 10648 10649 /* 10650 * FIXME: const-ify all uses of struct kvm_memory_slot. 10651 */ 10652 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10653 10654 /* Free the arrays associated with the old memslot. */ 10655 if (change == KVM_MR_MOVE) 10656 kvm_arch_free_memslot(kvm, old); 10657 } 10658 10659 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10660 { 10661 kvm_mmu_zap_all(kvm); 10662 } 10663 10664 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10665 struct kvm_memory_slot *slot) 10666 { 10667 kvm_page_track_flush_slot(kvm, slot); 10668 } 10669 10670 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10671 { 10672 return (is_guest_mode(vcpu) && 10673 kvm_x86_ops.guest_apic_has_interrupt && 10674 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10675 } 10676 10677 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10678 { 10679 if (!list_empty_careful(&vcpu->async_pf.done)) 10680 return true; 10681 10682 if (kvm_apic_has_events(vcpu)) 10683 return true; 10684 10685 if (vcpu->arch.pv.pv_unhalted) 10686 return true; 10687 10688 if (vcpu->arch.exception.pending) 10689 return true; 10690 10691 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10692 (vcpu->arch.nmi_pending && 10693 kvm_x86_ops.nmi_allowed(vcpu, false))) 10694 return true; 10695 10696 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10697 (vcpu->arch.smi_pending && 10698 kvm_x86_ops.smi_allowed(vcpu, false))) 10699 return true; 10700 10701 if (kvm_arch_interrupt_allowed(vcpu) && 10702 (kvm_cpu_has_interrupt(vcpu) || 10703 kvm_guest_apic_has_interrupt(vcpu))) 10704 return true; 10705 10706 if (kvm_hv_has_stimer_pending(vcpu)) 10707 return true; 10708 10709 if (is_guest_mode(vcpu) && 10710 kvm_x86_ops.nested_ops->hv_timer_pending && 10711 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10712 return true; 10713 10714 return false; 10715 } 10716 10717 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10718 { 10719 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10720 } 10721 10722 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10723 { 10724 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10725 return true; 10726 10727 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10728 kvm_test_request(KVM_REQ_SMI, vcpu) || 10729 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10730 return true; 10731 10732 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10733 return true; 10734 10735 return false; 10736 } 10737 10738 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10739 { 10740 return vcpu->arch.preempted_in_kernel; 10741 } 10742 10743 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10744 { 10745 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10746 } 10747 10748 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10749 { 10750 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10751 } 10752 10753 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10754 { 10755 if (is_64_bit_mode(vcpu)) 10756 return kvm_rip_read(vcpu); 10757 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10758 kvm_rip_read(vcpu)); 10759 } 10760 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10761 10762 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10763 { 10764 return kvm_get_linear_rip(vcpu) == linear_rip; 10765 } 10766 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10767 10768 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10769 { 10770 unsigned long rflags; 10771 10772 rflags = kvm_x86_ops.get_rflags(vcpu); 10773 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10774 rflags &= ~X86_EFLAGS_TF; 10775 return rflags; 10776 } 10777 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10778 10779 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10780 { 10781 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10782 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10783 rflags |= X86_EFLAGS_TF; 10784 kvm_x86_ops.set_rflags(vcpu, rflags); 10785 } 10786 10787 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10788 { 10789 __kvm_set_rflags(vcpu, rflags); 10790 kvm_make_request(KVM_REQ_EVENT, vcpu); 10791 } 10792 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10793 10794 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10795 { 10796 int r; 10797 10798 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10799 work->wakeup_all) 10800 return; 10801 10802 r = kvm_mmu_reload(vcpu); 10803 if (unlikely(r)) 10804 return; 10805 10806 if (!vcpu->arch.mmu->direct_map && 10807 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10808 return; 10809 10810 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10811 } 10812 10813 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10814 { 10815 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10816 10817 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10818 } 10819 10820 static inline u32 kvm_async_pf_next_probe(u32 key) 10821 { 10822 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10823 } 10824 10825 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10826 { 10827 u32 key = kvm_async_pf_hash_fn(gfn); 10828 10829 while (vcpu->arch.apf.gfns[key] != ~0) 10830 key = kvm_async_pf_next_probe(key); 10831 10832 vcpu->arch.apf.gfns[key] = gfn; 10833 } 10834 10835 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10836 { 10837 int i; 10838 u32 key = kvm_async_pf_hash_fn(gfn); 10839 10840 for (i = 0; i < ASYNC_PF_PER_VCPU && 10841 (vcpu->arch.apf.gfns[key] != gfn && 10842 vcpu->arch.apf.gfns[key] != ~0); i++) 10843 key = kvm_async_pf_next_probe(key); 10844 10845 return key; 10846 } 10847 10848 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10849 { 10850 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10851 } 10852 10853 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10854 { 10855 u32 i, j, k; 10856 10857 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10858 10859 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10860 return; 10861 10862 while (true) { 10863 vcpu->arch.apf.gfns[i] = ~0; 10864 do { 10865 j = kvm_async_pf_next_probe(j); 10866 if (vcpu->arch.apf.gfns[j] == ~0) 10867 return; 10868 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10869 /* 10870 * k lies cyclically in ]i,j] 10871 * | i.k.j | 10872 * |....j i.k.| or |.k..j i...| 10873 */ 10874 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10875 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10876 i = j; 10877 } 10878 } 10879 10880 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10881 { 10882 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10883 10884 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10885 sizeof(reason)); 10886 } 10887 10888 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10889 { 10890 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10891 10892 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10893 &token, offset, sizeof(token)); 10894 } 10895 10896 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10897 { 10898 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10899 u32 val; 10900 10901 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10902 &val, offset, sizeof(val))) 10903 return false; 10904 10905 return !val; 10906 } 10907 10908 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10909 { 10910 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10911 return false; 10912 10913 if (!kvm_pv_async_pf_enabled(vcpu) || 10914 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10915 return false; 10916 10917 return true; 10918 } 10919 10920 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10921 { 10922 if (unlikely(!lapic_in_kernel(vcpu) || 10923 kvm_event_needs_reinjection(vcpu) || 10924 vcpu->arch.exception.pending)) 10925 return false; 10926 10927 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10928 return false; 10929 10930 /* 10931 * If interrupts are off we cannot even use an artificial 10932 * halt state. 10933 */ 10934 return kvm_arch_interrupt_allowed(vcpu); 10935 } 10936 10937 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10938 struct kvm_async_pf *work) 10939 { 10940 struct x86_exception fault; 10941 10942 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10943 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10944 10945 if (kvm_can_deliver_async_pf(vcpu) && 10946 !apf_put_user_notpresent(vcpu)) { 10947 fault.vector = PF_VECTOR; 10948 fault.error_code_valid = true; 10949 fault.error_code = 0; 10950 fault.nested_page_fault = false; 10951 fault.address = work->arch.token; 10952 fault.async_page_fault = true; 10953 kvm_inject_page_fault(vcpu, &fault); 10954 return true; 10955 } else { 10956 /* 10957 * It is not possible to deliver a paravirtualized asynchronous 10958 * page fault, but putting the guest in an artificial halt state 10959 * can be beneficial nevertheless: if an interrupt arrives, we 10960 * can deliver it timely and perhaps the guest will schedule 10961 * another process. When the instruction that triggered a page 10962 * fault is retried, hopefully the page will be ready in the host. 10963 */ 10964 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10965 return false; 10966 } 10967 } 10968 10969 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10970 struct kvm_async_pf *work) 10971 { 10972 struct kvm_lapic_irq irq = { 10973 .delivery_mode = APIC_DM_FIXED, 10974 .vector = vcpu->arch.apf.vec 10975 }; 10976 10977 if (work->wakeup_all) 10978 work->arch.token = ~0; /* broadcast wakeup */ 10979 else 10980 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10981 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10982 10983 if ((work->wakeup_all || work->notpresent_injected) && 10984 kvm_pv_async_pf_enabled(vcpu) && 10985 !apf_put_user_ready(vcpu, work->arch.token)) { 10986 vcpu->arch.apf.pageready_pending = true; 10987 kvm_apic_set_irq(vcpu, &irq, NULL); 10988 } 10989 10990 vcpu->arch.apf.halted = false; 10991 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10992 } 10993 10994 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10995 { 10996 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10997 if (!vcpu->arch.apf.pageready_pending) 10998 kvm_vcpu_kick(vcpu); 10999 } 11000 11001 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 11002 { 11003 if (!kvm_pv_async_pf_enabled(vcpu)) 11004 return true; 11005 else 11006 return apf_pageready_slot_free(vcpu); 11007 } 11008 11009 void kvm_arch_start_assignment(struct kvm *kvm) 11010 { 11011 atomic_inc(&kvm->arch.assigned_device_count); 11012 } 11013 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 11014 11015 void kvm_arch_end_assignment(struct kvm *kvm) 11016 { 11017 atomic_dec(&kvm->arch.assigned_device_count); 11018 } 11019 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 11020 11021 bool kvm_arch_has_assigned_device(struct kvm *kvm) 11022 { 11023 return atomic_read(&kvm->arch.assigned_device_count); 11024 } 11025 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 11026 11027 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 11028 { 11029 atomic_inc(&kvm->arch.noncoherent_dma_count); 11030 } 11031 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 11032 11033 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 11034 { 11035 atomic_dec(&kvm->arch.noncoherent_dma_count); 11036 } 11037 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11038 11039 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11040 { 11041 return atomic_read(&kvm->arch.noncoherent_dma_count); 11042 } 11043 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11044 11045 bool kvm_arch_has_irq_bypass(void) 11046 { 11047 return true; 11048 } 11049 11050 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11051 struct irq_bypass_producer *prod) 11052 { 11053 struct kvm_kernel_irqfd *irqfd = 11054 container_of(cons, struct kvm_kernel_irqfd, consumer); 11055 int ret; 11056 11057 irqfd->producer = prod; 11058 kvm_arch_start_assignment(irqfd->kvm); 11059 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, 11060 prod->irq, irqfd->gsi, 1); 11061 11062 if (ret) 11063 kvm_arch_end_assignment(irqfd->kvm); 11064 11065 return ret; 11066 } 11067 11068 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11069 struct irq_bypass_producer *prod) 11070 { 11071 int ret; 11072 struct kvm_kernel_irqfd *irqfd = 11073 container_of(cons, struct kvm_kernel_irqfd, consumer); 11074 11075 WARN_ON(irqfd->producer != prod); 11076 irqfd->producer = NULL; 11077 11078 /* 11079 * When producer of consumer is unregistered, we change back to 11080 * remapped mode, so we can re-use the current implementation 11081 * when the irq is masked/disabled or the consumer side (KVM 11082 * int this case doesn't want to receive the interrupts. 11083 */ 11084 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 11085 if (ret) 11086 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 11087 " fails: %d\n", irqfd->consumer.token, ret); 11088 11089 kvm_arch_end_assignment(irqfd->kvm); 11090 } 11091 11092 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 11093 uint32_t guest_irq, bool set) 11094 { 11095 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 11096 } 11097 11098 bool kvm_vector_hashing_enabled(void) 11099 { 11100 return vector_hashing; 11101 } 11102 11103 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 11104 { 11105 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 11106 } 11107 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 11108 11109 11110 int kvm_spec_ctrl_test_value(u64 value) 11111 { 11112 /* 11113 * test that setting IA32_SPEC_CTRL to given value 11114 * is allowed by the host processor 11115 */ 11116 11117 u64 saved_value; 11118 unsigned long flags; 11119 int ret = 0; 11120 11121 local_irq_save(flags); 11122 11123 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 11124 ret = 1; 11125 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 11126 ret = 1; 11127 else 11128 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 11129 11130 local_irq_restore(flags); 11131 11132 return ret; 11133 } 11134 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 11135 11136 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 11137 { 11138 struct x86_exception fault; 11139 u32 access = error_code & 11140 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 11141 11142 if (!(error_code & PFERR_PRESENT_MASK) || 11143 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 11144 /* 11145 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 11146 * tables probably do not match the TLB. Just proceed 11147 * with the error code that the processor gave. 11148 */ 11149 fault.vector = PF_VECTOR; 11150 fault.error_code_valid = true; 11151 fault.error_code = error_code; 11152 fault.nested_page_fault = false; 11153 fault.address = gva; 11154 } 11155 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 11156 } 11157 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 11158 11159 /* 11160 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 11161 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 11162 * indicates whether exit to userspace is needed. 11163 */ 11164 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 11165 struct x86_exception *e) 11166 { 11167 if (r == X86EMUL_PROPAGATE_FAULT) { 11168 kvm_inject_emulated_page_fault(vcpu, e); 11169 return 1; 11170 } 11171 11172 /* 11173 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 11174 * while handling a VMX instruction KVM could've handled the request 11175 * correctly by exiting to userspace and performing I/O but there 11176 * doesn't seem to be a real use-case behind such requests, just return 11177 * KVM_EXIT_INTERNAL_ERROR for now. 11178 */ 11179 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11180 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11181 vcpu->run->internal.ndata = 0; 11182 11183 return 0; 11184 } 11185 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 11186 11187 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 11188 { 11189 bool pcid_enabled; 11190 struct x86_exception e; 11191 unsigned i; 11192 unsigned long roots_to_free = 0; 11193 struct { 11194 u64 pcid; 11195 u64 gla; 11196 } operand; 11197 int r; 11198 11199 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 11200 if (r != X86EMUL_CONTINUE) 11201 return kvm_handle_memory_failure(vcpu, r, &e); 11202 11203 if (operand.pcid >> 12 != 0) { 11204 kvm_inject_gp(vcpu, 0); 11205 return 1; 11206 } 11207 11208 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 11209 11210 switch (type) { 11211 case INVPCID_TYPE_INDIV_ADDR: 11212 if ((!pcid_enabled && (operand.pcid != 0)) || 11213 is_noncanonical_address(operand.gla, vcpu)) { 11214 kvm_inject_gp(vcpu, 0); 11215 return 1; 11216 } 11217 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 11218 return kvm_skip_emulated_instruction(vcpu); 11219 11220 case INVPCID_TYPE_SINGLE_CTXT: 11221 if (!pcid_enabled && (operand.pcid != 0)) { 11222 kvm_inject_gp(vcpu, 0); 11223 return 1; 11224 } 11225 11226 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 11227 kvm_mmu_sync_roots(vcpu); 11228 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 11229 } 11230 11231 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 11232 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd) 11233 == operand.pcid) 11234 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 11235 11236 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 11237 /* 11238 * If neither the current cr3 nor any of the prev_roots use the 11239 * given PCID, then nothing needs to be done here because a 11240 * resync will happen anyway before switching to any other CR3. 11241 */ 11242 11243 return kvm_skip_emulated_instruction(vcpu); 11244 11245 case INVPCID_TYPE_ALL_NON_GLOBAL: 11246 /* 11247 * Currently, KVM doesn't mark global entries in the shadow 11248 * page tables, so a non-global flush just degenerates to a 11249 * global flush. If needed, we could optimize this later by 11250 * keeping track of global entries in shadow page tables. 11251 */ 11252 11253 fallthrough; 11254 case INVPCID_TYPE_ALL_INCL_GLOBAL: 11255 kvm_mmu_unload(vcpu); 11256 return kvm_skip_emulated_instruction(vcpu); 11257 11258 default: 11259 BUG(); /* We have already checked above that type <= 3 */ 11260 } 11261 } 11262 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 11263 11264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 11265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 11266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 11267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 11268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 11269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 11270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 11271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 11272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 11273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 11274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 11275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 11276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 11277 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 11278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 11279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 11280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 11281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 11282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 11283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 11284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 11285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 11286