xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 2df72e9bc4c505d8357012f2924589f3d16f9d44)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64 
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 
69 #define emul_to_vcpu(ctxt) \
70 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71 
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82 
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88 
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91 
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94 
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99 
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103 
104 #define KVM_NR_SHARED_MSRS 16
105 
106 struct kvm_shared_msrs_global {
107 	int nr;
108 	u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110 
111 struct kvm_shared_msrs {
112 	struct user_return_notifier urn;
113 	bool registered;
114 	struct kvm_shared_msr_values {
115 		u64 host;
116 		u64 curr;
117 	} values[KVM_NR_SHARED_MSRS];
118 };
119 
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122 
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
125 	{ "pf_guest", VCPU_STAT(pf_guest) },
126 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
127 	{ "invlpg", VCPU_STAT(invlpg) },
128 	{ "exits", VCPU_STAT(exits) },
129 	{ "io_exits", VCPU_STAT(io_exits) },
130 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
131 	{ "signal_exits", VCPU_STAT(signal_exits) },
132 	{ "irq_window", VCPU_STAT(irq_window_exits) },
133 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
134 	{ "halt_exits", VCPU_STAT(halt_exits) },
135 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 	{ "hypercalls", VCPU_STAT(hypercalls) },
137 	{ "request_irq", VCPU_STAT(request_irq_exits) },
138 	{ "irq_exits", VCPU_STAT(irq_exits) },
139 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
140 	{ "efer_reload", VCPU_STAT(efer_reload) },
141 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
142 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
143 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 	{ "irq_injections", VCPU_STAT(irq_injections) },
145 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
146 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
151 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
152 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
154 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 	{ "largepages", VM_STAT(lpages) },
156 	{ NULL }
157 };
158 
159 u64 __read_mostly host_xcr0;
160 
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162 
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165 	int i;
166 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 		vcpu->arch.apf.gfns[i] = ~0;
168 }
169 
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172 	unsigned slot;
173 	struct kvm_shared_msrs *locals
174 		= container_of(urn, struct kvm_shared_msrs, urn);
175 	struct kvm_shared_msr_values *values;
176 
177 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 		values = &locals->values[slot];
179 		if (values->host != values->curr) {
180 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 			values->curr = values->host;
182 		}
183 	}
184 	locals->registered = false;
185 	user_return_notifier_unregister(urn);
186 }
187 
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190 	struct kvm_shared_msrs *smsr;
191 	u64 value;
192 
193 	smsr = &__get_cpu_var(shared_msrs);
194 	/* only read, and nobody should modify it at this time,
195 	 * so don't need lock */
196 	if (slot >= shared_msrs_global.nr) {
197 		printk(KERN_ERR "kvm: invalid MSR slot!");
198 		return;
199 	}
200 	rdmsrl_safe(msr, &value);
201 	smsr->values[slot].host = value;
202 	smsr->values[slot].curr = value;
203 }
204 
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207 	if (slot >= shared_msrs_global.nr)
208 		shared_msrs_global.nr = slot + 1;
209 	shared_msrs_global.msrs[slot] = msr;
210 	/* we need ensured the shared_msr_global have been updated */
211 	smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214 
215 static void kvm_shared_msr_cpu_online(void)
216 {
217 	unsigned i;
218 
219 	for (i = 0; i < shared_msrs_global.nr; ++i)
220 		shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222 
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226 
227 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
228 		return;
229 	smsr->values[slot].curr = value;
230 	wrmsrl(shared_msrs_global.msrs[slot], value);
231 	if (!smsr->registered) {
232 		smsr->urn.on_user_return = kvm_on_user_return;
233 		user_return_notifier_register(&smsr->urn);
234 		smsr->registered = true;
235 	}
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238 
239 static void drop_user_return_notifiers(void *ignore)
240 {
241 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242 
243 	if (smsr->registered)
244 		kvm_on_user_return(&smsr->urn);
245 }
246 
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249 	return vcpu->arch.apic_base;
250 }
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252 
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255 	/* TODO: reserve bits check */
256 	kvm_lapic_set_base(vcpu, data);
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259 
260 #define EXCPT_BENIGN		0
261 #define EXCPT_CONTRIBUTORY	1
262 #define EXCPT_PF		2
263 
264 static int exception_class(int vector)
265 {
266 	switch (vector) {
267 	case PF_VECTOR:
268 		return EXCPT_PF;
269 	case DE_VECTOR:
270 	case TS_VECTOR:
271 	case NP_VECTOR:
272 	case SS_VECTOR:
273 	case GP_VECTOR:
274 		return EXCPT_CONTRIBUTORY;
275 	default:
276 		break;
277 	}
278 	return EXCPT_BENIGN;
279 }
280 
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282 		unsigned nr, bool has_error, u32 error_code,
283 		bool reinject)
284 {
285 	u32 prev_nr;
286 	int class1, class2;
287 
288 	kvm_make_request(KVM_REQ_EVENT, vcpu);
289 
290 	if (!vcpu->arch.exception.pending) {
291 	queue:
292 		vcpu->arch.exception.pending = true;
293 		vcpu->arch.exception.has_error_code = has_error;
294 		vcpu->arch.exception.nr = nr;
295 		vcpu->arch.exception.error_code = error_code;
296 		vcpu->arch.exception.reinject = reinject;
297 		return;
298 	}
299 
300 	/* to check exception */
301 	prev_nr = vcpu->arch.exception.nr;
302 	if (prev_nr == DF_VECTOR) {
303 		/* triple fault -> shutdown */
304 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305 		return;
306 	}
307 	class1 = exception_class(prev_nr);
308 	class2 = exception_class(nr);
309 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311 		/* generate double fault per SDM Table 5-5 */
312 		vcpu->arch.exception.pending = true;
313 		vcpu->arch.exception.has_error_code = true;
314 		vcpu->arch.exception.nr = DF_VECTOR;
315 		vcpu->arch.exception.error_code = 0;
316 	} else
317 		/* replace previous exception with a new one in a hope
318 		   that instruction re-execution will regenerate lost
319 		   exception */
320 		goto queue;
321 }
322 
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325 	kvm_multiple_exception(vcpu, nr, false, 0, false);
326 }
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
328 
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 	kvm_multiple_exception(vcpu, nr, false, 0, true);
332 }
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
334 
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336 {
337 	if (err)
338 		kvm_inject_gp(vcpu, 0);
339 	else
340 		kvm_x86_ops->skip_emulated_instruction(vcpu);
341 }
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
343 
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
345 {
346 	++vcpu->stat.pf_guest;
347 	vcpu->arch.cr2 = fault->address;
348 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
351 
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
353 {
354 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356 	else
357 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
358 }
359 
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
361 {
362 	atomic_inc(&vcpu->arch.nmi_queued);
363 	kvm_make_request(KVM_REQ_NMI, vcpu);
364 }
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
366 
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
368 {
369 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
370 }
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
372 
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
376 }
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
378 
379 /*
380  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
381  * a #GP and return false.
382  */
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
384 {
385 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386 		return true;
387 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
388 	return false;
389 }
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
391 
392 /*
393  * This function will be used to read from the physical memory of the currently
394  * running guest. The difference to kvm_read_guest_page is that this function
395  * can read from guest physical or from the guest's guest physical memory.
396  */
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398 			    gfn_t ngfn, void *data, int offset, int len,
399 			    u32 access)
400 {
401 	gfn_t real_gfn;
402 	gpa_t ngpa;
403 
404 	ngpa     = gfn_to_gpa(ngfn);
405 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406 	if (real_gfn == UNMAPPED_GVA)
407 		return -EFAULT;
408 
409 	real_gfn = gpa_to_gfn(real_gfn);
410 
411 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
412 }
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
414 
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416 			       void *data, int offset, int len, u32 access)
417 {
418 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419 				       data, offset, len, access);
420 }
421 
422 /*
423  * Load the pae pdptrs.  Return true is they are all valid.
424  */
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
426 {
427 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429 	int i;
430 	int ret;
431 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
432 
433 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434 				      offset * sizeof(u64), sizeof(pdpte),
435 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
436 	if (ret < 0) {
437 		ret = 0;
438 		goto out;
439 	}
440 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441 		if (is_present_gpte(pdpte[i]) &&
442 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443 			ret = 0;
444 			goto out;
445 		}
446 	}
447 	ret = 1;
448 
449 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450 	__set_bit(VCPU_EXREG_PDPTR,
451 		  (unsigned long *)&vcpu->arch.regs_avail);
452 	__set_bit(VCPU_EXREG_PDPTR,
453 		  (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
455 
456 	return ret;
457 }
458 EXPORT_SYMBOL_GPL(load_pdptrs);
459 
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
461 {
462 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463 	bool changed = true;
464 	int offset;
465 	gfn_t gfn;
466 	int r;
467 
468 	if (is_long_mode(vcpu) || !is_pae(vcpu))
469 		return false;
470 
471 	if (!test_bit(VCPU_EXREG_PDPTR,
472 		      (unsigned long *)&vcpu->arch.regs_avail))
473 		return true;
474 
475 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
479 	if (r < 0)
480 		goto out;
481 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
483 
484 	return changed;
485 }
486 
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
488 {
489 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
490 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491 				    X86_CR0_CD | X86_CR0_NW;
492 
493 	cr0 |= X86_CR0_ET;
494 
495 #ifdef CONFIG_X86_64
496 	if (cr0 & 0xffffffff00000000UL)
497 		return 1;
498 #endif
499 
500 	cr0 &= ~CR0_RESERVED_BITS;
501 
502 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503 		return 1;
504 
505 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506 		return 1;
507 
508 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510 		if ((vcpu->arch.efer & EFER_LME)) {
511 			int cs_db, cs_l;
512 
513 			if (!is_pae(vcpu))
514 				return 1;
515 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516 			if (cs_l)
517 				return 1;
518 		} else
519 #endif
520 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521 						 kvm_read_cr3(vcpu)))
522 			return 1;
523 	}
524 
525 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
526 		return 1;
527 
528 	kvm_x86_ops->set_cr0(vcpu, cr0);
529 
530 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
531 		kvm_clear_async_pf_completion_queue(vcpu);
532 		kvm_async_pf_hash_reset(vcpu);
533 	}
534 
535 	if ((cr0 ^ old_cr0) & update_bits)
536 		kvm_mmu_reset_context(vcpu);
537 	return 0;
538 }
539 EXPORT_SYMBOL_GPL(kvm_set_cr0);
540 
541 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
542 {
543 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
544 }
545 EXPORT_SYMBOL_GPL(kvm_lmsw);
546 
547 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
548 {
549 	u64 xcr0;
550 
551 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
552 	if (index != XCR_XFEATURE_ENABLED_MASK)
553 		return 1;
554 	xcr0 = xcr;
555 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
556 		return 1;
557 	if (!(xcr0 & XSTATE_FP))
558 		return 1;
559 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
560 		return 1;
561 	if (xcr0 & ~host_xcr0)
562 		return 1;
563 	vcpu->arch.xcr0 = xcr0;
564 	vcpu->guest_xcr0_loaded = 0;
565 	return 0;
566 }
567 
568 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
569 {
570 	if (__kvm_set_xcr(vcpu, index, xcr)) {
571 		kvm_inject_gp(vcpu, 0);
572 		return 1;
573 	}
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(kvm_set_xcr);
577 
578 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
579 {
580 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
581 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
582 				   X86_CR4_PAE | X86_CR4_SMEP;
583 	if (cr4 & CR4_RESERVED_BITS)
584 		return 1;
585 
586 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
587 		return 1;
588 
589 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
590 		return 1;
591 
592 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
593 		return 1;
594 
595 	if (is_long_mode(vcpu)) {
596 		if (!(cr4 & X86_CR4_PAE))
597 			return 1;
598 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
599 		   && ((cr4 ^ old_cr4) & pdptr_bits)
600 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
601 				   kvm_read_cr3(vcpu)))
602 		return 1;
603 
604 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
605 		if (!guest_cpuid_has_pcid(vcpu))
606 			return 1;
607 
608 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
609 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
610 			return 1;
611 	}
612 
613 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
614 		return 1;
615 
616 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
617 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
618 		kvm_mmu_reset_context(vcpu);
619 
620 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
621 		kvm_update_cpuid(vcpu);
622 
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr4);
626 
627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
628 {
629 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
630 		kvm_mmu_sync_roots(vcpu);
631 		kvm_mmu_flush_tlb(vcpu);
632 		return 0;
633 	}
634 
635 	if (is_long_mode(vcpu)) {
636 		if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
637 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
638 				return 1;
639 		} else
640 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
641 				return 1;
642 	} else {
643 		if (is_pae(vcpu)) {
644 			if (cr3 & CR3_PAE_RESERVED_BITS)
645 				return 1;
646 			if (is_paging(vcpu) &&
647 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
648 				return 1;
649 		}
650 		/*
651 		 * We don't check reserved bits in nonpae mode, because
652 		 * this isn't enforced, and VMware depends on this.
653 		 */
654 	}
655 
656 	/*
657 	 * Does the new cr3 value map to physical memory? (Note, we
658 	 * catch an invalid cr3 even in real-mode, because it would
659 	 * cause trouble later on when we turn on paging anyway.)
660 	 *
661 	 * A real CPU would silently accept an invalid cr3 and would
662 	 * attempt to use it - with largely undefined (and often hard
663 	 * to debug) behavior on the guest side.
664 	 */
665 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
666 		return 1;
667 	vcpu->arch.cr3 = cr3;
668 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
669 	vcpu->arch.mmu.new_cr3(vcpu);
670 	return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr3);
673 
674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
675 {
676 	if (cr8 & CR8_RESERVED_BITS)
677 		return 1;
678 	if (irqchip_in_kernel(vcpu->kvm))
679 		kvm_lapic_set_tpr(vcpu, cr8);
680 	else
681 		vcpu->arch.cr8 = cr8;
682 	return 0;
683 }
684 EXPORT_SYMBOL_GPL(kvm_set_cr8);
685 
686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
687 {
688 	if (irqchip_in_kernel(vcpu->kvm))
689 		return kvm_lapic_get_cr8(vcpu);
690 	else
691 		return vcpu->arch.cr8;
692 }
693 EXPORT_SYMBOL_GPL(kvm_get_cr8);
694 
695 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
696 {
697 	switch (dr) {
698 	case 0 ... 3:
699 		vcpu->arch.db[dr] = val;
700 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
701 			vcpu->arch.eff_db[dr] = val;
702 		break;
703 	case 4:
704 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
705 			return 1; /* #UD */
706 		/* fall through */
707 	case 6:
708 		if (val & 0xffffffff00000000ULL)
709 			return -1; /* #GP */
710 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
711 		break;
712 	case 5:
713 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
714 			return 1; /* #UD */
715 		/* fall through */
716 	default: /* 7 */
717 		if (val & 0xffffffff00000000ULL)
718 			return -1; /* #GP */
719 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
720 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
721 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
722 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
723 		}
724 		break;
725 	}
726 
727 	return 0;
728 }
729 
730 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
731 {
732 	int res;
733 
734 	res = __kvm_set_dr(vcpu, dr, val);
735 	if (res > 0)
736 		kvm_queue_exception(vcpu, UD_VECTOR);
737 	else if (res < 0)
738 		kvm_inject_gp(vcpu, 0);
739 
740 	return res;
741 }
742 EXPORT_SYMBOL_GPL(kvm_set_dr);
743 
744 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
745 {
746 	switch (dr) {
747 	case 0 ... 3:
748 		*val = vcpu->arch.db[dr];
749 		break;
750 	case 4:
751 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
752 			return 1;
753 		/* fall through */
754 	case 6:
755 		*val = vcpu->arch.dr6;
756 		break;
757 	case 5:
758 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
759 			return 1;
760 		/* fall through */
761 	default: /* 7 */
762 		*val = vcpu->arch.dr7;
763 		break;
764 	}
765 
766 	return 0;
767 }
768 
769 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
770 {
771 	if (_kvm_get_dr(vcpu, dr, val)) {
772 		kvm_queue_exception(vcpu, UD_VECTOR);
773 		return 1;
774 	}
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(kvm_get_dr);
778 
779 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
780 {
781 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
782 	u64 data;
783 	int err;
784 
785 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
786 	if (err)
787 		return err;
788 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
789 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
790 	return err;
791 }
792 EXPORT_SYMBOL_GPL(kvm_rdpmc);
793 
794 /*
795  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
796  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
797  *
798  * This list is modified at module load time to reflect the
799  * capabilities of the host cpu. This capabilities test skips MSRs that are
800  * kvm-specific. Those are put in the beginning of the list.
801  */
802 
803 #define KVM_SAVE_MSRS_BEGIN	10
804 static u32 msrs_to_save[] = {
805 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
806 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
807 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
808 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
809 	MSR_KVM_PV_EOI_EN,
810 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
811 	MSR_STAR,
812 #ifdef CONFIG_X86_64
813 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
814 #endif
815 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
816 };
817 
818 static unsigned num_msrs_to_save;
819 
820 static const u32 emulated_msrs[] = {
821 	MSR_IA32_TSCDEADLINE,
822 	MSR_IA32_MISC_ENABLE,
823 	MSR_IA32_MCG_STATUS,
824 	MSR_IA32_MCG_CTL,
825 };
826 
827 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
828 {
829 	u64 old_efer = vcpu->arch.efer;
830 
831 	if (efer & efer_reserved_bits)
832 		return 1;
833 
834 	if (is_paging(vcpu)
835 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
836 		return 1;
837 
838 	if (efer & EFER_FFXSR) {
839 		struct kvm_cpuid_entry2 *feat;
840 
841 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
842 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
843 			return 1;
844 	}
845 
846 	if (efer & EFER_SVME) {
847 		struct kvm_cpuid_entry2 *feat;
848 
849 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
850 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
851 			return 1;
852 	}
853 
854 	efer &= ~EFER_LMA;
855 	efer |= vcpu->arch.efer & EFER_LMA;
856 
857 	kvm_x86_ops->set_efer(vcpu, efer);
858 
859 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
860 
861 	/* Update reserved bits */
862 	if ((efer ^ old_efer) & EFER_NX)
863 		kvm_mmu_reset_context(vcpu);
864 
865 	return 0;
866 }
867 
868 void kvm_enable_efer_bits(u64 mask)
869 {
870        efer_reserved_bits &= ~mask;
871 }
872 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
873 
874 
875 /*
876  * Writes msr value into into the appropriate "register".
877  * Returns 0 on success, non-0 otherwise.
878  * Assumes vcpu_load() was already called.
879  */
880 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
881 {
882 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
883 }
884 
885 /*
886  * Adapt set_msr() to msr_io()'s calling convention
887  */
888 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
889 {
890 	return kvm_set_msr(vcpu, index, *data);
891 }
892 
893 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
894 {
895 	int version;
896 	int r;
897 	struct pvclock_wall_clock wc;
898 	struct timespec boot;
899 
900 	if (!wall_clock)
901 		return;
902 
903 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
904 	if (r)
905 		return;
906 
907 	if (version & 1)
908 		++version;  /* first time write, random junk */
909 
910 	++version;
911 
912 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
913 
914 	/*
915 	 * The guest calculates current wall clock time by adding
916 	 * system time (updated by kvm_guest_time_update below) to the
917 	 * wall clock specified here.  guest system time equals host
918 	 * system time for us, thus we must fill in host boot time here.
919 	 */
920 	getboottime(&boot);
921 
922 	if (kvm->arch.kvmclock_offset) {
923 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
924 		boot = timespec_sub(boot, ts);
925 	}
926 	wc.sec = boot.tv_sec;
927 	wc.nsec = boot.tv_nsec;
928 	wc.version = version;
929 
930 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
931 
932 	version++;
933 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
934 }
935 
936 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
937 {
938 	uint32_t quotient, remainder;
939 
940 	/* Don't try to replace with do_div(), this one calculates
941 	 * "(dividend << 32) / divisor" */
942 	__asm__ ( "divl %4"
943 		  : "=a" (quotient), "=d" (remainder)
944 		  : "0" (0), "1" (dividend), "r" (divisor) );
945 	return quotient;
946 }
947 
948 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
949 			       s8 *pshift, u32 *pmultiplier)
950 {
951 	uint64_t scaled64;
952 	int32_t  shift = 0;
953 	uint64_t tps64;
954 	uint32_t tps32;
955 
956 	tps64 = base_khz * 1000LL;
957 	scaled64 = scaled_khz * 1000LL;
958 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
959 		tps64 >>= 1;
960 		shift--;
961 	}
962 
963 	tps32 = (uint32_t)tps64;
964 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
965 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
966 			scaled64 >>= 1;
967 		else
968 			tps32 <<= 1;
969 		shift++;
970 	}
971 
972 	*pshift = shift;
973 	*pmultiplier = div_frac(scaled64, tps32);
974 
975 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
976 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
977 }
978 
979 static inline u64 get_kernel_ns(void)
980 {
981 	struct timespec ts;
982 
983 	WARN_ON(preemptible());
984 	ktime_get_ts(&ts);
985 	monotonic_to_bootbased(&ts);
986 	return timespec_to_ns(&ts);
987 }
988 
989 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
990 unsigned long max_tsc_khz;
991 
992 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
993 {
994 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
995 				   vcpu->arch.virtual_tsc_shift);
996 }
997 
998 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
999 {
1000 	u64 v = (u64)khz * (1000000 + ppm);
1001 	do_div(v, 1000000);
1002 	return v;
1003 }
1004 
1005 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1006 {
1007 	u32 thresh_lo, thresh_hi;
1008 	int use_scaling = 0;
1009 
1010 	/* Compute a scale to convert nanoseconds in TSC cycles */
1011 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1012 			   &vcpu->arch.virtual_tsc_shift,
1013 			   &vcpu->arch.virtual_tsc_mult);
1014 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1015 
1016 	/*
1017 	 * Compute the variation in TSC rate which is acceptable
1018 	 * within the range of tolerance and decide if the
1019 	 * rate being applied is within that bounds of the hardware
1020 	 * rate.  If so, no scaling or compensation need be done.
1021 	 */
1022 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1023 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1024 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1025 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1026 		use_scaling = 1;
1027 	}
1028 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1029 }
1030 
1031 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1032 {
1033 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1034 				      vcpu->arch.virtual_tsc_mult,
1035 				      vcpu->arch.virtual_tsc_shift);
1036 	tsc += vcpu->arch.this_tsc_write;
1037 	return tsc;
1038 }
1039 
1040 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1041 {
1042 	struct kvm *kvm = vcpu->kvm;
1043 	u64 offset, ns, elapsed;
1044 	unsigned long flags;
1045 	s64 usdiff;
1046 
1047 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1048 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1049 	ns = get_kernel_ns();
1050 	elapsed = ns - kvm->arch.last_tsc_nsec;
1051 
1052 	/* n.b - signed multiplication and division required */
1053 	usdiff = data - kvm->arch.last_tsc_write;
1054 #ifdef CONFIG_X86_64
1055 	usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1056 #else
1057 	/* do_div() only does unsigned */
1058 	asm("idivl %2; xor %%edx, %%edx"
1059 	    : "=A"(usdiff)
1060 	    : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1061 #endif
1062 	do_div(elapsed, 1000);
1063 	usdiff -= elapsed;
1064 	if (usdiff < 0)
1065 		usdiff = -usdiff;
1066 
1067 	/*
1068 	 * Special case: TSC write with a small delta (1 second) of virtual
1069 	 * cycle time against real time is interpreted as an attempt to
1070 	 * synchronize the CPU.
1071          *
1072 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1073 	 * TSC, we add elapsed time in this computation.  We could let the
1074 	 * compensation code attempt to catch up if we fall behind, but
1075 	 * it's better to try to match offsets from the beginning.
1076          */
1077 	if (usdiff < USEC_PER_SEC &&
1078 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1079 		if (!check_tsc_unstable()) {
1080 			offset = kvm->arch.cur_tsc_offset;
1081 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1082 		} else {
1083 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1084 			data += delta;
1085 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1086 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1087 		}
1088 	} else {
1089 		/*
1090 		 * We split periods of matched TSC writes into generations.
1091 		 * For each generation, we track the original measured
1092 		 * nanosecond time, offset, and write, so if TSCs are in
1093 		 * sync, we can match exact offset, and if not, we can match
1094 		 * exact software computation in compute_guest_tsc()
1095 		 *
1096 		 * These values are tracked in kvm->arch.cur_xxx variables.
1097 		 */
1098 		kvm->arch.cur_tsc_generation++;
1099 		kvm->arch.cur_tsc_nsec = ns;
1100 		kvm->arch.cur_tsc_write = data;
1101 		kvm->arch.cur_tsc_offset = offset;
1102 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1103 			 kvm->arch.cur_tsc_generation, data);
1104 	}
1105 
1106 	/*
1107 	 * We also track th most recent recorded KHZ, write and time to
1108 	 * allow the matching interval to be extended at each write.
1109 	 */
1110 	kvm->arch.last_tsc_nsec = ns;
1111 	kvm->arch.last_tsc_write = data;
1112 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1113 
1114 	/* Reset of TSC must disable overshoot protection below */
1115 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1116 	vcpu->arch.last_guest_tsc = data;
1117 
1118 	/* Keep track of which generation this VCPU has synchronized to */
1119 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1120 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1121 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1122 
1123 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1124 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1125 }
1126 
1127 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1128 
1129 static int kvm_guest_time_update(struct kvm_vcpu *v)
1130 {
1131 	unsigned long flags;
1132 	struct kvm_vcpu_arch *vcpu = &v->arch;
1133 	void *shared_kaddr;
1134 	unsigned long this_tsc_khz;
1135 	s64 kernel_ns, max_kernel_ns;
1136 	u64 tsc_timestamp;
1137 	u8 pvclock_flags;
1138 
1139 	/* Keep irq disabled to prevent changes to the clock */
1140 	local_irq_save(flags);
1141 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1142 	kernel_ns = get_kernel_ns();
1143 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1144 	if (unlikely(this_tsc_khz == 0)) {
1145 		local_irq_restore(flags);
1146 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1147 		return 1;
1148 	}
1149 
1150 	/*
1151 	 * We may have to catch up the TSC to match elapsed wall clock
1152 	 * time for two reasons, even if kvmclock is used.
1153 	 *   1) CPU could have been running below the maximum TSC rate
1154 	 *   2) Broken TSC compensation resets the base at each VCPU
1155 	 *      entry to avoid unknown leaps of TSC even when running
1156 	 *      again on the same CPU.  This may cause apparent elapsed
1157 	 *      time to disappear, and the guest to stand still or run
1158 	 *	very slowly.
1159 	 */
1160 	if (vcpu->tsc_catchup) {
1161 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1162 		if (tsc > tsc_timestamp) {
1163 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1164 			tsc_timestamp = tsc;
1165 		}
1166 	}
1167 
1168 	local_irq_restore(flags);
1169 
1170 	if (!vcpu->time_page)
1171 		return 0;
1172 
1173 	/*
1174 	 * Time as measured by the TSC may go backwards when resetting the base
1175 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1176 	 * higher than the resolution of the other clock scales.  Thus, many
1177 	 * possible measurments of the TSC correspond to one measurement of any
1178 	 * other clock, and so a spread of values is possible.  This is not a
1179 	 * problem for the computation of the nanosecond clock; with TSC rates
1180 	 * around 1GHZ, there can only be a few cycles which correspond to one
1181 	 * nanosecond value, and any path through this code will inevitably
1182 	 * take longer than that.  However, with the kernel_ns value itself,
1183 	 * the precision may be much lower, down to HZ granularity.  If the
1184 	 * first sampling of TSC against kernel_ns ends in the low part of the
1185 	 * range, and the second in the high end of the range, we can get:
1186 	 *
1187 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1188 	 *
1189 	 * As the sampling errors potentially range in the thousands of cycles,
1190 	 * it is possible such a time value has already been observed by the
1191 	 * guest.  To protect against this, we must compute the system time as
1192 	 * observed by the guest and ensure the new system time is greater.
1193 	 */
1194 	max_kernel_ns = 0;
1195 	if (vcpu->hv_clock.tsc_timestamp) {
1196 		max_kernel_ns = vcpu->last_guest_tsc -
1197 				vcpu->hv_clock.tsc_timestamp;
1198 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1199 				    vcpu->hv_clock.tsc_to_system_mul,
1200 				    vcpu->hv_clock.tsc_shift);
1201 		max_kernel_ns += vcpu->last_kernel_ns;
1202 	}
1203 
1204 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1205 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1206 				   &vcpu->hv_clock.tsc_shift,
1207 				   &vcpu->hv_clock.tsc_to_system_mul);
1208 		vcpu->hw_tsc_khz = this_tsc_khz;
1209 	}
1210 
1211 	if (max_kernel_ns > kernel_ns)
1212 		kernel_ns = max_kernel_ns;
1213 
1214 	/* With all the info we got, fill in the values */
1215 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1216 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1217 	vcpu->last_kernel_ns = kernel_ns;
1218 	vcpu->last_guest_tsc = tsc_timestamp;
1219 
1220 	pvclock_flags = 0;
1221 	if (vcpu->pvclock_set_guest_stopped_request) {
1222 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1223 		vcpu->pvclock_set_guest_stopped_request = false;
1224 	}
1225 
1226 	vcpu->hv_clock.flags = pvclock_flags;
1227 
1228 	/*
1229 	 * The interface expects us to write an even number signaling that the
1230 	 * update is finished. Since the guest won't see the intermediate
1231 	 * state, we just increase by 2 at the end.
1232 	 */
1233 	vcpu->hv_clock.version += 2;
1234 
1235 	shared_kaddr = kmap_atomic(vcpu->time_page);
1236 
1237 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1238 	       sizeof(vcpu->hv_clock));
1239 
1240 	kunmap_atomic(shared_kaddr);
1241 
1242 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1243 	return 0;
1244 }
1245 
1246 static bool msr_mtrr_valid(unsigned msr)
1247 {
1248 	switch (msr) {
1249 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1250 	case MSR_MTRRfix64K_00000:
1251 	case MSR_MTRRfix16K_80000:
1252 	case MSR_MTRRfix16K_A0000:
1253 	case MSR_MTRRfix4K_C0000:
1254 	case MSR_MTRRfix4K_C8000:
1255 	case MSR_MTRRfix4K_D0000:
1256 	case MSR_MTRRfix4K_D8000:
1257 	case MSR_MTRRfix4K_E0000:
1258 	case MSR_MTRRfix4K_E8000:
1259 	case MSR_MTRRfix4K_F0000:
1260 	case MSR_MTRRfix4K_F8000:
1261 	case MSR_MTRRdefType:
1262 	case MSR_IA32_CR_PAT:
1263 		return true;
1264 	case 0x2f8:
1265 		return true;
1266 	}
1267 	return false;
1268 }
1269 
1270 static bool valid_pat_type(unsigned t)
1271 {
1272 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1273 }
1274 
1275 static bool valid_mtrr_type(unsigned t)
1276 {
1277 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1278 }
1279 
1280 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1281 {
1282 	int i;
1283 
1284 	if (!msr_mtrr_valid(msr))
1285 		return false;
1286 
1287 	if (msr == MSR_IA32_CR_PAT) {
1288 		for (i = 0; i < 8; i++)
1289 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1290 				return false;
1291 		return true;
1292 	} else if (msr == MSR_MTRRdefType) {
1293 		if (data & ~0xcff)
1294 			return false;
1295 		return valid_mtrr_type(data & 0xff);
1296 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1297 		for (i = 0; i < 8 ; i++)
1298 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1299 				return false;
1300 		return true;
1301 	}
1302 
1303 	/* variable MTRRs */
1304 	return valid_mtrr_type(data & 0xff);
1305 }
1306 
1307 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1308 {
1309 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1310 
1311 	if (!mtrr_valid(vcpu, msr, data))
1312 		return 1;
1313 
1314 	if (msr == MSR_MTRRdefType) {
1315 		vcpu->arch.mtrr_state.def_type = data;
1316 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1317 	} else if (msr == MSR_MTRRfix64K_00000)
1318 		p[0] = data;
1319 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1320 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1321 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1322 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1323 	else if (msr == MSR_IA32_CR_PAT)
1324 		vcpu->arch.pat = data;
1325 	else {	/* Variable MTRRs */
1326 		int idx, is_mtrr_mask;
1327 		u64 *pt;
1328 
1329 		idx = (msr - 0x200) / 2;
1330 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1331 		if (!is_mtrr_mask)
1332 			pt =
1333 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1334 		else
1335 			pt =
1336 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1337 		*pt = data;
1338 	}
1339 
1340 	kvm_mmu_reset_context(vcpu);
1341 	return 0;
1342 }
1343 
1344 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1345 {
1346 	u64 mcg_cap = vcpu->arch.mcg_cap;
1347 	unsigned bank_num = mcg_cap & 0xff;
1348 
1349 	switch (msr) {
1350 	case MSR_IA32_MCG_STATUS:
1351 		vcpu->arch.mcg_status = data;
1352 		break;
1353 	case MSR_IA32_MCG_CTL:
1354 		if (!(mcg_cap & MCG_CTL_P))
1355 			return 1;
1356 		if (data != 0 && data != ~(u64)0)
1357 			return -1;
1358 		vcpu->arch.mcg_ctl = data;
1359 		break;
1360 	default:
1361 		if (msr >= MSR_IA32_MC0_CTL &&
1362 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1363 			u32 offset = msr - MSR_IA32_MC0_CTL;
1364 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1365 			 * some Linux kernels though clear bit 10 in bank 4 to
1366 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1367 			 * this to avoid an uncatched #GP in the guest
1368 			 */
1369 			if ((offset & 0x3) == 0 &&
1370 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1371 				return -1;
1372 			vcpu->arch.mce_banks[offset] = data;
1373 			break;
1374 		}
1375 		return 1;
1376 	}
1377 	return 0;
1378 }
1379 
1380 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1381 {
1382 	struct kvm *kvm = vcpu->kvm;
1383 	int lm = is_long_mode(vcpu);
1384 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1385 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1386 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1387 		: kvm->arch.xen_hvm_config.blob_size_32;
1388 	u32 page_num = data & ~PAGE_MASK;
1389 	u64 page_addr = data & PAGE_MASK;
1390 	u8 *page;
1391 	int r;
1392 
1393 	r = -E2BIG;
1394 	if (page_num >= blob_size)
1395 		goto out;
1396 	r = -ENOMEM;
1397 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1398 	if (IS_ERR(page)) {
1399 		r = PTR_ERR(page);
1400 		goto out;
1401 	}
1402 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1403 		goto out_free;
1404 	r = 0;
1405 out_free:
1406 	kfree(page);
1407 out:
1408 	return r;
1409 }
1410 
1411 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1412 {
1413 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1414 }
1415 
1416 static bool kvm_hv_msr_partition_wide(u32 msr)
1417 {
1418 	bool r = false;
1419 	switch (msr) {
1420 	case HV_X64_MSR_GUEST_OS_ID:
1421 	case HV_X64_MSR_HYPERCALL:
1422 		r = true;
1423 		break;
1424 	}
1425 
1426 	return r;
1427 }
1428 
1429 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1430 {
1431 	struct kvm *kvm = vcpu->kvm;
1432 
1433 	switch (msr) {
1434 	case HV_X64_MSR_GUEST_OS_ID:
1435 		kvm->arch.hv_guest_os_id = data;
1436 		/* setting guest os id to zero disables hypercall page */
1437 		if (!kvm->arch.hv_guest_os_id)
1438 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1439 		break;
1440 	case HV_X64_MSR_HYPERCALL: {
1441 		u64 gfn;
1442 		unsigned long addr;
1443 		u8 instructions[4];
1444 
1445 		/* if guest os id is not set hypercall should remain disabled */
1446 		if (!kvm->arch.hv_guest_os_id)
1447 			break;
1448 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1449 			kvm->arch.hv_hypercall = data;
1450 			break;
1451 		}
1452 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1453 		addr = gfn_to_hva(kvm, gfn);
1454 		if (kvm_is_error_hva(addr))
1455 			return 1;
1456 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1457 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1458 		if (__copy_to_user((void __user *)addr, instructions, 4))
1459 			return 1;
1460 		kvm->arch.hv_hypercall = data;
1461 		break;
1462 	}
1463 	default:
1464 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1465 			    "data 0x%llx\n", msr, data);
1466 		return 1;
1467 	}
1468 	return 0;
1469 }
1470 
1471 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1472 {
1473 	switch (msr) {
1474 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1475 		unsigned long addr;
1476 
1477 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1478 			vcpu->arch.hv_vapic = data;
1479 			break;
1480 		}
1481 		addr = gfn_to_hva(vcpu->kvm, data >>
1482 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1483 		if (kvm_is_error_hva(addr))
1484 			return 1;
1485 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1486 			return 1;
1487 		vcpu->arch.hv_vapic = data;
1488 		break;
1489 	}
1490 	case HV_X64_MSR_EOI:
1491 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1492 	case HV_X64_MSR_ICR:
1493 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1494 	case HV_X64_MSR_TPR:
1495 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1496 	default:
1497 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1498 			    "data 0x%llx\n", msr, data);
1499 		return 1;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1506 {
1507 	gpa_t gpa = data & ~0x3f;
1508 
1509 	/* Bits 2:5 are reserved, Should be zero */
1510 	if (data & 0x3c)
1511 		return 1;
1512 
1513 	vcpu->arch.apf.msr_val = data;
1514 
1515 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1516 		kvm_clear_async_pf_completion_queue(vcpu);
1517 		kvm_async_pf_hash_reset(vcpu);
1518 		return 0;
1519 	}
1520 
1521 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1522 		return 1;
1523 
1524 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1525 	kvm_async_pf_wakeup_all(vcpu);
1526 	return 0;
1527 }
1528 
1529 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1530 {
1531 	if (vcpu->arch.time_page) {
1532 		kvm_release_page_dirty(vcpu->arch.time_page);
1533 		vcpu->arch.time_page = NULL;
1534 	}
1535 }
1536 
1537 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1538 {
1539 	u64 delta;
1540 
1541 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1542 		return;
1543 
1544 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1545 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1546 	vcpu->arch.st.accum_steal = delta;
1547 }
1548 
1549 static void record_steal_time(struct kvm_vcpu *vcpu)
1550 {
1551 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1552 		return;
1553 
1554 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1555 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1556 		return;
1557 
1558 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1559 	vcpu->arch.st.steal.version += 2;
1560 	vcpu->arch.st.accum_steal = 0;
1561 
1562 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1563 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1564 }
1565 
1566 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1567 {
1568 	bool pr = false;
1569 
1570 	switch (msr) {
1571 	case MSR_EFER:
1572 		return set_efer(vcpu, data);
1573 	case MSR_K7_HWCR:
1574 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1575 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1576 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1577 		if (data != 0) {
1578 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1579 				    data);
1580 			return 1;
1581 		}
1582 		break;
1583 	case MSR_FAM10H_MMIO_CONF_BASE:
1584 		if (data != 0) {
1585 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1586 				    "0x%llx\n", data);
1587 			return 1;
1588 		}
1589 		break;
1590 	case MSR_AMD64_NB_CFG:
1591 		break;
1592 	case MSR_IA32_DEBUGCTLMSR:
1593 		if (!data) {
1594 			/* We support the non-activated case already */
1595 			break;
1596 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1597 			/* Values other than LBR and BTF are vendor-specific,
1598 			   thus reserved and should throw a #GP */
1599 			return 1;
1600 		}
1601 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1602 			    __func__, data);
1603 		break;
1604 	case MSR_IA32_UCODE_REV:
1605 	case MSR_IA32_UCODE_WRITE:
1606 	case MSR_VM_HSAVE_PA:
1607 	case MSR_AMD64_PATCH_LOADER:
1608 		break;
1609 	case 0x200 ... 0x2ff:
1610 		return set_msr_mtrr(vcpu, msr, data);
1611 	case MSR_IA32_APICBASE:
1612 		kvm_set_apic_base(vcpu, data);
1613 		break;
1614 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1615 		return kvm_x2apic_msr_write(vcpu, msr, data);
1616 	case MSR_IA32_TSCDEADLINE:
1617 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1618 		break;
1619 	case MSR_IA32_MISC_ENABLE:
1620 		vcpu->arch.ia32_misc_enable_msr = data;
1621 		break;
1622 	case MSR_KVM_WALL_CLOCK_NEW:
1623 	case MSR_KVM_WALL_CLOCK:
1624 		vcpu->kvm->arch.wall_clock = data;
1625 		kvm_write_wall_clock(vcpu->kvm, data);
1626 		break;
1627 	case MSR_KVM_SYSTEM_TIME_NEW:
1628 	case MSR_KVM_SYSTEM_TIME: {
1629 		kvmclock_reset(vcpu);
1630 
1631 		vcpu->arch.time = data;
1632 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1633 
1634 		/* we verify if the enable bit is set... */
1635 		if (!(data & 1))
1636 			break;
1637 
1638 		/* ...but clean it before doing the actual write */
1639 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1640 
1641 		vcpu->arch.time_page =
1642 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1643 
1644 		if (is_error_page(vcpu->arch.time_page))
1645 			vcpu->arch.time_page = NULL;
1646 
1647 		break;
1648 	}
1649 	case MSR_KVM_ASYNC_PF_EN:
1650 		if (kvm_pv_enable_async_pf(vcpu, data))
1651 			return 1;
1652 		break;
1653 	case MSR_KVM_STEAL_TIME:
1654 
1655 		if (unlikely(!sched_info_on()))
1656 			return 1;
1657 
1658 		if (data & KVM_STEAL_RESERVED_MASK)
1659 			return 1;
1660 
1661 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1662 							data & KVM_STEAL_VALID_BITS))
1663 			return 1;
1664 
1665 		vcpu->arch.st.msr_val = data;
1666 
1667 		if (!(data & KVM_MSR_ENABLED))
1668 			break;
1669 
1670 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1671 
1672 		preempt_disable();
1673 		accumulate_steal_time(vcpu);
1674 		preempt_enable();
1675 
1676 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1677 
1678 		break;
1679 	case MSR_KVM_PV_EOI_EN:
1680 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
1681 			return 1;
1682 		break;
1683 
1684 	case MSR_IA32_MCG_CTL:
1685 	case MSR_IA32_MCG_STATUS:
1686 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1687 		return set_msr_mce(vcpu, msr, data);
1688 
1689 	/* Performance counters are not protected by a CPUID bit,
1690 	 * so we should check all of them in the generic path for the sake of
1691 	 * cross vendor migration.
1692 	 * Writing a zero into the event select MSRs disables them,
1693 	 * which we perfectly emulate ;-). Any other value should be at least
1694 	 * reported, some guests depend on them.
1695 	 */
1696 	case MSR_K7_EVNTSEL0:
1697 	case MSR_K7_EVNTSEL1:
1698 	case MSR_K7_EVNTSEL2:
1699 	case MSR_K7_EVNTSEL3:
1700 		if (data != 0)
1701 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1702 				    "0x%x data 0x%llx\n", msr, data);
1703 		break;
1704 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1705 	 * so we ignore writes to make it happy.
1706 	 */
1707 	case MSR_K7_PERFCTR0:
1708 	case MSR_K7_PERFCTR1:
1709 	case MSR_K7_PERFCTR2:
1710 	case MSR_K7_PERFCTR3:
1711 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1712 			    "0x%x data 0x%llx\n", msr, data);
1713 		break;
1714 	case MSR_P6_PERFCTR0:
1715 	case MSR_P6_PERFCTR1:
1716 		pr = true;
1717 	case MSR_P6_EVNTSEL0:
1718 	case MSR_P6_EVNTSEL1:
1719 		if (kvm_pmu_msr(vcpu, msr))
1720 			return kvm_pmu_set_msr(vcpu, msr, data);
1721 
1722 		if (pr || data != 0)
1723 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1724 				    "0x%x data 0x%llx\n", msr, data);
1725 		break;
1726 	case MSR_K7_CLK_CTL:
1727 		/*
1728 		 * Ignore all writes to this no longer documented MSR.
1729 		 * Writes are only relevant for old K7 processors,
1730 		 * all pre-dating SVM, but a recommended workaround from
1731 		 * AMD for these chips. It is possible to specify the
1732 		 * affected processor models on the command line, hence
1733 		 * the need to ignore the workaround.
1734 		 */
1735 		break;
1736 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1737 		if (kvm_hv_msr_partition_wide(msr)) {
1738 			int r;
1739 			mutex_lock(&vcpu->kvm->lock);
1740 			r = set_msr_hyperv_pw(vcpu, msr, data);
1741 			mutex_unlock(&vcpu->kvm->lock);
1742 			return r;
1743 		} else
1744 			return set_msr_hyperv(vcpu, msr, data);
1745 		break;
1746 	case MSR_IA32_BBL_CR_CTL3:
1747 		/* Drop writes to this legacy MSR -- see rdmsr
1748 		 * counterpart for further detail.
1749 		 */
1750 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1751 		break;
1752 	case MSR_AMD64_OSVW_ID_LENGTH:
1753 		if (!guest_cpuid_has_osvw(vcpu))
1754 			return 1;
1755 		vcpu->arch.osvw.length = data;
1756 		break;
1757 	case MSR_AMD64_OSVW_STATUS:
1758 		if (!guest_cpuid_has_osvw(vcpu))
1759 			return 1;
1760 		vcpu->arch.osvw.status = data;
1761 		break;
1762 	default:
1763 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1764 			return xen_hvm_config(vcpu, data);
1765 		if (kvm_pmu_msr(vcpu, msr))
1766 			return kvm_pmu_set_msr(vcpu, msr, data);
1767 		if (!ignore_msrs) {
1768 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1769 				    msr, data);
1770 			return 1;
1771 		} else {
1772 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1773 				    msr, data);
1774 			break;
1775 		}
1776 	}
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1780 
1781 
1782 /*
1783  * Reads an msr value (of 'msr_index') into 'pdata'.
1784  * Returns 0 on success, non-0 otherwise.
1785  * Assumes vcpu_load() was already called.
1786  */
1787 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1788 {
1789 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1790 }
1791 
1792 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1793 {
1794 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1795 
1796 	if (!msr_mtrr_valid(msr))
1797 		return 1;
1798 
1799 	if (msr == MSR_MTRRdefType)
1800 		*pdata = vcpu->arch.mtrr_state.def_type +
1801 			 (vcpu->arch.mtrr_state.enabled << 10);
1802 	else if (msr == MSR_MTRRfix64K_00000)
1803 		*pdata = p[0];
1804 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1805 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1806 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1807 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1808 	else if (msr == MSR_IA32_CR_PAT)
1809 		*pdata = vcpu->arch.pat;
1810 	else {	/* Variable MTRRs */
1811 		int idx, is_mtrr_mask;
1812 		u64 *pt;
1813 
1814 		idx = (msr - 0x200) / 2;
1815 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1816 		if (!is_mtrr_mask)
1817 			pt =
1818 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1819 		else
1820 			pt =
1821 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1822 		*pdata = *pt;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1829 {
1830 	u64 data;
1831 	u64 mcg_cap = vcpu->arch.mcg_cap;
1832 	unsigned bank_num = mcg_cap & 0xff;
1833 
1834 	switch (msr) {
1835 	case MSR_IA32_P5_MC_ADDR:
1836 	case MSR_IA32_P5_MC_TYPE:
1837 		data = 0;
1838 		break;
1839 	case MSR_IA32_MCG_CAP:
1840 		data = vcpu->arch.mcg_cap;
1841 		break;
1842 	case MSR_IA32_MCG_CTL:
1843 		if (!(mcg_cap & MCG_CTL_P))
1844 			return 1;
1845 		data = vcpu->arch.mcg_ctl;
1846 		break;
1847 	case MSR_IA32_MCG_STATUS:
1848 		data = vcpu->arch.mcg_status;
1849 		break;
1850 	default:
1851 		if (msr >= MSR_IA32_MC0_CTL &&
1852 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1853 			u32 offset = msr - MSR_IA32_MC0_CTL;
1854 			data = vcpu->arch.mce_banks[offset];
1855 			break;
1856 		}
1857 		return 1;
1858 	}
1859 	*pdata = data;
1860 	return 0;
1861 }
1862 
1863 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1864 {
1865 	u64 data = 0;
1866 	struct kvm *kvm = vcpu->kvm;
1867 
1868 	switch (msr) {
1869 	case HV_X64_MSR_GUEST_OS_ID:
1870 		data = kvm->arch.hv_guest_os_id;
1871 		break;
1872 	case HV_X64_MSR_HYPERCALL:
1873 		data = kvm->arch.hv_hypercall;
1874 		break;
1875 	default:
1876 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1877 		return 1;
1878 	}
1879 
1880 	*pdata = data;
1881 	return 0;
1882 }
1883 
1884 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1885 {
1886 	u64 data = 0;
1887 
1888 	switch (msr) {
1889 	case HV_X64_MSR_VP_INDEX: {
1890 		int r;
1891 		struct kvm_vcpu *v;
1892 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1893 			if (v == vcpu)
1894 				data = r;
1895 		break;
1896 	}
1897 	case HV_X64_MSR_EOI:
1898 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1899 	case HV_X64_MSR_ICR:
1900 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1901 	case HV_X64_MSR_TPR:
1902 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1903 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1904 		data = vcpu->arch.hv_vapic;
1905 		break;
1906 	default:
1907 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1908 		return 1;
1909 	}
1910 	*pdata = data;
1911 	return 0;
1912 }
1913 
1914 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1915 {
1916 	u64 data;
1917 
1918 	switch (msr) {
1919 	case MSR_IA32_PLATFORM_ID:
1920 	case MSR_IA32_EBL_CR_POWERON:
1921 	case MSR_IA32_DEBUGCTLMSR:
1922 	case MSR_IA32_LASTBRANCHFROMIP:
1923 	case MSR_IA32_LASTBRANCHTOIP:
1924 	case MSR_IA32_LASTINTFROMIP:
1925 	case MSR_IA32_LASTINTTOIP:
1926 	case MSR_K8_SYSCFG:
1927 	case MSR_K7_HWCR:
1928 	case MSR_VM_HSAVE_PA:
1929 	case MSR_K7_EVNTSEL0:
1930 	case MSR_K7_PERFCTR0:
1931 	case MSR_K8_INT_PENDING_MSG:
1932 	case MSR_AMD64_NB_CFG:
1933 	case MSR_FAM10H_MMIO_CONF_BASE:
1934 		data = 0;
1935 		break;
1936 	case MSR_P6_PERFCTR0:
1937 	case MSR_P6_PERFCTR1:
1938 	case MSR_P6_EVNTSEL0:
1939 	case MSR_P6_EVNTSEL1:
1940 		if (kvm_pmu_msr(vcpu, msr))
1941 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1942 		data = 0;
1943 		break;
1944 	case MSR_IA32_UCODE_REV:
1945 		data = 0x100000000ULL;
1946 		break;
1947 	case MSR_MTRRcap:
1948 		data = 0x500 | KVM_NR_VAR_MTRR;
1949 		break;
1950 	case 0x200 ... 0x2ff:
1951 		return get_msr_mtrr(vcpu, msr, pdata);
1952 	case 0xcd: /* fsb frequency */
1953 		data = 3;
1954 		break;
1955 		/*
1956 		 * MSR_EBC_FREQUENCY_ID
1957 		 * Conservative value valid for even the basic CPU models.
1958 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1959 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1960 		 * and 266MHz for model 3, or 4. Set Core Clock
1961 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1962 		 * 31:24) even though these are only valid for CPU
1963 		 * models > 2, however guests may end up dividing or
1964 		 * multiplying by zero otherwise.
1965 		 */
1966 	case MSR_EBC_FREQUENCY_ID:
1967 		data = 1 << 24;
1968 		break;
1969 	case MSR_IA32_APICBASE:
1970 		data = kvm_get_apic_base(vcpu);
1971 		break;
1972 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1973 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1974 		break;
1975 	case MSR_IA32_TSCDEADLINE:
1976 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1977 		break;
1978 	case MSR_IA32_MISC_ENABLE:
1979 		data = vcpu->arch.ia32_misc_enable_msr;
1980 		break;
1981 	case MSR_IA32_PERF_STATUS:
1982 		/* TSC increment by tick */
1983 		data = 1000ULL;
1984 		/* CPU multiplier */
1985 		data |= (((uint64_t)4ULL) << 40);
1986 		break;
1987 	case MSR_EFER:
1988 		data = vcpu->arch.efer;
1989 		break;
1990 	case MSR_KVM_WALL_CLOCK:
1991 	case MSR_KVM_WALL_CLOCK_NEW:
1992 		data = vcpu->kvm->arch.wall_clock;
1993 		break;
1994 	case MSR_KVM_SYSTEM_TIME:
1995 	case MSR_KVM_SYSTEM_TIME_NEW:
1996 		data = vcpu->arch.time;
1997 		break;
1998 	case MSR_KVM_ASYNC_PF_EN:
1999 		data = vcpu->arch.apf.msr_val;
2000 		break;
2001 	case MSR_KVM_STEAL_TIME:
2002 		data = vcpu->arch.st.msr_val;
2003 		break;
2004 	case MSR_IA32_P5_MC_ADDR:
2005 	case MSR_IA32_P5_MC_TYPE:
2006 	case MSR_IA32_MCG_CAP:
2007 	case MSR_IA32_MCG_CTL:
2008 	case MSR_IA32_MCG_STATUS:
2009 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2010 		return get_msr_mce(vcpu, msr, pdata);
2011 	case MSR_K7_CLK_CTL:
2012 		/*
2013 		 * Provide expected ramp-up count for K7. All other
2014 		 * are set to zero, indicating minimum divisors for
2015 		 * every field.
2016 		 *
2017 		 * This prevents guest kernels on AMD host with CPU
2018 		 * type 6, model 8 and higher from exploding due to
2019 		 * the rdmsr failing.
2020 		 */
2021 		data = 0x20000000;
2022 		break;
2023 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2024 		if (kvm_hv_msr_partition_wide(msr)) {
2025 			int r;
2026 			mutex_lock(&vcpu->kvm->lock);
2027 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2028 			mutex_unlock(&vcpu->kvm->lock);
2029 			return r;
2030 		} else
2031 			return get_msr_hyperv(vcpu, msr, pdata);
2032 		break;
2033 	case MSR_IA32_BBL_CR_CTL3:
2034 		/* This legacy MSR exists but isn't fully documented in current
2035 		 * silicon.  It is however accessed by winxp in very narrow
2036 		 * scenarios where it sets bit #19, itself documented as
2037 		 * a "reserved" bit.  Best effort attempt to source coherent
2038 		 * read data here should the balance of the register be
2039 		 * interpreted by the guest:
2040 		 *
2041 		 * L2 cache control register 3: 64GB range, 256KB size,
2042 		 * enabled, latency 0x1, configured
2043 		 */
2044 		data = 0xbe702111;
2045 		break;
2046 	case MSR_AMD64_OSVW_ID_LENGTH:
2047 		if (!guest_cpuid_has_osvw(vcpu))
2048 			return 1;
2049 		data = vcpu->arch.osvw.length;
2050 		break;
2051 	case MSR_AMD64_OSVW_STATUS:
2052 		if (!guest_cpuid_has_osvw(vcpu))
2053 			return 1;
2054 		data = vcpu->arch.osvw.status;
2055 		break;
2056 	default:
2057 		if (kvm_pmu_msr(vcpu, msr))
2058 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2059 		if (!ignore_msrs) {
2060 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2061 			return 1;
2062 		} else {
2063 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2064 			data = 0;
2065 		}
2066 		break;
2067 	}
2068 	*pdata = data;
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2072 
2073 /*
2074  * Read or write a bunch of msrs. All parameters are kernel addresses.
2075  *
2076  * @return number of msrs set successfully.
2077  */
2078 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2079 		    struct kvm_msr_entry *entries,
2080 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2081 				  unsigned index, u64 *data))
2082 {
2083 	int i, idx;
2084 
2085 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2086 	for (i = 0; i < msrs->nmsrs; ++i)
2087 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2088 			break;
2089 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2090 
2091 	return i;
2092 }
2093 
2094 /*
2095  * Read or write a bunch of msrs. Parameters are user addresses.
2096  *
2097  * @return number of msrs set successfully.
2098  */
2099 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2100 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2101 				unsigned index, u64 *data),
2102 		  int writeback)
2103 {
2104 	struct kvm_msrs msrs;
2105 	struct kvm_msr_entry *entries;
2106 	int r, n;
2107 	unsigned size;
2108 
2109 	r = -EFAULT;
2110 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2111 		goto out;
2112 
2113 	r = -E2BIG;
2114 	if (msrs.nmsrs >= MAX_IO_MSRS)
2115 		goto out;
2116 
2117 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2118 	entries = memdup_user(user_msrs->entries, size);
2119 	if (IS_ERR(entries)) {
2120 		r = PTR_ERR(entries);
2121 		goto out;
2122 	}
2123 
2124 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2125 	if (r < 0)
2126 		goto out_free;
2127 
2128 	r = -EFAULT;
2129 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2130 		goto out_free;
2131 
2132 	r = n;
2133 
2134 out_free:
2135 	kfree(entries);
2136 out:
2137 	return r;
2138 }
2139 
2140 int kvm_dev_ioctl_check_extension(long ext)
2141 {
2142 	int r;
2143 
2144 	switch (ext) {
2145 	case KVM_CAP_IRQCHIP:
2146 	case KVM_CAP_HLT:
2147 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2148 	case KVM_CAP_SET_TSS_ADDR:
2149 	case KVM_CAP_EXT_CPUID:
2150 	case KVM_CAP_CLOCKSOURCE:
2151 	case KVM_CAP_PIT:
2152 	case KVM_CAP_NOP_IO_DELAY:
2153 	case KVM_CAP_MP_STATE:
2154 	case KVM_CAP_SYNC_MMU:
2155 	case KVM_CAP_USER_NMI:
2156 	case KVM_CAP_REINJECT_CONTROL:
2157 	case KVM_CAP_IRQ_INJECT_STATUS:
2158 	case KVM_CAP_ASSIGN_DEV_IRQ:
2159 	case KVM_CAP_IRQFD:
2160 	case KVM_CAP_IOEVENTFD:
2161 	case KVM_CAP_PIT2:
2162 	case KVM_CAP_PIT_STATE2:
2163 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2164 	case KVM_CAP_XEN_HVM:
2165 	case KVM_CAP_ADJUST_CLOCK:
2166 	case KVM_CAP_VCPU_EVENTS:
2167 	case KVM_CAP_HYPERV:
2168 	case KVM_CAP_HYPERV_VAPIC:
2169 	case KVM_CAP_HYPERV_SPIN:
2170 	case KVM_CAP_PCI_SEGMENT:
2171 	case KVM_CAP_DEBUGREGS:
2172 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2173 	case KVM_CAP_XSAVE:
2174 	case KVM_CAP_ASYNC_PF:
2175 	case KVM_CAP_GET_TSC_KHZ:
2176 	case KVM_CAP_PCI_2_3:
2177 	case KVM_CAP_KVMCLOCK_CTRL:
2178 	case KVM_CAP_READONLY_MEM:
2179 		r = 1;
2180 		break;
2181 	case KVM_CAP_COALESCED_MMIO:
2182 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2183 		break;
2184 	case KVM_CAP_VAPIC:
2185 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2186 		break;
2187 	case KVM_CAP_NR_VCPUS:
2188 		r = KVM_SOFT_MAX_VCPUS;
2189 		break;
2190 	case KVM_CAP_MAX_VCPUS:
2191 		r = KVM_MAX_VCPUS;
2192 		break;
2193 	case KVM_CAP_NR_MEMSLOTS:
2194 		r = KVM_MEMORY_SLOTS;
2195 		break;
2196 	case KVM_CAP_PV_MMU:	/* obsolete */
2197 		r = 0;
2198 		break;
2199 	case KVM_CAP_IOMMU:
2200 		r = iommu_present(&pci_bus_type);
2201 		break;
2202 	case KVM_CAP_MCE:
2203 		r = KVM_MAX_MCE_BANKS;
2204 		break;
2205 	case KVM_CAP_XCRS:
2206 		r = cpu_has_xsave;
2207 		break;
2208 	case KVM_CAP_TSC_CONTROL:
2209 		r = kvm_has_tsc_control;
2210 		break;
2211 	case KVM_CAP_TSC_DEADLINE_TIMER:
2212 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2213 		break;
2214 	default:
2215 		r = 0;
2216 		break;
2217 	}
2218 	return r;
2219 
2220 }
2221 
2222 long kvm_arch_dev_ioctl(struct file *filp,
2223 			unsigned int ioctl, unsigned long arg)
2224 {
2225 	void __user *argp = (void __user *)arg;
2226 	long r;
2227 
2228 	switch (ioctl) {
2229 	case KVM_GET_MSR_INDEX_LIST: {
2230 		struct kvm_msr_list __user *user_msr_list = argp;
2231 		struct kvm_msr_list msr_list;
2232 		unsigned n;
2233 
2234 		r = -EFAULT;
2235 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2236 			goto out;
2237 		n = msr_list.nmsrs;
2238 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2239 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2240 			goto out;
2241 		r = -E2BIG;
2242 		if (n < msr_list.nmsrs)
2243 			goto out;
2244 		r = -EFAULT;
2245 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2246 				 num_msrs_to_save * sizeof(u32)))
2247 			goto out;
2248 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2249 				 &emulated_msrs,
2250 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2251 			goto out;
2252 		r = 0;
2253 		break;
2254 	}
2255 	case KVM_GET_SUPPORTED_CPUID: {
2256 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2257 		struct kvm_cpuid2 cpuid;
2258 
2259 		r = -EFAULT;
2260 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2261 			goto out;
2262 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2263 						      cpuid_arg->entries);
2264 		if (r)
2265 			goto out;
2266 
2267 		r = -EFAULT;
2268 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2269 			goto out;
2270 		r = 0;
2271 		break;
2272 	}
2273 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2274 		u64 mce_cap;
2275 
2276 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2277 		r = -EFAULT;
2278 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2279 			goto out;
2280 		r = 0;
2281 		break;
2282 	}
2283 	default:
2284 		r = -EINVAL;
2285 	}
2286 out:
2287 	return r;
2288 }
2289 
2290 static void wbinvd_ipi(void *garbage)
2291 {
2292 	wbinvd();
2293 }
2294 
2295 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2296 {
2297 	return vcpu->kvm->arch.iommu_domain &&
2298 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2299 }
2300 
2301 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2302 {
2303 	/* Address WBINVD may be executed by guest */
2304 	if (need_emulate_wbinvd(vcpu)) {
2305 		if (kvm_x86_ops->has_wbinvd_exit())
2306 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2307 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2308 			smp_call_function_single(vcpu->cpu,
2309 					wbinvd_ipi, NULL, 1);
2310 	}
2311 
2312 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2313 
2314 	/* Apply any externally detected TSC adjustments (due to suspend) */
2315 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2316 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2317 		vcpu->arch.tsc_offset_adjustment = 0;
2318 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2319 	}
2320 
2321 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2322 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2323 				native_read_tsc() - vcpu->arch.last_host_tsc;
2324 		if (tsc_delta < 0)
2325 			mark_tsc_unstable("KVM discovered backwards TSC");
2326 		if (check_tsc_unstable()) {
2327 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2328 						vcpu->arch.last_guest_tsc);
2329 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2330 			vcpu->arch.tsc_catchup = 1;
2331 		}
2332 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2333 		if (vcpu->cpu != cpu)
2334 			kvm_migrate_timers(vcpu);
2335 		vcpu->cpu = cpu;
2336 	}
2337 
2338 	accumulate_steal_time(vcpu);
2339 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2340 }
2341 
2342 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2343 {
2344 	kvm_x86_ops->vcpu_put(vcpu);
2345 	kvm_put_guest_fpu(vcpu);
2346 	vcpu->arch.last_host_tsc = native_read_tsc();
2347 }
2348 
2349 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2350 				    struct kvm_lapic_state *s)
2351 {
2352 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2353 
2354 	return 0;
2355 }
2356 
2357 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2358 				    struct kvm_lapic_state *s)
2359 {
2360 	kvm_apic_post_state_restore(vcpu, s);
2361 	update_cr8_intercept(vcpu);
2362 
2363 	return 0;
2364 }
2365 
2366 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2367 				    struct kvm_interrupt *irq)
2368 {
2369 	if (irq->irq < 0 || irq->irq >= 256)
2370 		return -EINVAL;
2371 	if (irqchip_in_kernel(vcpu->kvm))
2372 		return -ENXIO;
2373 
2374 	kvm_queue_interrupt(vcpu, irq->irq, false);
2375 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2376 
2377 	return 0;
2378 }
2379 
2380 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2381 {
2382 	kvm_inject_nmi(vcpu);
2383 
2384 	return 0;
2385 }
2386 
2387 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2388 					   struct kvm_tpr_access_ctl *tac)
2389 {
2390 	if (tac->flags)
2391 		return -EINVAL;
2392 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2393 	return 0;
2394 }
2395 
2396 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2397 					u64 mcg_cap)
2398 {
2399 	int r;
2400 	unsigned bank_num = mcg_cap & 0xff, bank;
2401 
2402 	r = -EINVAL;
2403 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2404 		goto out;
2405 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2406 		goto out;
2407 	r = 0;
2408 	vcpu->arch.mcg_cap = mcg_cap;
2409 	/* Init IA32_MCG_CTL to all 1s */
2410 	if (mcg_cap & MCG_CTL_P)
2411 		vcpu->arch.mcg_ctl = ~(u64)0;
2412 	/* Init IA32_MCi_CTL to all 1s */
2413 	for (bank = 0; bank < bank_num; bank++)
2414 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2415 out:
2416 	return r;
2417 }
2418 
2419 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2420 				      struct kvm_x86_mce *mce)
2421 {
2422 	u64 mcg_cap = vcpu->arch.mcg_cap;
2423 	unsigned bank_num = mcg_cap & 0xff;
2424 	u64 *banks = vcpu->arch.mce_banks;
2425 
2426 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2427 		return -EINVAL;
2428 	/*
2429 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2430 	 * reporting is disabled
2431 	 */
2432 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2433 	    vcpu->arch.mcg_ctl != ~(u64)0)
2434 		return 0;
2435 	banks += 4 * mce->bank;
2436 	/*
2437 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2438 	 * reporting is disabled for the bank
2439 	 */
2440 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2441 		return 0;
2442 	if (mce->status & MCI_STATUS_UC) {
2443 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2444 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2445 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2446 			return 0;
2447 		}
2448 		if (banks[1] & MCI_STATUS_VAL)
2449 			mce->status |= MCI_STATUS_OVER;
2450 		banks[2] = mce->addr;
2451 		banks[3] = mce->misc;
2452 		vcpu->arch.mcg_status = mce->mcg_status;
2453 		banks[1] = mce->status;
2454 		kvm_queue_exception(vcpu, MC_VECTOR);
2455 	} else if (!(banks[1] & MCI_STATUS_VAL)
2456 		   || !(banks[1] & MCI_STATUS_UC)) {
2457 		if (banks[1] & MCI_STATUS_VAL)
2458 			mce->status |= MCI_STATUS_OVER;
2459 		banks[2] = mce->addr;
2460 		banks[3] = mce->misc;
2461 		banks[1] = mce->status;
2462 	} else
2463 		banks[1] |= MCI_STATUS_OVER;
2464 	return 0;
2465 }
2466 
2467 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2468 					       struct kvm_vcpu_events *events)
2469 {
2470 	process_nmi(vcpu);
2471 	events->exception.injected =
2472 		vcpu->arch.exception.pending &&
2473 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2474 	events->exception.nr = vcpu->arch.exception.nr;
2475 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2476 	events->exception.pad = 0;
2477 	events->exception.error_code = vcpu->arch.exception.error_code;
2478 
2479 	events->interrupt.injected =
2480 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2481 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2482 	events->interrupt.soft = 0;
2483 	events->interrupt.shadow =
2484 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2485 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2486 
2487 	events->nmi.injected = vcpu->arch.nmi_injected;
2488 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2489 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2490 	events->nmi.pad = 0;
2491 
2492 	events->sipi_vector = vcpu->arch.sipi_vector;
2493 
2494 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2495 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2496 			 | KVM_VCPUEVENT_VALID_SHADOW);
2497 	memset(&events->reserved, 0, sizeof(events->reserved));
2498 }
2499 
2500 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2501 					      struct kvm_vcpu_events *events)
2502 {
2503 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2504 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2505 			      | KVM_VCPUEVENT_VALID_SHADOW))
2506 		return -EINVAL;
2507 
2508 	process_nmi(vcpu);
2509 	vcpu->arch.exception.pending = events->exception.injected;
2510 	vcpu->arch.exception.nr = events->exception.nr;
2511 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2512 	vcpu->arch.exception.error_code = events->exception.error_code;
2513 
2514 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2515 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2516 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2517 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2518 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2519 						  events->interrupt.shadow);
2520 
2521 	vcpu->arch.nmi_injected = events->nmi.injected;
2522 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2523 		vcpu->arch.nmi_pending = events->nmi.pending;
2524 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2525 
2526 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2527 		vcpu->arch.sipi_vector = events->sipi_vector;
2528 
2529 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2530 
2531 	return 0;
2532 }
2533 
2534 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2535 					     struct kvm_debugregs *dbgregs)
2536 {
2537 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2538 	dbgregs->dr6 = vcpu->arch.dr6;
2539 	dbgregs->dr7 = vcpu->arch.dr7;
2540 	dbgregs->flags = 0;
2541 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2542 }
2543 
2544 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2545 					    struct kvm_debugregs *dbgregs)
2546 {
2547 	if (dbgregs->flags)
2548 		return -EINVAL;
2549 
2550 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2551 	vcpu->arch.dr6 = dbgregs->dr6;
2552 	vcpu->arch.dr7 = dbgregs->dr7;
2553 
2554 	return 0;
2555 }
2556 
2557 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2558 					 struct kvm_xsave *guest_xsave)
2559 {
2560 	if (cpu_has_xsave)
2561 		memcpy(guest_xsave->region,
2562 			&vcpu->arch.guest_fpu.state->xsave,
2563 			xstate_size);
2564 	else {
2565 		memcpy(guest_xsave->region,
2566 			&vcpu->arch.guest_fpu.state->fxsave,
2567 			sizeof(struct i387_fxsave_struct));
2568 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2569 			XSTATE_FPSSE;
2570 	}
2571 }
2572 
2573 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2574 					struct kvm_xsave *guest_xsave)
2575 {
2576 	u64 xstate_bv =
2577 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2578 
2579 	if (cpu_has_xsave)
2580 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2581 			guest_xsave->region, xstate_size);
2582 	else {
2583 		if (xstate_bv & ~XSTATE_FPSSE)
2584 			return -EINVAL;
2585 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2586 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2587 	}
2588 	return 0;
2589 }
2590 
2591 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2592 					struct kvm_xcrs *guest_xcrs)
2593 {
2594 	if (!cpu_has_xsave) {
2595 		guest_xcrs->nr_xcrs = 0;
2596 		return;
2597 	}
2598 
2599 	guest_xcrs->nr_xcrs = 1;
2600 	guest_xcrs->flags = 0;
2601 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2602 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2603 }
2604 
2605 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2606 				       struct kvm_xcrs *guest_xcrs)
2607 {
2608 	int i, r = 0;
2609 
2610 	if (!cpu_has_xsave)
2611 		return -EINVAL;
2612 
2613 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2614 		return -EINVAL;
2615 
2616 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2617 		/* Only support XCR0 currently */
2618 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2619 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2620 				guest_xcrs->xcrs[0].value);
2621 			break;
2622 		}
2623 	if (r)
2624 		r = -EINVAL;
2625 	return r;
2626 }
2627 
2628 /*
2629  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2630  * stopped by the hypervisor.  This function will be called from the host only.
2631  * EINVAL is returned when the host attempts to set the flag for a guest that
2632  * does not support pv clocks.
2633  */
2634 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2635 {
2636 	if (!vcpu->arch.time_page)
2637 		return -EINVAL;
2638 	vcpu->arch.pvclock_set_guest_stopped_request = true;
2639 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2640 	return 0;
2641 }
2642 
2643 long kvm_arch_vcpu_ioctl(struct file *filp,
2644 			 unsigned int ioctl, unsigned long arg)
2645 {
2646 	struct kvm_vcpu *vcpu = filp->private_data;
2647 	void __user *argp = (void __user *)arg;
2648 	int r;
2649 	union {
2650 		struct kvm_lapic_state *lapic;
2651 		struct kvm_xsave *xsave;
2652 		struct kvm_xcrs *xcrs;
2653 		void *buffer;
2654 	} u;
2655 
2656 	u.buffer = NULL;
2657 	switch (ioctl) {
2658 	case KVM_GET_LAPIC: {
2659 		r = -EINVAL;
2660 		if (!vcpu->arch.apic)
2661 			goto out;
2662 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2663 
2664 		r = -ENOMEM;
2665 		if (!u.lapic)
2666 			goto out;
2667 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2668 		if (r)
2669 			goto out;
2670 		r = -EFAULT;
2671 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2672 			goto out;
2673 		r = 0;
2674 		break;
2675 	}
2676 	case KVM_SET_LAPIC: {
2677 		r = -EINVAL;
2678 		if (!vcpu->arch.apic)
2679 			goto out;
2680 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
2681 		if (IS_ERR(u.lapic)) {
2682 			r = PTR_ERR(u.lapic);
2683 			goto out;
2684 		}
2685 
2686 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2687 		if (r)
2688 			goto out;
2689 		r = 0;
2690 		break;
2691 	}
2692 	case KVM_INTERRUPT: {
2693 		struct kvm_interrupt irq;
2694 
2695 		r = -EFAULT;
2696 		if (copy_from_user(&irq, argp, sizeof irq))
2697 			goto out;
2698 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2699 		if (r)
2700 			goto out;
2701 		r = 0;
2702 		break;
2703 	}
2704 	case KVM_NMI: {
2705 		r = kvm_vcpu_ioctl_nmi(vcpu);
2706 		if (r)
2707 			goto out;
2708 		r = 0;
2709 		break;
2710 	}
2711 	case KVM_SET_CPUID: {
2712 		struct kvm_cpuid __user *cpuid_arg = argp;
2713 		struct kvm_cpuid cpuid;
2714 
2715 		r = -EFAULT;
2716 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2717 			goto out;
2718 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2719 		if (r)
2720 			goto out;
2721 		break;
2722 	}
2723 	case KVM_SET_CPUID2: {
2724 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2725 		struct kvm_cpuid2 cpuid;
2726 
2727 		r = -EFAULT;
2728 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2729 			goto out;
2730 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2731 					      cpuid_arg->entries);
2732 		if (r)
2733 			goto out;
2734 		break;
2735 	}
2736 	case KVM_GET_CPUID2: {
2737 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2738 		struct kvm_cpuid2 cpuid;
2739 
2740 		r = -EFAULT;
2741 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2742 			goto out;
2743 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2744 					      cpuid_arg->entries);
2745 		if (r)
2746 			goto out;
2747 		r = -EFAULT;
2748 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2749 			goto out;
2750 		r = 0;
2751 		break;
2752 	}
2753 	case KVM_GET_MSRS:
2754 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2755 		break;
2756 	case KVM_SET_MSRS:
2757 		r = msr_io(vcpu, argp, do_set_msr, 0);
2758 		break;
2759 	case KVM_TPR_ACCESS_REPORTING: {
2760 		struct kvm_tpr_access_ctl tac;
2761 
2762 		r = -EFAULT;
2763 		if (copy_from_user(&tac, argp, sizeof tac))
2764 			goto out;
2765 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2766 		if (r)
2767 			goto out;
2768 		r = -EFAULT;
2769 		if (copy_to_user(argp, &tac, sizeof tac))
2770 			goto out;
2771 		r = 0;
2772 		break;
2773 	};
2774 	case KVM_SET_VAPIC_ADDR: {
2775 		struct kvm_vapic_addr va;
2776 
2777 		r = -EINVAL;
2778 		if (!irqchip_in_kernel(vcpu->kvm))
2779 			goto out;
2780 		r = -EFAULT;
2781 		if (copy_from_user(&va, argp, sizeof va))
2782 			goto out;
2783 		r = 0;
2784 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2785 		break;
2786 	}
2787 	case KVM_X86_SETUP_MCE: {
2788 		u64 mcg_cap;
2789 
2790 		r = -EFAULT;
2791 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2792 			goto out;
2793 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2794 		break;
2795 	}
2796 	case KVM_X86_SET_MCE: {
2797 		struct kvm_x86_mce mce;
2798 
2799 		r = -EFAULT;
2800 		if (copy_from_user(&mce, argp, sizeof mce))
2801 			goto out;
2802 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2803 		break;
2804 	}
2805 	case KVM_GET_VCPU_EVENTS: {
2806 		struct kvm_vcpu_events events;
2807 
2808 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2809 
2810 		r = -EFAULT;
2811 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2812 			break;
2813 		r = 0;
2814 		break;
2815 	}
2816 	case KVM_SET_VCPU_EVENTS: {
2817 		struct kvm_vcpu_events events;
2818 
2819 		r = -EFAULT;
2820 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2821 			break;
2822 
2823 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2824 		break;
2825 	}
2826 	case KVM_GET_DEBUGREGS: {
2827 		struct kvm_debugregs dbgregs;
2828 
2829 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2830 
2831 		r = -EFAULT;
2832 		if (copy_to_user(argp, &dbgregs,
2833 				 sizeof(struct kvm_debugregs)))
2834 			break;
2835 		r = 0;
2836 		break;
2837 	}
2838 	case KVM_SET_DEBUGREGS: {
2839 		struct kvm_debugregs dbgregs;
2840 
2841 		r = -EFAULT;
2842 		if (copy_from_user(&dbgregs, argp,
2843 				   sizeof(struct kvm_debugregs)))
2844 			break;
2845 
2846 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2847 		break;
2848 	}
2849 	case KVM_GET_XSAVE: {
2850 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2851 		r = -ENOMEM;
2852 		if (!u.xsave)
2853 			break;
2854 
2855 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2856 
2857 		r = -EFAULT;
2858 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2859 			break;
2860 		r = 0;
2861 		break;
2862 	}
2863 	case KVM_SET_XSAVE: {
2864 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
2865 		if (IS_ERR(u.xsave)) {
2866 			r = PTR_ERR(u.xsave);
2867 			goto out;
2868 		}
2869 
2870 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2871 		break;
2872 	}
2873 	case KVM_GET_XCRS: {
2874 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2875 		r = -ENOMEM;
2876 		if (!u.xcrs)
2877 			break;
2878 
2879 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2880 
2881 		r = -EFAULT;
2882 		if (copy_to_user(argp, u.xcrs,
2883 				 sizeof(struct kvm_xcrs)))
2884 			break;
2885 		r = 0;
2886 		break;
2887 	}
2888 	case KVM_SET_XCRS: {
2889 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2890 		if (IS_ERR(u.xcrs)) {
2891 			r = PTR_ERR(u.xcrs);
2892 			goto out;
2893 		}
2894 
2895 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2896 		break;
2897 	}
2898 	case KVM_SET_TSC_KHZ: {
2899 		u32 user_tsc_khz;
2900 
2901 		r = -EINVAL;
2902 		user_tsc_khz = (u32)arg;
2903 
2904 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2905 			goto out;
2906 
2907 		if (user_tsc_khz == 0)
2908 			user_tsc_khz = tsc_khz;
2909 
2910 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
2911 
2912 		r = 0;
2913 		goto out;
2914 	}
2915 	case KVM_GET_TSC_KHZ: {
2916 		r = vcpu->arch.virtual_tsc_khz;
2917 		goto out;
2918 	}
2919 	case KVM_KVMCLOCK_CTRL: {
2920 		r = kvm_set_guest_paused(vcpu);
2921 		goto out;
2922 	}
2923 	default:
2924 		r = -EINVAL;
2925 	}
2926 out:
2927 	kfree(u.buffer);
2928 	return r;
2929 }
2930 
2931 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2932 {
2933 	return VM_FAULT_SIGBUS;
2934 }
2935 
2936 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2937 {
2938 	int ret;
2939 
2940 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2941 		return -1;
2942 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2943 	return ret;
2944 }
2945 
2946 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2947 					      u64 ident_addr)
2948 {
2949 	kvm->arch.ept_identity_map_addr = ident_addr;
2950 	return 0;
2951 }
2952 
2953 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2954 					  u32 kvm_nr_mmu_pages)
2955 {
2956 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2957 		return -EINVAL;
2958 
2959 	mutex_lock(&kvm->slots_lock);
2960 	spin_lock(&kvm->mmu_lock);
2961 
2962 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2963 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2964 
2965 	spin_unlock(&kvm->mmu_lock);
2966 	mutex_unlock(&kvm->slots_lock);
2967 	return 0;
2968 }
2969 
2970 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2971 {
2972 	return kvm->arch.n_max_mmu_pages;
2973 }
2974 
2975 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2976 {
2977 	int r;
2978 
2979 	r = 0;
2980 	switch (chip->chip_id) {
2981 	case KVM_IRQCHIP_PIC_MASTER:
2982 		memcpy(&chip->chip.pic,
2983 			&pic_irqchip(kvm)->pics[0],
2984 			sizeof(struct kvm_pic_state));
2985 		break;
2986 	case KVM_IRQCHIP_PIC_SLAVE:
2987 		memcpy(&chip->chip.pic,
2988 			&pic_irqchip(kvm)->pics[1],
2989 			sizeof(struct kvm_pic_state));
2990 		break;
2991 	case KVM_IRQCHIP_IOAPIC:
2992 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2993 		break;
2994 	default:
2995 		r = -EINVAL;
2996 		break;
2997 	}
2998 	return r;
2999 }
3000 
3001 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3002 {
3003 	int r;
3004 
3005 	r = 0;
3006 	switch (chip->chip_id) {
3007 	case KVM_IRQCHIP_PIC_MASTER:
3008 		spin_lock(&pic_irqchip(kvm)->lock);
3009 		memcpy(&pic_irqchip(kvm)->pics[0],
3010 			&chip->chip.pic,
3011 			sizeof(struct kvm_pic_state));
3012 		spin_unlock(&pic_irqchip(kvm)->lock);
3013 		break;
3014 	case KVM_IRQCHIP_PIC_SLAVE:
3015 		spin_lock(&pic_irqchip(kvm)->lock);
3016 		memcpy(&pic_irqchip(kvm)->pics[1],
3017 			&chip->chip.pic,
3018 			sizeof(struct kvm_pic_state));
3019 		spin_unlock(&pic_irqchip(kvm)->lock);
3020 		break;
3021 	case KVM_IRQCHIP_IOAPIC:
3022 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3023 		break;
3024 	default:
3025 		r = -EINVAL;
3026 		break;
3027 	}
3028 	kvm_pic_update_irq(pic_irqchip(kvm));
3029 	return r;
3030 }
3031 
3032 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3033 {
3034 	int r = 0;
3035 
3036 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3037 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3038 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3039 	return r;
3040 }
3041 
3042 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3043 {
3044 	int r = 0;
3045 
3046 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3047 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3048 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3049 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3050 	return r;
3051 }
3052 
3053 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3054 {
3055 	int r = 0;
3056 
3057 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3058 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3059 		sizeof(ps->channels));
3060 	ps->flags = kvm->arch.vpit->pit_state.flags;
3061 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3062 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3063 	return r;
3064 }
3065 
3066 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3067 {
3068 	int r = 0, start = 0;
3069 	u32 prev_legacy, cur_legacy;
3070 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3071 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3072 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3073 	if (!prev_legacy && cur_legacy)
3074 		start = 1;
3075 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3076 	       sizeof(kvm->arch.vpit->pit_state.channels));
3077 	kvm->arch.vpit->pit_state.flags = ps->flags;
3078 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3079 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3080 	return r;
3081 }
3082 
3083 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3084 				 struct kvm_reinject_control *control)
3085 {
3086 	if (!kvm->arch.vpit)
3087 		return -ENXIO;
3088 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3089 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3090 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3091 	return 0;
3092 }
3093 
3094 /**
3095  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3096  * @kvm: kvm instance
3097  * @log: slot id and address to which we copy the log
3098  *
3099  * We need to keep it in mind that VCPU threads can write to the bitmap
3100  * concurrently.  So, to avoid losing data, we keep the following order for
3101  * each bit:
3102  *
3103  *   1. Take a snapshot of the bit and clear it if needed.
3104  *   2. Write protect the corresponding page.
3105  *   3. Flush TLB's if needed.
3106  *   4. Copy the snapshot to the userspace.
3107  *
3108  * Between 2 and 3, the guest may write to the page using the remaining TLB
3109  * entry.  This is not a problem because the page will be reported dirty at
3110  * step 4 using the snapshot taken before and step 3 ensures that successive
3111  * writes will be logged for the next call.
3112  */
3113 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3114 {
3115 	int r;
3116 	struct kvm_memory_slot *memslot;
3117 	unsigned long n, i;
3118 	unsigned long *dirty_bitmap;
3119 	unsigned long *dirty_bitmap_buffer;
3120 	bool is_dirty = false;
3121 
3122 	mutex_lock(&kvm->slots_lock);
3123 
3124 	r = -EINVAL;
3125 	if (log->slot >= KVM_MEMORY_SLOTS)
3126 		goto out;
3127 
3128 	memslot = id_to_memslot(kvm->memslots, log->slot);
3129 
3130 	dirty_bitmap = memslot->dirty_bitmap;
3131 	r = -ENOENT;
3132 	if (!dirty_bitmap)
3133 		goto out;
3134 
3135 	n = kvm_dirty_bitmap_bytes(memslot);
3136 
3137 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3138 	memset(dirty_bitmap_buffer, 0, n);
3139 
3140 	spin_lock(&kvm->mmu_lock);
3141 
3142 	for (i = 0; i < n / sizeof(long); i++) {
3143 		unsigned long mask;
3144 		gfn_t offset;
3145 
3146 		if (!dirty_bitmap[i])
3147 			continue;
3148 
3149 		is_dirty = true;
3150 
3151 		mask = xchg(&dirty_bitmap[i], 0);
3152 		dirty_bitmap_buffer[i] = mask;
3153 
3154 		offset = i * BITS_PER_LONG;
3155 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3156 	}
3157 	if (is_dirty)
3158 		kvm_flush_remote_tlbs(kvm);
3159 
3160 	spin_unlock(&kvm->mmu_lock);
3161 
3162 	r = -EFAULT;
3163 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3164 		goto out;
3165 
3166 	r = 0;
3167 out:
3168 	mutex_unlock(&kvm->slots_lock);
3169 	return r;
3170 }
3171 
3172 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3173 {
3174 	if (!irqchip_in_kernel(kvm))
3175 		return -ENXIO;
3176 
3177 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3178 					irq_event->irq, irq_event->level);
3179 	return 0;
3180 }
3181 
3182 long kvm_arch_vm_ioctl(struct file *filp,
3183 		       unsigned int ioctl, unsigned long arg)
3184 {
3185 	struct kvm *kvm = filp->private_data;
3186 	void __user *argp = (void __user *)arg;
3187 	int r = -ENOTTY;
3188 	/*
3189 	 * This union makes it completely explicit to gcc-3.x
3190 	 * that these two variables' stack usage should be
3191 	 * combined, not added together.
3192 	 */
3193 	union {
3194 		struct kvm_pit_state ps;
3195 		struct kvm_pit_state2 ps2;
3196 		struct kvm_pit_config pit_config;
3197 	} u;
3198 
3199 	switch (ioctl) {
3200 	case KVM_SET_TSS_ADDR:
3201 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3202 		if (r < 0)
3203 			goto out;
3204 		break;
3205 	case KVM_SET_IDENTITY_MAP_ADDR: {
3206 		u64 ident_addr;
3207 
3208 		r = -EFAULT;
3209 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3210 			goto out;
3211 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3212 		if (r < 0)
3213 			goto out;
3214 		break;
3215 	}
3216 	case KVM_SET_NR_MMU_PAGES:
3217 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3218 		if (r)
3219 			goto out;
3220 		break;
3221 	case KVM_GET_NR_MMU_PAGES:
3222 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3223 		break;
3224 	case KVM_CREATE_IRQCHIP: {
3225 		struct kvm_pic *vpic;
3226 
3227 		mutex_lock(&kvm->lock);
3228 		r = -EEXIST;
3229 		if (kvm->arch.vpic)
3230 			goto create_irqchip_unlock;
3231 		r = -EINVAL;
3232 		if (atomic_read(&kvm->online_vcpus))
3233 			goto create_irqchip_unlock;
3234 		r = -ENOMEM;
3235 		vpic = kvm_create_pic(kvm);
3236 		if (vpic) {
3237 			r = kvm_ioapic_init(kvm);
3238 			if (r) {
3239 				mutex_lock(&kvm->slots_lock);
3240 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3241 							  &vpic->dev_master);
3242 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3243 							  &vpic->dev_slave);
3244 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3245 							  &vpic->dev_eclr);
3246 				mutex_unlock(&kvm->slots_lock);
3247 				kfree(vpic);
3248 				goto create_irqchip_unlock;
3249 			}
3250 		} else
3251 			goto create_irqchip_unlock;
3252 		smp_wmb();
3253 		kvm->arch.vpic = vpic;
3254 		smp_wmb();
3255 		r = kvm_setup_default_irq_routing(kvm);
3256 		if (r) {
3257 			mutex_lock(&kvm->slots_lock);
3258 			mutex_lock(&kvm->irq_lock);
3259 			kvm_ioapic_destroy(kvm);
3260 			kvm_destroy_pic(kvm);
3261 			mutex_unlock(&kvm->irq_lock);
3262 			mutex_unlock(&kvm->slots_lock);
3263 		}
3264 	create_irqchip_unlock:
3265 		mutex_unlock(&kvm->lock);
3266 		break;
3267 	}
3268 	case KVM_CREATE_PIT:
3269 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3270 		goto create_pit;
3271 	case KVM_CREATE_PIT2:
3272 		r = -EFAULT;
3273 		if (copy_from_user(&u.pit_config, argp,
3274 				   sizeof(struct kvm_pit_config)))
3275 			goto out;
3276 	create_pit:
3277 		mutex_lock(&kvm->slots_lock);
3278 		r = -EEXIST;
3279 		if (kvm->arch.vpit)
3280 			goto create_pit_unlock;
3281 		r = -ENOMEM;
3282 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3283 		if (kvm->arch.vpit)
3284 			r = 0;
3285 	create_pit_unlock:
3286 		mutex_unlock(&kvm->slots_lock);
3287 		break;
3288 	case KVM_GET_IRQCHIP: {
3289 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3290 		struct kvm_irqchip *chip;
3291 
3292 		chip = memdup_user(argp, sizeof(*chip));
3293 		if (IS_ERR(chip)) {
3294 			r = PTR_ERR(chip);
3295 			goto out;
3296 		}
3297 
3298 		r = -ENXIO;
3299 		if (!irqchip_in_kernel(kvm))
3300 			goto get_irqchip_out;
3301 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3302 		if (r)
3303 			goto get_irqchip_out;
3304 		r = -EFAULT;
3305 		if (copy_to_user(argp, chip, sizeof *chip))
3306 			goto get_irqchip_out;
3307 		r = 0;
3308 	get_irqchip_out:
3309 		kfree(chip);
3310 		if (r)
3311 			goto out;
3312 		break;
3313 	}
3314 	case KVM_SET_IRQCHIP: {
3315 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3316 		struct kvm_irqchip *chip;
3317 
3318 		chip = memdup_user(argp, sizeof(*chip));
3319 		if (IS_ERR(chip)) {
3320 			r = PTR_ERR(chip);
3321 			goto out;
3322 		}
3323 
3324 		r = -ENXIO;
3325 		if (!irqchip_in_kernel(kvm))
3326 			goto set_irqchip_out;
3327 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3328 		if (r)
3329 			goto set_irqchip_out;
3330 		r = 0;
3331 	set_irqchip_out:
3332 		kfree(chip);
3333 		if (r)
3334 			goto out;
3335 		break;
3336 	}
3337 	case KVM_GET_PIT: {
3338 		r = -EFAULT;
3339 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3340 			goto out;
3341 		r = -ENXIO;
3342 		if (!kvm->arch.vpit)
3343 			goto out;
3344 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3345 		if (r)
3346 			goto out;
3347 		r = -EFAULT;
3348 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3349 			goto out;
3350 		r = 0;
3351 		break;
3352 	}
3353 	case KVM_SET_PIT: {
3354 		r = -EFAULT;
3355 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3356 			goto out;
3357 		r = -ENXIO;
3358 		if (!kvm->arch.vpit)
3359 			goto out;
3360 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3361 		if (r)
3362 			goto out;
3363 		r = 0;
3364 		break;
3365 	}
3366 	case KVM_GET_PIT2: {
3367 		r = -ENXIO;
3368 		if (!kvm->arch.vpit)
3369 			goto out;
3370 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3371 		if (r)
3372 			goto out;
3373 		r = -EFAULT;
3374 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3375 			goto out;
3376 		r = 0;
3377 		break;
3378 	}
3379 	case KVM_SET_PIT2: {
3380 		r = -EFAULT;
3381 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3382 			goto out;
3383 		r = -ENXIO;
3384 		if (!kvm->arch.vpit)
3385 			goto out;
3386 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3387 		if (r)
3388 			goto out;
3389 		r = 0;
3390 		break;
3391 	}
3392 	case KVM_REINJECT_CONTROL: {
3393 		struct kvm_reinject_control control;
3394 		r =  -EFAULT;
3395 		if (copy_from_user(&control, argp, sizeof(control)))
3396 			goto out;
3397 		r = kvm_vm_ioctl_reinject(kvm, &control);
3398 		if (r)
3399 			goto out;
3400 		r = 0;
3401 		break;
3402 	}
3403 	case KVM_XEN_HVM_CONFIG: {
3404 		r = -EFAULT;
3405 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3406 				   sizeof(struct kvm_xen_hvm_config)))
3407 			goto out;
3408 		r = -EINVAL;
3409 		if (kvm->arch.xen_hvm_config.flags)
3410 			goto out;
3411 		r = 0;
3412 		break;
3413 	}
3414 	case KVM_SET_CLOCK: {
3415 		struct kvm_clock_data user_ns;
3416 		u64 now_ns;
3417 		s64 delta;
3418 
3419 		r = -EFAULT;
3420 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3421 			goto out;
3422 
3423 		r = -EINVAL;
3424 		if (user_ns.flags)
3425 			goto out;
3426 
3427 		r = 0;
3428 		local_irq_disable();
3429 		now_ns = get_kernel_ns();
3430 		delta = user_ns.clock - now_ns;
3431 		local_irq_enable();
3432 		kvm->arch.kvmclock_offset = delta;
3433 		break;
3434 	}
3435 	case KVM_GET_CLOCK: {
3436 		struct kvm_clock_data user_ns;
3437 		u64 now_ns;
3438 
3439 		local_irq_disable();
3440 		now_ns = get_kernel_ns();
3441 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3442 		local_irq_enable();
3443 		user_ns.flags = 0;
3444 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3445 
3446 		r = -EFAULT;
3447 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3448 			goto out;
3449 		r = 0;
3450 		break;
3451 	}
3452 
3453 	default:
3454 		;
3455 	}
3456 out:
3457 	return r;
3458 }
3459 
3460 static void kvm_init_msr_list(void)
3461 {
3462 	u32 dummy[2];
3463 	unsigned i, j;
3464 
3465 	/* skip the first msrs in the list. KVM-specific */
3466 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3467 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3468 			continue;
3469 		if (j < i)
3470 			msrs_to_save[j] = msrs_to_save[i];
3471 		j++;
3472 	}
3473 	num_msrs_to_save = j;
3474 }
3475 
3476 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3477 			   const void *v)
3478 {
3479 	int handled = 0;
3480 	int n;
3481 
3482 	do {
3483 		n = min(len, 8);
3484 		if (!(vcpu->arch.apic &&
3485 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3486 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3487 			break;
3488 		handled += n;
3489 		addr += n;
3490 		len -= n;
3491 		v += n;
3492 	} while (len);
3493 
3494 	return handled;
3495 }
3496 
3497 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3498 {
3499 	int handled = 0;
3500 	int n;
3501 
3502 	do {
3503 		n = min(len, 8);
3504 		if (!(vcpu->arch.apic &&
3505 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3506 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3507 			break;
3508 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3509 		handled += n;
3510 		addr += n;
3511 		len -= n;
3512 		v += n;
3513 	} while (len);
3514 
3515 	return handled;
3516 }
3517 
3518 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3519 			struct kvm_segment *var, int seg)
3520 {
3521 	kvm_x86_ops->set_segment(vcpu, var, seg);
3522 }
3523 
3524 void kvm_get_segment(struct kvm_vcpu *vcpu,
3525 		     struct kvm_segment *var, int seg)
3526 {
3527 	kvm_x86_ops->get_segment(vcpu, var, seg);
3528 }
3529 
3530 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3531 {
3532 	gpa_t t_gpa;
3533 	struct x86_exception exception;
3534 
3535 	BUG_ON(!mmu_is_nested(vcpu));
3536 
3537 	/* NPT walks are always user-walks */
3538 	access |= PFERR_USER_MASK;
3539 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3540 
3541 	return t_gpa;
3542 }
3543 
3544 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3545 			      struct x86_exception *exception)
3546 {
3547 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3548 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3549 }
3550 
3551  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3552 				struct x86_exception *exception)
3553 {
3554 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3555 	access |= PFERR_FETCH_MASK;
3556 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3557 }
3558 
3559 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3560 			       struct x86_exception *exception)
3561 {
3562 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3563 	access |= PFERR_WRITE_MASK;
3564 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3565 }
3566 
3567 /* uses this to access any guest's mapped memory without checking CPL */
3568 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3569 				struct x86_exception *exception)
3570 {
3571 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3572 }
3573 
3574 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3575 				      struct kvm_vcpu *vcpu, u32 access,
3576 				      struct x86_exception *exception)
3577 {
3578 	void *data = val;
3579 	int r = X86EMUL_CONTINUE;
3580 
3581 	while (bytes) {
3582 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3583 							    exception);
3584 		unsigned offset = addr & (PAGE_SIZE-1);
3585 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3586 		int ret;
3587 
3588 		if (gpa == UNMAPPED_GVA)
3589 			return X86EMUL_PROPAGATE_FAULT;
3590 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3591 		if (ret < 0) {
3592 			r = X86EMUL_IO_NEEDED;
3593 			goto out;
3594 		}
3595 
3596 		bytes -= toread;
3597 		data += toread;
3598 		addr += toread;
3599 	}
3600 out:
3601 	return r;
3602 }
3603 
3604 /* used for instruction fetching */
3605 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3606 				gva_t addr, void *val, unsigned int bytes,
3607 				struct x86_exception *exception)
3608 {
3609 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3610 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3611 
3612 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3613 					  access | PFERR_FETCH_MASK,
3614 					  exception);
3615 }
3616 
3617 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3618 			       gva_t addr, void *val, unsigned int bytes,
3619 			       struct x86_exception *exception)
3620 {
3621 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3622 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3623 
3624 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3625 					  exception);
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3628 
3629 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3630 				      gva_t addr, void *val, unsigned int bytes,
3631 				      struct x86_exception *exception)
3632 {
3633 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3634 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3635 }
3636 
3637 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3638 				       gva_t addr, void *val,
3639 				       unsigned int bytes,
3640 				       struct x86_exception *exception)
3641 {
3642 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3643 	void *data = val;
3644 	int r = X86EMUL_CONTINUE;
3645 
3646 	while (bytes) {
3647 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3648 							     PFERR_WRITE_MASK,
3649 							     exception);
3650 		unsigned offset = addr & (PAGE_SIZE-1);
3651 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3652 		int ret;
3653 
3654 		if (gpa == UNMAPPED_GVA)
3655 			return X86EMUL_PROPAGATE_FAULT;
3656 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3657 		if (ret < 0) {
3658 			r = X86EMUL_IO_NEEDED;
3659 			goto out;
3660 		}
3661 
3662 		bytes -= towrite;
3663 		data += towrite;
3664 		addr += towrite;
3665 	}
3666 out:
3667 	return r;
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3670 
3671 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3672 				gpa_t *gpa, struct x86_exception *exception,
3673 				bool write)
3674 {
3675 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3676 
3677 	if (vcpu_match_mmio_gva(vcpu, gva) &&
3678 		  check_write_user_access(vcpu, write, access,
3679 		  vcpu->arch.access)) {
3680 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3681 					(gva & (PAGE_SIZE - 1));
3682 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3683 		return 1;
3684 	}
3685 
3686 	if (write)
3687 		access |= PFERR_WRITE_MASK;
3688 
3689 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3690 
3691 	if (*gpa == UNMAPPED_GVA)
3692 		return -1;
3693 
3694 	/* For APIC access vmexit */
3695 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3696 		return 1;
3697 
3698 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3699 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3700 		return 1;
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3707 			const void *val, int bytes)
3708 {
3709 	int ret;
3710 
3711 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3712 	if (ret < 0)
3713 		return 0;
3714 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3715 	return 1;
3716 }
3717 
3718 struct read_write_emulator_ops {
3719 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3720 				  int bytes);
3721 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3722 				  void *val, int bytes);
3723 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3724 			       int bytes, void *val);
3725 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3726 				    void *val, int bytes);
3727 	bool write;
3728 };
3729 
3730 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3731 {
3732 	if (vcpu->mmio_read_completed) {
3733 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3734 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3735 		vcpu->mmio_read_completed = 0;
3736 		return 1;
3737 	}
3738 
3739 	return 0;
3740 }
3741 
3742 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3743 			void *val, int bytes)
3744 {
3745 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3746 }
3747 
3748 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3749 			 void *val, int bytes)
3750 {
3751 	return emulator_write_phys(vcpu, gpa, val, bytes);
3752 }
3753 
3754 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3755 {
3756 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3757 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
3758 }
3759 
3760 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3761 			  void *val, int bytes)
3762 {
3763 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3764 	return X86EMUL_IO_NEEDED;
3765 }
3766 
3767 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3768 			   void *val, int bytes)
3769 {
3770 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3771 
3772 	memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3773 	return X86EMUL_CONTINUE;
3774 }
3775 
3776 static const struct read_write_emulator_ops read_emultor = {
3777 	.read_write_prepare = read_prepare,
3778 	.read_write_emulate = read_emulate,
3779 	.read_write_mmio = vcpu_mmio_read,
3780 	.read_write_exit_mmio = read_exit_mmio,
3781 };
3782 
3783 static const struct read_write_emulator_ops write_emultor = {
3784 	.read_write_emulate = write_emulate,
3785 	.read_write_mmio = write_mmio,
3786 	.read_write_exit_mmio = write_exit_mmio,
3787 	.write = true,
3788 };
3789 
3790 static int emulator_read_write_onepage(unsigned long addr, void *val,
3791 				       unsigned int bytes,
3792 				       struct x86_exception *exception,
3793 				       struct kvm_vcpu *vcpu,
3794 				       const struct read_write_emulator_ops *ops)
3795 {
3796 	gpa_t gpa;
3797 	int handled, ret;
3798 	bool write = ops->write;
3799 	struct kvm_mmio_fragment *frag;
3800 
3801 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3802 
3803 	if (ret < 0)
3804 		return X86EMUL_PROPAGATE_FAULT;
3805 
3806 	/* For APIC access vmexit */
3807 	if (ret)
3808 		goto mmio;
3809 
3810 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3811 		return X86EMUL_CONTINUE;
3812 
3813 mmio:
3814 	/*
3815 	 * Is this MMIO handled locally?
3816 	 */
3817 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3818 	if (handled == bytes)
3819 		return X86EMUL_CONTINUE;
3820 
3821 	gpa += handled;
3822 	bytes -= handled;
3823 	val += handled;
3824 
3825 	while (bytes) {
3826 		unsigned now = min(bytes, 8U);
3827 
3828 		frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3829 		frag->gpa = gpa;
3830 		frag->data = val;
3831 		frag->len = now;
3832 
3833 		gpa += now;
3834 		val += now;
3835 		bytes -= now;
3836 	}
3837 	return X86EMUL_CONTINUE;
3838 }
3839 
3840 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3841 			void *val, unsigned int bytes,
3842 			struct x86_exception *exception,
3843 			const struct read_write_emulator_ops *ops)
3844 {
3845 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3846 	gpa_t gpa;
3847 	int rc;
3848 
3849 	if (ops->read_write_prepare &&
3850 		  ops->read_write_prepare(vcpu, val, bytes))
3851 		return X86EMUL_CONTINUE;
3852 
3853 	vcpu->mmio_nr_fragments = 0;
3854 
3855 	/* Crossing a page boundary? */
3856 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3857 		int now;
3858 
3859 		now = -addr & ~PAGE_MASK;
3860 		rc = emulator_read_write_onepage(addr, val, now, exception,
3861 						 vcpu, ops);
3862 
3863 		if (rc != X86EMUL_CONTINUE)
3864 			return rc;
3865 		addr += now;
3866 		val += now;
3867 		bytes -= now;
3868 	}
3869 
3870 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
3871 					 vcpu, ops);
3872 	if (rc != X86EMUL_CONTINUE)
3873 		return rc;
3874 
3875 	if (!vcpu->mmio_nr_fragments)
3876 		return rc;
3877 
3878 	gpa = vcpu->mmio_fragments[0].gpa;
3879 
3880 	vcpu->mmio_needed = 1;
3881 	vcpu->mmio_cur_fragment = 0;
3882 
3883 	vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3884 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3885 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3886 	vcpu->run->mmio.phys_addr = gpa;
3887 
3888 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3889 }
3890 
3891 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3892 				  unsigned long addr,
3893 				  void *val,
3894 				  unsigned int bytes,
3895 				  struct x86_exception *exception)
3896 {
3897 	return emulator_read_write(ctxt, addr, val, bytes,
3898 				   exception, &read_emultor);
3899 }
3900 
3901 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3902 			    unsigned long addr,
3903 			    const void *val,
3904 			    unsigned int bytes,
3905 			    struct x86_exception *exception)
3906 {
3907 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
3908 				   exception, &write_emultor);
3909 }
3910 
3911 #define CMPXCHG_TYPE(t, ptr, old, new) \
3912 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3913 
3914 #ifdef CONFIG_X86_64
3915 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3916 #else
3917 #  define CMPXCHG64(ptr, old, new) \
3918 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3919 #endif
3920 
3921 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3922 				     unsigned long addr,
3923 				     const void *old,
3924 				     const void *new,
3925 				     unsigned int bytes,
3926 				     struct x86_exception *exception)
3927 {
3928 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3929 	gpa_t gpa;
3930 	struct page *page;
3931 	char *kaddr;
3932 	bool exchanged;
3933 
3934 	/* guests cmpxchg8b have to be emulated atomically */
3935 	if (bytes > 8 || (bytes & (bytes - 1)))
3936 		goto emul_write;
3937 
3938 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3939 
3940 	if (gpa == UNMAPPED_GVA ||
3941 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3942 		goto emul_write;
3943 
3944 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3945 		goto emul_write;
3946 
3947 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3948 	if (is_error_page(page))
3949 		goto emul_write;
3950 
3951 	kaddr = kmap_atomic(page);
3952 	kaddr += offset_in_page(gpa);
3953 	switch (bytes) {
3954 	case 1:
3955 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3956 		break;
3957 	case 2:
3958 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3959 		break;
3960 	case 4:
3961 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3962 		break;
3963 	case 8:
3964 		exchanged = CMPXCHG64(kaddr, old, new);
3965 		break;
3966 	default:
3967 		BUG();
3968 	}
3969 	kunmap_atomic(kaddr);
3970 	kvm_release_page_dirty(page);
3971 
3972 	if (!exchanged)
3973 		return X86EMUL_CMPXCHG_FAILED;
3974 
3975 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3976 
3977 	return X86EMUL_CONTINUE;
3978 
3979 emul_write:
3980 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3981 
3982 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3983 }
3984 
3985 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3986 {
3987 	/* TODO: String I/O for in kernel device */
3988 	int r;
3989 
3990 	if (vcpu->arch.pio.in)
3991 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3992 				    vcpu->arch.pio.size, pd);
3993 	else
3994 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3995 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
3996 				     pd);
3997 	return r;
3998 }
3999 
4000 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4001 			       unsigned short port, void *val,
4002 			       unsigned int count, bool in)
4003 {
4004 	trace_kvm_pio(!in, port, size, count);
4005 
4006 	vcpu->arch.pio.port = port;
4007 	vcpu->arch.pio.in = in;
4008 	vcpu->arch.pio.count  = count;
4009 	vcpu->arch.pio.size = size;
4010 
4011 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4012 		vcpu->arch.pio.count = 0;
4013 		return 1;
4014 	}
4015 
4016 	vcpu->run->exit_reason = KVM_EXIT_IO;
4017 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4018 	vcpu->run->io.size = size;
4019 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4020 	vcpu->run->io.count = count;
4021 	vcpu->run->io.port = port;
4022 
4023 	return 0;
4024 }
4025 
4026 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4027 				    int size, unsigned short port, void *val,
4028 				    unsigned int count)
4029 {
4030 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4031 	int ret;
4032 
4033 	if (vcpu->arch.pio.count)
4034 		goto data_avail;
4035 
4036 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4037 	if (ret) {
4038 data_avail:
4039 		memcpy(val, vcpu->arch.pio_data, size * count);
4040 		vcpu->arch.pio.count = 0;
4041 		return 1;
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4048 				     int size, unsigned short port,
4049 				     const void *val, unsigned int count)
4050 {
4051 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4052 
4053 	memcpy(vcpu->arch.pio_data, val, size * count);
4054 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4055 }
4056 
4057 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4058 {
4059 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4060 }
4061 
4062 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4063 {
4064 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4065 }
4066 
4067 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4068 {
4069 	if (!need_emulate_wbinvd(vcpu))
4070 		return X86EMUL_CONTINUE;
4071 
4072 	if (kvm_x86_ops->has_wbinvd_exit()) {
4073 		int cpu = get_cpu();
4074 
4075 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4076 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4077 				wbinvd_ipi, NULL, 1);
4078 		put_cpu();
4079 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4080 	} else
4081 		wbinvd();
4082 	return X86EMUL_CONTINUE;
4083 }
4084 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4085 
4086 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4087 {
4088 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4089 }
4090 
4091 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4092 {
4093 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4094 }
4095 
4096 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4097 {
4098 
4099 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4100 }
4101 
4102 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4103 {
4104 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4105 }
4106 
4107 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4108 {
4109 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4110 	unsigned long value;
4111 
4112 	switch (cr) {
4113 	case 0:
4114 		value = kvm_read_cr0(vcpu);
4115 		break;
4116 	case 2:
4117 		value = vcpu->arch.cr2;
4118 		break;
4119 	case 3:
4120 		value = kvm_read_cr3(vcpu);
4121 		break;
4122 	case 4:
4123 		value = kvm_read_cr4(vcpu);
4124 		break;
4125 	case 8:
4126 		value = kvm_get_cr8(vcpu);
4127 		break;
4128 	default:
4129 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4130 		return 0;
4131 	}
4132 
4133 	return value;
4134 }
4135 
4136 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4137 {
4138 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4139 	int res = 0;
4140 
4141 	switch (cr) {
4142 	case 0:
4143 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4144 		break;
4145 	case 2:
4146 		vcpu->arch.cr2 = val;
4147 		break;
4148 	case 3:
4149 		res = kvm_set_cr3(vcpu, val);
4150 		break;
4151 	case 4:
4152 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4153 		break;
4154 	case 8:
4155 		res = kvm_set_cr8(vcpu, val);
4156 		break;
4157 	default:
4158 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4159 		res = -1;
4160 	}
4161 
4162 	return res;
4163 }
4164 
4165 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4166 {
4167 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4168 }
4169 
4170 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4171 {
4172 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4173 }
4174 
4175 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4176 {
4177 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4178 }
4179 
4180 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4181 {
4182 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4183 }
4184 
4185 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4186 {
4187 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4188 }
4189 
4190 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4191 {
4192 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4193 }
4194 
4195 static unsigned long emulator_get_cached_segment_base(
4196 	struct x86_emulate_ctxt *ctxt, int seg)
4197 {
4198 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4199 }
4200 
4201 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4202 				 struct desc_struct *desc, u32 *base3,
4203 				 int seg)
4204 {
4205 	struct kvm_segment var;
4206 
4207 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4208 	*selector = var.selector;
4209 
4210 	if (var.unusable)
4211 		return false;
4212 
4213 	if (var.g)
4214 		var.limit >>= 12;
4215 	set_desc_limit(desc, var.limit);
4216 	set_desc_base(desc, (unsigned long)var.base);
4217 #ifdef CONFIG_X86_64
4218 	if (base3)
4219 		*base3 = var.base >> 32;
4220 #endif
4221 	desc->type = var.type;
4222 	desc->s = var.s;
4223 	desc->dpl = var.dpl;
4224 	desc->p = var.present;
4225 	desc->avl = var.avl;
4226 	desc->l = var.l;
4227 	desc->d = var.db;
4228 	desc->g = var.g;
4229 
4230 	return true;
4231 }
4232 
4233 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4234 				 struct desc_struct *desc, u32 base3,
4235 				 int seg)
4236 {
4237 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4238 	struct kvm_segment var;
4239 
4240 	var.selector = selector;
4241 	var.base = get_desc_base(desc);
4242 #ifdef CONFIG_X86_64
4243 	var.base |= ((u64)base3) << 32;
4244 #endif
4245 	var.limit = get_desc_limit(desc);
4246 	if (desc->g)
4247 		var.limit = (var.limit << 12) | 0xfff;
4248 	var.type = desc->type;
4249 	var.present = desc->p;
4250 	var.dpl = desc->dpl;
4251 	var.db = desc->d;
4252 	var.s = desc->s;
4253 	var.l = desc->l;
4254 	var.g = desc->g;
4255 	var.avl = desc->avl;
4256 	var.present = desc->p;
4257 	var.unusable = !var.present;
4258 	var.padding = 0;
4259 
4260 	kvm_set_segment(vcpu, &var, seg);
4261 	return;
4262 }
4263 
4264 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4265 			    u32 msr_index, u64 *pdata)
4266 {
4267 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4268 }
4269 
4270 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4271 			    u32 msr_index, u64 data)
4272 {
4273 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4274 }
4275 
4276 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4277 			     u32 pmc, u64 *pdata)
4278 {
4279 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4280 }
4281 
4282 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4283 {
4284 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4285 }
4286 
4287 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4288 {
4289 	preempt_disable();
4290 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4291 	/*
4292 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4293 	 * so it may be clear at this point.
4294 	 */
4295 	clts();
4296 }
4297 
4298 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4299 {
4300 	preempt_enable();
4301 }
4302 
4303 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4304 			      struct x86_instruction_info *info,
4305 			      enum x86_intercept_stage stage)
4306 {
4307 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4308 }
4309 
4310 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4311 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4312 {
4313 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4314 }
4315 
4316 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4317 {
4318 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4319 }
4320 
4321 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4322 {
4323 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4324 }
4325 
4326 static const struct x86_emulate_ops emulate_ops = {
4327 	.read_gpr            = emulator_read_gpr,
4328 	.write_gpr           = emulator_write_gpr,
4329 	.read_std            = kvm_read_guest_virt_system,
4330 	.write_std           = kvm_write_guest_virt_system,
4331 	.fetch               = kvm_fetch_guest_virt,
4332 	.read_emulated       = emulator_read_emulated,
4333 	.write_emulated      = emulator_write_emulated,
4334 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4335 	.invlpg              = emulator_invlpg,
4336 	.pio_in_emulated     = emulator_pio_in_emulated,
4337 	.pio_out_emulated    = emulator_pio_out_emulated,
4338 	.get_segment         = emulator_get_segment,
4339 	.set_segment         = emulator_set_segment,
4340 	.get_cached_segment_base = emulator_get_cached_segment_base,
4341 	.get_gdt             = emulator_get_gdt,
4342 	.get_idt	     = emulator_get_idt,
4343 	.set_gdt             = emulator_set_gdt,
4344 	.set_idt	     = emulator_set_idt,
4345 	.get_cr              = emulator_get_cr,
4346 	.set_cr              = emulator_set_cr,
4347 	.set_rflags          = emulator_set_rflags,
4348 	.cpl                 = emulator_get_cpl,
4349 	.get_dr              = emulator_get_dr,
4350 	.set_dr              = emulator_set_dr,
4351 	.set_msr             = emulator_set_msr,
4352 	.get_msr             = emulator_get_msr,
4353 	.read_pmc            = emulator_read_pmc,
4354 	.halt                = emulator_halt,
4355 	.wbinvd              = emulator_wbinvd,
4356 	.fix_hypercall       = emulator_fix_hypercall,
4357 	.get_fpu             = emulator_get_fpu,
4358 	.put_fpu             = emulator_put_fpu,
4359 	.intercept           = emulator_intercept,
4360 	.get_cpuid           = emulator_get_cpuid,
4361 };
4362 
4363 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4364 {
4365 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4366 	/*
4367 	 * an sti; sti; sequence only disable interrupts for the first
4368 	 * instruction. So, if the last instruction, be it emulated or
4369 	 * not, left the system with the INT_STI flag enabled, it
4370 	 * means that the last instruction is an sti. We should not
4371 	 * leave the flag on in this case. The same goes for mov ss
4372 	 */
4373 	if (!(int_shadow & mask))
4374 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4375 }
4376 
4377 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4378 {
4379 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4380 	if (ctxt->exception.vector == PF_VECTOR)
4381 		kvm_propagate_fault(vcpu, &ctxt->exception);
4382 	else if (ctxt->exception.error_code_valid)
4383 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4384 				      ctxt->exception.error_code);
4385 	else
4386 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4387 }
4388 
4389 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4390 {
4391 	memset(&ctxt->twobyte, 0,
4392 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4393 
4394 	ctxt->fetch.start = 0;
4395 	ctxt->fetch.end = 0;
4396 	ctxt->io_read.pos = 0;
4397 	ctxt->io_read.end = 0;
4398 	ctxt->mem_read.pos = 0;
4399 	ctxt->mem_read.end = 0;
4400 }
4401 
4402 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4403 {
4404 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4405 	int cs_db, cs_l;
4406 
4407 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4408 
4409 	ctxt->eflags = kvm_get_rflags(vcpu);
4410 	ctxt->eip = kvm_rip_read(vcpu);
4411 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4412 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4413 		     cs_l				? X86EMUL_MODE_PROT64 :
4414 		     cs_db				? X86EMUL_MODE_PROT32 :
4415 							  X86EMUL_MODE_PROT16;
4416 	ctxt->guest_mode = is_guest_mode(vcpu);
4417 
4418 	init_decode_cache(ctxt);
4419 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4420 }
4421 
4422 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4423 {
4424 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4425 	int ret;
4426 
4427 	init_emulate_ctxt(vcpu);
4428 
4429 	ctxt->op_bytes = 2;
4430 	ctxt->ad_bytes = 2;
4431 	ctxt->_eip = ctxt->eip + inc_eip;
4432 	ret = emulate_int_real(ctxt, irq);
4433 
4434 	if (ret != X86EMUL_CONTINUE)
4435 		return EMULATE_FAIL;
4436 
4437 	ctxt->eip = ctxt->_eip;
4438 	kvm_rip_write(vcpu, ctxt->eip);
4439 	kvm_set_rflags(vcpu, ctxt->eflags);
4440 
4441 	if (irq == NMI_VECTOR)
4442 		vcpu->arch.nmi_pending = 0;
4443 	else
4444 		vcpu->arch.interrupt.pending = false;
4445 
4446 	return EMULATE_DONE;
4447 }
4448 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4449 
4450 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4451 {
4452 	int r = EMULATE_DONE;
4453 
4454 	++vcpu->stat.insn_emulation_fail;
4455 	trace_kvm_emulate_insn_failed(vcpu);
4456 	if (!is_guest_mode(vcpu)) {
4457 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4458 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4459 		vcpu->run->internal.ndata = 0;
4460 		r = EMULATE_FAIL;
4461 	}
4462 	kvm_queue_exception(vcpu, UD_VECTOR);
4463 
4464 	return r;
4465 }
4466 
4467 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4468 {
4469 	gpa_t gpa;
4470 	pfn_t pfn;
4471 
4472 	if (tdp_enabled)
4473 		return false;
4474 
4475 	/*
4476 	 * if emulation was due to access to shadowed page table
4477 	 * and it failed try to unshadow page and re-enter the
4478 	 * guest to let CPU execute the instruction.
4479 	 */
4480 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4481 		return true;
4482 
4483 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4484 
4485 	if (gpa == UNMAPPED_GVA)
4486 		return true; /* let cpu generate fault */
4487 
4488 	/*
4489 	 * Do not retry the unhandleable instruction if it faults on the
4490 	 * readonly host memory, otherwise it will goto a infinite loop:
4491 	 * retry instruction -> write #PF -> emulation fail -> retry
4492 	 * instruction -> ...
4493 	 */
4494 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4495 	if (!is_error_pfn(pfn)) {
4496 		kvm_release_pfn_clean(pfn);
4497 		return true;
4498 	}
4499 
4500 	return false;
4501 }
4502 
4503 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4504 			      unsigned long cr2,  int emulation_type)
4505 {
4506 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4507 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4508 
4509 	last_retry_eip = vcpu->arch.last_retry_eip;
4510 	last_retry_addr = vcpu->arch.last_retry_addr;
4511 
4512 	/*
4513 	 * If the emulation is caused by #PF and it is non-page_table
4514 	 * writing instruction, it means the VM-EXIT is caused by shadow
4515 	 * page protected, we can zap the shadow page and retry this
4516 	 * instruction directly.
4517 	 *
4518 	 * Note: if the guest uses a non-page-table modifying instruction
4519 	 * on the PDE that points to the instruction, then we will unmap
4520 	 * the instruction and go to an infinite loop. So, we cache the
4521 	 * last retried eip and the last fault address, if we meet the eip
4522 	 * and the address again, we can break out of the potential infinite
4523 	 * loop.
4524 	 */
4525 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4526 
4527 	if (!(emulation_type & EMULTYPE_RETRY))
4528 		return false;
4529 
4530 	if (x86_page_table_writing_insn(ctxt))
4531 		return false;
4532 
4533 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4534 		return false;
4535 
4536 	vcpu->arch.last_retry_eip = ctxt->eip;
4537 	vcpu->arch.last_retry_addr = cr2;
4538 
4539 	if (!vcpu->arch.mmu.direct_map)
4540 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4541 
4542 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4543 
4544 	return true;
4545 }
4546 
4547 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4548 			    unsigned long cr2,
4549 			    int emulation_type,
4550 			    void *insn,
4551 			    int insn_len)
4552 {
4553 	int r;
4554 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4555 	bool writeback = true;
4556 
4557 	kvm_clear_exception_queue(vcpu);
4558 
4559 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4560 		init_emulate_ctxt(vcpu);
4561 		ctxt->interruptibility = 0;
4562 		ctxt->have_exception = false;
4563 		ctxt->perm_ok = false;
4564 
4565 		ctxt->only_vendor_specific_insn
4566 			= emulation_type & EMULTYPE_TRAP_UD;
4567 
4568 		r = x86_decode_insn(ctxt, insn, insn_len);
4569 
4570 		trace_kvm_emulate_insn_start(vcpu);
4571 		++vcpu->stat.insn_emulation;
4572 		if (r != EMULATION_OK)  {
4573 			if (emulation_type & EMULTYPE_TRAP_UD)
4574 				return EMULATE_FAIL;
4575 			if (reexecute_instruction(vcpu, cr2))
4576 				return EMULATE_DONE;
4577 			if (emulation_type & EMULTYPE_SKIP)
4578 				return EMULATE_FAIL;
4579 			return handle_emulation_failure(vcpu);
4580 		}
4581 	}
4582 
4583 	if (emulation_type & EMULTYPE_SKIP) {
4584 		kvm_rip_write(vcpu, ctxt->_eip);
4585 		return EMULATE_DONE;
4586 	}
4587 
4588 	if (retry_instruction(ctxt, cr2, emulation_type))
4589 		return EMULATE_DONE;
4590 
4591 	/* this is needed for vmware backdoor interface to work since it
4592 	   changes registers values  during IO operation */
4593 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4594 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4595 		emulator_invalidate_register_cache(ctxt);
4596 	}
4597 
4598 restart:
4599 	r = x86_emulate_insn(ctxt);
4600 
4601 	if (r == EMULATION_INTERCEPTED)
4602 		return EMULATE_DONE;
4603 
4604 	if (r == EMULATION_FAILED) {
4605 		if (reexecute_instruction(vcpu, cr2))
4606 			return EMULATE_DONE;
4607 
4608 		return handle_emulation_failure(vcpu);
4609 	}
4610 
4611 	if (ctxt->have_exception) {
4612 		inject_emulated_exception(vcpu);
4613 		r = EMULATE_DONE;
4614 	} else if (vcpu->arch.pio.count) {
4615 		if (!vcpu->arch.pio.in)
4616 			vcpu->arch.pio.count = 0;
4617 		else
4618 			writeback = false;
4619 		r = EMULATE_DO_MMIO;
4620 	} else if (vcpu->mmio_needed) {
4621 		if (!vcpu->mmio_is_write)
4622 			writeback = false;
4623 		r = EMULATE_DO_MMIO;
4624 	} else if (r == EMULATION_RESTART)
4625 		goto restart;
4626 	else
4627 		r = EMULATE_DONE;
4628 
4629 	if (writeback) {
4630 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4631 		kvm_set_rflags(vcpu, ctxt->eflags);
4632 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4633 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4634 		kvm_rip_write(vcpu, ctxt->eip);
4635 	} else
4636 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4637 
4638 	return r;
4639 }
4640 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4641 
4642 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4643 {
4644 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4645 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4646 					    size, port, &val, 1);
4647 	/* do not return to emulator after return from userspace */
4648 	vcpu->arch.pio.count = 0;
4649 	return ret;
4650 }
4651 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4652 
4653 static void tsc_bad(void *info)
4654 {
4655 	__this_cpu_write(cpu_tsc_khz, 0);
4656 }
4657 
4658 static void tsc_khz_changed(void *data)
4659 {
4660 	struct cpufreq_freqs *freq = data;
4661 	unsigned long khz = 0;
4662 
4663 	if (data)
4664 		khz = freq->new;
4665 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4666 		khz = cpufreq_quick_get(raw_smp_processor_id());
4667 	if (!khz)
4668 		khz = tsc_khz;
4669 	__this_cpu_write(cpu_tsc_khz, khz);
4670 }
4671 
4672 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4673 				     void *data)
4674 {
4675 	struct cpufreq_freqs *freq = data;
4676 	struct kvm *kvm;
4677 	struct kvm_vcpu *vcpu;
4678 	int i, send_ipi = 0;
4679 
4680 	/*
4681 	 * We allow guests to temporarily run on slowing clocks,
4682 	 * provided we notify them after, or to run on accelerating
4683 	 * clocks, provided we notify them before.  Thus time never
4684 	 * goes backwards.
4685 	 *
4686 	 * However, we have a problem.  We can't atomically update
4687 	 * the frequency of a given CPU from this function; it is
4688 	 * merely a notifier, which can be called from any CPU.
4689 	 * Changing the TSC frequency at arbitrary points in time
4690 	 * requires a recomputation of local variables related to
4691 	 * the TSC for each VCPU.  We must flag these local variables
4692 	 * to be updated and be sure the update takes place with the
4693 	 * new frequency before any guests proceed.
4694 	 *
4695 	 * Unfortunately, the combination of hotplug CPU and frequency
4696 	 * change creates an intractable locking scenario; the order
4697 	 * of when these callouts happen is undefined with respect to
4698 	 * CPU hotplug, and they can race with each other.  As such,
4699 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4700 	 * undefined; you can actually have a CPU frequency change take
4701 	 * place in between the computation of X and the setting of the
4702 	 * variable.  To protect against this problem, all updates of
4703 	 * the per_cpu tsc_khz variable are done in an interrupt
4704 	 * protected IPI, and all callers wishing to update the value
4705 	 * must wait for a synchronous IPI to complete (which is trivial
4706 	 * if the caller is on the CPU already).  This establishes the
4707 	 * necessary total order on variable updates.
4708 	 *
4709 	 * Note that because a guest time update may take place
4710 	 * anytime after the setting of the VCPU's request bit, the
4711 	 * correct TSC value must be set before the request.  However,
4712 	 * to ensure the update actually makes it to any guest which
4713 	 * starts running in hardware virtualization between the set
4714 	 * and the acquisition of the spinlock, we must also ping the
4715 	 * CPU after setting the request bit.
4716 	 *
4717 	 */
4718 
4719 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4720 		return 0;
4721 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4722 		return 0;
4723 
4724 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4725 
4726 	raw_spin_lock(&kvm_lock);
4727 	list_for_each_entry(kvm, &vm_list, vm_list) {
4728 		kvm_for_each_vcpu(i, vcpu, kvm) {
4729 			if (vcpu->cpu != freq->cpu)
4730 				continue;
4731 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4732 			if (vcpu->cpu != smp_processor_id())
4733 				send_ipi = 1;
4734 		}
4735 	}
4736 	raw_spin_unlock(&kvm_lock);
4737 
4738 	if (freq->old < freq->new && send_ipi) {
4739 		/*
4740 		 * We upscale the frequency.  Must make the guest
4741 		 * doesn't see old kvmclock values while running with
4742 		 * the new frequency, otherwise we risk the guest sees
4743 		 * time go backwards.
4744 		 *
4745 		 * In case we update the frequency for another cpu
4746 		 * (which might be in guest context) send an interrupt
4747 		 * to kick the cpu out of guest context.  Next time
4748 		 * guest context is entered kvmclock will be updated,
4749 		 * so the guest will not see stale values.
4750 		 */
4751 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4752 	}
4753 	return 0;
4754 }
4755 
4756 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4757 	.notifier_call  = kvmclock_cpufreq_notifier
4758 };
4759 
4760 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4761 					unsigned long action, void *hcpu)
4762 {
4763 	unsigned int cpu = (unsigned long)hcpu;
4764 
4765 	switch (action) {
4766 		case CPU_ONLINE:
4767 		case CPU_DOWN_FAILED:
4768 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4769 			break;
4770 		case CPU_DOWN_PREPARE:
4771 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4772 			break;
4773 	}
4774 	return NOTIFY_OK;
4775 }
4776 
4777 static struct notifier_block kvmclock_cpu_notifier_block = {
4778 	.notifier_call  = kvmclock_cpu_notifier,
4779 	.priority = -INT_MAX
4780 };
4781 
4782 static void kvm_timer_init(void)
4783 {
4784 	int cpu;
4785 
4786 	max_tsc_khz = tsc_khz;
4787 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4788 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4789 #ifdef CONFIG_CPU_FREQ
4790 		struct cpufreq_policy policy;
4791 		memset(&policy, 0, sizeof(policy));
4792 		cpu = get_cpu();
4793 		cpufreq_get_policy(&policy, cpu);
4794 		if (policy.cpuinfo.max_freq)
4795 			max_tsc_khz = policy.cpuinfo.max_freq;
4796 		put_cpu();
4797 #endif
4798 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4799 					  CPUFREQ_TRANSITION_NOTIFIER);
4800 	}
4801 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4802 	for_each_online_cpu(cpu)
4803 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4804 }
4805 
4806 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4807 
4808 int kvm_is_in_guest(void)
4809 {
4810 	return __this_cpu_read(current_vcpu) != NULL;
4811 }
4812 
4813 static int kvm_is_user_mode(void)
4814 {
4815 	int user_mode = 3;
4816 
4817 	if (__this_cpu_read(current_vcpu))
4818 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4819 
4820 	return user_mode != 0;
4821 }
4822 
4823 static unsigned long kvm_get_guest_ip(void)
4824 {
4825 	unsigned long ip = 0;
4826 
4827 	if (__this_cpu_read(current_vcpu))
4828 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4829 
4830 	return ip;
4831 }
4832 
4833 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4834 	.is_in_guest		= kvm_is_in_guest,
4835 	.is_user_mode		= kvm_is_user_mode,
4836 	.get_guest_ip		= kvm_get_guest_ip,
4837 };
4838 
4839 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4840 {
4841 	__this_cpu_write(current_vcpu, vcpu);
4842 }
4843 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4844 
4845 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4846 {
4847 	__this_cpu_write(current_vcpu, NULL);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4850 
4851 static void kvm_set_mmio_spte_mask(void)
4852 {
4853 	u64 mask;
4854 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
4855 
4856 	/*
4857 	 * Set the reserved bits and the present bit of an paging-structure
4858 	 * entry to generate page fault with PFER.RSV = 1.
4859 	 */
4860 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4861 	mask |= 1ull;
4862 
4863 #ifdef CONFIG_X86_64
4864 	/*
4865 	 * If reserved bit is not supported, clear the present bit to disable
4866 	 * mmio page fault.
4867 	 */
4868 	if (maxphyaddr == 52)
4869 		mask &= ~1ull;
4870 #endif
4871 
4872 	kvm_mmu_set_mmio_spte_mask(mask);
4873 }
4874 
4875 int kvm_arch_init(void *opaque)
4876 {
4877 	int r;
4878 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4879 
4880 	if (kvm_x86_ops) {
4881 		printk(KERN_ERR "kvm: already loaded the other module\n");
4882 		r = -EEXIST;
4883 		goto out;
4884 	}
4885 
4886 	if (!ops->cpu_has_kvm_support()) {
4887 		printk(KERN_ERR "kvm: no hardware support\n");
4888 		r = -EOPNOTSUPP;
4889 		goto out;
4890 	}
4891 	if (ops->disabled_by_bios()) {
4892 		printk(KERN_ERR "kvm: disabled by bios\n");
4893 		r = -EOPNOTSUPP;
4894 		goto out;
4895 	}
4896 
4897 	r = kvm_mmu_module_init();
4898 	if (r)
4899 		goto out;
4900 
4901 	kvm_set_mmio_spte_mask();
4902 	kvm_init_msr_list();
4903 
4904 	kvm_x86_ops = ops;
4905 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4906 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4907 
4908 	kvm_timer_init();
4909 
4910 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4911 
4912 	if (cpu_has_xsave)
4913 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4914 
4915 	kvm_lapic_init();
4916 	return 0;
4917 
4918 out:
4919 	return r;
4920 }
4921 
4922 void kvm_arch_exit(void)
4923 {
4924 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4925 
4926 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4927 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4928 					    CPUFREQ_TRANSITION_NOTIFIER);
4929 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4930 	kvm_x86_ops = NULL;
4931 	kvm_mmu_module_exit();
4932 }
4933 
4934 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4935 {
4936 	++vcpu->stat.halt_exits;
4937 	if (irqchip_in_kernel(vcpu->kvm)) {
4938 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4939 		return 1;
4940 	} else {
4941 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4942 		return 0;
4943 	}
4944 }
4945 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4946 
4947 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4948 {
4949 	u64 param, ingpa, outgpa, ret;
4950 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4951 	bool fast, longmode;
4952 	int cs_db, cs_l;
4953 
4954 	/*
4955 	 * hypercall generates UD from non zero cpl and real mode
4956 	 * per HYPER-V spec
4957 	 */
4958 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4959 		kvm_queue_exception(vcpu, UD_VECTOR);
4960 		return 0;
4961 	}
4962 
4963 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4964 	longmode = is_long_mode(vcpu) && cs_l == 1;
4965 
4966 	if (!longmode) {
4967 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4968 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4969 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4970 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4971 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4972 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4973 	}
4974 #ifdef CONFIG_X86_64
4975 	else {
4976 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4977 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4978 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4979 	}
4980 #endif
4981 
4982 	code = param & 0xffff;
4983 	fast = (param >> 16) & 0x1;
4984 	rep_cnt = (param >> 32) & 0xfff;
4985 	rep_idx = (param >> 48) & 0xfff;
4986 
4987 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4988 
4989 	switch (code) {
4990 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4991 		kvm_vcpu_on_spin(vcpu);
4992 		break;
4993 	default:
4994 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
4995 		break;
4996 	}
4997 
4998 	ret = res | (((u64)rep_done & 0xfff) << 32);
4999 	if (longmode) {
5000 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5001 	} else {
5002 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5003 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5004 	}
5005 
5006 	return 1;
5007 }
5008 
5009 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5010 {
5011 	unsigned long nr, a0, a1, a2, a3, ret;
5012 	int r = 1;
5013 
5014 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5015 		return kvm_hv_hypercall(vcpu);
5016 
5017 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5018 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5019 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5020 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5021 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5022 
5023 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5024 
5025 	if (!is_long_mode(vcpu)) {
5026 		nr &= 0xFFFFFFFF;
5027 		a0 &= 0xFFFFFFFF;
5028 		a1 &= 0xFFFFFFFF;
5029 		a2 &= 0xFFFFFFFF;
5030 		a3 &= 0xFFFFFFFF;
5031 	}
5032 
5033 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5034 		ret = -KVM_EPERM;
5035 		goto out;
5036 	}
5037 
5038 	switch (nr) {
5039 	case KVM_HC_VAPIC_POLL_IRQ:
5040 		ret = 0;
5041 		break;
5042 	default:
5043 		ret = -KVM_ENOSYS;
5044 		break;
5045 	}
5046 out:
5047 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5048 	++vcpu->stat.hypercalls;
5049 	return r;
5050 }
5051 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5052 
5053 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5054 {
5055 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5056 	char instruction[3];
5057 	unsigned long rip = kvm_rip_read(vcpu);
5058 
5059 	/*
5060 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5061 	 * to ensure that the updated hypercall appears atomically across all
5062 	 * VCPUs.
5063 	 */
5064 	kvm_mmu_zap_all(vcpu->kvm);
5065 
5066 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5067 
5068 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5069 }
5070 
5071 /*
5072  * Check if userspace requested an interrupt window, and that the
5073  * interrupt window is open.
5074  *
5075  * No need to exit to userspace if we already have an interrupt queued.
5076  */
5077 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5078 {
5079 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5080 		vcpu->run->request_interrupt_window &&
5081 		kvm_arch_interrupt_allowed(vcpu));
5082 }
5083 
5084 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5085 {
5086 	struct kvm_run *kvm_run = vcpu->run;
5087 
5088 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5089 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5090 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5091 	if (irqchip_in_kernel(vcpu->kvm))
5092 		kvm_run->ready_for_interrupt_injection = 1;
5093 	else
5094 		kvm_run->ready_for_interrupt_injection =
5095 			kvm_arch_interrupt_allowed(vcpu) &&
5096 			!kvm_cpu_has_interrupt(vcpu) &&
5097 			!kvm_event_needs_reinjection(vcpu);
5098 }
5099 
5100 static void vapic_enter(struct kvm_vcpu *vcpu)
5101 {
5102 	struct kvm_lapic *apic = vcpu->arch.apic;
5103 	struct page *page;
5104 
5105 	if (!apic || !apic->vapic_addr)
5106 		return;
5107 
5108 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5109 
5110 	vcpu->arch.apic->vapic_page = page;
5111 }
5112 
5113 static void vapic_exit(struct kvm_vcpu *vcpu)
5114 {
5115 	struct kvm_lapic *apic = vcpu->arch.apic;
5116 	int idx;
5117 
5118 	if (!apic || !apic->vapic_addr)
5119 		return;
5120 
5121 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5122 	kvm_release_page_dirty(apic->vapic_page);
5123 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5124 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5125 }
5126 
5127 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5128 {
5129 	int max_irr, tpr;
5130 
5131 	if (!kvm_x86_ops->update_cr8_intercept)
5132 		return;
5133 
5134 	if (!vcpu->arch.apic)
5135 		return;
5136 
5137 	if (!vcpu->arch.apic->vapic_addr)
5138 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5139 	else
5140 		max_irr = -1;
5141 
5142 	if (max_irr != -1)
5143 		max_irr >>= 4;
5144 
5145 	tpr = kvm_lapic_get_cr8(vcpu);
5146 
5147 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5148 }
5149 
5150 static void inject_pending_event(struct kvm_vcpu *vcpu)
5151 {
5152 	/* try to reinject previous events if any */
5153 	if (vcpu->arch.exception.pending) {
5154 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5155 					vcpu->arch.exception.has_error_code,
5156 					vcpu->arch.exception.error_code);
5157 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5158 					  vcpu->arch.exception.has_error_code,
5159 					  vcpu->arch.exception.error_code,
5160 					  vcpu->arch.exception.reinject);
5161 		return;
5162 	}
5163 
5164 	if (vcpu->arch.nmi_injected) {
5165 		kvm_x86_ops->set_nmi(vcpu);
5166 		return;
5167 	}
5168 
5169 	if (vcpu->arch.interrupt.pending) {
5170 		kvm_x86_ops->set_irq(vcpu);
5171 		return;
5172 	}
5173 
5174 	/* try to inject new event if pending */
5175 	if (vcpu->arch.nmi_pending) {
5176 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5177 			--vcpu->arch.nmi_pending;
5178 			vcpu->arch.nmi_injected = true;
5179 			kvm_x86_ops->set_nmi(vcpu);
5180 		}
5181 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5182 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5183 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5184 					    false);
5185 			kvm_x86_ops->set_irq(vcpu);
5186 		}
5187 	}
5188 }
5189 
5190 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5191 {
5192 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5193 			!vcpu->guest_xcr0_loaded) {
5194 		/* kvm_set_xcr() also depends on this */
5195 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5196 		vcpu->guest_xcr0_loaded = 1;
5197 	}
5198 }
5199 
5200 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5201 {
5202 	if (vcpu->guest_xcr0_loaded) {
5203 		if (vcpu->arch.xcr0 != host_xcr0)
5204 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5205 		vcpu->guest_xcr0_loaded = 0;
5206 	}
5207 }
5208 
5209 static void process_nmi(struct kvm_vcpu *vcpu)
5210 {
5211 	unsigned limit = 2;
5212 
5213 	/*
5214 	 * x86 is limited to one NMI running, and one NMI pending after it.
5215 	 * If an NMI is already in progress, limit further NMIs to just one.
5216 	 * Otherwise, allow two (and we'll inject the first one immediately).
5217 	 */
5218 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5219 		limit = 1;
5220 
5221 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5222 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5223 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5224 }
5225 
5226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5227 {
5228 	int r;
5229 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5230 		vcpu->run->request_interrupt_window;
5231 	bool req_immediate_exit = 0;
5232 
5233 	if (vcpu->requests) {
5234 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5235 			kvm_mmu_unload(vcpu);
5236 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5237 			__kvm_migrate_timers(vcpu);
5238 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5239 			r = kvm_guest_time_update(vcpu);
5240 			if (unlikely(r))
5241 				goto out;
5242 		}
5243 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5244 			kvm_mmu_sync_roots(vcpu);
5245 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5246 			kvm_x86_ops->tlb_flush(vcpu);
5247 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5248 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5249 			r = 0;
5250 			goto out;
5251 		}
5252 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5253 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5254 			r = 0;
5255 			goto out;
5256 		}
5257 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5258 			vcpu->fpu_active = 0;
5259 			kvm_x86_ops->fpu_deactivate(vcpu);
5260 		}
5261 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5262 			/* Page is swapped out. Do synthetic halt */
5263 			vcpu->arch.apf.halted = true;
5264 			r = 1;
5265 			goto out;
5266 		}
5267 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5268 			record_steal_time(vcpu);
5269 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5270 			process_nmi(vcpu);
5271 		req_immediate_exit =
5272 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5273 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5274 			kvm_handle_pmu_event(vcpu);
5275 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5276 			kvm_deliver_pmi(vcpu);
5277 	}
5278 
5279 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5280 		inject_pending_event(vcpu);
5281 
5282 		/* enable NMI/IRQ window open exits if needed */
5283 		if (vcpu->arch.nmi_pending)
5284 			kvm_x86_ops->enable_nmi_window(vcpu);
5285 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5286 			kvm_x86_ops->enable_irq_window(vcpu);
5287 
5288 		if (kvm_lapic_enabled(vcpu)) {
5289 			update_cr8_intercept(vcpu);
5290 			kvm_lapic_sync_to_vapic(vcpu);
5291 		}
5292 	}
5293 
5294 	r = kvm_mmu_reload(vcpu);
5295 	if (unlikely(r)) {
5296 		goto cancel_injection;
5297 	}
5298 
5299 	preempt_disable();
5300 
5301 	kvm_x86_ops->prepare_guest_switch(vcpu);
5302 	if (vcpu->fpu_active)
5303 		kvm_load_guest_fpu(vcpu);
5304 	kvm_load_guest_xcr0(vcpu);
5305 
5306 	vcpu->mode = IN_GUEST_MODE;
5307 
5308 	/* We should set ->mode before check ->requests,
5309 	 * see the comment in make_all_cpus_request.
5310 	 */
5311 	smp_mb();
5312 
5313 	local_irq_disable();
5314 
5315 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5316 	    || need_resched() || signal_pending(current)) {
5317 		vcpu->mode = OUTSIDE_GUEST_MODE;
5318 		smp_wmb();
5319 		local_irq_enable();
5320 		preempt_enable();
5321 		r = 1;
5322 		goto cancel_injection;
5323 	}
5324 
5325 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5326 
5327 	if (req_immediate_exit)
5328 		smp_send_reschedule(vcpu->cpu);
5329 
5330 	kvm_guest_enter();
5331 
5332 	if (unlikely(vcpu->arch.switch_db_regs)) {
5333 		set_debugreg(0, 7);
5334 		set_debugreg(vcpu->arch.eff_db[0], 0);
5335 		set_debugreg(vcpu->arch.eff_db[1], 1);
5336 		set_debugreg(vcpu->arch.eff_db[2], 2);
5337 		set_debugreg(vcpu->arch.eff_db[3], 3);
5338 	}
5339 
5340 	trace_kvm_entry(vcpu->vcpu_id);
5341 	kvm_x86_ops->run(vcpu);
5342 
5343 	/*
5344 	 * If the guest has used debug registers, at least dr7
5345 	 * will be disabled while returning to the host.
5346 	 * If we don't have active breakpoints in the host, we don't
5347 	 * care about the messed up debug address registers. But if
5348 	 * we have some of them active, restore the old state.
5349 	 */
5350 	if (hw_breakpoint_active())
5351 		hw_breakpoint_restore();
5352 
5353 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5354 
5355 	vcpu->mode = OUTSIDE_GUEST_MODE;
5356 	smp_wmb();
5357 	local_irq_enable();
5358 
5359 	++vcpu->stat.exits;
5360 
5361 	/*
5362 	 * We must have an instruction between local_irq_enable() and
5363 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5364 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5365 	 * But we need to prevent reordering, hence this barrier():
5366 	 */
5367 	barrier();
5368 
5369 	kvm_guest_exit();
5370 
5371 	preempt_enable();
5372 
5373 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5374 
5375 	/*
5376 	 * Profile KVM exit RIPs:
5377 	 */
5378 	if (unlikely(prof_on == KVM_PROFILING)) {
5379 		unsigned long rip = kvm_rip_read(vcpu);
5380 		profile_hit(KVM_PROFILING, (void *)rip);
5381 	}
5382 
5383 	if (unlikely(vcpu->arch.tsc_always_catchup))
5384 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5385 
5386 	if (vcpu->arch.apic_attention)
5387 		kvm_lapic_sync_from_vapic(vcpu);
5388 
5389 	r = kvm_x86_ops->handle_exit(vcpu);
5390 	return r;
5391 
5392 cancel_injection:
5393 	kvm_x86_ops->cancel_injection(vcpu);
5394 	if (unlikely(vcpu->arch.apic_attention))
5395 		kvm_lapic_sync_from_vapic(vcpu);
5396 out:
5397 	return r;
5398 }
5399 
5400 
5401 static int __vcpu_run(struct kvm_vcpu *vcpu)
5402 {
5403 	int r;
5404 	struct kvm *kvm = vcpu->kvm;
5405 
5406 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5407 		pr_debug("vcpu %d received sipi with vector # %x\n",
5408 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5409 		kvm_lapic_reset(vcpu);
5410 		r = kvm_arch_vcpu_reset(vcpu);
5411 		if (r)
5412 			return r;
5413 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5414 	}
5415 
5416 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5417 	vapic_enter(vcpu);
5418 
5419 	r = 1;
5420 	while (r > 0) {
5421 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5422 		    !vcpu->arch.apf.halted)
5423 			r = vcpu_enter_guest(vcpu);
5424 		else {
5425 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5426 			kvm_vcpu_block(vcpu);
5427 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5428 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5429 			{
5430 				switch(vcpu->arch.mp_state) {
5431 				case KVM_MP_STATE_HALTED:
5432 					vcpu->arch.mp_state =
5433 						KVM_MP_STATE_RUNNABLE;
5434 				case KVM_MP_STATE_RUNNABLE:
5435 					vcpu->arch.apf.halted = false;
5436 					break;
5437 				case KVM_MP_STATE_SIPI_RECEIVED:
5438 				default:
5439 					r = -EINTR;
5440 					break;
5441 				}
5442 			}
5443 		}
5444 
5445 		if (r <= 0)
5446 			break;
5447 
5448 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5449 		if (kvm_cpu_has_pending_timer(vcpu))
5450 			kvm_inject_pending_timer_irqs(vcpu);
5451 
5452 		if (dm_request_for_irq_injection(vcpu)) {
5453 			r = -EINTR;
5454 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5455 			++vcpu->stat.request_irq_exits;
5456 		}
5457 
5458 		kvm_check_async_pf_completion(vcpu);
5459 
5460 		if (signal_pending(current)) {
5461 			r = -EINTR;
5462 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5463 			++vcpu->stat.signal_exits;
5464 		}
5465 		if (need_resched()) {
5466 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5467 			kvm_resched(vcpu);
5468 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5469 		}
5470 	}
5471 
5472 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5473 
5474 	vapic_exit(vcpu);
5475 
5476 	return r;
5477 }
5478 
5479 /*
5480  * Implements the following, as a state machine:
5481  *
5482  * read:
5483  *   for each fragment
5484  *     write gpa, len
5485  *     exit
5486  *     copy data
5487  *   execute insn
5488  *
5489  * write:
5490  *   for each fragment
5491  *      write gpa, len
5492  *      copy data
5493  *      exit
5494  */
5495 static int complete_mmio(struct kvm_vcpu *vcpu)
5496 {
5497 	struct kvm_run *run = vcpu->run;
5498 	struct kvm_mmio_fragment *frag;
5499 	int r;
5500 
5501 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5502 		return 1;
5503 
5504 	if (vcpu->mmio_needed) {
5505 		/* Complete previous fragment */
5506 		frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5507 		if (!vcpu->mmio_is_write)
5508 			memcpy(frag->data, run->mmio.data, frag->len);
5509 		if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5510 			vcpu->mmio_needed = 0;
5511 			if (vcpu->mmio_is_write)
5512 				return 1;
5513 			vcpu->mmio_read_completed = 1;
5514 			goto done;
5515 		}
5516 		/* Initiate next fragment */
5517 		++frag;
5518 		run->exit_reason = KVM_EXIT_MMIO;
5519 		run->mmio.phys_addr = frag->gpa;
5520 		if (vcpu->mmio_is_write)
5521 			memcpy(run->mmio.data, frag->data, frag->len);
5522 		run->mmio.len = frag->len;
5523 		run->mmio.is_write = vcpu->mmio_is_write;
5524 		return 0;
5525 
5526 	}
5527 done:
5528 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5529 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5530 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5531 	if (r != EMULATE_DONE)
5532 		return 0;
5533 	return 1;
5534 }
5535 
5536 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5537 {
5538 	int r;
5539 	sigset_t sigsaved;
5540 
5541 	if (!tsk_used_math(current) && init_fpu(current))
5542 		return -ENOMEM;
5543 
5544 	if (vcpu->sigset_active)
5545 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5546 
5547 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5548 		kvm_vcpu_block(vcpu);
5549 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5550 		r = -EAGAIN;
5551 		goto out;
5552 	}
5553 
5554 	/* re-sync apic's tpr */
5555 	if (!irqchip_in_kernel(vcpu->kvm)) {
5556 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5557 			r = -EINVAL;
5558 			goto out;
5559 		}
5560 	}
5561 
5562 	r = complete_mmio(vcpu);
5563 	if (r <= 0)
5564 		goto out;
5565 
5566 	r = __vcpu_run(vcpu);
5567 
5568 out:
5569 	post_kvm_run_save(vcpu);
5570 	if (vcpu->sigset_active)
5571 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5572 
5573 	return r;
5574 }
5575 
5576 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5577 {
5578 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5579 		/*
5580 		 * We are here if userspace calls get_regs() in the middle of
5581 		 * instruction emulation. Registers state needs to be copied
5582 		 * back from emulation context to vcpu. Userspace shouldn't do
5583 		 * that usually, but some bad designed PV devices (vmware
5584 		 * backdoor interface) need this to work
5585 		 */
5586 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5587 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5588 	}
5589 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5590 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5591 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5592 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5593 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5594 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5595 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5596 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5597 #ifdef CONFIG_X86_64
5598 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5599 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5600 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5601 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5602 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5603 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5604 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5605 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5606 #endif
5607 
5608 	regs->rip = kvm_rip_read(vcpu);
5609 	regs->rflags = kvm_get_rflags(vcpu);
5610 
5611 	return 0;
5612 }
5613 
5614 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5615 {
5616 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5617 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5618 
5619 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5620 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5621 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5622 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5623 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5624 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5625 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5626 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5627 #ifdef CONFIG_X86_64
5628 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5629 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5630 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5631 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5632 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5633 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5634 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5635 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5636 #endif
5637 
5638 	kvm_rip_write(vcpu, regs->rip);
5639 	kvm_set_rflags(vcpu, regs->rflags);
5640 
5641 	vcpu->arch.exception.pending = false;
5642 
5643 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5644 
5645 	return 0;
5646 }
5647 
5648 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5649 {
5650 	struct kvm_segment cs;
5651 
5652 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5653 	*db = cs.db;
5654 	*l = cs.l;
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5657 
5658 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5659 				  struct kvm_sregs *sregs)
5660 {
5661 	struct desc_ptr dt;
5662 
5663 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5664 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5665 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5666 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5667 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5668 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5669 
5670 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5671 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5672 
5673 	kvm_x86_ops->get_idt(vcpu, &dt);
5674 	sregs->idt.limit = dt.size;
5675 	sregs->idt.base = dt.address;
5676 	kvm_x86_ops->get_gdt(vcpu, &dt);
5677 	sregs->gdt.limit = dt.size;
5678 	sregs->gdt.base = dt.address;
5679 
5680 	sregs->cr0 = kvm_read_cr0(vcpu);
5681 	sregs->cr2 = vcpu->arch.cr2;
5682 	sregs->cr3 = kvm_read_cr3(vcpu);
5683 	sregs->cr4 = kvm_read_cr4(vcpu);
5684 	sregs->cr8 = kvm_get_cr8(vcpu);
5685 	sregs->efer = vcpu->arch.efer;
5686 	sregs->apic_base = kvm_get_apic_base(vcpu);
5687 
5688 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5689 
5690 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5691 		set_bit(vcpu->arch.interrupt.nr,
5692 			(unsigned long *)sregs->interrupt_bitmap);
5693 
5694 	return 0;
5695 }
5696 
5697 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5698 				    struct kvm_mp_state *mp_state)
5699 {
5700 	mp_state->mp_state = vcpu->arch.mp_state;
5701 	return 0;
5702 }
5703 
5704 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5705 				    struct kvm_mp_state *mp_state)
5706 {
5707 	vcpu->arch.mp_state = mp_state->mp_state;
5708 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5709 	return 0;
5710 }
5711 
5712 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5713 		    int reason, bool has_error_code, u32 error_code)
5714 {
5715 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5716 	int ret;
5717 
5718 	init_emulate_ctxt(vcpu);
5719 
5720 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5721 				   has_error_code, error_code);
5722 
5723 	if (ret)
5724 		return EMULATE_FAIL;
5725 
5726 	kvm_rip_write(vcpu, ctxt->eip);
5727 	kvm_set_rflags(vcpu, ctxt->eflags);
5728 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5729 	return EMULATE_DONE;
5730 }
5731 EXPORT_SYMBOL_GPL(kvm_task_switch);
5732 
5733 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5734 				  struct kvm_sregs *sregs)
5735 {
5736 	int mmu_reset_needed = 0;
5737 	int pending_vec, max_bits, idx;
5738 	struct desc_ptr dt;
5739 
5740 	dt.size = sregs->idt.limit;
5741 	dt.address = sregs->idt.base;
5742 	kvm_x86_ops->set_idt(vcpu, &dt);
5743 	dt.size = sregs->gdt.limit;
5744 	dt.address = sregs->gdt.base;
5745 	kvm_x86_ops->set_gdt(vcpu, &dt);
5746 
5747 	vcpu->arch.cr2 = sregs->cr2;
5748 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5749 	vcpu->arch.cr3 = sregs->cr3;
5750 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5751 
5752 	kvm_set_cr8(vcpu, sregs->cr8);
5753 
5754 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5755 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5756 	kvm_set_apic_base(vcpu, sregs->apic_base);
5757 
5758 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5759 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5760 	vcpu->arch.cr0 = sregs->cr0;
5761 
5762 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5763 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5764 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5765 		kvm_update_cpuid(vcpu);
5766 
5767 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5768 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5769 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5770 		mmu_reset_needed = 1;
5771 	}
5772 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5773 
5774 	if (mmu_reset_needed)
5775 		kvm_mmu_reset_context(vcpu);
5776 
5777 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5778 	pending_vec = find_first_bit(
5779 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5780 	if (pending_vec < max_bits) {
5781 		kvm_queue_interrupt(vcpu, pending_vec, false);
5782 		pr_debug("Set back pending irq %d\n", pending_vec);
5783 	}
5784 
5785 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5786 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5787 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5788 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5789 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5790 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5791 
5792 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5793 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5794 
5795 	update_cr8_intercept(vcpu);
5796 
5797 	/* Older userspace won't unhalt the vcpu on reset. */
5798 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5799 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5800 	    !is_protmode(vcpu))
5801 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5802 
5803 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5804 
5805 	return 0;
5806 }
5807 
5808 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5809 					struct kvm_guest_debug *dbg)
5810 {
5811 	unsigned long rflags;
5812 	int i, r;
5813 
5814 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5815 		r = -EBUSY;
5816 		if (vcpu->arch.exception.pending)
5817 			goto out;
5818 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5819 			kvm_queue_exception(vcpu, DB_VECTOR);
5820 		else
5821 			kvm_queue_exception(vcpu, BP_VECTOR);
5822 	}
5823 
5824 	/*
5825 	 * Read rflags as long as potentially injected trace flags are still
5826 	 * filtered out.
5827 	 */
5828 	rflags = kvm_get_rflags(vcpu);
5829 
5830 	vcpu->guest_debug = dbg->control;
5831 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5832 		vcpu->guest_debug = 0;
5833 
5834 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5835 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5836 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5837 		vcpu->arch.switch_db_regs =
5838 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5839 	} else {
5840 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5841 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5842 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5843 	}
5844 
5845 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5846 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5847 			get_segment_base(vcpu, VCPU_SREG_CS);
5848 
5849 	/*
5850 	 * Trigger an rflags update that will inject or remove the trace
5851 	 * flags.
5852 	 */
5853 	kvm_set_rflags(vcpu, rflags);
5854 
5855 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5856 
5857 	r = 0;
5858 
5859 out:
5860 
5861 	return r;
5862 }
5863 
5864 /*
5865  * Translate a guest virtual address to a guest physical address.
5866  */
5867 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5868 				    struct kvm_translation *tr)
5869 {
5870 	unsigned long vaddr = tr->linear_address;
5871 	gpa_t gpa;
5872 	int idx;
5873 
5874 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5875 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5876 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5877 	tr->physical_address = gpa;
5878 	tr->valid = gpa != UNMAPPED_GVA;
5879 	tr->writeable = 1;
5880 	tr->usermode = 0;
5881 
5882 	return 0;
5883 }
5884 
5885 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5886 {
5887 	struct i387_fxsave_struct *fxsave =
5888 			&vcpu->arch.guest_fpu.state->fxsave;
5889 
5890 	memcpy(fpu->fpr, fxsave->st_space, 128);
5891 	fpu->fcw = fxsave->cwd;
5892 	fpu->fsw = fxsave->swd;
5893 	fpu->ftwx = fxsave->twd;
5894 	fpu->last_opcode = fxsave->fop;
5895 	fpu->last_ip = fxsave->rip;
5896 	fpu->last_dp = fxsave->rdp;
5897 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5898 
5899 	return 0;
5900 }
5901 
5902 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5903 {
5904 	struct i387_fxsave_struct *fxsave =
5905 			&vcpu->arch.guest_fpu.state->fxsave;
5906 
5907 	memcpy(fxsave->st_space, fpu->fpr, 128);
5908 	fxsave->cwd = fpu->fcw;
5909 	fxsave->swd = fpu->fsw;
5910 	fxsave->twd = fpu->ftwx;
5911 	fxsave->fop = fpu->last_opcode;
5912 	fxsave->rip = fpu->last_ip;
5913 	fxsave->rdp = fpu->last_dp;
5914 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5915 
5916 	return 0;
5917 }
5918 
5919 int fx_init(struct kvm_vcpu *vcpu)
5920 {
5921 	int err;
5922 
5923 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5924 	if (err)
5925 		return err;
5926 
5927 	fpu_finit(&vcpu->arch.guest_fpu);
5928 
5929 	/*
5930 	 * Ensure guest xcr0 is valid for loading
5931 	 */
5932 	vcpu->arch.xcr0 = XSTATE_FP;
5933 
5934 	vcpu->arch.cr0 |= X86_CR0_ET;
5935 
5936 	return 0;
5937 }
5938 EXPORT_SYMBOL_GPL(fx_init);
5939 
5940 static void fx_free(struct kvm_vcpu *vcpu)
5941 {
5942 	fpu_free(&vcpu->arch.guest_fpu);
5943 }
5944 
5945 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5946 {
5947 	if (vcpu->guest_fpu_loaded)
5948 		return;
5949 
5950 	/*
5951 	 * Restore all possible states in the guest,
5952 	 * and assume host would use all available bits.
5953 	 * Guest xcr0 would be loaded later.
5954 	 */
5955 	kvm_put_guest_xcr0(vcpu);
5956 	vcpu->guest_fpu_loaded = 1;
5957 	unlazy_fpu(current);
5958 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5959 	trace_kvm_fpu(1);
5960 }
5961 
5962 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5963 {
5964 	kvm_put_guest_xcr0(vcpu);
5965 
5966 	if (!vcpu->guest_fpu_loaded)
5967 		return;
5968 
5969 	vcpu->guest_fpu_loaded = 0;
5970 	fpu_save_init(&vcpu->arch.guest_fpu);
5971 	++vcpu->stat.fpu_reload;
5972 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5973 	trace_kvm_fpu(0);
5974 }
5975 
5976 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5977 {
5978 	kvmclock_reset(vcpu);
5979 
5980 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5981 	fx_free(vcpu);
5982 	kvm_x86_ops->vcpu_free(vcpu);
5983 }
5984 
5985 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5986 						unsigned int id)
5987 {
5988 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5989 		printk_once(KERN_WARNING
5990 		"kvm: SMP vm created on host with unstable TSC; "
5991 		"guest TSC will not be reliable\n");
5992 	return kvm_x86_ops->vcpu_create(kvm, id);
5993 }
5994 
5995 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5996 {
5997 	int r;
5998 
5999 	vcpu->arch.mtrr_state.have_fixed = 1;
6000 	vcpu_load(vcpu);
6001 	r = kvm_arch_vcpu_reset(vcpu);
6002 	if (r == 0)
6003 		r = kvm_mmu_setup(vcpu);
6004 	vcpu_put(vcpu);
6005 
6006 	return r;
6007 }
6008 
6009 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6010 {
6011 	vcpu->arch.apf.msr_val = 0;
6012 
6013 	vcpu_load(vcpu);
6014 	kvm_mmu_unload(vcpu);
6015 	vcpu_put(vcpu);
6016 
6017 	fx_free(vcpu);
6018 	kvm_x86_ops->vcpu_free(vcpu);
6019 }
6020 
6021 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6022 {
6023 	atomic_set(&vcpu->arch.nmi_queued, 0);
6024 	vcpu->arch.nmi_pending = 0;
6025 	vcpu->arch.nmi_injected = false;
6026 
6027 	vcpu->arch.switch_db_regs = 0;
6028 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6029 	vcpu->arch.dr6 = DR6_FIXED_1;
6030 	vcpu->arch.dr7 = DR7_FIXED_1;
6031 
6032 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6033 	vcpu->arch.apf.msr_val = 0;
6034 	vcpu->arch.st.msr_val = 0;
6035 
6036 	kvmclock_reset(vcpu);
6037 
6038 	kvm_clear_async_pf_completion_queue(vcpu);
6039 	kvm_async_pf_hash_reset(vcpu);
6040 	vcpu->arch.apf.halted = false;
6041 
6042 	kvm_pmu_reset(vcpu);
6043 
6044 	return kvm_x86_ops->vcpu_reset(vcpu);
6045 }
6046 
6047 int kvm_arch_hardware_enable(void *garbage)
6048 {
6049 	struct kvm *kvm;
6050 	struct kvm_vcpu *vcpu;
6051 	int i;
6052 	int ret;
6053 	u64 local_tsc;
6054 	u64 max_tsc = 0;
6055 	bool stable, backwards_tsc = false;
6056 
6057 	kvm_shared_msr_cpu_online();
6058 	ret = kvm_x86_ops->hardware_enable(garbage);
6059 	if (ret != 0)
6060 		return ret;
6061 
6062 	local_tsc = native_read_tsc();
6063 	stable = !check_tsc_unstable();
6064 	list_for_each_entry(kvm, &vm_list, vm_list) {
6065 		kvm_for_each_vcpu(i, vcpu, kvm) {
6066 			if (!stable && vcpu->cpu == smp_processor_id())
6067 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6068 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6069 				backwards_tsc = true;
6070 				if (vcpu->arch.last_host_tsc > max_tsc)
6071 					max_tsc = vcpu->arch.last_host_tsc;
6072 			}
6073 		}
6074 	}
6075 
6076 	/*
6077 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6078 	 * platforms that reset TSC during suspend or hibernate actions, but
6079 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6080 	 * detect that condition here, which happens early in CPU bringup,
6081 	 * before any KVM threads can be running.  Unfortunately, we can't
6082 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6083 	 * enough into CPU bringup that we know how much real time has actually
6084 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6085 	 * variables that haven't been updated yet.
6086 	 *
6087 	 * So we simply find the maximum observed TSC above, then record the
6088 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6089 	 * the adjustment will be applied.  Note that we accumulate
6090 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6091 	 * gets a chance to run again.  In the event that no KVM threads get a
6092 	 * chance to run, we will miss the entire elapsed period, as we'll have
6093 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6094 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6095 	 * uniform across all VCPUs (not to mention the scenario is extremely
6096 	 * unlikely). It is possible that a second hibernate recovery happens
6097 	 * much faster than a first, causing the observed TSC here to be
6098 	 * smaller; this would require additional padding adjustment, which is
6099 	 * why we set last_host_tsc to the local tsc observed here.
6100 	 *
6101 	 * N.B. - this code below runs only on platforms with reliable TSC,
6102 	 * as that is the only way backwards_tsc is set above.  Also note
6103 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6104 	 * have the same delta_cyc adjustment applied if backwards_tsc
6105 	 * is detected.  Note further, this adjustment is only done once,
6106 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6107 	 * called multiple times (one for each physical CPU bringup).
6108 	 *
6109 	 * Platforms with unreliable TSCs don't have to deal with this, they
6110 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6111 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6112 	 * guarantee that they stay in perfect synchronization.
6113 	 */
6114 	if (backwards_tsc) {
6115 		u64 delta_cyc = max_tsc - local_tsc;
6116 		list_for_each_entry(kvm, &vm_list, vm_list) {
6117 			kvm_for_each_vcpu(i, vcpu, kvm) {
6118 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6119 				vcpu->arch.last_host_tsc = local_tsc;
6120 			}
6121 
6122 			/*
6123 			 * We have to disable TSC offset matching.. if you were
6124 			 * booting a VM while issuing an S4 host suspend....
6125 			 * you may have some problem.  Solving this issue is
6126 			 * left as an exercise to the reader.
6127 			 */
6128 			kvm->arch.last_tsc_nsec = 0;
6129 			kvm->arch.last_tsc_write = 0;
6130 		}
6131 
6132 	}
6133 	return 0;
6134 }
6135 
6136 void kvm_arch_hardware_disable(void *garbage)
6137 {
6138 	kvm_x86_ops->hardware_disable(garbage);
6139 	drop_user_return_notifiers(garbage);
6140 }
6141 
6142 int kvm_arch_hardware_setup(void)
6143 {
6144 	return kvm_x86_ops->hardware_setup();
6145 }
6146 
6147 void kvm_arch_hardware_unsetup(void)
6148 {
6149 	kvm_x86_ops->hardware_unsetup();
6150 }
6151 
6152 void kvm_arch_check_processor_compat(void *rtn)
6153 {
6154 	kvm_x86_ops->check_processor_compatibility(rtn);
6155 }
6156 
6157 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6158 {
6159 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6160 }
6161 
6162 struct static_key kvm_no_apic_vcpu __read_mostly;
6163 
6164 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6165 {
6166 	struct page *page;
6167 	struct kvm *kvm;
6168 	int r;
6169 
6170 	BUG_ON(vcpu->kvm == NULL);
6171 	kvm = vcpu->kvm;
6172 
6173 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6174 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6175 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6176 	else
6177 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6178 
6179 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6180 	if (!page) {
6181 		r = -ENOMEM;
6182 		goto fail;
6183 	}
6184 	vcpu->arch.pio_data = page_address(page);
6185 
6186 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6187 
6188 	r = kvm_mmu_create(vcpu);
6189 	if (r < 0)
6190 		goto fail_free_pio_data;
6191 
6192 	if (irqchip_in_kernel(kvm)) {
6193 		r = kvm_create_lapic(vcpu);
6194 		if (r < 0)
6195 			goto fail_mmu_destroy;
6196 	} else
6197 		static_key_slow_inc(&kvm_no_apic_vcpu);
6198 
6199 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6200 				       GFP_KERNEL);
6201 	if (!vcpu->arch.mce_banks) {
6202 		r = -ENOMEM;
6203 		goto fail_free_lapic;
6204 	}
6205 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6206 
6207 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6208 		goto fail_free_mce_banks;
6209 
6210 	kvm_async_pf_hash_reset(vcpu);
6211 	kvm_pmu_init(vcpu);
6212 
6213 	return 0;
6214 fail_free_mce_banks:
6215 	kfree(vcpu->arch.mce_banks);
6216 fail_free_lapic:
6217 	kvm_free_lapic(vcpu);
6218 fail_mmu_destroy:
6219 	kvm_mmu_destroy(vcpu);
6220 fail_free_pio_data:
6221 	free_page((unsigned long)vcpu->arch.pio_data);
6222 fail:
6223 	return r;
6224 }
6225 
6226 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6227 {
6228 	int idx;
6229 
6230 	kvm_pmu_destroy(vcpu);
6231 	kfree(vcpu->arch.mce_banks);
6232 	kvm_free_lapic(vcpu);
6233 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6234 	kvm_mmu_destroy(vcpu);
6235 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6236 	free_page((unsigned long)vcpu->arch.pio_data);
6237 	if (!irqchip_in_kernel(vcpu->kvm))
6238 		static_key_slow_dec(&kvm_no_apic_vcpu);
6239 }
6240 
6241 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6242 {
6243 	if (type)
6244 		return -EINVAL;
6245 
6246 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6247 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6248 
6249 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6250 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6251 
6252 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6253 
6254 	return 0;
6255 }
6256 
6257 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6258 {
6259 	vcpu_load(vcpu);
6260 	kvm_mmu_unload(vcpu);
6261 	vcpu_put(vcpu);
6262 }
6263 
6264 static void kvm_free_vcpus(struct kvm *kvm)
6265 {
6266 	unsigned int i;
6267 	struct kvm_vcpu *vcpu;
6268 
6269 	/*
6270 	 * Unpin any mmu pages first.
6271 	 */
6272 	kvm_for_each_vcpu(i, vcpu, kvm) {
6273 		kvm_clear_async_pf_completion_queue(vcpu);
6274 		kvm_unload_vcpu_mmu(vcpu);
6275 	}
6276 	kvm_for_each_vcpu(i, vcpu, kvm)
6277 		kvm_arch_vcpu_free(vcpu);
6278 
6279 	mutex_lock(&kvm->lock);
6280 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6281 		kvm->vcpus[i] = NULL;
6282 
6283 	atomic_set(&kvm->online_vcpus, 0);
6284 	mutex_unlock(&kvm->lock);
6285 }
6286 
6287 void kvm_arch_sync_events(struct kvm *kvm)
6288 {
6289 	kvm_free_all_assigned_devices(kvm);
6290 	kvm_free_pit(kvm);
6291 }
6292 
6293 void kvm_arch_destroy_vm(struct kvm *kvm)
6294 {
6295 	kvm_iommu_unmap_guest(kvm);
6296 	kfree(kvm->arch.vpic);
6297 	kfree(kvm->arch.vioapic);
6298 	kvm_free_vcpus(kvm);
6299 	if (kvm->arch.apic_access_page)
6300 		put_page(kvm->arch.apic_access_page);
6301 	if (kvm->arch.ept_identity_pagetable)
6302 		put_page(kvm->arch.ept_identity_pagetable);
6303 }
6304 
6305 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6306 			   struct kvm_memory_slot *dont)
6307 {
6308 	int i;
6309 
6310 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6311 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6312 			kvm_kvfree(free->arch.rmap[i]);
6313 			free->arch.rmap[i] = NULL;
6314 		}
6315 		if (i == 0)
6316 			continue;
6317 
6318 		if (!dont || free->arch.lpage_info[i - 1] !=
6319 			     dont->arch.lpage_info[i - 1]) {
6320 			kvm_kvfree(free->arch.lpage_info[i - 1]);
6321 			free->arch.lpage_info[i - 1] = NULL;
6322 		}
6323 	}
6324 }
6325 
6326 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6327 {
6328 	int i;
6329 
6330 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6331 		unsigned long ugfn;
6332 		int lpages;
6333 		int level = i + 1;
6334 
6335 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6336 				      slot->base_gfn, level) + 1;
6337 
6338 		slot->arch.rmap[i] =
6339 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6340 		if (!slot->arch.rmap[i])
6341 			goto out_free;
6342 		if (i == 0)
6343 			continue;
6344 
6345 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6346 					sizeof(*slot->arch.lpage_info[i - 1]));
6347 		if (!slot->arch.lpage_info[i - 1])
6348 			goto out_free;
6349 
6350 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6351 			slot->arch.lpage_info[i - 1][0].write_count = 1;
6352 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6353 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6354 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6355 		/*
6356 		 * If the gfn and userspace address are not aligned wrt each
6357 		 * other, or if explicitly asked to, disable large page
6358 		 * support for this slot
6359 		 */
6360 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6361 		    !kvm_largepages_enabled()) {
6362 			unsigned long j;
6363 
6364 			for (j = 0; j < lpages; ++j)
6365 				slot->arch.lpage_info[i - 1][j].write_count = 1;
6366 		}
6367 	}
6368 
6369 	return 0;
6370 
6371 out_free:
6372 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6373 		kvm_kvfree(slot->arch.rmap[i]);
6374 		slot->arch.rmap[i] = NULL;
6375 		if (i == 0)
6376 			continue;
6377 
6378 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
6379 		slot->arch.lpage_info[i - 1] = NULL;
6380 	}
6381 	return -ENOMEM;
6382 }
6383 
6384 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6385 				struct kvm_memory_slot *memslot,
6386 				struct kvm_memory_slot old,
6387 				struct kvm_userspace_memory_region *mem,
6388 				int user_alloc)
6389 {
6390 	int npages = memslot->npages;
6391 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6392 
6393 	/* Prevent internal slot pages from being moved by fork()/COW. */
6394 	if (memslot->id >= KVM_MEMORY_SLOTS)
6395 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6396 
6397 	/*To keep backward compatibility with older userspace,
6398 	 *x86 needs to handle !user_alloc case.
6399 	 */
6400 	if (!user_alloc) {
6401 		if (npages && !old.npages) {
6402 			unsigned long userspace_addr;
6403 
6404 			userspace_addr = vm_mmap(NULL, 0,
6405 						 npages * PAGE_SIZE,
6406 						 PROT_READ | PROT_WRITE,
6407 						 map_flags,
6408 						 0);
6409 
6410 			if (IS_ERR((void *)userspace_addr))
6411 				return PTR_ERR((void *)userspace_addr);
6412 
6413 			memslot->userspace_addr = userspace_addr;
6414 		}
6415 	}
6416 
6417 
6418 	return 0;
6419 }
6420 
6421 void kvm_arch_commit_memory_region(struct kvm *kvm,
6422 				struct kvm_userspace_memory_region *mem,
6423 				struct kvm_memory_slot old,
6424 				int user_alloc)
6425 {
6426 
6427 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6428 
6429 	if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6430 		int ret;
6431 
6432 		ret = vm_munmap(old.userspace_addr,
6433 				old.npages * PAGE_SIZE);
6434 		if (ret < 0)
6435 			printk(KERN_WARNING
6436 			       "kvm_vm_ioctl_set_memory_region: "
6437 			       "failed to munmap memory\n");
6438 	}
6439 
6440 	if (!kvm->arch.n_requested_mmu_pages)
6441 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6442 
6443 	spin_lock(&kvm->mmu_lock);
6444 	if (nr_mmu_pages)
6445 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6446 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6447 	spin_unlock(&kvm->mmu_lock);
6448 }
6449 
6450 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6451 {
6452 	kvm_mmu_zap_all(kvm);
6453 	kvm_reload_remote_mmus(kvm);
6454 }
6455 
6456 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6457 				   struct kvm_memory_slot *slot)
6458 {
6459 	kvm_arch_flush_shadow_all(kvm);
6460 }
6461 
6462 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6463 {
6464 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6465 		!vcpu->arch.apf.halted)
6466 		|| !list_empty_careful(&vcpu->async_pf.done)
6467 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6468 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6469 		(kvm_arch_interrupt_allowed(vcpu) &&
6470 		 kvm_cpu_has_interrupt(vcpu));
6471 }
6472 
6473 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6474 {
6475 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6476 }
6477 
6478 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6479 {
6480 	return kvm_x86_ops->interrupt_allowed(vcpu);
6481 }
6482 
6483 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6484 {
6485 	unsigned long current_rip = kvm_rip_read(vcpu) +
6486 		get_segment_base(vcpu, VCPU_SREG_CS);
6487 
6488 	return current_rip == linear_rip;
6489 }
6490 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6491 
6492 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6493 {
6494 	unsigned long rflags;
6495 
6496 	rflags = kvm_x86_ops->get_rflags(vcpu);
6497 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6498 		rflags &= ~X86_EFLAGS_TF;
6499 	return rflags;
6500 }
6501 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6502 
6503 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6504 {
6505 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6506 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6507 		rflags |= X86_EFLAGS_TF;
6508 	kvm_x86_ops->set_rflags(vcpu, rflags);
6509 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6510 }
6511 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6512 
6513 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6514 {
6515 	int r;
6516 
6517 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6518 	      is_error_page(work->page))
6519 		return;
6520 
6521 	r = kvm_mmu_reload(vcpu);
6522 	if (unlikely(r))
6523 		return;
6524 
6525 	if (!vcpu->arch.mmu.direct_map &&
6526 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6527 		return;
6528 
6529 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6530 }
6531 
6532 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6533 {
6534 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6535 }
6536 
6537 static inline u32 kvm_async_pf_next_probe(u32 key)
6538 {
6539 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6540 }
6541 
6542 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6543 {
6544 	u32 key = kvm_async_pf_hash_fn(gfn);
6545 
6546 	while (vcpu->arch.apf.gfns[key] != ~0)
6547 		key = kvm_async_pf_next_probe(key);
6548 
6549 	vcpu->arch.apf.gfns[key] = gfn;
6550 }
6551 
6552 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6553 {
6554 	int i;
6555 	u32 key = kvm_async_pf_hash_fn(gfn);
6556 
6557 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6558 		     (vcpu->arch.apf.gfns[key] != gfn &&
6559 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6560 		key = kvm_async_pf_next_probe(key);
6561 
6562 	return key;
6563 }
6564 
6565 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6566 {
6567 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6568 }
6569 
6570 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6571 {
6572 	u32 i, j, k;
6573 
6574 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6575 	while (true) {
6576 		vcpu->arch.apf.gfns[i] = ~0;
6577 		do {
6578 			j = kvm_async_pf_next_probe(j);
6579 			if (vcpu->arch.apf.gfns[j] == ~0)
6580 				return;
6581 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6582 			/*
6583 			 * k lies cyclically in ]i,j]
6584 			 * |    i.k.j |
6585 			 * |....j i.k.| or  |.k..j i...|
6586 			 */
6587 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6588 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6589 		i = j;
6590 	}
6591 }
6592 
6593 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6594 {
6595 
6596 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6597 				      sizeof(val));
6598 }
6599 
6600 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6601 				     struct kvm_async_pf *work)
6602 {
6603 	struct x86_exception fault;
6604 
6605 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6606 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6607 
6608 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6609 	    (vcpu->arch.apf.send_user_only &&
6610 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6611 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6612 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6613 		fault.vector = PF_VECTOR;
6614 		fault.error_code_valid = true;
6615 		fault.error_code = 0;
6616 		fault.nested_page_fault = false;
6617 		fault.address = work->arch.token;
6618 		kvm_inject_page_fault(vcpu, &fault);
6619 	}
6620 }
6621 
6622 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6623 				 struct kvm_async_pf *work)
6624 {
6625 	struct x86_exception fault;
6626 
6627 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6628 	if (is_error_page(work->page))
6629 		work->arch.token = ~0; /* broadcast wakeup */
6630 	else
6631 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6632 
6633 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6634 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6635 		fault.vector = PF_VECTOR;
6636 		fault.error_code_valid = true;
6637 		fault.error_code = 0;
6638 		fault.nested_page_fault = false;
6639 		fault.address = work->arch.token;
6640 		kvm_inject_page_fault(vcpu, &fault);
6641 	}
6642 	vcpu->arch.apf.halted = false;
6643 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6644 }
6645 
6646 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6647 {
6648 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6649 		return true;
6650 	else
6651 		return !kvm_event_needs_reinjection(vcpu) &&
6652 			kvm_x86_ops->interrupt_allowed(vcpu);
6653 }
6654 
6655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6667