1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 101 static u32 tsc_tolerance_ppm = 250; 102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 103 104 #define KVM_NR_SHARED_MSRS 16 105 106 struct kvm_shared_msrs_global { 107 int nr; 108 u32 msrs[KVM_NR_SHARED_MSRS]; 109 }; 110 111 struct kvm_shared_msrs { 112 struct user_return_notifier urn; 113 bool registered; 114 struct kvm_shared_msr_values { 115 u64 host; 116 u64 curr; 117 } values[KVM_NR_SHARED_MSRS]; 118 }; 119 120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 122 123 struct kvm_stats_debugfs_item debugfs_entries[] = { 124 { "pf_fixed", VCPU_STAT(pf_fixed) }, 125 { "pf_guest", VCPU_STAT(pf_guest) }, 126 { "tlb_flush", VCPU_STAT(tlb_flush) }, 127 { "invlpg", VCPU_STAT(invlpg) }, 128 { "exits", VCPU_STAT(exits) }, 129 { "io_exits", VCPU_STAT(io_exits) }, 130 { "mmio_exits", VCPU_STAT(mmio_exits) }, 131 { "signal_exits", VCPU_STAT(signal_exits) }, 132 { "irq_window", VCPU_STAT(irq_window_exits) }, 133 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 134 { "halt_exits", VCPU_STAT(halt_exits) }, 135 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 136 { "hypercalls", VCPU_STAT(hypercalls) }, 137 { "request_irq", VCPU_STAT(request_irq_exits) }, 138 { "irq_exits", VCPU_STAT(irq_exits) }, 139 { "host_state_reload", VCPU_STAT(host_state_reload) }, 140 { "efer_reload", VCPU_STAT(efer_reload) }, 141 { "fpu_reload", VCPU_STAT(fpu_reload) }, 142 { "insn_emulation", VCPU_STAT(insn_emulation) }, 143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 144 { "irq_injections", VCPU_STAT(irq_injections) }, 145 { "nmi_injections", VCPU_STAT(nmi_injections) }, 146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 147 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 150 { "mmu_flooded", VM_STAT(mmu_flooded) }, 151 { "mmu_recycled", VM_STAT(mmu_recycled) }, 152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 153 { "mmu_unsync", VM_STAT(mmu_unsync) }, 154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 155 { "largepages", VM_STAT(lpages) }, 156 { NULL } 157 }; 158 159 u64 __read_mostly host_xcr0; 160 161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 162 163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 167 vcpu->arch.apf.gfns[i] = ~0; 168 } 169 170 static void kvm_on_user_return(struct user_return_notifier *urn) 171 { 172 unsigned slot; 173 struct kvm_shared_msrs *locals 174 = container_of(urn, struct kvm_shared_msrs, urn); 175 struct kvm_shared_msr_values *values; 176 177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 178 values = &locals->values[slot]; 179 if (values->host != values->curr) { 180 wrmsrl(shared_msrs_global.msrs[slot], values->host); 181 values->curr = values->host; 182 } 183 } 184 locals->registered = false; 185 user_return_notifier_unregister(urn); 186 } 187 188 static void shared_msr_update(unsigned slot, u32 msr) 189 { 190 struct kvm_shared_msrs *smsr; 191 u64 value; 192 193 smsr = &__get_cpu_var(shared_msrs); 194 /* only read, and nobody should modify it at this time, 195 * so don't need lock */ 196 if (slot >= shared_msrs_global.nr) { 197 printk(KERN_ERR "kvm: invalid MSR slot!"); 198 return; 199 } 200 rdmsrl_safe(msr, &value); 201 smsr->values[slot].host = value; 202 smsr->values[slot].curr = value; 203 } 204 205 void kvm_define_shared_msr(unsigned slot, u32 msr) 206 { 207 if (slot >= shared_msrs_global.nr) 208 shared_msrs_global.nr = slot + 1; 209 shared_msrs_global.msrs[slot] = msr; 210 /* we need ensured the shared_msr_global have been updated */ 211 smp_wmb(); 212 } 213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 214 215 static void kvm_shared_msr_cpu_online(void) 216 { 217 unsigned i; 218 219 for (i = 0; i < shared_msrs_global.nr; ++i) 220 shared_msr_update(i, shared_msrs_global.msrs[i]); 221 } 222 223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 224 { 225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 226 227 if (((value ^ smsr->values[slot].curr) & mask) == 0) 228 return; 229 smsr->values[slot].curr = value; 230 wrmsrl(shared_msrs_global.msrs[slot], value); 231 if (!smsr->registered) { 232 smsr->urn.on_user_return = kvm_on_user_return; 233 user_return_notifier_register(&smsr->urn); 234 smsr->registered = true; 235 } 236 } 237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 238 239 static void drop_user_return_notifiers(void *ignore) 240 { 241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 242 243 if (smsr->registered) 244 kvm_on_user_return(&smsr->urn); 245 } 246 247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 248 { 249 return vcpu->arch.apic_base; 250 } 251 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 252 253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 254 { 255 /* TODO: reserve bits check */ 256 kvm_lapic_set_base(vcpu, data); 257 } 258 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 259 260 #define EXCPT_BENIGN 0 261 #define EXCPT_CONTRIBUTORY 1 262 #define EXCPT_PF 2 263 264 static int exception_class(int vector) 265 { 266 switch (vector) { 267 case PF_VECTOR: 268 return EXCPT_PF; 269 case DE_VECTOR: 270 case TS_VECTOR: 271 case NP_VECTOR: 272 case SS_VECTOR: 273 case GP_VECTOR: 274 return EXCPT_CONTRIBUTORY; 275 default: 276 break; 277 } 278 return EXCPT_BENIGN; 279 } 280 281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 282 unsigned nr, bool has_error, u32 error_code, 283 bool reinject) 284 { 285 u32 prev_nr; 286 int class1, class2; 287 288 kvm_make_request(KVM_REQ_EVENT, vcpu); 289 290 if (!vcpu->arch.exception.pending) { 291 queue: 292 vcpu->arch.exception.pending = true; 293 vcpu->arch.exception.has_error_code = has_error; 294 vcpu->arch.exception.nr = nr; 295 vcpu->arch.exception.error_code = error_code; 296 vcpu->arch.exception.reinject = reinject; 297 return; 298 } 299 300 /* to check exception */ 301 prev_nr = vcpu->arch.exception.nr; 302 if (prev_nr == DF_VECTOR) { 303 /* triple fault -> shutdown */ 304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 305 return; 306 } 307 class1 = exception_class(prev_nr); 308 class2 = exception_class(nr); 309 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 310 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 311 /* generate double fault per SDM Table 5-5 */ 312 vcpu->arch.exception.pending = true; 313 vcpu->arch.exception.has_error_code = true; 314 vcpu->arch.exception.nr = DF_VECTOR; 315 vcpu->arch.exception.error_code = 0; 316 } else 317 /* replace previous exception with a new one in a hope 318 that instruction re-execution will regenerate lost 319 exception */ 320 goto queue; 321 } 322 323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 324 { 325 kvm_multiple_exception(vcpu, nr, false, 0, false); 326 } 327 EXPORT_SYMBOL_GPL(kvm_queue_exception); 328 329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, true); 332 } 333 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 334 335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 336 { 337 if (err) 338 kvm_inject_gp(vcpu, 0); 339 else 340 kvm_x86_ops->skip_emulated_instruction(vcpu); 341 } 342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 343 344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 345 { 346 ++vcpu->stat.pf_guest; 347 vcpu->arch.cr2 = fault->address; 348 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 349 } 350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 351 352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 353 { 354 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 355 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 356 else 357 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 358 } 359 360 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 361 { 362 atomic_inc(&vcpu->arch.nmi_queued); 363 kvm_make_request(KVM_REQ_NMI, vcpu); 364 } 365 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 366 367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 368 { 369 kvm_multiple_exception(vcpu, nr, true, error_code, false); 370 } 371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 372 373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, true); 376 } 377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 378 379 /* 380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 381 * a #GP and return false. 382 */ 383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 384 { 385 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 386 return true; 387 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 388 return false; 389 } 390 EXPORT_SYMBOL_GPL(kvm_require_cpl); 391 392 /* 393 * This function will be used to read from the physical memory of the currently 394 * running guest. The difference to kvm_read_guest_page is that this function 395 * can read from guest physical or from the guest's guest physical memory. 396 */ 397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 398 gfn_t ngfn, void *data, int offset, int len, 399 u32 access) 400 { 401 gfn_t real_gfn; 402 gpa_t ngpa; 403 404 ngpa = gfn_to_gpa(ngfn); 405 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 406 if (real_gfn == UNMAPPED_GVA) 407 return -EFAULT; 408 409 real_gfn = gpa_to_gfn(real_gfn); 410 411 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 412 } 413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 414 415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 416 void *data, int offset, int len, u32 access) 417 { 418 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 419 data, offset, len, access); 420 } 421 422 /* 423 * Load the pae pdptrs. Return true is they are all valid. 424 */ 425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 426 { 427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 429 int i; 430 int ret; 431 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 432 433 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 434 offset * sizeof(u64), sizeof(pdpte), 435 PFERR_USER_MASK|PFERR_WRITE_MASK); 436 if (ret < 0) { 437 ret = 0; 438 goto out; 439 } 440 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 441 if (is_present_gpte(pdpte[i]) && 442 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 443 ret = 0; 444 goto out; 445 } 446 } 447 ret = 1; 448 449 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 450 __set_bit(VCPU_EXREG_PDPTR, 451 (unsigned long *)&vcpu->arch.regs_avail); 452 __set_bit(VCPU_EXREG_PDPTR, 453 (unsigned long *)&vcpu->arch.regs_dirty); 454 out: 455 456 return ret; 457 } 458 EXPORT_SYMBOL_GPL(load_pdptrs); 459 460 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 461 { 462 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 463 bool changed = true; 464 int offset; 465 gfn_t gfn; 466 int r; 467 468 if (is_long_mode(vcpu) || !is_pae(vcpu)) 469 return false; 470 471 if (!test_bit(VCPU_EXREG_PDPTR, 472 (unsigned long *)&vcpu->arch.regs_avail)) 473 return true; 474 475 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 476 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 477 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 478 PFERR_USER_MASK | PFERR_WRITE_MASK); 479 if (r < 0) 480 goto out; 481 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 482 out: 483 484 return changed; 485 } 486 487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 488 { 489 unsigned long old_cr0 = kvm_read_cr0(vcpu); 490 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 491 X86_CR0_CD | X86_CR0_NW; 492 493 cr0 |= X86_CR0_ET; 494 495 #ifdef CONFIG_X86_64 496 if (cr0 & 0xffffffff00000000UL) 497 return 1; 498 #endif 499 500 cr0 &= ~CR0_RESERVED_BITS; 501 502 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 503 return 1; 504 505 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 506 return 1; 507 508 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 509 #ifdef CONFIG_X86_64 510 if ((vcpu->arch.efer & EFER_LME)) { 511 int cs_db, cs_l; 512 513 if (!is_pae(vcpu)) 514 return 1; 515 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 516 if (cs_l) 517 return 1; 518 } else 519 #endif 520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 521 kvm_read_cr3(vcpu))) 522 return 1; 523 } 524 525 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 526 return 1; 527 528 kvm_x86_ops->set_cr0(vcpu, cr0); 529 530 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 531 kvm_clear_async_pf_completion_queue(vcpu); 532 kvm_async_pf_hash_reset(vcpu); 533 } 534 535 if ((cr0 ^ old_cr0) & update_bits) 536 kvm_mmu_reset_context(vcpu); 537 return 0; 538 } 539 EXPORT_SYMBOL_GPL(kvm_set_cr0); 540 541 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 542 { 543 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 544 } 545 EXPORT_SYMBOL_GPL(kvm_lmsw); 546 547 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 548 { 549 u64 xcr0; 550 551 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 552 if (index != XCR_XFEATURE_ENABLED_MASK) 553 return 1; 554 xcr0 = xcr; 555 if (kvm_x86_ops->get_cpl(vcpu) != 0) 556 return 1; 557 if (!(xcr0 & XSTATE_FP)) 558 return 1; 559 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 560 return 1; 561 if (xcr0 & ~host_xcr0) 562 return 1; 563 vcpu->arch.xcr0 = xcr0; 564 vcpu->guest_xcr0_loaded = 0; 565 return 0; 566 } 567 568 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 569 { 570 if (__kvm_set_xcr(vcpu, index, xcr)) { 571 kvm_inject_gp(vcpu, 0); 572 return 1; 573 } 574 return 0; 575 } 576 EXPORT_SYMBOL_GPL(kvm_set_xcr); 577 578 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 579 { 580 unsigned long old_cr4 = kvm_read_cr4(vcpu); 581 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 582 X86_CR4_PAE | X86_CR4_SMEP; 583 if (cr4 & CR4_RESERVED_BITS) 584 return 1; 585 586 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 587 return 1; 588 589 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 590 return 1; 591 592 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 593 return 1; 594 595 if (is_long_mode(vcpu)) { 596 if (!(cr4 & X86_CR4_PAE)) 597 return 1; 598 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 599 && ((cr4 ^ old_cr4) & pdptr_bits) 600 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 601 kvm_read_cr3(vcpu))) 602 return 1; 603 604 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 605 if (!guest_cpuid_has_pcid(vcpu)) 606 return 1; 607 608 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 609 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 610 return 1; 611 } 612 613 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 614 return 1; 615 616 if (((cr4 ^ old_cr4) & pdptr_bits) || 617 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 618 kvm_mmu_reset_context(vcpu); 619 620 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 621 kvm_update_cpuid(vcpu); 622 623 return 0; 624 } 625 EXPORT_SYMBOL_GPL(kvm_set_cr4); 626 627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 628 { 629 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 630 kvm_mmu_sync_roots(vcpu); 631 kvm_mmu_flush_tlb(vcpu); 632 return 0; 633 } 634 635 if (is_long_mode(vcpu)) { 636 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) { 637 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 638 return 1; 639 } else 640 if (cr3 & CR3_L_MODE_RESERVED_BITS) 641 return 1; 642 } else { 643 if (is_pae(vcpu)) { 644 if (cr3 & CR3_PAE_RESERVED_BITS) 645 return 1; 646 if (is_paging(vcpu) && 647 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 648 return 1; 649 } 650 /* 651 * We don't check reserved bits in nonpae mode, because 652 * this isn't enforced, and VMware depends on this. 653 */ 654 } 655 656 /* 657 * Does the new cr3 value map to physical memory? (Note, we 658 * catch an invalid cr3 even in real-mode, because it would 659 * cause trouble later on when we turn on paging anyway.) 660 * 661 * A real CPU would silently accept an invalid cr3 and would 662 * attempt to use it - with largely undefined (and often hard 663 * to debug) behavior on the guest side. 664 */ 665 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 666 return 1; 667 vcpu->arch.cr3 = cr3; 668 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 669 vcpu->arch.mmu.new_cr3(vcpu); 670 return 0; 671 } 672 EXPORT_SYMBOL_GPL(kvm_set_cr3); 673 674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 675 { 676 if (cr8 & CR8_RESERVED_BITS) 677 return 1; 678 if (irqchip_in_kernel(vcpu->kvm)) 679 kvm_lapic_set_tpr(vcpu, cr8); 680 else 681 vcpu->arch.cr8 = cr8; 682 return 0; 683 } 684 EXPORT_SYMBOL_GPL(kvm_set_cr8); 685 686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 687 { 688 if (irqchip_in_kernel(vcpu->kvm)) 689 return kvm_lapic_get_cr8(vcpu); 690 else 691 return vcpu->arch.cr8; 692 } 693 EXPORT_SYMBOL_GPL(kvm_get_cr8); 694 695 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 696 { 697 switch (dr) { 698 case 0 ... 3: 699 vcpu->arch.db[dr] = val; 700 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 701 vcpu->arch.eff_db[dr] = val; 702 break; 703 case 4: 704 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 705 return 1; /* #UD */ 706 /* fall through */ 707 case 6: 708 if (val & 0xffffffff00000000ULL) 709 return -1; /* #GP */ 710 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 711 break; 712 case 5: 713 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 714 return 1; /* #UD */ 715 /* fall through */ 716 default: /* 7 */ 717 if (val & 0xffffffff00000000ULL) 718 return -1; /* #GP */ 719 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 720 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 721 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); 722 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); 723 } 724 break; 725 } 726 727 return 0; 728 } 729 730 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 731 { 732 int res; 733 734 res = __kvm_set_dr(vcpu, dr, val); 735 if (res > 0) 736 kvm_queue_exception(vcpu, UD_VECTOR); 737 else if (res < 0) 738 kvm_inject_gp(vcpu, 0); 739 740 return res; 741 } 742 EXPORT_SYMBOL_GPL(kvm_set_dr); 743 744 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 745 { 746 switch (dr) { 747 case 0 ... 3: 748 *val = vcpu->arch.db[dr]; 749 break; 750 case 4: 751 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 752 return 1; 753 /* fall through */ 754 case 6: 755 *val = vcpu->arch.dr6; 756 break; 757 case 5: 758 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 759 return 1; 760 /* fall through */ 761 default: /* 7 */ 762 *val = vcpu->arch.dr7; 763 break; 764 } 765 766 return 0; 767 } 768 769 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 770 { 771 if (_kvm_get_dr(vcpu, dr, val)) { 772 kvm_queue_exception(vcpu, UD_VECTOR); 773 return 1; 774 } 775 return 0; 776 } 777 EXPORT_SYMBOL_GPL(kvm_get_dr); 778 779 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 780 { 781 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 782 u64 data; 783 int err; 784 785 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 786 if (err) 787 return err; 788 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 789 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 790 return err; 791 } 792 EXPORT_SYMBOL_GPL(kvm_rdpmc); 793 794 /* 795 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 796 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 797 * 798 * This list is modified at module load time to reflect the 799 * capabilities of the host cpu. This capabilities test skips MSRs that are 800 * kvm-specific. Those are put in the beginning of the list. 801 */ 802 803 #define KVM_SAVE_MSRS_BEGIN 10 804 static u32 msrs_to_save[] = { 805 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 806 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 807 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 808 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 809 MSR_KVM_PV_EOI_EN, 810 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 811 MSR_STAR, 812 #ifdef CONFIG_X86_64 813 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 814 #endif 815 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 816 }; 817 818 static unsigned num_msrs_to_save; 819 820 static const u32 emulated_msrs[] = { 821 MSR_IA32_TSCDEADLINE, 822 MSR_IA32_MISC_ENABLE, 823 MSR_IA32_MCG_STATUS, 824 MSR_IA32_MCG_CTL, 825 }; 826 827 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 828 { 829 u64 old_efer = vcpu->arch.efer; 830 831 if (efer & efer_reserved_bits) 832 return 1; 833 834 if (is_paging(vcpu) 835 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 836 return 1; 837 838 if (efer & EFER_FFXSR) { 839 struct kvm_cpuid_entry2 *feat; 840 841 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 842 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 843 return 1; 844 } 845 846 if (efer & EFER_SVME) { 847 struct kvm_cpuid_entry2 *feat; 848 849 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 850 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 851 return 1; 852 } 853 854 efer &= ~EFER_LMA; 855 efer |= vcpu->arch.efer & EFER_LMA; 856 857 kvm_x86_ops->set_efer(vcpu, efer); 858 859 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 860 861 /* Update reserved bits */ 862 if ((efer ^ old_efer) & EFER_NX) 863 kvm_mmu_reset_context(vcpu); 864 865 return 0; 866 } 867 868 void kvm_enable_efer_bits(u64 mask) 869 { 870 efer_reserved_bits &= ~mask; 871 } 872 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 873 874 875 /* 876 * Writes msr value into into the appropriate "register". 877 * Returns 0 on success, non-0 otherwise. 878 * Assumes vcpu_load() was already called. 879 */ 880 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 881 { 882 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 883 } 884 885 /* 886 * Adapt set_msr() to msr_io()'s calling convention 887 */ 888 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 889 { 890 return kvm_set_msr(vcpu, index, *data); 891 } 892 893 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 894 { 895 int version; 896 int r; 897 struct pvclock_wall_clock wc; 898 struct timespec boot; 899 900 if (!wall_clock) 901 return; 902 903 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 904 if (r) 905 return; 906 907 if (version & 1) 908 ++version; /* first time write, random junk */ 909 910 ++version; 911 912 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 913 914 /* 915 * The guest calculates current wall clock time by adding 916 * system time (updated by kvm_guest_time_update below) to the 917 * wall clock specified here. guest system time equals host 918 * system time for us, thus we must fill in host boot time here. 919 */ 920 getboottime(&boot); 921 922 if (kvm->arch.kvmclock_offset) { 923 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 924 boot = timespec_sub(boot, ts); 925 } 926 wc.sec = boot.tv_sec; 927 wc.nsec = boot.tv_nsec; 928 wc.version = version; 929 930 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 931 932 version++; 933 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 934 } 935 936 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 937 { 938 uint32_t quotient, remainder; 939 940 /* Don't try to replace with do_div(), this one calculates 941 * "(dividend << 32) / divisor" */ 942 __asm__ ( "divl %4" 943 : "=a" (quotient), "=d" (remainder) 944 : "0" (0), "1" (dividend), "r" (divisor) ); 945 return quotient; 946 } 947 948 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 949 s8 *pshift, u32 *pmultiplier) 950 { 951 uint64_t scaled64; 952 int32_t shift = 0; 953 uint64_t tps64; 954 uint32_t tps32; 955 956 tps64 = base_khz * 1000LL; 957 scaled64 = scaled_khz * 1000LL; 958 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 959 tps64 >>= 1; 960 shift--; 961 } 962 963 tps32 = (uint32_t)tps64; 964 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 965 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 966 scaled64 >>= 1; 967 else 968 tps32 <<= 1; 969 shift++; 970 } 971 972 *pshift = shift; 973 *pmultiplier = div_frac(scaled64, tps32); 974 975 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 976 __func__, base_khz, scaled_khz, shift, *pmultiplier); 977 } 978 979 static inline u64 get_kernel_ns(void) 980 { 981 struct timespec ts; 982 983 WARN_ON(preemptible()); 984 ktime_get_ts(&ts); 985 monotonic_to_bootbased(&ts); 986 return timespec_to_ns(&ts); 987 } 988 989 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 990 unsigned long max_tsc_khz; 991 992 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 993 { 994 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 995 vcpu->arch.virtual_tsc_shift); 996 } 997 998 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 999 { 1000 u64 v = (u64)khz * (1000000 + ppm); 1001 do_div(v, 1000000); 1002 return v; 1003 } 1004 1005 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1006 { 1007 u32 thresh_lo, thresh_hi; 1008 int use_scaling = 0; 1009 1010 /* Compute a scale to convert nanoseconds in TSC cycles */ 1011 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1012 &vcpu->arch.virtual_tsc_shift, 1013 &vcpu->arch.virtual_tsc_mult); 1014 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1015 1016 /* 1017 * Compute the variation in TSC rate which is acceptable 1018 * within the range of tolerance and decide if the 1019 * rate being applied is within that bounds of the hardware 1020 * rate. If so, no scaling or compensation need be done. 1021 */ 1022 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1023 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1024 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1025 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1026 use_scaling = 1; 1027 } 1028 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1029 } 1030 1031 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1032 { 1033 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1034 vcpu->arch.virtual_tsc_mult, 1035 vcpu->arch.virtual_tsc_shift); 1036 tsc += vcpu->arch.this_tsc_write; 1037 return tsc; 1038 } 1039 1040 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1041 { 1042 struct kvm *kvm = vcpu->kvm; 1043 u64 offset, ns, elapsed; 1044 unsigned long flags; 1045 s64 usdiff; 1046 1047 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1048 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1049 ns = get_kernel_ns(); 1050 elapsed = ns - kvm->arch.last_tsc_nsec; 1051 1052 /* n.b - signed multiplication and division required */ 1053 usdiff = data - kvm->arch.last_tsc_write; 1054 #ifdef CONFIG_X86_64 1055 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1056 #else 1057 /* do_div() only does unsigned */ 1058 asm("idivl %2; xor %%edx, %%edx" 1059 : "=A"(usdiff) 1060 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1061 #endif 1062 do_div(elapsed, 1000); 1063 usdiff -= elapsed; 1064 if (usdiff < 0) 1065 usdiff = -usdiff; 1066 1067 /* 1068 * Special case: TSC write with a small delta (1 second) of virtual 1069 * cycle time against real time is interpreted as an attempt to 1070 * synchronize the CPU. 1071 * 1072 * For a reliable TSC, we can match TSC offsets, and for an unstable 1073 * TSC, we add elapsed time in this computation. We could let the 1074 * compensation code attempt to catch up if we fall behind, but 1075 * it's better to try to match offsets from the beginning. 1076 */ 1077 if (usdiff < USEC_PER_SEC && 1078 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1079 if (!check_tsc_unstable()) { 1080 offset = kvm->arch.cur_tsc_offset; 1081 pr_debug("kvm: matched tsc offset for %llu\n", data); 1082 } else { 1083 u64 delta = nsec_to_cycles(vcpu, elapsed); 1084 data += delta; 1085 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1086 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1087 } 1088 } else { 1089 /* 1090 * We split periods of matched TSC writes into generations. 1091 * For each generation, we track the original measured 1092 * nanosecond time, offset, and write, so if TSCs are in 1093 * sync, we can match exact offset, and if not, we can match 1094 * exact software computation in compute_guest_tsc() 1095 * 1096 * These values are tracked in kvm->arch.cur_xxx variables. 1097 */ 1098 kvm->arch.cur_tsc_generation++; 1099 kvm->arch.cur_tsc_nsec = ns; 1100 kvm->arch.cur_tsc_write = data; 1101 kvm->arch.cur_tsc_offset = offset; 1102 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1103 kvm->arch.cur_tsc_generation, data); 1104 } 1105 1106 /* 1107 * We also track th most recent recorded KHZ, write and time to 1108 * allow the matching interval to be extended at each write. 1109 */ 1110 kvm->arch.last_tsc_nsec = ns; 1111 kvm->arch.last_tsc_write = data; 1112 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1113 1114 /* Reset of TSC must disable overshoot protection below */ 1115 vcpu->arch.hv_clock.tsc_timestamp = 0; 1116 vcpu->arch.last_guest_tsc = data; 1117 1118 /* Keep track of which generation this VCPU has synchronized to */ 1119 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1120 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1121 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1122 1123 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1124 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1125 } 1126 1127 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1128 1129 static int kvm_guest_time_update(struct kvm_vcpu *v) 1130 { 1131 unsigned long flags; 1132 struct kvm_vcpu_arch *vcpu = &v->arch; 1133 void *shared_kaddr; 1134 unsigned long this_tsc_khz; 1135 s64 kernel_ns, max_kernel_ns; 1136 u64 tsc_timestamp; 1137 u8 pvclock_flags; 1138 1139 /* Keep irq disabled to prevent changes to the clock */ 1140 local_irq_save(flags); 1141 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1142 kernel_ns = get_kernel_ns(); 1143 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1144 if (unlikely(this_tsc_khz == 0)) { 1145 local_irq_restore(flags); 1146 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1147 return 1; 1148 } 1149 1150 /* 1151 * We may have to catch up the TSC to match elapsed wall clock 1152 * time for two reasons, even if kvmclock is used. 1153 * 1) CPU could have been running below the maximum TSC rate 1154 * 2) Broken TSC compensation resets the base at each VCPU 1155 * entry to avoid unknown leaps of TSC even when running 1156 * again on the same CPU. This may cause apparent elapsed 1157 * time to disappear, and the guest to stand still or run 1158 * very slowly. 1159 */ 1160 if (vcpu->tsc_catchup) { 1161 u64 tsc = compute_guest_tsc(v, kernel_ns); 1162 if (tsc > tsc_timestamp) { 1163 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1164 tsc_timestamp = tsc; 1165 } 1166 } 1167 1168 local_irq_restore(flags); 1169 1170 if (!vcpu->time_page) 1171 return 0; 1172 1173 /* 1174 * Time as measured by the TSC may go backwards when resetting the base 1175 * tsc_timestamp. The reason for this is that the TSC resolution is 1176 * higher than the resolution of the other clock scales. Thus, many 1177 * possible measurments of the TSC correspond to one measurement of any 1178 * other clock, and so a spread of values is possible. This is not a 1179 * problem for the computation of the nanosecond clock; with TSC rates 1180 * around 1GHZ, there can only be a few cycles which correspond to one 1181 * nanosecond value, and any path through this code will inevitably 1182 * take longer than that. However, with the kernel_ns value itself, 1183 * the precision may be much lower, down to HZ granularity. If the 1184 * first sampling of TSC against kernel_ns ends in the low part of the 1185 * range, and the second in the high end of the range, we can get: 1186 * 1187 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1188 * 1189 * As the sampling errors potentially range in the thousands of cycles, 1190 * it is possible such a time value has already been observed by the 1191 * guest. To protect against this, we must compute the system time as 1192 * observed by the guest and ensure the new system time is greater. 1193 */ 1194 max_kernel_ns = 0; 1195 if (vcpu->hv_clock.tsc_timestamp) { 1196 max_kernel_ns = vcpu->last_guest_tsc - 1197 vcpu->hv_clock.tsc_timestamp; 1198 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1199 vcpu->hv_clock.tsc_to_system_mul, 1200 vcpu->hv_clock.tsc_shift); 1201 max_kernel_ns += vcpu->last_kernel_ns; 1202 } 1203 1204 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1205 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1206 &vcpu->hv_clock.tsc_shift, 1207 &vcpu->hv_clock.tsc_to_system_mul); 1208 vcpu->hw_tsc_khz = this_tsc_khz; 1209 } 1210 1211 if (max_kernel_ns > kernel_ns) 1212 kernel_ns = max_kernel_ns; 1213 1214 /* With all the info we got, fill in the values */ 1215 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1216 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1217 vcpu->last_kernel_ns = kernel_ns; 1218 vcpu->last_guest_tsc = tsc_timestamp; 1219 1220 pvclock_flags = 0; 1221 if (vcpu->pvclock_set_guest_stopped_request) { 1222 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1223 vcpu->pvclock_set_guest_stopped_request = false; 1224 } 1225 1226 vcpu->hv_clock.flags = pvclock_flags; 1227 1228 /* 1229 * The interface expects us to write an even number signaling that the 1230 * update is finished. Since the guest won't see the intermediate 1231 * state, we just increase by 2 at the end. 1232 */ 1233 vcpu->hv_clock.version += 2; 1234 1235 shared_kaddr = kmap_atomic(vcpu->time_page); 1236 1237 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1238 sizeof(vcpu->hv_clock)); 1239 1240 kunmap_atomic(shared_kaddr); 1241 1242 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1243 return 0; 1244 } 1245 1246 static bool msr_mtrr_valid(unsigned msr) 1247 { 1248 switch (msr) { 1249 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1250 case MSR_MTRRfix64K_00000: 1251 case MSR_MTRRfix16K_80000: 1252 case MSR_MTRRfix16K_A0000: 1253 case MSR_MTRRfix4K_C0000: 1254 case MSR_MTRRfix4K_C8000: 1255 case MSR_MTRRfix4K_D0000: 1256 case MSR_MTRRfix4K_D8000: 1257 case MSR_MTRRfix4K_E0000: 1258 case MSR_MTRRfix4K_E8000: 1259 case MSR_MTRRfix4K_F0000: 1260 case MSR_MTRRfix4K_F8000: 1261 case MSR_MTRRdefType: 1262 case MSR_IA32_CR_PAT: 1263 return true; 1264 case 0x2f8: 1265 return true; 1266 } 1267 return false; 1268 } 1269 1270 static bool valid_pat_type(unsigned t) 1271 { 1272 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1273 } 1274 1275 static bool valid_mtrr_type(unsigned t) 1276 { 1277 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1278 } 1279 1280 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1281 { 1282 int i; 1283 1284 if (!msr_mtrr_valid(msr)) 1285 return false; 1286 1287 if (msr == MSR_IA32_CR_PAT) { 1288 for (i = 0; i < 8; i++) 1289 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1290 return false; 1291 return true; 1292 } else if (msr == MSR_MTRRdefType) { 1293 if (data & ~0xcff) 1294 return false; 1295 return valid_mtrr_type(data & 0xff); 1296 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1297 for (i = 0; i < 8 ; i++) 1298 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1299 return false; 1300 return true; 1301 } 1302 1303 /* variable MTRRs */ 1304 return valid_mtrr_type(data & 0xff); 1305 } 1306 1307 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1308 { 1309 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1310 1311 if (!mtrr_valid(vcpu, msr, data)) 1312 return 1; 1313 1314 if (msr == MSR_MTRRdefType) { 1315 vcpu->arch.mtrr_state.def_type = data; 1316 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1317 } else if (msr == MSR_MTRRfix64K_00000) 1318 p[0] = data; 1319 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1320 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1321 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1322 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1323 else if (msr == MSR_IA32_CR_PAT) 1324 vcpu->arch.pat = data; 1325 else { /* Variable MTRRs */ 1326 int idx, is_mtrr_mask; 1327 u64 *pt; 1328 1329 idx = (msr - 0x200) / 2; 1330 is_mtrr_mask = msr - 0x200 - 2 * idx; 1331 if (!is_mtrr_mask) 1332 pt = 1333 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1334 else 1335 pt = 1336 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1337 *pt = data; 1338 } 1339 1340 kvm_mmu_reset_context(vcpu); 1341 return 0; 1342 } 1343 1344 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1345 { 1346 u64 mcg_cap = vcpu->arch.mcg_cap; 1347 unsigned bank_num = mcg_cap & 0xff; 1348 1349 switch (msr) { 1350 case MSR_IA32_MCG_STATUS: 1351 vcpu->arch.mcg_status = data; 1352 break; 1353 case MSR_IA32_MCG_CTL: 1354 if (!(mcg_cap & MCG_CTL_P)) 1355 return 1; 1356 if (data != 0 && data != ~(u64)0) 1357 return -1; 1358 vcpu->arch.mcg_ctl = data; 1359 break; 1360 default: 1361 if (msr >= MSR_IA32_MC0_CTL && 1362 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1363 u32 offset = msr - MSR_IA32_MC0_CTL; 1364 /* only 0 or all 1s can be written to IA32_MCi_CTL 1365 * some Linux kernels though clear bit 10 in bank 4 to 1366 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1367 * this to avoid an uncatched #GP in the guest 1368 */ 1369 if ((offset & 0x3) == 0 && 1370 data != 0 && (data | (1 << 10)) != ~(u64)0) 1371 return -1; 1372 vcpu->arch.mce_banks[offset] = data; 1373 break; 1374 } 1375 return 1; 1376 } 1377 return 0; 1378 } 1379 1380 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1381 { 1382 struct kvm *kvm = vcpu->kvm; 1383 int lm = is_long_mode(vcpu); 1384 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1385 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1386 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1387 : kvm->arch.xen_hvm_config.blob_size_32; 1388 u32 page_num = data & ~PAGE_MASK; 1389 u64 page_addr = data & PAGE_MASK; 1390 u8 *page; 1391 int r; 1392 1393 r = -E2BIG; 1394 if (page_num >= blob_size) 1395 goto out; 1396 r = -ENOMEM; 1397 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1398 if (IS_ERR(page)) { 1399 r = PTR_ERR(page); 1400 goto out; 1401 } 1402 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1403 goto out_free; 1404 r = 0; 1405 out_free: 1406 kfree(page); 1407 out: 1408 return r; 1409 } 1410 1411 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1412 { 1413 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1414 } 1415 1416 static bool kvm_hv_msr_partition_wide(u32 msr) 1417 { 1418 bool r = false; 1419 switch (msr) { 1420 case HV_X64_MSR_GUEST_OS_ID: 1421 case HV_X64_MSR_HYPERCALL: 1422 r = true; 1423 break; 1424 } 1425 1426 return r; 1427 } 1428 1429 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1430 { 1431 struct kvm *kvm = vcpu->kvm; 1432 1433 switch (msr) { 1434 case HV_X64_MSR_GUEST_OS_ID: 1435 kvm->arch.hv_guest_os_id = data; 1436 /* setting guest os id to zero disables hypercall page */ 1437 if (!kvm->arch.hv_guest_os_id) 1438 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1439 break; 1440 case HV_X64_MSR_HYPERCALL: { 1441 u64 gfn; 1442 unsigned long addr; 1443 u8 instructions[4]; 1444 1445 /* if guest os id is not set hypercall should remain disabled */ 1446 if (!kvm->arch.hv_guest_os_id) 1447 break; 1448 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1449 kvm->arch.hv_hypercall = data; 1450 break; 1451 } 1452 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1453 addr = gfn_to_hva(kvm, gfn); 1454 if (kvm_is_error_hva(addr)) 1455 return 1; 1456 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1457 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1458 if (__copy_to_user((void __user *)addr, instructions, 4)) 1459 return 1; 1460 kvm->arch.hv_hypercall = data; 1461 break; 1462 } 1463 default: 1464 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1465 "data 0x%llx\n", msr, data); 1466 return 1; 1467 } 1468 return 0; 1469 } 1470 1471 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1472 { 1473 switch (msr) { 1474 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1475 unsigned long addr; 1476 1477 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1478 vcpu->arch.hv_vapic = data; 1479 break; 1480 } 1481 addr = gfn_to_hva(vcpu->kvm, data >> 1482 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1483 if (kvm_is_error_hva(addr)) 1484 return 1; 1485 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1486 return 1; 1487 vcpu->arch.hv_vapic = data; 1488 break; 1489 } 1490 case HV_X64_MSR_EOI: 1491 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1492 case HV_X64_MSR_ICR: 1493 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1494 case HV_X64_MSR_TPR: 1495 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1496 default: 1497 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1498 "data 0x%llx\n", msr, data); 1499 return 1; 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1506 { 1507 gpa_t gpa = data & ~0x3f; 1508 1509 /* Bits 2:5 are reserved, Should be zero */ 1510 if (data & 0x3c) 1511 return 1; 1512 1513 vcpu->arch.apf.msr_val = data; 1514 1515 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1516 kvm_clear_async_pf_completion_queue(vcpu); 1517 kvm_async_pf_hash_reset(vcpu); 1518 return 0; 1519 } 1520 1521 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1522 return 1; 1523 1524 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1525 kvm_async_pf_wakeup_all(vcpu); 1526 return 0; 1527 } 1528 1529 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1530 { 1531 if (vcpu->arch.time_page) { 1532 kvm_release_page_dirty(vcpu->arch.time_page); 1533 vcpu->arch.time_page = NULL; 1534 } 1535 } 1536 1537 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1538 { 1539 u64 delta; 1540 1541 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1542 return; 1543 1544 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1545 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1546 vcpu->arch.st.accum_steal = delta; 1547 } 1548 1549 static void record_steal_time(struct kvm_vcpu *vcpu) 1550 { 1551 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1552 return; 1553 1554 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1555 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1556 return; 1557 1558 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1559 vcpu->arch.st.steal.version += 2; 1560 vcpu->arch.st.accum_steal = 0; 1561 1562 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1563 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1564 } 1565 1566 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1567 { 1568 bool pr = false; 1569 1570 switch (msr) { 1571 case MSR_EFER: 1572 return set_efer(vcpu, data); 1573 case MSR_K7_HWCR: 1574 data &= ~(u64)0x40; /* ignore flush filter disable */ 1575 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1576 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1577 if (data != 0) { 1578 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1579 data); 1580 return 1; 1581 } 1582 break; 1583 case MSR_FAM10H_MMIO_CONF_BASE: 1584 if (data != 0) { 1585 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1586 "0x%llx\n", data); 1587 return 1; 1588 } 1589 break; 1590 case MSR_AMD64_NB_CFG: 1591 break; 1592 case MSR_IA32_DEBUGCTLMSR: 1593 if (!data) { 1594 /* We support the non-activated case already */ 1595 break; 1596 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1597 /* Values other than LBR and BTF are vendor-specific, 1598 thus reserved and should throw a #GP */ 1599 return 1; 1600 } 1601 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1602 __func__, data); 1603 break; 1604 case MSR_IA32_UCODE_REV: 1605 case MSR_IA32_UCODE_WRITE: 1606 case MSR_VM_HSAVE_PA: 1607 case MSR_AMD64_PATCH_LOADER: 1608 break; 1609 case 0x200 ... 0x2ff: 1610 return set_msr_mtrr(vcpu, msr, data); 1611 case MSR_IA32_APICBASE: 1612 kvm_set_apic_base(vcpu, data); 1613 break; 1614 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1615 return kvm_x2apic_msr_write(vcpu, msr, data); 1616 case MSR_IA32_TSCDEADLINE: 1617 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1618 break; 1619 case MSR_IA32_MISC_ENABLE: 1620 vcpu->arch.ia32_misc_enable_msr = data; 1621 break; 1622 case MSR_KVM_WALL_CLOCK_NEW: 1623 case MSR_KVM_WALL_CLOCK: 1624 vcpu->kvm->arch.wall_clock = data; 1625 kvm_write_wall_clock(vcpu->kvm, data); 1626 break; 1627 case MSR_KVM_SYSTEM_TIME_NEW: 1628 case MSR_KVM_SYSTEM_TIME: { 1629 kvmclock_reset(vcpu); 1630 1631 vcpu->arch.time = data; 1632 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1633 1634 /* we verify if the enable bit is set... */ 1635 if (!(data & 1)) 1636 break; 1637 1638 /* ...but clean it before doing the actual write */ 1639 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1640 1641 vcpu->arch.time_page = 1642 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1643 1644 if (is_error_page(vcpu->arch.time_page)) 1645 vcpu->arch.time_page = NULL; 1646 1647 break; 1648 } 1649 case MSR_KVM_ASYNC_PF_EN: 1650 if (kvm_pv_enable_async_pf(vcpu, data)) 1651 return 1; 1652 break; 1653 case MSR_KVM_STEAL_TIME: 1654 1655 if (unlikely(!sched_info_on())) 1656 return 1; 1657 1658 if (data & KVM_STEAL_RESERVED_MASK) 1659 return 1; 1660 1661 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1662 data & KVM_STEAL_VALID_BITS)) 1663 return 1; 1664 1665 vcpu->arch.st.msr_val = data; 1666 1667 if (!(data & KVM_MSR_ENABLED)) 1668 break; 1669 1670 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1671 1672 preempt_disable(); 1673 accumulate_steal_time(vcpu); 1674 preempt_enable(); 1675 1676 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1677 1678 break; 1679 case MSR_KVM_PV_EOI_EN: 1680 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 1681 return 1; 1682 break; 1683 1684 case MSR_IA32_MCG_CTL: 1685 case MSR_IA32_MCG_STATUS: 1686 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1687 return set_msr_mce(vcpu, msr, data); 1688 1689 /* Performance counters are not protected by a CPUID bit, 1690 * so we should check all of them in the generic path for the sake of 1691 * cross vendor migration. 1692 * Writing a zero into the event select MSRs disables them, 1693 * which we perfectly emulate ;-). Any other value should be at least 1694 * reported, some guests depend on them. 1695 */ 1696 case MSR_K7_EVNTSEL0: 1697 case MSR_K7_EVNTSEL1: 1698 case MSR_K7_EVNTSEL2: 1699 case MSR_K7_EVNTSEL3: 1700 if (data != 0) 1701 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1702 "0x%x data 0x%llx\n", msr, data); 1703 break; 1704 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1705 * so we ignore writes to make it happy. 1706 */ 1707 case MSR_K7_PERFCTR0: 1708 case MSR_K7_PERFCTR1: 1709 case MSR_K7_PERFCTR2: 1710 case MSR_K7_PERFCTR3: 1711 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1712 "0x%x data 0x%llx\n", msr, data); 1713 break; 1714 case MSR_P6_PERFCTR0: 1715 case MSR_P6_PERFCTR1: 1716 pr = true; 1717 case MSR_P6_EVNTSEL0: 1718 case MSR_P6_EVNTSEL1: 1719 if (kvm_pmu_msr(vcpu, msr)) 1720 return kvm_pmu_set_msr(vcpu, msr, data); 1721 1722 if (pr || data != 0) 1723 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 1724 "0x%x data 0x%llx\n", msr, data); 1725 break; 1726 case MSR_K7_CLK_CTL: 1727 /* 1728 * Ignore all writes to this no longer documented MSR. 1729 * Writes are only relevant for old K7 processors, 1730 * all pre-dating SVM, but a recommended workaround from 1731 * AMD for these chips. It is possible to specify the 1732 * affected processor models on the command line, hence 1733 * the need to ignore the workaround. 1734 */ 1735 break; 1736 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1737 if (kvm_hv_msr_partition_wide(msr)) { 1738 int r; 1739 mutex_lock(&vcpu->kvm->lock); 1740 r = set_msr_hyperv_pw(vcpu, msr, data); 1741 mutex_unlock(&vcpu->kvm->lock); 1742 return r; 1743 } else 1744 return set_msr_hyperv(vcpu, msr, data); 1745 break; 1746 case MSR_IA32_BBL_CR_CTL3: 1747 /* Drop writes to this legacy MSR -- see rdmsr 1748 * counterpart for further detail. 1749 */ 1750 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1751 break; 1752 case MSR_AMD64_OSVW_ID_LENGTH: 1753 if (!guest_cpuid_has_osvw(vcpu)) 1754 return 1; 1755 vcpu->arch.osvw.length = data; 1756 break; 1757 case MSR_AMD64_OSVW_STATUS: 1758 if (!guest_cpuid_has_osvw(vcpu)) 1759 return 1; 1760 vcpu->arch.osvw.status = data; 1761 break; 1762 default: 1763 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1764 return xen_hvm_config(vcpu, data); 1765 if (kvm_pmu_msr(vcpu, msr)) 1766 return kvm_pmu_set_msr(vcpu, msr, data); 1767 if (!ignore_msrs) { 1768 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1769 msr, data); 1770 return 1; 1771 } else { 1772 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1773 msr, data); 1774 break; 1775 } 1776 } 1777 return 0; 1778 } 1779 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1780 1781 1782 /* 1783 * Reads an msr value (of 'msr_index') into 'pdata'. 1784 * Returns 0 on success, non-0 otherwise. 1785 * Assumes vcpu_load() was already called. 1786 */ 1787 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1788 { 1789 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1790 } 1791 1792 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1793 { 1794 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1795 1796 if (!msr_mtrr_valid(msr)) 1797 return 1; 1798 1799 if (msr == MSR_MTRRdefType) 1800 *pdata = vcpu->arch.mtrr_state.def_type + 1801 (vcpu->arch.mtrr_state.enabled << 10); 1802 else if (msr == MSR_MTRRfix64K_00000) 1803 *pdata = p[0]; 1804 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1805 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1806 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1807 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1808 else if (msr == MSR_IA32_CR_PAT) 1809 *pdata = vcpu->arch.pat; 1810 else { /* Variable MTRRs */ 1811 int idx, is_mtrr_mask; 1812 u64 *pt; 1813 1814 idx = (msr - 0x200) / 2; 1815 is_mtrr_mask = msr - 0x200 - 2 * idx; 1816 if (!is_mtrr_mask) 1817 pt = 1818 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1819 else 1820 pt = 1821 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1822 *pdata = *pt; 1823 } 1824 1825 return 0; 1826 } 1827 1828 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1829 { 1830 u64 data; 1831 u64 mcg_cap = vcpu->arch.mcg_cap; 1832 unsigned bank_num = mcg_cap & 0xff; 1833 1834 switch (msr) { 1835 case MSR_IA32_P5_MC_ADDR: 1836 case MSR_IA32_P5_MC_TYPE: 1837 data = 0; 1838 break; 1839 case MSR_IA32_MCG_CAP: 1840 data = vcpu->arch.mcg_cap; 1841 break; 1842 case MSR_IA32_MCG_CTL: 1843 if (!(mcg_cap & MCG_CTL_P)) 1844 return 1; 1845 data = vcpu->arch.mcg_ctl; 1846 break; 1847 case MSR_IA32_MCG_STATUS: 1848 data = vcpu->arch.mcg_status; 1849 break; 1850 default: 1851 if (msr >= MSR_IA32_MC0_CTL && 1852 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1853 u32 offset = msr - MSR_IA32_MC0_CTL; 1854 data = vcpu->arch.mce_banks[offset]; 1855 break; 1856 } 1857 return 1; 1858 } 1859 *pdata = data; 1860 return 0; 1861 } 1862 1863 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1864 { 1865 u64 data = 0; 1866 struct kvm *kvm = vcpu->kvm; 1867 1868 switch (msr) { 1869 case HV_X64_MSR_GUEST_OS_ID: 1870 data = kvm->arch.hv_guest_os_id; 1871 break; 1872 case HV_X64_MSR_HYPERCALL: 1873 data = kvm->arch.hv_hypercall; 1874 break; 1875 default: 1876 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1877 return 1; 1878 } 1879 1880 *pdata = data; 1881 return 0; 1882 } 1883 1884 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1885 { 1886 u64 data = 0; 1887 1888 switch (msr) { 1889 case HV_X64_MSR_VP_INDEX: { 1890 int r; 1891 struct kvm_vcpu *v; 1892 kvm_for_each_vcpu(r, v, vcpu->kvm) 1893 if (v == vcpu) 1894 data = r; 1895 break; 1896 } 1897 case HV_X64_MSR_EOI: 1898 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1899 case HV_X64_MSR_ICR: 1900 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1901 case HV_X64_MSR_TPR: 1902 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1903 case HV_X64_MSR_APIC_ASSIST_PAGE: 1904 data = vcpu->arch.hv_vapic; 1905 break; 1906 default: 1907 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1908 return 1; 1909 } 1910 *pdata = data; 1911 return 0; 1912 } 1913 1914 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1915 { 1916 u64 data; 1917 1918 switch (msr) { 1919 case MSR_IA32_PLATFORM_ID: 1920 case MSR_IA32_EBL_CR_POWERON: 1921 case MSR_IA32_DEBUGCTLMSR: 1922 case MSR_IA32_LASTBRANCHFROMIP: 1923 case MSR_IA32_LASTBRANCHTOIP: 1924 case MSR_IA32_LASTINTFROMIP: 1925 case MSR_IA32_LASTINTTOIP: 1926 case MSR_K8_SYSCFG: 1927 case MSR_K7_HWCR: 1928 case MSR_VM_HSAVE_PA: 1929 case MSR_K7_EVNTSEL0: 1930 case MSR_K7_PERFCTR0: 1931 case MSR_K8_INT_PENDING_MSG: 1932 case MSR_AMD64_NB_CFG: 1933 case MSR_FAM10H_MMIO_CONF_BASE: 1934 data = 0; 1935 break; 1936 case MSR_P6_PERFCTR0: 1937 case MSR_P6_PERFCTR1: 1938 case MSR_P6_EVNTSEL0: 1939 case MSR_P6_EVNTSEL1: 1940 if (kvm_pmu_msr(vcpu, msr)) 1941 return kvm_pmu_get_msr(vcpu, msr, pdata); 1942 data = 0; 1943 break; 1944 case MSR_IA32_UCODE_REV: 1945 data = 0x100000000ULL; 1946 break; 1947 case MSR_MTRRcap: 1948 data = 0x500 | KVM_NR_VAR_MTRR; 1949 break; 1950 case 0x200 ... 0x2ff: 1951 return get_msr_mtrr(vcpu, msr, pdata); 1952 case 0xcd: /* fsb frequency */ 1953 data = 3; 1954 break; 1955 /* 1956 * MSR_EBC_FREQUENCY_ID 1957 * Conservative value valid for even the basic CPU models. 1958 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1959 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1960 * and 266MHz for model 3, or 4. Set Core Clock 1961 * Frequency to System Bus Frequency Ratio to 1 (bits 1962 * 31:24) even though these are only valid for CPU 1963 * models > 2, however guests may end up dividing or 1964 * multiplying by zero otherwise. 1965 */ 1966 case MSR_EBC_FREQUENCY_ID: 1967 data = 1 << 24; 1968 break; 1969 case MSR_IA32_APICBASE: 1970 data = kvm_get_apic_base(vcpu); 1971 break; 1972 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1973 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1974 break; 1975 case MSR_IA32_TSCDEADLINE: 1976 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1977 break; 1978 case MSR_IA32_MISC_ENABLE: 1979 data = vcpu->arch.ia32_misc_enable_msr; 1980 break; 1981 case MSR_IA32_PERF_STATUS: 1982 /* TSC increment by tick */ 1983 data = 1000ULL; 1984 /* CPU multiplier */ 1985 data |= (((uint64_t)4ULL) << 40); 1986 break; 1987 case MSR_EFER: 1988 data = vcpu->arch.efer; 1989 break; 1990 case MSR_KVM_WALL_CLOCK: 1991 case MSR_KVM_WALL_CLOCK_NEW: 1992 data = vcpu->kvm->arch.wall_clock; 1993 break; 1994 case MSR_KVM_SYSTEM_TIME: 1995 case MSR_KVM_SYSTEM_TIME_NEW: 1996 data = vcpu->arch.time; 1997 break; 1998 case MSR_KVM_ASYNC_PF_EN: 1999 data = vcpu->arch.apf.msr_val; 2000 break; 2001 case MSR_KVM_STEAL_TIME: 2002 data = vcpu->arch.st.msr_val; 2003 break; 2004 case MSR_IA32_P5_MC_ADDR: 2005 case MSR_IA32_P5_MC_TYPE: 2006 case MSR_IA32_MCG_CAP: 2007 case MSR_IA32_MCG_CTL: 2008 case MSR_IA32_MCG_STATUS: 2009 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2010 return get_msr_mce(vcpu, msr, pdata); 2011 case MSR_K7_CLK_CTL: 2012 /* 2013 * Provide expected ramp-up count for K7. All other 2014 * are set to zero, indicating minimum divisors for 2015 * every field. 2016 * 2017 * This prevents guest kernels on AMD host with CPU 2018 * type 6, model 8 and higher from exploding due to 2019 * the rdmsr failing. 2020 */ 2021 data = 0x20000000; 2022 break; 2023 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2024 if (kvm_hv_msr_partition_wide(msr)) { 2025 int r; 2026 mutex_lock(&vcpu->kvm->lock); 2027 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2028 mutex_unlock(&vcpu->kvm->lock); 2029 return r; 2030 } else 2031 return get_msr_hyperv(vcpu, msr, pdata); 2032 break; 2033 case MSR_IA32_BBL_CR_CTL3: 2034 /* This legacy MSR exists but isn't fully documented in current 2035 * silicon. It is however accessed by winxp in very narrow 2036 * scenarios where it sets bit #19, itself documented as 2037 * a "reserved" bit. Best effort attempt to source coherent 2038 * read data here should the balance of the register be 2039 * interpreted by the guest: 2040 * 2041 * L2 cache control register 3: 64GB range, 256KB size, 2042 * enabled, latency 0x1, configured 2043 */ 2044 data = 0xbe702111; 2045 break; 2046 case MSR_AMD64_OSVW_ID_LENGTH: 2047 if (!guest_cpuid_has_osvw(vcpu)) 2048 return 1; 2049 data = vcpu->arch.osvw.length; 2050 break; 2051 case MSR_AMD64_OSVW_STATUS: 2052 if (!guest_cpuid_has_osvw(vcpu)) 2053 return 1; 2054 data = vcpu->arch.osvw.status; 2055 break; 2056 default: 2057 if (kvm_pmu_msr(vcpu, msr)) 2058 return kvm_pmu_get_msr(vcpu, msr, pdata); 2059 if (!ignore_msrs) { 2060 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2061 return 1; 2062 } else { 2063 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2064 data = 0; 2065 } 2066 break; 2067 } 2068 *pdata = data; 2069 return 0; 2070 } 2071 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2072 2073 /* 2074 * Read or write a bunch of msrs. All parameters are kernel addresses. 2075 * 2076 * @return number of msrs set successfully. 2077 */ 2078 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2079 struct kvm_msr_entry *entries, 2080 int (*do_msr)(struct kvm_vcpu *vcpu, 2081 unsigned index, u64 *data)) 2082 { 2083 int i, idx; 2084 2085 idx = srcu_read_lock(&vcpu->kvm->srcu); 2086 for (i = 0; i < msrs->nmsrs; ++i) 2087 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2088 break; 2089 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2090 2091 return i; 2092 } 2093 2094 /* 2095 * Read or write a bunch of msrs. Parameters are user addresses. 2096 * 2097 * @return number of msrs set successfully. 2098 */ 2099 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2100 int (*do_msr)(struct kvm_vcpu *vcpu, 2101 unsigned index, u64 *data), 2102 int writeback) 2103 { 2104 struct kvm_msrs msrs; 2105 struct kvm_msr_entry *entries; 2106 int r, n; 2107 unsigned size; 2108 2109 r = -EFAULT; 2110 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2111 goto out; 2112 2113 r = -E2BIG; 2114 if (msrs.nmsrs >= MAX_IO_MSRS) 2115 goto out; 2116 2117 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2118 entries = memdup_user(user_msrs->entries, size); 2119 if (IS_ERR(entries)) { 2120 r = PTR_ERR(entries); 2121 goto out; 2122 } 2123 2124 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2125 if (r < 0) 2126 goto out_free; 2127 2128 r = -EFAULT; 2129 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2130 goto out_free; 2131 2132 r = n; 2133 2134 out_free: 2135 kfree(entries); 2136 out: 2137 return r; 2138 } 2139 2140 int kvm_dev_ioctl_check_extension(long ext) 2141 { 2142 int r; 2143 2144 switch (ext) { 2145 case KVM_CAP_IRQCHIP: 2146 case KVM_CAP_HLT: 2147 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2148 case KVM_CAP_SET_TSS_ADDR: 2149 case KVM_CAP_EXT_CPUID: 2150 case KVM_CAP_CLOCKSOURCE: 2151 case KVM_CAP_PIT: 2152 case KVM_CAP_NOP_IO_DELAY: 2153 case KVM_CAP_MP_STATE: 2154 case KVM_CAP_SYNC_MMU: 2155 case KVM_CAP_USER_NMI: 2156 case KVM_CAP_REINJECT_CONTROL: 2157 case KVM_CAP_IRQ_INJECT_STATUS: 2158 case KVM_CAP_ASSIGN_DEV_IRQ: 2159 case KVM_CAP_IRQFD: 2160 case KVM_CAP_IOEVENTFD: 2161 case KVM_CAP_PIT2: 2162 case KVM_CAP_PIT_STATE2: 2163 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2164 case KVM_CAP_XEN_HVM: 2165 case KVM_CAP_ADJUST_CLOCK: 2166 case KVM_CAP_VCPU_EVENTS: 2167 case KVM_CAP_HYPERV: 2168 case KVM_CAP_HYPERV_VAPIC: 2169 case KVM_CAP_HYPERV_SPIN: 2170 case KVM_CAP_PCI_SEGMENT: 2171 case KVM_CAP_DEBUGREGS: 2172 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2173 case KVM_CAP_XSAVE: 2174 case KVM_CAP_ASYNC_PF: 2175 case KVM_CAP_GET_TSC_KHZ: 2176 case KVM_CAP_PCI_2_3: 2177 case KVM_CAP_KVMCLOCK_CTRL: 2178 case KVM_CAP_READONLY_MEM: 2179 r = 1; 2180 break; 2181 case KVM_CAP_COALESCED_MMIO: 2182 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2183 break; 2184 case KVM_CAP_VAPIC: 2185 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2186 break; 2187 case KVM_CAP_NR_VCPUS: 2188 r = KVM_SOFT_MAX_VCPUS; 2189 break; 2190 case KVM_CAP_MAX_VCPUS: 2191 r = KVM_MAX_VCPUS; 2192 break; 2193 case KVM_CAP_NR_MEMSLOTS: 2194 r = KVM_MEMORY_SLOTS; 2195 break; 2196 case KVM_CAP_PV_MMU: /* obsolete */ 2197 r = 0; 2198 break; 2199 case KVM_CAP_IOMMU: 2200 r = iommu_present(&pci_bus_type); 2201 break; 2202 case KVM_CAP_MCE: 2203 r = KVM_MAX_MCE_BANKS; 2204 break; 2205 case KVM_CAP_XCRS: 2206 r = cpu_has_xsave; 2207 break; 2208 case KVM_CAP_TSC_CONTROL: 2209 r = kvm_has_tsc_control; 2210 break; 2211 case KVM_CAP_TSC_DEADLINE_TIMER: 2212 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2213 break; 2214 default: 2215 r = 0; 2216 break; 2217 } 2218 return r; 2219 2220 } 2221 2222 long kvm_arch_dev_ioctl(struct file *filp, 2223 unsigned int ioctl, unsigned long arg) 2224 { 2225 void __user *argp = (void __user *)arg; 2226 long r; 2227 2228 switch (ioctl) { 2229 case KVM_GET_MSR_INDEX_LIST: { 2230 struct kvm_msr_list __user *user_msr_list = argp; 2231 struct kvm_msr_list msr_list; 2232 unsigned n; 2233 2234 r = -EFAULT; 2235 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2236 goto out; 2237 n = msr_list.nmsrs; 2238 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2239 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2240 goto out; 2241 r = -E2BIG; 2242 if (n < msr_list.nmsrs) 2243 goto out; 2244 r = -EFAULT; 2245 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2246 num_msrs_to_save * sizeof(u32))) 2247 goto out; 2248 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2249 &emulated_msrs, 2250 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2251 goto out; 2252 r = 0; 2253 break; 2254 } 2255 case KVM_GET_SUPPORTED_CPUID: { 2256 struct kvm_cpuid2 __user *cpuid_arg = argp; 2257 struct kvm_cpuid2 cpuid; 2258 2259 r = -EFAULT; 2260 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2261 goto out; 2262 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2263 cpuid_arg->entries); 2264 if (r) 2265 goto out; 2266 2267 r = -EFAULT; 2268 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2269 goto out; 2270 r = 0; 2271 break; 2272 } 2273 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2274 u64 mce_cap; 2275 2276 mce_cap = KVM_MCE_CAP_SUPPORTED; 2277 r = -EFAULT; 2278 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2279 goto out; 2280 r = 0; 2281 break; 2282 } 2283 default: 2284 r = -EINVAL; 2285 } 2286 out: 2287 return r; 2288 } 2289 2290 static void wbinvd_ipi(void *garbage) 2291 { 2292 wbinvd(); 2293 } 2294 2295 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2296 { 2297 return vcpu->kvm->arch.iommu_domain && 2298 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2299 } 2300 2301 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2302 { 2303 /* Address WBINVD may be executed by guest */ 2304 if (need_emulate_wbinvd(vcpu)) { 2305 if (kvm_x86_ops->has_wbinvd_exit()) 2306 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2307 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2308 smp_call_function_single(vcpu->cpu, 2309 wbinvd_ipi, NULL, 1); 2310 } 2311 2312 kvm_x86_ops->vcpu_load(vcpu, cpu); 2313 2314 /* Apply any externally detected TSC adjustments (due to suspend) */ 2315 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2316 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2317 vcpu->arch.tsc_offset_adjustment = 0; 2318 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2319 } 2320 2321 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2322 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2323 native_read_tsc() - vcpu->arch.last_host_tsc; 2324 if (tsc_delta < 0) 2325 mark_tsc_unstable("KVM discovered backwards TSC"); 2326 if (check_tsc_unstable()) { 2327 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2328 vcpu->arch.last_guest_tsc); 2329 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2330 vcpu->arch.tsc_catchup = 1; 2331 } 2332 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2333 if (vcpu->cpu != cpu) 2334 kvm_migrate_timers(vcpu); 2335 vcpu->cpu = cpu; 2336 } 2337 2338 accumulate_steal_time(vcpu); 2339 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2340 } 2341 2342 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2343 { 2344 kvm_x86_ops->vcpu_put(vcpu); 2345 kvm_put_guest_fpu(vcpu); 2346 vcpu->arch.last_host_tsc = native_read_tsc(); 2347 } 2348 2349 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2350 struct kvm_lapic_state *s) 2351 { 2352 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2353 2354 return 0; 2355 } 2356 2357 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2358 struct kvm_lapic_state *s) 2359 { 2360 kvm_apic_post_state_restore(vcpu, s); 2361 update_cr8_intercept(vcpu); 2362 2363 return 0; 2364 } 2365 2366 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2367 struct kvm_interrupt *irq) 2368 { 2369 if (irq->irq < 0 || irq->irq >= 256) 2370 return -EINVAL; 2371 if (irqchip_in_kernel(vcpu->kvm)) 2372 return -ENXIO; 2373 2374 kvm_queue_interrupt(vcpu, irq->irq, false); 2375 kvm_make_request(KVM_REQ_EVENT, vcpu); 2376 2377 return 0; 2378 } 2379 2380 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2381 { 2382 kvm_inject_nmi(vcpu); 2383 2384 return 0; 2385 } 2386 2387 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2388 struct kvm_tpr_access_ctl *tac) 2389 { 2390 if (tac->flags) 2391 return -EINVAL; 2392 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2393 return 0; 2394 } 2395 2396 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2397 u64 mcg_cap) 2398 { 2399 int r; 2400 unsigned bank_num = mcg_cap & 0xff, bank; 2401 2402 r = -EINVAL; 2403 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2404 goto out; 2405 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2406 goto out; 2407 r = 0; 2408 vcpu->arch.mcg_cap = mcg_cap; 2409 /* Init IA32_MCG_CTL to all 1s */ 2410 if (mcg_cap & MCG_CTL_P) 2411 vcpu->arch.mcg_ctl = ~(u64)0; 2412 /* Init IA32_MCi_CTL to all 1s */ 2413 for (bank = 0; bank < bank_num; bank++) 2414 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2415 out: 2416 return r; 2417 } 2418 2419 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2420 struct kvm_x86_mce *mce) 2421 { 2422 u64 mcg_cap = vcpu->arch.mcg_cap; 2423 unsigned bank_num = mcg_cap & 0xff; 2424 u64 *banks = vcpu->arch.mce_banks; 2425 2426 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2427 return -EINVAL; 2428 /* 2429 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2430 * reporting is disabled 2431 */ 2432 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2433 vcpu->arch.mcg_ctl != ~(u64)0) 2434 return 0; 2435 banks += 4 * mce->bank; 2436 /* 2437 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2438 * reporting is disabled for the bank 2439 */ 2440 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2441 return 0; 2442 if (mce->status & MCI_STATUS_UC) { 2443 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2444 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2445 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2446 return 0; 2447 } 2448 if (banks[1] & MCI_STATUS_VAL) 2449 mce->status |= MCI_STATUS_OVER; 2450 banks[2] = mce->addr; 2451 banks[3] = mce->misc; 2452 vcpu->arch.mcg_status = mce->mcg_status; 2453 banks[1] = mce->status; 2454 kvm_queue_exception(vcpu, MC_VECTOR); 2455 } else if (!(banks[1] & MCI_STATUS_VAL) 2456 || !(banks[1] & MCI_STATUS_UC)) { 2457 if (banks[1] & MCI_STATUS_VAL) 2458 mce->status |= MCI_STATUS_OVER; 2459 banks[2] = mce->addr; 2460 banks[3] = mce->misc; 2461 banks[1] = mce->status; 2462 } else 2463 banks[1] |= MCI_STATUS_OVER; 2464 return 0; 2465 } 2466 2467 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2468 struct kvm_vcpu_events *events) 2469 { 2470 process_nmi(vcpu); 2471 events->exception.injected = 2472 vcpu->arch.exception.pending && 2473 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2474 events->exception.nr = vcpu->arch.exception.nr; 2475 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2476 events->exception.pad = 0; 2477 events->exception.error_code = vcpu->arch.exception.error_code; 2478 2479 events->interrupt.injected = 2480 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2481 events->interrupt.nr = vcpu->arch.interrupt.nr; 2482 events->interrupt.soft = 0; 2483 events->interrupt.shadow = 2484 kvm_x86_ops->get_interrupt_shadow(vcpu, 2485 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2486 2487 events->nmi.injected = vcpu->arch.nmi_injected; 2488 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2489 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2490 events->nmi.pad = 0; 2491 2492 events->sipi_vector = vcpu->arch.sipi_vector; 2493 2494 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2495 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2496 | KVM_VCPUEVENT_VALID_SHADOW); 2497 memset(&events->reserved, 0, sizeof(events->reserved)); 2498 } 2499 2500 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2501 struct kvm_vcpu_events *events) 2502 { 2503 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2504 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2505 | KVM_VCPUEVENT_VALID_SHADOW)) 2506 return -EINVAL; 2507 2508 process_nmi(vcpu); 2509 vcpu->arch.exception.pending = events->exception.injected; 2510 vcpu->arch.exception.nr = events->exception.nr; 2511 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2512 vcpu->arch.exception.error_code = events->exception.error_code; 2513 2514 vcpu->arch.interrupt.pending = events->interrupt.injected; 2515 vcpu->arch.interrupt.nr = events->interrupt.nr; 2516 vcpu->arch.interrupt.soft = events->interrupt.soft; 2517 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2518 kvm_x86_ops->set_interrupt_shadow(vcpu, 2519 events->interrupt.shadow); 2520 2521 vcpu->arch.nmi_injected = events->nmi.injected; 2522 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2523 vcpu->arch.nmi_pending = events->nmi.pending; 2524 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2525 2526 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2527 vcpu->arch.sipi_vector = events->sipi_vector; 2528 2529 kvm_make_request(KVM_REQ_EVENT, vcpu); 2530 2531 return 0; 2532 } 2533 2534 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2535 struct kvm_debugregs *dbgregs) 2536 { 2537 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2538 dbgregs->dr6 = vcpu->arch.dr6; 2539 dbgregs->dr7 = vcpu->arch.dr7; 2540 dbgregs->flags = 0; 2541 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2542 } 2543 2544 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2545 struct kvm_debugregs *dbgregs) 2546 { 2547 if (dbgregs->flags) 2548 return -EINVAL; 2549 2550 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2551 vcpu->arch.dr6 = dbgregs->dr6; 2552 vcpu->arch.dr7 = dbgregs->dr7; 2553 2554 return 0; 2555 } 2556 2557 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2558 struct kvm_xsave *guest_xsave) 2559 { 2560 if (cpu_has_xsave) 2561 memcpy(guest_xsave->region, 2562 &vcpu->arch.guest_fpu.state->xsave, 2563 xstate_size); 2564 else { 2565 memcpy(guest_xsave->region, 2566 &vcpu->arch.guest_fpu.state->fxsave, 2567 sizeof(struct i387_fxsave_struct)); 2568 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2569 XSTATE_FPSSE; 2570 } 2571 } 2572 2573 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2574 struct kvm_xsave *guest_xsave) 2575 { 2576 u64 xstate_bv = 2577 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2578 2579 if (cpu_has_xsave) 2580 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2581 guest_xsave->region, xstate_size); 2582 else { 2583 if (xstate_bv & ~XSTATE_FPSSE) 2584 return -EINVAL; 2585 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2586 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2587 } 2588 return 0; 2589 } 2590 2591 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2592 struct kvm_xcrs *guest_xcrs) 2593 { 2594 if (!cpu_has_xsave) { 2595 guest_xcrs->nr_xcrs = 0; 2596 return; 2597 } 2598 2599 guest_xcrs->nr_xcrs = 1; 2600 guest_xcrs->flags = 0; 2601 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2602 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2603 } 2604 2605 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2606 struct kvm_xcrs *guest_xcrs) 2607 { 2608 int i, r = 0; 2609 2610 if (!cpu_has_xsave) 2611 return -EINVAL; 2612 2613 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2614 return -EINVAL; 2615 2616 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2617 /* Only support XCR0 currently */ 2618 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2619 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2620 guest_xcrs->xcrs[0].value); 2621 break; 2622 } 2623 if (r) 2624 r = -EINVAL; 2625 return r; 2626 } 2627 2628 /* 2629 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2630 * stopped by the hypervisor. This function will be called from the host only. 2631 * EINVAL is returned when the host attempts to set the flag for a guest that 2632 * does not support pv clocks. 2633 */ 2634 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2635 { 2636 if (!vcpu->arch.time_page) 2637 return -EINVAL; 2638 vcpu->arch.pvclock_set_guest_stopped_request = true; 2639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2640 return 0; 2641 } 2642 2643 long kvm_arch_vcpu_ioctl(struct file *filp, 2644 unsigned int ioctl, unsigned long arg) 2645 { 2646 struct kvm_vcpu *vcpu = filp->private_data; 2647 void __user *argp = (void __user *)arg; 2648 int r; 2649 union { 2650 struct kvm_lapic_state *lapic; 2651 struct kvm_xsave *xsave; 2652 struct kvm_xcrs *xcrs; 2653 void *buffer; 2654 } u; 2655 2656 u.buffer = NULL; 2657 switch (ioctl) { 2658 case KVM_GET_LAPIC: { 2659 r = -EINVAL; 2660 if (!vcpu->arch.apic) 2661 goto out; 2662 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2663 2664 r = -ENOMEM; 2665 if (!u.lapic) 2666 goto out; 2667 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2668 if (r) 2669 goto out; 2670 r = -EFAULT; 2671 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2672 goto out; 2673 r = 0; 2674 break; 2675 } 2676 case KVM_SET_LAPIC: { 2677 r = -EINVAL; 2678 if (!vcpu->arch.apic) 2679 goto out; 2680 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2681 if (IS_ERR(u.lapic)) { 2682 r = PTR_ERR(u.lapic); 2683 goto out; 2684 } 2685 2686 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2687 if (r) 2688 goto out; 2689 r = 0; 2690 break; 2691 } 2692 case KVM_INTERRUPT: { 2693 struct kvm_interrupt irq; 2694 2695 r = -EFAULT; 2696 if (copy_from_user(&irq, argp, sizeof irq)) 2697 goto out; 2698 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2699 if (r) 2700 goto out; 2701 r = 0; 2702 break; 2703 } 2704 case KVM_NMI: { 2705 r = kvm_vcpu_ioctl_nmi(vcpu); 2706 if (r) 2707 goto out; 2708 r = 0; 2709 break; 2710 } 2711 case KVM_SET_CPUID: { 2712 struct kvm_cpuid __user *cpuid_arg = argp; 2713 struct kvm_cpuid cpuid; 2714 2715 r = -EFAULT; 2716 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2717 goto out; 2718 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2719 if (r) 2720 goto out; 2721 break; 2722 } 2723 case KVM_SET_CPUID2: { 2724 struct kvm_cpuid2 __user *cpuid_arg = argp; 2725 struct kvm_cpuid2 cpuid; 2726 2727 r = -EFAULT; 2728 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2729 goto out; 2730 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2731 cpuid_arg->entries); 2732 if (r) 2733 goto out; 2734 break; 2735 } 2736 case KVM_GET_CPUID2: { 2737 struct kvm_cpuid2 __user *cpuid_arg = argp; 2738 struct kvm_cpuid2 cpuid; 2739 2740 r = -EFAULT; 2741 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2742 goto out; 2743 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2744 cpuid_arg->entries); 2745 if (r) 2746 goto out; 2747 r = -EFAULT; 2748 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2749 goto out; 2750 r = 0; 2751 break; 2752 } 2753 case KVM_GET_MSRS: 2754 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2755 break; 2756 case KVM_SET_MSRS: 2757 r = msr_io(vcpu, argp, do_set_msr, 0); 2758 break; 2759 case KVM_TPR_ACCESS_REPORTING: { 2760 struct kvm_tpr_access_ctl tac; 2761 2762 r = -EFAULT; 2763 if (copy_from_user(&tac, argp, sizeof tac)) 2764 goto out; 2765 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2766 if (r) 2767 goto out; 2768 r = -EFAULT; 2769 if (copy_to_user(argp, &tac, sizeof tac)) 2770 goto out; 2771 r = 0; 2772 break; 2773 }; 2774 case KVM_SET_VAPIC_ADDR: { 2775 struct kvm_vapic_addr va; 2776 2777 r = -EINVAL; 2778 if (!irqchip_in_kernel(vcpu->kvm)) 2779 goto out; 2780 r = -EFAULT; 2781 if (copy_from_user(&va, argp, sizeof va)) 2782 goto out; 2783 r = 0; 2784 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2785 break; 2786 } 2787 case KVM_X86_SETUP_MCE: { 2788 u64 mcg_cap; 2789 2790 r = -EFAULT; 2791 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2792 goto out; 2793 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2794 break; 2795 } 2796 case KVM_X86_SET_MCE: { 2797 struct kvm_x86_mce mce; 2798 2799 r = -EFAULT; 2800 if (copy_from_user(&mce, argp, sizeof mce)) 2801 goto out; 2802 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2803 break; 2804 } 2805 case KVM_GET_VCPU_EVENTS: { 2806 struct kvm_vcpu_events events; 2807 2808 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2809 2810 r = -EFAULT; 2811 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2812 break; 2813 r = 0; 2814 break; 2815 } 2816 case KVM_SET_VCPU_EVENTS: { 2817 struct kvm_vcpu_events events; 2818 2819 r = -EFAULT; 2820 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2821 break; 2822 2823 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2824 break; 2825 } 2826 case KVM_GET_DEBUGREGS: { 2827 struct kvm_debugregs dbgregs; 2828 2829 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2830 2831 r = -EFAULT; 2832 if (copy_to_user(argp, &dbgregs, 2833 sizeof(struct kvm_debugregs))) 2834 break; 2835 r = 0; 2836 break; 2837 } 2838 case KVM_SET_DEBUGREGS: { 2839 struct kvm_debugregs dbgregs; 2840 2841 r = -EFAULT; 2842 if (copy_from_user(&dbgregs, argp, 2843 sizeof(struct kvm_debugregs))) 2844 break; 2845 2846 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2847 break; 2848 } 2849 case KVM_GET_XSAVE: { 2850 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2851 r = -ENOMEM; 2852 if (!u.xsave) 2853 break; 2854 2855 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2856 2857 r = -EFAULT; 2858 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2859 break; 2860 r = 0; 2861 break; 2862 } 2863 case KVM_SET_XSAVE: { 2864 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2865 if (IS_ERR(u.xsave)) { 2866 r = PTR_ERR(u.xsave); 2867 goto out; 2868 } 2869 2870 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2871 break; 2872 } 2873 case KVM_GET_XCRS: { 2874 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2875 r = -ENOMEM; 2876 if (!u.xcrs) 2877 break; 2878 2879 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2880 2881 r = -EFAULT; 2882 if (copy_to_user(argp, u.xcrs, 2883 sizeof(struct kvm_xcrs))) 2884 break; 2885 r = 0; 2886 break; 2887 } 2888 case KVM_SET_XCRS: { 2889 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2890 if (IS_ERR(u.xcrs)) { 2891 r = PTR_ERR(u.xcrs); 2892 goto out; 2893 } 2894 2895 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2896 break; 2897 } 2898 case KVM_SET_TSC_KHZ: { 2899 u32 user_tsc_khz; 2900 2901 r = -EINVAL; 2902 user_tsc_khz = (u32)arg; 2903 2904 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2905 goto out; 2906 2907 if (user_tsc_khz == 0) 2908 user_tsc_khz = tsc_khz; 2909 2910 kvm_set_tsc_khz(vcpu, user_tsc_khz); 2911 2912 r = 0; 2913 goto out; 2914 } 2915 case KVM_GET_TSC_KHZ: { 2916 r = vcpu->arch.virtual_tsc_khz; 2917 goto out; 2918 } 2919 case KVM_KVMCLOCK_CTRL: { 2920 r = kvm_set_guest_paused(vcpu); 2921 goto out; 2922 } 2923 default: 2924 r = -EINVAL; 2925 } 2926 out: 2927 kfree(u.buffer); 2928 return r; 2929 } 2930 2931 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2932 { 2933 return VM_FAULT_SIGBUS; 2934 } 2935 2936 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2937 { 2938 int ret; 2939 2940 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2941 return -1; 2942 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2943 return ret; 2944 } 2945 2946 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2947 u64 ident_addr) 2948 { 2949 kvm->arch.ept_identity_map_addr = ident_addr; 2950 return 0; 2951 } 2952 2953 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2954 u32 kvm_nr_mmu_pages) 2955 { 2956 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2957 return -EINVAL; 2958 2959 mutex_lock(&kvm->slots_lock); 2960 spin_lock(&kvm->mmu_lock); 2961 2962 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2963 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2964 2965 spin_unlock(&kvm->mmu_lock); 2966 mutex_unlock(&kvm->slots_lock); 2967 return 0; 2968 } 2969 2970 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2971 { 2972 return kvm->arch.n_max_mmu_pages; 2973 } 2974 2975 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2976 { 2977 int r; 2978 2979 r = 0; 2980 switch (chip->chip_id) { 2981 case KVM_IRQCHIP_PIC_MASTER: 2982 memcpy(&chip->chip.pic, 2983 &pic_irqchip(kvm)->pics[0], 2984 sizeof(struct kvm_pic_state)); 2985 break; 2986 case KVM_IRQCHIP_PIC_SLAVE: 2987 memcpy(&chip->chip.pic, 2988 &pic_irqchip(kvm)->pics[1], 2989 sizeof(struct kvm_pic_state)); 2990 break; 2991 case KVM_IRQCHIP_IOAPIC: 2992 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 2993 break; 2994 default: 2995 r = -EINVAL; 2996 break; 2997 } 2998 return r; 2999 } 3000 3001 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3002 { 3003 int r; 3004 3005 r = 0; 3006 switch (chip->chip_id) { 3007 case KVM_IRQCHIP_PIC_MASTER: 3008 spin_lock(&pic_irqchip(kvm)->lock); 3009 memcpy(&pic_irqchip(kvm)->pics[0], 3010 &chip->chip.pic, 3011 sizeof(struct kvm_pic_state)); 3012 spin_unlock(&pic_irqchip(kvm)->lock); 3013 break; 3014 case KVM_IRQCHIP_PIC_SLAVE: 3015 spin_lock(&pic_irqchip(kvm)->lock); 3016 memcpy(&pic_irqchip(kvm)->pics[1], 3017 &chip->chip.pic, 3018 sizeof(struct kvm_pic_state)); 3019 spin_unlock(&pic_irqchip(kvm)->lock); 3020 break; 3021 case KVM_IRQCHIP_IOAPIC: 3022 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3023 break; 3024 default: 3025 r = -EINVAL; 3026 break; 3027 } 3028 kvm_pic_update_irq(pic_irqchip(kvm)); 3029 return r; 3030 } 3031 3032 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3033 { 3034 int r = 0; 3035 3036 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3037 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3038 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3039 return r; 3040 } 3041 3042 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3043 { 3044 int r = 0; 3045 3046 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3047 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3048 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3049 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3050 return r; 3051 } 3052 3053 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3054 { 3055 int r = 0; 3056 3057 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3058 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3059 sizeof(ps->channels)); 3060 ps->flags = kvm->arch.vpit->pit_state.flags; 3061 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3062 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3063 return r; 3064 } 3065 3066 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3067 { 3068 int r = 0, start = 0; 3069 u32 prev_legacy, cur_legacy; 3070 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3071 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3072 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3073 if (!prev_legacy && cur_legacy) 3074 start = 1; 3075 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3076 sizeof(kvm->arch.vpit->pit_state.channels)); 3077 kvm->arch.vpit->pit_state.flags = ps->flags; 3078 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3079 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3080 return r; 3081 } 3082 3083 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3084 struct kvm_reinject_control *control) 3085 { 3086 if (!kvm->arch.vpit) 3087 return -ENXIO; 3088 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3089 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3090 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3091 return 0; 3092 } 3093 3094 /** 3095 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3096 * @kvm: kvm instance 3097 * @log: slot id and address to which we copy the log 3098 * 3099 * We need to keep it in mind that VCPU threads can write to the bitmap 3100 * concurrently. So, to avoid losing data, we keep the following order for 3101 * each bit: 3102 * 3103 * 1. Take a snapshot of the bit and clear it if needed. 3104 * 2. Write protect the corresponding page. 3105 * 3. Flush TLB's if needed. 3106 * 4. Copy the snapshot to the userspace. 3107 * 3108 * Between 2 and 3, the guest may write to the page using the remaining TLB 3109 * entry. This is not a problem because the page will be reported dirty at 3110 * step 4 using the snapshot taken before and step 3 ensures that successive 3111 * writes will be logged for the next call. 3112 */ 3113 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3114 { 3115 int r; 3116 struct kvm_memory_slot *memslot; 3117 unsigned long n, i; 3118 unsigned long *dirty_bitmap; 3119 unsigned long *dirty_bitmap_buffer; 3120 bool is_dirty = false; 3121 3122 mutex_lock(&kvm->slots_lock); 3123 3124 r = -EINVAL; 3125 if (log->slot >= KVM_MEMORY_SLOTS) 3126 goto out; 3127 3128 memslot = id_to_memslot(kvm->memslots, log->slot); 3129 3130 dirty_bitmap = memslot->dirty_bitmap; 3131 r = -ENOENT; 3132 if (!dirty_bitmap) 3133 goto out; 3134 3135 n = kvm_dirty_bitmap_bytes(memslot); 3136 3137 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3138 memset(dirty_bitmap_buffer, 0, n); 3139 3140 spin_lock(&kvm->mmu_lock); 3141 3142 for (i = 0; i < n / sizeof(long); i++) { 3143 unsigned long mask; 3144 gfn_t offset; 3145 3146 if (!dirty_bitmap[i]) 3147 continue; 3148 3149 is_dirty = true; 3150 3151 mask = xchg(&dirty_bitmap[i], 0); 3152 dirty_bitmap_buffer[i] = mask; 3153 3154 offset = i * BITS_PER_LONG; 3155 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3156 } 3157 if (is_dirty) 3158 kvm_flush_remote_tlbs(kvm); 3159 3160 spin_unlock(&kvm->mmu_lock); 3161 3162 r = -EFAULT; 3163 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3164 goto out; 3165 3166 r = 0; 3167 out: 3168 mutex_unlock(&kvm->slots_lock); 3169 return r; 3170 } 3171 3172 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) 3173 { 3174 if (!irqchip_in_kernel(kvm)) 3175 return -ENXIO; 3176 3177 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3178 irq_event->irq, irq_event->level); 3179 return 0; 3180 } 3181 3182 long kvm_arch_vm_ioctl(struct file *filp, 3183 unsigned int ioctl, unsigned long arg) 3184 { 3185 struct kvm *kvm = filp->private_data; 3186 void __user *argp = (void __user *)arg; 3187 int r = -ENOTTY; 3188 /* 3189 * This union makes it completely explicit to gcc-3.x 3190 * that these two variables' stack usage should be 3191 * combined, not added together. 3192 */ 3193 union { 3194 struct kvm_pit_state ps; 3195 struct kvm_pit_state2 ps2; 3196 struct kvm_pit_config pit_config; 3197 } u; 3198 3199 switch (ioctl) { 3200 case KVM_SET_TSS_ADDR: 3201 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3202 if (r < 0) 3203 goto out; 3204 break; 3205 case KVM_SET_IDENTITY_MAP_ADDR: { 3206 u64 ident_addr; 3207 3208 r = -EFAULT; 3209 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3210 goto out; 3211 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3212 if (r < 0) 3213 goto out; 3214 break; 3215 } 3216 case KVM_SET_NR_MMU_PAGES: 3217 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3218 if (r) 3219 goto out; 3220 break; 3221 case KVM_GET_NR_MMU_PAGES: 3222 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3223 break; 3224 case KVM_CREATE_IRQCHIP: { 3225 struct kvm_pic *vpic; 3226 3227 mutex_lock(&kvm->lock); 3228 r = -EEXIST; 3229 if (kvm->arch.vpic) 3230 goto create_irqchip_unlock; 3231 r = -EINVAL; 3232 if (atomic_read(&kvm->online_vcpus)) 3233 goto create_irqchip_unlock; 3234 r = -ENOMEM; 3235 vpic = kvm_create_pic(kvm); 3236 if (vpic) { 3237 r = kvm_ioapic_init(kvm); 3238 if (r) { 3239 mutex_lock(&kvm->slots_lock); 3240 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3241 &vpic->dev_master); 3242 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3243 &vpic->dev_slave); 3244 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3245 &vpic->dev_eclr); 3246 mutex_unlock(&kvm->slots_lock); 3247 kfree(vpic); 3248 goto create_irqchip_unlock; 3249 } 3250 } else 3251 goto create_irqchip_unlock; 3252 smp_wmb(); 3253 kvm->arch.vpic = vpic; 3254 smp_wmb(); 3255 r = kvm_setup_default_irq_routing(kvm); 3256 if (r) { 3257 mutex_lock(&kvm->slots_lock); 3258 mutex_lock(&kvm->irq_lock); 3259 kvm_ioapic_destroy(kvm); 3260 kvm_destroy_pic(kvm); 3261 mutex_unlock(&kvm->irq_lock); 3262 mutex_unlock(&kvm->slots_lock); 3263 } 3264 create_irqchip_unlock: 3265 mutex_unlock(&kvm->lock); 3266 break; 3267 } 3268 case KVM_CREATE_PIT: 3269 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3270 goto create_pit; 3271 case KVM_CREATE_PIT2: 3272 r = -EFAULT; 3273 if (copy_from_user(&u.pit_config, argp, 3274 sizeof(struct kvm_pit_config))) 3275 goto out; 3276 create_pit: 3277 mutex_lock(&kvm->slots_lock); 3278 r = -EEXIST; 3279 if (kvm->arch.vpit) 3280 goto create_pit_unlock; 3281 r = -ENOMEM; 3282 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3283 if (kvm->arch.vpit) 3284 r = 0; 3285 create_pit_unlock: 3286 mutex_unlock(&kvm->slots_lock); 3287 break; 3288 case KVM_GET_IRQCHIP: { 3289 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3290 struct kvm_irqchip *chip; 3291 3292 chip = memdup_user(argp, sizeof(*chip)); 3293 if (IS_ERR(chip)) { 3294 r = PTR_ERR(chip); 3295 goto out; 3296 } 3297 3298 r = -ENXIO; 3299 if (!irqchip_in_kernel(kvm)) 3300 goto get_irqchip_out; 3301 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3302 if (r) 3303 goto get_irqchip_out; 3304 r = -EFAULT; 3305 if (copy_to_user(argp, chip, sizeof *chip)) 3306 goto get_irqchip_out; 3307 r = 0; 3308 get_irqchip_out: 3309 kfree(chip); 3310 if (r) 3311 goto out; 3312 break; 3313 } 3314 case KVM_SET_IRQCHIP: { 3315 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3316 struct kvm_irqchip *chip; 3317 3318 chip = memdup_user(argp, sizeof(*chip)); 3319 if (IS_ERR(chip)) { 3320 r = PTR_ERR(chip); 3321 goto out; 3322 } 3323 3324 r = -ENXIO; 3325 if (!irqchip_in_kernel(kvm)) 3326 goto set_irqchip_out; 3327 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3328 if (r) 3329 goto set_irqchip_out; 3330 r = 0; 3331 set_irqchip_out: 3332 kfree(chip); 3333 if (r) 3334 goto out; 3335 break; 3336 } 3337 case KVM_GET_PIT: { 3338 r = -EFAULT; 3339 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3340 goto out; 3341 r = -ENXIO; 3342 if (!kvm->arch.vpit) 3343 goto out; 3344 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3345 if (r) 3346 goto out; 3347 r = -EFAULT; 3348 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3349 goto out; 3350 r = 0; 3351 break; 3352 } 3353 case KVM_SET_PIT: { 3354 r = -EFAULT; 3355 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3356 goto out; 3357 r = -ENXIO; 3358 if (!kvm->arch.vpit) 3359 goto out; 3360 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3361 if (r) 3362 goto out; 3363 r = 0; 3364 break; 3365 } 3366 case KVM_GET_PIT2: { 3367 r = -ENXIO; 3368 if (!kvm->arch.vpit) 3369 goto out; 3370 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3371 if (r) 3372 goto out; 3373 r = -EFAULT; 3374 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3375 goto out; 3376 r = 0; 3377 break; 3378 } 3379 case KVM_SET_PIT2: { 3380 r = -EFAULT; 3381 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3382 goto out; 3383 r = -ENXIO; 3384 if (!kvm->arch.vpit) 3385 goto out; 3386 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3387 if (r) 3388 goto out; 3389 r = 0; 3390 break; 3391 } 3392 case KVM_REINJECT_CONTROL: { 3393 struct kvm_reinject_control control; 3394 r = -EFAULT; 3395 if (copy_from_user(&control, argp, sizeof(control))) 3396 goto out; 3397 r = kvm_vm_ioctl_reinject(kvm, &control); 3398 if (r) 3399 goto out; 3400 r = 0; 3401 break; 3402 } 3403 case KVM_XEN_HVM_CONFIG: { 3404 r = -EFAULT; 3405 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3406 sizeof(struct kvm_xen_hvm_config))) 3407 goto out; 3408 r = -EINVAL; 3409 if (kvm->arch.xen_hvm_config.flags) 3410 goto out; 3411 r = 0; 3412 break; 3413 } 3414 case KVM_SET_CLOCK: { 3415 struct kvm_clock_data user_ns; 3416 u64 now_ns; 3417 s64 delta; 3418 3419 r = -EFAULT; 3420 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3421 goto out; 3422 3423 r = -EINVAL; 3424 if (user_ns.flags) 3425 goto out; 3426 3427 r = 0; 3428 local_irq_disable(); 3429 now_ns = get_kernel_ns(); 3430 delta = user_ns.clock - now_ns; 3431 local_irq_enable(); 3432 kvm->arch.kvmclock_offset = delta; 3433 break; 3434 } 3435 case KVM_GET_CLOCK: { 3436 struct kvm_clock_data user_ns; 3437 u64 now_ns; 3438 3439 local_irq_disable(); 3440 now_ns = get_kernel_ns(); 3441 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3442 local_irq_enable(); 3443 user_ns.flags = 0; 3444 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3445 3446 r = -EFAULT; 3447 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3448 goto out; 3449 r = 0; 3450 break; 3451 } 3452 3453 default: 3454 ; 3455 } 3456 out: 3457 return r; 3458 } 3459 3460 static void kvm_init_msr_list(void) 3461 { 3462 u32 dummy[2]; 3463 unsigned i, j; 3464 3465 /* skip the first msrs in the list. KVM-specific */ 3466 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3467 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3468 continue; 3469 if (j < i) 3470 msrs_to_save[j] = msrs_to_save[i]; 3471 j++; 3472 } 3473 num_msrs_to_save = j; 3474 } 3475 3476 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3477 const void *v) 3478 { 3479 int handled = 0; 3480 int n; 3481 3482 do { 3483 n = min(len, 8); 3484 if (!(vcpu->arch.apic && 3485 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3486 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3487 break; 3488 handled += n; 3489 addr += n; 3490 len -= n; 3491 v += n; 3492 } while (len); 3493 3494 return handled; 3495 } 3496 3497 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3498 { 3499 int handled = 0; 3500 int n; 3501 3502 do { 3503 n = min(len, 8); 3504 if (!(vcpu->arch.apic && 3505 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3506 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3507 break; 3508 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3509 handled += n; 3510 addr += n; 3511 len -= n; 3512 v += n; 3513 } while (len); 3514 3515 return handled; 3516 } 3517 3518 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3519 struct kvm_segment *var, int seg) 3520 { 3521 kvm_x86_ops->set_segment(vcpu, var, seg); 3522 } 3523 3524 void kvm_get_segment(struct kvm_vcpu *vcpu, 3525 struct kvm_segment *var, int seg) 3526 { 3527 kvm_x86_ops->get_segment(vcpu, var, seg); 3528 } 3529 3530 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3531 { 3532 gpa_t t_gpa; 3533 struct x86_exception exception; 3534 3535 BUG_ON(!mmu_is_nested(vcpu)); 3536 3537 /* NPT walks are always user-walks */ 3538 access |= PFERR_USER_MASK; 3539 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3540 3541 return t_gpa; 3542 } 3543 3544 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3545 struct x86_exception *exception) 3546 { 3547 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3548 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3549 } 3550 3551 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3552 struct x86_exception *exception) 3553 { 3554 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3555 access |= PFERR_FETCH_MASK; 3556 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3557 } 3558 3559 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3560 struct x86_exception *exception) 3561 { 3562 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3563 access |= PFERR_WRITE_MASK; 3564 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3565 } 3566 3567 /* uses this to access any guest's mapped memory without checking CPL */ 3568 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3569 struct x86_exception *exception) 3570 { 3571 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3572 } 3573 3574 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3575 struct kvm_vcpu *vcpu, u32 access, 3576 struct x86_exception *exception) 3577 { 3578 void *data = val; 3579 int r = X86EMUL_CONTINUE; 3580 3581 while (bytes) { 3582 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3583 exception); 3584 unsigned offset = addr & (PAGE_SIZE-1); 3585 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3586 int ret; 3587 3588 if (gpa == UNMAPPED_GVA) 3589 return X86EMUL_PROPAGATE_FAULT; 3590 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3591 if (ret < 0) { 3592 r = X86EMUL_IO_NEEDED; 3593 goto out; 3594 } 3595 3596 bytes -= toread; 3597 data += toread; 3598 addr += toread; 3599 } 3600 out: 3601 return r; 3602 } 3603 3604 /* used for instruction fetching */ 3605 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3606 gva_t addr, void *val, unsigned int bytes, 3607 struct x86_exception *exception) 3608 { 3609 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3610 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3611 3612 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3613 access | PFERR_FETCH_MASK, 3614 exception); 3615 } 3616 3617 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3618 gva_t addr, void *val, unsigned int bytes, 3619 struct x86_exception *exception) 3620 { 3621 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3622 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3623 3624 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3625 exception); 3626 } 3627 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3628 3629 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3630 gva_t addr, void *val, unsigned int bytes, 3631 struct x86_exception *exception) 3632 { 3633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3634 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3635 } 3636 3637 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3638 gva_t addr, void *val, 3639 unsigned int bytes, 3640 struct x86_exception *exception) 3641 { 3642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3643 void *data = val; 3644 int r = X86EMUL_CONTINUE; 3645 3646 while (bytes) { 3647 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3648 PFERR_WRITE_MASK, 3649 exception); 3650 unsigned offset = addr & (PAGE_SIZE-1); 3651 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3652 int ret; 3653 3654 if (gpa == UNMAPPED_GVA) 3655 return X86EMUL_PROPAGATE_FAULT; 3656 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3657 if (ret < 0) { 3658 r = X86EMUL_IO_NEEDED; 3659 goto out; 3660 } 3661 3662 bytes -= towrite; 3663 data += towrite; 3664 addr += towrite; 3665 } 3666 out: 3667 return r; 3668 } 3669 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3670 3671 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3672 gpa_t *gpa, struct x86_exception *exception, 3673 bool write) 3674 { 3675 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3676 3677 if (vcpu_match_mmio_gva(vcpu, gva) && 3678 check_write_user_access(vcpu, write, access, 3679 vcpu->arch.access)) { 3680 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3681 (gva & (PAGE_SIZE - 1)); 3682 trace_vcpu_match_mmio(gva, *gpa, write, false); 3683 return 1; 3684 } 3685 3686 if (write) 3687 access |= PFERR_WRITE_MASK; 3688 3689 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3690 3691 if (*gpa == UNMAPPED_GVA) 3692 return -1; 3693 3694 /* For APIC access vmexit */ 3695 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3696 return 1; 3697 3698 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3699 trace_vcpu_match_mmio(gva, *gpa, write, true); 3700 return 1; 3701 } 3702 3703 return 0; 3704 } 3705 3706 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3707 const void *val, int bytes) 3708 { 3709 int ret; 3710 3711 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3712 if (ret < 0) 3713 return 0; 3714 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3715 return 1; 3716 } 3717 3718 struct read_write_emulator_ops { 3719 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3720 int bytes); 3721 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3722 void *val, int bytes); 3723 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3724 int bytes, void *val); 3725 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3726 void *val, int bytes); 3727 bool write; 3728 }; 3729 3730 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3731 { 3732 if (vcpu->mmio_read_completed) { 3733 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3734 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 3735 vcpu->mmio_read_completed = 0; 3736 return 1; 3737 } 3738 3739 return 0; 3740 } 3741 3742 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3743 void *val, int bytes) 3744 { 3745 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3746 } 3747 3748 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3749 void *val, int bytes) 3750 { 3751 return emulator_write_phys(vcpu, gpa, val, bytes); 3752 } 3753 3754 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3755 { 3756 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3757 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3758 } 3759 3760 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3761 void *val, int bytes) 3762 { 3763 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3764 return X86EMUL_IO_NEEDED; 3765 } 3766 3767 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3768 void *val, int bytes) 3769 { 3770 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 3771 3772 memcpy(vcpu->run->mmio.data, frag->data, frag->len); 3773 return X86EMUL_CONTINUE; 3774 } 3775 3776 static const struct read_write_emulator_ops read_emultor = { 3777 .read_write_prepare = read_prepare, 3778 .read_write_emulate = read_emulate, 3779 .read_write_mmio = vcpu_mmio_read, 3780 .read_write_exit_mmio = read_exit_mmio, 3781 }; 3782 3783 static const struct read_write_emulator_ops write_emultor = { 3784 .read_write_emulate = write_emulate, 3785 .read_write_mmio = write_mmio, 3786 .read_write_exit_mmio = write_exit_mmio, 3787 .write = true, 3788 }; 3789 3790 static int emulator_read_write_onepage(unsigned long addr, void *val, 3791 unsigned int bytes, 3792 struct x86_exception *exception, 3793 struct kvm_vcpu *vcpu, 3794 const struct read_write_emulator_ops *ops) 3795 { 3796 gpa_t gpa; 3797 int handled, ret; 3798 bool write = ops->write; 3799 struct kvm_mmio_fragment *frag; 3800 3801 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3802 3803 if (ret < 0) 3804 return X86EMUL_PROPAGATE_FAULT; 3805 3806 /* For APIC access vmexit */ 3807 if (ret) 3808 goto mmio; 3809 3810 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3811 return X86EMUL_CONTINUE; 3812 3813 mmio: 3814 /* 3815 * Is this MMIO handled locally? 3816 */ 3817 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3818 if (handled == bytes) 3819 return X86EMUL_CONTINUE; 3820 3821 gpa += handled; 3822 bytes -= handled; 3823 val += handled; 3824 3825 while (bytes) { 3826 unsigned now = min(bytes, 8U); 3827 3828 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 3829 frag->gpa = gpa; 3830 frag->data = val; 3831 frag->len = now; 3832 3833 gpa += now; 3834 val += now; 3835 bytes -= now; 3836 } 3837 return X86EMUL_CONTINUE; 3838 } 3839 3840 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3841 void *val, unsigned int bytes, 3842 struct x86_exception *exception, 3843 const struct read_write_emulator_ops *ops) 3844 { 3845 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3846 gpa_t gpa; 3847 int rc; 3848 3849 if (ops->read_write_prepare && 3850 ops->read_write_prepare(vcpu, val, bytes)) 3851 return X86EMUL_CONTINUE; 3852 3853 vcpu->mmio_nr_fragments = 0; 3854 3855 /* Crossing a page boundary? */ 3856 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3857 int now; 3858 3859 now = -addr & ~PAGE_MASK; 3860 rc = emulator_read_write_onepage(addr, val, now, exception, 3861 vcpu, ops); 3862 3863 if (rc != X86EMUL_CONTINUE) 3864 return rc; 3865 addr += now; 3866 val += now; 3867 bytes -= now; 3868 } 3869 3870 rc = emulator_read_write_onepage(addr, val, bytes, exception, 3871 vcpu, ops); 3872 if (rc != X86EMUL_CONTINUE) 3873 return rc; 3874 3875 if (!vcpu->mmio_nr_fragments) 3876 return rc; 3877 3878 gpa = vcpu->mmio_fragments[0].gpa; 3879 3880 vcpu->mmio_needed = 1; 3881 vcpu->mmio_cur_fragment = 0; 3882 3883 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len; 3884 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 3885 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3886 vcpu->run->mmio.phys_addr = gpa; 3887 3888 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3889 } 3890 3891 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3892 unsigned long addr, 3893 void *val, 3894 unsigned int bytes, 3895 struct x86_exception *exception) 3896 { 3897 return emulator_read_write(ctxt, addr, val, bytes, 3898 exception, &read_emultor); 3899 } 3900 3901 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3902 unsigned long addr, 3903 const void *val, 3904 unsigned int bytes, 3905 struct x86_exception *exception) 3906 { 3907 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3908 exception, &write_emultor); 3909 } 3910 3911 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3912 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3913 3914 #ifdef CONFIG_X86_64 3915 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3916 #else 3917 # define CMPXCHG64(ptr, old, new) \ 3918 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3919 #endif 3920 3921 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3922 unsigned long addr, 3923 const void *old, 3924 const void *new, 3925 unsigned int bytes, 3926 struct x86_exception *exception) 3927 { 3928 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3929 gpa_t gpa; 3930 struct page *page; 3931 char *kaddr; 3932 bool exchanged; 3933 3934 /* guests cmpxchg8b have to be emulated atomically */ 3935 if (bytes > 8 || (bytes & (bytes - 1))) 3936 goto emul_write; 3937 3938 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3939 3940 if (gpa == UNMAPPED_GVA || 3941 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3942 goto emul_write; 3943 3944 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3945 goto emul_write; 3946 3947 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3948 if (is_error_page(page)) 3949 goto emul_write; 3950 3951 kaddr = kmap_atomic(page); 3952 kaddr += offset_in_page(gpa); 3953 switch (bytes) { 3954 case 1: 3955 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3956 break; 3957 case 2: 3958 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3959 break; 3960 case 4: 3961 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3962 break; 3963 case 8: 3964 exchanged = CMPXCHG64(kaddr, old, new); 3965 break; 3966 default: 3967 BUG(); 3968 } 3969 kunmap_atomic(kaddr); 3970 kvm_release_page_dirty(page); 3971 3972 if (!exchanged) 3973 return X86EMUL_CMPXCHG_FAILED; 3974 3975 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3976 3977 return X86EMUL_CONTINUE; 3978 3979 emul_write: 3980 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 3981 3982 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 3983 } 3984 3985 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 3986 { 3987 /* TODO: String I/O for in kernel device */ 3988 int r; 3989 3990 if (vcpu->arch.pio.in) 3991 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 3992 vcpu->arch.pio.size, pd); 3993 else 3994 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 3995 vcpu->arch.pio.port, vcpu->arch.pio.size, 3996 pd); 3997 return r; 3998 } 3999 4000 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4001 unsigned short port, void *val, 4002 unsigned int count, bool in) 4003 { 4004 trace_kvm_pio(!in, port, size, count); 4005 4006 vcpu->arch.pio.port = port; 4007 vcpu->arch.pio.in = in; 4008 vcpu->arch.pio.count = count; 4009 vcpu->arch.pio.size = size; 4010 4011 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4012 vcpu->arch.pio.count = 0; 4013 return 1; 4014 } 4015 4016 vcpu->run->exit_reason = KVM_EXIT_IO; 4017 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4018 vcpu->run->io.size = size; 4019 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4020 vcpu->run->io.count = count; 4021 vcpu->run->io.port = port; 4022 4023 return 0; 4024 } 4025 4026 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4027 int size, unsigned short port, void *val, 4028 unsigned int count) 4029 { 4030 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4031 int ret; 4032 4033 if (vcpu->arch.pio.count) 4034 goto data_avail; 4035 4036 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4037 if (ret) { 4038 data_avail: 4039 memcpy(val, vcpu->arch.pio_data, size * count); 4040 vcpu->arch.pio.count = 0; 4041 return 1; 4042 } 4043 4044 return 0; 4045 } 4046 4047 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4048 int size, unsigned short port, 4049 const void *val, unsigned int count) 4050 { 4051 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4052 4053 memcpy(vcpu->arch.pio_data, val, size * count); 4054 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4055 } 4056 4057 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4058 { 4059 return kvm_x86_ops->get_segment_base(vcpu, seg); 4060 } 4061 4062 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4063 { 4064 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4065 } 4066 4067 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4068 { 4069 if (!need_emulate_wbinvd(vcpu)) 4070 return X86EMUL_CONTINUE; 4071 4072 if (kvm_x86_ops->has_wbinvd_exit()) { 4073 int cpu = get_cpu(); 4074 4075 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4076 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4077 wbinvd_ipi, NULL, 1); 4078 put_cpu(); 4079 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4080 } else 4081 wbinvd(); 4082 return X86EMUL_CONTINUE; 4083 } 4084 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4085 4086 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4087 { 4088 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4089 } 4090 4091 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4092 { 4093 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4094 } 4095 4096 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4097 { 4098 4099 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4100 } 4101 4102 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4103 { 4104 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4105 } 4106 4107 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4108 { 4109 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4110 unsigned long value; 4111 4112 switch (cr) { 4113 case 0: 4114 value = kvm_read_cr0(vcpu); 4115 break; 4116 case 2: 4117 value = vcpu->arch.cr2; 4118 break; 4119 case 3: 4120 value = kvm_read_cr3(vcpu); 4121 break; 4122 case 4: 4123 value = kvm_read_cr4(vcpu); 4124 break; 4125 case 8: 4126 value = kvm_get_cr8(vcpu); 4127 break; 4128 default: 4129 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4130 return 0; 4131 } 4132 4133 return value; 4134 } 4135 4136 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4137 { 4138 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4139 int res = 0; 4140 4141 switch (cr) { 4142 case 0: 4143 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4144 break; 4145 case 2: 4146 vcpu->arch.cr2 = val; 4147 break; 4148 case 3: 4149 res = kvm_set_cr3(vcpu, val); 4150 break; 4151 case 4: 4152 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4153 break; 4154 case 8: 4155 res = kvm_set_cr8(vcpu, val); 4156 break; 4157 default: 4158 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4159 res = -1; 4160 } 4161 4162 return res; 4163 } 4164 4165 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4166 { 4167 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4168 } 4169 4170 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4171 { 4172 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4173 } 4174 4175 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4176 { 4177 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4178 } 4179 4180 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4181 { 4182 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4183 } 4184 4185 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4186 { 4187 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4188 } 4189 4190 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4191 { 4192 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4193 } 4194 4195 static unsigned long emulator_get_cached_segment_base( 4196 struct x86_emulate_ctxt *ctxt, int seg) 4197 { 4198 return get_segment_base(emul_to_vcpu(ctxt), seg); 4199 } 4200 4201 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4202 struct desc_struct *desc, u32 *base3, 4203 int seg) 4204 { 4205 struct kvm_segment var; 4206 4207 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4208 *selector = var.selector; 4209 4210 if (var.unusable) 4211 return false; 4212 4213 if (var.g) 4214 var.limit >>= 12; 4215 set_desc_limit(desc, var.limit); 4216 set_desc_base(desc, (unsigned long)var.base); 4217 #ifdef CONFIG_X86_64 4218 if (base3) 4219 *base3 = var.base >> 32; 4220 #endif 4221 desc->type = var.type; 4222 desc->s = var.s; 4223 desc->dpl = var.dpl; 4224 desc->p = var.present; 4225 desc->avl = var.avl; 4226 desc->l = var.l; 4227 desc->d = var.db; 4228 desc->g = var.g; 4229 4230 return true; 4231 } 4232 4233 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4234 struct desc_struct *desc, u32 base3, 4235 int seg) 4236 { 4237 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4238 struct kvm_segment var; 4239 4240 var.selector = selector; 4241 var.base = get_desc_base(desc); 4242 #ifdef CONFIG_X86_64 4243 var.base |= ((u64)base3) << 32; 4244 #endif 4245 var.limit = get_desc_limit(desc); 4246 if (desc->g) 4247 var.limit = (var.limit << 12) | 0xfff; 4248 var.type = desc->type; 4249 var.present = desc->p; 4250 var.dpl = desc->dpl; 4251 var.db = desc->d; 4252 var.s = desc->s; 4253 var.l = desc->l; 4254 var.g = desc->g; 4255 var.avl = desc->avl; 4256 var.present = desc->p; 4257 var.unusable = !var.present; 4258 var.padding = 0; 4259 4260 kvm_set_segment(vcpu, &var, seg); 4261 return; 4262 } 4263 4264 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4265 u32 msr_index, u64 *pdata) 4266 { 4267 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4268 } 4269 4270 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4271 u32 msr_index, u64 data) 4272 { 4273 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4274 } 4275 4276 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4277 u32 pmc, u64 *pdata) 4278 { 4279 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4280 } 4281 4282 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4283 { 4284 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4285 } 4286 4287 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4288 { 4289 preempt_disable(); 4290 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4291 /* 4292 * CR0.TS may reference the host fpu state, not the guest fpu state, 4293 * so it may be clear at this point. 4294 */ 4295 clts(); 4296 } 4297 4298 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4299 { 4300 preempt_enable(); 4301 } 4302 4303 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4304 struct x86_instruction_info *info, 4305 enum x86_intercept_stage stage) 4306 { 4307 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4308 } 4309 4310 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4311 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4312 { 4313 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4314 } 4315 4316 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4317 { 4318 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4319 } 4320 4321 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4322 { 4323 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4324 } 4325 4326 static const struct x86_emulate_ops emulate_ops = { 4327 .read_gpr = emulator_read_gpr, 4328 .write_gpr = emulator_write_gpr, 4329 .read_std = kvm_read_guest_virt_system, 4330 .write_std = kvm_write_guest_virt_system, 4331 .fetch = kvm_fetch_guest_virt, 4332 .read_emulated = emulator_read_emulated, 4333 .write_emulated = emulator_write_emulated, 4334 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4335 .invlpg = emulator_invlpg, 4336 .pio_in_emulated = emulator_pio_in_emulated, 4337 .pio_out_emulated = emulator_pio_out_emulated, 4338 .get_segment = emulator_get_segment, 4339 .set_segment = emulator_set_segment, 4340 .get_cached_segment_base = emulator_get_cached_segment_base, 4341 .get_gdt = emulator_get_gdt, 4342 .get_idt = emulator_get_idt, 4343 .set_gdt = emulator_set_gdt, 4344 .set_idt = emulator_set_idt, 4345 .get_cr = emulator_get_cr, 4346 .set_cr = emulator_set_cr, 4347 .set_rflags = emulator_set_rflags, 4348 .cpl = emulator_get_cpl, 4349 .get_dr = emulator_get_dr, 4350 .set_dr = emulator_set_dr, 4351 .set_msr = emulator_set_msr, 4352 .get_msr = emulator_get_msr, 4353 .read_pmc = emulator_read_pmc, 4354 .halt = emulator_halt, 4355 .wbinvd = emulator_wbinvd, 4356 .fix_hypercall = emulator_fix_hypercall, 4357 .get_fpu = emulator_get_fpu, 4358 .put_fpu = emulator_put_fpu, 4359 .intercept = emulator_intercept, 4360 .get_cpuid = emulator_get_cpuid, 4361 }; 4362 4363 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4364 { 4365 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4366 /* 4367 * an sti; sti; sequence only disable interrupts for the first 4368 * instruction. So, if the last instruction, be it emulated or 4369 * not, left the system with the INT_STI flag enabled, it 4370 * means that the last instruction is an sti. We should not 4371 * leave the flag on in this case. The same goes for mov ss 4372 */ 4373 if (!(int_shadow & mask)) 4374 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4375 } 4376 4377 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4378 { 4379 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4380 if (ctxt->exception.vector == PF_VECTOR) 4381 kvm_propagate_fault(vcpu, &ctxt->exception); 4382 else if (ctxt->exception.error_code_valid) 4383 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4384 ctxt->exception.error_code); 4385 else 4386 kvm_queue_exception(vcpu, ctxt->exception.vector); 4387 } 4388 4389 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4390 { 4391 memset(&ctxt->twobyte, 0, 4392 (void *)&ctxt->_regs - (void *)&ctxt->twobyte); 4393 4394 ctxt->fetch.start = 0; 4395 ctxt->fetch.end = 0; 4396 ctxt->io_read.pos = 0; 4397 ctxt->io_read.end = 0; 4398 ctxt->mem_read.pos = 0; 4399 ctxt->mem_read.end = 0; 4400 } 4401 4402 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4403 { 4404 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4405 int cs_db, cs_l; 4406 4407 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4408 4409 ctxt->eflags = kvm_get_rflags(vcpu); 4410 ctxt->eip = kvm_rip_read(vcpu); 4411 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4412 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4413 cs_l ? X86EMUL_MODE_PROT64 : 4414 cs_db ? X86EMUL_MODE_PROT32 : 4415 X86EMUL_MODE_PROT16; 4416 ctxt->guest_mode = is_guest_mode(vcpu); 4417 4418 init_decode_cache(ctxt); 4419 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4420 } 4421 4422 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4423 { 4424 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4425 int ret; 4426 4427 init_emulate_ctxt(vcpu); 4428 4429 ctxt->op_bytes = 2; 4430 ctxt->ad_bytes = 2; 4431 ctxt->_eip = ctxt->eip + inc_eip; 4432 ret = emulate_int_real(ctxt, irq); 4433 4434 if (ret != X86EMUL_CONTINUE) 4435 return EMULATE_FAIL; 4436 4437 ctxt->eip = ctxt->_eip; 4438 kvm_rip_write(vcpu, ctxt->eip); 4439 kvm_set_rflags(vcpu, ctxt->eflags); 4440 4441 if (irq == NMI_VECTOR) 4442 vcpu->arch.nmi_pending = 0; 4443 else 4444 vcpu->arch.interrupt.pending = false; 4445 4446 return EMULATE_DONE; 4447 } 4448 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4449 4450 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4451 { 4452 int r = EMULATE_DONE; 4453 4454 ++vcpu->stat.insn_emulation_fail; 4455 trace_kvm_emulate_insn_failed(vcpu); 4456 if (!is_guest_mode(vcpu)) { 4457 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4458 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4459 vcpu->run->internal.ndata = 0; 4460 r = EMULATE_FAIL; 4461 } 4462 kvm_queue_exception(vcpu, UD_VECTOR); 4463 4464 return r; 4465 } 4466 4467 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4468 { 4469 gpa_t gpa; 4470 pfn_t pfn; 4471 4472 if (tdp_enabled) 4473 return false; 4474 4475 /* 4476 * if emulation was due to access to shadowed page table 4477 * and it failed try to unshadow page and re-enter the 4478 * guest to let CPU execute the instruction. 4479 */ 4480 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4481 return true; 4482 4483 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4484 4485 if (gpa == UNMAPPED_GVA) 4486 return true; /* let cpu generate fault */ 4487 4488 /* 4489 * Do not retry the unhandleable instruction if it faults on the 4490 * readonly host memory, otherwise it will goto a infinite loop: 4491 * retry instruction -> write #PF -> emulation fail -> retry 4492 * instruction -> ... 4493 */ 4494 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4495 if (!is_error_pfn(pfn)) { 4496 kvm_release_pfn_clean(pfn); 4497 return true; 4498 } 4499 4500 return false; 4501 } 4502 4503 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4504 unsigned long cr2, int emulation_type) 4505 { 4506 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4507 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4508 4509 last_retry_eip = vcpu->arch.last_retry_eip; 4510 last_retry_addr = vcpu->arch.last_retry_addr; 4511 4512 /* 4513 * If the emulation is caused by #PF and it is non-page_table 4514 * writing instruction, it means the VM-EXIT is caused by shadow 4515 * page protected, we can zap the shadow page and retry this 4516 * instruction directly. 4517 * 4518 * Note: if the guest uses a non-page-table modifying instruction 4519 * on the PDE that points to the instruction, then we will unmap 4520 * the instruction and go to an infinite loop. So, we cache the 4521 * last retried eip and the last fault address, if we meet the eip 4522 * and the address again, we can break out of the potential infinite 4523 * loop. 4524 */ 4525 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4526 4527 if (!(emulation_type & EMULTYPE_RETRY)) 4528 return false; 4529 4530 if (x86_page_table_writing_insn(ctxt)) 4531 return false; 4532 4533 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4534 return false; 4535 4536 vcpu->arch.last_retry_eip = ctxt->eip; 4537 vcpu->arch.last_retry_addr = cr2; 4538 4539 if (!vcpu->arch.mmu.direct_map) 4540 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4541 4542 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4543 4544 return true; 4545 } 4546 4547 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4548 unsigned long cr2, 4549 int emulation_type, 4550 void *insn, 4551 int insn_len) 4552 { 4553 int r; 4554 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4555 bool writeback = true; 4556 4557 kvm_clear_exception_queue(vcpu); 4558 4559 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4560 init_emulate_ctxt(vcpu); 4561 ctxt->interruptibility = 0; 4562 ctxt->have_exception = false; 4563 ctxt->perm_ok = false; 4564 4565 ctxt->only_vendor_specific_insn 4566 = emulation_type & EMULTYPE_TRAP_UD; 4567 4568 r = x86_decode_insn(ctxt, insn, insn_len); 4569 4570 trace_kvm_emulate_insn_start(vcpu); 4571 ++vcpu->stat.insn_emulation; 4572 if (r != EMULATION_OK) { 4573 if (emulation_type & EMULTYPE_TRAP_UD) 4574 return EMULATE_FAIL; 4575 if (reexecute_instruction(vcpu, cr2)) 4576 return EMULATE_DONE; 4577 if (emulation_type & EMULTYPE_SKIP) 4578 return EMULATE_FAIL; 4579 return handle_emulation_failure(vcpu); 4580 } 4581 } 4582 4583 if (emulation_type & EMULTYPE_SKIP) { 4584 kvm_rip_write(vcpu, ctxt->_eip); 4585 return EMULATE_DONE; 4586 } 4587 4588 if (retry_instruction(ctxt, cr2, emulation_type)) 4589 return EMULATE_DONE; 4590 4591 /* this is needed for vmware backdoor interface to work since it 4592 changes registers values during IO operation */ 4593 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4594 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4595 emulator_invalidate_register_cache(ctxt); 4596 } 4597 4598 restart: 4599 r = x86_emulate_insn(ctxt); 4600 4601 if (r == EMULATION_INTERCEPTED) 4602 return EMULATE_DONE; 4603 4604 if (r == EMULATION_FAILED) { 4605 if (reexecute_instruction(vcpu, cr2)) 4606 return EMULATE_DONE; 4607 4608 return handle_emulation_failure(vcpu); 4609 } 4610 4611 if (ctxt->have_exception) { 4612 inject_emulated_exception(vcpu); 4613 r = EMULATE_DONE; 4614 } else if (vcpu->arch.pio.count) { 4615 if (!vcpu->arch.pio.in) 4616 vcpu->arch.pio.count = 0; 4617 else 4618 writeback = false; 4619 r = EMULATE_DO_MMIO; 4620 } else if (vcpu->mmio_needed) { 4621 if (!vcpu->mmio_is_write) 4622 writeback = false; 4623 r = EMULATE_DO_MMIO; 4624 } else if (r == EMULATION_RESTART) 4625 goto restart; 4626 else 4627 r = EMULATE_DONE; 4628 4629 if (writeback) { 4630 toggle_interruptibility(vcpu, ctxt->interruptibility); 4631 kvm_set_rflags(vcpu, ctxt->eflags); 4632 kvm_make_request(KVM_REQ_EVENT, vcpu); 4633 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4634 kvm_rip_write(vcpu, ctxt->eip); 4635 } else 4636 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4637 4638 return r; 4639 } 4640 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4641 4642 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4643 { 4644 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4645 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4646 size, port, &val, 1); 4647 /* do not return to emulator after return from userspace */ 4648 vcpu->arch.pio.count = 0; 4649 return ret; 4650 } 4651 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4652 4653 static void tsc_bad(void *info) 4654 { 4655 __this_cpu_write(cpu_tsc_khz, 0); 4656 } 4657 4658 static void tsc_khz_changed(void *data) 4659 { 4660 struct cpufreq_freqs *freq = data; 4661 unsigned long khz = 0; 4662 4663 if (data) 4664 khz = freq->new; 4665 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4666 khz = cpufreq_quick_get(raw_smp_processor_id()); 4667 if (!khz) 4668 khz = tsc_khz; 4669 __this_cpu_write(cpu_tsc_khz, khz); 4670 } 4671 4672 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4673 void *data) 4674 { 4675 struct cpufreq_freqs *freq = data; 4676 struct kvm *kvm; 4677 struct kvm_vcpu *vcpu; 4678 int i, send_ipi = 0; 4679 4680 /* 4681 * We allow guests to temporarily run on slowing clocks, 4682 * provided we notify them after, or to run on accelerating 4683 * clocks, provided we notify them before. Thus time never 4684 * goes backwards. 4685 * 4686 * However, we have a problem. We can't atomically update 4687 * the frequency of a given CPU from this function; it is 4688 * merely a notifier, which can be called from any CPU. 4689 * Changing the TSC frequency at arbitrary points in time 4690 * requires a recomputation of local variables related to 4691 * the TSC for each VCPU. We must flag these local variables 4692 * to be updated and be sure the update takes place with the 4693 * new frequency before any guests proceed. 4694 * 4695 * Unfortunately, the combination of hotplug CPU and frequency 4696 * change creates an intractable locking scenario; the order 4697 * of when these callouts happen is undefined with respect to 4698 * CPU hotplug, and they can race with each other. As such, 4699 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4700 * undefined; you can actually have a CPU frequency change take 4701 * place in between the computation of X and the setting of the 4702 * variable. To protect against this problem, all updates of 4703 * the per_cpu tsc_khz variable are done in an interrupt 4704 * protected IPI, and all callers wishing to update the value 4705 * must wait for a synchronous IPI to complete (which is trivial 4706 * if the caller is on the CPU already). This establishes the 4707 * necessary total order on variable updates. 4708 * 4709 * Note that because a guest time update may take place 4710 * anytime after the setting of the VCPU's request bit, the 4711 * correct TSC value must be set before the request. However, 4712 * to ensure the update actually makes it to any guest which 4713 * starts running in hardware virtualization between the set 4714 * and the acquisition of the spinlock, we must also ping the 4715 * CPU after setting the request bit. 4716 * 4717 */ 4718 4719 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4720 return 0; 4721 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4722 return 0; 4723 4724 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4725 4726 raw_spin_lock(&kvm_lock); 4727 list_for_each_entry(kvm, &vm_list, vm_list) { 4728 kvm_for_each_vcpu(i, vcpu, kvm) { 4729 if (vcpu->cpu != freq->cpu) 4730 continue; 4731 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4732 if (vcpu->cpu != smp_processor_id()) 4733 send_ipi = 1; 4734 } 4735 } 4736 raw_spin_unlock(&kvm_lock); 4737 4738 if (freq->old < freq->new && send_ipi) { 4739 /* 4740 * We upscale the frequency. Must make the guest 4741 * doesn't see old kvmclock values while running with 4742 * the new frequency, otherwise we risk the guest sees 4743 * time go backwards. 4744 * 4745 * In case we update the frequency for another cpu 4746 * (which might be in guest context) send an interrupt 4747 * to kick the cpu out of guest context. Next time 4748 * guest context is entered kvmclock will be updated, 4749 * so the guest will not see stale values. 4750 */ 4751 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4752 } 4753 return 0; 4754 } 4755 4756 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4757 .notifier_call = kvmclock_cpufreq_notifier 4758 }; 4759 4760 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4761 unsigned long action, void *hcpu) 4762 { 4763 unsigned int cpu = (unsigned long)hcpu; 4764 4765 switch (action) { 4766 case CPU_ONLINE: 4767 case CPU_DOWN_FAILED: 4768 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4769 break; 4770 case CPU_DOWN_PREPARE: 4771 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4772 break; 4773 } 4774 return NOTIFY_OK; 4775 } 4776 4777 static struct notifier_block kvmclock_cpu_notifier_block = { 4778 .notifier_call = kvmclock_cpu_notifier, 4779 .priority = -INT_MAX 4780 }; 4781 4782 static void kvm_timer_init(void) 4783 { 4784 int cpu; 4785 4786 max_tsc_khz = tsc_khz; 4787 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4788 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4789 #ifdef CONFIG_CPU_FREQ 4790 struct cpufreq_policy policy; 4791 memset(&policy, 0, sizeof(policy)); 4792 cpu = get_cpu(); 4793 cpufreq_get_policy(&policy, cpu); 4794 if (policy.cpuinfo.max_freq) 4795 max_tsc_khz = policy.cpuinfo.max_freq; 4796 put_cpu(); 4797 #endif 4798 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4799 CPUFREQ_TRANSITION_NOTIFIER); 4800 } 4801 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4802 for_each_online_cpu(cpu) 4803 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4804 } 4805 4806 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4807 4808 int kvm_is_in_guest(void) 4809 { 4810 return __this_cpu_read(current_vcpu) != NULL; 4811 } 4812 4813 static int kvm_is_user_mode(void) 4814 { 4815 int user_mode = 3; 4816 4817 if (__this_cpu_read(current_vcpu)) 4818 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4819 4820 return user_mode != 0; 4821 } 4822 4823 static unsigned long kvm_get_guest_ip(void) 4824 { 4825 unsigned long ip = 0; 4826 4827 if (__this_cpu_read(current_vcpu)) 4828 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4829 4830 return ip; 4831 } 4832 4833 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4834 .is_in_guest = kvm_is_in_guest, 4835 .is_user_mode = kvm_is_user_mode, 4836 .get_guest_ip = kvm_get_guest_ip, 4837 }; 4838 4839 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4840 { 4841 __this_cpu_write(current_vcpu, vcpu); 4842 } 4843 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4844 4845 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4846 { 4847 __this_cpu_write(current_vcpu, NULL); 4848 } 4849 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4850 4851 static void kvm_set_mmio_spte_mask(void) 4852 { 4853 u64 mask; 4854 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4855 4856 /* 4857 * Set the reserved bits and the present bit of an paging-structure 4858 * entry to generate page fault with PFER.RSV = 1. 4859 */ 4860 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4861 mask |= 1ull; 4862 4863 #ifdef CONFIG_X86_64 4864 /* 4865 * If reserved bit is not supported, clear the present bit to disable 4866 * mmio page fault. 4867 */ 4868 if (maxphyaddr == 52) 4869 mask &= ~1ull; 4870 #endif 4871 4872 kvm_mmu_set_mmio_spte_mask(mask); 4873 } 4874 4875 int kvm_arch_init(void *opaque) 4876 { 4877 int r; 4878 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4879 4880 if (kvm_x86_ops) { 4881 printk(KERN_ERR "kvm: already loaded the other module\n"); 4882 r = -EEXIST; 4883 goto out; 4884 } 4885 4886 if (!ops->cpu_has_kvm_support()) { 4887 printk(KERN_ERR "kvm: no hardware support\n"); 4888 r = -EOPNOTSUPP; 4889 goto out; 4890 } 4891 if (ops->disabled_by_bios()) { 4892 printk(KERN_ERR "kvm: disabled by bios\n"); 4893 r = -EOPNOTSUPP; 4894 goto out; 4895 } 4896 4897 r = kvm_mmu_module_init(); 4898 if (r) 4899 goto out; 4900 4901 kvm_set_mmio_spte_mask(); 4902 kvm_init_msr_list(); 4903 4904 kvm_x86_ops = ops; 4905 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4906 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4907 4908 kvm_timer_init(); 4909 4910 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4911 4912 if (cpu_has_xsave) 4913 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4914 4915 kvm_lapic_init(); 4916 return 0; 4917 4918 out: 4919 return r; 4920 } 4921 4922 void kvm_arch_exit(void) 4923 { 4924 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4925 4926 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4927 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4928 CPUFREQ_TRANSITION_NOTIFIER); 4929 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4930 kvm_x86_ops = NULL; 4931 kvm_mmu_module_exit(); 4932 } 4933 4934 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4935 { 4936 ++vcpu->stat.halt_exits; 4937 if (irqchip_in_kernel(vcpu->kvm)) { 4938 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4939 return 1; 4940 } else { 4941 vcpu->run->exit_reason = KVM_EXIT_HLT; 4942 return 0; 4943 } 4944 } 4945 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4946 4947 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4948 { 4949 u64 param, ingpa, outgpa, ret; 4950 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4951 bool fast, longmode; 4952 int cs_db, cs_l; 4953 4954 /* 4955 * hypercall generates UD from non zero cpl and real mode 4956 * per HYPER-V spec 4957 */ 4958 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4959 kvm_queue_exception(vcpu, UD_VECTOR); 4960 return 0; 4961 } 4962 4963 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4964 longmode = is_long_mode(vcpu) && cs_l == 1; 4965 4966 if (!longmode) { 4967 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4968 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4969 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4970 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4971 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4972 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4973 } 4974 #ifdef CONFIG_X86_64 4975 else { 4976 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4977 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4978 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4979 } 4980 #endif 4981 4982 code = param & 0xffff; 4983 fast = (param >> 16) & 0x1; 4984 rep_cnt = (param >> 32) & 0xfff; 4985 rep_idx = (param >> 48) & 0xfff; 4986 4987 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 4988 4989 switch (code) { 4990 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 4991 kvm_vcpu_on_spin(vcpu); 4992 break; 4993 default: 4994 res = HV_STATUS_INVALID_HYPERCALL_CODE; 4995 break; 4996 } 4997 4998 ret = res | (((u64)rep_done & 0xfff) << 32); 4999 if (longmode) { 5000 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5001 } else { 5002 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5003 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5004 } 5005 5006 return 1; 5007 } 5008 5009 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5010 { 5011 unsigned long nr, a0, a1, a2, a3, ret; 5012 int r = 1; 5013 5014 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5015 return kvm_hv_hypercall(vcpu); 5016 5017 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5018 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5019 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5020 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5021 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5022 5023 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5024 5025 if (!is_long_mode(vcpu)) { 5026 nr &= 0xFFFFFFFF; 5027 a0 &= 0xFFFFFFFF; 5028 a1 &= 0xFFFFFFFF; 5029 a2 &= 0xFFFFFFFF; 5030 a3 &= 0xFFFFFFFF; 5031 } 5032 5033 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5034 ret = -KVM_EPERM; 5035 goto out; 5036 } 5037 5038 switch (nr) { 5039 case KVM_HC_VAPIC_POLL_IRQ: 5040 ret = 0; 5041 break; 5042 default: 5043 ret = -KVM_ENOSYS; 5044 break; 5045 } 5046 out: 5047 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5048 ++vcpu->stat.hypercalls; 5049 return r; 5050 } 5051 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5052 5053 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5054 { 5055 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5056 char instruction[3]; 5057 unsigned long rip = kvm_rip_read(vcpu); 5058 5059 /* 5060 * Blow out the MMU to ensure that no other VCPU has an active mapping 5061 * to ensure that the updated hypercall appears atomically across all 5062 * VCPUs. 5063 */ 5064 kvm_mmu_zap_all(vcpu->kvm); 5065 5066 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5067 5068 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5069 } 5070 5071 /* 5072 * Check if userspace requested an interrupt window, and that the 5073 * interrupt window is open. 5074 * 5075 * No need to exit to userspace if we already have an interrupt queued. 5076 */ 5077 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5078 { 5079 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5080 vcpu->run->request_interrupt_window && 5081 kvm_arch_interrupt_allowed(vcpu)); 5082 } 5083 5084 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5085 { 5086 struct kvm_run *kvm_run = vcpu->run; 5087 5088 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5089 kvm_run->cr8 = kvm_get_cr8(vcpu); 5090 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5091 if (irqchip_in_kernel(vcpu->kvm)) 5092 kvm_run->ready_for_interrupt_injection = 1; 5093 else 5094 kvm_run->ready_for_interrupt_injection = 5095 kvm_arch_interrupt_allowed(vcpu) && 5096 !kvm_cpu_has_interrupt(vcpu) && 5097 !kvm_event_needs_reinjection(vcpu); 5098 } 5099 5100 static void vapic_enter(struct kvm_vcpu *vcpu) 5101 { 5102 struct kvm_lapic *apic = vcpu->arch.apic; 5103 struct page *page; 5104 5105 if (!apic || !apic->vapic_addr) 5106 return; 5107 5108 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5109 5110 vcpu->arch.apic->vapic_page = page; 5111 } 5112 5113 static void vapic_exit(struct kvm_vcpu *vcpu) 5114 { 5115 struct kvm_lapic *apic = vcpu->arch.apic; 5116 int idx; 5117 5118 if (!apic || !apic->vapic_addr) 5119 return; 5120 5121 idx = srcu_read_lock(&vcpu->kvm->srcu); 5122 kvm_release_page_dirty(apic->vapic_page); 5123 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5124 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5125 } 5126 5127 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5128 { 5129 int max_irr, tpr; 5130 5131 if (!kvm_x86_ops->update_cr8_intercept) 5132 return; 5133 5134 if (!vcpu->arch.apic) 5135 return; 5136 5137 if (!vcpu->arch.apic->vapic_addr) 5138 max_irr = kvm_lapic_find_highest_irr(vcpu); 5139 else 5140 max_irr = -1; 5141 5142 if (max_irr != -1) 5143 max_irr >>= 4; 5144 5145 tpr = kvm_lapic_get_cr8(vcpu); 5146 5147 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5148 } 5149 5150 static void inject_pending_event(struct kvm_vcpu *vcpu) 5151 { 5152 /* try to reinject previous events if any */ 5153 if (vcpu->arch.exception.pending) { 5154 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5155 vcpu->arch.exception.has_error_code, 5156 vcpu->arch.exception.error_code); 5157 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5158 vcpu->arch.exception.has_error_code, 5159 vcpu->arch.exception.error_code, 5160 vcpu->arch.exception.reinject); 5161 return; 5162 } 5163 5164 if (vcpu->arch.nmi_injected) { 5165 kvm_x86_ops->set_nmi(vcpu); 5166 return; 5167 } 5168 5169 if (vcpu->arch.interrupt.pending) { 5170 kvm_x86_ops->set_irq(vcpu); 5171 return; 5172 } 5173 5174 /* try to inject new event if pending */ 5175 if (vcpu->arch.nmi_pending) { 5176 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5177 --vcpu->arch.nmi_pending; 5178 vcpu->arch.nmi_injected = true; 5179 kvm_x86_ops->set_nmi(vcpu); 5180 } 5181 } else if (kvm_cpu_has_interrupt(vcpu)) { 5182 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5183 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5184 false); 5185 kvm_x86_ops->set_irq(vcpu); 5186 } 5187 } 5188 } 5189 5190 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5191 { 5192 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5193 !vcpu->guest_xcr0_loaded) { 5194 /* kvm_set_xcr() also depends on this */ 5195 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5196 vcpu->guest_xcr0_loaded = 1; 5197 } 5198 } 5199 5200 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5201 { 5202 if (vcpu->guest_xcr0_loaded) { 5203 if (vcpu->arch.xcr0 != host_xcr0) 5204 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5205 vcpu->guest_xcr0_loaded = 0; 5206 } 5207 } 5208 5209 static void process_nmi(struct kvm_vcpu *vcpu) 5210 { 5211 unsigned limit = 2; 5212 5213 /* 5214 * x86 is limited to one NMI running, and one NMI pending after it. 5215 * If an NMI is already in progress, limit further NMIs to just one. 5216 * Otherwise, allow two (and we'll inject the first one immediately). 5217 */ 5218 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5219 limit = 1; 5220 5221 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5222 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5223 kvm_make_request(KVM_REQ_EVENT, vcpu); 5224 } 5225 5226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5227 { 5228 int r; 5229 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5230 vcpu->run->request_interrupt_window; 5231 bool req_immediate_exit = 0; 5232 5233 if (vcpu->requests) { 5234 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5235 kvm_mmu_unload(vcpu); 5236 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5237 __kvm_migrate_timers(vcpu); 5238 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5239 r = kvm_guest_time_update(vcpu); 5240 if (unlikely(r)) 5241 goto out; 5242 } 5243 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5244 kvm_mmu_sync_roots(vcpu); 5245 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5246 kvm_x86_ops->tlb_flush(vcpu); 5247 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5248 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5249 r = 0; 5250 goto out; 5251 } 5252 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5253 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5254 r = 0; 5255 goto out; 5256 } 5257 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5258 vcpu->fpu_active = 0; 5259 kvm_x86_ops->fpu_deactivate(vcpu); 5260 } 5261 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5262 /* Page is swapped out. Do synthetic halt */ 5263 vcpu->arch.apf.halted = true; 5264 r = 1; 5265 goto out; 5266 } 5267 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5268 record_steal_time(vcpu); 5269 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5270 process_nmi(vcpu); 5271 req_immediate_exit = 5272 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5273 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5274 kvm_handle_pmu_event(vcpu); 5275 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5276 kvm_deliver_pmi(vcpu); 5277 } 5278 5279 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5280 inject_pending_event(vcpu); 5281 5282 /* enable NMI/IRQ window open exits if needed */ 5283 if (vcpu->arch.nmi_pending) 5284 kvm_x86_ops->enable_nmi_window(vcpu); 5285 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5286 kvm_x86_ops->enable_irq_window(vcpu); 5287 5288 if (kvm_lapic_enabled(vcpu)) { 5289 update_cr8_intercept(vcpu); 5290 kvm_lapic_sync_to_vapic(vcpu); 5291 } 5292 } 5293 5294 r = kvm_mmu_reload(vcpu); 5295 if (unlikely(r)) { 5296 goto cancel_injection; 5297 } 5298 5299 preempt_disable(); 5300 5301 kvm_x86_ops->prepare_guest_switch(vcpu); 5302 if (vcpu->fpu_active) 5303 kvm_load_guest_fpu(vcpu); 5304 kvm_load_guest_xcr0(vcpu); 5305 5306 vcpu->mode = IN_GUEST_MODE; 5307 5308 /* We should set ->mode before check ->requests, 5309 * see the comment in make_all_cpus_request. 5310 */ 5311 smp_mb(); 5312 5313 local_irq_disable(); 5314 5315 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5316 || need_resched() || signal_pending(current)) { 5317 vcpu->mode = OUTSIDE_GUEST_MODE; 5318 smp_wmb(); 5319 local_irq_enable(); 5320 preempt_enable(); 5321 r = 1; 5322 goto cancel_injection; 5323 } 5324 5325 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5326 5327 if (req_immediate_exit) 5328 smp_send_reschedule(vcpu->cpu); 5329 5330 kvm_guest_enter(); 5331 5332 if (unlikely(vcpu->arch.switch_db_regs)) { 5333 set_debugreg(0, 7); 5334 set_debugreg(vcpu->arch.eff_db[0], 0); 5335 set_debugreg(vcpu->arch.eff_db[1], 1); 5336 set_debugreg(vcpu->arch.eff_db[2], 2); 5337 set_debugreg(vcpu->arch.eff_db[3], 3); 5338 } 5339 5340 trace_kvm_entry(vcpu->vcpu_id); 5341 kvm_x86_ops->run(vcpu); 5342 5343 /* 5344 * If the guest has used debug registers, at least dr7 5345 * will be disabled while returning to the host. 5346 * If we don't have active breakpoints in the host, we don't 5347 * care about the messed up debug address registers. But if 5348 * we have some of them active, restore the old state. 5349 */ 5350 if (hw_breakpoint_active()) 5351 hw_breakpoint_restore(); 5352 5353 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5354 5355 vcpu->mode = OUTSIDE_GUEST_MODE; 5356 smp_wmb(); 5357 local_irq_enable(); 5358 5359 ++vcpu->stat.exits; 5360 5361 /* 5362 * We must have an instruction between local_irq_enable() and 5363 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5364 * the interrupt shadow. The stat.exits increment will do nicely. 5365 * But we need to prevent reordering, hence this barrier(): 5366 */ 5367 barrier(); 5368 5369 kvm_guest_exit(); 5370 5371 preempt_enable(); 5372 5373 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5374 5375 /* 5376 * Profile KVM exit RIPs: 5377 */ 5378 if (unlikely(prof_on == KVM_PROFILING)) { 5379 unsigned long rip = kvm_rip_read(vcpu); 5380 profile_hit(KVM_PROFILING, (void *)rip); 5381 } 5382 5383 if (unlikely(vcpu->arch.tsc_always_catchup)) 5384 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5385 5386 if (vcpu->arch.apic_attention) 5387 kvm_lapic_sync_from_vapic(vcpu); 5388 5389 r = kvm_x86_ops->handle_exit(vcpu); 5390 return r; 5391 5392 cancel_injection: 5393 kvm_x86_ops->cancel_injection(vcpu); 5394 if (unlikely(vcpu->arch.apic_attention)) 5395 kvm_lapic_sync_from_vapic(vcpu); 5396 out: 5397 return r; 5398 } 5399 5400 5401 static int __vcpu_run(struct kvm_vcpu *vcpu) 5402 { 5403 int r; 5404 struct kvm *kvm = vcpu->kvm; 5405 5406 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5407 pr_debug("vcpu %d received sipi with vector # %x\n", 5408 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5409 kvm_lapic_reset(vcpu); 5410 r = kvm_arch_vcpu_reset(vcpu); 5411 if (r) 5412 return r; 5413 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5414 } 5415 5416 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5417 vapic_enter(vcpu); 5418 5419 r = 1; 5420 while (r > 0) { 5421 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5422 !vcpu->arch.apf.halted) 5423 r = vcpu_enter_guest(vcpu); 5424 else { 5425 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5426 kvm_vcpu_block(vcpu); 5427 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5428 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5429 { 5430 switch(vcpu->arch.mp_state) { 5431 case KVM_MP_STATE_HALTED: 5432 vcpu->arch.mp_state = 5433 KVM_MP_STATE_RUNNABLE; 5434 case KVM_MP_STATE_RUNNABLE: 5435 vcpu->arch.apf.halted = false; 5436 break; 5437 case KVM_MP_STATE_SIPI_RECEIVED: 5438 default: 5439 r = -EINTR; 5440 break; 5441 } 5442 } 5443 } 5444 5445 if (r <= 0) 5446 break; 5447 5448 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5449 if (kvm_cpu_has_pending_timer(vcpu)) 5450 kvm_inject_pending_timer_irqs(vcpu); 5451 5452 if (dm_request_for_irq_injection(vcpu)) { 5453 r = -EINTR; 5454 vcpu->run->exit_reason = KVM_EXIT_INTR; 5455 ++vcpu->stat.request_irq_exits; 5456 } 5457 5458 kvm_check_async_pf_completion(vcpu); 5459 5460 if (signal_pending(current)) { 5461 r = -EINTR; 5462 vcpu->run->exit_reason = KVM_EXIT_INTR; 5463 ++vcpu->stat.signal_exits; 5464 } 5465 if (need_resched()) { 5466 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5467 kvm_resched(vcpu); 5468 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5469 } 5470 } 5471 5472 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5473 5474 vapic_exit(vcpu); 5475 5476 return r; 5477 } 5478 5479 /* 5480 * Implements the following, as a state machine: 5481 * 5482 * read: 5483 * for each fragment 5484 * write gpa, len 5485 * exit 5486 * copy data 5487 * execute insn 5488 * 5489 * write: 5490 * for each fragment 5491 * write gpa, len 5492 * copy data 5493 * exit 5494 */ 5495 static int complete_mmio(struct kvm_vcpu *vcpu) 5496 { 5497 struct kvm_run *run = vcpu->run; 5498 struct kvm_mmio_fragment *frag; 5499 int r; 5500 5501 if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) 5502 return 1; 5503 5504 if (vcpu->mmio_needed) { 5505 /* Complete previous fragment */ 5506 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++]; 5507 if (!vcpu->mmio_is_write) 5508 memcpy(frag->data, run->mmio.data, frag->len); 5509 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5510 vcpu->mmio_needed = 0; 5511 if (vcpu->mmio_is_write) 5512 return 1; 5513 vcpu->mmio_read_completed = 1; 5514 goto done; 5515 } 5516 /* Initiate next fragment */ 5517 ++frag; 5518 run->exit_reason = KVM_EXIT_MMIO; 5519 run->mmio.phys_addr = frag->gpa; 5520 if (vcpu->mmio_is_write) 5521 memcpy(run->mmio.data, frag->data, frag->len); 5522 run->mmio.len = frag->len; 5523 run->mmio.is_write = vcpu->mmio_is_write; 5524 return 0; 5525 5526 } 5527 done: 5528 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5529 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5530 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5531 if (r != EMULATE_DONE) 5532 return 0; 5533 return 1; 5534 } 5535 5536 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5537 { 5538 int r; 5539 sigset_t sigsaved; 5540 5541 if (!tsk_used_math(current) && init_fpu(current)) 5542 return -ENOMEM; 5543 5544 if (vcpu->sigset_active) 5545 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5546 5547 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5548 kvm_vcpu_block(vcpu); 5549 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5550 r = -EAGAIN; 5551 goto out; 5552 } 5553 5554 /* re-sync apic's tpr */ 5555 if (!irqchip_in_kernel(vcpu->kvm)) { 5556 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5557 r = -EINVAL; 5558 goto out; 5559 } 5560 } 5561 5562 r = complete_mmio(vcpu); 5563 if (r <= 0) 5564 goto out; 5565 5566 r = __vcpu_run(vcpu); 5567 5568 out: 5569 post_kvm_run_save(vcpu); 5570 if (vcpu->sigset_active) 5571 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5572 5573 return r; 5574 } 5575 5576 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5577 { 5578 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5579 /* 5580 * We are here if userspace calls get_regs() in the middle of 5581 * instruction emulation. Registers state needs to be copied 5582 * back from emulation context to vcpu. Userspace shouldn't do 5583 * that usually, but some bad designed PV devices (vmware 5584 * backdoor interface) need this to work 5585 */ 5586 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 5587 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5588 } 5589 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5590 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5591 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5592 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5593 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5594 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5595 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5596 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5597 #ifdef CONFIG_X86_64 5598 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5599 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5600 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5601 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5602 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5603 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5604 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5605 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5606 #endif 5607 5608 regs->rip = kvm_rip_read(vcpu); 5609 regs->rflags = kvm_get_rflags(vcpu); 5610 5611 return 0; 5612 } 5613 5614 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5615 { 5616 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5617 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5618 5619 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5620 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5621 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5622 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5623 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5624 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5625 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5626 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5627 #ifdef CONFIG_X86_64 5628 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5629 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5630 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5631 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5632 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5633 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5634 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5635 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5636 #endif 5637 5638 kvm_rip_write(vcpu, regs->rip); 5639 kvm_set_rflags(vcpu, regs->rflags); 5640 5641 vcpu->arch.exception.pending = false; 5642 5643 kvm_make_request(KVM_REQ_EVENT, vcpu); 5644 5645 return 0; 5646 } 5647 5648 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5649 { 5650 struct kvm_segment cs; 5651 5652 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5653 *db = cs.db; 5654 *l = cs.l; 5655 } 5656 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5657 5658 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5659 struct kvm_sregs *sregs) 5660 { 5661 struct desc_ptr dt; 5662 5663 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5664 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5665 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5666 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5667 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5668 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5669 5670 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5671 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5672 5673 kvm_x86_ops->get_idt(vcpu, &dt); 5674 sregs->idt.limit = dt.size; 5675 sregs->idt.base = dt.address; 5676 kvm_x86_ops->get_gdt(vcpu, &dt); 5677 sregs->gdt.limit = dt.size; 5678 sregs->gdt.base = dt.address; 5679 5680 sregs->cr0 = kvm_read_cr0(vcpu); 5681 sregs->cr2 = vcpu->arch.cr2; 5682 sregs->cr3 = kvm_read_cr3(vcpu); 5683 sregs->cr4 = kvm_read_cr4(vcpu); 5684 sregs->cr8 = kvm_get_cr8(vcpu); 5685 sregs->efer = vcpu->arch.efer; 5686 sregs->apic_base = kvm_get_apic_base(vcpu); 5687 5688 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5689 5690 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5691 set_bit(vcpu->arch.interrupt.nr, 5692 (unsigned long *)sregs->interrupt_bitmap); 5693 5694 return 0; 5695 } 5696 5697 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5698 struct kvm_mp_state *mp_state) 5699 { 5700 mp_state->mp_state = vcpu->arch.mp_state; 5701 return 0; 5702 } 5703 5704 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5705 struct kvm_mp_state *mp_state) 5706 { 5707 vcpu->arch.mp_state = mp_state->mp_state; 5708 kvm_make_request(KVM_REQ_EVENT, vcpu); 5709 return 0; 5710 } 5711 5712 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 5713 int reason, bool has_error_code, u32 error_code) 5714 { 5715 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5716 int ret; 5717 5718 init_emulate_ctxt(vcpu); 5719 5720 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 5721 has_error_code, error_code); 5722 5723 if (ret) 5724 return EMULATE_FAIL; 5725 5726 kvm_rip_write(vcpu, ctxt->eip); 5727 kvm_set_rflags(vcpu, ctxt->eflags); 5728 kvm_make_request(KVM_REQ_EVENT, vcpu); 5729 return EMULATE_DONE; 5730 } 5731 EXPORT_SYMBOL_GPL(kvm_task_switch); 5732 5733 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5734 struct kvm_sregs *sregs) 5735 { 5736 int mmu_reset_needed = 0; 5737 int pending_vec, max_bits, idx; 5738 struct desc_ptr dt; 5739 5740 dt.size = sregs->idt.limit; 5741 dt.address = sregs->idt.base; 5742 kvm_x86_ops->set_idt(vcpu, &dt); 5743 dt.size = sregs->gdt.limit; 5744 dt.address = sregs->gdt.base; 5745 kvm_x86_ops->set_gdt(vcpu, &dt); 5746 5747 vcpu->arch.cr2 = sregs->cr2; 5748 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5749 vcpu->arch.cr3 = sregs->cr3; 5750 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5751 5752 kvm_set_cr8(vcpu, sregs->cr8); 5753 5754 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5755 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5756 kvm_set_apic_base(vcpu, sregs->apic_base); 5757 5758 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5759 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5760 vcpu->arch.cr0 = sregs->cr0; 5761 5762 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5763 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5764 if (sregs->cr4 & X86_CR4_OSXSAVE) 5765 kvm_update_cpuid(vcpu); 5766 5767 idx = srcu_read_lock(&vcpu->kvm->srcu); 5768 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5769 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5770 mmu_reset_needed = 1; 5771 } 5772 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5773 5774 if (mmu_reset_needed) 5775 kvm_mmu_reset_context(vcpu); 5776 5777 max_bits = (sizeof sregs->interrupt_bitmap) << 3; 5778 pending_vec = find_first_bit( 5779 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5780 if (pending_vec < max_bits) { 5781 kvm_queue_interrupt(vcpu, pending_vec, false); 5782 pr_debug("Set back pending irq %d\n", pending_vec); 5783 } 5784 5785 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5786 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5787 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5788 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5789 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5790 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5791 5792 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5793 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5794 5795 update_cr8_intercept(vcpu); 5796 5797 /* Older userspace won't unhalt the vcpu on reset. */ 5798 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5799 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5800 !is_protmode(vcpu)) 5801 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5802 5803 kvm_make_request(KVM_REQ_EVENT, vcpu); 5804 5805 return 0; 5806 } 5807 5808 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5809 struct kvm_guest_debug *dbg) 5810 { 5811 unsigned long rflags; 5812 int i, r; 5813 5814 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5815 r = -EBUSY; 5816 if (vcpu->arch.exception.pending) 5817 goto out; 5818 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5819 kvm_queue_exception(vcpu, DB_VECTOR); 5820 else 5821 kvm_queue_exception(vcpu, BP_VECTOR); 5822 } 5823 5824 /* 5825 * Read rflags as long as potentially injected trace flags are still 5826 * filtered out. 5827 */ 5828 rflags = kvm_get_rflags(vcpu); 5829 5830 vcpu->guest_debug = dbg->control; 5831 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5832 vcpu->guest_debug = 0; 5833 5834 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5835 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5836 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5837 vcpu->arch.switch_db_regs = 5838 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); 5839 } else { 5840 for (i = 0; i < KVM_NR_DB_REGS; i++) 5841 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5842 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); 5843 } 5844 5845 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5846 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5847 get_segment_base(vcpu, VCPU_SREG_CS); 5848 5849 /* 5850 * Trigger an rflags update that will inject or remove the trace 5851 * flags. 5852 */ 5853 kvm_set_rflags(vcpu, rflags); 5854 5855 kvm_x86_ops->set_guest_debug(vcpu, dbg); 5856 5857 r = 0; 5858 5859 out: 5860 5861 return r; 5862 } 5863 5864 /* 5865 * Translate a guest virtual address to a guest physical address. 5866 */ 5867 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5868 struct kvm_translation *tr) 5869 { 5870 unsigned long vaddr = tr->linear_address; 5871 gpa_t gpa; 5872 int idx; 5873 5874 idx = srcu_read_lock(&vcpu->kvm->srcu); 5875 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5876 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5877 tr->physical_address = gpa; 5878 tr->valid = gpa != UNMAPPED_GVA; 5879 tr->writeable = 1; 5880 tr->usermode = 0; 5881 5882 return 0; 5883 } 5884 5885 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5886 { 5887 struct i387_fxsave_struct *fxsave = 5888 &vcpu->arch.guest_fpu.state->fxsave; 5889 5890 memcpy(fpu->fpr, fxsave->st_space, 128); 5891 fpu->fcw = fxsave->cwd; 5892 fpu->fsw = fxsave->swd; 5893 fpu->ftwx = fxsave->twd; 5894 fpu->last_opcode = fxsave->fop; 5895 fpu->last_ip = fxsave->rip; 5896 fpu->last_dp = fxsave->rdp; 5897 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5898 5899 return 0; 5900 } 5901 5902 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5903 { 5904 struct i387_fxsave_struct *fxsave = 5905 &vcpu->arch.guest_fpu.state->fxsave; 5906 5907 memcpy(fxsave->st_space, fpu->fpr, 128); 5908 fxsave->cwd = fpu->fcw; 5909 fxsave->swd = fpu->fsw; 5910 fxsave->twd = fpu->ftwx; 5911 fxsave->fop = fpu->last_opcode; 5912 fxsave->rip = fpu->last_ip; 5913 fxsave->rdp = fpu->last_dp; 5914 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5915 5916 return 0; 5917 } 5918 5919 int fx_init(struct kvm_vcpu *vcpu) 5920 { 5921 int err; 5922 5923 err = fpu_alloc(&vcpu->arch.guest_fpu); 5924 if (err) 5925 return err; 5926 5927 fpu_finit(&vcpu->arch.guest_fpu); 5928 5929 /* 5930 * Ensure guest xcr0 is valid for loading 5931 */ 5932 vcpu->arch.xcr0 = XSTATE_FP; 5933 5934 vcpu->arch.cr0 |= X86_CR0_ET; 5935 5936 return 0; 5937 } 5938 EXPORT_SYMBOL_GPL(fx_init); 5939 5940 static void fx_free(struct kvm_vcpu *vcpu) 5941 { 5942 fpu_free(&vcpu->arch.guest_fpu); 5943 } 5944 5945 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5946 { 5947 if (vcpu->guest_fpu_loaded) 5948 return; 5949 5950 /* 5951 * Restore all possible states in the guest, 5952 * and assume host would use all available bits. 5953 * Guest xcr0 would be loaded later. 5954 */ 5955 kvm_put_guest_xcr0(vcpu); 5956 vcpu->guest_fpu_loaded = 1; 5957 unlazy_fpu(current); 5958 fpu_restore_checking(&vcpu->arch.guest_fpu); 5959 trace_kvm_fpu(1); 5960 } 5961 5962 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 5963 { 5964 kvm_put_guest_xcr0(vcpu); 5965 5966 if (!vcpu->guest_fpu_loaded) 5967 return; 5968 5969 vcpu->guest_fpu_loaded = 0; 5970 fpu_save_init(&vcpu->arch.guest_fpu); 5971 ++vcpu->stat.fpu_reload; 5972 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 5973 trace_kvm_fpu(0); 5974 } 5975 5976 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 5977 { 5978 kvmclock_reset(vcpu); 5979 5980 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 5981 fx_free(vcpu); 5982 kvm_x86_ops->vcpu_free(vcpu); 5983 } 5984 5985 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 5986 unsigned int id) 5987 { 5988 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 5989 printk_once(KERN_WARNING 5990 "kvm: SMP vm created on host with unstable TSC; " 5991 "guest TSC will not be reliable\n"); 5992 return kvm_x86_ops->vcpu_create(kvm, id); 5993 } 5994 5995 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 5996 { 5997 int r; 5998 5999 vcpu->arch.mtrr_state.have_fixed = 1; 6000 vcpu_load(vcpu); 6001 r = kvm_arch_vcpu_reset(vcpu); 6002 if (r == 0) 6003 r = kvm_mmu_setup(vcpu); 6004 vcpu_put(vcpu); 6005 6006 return r; 6007 } 6008 6009 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6010 { 6011 vcpu->arch.apf.msr_val = 0; 6012 6013 vcpu_load(vcpu); 6014 kvm_mmu_unload(vcpu); 6015 vcpu_put(vcpu); 6016 6017 fx_free(vcpu); 6018 kvm_x86_ops->vcpu_free(vcpu); 6019 } 6020 6021 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 6022 { 6023 atomic_set(&vcpu->arch.nmi_queued, 0); 6024 vcpu->arch.nmi_pending = 0; 6025 vcpu->arch.nmi_injected = false; 6026 6027 vcpu->arch.switch_db_regs = 0; 6028 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6029 vcpu->arch.dr6 = DR6_FIXED_1; 6030 vcpu->arch.dr7 = DR7_FIXED_1; 6031 6032 kvm_make_request(KVM_REQ_EVENT, vcpu); 6033 vcpu->arch.apf.msr_val = 0; 6034 vcpu->arch.st.msr_val = 0; 6035 6036 kvmclock_reset(vcpu); 6037 6038 kvm_clear_async_pf_completion_queue(vcpu); 6039 kvm_async_pf_hash_reset(vcpu); 6040 vcpu->arch.apf.halted = false; 6041 6042 kvm_pmu_reset(vcpu); 6043 6044 return kvm_x86_ops->vcpu_reset(vcpu); 6045 } 6046 6047 int kvm_arch_hardware_enable(void *garbage) 6048 { 6049 struct kvm *kvm; 6050 struct kvm_vcpu *vcpu; 6051 int i; 6052 int ret; 6053 u64 local_tsc; 6054 u64 max_tsc = 0; 6055 bool stable, backwards_tsc = false; 6056 6057 kvm_shared_msr_cpu_online(); 6058 ret = kvm_x86_ops->hardware_enable(garbage); 6059 if (ret != 0) 6060 return ret; 6061 6062 local_tsc = native_read_tsc(); 6063 stable = !check_tsc_unstable(); 6064 list_for_each_entry(kvm, &vm_list, vm_list) { 6065 kvm_for_each_vcpu(i, vcpu, kvm) { 6066 if (!stable && vcpu->cpu == smp_processor_id()) 6067 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6068 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6069 backwards_tsc = true; 6070 if (vcpu->arch.last_host_tsc > max_tsc) 6071 max_tsc = vcpu->arch.last_host_tsc; 6072 } 6073 } 6074 } 6075 6076 /* 6077 * Sometimes, even reliable TSCs go backwards. This happens on 6078 * platforms that reset TSC during suspend or hibernate actions, but 6079 * maintain synchronization. We must compensate. Fortunately, we can 6080 * detect that condition here, which happens early in CPU bringup, 6081 * before any KVM threads can be running. Unfortunately, we can't 6082 * bring the TSCs fully up to date with real time, as we aren't yet far 6083 * enough into CPU bringup that we know how much real time has actually 6084 * elapsed; our helper function, get_kernel_ns() will be using boot 6085 * variables that haven't been updated yet. 6086 * 6087 * So we simply find the maximum observed TSC above, then record the 6088 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6089 * the adjustment will be applied. Note that we accumulate 6090 * adjustments, in case multiple suspend cycles happen before some VCPU 6091 * gets a chance to run again. In the event that no KVM threads get a 6092 * chance to run, we will miss the entire elapsed period, as we'll have 6093 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6094 * loose cycle time. This isn't too big a deal, since the loss will be 6095 * uniform across all VCPUs (not to mention the scenario is extremely 6096 * unlikely). It is possible that a second hibernate recovery happens 6097 * much faster than a first, causing the observed TSC here to be 6098 * smaller; this would require additional padding adjustment, which is 6099 * why we set last_host_tsc to the local tsc observed here. 6100 * 6101 * N.B. - this code below runs only on platforms with reliable TSC, 6102 * as that is the only way backwards_tsc is set above. Also note 6103 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6104 * have the same delta_cyc adjustment applied if backwards_tsc 6105 * is detected. Note further, this adjustment is only done once, 6106 * as we reset last_host_tsc on all VCPUs to stop this from being 6107 * called multiple times (one for each physical CPU bringup). 6108 * 6109 * Platforms with unreliable TSCs don't have to deal with this, they 6110 * will be compensated by the logic in vcpu_load, which sets the TSC to 6111 * catchup mode. This will catchup all VCPUs to real time, but cannot 6112 * guarantee that they stay in perfect synchronization. 6113 */ 6114 if (backwards_tsc) { 6115 u64 delta_cyc = max_tsc - local_tsc; 6116 list_for_each_entry(kvm, &vm_list, vm_list) { 6117 kvm_for_each_vcpu(i, vcpu, kvm) { 6118 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6119 vcpu->arch.last_host_tsc = local_tsc; 6120 } 6121 6122 /* 6123 * We have to disable TSC offset matching.. if you were 6124 * booting a VM while issuing an S4 host suspend.... 6125 * you may have some problem. Solving this issue is 6126 * left as an exercise to the reader. 6127 */ 6128 kvm->arch.last_tsc_nsec = 0; 6129 kvm->arch.last_tsc_write = 0; 6130 } 6131 6132 } 6133 return 0; 6134 } 6135 6136 void kvm_arch_hardware_disable(void *garbage) 6137 { 6138 kvm_x86_ops->hardware_disable(garbage); 6139 drop_user_return_notifiers(garbage); 6140 } 6141 6142 int kvm_arch_hardware_setup(void) 6143 { 6144 return kvm_x86_ops->hardware_setup(); 6145 } 6146 6147 void kvm_arch_hardware_unsetup(void) 6148 { 6149 kvm_x86_ops->hardware_unsetup(); 6150 } 6151 6152 void kvm_arch_check_processor_compat(void *rtn) 6153 { 6154 kvm_x86_ops->check_processor_compatibility(rtn); 6155 } 6156 6157 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6158 { 6159 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6160 } 6161 6162 struct static_key kvm_no_apic_vcpu __read_mostly; 6163 6164 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6165 { 6166 struct page *page; 6167 struct kvm *kvm; 6168 int r; 6169 6170 BUG_ON(vcpu->kvm == NULL); 6171 kvm = vcpu->kvm; 6172 6173 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6174 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6175 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6176 else 6177 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6178 6179 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6180 if (!page) { 6181 r = -ENOMEM; 6182 goto fail; 6183 } 6184 vcpu->arch.pio_data = page_address(page); 6185 6186 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6187 6188 r = kvm_mmu_create(vcpu); 6189 if (r < 0) 6190 goto fail_free_pio_data; 6191 6192 if (irqchip_in_kernel(kvm)) { 6193 r = kvm_create_lapic(vcpu); 6194 if (r < 0) 6195 goto fail_mmu_destroy; 6196 } else 6197 static_key_slow_inc(&kvm_no_apic_vcpu); 6198 6199 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6200 GFP_KERNEL); 6201 if (!vcpu->arch.mce_banks) { 6202 r = -ENOMEM; 6203 goto fail_free_lapic; 6204 } 6205 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6206 6207 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6208 goto fail_free_mce_banks; 6209 6210 kvm_async_pf_hash_reset(vcpu); 6211 kvm_pmu_init(vcpu); 6212 6213 return 0; 6214 fail_free_mce_banks: 6215 kfree(vcpu->arch.mce_banks); 6216 fail_free_lapic: 6217 kvm_free_lapic(vcpu); 6218 fail_mmu_destroy: 6219 kvm_mmu_destroy(vcpu); 6220 fail_free_pio_data: 6221 free_page((unsigned long)vcpu->arch.pio_data); 6222 fail: 6223 return r; 6224 } 6225 6226 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6227 { 6228 int idx; 6229 6230 kvm_pmu_destroy(vcpu); 6231 kfree(vcpu->arch.mce_banks); 6232 kvm_free_lapic(vcpu); 6233 idx = srcu_read_lock(&vcpu->kvm->srcu); 6234 kvm_mmu_destroy(vcpu); 6235 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6236 free_page((unsigned long)vcpu->arch.pio_data); 6237 if (!irqchip_in_kernel(vcpu->kvm)) 6238 static_key_slow_dec(&kvm_no_apic_vcpu); 6239 } 6240 6241 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6242 { 6243 if (type) 6244 return -EINVAL; 6245 6246 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6247 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6248 6249 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6250 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6251 6252 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6253 6254 return 0; 6255 } 6256 6257 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6258 { 6259 vcpu_load(vcpu); 6260 kvm_mmu_unload(vcpu); 6261 vcpu_put(vcpu); 6262 } 6263 6264 static void kvm_free_vcpus(struct kvm *kvm) 6265 { 6266 unsigned int i; 6267 struct kvm_vcpu *vcpu; 6268 6269 /* 6270 * Unpin any mmu pages first. 6271 */ 6272 kvm_for_each_vcpu(i, vcpu, kvm) { 6273 kvm_clear_async_pf_completion_queue(vcpu); 6274 kvm_unload_vcpu_mmu(vcpu); 6275 } 6276 kvm_for_each_vcpu(i, vcpu, kvm) 6277 kvm_arch_vcpu_free(vcpu); 6278 6279 mutex_lock(&kvm->lock); 6280 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6281 kvm->vcpus[i] = NULL; 6282 6283 atomic_set(&kvm->online_vcpus, 0); 6284 mutex_unlock(&kvm->lock); 6285 } 6286 6287 void kvm_arch_sync_events(struct kvm *kvm) 6288 { 6289 kvm_free_all_assigned_devices(kvm); 6290 kvm_free_pit(kvm); 6291 } 6292 6293 void kvm_arch_destroy_vm(struct kvm *kvm) 6294 { 6295 kvm_iommu_unmap_guest(kvm); 6296 kfree(kvm->arch.vpic); 6297 kfree(kvm->arch.vioapic); 6298 kvm_free_vcpus(kvm); 6299 if (kvm->arch.apic_access_page) 6300 put_page(kvm->arch.apic_access_page); 6301 if (kvm->arch.ept_identity_pagetable) 6302 put_page(kvm->arch.ept_identity_pagetable); 6303 } 6304 6305 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6306 struct kvm_memory_slot *dont) 6307 { 6308 int i; 6309 6310 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6311 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 6312 kvm_kvfree(free->arch.rmap[i]); 6313 free->arch.rmap[i] = NULL; 6314 } 6315 if (i == 0) 6316 continue; 6317 6318 if (!dont || free->arch.lpage_info[i - 1] != 6319 dont->arch.lpage_info[i - 1]) { 6320 kvm_kvfree(free->arch.lpage_info[i - 1]); 6321 free->arch.lpage_info[i - 1] = NULL; 6322 } 6323 } 6324 } 6325 6326 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6327 { 6328 int i; 6329 6330 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6331 unsigned long ugfn; 6332 int lpages; 6333 int level = i + 1; 6334 6335 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6336 slot->base_gfn, level) + 1; 6337 6338 slot->arch.rmap[i] = 6339 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 6340 if (!slot->arch.rmap[i]) 6341 goto out_free; 6342 if (i == 0) 6343 continue; 6344 6345 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 6346 sizeof(*slot->arch.lpage_info[i - 1])); 6347 if (!slot->arch.lpage_info[i - 1]) 6348 goto out_free; 6349 6350 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6351 slot->arch.lpage_info[i - 1][0].write_count = 1; 6352 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6353 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 6354 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6355 /* 6356 * If the gfn and userspace address are not aligned wrt each 6357 * other, or if explicitly asked to, disable large page 6358 * support for this slot 6359 */ 6360 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6361 !kvm_largepages_enabled()) { 6362 unsigned long j; 6363 6364 for (j = 0; j < lpages; ++j) 6365 slot->arch.lpage_info[i - 1][j].write_count = 1; 6366 } 6367 } 6368 6369 return 0; 6370 6371 out_free: 6372 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6373 kvm_kvfree(slot->arch.rmap[i]); 6374 slot->arch.rmap[i] = NULL; 6375 if (i == 0) 6376 continue; 6377 6378 kvm_kvfree(slot->arch.lpage_info[i - 1]); 6379 slot->arch.lpage_info[i - 1] = NULL; 6380 } 6381 return -ENOMEM; 6382 } 6383 6384 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6385 struct kvm_memory_slot *memslot, 6386 struct kvm_memory_slot old, 6387 struct kvm_userspace_memory_region *mem, 6388 int user_alloc) 6389 { 6390 int npages = memslot->npages; 6391 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6392 6393 /* Prevent internal slot pages from being moved by fork()/COW. */ 6394 if (memslot->id >= KVM_MEMORY_SLOTS) 6395 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6396 6397 /*To keep backward compatibility with older userspace, 6398 *x86 needs to handle !user_alloc case. 6399 */ 6400 if (!user_alloc) { 6401 if (npages && !old.npages) { 6402 unsigned long userspace_addr; 6403 6404 userspace_addr = vm_mmap(NULL, 0, 6405 npages * PAGE_SIZE, 6406 PROT_READ | PROT_WRITE, 6407 map_flags, 6408 0); 6409 6410 if (IS_ERR((void *)userspace_addr)) 6411 return PTR_ERR((void *)userspace_addr); 6412 6413 memslot->userspace_addr = userspace_addr; 6414 } 6415 } 6416 6417 6418 return 0; 6419 } 6420 6421 void kvm_arch_commit_memory_region(struct kvm *kvm, 6422 struct kvm_userspace_memory_region *mem, 6423 struct kvm_memory_slot old, 6424 int user_alloc) 6425 { 6426 6427 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6428 6429 if (!user_alloc && !old.user_alloc && old.npages && !npages) { 6430 int ret; 6431 6432 ret = vm_munmap(old.userspace_addr, 6433 old.npages * PAGE_SIZE); 6434 if (ret < 0) 6435 printk(KERN_WARNING 6436 "kvm_vm_ioctl_set_memory_region: " 6437 "failed to munmap memory\n"); 6438 } 6439 6440 if (!kvm->arch.n_requested_mmu_pages) 6441 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6442 6443 spin_lock(&kvm->mmu_lock); 6444 if (nr_mmu_pages) 6445 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6446 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6447 spin_unlock(&kvm->mmu_lock); 6448 } 6449 6450 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6451 { 6452 kvm_mmu_zap_all(kvm); 6453 kvm_reload_remote_mmus(kvm); 6454 } 6455 6456 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6457 struct kvm_memory_slot *slot) 6458 { 6459 kvm_arch_flush_shadow_all(kvm); 6460 } 6461 6462 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6463 { 6464 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6465 !vcpu->arch.apf.halted) 6466 || !list_empty_careful(&vcpu->async_pf.done) 6467 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6468 || atomic_read(&vcpu->arch.nmi_queued) || 6469 (kvm_arch_interrupt_allowed(vcpu) && 6470 kvm_cpu_has_interrupt(vcpu)); 6471 } 6472 6473 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 6474 { 6475 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 6476 } 6477 6478 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6479 { 6480 return kvm_x86_ops->interrupt_allowed(vcpu); 6481 } 6482 6483 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6484 { 6485 unsigned long current_rip = kvm_rip_read(vcpu) + 6486 get_segment_base(vcpu, VCPU_SREG_CS); 6487 6488 return current_rip == linear_rip; 6489 } 6490 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6491 6492 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6493 { 6494 unsigned long rflags; 6495 6496 rflags = kvm_x86_ops->get_rflags(vcpu); 6497 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6498 rflags &= ~X86_EFLAGS_TF; 6499 return rflags; 6500 } 6501 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6502 6503 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6504 { 6505 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6506 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6507 rflags |= X86_EFLAGS_TF; 6508 kvm_x86_ops->set_rflags(vcpu, rflags); 6509 kvm_make_request(KVM_REQ_EVENT, vcpu); 6510 } 6511 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6512 6513 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6514 { 6515 int r; 6516 6517 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6518 is_error_page(work->page)) 6519 return; 6520 6521 r = kvm_mmu_reload(vcpu); 6522 if (unlikely(r)) 6523 return; 6524 6525 if (!vcpu->arch.mmu.direct_map && 6526 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6527 return; 6528 6529 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6530 } 6531 6532 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6533 { 6534 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6535 } 6536 6537 static inline u32 kvm_async_pf_next_probe(u32 key) 6538 { 6539 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6540 } 6541 6542 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6543 { 6544 u32 key = kvm_async_pf_hash_fn(gfn); 6545 6546 while (vcpu->arch.apf.gfns[key] != ~0) 6547 key = kvm_async_pf_next_probe(key); 6548 6549 vcpu->arch.apf.gfns[key] = gfn; 6550 } 6551 6552 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6553 { 6554 int i; 6555 u32 key = kvm_async_pf_hash_fn(gfn); 6556 6557 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6558 (vcpu->arch.apf.gfns[key] != gfn && 6559 vcpu->arch.apf.gfns[key] != ~0); i++) 6560 key = kvm_async_pf_next_probe(key); 6561 6562 return key; 6563 } 6564 6565 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6566 { 6567 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6568 } 6569 6570 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6571 { 6572 u32 i, j, k; 6573 6574 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6575 while (true) { 6576 vcpu->arch.apf.gfns[i] = ~0; 6577 do { 6578 j = kvm_async_pf_next_probe(j); 6579 if (vcpu->arch.apf.gfns[j] == ~0) 6580 return; 6581 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6582 /* 6583 * k lies cyclically in ]i,j] 6584 * | i.k.j | 6585 * |....j i.k.| or |.k..j i...| 6586 */ 6587 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6588 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6589 i = j; 6590 } 6591 } 6592 6593 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6594 { 6595 6596 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6597 sizeof(val)); 6598 } 6599 6600 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6601 struct kvm_async_pf *work) 6602 { 6603 struct x86_exception fault; 6604 6605 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6606 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6607 6608 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6609 (vcpu->arch.apf.send_user_only && 6610 kvm_x86_ops->get_cpl(vcpu) == 0)) 6611 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6612 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6613 fault.vector = PF_VECTOR; 6614 fault.error_code_valid = true; 6615 fault.error_code = 0; 6616 fault.nested_page_fault = false; 6617 fault.address = work->arch.token; 6618 kvm_inject_page_fault(vcpu, &fault); 6619 } 6620 } 6621 6622 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6623 struct kvm_async_pf *work) 6624 { 6625 struct x86_exception fault; 6626 6627 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6628 if (is_error_page(work->page)) 6629 work->arch.token = ~0; /* broadcast wakeup */ 6630 else 6631 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6632 6633 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6634 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6635 fault.vector = PF_VECTOR; 6636 fault.error_code_valid = true; 6637 fault.error_code = 0; 6638 fault.nested_page_fault = false; 6639 fault.address = work->arch.token; 6640 kvm_inject_page_fault(vcpu, &fault); 6641 } 6642 vcpu->arch.apf.halted = false; 6643 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6644 } 6645 6646 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6647 { 6648 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6649 return true; 6650 else 6651 return !kvm_event_needs_reinjection(vcpu) && 6652 kvm_x86_ops->interrupt_allowed(vcpu); 6653 } 6654 6655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6667