1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* 197 * Restoring the host value for MSRs that are only consumed when running in 198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 199 * returns to userspace, i.e. the kernel can run with the guest's value. 200 */ 201 #define KVM_MAX_NR_USER_RETURN_MSRS 16 202 203 struct kvm_user_return_msrs { 204 struct user_return_notifier urn; 205 bool registered; 206 struct kvm_user_return_msr_values { 207 u64 host; 208 u64 curr; 209 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 210 }; 211 212 u32 __read_mostly kvm_nr_uret_msrs; 213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 215 static struct kvm_user_return_msrs __percpu *user_return_msrs; 216 217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 221 222 u64 __read_mostly host_efer; 223 EXPORT_SYMBOL_GPL(host_efer); 224 225 bool __read_mostly allow_smaller_maxphyaddr = 0; 226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 227 228 bool __read_mostly enable_apicv = true; 229 EXPORT_SYMBOL_GPL(enable_apicv); 230 231 u64 __read_mostly host_xss; 232 EXPORT_SYMBOL_GPL(host_xss); 233 234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 235 KVM_GENERIC_VM_STATS(), 236 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 237 STATS_DESC_COUNTER(VM, mmu_pte_write), 238 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 239 STATS_DESC_COUNTER(VM, mmu_flooded), 240 STATS_DESC_COUNTER(VM, mmu_recycled), 241 STATS_DESC_COUNTER(VM, mmu_cache_miss), 242 STATS_DESC_ICOUNTER(VM, mmu_unsync), 243 STATS_DESC_ICOUNTER(VM, pages_4k), 244 STATS_DESC_ICOUNTER(VM, pages_2m), 245 STATS_DESC_ICOUNTER(VM, pages_1g), 246 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 247 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 248 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 249 }; 250 251 const struct kvm_stats_header kvm_vm_stats_header = { 252 .name_size = KVM_STATS_NAME_SIZE, 253 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 254 .id_offset = sizeof(struct kvm_stats_header), 255 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 256 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 257 sizeof(kvm_vm_stats_desc), 258 }; 259 260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 261 KVM_GENERIC_VCPU_STATS(), 262 STATS_DESC_COUNTER(VCPU, pf_taken), 263 STATS_DESC_COUNTER(VCPU, pf_fixed), 264 STATS_DESC_COUNTER(VCPU, pf_emulate), 265 STATS_DESC_COUNTER(VCPU, pf_spurious), 266 STATS_DESC_COUNTER(VCPU, pf_fast), 267 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 268 STATS_DESC_COUNTER(VCPU, pf_guest), 269 STATS_DESC_COUNTER(VCPU, tlb_flush), 270 STATS_DESC_COUNTER(VCPU, invlpg), 271 STATS_DESC_COUNTER(VCPU, exits), 272 STATS_DESC_COUNTER(VCPU, io_exits), 273 STATS_DESC_COUNTER(VCPU, mmio_exits), 274 STATS_DESC_COUNTER(VCPU, signal_exits), 275 STATS_DESC_COUNTER(VCPU, irq_window_exits), 276 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 277 STATS_DESC_COUNTER(VCPU, l1d_flush), 278 STATS_DESC_COUNTER(VCPU, halt_exits), 279 STATS_DESC_COUNTER(VCPU, request_irq_exits), 280 STATS_DESC_COUNTER(VCPU, irq_exits), 281 STATS_DESC_COUNTER(VCPU, host_state_reload), 282 STATS_DESC_COUNTER(VCPU, fpu_reload), 283 STATS_DESC_COUNTER(VCPU, insn_emulation), 284 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 285 STATS_DESC_COUNTER(VCPU, hypercalls), 286 STATS_DESC_COUNTER(VCPU, irq_injections), 287 STATS_DESC_COUNTER(VCPU, nmi_injections), 288 STATS_DESC_COUNTER(VCPU, req_event), 289 STATS_DESC_COUNTER(VCPU, nested_run), 290 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 291 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 292 STATS_DESC_COUNTER(VCPU, preemption_reported), 293 STATS_DESC_COUNTER(VCPU, preemption_other), 294 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 295 STATS_DESC_COUNTER(VCPU, notify_window_exits), 296 }; 297 298 const struct kvm_stats_header kvm_vcpu_stats_header = { 299 .name_size = KVM_STATS_NAME_SIZE, 300 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 301 .id_offset = sizeof(struct kvm_stats_header), 302 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 303 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 304 sizeof(kvm_vcpu_stats_desc), 305 }; 306 307 u64 __read_mostly host_xcr0; 308 309 static struct kmem_cache *x86_emulator_cache; 310 311 /* 312 * When called, it means the previous get/set msr reached an invalid msr. 313 * Return true if we want to ignore/silent this failed msr access. 314 */ 315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 316 { 317 const char *op = write ? "wrmsr" : "rdmsr"; 318 319 if (ignore_msrs) { 320 if (report_ignored_msrs) 321 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 322 op, msr, data); 323 /* Mask the error */ 324 return true; 325 } else { 326 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 327 op, msr, data); 328 return false; 329 } 330 } 331 332 static struct kmem_cache *kvm_alloc_emulator_cache(void) 333 { 334 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 335 unsigned int size = sizeof(struct x86_emulate_ctxt); 336 337 return kmem_cache_create_usercopy("x86_emulator", size, 338 __alignof__(struct x86_emulate_ctxt), 339 SLAB_ACCOUNT, useroffset, 340 size - useroffset, NULL); 341 } 342 343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 344 345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 346 { 347 int i; 348 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 349 vcpu->arch.apf.gfns[i] = ~0; 350 } 351 352 static void kvm_on_user_return(struct user_return_notifier *urn) 353 { 354 unsigned slot; 355 struct kvm_user_return_msrs *msrs 356 = container_of(urn, struct kvm_user_return_msrs, urn); 357 struct kvm_user_return_msr_values *values; 358 unsigned long flags; 359 360 /* 361 * Disabling irqs at this point since the following code could be 362 * interrupted and executed through kvm_arch_hardware_disable() 363 */ 364 local_irq_save(flags); 365 if (msrs->registered) { 366 msrs->registered = false; 367 user_return_notifier_unregister(urn); 368 } 369 local_irq_restore(flags); 370 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 371 values = &msrs->values[slot]; 372 if (values->host != values->curr) { 373 wrmsrl(kvm_uret_msrs_list[slot], values->host); 374 values->curr = values->host; 375 } 376 } 377 } 378 379 static int kvm_probe_user_return_msr(u32 msr) 380 { 381 u64 val; 382 int ret; 383 384 preempt_disable(); 385 ret = rdmsrl_safe(msr, &val); 386 if (ret) 387 goto out; 388 ret = wrmsrl_safe(msr, val); 389 out: 390 preempt_enable(); 391 return ret; 392 } 393 394 int kvm_add_user_return_msr(u32 msr) 395 { 396 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 397 398 if (kvm_probe_user_return_msr(msr)) 399 return -1; 400 401 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 402 return kvm_nr_uret_msrs++; 403 } 404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 405 406 int kvm_find_user_return_msr(u32 msr) 407 { 408 int i; 409 410 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 411 if (kvm_uret_msrs_list[i] == msr) 412 return i; 413 } 414 return -1; 415 } 416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 417 418 static void kvm_user_return_msr_cpu_online(void) 419 { 420 unsigned int cpu = smp_processor_id(); 421 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 422 u64 value; 423 int i; 424 425 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 426 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 427 msrs->values[i].host = value; 428 msrs->values[i].curr = value; 429 } 430 } 431 432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 433 { 434 unsigned int cpu = smp_processor_id(); 435 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 436 int err; 437 438 value = (value & mask) | (msrs->values[slot].host & ~mask); 439 if (value == msrs->values[slot].curr) 440 return 0; 441 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 442 if (err) 443 return 1; 444 445 msrs->values[slot].curr = value; 446 if (!msrs->registered) { 447 msrs->urn.on_user_return = kvm_on_user_return; 448 user_return_notifier_register(&msrs->urn); 449 msrs->registered = true; 450 } 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 454 455 static void drop_user_return_notifiers(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 459 460 if (msrs->registered) 461 kvm_on_user_return(&msrs->urn); 462 } 463 464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 465 { 466 return vcpu->arch.apic_base; 467 } 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 496 /* 497 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 498 * 499 * Hardware virtualization extension instructions may fault if a reboot turns 500 * off virtualization while processes are running. Usually after catching the 501 * fault we just panic; during reboot instead the instruction is ignored. 502 */ 503 noinstr void kvm_spurious_fault(void) 504 { 505 /* Fault while not rebooting. We want the trace. */ 506 BUG_ON(!kvm_rebooting); 507 } 508 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 509 510 #define EXCPT_BENIGN 0 511 #define EXCPT_CONTRIBUTORY 1 512 #define EXCPT_PF 2 513 514 static int exception_class(int vector) 515 { 516 switch (vector) { 517 case PF_VECTOR: 518 return EXCPT_PF; 519 case DE_VECTOR: 520 case TS_VECTOR: 521 case NP_VECTOR: 522 case SS_VECTOR: 523 case GP_VECTOR: 524 return EXCPT_CONTRIBUTORY; 525 default: 526 break; 527 } 528 return EXCPT_BENIGN; 529 } 530 531 #define EXCPT_FAULT 0 532 #define EXCPT_TRAP 1 533 #define EXCPT_ABORT 2 534 #define EXCPT_INTERRUPT 3 535 #define EXCPT_DB 4 536 537 static int exception_type(int vector) 538 { 539 unsigned int mask; 540 541 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 542 return EXCPT_INTERRUPT; 543 544 mask = 1 << vector; 545 546 /* 547 * #DBs can be trap-like or fault-like, the caller must check other CPU 548 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 549 */ 550 if (mask & (1 << DB_VECTOR)) 551 return EXCPT_DB; 552 553 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 554 return EXCPT_TRAP; 555 556 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 557 return EXCPT_ABORT; 558 559 /* Reserved exceptions will result in fault */ 560 return EXCPT_FAULT; 561 } 562 563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 564 struct kvm_queued_exception *ex) 565 { 566 if (!ex->has_payload) 567 return; 568 569 switch (ex->vector) { 570 case DB_VECTOR: 571 /* 572 * "Certain debug exceptions may clear bit 0-3. The 573 * remaining contents of the DR6 register are never 574 * cleared by the processor". 575 */ 576 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 577 /* 578 * In order to reflect the #DB exception payload in guest 579 * dr6, three components need to be considered: active low 580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 581 * DR6_BS and DR6_BT) 582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 583 * In the target guest dr6: 584 * FIXED_1 bits should always be set. 585 * Active low bits should be cleared if 1-setting in payload. 586 * Active high bits should be set if 1-setting in payload. 587 * 588 * Note, the payload is compatible with the pending debug 589 * exceptions/exit qualification under VMX, that active_low bits 590 * are active high in payload. 591 * So they need to be flipped for DR6. 592 */ 593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 594 vcpu->arch.dr6 |= ex->payload; 595 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 596 597 /* 598 * The #DB payload is defined as compatible with the 'pending 599 * debug exceptions' field under VMX, not DR6. While bit 12 is 600 * defined in the 'pending debug exceptions' field (enabled 601 * breakpoint), it is reserved and must be zero in DR6. 602 */ 603 vcpu->arch.dr6 &= ~BIT(12); 604 break; 605 case PF_VECTOR: 606 vcpu->arch.cr2 = ex->payload; 607 break; 608 } 609 610 ex->has_payload = false; 611 ex->payload = 0; 612 } 613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 614 615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 616 bool has_error_code, u32 error_code, 617 bool has_payload, unsigned long payload) 618 { 619 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 620 621 ex->vector = vector; 622 ex->injected = false; 623 ex->pending = true; 624 ex->has_error_code = has_error_code; 625 ex->error_code = error_code; 626 ex->has_payload = has_payload; 627 ex->payload = payload; 628 } 629 630 /* Forcibly leave the nested mode in cases like a vCPU reset */ 631 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 632 { 633 kvm_x86_ops.nested_ops->leave_nested(vcpu); 634 } 635 636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 637 unsigned nr, bool has_error, u32 error_code, 638 bool has_payload, unsigned long payload, bool reinject) 639 { 640 u32 prev_nr; 641 int class1, class2; 642 643 kvm_make_request(KVM_REQ_EVENT, vcpu); 644 645 /* 646 * If the exception is destined for L2 and isn't being reinjected, 647 * morph it to a VM-Exit if L1 wants to intercept the exception. A 648 * previously injected exception is not checked because it was checked 649 * when it was original queued, and re-checking is incorrect if _L1_ 650 * injected the exception, in which case it's exempt from interception. 651 */ 652 if (!reinject && is_guest_mode(vcpu) && 653 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 654 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 655 has_payload, payload); 656 return; 657 } 658 659 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 660 queue: 661 if (reinject) { 662 /* 663 * On VM-Entry, an exception can be pending if and only 664 * if event injection was blocked by nested_run_pending. 665 * In that case, however, vcpu_enter_guest() requests an 666 * immediate exit, and the guest shouldn't proceed far 667 * enough to need reinjection. 668 */ 669 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 670 vcpu->arch.exception.injected = true; 671 if (WARN_ON_ONCE(has_payload)) { 672 /* 673 * A reinjected event has already 674 * delivered its payload. 675 */ 676 has_payload = false; 677 payload = 0; 678 } 679 } else { 680 vcpu->arch.exception.pending = true; 681 vcpu->arch.exception.injected = false; 682 } 683 vcpu->arch.exception.has_error_code = has_error; 684 vcpu->arch.exception.vector = nr; 685 vcpu->arch.exception.error_code = error_code; 686 vcpu->arch.exception.has_payload = has_payload; 687 vcpu->arch.exception.payload = payload; 688 if (!is_guest_mode(vcpu)) 689 kvm_deliver_exception_payload(vcpu, 690 &vcpu->arch.exception); 691 return; 692 } 693 694 /* to check exception */ 695 prev_nr = vcpu->arch.exception.vector; 696 if (prev_nr == DF_VECTOR) { 697 /* triple fault -> shutdown */ 698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 699 return; 700 } 701 class1 = exception_class(prev_nr); 702 class2 = exception_class(nr); 703 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 704 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 705 /* 706 * Synthesize #DF. Clear the previously injected or pending 707 * exception so as not to incorrectly trigger shutdown. 708 */ 709 vcpu->arch.exception.injected = false; 710 vcpu->arch.exception.pending = false; 711 712 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 713 } else { 714 /* replace previous exception with a new one in a hope 715 that instruction re-execution will regenerate lost 716 exception */ 717 goto queue; 718 } 719 } 720 721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 724 } 725 EXPORT_SYMBOL_GPL(kvm_queue_exception); 726 727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 730 } 731 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 732 733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 734 unsigned long payload) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 739 740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 741 u32 error_code, unsigned long payload) 742 { 743 kvm_multiple_exception(vcpu, nr, true, error_code, 744 true, payload, false); 745 } 746 747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 748 { 749 if (err) 750 kvm_inject_gp(vcpu, 0); 751 else 752 return kvm_skip_emulated_instruction(vcpu); 753 754 return 1; 755 } 756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 757 758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 759 { 760 if (err) { 761 kvm_inject_gp(vcpu, 0); 762 return 1; 763 } 764 765 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 766 EMULTYPE_COMPLETE_USER_EXIT); 767 } 768 769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 770 { 771 ++vcpu->stat.pf_guest; 772 773 /* 774 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 775 * whether or not L1 wants to intercept "regular" #PF. 776 */ 777 if (is_guest_mode(vcpu) && fault->async_page_fault) 778 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 779 true, fault->error_code, 780 true, fault->address); 781 else 782 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 783 fault->address); 784 } 785 786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 787 struct x86_exception *fault) 788 { 789 struct kvm_mmu *fault_mmu; 790 WARN_ON_ONCE(fault->vector != PF_VECTOR); 791 792 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 793 vcpu->arch.walk_mmu; 794 795 /* 796 * Invalidate the TLB entry for the faulting address, if it exists, 797 * else the access will fault indefinitely (and to emulate hardware). 798 */ 799 if ((fault->error_code & PFERR_PRESENT_MASK) && 800 !(fault->error_code & PFERR_RSVD_MASK)) 801 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 802 fault_mmu->root.hpa); 803 804 fault_mmu->inject_page_fault(vcpu, fault); 805 } 806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 807 808 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 809 { 810 atomic_inc(&vcpu->arch.nmi_queued); 811 kvm_make_request(KVM_REQ_NMI, vcpu); 812 } 813 814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 817 } 818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 819 820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 823 } 824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 825 826 /* 827 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 828 * a #GP and return false. 829 */ 830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 831 { 832 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 833 return true; 834 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 835 return false; 836 } 837 838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 839 { 840 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 841 return true; 842 843 kvm_queue_exception(vcpu, UD_VECTOR); 844 return false; 845 } 846 EXPORT_SYMBOL_GPL(kvm_require_dr); 847 848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 849 { 850 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 851 } 852 853 /* 854 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 855 */ 856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 857 { 858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 859 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 860 gpa_t real_gpa; 861 int i; 862 int ret; 863 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 864 865 /* 866 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 867 * to an L1 GPA. 868 */ 869 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 870 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 871 if (real_gpa == INVALID_GPA) 872 return 0; 873 874 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 875 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 876 cr3 & GENMASK(11, 5), sizeof(pdpte)); 877 if (ret < 0) 878 return 0; 879 880 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 881 if ((pdpte[i] & PT_PRESENT_MASK) && 882 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 883 return 0; 884 } 885 } 886 887 /* 888 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 889 * Shadow page roots need to be reconstructed instead. 890 */ 891 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 892 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 893 894 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 895 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 896 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 897 vcpu->arch.pdptrs_from_userspace = false; 898 899 return 1; 900 } 901 EXPORT_SYMBOL_GPL(load_pdptrs); 902 903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 904 { 905 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 906 kvm_clear_async_pf_completion_queue(vcpu); 907 kvm_async_pf_hash_reset(vcpu); 908 909 /* 910 * Clearing CR0.PG is defined to flush the TLB from the guest's 911 * perspective. 912 */ 913 if (!(cr0 & X86_CR0_PG)) 914 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 915 } 916 917 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 918 kvm_mmu_reset_context(vcpu); 919 920 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 921 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 922 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 923 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 924 } 925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 926 927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 928 { 929 unsigned long old_cr0 = kvm_read_cr0(vcpu); 930 931 cr0 |= X86_CR0_ET; 932 933 #ifdef CONFIG_X86_64 934 if (cr0 & 0xffffffff00000000UL) 935 return 1; 936 #endif 937 938 cr0 &= ~CR0_RESERVED_BITS; 939 940 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 941 return 1; 942 943 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 944 return 1; 945 946 #ifdef CONFIG_X86_64 947 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 948 (cr0 & X86_CR0_PG)) { 949 int cs_db, cs_l; 950 951 if (!is_pae(vcpu)) 952 return 1; 953 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 954 if (cs_l) 955 return 1; 956 } 957 #endif 958 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 959 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 960 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 961 return 1; 962 963 if (!(cr0 & X86_CR0_PG) && 964 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 965 return 1; 966 967 static_call(kvm_x86_set_cr0)(vcpu, cr0); 968 969 kvm_post_set_cr0(vcpu, old_cr0, cr0); 970 971 return 0; 972 } 973 EXPORT_SYMBOL_GPL(kvm_set_cr0); 974 975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 976 { 977 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 978 } 979 EXPORT_SYMBOL_GPL(kvm_lmsw); 980 981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.guest_state_protected) 984 return; 985 986 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 987 988 if (vcpu->arch.xcr0 != host_xcr0) 989 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 990 991 if (vcpu->arch.xsaves_enabled && 992 vcpu->arch.ia32_xss != host_xss) 993 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 994 } 995 996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 997 if (static_cpu_has(X86_FEATURE_PKU) && 998 vcpu->arch.pkru != vcpu->arch.host_pkru && 999 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1000 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1001 write_pkru(vcpu->arch.pkru); 1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1005 1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1007 { 1008 if (vcpu->arch.guest_state_protected) 1009 return; 1010 1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1012 if (static_cpu_has(X86_FEATURE_PKU) && 1013 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1014 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1015 vcpu->arch.pkru = rdpkru(); 1016 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1017 write_pkru(vcpu->arch.host_pkru); 1018 } 1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1020 1021 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, host_xss); 1029 } 1030 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1033 1034 #ifdef CONFIG_X86_64 1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1036 { 1037 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1038 } 1039 #endif 1040 1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1042 { 1043 u64 xcr0 = xcr; 1044 u64 old_xcr0 = vcpu->arch.xcr0; 1045 u64 valid_bits; 1046 1047 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1048 if (index != XCR_XFEATURE_ENABLED_MASK) 1049 return 1; 1050 if (!(xcr0 & XFEATURE_MASK_FP)) 1051 return 1; 1052 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1053 return 1; 1054 1055 /* 1056 * Do not allow the guest to set bits that we do not support 1057 * saving. However, xcr0 bit 0 is always set, even if the 1058 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1059 */ 1060 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1061 if (xcr0 & ~valid_bits) 1062 return 1; 1063 1064 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1065 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1066 return 1; 1067 1068 if (xcr0 & XFEATURE_MASK_AVX512) { 1069 if (!(xcr0 & XFEATURE_MASK_YMM)) 1070 return 1; 1071 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1072 return 1; 1073 } 1074 1075 if ((xcr0 & XFEATURE_MASK_XTILE) && 1076 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1077 return 1; 1078 1079 vcpu->arch.xcr0 = xcr0; 1080 1081 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1082 kvm_update_cpuid_runtime(vcpu); 1083 return 0; 1084 } 1085 1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1087 { 1088 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1089 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1090 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1091 kvm_inject_gp(vcpu, 0); 1092 return 1; 1093 } 1094 1095 return kvm_skip_emulated_instruction(vcpu); 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1098 1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1100 { 1101 if (cr4 & cr4_reserved_bits) 1102 return false; 1103 1104 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1105 return false; 1106 1107 return true; 1108 } 1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1110 1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 return __kvm_is_valid_cr4(vcpu, cr4) && 1114 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1115 } 1116 1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1118 { 1119 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1120 kvm_mmu_reset_context(vcpu); 1121 1122 /* 1123 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1124 * according to the SDM; however, stale prev_roots could be reused 1125 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1126 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1127 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1128 * so fall through. 1129 */ 1130 if (!tdp_enabled && 1131 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1132 kvm_mmu_unload(vcpu); 1133 1134 /* 1135 * The TLB has to be flushed for all PCIDs if any of the following 1136 * (architecturally required) changes happen: 1137 * - CR4.PCIDE is changed from 1 to 0 1138 * - CR4.PGE is toggled 1139 * 1140 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1141 */ 1142 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1143 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for the current PCID if any of the 1148 * following (architecturally required) changes happen: 1149 * - CR4.SMEP is changed from 0 to 1 1150 * - CR4.PAE is toggled 1151 */ 1152 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1153 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1158 1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1160 { 1161 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1162 1163 if (!kvm_is_valid_cr4(vcpu, cr4)) 1164 return 1; 1165 1166 if (is_long_mode(vcpu)) { 1167 if (!(cr4 & X86_CR4_PAE)) 1168 return 1; 1169 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1170 return 1; 1171 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1172 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1173 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1174 return 1; 1175 1176 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1178 return 1; 1179 1180 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1181 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1182 return 1; 1183 } 1184 1185 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1186 1187 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1188 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1192 1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1194 { 1195 struct kvm_mmu *mmu = vcpu->arch.mmu; 1196 unsigned long roots_to_free = 0; 1197 int i; 1198 1199 /* 1200 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1201 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1202 * also via the emulator. KVM's TDP page tables are not in the scope of 1203 * the invalidation, but the guest's TLB entries need to be flushed as 1204 * the CPU may have cached entries in its TLB for the target PCID. 1205 */ 1206 if (unlikely(tdp_enabled)) { 1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1208 return; 1209 } 1210 1211 /* 1212 * If neither the current CR3 nor any of the prev_roots use the given 1213 * PCID, then nothing needs to be done here because a resync will 1214 * happen anyway before switching to any other CR3. 1215 */ 1216 if (kvm_get_active_pcid(vcpu) == pcid) { 1217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1219 } 1220 1221 /* 1222 * If PCID is disabled, there is no need to free prev_roots even if the 1223 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1224 * with PCIDE=0. 1225 */ 1226 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1227 return; 1228 1229 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1230 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1231 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1232 1233 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1234 } 1235 1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1237 { 1238 bool skip_tlb_flush = false; 1239 unsigned long pcid = 0; 1240 #ifdef CONFIG_X86_64 1241 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1242 1243 if (pcid_enabled) { 1244 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1245 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1246 pcid = cr3 & X86_CR3_PCID_MASK; 1247 } 1248 #endif 1249 1250 /* PDPTRs are always reloaded for PAE paging. */ 1251 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1252 goto handle_tlb_flush; 1253 1254 /* 1255 * Do not condition the GPA check on long mode, this helper is used to 1256 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1257 * the current vCPU mode is accurate. 1258 */ 1259 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1260 return 1; 1261 1262 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1263 return 1; 1264 1265 if (cr3 != kvm_read_cr3(vcpu)) 1266 kvm_mmu_new_pgd(vcpu, cr3); 1267 1268 vcpu->arch.cr3 = cr3; 1269 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1270 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1271 1272 handle_tlb_flush: 1273 /* 1274 * A load of CR3 that flushes the TLB flushes only the current PCID, 1275 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1276 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1277 * and it's impossible to use a non-zero PCID when PCID is disabled, 1278 * i.e. only PCID=0 can be relevant. 1279 */ 1280 if (!skip_tlb_flush) 1281 kvm_invalidate_pcid(vcpu, pcid); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1286 1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1288 { 1289 if (cr8 & CR8_RESERVED_BITS) 1290 return 1; 1291 if (lapic_in_kernel(vcpu)) 1292 kvm_lapic_set_tpr(vcpu, cr8); 1293 else 1294 vcpu->arch.cr8 = cr8; 1295 return 0; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1298 1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1300 { 1301 if (lapic_in_kernel(vcpu)) 1302 return kvm_lapic_get_cr8(vcpu); 1303 else 1304 return vcpu->arch.cr8; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1307 1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1309 { 1310 int i; 1311 1312 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1313 for (i = 0; i < KVM_NR_DB_REGS; i++) 1314 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1315 } 1316 } 1317 1318 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1319 { 1320 unsigned long dr7; 1321 1322 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1323 dr7 = vcpu->arch.guest_debug_dr7; 1324 else 1325 dr7 = vcpu->arch.dr7; 1326 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1327 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1328 if (dr7 & DR7_BP_EN_MASK) 1329 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1332 1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1334 { 1335 u64 fixed = DR6_FIXED_1; 1336 1337 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1338 fixed |= DR6_RTM; 1339 1340 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1341 fixed |= DR6_BUS_LOCK; 1342 return fixed; 1343 } 1344 1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1346 { 1347 size_t size = ARRAY_SIZE(vcpu->arch.db); 1348 1349 switch (dr) { 1350 case 0 ... 3: 1351 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1352 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1353 vcpu->arch.eff_db[dr] = val; 1354 break; 1355 case 4: 1356 case 6: 1357 if (!kvm_dr6_valid(val)) 1358 return 1; /* #GP */ 1359 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1360 break; 1361 case 5: 1362 default: /* 7 */ 1363 if (!kvm_dr7_valid(val)) 1364 return 1; /* #GP */ 1365 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1366 kvm_update_dr7(vcpu); 1367 break; 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_set_dr); 1373 1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1375 { 1376 size_t size = ARRAY_SIZE(vcpu->arch.db); 1377 1378 switch (dr) { 1379 case 0 ... 3: 1380 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1381 break; 1382 case 4: 1383 case 6: 1384 *val = vcpu->arch.dr6; 1385 break; 1386 case 5: 1387 default: /* 7 */ 1388 *val = vcpu->arch.dr7; 1389 break; 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_get_dr); 1393 1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1395 { 1396 u32 ecx = kvm_rcx_read(vcpu); 1397 u64 data; 1398 1399 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1400 kvm_inject_gp(vcpu, 0); 1401 return 1; 1402 } 1403 1404 kvm_rax_write(vcpu, (u32)data); 1405 kvm_rdx_write(vcpu, data >> 32); 1406 return kvm_skip_emulated_instruction(vcpu); 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1409 1410 /* 1411 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1412 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1413 * 1414 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1415 * extract the supported MSRs from the related const lists. 1416 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1417 * capabilities of the host cpu. This capabilities test skips MSRs that are 1418 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1419 * may depend on host virtualization features rather than host cpu features. 1420 */ 1421 1422 static const u32 msrs_to_save_base[] = { 1423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1424 MSR_STAR, 1425 #ifdef CONFIG_X86_64 1426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1427 #endif 1428 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1429 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1430 MSR_IA32_SPEC_CTRL, 1431 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1432 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1433 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1434 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1435 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1436 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1437 MSR_IA32_UMWAIT_CONTROL, 1438 1439 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1440 }; 1441 1442 static const u32 msrs_to_save_pmu[] = { 1443 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1444 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1445 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1446 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1447 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1448 1449 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1450 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1451 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1452 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1453 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1454 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1456 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1457 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1458 1459 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1460 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1461 1462 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1463 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1464 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1465 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1466 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1467 }; 1468 1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1470 ARRAY_SIZE(msrs_to_save_pmu)]; 1471 static unsigned num_msrs_to_save; 1472 1473 static const u32 emulated_msrs_all[] = { 1474 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1475 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1476 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1477 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1478 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1479 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1480 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1481 HV_X64_MSR_RESET, 1482 HV_X64_MSR_VP_INDEX, 1483 HV_X64_MSR_VP_RUNTIME, 1484 HV_X64_MSR_SCONTROL, 1485 HV_X64_MSR_STIMER0_CONFIG, 1486 HV_X64_MSR_VP_ASSIST_PAGE, 1487 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1488 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1489 HV_X64_MSR_SYNDBG_OPTIONS, 1490 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1491 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1492 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1493 1494 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1495 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1496 1497 MSR_IA32_TSC_ADJUST, 1498 MSR_IA32_TSC_DEADLINE, 1499 MSR_IA32_ARCH_CAPABILITIES, 1500 MSR_IA32_PERF_CAPABILITIES, 1501 MSR_IA32_MISC_ENABLE, 1502 MSR_IA32_MCG_STATUS, 1503 MSR_IA32_MCG_CTL, 1504 MSR_IA32_MCG_EXT_CTL, 1505 MSR_IA32_SMBASE, 1506 MSR_SMI_COUNT, 1507 MSR_PLATFORM_INFO, 1508 MSR_MISC_FEATURES_ENABLES, 1509 MSR_AMD64_VIRT_SPEC_CTRL, 1510 MSR_AMD64_TSC_RATIO, 1511 MSR_IA32_POWER_CTL, 1512 MSR_IA32_UCODE_REV, 1513 1514 /* 1515 * The following list leaves out MSRs whose values are determined 1516 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1517 * We always support the "true" VMX control MSRs, even if the host 1518 * processor does not, so I am putting these registers here rather 1519 * than in msrs_to_save_all. 1520 */ 1521 MSR_IA32_VMX_BASIC, 1522 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1524 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1525 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1526 MSR_IA32_VMX_MISC, 1527 MSR_IA32_VMX_CR0_FIXED0, 1528 MSR_IA32_VMX_CR4_FIXED0, 1529 MSR_IA32_VMX_VMCS_ENUM, 1530 MSR_IA32_VMX_PROCBASED_CTLS2, 1531 MSR_IA32_VMX_EPT_VPID_CAP, 1532 MSR_IA32_VMX_VMFUNC, 1533 1534 MSR_K7_HWCR, 1535 MSR_KVM_POLL_CONTROL, 1536 }; 1537 1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1539 static unsigned num_emulated_msrs; 1540 1541 /* 1542 * List of msr numbers which are used to expose MSR-based features that 1543 * can be used by a hypervisor to validate requested CPU features. 1544 */ 1545 static const u32 msr_based_features_all[] = { 1546 MSR_IA32_VMX_BASIC, 1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1548 MSR_IA32_VMX_PINBASED_CTLS, 1549 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1550 MSR_IA32_VMX_PROCBASED_CTLS, 1551 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1552 MSR_IA32_VMX_EXIT_CTLS, 1553 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1554 MSR_IA32_VMX_ENTRY_CTLS, 1555 MSR_IA32_VMX_MISC, 1556 MSR_IA32_VMX_CR0_FIXED0, 1557 MSR_IA32_VMX_CR0_FIXED1, 1558 MSR_IA32_VMX_CR4_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED1, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_AMD64_DE_CFG, 1566 MSR_IA32_UCODE_REV, 1567 MSR_IA32_ARCH_CAPABILITIES, 1568 MSR_IA32_PERF_CAPABILITIES, 1569 }; 1570 1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1572 static unsigned int num_msr_based_features; 1573 1574 /* 1575 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1576 * does not yet virtualize. These include: 1577 * 10 - MISC_PACKAGE_CTRLS 1578 * 11 - ENERGY_FILTERING_CTL 1579 * 12 - DOITM 1580 * 18 - FB_CLEAR_CTRL 1581 * 21 - XAPIC_DISABLE_STATUS 1582 * 23 - OVERCLOCKING_STATUS 1583 */ 1584 1585 #define KVM_SUPPORTED_ARCH_CAP \ 1586 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1587 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1588 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1589 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1590 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1591 1592 static u64 kvm_get_arch_capabilities(void) 1593 { 1594 u64 data = 0; 1595 1596 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1597 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1598 data &= KVM_SUPPORTED_ARCH_CAP; 1599 } 1600 1601 /* 1602 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1603 * the nested hypervisor runs with NX huge pages. If it is not, 1604 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1605 * L1 guests, so it need not worry about its own (L2) guests. 1606 */ 1607 data |= ARCH_CAP_PSCHANGE_MC_NO; 1608 1609 /* 1610 * If we're doing cache flushes (either "always" or "cond") 1611 * we will do one whenever the guest does a vmlaunch/vmresume. 1612 * If an outer hypervisor is doing the cache flush for us 1613 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1614 * capability to the guest too, and if EPT is disabled we're not 1615 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1616 * require a nested hypervisor to do a flush of its own. 1617 */ 1618 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1619 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1620 1621 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1622 data |= ARCH_CAP_RDCL_NO; 1623 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1624 data |= ARCH_CAP_SSB_NO; 1625 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1626 data |= ARCH_CAP_MDS_NO; 1627 1628 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1629 /* 1630 * If RTM=0 because the kernel has disabled TSX, the host might 1631 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1632 * and therefore knows that there cannot be TAA) but keep 1633 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1634 * and we want to allow migrating those guests to tsx=off hosts. 1635 */ 1636 data &= ~ARCH_CAP_TAA_NO; 1637 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1638 data |= ARCH_CAP_TAA_NO; 1639 } else { 1640 /* 1641 * Nothing to do here; we emulate TSX_CTRL if present on the 1642 * host so the guest can choose between disabling TSX or 1643 * using VERW to clear CPU buffers. 1644 */ 1645 } 1646 1647 return data; 1648 } 1649 1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1651 { 1652 switch (msr->index) { 1653 case MSR_IA32_ARCH_CAPABILITIES: 1654 msr->data = kvm_get_arch_capabilities(); 1655 break; 1656 case MSR_IA32_PERF_CAPABILITIES: 1657 msr->data = kvm_caps.supported_perf_cap; 1658 break; 1659 case MSR_IA32_UCODE_REV: 1660 rdmsrl_safe(msr->index, &msr->data); 1661 break; 1662 default: 1663 return static_call(kvm_x86_get_msr_feature)(msr); 1664 } 1665 return 0; 1666 } 1667 1668 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1669 { 1670 struct kvm_msr_entry msr; 1671 int r; 1672 1673 msr.index = index; 1674 r = kvm_get_msr_feature(&msr); 1675 1676 if (r == KVM_MSR_RET_INVALID) { 1677 /* Unconditionally clear the output for simplicity */ 1678 *data = 0; 1679 if (kvm_msr_ignored_check(index, 0, false)) 1680 r = 0; 1681 } 1682 1683 if (r) 1684 return r; 1685 1686 *data = msr.data; 1687 1688 return 0; 1689 } 1690 1691 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1692 { 1693 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1694 return false; 1695 1696 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1697 return false; 1698 1699 if (efer & (EFER_LME | EFER_LMA) && 1700 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1701 return false; 1702 1703 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1704 return false; 1705 1706 return true; 1707 1708 } 1709 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1710 { 1711 if (efer & efer_reserved_bits) 1712 return false; 1713 1714 return __kvm_valid_efer(vcpu, efer); 1715 } 1716 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1717 1718 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1719 { 1720 u64 old_efer = vcpu->arch.efer; 1721 u64 efer = msr_info->data; 1722 int r; 1723 1724 if (efer & efer_reserved_bits) 1725 return 1; 1726 1727 if (!msr_info->host_initiated) { 1728 if (!__kvm_valid_efer(vcpu, efer)) 1729 return 1; 1730 1731 if (is_paging(vcpu) && 1732 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1733 return 1; 1734 } 1735 1736 efer &= ~EFER_LMA; 1737 efer |= vcpu->arch.efer & EFER_LMA; 1738 1739 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1740 if (r) { 1741 WARN_ON(r > 0); 1742 return r; 1743 } 1744 1745 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1746 kvm_mmu_reset_context(vcpu); 1747 1748 return 0; 1749 } 1750 1751 void kvm_enable_efer_bits(u64 mask) 1752 { 1753 efer_reserved_bits &= ~mask; 1754 } 1755 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1756 1757 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1758 { 1759 struct kvm_x86_msr_filter *msr_filter; 1760 struct msr_bitmap_range *ranges; 1761 struct kvm *kvm = vcpu->kvm; 1762 bool allowed; 1763 int idx; 1764 u32 i; 1765 1766 /* x2APIC MSRs do not support filtering. */ 1767 if (index >= 0x800 && index <= 0x8ff) 1768 return true; 1769 1770 idx = srcu_read_lock(&kvm->srcu); 1771 1772 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1773 if (!msr_filter) { 1774 allowed = true; 1775 goto out; 1776 } 1777 1778 allowed = msr_filter->default_allow; 1779 ranges = msr_filter->ranges; 1780 1781 for (i = 0; i < msr_filter->count; i++) { 1782 u32 start = ranges[i].base; 1783 u32 end = start + ranges[i].nmsrs; 1784 u32 flags = ranges[i].flags; 1785 unsigned long *bitmap = ranges[i].bitmap; 1786 1787 if ((index >= start) && (index < end) && (flags & type)) { 1788 allowed = !!test_bit(index - start, bitmap); 1789 break; 1790 } 1791 } 1792 1793 out: 1794 srcu_read_unlock(&kvm->srcu, idx); 1795 1796 return allowed; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1799 1800 /* 1801 * Write @data into the MSR specified by @index. Select MSR specific fault 1802 * checks are bypassed if @host_initiated is %true. 1803 * Returns 0 on success, non-0 otherwise. 1804 * Assumes vcpu_load() was already called. 1805 */ 1806 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1807 bool host_initiated) 1808 { 1809 struct msr_data msr; 1810 1811 switch (index) { 1812 case MSR_FS_BASE: 1813 case MSR_GS_BASE: 1814 case MSR_KERNEL_GS_BASE: 1815 case MSR_CSTAR: 1816 case MSR_LSTAR: 1817 if (is_noncanonical_address(data, vcpu)) 1818 return 1; 1819 break; 1820 case MSR_IA32_SYSENTER_EIP: 1821 case MSR_IA32_SYSENTER_ESP: 1822 /* 1823 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1824 * non-canonical address is written on Intel but not on 1825 * AMD (which ignores the top 32-bits, because it does 1826 * not implement 64-bit SYSENTER). 1827 * 1828 * 64-bit code should hence be able to write a non-canonical 1829 * value on AMD. Making the address canonical ensures that 1830 * vmentry does not fail on Intel after writing a non-canonical 1831 * value, and that something deterministic happens if the guest 1832 * invokes 64-bit SYSENTER. 1833 */ 1834 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1835 break; 1836 case MSR_TSC_AUX: 1837 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1838 return 1; 1839 1840 if (!host_initiated && 1841 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1842 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1843 return 1; 1844 1845 /* 1846 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1847 * incomplete and conflicting architectural behavior. Current 1848 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1849 * reserved and always read as zeros. Enforce Intel's reserved 1850 * bits check if and only if the guest CPU is Intel, and clear 1851 * the bits in all other cases. This ensures cross-vendor 1852 * migration will provide consistent behavior for the guest. 1853 */ 1854 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1855 return 1; 1856 1857 data = (u32)data; 1858 break; 1859 } 1860 1861 msr.data = data; 1862 msr.index = index; 1863 msr.host_initiated = host_initiated; 1864 1865 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1866 } 1867 1868 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1869 u32 index, u64 data, bool host_initiated) 1870 { 1871 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1872 1873 if (ret == KVM_MSR_RET_INVALID) 1874 if (kvm_msr_ignored_check(index, data, true)) 1875 ret = 0; 1876 1877 return ret; 1878 } 1879 1880 /* 1881 * Read the MSR specified by @index into @data. Select MSR specific fault 1882 * checks are bypassed if @host_initiated is %true. 1883 * Returns 0 on success, non-0 otherwise. 1884 * Assumes vcpu_load() was already called. 1885 */ 1886 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1887 bool host_initiated) 1888 { 1889 struct msr_data msr; 1890 int ret; 1891 1892 switch (index) { 1893 case MSR_TSC_AUX: 1894 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1895 return 1; 1896 1897 if (!host_initiated && 1898 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1899 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1900 return 1; 1901 break; 1902 } 1903 1904 msr.index = index; 1905 msr.host_initiated = host_initiated; 1906 1907 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1908 if (!ret) 1909 *data = msr.data; 1910 return ret; 1911 } 1912 1913 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1914 u32 index, u64 *data, bool host_initiated) 1915 { 1916 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1917 1918 if (ret == KVM_MSR_RET_INVALID) { 1919 /* Unconditionally clear *data for simplicity */ 1920 *data = 0; 1921 if (kvm_msr_ignored_check(index, 0, false)) 1922 ret = 0; 1923 } 1924 1925 return ret; 1926 } 1927 1928 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1929 { 1930 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1931 return KVM_MSR_RET_FILTERED; 1932 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1933 } 1934 1935 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 1942 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1943 { 1944 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1945 } 1946 EXPORT_SYMBOL_GPL(kvm_get_msr); 1947 1948 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1949 { 1950 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1951 } 1952 EXPORT_SYMBOL_GPL(kvm_set_msr); 1953 1954 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1955 { 1956 if (!vcpu->run->msr.error) { 1957 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1958 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1959 } 1960 } 1961 1962 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1963 { 1964 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1965 } 1966 1967 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1968 { 1969 complete_userspace_rdmsr(vcpu); 1970 return complete_emulated_msr_access(vcpu); 1971 } 1972 1973 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1974 { 1975 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1976 } 1977 1978 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1979 { 1980 complete_userspace_rdmsr(vcpu); 1981 return complete_fast_msr_access(vcpu); 1982 } 1983 1984 static u64 kvm_msr_reason(int r) 1985 { 1986 switch (r) { 1987 case KVM_MSR_RET_INVALID: 1988 return KVM_MSR_EXIT_REASON_UNKNOWN; 1989 case KVM_MSR_RET_FILTERED: 1990 return KVM_MSR_EXIT_REASON_FILTER; 1991 default: 1992 return KVM_MSR_EXIT_REASON_INVAL; 1993 } 1994 } 1995 1996 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1997 u32 exit_reason, u64 data, 1998 int (*completion)(struct kvm_vcpu *vcpu), 1999 int r) 2000 { 2001 u64 msr_reason = kvm_msr_reason(r); 2002 2003 /* Check if the user wanted to know about this MSR fault */ 2004 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2005 return 0; 2006 2007 vcpu->run->exit_reason = exit_reason; 2008 vcpu->run->msr.error = 0; 2009 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2010 vcpu->run->msr.reason = msr_reason; 2011 vcpu->run->msr.index = index; 2012 vcpu->run->msr.data = data; 2013 vcpu->arch.complete_userspace_io = completion; 2014 2015 return 1; 2016 } 2017 2018 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2019 { 2020 u32 ecx = kvm_rcx_read(vcpu); 2021 u64 data; 2022 int r; 2023 2024 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2025 2026 if (!r) { 2027 trace_kvm_msr_read(ecx, data); 2028 2029 kvm_rax_write(vcpu, data & -1u); 2030 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2031 } else { 2032 /* MSR read failed? See if we should ask user space */ 2033 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2034 complete_fast_rdmsr, r)) 2035 return 0; 2036 trace_kvm_msr_read_ex(ecx); 2037 } 2038 2039 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2040 } 2041 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2042 2043 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2044 { 2045 u32 ecx = kvm_rcx_read(vcpu); 2046 u64 data = kvm_read_edx_eax(vcpu); 2047 int r; 2048 2049 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2050 2051 if (!r) { 2052 trace_kvm_msr_write(ecx, data); 2053 } else { 2054 /* MSR write failed? See if we should ask user space */ 2055 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2056 complete_fast_msr_access, r)) 2057 return 0; 2058 /* Signal all other negative errors to userspace */ 2059 if (r < 0) 2060 return r; 2061 trace_kvm_msr_write_ex(ecx, data); 2062 } 2063 2064 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2065 } 2066 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2067 2068 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2069 { 2070 return kvm_skip_emulated_instruction(vcpu); 2071 } 2072 2073 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2074 { 2075 /* Treat an INVD instruction as a NOP and just skip it. */ 2076 return kvm_emulate_as_nop(vcpu); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2079 2080 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2081 { 2082 kvm_queue_exception(vcpu, UD_VECTOR); 2083 return 1; 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2086 2087 2088 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2089 { 2090 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2091 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2092 return kvm_handle_invalid_op(vcpu); 2093 2094 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2095 return kvm_emulate_as_nop(vcpu); 2096 } 2097 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2098 { 2099 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2102 2103 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2104 { 2105 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2108 2109 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2110 { 2111 xfer_to_guest_mode_prepare(); 2112 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2113 xfer_to_guest_mode_work_pending(); 2114 } 2115 2116 /* 2117 * The fast path for frequent and performance sensitive wrmsr emulation, 2118 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2119 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2120 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2121 * other cases which must be called after interrupts are enabled on the host. 2122 */ 2123 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2124 { 2125 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2126 return 1; 2127 2128 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2129 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2130 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2131 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2132 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2133 2134 return 1; 2135 } 2136 2137 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2138 { 2139 if (!kvm_can_use_hv_timer(vcpu)) 2140 return 1; 2141 2142 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2143 return 0; 2144 } 2145 2146 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2147 { 2148 u32 msr = kvm_rcx_read(vcpu); 2149 u64 data; 2150 fastpath_t ret = EXIT_FASTPATH_NONE; 2151 2152 switch (msr) { 2153 case APIC_BASE_MSR + (APIC_ICR >> 4): 2154 data = kvm_read_edx_eax(vcpu); 2155 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2156 kvm_skip_emulated_instruction(vcpu); 2157 ret = EXIT_FASTPATH_EXIT_HANDLED; 2158 } 2159 break; 2160 case MSR_IA32_TSC_DEADLINE: 2161 data = kvm_read_edx_eax(vcpu); 2162 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2163 kvm_skip_emulated_instruction(vcpu); 2164 ret = EXIT_FASTPATH_REENTER_GUEST; 2165 } 2166 break; 2167 default: 2168 break; 2169 } 2170 2171 if (ret != EXIT_FASTPATH_NONE) 2172 trace_kvm_msr_write(msr, data); 2173 2174 return ret; 2175 } 2176 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2177 2178 /* 2179 * Adapt set_msr() to msr_io()'s calling convention 2180 */ 2181 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2182 { 2183 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2184 } 2185 2186 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2187 { 2188 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2189 } 2190 2191 #ifdef CONFIG_X86_64 2192 struct pvclock_clock { 2193 int vclock_mode; 2194 u64 cycle_last; 2195 u64 mask; 2196 u32 mult; 2197 u32 shift; 2198 u64 base_cycles; 2199 u64 offset; 2200 }; 2201 2202 struct pvclock_gtod_data { 2203 seqcount_t seq; 2204 2205 struct pvclock_clock clock; /* extract of a clocksource struct */ 2206 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2207 2208 ktime_t offs_boot; 2209 u64 wall_time_sec; 2210 }; 2211 2212 static struct pvclock_gtod_data pvclock_gtod_data; 2213 2214 static void update_pvclock_gtod(struct timekeeper *tk) 2215 { 2216 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2217 2218 write_seqcount_begin(&vdata->seq); 2219 2220 /* copy pvclock gtod data */ 2221 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2222 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2223 vdata->clock.mask = tk->tkr_mono.mask; 2224 vdata->clock.mult = tk->tkr_mono.mult; 2225 vdata->clock.shift = tk->tkr_mono.shift; 2226 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2227 vdata->clock.offset = tk->tkr_mono.base; 2228 2229 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2230 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2231 vdata->raw_clock.mask = tk->tkr_raw.mask; 2232 vdata->raw_clock.mult = tk->tkr_raw.mult; 2233 vdata->raw_clock.shift = tk->tkr_raw.shift; 2234 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2235 vdata->raw_clock.offset = tk->tkr_raw.base; 2236 2237 vdata->wall_time_sec = tk->xtime_sec; 2238 2239 vdata->offs_boot = tk->offs_boot; 2240 2241 write_seqcount_end(&vdata->seq); 2242 } 2243 2244 static s64 get_kvmclock_base_ns(void) 2245 { 2246 /* Count up from boot time, but with the frequency of the raw clock. */ 2247 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2248 } 2249 #else 2250 static s64 get_kvmclock_base_ns(void) 2251 { 2252 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2253 return ktime_get_boottime_ns(); 2254 } 2255 #endif 2256 2257 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2258 { 2259 int version; 2260 int r; 2261 struct pvclock_wall_clock wc; 2262 u32 wc_sec_hi; 2263 u64 wall_nsec; 2264 2265 if (!wall_clock) 2266 return; 2267 2268 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2269 if (r) 2270 return; 2271 2272 if (version & 1) 2273 ++version; /* first time write, random junk */ 2274 2275 ++version; 2276 2277 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2278 return; 2279 2280 /* 2281 * The guest calculates current wall clock time by adding 2282 * system time (updated by kvm_guest_time_update below) to the 2283 * wall clock specified here. We do the reverse here. 2284 */ 2285 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2286 2287 wc.nsec = do_div(wall_nsec, 1000000000); 2288 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2289 wc.version = version; 2290 2291 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2292 2293 if (sec_hi_ofs) { 2294 wc_sec_hi = wall_nsec >> 32; 2295 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2296 &wc_sec_hi, sizeof(wc_sec_hi)); 2297 } 2298 2299 version++; 2300 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2301 } 2302 2303 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2304 bool old_msr, bool host_initiated) 2305 { 2306 struct kvm_arch *ka = &vcpu->kvm->arch; 2307 2308 if (vcpu->vcpu_id == 0 && !host_initiated) { 2309 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2310 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2311 2312 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2313 } 2314 2315 vcpu->arch.time = system_time; 2316 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2317 2318 /* we verify if the enable bit is set... */ 2319 if (system_time & 1) 2320 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2321 sizeof(struct pvclock_vcpu_time_info)); 2322 else 2323 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2324 2325 return; 2326 } 2327 2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2329 { 2330 do_shl32_div32(dividend, divisor); 2331 return dividend; 2332 } 2333 2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2335 s8 *pshift, u32 *pmultiplier) 2336 { 2337 uint64_t scaled64; 2338 int32_t shift = 0; 2339 uint64_t tps64; 2340 uint32_t tps32; 2341 2342 tps64 = base_hz; 2343 scaled64 = scaled_hz; 2344 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2345 tps64 >>= 1; 2346 shift--; 2347 } 2348 2349 tps32 = (uint32_t)tps64; 2350 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2351 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2352 scaled64 >>= 1; 2353 else 2354 tps32 <<= 1; 2355 shift++; 2356 } 2357 2358 *pshift = shift; 2359 *pmultiplier = div_frac(scaled64, tps32); 2360 } 2361 2362 #ifdef CONFIG_X86_64 2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2364 #endif 2365 2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2367 static unsigned long max_tsc_khz; 2368 2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2370 { 2371 u64 v = (u64)khz * (1000000 + ppm); 2372 do_div(v, 1000000); 2373 return v; 2374 } 2375 2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2377 2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2379 { 2380 u64 ratio; 2381 2382 /* Guest TSC same frequency as host TSC? */ 2383 if (!scale) { 2384 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2385 return 0; 2386 } 2387 2388 /* TSC scaling supported? */ 2389 if (!kvm_caps.has_tsc_control) { 2390 if (user_tsc_khz > tsc_khz) { 2391 vcpu->arch.tsc_catchup = 1; 2392 vcpu->arch.tsc_always_catchup = 1; 2393 return 0; 2394 } else { 2395 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2396 return -1; 2397 } 2398 } 2399 2400 /* TSC scaling required - calculate ratio */ 2401 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2402 user_tsc_khz, tsc_khz); 2403 2404 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2405 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2406 user_tsc_khz); 2407 return -1; 2408 } 2409 2410 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2411 return 0; 2412 } 2413 2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2415 { 2416 u32 thresh_lo, thresh_hi; 2417 int use_scaling = 0; 2418 2419 /* tsc_khz can be zero if TSC calibration fails */ 2420 if (user_tsc_khz == 0) { 2421 /* set tsc_scaling_ratio to a safe value */ 2422 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2423 return -1; 2424 } 2425 2426 /* Compute a scale to convert nanoseconds in TSC cycles */ 2427 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2428 &vcpu->arch.virtual_tsc_shift, 2429 &vcpu->arch.virtual_tsc_mult); 2430 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2431 2432 /* 2433 * Compute the variation in TSC rate which is acceptable 2434 * within the range of tolerance and decide if the 2435 * rate being applied is within that bounds of the hardware 2436 * rate. If so, no scaling or compensation need be done. 2437 */ 2438 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2439 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2440 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2441 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2442 user_tsc_khz, thresh_lo, thresh_hi); 2443 use_scaling = 1; 2444 } 2445 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2446 } 2447 2448 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2449 { 2450 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2451 vcpu->arch.virtual_tsc_mult, 2452 vcpu->arch.virtual_tsc_shift); 2453 tsc += vcpu->arch.this_tsc_write; 2454 return tsc; 2455 } 2456 2457 #ifdef CONFIG_X86_64 2458 static inline int gtod_is_based_on_tsc(int mode) 2459 { 2460 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2461 } 2462 #endif 2463 2464 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2465 { 2466 #ifdef CONFIG_X86_64 2467 bool vcpus_matched; 2468 struct kvm_arch *ka = &vcpu->kvm->arch; 2469 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2470 2471 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2472 atomic_read(&vcpu->kvm->online_vcpus)); 2473 2474 /* 2475 * Once the masterclock is enabled, always perform request in 2476 * order to update it. 2477 * 2478 * In order to enable masterclock, the host clocksource must be TSC 2479 * and the vcpus need to have matched TSCs. When that happens, 2480 * perform request to enable masterclock. 2481 */ 2482 if (ka->use_master_clock || 2483 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2484 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2485 2486 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2487 atomic_read(&vcpu->kvm->online_vcpus), 2488 ka->use_master_clock, gtod->clock.vclock_mode); 2489 #endif 2490 } 2491 2492 /* 2493 * Multiply tsc by a fixed point number represented by ratio. 2494 * 2495 * The most significant 64-N bits (mult) of ratio represent the 2496 * integral part of the fixed point number; the remaining N bits 2497 * (frac) represent the fractional part, ie. ratio represents a fixed 2498 * point number (mult + frac * 2^(-N)). 2499 * 2500 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2501 */ 2502 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2503 { 2504 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2505 } 2506 2507 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2508 { 2509 u64 _tsc = tsc; 2510 2511 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2512 _tsc = __scale_tsc(ratio, tsc); 2513 2514 return _tsc; 2515 } 2516 2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2518 { 2519 u64 tsc; 2520 2521 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2522 2523 return target_tsc - tsc; 2524 } 2525 2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2527 { 2528 return vcpu->arch.l1_tsc_offset + 2529 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2532 2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2534 { 2535 u64 nested_offset; 2536 2537 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2538 nested_offset = l1_offset; 2539 else 2540 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2541 kvm_caps.tsc_scaling_ratio_frac_bits); 2542 2543 nested_offset += l2_offset; 2544 return nested_offset; 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2547 2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2549 { 2550 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2551 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2552 kvm_caps.tsc_scaling_ratio_frac_bits); 2553 2554 return l1_multiplier; 2555 } 2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2557 2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2559 { 2560 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2561 vcpu->arch.l1_tsc_offset, 2562 l1_offset); 2563 2564 vcpu->arch.l1_tsc_offset = l1_offset; 2565 2566 /* 2567 * If we are here because L1 chose not to trap WRMSR to TSC then 2568 * according to the spec this should set L1's TSC (as opposed to 2569 * setting L1's offset for L2). 2570 */ 2571 if (is_guest_mode(vcpu)) 2572 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2573 l1_offset, 2574 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2575 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2576 else 2577 vcpu->arch.tsc_offset = l1_offset; 2578 2579 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2580 } 2581 2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2583 { 2584 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2585 2586 /* Userspace is changing the multiplier while L2 is active */ 2587 if (is_guest_mode(vcpu)) 2588 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2589 l1_multiplier, 2590 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2591 else 2592 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2593 2594 if (kvm_caps.has_tsc_control) 2595 static_call(kvm_x86_write_tsc_multiplier)( 2596 vcpu, vcpu->arch.tsc_scaling_ratio); 2597 } 2598 2599 static inline bool kvm_check_tsc_unstable(void) 2600 { 2601 #ifdef CONFIG_X86_64 2602 /* 2603 * TSC is marked unstable when we're running on Hyper-V, 2604 * 'TSC page' clocksource is good. 2605 */ 2606 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2607 return false; 2608 #endif 2609 return check_tsc_unstable(); 2610 } 2611 2612 /* 2613 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2614 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2615 * participates in. 2616 */ 2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2618 u64 ns, bool matched) 2619 { 2620 struct kvm *kvm = vcpu->kvm; 2621 2622 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2623 2624 /* 2625 * We also track th most recent recorded KHZ, write and time to 2626 * allow the matching interval to be extended at each write. 2627 */ 2628 kvm->arch.last_tsc_nsec = ns; 2629 kvm->arch.last_tsc_write = tsc; 2630 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2631 kvm->arch.last_tsc_offset = offset; 2632 2633 vcpu->arch.last_guest_tsc = tsc; 2634 2635 kvm_vcpu_write_tsc_offset(vcpu, offset); 2636 2637 if (!matched) { 2638 /* 2639 * We split periods of matched TSC writes into generations. 2640 * For each generation, we track the original measured 2641 * nanosecond time, offset, and write, so if TSCs are in 2642 * sync, we can match exact offset, and if not, we can match 2643 * exact software computation in compute_guest_tsc() 2644 * 2645 * These values are tracked in kvm->arch.cur_xxx variables. 2646 */ 2647 kvm->arch.cur_tsc_generation++; 2648 kvm->arch.cur_tsc_nsec = ns; 2649 kvm->arch.cur_tsc_write = tsc; 2650 kvm->arch.cur_tsc_offset = offset; 2651 kvm->arch.nr_vcpus_matched_tsc = 0; 2652 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2653 kvm->arch.nr_vcpus_matched_tsc++; 2654 } 2655 2656 /* Keep track of which generation this VCPU has synchronized to */ 2657 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2658 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2659 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2660 2661 kvm_track_tsc_matching(vcpu); 2662 } 2663 2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2665 { 2666 struct kvm *kvm = vcpu->kvm; 2667 u64 offset, ns, elapsed; 2668 unsigned long flags; 2669 bool matched = false; 2670 bool synchronizing = false; 2671 2672 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2673 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2674 ns = get_kvmclock_base_ns(); 2675 elapsed = ns - kvm->arch.last_tsc_nsec; 2676 2677 if (vcpu->arch.virtual_tsc_khz) { 2678 if (data == 0) { 2679 /* 2680 * detection of vcpu initialization -- need to sync 2681 * with other vCPUs. This particularly helps to keep 2682 * kvm_clock stable after CPU hotplug 2683 */ 2684 synchronizing = true; 2685 } else { 2686 u64 tsc_exp = kvm->arch.last_tsc_write + 2687 nsec_to_cycles(vcpu, elapsed); 2688 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2689 /* 2690 * Special case: TSC write with a small delta (1 second) 2691 * of virtual cycle time against real time is 2692 * interpreted as an attempt to synchronize the CPU. 2693 */ 2694 synchronizing = data < tsc_exp + tsc_hz && 2695 data + tsc_hz > tsc_exp; 2696 } 2697 } 2698 2699 /* 2700 * For a reliable TSC, we can match TSC offsets, and for an unstable 2701 * TSC, we add elapsed time in this computation. We could let the 2702 * compensation code attempt to catch up if we fall behind, but 2703 * it's better to try to match offsets from the beginning. 2704 */ 2705 if (synchronizing && 2706 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2707 if (!kvm_check_tsc_unstable()) { 2708 offset = kvm->arch.cur_tsc_offset; 2709 } else { 2710 u64 delta = nsec_to_cycles(vcpu, elapsed); 2711 data += delta; 2712 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2713 } 2714 matched = true; 2715 } 2716 2717 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2718 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2719 } 2720 2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2722 s64 adjustment) 2723 { 2724 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2725 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2726 } 2727 2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2729 { 2730 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2731 WARN_ON(adjustment < 0); 2732 adjustment = kvm_scale_tsc((u64) adjustment, 2733 vcpu->arch.l1_tsc_scaling_ratio); 2734 adjust_tsc_offset_guest(vcpu, adjustment); 2735 } 2736 2737 #ifdef CONFIG_X86_64 2738 2739 static u64 read_tsc(void) 2740 { 2741 u64 ret = (u64)rdtsc_ordered(); 2742 u64 last = pvclock_gtod_data.clock.cycle_last; 2743 2744 if (likely(ret >= last)) 2745 return ret; 2746 2747 /* 2748 * GCC likes to generate cmov here, but this branch is extremely 2749 * predictable (it's just a function of time and the likely is 2750 * very likely) and there's a data dependence, so force GCC 2751 * to generate a branch instead. I don't barrier() because 2752 * we don't actually need a barrier, and if this function 2753 * ever gets inlined it will generate worse code. 2754 */ 2755 asm volatile (""); 2756 return last; 2757 } 2758 2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2760 int *mode) 2761 { 2762 long v; 2763 u64 tsc_pg_val; 2764 2765 switch (clock->vclock_mode) { 2766 case VDSO_CLOCKMODE_HVCLOCK: 2767 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2768 tsc_timestamp); 2769 if (tsc_pg_val != U64_MAX) { 2770 /* TSC page valid */ 2771 *mode = VDSO_CLOCKMODE_HVCLOCK; 2772 v = (tsc_pg_val - clock->cycle_last) & 2773 clock->mask; 2774 } else { 2775 /* TSC page invalid */ 2776 *mode = VDSO_CLOCKMODE_NONE; 2777 } 2778 break; 2779 case VDSO_CLOCKMODE_TSC: 2780 *mode = VDSO_CLOCKMODE_TSC; 2781 *tsc_timestamp = read_tsc(); 2782 v = (*tsc_timestamp - clock->cycle_last) & 2783 clock->mask; 2784 break; 2785 default: 2786 *mode = VDSO_CLOCKMODE_NONE; 2787 } 2788 2789 if (*mode == VDSO_CLOCKMODE_NONE) 2790 *tsc_timestamp = v = 0; 2791 2792 return v * clock->mult; 2793 } 2794 2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2796 { 2797 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2798 unsigned long seq; 2799 int mode; 2800 u64 ns; 2801 2802 do { 2803 seq = read_seqcount_begin(>od->seq); 2804 ns = gtod->raw_clock.base_cycles; 2805 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2806 ns >>= gtod->raw_clock.shift; 2807 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2808 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2809 *t = ns; 2810 2811 return mode; 2812 } 2813 2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2815 { 2816 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2817 unsigned long seq; 2818 int mode; 2819 u64 ns; 2820 2821 do { 2822 seq = read_seqcount_begin(>od->seq); 2823 ts->tv_sec = gtod->wall_time_sec; 2824 ns = gtod->clock.base_cycles; 2825 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2826 ns >>= gtod->clock.shift; 2827 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2828 2829 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2830 ts->tv_nsec = ns; 2831 2832 return mode; 2833 } 2834 2835 /* returns true if host is using TSC based clocksource */ 2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2837 { 2838 /* checked again under seqlock below */ 2839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2840 return false; 2841 2842 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2843 tsc_timestamp)); 2844 } 2845 2846 /* returns true if host is using TSC based clocksource */ 2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2848 u64 *tsc_timestamp) 2849 { 2850 /* checked again under seqlock below */ 2851 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2852 return false; 2853 2854 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2855 } 2856 #endif 2857 2858 /* 2859 * 2860 * Assuming a stable TSC across physical CPUS, and a stable TSC 2861 * across virtual CPUs, the following condition is possible. 2862 * Each numbered line represents an event visible to both 2863 * CPUs at the next numbered event. 2864 * 2865 * "timespecX" represents host monotonic time. "tscX" represents 2866 * RDTSC value. 2867 * 2868 * VCPU0 on CPU0 | VCPU1 on CPU1 2869 * 2870 * 1. read timespec0,tsc0 2871 * 2. | timespec1 = timespec0 + N 2872 * | tsc1 = tsc0 + M 2873 * 3. transition to guest | transition to guest 2874 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2875 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2876 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2877 * 2878 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2879 * 2880 * - ret0 < ret1 2881 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2882 * ... 2883 * - 0 < N - M => M < N 2884 * 2885 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2886 * always the case (the difference between two distinct xtime instances 2887 * might be smaller then the difference between corresponding TSC reads, 2888 * when updating guest vcpus pvclock areas). 2889 * 2890 * To avoid that problem, do not allow visibility of distinct 2891 * system_timestamp/tsc_timestamp values simultaneously: use a master 2892 * copy of host monotonic time values. Update that master copy 2893 * in lockstep. 2894 * 2895 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2896 * 2897 */ 2898 2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2900 { 2901 #ifdef CONFIG_X86_64 2902 struct kvm_arch *ka = &kvm->arch; 2903 int vclock_mode; 2904 bool host_tsc_clocksource, vcpus_matched; 2905 2906 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2907 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2908 atomic_read(&kvm->online_vcpus)); 2909 2910 /* 2911 * If the host uses TSC clock, then passthrough TSC as stable 2912 * to the guest. 2913 */ 2914 host_tsc_clocksource = kvm_get_time_and_clockread( 2915 &ka->master_kernel_ns, 2916 &ka->master_cycle_now); 2917 2918 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2919 && !ka->backwards_tsc_observed 2920 && !ka->boot_vcpu_runs_old_kvmclock; 2921 2922 if (ka->use_master_clock) 2923 atomic_set(&kvm_guest_has_master_clock, 1); 2924 2925 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2926 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2927 vcpus_matched); 2928 #endif 2929 } 2930 2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2932 { 2933 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2934 } 2935 2936 static void __kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2939 write_seqcount_begin(&kvm->arch.pvclock_sc); 2940 } 2941 2942 static void kvm_start_pvclock_update(struct kvm *kvm) 2943 { 2944 kvm_make_mclock_inprogress_request(kvm); 2945 2946 /* no guest entries from this point */ 2947 __kvm_start_pvclock_update(kvm); 2948 } 2949 2950 static void kvm_end_pvclock_update(struct kvm *kvm) 2951 { 2952 struct kvm_arch *ka = &kvm->arch; 2953 struct kvm_vcpu *vcpu; 2954 unsigned long i; 2955 2956 write_seqcount_end(&ka->pvclock_sc); 2957 raw_spin_unlock_irq(&ka->tsc_write_lock); 2958 kvm_for_each_vcpu(i, vcpu, kvm) 2959 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2960 2961 /* guest entries allowed */ 2962 kvm_for_each_vcpu(i, vcpu, kvm) 2963 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2964 } 2965 2966 static void kvm_update_masterclock(struct kvm *kvm) 2967 { 2968 kvm_hv_request_tsc_page_update(kvm); 2969 kvm_start_pvclock_update(kvm); 2970 pvclock_update_vm_gtod_copy(kvm); 2971 kvm_end_pvclock_update(kvm); 2972 } 2973 2974 /* 2975 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2976 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2977 * can change during boot even if the TSC is constant, as it's possible for KVM 2978 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2979 * notification when calibration completes, but practically speaking calibration 2980 * will complete before userspace is alive enough to create VMs. 2981 */ 2982 static unsigned long get_cpu_tsc_khz(void) 2983 { 2984 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2985 return tsc_khz; 2986 else 2987 return __this_cpu_read(cpu_tsc_khz); 2988 } 2989 2990 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2991 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2992 { 2993 struct kvm_arch *ka = &kvm->arch; 2994 struct pvclock_vcpu_time_info hv_clock; 2995 2996 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2997 get_cpu(); 2998 2999 data->flags = 0; 3000 if (ka->use_master_clock && 3001 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3002 #ifdef CONFIG_X86_64 3003 struct timespec64 ts; 3004 3005 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3006 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3007 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3008 } else 3009 #endif 3010 data->host_tsc = rdtsc(); 3011 3012 data->flags |= KVM_CLOCK_TSC_STABLE; 3013 hv_clock.tsc_timestamp = ka->master_cycle_now; 3014 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3015 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3016 &hv_clock.tsc_shift, 3017 &hv_clock.tsc_to_system_mul); 3018 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3019 } else { 3020 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3021 } 3022 3023 put_cpu(); 3024 } 3025 3026 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3027 { 3028 struct kvm_arch *ka = &kvm->arch; 3029 unsigned seq; 3030 3031 do { 3032 seq = read_seqcount_begin(&ka->pvclock_sc); 3033 __get_kvmclock(kvm, data); 3034 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3035 } 3036 3037 u64 get_kvmclock_ns(struct kvm *kvm) 3038 { 3039 struct kvm_clock_data data; 3040 3041 get_kvmclock(kvm, &data); 3042 return data.clock; 3043 } 3044 3045 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3046 struct gfn_to_pfn_cache *gpc, 3047 unsigned int offset) 3048 { 3049 struct kvm_vcpu_arch *vcpu = &v->arch; 3050 struct pvclock_vcpu_time_info *guest_hv_clock; 3051 unsigned long flags; 3052 3053 read_lock_irqsave(&gpc->lock, flags); 3054 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3055 read_unlock_irqrestore(&gpc->lock, flags); 3056 3057 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3058 return; 3059 3060 read_lock_irqsave(&gpc->lock, flags); 3061 } 3062 3063 guest_hv_clock = (void *)(gpc->khva + offset); 3064 3065 /* 3066 * This VCPU is paused, but it's legal for a guest to read another 3067 * VCPU's kvmclock, so we really have to follow the specification where 3068 * it says that version is odd if data is being modified, and even after 3069 * it is consistent. 3070 */ 3071 3072 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3073 smp_wmb(); 3074 3075 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3076 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3077 3078 if (vcpu->pvclock_set_guest_stopped_request) { 3079 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3080 vcpu->pvclock_set_guest_stopped_request = false; 3081 } 3082 3083 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3084 smp_wmb(); 3085 3086 guest_hv_clock->version = ++vcpu->hv_clock.version; 3087 3088 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3089 read_unlock_irqrestore(&gpc->lock, flags); 3090 3091 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3092 } 3093 3094 static int kvm_guest_time_update(struct kvm_vcpu *v) 3095 { 3096 unsigned long flags, tgt_tsc_khz; 3097 unsigned seq; 3098 struct kvm_vcpu_arch *vcpu = &v->arch; 3099 struct kvm_arch *ka = &v->kvm->arch; 3100 s64 kernel_ns; 3101 u64 tsc_timestamp, host_tsc; 3102 u8 pvclock_flags; 3103 bool use_master_clock; 3104 3105 kernel_ns = 0; 3106 host_tsc = 0; 3107 3108 /* 3109 * If the host uses TSC clock, then passthrough TSC as stable 3110 * to the guest. 3111 */ 3112 do { 3113 seq = read_seqcount_begin(&ka->pvclock_sc); 3114 use_master_clock = ka->use_master_clock; 3115 if (use_master_clock) { 3116 host_tsc = ka->master_cycle_now; 3117 kernel_ns = ka->master_kernel_ns; 3118 } 3119 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3120 3121 /* Keep irq disabled to prevent changes to the clock */ 3122 local_irq_save(flags); 3123 tgt_tsc_khz = get_cpu_tsc_khz(); 3124 if (unlikely(tgt_tsc_khz == 0)) { 3125 local_irq_restore(flags); 3126 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3127 return 1; 3128 } 3129 if (!use_master_clock) { 3130 host_tsc = rdtsc(); 3131 kernel_ns = get_kvmclock_base_ns(); 3132 } 3133 3134 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3135 3136 /* 3137 * We may have to catch up the TSC to match elapsed wall clock 3138 * time for two reasons, even if kvmclock is used. 3139 * 1) CPU could have been running below the maximum TSC rate 3140 * 2) Broken TSC compensation resets the base at each VCPU 3141 * entry to avoid unknown leaps of TSC even when running 3142 * again on the same CPU. This may cause apparent elapsed 3143 * time to disappear, and the guest to stand still or run 3144 * very slowly. 3145 */ 3146 if (vcpu->tsc_catchup) { 3147 u64 tsc = compute_guest_tsc(v, kernel_ns); 3148 if (tsc > tsc_timestamp) { 3149 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3150 tsc_timestamp = tsc; 3151 } 3152 } 3153 3154 local_irq_restore(flags); 3155 3156 /* With all the info we got, fill in the values */ 3157 3158 if (kvm_caps.has_tsc_control) 3159 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3160 v->arch.l1_tsc_scaling_ratio); 3161 3162 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3163 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3164 &vcpu->hv_clock.tsc_shift, 3165 &vcpu->hv_clock.tsc_to_system_mul); 3166 vcpu->hw_tsc_khz = tgt_tsc_khz; 3167 } 3168 3169 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3170 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3171 vcpu->last_guest_tsc = tsc_timestamp; 3172 3173 /* If the host uses TSC clocksource, then it is stable */ 3174 pvclock_flags = 0; 3175 if (use_master_clock) 3176 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3177 3178 vcpu->hv_clock.flags = pvclock_flags; 3179 3180 if (vcpu->pv_time.active) 3181 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3182 if (vcpu->xen.vcpu_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3184 offsetof(struct compat_vcpu_info, time)); 3185 if (vcpu->xen.vcpu_time_info_cache.active) 3186 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3187 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3188 return 0; 3189 } 3190 3191 /* 3192 * kvmclock updates which are isolated to a given vcpu, such as 3193 * vcpu->cpu migration, should not allow system_timestamp from 3194 * the rest of the vcpus to remain static. Otherwise ntp frequency 3195 * correction applies to one vcpu's system_timestamp but not 3196 * the others. 3197 * 3198 * So in those cases, request a kvmclock update for all vcpus. 3199 * We need to rate-limit these requests though, as they can 3200 * considerably slow guests that have a large number of vcpus. 3201 * The time for a remote vcpu to update its kvmclock is bound 3202 * by the delay we use to rate-limit the updates. 3203 */ 3204 3205 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3206 3207 static void kvmclock_update_fn(struct work_struct *work) 3208 { 3209 unsigned long i; 3210 struct delayed_work *dwork = to_delayed_work(work); 3211 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3212 kvmclock_update_work); 3213 struct kvm *kvm = container_of(ka, struct kvm, arch); 3214 struct kvm_vcpu *vcpu; 3215 3216 kvm_for_each_vcpu(i, vcpu, kvm) { 3217 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3218 kvm_vcpu_kick(vcpu); 3219 } 3220 } 3221 3222 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3223 { 3224 struct kvm *kvm = v->kvm; 3225 3226 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3227 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3228 KVMCLOCK_UPDATE_DELAY); 3229 } 3230 3231 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3232 3233 static void kvmclock_sync_fn(struct work_struct *work) 3234 { 3235 struct delayed_work *dwork = to_delayed_work(work); 3236 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3237 kvmclock_sync_work); 3238 struct kvm *kvm = container_of(ka, struct kvm, arch); 3239 3240 if (!kvmclock_periodic_sync) 3241 return; 3242 3243 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3244 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3245 KVMCLOCK_SYNC_PERIOD); 3246 } 3247 3248 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3249 static bool is_mci_control_msr(u32 msr) 3250 { 3251 return (msr & 3) == 0; 3252 } 3253 static bool is_mci_status_msr(u32 msr) 3254 { 3255 return (msr & 3) == 1; 3256 } 3257 3258 /* 3259 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3260 */ 3261 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3262 { 3263 /* McStatusWrEn enabled? */ 3264 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3265 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3266 3267 return false; 3268 } 3269 3270 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3271 { 3272 u64 mcg_cap = vcpu->arch.mcg_cap; 3273 unsigned bank_num = mcg_cap & 0xff; 3274 u32 msr = msr_info->index; 3275 u64 data = msr_info->data; 3276 u32 offset, last_msr; 3277 3278 switch (msr) { 3279 case MSR_IA32_MCG_STATUS: 3280 vcpu->arch.mcg_status = data; 3281 break; 3282 case MSR_IA32_MCG_CTL: 3283 if (!(mcg_cap & MCG_CTL_P) && 3284 (data || !msr_info->host_initiated)) 3285 return 1; 3286 if (data != 0 && data != ~(u64)0) 3287 return 1; 3288 vcpu->arch.mcg_ctl = data; 3289 break; 3290 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3291 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3292 if (msr > last_msr) 3293 return 1; 3294 3295 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3296 return 1; 3297 /* An attempt to write a 1 to a reserved bit raises #GP */ 3298 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3299 return 1; 3300 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3301 last_msr + 1 - MSR_IA32_MC0_CTL2); 3302 vcpu->arch.mci_ctl2_banks[offset] = data; 3303 break; 3304 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3305 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3306 if (msr > last_msr) 3307 return 1; 3308 3309 /* 3310 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3311 * values are architecturally undefined. But, some Linux 3312 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3313 * issue on AMD K8s, allow bit 10 to be clear when setting all 3314 * other bits in order to avoid an uncaught #GP in the guest. 3315 * 3316 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3317 * single-bit ECC data errors. 3318 */ 3319 if (is_mci_control_msr(msr) && 3320 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3321 return 1; 3322 3323 /* 3324 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3325 * AMD-based CPUs allow non-zero values, but if and only if 3326 * HWCR[McStatusWrEn] is set. 3327 */ 3328 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3329 data != 0 && !can_set_mci_status(vcpu)) 3330 return 1; 3331 3332 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3333 last_msr + 1 - MSR_IA32_MC0_CTL); 3334 vcpu->arch.mce_banks[offset] = data; 3335 break; 3336 default: 3337 return 1; 3338 } 3339 return 0; 3340 } 3341 3342 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3343 { 3344 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3345 3346 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3347 } 3348 3349 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3350 { 3351 gpa_t gpa = data & ~0x3f; 3352 3353 /* Bits 4:5 are reserved, Should be zero */ 3354 if (data & 0x30) 3355 return 1; 3356 3357 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3358 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3359 return 1; 3360 3361 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3362 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3363 return 1; 3364 3365 if (!lapic_in_kernel(vcpu)) 3366 return data ? 1 : 0; 3367 3368 vcpu->arch.apf.msr_en_val = data; 3369 3370 if (!kvm_pv_async_pf_enabled(vcpu)) { 3371 kvm_clear_async_pf_completion_queue(vcpu); 3372 kvm_async_pf_hash_reset(vcpu); 3373 return 0; 3374 } 3375 3376 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3377 sizeof(u64))) 3378 return 1; 3379 3380 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3381 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3382 3383 kvm_async_pf_wakeup_all(vcpu); 3384 3385 return 0; 3386 } 3387 3388 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3389 { 3390 /* Bits 8-63 are reserved */ 3391 if (data >> 8) 3392 return 1; 3393 3394 if (!lapic_in_kernel(vcpu)) 3395 return 1; 3396 3397 vcpu->arch.apf.msr_int_val = data; 3398 3399 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3400 3401 return 0; 3402 } 3403 3404 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3405 { 3406 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3407 vcpu->arch.time = 0; 3408 } 3409 3410 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3411 { 3412 ++vcpu->stat.tlb_flush; 3413 static_call(kvm_x86_flush_tlb_all)(vcpu); 3414 3415 /* Flushing all ASIDs flushes the current ASID... */ 3416 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3417 } 3418 3419 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3420 { 3421 ++vcpu->stat.tlb_flush; 3422 3423 if (!tdp_enabled) { 3424 /* 3425 * A TLB flush on behalf of the guest is equivalent to 3426 * INVPCID(all), toggling CR4.PGE, etc., which requires 3427 * a forced sync of the shadow page tables. Ensure all the 3428 * roots are synced and the guest TLB in hardware is clean. 3429 */ 3430 kvm_mmu_sync_roots(vcpu); 3431 kvm_mmu_sync_prev_roots(vcpu); 3432 } 3433 3434 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3435 3436 /* 3437 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3438 * grained flushing. 3439 */ 3440 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3441 } 3442 3443 3444 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3445 { 3446 ++vcpu->stat.tlb_flush; 3447 static_call(kvm_x86_flush_tlb_current)(vcpu); 3448 } 3449 3450 /* 3451 * Service "local" TLB flush requests, which are specific to the current MMU 3452 * context. In addition to the generic event handling in vcpu_enter_guest(), 3453 * TLB flushes that are targeted at an MMU context also need to be serviced 3454 * prior before nested VM-Enter/VM-Exit. 3455 */ 3456 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3457 { 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3459 kvm_vcpu_flush_tlb_current(vcpu); 3460 3461 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3462 kvm_vcpu_flush_tlb_guest(vcpu); 3463 } 3464 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3465 3466 static void record_steal_time(struct kvm_vcpu *vcpu) 3467 { 3468 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3469 struct kvm_steal_time __user *st; 3470 struct kvm_memslots *slots; 3471 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3472 u64 steal; 3473 u32 version; 3474 3475 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3476 kvm_xen_runstate_set_running(vcpu); 3477 return; 3478 } 3479 3480 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3481 return; 3482 3483 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3484 return; 3485 3486 slots = kvm_memslots(vcpu->kvm); 3487 3488 if (unlikely(slots->generation != ghc->generation || 3489 gpa != ghc->gpa || 3490 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3491 /* We rely on the fact that it fits in a single page. */ 3492 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3493 3494 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3495 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3496 return; 3497 } 3498 3499 st = (struct kvm_steal_time __user *)ghc->hva; 3500 /* 3501 * Doing a TLB flush here, on the guest's behalf, can avoid 3502 * expensive IPIs. 3503 */ 3504 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3505 u8 st_preempted = 0; 3506 int err = -EFAULT; 3507 3508 if (!user_access_begin(st, sizeof(*st))) 3509 return; 3510 3511 asm volatile("1: xchgb %0, %2\n" 3512 "xor %1, %1\n" 3513 "2:\n" 3514 _ASM_EXTABLE_UA(1b, 2b) 3515 : "+q" (st_preempted), 3516 "+&r" (err), 3517 "+m" (st->preempted)); 3518 if (err) 3519 goto out; 3520 3521 user_access_end(); 3522 3523 vcpu->arch.st.preempted = 0; 3524 3525 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3526 st_preempted & KVM_VCPU_FLUSH_TLB); 3527 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3528 kvm_vcpu_flush_tlb_guest(vcpu); 3529 3530 if (!user_access_begin(st, sizeof(*st))) 3531 goto dirty; 3532 } else { 3533 if (!user_access_begin(st, sizeof(*st))) 3534 return; 3535 3536 unsafe_put_user(0, &st->preempted, out); 3537 vcpu->arch.st.preempted = 0; 3538 } 3539 3540 unsafe_get_user(version, &st->version, out); 3541 if (version & 1) 3542 version += 1; /* first time write, random junk */ 3543 3544 version += 1; 3545 unsafe_put_user(version, &st->version, out); 3546 3547 smp_wmb(); 3548 3549 unsafe_get_user(steal, &st->steal, out); 3550 steal += current->sched_info.run_delay - 3551 vcpu->arch.st.last_steal; 3552 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3553 unsafe_put_user(steal, &st->steal, out); 3554 3555 version += 1; 3556 unsafe_put_user(version, &st->version, out); 3557 3558 out: 3559 user_access_end(); 3560 dirty: 3561 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3562 } 3563 3564 static bool kvm_is_msr_to_save(u32 msr_index) 3565 { 3566 unsigned int i; 3567 3568 for (i = 0; i < num_msrs_to_save; i++) { 3569 if (msrs_to_save[i] == msr_index) 3570 return true; 3571 } 3572 3573 return false; 3574 } 3575 3576 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3577 { 3578 u32 msr = msr_info->index; 3579 u64 data = msr_info->data; 3580 3581 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3582 return kvm_xen_write_hypercall_page(vcpu, data); 3583 3584 switch (msr) { 3585 case MSR_AMD64_NB_CFG: 3586 case MSR_IA32_UCODE_WRITE: 3587 case MSR_VM_HSAVE_PA: 3588 case MSR_AMD64_PATCH_LOADER: 3589 case MSR_AMD64_BU_CFG2: 3590 case MSR_AMD64_DC_CFG: 3591 case MSR_F15H_EX_CFG: 3592 break; 3593 3594 case MSR_IA32_UCODE_REV: 3595 if (msr_info->host_initiated) 3596 vcpu->arch.microcode_version = data; 3597 break; 3598 case MSR_IA32_ARCH_CAPABILITIES: 3599 if (!msr_info->host_initiated) 3600 return 1; 3601 vcpu->arch.arch_capabilities = data; 3602 break; 3603 case MSR_IA32_PERF_CAPABILITIES: 3604 if (!msr_info->host_initiated) 3605 return 1; 3606 if (data & ~kvm_caps.supported_perf_cap) 3607 return 1; 3608 3609 vcpu->arch.perf_capabilities = data; 3610 kvm_pmu_refresh(vcpu); 3611 return 0; 3612 case MSR_EFER: 3613 return set_efer(vcpu, msr_info); 3614 case MSR_K7_HWCR: 3615 data &= ~(u64)0x40; /* ignore flush filter disable */ 3616 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3617 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3618 3619 /* Handle McStatusWrEn */ 3620 if (data == BIT_ULL(18)) { 3621 vcpu->arch.msr_hwcr = data; 3622 } else if (data != 0) { 3623 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3624 return 1; 3625 } 3626 break; 3627 case MSR_FAM10H_MMIO_CONF_BASE: 3628 if (data != 0) { 3629 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3630 return 1; 3631 } 3632 break; 3633 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3634 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3635 return kvm_mtrr_set_msr(vcpu, msr, data); 3636 case MSR_IA32_APICBASE: 3637 return kvm_set_apic_base(vcpu, msr_info); 3638 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3639 return kvm_x2apic_msr_write(vcpu, msr, data); 3640 case MSR_IA32_TSC_DEADLINE: 3641 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3642 break; 3643 case MSR_IA32_TSC_ADJUST: 3644 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3645 if (!msr_info->host_initiated) { 3646 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3647 adjust_tsc_offset_guest(vcpu, adj); 3648 /* Before back to guest, tsc_timestamp must be adjusted 3649 * as well, otherwise guest's percpu pvclock time could jump. 3650 */ 3651 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3652 } 3653 vcpu->arch.ia32_tsc_adjust_msr = data; 3654 } 3655 break; 3656 case MSR_IA32_MISC_ENABLE: { 3657 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3658 3659 if (!msr_info->host_initiated) { 3660 /* RO bits */ 3661 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3662 return 1; 3663 3664 /* R bits, i.e. writes are ignored, but don't fault. */ 3665 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3666 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3667 } 3668 3669 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3670 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3671 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3672 return 1; 3673 vcpu->arch.ia32_misc_enable_msr = data; 3674 kvm_update_cpuid_runtime(vcpu); 3675 } else { 3676 vcpu->arch.ia32_misc_enable_msr = data; 3677 } 3678 break; 3679 } 3680 case MSR_IA32_SMBASE: 3681 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3682 return 1; 3683 vcpu->arch.smbase = data; 3684 break; 3685 case MSR_IA32_POWER_CTL: 3686 vcpu->arch.msr_ia32_power_ctl = data; 3687 break; 3688 case MSR_IA32_TSC: 3689 if (msr_info->host_initiated) { 3690 kvm_synchronize_tsc(vcpu, data); 3691 } else { 3692 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3693 adjust_tsc_offset_guest(vcpu, adj); 3694 vcpu->arch.ia32_tsc_adjust_msr += adj; 3695 } 3696 break; 3697 case MSR_IA32_XSS: 3698 if (!msr_info->host_initiated && 3699 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3700 return 1; 3701 /* 3702 * KVM supports exposing PT to the guest, but does not support 3703 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3704 * XSAVES/XRSTORS to save/restore PT MSRs. 3705 */ 3706 if (data & ~kvm_caps.supported_xss) 3707 return 1; 3708 vcpu->arch.ia32_xss = data; 3709 kvm_update_cpuid_runtime(vcpu); 3710 break; 3711 case MSR_SMI_COUNT: 3712 if (!msr_info->host_initiated) 3713 return 1; 3714 vcpu->arch.smi_count = data; 3715 break; 3716 case MSR_KVM_WALL_CLOCK_NEW: 3717 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3718 return 1; 3719 3720 vcpu->kvm->arch.wall_clock = data; 3721 kvm_write_wall_clock(vcpu->kvm, data, 0); 3722 break; 3723 case MSR_KVM_WALL_CLOCK: 3724 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3725 return 1; 3726 3727 vcpu->kvm->arch.wall_clock = data; 3728 kvm_write_wall_clock(vcpu->kvm, data, 0); 3729 break; 3730 case MSR_KVM_SYSTEM_TIME_NEW: 3731 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3732 return 1; 3733 3734 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3735 break; 3736 case MSR_KVM_SYSTEM_TIME: 3737 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3738 return 1; 3739 3740 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3741 break; 3742 case MSR_KVM_ASYNC_PF_EN: 3743 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3744 return 1; 3745 3746 if (kvm_pv_enable_async_pf(vcpu, data)) 3747 return 1; 3748 break; 3749 case MSR_KVM_ASYNC_PF_INT: 3750 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3751 return 1; 3752 3753 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3754 return 1; 3755 break; 3756 case MSR_KVM_ASYNC_PF_ACK: 3757 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3758 return 1; 3759 if (data & 0x1) { 3760 vcpu->arch.apf.pageready_pending = false; 3761 kvm_check_async_pf_completion(vcpu); 3762 } 3763 break; 3764 case MSR_KVM_STEAL_TIME: 3765 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3766 return 1; 3767 3768 if (unlikely(!sched_info_on())) 3769 return 1; 3770 3771 if (data & KVM_STEAL_RESERVED_MASK) 3772 return 1; 3773 3774 vcpu->arch.st.msr_val = data; 3775 3776 if (!(data & KVM_MSR_ENABLED)) 3777 break; 3778 3779 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3780 3781 break; 3782 case MSR_KVM_PV_EOI_EN: 3783 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3784 return 1; 3785 3786 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3787 return 1; 3788 break; 3789 3790 case MSR_KVM_POLL_CONTROL: 3791 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3792 return 1; 3793 3794 /* only enable bit supported */ 3795 if (data & (-1ULL << 1)) 3796 return 1; 3797 3798 vcpu->arch.msr_kvm_poll_control = data; 3799 break; 3800 3801 case MSR_IA32_MCG_CTL: 3802 case MSR_IA32_MCG_STATUS: 3803 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3804 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3805 return set_msr_mce(vcpu, msr_info); 3806 3807 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3808 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3809 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3810 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3811 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3812 return kvm_pmu_set_msr(vcpu, msr_info); 3813 3814 if (data) 3815 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3816 break; 3817 case MSR_K7_CLK_CTL: 3818 /* 3819 * Ignore all writes to this no longer documented MSR. 3820 * Writes are only relevant for old K7 processors, 3821 * all pre-dating SVM, but a recommended workaround from 3822 * AMD for these chips. It is possible to specify the 3823 * affected processor models on the command line, hence 3824 * the need to ignore the workaround. 3825 */ 3826 break; 3827 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3828 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3829 case HV_X64_MSR_SYNDBG_OPTIONS: 3830 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3831 case HV_X64_MSR_CRASH_CTL: 3832 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3833 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3834 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3835 case HV_X64_MSR_TSC_EMULATION_STATUS: 3836 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3837 return kvm_hv_set_msr_common(vcpu, msr, data, 3838 msr_info->host_initiated); 3839 case MSR_IA32_BBL_CR_CTL3: 3840 /* Drop writes to this legacy MSR -- see rdmsr 3841 * counterpart for further detail. 3842 */ 3843 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3844 break; 3845 case MSR_AMD64_OSVW_ID_LENGTH: 3846 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3847 return 1; 3848 vcpu->arch.osvw.length = data; 3849 break; 3850 case MSR_AMD64_OSVW_STATUS: 3851 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3852 return 1; 3853 vcpu->arch.osvw.status = data; 3854 break; 3855 case MSR_PLATFORM_INFO: 3856 if (!msr_info->host_initiated || 3857 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3858 cpuid_fault_enabled(vcpu))) 3859 return 1; 3860 vcpu->arch.msr_platform_info = data; 3861 break; 3862 case MSR_MISC_FEATURES_ENABLES: 3863 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3864 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3865 !supports_cpuid_fault(vcpu))) 3866 return 1; 3867 vcpu->arch.msr_misc_features_enables = data; 3868 break; 3869 #ifdef CONFIG_X86_64 3870 case MSR_IA32_XFD: 3871 if (!msr_info->host_initiated && 3872 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3873 return 1; 3874 3875 if (data & ~kvm_guest_supported_xfd(vcpu)) 3876 return 1; 3877 3878 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3879 break; 3880 case MSR_IA32_XFD_ERR: 3881 if (!msr_info->host_initiated && 3882 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3883 return 1; 3884 3885 if (data & ~kvm_guest_supported_xfd(vcpu)) 3886 return 1; 3887 3888 vcpu->arch.guest_fpu.xfd_err = data; 3889 break; 3890 #endif 3891 default: 3892 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3893 return kvm_pmu_set_msr(vcpu, msr_info); 3894 3895 /* 3896 * Userspace is allowed to write '0' to MSRs that KVM reports 3897 * as to-be-saved, even if an MSRs isn't fully supported. 3898 */ 3899 if (msr_info->host_initiated && !data && 3900 kvm_is_msr_to_save(msr)) 3901 break; 3902 3903 return KVM_MSR_RET_INVALID; 3904 } 3905 return 0; 3906 } 3907 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3908 3909 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3910 { 3911 u64 data; 3912 u64 mcg_cap = vcpu->arch.mcg_cap; 3913 unsigned bank_num = mcg_cap & 0xff; 3914 u32 offset, last_msr; 3915 3916 switch (msr) { 3917 case MSR_IA32_P5_MC_ADDR: 3918 case MSR_IA32_P5_MC_TYPE: 3919 data = 0; 3920 break; 3921 case MSR_IA32_MCG_CAP: 3922 data = vcpu->arch.mcg_cap; 3923 break; 3924 case MSR_IA32_MCG_CTL: 3925 if (!(mcg_cap & MCG_CTL_P) && !host) 3926 return 1; 3927 data = vcpu->arch.mcg_ctl; 3928 break; 3929 case MSR_IA32_MCG_STATUS: 3930 data = vcpu->arch.mcg_status; 3931 break; 3932 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3933 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3934 if (msr > last_msr) 3935 return 1; 3936 3937 if (!(mcg_cap & MCG_CMCI_P) && !host) 3938 return 1; 3939 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3940 last_msr + 1 - MSR_IA32_MC0_CTL2); 3941 data = vcpu->arch.mci_ctl2_banks[offset]; 3942 break; 3943 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3944 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3945 if (msr > last_msr) 3946 return 1; 3947 3948 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3949 last_msr + 1 - MSR_IA32_MC0_CTL); 3950 data = vcpu->arch.mce_banks[offset]; 3951 break; 3952 default: 3953 return 1; 3954 } 3955 *pdata = data; 3956 return 0; 3957 } 3958 3959 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3960 { 3961 switch (msr_info->index) { 3962 case MSR_IA32_PLATFORM_ID: 3963 case MSR_IA32_EBL_CR_POWERON: 3964 case MSR_IA32_LASTBRANCHFROMIP: 3965 case MSR_IA32_LASTBRANCHTOIP: 3966 case MSR_IA32_LASTINTFROMIP: 3967 case MSR_IA32_LASTINTTOIP: 3968 case MSR_AMD64_SYSCFG: 3969 case MSR_K8_TSEG_ADDR: 3970 case MSR_K8_TSEG_MASK: 3971 case MSR_VM_HSAVE_PA: 3972 case MSR_K8_INT_PENDING_MSG: 3973 case MSR_AMD64_NB_CFG: 3974 case MSR_FAM10H_MMIO_CONF_BASE: 3975 case MSR_AMD64_BU_CFG2: 3976 case MSR_IA32_PERF_CTL: 3977 case MSR_AMD64_DC_CFG: 3978 case MSR_F15H_EX_CFG: 3979 /* 3980 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3981 * limit) MSRs. Just return 0, as we do not want to expose the host 3982 * data here. Do not conditionalize this on CPUID, as KVM does not do 3983 * so for existing CPU-specific MSRs. 3984 */ 3985 case MSR_RAPL_POWER_UNIT: 3986 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3987 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3988 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3989 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3990 msr_info->data = 0; 3991 break; 3992 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3993 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3994 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3995 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3996 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3997 return kvm_pmu_get_msr(vcpu, msr_info); 3998 msr_info->data = 0; 3999 break; 4000 case MSR_IA32_UCODE_REV: 4001 msr_info->data = vcpu->arch.microcode_version; 4002 break; 4003 case MSR_IA32_ARCH_CAPABILITIES: 4004 if (!msr_info->host_initiated && 4005 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4006 return 1; 4007 msr_info->data = vcpu->arch.arch_capabilities; 4008 break; 4009 case MSR_IA32_PERF_CAPABILITIES: 4010 if (!msr_info->host_initiated && 4011 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4012 return 1; 4013 msr_info->data = vcpu->arch.perf_capabilities; 4014 break; 4015 case MSR_IA32_POWER_CTL: 4016 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4017 break; 4018 case MSR_IA32_TSC: { 4019 /* 4020 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4021 * even when not intercepted. AMD manual doesn't explicitly 4022 * state this but appears to behave the same. 4023 * 4024 * On userspace reads and writes, however, we unconditionally 4025 * return L1's TSC value to ensure backwards-compatible 4026 * behavior for migration. 4027 */ 4028 u64 offset, ratio; 4029 4030 if (msr_info->host_initiated) { 4031 offset = vcpu->arch.l1_tsc_offset; 4032 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4033 } else { 4034 offset = vcpu->arch.tsc_offset; 4035 ratio = vcpu->arch.tsc_scaling_ratio; 4036 } 4037 4038 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4039 break; 4040 } 4041 case MSR_MTRRcap: 4042 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4043 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4044 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4045 case 0xcd: /* fsb frequency */ 4046 msr_info->data = 3; 4047 break; 4048 /* 4049 * MSR_EBC_FREQUENCY_ID 4050 * Conservative value valid for even the basic CPU models. 4051 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4052 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4053 * and 266MHz for model 3, or 4. Set Core Clock 4054 * Frequency to System Bus Frequency Ratio to 1 (bits 4055 * 31:24) even though these are only valid for CPU 4056 * models > 2, however guests may end up dividing or 4057 * multiplying by zero otherwise. 4058 */ 4059 case MSR_EBC_FREQUENCY_ID: 4060 msr_info->data = 1 << 24; 4061 break; 4062 case MSR_IA32_APICBASE: 4063 msr_info->data = kvm_get_apic_base(vcpu); 4064 break; 4065 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4066 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4067 case MSR_IA32_TSC_DEADLINE: 4068 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4069 break; 4070 case MSR_IA32_TSC_ADJUST: 4071 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4072 break; 4073 case MSR_IA32_MISC_ENABLE: 4074 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4075 break; 4076 case MSR_IA32_SMBASE: 4077 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4078 return 1; 4079 msr_info->data = vcpu->arch.smbase; 4080 break; 4081 case MSR_SMI_COUNT: 4082 msr_info->data = vcpu->arch.smi_count; 4083 break; 4084 case MSR_IA32_PERF_STATUS: 4085 /* TSC increment by tick */ 4086 msr_info->data = 1000ULL; 4087 /* CPU multiplier */ 4088 msr_info->data |= (((uint64_t)4ULL) << 40); 4089 break; 4090 case MSR_EFER: 4091 msr_info->data = vcpu->arch.efer; 4092 break; 4093 case MSR_KVM_WALL_CLOCK: 4094 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4095 return 1; 4096 4097 msr_info->data = vcpu->kvm->arch.wall_clock; 4098 break; 4099 case MSR_KVM_WALL_CLOCK_NEW: 4100 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4101 return 1; 4102 4103 msr_info->data = vcpu->kvm->arch.wall_clock; 4104 break; 4105 case MSR_KVM_SYSTEM_TIME: 4106 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4107 return 1; 4108 4109 msr_info->data = vcpu->arch.time; 4110 break; 4111 case MSR_KVM_SYSTEM_TIME_NEW: 4112 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4113 return 1; 4114 4115 msr_info->data = vcpu->arch.time; 4116 break; 4117 case MSR_KVM_ASYNC_PF_EN: 4118 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4119 return 1; 4120 4121 msr_info->data = vcpu->arch.apf.msr_en_val; 4122 break; 4123 case MSR_KVM_ASYNC_PF_INT: 4124 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4125 return 1; 4126 4127 msr_info->data = vcpu->arch.apf.msr_int_val; 4128 break; 4129 case MSR_KVM_ASYNC_PF_ACK: 4130 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4131 return 1; 4132 4133 msr_info->data = 0; 4134 break; 4135 case MSR_KVM_STEAL_TIME: 4136 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4137 return 1; 4138 4139 msr_info->data = vcpu->arch.st.msr_val; 4140 break; 4141 case MSR_KVM_PV_EOI_EN: 4142 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4143 return 1; 4144 4145 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4146 break; 4147 case MSR_KVM_POLL_CONTROL: 4148 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4149 return 1; 4150 4151 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4152 break; 4153 case MSR_IA32_P5_MC_ADDR: 4154 case MSR_IA32_P5_MC_TYPE: 4155 case MSR_IA32_MCG_CAP: 4156 case MSR_IA32_MCG_CTL: 4157 case MSR_IA32_MCG_STATUS: 4158 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4159 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4160 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4161 msr_info->host_initiated); 4162 case MSR_IA32_XSS: 4163 if (!msr_info->host_initiated && 4164 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4165 return 1; 4166 msr_info->data = vcpu->arch.ia32_xss; 4167 break; 4168 case MSR_K7_CLK_CTL: 4169 /* 4170 * Provide expected ramp-up count for K7. All other 4171 * are set to zero, indicating minimum divisors for 4172 * every field. 4173 * 4174 * This prevents guest kernels on AMD host with CPU 4175 * type 6, model 8 and higher from exploding due to 4176 * the rdmsr failing. 4177 */ 4178 msr_info->data = 0x20000000; 4179 break; 4180 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4181 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4182 case HV_X64_MSR_SYNDBG_OPTIONS: 4183 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4184 case HV_X64_MSR_CRASH_CTL: 4185 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4186 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4187 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4188 case HV_X64_MSR_TSC_EMULATION_STATUS: 4189 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4190 return kvm_hv_get_msr_common(vcpu, 4191 msr_info->index, &msr_info->data, 4192 msr_info->host_initiated); 4193 case MSR_IA32_BBL_CR_CTL3: 4194 /* This legacy MSR exists but isn't fully documented in current 4195 * silicon. It is however accessed by winxp in very narrow 4196 * scenarios where it sets bit #19, itself documented as 4197 * a "reserved" bit. Best effort attempt to source coherent 4198 * read data here should the balance of the register be 4199 * interpreted by the guest: 4200 * 4201 * L2 cache control register 3: 64GB range, 256KB size, 4202 * enabled, latency 0x1, configured 4203 */ 4204 msr_info->data = 0xbe702111; 4205 break; 4206 case MSR_AMD64_OSVW_ID_LENGTH: 4207 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4208 return 1; 4209 msr_info->data = vcpu->arch.osvw.length; 4210 break; 4211 case MSR_AMD64_OSVW_STATUS: 4212 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4213 return 1; 4214 msr_info->data = vcpu->arch.osvw.status; 4215 break; 4216 case MSR_PLATFORM_INFO: 4217 if (!msr_info->host_initiated && 4218 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4219 return 1; 4220 msr_info->data = vcpu->arch.msr_platform_info; 4221 break; 4222 case MSR_MISC_FEATURES_ENABLES: 4223 msr_info->data = vcpu->arch.msr_misc_features_enables; 4224 break; 4225 case MSR_K7_HWCR: 4226 msr_info->data = vcpu->arch.msr_hwcr; 4227 break; 4228 #ifdef CONFIG_X86_64 4229 case MSR_IA32_XFD: 4230 if (!msr_info->host_initiated && 4231 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4232 return 1; 4233 4234 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4235 break; 4236 case MSR_IA32_XFD_ERR: 4237 if (!msr_info->host_initiated && 4238 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4239 return 1; 4240 4241 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4242 break; 4243 #endif 4244 default: 4245 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4246 return kvm_pmu_get_msr(vcpu, msr_info); 4247 4248 /* 4249 * Userspace is allowed to read MSRs that KVM reports as 4250 * to-be-saved, even if an MSR isn't fully supported. 4251 */ 4252 if (msr_info->host_initiated && 4253 kvm_is_msr_to_save(msr_info->index)) { 4254 msr_info->data = 0; 4255 break; 4256 } 4257 4258 return KVM_MSR_RET_INVALID; 4259 } 4260 return 0; 4261 } 4262 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4263 4264 /* 4265 * Read or write a bunch of msrs. All parameters are kernel addresses. 4266 * 4267 * @return number of msrs set successfully. 4268 */ 4269 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4270 struct kvm_msr_entry *entries, 4271 int (*do_msr)(struct kvm_vcpu *vcpu, 4272 unsigned index, u64 *data)) 4273 { 4274 int i; 4275 4276 for (i = 0; i < msrs->nmsrs; ++i) 4277 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4278 break; 4279 4280 return i; 4281 } 4282 4283 /* 4284 * Read or write a bunch of msrs. Parameters are user addresses. 4285 * 4286 * @return number of msrs set successfully. 4287 */ 4288 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4289 int (*do_msr)(struct kvm_vcpu *vcpu, 4290 unsigned index, u64 *data), 4291 int writeback) 4292 { 4293 struct kvm_msrs msrs; 4294 struct kvm_msr_entry *entries; 4295 int r, n; 4296 unsigned size; 4297 4298 r = -EFAULT; 4299 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4300 goto out; 4301 4302 r = -E2BIG; 4303 if (msrs.nmsrs >= MAX_IO_MSRS) 4304 goto out; 4305 4306 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4307 entries = memdup_user(user_msrs->entries, size); 4308 if (IS_ERR(entries)) { 4309 r = PTR_ERR(entries); 4310 goto out; 4311 } 4312 4313 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4314 if (r < 0) 4315 goto out_free; 4316 4317 r = -EFAULT; 4318 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4319 goto out_free; 4320 4321 r = n; 4322 4323 out_free: 4324 kfree(entries); 4325 out: 4326 return r; 4327 } 4328 4329 static inline bool kvm_can_mwait_in_guest(void) 4330 { 4331 return boot_cpu_has(X86_FEATURE_MWAIT) && 4332 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4333 boot_cpu_has(X86_FEATURE_ARAT); 4334 } 4335 4336 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4337 struct kvm_cpuid2 __user *cpuid_arg) 4338 { 4339 struct kvm_cpuid2 cpuid; 4340 int r; 4341 4342 r = -EFAULT; 4343 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4344 return r; 4345 4346 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4347 if (r) 4348 return r; 4349 4350 r = -EFAULT; 4351 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4352 return r; 4353 4354 return 0; 4355 } 4356 4357 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4358 { 4359 int r = 0; 4360 4361 switch (ext) { 4362 case KVM_CAP_IRQCHIP: 4363 case KVM_CAP_HLT: 4364 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4365 case KVM_CAP_SET_TSS_ADDR: 4366 case KVM_CAP_EXT_CPUID: 4367 case KVM_CAP_EXT_EMUL_CPUID: 4368 case KVM_CAP_CLOCKSOURCE: 4369 case KVM_CAP_PIT: 4370 case KVM_CAP_NOP_IO_DELAY: 4371 case KVM_CAP_MP_STATE: 4372 case KVM_CAP_SYNC_MMU: 4373 case KVM_CAP_USER_NMI: 4374 case KVM_CAP_REINJECT_CONTROL: 4375 case KVM_CAP_IRQ_INJECT_STATUS: 4376 case KVM_CAP_IOEVENTFD: 4377 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4378 case KVM_CAP_PIT2: 4379 case KVM_CAP_PIT_STATE2: 4380 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4381 case KVM_CAP_VCPU_EVENTS: 4382 case KVM_CAP_HYPERV: 4383 case KVM_CAP_HYPERV_VAPIC: 4384 case KVM_CAP_HYPERV_SPIN: 4385 case KVM_CAP_HYPERV_SYNIC: 4386 case KVM_CAP_HYPERV_SYNIC2: 4387 case KVM_CAP_HYPERV_VP_INDEX: 4388 case KVM_CAP_HYPERV_EVENTFD: 4389 case KVM_CAP_HYPERV_TLBFLUSH: 4390 case KVM_CAP_HYPERV_SEND_IPI: 4391 case KVM_CAP_HYPERV_CPUID: 4392 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4393 case KVM_CAP_SYS_HYPERV_CPUID: 4394 case KVM_CAP_PCI_SEGMENT: 4395 case KVM_CAP_DEBUGREGS: 4396 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4397 case KVM_CAP_XSAVE: 4398 case KVM_CAP_ASYNC_PF: 4399 case KVM_CAP_ASYNC_PF_INT: 4400 case KVM_CAP_GET_TSC_KHZ: 4401 case KVM_CAP_KVMCLOCK_CTRL: 4402 case KVM_CAP_READONLY_MEM: 4403 case KVM_CAP_HYPERV_TIME: 4404 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4405 case KVM_CAP_TSC_DEADLINE_TIMER: 4406 case KVM_CAP_DISABLE_QUIRKS: 4407 case KVM_CAP_SET_BOOT_CPU_ID: 4408 case KVM_CAP_SPLIT_IRQCHIP: 4409 case KVM_CAP_IMMEDIATE_EXIT: 4410 case KVM_CAP_PMU_EVENT_FILTER: 4411 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4412 case KVM_CAP_GET_MSR_FEATURES: 4413 case KVM_CAP_MSR_PLATFORM_INFO: 4414 case KVM_CAP_EXCEPTION_PAYLOAD: 4415 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4416 case KVM_CAP_SET_GUEST_DEBUG: 4417 case KVM_CAP_LAST_CPU: 4418 case KVM_CAP_X86_USER_SPACE_MSR: 4419 case KVM_CAP_X86_MSR_FILTER: 4420 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4421 #ifdef CONFIG_X86_SGX_KVM 4422 case KVM_CAP_SGX_ATTRIBUTE: 4423 #endif 4424 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4425 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4426 case KVM_CAP_SREGS2: 4427 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4428 case KVM_CAP_VCPU_ATTRIBUTES: 4429 case KVM_CAP_SYS_ATTRIBUTES: 4430 case KVM_CAP_VAPIC: 4431 case KVM_CAP_ENABLE_CAP: 4432 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4433 r = 1; 4434 break; 4435 case KVM_CAP_EXIT_HYPERCALL: 4436 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4437 break; 4438 case KVM_CAP_SET_GUEST_DEBUG2: 4439 return KVM_GUESTDBG_VALID_MASK; 4440 #ifdef CONFIG_KVM_XEN 4441 case KVM_CAP_XEN_HVM: 4442 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4443 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4444 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4445 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4446 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4447 if (sched_info_on()) 4448 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4449 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4450 break; 4451 #endif 4452 case KVM_CAP_SYNC_REGS: 4453 r = KVM_SYNC_X86_VALID_FIELDS; 4454 break; 4455 case KVM_CAP_ADJUST_CLOCK: 4456 r = KVM_CLOCK_VALID_FLAGS; 4457 break; 4458 case KVM_CAP_X86_DISABLE_EXITS: 4459 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4460 KVM_X86_DISABLE_EXITS_CSTATE; 4461 if(kvm_can_mwait_in_guest()) 4462 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4463 break; 4464 case KVM_CAP_X86_SMM: 4465 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4466 break; 4467 4468 /* SMBASE is usually relocated above 1M on modern chipsets, 4469 * and SMM handlers might indeed rely on 4G segment limits, 4470 * so do not report SMM to be available if real mode is 4471 * emulated via vm86 mode. Still, do not go to great lengths 4472 * to avoid userspace's usage of the feature, because it is a 4473 * fringe case that is not enabled except via specific settings 4474 * of the module parameters. 4475 */ 4476 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4477 break; 4478 case KVM_CAP_NR_VCPUS: 4479 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4480 break; 4481 case KVM_CAP_MAX_VCPUS: 4482 r = KVM_MAX_VCPUS; 4483 break; 4484 case KVM_CAP_MAX_VCPU_ID: 4485 r = KVM_MAX_VCPU_IDS; 4486 break; 4487 case KVM_CAP_PV_MMU: /* obsolete */ 4488 r = 0; 4489 break; 4490 case KVM_CAP_MCE: 4491 r = KVM_MAX_MCE_BANKS; 4492 break; 4493 case KVM_CAP_XCRS: 4494 r = boot_cpu_has(X86_FEATURE_XSAVE); 4495 break; 4496 case KVM_CAP_TSC_CONTROL: 4497 case KVM_CAP_VM_TSC_CONTROL: 4498 r = kvm_caps.has_tsc_control; 4499 break; 4500 case KVM_CAP_X2APIC_API: 4501 r = KVM_X2APIC_API_VALID_FLAGS; 4502 break; 4503 case KVM_CAP_NESTED_STATE: 4504 r = kvm_x86_ops.nested_ops->get_state ? 4505 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4506 break; 4507 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4508 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4509 break; 4510 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4511 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4512 break; 4513 case KVM_CAP_SMALLER_MAXPHYADDR: 4514 r = (int) allow_smaller_maxphyaddr; 4515 break; 4516 case KVM_CAP_STEAL_TIME: 4517 r = sched_info_on(); 4518 break; 4519 case KVM_CAP_X86_BUS_LOCK_EXIT: 4520 if (kvm_caps.has_bus_lock_exit) 4521 r = KVM_BUS_LOCK_DETECTION_OFF | 4522 KVM_BUS_LOCK_DETECTION_EXIT; 4523 else 4524 r = 0; 4525 break; 4526 case KVM_CAP_XSAVE2: { 4527 u64 guest_perm = xstate_get_guest_group_perm(); 4528 4529 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4530 if (r < sizeof(struct kvm_xsave)) 4531 r = sizeof(struct kvm_xsave); 4532 break; 4533 } 4534 case KVM_CAP_PMU_CAPABILITY: 4535 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4536 break; 4537 case KVM_CAP_DISABLE_QUIRKS2: 4538 r = KVM_X86_VALID_QUIRKS; 4539 break; 4540 case KVM_CAP_X86_NOTIFY_VMEXIT: 4541 r = kvm_caps.has_notify_vmexit; 4542 break; 4543 default: 4544 break; 4545 } 4546 return r; 4547 } 4548 4549 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4550 { 4551 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4552 4553 if ((u64)(unsigned long)uaddr != attr->addr) 4554 return ERR_PTR_USR(-EFAULT); 4555 return uaddr; 4556 } 4557 4558 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4559 { 4560 u64 __user *uaddr = kvm_get_attr_addr(attr); 4561 4562 if (attr->group) 4563 return -ENXIO; 4564 4565 if (IS_ERR(uaddr)) 4566 return PTR_ERR(uaddr); 4567 4568 switch (attr->attr) { 4569 case KVM_X86_XCOMP_GUEST_SUPP: 4570 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4571 return -EFAULT; 4572 return 0; 4573 default: 4574 return -ENXIO; 4575 break; 4576 } 4577 } 4578 4579 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4580 { 4581 if (attr->group) 4582 return -ENXIO; 4583 4584 switch (attr->attr) { 4585 case KVM_X86_XCOMP_GUEST_SUPP: 4586 return 0; 4587 default: 4588 return -ENXIO; 4589 } 4590 } 4591 4592 long kvm_arch_dev_ioctl(struct file *filp, 4593 unsigned int ioctl, unsigned long arg) 4594 { 4595 void __user *argp = (void __user *)arg; 4596 long r; 4597 4598 switch (ioctl) { 4599 case KVM_GET_MSR_INDEX_LIST: { 4600 struct kvm_msr_list __user *user_msr_list = argp; 4601 struct kvm_msr_list msr_list; 4602 unsigned n; 4603 4604 r = -EFAULT; 4605 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4606 goto out; 4607 n = msr_list.nmsrs; 4608 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4609 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4610 goto out; 4611 r = -E2BIG; 4612 if (n < msr_list.nmsrs) 4613 goto out; 4614 r = -EFAULT; 4615 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4616 num_msrs_to_save * sizeof(u32))) 4617 goto out; 4618 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4619 &emulated_msrs, 4620 num_emulated_msrs * sizeof(u32))) 4621 goto out; 4622 r = 0; 4623 break; 4624 } 4625 case KVM_GET_SUPPORTED_CPUID: 4626 case KVM_GET_EMULATED_CPUID: { 4627 struct kvm_cpuid2 __user *cpuid_arg = argp; 4628 struct kvm_cpuid2 cpuid; 4629 4630 r = -EFAULT; 4631 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4632 goto out; 4633 4634 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4635 ioctl); 4636 if (r) 4637 goto out; 4638 4639 r = -EFAULT; 4640 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4641 goto out; 4642 r = 0; 4643 break; 4644 } 4645 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4646 r = -EFAULT; 4647 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4648 sizeof(kvm_caps.supported_mce_cap))) 4649 goto out; 4650 r = 0; 4651 break; 4652 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4653 struct kvm_msr_list __user *user_msr_list = argp; 4654 struct kvm_msr_list msr_list; 4655 unsigned int n; 4656 4657 r = -EFAULT; 4658 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4659 goto out; 4660 n = msr_list.nmsrs; 4661 msr_list.nmsrs = num_msr_based_features; 4662 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4663 goto out; 4664 r = -E2BIG; 4665 if (n < msr_list.nmsrs) 4666 goto out; 4667 r = -EFAULT; 4668 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4669 num_msr_based_features * sizeof(u32))) 4670 goto out; 4671 r = 0; 4672 break; 4673 } 4674 case KVM_GET_MSRS: 4675 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4676 break; 4677 case KVM_GET_SUPPORTED_HV_CPUID: 4678 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4679 break; 4680 case KVM_GET_DEVICE_ATTR: { 4681 struct kvm_device_attr attr; 4682 r = -EFAULT; 4683 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4684 break; 4685 r = kvm_x86_dev_get_attr(&attr); 4686 break; 4687 } 4688 case KVM_HAS_DEVICE_ATTR: { 4689 struct kvm_device_attr attr; 4690 r = -EFAULT; 4691 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4692 break; 4693 r = kvm_x86_dev_has_attr(&attr); 4694 break; 4695 } 4696 default: 4697 r = -EINVAL; 4698 break; 4699 } 4700 out: 4701 return r; 4702 } 4703 4704 static void wbinvd_ipi(void *garbage) 4705 { 4706 wbinvd(); 4707 } 4708 4709 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4710 { 4711 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4712 } 4713 4714 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4715 { 4716 /* Address WBINVD may be executed by guest */ 4717 if (need_emulate_wbinvd(vcpu)) { 4718 if (static_call(kvm_x86_has_wbinvd_exit)()) 4719 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4720 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4721 smp_call_function_single(vcpu->cpu, 4722 wbinvd_ipi, NULL, 1); 4723 } 4724 4725 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4726 4727 /* Save host pkru register if supported */ 4728 vcpu->arch.host_pkru = read_pkru(); 4729 4730 /* Apply any externally detected TSC adjustments (due to suspend) */ 4731 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4732 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4733 vcpu->arch.tsc_offset_adjustment = 0; 4734 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4735 } 4736 4737 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4738 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4739 rdtsc() - vcpu->arch.last_host_tsc; 4740 if (tsc_delta < 0) 4741 mark_tsc_unstable("KVM discovered backwards TSC"); 4742 4743 if (kvm_check_tsc_unstable()) { 4744 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4745 vcpu->arch.last_guest_tsc); 4746 kvm_vcpu_write_tsc_offset(vcpu, offset); 4747 vcpu->arch.tsc_catchup = 1; 4748 } 4749 4750 if (kvm_lapic_hv_timer_in_use(vcpu)) 4751 kvm_lapic_restart_hv_timer(vcpu); 4752 4753 /* 4754 * On a host with synchronized TSC, there is no need to update 4755 * kvmclock on vcpu->cpu migration 4756 */ 4757 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4758 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4759 if (vcpu->cpu != cpu) 4760 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4761 vcpu->cpu = cpu; 4762 } 4763 4764 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4765 } 4766 4767 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4768 { 4769 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4770 struct kvm_steal_time __user *st; 4771 struct kvm_memslots *slots; 4772 static const u8 preempted = KVM_VCPU_PREEMPTED; 4773 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4774 4775 /* 4776 * The vCPU can be marked preempted if and only if the VM-Exit was on 4777 * an instruction boundary and will not trigger guest emulation of any 4778 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4779 * when this is true, for example allowing the vCPU to be marked 4780 * preempted if and only if the VM-Exit was due to a host interrupt. 4781 */ 4782 if (!vcpu->arch.at_instruction_boundary) { 4783 vcpu->stat.preemption_other++; 4784 return; 4785 } 4786 4787 vcpu->stat.preemption_reported++; 4788 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4789 return; 4790 4791 if (vcpu->arch.st.preempted) 4792 return; 4793 4794 /* This happens on process exit */ 4795 if (unlikely(current->mm != vcpu->kvm->mm)) 4796 return; 4797 4798 slots = kvm_memslots(vcpu->kvm); 4799 4800 if (unlikely(slots->generation != ghc->generation || 4801 gpa != ghc->gpa || 4802 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4803 return; 4804 4805 st = (struct kvm_steal_time __user *)ghc->hva; 4806 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4807 4808 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4809 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4810 4811 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4812 } 4813 4814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4815 { 4816 int idx; 4817 4818 if (vcpu->preempted) { 4819 if (!vcpu->arch.guest_state_protected) 4820 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4821 4822 /* 4823 * Take the srcu lock as memslots will be accessed to check the gfn 4824 * cache generation against the memslots generation. 4825 */ 4826 idx = srcu_read_lock(&vcpu->kvm->srcu); 4827 if (kvm_xen_msr_enabled(vcpu->kvm)) 4828 kvm_xen_runstate_set_preempted(vcpu); 4829 else 4830 kvm_steal_time_set_preempted(vcpu); 4831 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4832 } 4833 4834 static_call(kvm_x86_vcpu_put)(vcpu); 4835 vcpu->arch.last_host_tsc = rdtsc(); 4836 } 4837 4838 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4839 struct kvm_lapic_state *s) 4840 { 4841 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4842 4843 return kvm_apic_get_state(vcpu, s); 4844 } 4845 4846 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4847 struct kvm_lapic_state *s) 4848 { 4849 int r; 4850 4851 r = kvm_apic_set_state(vcpu, s); 4852 if (r) 4853 return r; 4854 update_cr8_intercept(vcpu); 4855 4856 return 0; 4857 } 4858 4859 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4860 { 4861 /* 4862 * We can accept userspace's request for interrupt injection 4863 * as long as we have a place to store the interrupt number. 4864 * The actual injection will happen when the CPU is able to 4865 * deliver the interrupt. 4866 */ 4867 if (kvm_cpu_has_extint(vcpu)) 4868 return false; 4869 4870 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4871 return (!lapic_in_kernel(vcpu) || 4872 kvm_apic_accept_pic_intr(vcpu)); 4873 } 4874 4875 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4876 { 4877 /* 4878 * Do not cause an interrupt window exit if an exception 4879 * is pending or an event needs reinjection; userspace 4880 * might want to inject the interrupt manually using KVM_SET_REGS 4881 * or KVM_SET_SREGS. For that to work, we must be at an 4882 * instruction boundary and with no events half-injected. 4883 */ 4884 return (kvm_arch_interrupt_allowed(vcpu) && 4885 kvm_cpu_accept_dm_intr(vcpu) && 4886 !kvm_event_needs_reinjection(vcpu) && 4887 !kvm_is_exception_pending(vcpu)); 4888 } 4889 4890 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4891 struct kvm_interrupt *irq) 4892 { 4893 if (irq->irq >= KVM_NR_INTERRUPTS) 4894 return -EINVAL; 4895 4896 if (!irqchip_in_kernel(vcpu->kvm)) { 4897 kvm_queue_interrupt(vcpu, irq->irq, false); 4898 kvm_make_request(KVM_REQ_EVENT, vcpu); 4899 return 0; 4900 } 4901 4902 /* 4903 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4904 * fail for in-kernel 8259. 4905 */ 4906 if (pic_in_kernel(vcpu->kvm)) 4907 return -ENXIO; 4908 4909 if (vcpu->arch.pending_external_vector != -1) 4910 return -EEXIST; 4911 4912 vcpu->arch.pending_external_vector = irq->irq; 4913 kvm_make_request(KVM_REQ_EVENT, vcpu); 4914 return 0; 4915 } 4916 4917 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4918 { 4919 kvm_inject_nmi(vcpu); 4920 4921 return 0; 4922 } 4923 4924 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4925 struct kvm_tpr_access_ctl *tac) 4926 { 4927 if (tac->flags) 4928 return -EINVAL; 4929 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4930 return 0; 4931 } 4932 4933 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4934 u64 mcg_cap) 4935 { 4936 int r; 4937 unsigned bank_num = mcg_cap & 0xff, bank; 4938 4939 r = -EINVAL; 4940 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4941 goto out; 4942 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4943 goto out; 4944 r = 0; 4945 vcpu->arch.mcg_cap = mcg_cap; 4946 /* Init IA32_MCG_CTL to all 1s */ 4947 if (mcg_cap & MCG_CTL_P) 4948 vcpu->arch.mcg_ctl = ~(u64)0; 4949 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4950 for (bank = 0; bank < bank_num; bank++) { 4951 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4952 if (mcg_cap & MCG_CMCI_P) 4953 vcpu->arch.mci_ctl2_banks[bank] = 0; 4954 } 4955 4956 kvm_apic_after_set_mcg_cap(vcpu); 4957 4958 static_call(kvm_x86_setup_mce)(vcpu); 4959 out: 4960 return r; 4961 } 4962 4963 /* 4964 * Validate this is an UCNA (uncorrectable no action) error by checking the 4965 * MCG_STATUS and MCi_STATUS registers: 4966 * - none of the bits for Machine Check Exceptions are set 4967 * - both the VAL (valid) and UC (uncorrectable) bits are set 4968 * MCI_STATUS_PCC - Processor Context Corrupted 4969 * MCI_STATUS_S - Signaled as a Machine Check Exception 4970 * MCI_STATUS_AR - Software recoverable Action Required 4971 */ 4972 static bool is_ucna(struct kvm_x86_mce *mce) 4973 { 4974 return !mce->mcg_status && 4975 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4976 (mce->status & MCI_STATUS_VAL) && 4977 (mce->status & MCI_STATUS_UC); 4978 } 4979 4980 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4981 { 4982 u64 mcg_cap = vcpu->arch.mcg_cap; 4983 4984 banks[1] = mce->status; 4985 banks[2] = mce->addr; 4986 banks[3] = mce->misc; 4987 vcpu->arch.mcg_status = mce->mcg_status; 4988 4989 if (!(mcg_cap & MCG_CMCI_P) || 4990 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4991 return 0; 4992 4993 if (lapic_in_kernel(vcpu)) 4994 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4995 4996 return 0; 4997 } 4998 4999 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5000 struct kvm_x86_mce *mce) 5001 { 5002 u64 mcg_cap = vcpu->arch.mcg_cap; 5003 unsigned bank_num = mcg_cap & 0xff; 5004 u64 *banks = vcpu->arch.mce_banks; 5005 5006 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5007 return -EINVAL; 5008 5009 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5010 5011 if (is_ucna(mce)) 5012 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5013 5014 /* 5015 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5016 * reporting is disabled 5017 */ 5018 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5019 vcpu->arch.mcg_ctl != ~(u64)0) 5020 return 0; 5021 /* 5022 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5023 * reporting is disabled for the bank 5024 */ 5025 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5026 return 0; 5027 if (mce->status & MCI_STATUS_UC) { 5028 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5029 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5030 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5031 return 0; 5032 } 5033 if (banks[1] & MCI_STATUS_VAL) 5034 mce->status |= MCI_STATUS_OVER; 5035 banks[2] = mce->addr; 5036 banks[3] = mce->misc; 5037 vcpu->arch.mcg_status = mce->mcg_status; 5038 banks[1] = mce->status; 5039 kvm_queue_exception(vcpu, MC_VECTOR); 5040 } else if (!(banks[1] & MCI_STATUS_VAL) 5041 || !(banks[1] & MCI_STATUS_UC)) { 5042 if (banks[1] & MCI_STATUS_VAL) 5043 mce->status |= MCI_STATUS_OVER; 5044 banks[2] = mce->addr; 5045 banks[3] = mce->misc; 5046 banks[1] = mce->status; 5047 } else 5048 banks[1] |= MCI_STATUS_OVER; 5049 return 0; 5050 } 5051 5052 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5053 struct kvm_vcpu_events *events) 5054 { 5055 struct kvm_queued_exception *ex; 5056 5057 process_nmi(vcpu); 5058 5059 #ifdef CONFIG_KVM_SMM 5060 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5061 process_smi(vcpu); 5062 #endif 5063 5064 /* 5065 * KVM's ABI only allows for one exception to be migrated. Luckily, 5066 * the only time there can be two queued exceptions is if there's a 5067 * non-exiting _injected_ exception, and a pending exiting exception. 5068 * In that case, ignore the VM-Exiting exception as it's an extension 5069 * of the injected exception. 5070 */ 5071 if (vcpu->arch.exception_vmexit.pending && 5072 !vcpu->arch.exception.pending && 5073 !vcpu->arch.exception.injected) 5074 ex = &vcpu->arch.exception_vmexit; 5075 else 5076 ex = &vcpu->arch.exception; 5077 5078 /* 5079 * In guest mode, payload delivery should be deferred if the exception 5080 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5081 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5082 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5083 * propagate the payload and so it cannot be safely deferred. Deliver 5084 * the payload if the capability hasn't been requested. 5085 */ 5086 if (!vcpu->kvm->arch.exception_payload_enabled && 5087 ex->pending && ex->has_payload) 5088 kvm_deliver_exception_payload(vcpu, ex); 5089 5090 memset(events, 0, sizeof(*events)); 5091 5092 /* 5093 * The API doesn't provide the instruction length for software 5094 * exceptions, so don't report them. As long as the guest RIP 5095 * isn't advanced, we should expect to encounter the exception 5096 * again. 5097 */ 5098 if (!kvm_exception_is_soft(ex->vector)) { 5099 events->exception.injected = ex->injected; 5100 events->exception.pending = ex->pending; 5101 /* 5102 * For ABI compatibility, deliberately conflate 5103 * pending and injected exceptions when 5104 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5105 */ 5106 if (!vcpu->kvm->arch.exception_payload_enabled) 5107 events->exception.injected |= ex->pending; 5108 } 5109 events->exception.nr = ex->vector; 5110 events->exception.has_error_code = ex->has_error_code; 5111 events->exception.error_code = ex->error_code; 5112 events->exception_has_payload = ex->has_payload; 5113 events->exception_payload = ex->payload; 5114 5115 events->interrupt.injected = 5116 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5117 events->interrupt.nr = vcpu->arch.interrupt.nr; 5118 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5119 5120 events->nmi.injected = vcpu->arch.nmi_injected; 5121 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5122 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5123 5124 /* events->sipi_vector is never valid when reporting to user space */ 5125 5126 #ifdef CONFIG_KVM_SMM 5127 events->smi.smm = is_smm(vcpu); 5128 events->smi.pending = vcpu->arch.smi_pending; 5129 events->smi.smm_inside_nmi = 5130 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5131 #endif 5132 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5133 5134 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5135 | KVM_VCPUEVENT_VALID_SHADOW 5136 | KVM_VCPUEVENT_VALID_SMM); 5137 if (vcpu->kvm->arch.exception_payload_enabled) 5138 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5139 if (vcpu->kvm->arch.triple_fault_event) { 5140 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5141 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5142 } 5143 } 5144 5145 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5146 struct kvm_vcpu_events *events) 5147 { 5148 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5149 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5150 | KVM_VCPUEVENT_VALID_SHADOW 5151 | KVM_VCPUEVENT_VALID_SMM 5152 | KVM_VCPUEVENT_VALID_PAYLOAD 5153 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5154 return -EINVAL; 5155 5156 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5157 if (!vcpu->kvm->arch.exception_payload_enabled) 5158 return -EINVAL; 5159 if (events->exception.pending) 5160 events->exception.injected = 0; 5161 else 5162 events->exception_has_payload = 0; 5163 } else { 5164 events->exception.pending = 0; 5165 events->exception_has_payload = 0; 5166 } 5167 5168 if ((events->exception.injected || events->exception.pending) && 5169 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5170 return -EINVAL; 5171 5172 /* INITs are latched while in SMM */ 5173 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5174 (events->smi.smm || events->smi.pending) && 5175 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5176 return -EINVAL; 5177 5178 process_nmi(vcpu); 5179 5180 /* 5181 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5182 * morph the exception to a VM-Exit if appropriate. Do this only for 5183 * pending exceptions, already-injected exceptions are not subject to 5184 * intercpetion. Note, userspace that conflates pending and injected 5185 * is hosed, and will incorrectly convert an injected exception into a 5186 * pending exception, which in turn may cause a spurious VM-Exit. 5187 */ 5188 vcpu->arch.exception_from_userspace = events->exception.pending; 5189 5190 vcpu->arch.exception_vmexit.pending = false; 5191 5192 vcpu->arch.exception.injected = events->exception.injected; 5193 vcpu->arch.exception.pending = events->exception.pending; 5194 vcpu->arch.exception.vector = events->exception.nr; 5195 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5196 vcpu->arch.exception.error_code = events->exception.error_code; 5197 vcpu->arch.exception.has_payload = events->exception_has_payload; 5198 vcpu->arch.exception.payload = events->exception_payload; 5199 5200 vcpu->arch.interrupt.injected = events->interrupt.injected; 5201 vcpu->arch.interrupt.nr = events->interrupt.nr; 5202 vcpu->arch.interrupt.soft = events->interrupt.soft; 5203 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5204 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5205 events->interrupt.shadow); 5206 5207 vcpu->arch.nmi_injected = events->nmi.injected; 5208 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5209 vcpu->arch.nmi_pending = events->nmi.pending; 5210 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5211 5212 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5213 lapic_in_kernel(vcpu)) 5214 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5215 5216 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5217 #ifdef CONFIG_KVM_SMM 5218 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5219 kvm_leave_nested(vcpu); 5220 kvm_smm_changed(vcpu, events->smi.smm); 5221 } 5222 5223 vcpu->arch.smi_pending = events->smi.pending; 5224 5225 if (events->smi.smm) { 5226 if (events->smi.smm_inside_nmi) 5227 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5228 else 5229 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5230 } 5231 5232 #else 5233 if (events->smi.smm || events->smi.pending || 5234 events->smi.smm_inside_nmi) 5235 return -EINVAL; 5236 #endif 5237 5238 if (lapic_in_kernel(vcpu)) { 5239 if (events->smi.latched_init) 5240 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5241 else 5242 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5243 } 5244 } 5245 5246 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5247 if (!vcpu->kvm->arch.triple_fault_event) 5248 return -EINVAL; 5249 if (events->triple_fault.pending) 5250 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5251 else 5252 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5253 } 5254 5255 kvm_make_request(KVM_REQ_EVENT, vcpu); 5256 5257 return 0; 5258 } 5259 5260 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5261 struct kvm_debugregs *dbgregs) 5262 { 5263 unsigned long val; 5264 5265 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5266 kvm_get_dr(vcpu, 6, &val); 5267 dbgregs->dr6 = val; 5268 dbgregs->dr7 = vcpu->arch.dr7; 5269 dbgregs->flags = 0; 5270 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5271 } 5272 5273 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5274 struct kvm_debugregs *dbgregs) 5275 { 5276 if (dbgregs->flags) 5277 return -EINVAL; 5278 5279 if (!kvm_dr6_valid(dbgregs->dr6)) 5280 return -EINVAL; 5281 if (!kvm_dr7_valid(dbgregs->dr7)) 5282 return -EINVAL; 5283 5284 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5285 kvm_update_dr0123(vcpu); 5286 vcpu->arch.dr6 = dbgregs->dr6; 5287 vcpu->arch.dr7 = dbgregs->dr7; 5288 kvm_update_dr7(vcpu); 5289 5290 return 0; 5291 } 5292 5293 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5294 struct kvm_xsave *guest_xsave) 5295 { 5296 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5297 return; 5298 5299 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5300 guest_xsave->region, 5301 sizeof(guest_xsave->region), 5302 vcpu->arch.pkru); 5303 } 5304 5305 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5306 u8 *state, unsigned int size) 5307 { 5308 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5309 return; 5310 5311 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5312 state, size, vcpu->arch.pkru); 5313 } 5314 5315 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5316 struct kvm_xsave *guest_xsave) 5317 { 5318 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5319 return 0; 5320 5321 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5322 guest_xsave->region, 5323 kvm_caps.supported_xcr0, 5324 &vcpu->arch.pkru); 5325 } 5326 5327 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5328 struct kvm_xcrs *guest_xcrs) 5329 { 5330 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5331 guest_xcrs->nr_xcrs = 0; 5332 return; 5333 } 5334 5335 guest_xcrs->nr_xcrs = 1; 5336 guest_xcrs->flags = 0; 5337 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5338 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5339 } 5340 5341 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5342 struct kvm_xcrs *guest_xcrs) 5343 { 5344 int i, r = 0; 5345 5346 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5347 return -EINVAL; 5348 5349 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5350 return -EINVAL; 5351 5352 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5353 /* Only support XCR0 currently */ 5354 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5355 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5356 guest_xcrs->xcrs[i].value); 5357 break; 5358 } 5359 if (r) 5360 r = -EINVAL; 5361 return r; 5362 } 5363 5364 /* 5365 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5366 * stopped by the hypervisor. This function will be called from the host only. 5367 * EINVAL is returned when the host attempts to set the flag for a guest that 5368 * does not support pv clocks. 5369 */ 5370 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5371 { 5372 if (!vcpu->arch.pv_time.active) 5373 return -EINVAL; 5374 vcpu->arch.pvclock_set_guest_stopped_request = true; 5375 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5376 return 0; 5377 } 5378 5379 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5380 struct kvm_device_attr *attr) 5381 { 5382 int r; 5383 5384 switch (attr->attr) { 5385 case KVM_VCPU_TSC_OFFSET: 5386 r = 0; 5387 break; 5388 default: 5389 r = -ENXIO; 5390 } 5391 5392 return r; 5393 } 5394 5395 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5396 struct kvm_device_attr *attr) 5397 { 5398 u64 __user *uaddr = kvm_get_attr_addr(attr); 5399 int r; 5400 5401 if (IS_ERR(uaddr)) 5402 return PTR_ERR(uaddr); 5403 5404 switch (attr->attr) { 5405 case KVM_VCPU_TSC_OFFSET: 5406 r = -EFAULT; 5407 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5408 break; 5409 r = 0; 5410 break; 5411 default: 5412 r = -ENXIO; 5413 } 5414 5415 return r; 5416 } 5417 5418 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5419 struct kvm_device_attr *attr) 5420 { 5421 u64 __user *uaddr = kvm_get_attr_addr(attr); 5422 struct kvm *kvm = vcpu->kvm; 5423 int r; 5424 5425 if (IS_ERR(uaddr)) 5426 return PTR_ERR(uaddr); 5427 5428 switch (attr->attr) { 5429 case KVM_VCPU_TSC_OFFSET: { 5430 u64 offset, tsc, ns; 5431 unsigned long flags; 5432 bool matched; 5433 5434 r = -EFAULT; 5435 if (get_user(offset, uaddr)) 5436 break; 5437 5438 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5439 5440 matched = (vcpu->arch.virtual_tsc_khz && 5441 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5442 kvm->arch.last_tsc_offset == offset); 5443 5444 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5445 ns = get_kvmclock_base_ns(); 5446 5447 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5448 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5449 5450 r = 0; 5451 break; 5452 } 5453 default: 5454 r = -ENXIO; 5455 } 5456 5457 return r; 5458 } 5459 5460 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5461 unsigned int ioctl, 5462 void __user *argp) 5463 { 5464 struct kvm_device_attr attr; 5465 int r; 5466 5467 if (copy_from_user(&attr, argp, sizeof(attr))) 5468 return -EFAULT; 5469 5470 if (attr.group != KVM_VCPU_TSC_CTRL) 5471 return -ENXIO; 5472 5473 switch (ioctl) { 5474 case KVM_HAS_DEVICE_ATTR: 5475 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5476 break; 5477 case KVM_GET_DEVICE_ATTR: 5478 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5479 break; 5480 case KVM_SET_DEVICE_ATTR: 5481 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5482 break; 5483 } 5484 5485 return r; 5486 } 5487 5488 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5489 struct kvm_enable_cap *cap) 5490 { 5491 int r; 5492 uint16_t vmcs_version; 5493 void __user *user_ptr; 5494 5495 if (cap->flags) 5496 return -EINVAL; 5497 5498 switch (cap->cap) { 5499 case KVM_CAP_HYPERV_SYNIC2: 5500 if (cap->args[0]) 5501 return -EINVAL; 5502 fallthrough; 5503 5504 case KVM_CAP_HYPERV_SYNIC: 5505 if (!irqchip_in_kernel(vcpu->kvm)) 5506 return -EINVAL; 5507 return kvm_hv_activate_synic(vcpu, cap->cap == 5508 KVM_CAP_HYPERV_SYNIC2); 5509 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5510 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5511 return -ENOTTY; 5512 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5513 if (!r) { 5514 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5515 if (copy_to_user(user_ptr, &vmcs_version, 5516 sizeof(vmcs_version))) 5517 r = -EFAULT; 5518 } 5519 return r; 5520 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5521 if (!kvm_x86_ops.enable_l2_tlb_flush) 5522 return -ENOTTY; 5523 5524 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5525 5526 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5527 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5528 5529 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5530 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5531 if (vcpu->arch.pv_cpuid.enforce) 5532 kvm_update_pv_runtime(vcpu); 5533 5534 return 0; 5535 default: 5536 return -EINVAL; 5537 } 5538 } 5539 5540 long kvm_arch_vcpu_ioctl(struct file *filp, 5541 unsigned int ioctl, unsigned long arg) 5542 { 5543 struct kvm_vcpu *vcpu = filp->private_data; 5544 void __user *argp = (void __user *)arg; 5545 int r; 5546 union { 5547 struct kvm_sregs2 *sregs2; 5548 struct kvm_lapic_state *lapic; 5549 struct kvm_xsave *xsave; 5550 struct kvm_xcrs *xcrs; 5551 void *buffer; 5552 } u; 5553 5554 vcpu_load(vcpu); 5555 5556 u.buffer = NULL; 5557 switch (ioctl) { 5558 case KVM_GET_LAPIC: { 5559 r = -EINVAL; 5560 if (!lapic_in_kernel(vcpu)) 5561 goto out; 5562 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5563 GFP_KERNEL_ACCOUNT); 5564 5565 r = -ENOMEM; 5566 if (!u.lapic) 5567 goto out; 5568 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5569 if (r) 5570 goto out; 5571 r = -EFAULT; 5572 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5573 goto out; 5574 r = 0; 5575 break; 5576 } 5577 case KVM_SET_LAPIC: { 5578 r = -EINVAL; 5579 if (!lapic_in_kernel(vcpu)) 5580 goto out; 5581 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5582 if (IS_ERR(u.lapic)) { 5583 r = PTR_ERR(u.lapic); 5584 goto out_nofree; 5585 } 5586 5587 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5588 break; 5589 } 5590 case KVM_INTERRUPT: { 5591 struct kvm_interrupt irq; 5592 5593 r = -EFAULT; 5594 if (copy_from_user(&irq, argp, sizeof(irq))) 5595 goto out; 5596 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5597 break; 5598 } 5599 case KVM_NMI: { 5600 r = kvm_vcpu_ioctl_nmi(vcpu); 5601 break; 5602 } 5603 case KVM_SMI: { 5604 r = kvm_inject_smi(vcpu); 5605 break; 5606 } 5607 case KVM_SET_CPUID: { 5608 struct kvm_cpuid __user *cpuid_arg = argp; 5609 struct kvm_cpuid cpuid; 5610 5611 r = -EFAULT; 5612 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5613 goto out; 5614 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5615 break; 5616 } 5617 case KVM_SET_CPUID2: { 5618 struct kvm_cpuid2 __user *cpuid_arg = argp; 5619 struct kvm_cpuid2 cpuid; 5620 5621 r = -EFAULT; 5622 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5623 goto out; 5624 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5625 cpuid_arg->entries); 5626 break; 5627 } 5628 case KVM_GET_CPUID2: { 5629 struct kvm_cpuid2 __user *cpuid_arg = argp; 5630 struct kvm_cpuid2 cpuid; 5631 5632 r = -EFAULT; 5633 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5634 goto out; 5635 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5636 cpuid_arg->entries); 5637 if (r) 5638 goto out; 5639 r = -EFAULT; 5640 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5641 goto out; 5642 r = 0; 5643 break; 5644 } 5645 case KVM_GET_MSRS: { 5646 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5647 r = msr_io(vcpu, argp, do_get_msr, 1); 5648 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5649 break; 5650 } 5651 case KVM_SET_MSRS: { 5652 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5653 r = msr_io(vcpu, argp, do_set_msr, 0); 5654 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5655 break; 5656 } 5657 case KVM_TPR_ACCESS_REPORTING: { 5658 struct kvm_tpr_access_ctl tac; 5659 5660 r = -EFAULT; 5661 if (copy_from_user(&tac, argp, sizeof(tac))) 5662 goto out; 5663 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5664 if (r) 5665 goto out; 5666 r = -EFAULT; 5667 if (copy_to_user(argp, &tac, sizeof(tac))) 5668 goto out; 5669 r = 0; 5670 break; 5671 }; 5672 case KVM_SET_VAPIC_ADDR: { 5673 struct kvm_vapic_addr va; 5674 int idx; 5675 5676 r = -EINVAL; 5677 if (!lapic_in_kernel(vcpu)) 5678 goto out; 5679 r = -EFAULT; 5680 if (copy_from_user(&va, argp, sizeof(va))) 5681 goto out; 5682 idx = srcu_read_lock(&vcpu->kvm->srcu); 5683 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5684 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5685 break; 5686 } 5687 case KVM_X86_SETUP_MCE: { 5688 u64 mcg_cap; 5689 5690 r = -EFAULT; 5691 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5692 goto out; 5693 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5694 break; 5695 } 5696 case KVM_X86_SET_MCE: { 5697 struct kvm_x86_mce mce; 5698 5699 r = -EFAULT; 5700 if (copy_from_user(&mce, argp, sizeof(mce))) 5701 goto out; 5702 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5703 break; 5704 } 5705 case KVM_GET_VCPU_EVENTS: { 5706 struct kvm_vcpu_events events; 5707 5708 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5709 5710 r = -EFAULT; 5711 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5712 break; 5713 r = 0; 5714 break; 5715 } 5716 case KVM_SET_VCPU_EVENTS: { 5717 struct kvm_vcpu_events events; 5718 5719 r = -EFAULT; 5720 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5721 break; 5722 5723 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5724 break; 5725 } 5726 case KVM_GET_DEBUGREGS: { 5727 struct kvm_debugregs dbgregs; 5728 5729 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5730 5731 r = -EFAULT; 5732 if (copy_to_user(argp, &dbgregs, 5733 sizeof(struct kvm_debugregs))) 5734 break; 5735 r = 0; 5736 break; 5737 } 5738 case KVM_SET_DEBUGREGS: { 5739 struct kvm_debugregs dbgregs; 5740 5741 r = -EFAULT; 5742 if (copy_from_user(&dbgregs, argp, 5743 sizeof(struct kvm_debugregs))) 5744 break; 5745 5746 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5747 break; 5748 } 5749 case KVM_GET_XSAVE: { 5750 r = -EINVAL; 5751 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5752 break; 5753 5754 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5755 r = -ENOMEM; 5756 if (!u.xsave) 5757 break; 5758 5759 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5760 5761 r = -EFAULT; 5762 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5763 break; 5764 r = 0; 5765 break; 5766 } 5767 case KVM_SET_XSAVE: { 5768 int size = vcpu->arch.guest_fpu.uabi_size; 5769 5770 u.xsave = memdup_user(argp, size); 5771 if (IS_ERR(u.xsave)) { 5772 r = PTR_ERR(u.xsave); 5773 goto out_nofree; 5774 } 5775 5776 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5777 break; 5778 } 5779 5780 case KVM_GET_XSAVE2: { 5781 int size = vcpu->arch.guest_fpu.uabi_size; 5782 5783 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5784 r = -ENOMEM; 5785 if (!u.xsave) 5786 break; 5787 5788 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5789 5790 r = -EFAULT; 5791 if (copy_to_user(argp, u.xsave, size)) 5792 break; 5793 5794 r = 0; 5795 break; 5796 } 5797 5798 case KVM_GET_XCRS: { 5799 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5800 r = -ENOMEM; 5801 if (!u.xcrs) 5802 break; 5803 5804 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5805 5806 r = -EFAULT; 5807 if (copy_to_user(argp, u.xcrs, 5808 sizeof(struct kvm_xcrs))) 5809 break; 5810 r = 0; 5811 break; 5812 } 5813 case KVM_SET_XCRS: { 5814 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5815 if (IS_ERR(u.xcrs)) { 5816 r = PTR_ERR(u.xcrs); 5817 goto out_nofree; 5818 } 5819 5820 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5821 break; 5822 } 5823 case KVM_SET_TSC_KHZ: { 5824 u32 user_tsc_khz; 5825 5826 r = -EINVAL; 5827 user_tsc_khz = (u32)arg; 5828 5829 if (kvm_caps.has_tsc_control && 5830 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5831 goto out; 5832 5833 if (user_tsc_khz == 0) 5834 user_tsc_khz = tsc_khz; 5835 5836 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5837 r = 0; 5838 5839 goto out; 5840 } 5841 case KVM_GET_TSC_KHZ: { 5842 r = vcpu->arch.virtual_tsc_khz; 5843 goto out; 5844 } 5845 case KVM_KVMCLOCK_CTRL: { 5846 r = kvm_set_guest_paused(vcpu); 5847 goto out; 5848 } 5849 case KVM_ENABLE_CAP: { 5850 struct kvm_enable_cap cap; 5851 5852 r = -EFAULT; 5853 if (copy_from_user(&cap, argp, sizeof(cap))) 5854 goto out; 5855 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5856 break; 5857 } 5858 case KVM_GET_NESTED_STATE: { 5859 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5860 u32 user_data_size; 5861 5862 r = -EINVAL; 5863 if (!kvm_x86_ops.nested_ops->get_state) 5864 break; 5865 5866 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5867 r = -EFAULT; 5868 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5869 break; 5870 5871 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5872 user_data_size); 5873 if (r < 0) 5874 break; 5875 5876 if (r > user_data_size) { 5877 if (put_user(r, &user_kvm_nested_state->size)) 5878 r = -EFAULT; 5879 else 5880 r = -E2BIG; 5881 break; 5882 } 5883 5884 r = 0; 5885 break; 5886 } 5887 case KVM_SET_NESTED_STATE: { 5888 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5889 struct kvm_nested_state kvm_state; 5890 int idx; 5891 5892 r = -EINVAL; 5893 if (!kvm_x86_ops.nested_ops->set_state) 5894 break; 5895 5896 r = -EFAULT; 5897 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5898 break; 5899 5900 r = -EINVAL; 5901 if (kvm_state.size < sizeof(kvm_state)) 5902 break; 5903 5904 if (kvm_state.flags & 5905 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5906 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5907 | KVM_STATE_NESTED_GIF_SET)) 5908 break; 5909 5910 /* nested_run_pending implies guest_mode. */ 5911 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5912 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5913 break; 5914 5915 idx = srcu_read_lock(&vcpu->kvm->srcu); 5916 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5917 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5918 break; 5919 } 5920 case KVM_GET_SUPPORTED_HV_CPUID: 5921 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5922 break; 5923 #ifdef CONFIG_KVM_XEN 5924 case KVM_XEN_VCPU_GET_ATTR: { 5925 struct kvm_xen_vcpu_attr xva; 5926 5927 r = -EFAULT; 5928 if (copy_from_user(&xva, argp, sizeof(xva))) 5929 goto out; 5930 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5931 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5932 r = -EFAULT; 5933 break; 5934 } 5935 case KVM_XEN_VCPU_SET_ATTR: { 5936 struct kvm_xen_vcpu_attr xva; 5937 5938 r = -EFAULT; 5939 if (copy_from_user(&xva, argp, sizeof(xva))) 5940 goto out; 5941 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5942 break; 5943 } 5944 #endif 5945 case KVM_GET_SREGS2: { 5946 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5947 r = -ENOMEM; 5948 if (!u.sregs2) 5949 goto out; 5950 __get_sregs2(vcpu, u.sregs2); 5951 r = -EFAULT; 5952 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5953 goto out; 5954 r = 0; 5955 break; 5956 } 5957 case KVM_SET_SREGS2: { 5958 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5959 if (IS_ERR(u.sregs2)) { 5960 r = PTR_ERR(u.sregs2); 5961 u.sregs2 = NULL; 5962 goto out; 5963 } 5964 r = __set_sregs2(vcpu, u.sregs2); 5965 break; 5966 } 5967 case KVM_HAS_DEVICE_ATTR: 5968 case KVM_GET_DEVICE_ATTR: 5969 case KVM_SET_DEVICE_ATTR: 5970 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5971 break; 5972 default: 5973 r = -EINVAL; 5974 } 5975 out: 5976 kfree(u.buffer); 5977 out_nofree: 5978 vcpu_put(vcpu); 5979 return r; 5980 } 5981 5982 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5983 { 5984 return VM_FAULT_SIGBUS; 5985 } 5986 5987 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5988 { 5989 int ret; 5990 5991 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5992 return -EINVAL; 5993 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5994 return ret; 5995 } 5996 5997 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5998 u64 ident_addr) 5999 { 6000 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6001 } 6002 6003 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6004 unsigned long kvm_nr_mmu_pages) 6005 { 6006 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6007 return -EINVAL; 6008 6009 mutex_lock(&kvm->slots_lock); 6010 6011 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6012 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6013 6014 mutex_unlock(&kvm->slots_lock); 6015 return 0; 6016 } 6017 6018 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6019 { 6020 return kvm->arch.n_max_mmu_pages; 6021 } 6022 6023 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6024 { 6025 struct kvm_pic *pic = kvm->arch.vpic; 6026 int r; 6027 6028 r = 0; 6029 switch (chip->chip_id) { 6030 case KVM_IRQCHIP_PIC_MASTER: 6031 memcpy(&chip->chip.pic, &pic->pics[0], 6032 sizeof(struct kvm_pic_state)); 6033 break; 6034 case KVM_IRQCHIP_PIC_SLAVE: 6035 memcpy(&chip->chip.pic, &pic->pics[1], 6036 sizeof(struct kvm_pic_state)); 6037 break; 6038 case KVM_IRQCHIP_IOAPIC: 6039 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6040 break; 6041 default: 6042 r = -EINVAL; 6043 break; 6044 } 6045 return r; 6046 } 6047 6048 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6049 { 6050 struct kvm_pic *pic = kvm->arch.vpic; 6051 int r; 6052 6053 r = 0; 6054 switch (chip->chip_id) { 6055 case KVM_IRQCHIP_PIC_MASTER: 6056 spin_lock(&pic->lock); 6057 memcpy(&pic->pics[0], &chip->chip.pic, 6058 sizeof(struct kvm_pic_state)); 6059 spin_unlock(&pic->lock); 6060 break; 6061 case KVM_IRQCHIP_PIC_SLAVE: 6062 spin_lock(&pic->lock); 6063 memcpy(&pic->pics[1], &chip->chip.pic, 6064 sizeof(struct kvm_pic_state)); 6065 spin_unlock(&pic->lock); 6066 break; 6067 case KVM_IRQCHIP_IOAPIC: 6068 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6069 break; 6070 default: 6071 r = -EINVAL; 6072 break; 6073 } 6074 kvm_pic_update_irq(pic); 6075 return r; 6076 } 6077 6078 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6079 { 6080 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6081 6082 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6083 6084 mutex_lock(&kps->lock); 6085 memcpy(ps, &kps->channels, sizeof(*ps)); 6086 mutex_unlock(&kps->lock); 6087 return 0; 6088 } 6089 6090 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6091 { 6092 int i; 6093 struct kvm_pit *pit = kvm->arch.vpit; 6094 6095 mutex_lock(&pit->pit_state.lock); 6096 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6097 for (i = 0; i < 3; i++) 6098 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6099 mutex_unlock(&pit->pit_state.lock); 6100 return 0; 6101 } 6102 6103 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6104 { 6105 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6106 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6107 sizeof(ps->channels)); 6108 ps->flags = kvm->arch.vpit->pit_state.flags; 6109 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6110 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6111 return 0; 6112 } 6113 6114 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6115 { 6116 int start = 0; 6117 int i; 6118 u32 prev_legacy, cur_legacy; 6119 struct kvm_pit *pit = kvm->arch.vpit; 6120 6121 mutex_lock(&pit->pit_state.lock); 6122 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6123 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6124 if (!prev_legacy && cur_legacy) 6125 start = 1; 6126 memcpy(&pit->pit_state.channels, &ps->channels, 6127 sizeof(pit->pit_state.channels)); 6128 pit->pit_state.flags = ps->flags; 6129 for (i = 0; i < 3; i++) 6130 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6131 start && i == 0); 6132 mutex_unlock(&pit->pit_state.lock); 6133 return 0; 6134 } 6135 6136 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6137 struct kvm_reinject_control *control) 6138 { 6139 struct kvm_pit *pit = kvm->arch.vpit; 6140 6141 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6142 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6143 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6144 */ 6145 mutex_lock(&pit->pit_state.lock); 6146 kvm_pit_set_reinject(pit, control->pit_reinject); 6147 mutex_unlock(&pit->pit_state.lock); 6148 6149 return 0; 6150 } 6151 6152 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6153 { 6154 6155 /* 6156 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6157 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6158 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6159 * VM-Exit. 6160 */ 6161 struct kvm_vcpu *vcpu; 6162 unsigned long i; 6163 6164 kvm_for_each_vcpu(i, vcpu, kvm) 6165 kvm_vcpu_kick(vcpu); 6166 } 6167 6168 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6169 bool line_status) 6170 { 6171 if (!irqchip_in_kernel(kvm)) 6172 return -ENXIO; 6173 6174 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6175 irq_event->irq, irq_event->level, 6176 line_status); 6177 return 0; 6178 } 6179 6180 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6181 struct kvm_enable_cap *cap) 6182 { 6183 int r; 6184 6185 if (cap->flags) 6186 return -EINVAL; 6187 6188 switch (cap->cap) { 6189 case KVM_CAP_DISABLE_QUIRKS2: 6190 r = -EINVAL; 6191 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6192 break; 6193 fallthrough; 6194 case KVM_CAP_DISABLE_QUIRKS: 6195 kvm->arch.disabled_quirks = cap->args[0]; 6196 r = 0; 6197 break; 6198 case KVM_CAP_SPLIT_IRQCHIP: { 6199 mutex_lock(&kvm->lock); 6200 r = -EINVAL; 6201 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6202 goto split_irqchip_unlock; 6203 r = -EEXIST; 6204 if (irqchip_in_kernel(kvm)) 6205 goto split_irqchip_unlock; 6206 if (kvm->created_vcpus) 6207 goto split_irqchip_unlock; 6208 r = kvm_setup_empty_irq_routing(kvm); 6209 if (r) 6210 goto split_irqchip_unlock; 6211 /* Pairs with irqchip_in_kernel. */ 6212 smp_wmb(); 6213 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6214 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6215 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6216 r = 0; 6217 split_irqchip_unlock: 6218 mutex_unlock(&kvm->lock); 6219 break; 6220 } 6221 case KVM_CAP_X2APIC_API: 6222 r = -EINVAL; 6223 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6224 break; 6225 6226 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6227 kvm->arch.x2apic_format = true; 6228 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6229 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6230 6231 r = 0; 6232 break; 6233 case KVM_CAP_X86_DISABLE_EXITS: 6234 r = -EINVAL; 6235 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6236 break; 6237 6238 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6239 kvm_can_mwait_in_guest()) 6240 kvm->arch.mwait_in_guest = true; 6241 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6242 kvm->arch.hlt_in_guest = true; 6243 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6244 kvm->arch.pause_in_guest = true; 6245 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6246 kvm->arch.cstate_in_guest = true; 6247 r = 0; 6248 break; 6249 case KVM_CAP_MSR_PLATFORM_INFO: 6250 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6251 r = 0; 6252 break; 6253 case KVM_CAP_EXCEPTION_PAYLOAD: 6254 kvm->arch.exception_payload_enabled = cap->args[0]; 6255 r = 0; 6256 break; 6257 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6258 kvm->arch.triple_fault_event = cap->args[0]; 6259 r = 0; 6260 break; 6261 case KVM_CAP_X86_USER_SPACE_MSR: 6262 r = -EINVAL; 6263 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6264 break; 6265 kvm->arch.user_space_msr_mask = cap->args[0]; 6266 r = 0; 6267 break; 6268 case KVM_CAP_X86_BUS_LOCK_EXIT: 6269 r = -EINVAL; 6270 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6271 break; 6272 6273 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6274 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6275 break; 6276 6277 if (kvm_caps.has_bus_lock_exit && 6278 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6279 kvm->arch.bus_lock_detection_enabled = true; 6280 r = 0; 6281 break; 6282 #ifdef CONFIG_X86_SGX_KVM 6283 case KVM_CAP_SGX_ATTRIBUTE: { 6284 unsigned long allowed_attributes = 0; 6285 6286 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6287 if (r) 6288 break; 6289 6290 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6291 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6292 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6293 kvm->arch.sgx_provisioning_allowed = true; 6294 else 6295 r = -EINVAL; 6296 break; 6297 } 6298 #endif 6299 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6300 r = -EINVAL; 6301 if (!kvm_x86_ops.vm_copy_enc_context_from) 6302 break; 6303 6304 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6305 break; 6306 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6307 r = -EINVAL; 6308 if (!kvm_x86_ops.vm_move_enc_context_from) 6309 break; 6310 6311 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6312 break; 6313 case KVM_CAP_EXIT_HYPERCALL: 6314 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6315 r = -EINVAL; 6316 break; 6317 } 6318 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6319 r = 0; 6320 break; 6321 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6322 r = -EINVAL; 6323 if (cap->args[0] & ~1) 6324 break; 6325 kvm->arch.exit_on_emulation_error = cap->args[0]; 6326 r = 0; 6327 break; 6328 case KVM_CAP_PMU_CAPABILITY: 6329 r = -EINVAL; 6330 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6331 break; 6332 6333 mutex_lock(&kvm->lock); 6334 if (!kvm->created_vcpus) { 6335 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6336 r = 0; 6337 } 6338 mutex_unlock(&kvm->lock); 6339 break; 6340 case KVM_CAP_MAX_VCPU_ID: 6341 r = -EINVAL; 6342 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6343 break; 6344 6345 mutex_lock(&kvm->lock); 6346 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6347 r = 0; 6348 } else if (!kvm->arch.max_vcpu_ids) { 6349 kvm->arch.max_vcpu_ids = cap->args[0]; 6350 r = 0; 6351 } 6352 mutex_unlock(&kvm->lock); 6353 break; 6354 case KVM_CAP_X86_NOTIFY_VMEXIT: 6355 r = -EINVAL; 6356 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6357 break; 6358 if (!kvm_caps.has_notify_vmexit) 6359 break; 6360 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6361 break; 6362 mutex_lock(&kvm->lock); 6363 if (!kvm->created_vcpus) { 6364 kvm->arch.notify_window = cap->args[0] >> 32; 6365 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6366 r = 0; 6367 } 6368 mutex_unlock(&kvm->lock); 6369 break; 6370 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6371 r = -EINVAL; 6372 6373 /* 6374 * Since the risk of disabling NX hugepages is a guest crashing 6375 * the system, ensure the userspace process has permission to 6376 * reboot the system. 6377 * 6378 * Note that unlike the reboot() syscall, the process must have 6379 * this capability in the root namespace because exposing 6380 * /dev/kvm into a container does not limit the scope of the 6381 * iTLB multihit bug to that container. In other words, 6382 * this must use capable(), not ns_capable(). 6383 */ 6384 if (!capable(CAP_SYS_BOOT)) { 6385 r = -EPERM; 6386 break; 6387 } 6388 6389 if (cap->args[0]) 6390 break; 6391 6392 mutex_lock(&kvm->lock); 6393 if (!kvm->created_vcpus) { 6394 kvm->arch.disable_nx_huge_pages = true; 6395 r = 0; 6396 } 6397 mutex_unlock(&kvm->lock); 6398 break; 6399 default: 6400 r = -EINVAL; 6401 break; 6402 } 6403 return r; 6404 } 6405 6406 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6407 { 6408 struct kvm_x86_msr_filter *msr_filter; 6409 6410 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6411 if (!msr_filter) 6412 return NULL; 6413 6414 msr_filter->default_allow = default_allow; 6415 return msr_filter; 6416 } 6417 6418 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6419 { 6420 u32 i; 6421 6422 if (!msr_filter) 6423 return; 6424 6425 for (i = 0; i < msr_filter->count; i++) 6426 kfree(msr_filter->ranges[i].bitmap); 6427 6428 kfree(msr_filter); 6429 } 6430 6431 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6432 struct kvm_msr_filter_range *user_range) 6433 { 6434 unsigned long *bitmap = NULL; 6435 size_t bitmap_size; 6436 6437 if (!user_range->nmsrs) 6438 return 0; 6439 6440 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6441 return -EINVAL; 6442 6443 if (!user_range->flags) 6444 return -EINVAL; 6445 6446 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6447 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6448 return -EINVAL; 6449 6450 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6451 if (IS_ERR(bitmap)) 6452 return PTR_ERR(bitmap); 6453 6454 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6455 .flags = user_range->flags, 6456 .base = user_range->base, 6457 .nmsrs = user_range->nmsrs, 6458 .bitmap = bitmap, 6459 }; 6460 6461 msr_filter->count++; 6462 return 0; 6463 } 6464 6465 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6466 struct kvm_msr_filter *filter) 6467 { 6468 struct kvm_x86_msr_filter *new_filter, *old_filter; 6469 bool default_allow; 6470 bool empty = true; 6471 int r = 0; 6472 u32 i; 6473 6474 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6475 return -EINVAL; 6476 6477 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6478 empty &= !filter->ranges[i].nmsrs; 6479 6480 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6481 if (empty && !default_allow) 6482 return -EINVAL; 6483 6484 new_filter = kvm_alloc_msr_filter(default_allow); 6485 if (!new_filter) 6486 return -ENOMEM; 6487 6488 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6489 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6490 if (r) { 6491 kvm_free_msr_filter(new_filter); 6492 return r; 6493 } 6494 } 6495 6496 mutex_lock(&kvm->lock); 6497 6498 /* The per-VM filter is protected by kvm->lock... */ 6499 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6500 6501 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6502 synchronize_srcu(&kvm->srcu); 6503 6504 kvm_free_msr_filter(old_filter); 6505 6506 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6507 mutex_unlock(&kvm->lock); 6508 6509 return 0; 6510 } 6511 6512 #ifdef CONFIG_KVM_COMPAT 6513 /* for KVM_X86_SET_MSR_FILTER */ 6514 struct kvm_msr_filter_range_compat { 6515 __u32 flags; 6516 __u32 nmsrs; 6517 __u32 base; 6518 __u32 bitmap; 6519 }; 6520 6521 struct kvm_msr_filter_compat { 6522 __u32 flags; 6523 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6524 }; 6525 6526 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6527 6528 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6529 unsigned long arg) 6530 { 6531 void __user *argp = (void __user *)arg; 6532 struct kvm *kvm = filp->private_data; 6533 long r = -ENOTTY; 6534 6535 switch (ioctl) { 6536 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6537 struct kvm_msr_filter __user *user_msr_filter = argp; 6538 struct kvm_msr_filter_compat filter_compat; 6539 struct kvm_msr_filter filter; 6540 int i; 6541 6542 if (copy_from_user(&filter_compat, user_msr_filter, 6543 sizeof(filter_compat))) 6544 return -EFAULT; 6545 6546 filter.flags = filter_compat.flags; 6547 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6548 struct kvm_msr_filter_range_compat *cr; 6549 6550 cr = &filter_compat.ranges[i]; 6551 filter.ranges[i] = (struct kvm_msr_filter_range) { 6552 .flags = cr->flags, 6553 .nmsrs = cr->nmsrs, 6554 .base = cr->base, 6555 .bitmap = (__u8 *)(ulong)cr->bitmap, 6556 }; 6557 } 6558 6559 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6560 break; 6561 } 6562 } 6563 6564 return r; 6565 } 6566 #endif 6567 6568 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6569 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6570 { 6571 struct kvm_vcpu *vcpu; 6572 unsigned long i; 6573 int ret = 0; 6574 6575 mutex_lock(&kvm->lock); 6576 kvm_for_each_vcpu(i, vcpu, kvm) { 6577 if (!vcpu->arch.pv_time.active) 6578 continue; 6579 6580 ret = kvm_set_guest_paused(vcpu); 6581 if (ret) { 6582 kvm_err("Failed to pause guest VCPU%d: %d\n", 6583 vcpu->vcpu_id, ret); 6584 break; 6585 } 6586 } 6587 mutex_unlock(&kvm->lock); 6588 6589 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6590 } 6591 6592 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6593 { 6594 switch (state) { 6595 case PM_HIBERNATION_PREPARE: 6596 case PM_SUSPEND_PREPARE: 6597 return kvm_arch_suspend_notifier(kvm); 6598 } 6599 6600 return NOTIFY_DONE; 6601 } 6602 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6603 6604 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6605 { 6606 struct kvm_clock_data data = { 0 }; 6607 6608 get_kvmclock(kvm, &data); 6609 if (copy_to_user(argp, &data, sizeof(data))) 6610 return -EFAULT; 6611 6612 return 0; 6613 } 6614 6615 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6616 { 6617 struct kvm_arch *ka = &kvm->arch; 6618 struct kvm_clock_data data; 6619 u64 now_raw_ns; 6620 6621 if (copy_from_user(&data, argp, sizeof(data))) 6622 return -EFAULT; 6623 6624 /* 6625 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6626 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6627 */ 6628 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6629 return -EINVAL; 6630 6631 kvm_hv_request_tsc_page_update(kvm); 6632 kvm_start_pvclock_update(kvm); 6633 pvclock_update_vm_gtod_copy(kvm); 6634 6635 /* 6636 * This pairs with kvm_guest_time_update(): when masterclock is 6637 * in use, we use master_kernel_ns + kvmclock_offset to set 6638 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6639 * is slightly ahead) here we risk going negative on unsigned 6640 * 'system_time' when 'data.clock' is very small. 6641 */ 6642 if (data.flags & KVM_CLOCK_REALTIME) { 6643 u64 now_real_ns = ktime_get_real_ns(); 6644 6645 /* 6646 * Avoid stepping the kvmclock backwards. 6647 */ 6648 if (now_real_ns > data.realtime) 6649 data.clock += now_real_ns - data.realtime; 6650 } 6651 6652 if (ka->use_master_clock) 6653 now_raw_ns = ka->master_kernel_ns; 6654 else 6655 now_raw_ns = get_kvmclock_base_ns(); 6656 ka->kvmclock_offset = data.clock - now_raw_ns; 6657 kvm_end_pvclock_update(kvm); 6658 return 0; 6659 } 6660 6661 long kvm_arch_vm_ioctl(struct file *filp, 6662 unsigned int ioctl, unsigned long arg) 6663 { 6664 struct kvm *kvm = filp->private_data; 6665 void __user *argp = (void __user *)arg; 6666 int r = -ENOTTY; 6667 /* 6668 * This union makes it completely explicit to gcc-3.x 6669 * that these two variables' stack usage should be 6670 * combined, not added together. 6671 */ 6672 union { 6673 struct kvm_pit_state ps; 6674 struct kvm_pit_state2 ps2; 6675 struct kvm_pit_config pit_config; 6676 } u; 6677 6678 switch (ioctl) { 6679 case KVM_SET_TSS_ADDR: 6680 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6681 break; 6682 case KVM_SET_IDENTITY_MAP_ADDR: { 6683 u64 ident_addr; 6684 6685 mutex_lock(&kvm->lock); 6686 r = -EINVAL; 6687 if (kvm->created_vcpus) 6688 goto set_identity_unlock; 6689 r = -EFAULT; 6690 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6691 goto set_identity_unlock; 6692 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6693 set_identity_unlock: 6694 mutex_unlock(&kvm->lock); 6695 break; 6696 } 6697 case KVM_SET_NR_MMU_PAGES: 6698 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6699 break; 6700 case KVM_GET_NR_MMU_PAGES: 6701 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6702 break; 6703 case KVM_CREATE_IRQCHIP: { 6704 mutex_lock(&kvm->lock); 6705 6706 r = -EEXIST; 6707 if (irqchip_in_kernel(kvm)) 6708 goto create_irqchip_unlock; 6709 6710 r = -EINVAL; 6711 if (kvm->created_vcpus) 6712 goto create_irqchip_unlock; 6713 6714 r = kvm_pic_init(kvm); 6715 if (r) 6716 goto create_irqchip_unlock; 6717 6718 r = kvm_ioapic_init(kvm); 6719 if (r) { 6720 kvm_pic_destroy(kvm); 6721 goto create_irqchip_unlock; 6722 } 6723 6724 r = kvm_setup_default_irq_routing(kvm); 6725 if (r) { 6726 kvm_ioapic_destroy(kvm); 6727 kvm_pic_destroy(kvm); 6728 goto create_irqchip_unlock; 6729 } 6730 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6731 smp_wmb(); 6732 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6733 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6734 create_irqchip_unlock: 6735 mutex_unlock(&kvm->lock); 6736 break; 6737 } 6738 case KVM_CREATE_PIT: 6739 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6740 goto create_pit; 6741 case KVM_CREATE_PIT2: 6742 r = -EFAULT; 6743 if (copy_from_user(&u.pit_config, argp, 6744 sizeof(struct kvm_pit_config))) 6745 goto out; 6746 create_pit: 6747 mutex_lock(&kvm->lock); 6748 r = -EEXIST; 6749 if (kvm->arch.vpit) 6750 goto create_pit_unlock; 6751 r = -ENOMEM; 6752 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6753 if (kvm->arch.vpit) 6754 r = 0; 6755 create_pit_unlock: 6756 mutex_unlock(&kvm->lock); 6757 break; 6758 case KVM_GET_IRQCHIP: { 6759 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6760 struct kvm_irqchip *chip; 6761 6762 chip = memdup_user(argp, sizeof(*chip)); 6763 if (IS_ERR(chip)) { 6764 r = PTR_ERR(chip); 6765 goto out; 6766 } 6767 6768 r = -ENXIO; 6769 if (!irqchip_kernel(kvm)) 6770 goto get_irqchip_out; 6771 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6772 if (r) 6773 goto get_irqchip_out; 6774 r = -EFAULT; 6775 if (copy_to_user(argp, chip, sizeof(*chip))) 6776 goto get_irqchip_out; 6777 r = 0; 6778 get_irqchip_out: 6779 kfree(chip); 6780 break; 6781 } 6782 case KVM_SET_IRQCHIP: { 6783 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6784 struct kvm_irqchip *chip; 6785 6786 chip = memdup_user(argp, sizeof(*chip)); 6787 if (IS_ERR(chip)) { 6788 r = PTR_ERR(chip); 6789 goto out; 6790 } 6791 6792 r = -ENXIO; 6793 if (!irqchip_kernel(kvm)) 6794 goto set_irqchip_out; 6795 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6796 set_irqchip_out: 6797 kfree(chip); 6798 break; 6799 } 6800 case KVM_GET_PIT: { 6801 r = -EFAULT; 6802 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6803 goto out; 6804 r = -ENXIO; 6805 if (!kvm->arch.vpit) 6806 goto out; 6807 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6808 if (r) 6809 goto out; 6810 r = -EFAULT; 6811 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6812 goto out; 6813 r = 0; 6814 break; 6815 } 6816 case KVM_SET_PIT: { 6817 r = -EFAULT; 6818 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6819 goto out; 6820 mutex_lock(&kvm->lock); 6821 r = -ENXIO; 6822 if (!kvm->arch.vpit) 6823 goto set_pit_out; 6824 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6825 set_pit_out: 6826 mutex_unlock(&kvm->lock); 6827 break; 6828 } 6829 case KVM_GET_PIT2: { 6830 r = -ENXIO; 6831 if (!kvm->arch.vpit) 6832 goto out; 6833 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6834 if (r) 6835 goto out; 6836 r = -EFAULT; 6837 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6838 goto out; 6839 r = 0; 6840 break; 6841 } 6842 case KVM_SET_PIT2: { 6843 r = -EFAULT; 6844 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6845 goto out; 6846 mutex_lock(&kvm->lock); 6847 r = -ENXIO; 6848 if (!kvm->arch.vpit) 6849 goto set_pit2_out; 6850 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6851 set_pit2_out: 6852 mutex_unlock(&kvm->lock); 6853 break; 6854 } 6855 case KVM_REINJECT_CONTROL: { 6856 struct kvm_reinject_control control; 6857 r = -EFAULT; 6858 if (copy_from_user(&control, argp, sizeof(control))) 6859 goto out; 6860 r = -ENXIO; 6861 if (!kvm->arch.vpit) 6862 goto out; 6863 r = kvm_vm_ioctl_reinject(kvm, &control); 6864 break; 6865 } 6866 case KVM_SET_BOOT_CPU_ID: 6867 r = 0; 6868 mutex_lock(&kvm->lock); 6869 if (kvm->created_vcpus) 6870 r = -EBUSY; 6871 else 6872 kvm->arch.bsp_vcpu_id = arg; 6873 mutex_unlock(&kvm->lock); 6874 break; 6875 #ifdef CONFIG_KVM_XEN 6876 case KVM_XEN_HVM_CONFIG: { 6877 struct kvm_xen_hvm_config xhc; 6878 r = -EFAULT; 6879 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6880 goto out; 6881 r = kvm_xen_hvm_config(kvm, &xhc); 6882 break; 6883 } 6884 case KVM_XEN_HVM_GET_ATTR: { 6885 struct kvm_xen_hvm_attr xha; 6886 6887 r = -EFAULT; 6888 if (copy_from_user(&xha, argp, sizeof(xha))) 6889 goto out; 6890 r = kvm_xen_hvm_get_attr(kvm, &xha); 6891 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6892 r = -EFAULT; 6893 break; 6894 } 6895 case KVM_XEN_HVM_SET_ATTR: { 6896 struct kvm_xen_hvm_attr xha; 6897 6898 r = -EFAULT; 6899 if (copy_from_user(&xha, argp, sizeof(xha))) 6900 goto out; 6901 r = kvm_xen_hvm_set_attr(kvm, &xha); 6902 break; 6903 } 6904 case KVM_XEN_HVM_EVTCHN_SEND: { 6905 struct kvm_irq_routing_xen_evtchn uxe; 6906 6907 r = -EFAULT; 6908 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6909 goto out; 6910 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6911 break; 6912 } 6913 #endif 6914 case KVM_SET_CLOCK: 6915 r = kvm_vm_ioctl_set_clock(kvm, argp); 6916 break; 6917 case KVM_GET_CLOCK: 6918 r = kvm_vm_ioctl_get_clock(kvm, argp); 6919 break; 6920 case KVM_SET_TSC_KHZ: { 6921 u32 user_tsc_khz; 6922 6923 r = -EINVAL; 6924 user_tsc_khz = (u32)arg; 6925 6926 if (kvm_caps.has_tsc_control && 6927 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6928 goto out; 6929 6930 if (user_tsc_khz == 0) 6931 user_tsc_khz = tsc_khz; 6932 6933 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6934 r = 0; 6935 6936 goto out; 6937 } 6938 case KVM_GET_TSC_KHZ: { 6939 r = READ_ONCE(kvm->arch.default_tsc_khz); 6940 goto out; 6941 } 6942 case KVM_MEMORY_ENCRYPT_OP: { 6943 r = -ENOTTY; 6944 if (!kvm_x86_ops.mem_enc_ioctl) 6945 goto out; 6946 6947 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6948 break; 6949 } 6950 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6951 struct kvm_enc_region region; 6952 6953 r = -EFAULT; 6954 if (copy_from_user(®ion, argp, sizeof(region))) 6955 goto out; 6956 6957 r = -ENOTTY; 6958 if (!kvm_x86_ops.mem_enc_register_region) 6959 goto out; 6960 6961 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6962 break; 6963 } 6964 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6965 struct kvm_enc_region region; 6966 6967 r = -EFAULT; 6968 if (copy_from_user(®ion, argp, sizeof(region))) 6969 goto out; 6970 6971 r = -ENOTTY; 6972 if (!kvm_x86_ops.mem_enc_unregister_region) 6973 goto out; 6974 6975 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6976 break; 6977 } 6978 case KVM_HYPERV_EVENTFD: { 6979 struct kvm_hyperv_eventfd hvevfd; 6980 6981 r = -EFAULT; 6982 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6983 goto out; 6984 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6985 break; 6986 } 6987 case KVM_SET_PMU_EVENT_FILTER: 6988 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6989 break; 6990 case KVM_X86_SET_MSR_FILTER: { 6991 struct kvm_msr_filter __user *user_msr_filter = argp; 6992 struct kvm_msr_filter filter; 6993 6994 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6995 return -EFAULT; 6996 6997 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6998 break; 6999 } 7000 default: 7001 r = -ENOTTY; 7002 } 7003 out: 7004 return r; 7005 } 7006 7007 static void kvm_probe_msr_to_save(u32 msr_index) 7008 { 7009 u32 dummy[2]; 7010 7011 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7012 return; 7013 7014 /* 7015 * Even MSRs that are valid in the host may not be exposed to guests in 7016 * some cases. 7017 */ 7018 switch (msr_index) { 7019 case MSR_IA32_BNDCFGS: 7020 if (!kvm_mpx_supported()) 7021 return; 7022 break; 7023 case MSR_TSC_AUX: 7024 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7025 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7026 return; 7027 break; 7028 case MSR_IA32_UMWAIT_CONTROL: 7029 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7030 return; 7031 break; 7032 case MSR_IA32_RTIT_CTL: 7033 case MSR_IA32_RTIT_STATUS: 7034 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7035 return; 7036 break; 7037 case MSR_IA32_RTIT_CR3_MATCH: 7038 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7039 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7040 return; 7041 break; 7042 case MSR_IA32_RTIT_OUTPUT_BASE: 7043 case MSR_IA32_RTIT_OUTPUT_MASK: 7044 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7045 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7046 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7047 return; 7048 break; 7049 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7050 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7051 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7052 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7053 return; 7054 break; 7055 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7056 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7057 kvm_pmu_cap.num_counters_gp) 7058 return; 7059 break; 7060 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7061 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7062 kvm_pmu_cap.num_counters_gp) 7063 return; 7064 break; 7065 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7066 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7067 kvm_pmu_cap.num_counters_fixed) 7068 return; 7069 break; 7070 case MSR_IA32_XFD: 7071 case MSR_IA32_XFD_ERR: 7072 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7073 return; 7074 break; 7075 default: 7076 break; 7077 } 7078 7079 msrs_to_save[num_msrs_to_save++] = msr_index; 7080 } 7081 7082 static void kvm_init_msr_list(void) 7083 { 7084 unsigned i; 7085 7086 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7087 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7088 7089 num_msrs_to_save = 0; 7090 num_emulated_msrs = 0; 7091 num_msr_based_features = 0; 7092 7093 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7094 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7095 7096 if (enable_pmu) { 7097 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7098 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7099 } 7100 7101 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7102 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7103 continue; 7104 7105 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7106 } 7107 7108 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7109 struct kvm_msr_entry msr; 7110 7111 msr.index = msr_based_features_all[i]; 7112 if (kvm_get_msr_feature(&msr)) 7113 continue; 7114 7115 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7116 } 7117 } 7118 7119 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7120 const void *v) 7121 { 7122 int handled = 0; 7123 int n; 7124 7125 do { 7126 n = min(len, 8); 7127 if (!(lapic_in_kernel(vcpu) && 7128 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7129 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7130 break; 7131 handled += n; 7132 addr += n; 7133 len -= n; 7134 v += n; 7135 } while (len); 7136 7137 return handled; 7138 } 7139 7140 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7141 { 7142 int handled = 0; 7143 int n; 7144 7145 do { 7146 n = min(len, 8); 7147 if (!(lapic_in_kernel(vcpu) && 7148 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7149 addr, n, v)) 7150 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7151 break; 7152 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7153 handled += n; 7154 addr += n; 7155 len -= n; 7156 v += n; 7157 } while (len); 7158 7159 return handled; 7160 } 7161 7162 void kvm_set_segment(struct kvm_vcpu *vcpu, 7163 struct kvm_segment *var, int seg) 7164 { 7165 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7166 } 7167 7168 void kvm_get_segment(struct kvm_vcpu *vcpu, 7169 struct kvm_segment *var, int seg) 7170 { 7171 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7172 } 7173 7174 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7175 struct x86_exception *exception) 7176 { 7177 struct kvm_mmu *mmu = vcpu->arch.mmu; 7178 gpa_t t_gpa; 7179 7180 BUG_ON(!mmu_is_nested(vcpu)); 7181 7182 /* NPT walks are always user-walks */ 7183 access |= PFERR_USER_MASK; 7184 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7185 7186 return t_gpa; 7187 } 7188 7189 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7190 struct x86_exception *exception) 7191 { 7192 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7193 7194 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7195 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7196 } 7197 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7198 7199 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7200 struct x86_exception *exception) 7201 { 7202 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7203 7204 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7205 access |= PFERR_WRITE_MASK; 7206 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7207 } 7208 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7209 7210 /* uses this to access any guest's mapped memory without checking CPL */ 7211 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7212 struct x86_exception *exception) 7213 { 7214 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7215 7216 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7217 } 7218 7219 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7220 struct kvm_vcpu *vcpu, u64 access, 7221 struct x86_exception *exception) 7222 { 7223 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7224 void *data = val; 7225 int r = X86EMUL_CONTINUE; 7226 7227 while (bytes) { 7228 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7229 unsigned offset = addr & (PAGE_SIZE-1); 7230 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7231 int ret; 7232 7233 if (gpa == INVALID_GPA) 7234 return X86EMUL_PROPAGATE_FAULT; 7235 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7236 offset, toread); 7237 if (ret < 0) { 7238 r = X86EMUL_IO_NEEDED; 7239 goto out; 7240 } 7241 7242 bytes -= toread; 7243 data += toread; 7244 addr += toread; 7245 } 7246 out: 7247 return r; 7248 } 7249 7250 /* used for instruction fetching */ 7251 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7252 gva_t addr, void *val, unsigned int bytes, 7253 struct x86_exception *exception) 7254 { 7255 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7256 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7257 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7258 unsigned offset; 7259 int ret; 7260 7261 /* Inline kvm_read_guest_virt_helper for speed. */ 7262 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7263 exception); 7264 if (unlikely(gpa == INVALID_GPA)) 7265 return X86EMUL_PROPAGATE_FAULT; 7266 7267 offset = addr & (PAGE_SIZE-1); 7268 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7269 bytes = (unsigned)PAGE_SIZE - offset; 7270 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7271 offset, bytes); 7272 if (unlikely(ret < 0)) 7273 return X86EMUL_IO_NEEDED; 7274 7275 return X86EMUL_CONTINUE; 7276 } 7277 7278 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7279 gva_t addr, void *val, unsigned int bytes, 7280 struct x86_exception *exception) 7281 { 7282 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7283 7284 /* 7285 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7286 * is returned, but our callers are not ready for that and they blindly 7287 * call kvm_inject_page_fault. Ensure that they at least do not leak 7288 * uninitialized kernel stack memory into cr2 and error code. 7289 */ 7290 memset(exception, 0, sizeof(*exception)); 7291 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7292 exception); 7293 } 7294 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7295 7296 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7297 gva_t addr, void *val, unsigned int bytes, 7298 struct x86_exception *exception, bool system) 7299 { 7300 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7301 u64 access = 0; 7302 7303 if (system) 7304 access |= PFERR_IMPLICIT_ACCESS; 7305 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7306 access |= PFERR_USER_MASK; 7307 7308 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7309 } 7310 7311 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7312 struct kvm_vcpu *vcpu, u64 access, 7313 struct x86_exception *exception) 7314 { 7315 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7316 void *data = val; 7317 int r = X86EMUL_CONTINUE; 7318 7319 while (bytes) { 7320 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7321 unsigned offset = addr & (PAGE_SIZE-1); 7322 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7323 int ret; 7324 7325 if (gpa == INVALID_GPA) 7326 return X86EMUL_PROPAGATE_FAULT; 7327 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7328 if (ret < 0) { 7329 r = X86EMUL_IO_NEEDED; 7330 goto out; 7331 } 7332 7333 bytes -= towrite; 7334 data += towrite; 7335 addr += towrite; 7336 } 7337 out: 7338 return r; 7339 } 7340 7341 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7342 unsigned int bytes, struct x86_exception *exception, 7343 bool system) 7344 { 7345 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7346 u64 access = PFERR_WRITE_MASK; 7347 7348 if (system) 7349 access |= PFERR_IMPLICIT_ACCESS; 7350 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7351 access |= PFERR_USER_MASK; 7352 7353 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7354 access, exception); 7355 } 7356 7357 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7358 unsigned int bytes, struct x86_exception *exception) 7359 { 7360 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7361 vcpu->arch.l1tf_flush_l1d = true; 7362 7363 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7364 PFERR_WRITE_MASK, exception); 7365 } 7366 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7367 7368 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7369 void *insn, int insn_len) 7370 { 7371 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7372 insn, insn_len); 7373 } 7374 7375 int handle_ud(struct kvm_vcpu *vcpu) 7376 { 7377 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7378 int fep_flags = READ_ONCE(force_emulation_prefix); 7379 int emul_type = EMULTYPE_TRAP_UD; 7380 char sig[5]; /* ud2; .ascii "kvm" */ 7381 struct x86_exception e; 7382 7383 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7384 return 1; 7385 7386 if (fep_flags && 7387 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7388 sig, sizeof(sig), &e) == 0 && 7389 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7390 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7391 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7392 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7393 emul_type = EMULTYPE_TRAP_UD_FORCED; 7394 } 7395 7396 return kvm_emulate_instruction(vcpu, emul_type); 7397 } 7398 EXPORT_SYMBOL_GPL(handle_ud); 7399 7400 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7401 gpa_t gpa, bool write) 7402 { 7403 /* For APIC access vmexit */ 7404 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7405 return 1; 7406 7407 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7408 trace_vcpu_match_mmio(gva, gpa, write, true); 7409 return 1; 7410 } 7411 7412 return 0; 7413 } 7414 7415 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7416 gpa_t *gpa, struct x86_exception *exception, 7417 bool write) 7418 { 7419 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7420 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7421 | (write ? PFERR_WRITE_MASK : 0); 7422 7423 /* 7424 * currently PKRU is only applied to ept enabled guest so 7425 * there is no pkey in EPT page table for L1 guest or EPT 7426 * shadow page table for L2 guest. 7427 */ 7428 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7429 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7430 vcpu->arch.mmio_access, 0, access))) { 7431 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7432 (gva & (PAGE_SIZE - 1)); 7433 trace_vcpu_match_mmio(gva, *gpa, write, false); 7434 return 1; 7435 } 7436 7437 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7438 7439 if (*gpa == INVALID_GPA) 7440 return -1; 7441 7442 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7443 } 7444 7445 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7446 const void *val, int bytes) 7447 { 7448 int ret; 7449 7450 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7451 if (ret < 0) 7452 return 0; 7453 kvm_page_track_write(vcpu, gpa, val, bytes); 7454 return 1; 7455 } 7456 7457 struct read_write_emulator_ops { 7458 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7459 int bytes); 7460 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7461 void *val, int bytes); 7462 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7463 int bytes, void *val); 7464 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7465 void *val, int bytes); 7466 bool write; 7467 }; 7468 7469 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7470 { 7471 if (vcpu->mmio_read_completed) { 7472 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7473 vcpu->mmio_fragments[0].gpa, val); 7474 vcpu->mmio_read_completed = 0; 7475 return 1; 7476 } 7477 7478 return 0; 7479 } 7480 7481 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7482 void *val, int bytes) 7483 { 7484 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7485 } 7486 7487 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7488 void *val, int bytes) 7489 { 7490 return emulator_write_phys(vcpu, gpa, val, bytes); 7491 } 7492 7493 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7494 { 7495 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7496 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7497 } 7498 7499 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7500 void *val, int bytes) 7501 { 7502 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7503 return X86EMUL_IO_NEEDED; 7504 } 7505 7506 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7507 void *val, int bytes) 7508 { 7509 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7510 7511 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7512 return X86EMUL_CONTINUE; 7513 } 7514 7515 static const struct read_write_emulator_ops read_emultor = { 7516 .read_write_prepare = read_prepare, 7517 .read_write_emulate = read_emulate, 7518 .read_write_mmio = vcpu_mmio_read, 7519 .read_write_exit_mmio = read_exit_mmio, 7520 }; 7521 7522 static const struct read_write_emulator_ops write_emultor = { 7523 .read_write_emulate = write_emulate, 7524 .read_write_mmio = write_mmio, 7525 .read_write_exit_mmio = write_exit_mmio, 7526 .write = true, 7527 }; 7528 7529 static int emulator_read_write_onepage(unsigned long addr, void *val, 7530 unsigned int bytes, 7531 struct x86_exception *exception, 7532 struct kvm_vcpu *vcpu, 7533 const struct read_write_emulator_ops *ops) 7534 { 7535 gpa_t gpa; 7536 int handled, ret; 7537 bool write = ops->write; 7538 struct kvm_mmio_fragment *frag; 7539 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7540 7541 /* 7542 * If the exit was due to a NPF we may already have a GPA. 7543 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7544 * Note, this cannot be used on string operations since string 7545 * operation using rep will only have the initial GPA from the NPF 7546 * occurred. 7547 */ 7548 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7549 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7550 gpa = ctxt->gpa_val; 7551 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7552 } else { 7553 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7554 if (ret < 0) 7555 return X86EMUL_PROPAGATE_FAULT; 7556 } 7557 7558 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7559 return X86EMUL_CONTINUE; 7560 7561 /* 7562 * Is this MMIO handled locally? 7563 */ 7564 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7565 if (handled == bytes) 7566 return X86EMUL_CONTINUE; 7567 7568 gpa += handled; 7569 bytes -= handled; 7570 val += handled; 7571 7572 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7573 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7574 frag->gpa = gpa; 7575 frag->data = val; 7576 frag->len = bytes; 7577 return X86EMUL_CONTINUE; 7578 } 7579 7580 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7581 unsigned long addr, 7582 void *val, unsigned int bytes, 7583 struct x86_exception *exception, 7584 const struct read_write_emulator_ops *ops) 7585 { 7586 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7587 gpa_t gpa; 7588 int rc; 7589 7590 if (ops->read_write_prepare && 7591 ops->read_write_prepare(vcpu, val, bytes)) 7592 return X86EMUL_CONTINUE; 7593 7594 vcpu->mmio_nr_fragments = 0; 7595 7596 /* Crossing a page boundary? */ 7597 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7598 int now; 7599 7600 now = -addr & ~PAGE_MASK; 7601 rc = emulator_read_write_onepage(addr, val, now, exception, 7602 vcpu, ops); 7603 7604 if (rc != X86EMUL_CONTINUE) 7605 return rc; 7606 addr += now; 7607 if (ctxt->mode != X86EMUL_MODE_PROT64) 7608 addr = (u32)addr; 7609 val += now; 7610 bytes -= now; 7611 } 7612 7613 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7614 vcpu, ops); 7615 if (rc != X86EMUL_CONTINUE) 7616 return rc; 7617 7618 if (!vcpu->mmio_nr_fragments) 7619 return rc; 7620 7621 gpa = vcpu->mmio_fragments[0].gpa; 7622 7623 vcpu->mmio_needed = 1; 7624 vcpu->mmio_cur_fragment = 0; 7625 7626 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7627 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7628 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7629 vcpu->run->mmio.phys_addr = gpa; 7630 7631 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7632 } 7633 7634 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7635 unsigned long addr, 7636 void *val, 7637 unsigned int bytes, 7638 struct x86_exception *exception) 7639 { 7640 return emulator_read_write(ctxt, addr, val, bytes, 7641 exception, &read_emultor); 7642 } 7643 7644 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7645 unsigned long addr, 7646 const void *val, 7647 unsigned int bytes, 7648 struct x86_exception *exception) 7649 { 7650 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7651 exception, &write_emultor); 7652 } 7653 7654 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7655 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7656 7657 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7658 unsigned long addr, 7659 const void *old, 7660 const void *new, 7661 unsigned int bytes, 7662 struct x86_exception *exception) 7663 { 7664 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7665 u64 page_line_mask; 7666 unsigned long hva; 7667 gpa_t gpa; 7668 int r; 7669 7670 /* guests cmpxchg8b have to be emulated atomically */ 7671 if (bytes > 8 || (bytes & (bytes - 1))) 7672 goto emul_write; 7673 7674 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7675 7676 if (gpa == INVALID_GPA || 7677 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7678 goto emul_write; 7679 7680 /* 7681 * Emulate the atomic as a straight write to avoid #AC if SLD is 7682 * enabled in the host and the access splits a cache line. 7683 */ 7684 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7685 page_line_mask = ~(cache_line_size() - 1); 7686 else 7687 page_line_mask = PAGE_MASK; 7688 7689 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7690 goto emul_write; 7691 7692 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7693 if (kvm_is_error_hva(hva)) 7694 goto emul_write; 7695 7696 hva += offset_in_page(gpa); 7697 7698 switch (bytes) { 7699 case 1: 7700 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7701 break; 7702 case 2: 7703 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7704 break; 7705 case 4: 7706 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7707 break; 7708 case 8: 7709 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7710 break; 7711 default: 7712 BUG(); 7713 } 7714 7715 if (r < 0) 7716 return X86EMUL_UNHANDLEABLE; 7717 if (r) 7718 return X86EMUL_CMPXCHG_FAILED; 7719 7720 kvm_page_track_write(vcpu, gpa, new, bytes); 7721 7722 return X86EMUL_CONTINUE; 7723 7724 emul_write: 7725 pr_warn_once("emulating exchange as write\n"); 7726 7727 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7728 } 7729 7730 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7731 unsigned short port, void *data, 7732 unsigned int count, bool in) 7733 { 7734 unsigned i; 7735 int r; 7736 7737 WARN_ON_ONCE(vcpu->arch.pio.count); 7738 for (i = 0; i < count; i++) { 7739 if (in) 7740 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7741 else 7742 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7743 7744 if (r) { 7745 if (i == 0) 7746 goto userspace_io; 7747 7748 /* 7749 * Userspace must have unregistered the device while PIO 7750 * was running. Drop writes / read as 0. 7751 */ 7752 if (in) 7753 memset(data, 0, size * (count - i)); 7754 break; 7755 } 7756 7757 data += size; 7758 } 7759 return 1; 7760 7761 userspace_io: 7762 vcpu->arch.pio.port = port; 7763 vcpu->arch.pio.in = in; 7764 vcpu->arch.pio.count = count; 7765 vcpu->arch.pio.size = size; 7766 7767 if (in) 7768 memset(vcpu->arch.pio_data, 0, size * count); 7769 else 7770 memcpy(vcpu->arch.pio_data, data, size * count); 7771 7772 vcpu->run->exit_reason = KVM_EXIT_IO; 7773 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7774 vcpu->run->io.size = size; 7775 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7776 vcpu->run->io.count = count; 7777 vcpu->run->io.port = port; 7778 return 0; 7779 } 7780 7781 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7782 unsigned short port, void *val, unsigned int count) 7783 { 7784 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7785 if (r) 7786 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7787 7788 return r; 7789 } 7790 7791 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7792 { 7793 int size = vcpu->arch.pio.size; 7794 unsigned int count = vcpu->arch.pio.count; 7795 memcpy(val, vcpu->arch.pio_data, size * count); 7796 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7797 vcpu->arch.pio.count = 0; 7798 } 7799 7800 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7801 int size, unsigned short port, void *val, 7802 unsigned int count) 7803 { 7804 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7805 if (vcpu->arch.pio.count) { 7806 /* 7807 * Complete a previous iteration that required userspace I/O. 7808 * Note, @count isn't guaranteed to match pio.count as userspace 7809 * can modify ECX before rerunning the vCPU. Ignore any such 7810 * shenanigans as KVM doesn't support modifying the rep count, 7811 * and the emulator ensures @count doesn't overflow the buffer. 7812 */ 7813 complete_emulator_pio_in(vcpu, val); 7814 return 1; 7815 } 7816 7817 return emulator_pio_in(vcpu, size, port, val, count); 7818 } 7819 7820 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7821 unsigned short port, const void *val, 7822 unsigned int count) 7823 { 7824 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7825 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7826 } 7827 7828 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7829 int size, unsigned short port, 7830 const void *val, unsigned int count) 7831 { 7832 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7833 } 7834 7835 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7836 { 7837 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7838 } 7839 7840 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7841 { 7842 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7843 } 7844 7845 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7846 { 7847 if (!need_emulate_wbinvd(vcpu)) 7848 return X86EMUL_CONTINUE; 7849 7850 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7851 int cpu = get_cpu(); 7852 7853 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7854 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7855 wbinvd_ipi, NULL, 1); 7856 put_cpu(); 7857 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7858 } else 7859 wbinvd(); 7860 return X86EMUL_CONTINUE; 7861 } 7862 7863 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7864 { 7865 kvm_emulate_wbinvd_noskip(vcpu); 7866 return kvm_skip_emulated_instruction(vcpu); 7867 } 7868 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7869 7870 7871 7872 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7873 { 7874 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7875 } 7876 7877 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7878 unsigned long *dest) 7879 { 7880 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7881 } 7882 7883 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7884 unsigned long value) 7885 { 7886 7887 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7888 } 7889 7890 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7891 { 7892 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7893 } 7894 7895 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7896 { 7897 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7898 unsigned long value; 7899 7900 switch (cr) { 7901 case 0: 7902 value = kvm_read_cr0(vcpu); 7903 break; 7904 case 2: 7905 value = vcpu->arch.cr2; 7906 break; 7907 case 3: 7908 value = kvm_read_cr3(vcpu); 7909 break; 7910 case 4: 7911 value = kvm_read_cr4(vcpu); 7912 break; 7913 case 8: 7914 value = kvm_get_cr8(vcpu); 7915 break; 7916 default: 7917 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7918 return 0; 7919 } 7920 7921 return value; 7922 } 7923 7924 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7925 { 7926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7927 int res = 0; 7928 7929 switch (cr) { 7930 case 0: 7931 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7932 break; 7933 case 2: 7934 vcpu->arch.cr2 = val; 7935 break; 7936 case 3: 7937 res = kvm_set_cr3(vcpu, val); 7938 break; 7939 case 4: 7940 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7941 break; 7942 case 8: 7943 res = kvm_set_cr8(vcpu, val); 7944 break; 7945 default: 7946 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7947 res = -1; 7948 } 7949 7950 return res; 7951 } 7952 7953 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7954 { 7955 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7956 } 7957 7958 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7959 { 7960 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7961 } 7962 7963 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7964 { 7965 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7966 } 7967 7968 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7969 { 7970 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7971 } 7972 7973 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7974 { 7975 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7976 } 7977 7978 static unsigned long emulator_get_cached_segment_base( 7979 struct x86_emulate_ctxt *ctxt, int seg) 7980 { 7981 return get_segment_base(emul_to_vcpu(ctxt), seg); 7982 } 7983 7984 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7985 struct desc_struct *desc, u32 *base3, 7986 int seg) 7987 { 7988 struct kvm_segment var; 7989 7990 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7991 *selector = var.selector; 7992 7993 if (var.unusable) { 7994 memset(desc, 0, sizeof(*desc)); 7995 if (base3) 7996 *base3 = 0; 7997 return false; 7998 } 7999 8000 if (var.g) 8001 var.limit >>= 12; 8002 set_desc_limit(desc, var.limit); 8003 set_desc_base(desc, (unsigned long)var.base); 8004 #ifdef CONFIG_X86_64 8005 if (base3) 8006 *base3 = var.base >> 32; 8007 #endif 8008 desc->type = var.type; 8009 desc->s = var.s; 8010 desc->dpl = var.dpl; 8011 desc->p = var.present; 8012 desc->avl = var.avl; 8013 desc->l = var.l; 8014 desc->d = var.db; 8015 desc->g = var.g; 8016 8017 return true; 8018 } 8019 8020 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8021 struct desc_struct *desc, u32 base3, 8022 int seg) 8023 { 8024 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8025 struct kvm_segment var; 8026 8027 var.selector = selector; 8028 var.base = get_desc_base(desc); 8029 #ifdef CONFIG_X86_64 8030 var.base |= ((u64)base3) << 32; 8031 #endif 8032 var.limit = get_desc_limit(desc); 8033 if (desc->g) 8034 var.limit = (var.limit << 12) | 0xfff; 8035 var.type = desc->type; 8036 var.dpl = desc->dpl; 8037 var.db = desc->d; 8038 var.s = desc->s; 8039 var.l = desc->l; 8040 var.g = desc->g; 8041 var.avl = desc->avl; 8042 var.present = desc->p; 8043 var.unusable = !var.present; 8044 var.padding = 0; 8045 8046 kvm_set_segment(vcpu, &var, seg); 8047 return; 8048 } 8049 8050 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8051 u32 msr_index, u64 *pdata) 8052 { 8053 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8054 int r; 8055 8056 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8057 if (r < 0) 8058 return X86EMUL_UNHANDLEABLE; 8059 8060 if (r) { 8061 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8062 complete_emulated_rdmsr, r)) 8063 return X86EMUL_IO_NEEDED; 8064 8065 trace_kvm_msr_read_ex(msr_index); 8066 return X86EMUL_PROPAGATE_FAULT; 8067 } 8068 8069 trace_kvm_msr_read(msr_index, *pdata); 8070 return X86EMUL_CONTINUE; 8071 } 8072 8073 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8074 u32 msr_index, u64 data) 8075 { 8076 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8077 int r; 8078 8079 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8080 if (r < 0) 8081 return X86EMUL_UNHANDLEABLE; 8082 8083 if (r) { 8084 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8085 complete_emulated_msr_access, r)) 8086 return X86EMUL_IO_NEEDED; 8087 8088 trace_kvm_msr_write_ex(msr_index, data); 8089 return X86EMUL_PROPAGATE_FAULT; 8090 } 8091 8092 trace_kvm_msr_write(msr_index, data); 8093 return X86EMUL_CONTINUE; 8094 } 8095 8096 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8097 u32 msr_index, u64 *pdata) 8098 { 8099 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8100 } 8101 8102 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8103 u32 pmc) 8104 { 8105 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8106 return 0; 8107 return -EINVAL; 8108 } 8109 8110 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8111 u32 pmc, u64 *pdata) 8112 { 8113 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8114 } 8115 8116 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8117 { 8118 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8119 } 8120 8121 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8122 struct x86_instruction_info *info, 8123 enum x86_intercept_stage stage) 8124 { 8125 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8126 &ctxt->exception); 8127 } 8128 8129 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8130 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8131 bool exact_only) 8132 { 8133 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8134 } 8135 8136 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8137 { 8138 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8139 } 8140 8141 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8142 { 8143 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8144 } 8145 8146 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8147 { 8148 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8149 } 8150 8151 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8152 { 8153 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8154 } 8155 8156 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8157 { 8158 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8159 } 8160 8161 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8162 { 8163 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8164 } 8165 8166 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8167 { 8168 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8169 } 8170 8171 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8172 { 8173 return emul_to_vcpu(ctxt)->arch.hflags; 8174 } 8175 8176 #ifndef CONFIG_KVM_SMM 8177 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8178 { 8179 WARN_ON_ONCE(1); 8180 return X86EMUL_UNHANDLEABLE; 8181 } 8182 #endif 8183 8184 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8185 { 8186 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8187 } 8188 8189 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8190 { 8191 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8192 } 8193 8194 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8195 { 8196 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8197 8198 if (!kvm->vm_bugged) 8199 kvm_vm_bugged(kvm); 8200 } 8201 8202 static const struct x86_emulate_ops emulate_ops = { 8203 .vm_bugged = emulator_vm_bugged, 8204 .read_gpr = emulator_read_gpr, 8205 .write_gpr = emulator_write_gpr, 8206 .read_std = emulator_read_std, 8207 .write_std = emulator_write_std, 8208 .fetch = kvm_fetch_guest_virt, 8209 .read_emulated = emulator_read_emulated, 8210 .write_emulated = emulator_write_emulated, 8211 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8212 .invlpg = emulator_invlpg, 8213 .pio_in_emulated = emulator_pio_in_emulated, 8214 .pio_out_emulated = emulator_pio_out_emulated, 8215 .get_segment = emulator_get_segment, 8216 .set_segment = emulator_set_segment, 8217 .get_cached_segment_base = emulator_get_cached_segment_base, 8218 .get_gdt = emulator_get_gdt, 8219 .get_idt = emulator_get_idt, 8220 .set_gdt = emulator_set_gdt, 8221 .set_idt = emulator_set_idt, 8222 .get_cr = emulator_get_cr, 8223 .set_cr = emulator_set_cr, 8224 .cpl = emulator_get_cpl, 8225 .get_dr = emulator_get_dr, 8226 .set_dr = emulator_set_dr, 8227 .set_msr_with_filter = emulator_set_msr_with_filter, 8228 .get_msr_with_filter = emulator_get_msr_with_filter, 8229 .get_msr = emulator_get_msr, 8230 .check_pmc = emulator_check_pmc, 8231 .read_pmc = emulator_read_pmc, 8232 .halt = emulator_halt, 8233 .wbinvd = emulator_wbinvd, 8234 .fix_hypercall = emulator_fix_hypercall, 8235 .intercept = emulator_intercept, 8236 .get_cpuid = emulator_get_cpuid, 8237 .guest_has_long_mode = emulator_guest_has_long_mode, 8238 .guest_has_movbe = emulator_guest_has_movbe, 8239 .guest_has_fxsr = emulator_guest_has_fxsr, 8240 .guest_has_rdpid = emulator_guest_has_rdpid, 8241 .set_nmi_mask = emulator_set_nmi_mask, 8242 .get_hflags = emulator_get_hflags, 8243 .leave_smm = emulator_leave_smm, 8244 .triple_fault = emulator_triple_fault, 8245 .set_xcr = emulator_set_xcr, 8246 }; 8247 8248 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8249 { 8250 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8251 /* 8252 * an sti; sti; sequence only disable interrupts for the first 8253 * instruction. So, if the last instruction, be it emulated or 8254 * not, left the system with the INT_STI flag enabled, it 8255 * means that the last instruction is an sti. We should not 8256 * leave the flag on in this case. The same goes for mov ss 8257 */ 8258 if (int_shadow & mask) 8259 mask = 0; 8260 if (unlikely(int_shadow || mask)) { 8261 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8262 if (!mask) 8263 kvm_make_request(KVM_REQ_EVENT, vcpu); 8264 } 8265 } 8266 8267 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8268 { 8269 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8270 8271 if (ctxt->exception.vector == PF_VECTOR) 8272 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8273 else if (ctxt->exception.error_code_valid) 8274 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8275 ctxt->exception.error_code); 8276 else 8277 kvm_queue_exception(vcpu, ctxt->exception.vector); 8278 } 8279 8280 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8281 { 8282 struct x86_emulate_ctxt *ctxt; 8283 8284 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8285 if (!ctxt) { 8286 pr_err("failed to allocate vcpu's emulator\n"); 8287 return NULL; 8288 } 8289 8290 ctxt->vcpu = vcpu; 8291 ctxt->ops = &emulate_ops; 8292 vcpu->arch.emulate_ctxt = ctxt; 8293 8294 return ctxt; 8295 } 8296 8297 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8298 { 8299 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8300 int cs_db, cs_l; 8301 8302 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8303 8304 ctxt->gpa_available = false; 8305 ctxt->eflags = kvm_get_rflags(vcpu); 8306 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8307 8308 ctxt->eip = kvm_rip_read(vcpu); 8309 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8310 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8311 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8312 cs_db ? X86EMUL_MODE_PROT32 : 8313 X86EMUL_MODE_PROT16; 8314 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8315 8316 ctxt->interruptibility = 0; 8317 ctxt->have_exception = false; 8318 ctxt->exception.vector = -1; 8319 ctxt->perm_ok = false; 8320 8321 init_decode_cache(ctxt); 8322 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8323 } 8324 8325 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8326 { 8327 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8328 int ret; 8329 8330 init_emulate_ctxt(vcpu); 8331 8332 ctxt->op_bytes = 2; 8333 ctxt->ad_bytes = 2; 8334 ctxt->_eip = ctxt->eip + inc_eip; 8335 ret = emulate_int_real(ctxt, irq); 8336 8337 if (ret != X86EMUL_CONTINUE) { 8338 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8339 } else { 8340 ctxt->eip = ctxt->_eip; 8341 kvm_rip_write(vcpu, ctxt->eip); 8342 kvm_set_rflags(vcpu, ctxt->eflags); 8343 } 8344 } 8345 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8346 8347 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8348 u8 ndata, u8 *insn_bytes, u8 insn_size) 8349 { 8350 struct kvm_run *run = vcpu->run; 8351 u64 info[5]; 8352 u8 info_start; 8353 8354 /* 8355 * Zero the whole array used to retrieve the exit info, as casting to 8356 * u32 for select entries will leave some chunks uninitialized. 8357 */ 8358 memset(&info, 0, sizeof(info)); 8359 8360 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8361 &info[2], (u32 *)&info[3], 8362 (u32 *)&info[4]); 8363 8364 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8365 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8366 8367 /* 8368 * There's currently space for 13 entries, but 5 are used for the exit 8369 * reason and info. Restrict to 4 to reduce the maintenance burden 8370 * when expanding kvm_run.emulation_failure in the future. 8371 */ 8372 if (WARN_ON_ONCE(ndata > 4)) 8373 ndata = 4; 8374 8375 /* Always include the flags as a 'data' entry. */ 8376 info_start = 1; 8377 run->emulation_failure.flags = 0; 8378 8379 if (insn_size) { 8380 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8381 sizeof(run->emulation_failure.insn_bytes) != 16)); 8382 info_start += 2; 8383 run->emulation_failure.flags |= 8384 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8385 run->emulation_failure.insn_size = insn_size; 8386 memset(run->emulation_failure.insn_bytes, 0x90, 8387 sizeof(run->emulation_failure.insn_bytes)); 8388 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8389 } 8390 8391 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8392 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8393 ndata * sizeof(data[0])); 8394 8395 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8396 } 8397 8398 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8399 { 8400 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8401 8402 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8403 ctxt->fetch.end - ctxt->fetch.data); 8404 } 8405 8406 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8407 u8 ndata) 8408 { 8409 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8410 } 8411 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8412 8413 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8414 { 8415 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8416 } 8417 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8418 8419 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8420 { 8421 struct kvm *kvm = vcpu->kvm; 8422 8423 ++vcpu->stat.insn_emulation_fail; 8424 trace_kvm_emulate_insn_failed(vcpu); 8425 8426 if (emulation_type & EMULTYPE_VMWARE_GP) { 8427 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8428 return 1; 8429 } 8430 8431 if (kvm->arch.exit_on_emulation_error || 8432 (emulation_type & EMULTYPE_SKIP)) { 8433 prepare_emulation_ctxt_failure_exit(vcpu); 8434 return 0; 8435 } 8436 8437 kvm_queue_exception(vcpu, UD_VECTOR); 8438 8439 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8440 prepare_emulation_ctxt_failure_exit(vcpu); 8441 return 0; 8442 } 8443 8444 return 1; 8445 } 8446 8447 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8448 bool write_fault_to_shadow_pgtable, 8449 int emulation_type) 8450 { 8451 gpa_t gpa = cr2_or_gpa; 8452 kvm_pfn_t pfn; 8453 8454 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8455 return false; 8456 8457 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8458 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8459 return false; 8460 8461 if (!vcpu->arch.mmu->root_role.direct) { 8462 /* 8463 * Write permission should be allowed since only 8464 * write access need to be emulated. 8465 */ 8466 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8467 8468 /* 8469 * If the mapping is invalid in guest, let cpu retry 8470 * it to generate fault. 8471 */ 8472 if (gpa == INVALID_GPA) 8473 return true; 8474 } 8475 8476 /* 8477 * Do not retry the unhandleable instruction if it faults on the 8478 * readonly host memory, otherwise it will goto a infinite loop: 8479 * retry instruction -> write #PF -> emulation fail -> retry 8480 * instruction -> ... 8481 */ 8482 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8483 8484 /* 8485 * If the instruction failed on the error pfn, it can not be fixed, 8486 * report the error to userspace. 8487 */ 8488 if (is_error_noslot_pfn(pfn)) 8489 return false; 8490 8491 kvm_release_pfn_clean(pfn); 8492 8493 /* The instructions are well-emulated on direct mmu. */ 8494 if (vcpu->arch.mmu->root_role.direct) { 8495 unsigned int indirect_shadow_pages; 8496 8497 write_lock(&vcpu->kvm->mmu_lock); 8498 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8499 write_unlock(&vcpu->kvm->mmu_lock); 8500 8501 if (indirect_shadow_pages) 8502 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8503 8504 return true; 8505 } 8506 8507 /* 8508 * if emulation was due to access to shadowed page table 8509 * and it failed try to unshadow page and re-enter the 8510 * guest to let CPU execute the instruction. 8511 */ 8512 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8513 8514 /* 8515 * If the access faults on its page table, it can not 8516 * be fixed by unprotecting shadow page and it should 8517 * be reported to userspace. 8518 */ 8519 return !write_fault_to_shadow_pgtable; 8520 } 8521 8522 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8523 gpa_t cr2_or_gpa, int emulation_type) 8524 { 8525 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8526 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8527 8528 last_retry_eip = vcpu->arch.last_retry_eip; 8529 last_retry_addr = vcpu->arch.last_retry_addr; 8530 8531 /* 8532 * If the emulation is caused by #PF and it is non-page_table 8533 * writing instruction, it means the VM-EXIT is caused by shadow 8534 * page protected, we can zap the shadow page and retry this 8535 * instruction directly. 8536 * 8537 * Note: if the guest uses a non-page-table modifying instruction 8538 * on the PDE that points to the instruction, then we will unmap 8539 * the instruction and go to an infinite loop. So, we cache the 8540 * last retried eip and the last fault address, if we meet the eip 8541 * and the address again, we can break out of the potential infinite 8542 * loop. 8543 */ 8544 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8545 8546 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8547 return false; 8548 8549 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8550 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8551 return false; 8552 8553 if (x86_page_table_writing_insn(ctxt)) 8554 return false; 8555 8556 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8557 return false; 8558 8559 vcpu->arch.last_retry_eip = ctxt->eip; 8560 vcpu->arch.last_retry_addr = cr2_or_gpa; 8561 8562 if (!vcpu->arch.mmu->root_role.direct) 8563 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8564 8565 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8566 8567 return true; 8568 } 8569 8570 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8571 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8572 8573 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8574 unsigned long *db) 8575 { 8576 u32 dr6 = 0; 8577 int i; 8578 u32 enable, rwlen; 8579 8580 enable = dr7; 8581 rwlen = dr7 >> 16; 8582 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8583 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8584 dr6 |= (1 << i); 8585 return dr6; 8586 } 8587 8588 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8589 { 8590 struct kvm_run *kvm_run = vcpu->run; 8591 8592 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8593 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8594 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8595 kvm_run->debug.arch.exception = DB_VECTOR; 8596 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8597 return 0; 8598 } 8599 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8600 return 1; 8601 } 8602 8603 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8604 { 8605 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8606 int r; 8607 8608 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8609 if (unlikely(!r)) 8610 return 0; 8611 8612 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8613 8614 /* 8615 * rflags is the old, "raw" value of the flags. The new value has 8616 * not been saved yet. 8617 * 8618 * This is correct even for TF set by the guest, because "the 8619 * processor will not generate this exception after the instruction 8620 * that sets the TF flag". 8621 */ 8622 if (unlikely(rflags & X86_EFLAGS_TF)) 8623 r = kvm_vcpu_do_singlestep(vcpu); 8624 return r; 8625 } 8626 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8627 8628 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8629 { 8630 u32 shadow; 8631 8632 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8633 return true; 8634 8635 /* 8636 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8637 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8638 * to avoid the relatively expensive CPUID lookup. 8639 */ 8640 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8641 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8642 guest_cpuid_is_intel(vcpu); 8643 } 8644 8645 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8646 int emulation_type, int *r) 8647 { 8648 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8649 8650 /* 8651 * Do not check for code breakpoints if hardware has already done the 8652 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8653 * the instruction has passed all exception checks, and all intercepted 8654 * exceptions that trigger emulation have lower priority than code 8655 * breakpoints, i.e. the fact that the intercepted exception occurred 8656 * means any code breakpoints have already been serviced. 8657 * 8658 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8659 * hardware has checked the RIP of the magic prefix, but not the RIP of 8660 * the instruction being emulated. The intent of forced emulation is 8661 * to behave as if KVM intercepted the instruction without an exception 8662 * and without a prefix. 8663 */ 8664 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8665 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8666 return false; 8667 8668 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8669 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8670 struct kvm_run *kvm_run = vcpu->run; 8671 unsigned long eip = kvm_get_linear_rip(vcpu); 8672 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8673 vcpu->arch.guest_debug_dr7, 8674 vcpu->arch.eff_db); 8675 8676 if (dr6 != 0) { 8677 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8678 kvm_run->debug.arch.pc = eip; 8679 kvm_run->debug.arch.exception = DB_VECTOR; 8680 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8681 *r = 0; 8682 return true; 8683 } 8684 } 8685 8686 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8687 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8688 unsigned long eip = kvm_get_linear_rip(vcpu); 8689 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8690 vcpu->arch.dr7, 8691 vcpu->arch.db); 8692 8693 if (dr6 != 0) { 8694 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8695 *r = 1; 8696 return true; 8697 } 8698 } 8699 8700 return false; 8701 } 8702 8703 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8704 { 8705 switch (ctxt->opcode_len) { 8706 case 1: 8707 switch (ctxt->b) { 8708 case 0xe4: /* IN */ 8709 case 0xe5: 8710 case 0xec: 8711 case 0xed: 8712 case 0xe6: /* OUT */ 8713 case 0xe7: 8714 case 0xee: 8715 case 0xef: 8716 case 0x6c: /* INS */ 8717 case 0x6d: 8718 case 0x6e: /* OUTS */ 8719 case 0x6f: 8720 return true; 8721 } 8722 break; 8723 case 2: 8724 switch (ctxt->b) { 8725 case 0x33: /* RDPMC */ 8726 return true; 8727 } 8728 break; 8729 } 8730 8731 return false; 8732 } 8733 8734 /* 8735 * Decode an instruction for emulation. The caller is responsible for handling 8736 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8737 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8738 * code breakpoints have higher priority and thus have already been done by 8739 * hardware. 8740 * 8741 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8742 * response to a machine check. 8743 */ 8744 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8745 void *insn, int insn_len) 8746 { 8747 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8748 int r; 8749 8750 init_emulate_ctxt(vcpu); 8751 8752 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8753 8754 trace_kvm_emulate_insn_start(vcpu); 8755 ++vcpu->stat.insn_emulation; 8756 8757 return r; 8758 } 8759 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8760 8761 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8762 int emulation_type, void *insn, int insn_len) 8763 { 8764 int r; 8765 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8766 bool writeback = true; 8767 bool write_fault_to_spt; 8768 8769 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8770 return 1; 8771 8772 vcpu->arch.l1tf_flush_l1d = true; 8773 8774 /* 8775 * Clear write_fault_to_shadow_pgtable here to ensure it is 8776 * never reused. 8777 */ 8778 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8779 vcpu->arch.write_fault_to_shadow_pgtable = false; 8780 8781 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8782 kvm_clear_exception_queue(vcpu); 8783 8784 /* 8785 * Return immediately if RIP hits a code breakpoint, such #DBs 8786 * are fault-like and are higher priority than any faults on 8787 * the code fetch itself. 8788 */ 8789 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8790 return r; 8791 8792 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8793 insn, insn_len); 8794 if (r != EMULATION_OK) { 8795 if ((emulation_type & EMULTYPE_TRAP_UD) || 8796 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8797 kvm_queue_exception(vcpu, UD_VECTOR); 8798 return 1; 8799 } 8800 if (reexecute_instruction(vcpu, cr2_or_gpa, 8801 write_fault_to_spt, 8802 emulation_type)) 8803 return 1; 8804 8805 if (ctxt->have_exception && 8806 !(emulation_type & EMULTYPE_SKIP)) { 8807 /* 8808 * #UD should result in just EMULATION_FAILED, and trap-like 8809 * exception should not be encountered during decode. 8810 */ 8811 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8812 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8813 inject_emulated_exception(vcpu); 8814 return 1; 8815 } 8816 return handle_emulation_failure(vcpu, emulation_type); 8817 } 8818 } 8819 8820 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8821 !is_vmware_backdoor_opcode(ctxt)) { 8822 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8823 return 1; 8824 } 8825 8826 /* 8827 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8828 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8829 * The caller is responsible for updating interruptibility state and 8830 * injecting single-step #DBs. 8831 */ 8832 if (emulation_type & EMULTYPE_SKIP) { 8833 if (ctxt->mode != X86EMUL_MODE_PROT64) 8834 ctxt->eip = (u32)ctxt->_eip; 8835 else 8836 ctxt->eip = ctxt->_eip; 8837 8838 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8839 r = 1; 8840 goto writeback; 8841 } 8842 8843 kvm_rip_write(vcpu, ctxt->eip); 8844 if (ctxt->eflags & X86_EFLAGS_RF) 8845 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8846 return 1; 8847 } 8848 8849 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8850 return 1; 8851 8852 /* this is needed for vmware backdoor interface to work since it 8853 changes registers values during IO operation */ 8854 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8855 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8856 emulator_invalidate_register_cache(ctxt); 8857 } 8858 8859 restart: 8860 if (emulation_type & EMULTYPE_PF) { 8861 /* Save the faulting GPA (cr2) in the address field */ 8862 ctxt->exception.address = cr2_or_gpa; 8863 8864 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8865 if (vcpu->arch.mmu->root_role.direct) { 8866 ctxt->gpa_available = true; 8867 ctxt->gpa_val = cr2_or_gpa; 8868 } 8869 } else { 8870 /* Sanitize the address out of an abundance of paranoia. */ 8871 ctxt->exception.address = 0; 8872 } 8873 8874 r = x86_emulate_insn(ctxt); 8875 8876 if (r == EMULATION_INTERCEPTED) 8877 return 1; 8878 8879 if (r == EMULATION_FAILED) { 8880 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8881 emulation_type)) 8882 return 1; 8883 8884 return handle_emulation_failure(vcpu, emulation_type); 8885 } 8886 8887 if (ctxt->have_exception) { 8888 r = 1; 8889 inject_emulated_exception(vcpu); 8890 } else if (vcpu->arch.pio.count) { 8891 if (!vcpu->arch.pio.in) { 8892 /* FIXME: return into emulator if single-stepping. */ 8893 vcpu->arch.pio.count = 0; 8894 } else { 8895 writeback = false; 8896 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8897 } 8898 r = 0; 8899 } else if (vcpu->mmio_needed) { 8900 ++vcpu->stat.mmio_exits; 8901 8902 if (!vcpu->mmio_is_write) 8903 writeback = false; 8904 r = 0; 8905 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8906 } else if (vcpu->arch.complete_userspace_io) { 8907 writeback = false; 8908 r = 0; 8909 } else if (r == EMULATION_RESTART) 8910 goto restart; 8911 else 8912 r = 1; 8913 8914 writeback: 8915 if (writeback) { 8916 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8917 toggle_interruptibility(vcpu, ctxt->interruptibility); 8918 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8919 8920 /* 8921 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8922 * only supports code breakpoints and general detect #DB, both 8923 * of which are fault-like. 8924 */ 8925 if (!ctxt->have_exception || 8926 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8927 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8928 if (ctxt->is_branch) 8929 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8930 kvm_rip_write(vcpu, ctxt->eip); 8931 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8932 r = kvm_vcpu_do_singlestep(vcpu); 8933 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8934 __kvm_set_rflags(vcpu, ctxt->eflags); 8935 } 8936 8937 /* 8938 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8939 * do nothing, and it will be requested again as soon as 8940 * the shadow expires. But we still need to check here, 8941 * because POPF has no interrupt shadow. 8942 */ 8943 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8944 kvm_make_request(KVM_REQ_EVENT, vcpu); 8945 } else 8946 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8947 8948 return r; 8949 } 8950 8951 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8952 { 8953 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8954 } 8955 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8956 8957 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8958 void *insn, int insn_len) 8959 { 8960 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8961 } 8962 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8963 8964 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8965 { 8966 vcpu->arch.pio.count = 0; 8967 return 1; 8968 } 8969 8970 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8971 { 8972 vcpu->arch.pio.count = 0; 8973 8974 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8975 return 1; 8976 8977 return kvm_skip_emulated_instruction(vcpu); 8978 } 8979 8980 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8981 unsigned short port) 8982 { 8983 unsigned long val = kvm_rax_read(vcpu); 8984 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8985 8986 if (ret) 8987 return ret; 8988 8989 /* 8990 * Workaround userspace that relies on old KVM behavior of %rip being 8991 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8992 */ 8993 if (port == 0x7e && 8994 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8995 vcpu->arch.complete_userspace_io = 8996 complete_fast_pio_out_port_0x7e; 8997 kvm_skip_emulated_instruction(vcpu); 8998 } else { 8999 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9000 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9001 } 9002 return 0; 9003 } 9004 9005 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9006 { 9007 unsigned long val; 9008 9009 /* We should only ever be called with arch.pio.count equal to 1 */ 9010 BUG_ON(vcpu->arch.pio.count != 1); 9011 9012 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9013 vcpu->arch.pio.count = 0; 9014 return 1; 9015 } 9016 9017 /* For size less than 4 we merge, else we zero extend */ 9018 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9019 9020 complete_emulator_pio_in(vcpu, &val); 9021 kvm_rax_write(vcpu, val); 9022 9023 return kvm_skip_emulated_instruction(vcpu); 9024 } 9025 9026 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9027 unsigned short port) 9028 { 9029 unsigned long val; 9030 int ret; 9031 9032 /* For size less than 4 we merge, else we zero extend */ 9033 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9034 9035 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9036 if (ret) { 9037 kvm_rax_write(vcpu, val); 9038 return ret; 9039 } 9040 9041 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9042 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9043 9044 return 0; 9045 } 9046 9047 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9048 { 9049 int ret; 9050 9051 if (in) 9052 ret = kvm_fast_pio_in(vcpu, size, port); 9053 else 9054 ret = kvm_fast_pio_out(vcpu, size, port); 9055 return ret && kvm_skip_emulated_instruction(vcpu); 9056 } 9057 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9058 9059 static int kvmclock_cpu_down_prep(unsigned int cpu) 9060 { 9061 __this_cpu_write(cpu_tsc_khz, 0); 9062 return 0; 9063 } 9064 9065 static void tsc_khz_changed(void *data) 9066 { 9067 struct cpufreq_freqs *freq = data; 9068 unsigned long khz = 0; 9069 9070 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9071 9072 if (data) 9073 khz = freq->new; 9074 else 9075 khz = cpufreq_quick_get(raw_smp_processor_id()); 9076 if (!khz) 9077 khz = tsc_khz; 9078 __this_cpu_write(cpu_tsc_khz, khz); 9079 } 9080 9081 #ifdef CONFIG_X86_64 9082 static void kvm_hyperv_tsc_notifier(void) 9083 { 9084 struct kvm *kvm; 9085 int cpu; 9086 9087 mutex_lock(&kvm_lock); 9088 list_for_each_entry(kvm, &vm_list, vm_list) 9089 kvm_make_mclock_inprogress_request(kvm); 9090 9091 /* no guest entries from this point */ 9092 hyperv_stop_tsc_emulation(); 9093 9094 /* TSC frequency always matches when on Hyper-V */ 9095 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9096 for_each_present_cpu(cpu) 9097 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9098 } 9099 kvm_caps.max_guest_tsc_khz = tsc_khz; 9100 9101 list_for_each_entry(kvm, &vm_list, vm_list) { 9102 __kvm_start_pvclock_update(kvm); 9103 pvclock_update_vm_gtod_copy(kvm); 9104 kvm_end_pvclock_update(kvm); 9105 } 9106 9107 mutex_unlock(&kvm_lock); 9108 } 9109 #endif 9110 9111 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9112 { 9113 struct kvm *kvm; 9114 struct kvm_vcpu *vcpu; 9115 int send_ipi = 0; 9116 unsigned long i; 9117 9118 /* 9119 * We allow guests to temporarily run on slowing clocks, 9120 * provided we notify them after, or to run on accelerating 9121 * clocks, provided we notify them before. Thus time never 9122 * goes backwards. 9123 * 9124 * However, we have a problem. We can't atomically update 9125 * the frequency of a given CPU from this function; it is 9126 * merely a notifier, which can be called from any CPU. 9127 * Changing the TSC frequency at arbitrary points in time 9128 * requires a recomputation of local variables related to 9129 * the TSC for each VCPU. We must flag these local variables 9130 * to be updated and be sure the update takes place with the 9131 * new frequency before any guests proceed. 9132 * 9133 * Unfortunately, the combination of hotplug CPU and frequency 9134 * change creates an intractable locking scenario; the order 9135 * of when these callouts happen is undefined with respect to 9136 * CPU hotplug, and they can race with each other. As such, 9137 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9138 * undefined; you can actually have a CPU frequency change take 9139 * place in between the computation of X and the setting of the 9140 * variable. To protect against this problem, all updates of 9141 * the per_cpu tsc_khz variable are done in an interrupt 9142 * protected IPI, and all callers wishing to update the value 9143 * must wait for a synchronous IPI to complete (which is trivial 9144 * if the caller is on the CPU already). This establishes the 9145 * necessary total order on variable updates. 9146 * 9147 * Note that because a guest time update may take place 9148 * anytime after the setting of the VCPU's request bit, the 9149 * correct TSC value must be set before the request. However, 9150 * to ensure the update actually makes it to any guest which 9151 * starts running in hardware virtualization between the set 9152 * and the acquisition of the spinlock, we must also ping the 9153 * CPU after setting the request bit. 9154 * 9155 */ 9156 9157 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9158 9159 mutex_lock(&kvm_lock); 9160 list_for_each_entry(kvm, &vm_list, vm_list) { 9161 kvm_for_each_vcpu(i, vcpu, kvm) { 9162 if (vcpu->cpu != cpu) 9163 continue; 9164 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9165 if (vcpu->cpu != raw_smp_processor_id()) 9166 send_ipi = 1; 9167 } 9168 } 9169 mutex_unlock(&kvm_lock); 9170 9171 if (freq->old < freq->new && send_ipi) { 9172 /* 9173 * We upscale the frequency. Must make the guest 9174 * doesn't see old kvmclock values while running with 9175 * the new frequency, otherwise we risk the guest sees 9176 * time go backwards. 9177 * 9178 * In case we update the frequency for another cpu 9179 * (which might be in guest context) send an interrupt 9180 * to kick the cpu out of guest context. Next time 9181 * guest context is entered kvmclock will be updated, 9182 * so the guest will not see stale values. 9183 */ 9184 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9185 } 9186 } 9187 9188 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9189 void *data) 9190 { 9191 struct cpufreq_freqs *freq = data; 9192 int cpu; 9193 9194 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9195 return 0; 9196 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9197 return 0; 9198 9199 for_each_cpu(cpu, freq->policy->cpus) 9200 __kvmclock_cpufreq_notifier(freq, cpu); 9201 9202 return 0; 9203 } 9204 9205 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9206 .notifier_call = kvmclock_cpufreq_notifier 9207 }; 9208 9209 static int kvmclock_cpu_online(unsigned int cpu) 9210 { 9211 tsc_khz_changed(NULL); 9212 return 0; 9213 } 9214 9215 static void kvm_timer_init(void) 9216 { 9217 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9218 max_tsc_khz = tsc_khz; 9219 9220 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9221 struct cpufreq_policy *policy; 9222 int cpu; 9223 9224 cpu = get_cpu(); 9225 policy = cpufreq_cpu_get(cpu); 9226 if (policy) { 9227 if (policy->cpuinfo.max_freq) 9228 max_tsc_khz = policy->cpuinfo.max_freq; 9229 cpufreq_cpu_put(policy); 9230 } 9231 put_cpu(); 9232 } 9233 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9234 CPUFREQ_TRANSITION_NOTIFIER); 9235 9236 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9237 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9238 } 9239 } 9240 9241 #ifdef CONFIG_X86_64 9242 static void pvclock_gtod_update_fn(struct work_struct *work) 9243 { 9244 struct kvm *kvm; 9245 struct kvm_vcpu *vcpu; 9246 unsigned long i; 9247 9248 mutex_lock(&kvm_lock); 9249 list_for_each_entry(kvm, &vm_list, vm_list) 9250 kvm_for_each_vcpu(i, vcpu, kvm) 9251 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9252 atomic_set(&kvm_guest_has_master_clock, 0); 9253 mutex_unlock(&kvm_lock); 9254 } 9255 9256 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9257 9258 /* 9259 * Indirection to move queue_work() out of the tk_core.seq write held 9260 * region to prevent possible deadlocks against time accessors which 9261 * are invoked with work related locks held. 9262 */ 9263 static void pvclock_irq_work_fn(struct irq_work *w) 9264 { 9265 queue_work(system_long_wq, &pvclock_gtod_work); 9266 } 9267 9268 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9269 9270 /* 9271 * Notification about pvclock gtod data update. 9272 */ 9273 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9274 void *priv) 9275 { 9276 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9277 struct timekeeper *tk = priv; 9278 9279 update_pvclock_gtod(tk); 9280 9281 /* 9282 * Disable master clock if host does not trust, or does not use, 9283 * TSC based clocksource. Delegate queue_work() to irq_work as 9284 * this is invoked with tk_core.seq write held. 9285 */ 9286 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9287 atomic_read(&kvm_guest_has_master_clock) != 0) 9288 irq_work_queue(&pvclock_irq_work); 9289 return 0; 9290 } 9291 9292 static struct notifier_block pvclock_gtod_notifier = { 9293 .notifier_call = pvclock_gtod_notify, 9294 }; 9295 #endif 9296 9297 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9298 { 9299 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9300 9301 #define __KVM_X86_OP(func) \ 9302 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9303 #define KVM_X86_OP(func) \ 9304 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9305 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9306 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9307 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9308 (void *)__static_call_return0); 9309 #include <asm/kvm-x86-ops.h> 9310 #undef __KVM_X86_OP 9311 9312 kvm_pmu_ops_update(ops->pmu_ops); 9313 } 9314 9315 static int kvm_x86_check_processor_compatibility(void) 9316 { 9317 int cpu = smp_processor_id(); 9318 struct cpuinfo_x86 *c = &cpu_data(cpu); 9319 9320 /* 9321 * Compatibility checks are done when loading KVM and when enabling 9322 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9323 * compatible, i.e. KVM should never perform a compatibility check on 9324 * an offline CPU. 9325 */ 9326 WARN_ON(!cpu_online(cpu)); 9327 9328 if (__cr4_reserved_bits(cpu_has, c) != 9329 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9330 return -EIO; 9331 9332 return static_call(kvm_x86_check_processor_compatibility)(); 9333 } 9334 9335 static void kvm_x86_check_cpu_compat(void *ret) 9336 { 9337 *(int *)ret = kvm_x86_check_processor_compatibility(); 9338 } 9339 9340 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9341 { 9342 u64 host_pat; 9343 int r, cpu; 9344 9345 if (kvm_x86_ops.hardware_enable) { 9346 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9347 return -EEXIST; 9348 } 9349 9350 /* 9351 * KVM explicitly assumes that the guest has an FPU and 9352 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9353 * vCPU's FPU state as a fxregs_state struct. 9354 */ 9355 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9356 pr_err("inadequate fpu\n"); 9357 return -EOPNOTSUPP; 9358 } 9359 9360 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9361 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9362 return -EOPNOTSUPP; 9363 } 9364 9365 /* 9366 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9367 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9368 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9369 * with an exception. PAT[0] is set to WB on RESET and also by the 9370 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9371 */ 9372 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9373 (host_pat & GENMASK(2, 0)) != 6) { 9374 pr_err("host PAT[0] is not WB\n"); 9375 return -EIO; 9376 } 9377 9378 x86_emulator_cache = kvm_alloc_emulator_cache(); 9379 if (!x86_emulator_cache) { 9380 pr_err("failed to allocate cache for x86 emulator\n"); 9381 return -ENOMEM; 9382 } 9383 9384 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9385 if (!user_return_msrs) { 9386 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9387 r = -ENOMEM; 9388 goto out_free_x86_emulator_cache; 9389 } 9390 kvm_nr_uret_msrs = 0; 9391 9392 r = kvm_mmu_vendor_module_init(); 9393 if (r) 9394 goto out_free_percpu; 9395 9396 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9397 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9398 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9399 } 9400 9401 rdmsrl_safe(MSR_EFER, &host_efer); 9402 9403 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9404 rdmsrl(MSR_IA32_XSS, host_xss); 9405 9406 kvm_init_pmu_capability(ops->pmu_ops); 9407 9408 r = ops->hardware_setup(); 9409 if (r != 0) 9410 goto out_mmu_exit; 9411 9412 kvm_ops_update(ops); 9413 9414 for_each_online_cpu(cpu) { 9415 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9416 if (r < 0) 9417 goto out_unwind_ops; 9418 } 9419 9420 /* 9421 * Point of no return! DO NOT add error paths below this point unless 9422 * absolutely necessary, as most operations from this point forward 9423 * require unwinding. 9424 */ 9425 kvm_timer_init(); 9426 9427 if (pi_inject_timer == -1) 9428 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9429 #ifdef CONFIG_X86_64 9430 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9431 9432 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9433 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9434 #endif 9435 9436 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9437 9438 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9439 kvm_caps.supported_xss = 0; 9440 9441 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9442 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9443 #undef __kvm_cpu_cap_has 9444 9445 if (kvm_caps.has_tsc_control) { 9446 /* 9447 * Make sure the user can only configure tsc_khz values that 9448 * fit into a signed integer. 9449 * A min value is not calculated because it will always 9450 * be 1 on all machines. 9451 */ 9452 u64 max = min(0x7fffffffULL, 9453 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9454 kvm_caps.max_guest_tsc_khz = max; 9455 } 9456 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9457 kvm_init_msr_list(); 9458 return 0; 9459 9460 out_unwind_ops: 9461 kvm_x86_ops.hardware_enable = NULL; 9462 static_call(kvm_x86_hardware_unsetup)(); 9463 out_mmu_exit: 9464 kvm_mmu_vendor_module_exit(); 9465 out_free_percpu: 9466 free_percpu(user_return_msrs); 9467 out_free_x86_emulator_cache: 9468 kmem_cache_destroy(x86_emulator_cache); 9469 return r; 9470 } 9471 9472 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9473 { 9474 int r; 9475 9476 mutex_lock(&vendor_module_lock); 9477 r = __kvm_x86_vendor_init(ops); 9478 mutex_unlock(&vendor_module_lock); 9479 9480 return r; 9481 } 9482 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9483 9484 void kvm_x86_vendor_exit(void) 9485 { 9486 kvm_unregister_perf_callbacks(); 9487 9488 #ifdef CONFIG_X86_64 9489 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9490 clear_hv_tscchange_cb(); 9491 #endif 9492 kvm_lapic_exit(); 9493 9494 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9495 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9496 CPUFREQ_TRANSITION_NOTIFIER); 9497 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9498 } 9499 #ifdef CONFIG_X86_64 9500 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9501 irq_work_sync(&pvclock_irq_work); 9502 cancel_work_sync(&pvclock_gtod_work); 9503 #endif 9504 static_call(kvm_x86_hardware_unsetup)(); 9505 kvm_mmu_vendor_module_exit(); 9506 free_percpu(user_return_msrs); 9507 kmem_cache_destroy(x86_emulator_cache); 9508 #ifdef CONFIG_KVM_XEN 9509 static_key_deferred_flush(&kvm_xen_enabled); 9510 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9511 #endif 9512 mutex_lock(&vendor_module_lock); 9513 kvm_x86_ops.hardware_enable = NULL; 9514 mutex_unlock(&vendor_module_lock); 9515 } 9516 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9517 9518 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9519 { 9520 /* 9521 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9522 * local APIC is in-kernel, the run loop will detect the non-runnable 9523 * state and halt the vCPU. Exit to userspace if the local APIC is 9524 * managed by userspace, in which case userspace is responsible for 9525 * handling wake events. 9526 */ 9527 ++vcpu->stat.halt_exits; 9528 if (lapic_in_kernel(vcpu)) { 9529 vcpu->arch.mp_state = state; 9530 return 1; 9531 } else { 9532 vcpu->run->exit_reason = reason; 9533 return 0; 9534 } 9535 } 9536 9537 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9538 { 9539 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9540 } 9541 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9542 9543 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9544 { 9545 int ret = kvm_skip_emulated_instruction(vcpu); 9546 /* 9547 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9548 * KVM_EXIT_DEBUG here. 9549 */ 9550 return kvm_emulate_halt_noskip(vcpu) && ret; 9551 } 9552 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9553 9554 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9555 { 9556 int ret = kvm_skip_emulated_instruction(vcpu); 9557 9558 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9559 KVM_EXIT_AP_RESET_HOLD) && ret; 9560 } 9561 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9562 9563 #ifdef CONFIG_X86_64 9564 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9565 unsigned long clock_type) 9566 { 9567 struct kvm_clock_pairing clock_pairing; 9568 struct timespec64 ts; 9569 u64 cycle; 9570 int ret; 9571 9572 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9573 return -KVM_EOPNOTSUPP; 9574 9575 /* 9576 * When tsc is in permanent catchup mode guests won't be able to use 9577 * pvclock_read_retry loop to get consistent view of pvclock 9578 */ 9579 if (vcpu->arch.tsc_always_catchup) 9580 return -KVM_EOPNOTSUPP; 9581 9582 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9583 return -KVM_EOPNOTSUPP; 9584 9585 clock_pairing.sec = ts.tv_sec; 9586 clock_pairing.nsec = ts.tv_nsec; 9587 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9588 clock_pairing.flags = 0; 9589 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9590 9591 ret = 0; 9592 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9593 sizeof(struct kvm_clock_pairing))) 9594 ret = -KVM_EFAULT; 9595 9596 return ret; 9597 } 9598 #endif 9599 9600 /* 9601 * kvm_pv_kick_cpu_op: Kick a vcpu. 9602 * 9603 * @apicid - apicid of vcpu to be kicked. 9604 */ 9605 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9606 { 9607 /* 9608 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9609 * common code, e.g. for tracing. Defer initialization to the compiler. 9610 */ 9611 struct kvm_lapic_irq lapic_irq = { 9612 .delivery_mode = APIC_DM_REMRD, 9613 .dest_mode = APIC_DEST_PHYSICAL, 9614 .shorthand = APIC_DEST_NOSHORT, 9615 .dest_id = apicid, 9616 }; 9617 9618 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9619 } 9620 9621 bool kvm_apicv_activated(struct kvm *kvm) 9622 { 9623 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9624 } 9625 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9626 9627 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9628 { 9629 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9630 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9631 9632 return (vm_reasons | vcpu_reasons) == 0; 9633 } 9634 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9635 9636 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9637 enum kvm_apicv_inhibit reason, bool set) 9638 { 9639 if (set) 9640 __set_bit(reason, inhibits); 9641 else 9642 __clear_bit(reason, inhibits); 9643 9644 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9645 } 9646 9647 static void kvm_apicv_init(struct kvm *kvm) 9648 { 9649 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9650 9651 init_rwsem(&kvm->arch.apicv_update_lock); 9652 9653 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9654 9655 if (!enable_apicv) 9656 set_or_clear_apicv_inhibit(inhibits, 9657 APICV_INHIBIT_REASON_DISABLE, true); 9658 } 9659 9660 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9661 { 9662 struct kvm_vcpu *target = NULL; 9663 struct kvm_apic_map *map; 9664 9665 vcpu->stat.directed_yield_attempted++; 9666 9667 if (single_task_running()) 9668 goto no_yield; 9669 9670 rcu_read_lock(); 9671 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9672 9673 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9674 target = map->phys_map[dest_id]->vcpu; 9675 9676 rcu_read_unlock(); 9677 9678 if (!target || !READ_ONCE(target->ready)) 9679 goto no_yield; 9680 9681 /* Ignore requests to yield to self */ 9682 if (vcpu == target) 9683 goto no_yield; 9684 9685 if (kvm_vcpu_yield_to(target) <= 0) 9686 goto no_yield; 9687 9688 vcpu->stat.directed_yield_successful++; 9689 9690 no_yield: 9691 return; 9692 } 9693 9694 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9695 { 9696 u64 ret = vcpu->run->hypercall.ret; 9697 9698 if (!is_64_bit_mode(vcpu)) 9699 ret = (u32)ret; 9700 kvm_rax_write(vcpu, ret); 9701 ++vcpu->stat.hypercalls; 9702 return kvm_skip_emulated_instruction(vcpu); 9703 } 9704 9705 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9706 { 9707 unsigned long nr, a0, a1, a2, a3, ret; 9708 int op_64_bit; 9709 9710 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9711 return kvm_xen_hypercall(vcpu); 9712 9713 if (kvm_hv_hypercall_enabled(vcpu)) 9714 return kvm_hv_hypercall(vcpu); 9715 9716 nr = kvm_rax_read(vcpu); 9717 a0 = kvm_rbx_read(vcpu); 9718 a1 = kvm_rcx_read(vcpu); 9719 a2 = kvm_rdx_read(vcpu); 9720 a3 = kvm_rsi_read(vcpu); 9721 9722 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9723 9724 op_64_bit = is_64_bit_hypercall(vcpu); 9725 if (!op_64_bit) { 9726 nr &= 0xFFFFFFFF; 9727 a0 &= 0xFFFFFFFF; 9728 a1 &= 0xFFFFFFFF; 9729 a2 &= 0xFFFFFFFF; 9730 a3 &= 0xFFFFFFFF; 9731 } 9732 9733 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9734 ret = -KVM_EPERM; 9735 goto out; 9736 } 9737 9738 ret = -KVM_ENOSYS; 9739 9740 switch (nr) { 9741 case KVM_HC_VAPIC_POLL_IRQ: 9742 ret = 0; 9743 break; 9744 case KVM_HC_KICK_CPU: 9745 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9746 break; 9747 9748 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9749 kvm_sched_yield(vcpu, a1); 9750 ret = 0; 9751 break; 9752 #ifdef CONFIG_X86_64 9753 case KVM_HC_CLOCK_PAIRING: 9754 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9755 break; 9756 #endif 9757 case KVM_HC_SEND_IPI: 9758 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9759 break; 9760 9761 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9762 break; 9763 case KVM_HC_SCHED_YIELD: 9764 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9765 break; 9766 9767 kvm_sched_yield(vcpu, a0); 9768 ret = 0; 9769 break; 9770 case KVM_HC_MAP_GPA_RANGE: { 9771 u64 gpa = a0, npages = a1, attrs = a2; 9772 9773 ret = -KVM_ENOSYS; 9774 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9775 break; 9776 9777 if (!PAGE_ALIGNED(gpa) || !npages || 9778 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9779 ret = -KVM_EINVAL; 9780 break; 9781 } 9782 9783 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9784 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9785 vcpu->run->hypercall.args[0] = gpa; 9786 vcpu->run->hypercall.args[1] = npages; 9787 vcpu->run->hypercall.args[2] = attrs; 9788 vcpu->run->hypercall.longmode = op_64_bit; 9789 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9790 return 0; 9791 } 9792 default: 9793 ret = -KVM_ENOSYS; 9794 break; 9795 } 9796 out: 9797 if (!op_64_bit) 9798 ret = (u32)ret; 9799 kvm_rax_write(vcpu, ret); 9800 9801 ++vcpu->stat.hypercalls; 9802 return kvm_skip_emulated_instruction(vcpu); 9803 } 9804 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9805 9806 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9807 { 9808 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9809 char instruction[3]; 9810 unsigned long rip = kvm_rip_read(vcpu); 9811 9812 /* 9813 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9814 * the pieces. 9815 */ 9816 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9817 ctxt->exception.error_code_valid = false; 9818 ctxt->exception.vector = UD_VECTOR; 9819 ctxt->have_exception = true; 9820 return X86EMUL_PROPAGATE_FAULT; 9821 } 9822 9823 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9824 9825 return emulator_write_emulated(ctxt, rip, instruction, 3, 9826 &ctxt->exception); 9827 } 9828 9829 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9830 { 9831 return vcpu->run->request_interrupt_window && 9832 likely(!pic_in_kernel(vcpu->kvm)); 9833 } 9834 9835 /* Called within kvm->srcu read side. */ 9836 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9837 { 9838 struct kvm_run *kvm_run = vcpu->run; 9839 9840 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9841 kvm_run->cr8 = kvm_get_cr8(vcpu); 9842 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9843 9844 kvm_run->ready_for_interrupt_injection = 9845 pic_in_kernel(vcpu->kvm) || 9846 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9847 9848 if (is_smm(vcpu)) 9849 kvm_run->flags |= KVM_RUN_X86_SMM; 9850 } 9851 9852 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9853 { 9854 int max_irr, tpr; 9855 9856 if (!kvm_x86_ops.update_cr8_intercept) 9857 return; 9858 9859 if (!lapic_in_kernel(vcpu)) 9860 return; 9861 9862 if (vcpu->arch.apic->apicv_active) 9863 return; 9864 9865 if (!vcpu->arch.apic->vapic_addr) 9866 max_irr = kvm_lapic_find_highest_irr(vcpu); 9867 else 9868 max_irr = -1; 9869 9870 if (max_irr != -1) 9871 max_irr >>= 4; 9872 9873 tpr = kvm_lapic_get_cr8(vcpu); 9874 9875 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9876 } 9877 9878 9879 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9880 { 9881 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9882 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9883 return 1; 9884 } 9885 9886 return kvm_x86_ops.nested_ops->check_events(vcpu); 9887 } 9888 9889 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9890 { 9891 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9892 vcpu->arch.exception.has_error_code, 9893 vcpu->arch.exception.error_code, 9894 vcpu->arch.exception.injected); 9895 9896 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9897 vcpu->arch.exception.error_code = false; 9898 static_call(kvm_x86_inject_exception)(vcpu); 9899 } 9900 9901 /* 9902 * Check for any event (interrupt or exception) that is ready to be injected, 9903 * and if there is at least one event, inject the event with the highest 9904 * priority. This handles both "pending" events, i.e. events that have never 9905 * been injected into the guest, and "injected" events, i.e. events that were 9906 * injected as part of a previous VM-Enter, but weren't successfully delivered 9907 * and need to be re-injected. 9908 * 9909 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9910 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9911 * be able to inject exceptions in the "middle" of an instruction, and so must 9912 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9913 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9914 * boundaries is necessary and correct. 9915 * 9916 * For simplicity, KVM uses a single path to inject all events (except events 9917 * that are injected directly from L1 to L2) and doesn't explicitly track 9918 * instruction boundaries for asynchronous events. However, because VM-Exits 9919 * that can occur during instruction execution typically result in KVM skipping 9920 * the instruction or injecting an exception, e.g. instruction and exception 9921 * intercepts, and because pending exceptions have higher priority than pending 9922 * interrupts, KVM still honors instruction boundaries in most scenarios. 9923 * 9924 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9925 * the instruction or inject an exception, then KVM can incorrecty inject a new 9926 * asynchrounous event if the event became pending after the CPU fetched the 9927 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9928 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9929 * injected on the restarted instruction instead of being deferred until the 9930 * instruction completes. 9931 * 9932 * In practice, this virtualization hole is unlikely to be observed by the 9933 * guest, and even less likely to cause functional problems. To detect the 9934 * hole, the guest would have to trigger an event on a side effect of an early 9935 * phase of instruction execution, e.g. on the instruction fetch from memory. 9936 * And for it to be a functional problem, the guest would need to depend on the 9937 * ordering between that side effect, the instruction completing, _and_ the 9938 * delivery of the asynchronous event. 9939 */ 9940 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9941 bool *req_immediate_exit) 9942 { 9943 bool can_inject; 9944 int r; 9945 9946 /* 9947 * Process nested events first, as nested VM-Exit supercedes event 9948 * re-injection. If there's an event queued for re-injection, it will 9949 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9950 */ 9951 if (is_guest_mode(vcpu)) 9952 r = kvm_check_nested_events(vcpu); 9953 else 9954 r = 0; 9955 9956 /* 9957 * Re-inject exceptions and events *especially* if immediate entry+exit 9958 * to/from L2 is needed, as any event that has already been injected 9959 * into L2 needs to complete its lifecycle before injecting a new event. 9960 * 9961 * Don't re-inject an NMI or interrupt if there is a pending exception. 9962 * This collision arises if an exception occurred while vectoring the 9963 * injected event, KVM intercepted said exception, and KVM ultimately 9964 * determined the fault belongs to the guest and queues the exception 9965 * for injection back into the guest. 9966 * 9967 * "Injected" interrupts can also collide with pending exceptions if 9968 * userspace ignores the "ready for injection" flag and blindly queues 9969 * an interrupt. In that case, prioritizing the exception is correct, 9970 * as the exception "occurred" before the exit to userspace. Trap-like 9971 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9972 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9973 * priority, they're only generated (pended) during instruction 9974 * execution, and interrupts are recognized at instruction boundaries. 9975 * Thus a pending fault-like exception means the fault occurred on the 9976 * *previous* instruction and must be serviced prior to recognizing any 9977 * new events in order to fully complete the previous instruction. 9978 */ 9979 if (vcpu->arch.exception.injected) 9980 kvm_inject_exception(vcpu); 9981 else if (kvm_is_exception_pending(vcpu)) 9982 ; /* see above */ 9983 else if (vcpu->arch.nmi_injected) 9984 static_call(kvm_x86_inject_nmi)(vcpu); 9985 else if (vcpu->arch.interrupt.injected) 9986 static_call(kvm_x86_inject_irq)(vcpu, true); 9987 9988 /* 9989 * Exceptions that morph to VM-Exits are handled above, and pending 9990 * exceptions on top of injected exceptions that do not VM-Exit should 9991 * either morph to #DF or, sadly, override the injected exception. 9992 */ 9993 WARN_ON_ONCE(vcpu->arch.exception.injected && 9994 vcpu->arch.exception.pending); 9995 9996 /* 9997 * Bail if immediate entry+exit to/from the guest is needed to complete 9998 * nested VM-Enter or event re-injection so that a different pending 9999 * event can be serviced (or if KVM needs to exit to userspace). 10000 * 10001 * Otherwise, continue processing events even if VM-Exit occurred. The 10002 * VM-Exit will have cleared exceptions that were meant for L2, but 10003 * there may now be events that can be injected into L1. 10004 */ 10005 if (r < 0) 10006 goto out; 10007 10008 /* 10009 * A pending exception VM-Exit should either result in nested VM-Exit 10010 * or force an immediate re-entry and exit to/from L2, and exception 10011 * VM-Exits cannot be injected (flag should _never_ be set). 10012 */ 10013 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10014 vcpu->arch.exception_vmexit.pending); 10015 10016 /* 10017 * New events, other than exceptions, cannot be injected if KVM needs 10018 * to re-inject a previous event. See above comments on re-injecting 10019 * for why pending exceptions get priority. 10020 */ 10021 can_inject = !kvm_event_needs_reinjection(vcpu); 10022 10023 if (vcpu->arch.exception.pending) { 10024 /* 10025 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10026 * value pushed on the stack. Trap-like exception and all #DBs 10027 * leave RF as-is (KVM follows Intel's behavior in this regard; 10028 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10029 * 10030 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10031 * describe the behavior of General Detect #DBs, which are 10032 * fault-like. They do _not_ set RF, a la code breakpoints. 10033 */ 10034 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10035 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10036 X86_EFLAGS_RF); 10037 10038 if (vcpu->arch.exception.vector == DB_VECTOR) { 10039 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10040 if (vcpu->arch.dr7 & DR7_GD) { 10041 vcpu->arch.dr7 &= ~DR7_GD; 10042 kvm_update_dr7(vcpu); 10043 } 10044 } 10045 10046 kvm_inject_exception(vcpu); 10047 10048 vcpu->arch.exception.pending = false; 10049 vcpu->arch.exception.injected = true; 10050 10051 can_inject = false; 10052 } 10053 10054 /* Don't inject interrupts if the user asked to avoid doing so */ 10055 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10056 return 0; 10057 10058 /* 10059 * Finally, inject interrupt events. If an event cannot be injected 10060 * due to architectural conditions (e.g. IF=0) a window-open exit 10061 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10062 * and can architecturally be injected, but we cannot do it right now: 10063 * an interrupt could have arrived just now and we have to inject it 10064 * as a vmexit, or there could already an event in the queue, which is 10065 * indicated by can_inject. In that case we request an immediate exit 10066 * in order to make progress and get back here for another iteration. 10067 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10068 */ 10069 #ifdef CONFIG_KVM_SMM 10070 if (vcpu->arch.smi_pending) { 10071 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10072 if (r < 0) 10073 goto out; 10074 if (r) { 10075 vcpu->arch.smi_pending = false; 10076 ++vcpu->arch.smi_count; 10077 enter_smm(vcpu); 10078 can_inject = false; 10079 } else 10080 static_call(kvm_x86_enable_smi_window)(vcpu); 10081 } 10082 #endif 10083 10084 if (vcpu->arch.nmi_pending) { 10085 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10086 if (r < 0) 10087 goto out; 10088 if (r) { 10089 --vcpu->arch.nmi_pending; 10090 vcpu->arch.nmi_injected = true; 10091 static_call(kvm_x86_inject_nmi)(vcpu); 10092 can_inject = false; 10093 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10094 } 10095 if (vcpu->arch.nmi_pending) 10096 static_call(kvm_x86_enable_nmi_window)(vcpu); 10097 } 10098 10099 if (kvm_cpu_has_injectable_intr(vcpu)) { 10100 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10101 if (r < 0) 10102 goto out; 10103 if (r) { 10104 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10105 static_call(kvm_x86_inject_irq)(vcpu, false); 10106 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10107 } 10108 if (kvm_cpu_has_injectable_intr(vcpu)) 10109 static_call(kvm_x86_enable_irq_window)(vcpu); 10110 } 10111 10112 if (is_guest_mode(vcpu) && 10113 kvm_x86_ops.nested_ops->has_events && 10114 kvm_x86_ops.nested_ops->has_events(vcpu)) 10115 *req_immediate_exit = true; 10116 10117 /* 10118 * KVM must never queue a new exception while injecting an event; KVM 10119 * is done emulating and should only propagate the to-be-injected event 10120 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10121 * infinite loop as KVM will bail from VM-Enter to inject the pending 10122 * exception and start the cycle all over. 10123 * 10124 * Exempt triple faults as they have special handling and won't put the 10125 * vCPU into an infinite loop. Triple fault can be queued when running 10126 * VMX without unrestricted guest, as that requires KVM to emulate Real 10127 * Mode events (see kvm_inject_realmode_interrupt()). 10128 */ 10129 WARN_ON_ONCE(vcpu->arch.exception.pending || 10130 vcpu->arch.exception_vmexit.pending); 10131 return 0; 10132 10133 out: 10134 if (r == -EBUSY) { 10135 *req_immediate_exit = true; 10136 r = 0; 10137 } 10138 return r; 10139 } 10140 10141 static void process_nmi(struct kvm_vcpu *vcpu) 10142 { 10143 unsigned limit = 2; 10144 10145 /* 10146 * x86 is limited to one NMI running, and one NMI pending after it. 10147 * If an NMI is already in progress, limit further NMIs to just one. 10148 * Otherwise, allow two (and we'll inject the first one immediately). 10149 */ 10150 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10151 limit = 1; 10152 10153 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10154 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10155 kvm_make_request(KVM_REQ_EVENT, vcpu); 10156 } 10157 10158 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10159 unsigned long *vcpu_bitmap) 10160 { 10161 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10162 } 10163 10164 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10165 { 10166 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10167 } 10168 10169 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10170 { 10171 struct kvm_lapic *apic = vcpu->arch.apic; 10172 bool activate; 10173 10174 if (!lapic_in_kernel(vcpu)) 10175 return; 10176 10177 down_read(&vcpu->kvm->arch.apicv_update_lock); 10178 preempt_disable(); 10179 10180 /* Do not activate APICV when APIC is disabled */ 10181 activate = kvm_vcpu_apicv_activated(vcpu) && 10182 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10183 10184 if (apic->apicv_active == activate) 10185 goto out; 10186 10187 apic->apicv_active = activate; 10188 kvm_apic_update_apicv(vcpu); 10189 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10190 10191 /* 10192 * When APICv gets disabled, we may still have injected interrupts 10193 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10194 * still active when the interrupt got accepted. Make sure 10195 * kvm_check_and_inject_events() is called to check for that. 10196 */ 10197 if (!apic->apicv_active) 10198 kvm_make_request(KVM_REQ_EVENT, vcpu); 10199 10200 out: 10201 preempt_enable(); 10202 up_read(&vcpu->kvm->arch.apicv_update_lock); 10203 } 10204 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10205 10206 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10207 { 10208 if (!lapic_in_kernel(vcpu)) 10209 return; 10210 10211 /* 10212 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10213 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10214 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10215 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10216 * this case so that KVM can the AVIC doorbell to inject interrupts to 10217 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10218 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10219 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10220 * access page is sticky. 10221 */ 10222 if (apic_x2apic_mode(vcpu->arch.apic) && 10223 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10224 kvm_inhibit_apic_access_page(vcpu); 10225 10226 __kvm_vcpu_update_apicv(vcpu); 10227 } 10228 10229 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10230 enum kvm_apicv_inhibit reason, bool set) 10231 { 10232 unsigned long old, new; 10233 10234 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10235 10236 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10237 return; 10238 10239 old = new = kvm->arch.apicv_inhibit_reasons; 10240 10241 set_or_clear_apicv_inhibit(&new, reason, set); 10242 10243 if (!!old != !!new) { 10244 /* 10245 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10246 * false positives in the sanity check WARN in svm_vcpu_run(). 10247 * This task will wait for all vCPUs to ack the kick IRQ before 10248 * updating apicv_inhibit_reasons, and all other vCPUs will 10249 * block on acquiring apicv_update_lock so that vCPUs can't 10250 * redo svm_vcpu_run() without seeing the new inhibit state. 10251 * 10252 * Note, holding apicv_update_lock and taking it in the read 10253 * side (handling the request) also prevents other vCPUs from 10254 * servicing the request with a stale apicv_inhibit_reasons. 10255 */ 10256 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10257 kvm->arch.apicv_inhibit_reasons = new; 10258 if (new) { 10259 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10260 int idx = srcu_read_lock(&kvm->srcu); 10261 10262 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10263 srcu_read_unlock(&kvm->srcu, idx); 10264 } 10265 } else { 10266 kvm->arch.apicv_inhibit_reasons = new; 10267 } 10268 } 10269 10270 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10271 enum kvm_apicv_inhibit reason, bool set) 10272 { 10273 if (!enable_apicv) 10274 return; 10275 10276 down_write(&kvm->arch.apicv_update_lock); 10277 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10278 up_write(&kvm->arch.apicv_update_lock); 10279 } 10280 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10281 10282 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10283 { 10284 if (!kvm_apic_present(vcpu)) 10285 return; 10286 10287 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10288 10289 if (irqchip_split(vcpu->kvm)) 10290 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10291 else { 10292 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10293 if (ioapic_in_kernel(vcpu->kvm)) 10294 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10295 } 10296 10297 if (is_guest_mode(vcpu)) 10298 vcpu->arch.load_eoi_exitmap_pending = true; 10299 else 10300 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10301 } 10302 10303 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10304 { 10305 u64 eoi_exit_bitmap[4]; 10306 10307 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10308 return; 10309 10310 if (to_hv_vcpu(vcpu)) { 10311 bitmap_or((ulong *)eoi_exit_bitmap, 10312 vcpu->arch.ioapic_handled_vectors, 10313 to_hv_synic(vcpu)->vec_bitmap, 256); 10314 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10315 return; 10316 } 10317 10318 static_call_cond(kvm_x86_load_eoi_exitmap)( 10319 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10320 } 10321 10322 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10323 unsigned long start, unsigned long end) 10324 { 10325 unsigned long apic_address; 10326 10327 /* 10328 * The physical address of apic access page is stored in the VMCS. 10329 * Update it when it becomes invalid. 10330 */ 10331 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10332 if (start <= apic_address && apic_address < end) 10333 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10334 } 10335 10336 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10337 { 10338 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10339 } 10340 10341 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10342 { 10343 if (!lapic_in_kernel(vcpu)) 10344 return; 10345 10346 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10347 } 10348 10349 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10350 { 10351 smp_send_reschedule(vcpu->cpu); 10352 } 10353 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10354 10355 /* 10356 * Called within kvm->srcu read side. 10357 * Returns 1 to let vcpu_run() continue the guest execution loop without 10358 * exiting to the userspace. Otherwise, the value will be returned to the 10359 * userspace. 10360 */ 10361 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10362 { 10363 int r; 10364 bool req_int_win = 10365 dm_request_for_irq_injection(vcpu) && 10366 kvm_cpu_accept_dm_intr(vcpu); 10367 fastpath_t exit_fastpath; 10368 10369 bool req_immediate_exit = false; 10370 10371 if (kvm_request_pending(vcpu)) { 10372 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10373 r = -EIO; 10374 goto out; 10375 } 10376 10377 if (kvm_dirty_ring_check_request(vcpu)) { 10378 r = 0; 10379 goto out; 10380 } 10381 10382 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10383 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10384 r = 0; 10385 goto out; 10386 } 10387 } 10388 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10389 kvm_mmu_free_obsolete_roots(vcpu); 10390 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10391 __kvm_migrate_timers(vcpu); 10392 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10393 kvm_update_masterclock(vcpu->kvm); 10394 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10395 kvm_gen_kvmclock_update(vcpu); 10396 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10397 r = kvm_guest_time_update(vcpu); 10398 if (unlikely(r)) 10399 goto out; 10400 } 10401 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10402 kvm_mmu_sync_roots(vcpu); 10403 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10404 kvm_mmu_load_pgd(vcpu); 10405 10406 /* 10407 * Note, the order matters here, as flushing "all" TLB entries 10408 * also flushes the "current" TLB entries, i.e. servicing the 10409 * flush "all" will clear any request to flush "current". 10410 */ 10411 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10412 kvm_vcpu_flush_tlb_all(vcpu); 10413 10414 kvm_service_local_tlb_flush_requests(vcpu); 10415 10416 /* 10417 * Fall back to a "full" guest flush if Hyper-V's precise 10418 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10419 * the flushes are considered "remote" and not "local" because 10420 * the requests can be initiated from other vCPUs. 10421 */ 10422 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10423 kvm_hv_vcpu_flush_tlb(vcpu)) 10424 kvm_vcpu_flush_tlb_guest(vcpu); 10425 10426 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10427 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10428 r = 0; 10429 goto out; 10430 } 10431 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10432 if (is_guest_mode(vcpu)) 10433 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10434 10435 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10436 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10437 vcpu->mmio_needed = 0; 10438 r = 0; 10439 goto out; 10440 } 10441 } 10442 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10443 /* Page is swapped out. Do synthetic halt */ 10444 vcpu->arch.apf.halted = true; 10445 r = 1; 10446 goto out; 10447 } 10448 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10449 record_steal_time(vcpu); 10450 #ifdef CONFIG_KVM_SMM 10451 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10452 process_smi(vcpu); 10453 #endif 10454 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10455 process_nmi(vcpu); 10456 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10457 kvm_pmu_handle_event(vcpu); 10458 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10459 kvm_pmu_deliver_pmi(vcpu); 10460 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10461 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10462 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10463 vcpu->arch.ioapic_handled_vectors)) { 10464 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10465 vcpu->run->eoi.vector = 10466 vcpu->arch.pending_ioapic_eoi; 10467 r = 0; 10468 goto out; 10469 } 10470 } 10471 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10472 vcpu_scan_ioapic(vcpu); 10473 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10474 vcpu_load_eoi_exitmap(vcpu); 10475 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10476 kvm_vcpu_reload_apic_access_page(vcpu); 10477 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10478 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10479 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10480 vcpu->run->system_event.ndata = 0; 10481 r = 0; 10482 goto out; 10483 } 10484 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10485 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10486 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10487 vcpu->run->system_event.ndata = 0; 10488 r = 0; 10489 goto out; 10490 } 10491 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10492 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10493 10494 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10495 vcpu->run->hyperv = hv_vcpu->exit; 10496 r = 0; 10497 goto out; 10498 } 10499 10500 /* 10501 * KVM_REQ_HV_STIMER has to be processed after 10502 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10503 * depend on the guest clock being up-to-date 10504 */ 10505 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10506 kvm_hv_process_stimers(vcpu); 10507 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10508 kvm_vcpu_update_apicv(vcpu); 10509 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10510 kvm_check_async_pf_completion(vcpu); 10511 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10512 static_call(kvm_x86_msr_filter_changed)(vcpu); 10513 10514 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10515 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10516 } 10517 10518 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10519 kvm_xen_has_interrupt(vcpu)) { 10520 ++vcpu->stat.req_event; 10521 r = kvm_apic_accept_events(vcpu); 10522 if (r < 0) { 10523 r = 0; 10524 goto out; 10525 } 10526 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10527 r = 1; 10528 goto out; 10529 } 10530 10531 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10532 if (r < 0) { 10533 r = 0; 10534 goto out; 10535 } 10536 if (req_int_win) 10537 static_call(kvm_x86_enable_irq_window)(vcpu); 10538 10539 if (kvm_lapic_enabled(vcpu)) { 10540 update_cr8_intercept(vcpu); 10541 kvm_lapic_sync_to_vapic(vcpu); 10542 } 10543 } 10544 10545 r = kvm_mmu_reload(vcpu); 10546 if (unlikely(r)) { 10547 goto cancel_injection; 10548 } 10549 10550 preempt_disable(); 10551 10552 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10553 10554 /* 10555 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10556 * IPI are then delayed after guest entry, which ensures that they 10557 * result in virtual interrupt delivery. 10558 */ 10559 local_irq_disable(); 10560 10561 /* Store vcpu->apicv_active before vcpu->mode. */ 10562 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10563 10564 kvm_vcpu_srcu_read_unlock(vcpu); 10565 10566 /* 10567 * 1) We should set ->mode before checking ->requests. Please see 10568 * the comment in kvm_vcpu_exiting_guest_mode(). 10569 * 10570 * 2) For APICv, we should set ->mode before checking PID.ON. This 10571 * pairs with the memory barrier implicit in pi_test_and_set_on 10572 * (see vmx_deliver_posted_interrupt). 10573 * 10574 * 3) This also orders the write to mode from any reads to the page 10575 * tables done while the VCPU is running. Please see the comment 10576 * in kvm_flush_remote_tlbs. 10577 */ 10578 smp_mb__after_srcu_read_unlock(); 10579 10580 /* 10581 * Process pending posted interrupts to handle the case where the 10582 * notification IRQ arrived in the host, or was never sent (because the 10583 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10584 * status, KVM doesn't update assigned devices when APICv is inhibited, 10585 * i.e. they can post interrupts even if APICv is temporarily disabled. 10586 */ 10587 if (kvm_lapic_enabled(vcpu)) 10588 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10589 10590 if (kvm_vcpu_exit_request(vcpu)) { 10591 vcpu->mode = OUTSIDE_GUEST_MODE; 10592 smp_wmb(); 10593 local_irq_enable(); 10594 preempt_enable(); 10595 kvm_vcpu_srcu_read_lock(vcpu); 10596 r = 1; 10597 goto cancel_injection; 10598 } 10599 10600 if (req_immediate_exit) { 10601 kvm_make_request(KVM_REQ_EVENT, vcpu); 10602 static_call(kvm_x86_request_immediate_exit)(vcpu); 10603 } 10604 10605 fpregs_assert_state_consistent(); 10606 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10607 switch_fpu_return(); 10608 10609 if (vcpu->arch.guest_fpu.xfd_err) 10610 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10611 10612 if (unlikely(vcpu->arch.switch_db_regs)) { 10613 set_debugreg(0, 7); 10614 set_debugreg(vcpu->arch.eff_db[0], 0); 10615 set_debugreg(vcpu->arch.eff_db[1], 1); 10616 set_debugreg(vcpu->arch.eff_db[2], 2); 10617 set_debugreg(vcpu->arch.eff_db[3], 3); 10618 } else if (unlikely(hw_breakpoint_active())) { 10619 set_debugreg(0, 7); 10620 } 10621 10622 guest_timing_enter_irqoff(); 10623 10624 for (;;) { 10625 /* 10626 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10627 * update must kick and wait for all vCPUs before toggling the 10628 * per-VM state, and responsing vCPUs must wait for the update 10629 * to complete before servicing KVM_REQ_APICV_UPDATE. 10630 */ 10631 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10632 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10633 10634 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10635 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10636 break; 10637 10638 if (kvm_lapic_enabled(vcpu)) 10639 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10640 10641 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10642 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10643 break; 10644 } 10645 } 10646 10647 /* 10648 * Do this here before restoring debug registers on the host. And 10649 * since we do this before handling the vmexit, a DR access vmexit 10650 * can (a) read the correct value of the debug registers, (b) set 10651 * KVM_DEBUGREG_WONT_EXIT again. 10652 */ 10653 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10654 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10655 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10656 kvm_update_dr0123(vcpu); 10657 kvm_update_dr7(vcpu); 10658 } 10659 10660 /* 10661 * If the guest has used debug registers, at least dr7 10662 * will be disabled while returning to the host. 10663 * If we don't have active breakpoints in the host, we don't 10664 * care about the messed up debug address registers. But if 10665 * we have some of them active, restore the old state. 10666 */ 10667 if (hw_breakpoint_active()) 10668 hw_breakpoint_restore(); 10669 10670 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10671 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10672 10673 vcpu->mode = OUTSIDE_GUEST_MODE; 10674 smp_wmb(); 10675 10676 /* 10677 * Sync xfd before calling handle_exit_irqoff() which may 10678 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10679 * in #NM irqoff handler). 10680 */ 10681 if (vcpu->arch.xfd_no_write_intercept) 10682 fpu_sync_guest_vmexit_xfd_state(); 10683 10684 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10685 10686 if (vcpu->arch.guest_fpu.xfd_err) 10687 wrmsrl(MSR_IA32_XFD_ERR, 0); 10688 10689 /* 10690 * Consume any pending interrupts, including the possible source of 10691 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10692 * An instruction is required after local_irq_enable() to fully unblock 10693 * interrupts on processors that implement an interrupt shadow, the 10694 * stat.exits increment will do nicely. 10695 */ 10696 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10697 local_irq_enable(); 10698 ++vcpu->stat.exits; 10699 local_irq_disable(); 10700 kvm_after_interrupt(vcpu); 10701 10702 /* 10703 * Wait until after servicing IRQs to account guest time so that any 10704 * ticks that occurred while running the guest are properly accounted 10705 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10706 * of accounting via context tracking, but the loss of accuracy is 10707 * acceptable for all known use cases. 10708 */ 10709 guest_timing_exit_irqoff(); 10710 10711 local_irq_enable(); 10712 preempt_enable(); 10713 10714 kvm_vcpu_srcu_read_lock(vcpu); 10715 10716 /* 10717 * Profile KVM exit RIPs: 10718 */ 10719 if (unlikely(prof_on == KVM_PROFILING)) { 10720 unsigned long rip = kvm_rip_read(vcpu); 10721 profile_hit(KVM_PROFILING, (void *)rip); 10722 } 10723 10724 if (unlikely(vcpu->arch.tsc_always_catchup)) 10725 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10726 10727 if (vcpu->arch.apic_attention) 10728 kvm_lapic_sync_from_vapic(vcpu); 10729 10730 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10731 return r; 10732 10733 cancel_injection: 10734 if (req_immediate_exit) 10735 kvm_make_request(KVM_REQ_EVENT, vcpu); 10736 static_call(kvm_x86_cancel_injection)(vcpu); 10737 if (unlikely(vcpu->arch.apic_attention)) 10738 kvm_lapic_sync_from_vapic(vcpu); 10739 out: 10740 return r; 10741 } 10742 10743 /* Called within kvm->srcu read side. */ 10744 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10745 { 10746 bool hv_timer; 10747 10748 if (!kvm_arch_vcpu_runnable(vcpu)) { 10749 /* 10750 * Switch to the software timer before halt-polling/blocking as 10751 * the guest's timer may be a break event for the vCPU, and the 10752 * hypervisor timer runs only when the CPU is in guest mode. 10753 * Switch before halt-polling so that KVM recognizes an expired 10754 * timer before blocking. 10755 */ 10756 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10757 if (hv_timer) 10758 kvm_lapic_switch_to_sw_timer(vcpu); 10759 10760 kvm_vcpu_srcu_read_unlock(vcpu); 10761 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10762 kvm_vcpu_halt(vcpu); 10763 else 10764 kvm_vcpu_block(vcpu); 10765 kvm_vcpu_srcu_read_lock(vcpu); 10766 10767 if (hv_timer) 10768 kvm_lapic_switch_to_hv_timer(vcpu); 10769 10770 /* 10771 * If the vCPU is not runnable, a signal or another host event 10772 * of some kind is pending; service it without changing the 10773 * vCPU's activity state. 10774 */ 10775 if (!kvm_arch_vcpu_runnable(vcpu)) 10776 return 1; 10777 } 10778 10779 /* 10780 * Evaluate nested events before exiting the halted state. This allows 10781 * the halt state to be recorded properly in the VMCS12's activity 10782 * state field (AMD does not have a similar field and a VM-Exit always 10783 * causes a spurious wakeup from HLT). 10784 */ 10785 if (is_guest_mode(vcpu)) { 10786 if (kvm_check_nested_events(vcpu) < 0) 10787 return 0; 10788 } 10789 10790 if (kvm_apic_accept_events(vcpu) < 0) 10791 return 0; 10792 switch(vcpu->arch.mp_state) { 10793 case KVM_MP_STATE_HALTED: 10794 case KVM_MP_STATE_AP_RESET_HOLD: 10795 vcpu->arch.pv.pv_unhalted = false; 10796 vcpu->arch.mp_state = 10797 KVM_MP_STATE_RUNNABLE; 10798 fallthrough; 10799 case KVM_MP_STATE_RUNNABLE: 10800 vcpu->arch.apf.halted = false; 10801 break; 10802 case KVM_MP_STATE_INIT_RECEIVED: 10803 break; 10804 default: 10805 WARN_ON_ONCE(1); 10806 break; 10807 } 10808 return 1; 10809 } 10810 10811 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10812 { 10813 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10814 !vcpu->arch.apf.halted); 10815 } 10816 10817 /* Called within kvm->srcu read side. */ 10818 static int vcpu_run(struct kvm_vcpu *vcpu) 10819 { 10820 int r; 10821 10822 vcpu->arch.l1tf_flush_l1d = true; 10823 10824 for (;;) { 10825 /* 10826 * If another guest vCPU requests a PV TLB flush in the middle 10827 * of instruction emulation, the rest of the emulation could 10828 * use a stale page translation. Assume that any code after 10829 * this point can start executing an instruction. 10830 */ 10831 vcpu->arch.at_instruction_boundary = false; 10832 if (kvm_vcpu_running(vcpu)) { 10833 r = vcpu_enter_guest(vcpu); 10834 } else { 10835 r = vcpu_block(vcpu); 10836 } 10837 10838 if (r <= 0) 10839 break; 10840 10841 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10842 if (kvm_xen_has_pending_events(vcpu)) 10843 kvm_xen_inject_pending_events(vcpu); 10844 10845 if (kvm_cpu_has_pending_timer(vcpu)) 10846 kvm_inject_pending_timer_irqs(vcpu); 10847 10848 if (dm_request_for_irq_injection(vcpu) && 10849 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10850 r = 0; 10851 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10852 ++vcpu->stat.request_irq_exits; 10853 break; 10854 } 10855 10856 if (__xfer_to_guest_mode_work_pending()) { 10857 kvm_vcpu_srcu_read_unlock(vcpu); 10858 r = xfer_to_guest_mode_handle_work(vcpu); 10859 kvm_vcpu_srcu_read_lock(vcpu); 10860 if (r) 10861 return r; 10862 } 10863 } 10864 10865 return r; 10866 } 10867 10868 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10869 { 10870 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10871 } 10872 10873 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10874 { 10875 BUG_ON(!vcpu->arch.pio.count); 10876 10877 return complete_emulated_io(vcpu); 10878 } 10879 10880 /* 10881 * Implements the following, as a state machine: 10882 * 10883 * read: 10884 * for each fragment 10885 * for each mmio piece in the fragment 10886 * write gpa, len 10887 * exit 10888 * copy data 10889 * execute insn 10890 * 10891 * write: 10892 * for each fragment 10893 * for each mmio piece in the fragment 10894 * write gpa, len 10895 * copy data 10896 * exit 10897 */ 10898 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10899 { 10900 struct kvm_run *run = vcpu->run; 10901 struct kvm_mmio_fragment *frag; 10902 unsigned len; 10903 10904 BUG_ON(!vcpu->mmio_needed); 10905 10906 /* Complete previous fragment */ 10907 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10908 len = min(8u, frag->len); 10909 if (!vcpu->mmio_is_write) 10910 memcpy(frag->data, run->mmio.data, len); 10911 10912 if (frag->len <= 8) { 10913 /* Switch to the next fragment. */ 10914 frag++; 10915 vcpu->mmio_cur_fragment++; 10916 } else { 10917 /* Go forward to the next mmio piece. */ 10918 frag->data += len; 10919 frag->gpa += len; 10920 frag->len -= len; 10921 } 10922 10923 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10924 vcpu->mmio_needed = 0; 10925 10926 /* FIXME: return into emulator if single-stepping. */ 10927 if (vcpu->mmio_is_write) 10928 return 1; 10929 vcpu->mmio_read_completed = 1; 10930 return complete_emulated_io(vcpu); 10931 } 10932 10933 run->exit_reason = KVM_EXIT_MMIO; 10934 run->mmio.phys_addr = frag->gpa; 10935 if (vcpu->mmio_is_write) 10936 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10937 run->mmio.len = min(8u, frag->len); 10938 run->mmio.is_write = vcpu->mmio_is_write; 10939 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10940 return 0; 10941 } 10942 10943 /* Swap (qemu) user FPU context for the guest FPU context. */ 10944 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10945 { 10946 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10947 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10948 trace_kvm_fpu(1); 10949 } 10950 10951 /* When vcpu_run ends, restore user space FPU context. */ 10952 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10953 { 10954 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10955 ++vcpu->stat.fpu_reload; 10956 trace_kvm_fpu(0); 10957 } 10958 10959 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10960 { 10961 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10962 struct kvm_run *kvm_run = vcpu->run; 10963 int r; 10964 10965 vcpu_load(vcpu); 10966 kvm_sigset_activate(vcpu); 10967 kvm_run->flags = 0; 10968 kvm_load_guest_fpu(vcpu); 10969 10970 kvm_vcpu_srcu_read_lock(vcpu); 10971 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10972 if (kvm_run->immediate_exit) { 10973 r = -EINTR; 10974 goto out; 10975 } 10976 /* 10977 * It should be impossible for the hypervisor timer to be in 10978 * use before KVM has ever run the vCPU. 10979 */ 10980 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10981 10982 kvm_vcpu_srcu_read_unlock(vcpu); 10983 kvm_vcpu_block(vcpu); 10984 kvm_vcpu_srcu_read_lock(vcpu); 10985 10986 if (kvm_apic_accept_events(vcpu) < 0) { 10987 r = 0; 10988 goto out; 10989 } 10990 r = -EAGAIN; 10991 if (signal_pending(current)) { 10992 r = -EINTR; 10993 kvm_run->exit_reason = KVM_EXIT_INTR; 10994 ++vcpu->stat.signal_exits; 10995 } 10996 goto out; 10997 } 10998 10999 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11000 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11001 r = -EINVAL; 11002 goto out; 11003 } 11004 11005 if (kvm_run->kvm_dirty_regs) { 11006 r = sync_regs(vcpu); 11007 if (r != 0) 11008 goto out; 11009 } 11010 11011 /* re-sync apic's tpr */ 11012 if (!lapic_in_kernel(vcpu)) { 11013 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11014 r = -EINVAL; 11015 goto out; 11016 } 11017 } 11018 11019 /* 11020 * If userspace set a pending exception and L2 is active, convert it to 11021 * a pending VM-Exit if L1 wants to intercept the exception. 11022 */ 11023 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11024 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11025 ex->error_code)) { 11026 kvm_queue_exception_vmexit(vcpu, ex->vector, 11027 ex->has_error_code, ex->error_code, 11028 ex->has_payload, ex->payload); 11029 ex->injected = false; 11030 ex->pending = false; 11031 } 11032 vcpu->arch.exception_from_userspace = false; 11033 11034 if (unlikely(vcpu->arch.complete_userspace_io)) { 11035 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11036 vcpu->arch.complete_userspace_io = NULL; 11037 r = cui(vcpu); 11038 if (r <= 0) 11039 goto out; 11040 } else { 11041 WARN_ON_ONCE(vcpu->arch.pio.count); 11042 WARN_ON_ONCE(vcpu->mmio_needed); 11043 } 11044 11045 if (kvm_run->immediate_exit) { 11046 r = -EINTR; 11047 goto out; 11048 } 11049 11050 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11051 if (r <= 0) 11052 goto out; 11053 11054 r = vcpu_run(vcpu); 11055 11056 out: 11057 kvm_put_guest_fpu(vcpu); 11058 if (kvm_run->kvm_valid_regs) 11059 store_regs(vcpu); 11060 post_kvm_run_save(vcpu); 11061 kvm_vcpu_srcu_read_unlock(vcpu); 11062 11063 kvm_sigset_deactivate(vcpu); 11064 vcpu_put(vcpu); 11065 return r; 11066 } 11067 11068 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11069 { 11070 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11071 /* 11072 * We are here if userspace calls get_regs() in the middle of 11073 * instruction emulation. Registers state needs to be copied 11074 * back from emulation context to vcpu. Userspace shouldn't do 11075 * that usually, but some bad designed PV devices (vmware 11076 * backdoor interface) need this to work 11077 */ 11078 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11079 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11080 } 11081 regs->rax = kvm_rax_read(vcpu); 11082 regs->rbx = kvm_rbx_read(vcpu); 11083 regs->rcx = kvm_rcx_read(vcpu); 11084 regs->rdx = kvm_rdx_read(vcpu); 11085 regs->rsi = kvm_rsi_read(vcpu); 11086 regs->rdi = kvm_rdi_read(vcpu); 11087 regs->rsp = kvm_rsp_read(vcpu); 11088 regs->rbp = kvm_rbp_read(vcpu); 11089 #ifdef CONFIG_X86_64 11090 regs->r8 = kvm_r8_read(vcpu); 11091 regs->r9 = kvm_r9_read(vcpu); 11092 regs->r10 = kvm_r10_read(vcpu); 11093 regs->r11 = kvm_r11_read(vcpu); 11094 regs->r12 = kvm_r12_read(vcpu); 11095 regs->r13 = kvm_r13_read(vcpu); 11096 regs->r14 = kvm_r14_read(vcpu); 11097 regs->r15 = kvm_r15_read(vcpu); 11098 #endif 11099 11100 regs->rip = kvm_rip_read(vcpu); 11101 regs->rflags = kvm_get_rflags(vcpu); 11102 } 11103 11104 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11105 { 11106 vcpu_load(vcpu); 11107 __get_regs(vcpu, regs); 11108 vcpu_put(vcpu); 11109 return 0; 11110 } 11111 11112 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11113 { 11114 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11115 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11116 11117 kvm_rax_write(vcpu, regs->rax); 11118 kvm_rbx_write(vcpu, regs->rbx); 11119 kvm_rcx_write(vcpu, regs->rcx); 11120 kvm_rdx_write(vcpu, regs->rdx); 11121 kvm_rsi_write(vcpu, regs->rsi); 11122 kvm_rdi_write(vcpu, regs->rdi); 11123 kvm_rsp_write(vcpu, regs->rsp); 11124 kvm_rbp_write(vcpu, regs->rbp); 11125 #ifdef CONFIG_X86_64 11126 kvm_r8_write(vcpu, regs->r8); 11127 kvm_r9_write(vcpu, regs->r9); 11128 kvm_r10_write(vcpu, regs->r10); 11129 kvm_r11_write(vcpu, regs->r11); 11130 kvm_r12_write(vcpu, regs->r12); 11131 kvm_r13_write(vcpu, regs->r13); 11132 kvm_r14_write(vcpu, regs->r14); 11133 kvm_r15_write(vcpu, regs->r15); 11134 #endif 11135 11136 kvm_rip_write(vcpu, regs->rip); 11137 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11138 11139 vcpu->arch.exception.pending = false; 11140 vcpu->arch.exception_vmexit.pending = false; 11141 11142 kvm_make_request(KVM_REQ_EVENT, vcpu); 11143 } 11144 11145 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11146 { 11147 vcpu_load(vcpu); 11148 __set_regs(vcpu, regs); 11149 vcpu_put(vcpu); 11150 return 0; 11151 } 11152 11153 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11154 { 11155 struct desc_ptr dt; 11156 11157 if (vcpu->arch.guest_state_protected) 11158 goto skip_protected_regs; 11159 11160 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11161 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11162 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11163 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11164 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11165 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11166 11167 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11168 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11169 11170 static_call(kvm_x86_get_idt)(vcpu, &dt); 11171 sregs->idt.limit = dt.size; 11172 sregs->idt.base = dt.address; 11173 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11174 sregs->gdt.limit = dt.size; 11175 sregs->gdt.base = dt.address; 11176 11177 sregs->cr2 = vcpu->arch.cr2; 11178 sregs->cr3 = kvm_read_cr3(vcpu); 11179 11180 skip_protected_regs: 11181 sregs->cr0 = kvm_read_cr0(vcpu); 11182 sregs->cr4 = kvm_read_cr4(vcpu); 11183 sregs->cr8 = kvm_get_cr8(vcpu); 11184 sregs->efer = vcpu->arch.efer; 11185 sregs->apic_base = kvm_get_apic_base(vcpu); 11186 } 11187 11188 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11189 { 11190 __get_sregs_common(vcpu, sregs); 11191 11192 if (vcpu->arch.guest_state_protected) 11193 return; 11194 11195 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11196 set_bit(vcpu->arch.interrupt.nr, 11197 (unsigned long *)sregs->interrupt_bitmap); 11198 } 11199 11200 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11201 { 11202 int i; 11203 11204 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11205 11206 if (vcpu->arch.guest_state_protected) 11207 return; 11208 11209 if (is_pae_paging(vcpu)) { 11210 for (i = 0 ; i < 4 ; i++) 11211 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11212 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11213 } 11214 } 11215 11216 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11217 struct kvm_sregs *sregs) 11218 { 11219 vcpu_load(vcpu); 11220 __get_sregs(vcpu, sregs); 11221 vcpu_put(vcpu); 11222 return 0; 11223 } 11224 11225 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11226 struct kvm_mp_state *mp_state) 11227 { 11228 int r; 11229 11230 vcpu_load(vcpu); 11231 if (kvm_mpx_supported()) 11232 kvm_load_guest_fpu(vcpu); 11233 11234 r = kvm_apic_accept_events(vcpu); 11235 if (r < 0) 11236 goto out; 11237 r = 0; 11238 11239 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11240 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11241 vcpu->arch.pv.pv_unhalted) 11242 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11243 else 11244 mp_state->mp_state = vcpu->arch.mp_state; 11245 11246 out: 11247 if (kvm_mpx_supported()) 11248 kvm_put_guest_fpu(vcpu); 11249 vcpu_put(vcpu); 11250 return r; 11251 } 11252 11253 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11254 struct kvm_mp_state *mp_state) 11255 { 11256 int ret = -EINVAL; 11257 11258 vcpu_load(vcpu); 11259 11260 switch (mp_state->mp_state) { 11261 case KVM_MP_STATE_UNINITIALIZED: 11262 case KVM_MP_STATE_HALTED: 11263 case KVM_MP_STATE_AP_RESET_HOLD: 11264 case KVM_MP_STATE_INIT_RECEIVED: 11265 case KVM_MP_STATE_SIPI_RECEIVED: 11266 if (!lapic_in_kernel(vcpu)) 11267 goto out; 11268 break; 11269 11270 case KVM_MP_STATE_RUNNABLE: 11271 break; 11272 11273 default: 11274 goto out; 11275 } 11276 11277 /* 11278 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11279 * forcing the guest into INIT/SIPI if those events are supposed to be 11280 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11281 * if an SMI is pending as well. 11282 */ 11283 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11284 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11285 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11286 goto out; 11287 11288 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11289 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11290 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11291 } else 11292 vcpu->arch.mp_state = mp_state->mp_state; 11293 kvm_make_request(KVM_REQ_EVENT, vcpu); 11294 11295 ret = 0; 11296 out: 11297 vcpu_put(vcpu); 11298 return ret; 11299 } 11300 11301 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11302 int reason, bool has_error_code, u32 error_code) 11303 { 11304 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11305 int ret; 11306 11307 init_emulate_ctxt(vcpu); 11308 11309 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11310 has_error_code, error_code); 11311 if (ret) { 11312 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11313 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11314 vcpu->run->internal.ndata = 0; 11315 return 0; 11316 } 11317 11318 kvm_rip_write(vcpu, ctxt->eip); 11319 kvm_set_rflags(vcpu, ctxt->eflags); 11320 return 1; 11321 } 11322 EXPORT_SYMBOL_GPL(kvm_task_switch); 11323 11324 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11325 { 11326 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11327 /* 11328 * When EFER.LME and CR0.PG are set, the processor is in 11329 * 64-bit mode (though maybe in a 32-bit code segment). 11330 * CR4.PAE and EFER.LMA must be set. 11331 */ 11332 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11333 return false; 11334 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11335 return false; 11336 } else { 11337 /* 11338 * Not in 64-bit mode: EFER.LMA is clear and the code 11339 * segment cannot be 64-bit. 11340 */ 11341 if (sregs->efer & EFER_LMA || sregs->cs.l) 11342 return false; 11343 } 11344 11345 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11346 } 11347 11348 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11349 int *mmu_reset_needed, bool update_pdptrs) 11350 { 11351 struct msr_data apic_base_msr; 11352 int idx; 11353 struct desc_ptr dt; 11354 11355 if (!kvm_is_valid_sregs(vcpu, sregs)) 11356 return -EINVAL; 11357 11358 apic_base_msr.data = sregs->apic_base; 11359 apic_base_msr.host_initiated = true; 11360 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11361 return -EINVAL; 11362 11363 if (vcpu->arch.guest_state_protected) 11364 return 0; 11365 11366 dt.size = sregs->idt.limit; 11367 dt.address = sregs->idt.base; 11368 static_call(kvm_x86_set_idt)(vcpu, &dt); 11369 dt.size = sregs->gdt.limit; 11370 dt.address = sregs->gdt.base; 11371 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11372 11373 vcpu->arch.cr2 = sregs->cr2; 11374 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11375 vcpu->arch.cr3 = sregs->cr3; 11376 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11377 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11378 11379 kvm_set_cr8(vcpu, sregs->cr8); 11380 11381 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11382 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11383 11384 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11385 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11386 vcpu->arch.cr0 = sregs->cr0; 11387 11388 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11389 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11390 11391 if (update_pdptrs) { 11392 idx = srcu_read_lock(&vcpu->kvm->srcu); 11393 if (is_pae_paging(vcpu)) { 11394 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11395 *mmu_reset_needed = 1; 11396 } 11397 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11398 } 11399 11400 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11401 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11402 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11403 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11404 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11405 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11406 11407 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11408 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11409 11410 update_cr8_intercept(vcpu); 11411 11412 /* Older userspace won't unhalt the vcpu on reset. */ 11413 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11414 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11415 !is_protmode(vcpu)) 11416 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11417 11418 return 0; 11419 } 11420 11421 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11422 { 11423 int pending_vec, max_bits; 11424 int mmu_reset_needed = 0; 11425 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11426 11427 if (ret) 11428 return ret; 11429 11430 if (mmu_reset_needed) 11431 kvm_mmu_reset_context(vcpu); 11432 11433 max_bits = KVM_NR_INTERRUPTS; 11434 pending_vec = find_first_bit( 11435 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11436 11437 if (pending_vec < max_bits) { 11438 kvm_queue_interrupt(vcpu, pending_vec, false); 11439 pr_debug("Set back pending irq %d\n", pending_vec); 11440 kvm_make_request(KVM_REQ_EVENT, vcpu); 11441 } 11442 return 0; 11443 } 11444 11445 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11446 { 11447 int mmu_reset_needed = 0; 11448 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11449 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11450 !(sregs2->efer & EFER_LMA); 11451 int i, ret; 11452 11453 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11454 return -EINVAL; 11455 11456 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11457 return -EINVAL; 11458 11459 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11460 &mmu_reset_needed, !valid_pdptrs); 11461 if (ret) 11462 return ret; 11463 11464 if (valid_pdptrs) { 11465 for (i = 0; i < 4 ; i++) 11466 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11467 11468 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11469 mmu_reset_needed = 1; 11470 vcpu->arch.pdptrs_from_userspace = true; 11471 } 11472 if (mmu_reset_needed) 11473 kvm_mmu_reset_context(vcpu); 11474 return 0; 11475 } 11476 11477 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11478 struct kvm_sregs *sregs) 11479 { 11480 int ret; 11481 11482 vcpu_load(vcpu); 11483 ret = __set_sregs(vcpu, sregs); 11484 vcpu_put(vcpu); 11485 return ret; 11486 } 11487 11488 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11489 { 11490 bool set = false; 11491 struct kvm_vcpu *vcpu; 11492 unsigned long i; 11493 11494 if (!enable_apicv) 11495 return; 11496 11497 down_write(&kvm->arch.apicv_update_lock); 11498 11499 kvm_for_each_vcpu(i, vcpu, kvm) { 11500 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11501 set = true; 11502 break; 11503 } 11504 } 11505 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11506 up_write(&kvm->arch.apicv_update_lock); 11507 } 11508 11509 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11510 struct kvm_guest_debug *dbg) 11511 { 11512 unsigned long rflags; 11513 int i, r; 11514 11515 if (vcpu->arch.guest_state_protected) 11516 return -EINVAL; 11517 11518 vcpu_load(vcpu); 11519 11520 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11521 r = -EBUSY; 11522 if (kvm_is_exception_pending(vcpu)) 11523 goto out; 11524 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11525 kvm_queue_exception(vcpu, DB_VECTOR); 11526 else 11527 kvm_queue_exception(vcpu, BP_VECTOR); 11528 } 11529 11530 /* 11531 * Read rflags as long as potentially injected trace flags are still 11532 * filtered out. 11533 */ 11534 rflags = kvm_get_rflags(vcpu); 11535 11536 vcpu->guest_debug = dbg->control; 11537 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11538 vcpu->guest_debug = 0; 11539 11540 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11541 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11542 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11543 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11544 } else { 11545 for (i = 0; i < KVM_NR_DB_REGS; i++) 11546 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11547 } 11548 kvm_update_dr7(vcpu); 11549 11550 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11551 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11552 11553 /* 11554 * Trigger an rflags update that will inject or remove the trace 11555 * flags. 11556 */ 11557 kvm_set_rflags(vcpu, rflags); 11558 11559 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11560 11561 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11562 11563 r = 0; 11564 11565 out: 11566 vcpu_put(vcpu); 11567 return r; 11568 } 11569 11570 /* 11571 * Translate a guest virtual address to a guest physical address. 11572 */ 11573 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11574 struct kvm_translation *tr) 11575 { 11576 unsigned long vaddr = tr->linear_address; 11577 gpa_t gpa; 11578 int idx; 11579 11580 vcpu_load(vcpu); 11581 11582 idx = srcu_read_lock(&vcpu->kvm->srcu); 11583 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11584 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11585 tr->physical_address = gpa; 11586 tr->valid = gpa != INVALID_GPA; 11587 tr->writeable = 1; 11588 tr->usermode = 0; 11589 11590 vcpu_put(vcpu); 11591 return 0; 11592 } 11593 11594 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11595 { 11596 struct fxregs_state *fxsave; 11597 11598 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11599 return 0; 11600 11601 vcpu_load(vcpu); 11602 11603 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11604 memcpy(fpu->fpr, fxsave->st_space, 128); 11605 fpu->fcw = fxsave->cwd; 11606 fpu->fsw = fxsave->swd; 11607 fpu->ftwx = fxsave->twd; 11608 fpu->last_opcode = fxsave->fop; 11609 fpu->last_ip = fxsave->rip; 11610 fpu->last_dp = fxsave->rdp; 11611 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11612 11613 vcpu_put(vcpu); 11614 return 0; 11615 } 11616 11617 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11618 { 11619 struct fxregs_state *fxsave; 11620 11621 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11622 return 0; 11623 11624 vcpu_load(vcpu); 11625 11626 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11627 11628 memcpy(fxsave->st_space, fpu->fpr, 128); 11629 fxsave->cwd = fpu->fcw; 11630 fxsave->swd = fpu->fsw; 11631 fxsave->twd = fpu->ftwx; 11632 fxsave->fop = fpu->last_opcode; 11633 fxsave->rip = fpu->last_ip; 11634 fxsave->rdp = fpu->last_dp; 11635 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11636 11637 vcpu_put(vcpu); 11638 return 0; 11639 } 11640 11641 static void store_regs(struct kvm_vcpu *vcpu) 11642 { 11643 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11644 11645 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11646 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11647 11648 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11649 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11650 11651 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11652 kvm_vcpu_ioctl_x86_get_vcpu_events( 11653 vcpu, &vcpu->run->s.regs.events); 11654 } 11655 11656 static int sync_regs(struct kvm_vcpu *vcpu) 11657 { 11658 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11659 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11660 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11661 } 11662 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11663 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11664 return -EINVAL; 11665 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11666 } 11667 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11668 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11669 vcpu, &vcpu->run->s.regs.events)) 11670 return -EINVAL; 11671 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11672 } 11673 11674 return 0; 11675 } 11676 11677 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11678 { 11679 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11680 pr_warn_once("SMP vm created on host with unstable TSC; " 11681 "guest TSC will not be reliable\n"); 11682 11683 if (!kvm->arch.max_vcpu_ids) 11684 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11685 11686 if (id >= kvm->arch.max_vcpu_ids) 11687 return -EINVAL; 11688 11689 return static_call(kvm_x86_vcpu_precreate)(kvm); 11690 } 11691 11692 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11693 { 11694 struct page *page; 11695 int r; 11696 11697 vcpu->arch.last_vmentry_cpu = -1; 11698 vcpu->arch.regs_avail = ~0; 11699 vcpu->arch.regs_dirty = ~0; 11700 11701 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11702 11703 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11704 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11705 else 11706 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11707 11708 r = kvm_mmu_create(vcpu); 11709 if (r < 0) 11710 return r; 11711 11712 if (irqchip_in_kernel(vcpu->kvm)) { 11713 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11714 if (r < 0) 11715 goto fail_mmu_destroy; 11716 11717 /* 11718 * Defer evaluating inhibits until the vCPU is first run, as 11719 * this vCPU will not get notified of any changes until this 11720 * vCPU is visible to other vCPUs (marked online and added to 11721 * the set of vCPUs). Opportunistically mark APICv active as 11722 * VMX in particularly is highly unlikely to have inhibits. 11723 * Ignore the current per-VM APICv state so that vCPU creation 11724 * is guaranteed to run with a deterministic value, the request 11725 * will ensure the vCPU gets the correct state before VM-Entry. 11726 */ 11727 if (enable_apicv) { 11728 vcpu->arch.apic->apicv_active = true; 11729 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11730 } 11731 } else 11732 static_branch_inc(&kvm_has_noapic_vcpu); 11733 11734 r = -ENOMEM; 11735 11736 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11737 if (!page) 11738 goto fail_free_lapic; 11739 vcpu->arch.pio_data = page_address(page); 11740 11741 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11742 GFP_KERNEL_ACCOUNT); 11743 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11744 GFP_KERNEL_ACCOUNT); 11745 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11746 goto fail_free_mce_banks; 11747 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11748 11749 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11750 GFP_KERNEL_ACCOUNT)) 11751 goto fail_free_mce_banks; 11752 11753 if (!alloc_emulate_ctxt(vcpu)) 11754 goto free_wbinvd_dirty_mask; 11755 11756 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11757 pr_err("failed to allocate vcpu's fpu\n"); 11758 goto free_emulate_ctxt; 11759 } 11760 11761 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11762 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11763 11764 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11765 11766 kvm_async_pf_hash_reset(vcpu); 11767 11768 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11769 kvm_pmu_init(vcpu); 11770 11771 vcpu->arch.pending_external_vector = -1; 11772 vcpu->arch.preempted_in_kernel = false; 11773 11774 #if IS_ENABLED(CONFIG_HYPERV) 11775 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11776 #endif 11777 11778 r = static_call(kvm_x86_vcpu_create)(vcpu); 11779 if (r) 11780 goto free_guest_fpu; 11781 11782 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11783 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11784 kvm_xen_init_vcpu(vcpu); 11785 kvm_vcpu_mtrr_init(vcpu); 11786 vcpu_load(vcpu); 11787 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11788 kvm_vcpu_reset(vcpu, false); 11789 kvm_init_mmu(vcpu); 11790 vcpu_put(vcpu); 11791 return 0; 11792 11793 free_guest_fpu: 11794 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11795 free_emulate_ctxt: 11796 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11797 free_wbinvd_dirty_mask: 11798 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11799 fail_free_mce_banks: 11800 kfree(vcpu->arch.mce_banks); 11801 kfree(vcpu->arch.mci_ctl2_banks); 11802 free_page((unsigned long)vcpu->arch.pio_data); 11803 fail_free_lapic: 11804 kvm_free_lapic(vcpu); 11805 fail_mmu_destroy: 11806 kvm_mmu_destroy(vcpu); 11807 return r; 11808 } 11809 11810 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11811 { 11812 struct kvm *kvm = vcpu->kvm; 11813 11814 if (mutex_lock_killable(&vcpu->mutex)) 11815 return; 11816 vcpu_load(vcpu); 11817 kvm_synchronize_tsc(vcpu, 0); 11818 vcpu_put(vcpu); 11819 11820 /* poll control enabled by default */ 11821 vcpu->arch.msr_kvm_poll_control = 1; 11822 11823 mutex_unlock(&vcpu->mutex); 11824 11825 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11826 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11827 KVMCLOCK_SYNC_PERIOD); 11828 } 11829 11830 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11831 { 11832 int idx; 11833 11834 kvmclock_reset(vcpu); 11835 11836 static_call(kvm_x86_vcpu_free)(vcpu); 11837 11838 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11839 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11840 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11841 11842 kvm_xen_destroy_vcpu(vcpu); 11843 kvm_hv_vcpu_uninit(vcpu); 11844 kvm_pmu_destroy(vcpu); 11845 kfree(vcpu->arch.mce_banks); 11846 kfree(vcpu->arch.mci_ctl2_banks); 11847 kvm_free_lapic(vcpu); 11848 idx = srcu_read_lock(&vcpu->kvm->srcu); 11849 kvm_mmu_destroy(vcpu); 11850 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11851 free_page((unsigned long)vcpu->arch.pio_data); 11852 kvfree(vcpu->arch.cpuid_entries); 11853 if (!lapic_in_kernel(vcpu)) 11854 static_branch_dec(&kvm_has_noapic_vcpu); 11855 } 11856 11857 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11858 { 11859 struct kvm_cpuid_entry2 *cpuid_0x1; 11860 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11861 unsigned long new_cr0; 11862 11863 /* 11864 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11865 * to handle side effects. RESET emulation hits those flows and relies 11866 * on emulated/virtualized registers, including those that are loaded 11867 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11868 * to detect improper or missing initialization. 11869 */ 11870 WARN_ON_ONCE(!init_event && 11871 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11872 11873 /* 11874 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11875 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11876 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11877 * bits), i.e. virtualization is disabled. 11878 */ 11879 if (is_guest_mode(vcpu)) 11880 kvm_leave_nested(vcpu); 11881 11882 kvm_lapic_reset(vcpu, init_event); 11883 11884 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11885 vcpu->arch.hflags = 0; 11886 11887 vcpu->arch.smi_pending = 0; 11888 vcpu->arch.smi_count = 0; 11889 atomic_set(&vcpu->arch.nmi_queued, 0); 11890 vcpu->arch.nmi_pending = 0; 11891 vcpu->arch.nmi_injected = false; 11892 kvm_clear_interrupt_queue(vcpu); 11893 kvm_clear_exception_queue(vcpu); 11894 11895 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11896 kvm_update_dr0123(vcpu); 11897 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11898 vcpu->arch.dr7 = DR7_FIXED_1; 11899 kvm_update_dr7(vcpu); 11900 11901 vcpu->arch.cr2 = 0; 11902 11903 kvm_make_request(KVM_REQ_EVENT, vcpu); 11904 vcpu->arch.apf.msr_en_val = 0; 11905 vcpu->arch.apf.msr_int_val = 0; 11906 vcpu->arch.st.msr_val = 0; 11907 11908 kvmclock_reset(vcpu); 11909 11910 kvm_clear_async_pf_completion_queue(vcpu); 11911 kvm_async_pf_hash_reset(vcpu); 11912 vcpu->arch.apf.halted = false; 11913 11914 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11915 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11916 11917 /* 11918 * All paths that lead to INIT are required to load the guest's 11919 * FPU state (because most paths are buried in KVM_RUN). 11920 */ 11921 if (init_event) 11922 kvm_put_guest_fpu(vcpu); 11923 11924 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11925 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11926 11927 if (init_event) 11928 kvm_load_guest_fpu(vcpu); 11929 } 11930 11931 if (!init_event) { 11932 kvm_pmu_reset(vcpu); 11933 vcpu->arch.smbase = 0x30000; 11934 11935 vcpu->arch.msr_misc_features_enables = 0; 11936 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11937 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11938 11939 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11940 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11941 } 11942 11943 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11944 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11945 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11946 11947 /* 11948 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11949 * if no CPUID match is found. Note, it's impossible to get a match at 11950 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11951 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11952 * on RESET. But, go through the motions in case that's ever remedied. 11953 */ 11954 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11955 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11956 11957 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11958 11959 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11960 kvm_rip_write(vcpu, 0xfff0); 11961 11962 vcpu->arch.cr3 = 0; 11963 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11964 11965 /* 11966 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11967 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11968 * (or qualify) that with a footnote stating that CD/NW are preserved. 11969 */ 11970 new_cr0 = X86_CR0_ET; 11971 if (init_event) 11972 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11973 else 11974 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11975 11976 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11977 static_call(kvm_x86_set_cr4)(vcpu, 0); 11978 static_call(kvm_x86_set_efer)(vcpu, 0); 11979 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11980 11981 /* 11982 * On the standard CR0/CR4/EFER modification paths, there are several 11983 * complex conditions determining whether the MMU has to be reset and/or 11984 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11985 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11986 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11987 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11988 */ 11989 if (old_cr0 & X86_CR0_PG) { 11990 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11991 kvm_mmu_reset_context(vcpu); 11992 } 11993 11994 /* 11995 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11996 * APM states the TLBs are untouched by INIT, but it also states that 11997 * the TLBs are flushed on "External initialization of the processor." 11998 * Flush the guest TLB regardless of vendor, there is no meaningful 11999 * benefit in relying on the guest to flush the TLB immediately after 12000 * INIT. A spurious TLB flush is benign and likely negligible from a 12001 * performance perspective. 12002 */ 12003 if (init_event) 12004 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12005 } 12006 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12007 12008 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12009 { 12010 struct kvm_segment cs; 12011 12012 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12013 cs.selector = vector << 8; 12014 cs.base = vector << 12; 12015 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12016 kvm_rip_write(vcpu, 0); 12017 } 12018 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12019 12020 int kvm_arch_hardware_enable(void) 12021 { 12022 struct kvm *kvm; 12023 struct kvm_vcpu *vcpu; 12024 unsigned long i; 12025 int ret; 12026 u64 local_tsc; 12027 u64 max_tsc = 0; 12028 bool stable, backwards_tsc = false; 12029 12030 kvm_user_return_msr_cpu_online(); 12031 12032 ret = kvm_x86_check_processor_compatibility(); 12033 if (ret) 12034 return ret; 12035 12036 ret = static_call(kvm_x86_hardware_enable)(); 12037 if (ret != 0) 12038 return ret; 12039 12040 local_tsc = rdtsc(); 12041 stable = !kvm_check_tsc_unstable(); 12042 list_for_each_entry(kvm, &vm_list, vm_list) { 12043 kvm_for_each_vcpu(i, vcpu, kvm) { 12044 if (!stable && vcpu->cpu == smp_processor_id()) 12045 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12046 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12047 backwards_tsc = true; 12048 if (vcpu->arch.last_host_tsc > max_tsc) 12049 max_tsc = vcpu->arch.last_host_tsc; 12050 } 12051 } 12052 } 12053 12054 /* 12055 * Sometimes, even reliable TSCs go backwards. This happens on 12056 * platforms that reset TSC during suspend or hibernate actions, but 12057 * maintain synchronization. We must compensate. Fortunately, we can 12058 * detect that condition here, which happens early in CPU bringup, 12059 * before any KVM threads can be running. Unfortunately, we can't 12060 * bring the TSCs fully up to date with real time, as we aren't yet far 12061 * enough into CPU bringup that we know how much real time has actually 12062 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12063 * variables that haven't been updated yet. 12064 * 12065 * So we simply find the maximum observed TSC above, then record the 12066 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12067 * the adjustment will be applied. Note that we accumulate 12068 * adjustments, in case multiple suspend cycles happen before some VCPU 12069 * gets a chance to run again. In the event that no KVM threads get a 12070 * chance to run, we will miss the entire elapsed period, as we'll have 12071 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12072 * loose cycle time. This isn't too big a deal, since the loss will be 12073 * uniform across all VCPUs (not to mention the scenario is extremely 12074 * unlikely). It is possible that a second hibernate recovery happens 12075 * much faster than a first, causing the observed TSC here to be 12076 * smaller; this would require additional padding adjustment, which is 12077 * why we set last_host_tsc to the local tsc observed here. 12078 * 12079 * N.B. - this code below runs only on platforms with reliable TSC, 12080 * as that is the only way backwards_tsc is set above. Also note 12081 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12082 * have the same delta_cyc adjustment applied if backwards_tsc 12083 * is detected. Note further, this adjustment is only done once, 12084 * as we reset last_host_tsc on all VCPUs to stop this from being 12085 * called multiple times (one for each physical CPU bringup). 12086 * 12087 * Platforms with unreliable TSCs don't have to deal with this, they 12088 * will be compensated by the logic in vcpu_load, which sets the TSC to 12089 * catchup mode. This will catchup all VCPUs to real time, but cannot 12090 * guarantee that they stay in perfect synchronization. 12091 */ 12092 if (backwards_tsc) { 12093 u64 delta_cyc = max_tsc - local_tsc; 12094 list_for_each_entry(kvm, &vm_list, vm_list) { 12095 kvm->arch.backwards_tsc_observed = true; 12096 kvm_for_each_vcpu(i, vcpu, kvm) { 12097 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12098 vcpu->arch.last_host_tsc = local_tsc; 12099 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12100 } 12101 12102 /* 12103 * We have to disable TSC offset matching.. if you were 12104 * booting a VM while issuing an S4 host suspend.... 12105 * you may have some problem. Solving this issue is 12106 * left as an exercise to the reader. 12107 */ 12108 kvm->arch.last_tsc_nsec = 0; 12109 kvm->arch.last_tsc_write = 0; 12110 } 12111 12112 } 12113 return 0; 12114 } 12115 12116 void kvm_arch_hardware_disable(void) 12117 { 12118 static_call(kvm_x86_hardware_disable)(); 12119 drop_user_return_notifiers(); 12120 } 12121 12122 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12123 { 12124 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12125 } 12126 12127 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12128 { 12129 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12130 } 12131 12132 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12133 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12134 12135 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12136 { 12137 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12138 12139 vcpu->arch.l1tf_flush_l1d = true; 12140 if (pmu->version && unlikely(pmu->event_count)) { 12141 pmu->need_cleanup = true; 12142 kvm_make_request(KVM_REQ_PMU, vcpu); 12143 } 12144 static_call(kvm_x86_sched_in)(vcpu, cpu); 12145 } 12146 12147 void kvm_arch_free_vm(struct kvm *kvm) 12148 { 12149 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12150 __kvm_arch_free_vm(kvm); 12151 } 12152 12153 12154 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12155 { 12156 int ret; 12157 unsigned long flags; 12158 12159 if (type) 12160 return -EINVAL; 12161 12162 ret = kvm_page_track_init(kvm); 12163 if (ret) 12164 goto out; 12165 12166 ret = kvm_mmu_init_vm(kvm); 12167 if (ret) 12168 goto out_page_track; 12169 12170 ret = static_call(kvm_x86_vm_init)(kvm); 12171 if (ret) 12172 goto out_uninit_mmu; 12173 12174 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12175 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12176 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12177 12178 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12179 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12180 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12181 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12182 &kvm->arch.irq_sources_bitmap); 12183 12184 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12185 mutex_init(&kvm->arch.apic_map_lock); 12186 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12187 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12188 12189 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12190 pvclock_update_vm_gtod_copy(kvm); 12191 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12192 12193 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12194 kvm->arch.guest_can_read_msr_platform_info = true; 12195 kvm->arch.enable_pmu = enable_pmu; 12196 12197 #if IS_ENABLED(CONFIG_HYPERV) 12198 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12199 kvm->arch.hv_root_tdp = INVALID_PAGE; 12200 #endif 12201 12202 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12203 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12204 12205 kvm_apicv_init(kvm); 12206 kvm_hv_init_vm(kvm); 12207 kvm_xen_init_vm(kvm); 12208 12209 return 0; 12210 12211 out_uninit_mmu: 12212 kvm_mmu_uninit_vm(kvm); 12213 out_page_track: 12214 kvm_page_track_cleanup(kvm); 12215 out: 12216 return ret; 12217 } 12218 12219 int kvm_arch_post_init_vm(struct kvm *kvm) 12220 { 12221 return kvm_mmu_post_init_vm(kvm); 12222 } 12223 12224 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12225 { 12226 vcpu_load(vcpu); 12227 kvm_mmu_unload(vcpu); 12228 vcpu_put(vcpu); 12229 } 12230 12231 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12232 { 12233 unsigned long i; 12234 struct kvm_vcpu *vcpu; 12235 12236 kvm_for_each_vcpu(i, vcpu, kvm) { 12237 kvm_clear_async_pf_completion_queue(vcpu); 12238 kvm_unload_vcpu_mmu(vcpu); 12239 } 12240 } 12241 12242 void kvm_arch_sync_events(struct kvm *kvm) 12243 { 12244 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12245 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12246 kvm_free_pit(kvm); 12247 } 12248 12249 /** 12250 * __x86_set_memory_region: Setup KVM internal memory slot 12251 * 12252 * @kvm: the kvm pointer to the VM. 12253 * @id: the slot ID to setup. 12254 * @gpa: the GPA to install the slot (unused when @size == 0). 12255 * @size: the size of the slot. Set to zero to uninstall a slot. 12256 * 12257 * This function helps to setup a KVM internal memory slot. Specify 12258 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12259 * slot. The return code can be one of the following: 12260 * 12261 * HVA: on success (uninstall will return a bogus HVA) 12262 * -errno: on error 12263 * 12264 * The caller should always use IS_ERR() to check the return value 12265 * before use. Note, the KVM internal memory slots are guaranteed to 12266 * remain valid and unchanged until the VM is destroyed, i.e., the 12267 * GPA->HVA translation will not change. However, the HVA is a user 12268 * address, i.e. its accessibility is not guaranteed, and must be 12269 * accessed via __copy_{to,from}_user(). 12270 */ 12271 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12272 u32 size) 12273 { 12274 int i, r; 12275 unsigned long hva, old_npages; 12276 struct kvm_memslots *slots = kvm_memslots(kvm); 12277 struct kvm_memory_slot *slot; 12278 12279 /* Called with kvm->slots_lock held. */ 12280 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12281 return ERR_PTR_USR(-EINVAL); 12282 12283 slot = id_to_memslot(slots, id); 12284 if (size) { 12285 if (slot && slot->npages) 12286 return ERR_PTR_USR(-EEXIST); 12287 12288 /* 12289 * MAP_SHARED to prevent internal slot pages from being moved 12290 * by fork()/COW. 12291 */ 12292 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12293 MAP_SHARED | MAP_ANONYMOUS, 0); 12294 if (IS_ERR((void *)hva)) 12295 return (void __user *)hva; 12296 } else { 12297 if (!slot || !slot->npages) 12298 return NULL; 12299 12300 old_npages = slot->npages; 12301 hva = slot->userspace_addr; 12302 } 12303 12304 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12305 struct kvm_userspace_memory_region m; 12306 12307 m.slot = id | (i << 16); 12308 m.flags = 0; 12309 m.guest_phys_addr = gpa; 12310 m.userspace_addr = hva; 12311 m.memory_size = size; 12312 r = __kvm_set_memory_region(kvm, &m); 12313 if (r < 0) 12314 return ERR_PTR_USR(r); 12315 } 12316 12317 if (!size) 12318 vm_munmap(hva, old_npages * PAGE_SIZE); 12319 12320 return (void __user *)hva; 12321 } 12322 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12323 12324 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12325 { 12326 kvm_mmu_pre_destroy_vm(kvm); 12327 } 12328 12329 void kvm_arch_destroy_vm(struct kvm *kvm) 12330 { 12331 if (current->mm == kvm->mm) { 12332 /* 12333 * Free memory regions allocated on behalf of userspace, 12334 * unless the memory map has changed due to process exit 12335 * or fd copying. 12336 */ 12337 mutex_lock(&kvm->slots_lock); 12338 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12339 0, 0); 12340 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12341 0, 0); 12342 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12343 mutex_unlock(&kvm->slots_lock); 12344 } 12345 kvm_unload_vcpu_mmus(kvm); 12346 static_call_cond(kvm_x86_vm_destroy)(kvm); 12347 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12348 kvm_pic_destroy(kvm); 12349 kvm_ioapic_destroy(kvm); 12350 kvm_destroy_vcpus(kvm); 12351 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12352 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12353 kvm_mmu_uninit_vm(kvm); 12354 kvm_page_track_cleanup(kvm); 12355 kvm_xen_destroy_vm(kvm); 12356 kvm_hv_destroy_vm(kvm); 12357 } 12358 12359 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12360 { 12361 int i; 12362 12363 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12364 kvfree(slot->arch.rmap[i]); 12365 slot->arch.rmap[i] = NULL; 12366 } 12367 } 12368 12369 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12370 { 12371 int i; 12372 12373 memslot_rmap_free(slot); 12374 12375 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12376 kvfree(slot->arch.lpage_info[i - 1]); 12377 slot->arch.lpage_info[i - 1] = NULL; 12378 } 12379 12380 kvm_page_track_free_memslot(slot); 12381 } 12382 12383 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12384 { 12385 const int sz = sizeof(*slot->arch.rmap[0]); 12386 int i; 12387 12388 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12389 int level = i + 1; 12390 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12391 12392 if (slot->arch.rmap[i]) 12393 continue; 12394 12395 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12396 if (!slot->arch.rmap[i]) { 12397 memslot_rmap_free(slot); 12398 return -ENOMEM; 12399 } 12400 } 12401 12402 return 0; 12403 } 12404 12405 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12406 struct kvm_memory_slot *slot) 12407 { 12408 unsigned long npages = slot->npages; 12409 int i, r; 12410 12411 /* 12412 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12413 * old arrays will be freed by __kvm_set_memory_region() if installing 12414 * the new memslot is successful. 12415 */ 12416 memset(&slot->arch, 0, sizeof(slot->arch)); 12417 12418 if (kvm_memslots_have_rmaps(kvm)) { 12419 r = memslot_rmap_alloc(slot, npages); 12420 if (r) 12421 return r; 12422 } 12423 12424 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12425 struct kvm_lpage_info *linfo; 12426 unsigned long ugfn; 12427 int lpages; 12428 int level = i + 1; 12429 12430 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12431 12432 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12433 if (!linfo) 12434 goto out_free; 12435 12436 slot->arch.lpage_info[i - 1] = linfo; 12437 12438 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12439 linfo[0].disallow_lpage = 1; 12440 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12441 linfo[lpages - 1].disallow_lpage = 1; 12442 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12443 /* 12444 * If the gfn and userspace address are not aligned wrt each 12445 * other, disable large page support for this slot. 12446 */ 12447 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12448 unsigned long j; 12449 12450 for (j = 0; j < lpages; ++j) 12451 linfo[j].disallow_lpage = 1; 12452 } 12453 } 12454 12455 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12456 goto out_free; 12457 12458 return 0; 12459 12460 out_free: 12461 memslot_rmap_free(slot); 12462 12463 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12464 kvfree(slot->arch.lpage_info[i - 1]); 12465 slot->arch.lpage_info[i - 1] = NULL; 12466 } 12467 return -ENOMEM; 12468 } 12469 12470 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12471 { 12472 struct kvm_vcpu *vcpu; 12473 unsigned long i; 12474 12475 /* 12476 * memslots->generation has been incremented. 12477 * mmio generation may have reached its maximum value. 12478 */ 12479 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12480 12481 /* Force re-initialization of steal_time cache */ 12482 kvm_for_each_vcpu(i, vcpu, kvm) 12483 kvm_vcpu_kick(vcpu); 12484 } 12485 12486 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12487 const struct kvm_memory_slot *old, 12488 struct kvm_memory_slot *new, 12489 enum kvm_mr_change change) 12490 { 12491 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12492 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12493 return -EINVAL; 12494 12495 return kvm_alloc_memslot_metadata(kvm, new); 12496 } 12497 12498 if (change == KVM_MR_FLAGS_ONLY) 12499 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12500 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12501 return -EIO; 12502 12503 return 0; 12504 } 12505 12506 12507 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12508 { 12509 struct kvm_arch *ka = &kvm->arch; 12510 12511 if (!kvm_x86_ops.cpu_dirty_log_size) 12512 return; 12513 12514 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12515 (!enable && --ka->cpu_dirty_logging_count == 0)) 12516 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12517 12518 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12519 } 12520 12521 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12522 struct kvm_memory_slot *old, 12523 const struct kvm_memory_slot *new, 12524 enum kvm_mr_change change) 12525 { 12526 u32 old_flags = old ? old->flags : 0; 12527 u32 new_flags = new ? new->flags : 0; 12528 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12529 12530 /* 12531 * Update CPU dirty logging if dirty logging is being toggled. This 12532 * applies to all operations. 12533 */ 12534 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12535 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12536 12537 /* 12538 * Nothing more to do for RO slots (which can't be dirtied and can't be 12539 * made writable) or CREATE/MOVE/DELETE of a slot. 12540 * 12541 * For a memslot with dirty logging disabled: 12542 * CREATE: No dirty mappings will already exist. 12543 * MOVE/DELETE: The old mappings will already have been cleaned up by 12544 * kvm_arch_flush_shadow_memslot() 12545 * 12546 * For a memslot with dirty logging enabled: 12547 * CREATE: No shadow pages exist, thus nothing to write-protect 12548 * and no dirty bits to clear. 12549 * MOVE/DELETE: The old mappings will already have been cleaned up by 12550 * kvm_arch_flush_shadow_memslot(). 12551 */ 12552 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12553 return; 12554 12555 /* 12556 * READONLY and non-flags changes were filtered out above, and the only 12557 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12558 * logging isn't being toggled on or off. 12559 */ 12560 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12561 return; 12562 12563 if (!log_dirty_pages) { 12564 /* 12565 * Dirty logging tracks sptes in 4k granularity, meaning that 12566 * large sptes have to be split. If live migration succeeds, 12567 * the guest in the source machine will be destroyed and large 12568 * sptes will be created in the destination. However, if the 12569 * guest continues to run in the source machine (for example if 12570 * live migration fails), small sptes will remain around and 12571 * cause bad performance. 12572 * 12573 * Scan sptes if dirty logging has been stopped, dropping those 12574 * which can be collapsed into a single large-page spte. Later 12575 * page faults will create the large-page sptes. 12576 */ 12577 kvm_mmu_zap_collapsible_sptes(kvm, new); 12578 } else { 12579 /* 12580 * Initially-all-set does not require write protecting any page, 12581 * because they're all assumed to be dirty. 12582 */ 12583 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12584 return; 12585 12586 if (READ_ONCE(eager_page_split)) 12587 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12588 12589 if (kvm_x86_ops.cpu_dirty_log_size) { 12590 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12591 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12592 } else { 12593 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12594 } 12595 12596 /* 12597 * Unconditionally flush the TLBs after enabling dirty logging. 12598 * A flush is almost always going to be necessary (see below), 12599 * and unconditionally flushing allows the helpers to omit 12600 * the subtly complex checks when removing write access. 12601 * 12602 * Do the flush outside of mmu_lock to reduce the amount of 12603 * time mmu_lock is held. Flushing after dropping mmu_lock is 12604 * safe as KVM only needs to guarantee the slot is fully 12605 * write-protected before returning to userspace, i.e. before 12606 * userspace can consume the dirty status. 12607 * 12608 * Flushing outside of mmu_lock requires KVM to be careful when 12609 * making decisions based on writable status of an SPTE, e.g. a 12610 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12611 * 12612 * Specifically, KVM also write-protects guest page tables to 12613 * monitor changes when using shadow paging, and must guarantee 12614 * no CPUs can write to those page before mmu_lock is dropped. 12615 * Because CPUs may have stale TLB entries at this point, a 12616 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12617 * 12618 * KVM also allows making SPTES writable outside of mmu_lock, 12619 * e.g. to allow dirty logging without taking mmu_lock. 12620 * 12621 * To handle these scenarios, KVM uses a separate software-only 12622 * bit (MMU-writable) to track if a SPTE is !writable due to 12623 * a guest page table being write-protected (KVM clears the 12624 * MMU-writable flag when write-protecting for shadow paging). 12625 * 12626 * The use of MMU-writable is also the primary motivation for 12627 * the unconditional flush. Because KVM must guarantee that a 12628 * CPU doesn't contain stale, writable TLB entries for a 12629 * !MMU-writable SPTE, KVM must flush if it encounters any 12630 * MMU-writable SPTE regardless of whether the actual hardware 12631 * writable bit was set. I.e. KVM is almost guaranteed to need 12632 * to flush, while unconditionally flushing allows the "remove 12633 * write access" helpers to ignore MMU-writable entirely. 12634 * 12635 * See is_writable_pte() for more details (the case involving 12636 * access-tracked SPTEs is particularly relevant). 12637 */ 12638 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12639 } 12640 } 12641 12642 void kvm_arch_commit_memory_region(struct kvm *kvm, 12643 struct kvm_memory_slot *old, 12644 const struct kvm_memory_slot *new, 12645 enum kvm_mr_change change) 12646 { 12647 if (!kvm->arch.n_requested_mmu_pages && 12648 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12649 unsigned long nr_mmu_pages; 12650 12651 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12652 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12653 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12654 } 12655 12656 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12657 12658 /* Free the arrays associated with the old memslot. */ 12659 if (change == KVM_MR_MOVE) 12660 kvm_arch_free_memslot(kvm, old); 12661 } 12662 12663 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12664 { 12665 kvm_mmu_zap_all(kvm); 12666 } 12667 12668 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12669 struct kvm_memory_slot *slot) 12670 { 12671 kvm_page_track_flush_slot(kvm, slot); 12672 } 12673 12674 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12675 { 12676 return (is_guest_mode(vcpu) && 12677 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12678 } 12679 12680 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12681 { 12682 if (!list_empty_careful(&vcpu->async_pf.done)) 12683 return true; 12684 12685 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12686 kvm_apic_init_sipi_allowed(vcpu)) 12687 return true; 12688 12689 if (vcpu->arch.pv.pv_unhalted) 12690 return true; 12691 12692 if (kvm_is_exception_pending(vcpu)) 12693 return true; 12694 12695 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12696 (vcpu->arch.nmi_pending && 12697 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12698 return true; 12699 12700 #ifdef CONFIG_KVM_SMM 12701 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12702 (vcpu->arch.smi_pending && 12703 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12704 return true; 12705 #endif 12706 12707 if (kvm_arch_interrupt_allowed(vcpu) && 12708 (kvm_cpu_has_interrupt(vcpu) || 12709 kvm_guest_apic_has_interrupt(vcpu))) 12710 return true; 12711 12712 if (kvm_hv_has_stimer_pending(vcpu)) 12713 return true; 12714 12715 if (is_guest_mode(vcpu) && 12716 kvm_x86_ops.nested_ops->has_events && 12717 kvm_x86_ops.nested_ops->has_events(vcpu)) 12718 return true; 12719 12720 if (kvm_xen_has_pending_events(vcpu)) 12721 return true; 12722 12723 return false; 12724 } 12725 12726 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12727 { 12728 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12729 } 12730 12731 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12732 { 12733 if (kvm_vcpu_apicv_active(vcpu) && 12734 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12735 return true; 12736 12737 return false; 12738 } 12739 12740 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12741 { 12742 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12743 return true; 12744 12745 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12746 #ifdef CONFIG_KVM_SMM 12747 kvm_test_request(KVM_REQ_SMI, vcpu) || 12748 #endif 12749 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12750 return true; 12751 12752 return kvm_arch_dy_has_pending_interrupt(vcpu); 12753 } 12754 12755 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12756 { 12757 if (vcpu->arch.guest_state_protected) 12758 return true; 12759 12760 return vcpu->arch.preempted_in_kernel; 12761 } 12762 12763 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12764 { 12765 return kvm_rip_read(vcpu); 12766 } 12767 12768 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12769 { 12770 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12771 } 12772 12773 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12774 { 12775 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12776 } 12777 12778 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12779 { 12780 /* Can't read the RIP when guest state is protected, just return 0 */ 12781 if (vcpu->arch.guest_state_protected) 12782 return 0; 12783 12784 if (is_64_bit_mode(vcpu)) 12785 return kvm_rip_read(vcpu); 12786 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12787 kvm_rip_read(vcpu)); 12788 } 12789 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12790 12791 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12792 { 12793 return kvm_get_linear_rip(vcpu) == linear_rip; 12794 } 12795 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12796 12797 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12798 { 12799 unsigned long rflags; 12800 12801 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12802 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12803 rflags &= ~X86_EFLAGS_TF; 12804 return rflags; 12805 } 12806 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12807 12808 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12809 { 12810 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12811 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12812 rflags |= X86_EFLAGS_TF; 12813 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12814 } 12815 12816 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12817 { 12818 __kvm_set_rflags(vcpu, rflags); 12819 kvm_make_request(KVM_REQ_EVENT, vcpu); 12820 } 12821 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12822 12823 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12824 { 12825 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12826 12827 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12828 } 12829 12830 static inline u32 kvm_async_pf_next_probe(u32 key) 12831 { 12832 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12833 } 12834 12835 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12836 { 12837 u32 key = kvm_async_pf_hash_fn(gfn); 12838 12839 while (vcpu->arch.apf.gfns[key] != ~0) 12840 key = kvm_async_pf_next_probe(key); 12841 12842 vcpu->arch.apf.gfns[key] = gfn; 12843 } 12844 12845 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12846 { 12847 int i; 12848 u32 key = kvm_async_pf_hash_fn(gfn); 12849 12850 for (i = 0; i < ASYNC_PF_PER_VCPU && 12851 (vcpu->arch.apf.gfns[key] != gfn && 12852 vcpu->arch.apf.gfns[key] != ~0); i++) 12853 key = kvm_async_pf_next_probe(key); 12854 12855 return key; 12856 } 12857 12858 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12859 { 12860 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12861 } 12862 12863 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12864 { 12865 u32 i, j, k; 12866 12867 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12868 12869 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12870 return; 12871 12872 while (true) { 12873 vcpu->arch.apf.gfns[i] = ~0; 12874 do { 12875 j = kvm_async_pf_next_probe(j); 12876 if (vcpu->arch.apf.gfns[j] == ~0) 12877 return; 12878 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12879 /* 12880 * k lies cyclically in ]i,j] 12881 * | i.k.j | 12882 * |....j i.k.| or |.k..j i...| 12883 */ 12884 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12885 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12886 i = j; 12887 } 12888 } 12889 12890 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12891 { 12892 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12893 12894 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12895 sizeof(reason)); 12896 } 12897 12898 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12899 { 12900 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12901 12902 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12903 &token, offset, sizeof(token)); 12904 } 12905 12906 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12907 { 12908 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12909 u32 val; 12910 12911 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12912 &val, offset, sizeof(val))) 12913 return false; 12914 12915 return !val; 12916 } 12917 12918 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12919 { 12920 12921 if (!kvm_pv_async_pf_enabled(vcpu)) 12922 return false; 12923 12924 if (vcpu->arch.apf.send_user_only && 12925 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12926 return false; 12927 12928 if (is_guest_mode(vcpu)) { 12929 /* 12930 * L1 needs to opt into the special #PF vmexits that are 12931 * used to deliver async page faults. 12932 */ 12933 return vcpu->arch.apf.delivery_as_pf_vmexit; 12934 } else { 12935 /* 12936 * Play it safe in case the guest temporarily disables paging. 12937 * The real mode IDT in particular is unlikely to have a #PF 12938 * exception setup. 12939 */ 12940 return is_paging(vcpu); 12941 } 12942 } 12943 12944 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12945 { 12946 if (unlikely(!lapic_in_kernel(vcpu) || 12947 kvm_event_needs_reinjection(vcpu) || 12948 kvm_is_exception_pending(vcpu))) 12949 return false; 12950 12951 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12952 return false; 12953 12954 /* 12955 * If interrupts are off we cannot even use an artificial 12956 * halt state. 12957 */ 12958 return kvm_arch_interrupt_allowed(vcpu); 12959 } 12960 12961 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12962 struct kvm_async_pf *work) 12963 { 12964 struct x86_exception fault; 12965 12966 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12967 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12968 12969 if (kvm_can_deliver_async_pf(vcpu) && 12970 !apf_put_user_notpresent(vcpu)) { 12971 fault.vector = PF_VECTOR; 12972 fault.error_code_valid = true; 12973 fault.error_code = 0; 12974 fault.nested_page_fault = false; 12975 fault.address = work->arch.token; 12976 fault.async_page_fault = true; 12977 kvm_inject_page_fault(vcpu, &fault); 12978 return true; 12979 } else { 12980 /* 12981 * It is not possible to deliver a paravirtualized asynchronous 12982 * page fault, but putting the guest in an artificial halt state 12983 * can be beneficial nevertheless: if an interrupt arrives, we 12984 * can deliver it timely and perhaps the guest will schedule 12985 * another process. When the instruction that triggered a page 12986 * fault is retried, hopefully the page will be ready in the host. 12987 */ 12988 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12989 return false; 12990 } 12991 } 12992 12993 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12994 struct kvm_async_pf *work) 12995 { 12996 struct kvm_lapic_irq irq = { 12997 .delivery_mode = APIC_DM_FIXED, 12998 .vector = vcpu->arch.apf.vec 12999 }; 13000 13001 if (work->wakeup_all) 13002 work->arch.token = ~0; /* broadcast wakeup */ 13003 else 13004 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13005 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13006 13007 if ((work->wakeup_all || work->notpresent_injected) && 13008 kvm_pv_async_pf_enabled(vcpu) && 13009 !apf_put_user_ready(vcpu, work->arch.token)) { 13010 vcpu->arch.apf.pageready_pending = true; 13011 kvm_apic_set_irq(vcpu, &irq, NULL); 13012 } 13013 13014 vcpu->arch.apf.halted = false; 13015 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13016 } 13017 13018 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13019 { 13020 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13021 if (!vcpu->arch.apf.pageready_pending) 13022 kvm_vcpu_kick(vcpu); 13023 } 13024 13025 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13026 { 13027 if (!kvm_pv_async_pf_enabled(vcpu)) 13028 return true; 13029 else 13030 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13031 } 13032 13033 void kvm_arch_start_assignment(struct kvm *kvm) 13034 { 13035 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13036 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13037 } 13038 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13039 13040 void kvm_arch_end_assignment(struct kvm *kvm) 13041 { 13042 atomic_dec(&kvm->arch.assigned_device_count); 13043 } 13044 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13045 13046 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13047 { 13048 return arch_atomic_read(&kvm->arch.assigned_device_count); 13049 } 13050 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13051 13052 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13053 { 13054 atomic_inc(&kvm->arch.noncoherent_dma_count); 13055 } 13056 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13057 13058 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13059 { 13060 atomic_dec(&kvm->arch.noncoherent_dma_count); 13061 } 13062 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13063 13064 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13065 { 13066 return atomic_read(&kvm->arch.noncoherent_dma_count); 13067 } 13068 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13069 13070 bool kvm_arch_has_irq_bypass(void) 13071 { 13072 return true; 13073 } 13074 13075 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13076 struct irq_bypass_producer *prod) 13077 { 13078 struct kvm_kernel_irqfd *irqfd = 13079 container_of(cons, struct kvm_kernel_irqfd, consumer); 13080 int ret; 13081 13082 irqfd->producer = prod; 13083 kvm_arch_start_assignment(irqfd->kvm); 13084 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13085 prod->irq, irqfd->gsi, 1); 13086 13087 if (ret) 13088 kvm_arch_end_assignment(irqfd->kvm); 13089 13090 return ret; 13091 } 13092 13093 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13094 struct irq_bypass_producer *prod) 13095 { 13096 int ret; 13097 struct kvm_kernel_irqfd *irqfd = 13098 container_of(cons, struct kvm_kernel_irqfd, consumer); 13099 13100 WARN_ON(irqfd->producer != prod); 13101 irqfd->producer = NULL; 13102 13103 /* 13104 * When producer of consumer is unregistered, we change back to 13105 * remapped mode, so we can re-use the current implementation 13106 * when the irq is masked/disabled or the consumer side (KVM 13107 * int this case doesn't want to receive the interrupts. 13108 */ 13109 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13110 if (ret) 13111 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13112 " fails: %d\n", irqfd->consumer.token, ret); 13113 13114 kvm_arch_end_assignment(irqfd->kvm); 13115 } 13116 13117 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13118 uint32_t guest_irq, bool set) 13119 { 13120 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13121 } 13122 13123 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13124 struct kvm_kernel_irq_routing_entry *new) 13125 { 13126 if (new->type != KVM_IRQ_ROUTING_MSI) 13127 return true; 13128 13129 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13130 } 13131 13132 bool kvm_vector_hashing_enabled(void) 13133 { 13134 return vector_hashing; 13135 } 13136 13137 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13138 { 13139 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13140 } 13141 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13142 13143 13144 int kvm_spec_ctrl_test_value(u64 value) 13145 { 13146 /* 13147 * test that setting IA32_SPEC_CTRL to given value 13148 * is allowed by the host processor 13149 */ 13150 13151 u64 saved_value; 13152 unsigned long flags; 13153 int ret = 0; 13154 13155 local_irq_save(flags); 13156 13157 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13158 ret = 1; 13159 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13160 ret = 1; 13161 else 13162 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13163 13164 local_irq_restore(flags); 13165 13166 return ret; 13167 } 13168 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13169 13170 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13171 { 13172 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13173 struct x86_exception fault; 13174 u64 access = error_code & 13175 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13176 13177 if (!(error_code & PFERR_PRESENT_MASK) || 13178 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13179 /* 13180 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13181 * tables probably do not match the TLB. Just proceed 13182 * with the error code that the processor gave. 13183 */ 13184 fault.vector = PF_VECTOR; 13185 fault.error_code_valid = true; 13186 fault.error_code = error_code; 13187 fault.nested_page_fault = false; 13188 fault.address = gva; 13189 fault.async_page_fault = false; 13190 } 13191 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13192 } 13193 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13194 13195 /* 13196 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13197 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13198 * indicates whether exit to userspace is needed. 13199 */ 13200 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13201 struct x86_exception *e) 13202 { 13203 if (r == X86EMUL_PROPAGATE_FAULT) { 13204 if (KVM_BUG_ON(!e, vcpu->kvm)) 13205 return -EIO; 13206 13207 kvm_inject_emulated_page_fault(vcpu, e); 13208 return 1; 13209 } 13210 13211 /* 13212 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13213 * while handling a VMX instruction KVM could've handled the request 13214 * correctly by exiting to userspace and performing I/O but there 13215 * doesn't seem to be a real use-case behind such requests, just return 13216 * KVM_EXIT_INTERNAL_ERROR for now. 13217 */ 13218 kvm_prepare_emulation_failure_exit(vcpu); 13219 13220 return 0; 13221 } 13222 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13223 13224 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13225 { 13226 bool pcid_enabled; 13227 struct x86_exception e; 13228 struct { 13229 u64 pcid; 13230 u64 gla; 13231 } operand; 13232 int r; 13233 13234 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13235 if (r != X86EMUL_CONTINUE) 13236 return kvm_handle_memory_failure(vcpu, r, &e); 13237 13238 if (operand.pcid >> 12 != 0) { 13239 kvm_inject_gp(vcpu, 0); 13240 return 1; 13241 } 13242 13243 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13244 13245 switch (type) { 13246 case INVPCID_TYPE_INDIV_ADDR: 13247 if ((!pcid_enabled && (operand.pcid != 0)) || 13248 is_noncanonical_address(operand.gla, vcpu)) { 13249 kvm_inject_gp(vcpu, 0); 13250 return 1; 13251 } 13252 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13253 return kvm_skip_emulated_instruction(vcpu); 13254 13255 case INVPCID_TYPE_SINGLE_CTXT: 13256 if (!pcid_enabled && (operand.pcid != 0)) { 13257 kvm_inject_gp(vcpu, 0); 13258 return 1; 13259 } 13260 13261 kvm_invalidate_pcid(vcpu, operand.pcid); 13262 return kvm_skip_emulated_instruction(vcpu); 13263 13264 case INVPCID_TYPE_ALL_NON_GLOBAL: 13265 /* 13266 * Currently, KVM doesn't mark global entries in the shadow 13267 * page tables, so a non-global flush just degenerates to a 13268 * global flush. If needed, we could optimize this later by 13269 * keeping track of global entries in shadow page tables. 13270 */ 13271 13272 fallthrough; 13273 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13274 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13275 return kvm_skip_emulated_instruction(vcpu); 13276 13277 default: 13278 kvm_inject_gp(vcpu, 0); 13279 return 1; 13280 } 13281 } 13282 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13283 13284 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13285 { 13286 struct kvm_run *run = vcpu->run; 13287 struct kvm_mmio_fragment *frag; 13288 unsigned int len; 13289 13290 BUG_ON(!vcpu->mmio_needed); 13291 13292 /* Complete previous fragment */ 13293 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13294 len = min(8u, frag->len); 13295 if (!vcpu->mmio_is_write) 13296 memcpy(frag->data, run->mmio.data, len); 13297 13298 if (frag->len <= 8) { 13299 /* Switch to the next fragment. */ 13300 frag++; 13301 vcpu->mmio_cur_fragment++; 13302 } else { 13303 /* Go forward to the next mmio piece. */ 13304 frag->data += len; 13305 frag->gpa += len; 13306 frag->len -= len; 13307 } 13308 13309 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13310 vcpu->mmio_needed = 0; 13311 13312 // VMG change, at this point, we're always done 13313 // RIP has already been advanced 13314 return 1; 13315 } 13316 13317 // More MMIO is needed 13318 run->mmio.phys_addr = frag->gpa; 13319 run->mmio.len = min(8u, frag->len); 13320 run->mmio.is_write = vcpu->mmio_is_write; 13321 if (run->mmio.is_write) 13322 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13323 run->exit_reason = KVM_EXIT_MMIO; 13324 13325 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13326 13327 return 0; 13328 } 13329 13330 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13331 void *data) 13332 { 13333 int handled; 13334 struct kvm_mmio_fragment *frag; 13335 13336 if (!data) 13337 return -EINVAL; 13338 13339 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13340 if (handled == bytes) 13341 return 1; 13342 13343 bytes -= handled; 13344 gpa += handled; 13345 data += handled; 13346 13347 /*TODO: Check if need to increment number of frags */ 13348 frag = vcpu->mmio_fragments; 13349 vcpu->mmio_nr_fragments = 1; 13350 frag->len = bytes; 13351 frag->gpa = gpa; 13352 frag->data = data; 13353 13354 vcpu->mmio_needed = 1; 13355 vcpu->mmio_cur_fragment = 0; 13356 13357 vcpu->run->mmio.phys_addr = gpa; 13358 vcpu->run->mmio.len = min(8u, frag->len); 13359 vcpu->run->mmio.is_write = 1; 13360 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13361 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13362 13363 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13364 13365 return 0; 13366 } 13367 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13368 13369 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13370 void *data) 13371 { 13372 int handled; 13373 struct kvm_mmio_fragment *frag; 13374 13375 if (!data) 13376 return -EINVAL; 13377 13378 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13379 if (handled == bytes) 13380 return 1; 13381 13382 bytes -= handled; 13383 gpa += handled; 13384 data += handled; 13385 13386 /*TODO: Check if need to increment number of frags */ 13387 frag = vcpu->mmio_fragments; 13388 vcpu->mmio_nr_fragments = 1; 13389 frag->len = bytes; 13390 frag->gpa = gpa; 13391 frag->data = data; 13392 13393 vcpu->mmio_needed = 1; 13394 vcpu->mmio_cur_fragment = 0; 13395 13396 vcpu->run->mmio.phys_addr = gpa; 13397 vcpu->run->mmio.len = min(8u, frag->len); 13398 vcpu->run->mmio.is_write = 0; 13399 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13400 13401 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13402 13403 return 0; 13404 } 13405 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13406 13407 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13408 { 13409 vcpu->arch.sev_pio_count -= count; 13410 vcpu->arch.sev_pio_data += count * size; 13411 } 13412 13413 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13414 unsigned int port); 13415 13416 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13417 { 13418 int size = vcpu->arch.pio.size; 13419 int port = vcpu->arch.pio.port; 13420 13421 vcpu->arch.pio.count = 0; 13422 if (vcpu->arch.sev_pio_count) 13423 return kvm_sev_es_outs(vcpu, size, port); 13424 return 1; 13425 } 13426 13427 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13428 unsigned int port) 13429 { 13430 for (;;) { 13431 unsigned int count = 13432 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13433 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13434 13435 /* memcpy done already by emulator_pio_out. */ 13436 advance_sev_es_emulated_pio(vcpu, count, size); 13437 if (!ret) 13438 break; 13439 13440 /* Emulation done by the kernel. */ 13441 if (!vcpu->arch.sev_pio_count) 13442 return 1; 13443 } 13444 13445 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13446 return 0; 13447 } 13448 13449 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13450 unsigned int port); 13451 13452 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13453 { 13454 unsigned count = vcpu->arch.pio.count; 13455 int size = vcpu->arch.pio.size; 13456 int port = vcpu->arch.pio.port; 13457 13458 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13459 advance_sev_es_emulated_pio(vcpu, count, size); 13460 if (vcpu->arch.sev_pio_count) 13461 return kvm_sev_es_ins(vcpu, size, port); 13462 return 1; 13463 } 13464 13465 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13466 unsigned int port) 13467 { 13468 for (;;) { 13469 unsigned int count = 13470 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13471 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13472 break; 13473 13474 /* Emulation done by the kernel. */ 13475 advance_sev_es_emulated_pio(vcpu, count, size); 13476 if (!vcpu->arch.sev_pio_count) 13477 return 1; 13478 } 13479 13480 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13481 return 0; 13482 } 13483 13484 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13485 unsigned int port, void *data, unsigned int count, 13486 int in) 13487 { 13488 vcpu->arch.sev_pio_data = data; 13489 vcpu->arch.sev_pio_count = count; 13490 return in ? kvm_sev_es_ins(vcpu, size, port) 13491 : kvm_sev_es_outs(vcpu, size, port); 13492 } 13493 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13494 13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13524 13525 static int __init kvm_x86_init(void) 13526 { 13527 kvm_mmu_x86_module_init(); 13528 return 0; 13529 } 13530 module_init(kvm_x86_init); 13531 13532 static void __exit kvm_x86_exit(void) 13533 { 13534 /* 13535 * If module_init() is implemented, module_exit() must also be 13536 * implemented to allow module unload. 13537 */ 13538 } 13539 module_exit(kvm_x86_exit); 13540