xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 2de154f541fc5b9f2aed3fe06e218130718ce320)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 
64 #include <trace/events/kvm.h>
65 
66 #include <asm/debugreg.h>
67 #include <asm/msr.h>
68 #include <asm/desc.h>
69 #include <asm/mce.h>
70 #include <asm/pkru.h>
71 #include <linux/kernel_stat.h>
72 #include <asm/fpu/api.h>
73 #include <asm/fpu/xcr.h>
74 #include <asm/fpu/xstate.h>
75 #include <asm/pvclock.h>
76 #include <asm/div64.h>
77 #include <asm/irq_remapping.h>
78 #include <asm/mshyperv.h>
79 #include <asm/hypervisor.h>
80 #include <asm/tlbflush.h>
81 #include <asm/intel_pt.h>
82 #include <asm/emulate_prefix.h>
83 #include <asm/sgx.h>
84 #include <clocksource/hyperv_timer.h>
85 
86 #define CREATE_TRACE_POINTS
87 #include "trace.h"
88 
89 #define MAX_IO_MSRS 256
90 #define KVM_MAX_MCE_BANKS 32
91 
92 struct kvm_caps kvm_caps __read_mostly = {
93 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
94 };
95 EXPORT_SYMBOL_GPL(kvm_caps);
96 
97 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
98 
99 #define emul_to_vcpu(ctxt) \
100 	((struct kvm_vcpu *)(ctxt)->vcpu)
101 
102 /* EFER defaults:
103  * - enable syscall per default because its emulated by KVM
104  * - enable LME and LMA per default on 64 bit KVM
105  */
106 #ifdef CONFIG_X86_64
107 static
108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
109 #else
110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
111 #endif
112 
113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
114 
115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
116 
117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
118 
119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
120                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
121 
122 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
123 static void process_nmi(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 static DEFINE_MUTEX(vendor_module_lock);
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134 
135 #define KVM_X86_OP(func)					     \
136 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
137 				*(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143 
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146 
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150 
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153 
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156 
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160 
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /*
197  * Restoring the host value for MSRs that are only consumed when running in
198  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
199  * returns to userspace, i.e. the kernel can run with the guest's value.
200  */
201 #define KVM_MAX_NR_USER_RETURN_MSRS 16
202 
203 struct kvm_user_return_msrs {
204 	struct user_return_notifier urn;
205 	bool registered;
206 	struct kvm_user_return_msr_values {
207 		u64 host;
208 		u64 curr;
209 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
210 };
211 
212 u32 __read_mostly kvm_nr_uret_msrs;
213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
215 static struct kvm_user_return_msrs __percpu *user_return_msrs;
216 
217 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
218 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
219 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
220 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
221 
222 u64 __read_mostly host_efer;
223 EXPORT_SYMBOL_GPL(host_efer);
224 
225 bool __read_mostly allow_smaller_maxphyaddr = 0;
226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
227 
228 bool __read_mostly enable_apicv = true;
229 EXPORT_SYMBOL_GPL(enable_apicv);
230 
231 u64 __read_mostly host_xss;
232 EXPORT_SYMBOL_GPL(host_xss);
233 
234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
235 	KVM_GENERIC_VM_STATS(),
236 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_pte_write),
238 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
239 	STATS_DESC_COUNTER(VM, mmu_flooded),
240 	STATS_DESC_COUNTER(VM, mmu_recycled),
241 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
242 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
243 	STATS_DESC_ICOUNTER(VM, pages_4k),
244 	STATS_DESC_ICOUNTER(VM, pages_2m),
245 	STATS_DESC_ICOUNTER(VM, pages_1g),
246 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
247 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
248 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
249 };
250 
251 const struct kvm_stats_header kvm_vm_stats_header = {
252 	.name_size = KVM_STATS_NAME_SIZE,
253 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
254 	.id_offset = sizeof(struct kvm_stats_header),
255 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
256 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
257 		       sizeof(kvm_vm_stats_desc),
258 };
259 
260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
261 	KVM_GENERIC_VCPU_STATS(),
262 	STATS_DESC_COUNTER(VCPU, pf_taken),
263 	STATS_DESC_COUNTER(VCPU, pf_fixed),
264 	STATS_DESC_COUNTER(VCPU, pf_emulate),
265 	STATS_DESC_COUNTER(VCPU, pf_spurious),
266 	STATS_DESC_COUNTER(VCPU, pf_fast),
267 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
268 	STATS_DESC_COUNTER(VCPU, pf_guest),
269 	STATS_DESC_COUNTER(VCPU, tlb_flush),
270 	STATS_DESC_COUNTER(VCPU, invlpg),
271 	STATS_DESC_COUNTER(VCPU, exits),
272 	STATS_DESC_COUNTER(VCPU, io_exits),
273 	STATS_DESC_COUNTER(VCPU, mmio_exits),
274 	STATS_DESC_COUNTER(VCPU, signal_exits),
275 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
276 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
277 	STATS_DESC_COUNTER(VCPU, l1d_flush),
278 	STATS_DESC_COUNTER(VCPU, halt_exits),
279 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
280 	STATS_DESC_COUNTER(VCPU, irq_exits),
281 	STATS_DESC_COUNTER(VCPU, host_state_reload),
282 	STATS_DESC_COUNTER(VCPU, fpu_reload),
283 	STATS_DESC_COUNTER(VCPU, insn_emulation),
284 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
285 	STATS_DESC_COUNTER(VCPU, hypercalls),
286 	STATS_DESC_COUNTER(VCPU, irq_injections),
287 	STATS_DESC_COUNTER(VCPU, nmi_injections),
288 	STATS_DESC_COUNTER(VCPU, req_event),
289 	STATS_DESC_COUNTER(VCPU, nested_run),
290 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
291 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
292 	STATS_DESC_COUNTER(VCPU, preemption_reported),
293 	STATS_DESC_COUNTER(VCPU, preemption_other),
294 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
295 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
296 };
297 
298 const struct kvm_stats_header kvm_vcpu_stats_header = {
299 	.name_size = KVM_STATS_NAME_SIZE,
300 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
301 	.id_offset = sizeof(struct kvm_stats_header),
302 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
303 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
304 		       sizeof(kvm_vcpu_stats_desc),
305 };
306 
307 u64 __read_mostly host_xcr0;
308 
309 static struct kmem_cache *x86_emulator_cache;
310 
311 /*
312  * When called, it means the previous get/set msr reached an invalid msr.
313  * Return true if we want to ignore/silent this failed msr access.
314  */
315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
316 {
317 	const char *op = write ? "wrmsr" : "rdmsr";
318 
319 	if (ignore_msrs) {
320 		if (report_ignored_msrs)
321 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		/* Mask the error */
324 		return true;
325 	} else {
326 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
327 				      op, msr, data);
328 		return false;
329 	}
330 }
331 
332 static struct kmem_cache *kvm_alloc_emulator_cache(void)
333 {
334 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
335 	unsigned int size = sizeof(struct x86_emulate_ctxt);
336 
337 	return kmem_cache_create_usercopy("x86_emulator", size,
338 					  __alignof__(struct x86_emulate_ctxt),
339 					  SLAB_ACCOUNT, useroffset,
340 					  size - useroffset, NULL);
341 }
342 
343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
344 
345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
346 {
347 	int i;
348 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
349 		vcpu->arch.apf.gfns[i] = ~0;
350 }
351 
352 static void kvm_on_user_return(struct user_return_notifier *urn)
353 {
354 	unsigned slot;
355 	struct kvm_user_return_msrs *msrs
356 		= container_of(urn, struct kvm_user_return_msrs, urn);
357 	struct kvm_user_return_msr_values *values;
358 	unsigned long flags;
359 
360 	/*
361 	 * Disabling irqs at this point since the following code could be
362 	 * interrupted and executed through kvm_arch_hardware_disable()
363 	 */
364 	local_irq_save(flags);
365 	if (msrs->registered) {
366 		msrs->registered = false;
367 		user_return_notifier_unregister(urn);
368 	}
369 	local_irq_restore(flags);
370 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
371 		values = &msrs->values[slot];
372 		if (values->host != values->curr) {
373 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
374 			values->curr = values->host;
375 		}
376 	}
377 }
378 
379 static int kvm_probe_user_return_msr(u32 msr)
380 {
381 	u64 val;
382 	int ret;
383 
384 	preempt_disable();
385 	ret = rdmsrl_safe(msr, &val);
386 	if (ret)
387 		goto out;
388 	ret = wrmsrl_safe(msr, val);
389 out:
390 	preempt_enable();
391 	return ret;
392 }
393 
394 int kvm_add_user_return_msr(u32 msr)
395 {
396 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
397 
398 	if (kvm_probe_user_return_msr(msr))
399 		return -1;
400 
401 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
402 	return kvm_nr_uret_msrs++;
403 }
404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
405 
406 int kvm_find_user_return_msr(u32 msr)
407 {
408 	int i;
409 
410 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
411 		if (kvm_uret_msrs_list[i] == msr)
412 			return i;
413 	}
414 	return -1;
415 }
416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
417 
418 static void kvm_user_return_msr_cpu_online(void)
419 {
420 	unsigned int cpu = smp_processor_id();
421 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
422 	u64 value;
423 	int i;
424 
425 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
426 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
427 		msrs->values[i].host = value;
428 		msrs->values[i].curr = value;
429 	}
430 }
431 
432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
433 {
434 	unsigned int cpu = smp_processor_id();
435 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
436 	int err;
437 
438 	value = (value & mask) | (msrs->values[slot].host & ~mask);
439 	if (value == msrs->values[slot].curr)
440 		return 0;
441 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
442 	if (err)
443 		return 1;
444 
445 	msrs->values[slot].curr = value;
446 	if (!msrs->registered) {
447 		msrs->urn.on_user_return = kvm_on_user_return;
448 		user_return_notifier_register(&msrs->urn);
449 		msrs->registered = true;
450 	}
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
454 
455 static void drop_user_return_notifiers(void)
456 {
457 	unsigned int cpu = smp_processor_id();
458 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
459 
460 	if (msrs->registered)
461 		kvm_on_user_return(&msrs->urn);
462 }
463 
464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
465 {
466 	return vcpu->arch.apic_base;
467 }
468 
469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474 
475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481 
482 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 		return 1;
484 	if (!msr_info->host_initiated) {
485 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 			return 1;
487 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 			return 1;
489 	}
490 
491 	kvm_lapic_set_base(vcpu, msr_info->data);
492 	kvm_recalculate_apic_map(vcpu->kvm);
493 	return 0;
494 }
495 
496 /*
497  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
498  *
499  * Hardware virtualization extension instructions may fault if a reboot turns
500  * off virtualization while processes are running.  Usually after catching the
501  * fault we just panic; during reboot instead the instruction is ignored.
502  */
503 noinstr void kvm_spurious_fault(void)
504 {
505 	/* Fault while not rebooting.  We want the trace. */
506 	BUG_ON(!kvm_rebooting);
507 }
508 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
509 
510 #define EXCPT_BENIGN		0
511 #define EXCPT_CONTRIBUTORY	1
512 #define EXCPT_PF		2
513 
514 static int exception_class(int vector)
515 {
516 	switch (vector) {
517 	case PF_VECTOR:
518 		return EXCPT_PF;
519 	case DE_VECTOR:
520 	case TS_VECTOR:
521 	case NP_VECTOR:
522 	case SS_VECTOR:
523 	case GP_VECTOR:
524 		return EXCPT_CONTRIBUTORY;
525 	default:
526 		break;
527 	}
528 	return EXCPT_BENIGN;
529 }
530 
531 #define EXCPT_FAULT		0
532 #define EXCPT_TRAP		1
533 #define EXCPT_ABORT		2
534 #define EXCPT_INTERRUPT		3
535 #define EXCPT_DB		4
536 
537 static int exception_type(int vector)
538 {
539 	unsigned int mask;
540 
541 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
542 		return EXCPT_INTERRUPT;
543 
544 	mask = 1 << vector;
545 
546 	/*
547 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
548 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
549 	 */
550 	if (mask & (1 << DB_VECTOR))
551 		return EXCPT_DB;
552 
553 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
554 		return EXCPT_TRAP;
555 
556 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
557 		return EXCPT_ABORT;
558 
559 	/* Reserved exceptions will result in fault */
560 	return EXCPT_FAULT;
561 }
562 
563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
564 				   struct kvm_queued_exception *ex)
565 {
566 	if (!ex->has_payload)
567 		return;
568 
569 	switch (ex->vector) {
570 	case DB_VECTOR:
571 		/*
572 		 * "Certain debug exceptions may clear bit 0-3.  The
573 		 * remaining contents of the DR6 register are never
574 		 * cleared by the processor".
575 		 */
576 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
577 		/*
578 		 * In order to reflect the #DB exception payload in guest
579 		 * dr6, three components need to be considered: active low
580 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
581 		 * DR6_BS and DR6_BT)
582 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
583 		 * In the target guest dr6:
584 		 * FIXED_1 bits should always be set.
585 		 * Active low bits should be cleared if 1-setting in payload.
586 		 * Active high bits should be set if 1-setting in payload.
587 		 *
588 		 * Note, the payload is compatible with the pending debug
589 		 * exceptions/exit qualification under VMX, that active_low bits
590 		 * are active high in payload.
591 		 * So they need to be flipped for DR6.
592 		 */
593 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
594 		vcpu->arch.dr6 |= ex->payload;
595 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
596 
597 		/*
598 		 * The #DB payload is defined as compatible with the 'pending
599 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
600 		 * defined in the 'pending debug exceptions' field (enabled
601 		 * breakpoint), it is reserved and must be zero in DR6.
602 		 */
603 		vcpu->arch.dr6 &= ~BIT(12);
604 		break;
605 	case PF_VECTOR:
606 		vcpu->arch.cr2 = ex->payload;
607 		break;
608 	}
609 
610 	ex->has_payload = false;
611 	ex->payload = 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
614 
615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
616 				       bool has_error_code, u32 error_code,
617 				       bool has_payload, unsigned long payload)
618 {
619 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
620 
621 	ex->vector = vector;
622 	ex->injected = false;
623 	ex->pending = true;
624 	ex->has_error_code = has_error_code;
625 	ex->error_code = error_code;
626 	ex->has_payload = has_payload;
627 	ex->payload = payload;
628 }
629 
630 /* Forcibly leave the nested mode in cases like a vCPU reset */
631 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
632 {
633 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
634 }
635 
636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
637 		unsigned nr, bool has_error, u32 error_code,
638 	        bool has_payload, unsigned long payload, bool reinject)
639 {
640 	u32 prev_nr;
641 	int class1, class2;
642 
643 	kvm_make_request(KVM_REQ_EVENT, vcpu);
644 
645 	/*
646 	 * If the exception is destined for L2 and isn't being reinjected,
647 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
648 	 * previously injected exception is not checked because it was checked
649 	 * when it was original queued, and re-checking is incorrect if _L1_
650 	 * injected the exception, in which case it's exempt from interception.
651 	 */
652 	if (!reinject && is_guest_mode(vcpu) &&
653 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
654 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
655 					   has_payload, payload);
656 		return;
657 	}
658 
659 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
660 	queue:
661 		if (reinject) {
662 			/*
663 			 * On VM-Entry, an exception can be pending if and only
664 			 * if event injection was blocked by nested_run_pending.
665 			 * In that case, however, vcpu_enter_guest() requests an
666 			 * immediate exit, and the guest shouldn't proceed far
667 			 * enough to need reinjection.
668 			 */
669 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
670 			vcpu->arch.exception.injected = true;
671 			if (WARN_ON_ONCE(has_payload)) {
672 				/*
673 				 * A reinjected event has already
674 				 * delivered its payload.
675 				 */
676 				has_payload = false;
677 				payload = 0;
678 			}
679 		} else {
680 			vcpu->arch.exception.pending = true;
681 			vcpu->arch.exception.injected = false;
682 		}
683 		vcpu->arch.exception.has_error_code = has_error;
684 		vcpu->arch.exception.vector = nr;
685 		vcpu->arch.exception.error_code = error_code;
686 		vcpu->arch.exception.has_payload = has_payload;
687 		vcpu->arch.exception.payload = payload;
688 		if (!is_guest_mode(vcpu))
689 			kvm_deliver_exception_payload(vcpu,
690 						      &vcpu->arch.exception);
691 		return;
692 	}
693 
694 	/* to check exception */
695 	prev_nr = vcpu->arch.exception.vector;
696 	if (prev_nr == DF_VECTOR) {
697 		/* triple fault -> shutdown */
698 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
699 		return;
700 	}
701 	class1 = exception_class(prev_nr);
702 	class2 = exception_class(nr);
703 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
704 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
705 		/*
706 		 * Synthesize #DF.  Clear the previously injected or pending
707 		 * exception so as not to incorrectly trigger shutdown.
708 		 */
709 		vcpu->arch.exception.injected = false;
710 		vcpu->arch.exception.pending = false;
711 
712 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
713 	} else {
714 		/* replace previous exception with a new one in a hope
715 		   that instruction re-execution will regenerate lost
716 		   exception */
717 		goto queue;
718 	}
719 }
720 
721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
722 {
723 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
724 }
725 EXPORT_SYMBOL_GPL(kvm_queue_exception);
726 
727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
730 }
731 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
732 
733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
734 			   unsigned long payload)
735 {
736 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
737 }
738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
739 
740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
741 				    u32 error_code, unsigned long payload)
742 {
743 	kvm_multiple_exception(vcpu, nr, true, error_code,
744 			       true, payload, false);
745 }
746 
747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
748 {
749 	if (err)
750 		kvm_inject_gp(vcpu, 0);
751 	else
752 		return kvm_skip_emulated_instruction(vcpu);
753 
754 	return 1;
755 }
756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
757 
758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
759 {
760 	if (err) {
761 		kvm_inject_gp(vcpu, 0);
762 		return 1;
763 	}
764 
765 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
766 				       EMULTYPE_COMPLETE_USER_EXIT);
767 }
768 
769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
770 {
771 	++vcpu->stat.pf_guest;
772 
773 	/*
774 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
775 	 * whether or not L1 wants to intercept "regular" #PF.
776 	 */
777 	if (is_guest_mode(vcpu) && fault->async_page_fault)
778 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
779 					   true, fault->error_code,
780 					   true, fault->address);
781 	else
782 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
783 					fault->address);
784 }
785 
786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
787 				    struct x86_exception *fault)
788 {
789 	struct kvm_mmu *fault_mmu;
790 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
791 
792 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
793 					       vcpu->arch.walk_mmu;
794 
795 	/*
796 	 * Invalidate the TLB entry for the faulting address, if it exists,
797 	 * else the access will fault indefinitely (and to emulate hardware).
798 	 */
799 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
800 	    !(fault->error_code & PFERR_RSVD_MASK))
801 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
802 				       fault_mmu->root.hpa);
803 
804 	fault_mmu->inject_page_fault(vcpu, fault);
805 }
806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
807 
808 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
809 {
810 	atomic_inc(&vcpu->arch.nmi_queued);
811 	kvm_make_request(KVM_REQ_NMI, vcpu);
812 }
813 
814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
815 {
816 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
817 }
818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
819 
820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
823 }
824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
825 
826 /*
827  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
828  * a #GP and return false.
829  */
830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
831 {
832 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
833 		return true;
834 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
835 	return false;
836 }
837 
838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
839 {
840 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
841 		return true;
842 
843 	kvm_queue_exception(vcpu, UD_VECTOR);
844 	return false;
845 }
846 EXPORT_SYMBOL_GPL(kvm_require_dr);
847 
848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
849 {
850 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
851 }
852 
853 /*
854  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
855  */
856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
857 {
858 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
859 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
860 	gpa_t real_gpa;
861 	int i;
862 	int ret;
863 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
864 
865 	/*
866 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
867 	 * to an L1 GPA.
868 	 */
869 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
870 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
871 	if (real_gpa == INVALID_GPA)
872 		return 0;
873 
874 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
875 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
876 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
877 	if (ret < 0)
878 		return 0;
879 
880 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
881 		if ((pdpte[i] & PT_PRESENT_MASK) &&
882 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
883 			return 0;
884 		}
885 	}
886 
887 	/*
888 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
889 	 * Shadow page roots need to be reconstructed instead.
890 	 */
891 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
892 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
893 
894 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
895 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
896 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
897 	vcpu->arch.pdptrs_from_userspace = false;
898 
899 	return 1;
900 }
901 EXPORT_SYMBOL_GPL(load_pdptrs);
902 
903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
904 {
905 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
906 		kvm_clear_async_pf_completion_queue(vcpu);
907 		kvm_async_pf_hash_reset(vcpu);
908 
909 		/*
910 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
911 		 * perspective.
912 		 */
913 		if (!(cr0 & X86_CR0_PG))
914 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
915 	}
916 
917 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
918 		kvm_mmu_reset_context(vcpu);
919 
920 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
921 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
922 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
923 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
924 }
925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
926 
927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
928 {
929 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
930 
931 	cr0 |= X86_CR0_ET;
932 
933 #ifdef CONFIG_X86_64
934 	if (cr0 & 0xffffffff00000000UL)
935 		return 1;
936 #endif
937 
938 	cr0 &= ~CR0_RESERVED_BITS;
939 
940 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
941 		return 1;
942 
943 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
944 		return 1;
945 
946 #ifdef CONFIG_X86_64
947 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
948 	    (cr0 & X86_CR0_PG)) {
949 		int cs_db, cs_l;
950 
951 		if (!is_pae(vcpu))
952 			return 1;
953 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
954 		if (cs_l)
955 			return 1;
956 	}
957 #endif
958 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
959 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
960 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
961 		return 1;
962 
963 	if (!(cr0 & X86_CR0_PG) &&
964 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
965 		return 1;
966 
967 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
968 
969 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
970 
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_set_cr0);
974 
975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
976 {
977 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
978 }
979 EXPORT_SYMBOL_GPL(kvm_lmsw);
980 
981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
982 {
983 	if (vcpu->arch.guest_state_protected)
984 		return;
985 
986 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
987 
988 		if (vcpu->arch.xcr0 != host_xcr0)
989 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
990 
991 		if (vcpu->arch.xsaves_enabled &&
992 		    vcpu->arch.ia32_xss != host_xss)
993 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
994 	}
995 
996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
997 	if (static_cpu_has(X86_FEATURE_PKU) &&
998 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
999 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1000 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1001 		write_pkru(vcpu->arch.pkru);
1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1005 
1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1007 {
1008 	if (vcpu->arch.guest_state_protected)
1009 		return;
1010 
1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1012 	if (static_cpu_has(X86_FEATURE_PKU) &&
1013 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1014 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1015 		vcpu->arch.pkru = rdpkru();
1016 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1017 			write_pkru(vcpu->arch.host_pkru);
1018 	}
1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1020 
1021 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1022 
1023 		if (vcpu->arch.xcr0 != host_xcr0)
1024 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1025 
1026 		if (vcpu->arch.xsaves_enabled &&
1027 		    vcpu->arch.ia32_xss != host_xss)
1028 			wrmsrl(MSR_IA32_XSS, host_xss);
1029 	}
1030 
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1033 
1034 #ifdef CONFIG_X86_64
1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1036 {
1037 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1038 }
1039 #endif
1040 
1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1042 {
1043 	u64 xcr0 = xcr;
1044 	u64 old_xcr0 = vcpu->arch.xcr0;
1045 	u64 valid_bits;
1046 
1047 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1048 	if (index != XCR_XFEATURE_ENABLED_MASK)
1049 		return 1;
1050 	if (!(xcr0 & XFEATURE_MASK_FP))
1051 		return 1;
1052 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1053 		return 1;
1054 
1055 	/*
1056 	 * Do not allow the guest to set bits that we do not support
1057 	 * saving.  However, xcr0 bit 0 is always set, even if the
1058 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1059 	 */
1060 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1061 	if (xcr0 & ~valid_bits)
1062 		return 1;
1063 
1064 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1065 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1066 		return 1;
1067 
1068 	if (xcr0 & XFEATURE_MASK_AVX512) {
1069 		if (!(xcr0 & XFEATURE_MASK_YMM))
1070 			return 1;
1071 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1072 			return 1;
1073 	}
1074 
1075 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1076 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1077 		return 1;
1078 
1079 	vcpu->arch.xcr0 = xcr0;
1080 
1081 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1082 		kvm_update_cpuid_runtime(vcpu);
1083 	return 0;
1084 }
1085 
1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1087 {
1088 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1089 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1090 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1091 		kvm_inject_gp(vcpu, 0);
1092 		return 1;
1093 	}
1094 
1095 	return kvm_skip_emulated_instruction(vcpu);
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1098 
1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1100 {
1101 	if (cr4 & cr4_reserved_bits)
1102 		return false;
1103 
1104 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1105 		return false;
1106 
1107 	return true;
1108 }
1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1110 
1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1112 {
1113 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1114 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1115 }
1116 
1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1118 {
1119 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1120 		kvm_mmu_reset_context(vcpu);
1121 
1122 	/*
1123 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1124 	 * according to the SDM; however, stale prev_roots could be reused
1125 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1126 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1127 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1128 	 * so fall through.
1129 	 */
1130 	if (!tdp_enabled &&
1131 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1132 		kvm_mmu_unload(vcpu);
1133 
1134 	/*
1135 	 * The TLB has to be flushed for all PCIDs if any of the following
1136 	 * (architecturally required) changes happen:
1137 	 * - CR4.PCIDE is changed from 1 to 0
1138 	 * - CR4.PGE is toggled
1139 	 *
1140 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1141 	 */
1142 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1143 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1144 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1145 
1146 	/*
1147 	 * The TLB has to be flushed for the current PCID if any of the
1148 	 * following (architecturally required) changes happen:
1149 	 * - CR4.SMEP is changed from 0 to 1
1150 	 * - CR4.PAE is toggled
1151 	 */
1152 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1153 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1154 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1155 
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1158 
1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1160 {
1161 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1162 
1163 	if (!kvm_is_valid_cr4(vcpu, cr4))
1164 		return 1;
1165 
1166 	if (is_long_mode(vcpu)) {
1167 		if (!(cr4 & X86_CR4_PAE))
1168 			return 1;
1169 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1170 			return 1;
1171 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1172 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1173 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1174 		return 1;
1175 
1176 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1177 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1178 			return 1;
1179 
1180 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1181 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1182 			return 1;
1183 	}
1184 
1185 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1186 
1187 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1192 
1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1194 {
1195 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1196 	unsigned long roots_to_free = 0;
1197 	int i;
1198 
1199 	/*
1200 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1201 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1202 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1203 	 * the invalidation, but the guest's TLB entries need to be flushed as
1204 	 * the CPU may have cached entries in its TLB for the target PCID.
1205 	 */
1206 	if (unlikely(tdp_enabled)) {
1207 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * If neither the current CR3 nor any of the prev_roots use the given
1213 	 * PCID, then nothing needs to be done here because a resync will
1214 	 * happen anyway before switching to any other CR3.
1215 	 */
1216 	if (kvm_get_active_pcid(vcpu) == pcid) {
1217 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1218 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219 	}
1220 
1221 	/*
1222 	 * If PCID is disabled, there is no need to free prev_roots even if the
1223 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1224 	 * with PCIDE=0.
1225 	 */
1226 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1227 		return;
1228 
1229 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1230 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1231 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1232 
1233 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1234 }
1235 
1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1237 {
1238 	bool skip_tlb_flush = false;
1239 	unsigned long pcid = 0;
1240 #ifdef CONFIG_X86_64
1241 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1242 
1243 	if (pcid_enabled) {
1244 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1245 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1246 		pcid = cr3 & X86_CR3_PCID_MASK;
1247 	}
1248 #endif
1249 
1250 	/* PDPTRs are always reloaded for PAE paging. */
1251 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1252 		goto handle_tlb_flush;
1253 
1254 	/*
1255 	 * Do not condition the GPA check on long mode, this helper is used to
1256 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1257 	 * the current vCPU mode is accurate.
1258 	 */
1259 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1260 		return 1;
1261 
1262 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1263 		return 1;
1264 
1265 	if (cr3 != kvm_read_cr3(vcpu))
1266 		kvm_mmu_new_pgd(vcpu, cr3);
1267 
1268 	vcpu->arch.cr3 = cr3;
1269 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1270 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1271 
1272 handle_tlb_flush:
1273 	/*
1274 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1275 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1276 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1277 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1278 	 * i.e. only PCID=0 can be relevant.
1279 	 */
1280 	if (!skip_tlb_flush)
1281 		kvm_invalidate_pcid(vcpu, pcid);
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1286 
1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1288 {
1289 	if (cr8 & CR8_RESERVED_BITS)
1290 		return 1;
1291 	if (lapic_in_kernel(vcpu))
1292 		kvm_lapic_set_tpr(vcpu, cr8);
1293 	else
1294 		vcpu->arch.cr8 = cr8;
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1298 
1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1300 {
1301 	if (lapic_in_kernel(vcpu))
1302 		return kvm_lapic_get_cr8(vcpu);
1303 	else
1304 		return vcpu->arch.cr8;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1307 
1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1309 {
1310 	int i;
1311 
1312 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1313 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1314 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1315 	}
1316 }
1317 
1318 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1319 {
1320 	unsigned long dr7;
1321 
1322 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1323 		dr7 = vcpu->arch.guest_debug_dr7;
1324 	else
1325 		dr7 = vcpu->arch.dr7;
1326 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1327 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1328 	if (dr7 & DR7_BP_EN_MASK)
1329 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1332 
1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1334 {
1335 	u64 fixed = DR6_FIXED_1;
1336 
1337 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1338 		fixed |= DR6_RTM;
1339 
1340 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1341 		fixed |= DR6_BUS_LOCK;
1342 	return fixed;
1343 }
1344 
1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1346 {
1347 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1348 
1349 	switch (dr) {
1350 	case 0 ... 3:
1351 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1352 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1353 			vcpu->arch.eff_db[dr] = val;
1354 		break;
1355 	case 4:
1356 	case 6:
1357 		if (!kvm_dr6_valid(val))
1358 			return 1; /* #GP */
1359 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1360 		break;
1361 	case 5:
1362 	default: /* 7 */
1363 		if (!kvm_dr7_valid(val))
1364 			return 1; /* #GP */
1365 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1366 		kvm_update_dr7(vcpu);
1367 		break;
1368 	}
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_set_dr);
1373 
1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1375 {
1376 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1377 
1378 	switch (dr) {
1379 	case 0 ... 3:
1380 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1381 		break;
1382 	case 4:
1383 	case 6:
1384 		*val = vcpu->arch.dr6;
1385 		break;
1386 	case 5:
1387 	default: /* 7 */
1388 		*val = vcpu->arch.dr7;
1389 		break;
1390 	}
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_get_dr);
1393 
1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1395 {
1396 	u32 ecx = kvm_rcx_read(vcpu);
1397 	u64 data;
1398 
1399 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1400 		kvm_inject_gp(vcpu, 0);
1401 		return 1;
1402 	}
1403 
1404 	kvm_rax_write(vcpu, (u32)data);
1405 	kvm_rdx_write(vcpu, data >> 32);
1406 	return kvm_skip_emulated_instruction(vcpu);
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1409 
1410 /*
1411  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1412  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1413  *
1414  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1415  * extract the supported MSRs from the related const lists.
1416  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1417  * capabilities of the host cpu. This capabilities test skips MSRs that are
1418  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1419  * may depend on host virtualization features rather than host cpu features.
1420  */
1421 
1422 static const u32 msrs_to_save_base[] = {
1423 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1424 	MSR_STAR,
1425 #ifdef CONFIG_X86_64
1426 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1427 #endif
1428 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1429 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1430 	MSR_IA32_SPEC_CTRL,
1431 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1432 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1433 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1434 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1435 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1436 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1437 	MSR_IA32_UMWAIT_CONTROL,
1438 
1439 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1440 };
1441 
1442 static const u32 msrs_to_save_pmu[] = {
1443 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1444 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1445 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1446 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1447 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1448 
1449 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1450 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1451 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1452 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1453 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1454 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1455 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1456 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1457 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1458 
1459 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1460 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1461 
1462 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1463 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1464 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1465 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1466 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1467 };
1468 
1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1470 			ARRAY_SIZE(msrs_to_save_pmu)];
1471 static unsigned num_msrs_to_save;
1472 
1473 static const u32 emulated_msrs_all[] = {
1474 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1475 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1476 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1477 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1478 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1479 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1480 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1481 	HV_X64_MSR_RESET,
1482 	HV_X64_MSR_VP_INDEX,
1483 	HV_X64_MSR_VP_RUNTIME,
1484 	HV_X64_MSR_SCONTROL,
1485 	HV_X64_MSR_STIMER0_CONFIG,
1486 	HV_X64_MSR_VP_ASSIST_PAGE,
1487 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1488 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1489 	HV_X64_MSR_SYNDBG_OPTIONS,
1490 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1491 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1492 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1493 
1494 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1495 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1496 
1497 	MSR_IA32_TSC_ADJUST,
1498 	MSR_IA32_TSC_DEADLINE,
1499 	MSR_IA32_ARCH_CAPABILITIES,
1500 	MSR_IA32_PERF_CAPABILITIES,
1501 	MSR_IA32_MISC_ENABLE,
1502 	MSR_IA32_MCG_STATUS,
1503 	MSR_IA32_MCG_CTL,
1504 	MSR_IA32_MCG_EXT_CTL,
1505 	MSR_IA32_SMBASE,
1506 	MSR_SMI_COUNT,
1507 	MSR_PLATFORM_INFO,
1508 	MSR_MISC_FEATURES_ENABLES,
1509 	MSR_AMD64_VIRT_SPEC_CTRL,
1510 	MSR_AMD64_TSC_RATIO,
1511 	MSR_IA32_POWER_CTL,
1512 	MSR_IA32_UCODE_REV,
1513 
1514 	/*
1515 	 * The following list leaves out MSRs whose values are determined
1516 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1517 	 * We always support the "true" VMX control MSRs, even if the host
1518 	 * processor does not, so I am putting these registers here rather
1519 	 * than in msrs_to_save_all.
1520 	 */
1521 	MSR_IA32_VMX_BASIC,
1522 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1523 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1524 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1525 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1526 	MSR_IA32_VMX_MISC,
1527 	MSR_IA32_VMX_CR0_FIXED0,
1528 	MSR_IA32_VMX_CR4_FIXED0,
1529 	MSR_IA32_VMX_VMCS_ENUM,
1530 	MSR_IA32_VMX_PROCBASED_CTLS2,
1531 	MSR_IA32_VMX_EPT_VPID_CAP,
1532 	MSR_IA32_VMX_VMFUNC,
1533 
1534 	MSR_K7_HWCR,
1535 	MSR_KVM_POLL_CONTROL,
1536 };
1537 
1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1539 static unsigned num_emulated_msrs;
1540 
1541 /*
1542  * List of msr numbers which are used to expose MSR-based features that
1543  * can be used by a hypervisor to validate requested CPU features.
1544  */
1545 static const u32 msr_based_features_all[] = {
1546 	MSR_IA32_VMX_BASIC,
1547 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1548 	MSR_IA32_VMX_PINBASED_CTLS,
1549 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1550 	MSR_IA32_VMX_PROCBASED_CTLS,
1551 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1552 	MSR_IA32_VMX_EXIT_CTLS,
1553 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1554 	MSR_IA32_VMX_ENTRY_CTLS,
1555 	MSR_IA32_VMX_MISC,
1556 	MSR_IA32_VMX_CR0_FIXED0,
1557 	MSR_IA32_VMX_CR0_FIXED1,
1558 	MSR_IA32_VMX_CR4_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED1,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_AMD64_DE_CFG,
1566 	MSR_IA32_UCODE_REV,
1567 	MSR_IA32_ARCH_CAPABILITIES,
1568 	MSR_IA32_PERF_CAPABILITIES,
1569 };
1570 
1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1572 static unsigned int num_msr_based_features;
1573 
1574 /*
1575  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1576  * does not yet virtualize. These include:
1577  *   10 - MISC_PACKAGE_CTRLS
1578  *   11 - ENERGY_FILTERING_CTL
1579  *   12 - DOITM
1580  *   18 - FB_CLEAR_CTRL
1581  *   21 - XAPIC_DISABLE_STATUS
1582  *   23 - OVERCLOCKING_STATUS
1583  */
1584 
1585 #define KVM_SUPPORTED_ARCH_CAP \
1586 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1587 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1588 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1589 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1590 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1591 
1592 static u64 kvm_get_arch_capabilities(void)
1593 {
1594 	u64 data = 0;
1595 
1596 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1597 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1598 		data &= KVM_SUPPORTED_ARCH_CAP;
1599 	}
1600 
1601 	/*
1602 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1603 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1604 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1605 	 * L1 guests, so it need not worry about its own (L2) guests.
1606 	 */
1607 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1608 
1609 	/*
1610 	 * If we're doing cache flushes (either "always" or "cond")
1611 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1612 	 * If an outer hypervisor is doing the cache flush for us
1613 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1614 	 * capability to the guest too, and if EPT is disabled we're not
1615 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1616 	 * require a nested hypervisor to do a flush of its own.
1617 	 */
1618 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1619 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1620 
1621 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1622 		data |= ARCH_CAP_RDCL_NO;
1623 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1624 		data |= ARCH_CAP_SSB_NO;
1625 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1626 		data |= ARCH_CAP_MDS_NO;
1627 
1628 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1629 		/*
1630 		 * If RTM=0 because the kernel has disabled TSX, the host might
1631 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1632 		 * and therefore knows that there cannot be TAA) but keep
1633 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1634 		 * and we want to allow migrating those guests to tsx=off hosts.
1635 		 */
1636 		data &= ~ARCH_CAP_TAA_NO;
1637 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1638 		data |= ARCH_CAP_TAA_NO;
1639 	} else {
1640 		/*
1641 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1642 		 * host so the guest can choose between disabling TSX or
1643 		 * using VERW to clear CPU buffers.
1644 		 */
1645 	}
1646 
1647 	return data;
1648 }
1649 
1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1651 {
1652 	switch (msr->index) {
1653 	case MSR_IA32_ARCH_CAPABILITIES:
1654 		msr->data = kvm_get_arch_capabilities();
1655 		break;
1656 	case MSR_IA32_PERF_CAPABILITIES:
1657 		msr->data = kvm_caps.supported_perf_cap;
1658 		break;
1659 	case MSR_IA32_UCODE_REV:
1660 		rdmsrl_safe(msr->index, &msr->data);
1661 		break;
1662 	default:
1663 		return static_call(kvm_x86_get_msr_feature)(msr);
1664 	}
1665 	return 0;
1666 }
1667 
1668 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1669 {
1670 	struct kvm_msr_entry msr;
1671 	int r;
1672 
1673 	msr.index = index;
1674 	r = kvm_get_msr_feature(&msr);
1675 
1676 	if (r == KVM_MSR_RET_INVALID) {
1677 		/* Unconditionally clear the output for simplicity */
1678 		*data = 0;
1679 		if (kvm_msr_ignored_check(index, 0, false))
1680 			r = 0;
1681 	}
1682 
1683 	if (r)
1684 		return r;
1685 
1686 	*data = msr.data;
1687 
1688 	return 0;
1689 }
1690 
1691 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1692 {
1693 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1694 		return false;
1695 
1696 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1697 		return false;
1698 
1699 	if (efer & (EFER_LME | EFER_LMA) &&
1700 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1701 		return false;
1702 
1703 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1704 		return false;
1705 
1706 	return true;
1707 
1708 }
1709 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1710 {
1711 	if (efer & efer_reserved_bits)
1712 		return false;
1713 
1714 	return __kvm_valid_efer(vcpu, efer);
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1717 
1718 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1719 {
1720 	u64 old_efer = vcpu->arch.efer;
1721 	u64 efer = msr_info->data;
1722 	int r;
1723 
1724 	if (efer & efer_reserved_bits)
1725 		return 1;
1726 
1727 	if (!msr_info->host_initiated) {
1728 		if (!__kvm_valid_efer(vcpu, efer))
1729 			return 1;
1730 
1731 		if (is_paging(vcpu) &&
1732 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1733 			return 1;
1734 	}
1735 
1736 	efer &= ~EFER_LMA;
1737 	efer |= vcpu->arch.efer & EFER_LMA;
1738 
1739 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1740 	if (r) {
1741 		WARN_ON(r > 0);
1742 		return r;
1743 	}
1744 
1745 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1746 		kvm_mmu_reset_context(vcpu);
1747 
1748 	return 0;
1749 }
1750 
1751 void kvm_enable_efer_bits(u64 mask)
1752 {
1753        efer_reserved_bits &= ~mask;
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1756 
1757 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1758 {
1759 	struct kvm_x86_msr_filter *msr_filter;
1760 	struct msr_bitmap_range *ranges;
1761 	struct kvm *kvm = vcpu->kvm;
1762 	bool allowed;
1763 	int idx;
1764 	u32 i;
1765 
1766 	/* x2APIC MSRs do not support filtering. */
1767 	if (index >= 0x800 && index <= 0x8ff)
1768 		return true;
1769 
1770 	idx = srcu_read_lock(&kvm->srcu);
1771 
1772 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1773 	if (!msr_filter) {
1774 		allowed = true;
1775 		goto out;
1776 	}
1777 
1778 	allowed = msr_filter->default_allow;
1779 	ranges = msr_filter->ranges;
1780 
1781 	for (i = 0; i < msr_filter->count; i++) {
1782 		u32 start = ranges[i].base;
1783 		u32 end = start + ranges[i].nmsrs;
1784 		u32 flags = ranges[i].flags;
1785 		unsigned long *bitmap = ranges[i].bitmap;
1786 
1787 		if ((index >= start) && (index < end) && (flags & type)) {
1788 			allowed = !!test_bit(index - start, bitmap);
1789 			break;
1790 		}
1791 	}
1792 
1793 out:
1794 	srcu_read_unlock(&kvm->srcu, idx);
1795 
1796 	return allowed;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1799 
1800 /*
1801  * Write @data into the MSR specified by @index.  Select MSR specific fault
1802  * checks are bypassed if @host_initiated is %true.
1803  * Returns 0 on success, non-0 otherwise.
1804  * Assumes vcpu_load() was already called.
1805  */
1806 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1807 			 bool host_initiated)
1808 {
1809 	struct msr_data msr;
1810 
1811 	switch (index) {
1812 	case MSR_FS_BASE:
1813 	case MSR_GS_BASE:
1814 	case MSR_KERNEL_GS_BASE:
1815 	case MSR_CSTAR:
1816 	case MSR_LSTAR:
1817 		if (is_noncanonical_address(data, vcpu))
1818 			return 1;
1819 		break;
1820 	case MSR_IA32_SYSENTER_EIP:
1821 	case MSR_IA32_SYSENTER_ESP:
1822 		/*
1823 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1824 		 * non-canonical address is written on Intel but not on
1825 		 * AMD (which ignores the top 32-bits, because it does
1826 		 * not implement 64-bit SYSENTER).
1827 		 *
1828 		 * 64-bit code should hence be able to write a non-canonical
1829 		 * value on AMD.  Making the address canonical ensures that
1830 		 * vmentry does not fail on Intel after writing a non-canonical
1831 		 * value, and that something deterministic happens if the guest
1832 		 * invokes 64-bit SYSENTER.
1833 		 */
1834 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1835 		break;
1836 	case MSR_TSC_AUX:
1837 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1838 			return 1;
1839 
1840 		if (!host_initiated &&
1841 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1842 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1843 			return 1;
1844 
1845 		/*
1846 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1847 		 * incomplete and conflicting architectural behavior.  Current
1848 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1849 		 * reserved and always read as zeros.  Enforce Intel's reserved
1850 		 * bits check if and only if the guest CPU is Intel, and clear
1851 		 * the bits in all other cases.  This ensures cross-vendor
1852 		 * migration will provide consistent behavior for the guest.
1853 		 */
1854 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1855 			return 1;
1856 
1857 		data = (u32)data;
1858 		break;
1859 	}
1860 
1861 	msr.data = data;
1862 	msr.index = index;
1863 	msr.host_initiated = host_initiated;
1864 
1865 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1866 }
1867 
1868 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1869 				     u32 index, u64 data, bool host_initiated)
1870 {
1871 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1872 
1873 	if (ret == KVM_MSR_RET_INVALID)
1874 		if (kvm_msr_ignored_check(index, data, true))
1875 			ret = 0;
1876 
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Read the MSR specified by @index into @data.  Select MSR specific fault
1882  * checks are bypassed if @host_initiated is %true.
1883  * Returns 0 on success, non-0 otherwise.
1884  * Assumes vcpu_load() was already called.
1885  */
1886 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1887 		  bool host_initiated)
1888 {
1889 	struct msr_data msr;
1890 	int ret;
1891 
1892 	switch (index) {
1893 	case MSR_TSC_AUX:
1894 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1895 			return 1;
1896 
1897 		if (!host_initiated &&
1898 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1899 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1900 			return 1;
1901 		break;
1902 	}
1903 
1904 	msr.index = index;
1905 	msr.host_initiated = host_initiated;
1906 
1907 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1908 	if (!ret)
1909 		*data = msr.data;
1910 	return ret;
1911 }
1912 
1913 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1914 				     u32 index, u64 *data, bool host_initiated)
1915 {
1916 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1917 
1918 	if (ret == KVM_MSR_RET_INVALID) {
1919 		/* Unconditionally clear *data for simplicity */
1920 		*data = 0;
1921 		if (kvm_msr_ignored_check(index, 0, false))
1922 			ret = 0;
1923 	}
1924 
1925 	return ret;
1926 }
1927 
1928 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1929 {
1930 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1931 		return KVM_MSR_RET_FILTERED;
1932 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1933 }
1934 
1935 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1936 {
1937 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1938 		return KVM_MSR_RET_FILTERED;
1939 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1940 }
1941 
1942 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1943 {
1944 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1945 }
1946 EXPORT_SYMBOL_GPL(kvm_get_msr);
1947 
1948 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1949 {
1950 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_set_msr);
1953 
1954 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1955 {
1956 	if (!vcpu->run->msr.error) {
1957 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1958 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1959 	}
1960 }
1961 
1962 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1963 {
1964 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1965 }
1966 
1967 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1968 {
1969 	complete_userspace_rdmsr(vcpu);
1970 	return complete_emulated_msr_access(vcpu);
1971 }
1972 
1973 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1974 {
1975 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1976 }
1977 
1978 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1979 {
1980 	complete_userspace_rdmsr(vcpu);
1981 	return complete_fast_msr_access(vcpu);
1982 }
1983 
1984 static u64 kvm_msr_reason(int r)
1985 {
1986 	switch (r) {
1987 	case KVM_MSR_RET_INVALID:
1988 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1989 	case KVM_MSR_RET_FILTERED:
1990 		return KVM_MSR_EXIT_REASON_FILTER;
1991 	default:
1992 		return KVM_MSR_EXIT_REASON_INVAL;
1993 	}
1994 }
1995 
1996 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1997 			      u32 exit_reason, u64 data,
1998 			      int (*completion)(struct kvm_vcpu *vcpu),
1999 			      int r)
2000 {
2001 	u64 msr_reason = kvm_msr_reason(r);
2002 
2003 	/* Check if the user wanted to know about this MSR fault */
2004 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2005 		return 0;
2006 
2007 	vcpu->run->exit_reason = exit_reason;
2008 	vcpu->run->msr.error = 0;
2009 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2010 	vcpu->run->msr.reason = msr_reason;
2011 	vcpu->run->msr.index = index;
2012 	vcpu->run->msr.data = data;
2013 	vcpu->arch.complete_userspace_io = completion;
2014 
2015 	return 1;
2016 }
2017 
2018 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2019 {
2020 	u32 ecx = kvm_rcx_read(vcpu);
2021 	u64 data;
2022 	int r;
2023 
2024 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2025 
2026 	if (!r) {
2027 		trace_kvm_msr_read(ecx, data);
2028 
2029 		kvm_rax_write(vcpu, data & -1u);
2030 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2031 	} else {
2032 		/* MSR read failed? See if we should ask user space */
2033 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2034 				       complete_fast_rdmsr, r))
2035 			return 0;
2036 		trace_kvm_msr_read_ex(ecx);
2037 	}
2038 
2039 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2042 
2043 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2044 {
2045 	u32 ecx = kvm_rcx_read(vcpu);
2046 	u64 data = kvm_read_edx_eax(vcpu);
2047 	int r;
2048 
2049 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2050 
2051 	if (!r) {
2052 		trace_kvm_msr_write(ecx, data);
2053 	} else {
2054 		/* MSR write failed? See if we should ask user space */
2055 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2056 				       complete_fast_msr_access, r))
2057 			return 0;
2058 		/* Signal all other negative errors to userspace */
2059 		if (r < 0)
2060 			return r;
2061 		trace_kvm_msr_write_ex(ecx, data);
2062 	}
2063 
2064 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2067 
2068 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2069 {
2070 	return kvm_skip_emulated_instruction(vcpu);
2071 }
2072 
2073 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2074 {
2075 	/* Treat an INVD instruction as a NOP and just skip it. */
2076 	return kvm_emulate_as_nop(vcpu);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2079 
2080 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2081 {
2082 	kvm_queue_exception(vcpu, UD_VECTOR);
2083 	return 1;
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2086 
2087 
2088 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2089 {
2090 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2091 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2092 		return kvm_handle_invalid_op(vcpu);
2093 
2094 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2095 	return kvm_emulate_as_nop(vcpu);
2096 }
2097 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2098 {
2099 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2102 
2103 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2104 {
2105 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2108 
2109 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2110 {
2111 	xfer_to_guest_mode_prepare();
2112 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2113 		xfer_to_guest_mode_work_pending();
2114 }
2115 
2116 /*
2117  * The fast path for frequent and performance sensitive wrmsr emulation,
2118  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2119  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2120  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2121  * other cases which must be called after interrupts are enabled on the host.
2122  */
2123 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2124 {
2125 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2126 		return 1;
2127 
2128 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2129 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2130 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2131 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2132 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2133 
2134 	return 1;
2135 }
2136 
2137 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2138 {
2139 	if (!kvm_can_use_hv_timer(vcpu))
2140 		return 1;
2141 
2142 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2143 	return 0;
2144 }
2145 
2146 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2147 {
2148 	u32 msr = kvm_rcx_read(vcpu);
2149 	u64 data;
2150 	fastpath_t ret = EXIT_FASTPATH_NONE;
2151 
2152 	switch (msr) {
2153 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2154 		data = kvm_read_edx_eax(vcpu);
2155 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2156 			kvm_skip_emulated_instruction(vcpu);
2157 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2158 		}
2159 		break;
2160 	case MSR_IA32_TSC_DEADLINE:
2161 		data = kvm_read_edx_eax(vcpu);
2162 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2163 			kvm_skip_emulated_instruction(vcpu);
2164 			ret = EXIT_FASTPATH_REENTER_GUEST;
2165 		}
2166 		break;
2167 	default:
2168 		break;
2169 	}
2170 
2171 	if (ret != EXIT_FASTPATH_NONE)
2172 		trace_kvm_msr_write(msr, data);
2173 
2174 	return ret;
2175 }
2176 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2177 
2178 /*
2179  * Adapt set_msr() to msr_io()'s calling convention
2180  */
2181 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2182 {
2183 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2184 }
2185 
2186 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2187 {
2188 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2189 }
2190 
2191 #ifdef CONFIG_X86_64
2192 struct pvclock_clock {
2193 	int vclock_mode;
2194 	u64 cycle_last;
2195 	u64 mask;
2196 	u32 mult;
2197 	u32 shift;
2198 	u64 base_cycles;
2199 	u64 offset;
2200 };
2201 
2202 struct pvclock_gtod_data {
2203 	seqcount_t	seq;
2204 
2205 	struct pvclock_clock clock; /* extract of a clocksource struct */
2206 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2207 
2208 	ktime_t		offs_boot;
2209 	u64		wall_time_sec;
2210 };
2211 
2212 static struct pvclock_gtod_data pvclock_gtod_data;
2213 
2214 static void update_pvclock_gtod(struct timekeeper *tk)
2215 {
2216 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2217 
2218 	write_seqcount_begin(&vdata->seq);
2219 
2220 	/* copy pvclock gtod data */
2221 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2222 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2223 	vdata->clock.mask		= tk->tkr_mono.mask;
2224 	vdata->clock.mult		= tk->tkr_mono.mult;
2225 	vdata->clock.shift		= tk->tkr_mono.shift;
2226 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2227 	vdata->clock.offset		= tk->tkr_mono.base;
2228 
2229 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2230 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2231 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2232 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2233 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2234 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2235 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2236 
2237 	vdata->wall_time_sec            = tk->xtime_sec;
2238 
2239 	vdata->offs_boot		= tk->offs_boot;
2240 
2241 	write_seqcount_end(&vdata->seq);
2242 }
2243 
2244 static s64 get_kvmclock_base_ns(void)
2245 {
2246 	/* Count up from boot time, but with the frequency of the raw clock.  */
2247 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2248 }
2249 #else
2250 static s64 get_kvmclock_base_ns(void)
2251 {
2252 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2253 	return ktime_get_boottime_ns();
2254 }
2255 #endif
2256 
2257 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2258 {
2259 	int version;
2260 	int r;
2261 	struct pvclock_wall_clock wc;
2262 	u32 wc_sec_hi;
2263 	u64 wall_nsec;
2264 
2265 	if (!wall_clock)
2266 		return;
2267 
2268 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2269 	if (r)
2270 		return;
2271 
2272 	if (version & 1)
2273 		++version;  /* first time write, random junk */
2274 
2275 	++version;
2276 
2277 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2278 		return;
2279 
2280 	/*
2281 	 * The guest calculates current wall clock time by adding
2282 	 * system time (updated by kvm_guest_time_update below) to the
2283 	 * wall clock specified here.  We do the reverse here.
2284 	 */
2285 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2286 
2287 	wc.nsec = do_div(wall_nsec, 1000000000);
2288 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2289 	wc.version = version;
2290 
2291 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2292 
2293 	if (sec_hi_ofs) {
2294 		wc_sec_hi = wall_nsec >> 32;
2295 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2296 				&wc_sec_hi, sizeof(wc_sec_hi));
2297 	}
2298 
2299 	version++;
2300 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2301 }
2302 
2303 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2304 				  bool old_msr, bool host_initiated)
2305 {
2306 	struct kvm_arch *ka = &vcpu->kvm->arch;
2307 
2308 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2309 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2310 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2311 
2312 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2313 	}
2314 
2315 	vcpu->arch.time = system_time;
2316 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2317 
2318 	/* we verify if the enable bit is set... */
2319 	if (system_time & 1)
2320 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2321 				 sizeof(struct pvclock_vcpu_time_info));
2322 	else
2323 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2324 
2325 	return;
2326 }
2327 
2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2329 {
2330 	do_shl32_div32(dividend, divisor);
2331 	return dividend;
2332 }
2333 
2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2335 			       s8 *pshift, u32 *pmultiplier)
2336 {
2337 	uint64_t scaled64;
2338 	int32_t  shift = 0;
2339 	uint64_t tps64;
2340 	uint32_t tps32;
2341 
2342 	tps64 = base_hz;
2343 	scaled64 = scaled_hz;
2344 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2345 		tps64 >>= 1;
2346 		shift--;
2347 	}
2348 
2349 	tps32 = (uint32_t)tps64;
2350 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2351 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2352 			scaled64 >>= 1;
2353 		else
2354 			tps32 <<= 1;
2355 		shift++;
2356 	}
2357 
2358 	*pshift = shift;
2359 	*pmultiplier = div_frac(scaled64, tps32);
2360 }
2361 
2362 #ifdef CONFIG_X86_64
2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2364 #endif
2365 
2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2367 static unsigned long max_tsc_khz;
2368 
2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2370 {
2371 	u64 v = (u64)khz * (1000000 + ppm);
2372 	do_div(v, 1000000);
2373 	return v;
2374 }
2375 
2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2377 
2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2379 {
2380 	u64 ratio;
2381 
2382 	/* Guest TSC same frequency as host TSC? */
2383 	if (!scale) {
2384 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2385 		return 0;
2386 	}
2387 
2388 	/* TSC scaling supported? */
2389 	if (!kvm_caps.has_tsc_control) {
2390 		if (user_tsc_khz > tsc_khz) {
2391 			vcpu->arch.tsc_catchup = 1;
2392 			vcpu->arch.tsc_always_catchup = 1;
2393 			return 0;
2394 		} else {
2395 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2396 			return -1;
2397 		}
2398 	}
2399 
2400 	/* TSC scaling required  - calculate ratio */
2401 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2402 				user_tsc_khz, tsc_khz);
2403 
2404 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2405 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2406 			            user_tsc_khz);
2407 		return -1;
2408 	}
2409 
2410 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2411 	return 0;
2412 }
2413 
2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2415 {
2416 	u32 thresh_lo, thresh_hi;
2417 	int use_scaling = 0;
2418 
2419 	/* tsc_khz can be zero if TSC calibration fails */
2420 	if (user_tsc_khz == 0) {
2421 		/* set tsc_scaling_ratio to a safe value */
2422 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2423 		return -1;
2424 	}
2425 
2426 	/* Compute a scale to convert nanoseconds in TSC cycles */
2427 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2428 			   &vcpu->arch.virtual_tsc_shift,
2429 			   &vcpu->arch.virtual_tsc_mult);
2430 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2431 
2432 	/*
2433 	 * Compute the variation in TSC rate which is acceptable
2434 	 * within the range of tolerance and decide if the
2435 	 * rate being applied is within that bounds of the hardware
2436 	 * rate.  If so, no scaling or compensation need be done.
2437 	 */
2438 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2439 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2440 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2441 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2442 			 user_tsc_khz, thresh_lo, thresh_hi);
2443 		use_scaling = 1;
2444 	}
2445 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2446 }
2447 
2448 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2449 {
2450 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2451 				      vcpu->arch.virtual_tsc_mult,
2452 				      vcpu->arch.virtual_tsc_shift);
2453 	tsc += vcpu->arch.this_tsc_write;
2454 	return tsc;
2455 }
2456 
2457 #ifdef CONFIG_X86_64
2458 static inline int gtod_is_based_on_tsc(int mode)
2459 {
2460 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2461 }
2462 #endif
2463 
2464 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2465 {
2466 #ifdef CONFIG_X86_64
2467 	bool vcpus_matched;
2468 	struct kvm_arch *ka = &vcpu->kvm->arch;
2469 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2470 
2471 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2472 			 atomic_read(&vcpu->kvm->online_vcpus));
2473 
2474 	/*
2475 	 * Once the masterclock is enabled, always perform request in
2476 	 * order to update it.
2477 	 *
2478 	 * In order to enable masterclock, the host clocksource must be TSC
2479 	 * and the vcpus need to have matched TSCs.  When that happens,
2480 	 * perform request to enable masterclock.
2481 	 */
2482 	if (ka->use_master_clock ||
2483 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2484 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2485 
2486 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2487 			    atomic_read(&vcpu->kvm->online_vcpus),
2488 		            ka->use_master_clock, gtod->clock.vclock_mode);
2489 #endif
2490 }
2491 
2492 /*
2493  * Multiply tsc by a fixed point number represented by ratio.
2494  *
2495  * The most significant 64-N bits (mult) of ratio represent the
2496  * integral part of the fixed point number; the remaining N bits
2497  * (frac) represent the fractional part, ie. ratio represents a fixed
2498  * point number (mult + frac * 2^(-N)).
2499  *
2500  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2501  */
2502 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2503 {
2504 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2505 }
2506 
2507 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2508 {
2509 	u64 _tsc = tsc;
2510 
2511 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2512 		_tsc = __scale_tsc(ratio, tsc);
2513 
2514 	return _tsc;
2515 }
2516 
2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2518 {
2519 	u64 tsc;
2520 
2521 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2522 
2523 	return target_tsc - tsc;
2524 }
2525 
2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2527 {
2528 	return vcpu->arch.l1_tsc_offset +
2529 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2532 
2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2534 {
2535 	u64 nested_offset;
2536 
2537 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2538 		nested_offset = l1_offset;
2539 	else
2540 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2541 						kvm_caps.tsc_scaling_ratio_frac_bits);
2542 
2543 	nested_offset += l2_offset;
2544 	return nested_offset;
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2547 
2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2549 {
2550 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2551 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2552 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2553 
2554 	return l1_multiplier;
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2557 
2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2559 {
2560 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2561 				   vcpu->arch.l1_tsc_offset,
2562 				   l1_offset);
2563 
2564 	vcpu->arch.l1_tsc_offset = l1_offset;
2565 
2566 	/*
2567 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2568 	 * according to the spec this should set L1's TSC (as opposed to
2569 	 * setting L1's offset for L2).
2570 	 */
2571 	if (is_guest_mode(vcpu))
2572 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2573 			l1_offset,
2574 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2575 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2576 	else
2577 		vcpu->arch.tsc_offset = l1_offset;
2578 
2579 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2580 }
2581 
2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2583 {
2584 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2585 
2586 	/* Userspace is changing the multiplier while L2 is active */
2587 	if (is_guest_mode(vcpu))
2588 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2589 			l1_multiplier,
2590 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2591 	else
2592 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2593 
2594 	if (kvm_caps.has_tsc_control)
2595 		static_call(kvm_x86_write_tsc_multiplier)(
2596 			vcpu, vcpu->arch.tsc_scaling_ratio);
2597 }
2598 
2599 static inline bool kvm_check_tsc_unstable(void)
2600 {
2601 #ifdef CONFIG_X86_64
2602 	/*
2603 	 * TSC is marked unstable when we're running on Hyper-V,
2604 	 * 'TSC page' clocksource is good.
2605 	 */
2606 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2607 		return false;
2608 #endif
2609 	return check_tsc_unstable();
2610 }
2611 
2612 /*
2613  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2614  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2615  * participates in.
2616  */
2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2618 				  u64 ns, bool matched)
2619 {
2620 	struct kvm *kvm = vcpu->kvm;
2621 
2622 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2623 
2624 	/*
2625 	 * We also track th most recent recorded KHZ, write and time to
2626 	 * allow the matching interval to be extended at each write.
2627 	 */
2628 	kvm->arch.last_tsc_nsec = ns;
2629 	kvm->arch.last_tsc_write = tsc;
2630 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2631 	kvm->arch.last_tsc_offset = offset;
2632 
2633 	vcpu->arch.last_guest_tsc = tsc;
2634 
2635 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2636 
2637 	if (!matched) {
2638 		/*
2639 		 * We split periods of matched TSC writes into generations.
2640 		 * For each generation, we track the original measured
2641 		 * nanosecond time, offset, and write, so if TSCs are in
2642 		 * sync, we can match exact offset, and if not, we can match
2643 		 * exact software computation in compute_guest_tsc()
2644 		 *
2645 		 * These values are tracked in kvm->arch.cur_xxx variables.
2646 		 */
2647 		kvm->arch.cur_tsc_generation++;
2648 		kvm->arch.cur_tsc_nsec = ns;
2649 		kvm->arch.cur_tsc_write = tsc;
2650 		kvm->arch.cur_tsc_offset = offset;
2651 		kvm->arch.nr_vcpus_matched_tsc = 0;
2652 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2653 		kvm->arch.nr_vcpus_matched_tsc++;
2654 	}
2655 
2656 	/* Keep track of which generation this VCPU has synchronized to */
2657 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2658 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2659 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2660 
2661 	kvm_track_tsc_matching(vcpu);
2662 }
2663 
2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2665 {
2666 	struct kvm *kvm = vcpu->kvm;
2667 	u64 offset, ns, elapsed;
2668 	unsigned long flags;
2669 	bool matched = false;
2670 	bool synchronizing = false;
2671 
2672 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2673 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2674 	ns = get_kvmclock_base_ns();
2675 	elapsed = ns - kvm->arch.last_tsc_nsec;
2676 
2677 	if (vcpu->arch.virtual_tsc_khz) {
2678 		if (data == 0) {
2679 			/*
2680 			 * detection of vcpu initialization -- need to sync
2681 			 * with other vCPUs. This particularly helps to keep
2682 			 * kvm_clock stable after CPU hotplug
2683 			 */
2684 			synchronizing = true;
2685 		} else {
2686 			u64 tsc_exp = kvm->arch.last_tsc_write +
2687 						nsec_to_cycles(vcpu, elapsed);
2688 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2689 			/*
2690 			 * Special case: TSC write with a small delta (1 second)
2691 			 * of virtual cycle time against real time is
2692 			 * interpreted as an attempt to synchronize the CPU.
2693 			 */
2694 			synchronizing = data < tsc_exp + tsc_hz &&
2695 					data + tsc_hz > tsc_exp;
2696 		}
2697 	}
2698 
2699 	/*
2700 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2701 	 * TSC, we add elapsed time in this computation.  We could let the
2702 	 * compensation code attempt to catch up if we fall behind, but
2703 	 * it's better to try to match offsets from the beginning.
2704          */
2705 	if (synchronizing &&
2706 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2707 		if (!kvm_check_tsc_unstable()) {
2708 			offset = kvm->arch.cur_tsc_offset;
2709 		} else {
2710 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2711 			data += delta;
2712 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2713 		}
2714 		matched = true;
2715 	}
2716 
2717 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2718 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2719 }
2720 
2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2722 					   s64 adjustment)
2723 {
2724 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2725 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2726 }
2727 
2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2729 {
2730 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2731 		WARN_ON(adjustment < 0);
2732 	adjustment = kvm_scale_tsc((u64) adjustment,
2733 				   vcpu->arch.l1_tsc_scaling_ratio);
2734 	adjust_tsc_offset_guest(vcpu, adjustment);
2735 }
2736 
2737 #ifdef CONFIG_X86_64
2738 
2739 static u64 read_tsc(void)
2740 {
2741 	u64 ret = (u64)rdtsc_ordered();
2742 	u64 last = pvclock_gtod_data.clock.cycle_last;
2743 
2744 	if (likely(ret >= last))
2745 		return ret;
2746 
2747 	/*
2748 	 * GCC likes to generate cmov here, but this branch is extremely
2749 	 * predictable (it's just a function of time and the likely is
2750 	 * very likely) and there's a data dependence, so force GCC
2751 	 * to generate a branch instead.  I don't barrier() because
2752 	 * we don't actually need a barrier, and if this function
2753 	 * ever gets inlined it will generate worse code.
2754 	 */
2755 	asm volatile ("");
2756 	return last;
2757 }
2758 
2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2760 			  int *mode)
2761 {
2762 	long v;
2763 	u64 tsc_pg_val;
2764 
2765 	switch (clock->vclock_mode) {
2766 	case VDSO_CLOCKMODE_HVCLOCK:
2767 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2768 						  tsc_timestamp);
2769 		if (tsc_pg_val != U64_MAX) {
2770 			/* TSC page valid */
2771 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2772 			v = (tsc_pg_val - clock->cycle_last) &
2773 				clock->mask;
2774 		} else {
2775 			/* TSC page invalid */
2776 			*mode = VDSO_CLOCKMODE_NONE;
2777 		}
2778 		break;
2779 	case VDSO_CLOCKMODE_TSC:
2780 		*mode = VDSO_CLOCKMODE_TSC;
2781 		*tsc_timestamp = read_tsc();
2782 		v = (*tsc_timestamp - clock->cycle_last) &
2783 			clock->mask;
2784 		break;
2785 	default:
2786 		*mode = VDSO_CLOCKMODE_NONE;
2787 	}
2788 
2789 	if (*mode == VDSO_CLOCKMODE_NONE)
2790 		*tsc_timestamp = v = 0;
2791 
2792 	return v * clock->mult;
2793 }
2794 
2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2796 {
2797 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2798 	unsigned long seq;
2799 	int mode;
2800 	u64 ns;
2801 
2802 	do {
2803 		seq = read_seqcount_begin(&gtod->seq);
2804 		ns = gtod->raw_clock.base_cycles;
2805 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2806 		ns >>= gtod->raw_clock.shift;
2807 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2808 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2809 	*t = ns;
2810 
2811 	return mode;
2812 }
2813 
2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2815 {
2816 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2817 	unsigned long seq;
2818 	int mode;
2819 	u64 ns;
2820 
2821 	do {
2822 		seq = read_seqcount_begin(&gtod->seq);
2823 		ts->tv_sec = gtod->wall_time_sec;
2824 		ns = gtod->clock.base_cycles;
2825 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2826 		ns >>= gtod->clock.shift;
2827 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2828 
2829 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2830 	ts->tv_nsec = ns;
2831 
2832 	return mode;
2833 }
2834 
2835 /* returns true if host is using TSC based clocksource */
2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2837 {
2838 	/* checked again under seqlock below */
2839 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2840 		return false;
2841 
2842 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2843 						      tsc_timestamp));
2844 }
2845 
2846 /* returns true if host is using TSC based clocksource */
2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2848 					   u64 *tsc_timestamp)
2849 {
2850 	/* checked again under seqlock below */
2851 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2852 		return false;
2853 
2854 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2855 }
2856 #endif
2857 
2858 /*
2859  *
2860  * Assuming a stable TSC across physical CPUS, and a stable TSC
2861  * across virtual CPUs, the following condition is possible.
2862  * Each numbered line represents an event visible to both
2863  * CPUs at the next numbered event.
2864  *
2865  * "timespecX" represents host monotonic time. "tscX" represents
2866  * RDTSC value.
2867  *
2868  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2869  *
2870  * 1.  read timespec0,tsc0
2871  * 2.					| timespec1 = timespec0 + N
2872  * 					| tsc1 = tsc0 + M
2873  * 3. transition to guest		| transition to guest
2874  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2875  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2876  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2877  *
2878  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2879  *
2880  * 	- ret0 < ret1
2881  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2882  *		...
2883  *	- 0 < N - M => M < N
2884  *
2885  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2886  * always the case (the difference between two distinct xtime instances
2887  * might be smaller then the difference between corresponding TSC reads,
2888  * when updating guest vcpus pvclock areas).
2889  *
2890  * To avoid that problem, do not allow visibility of distinct
2891  * system_timestamp/tsc_timestamp values simultaneously: use a master
2892  * copy of host monotonic time values. Update that master copy
2893  * in lockstep.
2894  *
2895  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2896  *
2897  */
2898 
2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2900 {
2901 #ifdef CONFIG_X86_64
2902 	struct kvm_arch *ka = &kvm->arch;
2903 	int vclock_mode;
2904 	bool host_tsc_clocksource, vcpus_matched;
2905 
2906 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2907 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2908 			atomic_read(&kvm->online_vcpus));
2909 
2910 	/*
2911 	 * If the host uses TSC clock, then passthrough TSC as stable
2912 	 * to the guest.
2913 	 */
2914 	host_tsc_clocksource = kvm_get_time_and_clockread(
2915 					&ka->master_kernel_ns,
2916 					&ka->master_cycle_now);
2917 
2918 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2919 				&& !ka->backwards_tsc_observed
2920 				&& !ka->boot_vcpu_runs_old_kvmclock;
2921 
2922 	if (ka->use_master_clock)
2923 		atomic_set(&kvm_guest_has_master_clock, 1);
2924 
2925 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2926 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2927 					vcpus_matched);
2928 #endif
2929 }
2930 
2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2932 {
2933 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2934 }
2935 
2936 static void __kvm_start_pvclock_update(struct kvm *kvm)
2937 {
2938 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2939 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2940 }
2941 
2942 static void kvm_start_pvclock_update(struct kvm *kvm)
2943 {
2944 	kvm_make_mclock_inprogress_request(kvm);
2945 
2946 	/* no guest entries from this point */
2947 	__kvm_start_pvclock_update(kvm);
2948 }
2949 
2950 static void kvm_end_pvclock_update(struct kvm *kvm)
2951 {
2952 	struct kvm_arch *ka = &kvm->arch;
2953 	struct kvm_vcpu *vcpu;
2954 	unsigned long i;
2955 
2956 	write_seqcount_end(&ka->pvclock_sc);
2957 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2958 	kvm_for_each_vcpu(i, vcpu, kvm)
2959 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2960 
2961 	/* guest entries allowed */
2962 	kvm_for_each_vcpu(i, vcpu, kvm)
2963 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2964 }
2965 
2966 static void kvm_update_masterclock(struct kvm *kvm)
2967 {
2968 	kvm_hv_request_tsc_page_update(kvm);
2969 	kvm_start_pvclock_update(kvm);
2970 	pvclock_update_vm_gtod_copy(kvm);
2971 	kvm_end_pvclock_update(kvm);
2972 }
2973 
2974 /*
2975  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2976  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2977  * can change during boot even if the TSC is constant, as it's possible for KVM
2978  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2979  * notification when calibration completes, but practically speaking calibration
2980  * will complete before userspace is alive enough to create VMs.
2981  */
2982 static unsigned long get_cpu_tsc_khz(void)
2983 {
2984 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2985 		return tsc_khz;
2986 	else
2987 		return __this_cpu_read(cpu_tsc_khz);
2988 }
2989 
2990 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2991 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2992 {
2993 	struct kvm_arch *ka = &kvm->arch;
2994 	struct pvclock_vcpu_time_info hv_clock;
2995 
2996 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2997 	get_cpu();
2998 
2999 	data->flags = 0;
3000 	if (ka->use_master_clock &&
3001 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3002 #ifdef CONFIG_X86_64
3003 		struct timespec64 ts;
3004 
3005 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3006 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3007 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3008 		} else
3009 #endif
3010 		data->host_tsc = rdtsc();
3011 
3012 		data->flags |= KVM_CLOCK_TSC_STABLE;
3013 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3014 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3015 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3016 				   &hv_clock.tsc_shift,
3017 				   &hv_clock.tsc_to_system_mul);
3018 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3019 	} else {
3020 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3021 	}
3022 
3023 	put_cpu();
3024 }
3025 
3026 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3027 {
3028 	struct kvm_arch *ka = &kvm->arch;
3029 	unsigned seq;
3030 
3031 	do {
3032 		seq = read_seqcount_begin(&ka->pvclock_sc);
3033 		__get_kvmclock(kvm, data);
3034 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3035 }
3036 
3037 u64 get_kvmclock_ns(struct kvm *kvm)
3038 {
3039 	struct kvm_clock_data data;
3040 
3041 	get_kvmclock(kvm, &data);
3042 	return data.clock;
3043 }
3044 
3045 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3046 				    struct gfn_to_pfn_cache *gpc,
3047 				    unsigned int offset)
3048 {
3049 	struct kvm_vcpu_arch *vcpu = &v->arch;
3050 	struct pvclock_vcpu_time_info *guest_hv_clock;
3051 	unsigned long flags;
3052 
3053 	read_lock_irqsave(&gpc->lock, flags);
3054 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3055 		read_unlock_irqrestore(&gpc->lock, flags);
3056 
3057 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3058 			return;
3059 
3060 		read_lock_irqsave(&gpc->lock, flags);
3061 	}
3062 
3063 	guest_hv_clock = (void *)(gpc->khva + offset);
3064 
3065 	/*
3066 	 * This VCPU is paused, but it's legal for a guest to read another
3067 	 * VCPU's kvmclock, so we really have to follow the specification where
3068 	 * it says that version is odd if data is being modified, and even after
3069 	 * it is consistent.
3070 	 */
3071 
3072 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3073 	smp_wmb();
3074 
3075 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3076 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3077 
3078 	if (vcpu->pvclock_set_guest_stopped_request) {
3079 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3080 		vcpu->pvclock_set_guest_stopped_request = false;
3081 	}
3082 
3083 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3084 	smp_wmb();
3085 
3086 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3087 
3088 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3089 	read_unlock_irqrestore(&gpc->lock, flags);
3090 
3091 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3092 }
3093 
3094 static int kvm_guest_time_update(struct kvm_vcpu *v)
3095 {
3096 	unsigned long flags, tgt_tsc_khz;
3097 	unsigned seq;
3098 	struct kvm_vcpu_arch *vcpu = &v->arch;
3099 	struct kvm_arch *ka = &v->kvm->arch;
3100 	s64 kernel_ns;
3101 	u64 tsc_timestamp, host_tsc;
3102 	u8 pvclock_flags;
3103 	bool use_master_clock;
3104 
3105 	kernel_ns = 0;
3106 	host_tsc = 0;
3107 
3108 	/*
3109 	 * If the host uses TSC clock, then passthrough TSC as stable
3110 	 * to the guest.
3111 	 */
3112 	do {
3113 		seq = read_seqcount_begin(&ka->pvclock_sc);
3114 		use_master_clock = ka->use_master_clock;
3115 		if (use_master_clock) {
3116 			host_tsc = ka->master_cycle_now;
3117 			kernel_ns = ka->master_kernel_ns;
3118 		}
3119 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3120 
3121 	/* Keep irq disabled to prevent changes to the clock */
3122 	local_irq_save(flags);
3123 	tgt_tsc_khz = get_cpu_tsc_khz();
3124 	if (unlikely(tgt_tsc_khz == 0)) {
3125 		local_irq_restore(flags);
3126 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3127 		return 1;
3128 	}
3129 	if (!use_master_clock) {
3130 		host_tsc = rdtsc();
3131 		kernel_ns = get_kvmclock_base_ns();
3132 	}
3133 
3134 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3135 
3136 	/*
3137 	 * We may have to catch up the TSC to match elapsed wall clock
3138 	 * time for two reasons, even if kvmclock is used.
3139 	 *   1) CPU could have been running below the maximum TSC rate
3140 	 *   2) Broken TSC compensation resets the base at each VCPU
3141 	 *      entry to avoid unknown leaps of TSC even when running
3142 	 *      again on the same CPU.  This may cause apparent elapsed
3143 	 *      time to disappear, and the guest to stand still or run
3144 	 *	very slowly.
3145 	 */
3146 	if (vcpu->tsc_catchup) {
3147 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3148 		if (tsc > tsc_timestamp) {
3149 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3150 			tsc_timestamp = tsc;
3151 		}
3152 	}
3153 
3154 	local_irq_restore(flags);
3155 
3156 	/* With all the info we got, fill in the values */
3157 
3158 	if (kvm_caps.has_tsc_control)
3159 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3160 					    v->arch.l1_tsc_scaling_ratio);
3161 
3162 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3163 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3164 				   &vcpu->hv_clock.tsc_shift,
3165 				   &vcpu->hv_clock.tsc_to_system_mul);
3166 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3167 	}
3168 
3169 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3170 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3171 	vcpu->last_guest_tsc = tsc_timestamp;
3172 
3173 	/* If the host uses TSC clocksource, then it is stable */
3174 	pvclock_flags = 0;
3175 	if (use_master_clock)
3176 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3177 
3178 	vcpu->hv_clock.flags = pvclock_flags;
3179 
3180 	if (vcpu->pv_time.active)
3181 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3182 	if (vcpu->xen.vcpu_info_cache.active)
3183 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3184 					offsetof(struct compat_vcpu_info, time));
3185 	if (vcpu->xen.vcpu_time_info_cache.active)
3186 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3187 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3188 	return 0;
3189 }
3190 
3191 /*
3192  * kvmclock updates which are isolated to a given vcpu, such as
3193  * vcpu->cpu migration, should not allow system_timestamp from
3194  * the rest of the vcpus to remain static. Otherwise ntp frequency
3195  * correction applies to one vcpu's system_timestamp but not
3196  * the others.
3197  *
3198  * So in those cases, request a kvmclock update for all vcpus.
3199  * We need to rate-limit these requests though, as they can
3200  * considerably slow guests that have a large number of vcpus.
3201  * The time for a remote vcpu to update its kvmclock is bound
3202  * by the delay we use to rate-limit the updates.
3203  */
3204 
3205 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3206 
3207 static void kvmclock_update_fn(struct work_struct *work)
3208 {
3209 	unsigned long i;
3210 	struct delayed_work *dwork = to_delayed_work(work);
3211 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3212 					   kvmclock_update_work);
3213 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3214 	struct kvm_vcpu *vcpu;
3215 
3216 	kvm_for_each_vcpu(i, vcpu, kvm) {
3217 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218 		kvm_vcpu_kick(vcpu);
3219 	}
3220 }
3221 
3222 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3223 {
3224 	struct kvm *kvm = v->kvm;
3225 
3226 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3227 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3228 					KVMCLOCK_UPDATE_DELAY);
3229 }
3230 
3231 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3232 
3233 static void kvmclock_sync_fn(struct work_struct *work)
3234 {
3235 	struct delayed_work *dwork = to_delayed_work(work);
3236 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3237 					   kvmclock_sync_work);
3238 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3239 
3240 	if (!kvmclock_periodic_sync)
3241 		return;
3242 
3243 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3244 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3245 					KVMCLOCK_SYNC_PERIOD);
3246 }
3247 
3248 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3249 static bool is_mci_control_msr(u32 msr)
3250 {
3251 	return (msr & 3) == 0;
3252 }
3253 static bool is_mci_status_msr(u32 msr)
3254 {
3255 	return (msr & 3) == 1;
3256 }
3257 
3258 /*
3259  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3260  */
3261 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3262 {
3263 	/* McStatusWrEn enabled? */
3264 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3265 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3266 
3267 	return false;
3268 }
3269 
3270 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3271 {
3272 	u64 mcg_cap = vcpu->arch.mcg_cap;
3273 	unsigned bank_num = mcg_cap & 0xff;
3274 	u32 msr = msr_info->index;
3275 	u64 data = msr_info->data;
3276 	u32 offset, last_msr;
3277 
3278 	switch (msr) {
3279 	case MSR_IA32_MCG_STATUS:
3280 		vcpu->arch.mcg_status = data;
3281 		break;
3282 	case MSR_IA32_MCG_CTL:
3283 		if (!(mcg_cap & MCG_CTL_P) &&
3284 		    (data || !msr_info->host_initiated))
3285 			return 1;
3286 		if (data != 0 && data != ~(u64)0)
3287 			return 1;
3288 		vcpu->arch.mcg_ctl = data;
3289 		break;
3290 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3291 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3292 		if (msr > last_msr)
3293 			return 1;
3294 
3295 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3296 			return 1;
3297 		/* An attempt to write a 1 to a reserved bit raises #GP */
3298 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3299 			return 1;
3300 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3301 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3302 		vcpu->arch.mci_ctl2_banks[offset] = data;
3303 		break;
3304 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3305 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3306 		if (msr > last_msr)
3307 			return 1;
3308 
3309 		/*
3310 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3311 		 * values are architecturally undefined.  But, some Linux
3312 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3313 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3314 		 * other bits in order to avoid an uncaught #GP in the guest.
3315 		 *
3316 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3317 		 * single-bit ECC data errors.
3318 		 */
3319 		if (is_mci_control_msr(msr) &&
3320 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3321 			return 1;
3322 
3323 		/*
3324 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3325 		 * AMD-based CPUs allow non-zero values, but if and only if
3326 		 * HWCR[McStatusWrEn] is set.
3327 		 */
3328 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3329 		    data != 0 && !can_set_mci_status(vcpu))
3330 			return 1;
3331 
3332 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3333 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3334 		vcpu->arch.mce_banks[offset] = data;
3335 		break;
3336 	default:
3337 		return 1;
3338 	}
3339 	return 0;
3340 }
3341 
3342 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3343 {
3344 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3345 
3346 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3347 }
3348 
3349 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3350 {
3351 	gpa_t gpa = data & ~0x3f;
3352 
3353 	/* Bits 4:5 are reserved, Should be zero */
3354 	if (data & 0x30)
3355 		return 1;
3356 
3357 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3358 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3359 		return 1;
3360 
3361 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3362 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3363 		return 1;
3364 
3365 	if (!lapic_in_kernel(vcpu))
3366 		return data ? 1 : 0;
3367 
3368 	vcpu->arch.apf.msr_en_val = data;
3369 
3370 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3371 		kvm_clear_async_pf_completion_queue(vcpu);
3372 		kvm_async_pf_hash_reset(vcpu);
3373 		return 0;
3374 	}
3375 
3376 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3377 					sizeof(u64)))
3378 		return 1;
3379 
3380 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3381 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3382 
3383 	kvm_async_pf_wakeup_all(vcpu);
3384 
3385 	return 0;
3386 }
3387 
3388 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3389 {
3390 	/* Bits 8-63 are reserved */
3391 	if (data >> 8)
3392 		return 1;
3393 
3394 	if (!lapic_in_kernel(vcpu))
3395 		return 1;
3396 
3397 	vcpu->arch.apf.msr_int_val = data;
3398 
3399 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3400 
3401 	return 0;
3402 }
3403 
3404 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3405 {
3406 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3407 	vcpu->arch.time = 0;
3408 }
3409 
3410 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3411 {
3412 	++vcpu->stat.tlb_flush;
3413 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3414 
3415 	/* Flushing all ASIDs flushes the current ASID... */
3416 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3417 }
3418 
3419 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3420 {
3421 	++vcpu->stat.tlb_flush;
3422 
3423 	if (!tdp_enabled) {
3424 		/*
3425 		 * A TLB flush on behalf of the guest is equivalent to
3426 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3427 		 * a forced sync of the shadow page tables.  Ensure all the
3428 		 * roots are synced and the guest TLB in hardware is clean.
3429 		 */
3430 		kvm_mmu_sync_roots(vcpu);
3431 		kvm_mmu_sync_prev_roots(vcpu);
3432 	}
3433 
3434 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3435 
3436 	/*
3437 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3438 	 * grained flushing.
3439 	 */
3440 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3441 }
3442 
3443 
3444 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3445 {
3446 	++vcpu->stat.tlb_flush;
3447 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3448 }
3449 
3450 /*
3451  * Service "local" TLB flush requests, which are specific to the current MMU
3452  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3453  * TLB flushes that are targeted at an MMU context also need to be serviced
3454  * prior before nested VM-Enter/VM-Exit.
3455  */
3456 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3457 {
3458 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3459 		kvm_vcpu_flush_tlb_current(vcpu);
3460 
3461 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3462 		kvm_vcpu_flush_tlb_guest(vcpu);
3463 }
3464 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3465 
3466 static void record_steal_time(struct kvm_vcpu *vcpu)
3467 {
3468 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3469 	struct kvm_steal_time __user *st;
3470 	struct kvm_memslots *slots;
3471 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3472 	u64 steal;
3473 	u32 version;
3474 
3475 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3476 		kvm_xen_runstate_set_running(vcpu);
3477 		return;
3478 	}
3479 
3480 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3481 		return;
3482 
3483 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3484 		return;
3485 
3486 	slots = kvm_memslots(vcpu->kvm);
3487 
3488 	if (unlikely(slots->generation != ghc->generation ||
3489 		     gpa != ghc->gpa ||
3490 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3491 		/* We rely on the fact that it fits in a single page. */
3492 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3493 
3494 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3495 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3496 			return;
3497 	}
3498 
3499 	st = (struct kvm_steal_time __user *)ghc->hva;
3500 	/*
3501 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3502 	 * expensive IPIs.
3503 	 */
3504 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3505 		u8 st_preempted = 0;
3506 		int err = -EFAULT;
3507 
3508 		if (!user_access_begin(st, sizeof(*st)))
3509 			return;
3510 
3511 		asm volatile("1: xchgb %0, %2\n"
3512 			     "xor %1, %1\n"
3513 			     "2:\n"
3514 			     _ASM_EXTABLE_UA(1b, 2b)
3515 			     : "+q" (st_preempted),
3516 			       "+&r" (err),
3517 			       "+m" (st->preempted));
3518 		if (err)
3519 			goto out;
3520 
3521 		user_access_end();
3522 
3523 		vcpu->arch.st.preempted = 0;
3524 
3525 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3526 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3527 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3528 			kvm_vcpu_flush_tlb_guest(vcpu);
3529 
3530 		if (!user_access_begin(st, sizeof(*st)))
3531 			goto dirty;
3532 	} else {
3533 		if (!user_access_begin(st, sizeof(*st)))
3534 			return;
3535 
3536 		unsafe_put_user(0, &st->preempted, out);
3537 		vcpu->arch.st.preempted = 0;
3538 	}
3539 
3540 	unsafe_get_user(version, &st->version, out);
3541 	if (version & 1)
3542 		version += 1;  /* first time write, random junk */
3543 
3544 	version += 1;
3545 	unsafe_put_user(version, &st->version, out);
3546 
3547 	smp_wmb();
3548 
3549 	unsafe_get_user(steal, &st->steal, out);
3550 	steal += current->sched_info.run_delay -
3551 		vcpu->arch.st.last_steal;
3552 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3553 	unsafe_put_user(steal, &st->steal, out);
3554 
3555 	version += 1;
3556 	unsafe_put_user(version, &st->version, out);
3557 
3558  out:
3559 	user_access_end();
3560  dirty:
3561 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3562 }
3563 
3564 static bool kvm_is_msr_to_save(u32 msr_index)
3565 {
3566 	unsigned int i;
3567 
3568 	for (i = 0; i < num_msrs_to_save; i++) {
3569 		if (msrs_to_save[i] == msr_index)
3570 			return true;
3571 	}
3572 
3573 	return false;
3574 }
3575 
3576 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3577 {
3578 	u32 msr = msr_info->index;
3579 	u64 data = msr_info->data;
3580 
3581 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3582 		return kvm_xen_write_hypercall_page(vcpu, data);
3583 
3584 	switch (msr) {
3585 	case MSR_AMD64_NB_CFG:
3586 	case MSR_IA32_UCODE_WRITE:
3587 	case MSR_VM_HSAVE_PA:
3588 	case MSR_AMD64_PATCH_LOADER:
3589 	case MSR_AMD64_BU_CFG2:
3590 	case MSR_AMD64_DC_CFG:
3591 	case MSR_F15H_EX_CFG:
3592 		break;
3593 
3594 	case MSR_IA32_UCODE_REV:
3595 		if (msr_info->host_initiated)
3596 			vcpu->arch.microcode_version = data;
3597 		break;
3598 	case MSR_IA32_ARCH_CAPABILITIES:
3599 		if (!msr_info->host_initiated)
3600 			return 1;
3601 		vcpu->arch.arch_capabilities = data;
3602 		break;
3603 	case MSR_IA32_PERF_CAPABILITIES:
3604 		if (!msr_info->host_initiated)
3605 			return 1;
3606 		if (data & ~kvm_caps.supported_perf_cap)
3607 			return 1;
3608 
3609 		vcpu->arch.perf_capabilities = data;
3610 		kvm_pmu_refresh(vcpu);
3611 		return 0;
3612 	case MSR_EFER:
3613 		return set_efer(vcpu, msr_info);
3614 	case MSR_K7_HWCR:
3615 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3616 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3617 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3618 
3619 		/* Handle McStatusWrEn */
3620 		if (data == BIT_ULL(18)) {
3621 			vcpu->arch.msr_hwcr = data;
3622 		} else if (data != 0) {
3623 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3624 			return 1;
3625 		}
3626 		break;
3627 	case MSR_FAM10H_MMIO_CONF_BASE:
3628 		if (data != 0) {
3629 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3630 			return 1;
3631 		}
3632 		break;
3633 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3634 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3635 		return kvm_mtrr_set_msr(vcpu, msr, data);
3636 	case MSR_IA32_APICBASE:
3637 		return kvm_set_apic_base(vcpu, msr_info);
3638 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3639 		return kvm_x2apic_msr_write(vcpu, msr, data);
3640 	case MSR_IA32_TSC_DEADLINE:
3641 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3642 		break;
3643 	case MSR_IA32_TSC_ADJUST:
3644 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3645 			if (!msr_info->host_initiated) {
3646 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3647 				adjust_tsc_offset_guest(vcpu, adj);
3648 				/* Before back to guest, tsc_timestamp must be adjusted
3649 				 * as well, otherwise guest's percpu pvclock time could jump.
3650 				 */
3651 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3652 			}
3653 			vcpu->arch.ia32_tsc_adjust_msr = data;
3654 		}
3655 		break;
3656 	case MSR_IA32_MISC_ENABLE: {
3657 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3658 
3659 		if (!msr_info->host_initiated) {
3660 			/* RO bits */
3661 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3662 				return 1;
3663 
3664 			/* R bits, i.e. writes are ignored, but don't fault. */
3665 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3666 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3667 		}
3668 
3669 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3670 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3671 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3672 				return 1;
3673 			vcpu->arch.ia32_misc_enable_msr = data;
3674 			kvm_update_cpuid_runtime(vcpu);
3675 		} else {
3676 			vcpu->arch.ia32_misc_enable_msr = data;
3677 		}
3678 		break;
3679 	}
3680 	case MSR_IA32_SMBASE:
3681 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3682 			return 1;
3683 		vcpu->arch.smbase = data;
3684 		break;
3685 	case MSR_IA32_POWER_CTL:
3686 		vcpu->arch.msr_ia32_power_ctl = data;
3687 		break;
3688 	case MSR_IA32_TSC:
3689 		if (msr_info->host_initiated) {
3690 			kvm_synchronize_tsc(vcpu, data);
3691 		} else {
3692 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3693 			adjust_tsc_offset_guest(vcpu, adj);
3694 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3695 		}
3696 		break;
3697 	case MSR_IA32_XSS:
3698 		if (!msr_info->host_initiated &&
3699 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3700 			return 1;
3701 		/*
3702 		 * KVM supports exposing PT to the guest, but does not support
3703 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3704 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3705 		 */
3706 		if (data & ~kvm_caps.supported_xss)
3707 			return 1;
3708 		vcpu->arch.ia32_xss = data;
3709 		kvm_update_cpuid_runtime(vcpu);
3710 		break;
3711 	case MSR_SMI_COUNT:
3712 		if (!msr_info->host_initiated)
3713 			return 1;
3714 		vcpu->arch.smi_count = data;
3715 		break;
3716 	case MSR_KVM_WALL_CLOCK_NEW:
3717 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3718 			return 1;
3719 
3720 		vcpu->kvm->arch.wall_clock = data;
3721 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3722 		break;
3723 	case MSR_KVM_WALL_CLOCK:
3724 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3725 			return 1;
3726 
3727 		vcpu->kvm->arch.wall_clock = data;
3728 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3729 		break;
3730 	case MSR_KVM_SYSTEM_TIME_NEW:
3731 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3732 			return 1;
3733 
3734 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3735 		break;
3736 	case MSR_KVM_SYSTEM_TIME:
3737 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3738 			return 1;
3739 
3740 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3741 		break;
3742 	case MSR_KVM_ASYNC_PF_EN:
3743 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3744 			return 1;
3745 
3746 		if (kvm_pv_enable_async_pf(vcpu, data))
3747 			return 1;
3748 		break;
3749 	case MSR_KVM_ASYNC_PF_INT:
3750 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3751 			return 1;
3752 
3753 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3754 			return 1;
3755 		break;
3756 	case MSR_KVM_ASYNC_PF_ACK:
3757 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3758 			return 1;
3759 		if (data & 0x1) {
3760 			vcpu->arch.apf.pageready_pending = false;
3761 			kvm_check_async_pf_completion(vcpu);
3762 		}
3763 		break;
3764 	case MSR_KVM_STEAL_TIME:
3765 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3766 			return 1;
3767 
3768 		if (unlikely(!sched_info_on()))
3769 			return 1;
3770 
3771 		if (data & KVM_STEAL_RESERVED_MASK)
3772 			return 1;
3773 
3774 		vcpu->arch.st.msr_val = data;
3775 
3776 		if (!(data & KVM_MSR_ENABLED))
3777 			break;
3778 
3779 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3780 
3781 		break;
3782 	case MSR_KVM_PV_EOI_EN:
3783 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3784 			return 1;
3785 
3786 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3787 			return 1;
3788 		break;
3789 
3790 	case MSR_KVM_POLL_CONTROL:
3791 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3792 			return 1;
3793 
3794 		/* only enable bit supported */
3795 		if (data & (-1ULL << 1))
3796 			return 1;
3797 
3798 		vcpu->arch.msr_kvm_poll_control = data;
3799 		break;
3800 
3801 	case MSR_IA32_MCG_CTL:
3802 	case MSR_IA32_MCG_STATUS:
3803 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3804 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3805 		return set_msr_mce(vcpu, msr_info);
3806 
3807 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3808 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3809 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3810 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3811 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3812 			return kvm_pmu_set_msr(vcpu, msr_info);
3813 
3814 		if (data)
3815 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3816 		break;
3817 	case MSR_K7_CLK_CTL:
3818 		/*
3819 		 * Ignore all writes to this no longer documented MSR.
3820 		 * Writes are only relevant for old K7 processors,
3821 		 * all pre-dating SVM, but a recommended workaround from
3822 		 * AMD for these chips. It is possible to specify the
3823 		 * affected processor models on the command line, hence
3824 		 * the need to ignore the workaround.
3825 		 */
3826 		break;
3827 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3828 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3829 	case HV_X64_MSR_SYNDBG_OPTIONS:
3830 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3831 	case HV_X64_MSR_CRASH_CTL:
3832 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3833 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3834 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3835 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3836 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3837 		return kvm_hv_set_msr_common(vcpu, msr, data,
3838 					     msr_info->host_initiated);
3839 	case MSR_IA32_BBL_CR_CTL3:
3840 		/* Drop writes to this legacy MSR -- see rdmsr
3841 		 * counterpart for further detail.
3842 		 */
3843 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3844 		break;
3845 	case MSR_AMD64_OSVW_ID_LENGTH:
3846 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3847 			return 1;
3848 		vcpu->arch.osvw.length = data;
3849 		break;
3850 	case MSR_AMD64_OSVW_STATUS:
3851 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3852 			return 1;
3853 		vcpu->arch.osvw.status = data;
3854 		break;
3855 	case MSR_PLATFORM_INFO:
3856 		if (!msr_info->host_initiated ||
3857 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3858 		     cpuid_fault_enabled(vcpu)))
3859 			return 1;
3860 		vcpu->arch.msr_platform_info = data;
3861 		break;
3862 	case MSR_MISC_FEATURES_ENABLES:
3863 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3864 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3865 		     !supports_cpuid_fault(vcpu)))
3866 			return 1;
3867 		vcpu->arch.msr_misc_features_enables = data;
3868 		break;
3869 #ifdef CONFIG_X86_64
3870 	case MSR_IA32_XFD:
3871 		if (!msr_info->host_initiated &&
3872 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3873 			return 1;
3874 
3875 		if (data & ~kvm_guest_supported_xfd(vcpu))
3876 			return 1;
3877 
3878 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3879 		break;
3880 	case MSR_IA32_XFD_ERR:
3881 		if (!msr_info->host_initiated &&
3882 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3883 			return 1;
3884 
3885 		if (data & ~kvm_guest_supported_xfd(vcpu))
3886 			return 1;
3887 
3888 		vcpu->arch.guest_fpu.xfd_err = data;
3889 		break;
3890 #endif
3891 	default:
3892 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3893 			return kvm_pmu_set_msr(vcpu, msr_info);
3894 
3895 		/*
3896 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3897 		 * as to-be-saved, even if an MSRs isn't fully supported.
3898 		 */
3899 		if (msr_info->host_initiated && !data &&
3900 		    kvm_is_msr_to_save(msr))
3901 			break;
3902 
3903 		return KVM_MSR_RET_INVALID;
3904 	}
3905 	return 0;
3906 }
3907 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3908 
3909 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3910 {
3911 	u64 data;
3912 	u64 mcg_cap = vcpu->arch.mcg_cap;
3913 	unsigned bank_num = mcg_cap & 0xff;
3914 	u32 offset, last_msr;
3915 
3916 	switch (msr) {
3917 	case MSR_IA32_P5_MC_ADDR:
3918 	case MSR_IA32_P5_MC_TYPE:
3919 		data = 0;
3920 		break;
3921 	case MSR_IA32_MCG_CAP:
3922 		data = vcpu->arch.mcg_cap;
3923 		break;
3924 	case MSR_IA32_MCG_CTL:
3925 		if (!(mcg_cap & MCG_CTL_P) && !host)
3926 			return 1;
3927 		data = vcpu->arch.mcg_ctl;
3928 		break;
3929 	case MSR_IA32_MCG_STATUS:
3930 		data = vcpu->arch.mcg_status;
3931 		break;
3932 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3933 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3934 		if (msr > last_msr)
3935 			return 1;
3936 
3937 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3938 			return 1;
3939 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3940 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3941 		data = vcpu->arch.mci_ctl2_banks[offset];
3942 		break;
3943 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3944 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3945 		if (msr > last_msr)
3946 			return 1;
3947 
3948 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3949 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3950 		data = vcpu->arch.mce_banks[offset];
3951 		break;
3952 	default:
3953 		return 1;
3954 	}
3955 	*pdata = data;
3956 	return 0;
3957 }
3958 
3959 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3960 {
3961 	switch (msr_info->index) {
3962 	case MSR_IA32_PLATFORM_ID:
3963 	case MSR_IA32_EBL_CR_POWERON:
3964 	case MSR_IA32_LASTBRANCHFROMIP:
3965 	case MSR_IA32_LASTBRANCHTOIP:
3966 	case MSR_IA32_LASTINTFROMIP:
3967 	case MSR_IA32_LASTINTTOIP:
3968 	case MSR_AMD64_SYSCFG:
3969 	case MSR_K8_TSEG_ADDR:
3970 	case MSR_K8_TSEG_MASK:
3971 	case MSR_VM_HSAVE_PA:
3972 	case MSR_K8_INT_PENDING_MSG:
3973 	case MSR_AMD64_NB_CFG:
3974 	case MSR_FAM10H_MMIO_CONF_BASE:
3975 	case MSR_AMD64_BU_CFG2:
3976 	case MSR_IA32_PERF_CTL:
3977 	case MSR_AMD64_DC_CFG:
3978 	case MSR_F15H_EX_CFG:
3979 	/*
3980 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3981 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3982 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3983 	 * so for existing CPU-specific MSRs.
3984 	 */
3985 	case MSR_RAPL_POWER_UNIT:
3986 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3987 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3988 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3989 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3990 		msr_info->data = 0;
3991 		break;
3992 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3993 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3994 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3995 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3996 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3997 			return kvm_pmu_get_msr(vcpu, msr_info);
3998 		msr_info->data = 0;
3999 		break;
4000 	case MSR_IA32_UCODE_REV:
4001 		msr_info->data = vcpu->arch.microcode_version;
4002 		break;
4003 	case MSR_IA32_ARCH_CAPABILITIES:
4004 		if (!msr_info->host_initiated &&
4005 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4006 			return 1;
4007 		msr_info->data = vcpu->arch.arch_capabilities;
4008 		break;
4009 	case MSR_IA32_PERF_CAPABILITIES:
4010 		if (!msr_info->host_initiated &&
4011 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4012 			return 1;
4013 		msr_info->data = vcpu->arch.perf_capabilities;
4014 		break;
4015 	case MSR_IA32_POWER_CTL:
4016 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4017 		break;
4018 	case MSR_IA32_TSC: {
4019 		/*
4020 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4021 		 * even when not intercepted. AMD manual doesn't explicitly
4022 		 * state this but appears to behave the same.
4023 		 *
4024 		 * On userspace reads and writes, however, we unconditionally
4025 		 * return L1's TSC value to ensure backwards-compatible
4026 		 * behavior for migration.
4027 		 */
4028 		u64 offset, ratio;
4029 
4030 		if (msr_info->host_initiated) {
4031 			offset = vcpu->arch.l1_tsc_offset;
4032 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4033 		} else {
4034 			offset = vcpu->arch.tsc_offset;
4035 			ratio = vcpu->arch.tsc_scaling_ratio;
4036 		}
4037 
4038 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4039 		break;
4040 	}
4041 	case MSR_MTRRcap:
4042 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4043 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4044 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4045 	case 0xcd: /* fsb frequency */
4046 		msr_info->data = 3;
4047 		break;
4048 		/*
4049 		 * MSR_EBC_FREQUENCY_ID
4050 		 * Conservative value valid for even the basic CPU models.
4051 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4052 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4053 		 * and 266MHz for model 3, or 4. Set Core Clock
4054 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4055 		 * 31:24) even though these are only valid for CPU
4056 		 * models > 2, however guests may end up dividing or
4057 		 * multiplying by zero otherwise.
4058 		 */
4059 	case MSR_EBC_FREQUENCY_ID:
4060 		msr_info->data = 1 << 24;
4061 		break;
4062 	case MSR_IA32_APICBASE:
4063 		msr_info->data = kvm_get_apic_base(vcpu);
4064 		break;
4065 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4066 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4067 	case MSR_IA32_TSC_DEADLINE:
4068 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4069 		break;
4070 	case MSR_IA32_TSC_ADJUST:
4071 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4072 		break;
4073 	case MSR_IA32_MISC_ENABLE:
4074 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4075 		break;
4076 	case MSR_IA32_SMBASE:
4077 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4078 			return 1;
4079 		msr_info->data = vcpu->arch.smbase;
4080 		break;
4081 	case MSR_SMI_COUNT:
4082 		msr_info->data = vcpu->arch.smi_count;
4083 		break;
4084 	case MSR_IA32_PERF_STATUS:
4085 		/* TSC increment by tick */
4086 		msr_info->data = 1000ULL;
4087 		/* CPU multiplier */
4088 		msr_info->data |= (((uint64_t)4ULL) << 40);
4089 		break;
4090 	case MSR_EFER:
4091 		msr_info->data = vcpu->arch.efer;
4092 		break;
4093 	case MSR_KVM_WALL_CLOCK:
4094 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4095 			return 1;
4096 
4097 		msr_info->data = vcpu->kvm->arch.wall_clock;
4098 		break;
4099 	case MSR_KVM_WALL_CLOCK_NEW:
4100 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4101 			return 1;
4102 
4103 		msr_info->data = vcpu->kvm->arch.wall_clock;
4104 		break;
4105 	case MSR_KVM_SYSTEM_TIME:
4106 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4107 			return 1;
4108 
4109 		msr_info->data = vcpu->arch.time;
4110 		break;
4111 	case MSR_KVM_SYSTEM_TIME_NEW:
4112 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4113 			return 1;
4114 
4115 		msr_info->data = vcpu->arch.time;
4116 		break;
4117 	case MSR_KVM_ASYNC_PF_EN:
4118 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4119 			return 1;
4120 
4121 		msr_info->data = vcpu->arch.apf.msr_en_val;
4122 		break;
4123 	case MSR_KVM_ASYNC_PF_INT:
4124 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4125 			return 1;
4126 
4127 		msr_info->data = vcpu->arch.apf.msr_int_val;
4128 		break;
4129 	case MSR_KVM_ASYNC_PF_ACK:
4130 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4131 			return 1;
4132 
4133 		msr_info->data = 0;
4134 		break;
4135 	case MSR_KVM_STEAL_TIME:
4136 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4137 			return 1;
4138 
4139 		msr_info->data = vcpu->arch.st.msr_val;
4140 		break;
4141 	case MSR_KVM_PV_EOI_EN:
4142 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4143 			return 1;
4144 
4145 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4146 		break;
4147 	case MSR_KVM_POLL_CONTROL:
4148 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4149 			return 1;
4150 
4151 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4152 		break;
4153 	case MSR_IA32_P5_MC_ADDR:
4154 	case MSR_IA32_P5_MC_TYPE:
4155 	case MSR_IA32_MCG_CAP:
4156 	case MSR_IA32_MCG_CTL:
4157 	case MSR_IA32_MCG_STATUS:
4158 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4159 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4160 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4161 				   msr_info->host_initiated);
4162 	case MSR_IA32_XSS:
4163 		if (!msr_info->host_initiated &&
4164 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4165 			return 1;
4166 		msr_info->data = vcpu->arch.ia32_xss;
4167 		break;
4168 	case MSR_K7_CLK_CTL:
4169 		/*
4170 		 * Provide expected ramp-up count for K7. All other
4171 		 * are set to zero, indicating minimum divisors for
4172 		 * every field.
4173 		 *
4174 		 * This prevents guest kernels on AMD host with CPU
4175 		 * type 6, model 8 and higher from exploding due to
4176 		 * the rdmsr failing.
4177 		 */
4178 		msr_info->data = 0x20000000;
4179 		break;
4180 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4181 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4182 	case HV_X64_MSR_SYNDBG_OPTIONS:
4183 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4184 	case HV_X64_MSR_CRASH_CTL:
4185 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4186 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4187 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4188 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4189 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4190 		return kvm_hv_get_msr_common(vcpu,
4191 					     msr_info->index, &msr_info->data,
4192 					     msr_info->host_initiated);
4193 	case MSR_IA32_BBL_CR_CTL3:
4194 		/* This legacy MSR exists but isn't fully documented in current
4195 		 * silicon.  It is however accessed by winxp in very narrow
4196 		 * scenarios where it sets bit #19, itself documented as
4197 		 * a "reserved" bit.  Best effort attempt to source coherent
4198 		 * read data here should the balance of the register be
4199 		 * interpreted by the guest:
4200 		 *
4201 		 * L2 cache control register 3: 64GB range, 256KB size,
4202 		 * enabled, latency 0x1, configured
4203 		 */
4204 		msr_info->data = 0xbe702111;
4205 		break;
4206 	case MSR_AMD64_OSVW_ID_LENGTH:
4207 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4208 			return 1;
4209 		msr_info->data = vcpu->arch.osvw.length;
4210 		break;
4211 	case MSR_AMD64_OSVW_STATUS:
4212 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4213 			return 1;
4214 		msr_info->data = vcpu->arch.osvw.status;
4215 		break;
4216 	case MSR_PLATFORM_INFO:
4217 		if (!msr_info->host_initiated &&
4218 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4219 			return 1;
4220 		msr_info->data = vcpu->arch.msr_platform_info;
4221 		break;
4222 	case MSR_MISC_FEATURES_ENABLES:
4223 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4224 		break;
4225 	case MSR_K7_HWCR:
4226 		msr_info->data = vcpu->arch.msr_hwcr;
4227 		break;
4228 #ifdef CONFIG_X86_64
4229 	case MSR_IA32_XFD:
4230 		if (!msr_info->host_initiated &&
4231 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4232 			return 1;
4233 
4234 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4235 		break;
4236 	case MSR_IA32_XFD_ERR:
4237 		if (!msr_info->host_initiated &&
4238 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4239 			return 1;
4240 
4241 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4242 		break;
4243 #endif
4244 	default:
4245 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4246 			return kvm_pmu_get_msr(vcpu, msr_info);
4247 
4248 		/*
4249 		 * Userspace is allowed to read MSRs that KVM reports as
4250 		 * to-be-saved, even if an MSR isn't fully supported.
4251 		 */
4252 		if (msr_info->host_initiated &&
4253 		    kvm_is_msr_to_save(msr_info->index)) {
4254 			msr_info->data = 0;
4255 			break;
4256 		}
4257 
4258 		return KVM_MSR_RET_INVALID;
4259 	}
4260 	return 0;
4261 }
4262 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4263 
4264 /*
4265  * Read or write a bunch of msrs. All parameters are kernel addresses.
4266  *
4267  * @return number of msrs set successfully.
4268  */
4269 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4270 		    struct kvm_msr_entry *entries,
4271 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4272 				  unsigned index, u64 *data))
4273 {
4274 	int i;
4275 
4276 	for (i = 0; i < msrs->nmsrs; ++i)
4277 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4278 			break;
4279 
4280 	return i;
4281 }
4282 
4283 /*
4284  * Read or write a bunch of msrs. Parameters are user addresses.
4285  *
4286  * @return number of msrs set successfully.
4287  */
4288 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4289 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4290 				unsigned index, u64 *data),
4291 		  int writeback)
4292 {
4293 	struct kvm_msrs msrs;
4294 	struct kvm_msr_entry *entries;
4295 	int r, n;
4296 	unsigned size;
4297 
4298 	r = -EFAULT;
4299 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4300 		goto out;
4301 
4302 	r = -E2BIG;
4303 	if (msrs.nmsrs >= MAX_IO_MSRS)
4304 		goto out;
4305 
4306 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4307 	entries = memdup_user(user_msrs->entries, size);
4308 	if (IS_ERR(entries)) {
4309 		r = PTR_ERR(entries);
4310 		goto out;
4311 	}
4312 
4313 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4314 	if (r < 0)
4315 		goto out_free;
4316 
4317 	r = -EFAULT;
4318 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4319 		goto out_free;
4320 
4321 	r = n;
4322 
4323 out_free:
4324 	kfree(entries);
4325 out:
4326 	return r;
4327 }
4328 
4329 static inline bool kvm_can_mwait_in_guest(void)
4330 {
4331 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4332 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4333 		boot_cpu_has(X86_FEATURE_ARAT);
4334 }
4335 
4336 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4337 					    struct kvm_cpuid2 __user *cpuid_arg)
4338 {
4339 	struct kvm_cpuid2 cpuid;
4340 	int r;
4341 
4342 	r = -EFAULT;
4343 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4344 		return r;
4345 
4346 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4347 	if (r)
4348 		return r;
4349 
4350 	r = -EFAULT;
4351 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4352 		return r;
4353 
4354 	return 0;
4355 }
4356 
4357 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4358 {
4359 	int r = 0;
4360 
4361 	switch (ext) {
4362 	case KVM_CAP_IRQCHIP:
4363 	case KVM_CAP_HLT:
4364 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4365 	case KVM_CAP_SET_TSS_ADDR:
4366 	case KVM_CAP_EXT_CPUID:
4367 	case KVM_CAP_EXT_EMUL_CPUID:
4368 	case KVM_CAP_CLOCKSOURCE:
4369 	case KVM_CAP_PIT:
4370 	case KVM_CAP_NOP_IO_DELAY:
4371 	case KVM_CAP_MP_STATE:
4372 	case KVM_CAP_SYNC_MMU:
4373 	case KVM_CAP_USER_NMI:
4374 	case KVM_CAP_REINJECT_CONTROL:
4375 	case KVM_CAP_IRQ_INJECT_STATUS:
4376 	case KVM_CAP_IOEVENTFD:
4377 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4378 	case KVM_CAP_PIT2:
4379 	case KVM_CAP_PIT_STATE2:
4380 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4381 	case KVM_CAP_VCPU_EVENTS:
4382 	case KVM_CAP_HYPERV:
4383 	case KVM_CAP_HYPERV_VAPIC:
4384 	case KVM_CAP_HYPERV_SPIN:
4385 	case KVM_CAP_HYPERV_SYNIC:
4386 	case KVM_CAP_HYPERV_SYNIC2:
4387 	case KVM_CAP_HYPERV_VP_INDEX:
4388 	case KVM_CAP_HYPERV_EVENTFD:
4389 	case KVM_CAP_HYPERV_TLBFLUSH:
4390 	case KVM_CAP_HYPERV_SEND_IPI:
4391 	case KVM_CAP_HYPERV_CPUID:
4392 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4393 	case KVM_CAP_SYS_HYPERV_CPUID:
4394 	case KVM_CAP_PCI_SEGMENT:
4395 	case KVM_CAP_DEBUGREGS:
4396 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4397 	case KVM_CAP_XSAVE:
4398 	case KVM_CAP_ASYNC_PF:
4399 	case KVM_CAP_ASYNC_PF_INT:
4400 	case KVM_CAP_GET_TSC_KHZ:
4401 	case KVM_CAP_KVMCLOCK_CTRL:
4402 	case KVM_CAP_READONLY_MEM:
4403 	case KVM_CAP_HYPERV_TIME:
4404 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4405 	case KVM_CAP_TSC_DEADLINE_TIMER:
4406 	case KVM_CAP_DISABLE_QUIRKS:
4407 	case KVM_CAP_SET_BOOT_CPU_ID:
4408  	case KVM_CAP_SPLIT_IRQCHIP:
4409 	case KVM_CAP_IMMEDIATE_EXIT:
4410 	case KVM_CAP_PMU_EVENT_FILTER:
4411 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4412 	case KVM_CAP_GET_MSR_FEATURES:
4413 	case KVM_CAP_MSR_PLATFORM_INFO:
4414 	case KVM_CAP_EXCEPTION_PAYLOAD:
4415 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4416 	case KVM_CAP_SET_GUEST_DEBUG:
4417 	case KVM_CAP_LAST_CPU:
4418 	case KVM_CAP_X86_USER_SPACE_MSR:
4419 	case KVM_CAP_X86_MSR_FILTER:
4420 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4421 #ifdef CONFIG_X86_SGX_KVM
4422 	case KVM_CAP_SGX_ATTRIBUTE:
4423 #endif
4424 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4425 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4426 	case KVM_CAP_SREGS2:
4427 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4428 	case KVM_CAP_VCPU_ATTRIBUTES:
4429 	case KVM_CAP_SYS_ATTRIBUTES:
4430 	case KVM_CAP_VAPIC:
4431 	case KVM_CAP_ENABLE_CAP:
4432 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4433 		r = 1;
4434 		break;
4435 	case KVM_CAP_EXIT_HYPERCALL:
4436 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4437 		break;
4438 	case KVM_CAP_SET_GUEST_DEBUG2:
4439 		return KVM_GUESTDBG_VALID_MASK;
4440 #ifdef CONFIG_KVM_XEN
4441 	case KVM_CAP_XEN_HVM:
4442 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4443 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4444 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4445 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4446 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4447 		if (sched_info_on())
4448 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4449 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4450 		break;
4451 #endif
4452 	case KVM_CAP_SYNC_REGS:
4453 		r = KVM_SYNC_X86_VALID_FIELDS;
4454 		break;
4455 	case KVM_CAP_ADJUST_CLOCK:
4456 		r = KVM_CLOCK_VALID_FLAGS;
4457 		break;
4458 	case KVM_CAP_X86_DISABLE_EXITS:
4459 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4460 		      KVM_X86_DISABLE_EXITS_CSTATE;
4461 		if(kvm_can_mwait_in_guest())
4462 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4463 		break;
4464 	case KVM_CAP_X86_SMM:
4465 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4466 			break;
4467 
4468 		/* SMBASE is usually relocated above 1M on modern chipsets,
4469 		 * and SMM handlers might indeed rely on 4G segment limits,
4470 		 * so do not report SMM to be available if real mode is
4471 		 * emulated via vm86 mode.  Still, do not go to great lengths
4472 		 * to avoid userspace's usage of the feature, because it is a
4473 		 * fringe case that is not enabled except via specific settings
4474 		 * of the module parameters.
4475 		 */
4476 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4477 		break;
4478 	case KVM_CAP_NR_VCPUS:
4479 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4480 		break;
4481 	case KVM_CAP_MAX_VCPUS:
4482 		r = KVM_MAX_VCPUS;
4483 		break;
4484 	case KVM_CAP_MAX_VCPU_ID:
4485 		r = KVM_MAX_VCPU_IDS;
4486 		break;
4487 	case KVM_CAP_PV_MMU:	/* obsolete */
4488 		r = 0;
4489 		break;
4490 	case KVM_CAP_MCE:
4491 		r = KVM_MAX_MCE_BANKS;
4492 		break;
4493 	case KVM_CAP_XCRS:
4494 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4495 		break;
4496 	case KVM_CAP_TSC_CONTROL:
4497 	case KVM_CAP_VM_TSC_CONTROL:
4498 		r = kvm_caps.has_tsc_control;
4499 		break;
4500 	case KVM_CAP_X2APIC_API:
4501 		r = KVM_X2APIC_API_VALID_FLAGS;
4502 		break;
4503 	case KVM_CAP_NESTED_STATE:
4504 		r = kvm_x86_ops.nested_ops->get_state ?
4505 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4506 		break;
4507 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4508 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4509 		break;
4510 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4511 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4512 		break;
4513 	case KVM_CAP_SMALLER_MAXPHYADDR:
4514 		r = (int) allow_smaller_maxphyaddr;
4515 		break;
4516 	case KVM_CAP_STEAL_TIME:
4517 		r = sched_info_on();
4518 		break;
4519 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4520 		if (kvm_caps.has_bus_lock_exit)
4521 			r = KVM_BUS_LOCK_DETECTION_OFF |
4522 			    KVM_BUS_LOCK_DETECTION_EXIT;
4523 		else
4524 			r = 0;
4525 		break;
4526 	case KVM_CAP_XSAVE2: {
4527 		u64 guest_perm = xstate_get_guest_group_perm();
4528 
4529 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4530 		if (r < sizeof(struct kvm_xsave))
4531 			r = sizeof(struct kvm_xsave);
4532 		break;
4533 	}
4534 	case KVM_CAP_PMU_CAPABILITY:
4535 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4536 		break;
4537 	case KVM_CAP_DISABLE_QUIRKS2:
4538 		r = KVM_X86_VALID_QUIRKS;
4539 		break;
4540 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4541 		r = kvm_caps.has_notify_vmexit;
4542 		break;
4543 	default:
4544 		break;
4545 	}
4546 	return r;
4547 }
4548 
4549 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4550 {
4551 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4552 
4553 	if ((u64)(unsigned long)uaddr != attr->addr)
4554 		return ERR_PTR_USR(-EFAULT);
4555 	return uaddr;
4556 }
4557 
4558 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4559 {
4560 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4561 
4562 	if (attr->group)
4563 		return -ENXIO;
4564 
4565 	if (IS_ERR(uaddr))
4566 		return PTR_ERR(uaddr);
4567 
4568 	switch (attr->attr) {
4569 	case KVM_X86_XCOMP_GUEST_SUPP:
4570 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4571 			return -EFAULT;
4572 		return 0;
4573 	default:
4574 		return -ENXIO;
4575 		break;
4576 	}
4577 }
4578 
4579 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4580 {
4581 	if (attr->group)
4582 		return -ENXIO;
4583 
4584 	switch (attr->attr) {
4585 	case KVM_X86_XCOMP_GUEST_SUPP:
4586 		return 0;
4587 	default:
4588 		return -ENXIO;
4589 	}
4590 }
4591 
4592 long kvm_arch_dev_ioctl(struct file *filp,
4593 			unsigned int ioctl, unsigned long arg)
4594 {
4595 	void __user *argp = (void __user *)arg;
4596 	long r;
4597 
4598 	switch (ioctl) {
4599 	case KVM_GET_MSR_INDEX_LIST: {
4600 		struct kvm_msr_list __user *user_msr_list = argp;
4601 		struct kvm_msr_list msr_list;
4602 		unsigned n;
4603 
4604 		r = -EFAULT;
4605 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4606 			goto out;
4607 		n = msr_list.nmsrs;
4608 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4609 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4610 			goto out;
4611 		r = -E2BIG;
4612 		if (n < msr_list.nmsrs)
4613 			goto out;
4614 		r = -EFAULT;
4615 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4616 				 num_msrs_to_save * sizeof(u32)))
4617 			goto out;
4618 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4619 				 &emulated_msrs,
4620 				 num_emulated_msrs * sizeof(u32)))
4621 			goto out;
4622 		r = 0;
4623 		break;
4624 	}
4625 	case KVM_GET_SUPPORTED_CPUID:
4626 	case KVM_GET_EMULATED_CPUID: {
4627 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4628 		struct kvm_cpuid2 cpuid;
4629 
4630 		r = -EFAULT;
4631 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4632 			goto out;
4633 
4634 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4635 					    ioctl);
4636 		if (r)
4637 			goto out;
4638 
4639 		r = -EFAULT;
4640 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4641 			goto out;
4642 		r = 0;
4643 		break;
4644 	}
4645 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4646 		r = -EFAULT;
4647 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4648 				 sizeof(kvm_caps.supported_mce_cap)))
4649 			goto out;
4650 		r = 0;
4651 		break;
4652 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4653 		struct kvm_msr_list __user *user_msr_list = argp;
4654 		struct kvm_msr_list msr_list;
4655 		unsigned int n;
4656 
4657 		r = -EFAULT;
4658 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4659 			goto out;
4660 		n = msr_list.nmsrs;
4661 		msr_list.nmsrs = num_msr_based_features;
4662 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4663 			goto out;
4664 		r = -E2BIG;
4665 		if (n < msr_list.nmsrs)
4666 			goto out;
4667 		r = -EFAULT;
4668 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4669 				 num_msr_based_features * sizeof(u32)))
4670 			goto out;
4671 		r = 0;
4672 		break;
4673 	}
4674 	case KVM_GET_MSRS:
4675 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4676 		break;
4677 	case KVM_GET_SUPPORTED_HV_CPUID:
4678 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4679 		break;
4680 	case KVM_GET_DEVICE_ATTR: {
4681 		struct kvm_device_attr attr;
4682 		r = -EFAULT;
4683 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4684 			break;
4685 		r = kvm_x86_dev_get_attr(&attr);
4686 		break;
4687 	}
4688 	case KVM_HAS_DEVICE_ATTR: {
4689 		struct kvm_device_attr attr;
4690 		r = -EFAULT;
4691 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4692 			break;
4693 		r = kvm_x86_dev_has_attr(&attr);
4694 		break;
4695 	}
4696 	default:
4697 		r = -EINVAL;
4698 		break;
4699 	}
4700 out:
4701 	return r;
4702 }
4703 
4704 static void wbinvd_ipi(void *garbage)
4705 {
4706 	wbinvd();
4707 }
4708 
4709 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4710 {
4711 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4712 }
4713 
4714 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4715 {
4716 	/* Address WBINVD may be executed by guest */
4717 	if (need_emulate_wbinvd(vcpu)) {
4718 		if (static_call(kvm_x86_has_wbinvd_exit)())
4719 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4720 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4721 			smp_call_function_single(vcpu->cpu,
4722 					wbinvd_ipi, NULL, 1);
4723 	}
4724 
4725 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4726 
4727 	/* Save host pkru register if supported */
4728 	vcpu->arch.host_pkru = read_pkru();
4729 
4730 	/* Apply any externally detected TSC adjustments (due to suspend) */
4731 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4732 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4733 		vcpu->arch.tsc_offset_adjustment = 0;
4734 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4735 	}
4736 
4737 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4738 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4739 				rdtsc() - vcpu->arch.last_host_tsc;
4740 		if (tsc_delta < 0)
4741 			mark_tsc_unstable("KVM discovered backwards TSC");
4742 
4743 		if (kvm_check_tsc_unstable()) {
4744 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4745 						vcpu->arch.last_guest_tsc);
4746 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4747 			vcpu->arch.tsc_catchup = 1;
4748 		}
4749 
4750 		if (kvm_lapic_hv_timer_in_use(vcpu))
4751 			kvm_lapic_restart_hv_timer(vcpu);
4752 
4753 		/*
4754 		 * On a host with synchronized TSC, there is no need to update
4755 		 * kvmclock on vcpu->cpu migration
4756 		 */
4757 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4758 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4759 		if (vcpu->cpu != cpu)
4760 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4761 		vcpu->cpu = cpu;
4762 	}
4763 
4764 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4765 }
4766 
4767 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4768 {
4769 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4770 	struct kvm_steal_time __user *st;
4771 	struct kvm_memslots *slots;
4772 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4773 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4774 
4775 	/*
4776 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4777 	 * an instruction boundary and will not trigger guest emulation of any
4778 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4779 	 * when this is true, for example allowing the vCPU to be marked
4780 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4781 	 */
4782 	if (!vcpu->arch.at_instruction_boundary) {
4783 		vcpu->stat.preemption_other++;
4784 		return;
4785 	}
4786 
4787 	vcpu->stat.preemption_reported++;
4788 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4789 		return;
4790 
4791 	if (vcpu->arch.st.preempted)
4792 		return;
4793 
4794 	/* This happens on process exit */
4795 	if (unlikely(current->mm != vcpu->kvm->mm))
4796 		return;
4797 
4798 	slots = kvm_memslots(vcpu->kvm);
4799 
4800 	if (unlikely(slots->generation != ghc->generation ||
4801 		     gpa != ghc->gpa ||
4802 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4803 		return;
4804 
4805 	st = (struct kvm_steal_time __user *)ghc->hva;
4806 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4807 
4808 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4809 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4810 
4811 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4812 }
4813 
4814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4815 {
4816 	int idx;
4817 
4818 	if (vcpu->preempted) {
4819 		if (!vcpu->arch.guest_state_protected)
4820 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4821 
4822 		/*
4823 		 * Take the srcu lock as memslots will be accessed to check the gfn
4824 		 * cache generation against the memslots generation.
4825 		 */
4826 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4827 		if (kvm_xen_msr_enabled(vcpu->kvm))
4828 			kvm_xen_runstate_set_preempted(vcpu);
4829 		else
4830 			kvm_steal_time_set_preempted(vcpu);
4831 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4832 	}
4833 
4834 	static_call(kvm_x86_vcpu_put)(vcpu);
4835 	vcpu->arch.last_host_tsc = rdtsc();
4836 }
4837 
4838 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4839 				    struct kvm_lapic_state *s)
4840 {
4841 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4842 
4843 	return kvm_apic_get_state(vcpu, s);
4844 }
4845 
4846 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4847 				    struct kvm_lapic_state *s)
4848 {
4849 	int r;
4850 
4851 	r = kvm_apic_set_state(vcpu, s);
4852 	if (r)
4853 		return r;
4854 	update_cr8_intercept(vcpu);
4855 
4856 	return 0;
4857 }
4858 
4859 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4860 {
4861 	/*
4862 	 * We can accept userspace's request for interrupt injection
4863 	 * as long as we have a place to store the interrupt number.
4864 	 * The actual injection will happen when the CPU is able to
4865 	 * deliver the interrupt.
4866 	 */
4867 	if (kvm_cpu_has_extint(vcpu))
4868 		return false;
4869 
4870 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4871 	return (!lapic_in_kernel(vcpu) ||
4872 		kvm_apic_accept_pic_intr(vcpu));
4873 }
4874 
4875 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4876 {
4877 	/*
4878 	 * Do not cause an interrupt window exit if an exception
4879 	 * is pending or an event needs reinjection; userspace
4880 	 * might want to inject the interrupt manually using KVM_SET_REGS
4881 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4882 	 * instruction boundary and with no events half-injected.
4883 	 */
4884 	return (kvm_arch_interrupt_allowed(vcpu) &&
4885 		kvm_cpu_accept_dm_intr(vcpu) &&
4886 		!kvm_event_needs_reinjection(vcpu) &&
4887 		!kvm_is_exception_pending(vcpu));
4888 }
4889 
4890 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4891 				    struct kvm_interrupt *irq)
4892 {
4893 	if (irq->irq >= KVM_NR_INTERRUPTS)
4894 		return -EINVAL;
4895 
4896 	if (!irqchip_in_kernel(vcpu->kvm)) {
4897 		kvm_queue_interrupt(vcpu, irq->irq, false);
4898 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4899 		return 0;
4900 	}
4901 
4902 	/*
4903 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4904 	 * fail for in-kernel 8259.
4905 	 */
4906 	if (pic_in_kernel(vcpu->kvm))
4907 		return -ENXIO;
4908 
4909 	if (vcpu->arch.pending_external_vector != -1)
4910 		return -EEXIST;
4911 
4912 	vcpu->arch.pending_external_vector = irq->irq;
4913 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4914 	return 0;
4915 }
4916 
4917 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4918 {
4919 	kvm_inject_nmi(vcpu);
4920 
4921 	return 0;
4922 }
4923 
4924 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4925 					   struct kvm_tpr_access_ctl *tac)
4926 {
4927 	if (tac->flags)
4928 		return -EINVAL;
4929 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4930 	return 0;
4931 }
4932 
4933 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4934 					u64 mcg_cap)
4935 {
4936 	int r;
4937 	unsigned bank_num = mcg_cap & 0xff, bank;
4938 
4939 	r = -EINVAL;
4940 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4941 		goto out;
4942 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4943 		goto out;
4944 	r = 0;
4945 	vcpu->arch.mcg_cap = mcg_cap;
4946 	/* Init IA32_MCG_CTL to all 1s */
4947 	if (mcg_cap & MCG_CTL_P)
4948 		vcpu->arch.mcg_ctl = ~(u64)0;
4949 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4950 	for (bank = 0; bank < bank_num; bank++) {
4951 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4952 		if (mcg_cap & MCG_CMCI_P)
4953 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4954 	}
4955 
4956 	kvm_apic_after_set_mcg_cap(vcpu);
4957 
4958 	static_call(kvm_x86_setup_mce)(vcpu);
4959 out:
4960 	return r;
4961 }
4962 
4963 /*
4964  * Validate this is an UCNA (uncorrectable no action) error by checking the
4965  * MCG_STATUS and MCi_STATUS registers:
4966  * - none of the bits for Machine Check Exceptions are set
4967  * - both the VAL (valid) and UC (uncorrectable) bits are set
4968  * MCI_STATUS_PCC - Processor Context Corrupted
4969  * MCI_STATUS_S - Signaled as a Machine Check Exception
4970  * MCI_STATUS_AR - Software recoverable Action Required
4971  */
4972 static bool is_ucna(struct kvm_x86_mce *mce)
4973 {
4974 	return	!mce->mcg_status &&
4975 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4976 		(mce->status & MCI_STATUS_VAL) &&
4977 		(mce->status & MCI_STATUS_UC);
4978 }
4979 
4980 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4981 {
4982 	u64 mcg_cap = vcpu->arch.mcg_cap;
4983 
4984 	banks[1] = mce->status;
4985 	banks[2] = mce->addr;
4986 	banks[3] = mce->misc;
4987 	vcpu->arch.mcg_status = mce->mcg_status;
4988 
4989 	if (!(mcg_cap & MCG_CMCI_P) ||
4990 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4991 		return 0;
4992 
4993 	if (lapic_in_kernel(vcpu))
4994 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4995 
4996 	return 0;
4997 }
4998 
4999 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5000 				      struct kvm_x86_mce *mce)
5001 {
5002 	u64 mcg_cap = vcpu->arch.mcg_cap;
5003 	unsigned bank_num = mcg_cap & 0xff;
5004 	u64 *banks = vcpu->arch.mce_banks;
5005 
5006 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5007 		return -EINVAL;
5008 
5009 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5010 
5011 	if (is_ucna(mce))
5012 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5013 
5014 	/*
5015 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5016 	 * reporting is disabled
5017 	 */
5018 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5019 	    vcpu->arch.mcg_ctl != ~(u64)0)
5020 		return 0;
5021 	/*
5022 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5023 	 * reporting is disabled for the bank
5024 	 */
5025 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5026 		return 0;
5027 	if (mce->status & MCI_STATUS_UC) {
5028 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5029 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5030 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5031 			return 0;
5032 		}
5033 		if (banks[1] & MCI_STATUS_VAL)
5034 			mce->status |= MCI_STATUS_OVER;
5035 		banks[2] = mce->addr;
5036 		banks[3] = mce->misc;
5037 		vcpu->arch.mcg_status = mce->mcg_status;
5038 		banks[1] = mce->status;
5039 		kvm_queue_exception(vcpu, MC_VECTOR);
5040 	} else if (!(banks[1] & MCI_STATUS_VAL)
5041 		   || !(banks[1] & MCI_STATUS_UC)) {
5042 		if (banks[1] & MCI_STATUS_VAL)
5043 			mce->status |= MCI_STATUS_OVER;
5044 		banks[2] = mce->addr;
5045 		banks[3] = mce->misc;
5046 		banks[1] = mce->status;
5047 	} else
5048 		banks[1] |= MCI_STATUS_OVER;
5049 	return 0;
5050 }
5051 
5052 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5053 					       struct kvm_vcpu_events *events)
5054 {
5055 	struct kvm_queued_exception *ex;
5056 
5057 	process_nmi(vcpu);
5058 
5059 #ifdef CONFIG_KVM_SMM
5060 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5061 		process_smi(vcpu);
5062 #endif
5063 
5064 	/*
5065 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5066 	 * the only time there can be two queued exceptions is if there's a
5067 	 * non-exiting _injected_ exception, and a pending exiting exception.
5068 	 * In that case, ignore the VM-Exiting exception as it's an extension
5069 	 * of the injected exception.
5070 	 */
5071 	if (vcpu->arch.exception_vmexit.pending &&
5072 	    !vcpu->arch.exception.pending &&
5073 	    !vcpu->arch.exception.injected)
5074 		ex = &vcpu->arch.exception_vmexit;
5075 	else
5076 		ex = &vcpu->arch.exception;
5077 
5078 	/*
5079 	 * In guest mode, payload delivery should be deferred if the exception
5080 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5081 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5082 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5083 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5084 	 * the payload if the capability hasn't been requested.
5085 	 */
5086 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5087 	    ex->pending && ex->has_payload)
5088 		kvm_deliver_exception_payload(vcpu, ex);
5089 
5090 	memset(events, 0, sizeof(*events));
5091 
5092 	/*
5093 	 * The API doesn't provide the instruction length for software
5094 	 * exceptions, so don't report them. As long as the guest RIP
5095 	 * isn't advanced, we should expect to encounter the exception
5096 	 * again.
5097 	 */
5098 	if (!kvm_exception_is_soft(ex->vector)) {
5099 		events->exception.injected = ex->injected;
5100 		events->exception.pending = ex->pending;
5101 		/*
5102 		 * For ABI compatibility, deliberately conflate
5103 		 * pending and injected exceptions when
5104 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5105 		 */
5106 		if (!vcpu->kvm->arch.exception_payload_enabled)
5107 			events->exception.injected |= ex->pending;
5108 	}
5109 	events->exception.nr = ex->vector;
5110 	events->exception.has_error_code = ex->has_error_code;
5111 	events->exception.error_code = ex->error_code;
5112 	events->exception_has_payload = ex->has_payload;
5113 	events->exception_payload = ex->payload;
5114 
5115 	events->interrupt.injected =
5116 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5117 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5118 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5119 
5120 	events->nmi.injected = vcpu->arch.nmi_injected;
5121 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5122 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5123 
5124 	/* events->sipi_vector is never valid when reporting to user space */
5125 
5126 #ifdef CONFIG_KVM_SMM
5127 	events->smi.smm = is_smm(vcpu);
5128 	events->smi.pending = vcpu->arch.smi_pending;
5129 	events->smi.smm_inside_nmi =
5130 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5131 #endif
5132 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5133 
5134 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5135 			 | KVM_VCPUEVENT_VALID_SHADOW
5136 			 | KVM_VCPUEVENT_VALID_SMM);
5137 	if (vcpu->kvm->arch.exception_payload_enabled)
5138 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5139 	if (vcpu->kvm->arch.triple_fault_event) {
5140 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5141 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5142 	}
5143 }
5144 
5145 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5146 					      struct kvm_vcpu_events *events)
5147 {
5148 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5149 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5150 			      | KVM_VCPUEVENT_VALID_SHADOW
5151 			      | KVM_VCPUEVENT_VALID_SMM
5152 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5153 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5154 		return -EINVAL;
5155 
5156 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5157 		if (!vcpu->kvm->arch.exception_payload_enabled)
5158 			return -EINVAL;
5159 		if (events->exception.pending)
5160 			events->exception.injected = 0;
5161 		else
5162 			events->exception_has_payload = 0;
5163 	} else {
5164 		events->exception.pending = 0;
5165 		events->exception_has_payload = 0;
5166 	}
5167 
5168 	if ((events->exception.injected || events->exception.pending) &&
5169 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5170 		return -EINVAL;
5171 
5172 	/* INITs are latched while in SMM */
5173 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5174 	    (events->smi.smm || events->smi.pending) &&
5175 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5176 		return -EINVAL;
5177 
5178 	process_nmi(vcpu);
5179 
5180 	/*
5181 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5182 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5183 	 * pending exceptions, already-injected exceptions are not subject to
5184 	 * intercpetion.  Note, userspace that conflates pending and injected
5185 	 * is hosed, and will incorrectly convert an injected exception into a
5186 	 * pending exception, which in turn may cause a spurious VM-Exit.
5187 	 */
5188 	vcpu->arch.exception_from_userspace = events->exception.pending;
5189 
5190 	vcpu->arch.exception_vmexit.pending = false;
5191 
5192 	vcpu->arch.exception.injected = events->exception.injected;
5193 	vcpu->arch.exception.pending = events->exception.pending;
5194 	vcpu->arch.exception.vector = events->exception.nr;
5195 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5196 	vcpu->arch.exception.error_code = events->exception.error_code;
5197 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5198 	vcpu->arch.exception.payload = events->exception_payload;
5199 
5200 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5201 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5202 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5203 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5204 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5205 						events->interrupt.shadow);
5206 
5207 	vcpu->arch.nmi_injected = events->nmi.injected;
5208 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5209 		vcpu->arch.nmi_pending = events->nmi.pending;
5210 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5211 
5212 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5213 	    lapic_in_kernel(vcpu))
5214 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5215 
5216 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5217 #ifdef CONFIG_KVM_SMM
5218 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5219 			kvm_leave_nested(vcpu);
5220 			kvm_smm_changed(vcpu, events->smi.smm);
5221 		}
5222 
5223 		vcpu->arch.smi_pending = events->smi.pending;
5224 
5225 		if (events->smi.smm) {
5226 			if (events->smi.smm_inside_nmi)
5227 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5228 			else
5229 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5230 		}
5231 
5232 #else
5233 		if (events->smi.smm || events->smi.pending ||
5234 		    events->smi.smm_inside_nmi)
5235 			return -EINVAL;
5236 #endif
5237 
5238 		if (lapic_in_kernel(vcpu)) {
5239 			if (events->smi.latched_init)
5240 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5241 			else
5242 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5243 		}
5244 	}
5245 
5246 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5247 		if (!vcpu->kvm->arch.triple_fault_event)
5248 			return -EINVAL;
5249 		if (events->triple_fault.pending)
5250 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5251 		else
5252 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5253 	}
5254 
5255 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5256 
5257 	return 0;
5258 }
5259 
5260 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5261 					     struct kvm_debugregs *dbgregs)
5262 {
5263 	unsigned long val;
5264 
5265 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5266 	kvm_get_dr(vcpu, 6, &val);
5267 	dbgregs->dr6 = val;
5268 	dbgregs->dr7 = vcpu->arch.dr7;
5269 	dbgregs->flags = 0;
5270 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5271 }
5272 
5273 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5274 					    struct kvm_debugregs *dbgregs)
5275 {
5276 	if (dbgregs->flags)
5277 		return -EINVAL;
5278 
5279 	if (!kvm_dr6_valid(dbgregs->dr6))
5280 		return -EINVAL;
5281 	if (!kvm_dr7_valid(dbgregs->dr7))
5282 		return -EINVAL;
5283 
5284 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5285 	kvm_update_dr0123(vcpu);
5286 	vcpu->arch.dr6 = dbgregs->dr6;
5287 	vcpu->arch.dr7 = dbgregs->dr7;
5288 	kvm_update_dr7(vcpu);
5289 
5290 	return 0;
5291 }
5292 
5293 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5294 					 struct kvm_xsave *guest_xsave)
5295 {
5296 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5297 		return;
5298 
5299 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5300 				       guest_xsave->region,
5301 				       sizeof(guest_xsave->region),
5302 				       vcpu->arch.pkru);
5303 }
5304 
5305 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5306 					  u8 *state, unsigned int size)
5307 {
5308 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5309 		return;
5310 
5311 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5312 				       state, size, vcpu->arch.pkru);
5313 }
5314 
5315 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5316 					struct kvm_xsave *guest_xsave)
5317 {
5318 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5319 		return 0;
5320 
5321 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5322 					      guest_xsave->region,
5323 					      kvm_caps.supported_xcr0,
5324 					      &vcpu->arch.pkru);
5325 }
5326 
5327 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5328 					struct kvm_xcrs *guest_xcrs)
5329 {
5330 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5331 		guest_xcrs->nr_xcrs = 0;
5332 		return;
5333 	}
5334 
5335 	guest_xcrs->nr_xcrs = 1;
5336 	guest_xcrs->flags = 0;
5337 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5338 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5339 }
5340 
5341 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5342 				       struct kvm_xcrs *guest_xcrs)
5343 {
5344 	int i, r = 0;
5345 
5346 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5347 		return -EINVAL;
5348 
5349 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5350 		return -EINVAL;
5351 
5352 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5353 		/* Only support XCR0 currently */
5354 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5355 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5356 				guest_xcrs->xcrs[i].value);
5357 			break;
5358 		}
5359 	if (r)
5360 		r = -EINVAL;
5361 	return r;
5362 }
5363 
5364 /*
5365  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5366  * stopped by the hypervisor.  This function will be called from the host only.
5367  * EINVAL is returned when the host attempts to set the flag for a guest that
5368  * does not support pv clocks.
5369  */
5370 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5371 {
5372 	if (!vcpu->arch.pv_time.active)
5373 		return -EINVAL;
5374 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5375 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5376 	return 0;
5377 }
5378 
5379 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5380 				 struct kvm_device_attr *attr)
5381 {
5382 	int r;
5383 
5384 	switch (attr->attr) {
5385 	case KVM_VCPU_TSC_OFFSET:
5386 		r = 0;
5387 		break;
5388 	default:
5389 		r = -ENXIO;
5390 	}
5391 
5392 	return r;
5393 }
5394 
5395 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5396 				 struct kvm_device_attr *attr)
5397 {
5398 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5399 	int r;
5400 
5401 	if (IS_ERR(uaddr))
5402 		return PTR_ERR(uaddr);
5403 
5404 	switch (attr->attr) {
5405 	case KVM_VCPU_TSC_OFFSET:
5406 		r = -EFAULT;
5407 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5408 			break;
5409 		r = 0;
5410 		break;
5411 	default:
5412 		r = -ENXIO;
5413 	}
5414 
5415 	return r;
5416 }
5417 
5418 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5419 				 struct kvm_device_attr *attr)
5420 {
5421 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5422 	struct kvm *kvm = vcpu->kvm;
5423 	int r;
5424 
5425 	if (IS_ERR(uaddr))
5426 		return PTR_ERR(uaddr);
5427 
5428 	switch (attr->attr) {
5429 	case KVM_VCPU_TSC_OFFSET: {
5430 		u64 offset, tsc, ns;
5431 		unsigned long flags;
5432 		bool matched;
5433 
5434 		r = -EFAULT;
5435 		if (get_user(offset, uaddr))
5436 			break;
5437 
5438 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5439 
5440 		matched = (vcpu->arch.virtual_tsc_khz &&
5441 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5442 			   kvm->arch.last_tsc_offset == offset);
5443 
5444 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5445 		ns = get_kvmclock_base_ns();
5446 
5447 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5448 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5449 
5450 		r = 0;
5451 		break;
5452 	}
5453 	default:
5454 		r = -ENXIO;
5455 	}
5456 
5457 	return r;
5458 }
5459 
5460 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5461 				      unsigned int ioctl,
5462 				      void __user *argp)
5463 {
5464 	struct kvm_device_attr attr;
5465 	int r;
5466 
5467 	if (copy_from_user(&attr, argp, sizeof(attr)))
5468 		return -EFAULT;
5469 
5470 	if (attr.group != KVM_VCPU_TSC_CTRL)
5471 		return -ENXIO;
5472 
5473 	switch (ioctl) {
5474 	case KVM_HAS_DEVICE_ATTR:
5475 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5476 		break;
5477 	case KVM_GET_DEVICE_ATTR:
5478 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5479 		break;
5480 	case KVM_SET_DEVICE_ATTR:
5481 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5482 		break;
5483 	}
5484 
5485 	return r;
5486 }
5487 
5488 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5489 				     struct kvm_enable_cap *cap)
5490 {
5491 	int r;
5492 	uint16_t vmcs_version;
5493 	void __user *user_ptr;
5494 
5495 	if (cap->flags)
5496 		return -EINVAL;
5497 
5498 	switch (cap->cap) {
5499 	case KVM_CAP_HYPERV_SYNIC2:
5500 		if (cap->args[0])
5501 			return -EINVAL;
5502 		fallthrough;
5503 
5504 	case KVM_CAP_HYPERV_SYNIC:
5505 		if (!irqchip_in_kernel(vcpu->kvm))
5506 			return -EINVAL;
5507 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5508 					     KVM_CAP_HYPERV_SYNIC2);
5509 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5510 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5511 			return -ENOTTY;
5512 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5513 		if (!r) {
5514 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5515 			if (copy_to_user(user_ptr, &vmcs_version,
5516 					 sizeof(vmcs_version)))
5517 				r = -EFAULT;
5518 		}
5519 		return r;
5520 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5521 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5522 			return -ENOTTY;
5523 
5524 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5525 
5526 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5527 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5528 
5529 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5530 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5531 		if (vcpu->arch.pv_cpuid.enforce)
5532 			kvm_update_pv_runtime(vcpu);
5533 
5534 		return 0;
5535 	default:
5536 		return -EINVAL;
5537 	}
5538 }
5539 
5540 long kvm_arch_vcpu_ioctl(struct file *filp,
5541 			 unsigned int ioctl, unsigned long arg)
5542 {
5543 	struct kvm_vcpu *vcpu = filp->private_data;
5544 	void __user *argp = (void __user *)arg;
5545 	int r;
5546 	union {
5547 		struct kvm_sregs2 *sregs2;
5548 		struct kvm_lapic_state *lapic;
5549 		struct kvm_xsave *xsave;
5550 		struct kvm_xcrs *xcrs;
5551 		void *buffer;
5552 	} u;
5553 
5554 	vcpu_load(vcpu);
5555 
5556 	u.buffer = NULL;
5557 	switch (ioctl) {
5558 	case KVM_GET_LAPIC: {
5559 		r = -EINVAL;
5560 		if (!lapic_in_kernel(vcpu))
5561 			goto out;
5562 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5563 				GFP_KERNEL_ACCOUNT);
5564 
5565 		r = -ENOMEM;
5566 		if (!u.lapic)
5567 			goto out;
5568 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5569 		if (r)
5570 			goto out;
5571 		r = -EFAULT;
5572 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5573 			goto out;
5574 		r = 0;
5575 		break;
5576 	}
5577 	case KVM_SET_LAPIC: {
5578 		r = -EINVAL;
5579 		if (!lapic_in_kernel(vcpu))
5580 			goto out;
5581 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5582 		if (IS_ERR(u.lapic)) {
5583 			r = PTR_ERR(u.lapic);
5584 			goto out_nofree;
5585 		}
5586 
5587 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5588 		break;
5589 	}
5590 	case KVM_INTERRUPT: {
5591 		struct kvm_interrupt irq;
5592 
5593 		r = -EFAULT;
5594 		if (copy_from_user(&irq, argp, sizeof(irq)))
5595 			goto out;
5596 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5597 		break;
5598 	}
5599 	case KVM_NMI: {
5600 		r = kvm_vcpu_ioctl_nmi(vcpu);
5601 		break;
5602 	}
5603 	case KVM_SMI: {
5604 		r = kvm_inject_smi(vcpu);
5605 		break;
5606 	}
5607 	case KVM_SET_CPUID: {
5608 		struct kvm_cpuid __user *cpuid_arg = argp;
5609 		struct kvm_cpuid cpuid;
5610 
5611 		r = -EFAULT;
5612 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5613 			goto out;
5614 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5615 		break;
5616 	}
5617 	case KVM_SET_CPUID2: {
5618 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5619 		struct kvm_cpuid2 cpuid;
5620 
5621 		r = -EFAULT;
5622 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5623 			goto out;
5624 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5625 					      cpuid_arg->entries);
5626 		break;
5627 	}
5628 	case KVM_GET_CPUID2: {
5629 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5630 		struct kvm_cpuid2 cpuid;
5631 
5632 		r = -EFAULT;
5633 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5634 			goto out;
5635 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5636 					      cpuid_arg->entries);
5637 		if (r)
5638 			goto out;
5639 		r = -EFAULT;
5640 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5641 			goto out;
5642 		r = 0;
5643 		break;
5644 	}
5645 	case KVM_GET_MSRS: {
5646 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5647 		r = msr_io(vcpu, argp, do_get_msr, 1);
5648 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5649 		break;
5650 	}
5651 	case KVM_SET_MSRS: {
5652 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5653 		r = msr_io(vcpu, argp, do_set_msr, 0);
5654 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5655 		break;
5656 	}
5657 	case KVM_TPR_ACCESS_REPORTING: {
5658 		struct kvm_tpr_access_ctl tac;
5659 
5660 		r = -EFAULT;
5661 		if (copy_from_user(&tac, argp, sizeof(tac)))
5662 			goto out;
5663 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5664 		if (r)
5665 			goto out;
5666 		r = -EFAULT;
5667 		if (copy_to_user(argp, &tac, sizeof(tac)))
5668 			goto out;
5669 		r = 0;
5670 		break;
5671 	};
5672 	case KVM_SET_VAPIC_ADDR: {
5673 		struct kvm_vapic_addr va;
5674 		int idx;
5675 
5676 		r = -EINVAL;
5677 		if (!lapic_in_kernel(vcpu))
5678 			goto out;
5679 		r = -EFAULT;
5680 		if (copy_from_user(&va, argp, sizeof(va)))
5681 			goto out;
5682 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5683 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5684 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5685 		break;
5686 	}
5687 	case KVM_X86_SETUP_MCE: {
5688 		u64 mcg_cap;
5689 
5690 		r = -EFAULT;
5691 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5692 			goto out;
5693 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5694 		break;
5695 	}
5696 	case KVM_X86_SET_MCE: {
5697 		struct kvm_x86_mce mce;
5698 
5699 		r = -EFAULT;
5700 		if (copy_from_user(&mce, argp, sizeof(mce)))
5701 			goto out;
5702 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5703 		break;
5704 	}
5705 	case KVM_GET_VCPU_EVENTS: {
5706 		struct kvm_vcpu_events events;
5707 
5708 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5709 
5710 		r = -EFAULT;
5711 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5712 			break;
5713 		r = 0;
5714 		break;
5715 	}
5716 	case KVM_SET_VCPU_EVENTS: {
5717 		struct kvm_vcpu_events events;
5718 
5719 		r = -EFAULT;
5720 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5721 			break;
5722 
5723 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5724 		break;
5725 	}
5726 	case KVM_GET_DEBUGREGS: {
5727 		struct kvm_debugregs dbgregs;
5728 
5729 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5730 
5731 		r = -EFAULT;
5732 		if (copy_to_user(argp, &dbgregs,
5733 				 sizeof(struct kvm_debugregs)))
5734 			break;
5735 		r = 0;
5736 		break;
5737 	}
5738 	case KVM_SET_DEBUGREGS: {
5739 		struct kvm_debugregs dbgregs;
5740 
5741 		r = -EFAULT;
5742 		if (copy_from_user(&dbgregs, argp,
5743 				   sizeof(struct kvm_debugregs)))
5744 			break;
5745 
5746 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5747 		break;
5748 	}
5749 	case KVM_GET_XSAVE: {
5750 		r = -EINVAL;
5751 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5752 			break;
5753 
5754 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5755 		r = -ENOMEM;
5756 		if (!u.xsave)
5757 			break;
5758 
5759 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5760 
5761 		r = -EFAULT;
5762 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5763 			break;
5764 		r = 0;
5765 		break;
5766 	}
5767 	case KVM_SET_XSAVE: {
5768 		int size = vcpu->arch.guest_fpu.uabi_size;
5769 
5770 		u.xsave = memdup_user(argp, size);
5771 		if (IS_ERR(u.xsave)) {
5772 			r = PTR_ERR(u.xsave);
5773 			goto out_nofree;
5774 		}
5775 
5776 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5777 		break;
5778 	}
5779 
5780 	case KVM_GET_XSAVE2: {
5781 		int size = vcpu->arch.guest_fpu.uabi_size;
5782 
5783 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5784 		r = -ENOMEM;
5785 		if (!u.xsave)
5786 			break;
5787 
5788 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5789 
5790 		r = -EFAULT;
5791 		if (copy_to_user(argp, u.xsave, size))
5792 			break;
5793 
5794 		r = 0;
5795 		break;
5796 	}
5797 
5798 	case KVM_GET_XCRS: {
5799 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5800 		r = -ENOMEM;
5801 		if (!u.xcrs)
5802 			break;
5803 
5804 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5805 
5806 		r = -EFAULT;
5807 		if (copy_to_user(argp, u.xcrs,
5808 				 sizeof(struct kvm_xcrs)))
5809 			break;
5810 		r = 0;
5811 		break;
5812 	}
5813 	case KVM_SET_XCRS: {
5814 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5815 		if (IS_ERR(u.xcrs)) {
5816 			r = PTR_ERR(u.xcrs);
5817 			goto out_nofree;
5818 		}
5819 
5820 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5821 		break;
5822 	}
5823 	case KVM_SET_TSC_KHZ: {
5824 		u32 user_tsc_khz;
5825 
5826 		r = -EINVAL;
5827 		user_tsc_khz = (u32)arg;
5828 
5829 		if (kvm_caps.has_tsc_control &&
5830 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5831 			goto out;
5832 
5833 		if (user_tsc_khz == 0)
5834 			user_tsc_khz = tsc_khz;
5835 
5836 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5837 			r = 0;
5838 
5839 		goto out;
5840 	}
5841 	case KVM_GET_TSC_KHZ: {
5842 		r = vcpu->arch.virtual_tsc_khz;
5843 		goto out;
5844 	}
5845 	case KVM_KVMCLOCK_CTRL: {
5846 		r = kvm_set_guest_paused(vcpu);
5847 		goto out;
5848 	}
5849 	case KVM_ENABLE_CAP: {
5850 		struct kvm_enable_cap cap;
5851 
5852 		r = -EFAULT;
5853 		if (copy_from_user(&cap, argp, sizeof(cap)))
5854 			goto out;
5855 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5856 		break;
5857 	}
5858 	case KVM_GET_NESTED_STATE: {
5859 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5860 		u32 user_data_size;
5861 
5862 		r = -EINVAL;
5863 		if (!kvm_x86_ops.nested_ops->get_state)
5864 			break;
5865 
5866 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5867 		r = -EFAULT;
5868 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5869 			break;
5870 
5871 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5872 						     user_data_size);
5873 		if (r < 0)
5874 			break;
5875 
5876 		if (r > user_data_size) {
5877 			if (put_user(r, &user_kvm_nested_state->size))
5878 				r = -EFAULT;
5879 			else
5880 				r = -E2BIG;
5881 			break;
5882 		}
5883 
5884 		r = 0;
5885 		break;
5886 	}
5887 	case KVM_SET_NESTED_STATE: {
5888 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5889 		struct kvm_nested_state kvm_state;
5890 		int idx;
5891 
5892 		r = -EINVAL;
5893 		if (!kvm_x86_ops.nested_ops->set_state)
5894 			break;
5895 
5896 		r = -EFAULT;
5897 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5898 			break;
5899 
5900 		r = -EINVAL;
5901 		if (kvm_state.size < sizeof(kvm_state))
5902 			break;
5903 
5904 		if (kvm_state.flags &
5905 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5906 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5907 		      | KVM_STATE_NESTED_GIF_SET))
5908 			break;
5909 
5910 		/* nested_run_pending implies guest_mode.  */
5911 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5912 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5913 			break;
5914 
5915 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5916 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5917 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5918 		break;
5919 	}
5920 	case KVM_GET_SUPPORTED_HV_CPUID:
5921 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5922 		break;
5923 #ifdef CONFIG_KVM_XEN
5924 	case KVM_XEN_VCPU_GET_ATTR: {
5925 		struct kvm_xen_vcpu_attr xva;
5926 
5927 		r = -EFAULT;
5928 		if (copy_from_user(&xva, argp, sizeof(xva)))
5929 			goto out;
5930 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5931 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5932 			r = -EFAULT;
5933 		break;
5934 	}
5935 	case KVM_XEN_VCPU_SET_ATTR: {
5936 		struct kvm_xen_vcpu_attr xva;
5937 
5938 		r = -EFAULT;
5939 		if (copy_from_user(&xva, argp, sizeof(xva)))
5940 			goto out;
5941 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5942 		break;
5943 	}
5944 #endif
5945 	case KVM_GET_SREGS2: {
5946 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5947 		r = -ENOMEM;
5948 		if (!u.sregs2)
5949 			goto out;
5950 		__get_sregs2(vcpu, u.sregs2);
5951 		r = -EFAULT;
5952 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5953 			goto out;
5954 		r = 0;
5955 		break;
5956 	}
5957 	case KVM_SET_SREGS2: {
5958 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5959 		if (IS_ERR(u.sregs2)) {
5960 			r = PTR_ERR(u.sregs2);
5961 			u.sregs2 = NULL;
5962 			goto out;
5963 		}
5964 		r = __set_sregs2(vcpu, u.sregs2);
5965 		break;
5966 	}
5967 	case KVM_HAS_DEVICE_ATTR:
5968 	case KVM_GET_DEVICE_ATTR:
5969 	case KVM_SET_DEVICE_ATTR:
5970 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5971 		break;
5972 	default:
5973 		r = -EINVAL;
5974 	}
5975 out:
5976 	kfree(u.buffer);
5977 out_nofree:
5978 	vcpu_put(vcpu);
5979 	return r;
5980 }
5981 
5982 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5983 {
5984 	return VM_FAULT_SIGBUS;
5985 }
5986 
5987 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5988 {
5989 	int ret;
5990 
5991 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5992 		return -EINVAL;
5993 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5994 	return ret;
5995 }
5996 
5997 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5998 					      u64 ident_addr)
5999 {
6000 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6001 }
6002 
6003 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6004 					 unsigned long kvm_nr_mmu_pages)
6005 {
6006 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6007 		return -EINVAL;
6008 
6009 	mutex_lock(&kvm->slots_lock);
6010 
6011 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6012 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6013 
6014 	mutex_unlock(&kvm->slots_lock);
6015 	return 0;
6016 }
6017 
6018 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6019 {
6020 	return kvm->arch.n_max_mmu_pages;
6021 }
6022 
6023 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6024 {
6025 	struct kvm_pic *pic = kvm->arch.vpic;
6026 	int r;
6027 
6028 	r = 0;
6029 	switch (chip->chip_id) {
6030 	case KVM_IRQCHIP_PIC_MASTER:
6031 		memcpy(&chip->chip.pic, &pic->pics[0],
6032 			sizeof(struct kvm_pic_state));
6033 		break;
6034 	case KVM_IRQCHIP_PIC_SLAVE:
6035 		memcpy(&chip->chip.pic, &pic->pics[1],
6036 			sizeof(struct kvm_pic_state));
6037 		break;
6038 	case KVM_IRQCHIP_IOAPIC:
6039 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6040 		break;
6041 	default:
6042 		r = -EINVAL;
6043 		break;
6044 	}
6045 	return r;
6046 }
6047 
6048 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6049 {
6050 	struct kvm_pic *pic = kvm->arch.vpic;
6051 	int r;
6052 
6053 	r = 0;
6054 	switch (chip->chip_id) {
6055 	case KVM_IRQCHIP_PIC_MASTER:
6056 		spin_lock(&pic->lock);
6057 		memcpy(&pic->pics[0], &chip->chip.pic,
6058 			sizeof(struct kvm_pic_state));
6059 		spin_unlock(&pic->lock);
6060 		break;
6061 	case KVM_IRQCHIP_PIC_SLAVE:
6062 		spin_lock(&pic->lock);
6063 		memcpy(&pic->pics[1], &chip->chip.pic,
6064 			sizeof(struct kvm_pic_state));
6065 		spin_unlock(&pic->lock);
6066 		break;
6067 	case KVM_IRQCHIP_IOAPIC:
6068 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6069 		break;
6070 	default:
6071 		r = -EINVAL;
6072 		break;
6073 	}
6074 	kvm_pic_update_irq(pic);
6075 	return r;
6076 }
6077 
6078 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6079 {
6080 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6081 
6082 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6083 
6084 	mutex_lock(&kps->lock);
6085 	memcpy(ps, &kps->channels, sizeof(*ps));
6086 	mutex_unlock(&kps->lock);
6087 	return 0;
6088 }
6089 
6090 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6091 {
6092 	int i;
6093 	struct kvm_pit *pit = kvm->arch.vpit;
6094 
6095 	mutex_lock(&pit->pit_state.lock);
6096 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6097 	for (i = 0; i < 3; i++)
6098 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6099 	mutex_unlock(&pit->pit_state.lock);
6100 	return 0;
6101 }
6102 
6103 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6104 {
6105 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6106 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6107 		sizeof(ps->channels));
6108 	ps->flags = kvm->arch.vpit->pit_state.flags;
6109 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6110 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6111 	return 0;
6112 }
6113 
6114 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6115 {
6116 	int start = 0;
6117 	int i;
6118 	u32 prev_legacy, cur_legacy;
6119 	struct kvm_pit *pit = kvm->arch.vpit;
6120 
6121 	mutex_lock(&pit->pit_state.lock);
6122 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6123 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6124 	if (!prev_legacy && cur_legacy)
6125 		start = 1;
6126 	memcpy(&pit->pit_state.channels, &ps->channels,
6127 	       sizeof(pit->pit_state.channels));
6128 	pit->pit_state.flags = ps->flags;
6129 	for (i = 0; i < 3; i++)
6130 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6131 				   start && i == 0);
6132 	mutex_unlock(&pit->pit_state.lock);
6133 	return 0;
6134 }
6135 
6136 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6137 				 struct kvm_reinject_control *control)
6138 {
6139 	struct kvm_pit *pit = kvm->arch.vpit;
6140 
6141 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6142 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6143 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6144 	 */
6145 	mutex_lock(&pit->pit_state.lock);
6146 	kvm_pit_set_reinject(pit, control->pit_reinject);
6147 	mutex_unlock(&pit->pit_state.lock);
6148 
6149 	return 0;
6150 }
6151 
6152 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6153 {
6154 
6155 	/*
6156 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6157 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6158 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6159 	 * VM-Exit.
6160 	 */
6161 	struct kvm_vcpu *vcpu;
6162 	unsigned long i;
6163 
6164 	kvm_for_each_vcpu(i, vcpu, kvm)
6165 		kvm_vcpu_kick(vcpu);
6166 }
6167 
6168 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6169 			bool line_status)
6170 {
6171 	if (!irqchip_in_kernel(kvm))
6172 		return -ENXIO;
6173 
6174 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6175 					irq_event->irq, irq_event->level,
6176 					line_status);
6177 	return 0;
6178 }
6179 
6180 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6181 			    struct kvm_enable_cap *cap)
6182 {
6183 	int r;
6184 
6185 	if (cap->flags)
6186 		return -EINVAL;
6187 
6188 	switch (cap->cap) {
6189 	case KVM_CAP_DISABLE_QUIRKS2:
6190 		r = -EINVAL;
6191 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6192 			break;
6193 		fallthrough;
6194 	case KVM_CAP_DISABLE_QUIRKS:
6195 		kvm->arch.disabled_quirks = cap->args[0];
6196 		r = 0;
6197 		break;
6198 	case KVM_CAP_SPLIT_IRQCHIP: {
6199 		mutex_lock(&kvm->lock);
6200 		r = -EINVAL;
6201 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6202 			goto split_irqchip_unlock;
6203 		r = -EEXIST;
6204 		if (irqchip_in_kernel(kvm))
6205 			goto split_irqchip_unlock;
6206 		if (kvm->created_vcpus)
6207 			goto split_irqchip_unlock;
6208 		r = kvm_setup_empty_irq_routing(kvm);
6209 		if (r)
6210 			goto split_irqchip_unlock;
6211 		/* Pairs with irqchip_in_kernel. */
6212 		smp_wmb();
6213 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6214 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6215 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6216 		r = 0;
6217 split_irqchip_unlock:
6218 		mutex_unlock(&kvm->lock);
6219 		break;
6220 	}
6221 	case KVM_CAP_X2APIC_API:
6222 		r = -EINVAL;
6223 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6224 			break;
6225 
6226 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6227 			kvm->arch.x2apic_format = true;
6228 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6229 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6230 
6231 		r = 0;
6232 		break;
6233 	case KVM_CAP_X86_DISABLE_EXITS:
6234 		r = -EINVAL;
6235 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6236 			break;
6237 
6238 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6239 			kvm_can_mwait_in_guest())
6240 			kvm->arch.mwait_in_guest = true;
6241 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6242 			kvm->arch.hlt_in_guest = true;
6243 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6244 			kvm->arch.pause_in_guest = true;
6245 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6246 			kvm->arch.cstate_in_guest = true;
6247 		r = 0;
6248 		break;
6249 	case KVM_CAP_MSR_PLATFORM_INFO:
6250 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6251 		r = 0;
6252 		break;
6253 	case KVM_CAP_EXCEPTION_PAYLOAD:
6254 		kvm->arch.exception_payload_enabled = cap->args[0];
6255 		r = 0;
6256 		break;
6257 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6258 		kvm->arch.triple_fault_event = cap->args[0];
6259 		r = 0;
6260 		break;
6261 	case KVM_CAP_X86_USER_SPACE_MSR:
6262 		r = -EINVAL;
6263 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6264 			break;
6265 		kvm->arch.user_space_msr_mask = cap->args[0];
6266 		r = 0;
6267 		break;
6268 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6269 		r = -EINVAL;
6270 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6271 			break;
6272 
6273 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6274 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6275 			break;
6276 
6277 		if (kvm_caps.has_bus_lock_exit &&
6278 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6279 			kvm->arch.bus_lock_detection_enabled = true;
6280 		r = 0;
6281 		break;
6282 #ifdef CONFIG_X86_SGX_KVM
6283 	case KVM_CAP_SGX_ATTRIBUTE: {
6284 		unsigned long allowed_attributes = 0;
6285 
6286 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6287 		if (r)
6288 			break;
6289 
6290 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6291 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6292 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6293 			kvm->arch.sgx_provisioning_allowed = true;
6294 		else
6295 			r = -EINVAL;
6296 		break;
6297 	}
6298 #endif
6299 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6300 		r = -EINVAL;
6301 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6302 			break;
6303 
6304 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6305 		break;
6306 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6307 		r = -EINVAL;
6308 		if (!kvm_x86_ops.vm_move_enc_context_from)
6309 			break;
6310 
6311 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6312 		break;
6313 	case KVM_CAP_EXIT_HYPERCALL:
6314 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6315 			r = -EINVAL;
6316 			break;
6317 		}
6318 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6319 		r = 0;
6320 		break;
6321 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6322 		r = -EINVAL;
6323 		if (cap->args[0] & ~1)
6324 			break;
6325 		kvm->arch.exit_on_emulation_error = cap->args[0];
6326 		r = 0;
6327 		break;
6328 	case KVM_CAP_PMU_CAPABILITY:
6329 		r = -EINVAL;
6330 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6331 			break;
6332 
6333 		mutex_lock(&kvm->lock);
6334 		if (!kvm->created_vcpus) {
6335 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6336 			r = 0;
6337 		}
6338 		mutex_unlock(&kvm->lock);
6339 		break;
6340 	case KVM_CAP_MAX_VCPU_ID:
6341 		r = -EINVAL;
6342 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6343 			break;
6344 
6345 		mutex_lock(&kvm->lock);
6346 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6347 			r = 0;
6348 		} else if (!kvm->arch.max_vcpu_ids) {
6349 			kvm->arch.max_vcpu_ids = cap->args[0];
6350 			r = 0;
6351 		}
6352 		mutex_unlock(&kvm->lock);
6353 		break;
6354 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6355 		r = -EINVAL;
6356 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6357 			break;
6358 		if (!kvm_caps.has_notify_vmexit)
6359 			break;
6360 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6361 			break;
6362 		mutex_lock(&kvm->lock);
6363 		if (!kvm->created_vcpus) {
6364 			kvm->arch.notify_window = cap->args[0] >> 32;
6365 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6366 			r = 0;
6367 		}
6368 		mutex_unlock(&kvm->lock);
6369 		break;
6370 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6371 		r = -EINVAL;
6372 
6373 		/*
6374 		 * Since the risk of disabling NX hugepages is a guest crashing
6375 		 * the system, ensure the userspace process has permission to
6376 		 * reboot the system.
6377 		 *
6378 		 * Note that unlike the reboot() syscall, the process must have
6379 		 * this capability in the root namespace because exposing
6380 		 * /dev/kvm into a container does not limit the scope of the
6381 		 * iTLB multihit bug to that container. In other words,
6382 		 * this must use capable(), not ns_capable().
6383 		 */
6384 		if (!capable(CAP_SYS_BOOT)) {
6385 			r = -EPERM;
6386 			break;
6387 		}
6388 
6389 		if (cap->args[0])
6390 			break;
6391 
6392 		mutex_lock(&kvm->lock);
6393 		if (!kvm->created_vcpus) {
6394 			kvm->arch.disable_nx_huge_pages = true;
6395 			r = 0;
6396 		}
6397 		mutex_unlock(&kvm->lock);
6398 		break;
6399 	default:
6400 		r = -EINVAL;
6401 		break;
6402 	}
6403 	return r;
6404 }
6405 
6406 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6407 {
6408 	struct kvm_x86_msr_filter *msr_filter;
6409 
6410 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6411 	if (!msr_filter)
6412 		return NULL;
6413 
6414 	msr_filter->default_allow = default_allow;
6415 	return msr_filter;
6416 }
6417 
6418 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6419 {
6420 	u32 i;
6421 
6422 	if (!msr_filter)
6423 		return;
6424 
6425 	for (i = 0; i < msr_filter->count; i++)
6426 		kfree(msr_filter->ranges[i].bitmap);
6427 
6428 	kfree(msr_filter);
6429 }
6430 
6431 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6432 			      struct kvm_msr_filter_range *user_range)
6433 {
6434 	unsigned long *bitmap = NULL;
6435 	size_t bitmap_size;
6436 
6437 	if (!user_range->nmsrs)
6438 		return 0;
6439 
6440 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6441 		return -EINVAL;
6442 
6443 	if (!user_range->flags)
6444 		return -EINVAL;
6445 
6446 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6447 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6448 		return -EINVAL;
6449 
6450 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6451 	if (IS_ERR(bitmap))
6452 		return PTR_ERR(bitmap);
6453 
6454 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6455 		.flags = user_range->flags,
6456 		.base = user_range->base,
6457 		.nmsrs = user_range->nmsrs,
6458 		.bitmap = bitmap,
6459 	};
6460 
6461 	msr_filter->count++;
6462 	return 0;
6463 }
6464 
6465 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6466 				       struct kvm_msr_filter *filter)
6467 {
6468 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6469 	bool default_allow;
6470 	bool empty = true;
6471 	int r = 0;
6472 	u32 i;
6473 
6474 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6475 		return -EINVAL;
6476 
6477 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6478 		empty &= !filter->ranges[i].nmsrs;
6479 
6480 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6481 	if (empty && !default_allow)
6482 		return -EINVAL;
6483 
6484 	new_filter = kvm_alloc_msr_filter(default_allow);
6485 	if (!new_filter)
6486 		return -ENOMEM;
6487 
6488 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6489 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6490 		if (r) {
6491 			kvm_free_msr_filter(new_filter);
6492 			return r;
6493 		}
6494 	}
6495 
6496 	mutex_lock(&kvm->lock);
6497 
6498 	/* The per-VM filter is protected by kvm->lock... */
6499 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6500 
6501 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6502 	synchronize_srcu(&kvm->srcu);
6503 
6504 	kvm_free_msr_filter(old_filter);
6505 
6506 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6507 	mutex_unlock(&kvm->lock);
6508 
6509 	return 0;
6510 }
6511 
6512 #ifdef CONFIG_KVM_COMPAT
6513 /* for KVM_X86_SET_MSR_FILTER */
6514 struct kvm_msr_filter_range_compat {
6515 	__u32 flags;
6516 	__u32 nmsrs;
6517 	__u32 base;
6518 	__u32 bitmap;
6519 };
6520 
6521 struct kvm_msr_filter_compat {
6522 	__u32 flags;
6523 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6524 };
6525 
6526 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6527 
6528 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6529 			      unsigned long arg)
6530 {
6531 	void __user *argp = (void __user *)arg;
6532 	struct kvm *kvm = filp->private_data;
6533 	long r = -ENOTTY;
6534 
6535 	switch (ioctl) {
6536 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6537 		struct kvm_msr_filter __user *user_msr_filter = argp;
6538 		struct kvm_msr_filter_compat filter_compat;
6539 		struct kvm_msr_filter filter;
6540 		int i;
6541 
6542 		if (copy_from_user(&filter_compat, user_msr_filter,
6543 				   sizeof(filter_compat)))
6544 			return -EFAULT;
6545 
6546 		filter.flags = filter_compat.flags;
6547 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6548 			struct kvm_msr_filter_range_compat *cr;
6549 
6550 			cr = &filter_compat.ranges[i];
6551 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6552 				.flags = cr->flags,
6553 				.nmsrs = cr->nmsrs,
6554 				.base = cr->base,
6555 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6556 			};
6557 		}
6558 
6559 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6560 		break;
6561 	}
6562 	}
6563 
6564 	return r;
6565 }
6566 #endif
6567 
6568 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6569 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6570 {
6571 	struct kvm_vcpu *vcpu;
6572 	unsigned long i;
6573 	int ret = 0;
6574 
6575 	mutex_lock(&kvm->lock);
6576 	kvm_for_each_vcpu(i, vcpu, kvm) {
6577 		if (!vcpu->arch.pv_time.active)
6578 			continue;
6579 
6580 		ret = kvm_set_guest_paused(vcpu);
6581 		if (ret) {
6582 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6583 				vcpu->vcpu_id, ret);
6584 			break;
6585 		}
6586 	}
6587 	mutex_unlock(&kvm->lock);
6588 
6589 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6590 }
6591 
6592 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6593 {
6594 	switch (state) {
6595 	case PM_HIBERNATION_PREPARE:
6596 	case PM_SUSPEND_PREPARE:
6597 		return kvm_arch_suspend_notifier(kvm);
6598 	}
6599 
6600 	return NOTIFY_DONE;
6601 }
6602 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6603 
6604 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6605 {
6606 	struct kvm_clock_data data = { 0 };
6607 
6608 	get_kvmclock(kvm, &data);
6609 	if (copy_to_user(argp, &data, sizeof(data)))
6610 		return -EFAULT;
6611 
6612 	return 0;
6613 }
6614 
6615 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6616 {
6617 	struct kvm_arch *ka = &kvm->arch;
6618 	struct kvm_clock_data data;
6619 	u64 now_raw_ns;
6620 
6621 	if (copy_from_user(&data, argp, sizeof(data)))
6622 		return -EFAULT;
6623 
6624 	/*
6625 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6626 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6627 	 */
6628 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6629 		return -EINVAL;
6630 
6631 	kvm_hv_request_tsc_page_update(kvm);
6632 	kvm_start_pvclock_update(kvm);
6633 	pvclock_update_vm_gtod_copy(kvm);
6634 
6635 	/*
6636 	 * This pairs with kvm_guest_time_update(): when masterclock is
6637 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6638 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6639 	 * is slightly ahead) here we risk going negative on unsigned
6640 	 * 'system_time' when 'data.clock' is very small.
6641 	 */
6642 	if (data.flags & KVM_CLOCK_REALTIME) {
6643 		u64 now_real_ns = ktime_get_real_ns();
6644 
6645 		/*
6646 		 * Avoid stepping the kvmclock backwards.
6647 		 */
6648 		if (now_real_ns > data.realtime)
6649 			data.clock += now_real_ns - data.realtime;
6650 	}
6651 
6652 	if (ka->use_master_clock)
6653 		now_raw_ns = ka->master_kernel_ns;
6654 	else
6655 		now_raw_ns = get_kvmclock_base_ns();
6656 	ka->kvmclock_offset = data.clock - now_raw_ns;
6657 	kvm_end_pvclock_update(kvm);
6658 	return 0;
6659 }
6660 
6661 long kvm_arch_vm_ioctl(struct file *filp,
6662 		       unsigned int ioctl, unsigned long arg)
6663 {
6664 	struct kvm *kvm = filp->private_data;
6665 	void __user *argp = (void __user *)arg;
6666 	int r = -ENOTTY;
6667 	/*
6668 	 * This union makes it completely explicit to gcc-3.x
6669 	 * that these two variables' stack usage should be
6670 	 * combined, not added together.
6671 	 */
6672 	union {
6673 		struct kvm_pit_state ps;
6674 		struct kvm_pit_state2 ps2;
6675 		struct kvm_pit_config pit_config;
6676 	} u;
6677 
6678 	switch (ioctl) {
6679 	case KVM_SET_TSS_ADDR:
6680 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6681 		break;
6682 	case KVM_SET_IDENTITY_MAP_ADDR: {
6683 		u64 ident_addr;
6684 
6685 		mutex_lock(&kvm->lock);
6686 		r = -EINVAL;
6687 		if (kvm->created_vcpus)
6688 			goto set_identity_unlock;
6689 		r = -EFAULT;
6690 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6691 			goto set_identity_unlock;
6692 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6693 set_identity_unlock:
6694 		mutex_unlock(&kvm->lock);
6695 		break;
6696 	}
6697 	case KVM_SET_NR_MMU_PAGES:
6698 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6699 		break;
6700 	case KVM_GET_NR_MMU_PAGES:
6701 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6702 		break;
6703 	case KVM_CREATE_IRQCHIP: {
6704 		mutex_lock(&kvm->lock);
6705 
6706 		r = -EEXIST;
6707 		if (irqchip_in_kernel(kvm))
6708 			goto create_irqchip_unlock;
6709 
6710 		r = -EINVAL;
6711 		if (kvm->created_vcpus)
6712 			goto create_irqchip_unlock;
6713 
6714 		r = kvm_pic_init(kvm);
6715 		if (r)
6716 			goto create_irqchip_unlock;
6717 
6718 		r = kvm_ioapic_init(kvm);
6719 		if (r) {
6720 			kvm_pic_destroy(kvm);
6721 			goto create_irqchip_unlock;
6722 		}
6723 
6724 		r = kvm_setup_default_irq_routing(kvm);
6725 		if (r) {
6726 			kvm_ioapic_destroy(kvm);
6727 			kvm_pic_destroy(kvm);
6728 			goto create_irqchip_unlock;
6729 		}
6730 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6731 		smp_wmb();
6732 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6733 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6734 	create_irqchip_unlock:
6735 		mutex_unlock(&kvm->lock);
6736 		break;
6737 	}
6738 	case KVM_CREATE_PIT:
6739 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6740 		goto create_pit;
6741 	case KVM_CREATE_PIT2:
6742 		r = -EFAULT;
6743 		if (copy_from_user(&u.pit_config, argp,
6744 				   sizeof(struct kvm_pit_config)))
6745 			goto out;
6746 	create_pit:
6747 		mutex_lock(&kvm->lock);
6748 		r = -EEXIST;
6749 		if (kvm->arch.vpit)
6750 			goto create_pit_unlock;
6751 		r = -ENOMEM;
6752 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6753 		if (kvm->arch.vpit)
6754 			r = 0;
6755 	create_pit_unlock:
6756 		mutex_unlock(&kvm->lock);
6757 		break;
6758 	case KVM_GET_IRQCHIP: {
6759 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6760 		struct kvm_irqchip *chip;
6761 
6762 		chip = memdup_user(argp, sizeof(*chip));
6763 		if (IS_ERR(chip)) {
6764 			r = PTR_ERR(chip);
6765 			goto out;
6766 		}
6767 
6768 		r = -ENXIO;
6769 		if (!irqchip_kernel(kvm))
6770 			goto get_irqchip_out;
6771 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6772 		if (r)
6773 			goto get_irqchip_out;
6774 		r = -EFAULT;
6775 		if (copy_to_user(argp, chip, sizeof(*chip)))
6776 			goto get_irqchip_out;
6777 		r = 0;
6778 	get_irqchip_out:
6779 		kfree(chip);
6780 		break;
6781 	}
6782 	case KVM_SET_IRQCHIP: {
6783 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6784 		struct kvm_irqchip *chip;
6785 
6786 		chip = memdup_user(argp, sizeof(*chip));
6787 		if (IS_ERR(chip)) {
6788 			r = PTR_ERR(chip);
6789 			goto out;
6790 		}
6791 
6792 		r = -ENXIO;
6793 		if (!irqchip_kernel(kvm))
6794 			goto set_irqchip_out;
6795 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6796 	set_irqchip_out:
6797 		kfree(chip);
6798 		break;
6799 	}
6800 	case KVM_GET_PIT: {
6801 		r = -EFAULT;
6802 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6803 			goto out;
6804 		r = -ENXIO;
6805 		if (!kvm->arch.vpit)
6806 			goto out;
6807 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6808 		if (r)
6809 			goto out;
6810 		r = -EFAULT;
6811 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6812 			goto out;
6813 		r = 0;
6814 		break;
6815 	}
6816 	case KVM_SET_PIT: {
6817 		r = -EFAULT;
6818 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6819 			goto out;
6820 		mutex_lock(&kvm->lock);
6821 		r = -ENXIO;
6822 		if (!kvm->arch.vpit)
6823 			goto set_pit_out;
6824 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6825 set_pit_out:
6826 		mutex_unlock(&kvm->lock);
6827 		break;
6828 	}
6829 	case KVM_GET_PIT2: {
6830 		r = -ENXIO;
6831 		if (!kvm->arch.vpit)
6832 			goto out;
6833 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6834 		if (r)
6835 			goto out;
6836 		r = -EFAULT;
6837 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6838 			goto out;
6839 		r = 0;
6840 		break;
6841 	}
6842 	case KVM_SET_PIT2: {
6843 		r = -EFAULT;
6844 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6845 			goto out;
6846 		mutex_lock(&kvm->lock);
6847 		r = -ENXIO;
6848 		if (!kvm->arch.vpit)
6849 			goto set_pit2_out;
6850 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6851 set_pit2_out:
6852 		mutex_unlock(&kvm->lock);
6853 		break;
6854 	}
6855 	case KVM_REINJECT_CONTROL: {
6856 		struct kvm_reinject_control control;
6857 		r =  -EFAULT;
6858 		if (copy_from_user(&control, argp, sizeof(control)))
6859 			goto out;
6860 		r = -ENXIO;
6861 		if (!kvm->arch.vpit)
6862 			goto out;
6863 		r = kvm_vm_ioctl_reinject(kvm, &control);
6864 		break;
6865 	}
6866 	case KVM_SET_BOOT_CPU_ID:
6867 		r = 0;
6868 		mutex_lock(&kvm->lock);
6869 		if (kvm->created_vcpus)
6870 			r = -EBUSY;
6871 		else
6872 			kvm->arch.bsp_vcpu_id = arg;
6873 		mutex_unlock(&kvm->lock);
6874 		break;
6875 #ifdef CONFIG_KVM_XEN
6876 	case KVM_XEN_HVM_CONFIG: {
6877 		struct kvm_xen_hvm_config xhc;
6878 		r = -EFAULT;
6879 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6880 			goto out;
6881 		r = kvm_xen_hvm_config(kvm, &xhc);
6882 		break;
6883 	}
6884 	case KVM_XEN_HVM_GET_ATTR: {
6885 		struct kvm_xen_hvm_attr xha;
6886 
6887 		r = -EFAULT;
6888 		if (copy_from_user(&xha, argp, sizeof(xha)))
6889 			goto out;
6890 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6891 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6892 			r = -EFAULT;
6893 		break;
6894 	}
6895 	case KVM_XEN_HVM_SET_ATTR: {
6896 		struct kvm_xen_hvm_attr xha;
6897 
6898 		r = -EFAULT;
6899 		if (copy_from_user(&xha, argp, sizeof(xha)))
6900 			goto out;
6901 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6902 		break;
6903 	}
6904 	case KVM_XEN_HVM_EVTCHN_SEND: {
6905 		struct kvm_irq_routing_xen_evtchn uxe;
6906 
6907 		r = -EFAULT;
6908 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6909 			goto out;
6910 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6911 		break;
6912 	}
6913 #endif
6914 	case KVM_SET_CLOCK:
6915 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6916 		break;
6917 	case KVM_GET_CLOCK:
6918 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6919 		break;
6920 	case KVM_SET_TSC_KHZ: {
6921 		u32 user_tsc_khz;
6922 
6923 		r = -EINVAL;
6924 		user_tsc_khz = (u32)arg;
6925 
6926 		if (kvm_caps.has_tsc_control &&
6927 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6928 			goto out;
6929 
6930 		if (user_tsc_khz == 0)
6931 			user_tsc_khz = tsc_khz;
6932 
6933 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6934 		r = 0;
6935 
6936 		goto out;
6937 	}
6938 	case KVM_GET_TSC_KHZ: {
6939 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6940 		goto out;
6941 	}
6942 	case KVM_MEMORY_ENCRYPT_OP: {
6943 		r = -ENOTTY;
6944 		if (!kvm_x86_ops.mem_enc_ioctl)
6945 			goto out;
6946 
6947 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6948 		break;
6949 	}
6950 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6951 		struct kvm_enc_region region;
6952 
6953 		r = -EFAULT;
6954 		if (copy_from_user(&region, argp, sizeof(region)))
6955 			goto out;
6956 
6957 		r = -ENOTTY;
6958 		if (!kvm_x86_ops.mem_enc_register_region)
6959 			goto out;
6960 
6961 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6962 		break;
6963 	}
6964 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6965 		struct kvm_enc_region region;
6966 
6967 		r = -EFAULT;
6968 		if (copy_from_user(&region, argp, sizeof(region)))
6969 			goto out;
6970 
6971 		r = -ENOTTY;
6972 		if (!kvm_x86_ops.mem_enc_unregister_region)
6973 			goto out;
6974 
6975 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6976 		break;
6977 	}
6978 	case KVM_HYPERV_EVENTFD: {
6979 		struct kvm_hyperv_eventfd hvevfd;
6980 
6981 		r = -EFAULT;
6982 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6983 			goto out;
6984 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6985 		break;
6986 	}
6987 	case KVM_SET_PMU_EVENT_FILTER:
6988 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6989 		break;
6990 	case KVM_X86_SET_MSR_FILTER: {
6991 		struct kvm_msr_filter __user *user_msr_filter = argp;
6992 		struct kvm_msr_filter filter;
6993 
6994 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6995 			return -EFAULT;
6996 
6997 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6998 		break;
6999 	}
7000 	default:
7001 		r = -ENOTTY;
7002 	}
7003 out:
7004 	return r;
7005 }
7006 
7007 static void kvm_probe_msr_to_save(u32 msr_index)
7008 {
7009 	u32 dummy[2];
7010 
7011 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7012 		return;
7013 
7014 	/*
7015 	 * Even MSRs that are valid in the host may not be exposed to guests in
7016 	 * some cases.
7017 	 */
7018 	switch (msr_index) {
7019 	case MSR_IA32_BNDCFGS:
7020 		if (!kvm_mpx_supported())
7021 			return;
7022 		break;
7023 	case MSR_TSC_AUX:
7024 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7025 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7026 			return;
7027 		break;
7028 	case MSR_IA32_UMWAIT_CONTROL:
7029 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7030 			return;
7031 		break;
7032 	case MSR_IA32_RTIT_CTL:
7033 	case MSR_IA32_RTIT_STATUS:
7034 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7035 			return;
7036 		break;
7037 	case MSR_IA32_RTIT_CR3_MATCH:
7038 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7039 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7040 			return;
7041 		break;
7042 	case MSR_IA32_RTIT_OUTPUT_BASE:
7043 	case MSR_IA32_RTIT_OUTPUT_MASK:
7044 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7045 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7046 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7047 			return;
7048 		break;
7049 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7050 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7051 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7052 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7053 			return;
7054 		break;
7055 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7056 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7057 		    kvm_pmu_cap.num_counters_gp)
7058 			return;
7059 		break;
7060 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7061 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7062 		    kvm_pmu_cap.num_counters_gp)
7063 			return;
7064 		break;
7065 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7066 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7067 		    kvm_pmu_cap.num_counters_fixed)
7068 			return;
7069 		break;
7070 	case MSR_IA32_XFD:
7071 	case MSR_IA32_XFD_ERR:
7072 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7073 			return;
7074 		break;
7075 	default:
7076 		break;
7077 	}
7078 
7079 	msrs_to_save[num_msrs_to_save++] = msr_index;
7080 }
7081 
7082 static void kvm_init_msr_list(void)
7083 {
7084 	unsigned i;
7085 
7086 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7087 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7088 
7089 	num_msrs_to_save = 0;
7090 	num_emulated_msrs = 0;
7091 	num_msr_based_features = 0;
7092 
7093 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7094 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7095 
7096 	if (enable_pmu) {
7097 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7098 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7099 	}
7100 
7101 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7102 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7103 			continue;
7104 
7105 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7106 	}
7107 
7108 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7109 		struct kvm_msr_entry msr;
7110 
7111 		msr.index = msr_based_features_all[i];
7112 		if (kvm_get_msr_feature(&msr))
7113 			continue;
7114 
7115 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7116 	}
7117 }
7118 
7119 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7120 			   const void *v)
7121 {
7122 	int handled = 0;
7123 	int n;
7124 
7125 	do {
7126 		n = min(len, 8);
7127 		if (!(lapic_in_kernel(vcpu) &&
7128 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7129 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7130 			break;
7131 		handled += n;
7132 		addr += n;
7133 		len -= n;
7134 		v += n;
7135 	} while (len);
7136 
7137 	return handled;
7138 }
7139 
7140 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7141 {
7142 	int handled = 0;
7143 	int n;
7144 
7145 	do {
7146 		n = min(len, 8);
7147 		if (!(lapic_in_kernel(vcpu) &&
7148 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7149 					 addr, n, v))
7150 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7151 			break;
7152 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7153 		handled += n;
7154 		addr += n;
7155 		len -= n;
7156 		v += n;
7157 	} while (len);
7158 
7159 	return handled;
7160 }
7161 
7162 void kvm_set_segment(struct kvm_vcpu *vcpu,
7163 		     struct kvm_segment *var, int seg)
7164 {
7165 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7166 }
7167 
7168 void kvm_get_segment(struct kvm_vcpu *vcpu,
7169 		     struct kvm_segment *var, int seg)
7170 {
7171 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7172 }
7173 
7174 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7175 			   struct x86_exception *exception)
7176 {
7177 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7178 	gpa_t t_gpa;
7179 
7180 	BUG_ON(!mmu_is_nested(vcpu));
7181 
7182 	/* NPT walks are always user-walks */
7183 	access |= PFERR_USER_MASK;
7184 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7185 
7186 	return t_gpa;
7187 }
7188 
7189 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7190 			      struct x86_exception *exception)
7191 {
7192 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7193 
7194 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7195 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7196 }
7197 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7198 
7199 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7200 			       struct x86_exception *exception)
7201 {
7202 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7203 
7204 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7205 	access |= PFERR_WRITE_MASK;
7206 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7207 }
7208 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7209 
7210 /* uses this to access any guest's mapped memory without checking CPL */
7211 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7212 				struct x86_exception *exception)
7213 {
7214 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7215 
7216 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7217 }
7218 
7219 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7220 				      struct kvm_vcpu *vcpu, u64 access,
7221 				      struct x86_exception *exception)
7222 {
7223 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7224 	void *data = val;
7225 	int r = X86EMUL_CONTINUE;
7226 
7227 	while (bytes) {
7228 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7229 		unsigned offset = addr & (PAGE_SIZE-1);
7230 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7231 		int ret;
7232 
7233 		if (gpa == INVALID_GPA)
7234 			return X86EMUL_PROPAGATE_FAULT;
7235 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7236 					       offset, toread);
7237 		if (ret < 0) {
7238 			r = X86EMUL_IO_NEEDED;
7239 			goto out;
7240 		}
7241 
7242 		bytes -= toread;
7243 		data += toread;
7244 		addr += toread;
7245 	}
7246 out:
7247 	return r;
7248 }
7249 
7250 /* used for instruction fetching */
7251 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7252 				gva_t addr, void *val, unsigned int bytes,
7253 				struct x86_exception *exception)
7254 {
7255 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7256 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7257 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7258 	unsigned offset;
7259 	int ret;
7260 
7261 	/* Inline kvm_read_guest_virt_helper for speed.  */
7262 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7263 				    exception);
7264 	if (unlikely(gpa == INVALID_GPA))
7265 		return X86EMUL_PROPAGATE_FAULT;
7266 
7267 	offset = addr & (PAGE_SIZE-1);
7268 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7269 		bytes = (unsigned)PAGE_SIZE - offset;
7270 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7271 				       offset, bytes);
7272 	if (unlikely(ret < 0))
7273 		return X86EMUL_IO_NEEDED;
7274 
7275 	return X86EMUL_CONTINUE;
7276 }
7277 
7278 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7279 			       gva_t addr, void *val, unsigned int bytes,
7280 			       struct x86_exception *exception)
7281 {
7282 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7283 
7284 	/*
7285 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7286 	 * is returned, but our callers are not ready for that and they blindly
7287 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7288 	 * uninitialized kernel stack memory into cr2 and error code.
7289 	 */
7290 	memset(exception, 0, sizeof(*exception));
7291 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7292 					  exception);
7293 }
7294 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7295 
7296 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7297 			     gva_t addr, void *val, unsigned int bytes,
7298 			     struct x86_exception *exception, bool system)
7299 {
7300 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7301 	u64 access = 0;
7302 
7303 	if (system)
7304 		access |= PFERR_IMPLICIT_ACCESS;
7305 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7306 		access |= PFERR_USER_MASK;
7307 
7308 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7309 }
7310 
7311 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7312 				      struct kvm_vcpu *vcpu, u64 access,
7313 				      struct x86_exception *exception)
7314 {
7315 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7316 	void *data = val;
7317 	int r = X86EMUL_CONTINUE;
7318 
7319 	while (bytes) {
7320 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7321 		unsigned offset = addr & (PAGE_SIZE-1);
7322 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7323 		int ret;
7324 
7325 		if (gpa == INVALID_GPA)
7326 			return X86EMUL_PROPAGATE_FAULT;
7327 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7328 		if (ret < 0) {
7329 			r = X86EMUL_IO_NEEDED;
7330 			goto out;
7331 		}
7332 
7333 		bytes -= towrite;
7334 		data += towrite;
7335 		addr += towrite;
7336 	}
7337 out:
7338 	return r;
7339 }
7340 
7341 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7342 			      unsigned int bytes, struct x86_exception *exception,
7343 			      bool system)
7344 {
7345 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7346 	u64 access = PFERR_WRITE_MASK;
7347 
7348 	if (system)
7349 		access |= PFERR_IMPLICIT_ACCESS;
7350 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7351 		access |= PFERR_USER_MASK;
7352 
7353 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7354 					   access, exception);
7355 }
7356 
7357 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7358 				unsigned int bytes, struct x86_exception *exception)
7359 {
7360 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7361 	vcpu->arch.l1tf_flush_l1d = true;
7362 
7363 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7364 					   PFERR_WRITE_MASK, exception);
7365 }
7366 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7367 
7368 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7369 				void *insn, int insn_len)
7370 {
7371 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7372 							    insn, insn_len);
7373 }
7374 
7375 int handle_ud(struct kvm_vcpu *vcpu)
7376 {
7377 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7378 	int fep_flags = READ_ONCE(force_emulation_prefix);
7379 	int emul_type = EMULTYPE_TRAP_UD;
7380 	char sig[5]; /* ud2; .ascii "kvm" */
7381 	struct x86_exception e;
7382 
7383 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7384 		return 1;
7385 
7386 	if (fep_flags &&
7387 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7388 				sig, sizeof(sig), &e) == 0 &&
7389 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7390 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7391 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7392 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7393 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7394 	}
7395 
7396 	return kvm_emulate_instruction(vcpu, emul_type);
7397 }
7398 EXPORT_SYMBOL_GPL(handle_ud);
7399 
7400 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7401 			    gpa_t gpa, bool write)
7402 {
7403 	/* For APIC access vmexit */
7404 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7405 		return 1;
7406 
7407 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7408 		trace_vcpu_match_mmio(gva, gpa, write, true);
7409 		return 1;
7410 	}
7411 
7412 	return 0;
7413 }
7414 
7415 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7416 				gpa_t *gpa, struct x86_exception *exception,
7417 				bool write)
7418 {
7419 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7420 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7421 		| (write ? PFERR_WRITE_MASK : 0);
7422 
7423 	/*
7424 	 * currently PKRU is only applied to ept enabled guest so
7425 	 * there is no pkey in EPT page table for L1 guest or EPT
7426 	 * shadow page table for L2 guest.
7427 	 */
7428 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7429 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7430 			      vcpu->arch.mmio_access, 0, access))) {
7431 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7432 					(gva & (PAGE_SIZE - 1));
7433 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7434 		return 1;
7435 	}
7436 
7437 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7438 
7439 	if (*gpa == INVALID_GPA)
7440 		return -1;
7441 
7442 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7443 }
7444 
7445 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7446 			const void *val, int bytes)
7447 {
7448 	int ret;
7449 
7450 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7451 	if (ret < 0)
7452 		return 0;
7453 	kvm_page_track_write(vcpu, gpa, val, bytes);
7454 	return 1;
7455 }
7456 
7457 struct read_write_emulator_ops {
7458 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7459 				  int bytes);
7460 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7461 				  void *val, int bytes);
7462 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7463 			       int bytes, void *val);
7464 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7465 				    void *val, int bytes);
7466 	bool write;
7467 };
7468 
7469 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7470 {
7471 	if (vcpu->mmio_read_completed) {
7472 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7473 			       vcpu->mmio_fragments[0].gpa, val);
7474 		vcpu->mmio_read_completed = 0;
7475 		return 1;
7476 	}
7477 
7478 	return 0;
7479 }
7480 
7481 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7482 			void *val, int bytes)
7483 {
7484 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7485 }
7486 
7487 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7488 			 void *val, int bytes)
7489 {
7490 	return emulator_write_phys(vcpu, gpa, val, bytes);
7491 }
7492 
7493 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7494 {
7495 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7496 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7497 }
7498 
7499 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7500 			  void *val, int bytes)
7501 {
7502 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7503 	return X86EMUL_IO_NEEDED;
7504 }
7505 
7506 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7507 			   void *val, int bytes)
7508 {
7509 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7510 
7511 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7512 	return X86EMUL_CONTINUE;
7513 }
7514 
7515 static const struct read_write_emulator_ops read_emultor = {
7516 	.read_write_prepare = read_prepare,
7517 	.read_write_emulate = read_emulate,
7518 	.read_write_mmio = vcpu_mmio_read,
7519 	.read_write_exit_mmio = read_exit_mmio,
7520 };
7521 
7522 static const struct read_write_emulator_ops write_emultor = {
7523 	.read_write_emulate = write_emulate,
7524 	.read_write_mmio = write_mmio,
7525 	.read_write_exit_mmio = write_exit_mmio,
7526 	.write = true,
7527 };
7528 
7529 static int emulator_read_write_onepage(unsigned long addr, void *val,
7530 				       unsigned int bytes,
7531 				       struct x86_exception *exception,
7532 				       struct kvm_vcpu *vcpu,
7533 				       const struct read_write_emulator_ops *ops)
7534 {
7535 	gpa_t gpa;
7536 	int handled, ret;
7537 	bool write = ops->write;
7538 	struct kvm_mmio_fragment *frag;
7539 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7540 
7541 	/*
7542 	 * If the exit was due to a NPF we may already have a GPA.
7543 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7544 	 * Note, this cannot be used on string operations since string
7545 	 * operation using rep will only have the initial GPA from the NPF
7546 	 * occurred.
7547 	 */
7548 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7549 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7550 		gpa = ctxt->gpa_val;
7551 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7552 	} else {
7553 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7554 		if (ret < 0)
7555 			return X86EMUL_PROPAGATE_FAULT;
7556 	}
7557 
7558 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7559 		return X86EMUL_CONTINUE;
7560 
7561 	/*
7562 	 * Is this MMIO handled locally?
7563 	 */
7564 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7565 	if (handled == bytes)
7566 		return X86EMUL_CONTINUE;
7567 
7568 	gpa += handled;
7569 	bytes -= handled;
7570 	val += handled;
7571 
7572 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7573 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7574 	frag->gpa = gpa;
7575 	frag->data = val;
7576 	frag->len = bytes;
7577 	return X86EMUL_CONTINUE;
7578 }
7579 
7580 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7581 			unsigned long addr,
7582 			void *val, unsigned int bytes,
7583 			struct x86_exception *exception,
7584 			const struct read_write_emulator_ops *ops)
7585 {
7586 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7587 	gpa_t gpa;
7588 	int rc;
7589 
7590 	if (ops->read_write_prepare &&
7591 		  ops->read_write_prepare(vcpu, val, bytes))
7592 		return X86EMUL_CONTINUE;
7593 
7594 	vcpu->mmio_nr_fragments = 0;
7595 
7596 	/* Crossing a page boundary? */
7597 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7598 		int now;
7599 
7600 		now = -addr & ~PAGE_MASK;
7601 		rc = emulator_read_write_onepage(addr, val, now, exception,
7602 						 vcpu, ops);
7603 
7604 		if (rc != X86EMUL_CONTINUE)
7605 			return rc;
7606 		addr += now;
7607 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7608 			addr = (u32)addr;
7609 		val += now;
7610 		bytes -= now;
7611 	}
7612 
7613 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7614 					 vcpu, ops);
7615 	if (rc != X86EMUL_CONTINUE)
7616 		return rc;
7617 
7618 	if (!vcpu->mmio_nr_fragments)
7619 		return rc;
7620 
7621 	gpa = vcpu->mmio_fragments[0].gpa;
7622 
7623 	vcpu->mmio_needed = 1;
7624 	vcpu->mmio_cur_fragment = 0;
7625 
7626 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7627 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7628 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7629 	vcpu->run->mmio.phys_addr = gpa;
7630 
7631 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7632 }
7633 
7634 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7635 				  unsigned long addr,
7636 				  void *val,
7637 				  unsigned int bytes,
7638 				  struct x86_exception *exception)
7639 {
7640 	return emulator_read_write(ctxt, addr, val, bytes,
7641 				   exception, &read_emultor);
7642 }
7643 
7644 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7645 			    unsigned long addr,
7646 			    const void *val,
7647 			    unsigned int bytes,
7648 			    struct x86_exception *exception)
7649 {
7650 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7651 				   exception, &write_emultor);
7652 }
7653 
7654 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7655 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7656 
7657 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7658 				     unsigned long addr,
7659 				     const void *old,
7660 				     const void *new,
7661 				     unsigned int bytes,
7662 				     struct x86_exception *exception)
7663 {
7664 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7665 	u64 page_line_mask;
7666 	unsigned long hva;
7667 	gpa_t gpa;
7668 	int r;
7669 
7670 	/* guests cmpxchg8b have to be emulated atomically */
7671 	if (bytes > 8 || (bytes & (bytes - 1)))
7672 		goto emul_write;
7673 
7674 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7675 
7676 	if (gpa == INVALID_GPA ||
7677 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7678 		goto emul_write;
7679 
7680 	/*
7681 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7682 	 * enabled in the host and the access splits a cache line.
7683 	 */
7684 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7685 		page_line_mask = ~(cache_line_size() - 1);
7686 	else
7687 		page_line_mask = PAGE_MASK;
7688 
7689 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7690 		goto emul_write;
7691 
7692 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7693 	if (kvm_is_error_hva(hva))
7694 		goto emul_write;
7695 
7696 	hva += offset_in_page(gpa);
7697 
7698 	switch (bytes) {
7699 	case 1:
7700 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7701 		break;
7702 	case 2:
7703 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7704 		break;
7705 	case 4:
7706 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7707 		break;
7708 	case 8:
7709 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7710 		break;
7711 	default:
7712 		BUG();
7713 	}
7714 
7715 	if (r < 0)
7716 		return X86EMUL_UNHANDLEABLE;
7717 	if (r)
7718 		return X86EMUL_CMPXCHG_FAILED;
7719 
7720 	kvm_page_track_write(vcpu, gpa, new, bytes);
7721 
7722 	return X86EMUL_CONTINUE;
7723 
7724 emul_write:
7725 	pr_warn_once("emulating exchange as write\n");
7726 
7727 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7728 }
7729 
7730 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7731 			       unsigned short port, void *data,
7732 			       unsigned int count, bool in)
7733 {
7734 	unsigned i;
7735 	int r;
7736 
7737 	WARN_ON_ONCE(vcpu->arch.pio.count);
7738 	for (i = 0; i < count; i++) {
7739 		if (in)
7740 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7741 		else
7742 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7743 
7744 		if (r) {
7745 			if (i == 0)
7746 				goto userspace_io;
7747 
7748 			/*
7749 			 * Userspace must have unregistered the device while PIO
7750 			 * was running.  Drop writes / read as 0.
7751 			 */
7752 			if (in)
7753 				memset(data, 0, size * (count - i));
7754 			break;
7755 		}
7756 
7757 		data += size;
7758 	}
7759 	return 1;
7760 
7761 userspace_io:
7762 	vcpu->arch.pio.port = port;
7763 	vcpu->arch.pio.in = in;
7764 	vcpu->arch.pio.count = count;
7765 	vcpu->arch.pio.size = size;
7766 
7767 	if (in)
7768 		memset(vcpu->arch.pio_data, 0, size * count);
7769 	else
7770 		memcpy(vcpu->arch.pio_data, data, size * count);
7771 
7772 	vcpu->run->exit_reason = KVM_EXIT_IO;
7773 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7774 	vcpu->run->io.size = size;
7775 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7776 	vcpu->run->io.count = count;
7777 	vcpu->run->io.port = port;
7778 	return 0;
7779 }
7780 
7781 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7782       			   unsigned short port, void *val, unsigned int count)
7783 {
7784 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7785 	if (r)
7786 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7787 
7788 	return r;
7789 }
7790 
7791 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7792 {
7793 	int size = vcpu->arch.pio.size;
7794 	unsigned int count = vcpu->arch.pio.count;
7795 	memcpy(val, vcpu->arch.pio_data, size * count);
7796 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7797 	vcpu->arch.pio.count = 0;
7798 }
7799 
7800 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7801 				    int size, unsigned short port, void *val,
7802 				    unsigned int count)
7803 {
7804 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7805 	if (vcpu->arch.pio.count) {
7806 		/*
7807 		 * Complete a previous iteration that required userspace I/O.
7808 		 * Note, @count isn't guaranteed to match pio.count as userspace
7809 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7810 		 * shenanigans as KVM doesn't support modifying the rep count,
7811 		 * and the emulator ensures @count doesn't overflow the buffer.
7812 		 */
7813 		complete_emulator_pio_in(vcpu, val);
7814 		return 1;
7815 	}
7816 
7817 	return emulator_pio_in(vcpu, size, port, val, count);
7818 }
7819 
7820 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7821 			    unsigned short port, const void *val,
7822 			    unsigned int count)
7823 {
7824 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7825 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7826 }
7827 
7828 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7829 				     int size, unsigned short port,
7830 				     const void *val, unsigned int count)
7831 {
7832 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7833 }
7834 
7835 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7836 {
7837 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7838 }
7839 
7840 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7841 {
7842 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7843 }
7844 
7845 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7846 {
7847 	if (!need_emulate_wbinvd(vcpu))
7848 		return X86EMUL_CONTINUE;
7849 
7850 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7851 		int cpu = get_cpu();
7852 
7853 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7854 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7855 				wbinvd_ipi, NULL, 1);
7856 		put_cpu();
7857 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7858 	} else
7859 		wbinvd();
7860 	return X86EMUL_CONTINUE;
7861 }
7862 
7863 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7864 {
7865 	kvm_emulate_wbinvd_noskip(vcpu);
7866 	return kvm_skip_emulated_instruction(vcpu);
7867 }
7868 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7869 
7870 
7871 
7872 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7873 {
7874 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7875 }
7876 
7877 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7878 			    unsigned long *dest)
7879 {
7880 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7881 }
7882 
7883 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7884 			   unsigned long value)
7885 {
7886 
7887 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7888 }
7889 
7890 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7891 {
7892 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7893 }
7894 
7895 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7896 {
7897 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7898 	unsigned long value;
7899 
7900 	switch (cr) {
7901 	case 0:
7902 		value = kvm_read_cr0(vcpu);
7903 		break;
7904 	case 2:
7905 		value = vcpu->arch.cr2;
7906 		break;
7907 	case 3:
7908 		value = kvm_read_cr3(vcpu);
7909 		break;
7910 	case 4:
7911 		value = kvm_read_cr4(vcpu);
7912 		break;
7913 	case 8:
7914 		value = kvm_get_cr8(vcpu);
7915 		break;
7916 	default:
7917 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7918 		return 0;
7919 	}
7920 
7921 	return value;
7922 }
7923 
7924 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7925 {
7926 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7927 	int res = 0;
7928 
7929 	switch (cr) {
7930 	case 0:
7931 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7932 		break;
7933 	case 2:
7934 		vcpu->arch.cr2 = val;
7935 		break;
7936 	case 3:
7937 		res = kvm_set_cr3(vcpu, val);
7938 		break;
7939 	case 4:
7940 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7941 		break;
7942 	case 8:
7943 		res = kvm_set_cr8(vcpu, val);
7944 		break;
7945 	default:
7946 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7947 		res = -1;
7948 	}
7949 
7950 	return res;
7951 }
7952 
7953 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7954 {
7955 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7956 }
7957 
7958 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7959 {
7960 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7961 }
7962 
7963 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7964 {
7965 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7966 }
7967 
7968 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7969 {
7970 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7971 }
7972 
7973 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7974 {
7975 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7976 }
7977 
7978 static unsigned long emulator_get_cached_segment_base(
7979 	struct x86_emulate_ctxt *ctxt, int seg)
7980 {
7981 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7982 }
7983 
7984 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7985 				 struct desc_struct *desc, u32 *base3,
7986 				 int seg)
7987 {
7988 	struct kvm_segment var;
7989 
7990 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7991 	*selector = var.selector;
7992 
7993 	if (var.unusable) {
7994 		memset(desc, 0, sizeof(*desc));
7995 		if (base3)
7996 			*base3 = 0;
7997 		return false;
7998 	}
7999 
8000 	if (var.g)
8001 		var.limit >>= 12;
8002 	set_desc_limit(desc, var.limit);
8003 	set_desc_base(desc, (unsigned long)var.base);
8004 #ifdef CONFIG_X86_64
8005 	if (base3)
8006 		*base3 = var.base >> 32;
8007 #endif
8008 	desc->type = var.type;
8009 	desc->s = var.s;
8010 	desc->dpl = var.dpl;
8011 	desc->p = var.present;
8012 	desc->avl = var.avl;
8013 	desc->l = var.l;
8014 	desc->d = var.db;
8015 	desc->g = var.g;
8016 
8017 	return true;
8018 }
8019 
8020 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8021 				 struct desc_struct *desc, u32 base3,
8022 				 int seg)
8023 {
8024 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8025 	struct kvm_segment var;
8026 
8027 	var.selector = selector;
8028 	var.base = get_desc_base(desc);
8029 #ifdef CONFIG_X86_64
8030 	var.base |= ((u64)base3) << 32;
8031 #endif
8032 	var.limit = get_desc_limit(desc);
8033 	if (desc->g)
8034 		var.limit = (var.limit << 12) | 0xfff;
8035 	var.type = desc->type;
8036 	var.dpl = desc->dpl;
8037 	var.db = desc->d;
8038 	var.s = desc->s;
8039 	var.l = desc->l;
8040 	var.g = desc->g;
8041 	var.avl = desc->avl;
8042 	var.present = desc->p;
8043 	var.unusable = !var.present;
8044 	var.padding = 0;
8045 
8046 	kvm_set_segment(vcpu, &var, seg);
8047 	return;
8048 }
8049 
8050 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8051 					u32 msr_index, u64 *pdata)
8052 {
8053 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8054 	int r;
8055 
8056 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8057 	if (r < 0)
8058 		return X86EMUL_UNHANDLEABLE;
8059 
8060 	if (r) {
8061 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8062 				       complete_emulated_rdmsr, r))
8063 			return X86EMUL_IO_NEEDED;
8064 
8065 		trace_kvm_msr_read_ex(msr_index);
8066 		return X86EMUL_PROPAGATE_FAULT;
8067 	}
8068 
8069 	trace_kvm_msr_read(msr_index, *pdata);
8070 	return X86EMUL_CONTINUE;
8071 }
8072 
8073 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8074 					u32 msr_index, u64 data)
8075 {
8076 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8077 	int r;
8078 
8079 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8080 	if (r < 0)
8081 		return X86EMUL_UNHANDLEABLE;
8082 
8083 	if (r) {
8084 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8085 				       complete_emulated_msr_access, r))
8086 			return X86EMUL_IO_NEEDED;
8087 
8088 		trace_kvm_msr_write_ex(msr_index, data);
8089 		return X86EMUL_PROPAGATE_FAULT;
8090 	}
8091 
8092 	trace_kvm_msr_write(msr_index, data);
8093 	return X86EMUL_CONTINUE;
8094 }
8095 
8096 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8097 			    u32 msr_index, u64 *pdata)
8098 {
8099 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8100 }
8101 
8102 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8103 			      u32 pmc)
8104 {
8105 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8106 		return 0;
8107 	return -EINVAL;
8108 }
8109 
8110 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8111 			     u32 pmc, u64 *pdata)
8112 {
8113 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8114 }
8115 
8116 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8117 {
8118 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8119 }
8120 
8121 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8122 			      struct x86_instruction_info *info,
8123 			      enum x86_intercept_stage stage)
8124 {
8125 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8126 					    &ctxt->exception);
8127 }
8128 
8129 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8130 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8131 			      bool exact_only)
8132 {
8133 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8134 }
8135 
8136 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8137 {
8138 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8139 }
8140 
8141 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8142 {
8143 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8144 }
8145 
8146 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8147 {
8148 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8149 }
8150 
8151 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8152 {
8153 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8154 }
8155 
8156 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8157 {
8158 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8159 }
8160 
8161 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8162 {
8163 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8164 }
8165 
8166 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8167 {
8168 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8169 }
8170 
8171 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8172 {
8173 	return emul_to_vcpu(ctxt)->arch.hflags;
8174 }
8175 
8176 #ifndef CONFIG_KVM_SMM
8177 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8178 {
8179 	WARN_ON_ONCE(1);
8180 	return X86EMUL_UNHANDLEABLE;
8181 }
8182 #endif
8183 
8184 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8185 {
8186 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8187 }
8188 
8189 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8190 {
8191 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8192 }
8193 
8194 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8195 {
8196 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8197 
8198 	if (!kvm->vm_bugged)
8199 		kvm_vm_bugged(kvm);
8200 }
8201 
8202 static const struct x86_emulate_ops emulate_ops = {
8203 	.vm_bugged           = emulator_vm_bugged,
8204 	.read_gpr            = emulator_read_gpr,
8205 	.write_gpr           = emulator_write_gpr,
8206 	.read_std            = emulator_read_std,
8207 	.write_std           = emulator_write_std,
8208 	.fetch               = kvm_fetch_guest_virt,
8209 	.read_emulated       = emulator_read_emulated,
8210 	.write_emulated      = emulator_write_emulated,
8211 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8212 	.invlpg              = emulator_invlpg,
8213 	.pio_in_emulated     = emulator_pio_in_emulated,
8214 	.pio_out_emulated    = emulator_pio_out_emulated,
8215 	.get_segment         = emulator_get_segment,
8216 	.set_segment         = emulator_set_segment,
8217 	.get_cached_segment_base = emulator_get_cached_segment_base,
8218 	.get_gdt             = emulator_get_gdt,
8219 	.get_idt	     = emulator_get_idt,
8220 	.set_gdt             = emulator_set_gdt,
8221 	.set_idt	     = emulator_set_idt,
8222 	.get_cr              = emulator_get_cr,
8223 	.set_cr              = emulator_set_cr,
8224 	.cpl                 = emulator_get_cpl,
8225 	.get_dr              = emulator_get_dr,
8226 	.set_dr              = emulator_set_dr,
8227 	.set_msr_with_filter = emulator_set_msr_with_filter,
8228 	.get_msr_with_filter = emulator_get_msr_with_filter,
8229 	.get_msr             = emulator_get_msr,
8230 	.check_pmc	     = emulator_check_pmc,
8231 	.read_pmc            = emulator_read_pmc,
8232 	.halt                = emulator_halt,
8233 	.wbinvd              = emulator_wbinvd,
8234 	.fix_hypercall       = emulator_fix_hypercall,
8235 	.intercept           = emulator_intercept,
8236 	.get_cpuid           = emulator_get_cpuid,
8237 	.guest_has_long_mode = emulator_guest_has_long_mode,
8238 	.guest_has_movbe     = emulator_guest_has_movbe,
8239 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8240 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8241 	.set_nmi_mask        = emulator_set_nmi_mask,
8242 	.get_hflags          = emulator_get_hflags,
8243 	.leave_smm           = emulator_leave_smm,
8244 	.triple_fault        = emulator_triple_fault,
8245 	.set_xcr             = emulator_set_xcr,
8246 };
8247 
8248 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8249 {
8250 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8251 	/*
8252 	 * an sti; sti; sequence only disable interrupts for the first
8253 	 * instruction. So, if the last instruction, be it emulated or
8254 	 * not, left the system with the INT_STI flag enabled, it
8255 	 * means that the last instruction is an sti. We should not
8256 	 * leave the flag on in this case. The same goes for mov ss
8257 	 */
8258 	if (int_shadow & mask)
8259 		mask = 0;
8260 	if (unlikely(int_shadow || mask)) {
8261 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8262 		if (!mask)
8263 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8264 	}
8265 }
8266 
8267 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8268 {
8269 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8270 
8271 	if (ctxt->exception.vector == PF_VECTOR)
8272 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8273 	else if (ctxt->exception.error_code_valid)
8274 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8275 				      ctxt->exception.error_code);
8276 	else
8277 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8278 }
8279 
8280 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8281 {
8282 	struct x86_emulate_ctxt *ctxt;
8283 
8284 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8285 	if (!ctxt) {
8286 		pr_err("failed to allocate vcpu's emulator\n");
8287 		return NULL;
8288 	}
8289 
8290 	ctxt->vcpu = vcpu;
8291 	ctxt->ops = &emulate_ops;
8292 	vcpu->arch.emulate_ctxt = ctxt;
8293 
8294 	return ctxt;
8295 }
8296 
8297 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8298 {
8299 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8300 	int cs_db, cs_l;
8301 
8302 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8303 
8304 	ctxt->gpa_available = false;
8305 	ctxt->eflags = kvm_get_rflags(vcpu);
8306 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8307 
8308 	ctxt->eip = kvm_rip_read(vcpu);
8309 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8310 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8311 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8312 		     cs_db				? X86EMUL_MODE_PROT32 :
8313 							  X86EMUL_MODE_PROT16;
8314 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8315 
8316 	ctxt->interruptibility = 0;
8317 	ctxt->have_exception = false;
8318 	ctxt->exception.vector = -1;
8319 	ctxt->perm_ok = false;
8320 
8321 	init_decode_cache(ctxt);
8322 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8323 }
8324 
8325 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8326 {
8327 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8328 	int ret;
8329 
8330 	init_emulate_ctxt(vcpu);
8331 
8332 	ctxt->op_bytes = 2;
8333 	ctxt->ad_bytes = 2;
8334 	ctxt->_eip = ctxt->eip + inc_eip;
8335 	ret = emulate_int_real(ctxt, irq);
8336 
8337 	if (ret != X86EMUL_CONTINUE) {
8338 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8339 	} else {
8340 		ctxt->eip = ctxt->_eip;
8341 		kvm_rip_write(vcpu, ctxt->eip);
8342 		kvm_set_rflags(vcpu, ctxt->eflags);
8343 	}
8344 }
8345 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8346 
8347 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8348 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8349 {
8350 	struct kvm_run *run = vcpu->run;
8351 	u64 info[5];
8352 	u8 info_start;
8353 
8354 	/*
8355 	 * Zero the whole array used to retrieve the exit info, as casting to
8356 	 * u32 for select entries will leave some chunks uninitialized.
8357 	 */
8358 	memset(&info, 0, sizeof(info));
8359 
8360 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8361 					   &info[2], (u32 *)&info[3],
8362 					   (u32 *)&info[4]);
8363 
8364 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8365 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8366 
8367 	/*
8368 	 * There's currently space for 13 entries, but 5 are used for the exit
8369 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8370 	 * when expanding kvm_run.emulation_failure in the future.
8371 	 */
8372 	if (WARN_ON_ONCE(ndata > 4))
8373 		ndata = 4;
8374 
8375 	/* Always include the flags as a 'data' entry. */
8376 	info_start = 1;
8377 	run->emulation_failure.flags = 0;
8378 
8379 	if (insn_size) {
8380 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8381 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8382 		info_start += 2;
8383 		run->emulation_failure.flags |=
8384 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8385 		run->emulation_failure.insn_size = insn_size;
8386 		memset(run->emulation_failure.insn_bytes, 0x90,
8387 		       sizeof(run->emulation_failure.insn_bytes));
8388 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8389 	}
8390 
8391 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8392 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8393 	       ndata * sizeof(data[0]));
8394 
8395 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8396 }
8397 
8398 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8399 {
8400 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8401 
8402 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8403 				       ctxt->fetch.end - ctxt->fetch.data);
8404 }
8405 
8406 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8407 					  u8 ndata)
8408 {
8409 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8410 }
8411 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8412 
8413 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8414 {
8415 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8416 }
8417 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8418 
8419 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8420 {
8421 	struct kvm *kvm = vcpu->kvm;
8422 
8423 	++vcpu->stat.insn_emulation_fail;
8424 	trace_kvm_emulate_insn_failed(vcpu);
8425 
8426 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8427 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8428 		return 1;
8429 	}
8430 
8431 	if (kvm->arch.exit_on_emulation_error ||
8432 	    (emulation_type & EMULTYPE_SKIP)) {
8433 		prepare_emulation_ctxt_failure_exit(vcpu);
8434 		return 0;
8435 	}
8436 
8437 	kvm_queue_exception(vcpu, UD_VECTOR);
8438 
8439 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8440 		prepare_emulation_ctxt_failure_exit(vcpu);
8441 		return 0;
8442 	}
8443 
8444 	return 1;
8445 }
8446 
8447 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8448 				  bool write_fault_to_shadow_pgtable,
8449 				  int emulation_type)
8450 {
8451 	gpa_t gpa = cr2_or_gpa;
8452 	kvm_pfn_t pfn;
8453 
8454 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8455 		return false;
8456 
8457 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8458 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8459 		return false;
8460 
8461 	if (!vcpu->arch.mmu->root_role.direct) {
8462 		/*
8463 		 * Write permission should be allowed since only
8464 		 * write access need to be emulated.
8465 		 */
8466 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8467 
8468 		/*
8469 		 * If the mapping is invalid in guest, let cpu retry
8470 		 * it to generate fault.
8471 		 */
8472 		if (gpa == INVALID_GPA)
8473 			return true;
8474 	}
8475 
8476 	/*
8477 	 * Do not retry the unhandleable instruction if it faults on the
8478 	 * readonly host memory, otherwise it will goto a infinite loop:
8479 	 * retry instruction -> write #PF -> emulation fail -> retry
8480 	 * instruction -> ...
8481 	 */
8482 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8483 
8484 	/*
8485 	 * If the instruction failed on the error pfn, it can not be fixed,
8486 	 * report the error to userspace.
8487 	 */
8488 	if (is_error_noslot_pfn(pfn))
8489 		return false;
8490 
8491 	kvm_release_pfn_clean(pfn);
8492 
8493 	/* The instructions are well-emulated on direct mmu. */
8494 	if (vcpu->arch.mmu->root_role.direct) {
8495 		unsigned int indirect_shadow_pages;
8496 
8497 		write_lock(&vcpu->kvm->mmu_lock);
8498 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8499 		write_unlock(&vcpu->kvm->mmu_lock);
8500 
8501 		if (indirect_shadow_pages)
8502 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8503 
8504 		return true;
8505 	}
8506 
8507 	/*
8508 	 * if emulation was due to access to shadowed page table
8509 	 * and it failed try to unshadow page and re-enter the
8510 	 * guest to let CPU execute the instruction.
8511 	 */
8512 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8513 
8514 	/*
8515 	 * If the access faults on its page table, it can not
8516 	 * be fixed by unprotecting shadow page and it should
8517 	 * be reported to userspace.
8518 	 */
8519 	return !write_fault_to_shadow_pgtable;
8520 }
8521 
8522 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8523 			      gpa_t cr2_or_gpa,  int emulation_type)
8524 {
8525 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8526 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8527 
8528 	last_retry_eip = vcpu->arch.last_retry_eip;
8529 	last_retry_addr = vcpu->arch.last_retry_addr;
8530 
8531 	/*
8532 	 * If the emulation is caused by #PF and it is non-page_table
8533 	 * writing instruction, it means the VM-EXIT is caused by shadow
8534 	 * page protected, we can zap the shadow page and retry this
8535 	 * instruction directly.
8536 	 *
8537 	 * Note: if the guest uses a non-page-table modifying instruction
8538 	 * on the PDE that points to the instruction, then we will unmap
8539 	 * the instruction and go to an infinite loop. So, we cache the
8540 	 * last retried eip and the last fault address, if we meet the eip
8541 	 * and the address again, we can break out of the potential infinite
8542 	 * loop.
8543 	 */
8544 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8545 
8546 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8547 		return false;
8548 
8549 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8550 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8551 		return false;
8552 
8553 	if (x86_page_table_writing_insn(ctxt))
8554 		return false;
8555 
8556 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8557 		return false;
8558 
8559 	vcpu->arch.last_retry_eip = ctxt->eip;
8560 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8561 
8562 	if (!vcpu->arch.mmu->root_role.direct)
8563 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8564 
8565 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8566 
8567 	return true;
8568 }
8569 
8570 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8571 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8572 
8573 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8574 				unsigned long *db)
8575 {
8576 	u32 dr6 = 0;
8577 	int i;
8578 	u32 enable, rwlen;
8579 
8580 	enable = dr7;
8581 	rwlen = dr7 >> 16;
8582 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8583 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8584 			dr6 |= (1 << i);
8585 	return dr6;
8586 }
8587 
8588 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8589 {
8590 	struct kvm_run *kvm_run = vcpu->run;
8591 
8592 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8593 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8594 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8595 		kvm_run->debug.arch.exception = DB_VECTOR;
8596 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8597 		return 0;
8598 	}
8599 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8600 	return 1;
8601 }
8602 
8603 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8604 {
8605 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8606 	int r;
8607 
8608 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8609 	if (unlikely(!r))
8610 		return 0;
8611 
8612 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8613 
8614 	/*
8615 	 * rflags is the old, "raw" value of the flags.  The new value has
8616 	 * not been saved yet.
8617 	 *
8618 	 * This is correct even for TF set by the guest, because "the
8619 	 * processor will not generate this exception after the instruction
8620 	 * that sets the TF flag".
8621 	 */
8622 	if (unlikely(rflags & X86_EFLAGS_TF))
8623 		r = kvm_vcpu_do_singlestep(vcpu);
8624 	return r;
8625 }
8626 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8627 
8628 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8629 {
8630 	u32 shadow;
8631 
8632 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8633 		return true;
8634 
8635 	/*
8636 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8637 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8638 	 * to avoid the relatively expensive CPUID lookup.
8639 	 */
8640 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8641 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8642 	       guest_cpuid_is_intel(vcpu);
8643 }
8644 
8645 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8646 					   int emulation_type, int *r)
8647 {
8648 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8649 
8650 	/*
8651 	 * Do not check for code breakpoints if hardware has already done the
8652 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8653 	 * the instruction has passed all exception checks, and all intercepted
8654 	 * exceptions that trigger emulation have lower priority than code
8655 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8656 	 * means any code breakpoints have already been serviced.
8657 	 *
8658 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8659 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8660 	 * the instruction being emulated.  The intent of forced emulation is
8661 	 * to behave as if KVM intercepted the instruction without an exception
8662 	 * and without a prefix.
8663 	 */
8664 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8665 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8666 		return false;
8667 
8668 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8669 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8670 		struct kvm_run *kvm_run = vcpu->run;
8671 		unsigned long eip = kvm_get_linear_rip(vcpu);
8672 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8673 					   vcpu->arch.guest_debug_dr7,
8674 					   vcpu->arch.eff_db);
8675 
8676 		if (dr6 != 0) {
8677 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8678 			kvm_run->debug.arch.pc = eip;
8679 			kvm_run->debug.arch.exception = DB_VECTOR;
8680 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8681 			*r = 0;
8682 			return true;
8683 		}
8684 	}
8685 
8686 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8687 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8688 		unsigned long eip = kvm_get_linear_rip(vcpu);
8689 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8690 					   vcpu->arch.dr7,
8691 					   vcpu->arch.db);
8692 
8693 		if (dr6 != 0) {
8694 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8695 			*r = 1;
8696 			return true;
8697 		}
8698 	}
8699 
8700 	return false;
8701 }
8702 
8703 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8704 {
8705 	switch (ctxt->opcode_len) {
8706 	case 1:
8707 		switch (ctxt->b) {
8708 		case 0xe4:	/* IN */
8709 		case 0xe5:
8710 		case 0xec:
8711 		case 0xed:
8712 		case 0xe6:	/* OUT */
8713 		case 0xe7:
8714 		case 0xee:
8715 		case 0xef:
8716 		case 0x6c:	/* INS */
8717 		case 0x6d:
8718 		case 0x6e:	/* OUTS */
8719 		case 0x6f:
8720 			return true;
8721 		}
8722 		break;
8723 	case 2:
8724 		switch (ctxt->b) {
8725 		case 0x33:	/* RDPMC */
8726 			return true;
8727 		}
8728 		break;
8729 	}
8730 
8731 	return false;
8732 }
8733 
8734 /*
8735  * Decode an instruction for emulation.  The caller is responsible for handling
8736  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8737  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8738  * code breakpoints have higher priority and thus have already been done by
8739  * hardware.
8740  *
8741  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8742  *     response to a machine check.
8743  */
8744 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8745 				    void *insn, int insn_len)
8746 {
8747 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8748 	int r;
8749 
8750 	init_emulate_ctxt(vcpu);
8751 
8752 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8753 
8754 	trace_kvm_emulate_insn_start(vcpu);
8755 	++vcpu->stat.insn_emulation;
8756 
8757 	return r;
8758 }
8759 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8760 
8761 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8762 			    int emulation_type, void *insn, int insn_len)
8763 {
8764 	int r;
8765 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8766 	bool writeback = true;
8767 	bool write_fault_to_spt;
8768 
8769 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8770 		return 1;
8771 
8772 	vcpu->arch.l1tf_flush_l1d = true;
8773 
8774 	/*
8775 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8776 	 * never reused.
8777 	 */
8778 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8779 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8780 
8781 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8782 		kvm_clear_exception_queue(vcpu);
8783 
8784 		/*
8785 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8786 		 * are fault-like and are higher priority than any faults on
8787 		 * the code fetch itself.
8788 		 */
8789 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8790 			return r;
8791 
8792 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8793 						    insn, insn_len);
8794 		if (r != EMULATION_OK)  {
8795 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8796 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8797 				kvm_queue_exception(vcpu, UD_VECTOR);
8798 				return 1;
8799 			}
8800 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8801 						  write_fault_to_spt,
8802 						  emulation_type))
8803 				return 1;
8804 
8805 			if (ctxt->have_exception &&
8806 			    !(emulation_type & EMULTYPE_SKIP)) {
8807 				/*
8808 				 * #UD should result in just EMULATION_FAILED, and trap-like
8809 				 * exception should not be encountered during decode.
8810 				 */
8811 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8812 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8813 				inject_emulated_exception(vcpu);
8814 				return 1;
8815 			}
8816 			return handle_emulation_failure(vcpu, emulation_type);
8817 		}
8818 	}
8819 
8820 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8821 	    !is_vmware_backdoor_opcode(ctxt)) {
8822 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8823 		return 1;
8824 	}
8825 
8826 	/*
8827 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8828 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8829 	 * The caller is responsible for updating interruptibility state and
8830 	 * injecting single-step #DBs.
8831 	 */
8832 	if (emulation_type & EMULTYPE_SKIP) {
8833 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8834 			ctxt->eip = (u32)ctxt->_eip;
8835 		else
8836 			ctxt->eip = ctxt->_eip;
8837 
8838 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8839 			r = 1;
8840 			goto writeback;
8841 		}
8842 
8843 		kvm_rip_write(vcpu, ctxt->eip);
8844 		if (ctxt->eflags & X86_EFLAGS_RF)
8845 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8846 		return 1;
8847 	}
8848 
8849 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8850 		return 1;
8851 
8852 	/* this is needed for vmware backdoor interface to work since it
8853 	   changes registers values  during IO operation */
8854 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8855 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8856 		emulator_invalidate_register_cache(ctxt);
8857 	}
8858 
8859 restart:
8860 	if (emulation_type & EMULTYPE_PF) {
8861 		/* Save the faulting GPA (cr2) in the address field */
8862 		ctxt->exception.address = cr2_or_gpa;
8863 
8864 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8865 		if (vcpu->arch.mmu->root_role.direct) {
8866 			ctxt->gpa_available = true;
8867 			ctxt->gpa_val = cr2_or_gpa;
8868 		}
8869 	} else {
8870 		/* Sanitize the address out of an abundance of paranoia. */
8871 		ctxt->exception.address = 0;
8872 	}
8873 
8874 	r = x86_emulate_insn(ctxt);
8875 
8876 	if (r == EMULATION_INTERCEPTED)
8877 		return 1;
8878 
8879 	if (r == EMULATION_FAILED) {
8880 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8881 					emulation_type))
8882 			return 1;
8883 
8884 		return handle_emulation_failure(vcpu, emulation_type);
8885 	}
8886 
8887 	if (ctxt->have_exception) {
8888 		r = 1;
8889 		inject_emulated_exception(vcpu);
8890 	} else if (vcpu->arch.pio.count) {
8891 		if (!vcpu->arch.pio.in) {
8892 			/* FIXME: return into emulator if single-stepping.  */
8893 			vcpu->arch.pio.count = 0;
8894 		} else {
8895 			writeback = false;
8896 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8897 		}
8898 		r = 0;
8899 	} else if (vcpu->mmio_needed) {
8900 		++vcpu->stat.mmio_exits;
8901 
8902 		if (!vcpu->mmio_is_write)
8903 			writeback = false;
8904 		r = 0;
8905 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8906 	} else if (vcpu->arch.complete_userspace_io) {
8907 		writeback = false;
8908 		r = 0;
8909 	} else if (r == EMULATION_RESTART)
8910 		goto restart;
8911 	else
8912 		r = 1;
8913 
8914 writeback:
8915 	if (writeback) {
8916 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8917 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8918 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8919 
8920 		/*
8921 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8922 		 * only supports code breakpoints and general detect #DB, both
8923 		 * of which are fault-like.
8924 		 */
8925 		if (!ctxt->have_exception ||
8926 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8927 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8928 			if (ctxt->is_branch)
8929 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8930 			kvm_rip_write(vcpu, ctxt->eip);
8931 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8932 				r = kvm_vcpu_do_singlestep(vcpu);
8933 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8934 			__kvm_set_rflags(vcpu, ctxt->eflags);
8935 		}
8936 
8937 		/*
8938 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8939 		 * do nothing, and it will be requested again as soon as
8940 		 * the shadow expires.  But we still need to check here,
8941 		 * because POPF has no interrupt shadow.
8942 		 */
8943 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8944 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8945 	} else
8946 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8947 
8948 	return r;
8949 }
8950 
8951 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8952 {
8953 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8954 }
8955 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8956 
8957 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8958 					void *insn, int insn_len)
8959 {
8960 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8961 }
8962 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8963 
8964 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8965 {
8966 	vcpu->arch.pio.count = 0;
8967 	return 1;
8968 }
8969 
8970 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8971 {
8972 	vcpu->arch.pio.count = 0;
8973 
8974 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8975 		return 1;
8976 
8977 	return kvm_skip_emulated_instruction(vcpu);
8978 }
8979 
8980 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8981 			    unsigned short port)
8982 {
8983 	unsigned long val = kvm_rax_read(vcpu);
8984 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8985 
8986 	if (ret)
8987 		return ret;
8988 
8989 	/*
8990 	 * Workaround userspace that relies on old KVM behavior of %rip being
8991 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8992 	 */
8993 	if (port == 0x7e &&
8994 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8995 		vcpu->arch.complete_userspace_io =
8996 			complete_fast_pio_out_port_0x7e;
8997 		kvm_skip_emulated_instruction(vcpu);
8998 	} else {
8999 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9000 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9001 	}
9002 	return 0;
9003 }
9004 
9005 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9006 {
9007 	unsigned long val;
9008 
9009 	/* We should only ever be called with arch.pio.count equal to 1 */
9010 	BUG_ON(vcpu->arch.pio.count != 1);
9011 
9012 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9013 		vcpu->arch.pio.count = 0;
9014 		return 1;
9015 	}
9016 
9017 	/* For size less than 4 we merge, else we zero extend */
9018 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9019 
9020 	complete_emulator_pio_in(vcpu, &val);
9021 	kvm_rax_write(vcpu, val);
9022 
9023 	return kvm_skip_emulated_instruction(vcpu);
9024 }
9025 
9026 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9027 			   unsigned short port)
9028 {
9029 	unsigned long val;
9030 	int ret;
9031 
9032 	/* For size less than 4 we merge, else we zero extend */
9033 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9034 
9035 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9036 	if (ret) {
9037 		kvm_rax_write(vcpu, val);
9038 		return ret;
9039 	}
9040 
9041 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9042 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9043 
9044 	return 0;
9045 }
9046 
9047 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9048 {
9049 	int ret;
9050 
9051 	if (in)
9052 		ret = kvm_fast_pio_in(vcpu, size, port);
9053 	else
9054 		ret = kvm_fast_pio_out(vcpu, size, port);
9055 	return ret && kvm_skip_emulated_instruction(vcpu);
9056 }
9057 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9058 
9059 static int kvmclock_cpu_down_prep(unsigned int cpu)
9060 {
9061 	__this_cpu_write(cpu_tsc_khz, 0);
9062 	return 0;
9063 }
9064 
9065 static void tsc_khz_changed(void *data)
9066 {
9067 	struct cpufreq_freqs *freq = data;
9068 	unsigned long khz = 0;
9069 
9070 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9071 
9072 	if (data)
9073 		khz = freq->new;
9074 	else
9075 		khz = cpufreq_quick_get(raw_smp_processor_id());
9076 	if (!khz)
9077 		khz = tsc_khz;
9078 	__this_cpu_write(cpu_tsc_khz, khz);
9079 }
9080 
9081 #ifdef CONFIG_X86_64
9082 static void kvm_hyperv_tsc_notifier(void)
9083 {
9084 	struct kvm *kvm;
9085 	int cpu;
9086 
9087 	mutex_lock(&kvm_lock);
9088 	list_for_each_entry(kvm, &vm_list, vm_list)
9089 		kvm_make_mclock_inprogress_request(kvm);
9090 
9091 	/* no guest entries from this point */
9092 	hyperv_stop_tsc_emulation();
9093 
9094 	/* TSC frequency always matches when on Hyper-V */
9095 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9096 		for_each_present_cpu(cpu)
9097 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9098 	}
9099 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9100 
9101 	list_for_each_entry(kvm, &vm_list, vm_list) {
9102 		__kvm_start_pvclock_update(kvm);
9103 		pvclock_update_vm_gtod_copy(kvm);
9104 		kvm_end_pvclock_update(kvm);
9105 	}
9106 
9107 	mutex_unlock(&kvm_lock);
9108 }
9109 #endif
9110 
9111 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9112 {
9113 	struct kvm *kvm;
9114 	struct kvm_vcpu *vcpu;
9115 	int send_ipi = 0;
9116 	unsigned long i;
9117 
9118 	/*
9119 	 * We allow guests to temporarily run on slowing clocks,
9120 	 * provided we notify them after, or to run on accelerating
9121 	 * clocks, provided we notify them before.  Thus time never
9122 	 * goes backwards.
9123 	 *
9124 	 * However, we have a problem.  We can't atomically update
9125 	 * the frequency of a given CPU from this function; it is
9126 	 * merely a notifier, which can be called from any CPU.
9127 	 * Changing the TSC frequency at arbitrary points in time
9128 	 * requires a recomputation of local variables related to
9129 	 * the TSC for each VCPU.  We must flag these local variables
9130 	 * to be updated and be sure the update takes place with the
9131 	 * new frequency before any guests proceed.
9132 	 *
9133 	 * Unfortunately, the combination of hotplug CPU and frequency
9134 	 * change creates an intractable locking scenario; the order
9135 	 * of when these callouts happen is undefined with respect to
9136 	 * CPU hotplug, and they can race with each other.  As such,
9137 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9138 	 * undefined; you can actually have a CPU frequency change take
9139 	 * place in between the computation of X and the setting of the
9140 	 * variable.  To protect against this problem, all updates of
9141 	 * the per_cpu tsc_khz variable are done in an interrupt
9142 	 * protected IPI, and all callers wishing to update the value
9143 	 * must wait for a synchronous IPI to complete (which is trivial
9144 	 * if the caller is on the CPU already).  This establishes the
9145 	 * necessary total order on variable updates.
9146 	 *
9147 	 * Note that because a guest time update may take place
9148 	 * anytime after the setting of the VCPU's request bit, the
9149 	 * correct TSC value must be set before the request.  However,
9150 	 * to ensure the update actually makes it to any guest which
9151 	 * starts running in hardware virtualization between the set
9152 	 * and the acquisition of the spinlock, we must also ping the
9153 	 * CPU after setting the request bit.
9154 	 *
9155 	 */
9156 
9157 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9158 
9159 	mutex_lock(&kvm_lock);
9160 	list_for_each_entry(kvm, &vm_list, vm_list) {
9161 		kvm_for_each_vcpu(i, vcpu, kvm) {
9162 			if (vcpu->cpu != cpu)
9163 				continue;
9164 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9165 			if (vcpu->cpu != raw_smp_processor_id())
9166 				send_ipi = 1;
9167 		}
9168 	}
9169 	mutex_unlock(&kvm_lock);
9170 
9171 	if (freq->old < freq->new && send_ipi) {
9172 		/*
9173 		 * We upscale the frequency.  Must make the guest
9174 		 * doesn't see old kvmclock values while running with
9175 		 * the new frequency, otherwise we risk the guest sees
9176 		 * time go backwards.
9177 		 *
9178 		 * In case we update the frequency for another cpu
9179 		 * (which might be in guest context) send an interrupt
9180 		 * to kick the cpu out of guest context.  Next time
9181 		 * guest context is entered kvmclock will be updated,
9182 		 * so the guest will not see stale values.
9183 		 */
9184 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9185 	}
9186 }
9187 
9188 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9189 				     void *data)
9190 {
9191 	struct cpufreq_freqs *freq = data;
9192 	int cpu;
9193 
9194 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9195 		return 0;
9196 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9197 		return 0;
9198 
9199 	for_each_cpu(cpu, freq->policy->cpus)
9200 		__kvmclock_cpufreq_notifier(freq, cpu);
9201 
9202 	return 0;
9203 }
9204 
9205 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9206 	.notifier_call  = kvmclock_cpufreq_notifier
9207 };
9208 
9209 static int kvmclock_cpu_online(unsigned int cpu)
9210 {
9211 	tsc_khz_changed(NULL);
9212 	return 0;
9213 }
9214 
9215 static void kvm_timer_init(void)
9216 {
9217 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9218 		max_tsc_khz = tsc_khz;
9219 
9220 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9221 			struct cpufreq_policy *policy;
9222 			int cpu;
9223 
9224 			cpu = get_cpu();
9225 			policy = cpufreq_cpu_get(cpu);
9226 			if (policy) {
9227 				if (policy->cpuinfo.max_freq)
9228 					max_tsc_khz = policy->cpuinfo.max_freq;
9229 				cpufreq_cpu_put(policy);
9230 			}
9231 			put_cpu();
9232 		}
9233 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9234 					  CPUFREQ_TRANSITION_NOTIFIER);
9235 
9236 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9237 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9238 	}
9239 }
9240 
9241 #ifdef CONFIG_X86_64
9242 static void pvclock_gtod_update_fn(struct work_struct *work)
9243 {
9244 	struct kvm *kvm;
9245 	struct kvm_vcpu *vcpu;
9246 	unsigned long i;
9247 
9248 	mutex_lock(&kvm_lock);
9249 	list_for_each_entry(kvm, &vm_list, vm_list)
9250 		kvm_for_each_vcpu(i, vcpu, kvm)
9251 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9252 	atomic_set(&kvm_guest_has_master_clock, 0);
9253 	mutex_unlock(&kvm_lock);
9254 }
9255 
9256 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9257 
9258 /*
9259  * Indirection to move queue_work() out of the tk_core.seq write held
9260  * region to prevent possible deadlocks against time accessors which
9261  * are invoked with work related locks held.
9262  */
9263 static void pvclock_irq_work_fn(struct irq_work *w)
9264 {
9265 	queue_work(system_long_wq, &pvclock_gtod_work);
9266 }
9267 
9268 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9269 
9270 /*
9271  * Notification about pvclock gtod data update.
9272  */
9273 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9274 			       void *priv)
9275 {
9276 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9277 	struct timekeeper *tk = priv;
9278 
9279 	update_pvclock_gtod(tk);
9280 
9281 	/*
9282 	 * Disable master clock if host does not trust, or does not use,
9283 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9284 	 * this is invoked with tk_core.seq write held.
9285 	 */
9286 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9287 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9288 		irq_work_queue(&pvclock_irq_work);
9289 	return 0;
9290 }
9291 
9292 static struct notifier_block pvclock_gtod_notifier = {
9293 	.notifier_call = pvclock_gtod_notify,
9294 };
9295 #endif
9296 
9297 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9298 {
9299 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9300 
9301 #define __KVM_X86_OP(func) \
9302 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9303 #define KVM_X86_OP(func) \
9304 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9305 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9306 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9307 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9308 					   (void *)__static_call_return0);
9309 #include <asm/kvm-x86-ops.h>
9310 #undef __KVM_X86_OP
9311 
9312 	kvm_pmu_ops_update(ops->pmu_ops);
9313 }
9314 
9315 static int kvm_x86_check_processor_compatibility(void)
9316 {
9317 	int cpu = smp_processor_id();
9318 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9319 
9320 	/*
9321 	 * Compatibility checks are done when loading KVM and when enabling
9322 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9323 	 * compatible, i.e. KVM should never perform a compatibility check on
9324 	 * an offline CPU.
9325 	 */
9326 	WARN_ON(!cpu_online(cpu));
9327 
9328 	if (__cr4_reserved_bits(cpu_has, c) !=
9329 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9330 		return -EIO;
9331 
9332 	return static_call(kvm_x86_check_processor_compatibility)();
9333 }
9334 
9335 static void kvm_x86_check_cpu_compat(void *ret)
9336 {
9337 	*(int *)ret = kvm_x86_check_processor_compatibility();
9338 }
9339 
9340 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9341 {
9342 	u64 host_pat;
9343 	int r, cpu;
9344 
9345 	if (kvm_x86_ops.hardware_enable) {
9346 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9347 		return -EEXIST;
9348 	}
9349 
9350 	/*
9351 	 * KVM explicitly assumes that the guest has an FPU and
9352 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9353 	 * vCPU's FPU state as a fxregs_state struct.
9354 	 */
9355 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9356 		pr_err("inadequate fpu\n");
9357 		return -EOPNOTSUPP;
9358 	}
9359 
9360 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9361 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9362 		return -EOPNOTSUPP;
9363 	}
9364 
9365 	/*
9366 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9367 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9368 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9369 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9370 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9371 	 */
9372 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9373 	    (host_pat & GENMASK(2, 0)) != 6) {
9374 		pr_err("host PAT[0] is not WB\n");
9375 		return -EIO;
9376 	}
9377 
9378 	x86_emulator_cache = kvm_alloc_emulator_cache();
9379 	if (!x86_emulator_cache) {
9380 		pr_err("failed to allocate cache for x86 emulator\n");
9381 		return -ENOMEM;
9382 	}
9383 
9384 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9385 	if (!user_return_msrs) {
9386 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9387 		r = -ENOMEM;
9388 		goto out_free_x86_emulator_cache;
9389 	}
9390 	kvm_nr_uret_msrs = 0;
9391 
9392 	r = kvm_mmu_vendor_module_init();
9393 	if (r)
9394 		goto out_free_percpu;
9395 
9396 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9397 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9398 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9399 	}
9400 
9401 	rdmsrl_safe(MSR_EFER, &host_efer);
9402 
9403 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9404 		rdmsrl(MSR_IA32_XSS, host_xss);
9405 
9406 	kvm_init_pmu_capability(ops->pmu_ops);
9407 
9408 	r = ops->hardware_setup();
9409 	if (r != 0)
9410 		goto out_mmu_exit;
9411 
9412 	kvm_ops_update(ops);
9413 
9414 	for_each_online_cpu(cpu) {
9415 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9416 		if (r < 0)
9417 			goto out_unwind_ops;
9418 	}
9419 
9420 	/*
9421 	 * Point of no return!  DO NOT add error paths below this point unless
9422 	 * absolutely necessary, as most operations from this point forward
9423 	 * require unwinding.
9424 	 */
9425 	kvm_timer_init();
9426 
9427 	if (pi_inject_timer == -1)
9428 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9429 #ifdef CONFIG_X86_64
9430 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9431 
9432 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9433 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9434 #endif
9435 
9436 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9437 
9438 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9439 		kvm_caps.supported_xss = 0;
9440 
9441 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9442 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9443 #undef __kvm_cpu_cap_has
9444 
9445 	if (kvm_caps.has_tsc_control) {
9446 		/*
9447 		 * Make sure the user can only configure tsc_khz values that
9448 		 * fit into a signed integer.
9449 		 * A min value is not calculated because it will always
9450 		 * be 1 on all machines.
9451 		 */
9452 		u64 max = min(0x7fffffffULL,
9453 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9454 		kvm_caps.max_guest_tsc_khz = max;
9455 	}
9456 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9457 	kvm_init_msr_list();
9458 	return 0;
9459 
9460 out_unwind_ops:
9461 	kvm_x86_ops.hardware_enable = NULL;
9462 	static_call(kvm_x86_hardware_unsetup)();
9463 out_mmu_exit:
9464 	kvm_mmu_vendor_module_exit();
9465 out_free_percpu:
9466 	free_percpu(user_return_msrs);
9467 out_free_x86_emulator_cache:
9468 	kmem_cache_destroy(x86_emulator_cache);
9469 	return r;
9470 }
9471 
9472 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9473 {
9474 	int r;
9475 
9476 	mutex_lock(&vendor_module_lock);
9477 	r = __kvm_x86_vendor_init(ops);
9478 	mutex_unlock(&vendor_module_lock);
9479 
9480 	return r;
9481 }
9482 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9483 
9484 void kvm_x86_vendor_exit(void)
9485 {
9486 	kvm_unregister_perf_callbacks();
9487 
9488 #ifdef CONFIG_X86_64
9489 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9490 		clear_hv_tscchange_cb();
9491 #endif
9492 	kvm_lapic_exit();
9493 
9494 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9495 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9496 					    CPUFREQ_TRANSITION_NOTIFIER);
9497 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9498 	}
9499 #ifdef CONFIG_X86_64
9500 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9501 	irq_work_sync(&pvclock_irq_work);
9502 	cancel_work_sync(&pvclock_gtod_work);
9503 #endif
9504 	static_call(kvm_x86_hardware_unsetup)();
9505 	kvm_mmu_vendor_module_exit();
9506 	free_percpu(user_return_msrs);
9507 	kmem_cache_destroy(x86_emulator_cache);
9508 #ifdef CONFIG_KVM_XEN
9509 	static_key_deferred_flush(&kvm_xen_enabled);
9510 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9511 #endif
9512 	mutex_lock(&vendor_module_lock);
9513 	kvm_x86_ops.hardware_enable = NULL;
9514 	mutex_unlock(&vendor_module_lock);
9515 }
9516 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9517 
9518 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9519 {
9520 	/*
9521 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9522 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9523 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9524 	 * managed by userspace, in which case userspace is responsible for
9525 	 * handling wake events.
9526 	 */
9527 	++vcpu->stat.halt_exits;
9528 	if (lapic_in_kernel(vcpu)) {
9529 		vcpu->arch.mp_state = state;
9530 		return 1;
9531 	} else {
9532 		vcpu->run->exit_reason = reason;
9533 		return 0;
9534 	}
9535 }
9536 
9537 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9538 {
9539 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9540 }
9541 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9542 
9543 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9544 {
9545 	int ret = kvm_skip_emulated_instruction(vcpu);
9546 	/*
9547 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9548 	 * KVM_EXIT_DEBUG here.
9549 	 */
9550 	return kvm_emulate_halt_noskip(vcpu) && ret;
9551 }
9552 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9553 
9554 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9555 {
9556 	int ret = kvm_skip_emulated_instruction(vcpu);
9557 
9558 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9559 					KVM_EXIT_AP_RESET_HOLD) && ret;
9560 }
9561 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9562 
9563 #ifdef CONFIG_X86_64
9564 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9565 			        unsigned long clock_type)
9566 {
9567 	struct kvm_clock_pairing clock_pairing;
9568 	struct timespec64 ts;
9569 	u64 cycle;
9570 	int ret;
9571 
9572 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9573 		return -KVM_EOPNOTSUPP;
9574 
9575 	/*
9576 	 * When tsc is in permanent catchup mode guests won't be able to use
9577 	 * pvclock_read_retry loop to get consistent view of pvclock
9578 	 */
9579 	if (vcpu->arch.tsc_always_catchup)
9580 		return -KVM_EOPNOTSUPP;
9581 
9582 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9583 		return -KVM_EOPNOTSUPP;
9584 
9585 	clock_pairing.sec = ts.tv_sec;
9586 	clock_pairing.nsec = ts.tv_nsec;
9587 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9588 	clock_pairing.flags = 0;
9589 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9590 
9591 	ret = 0;
9592 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9593 			    sizeof(struct kvm_clock_pairing)))
9594 		ret = -KVM_EFAULT;
9595 
9596 	return ret;
9597 }
9598 #endif
9599 
9600 /*
9601  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9602  *
9603  * @apicid - apicid of vcpu to be kicked.
9604  */
9605 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9606 {
9607 	/*
9608 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9609 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9610 	 */
9611 	struct kvm_lapic_irq lapic_irq = {
9612 		.delivery_mode = APIC_DM_REMRD,
9613 		.dest_mode = APIC_DEST_PHYSICAL,
9614 		.shorthand = APIC_DEST_NOSHORT,
9615 		.dest_id = apicid,
9616 	};
9617 
9618 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9619 }
9620 
9621 bool kvm_apicv_activated(struct kvm *kvm)
9622 {
9623 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9624 }
9625 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9626 
9627 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9628 {
9629 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9630 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9631 
9632 	return (vm_reasons | vcpu_reasons) == 0;
9633 }
9634 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9635 
9636 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9637 				       enum kvm_apicv_inhibit reason, bool set)
9638 {
9639 	if (set)
9640 		__set_bit(reason, inhibits);
9641 	else
9642 		__clear_bit(reason, inhibits);
9643 
9644 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9645 }
9646 
9647 static void kvm_apicv_init(struct kvm *kvm)
9648 {
9649 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9650 
9651 	init_rwsem(&kvm->arch.apicv_update_lock);
9652 
9653 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9654 
9655 	if (!enable_apicv)
9656 		set_or_clear_apicv_inhibit(inhibits,
9657 					   APICV_INHIBIT_REASON_DISABLE, true);
9658 }
9659 
9660 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9661 {
9662 	struct kvm_vcpu *target = NULL;
9663 	struct kvm_apic_map *map;
9664 
9665 	vcpu->stat.directed_yield_attempted++;
9666 
9667 	if (single_task_running())
9668 		goto no_yield;
9669 
9670 	rcu_read_lock();
9671 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9672 
9673 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9674 		target = map->phys_map[dest_id]->vcpu;
9675 
9676 	rcu_read_unlock();
9677 
9678 	if (!target || !READ_ONCE(target->ready))
9679 		goto no_yield;
9680 
9681 	/* Ignore requests to yield to self */
9682 	if (vcpu == target)
9683 		goto no_yield;
9684 
9685 	if (kvm_vcpu_yield_to(target) <= 0)
9686 		goto no_yield;
9687 
9688 	vcpu->stat.directed_yield_successful++;
9689 
9690 no_yield:
9691 	return;
9692 }
9693 
9694 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9695 {
9696 	u64 ret = vcpu->run->hypercall.ret;
9697 
9698 	if (!is_64_bit_mode(vcpu))
9699 		ret = (u32)ret;
9700 	kvm_rax_write(vcpu, ret);
9701 	++vcpu->stat.hypercalls;
9702 	return kvm_skip_emulated_instruction(vcpu);
9703 }
9704 
9705 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9706 {
9707 	unsigned long nr, a0, a1, a2, a3, ret;
9708 	int op_64_bit;
9709 
9710 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9711 		return kvm_xen_hypercall(vcpu);
9712 
9713 	if (kvm_hv_hypercall_enabled(vcpu))
9714 		return kvm_hv_hypercall(vcpu);
9715 
9716 	nr = kvm_rax_read(vcpu);
9717 	a0 = kvm_rbx_read(vcpu);
9718 	a1 = kvm_rcx_read(vcpu);
9719 	a2 = kvm_rdx_read(vcpu);
9720 	a3 = kvm_rsi_read(vcpu);
9721 
9722 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9723 
9724 	op_64_bit = is_64_bit_hypercall(vcpu);
9725 	if (!op_64_bit) {
9726 		nr &= 0xFFFFFFFF;
9727 		a0 &= 0xFFFFFFFF;
9728 		a1 &= 0xFFFFFFFF;
9729 		a2 &= 0xFFFFFFFF;
9730 		a3 &= 0xFFFFFFFF;
9731 	}
9732 
9733 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9734 		ret = -KVM_EPERM;
9735 		goto out;
9736 	}
9737 
9738 	ret = -KVM_ENOSYS;
9739 
9740 	switch (nr) {
9741 	case KVM_HC_VAPIC_POLL_IRQ:
9742 		ret = 0;
9743 		break;
9744 	case KVM_HC_KICK_CPU:
9745 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9746 			break;
9747 
9748 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9749 		kvm_sched_yield(vcpu, a1);
9750 		ret = 0;
9751 		break;
9752 #ifdef CONFIG_X86_64
9753 	case KVM_HC_CLOCK_PAIRING:
9754 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9755 		break;
9756 #endif
9757 	case KVM_HC_SEND_IPI:
9758 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9759 			break;
9760 
9761 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9762 		break;
9763 	case KVM_HC_SCHED_YIELD:
9764 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9765 			break;
9766 
9767 		kvm_sched_yield(vcpu, a0);
9768 		ret = 0;
9769 		break;
9770 	case KVM_HC_MAP_GPA_RANGE: {
9771 		u64 gpa = a0, npages = a1, attrs = a2;
9772 
9773 		ret = -KVM_ENOSYS;
9774 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9775 			break;
9776 
9777 		if (!PAGE_ALIGNED(gpa) || !npages ||
9778 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9779 			ret = -KVM_EINVAL;
9780 			break;
9781 		}
9782 
9783 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9784 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9785 		vcpu->run->hypercall.args[0]  = gpa;
9786 		vcpu->run->hypercall.args[1]  = npages;
9787 		vcpu->run->hypercall.args[2]  = attrs;
9788 		vcpu->run->hypercall.longmode = op_64_bit;
9789 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9790 		return 0;
9791 	}
9792 	default:
9793 		ret = -KVM_ENOSYS;
9794 		break;
9795 	}
9796 out:
9797 	if (!op_64_bit)
9798 		ret = (u32)ret;
9799 	kvm_rax_write(vcpu, ret);
9800 
9801 	++vcpu->stat.hypercalls;
9802 	return kvm_skip_emulated_instruction(vcpu);
9803 }
9804 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9805 
9806 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9807 {
9808 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9809 	char instruction[3];
9810 	unsigned long rip = kvm_rip_read(vcpu);
9811 
9812 	/*
9813 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9814 	 * the pieces.
9815 	 */
9816 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9817 		ctxt->exception.error_code_valid = false;
9818 		ctxt->exception.vector = UD_VECTOR;
9819 		ctxt->have_exception = true;
9820 		return X86EMUL_PROPAGATE_FAULT;
9821 	}
9822 
9823 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9824 
9825 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9826 		&ctxt->exception);
9827 }
9828 
9829 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9830 {
9831 	return vcpu->run->request_interrupt_window &&
9832 		likely(!pic_in_kernel(vcpu->kvm));
9833 }
9834 
9835 /* Called within kvm->srcu read side.  */
9836 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9837 {
9838 	struct kvm_run *kvm_run = vcpu->run;
9839 
9840 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9841 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9842 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9843 
9844 	kvm_run->ready_for_interrupt_injection =
9845 		pic_in_kernel(vcpu->kvm) ||
9846 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9847 
9848 	if (is_smm(vcpu))
9849 		kvm_run->flags |= KVM_RUN_X86_SMM;
9850 }
9851 
9852 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9853 {
9854 	int max_irr, tpr;
9855 
9856 	if (!kvm_x86_ops.update_cr8_intercept)
9857 		return;
9858 
9859 	if (!lapic_in_kernel(vcpu))
9860 		return;
9861 
9862 	if (vcpu->arch.apic->apicv_active)
9863 		return;
9864 
9865 	if (!vcpu->arch.apic->vapic_addr)
9866 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9867 	else
9868 		max_irr = -1;
9869 
9870 	if (max_irr != -1)
9871 		max_irr >>= 4;
9872 
9873 	tpr = kvm_lapic_get_cr8(vcpu);
9874 
9875 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9876 }
9877 
9878 
9879 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9880 {
9881 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9882 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9883 		return 1;
9884 	}
9885 
9886 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9887 }
9888 
9889 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9890 {
9891 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9892 				vcpu->arch.exception.has_error_code,
9893 				vcpu->arch.exception.error_code,
9894 				vcpu->arch.exception.injected);
9895 
9896 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9897 		vcpu->arch.exception.error_code = false;
9898 	static_call(kvm_x86_inject_exception)(vcpu);
9899 }
9900 
9901 /*
9902  * Check for any event (interrupt or exception) that is ready to be injected,
9903  * and if there is at least one event, inject the event with the highest
9904  * priority.  This handles both "pending" events, i.e. events that have never
9905  * been injected into the guest, and "injected" events, i.e. events that were
9906  * injected as part of a previous VM-Enter, but weren't successfully delivered
9907  * and need to be re-injected.
9908  *
9909  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9910  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9911  * be able to inject exceptions in the "middle" of an instruction, and so must
9912  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9913  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9914  * boundaries is necessary and correct.
9915  *
9916  * For simplicity, KVM uses a single path to inject all events (except events
9917  * that are injected directly from L1 to L2) and doesn't explicitly track
9918  * instruction boundaries for asynchronous events.  However, because VM-Exits
9919  * that can occur during instruction execution typically result in KVM skipping
9920  * the instruction or injecting an exception, e.g. instruction and exception
9921  * intercepts, and because pending exceptions have higher priority than pending
9922  * interrupts, KVM still honors instruction boundaries in most scenarios.
9923  *
9924  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9925  * the instruction or inject an exception, then KVM can incorrecty inject a new
9926  * asynchrounous event if the event became pending after the CPU fetched the
9927  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9928  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9929  * injected on the restarted instruction instead of being deferred until the
9930  * instruction completes.
9931  *
9932  * In practice, this virtualization hole is unlikely to be observed by the
9933  * guest, and even less likely to cause functional problems.  To detect the
9934  * hole, the guest would have to trigger an event on a side effect of an early
9935  * phase of instruction execution, e.g. on the instruction fetch from memory.
9936  * And for it to be a functional problem, the guest would need to depend on the
9937  * ordering between that side effect, the instruction completing, _and_ the
9938  * delivery of the asynchronous event.
9939  */
9940 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9941 				       bool *req_immediate_exit)
9942 {
9943 	bool can_inject;
9944 	int r;
9945 
9946 	/*
9947 	 * Process nested events first, as nested VM-Exit supercedes event
9948 	 * re-injection.  If there's an event queued for re-injection, it will
9949 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9950 	 */
9951 	if (is_guest_mode(vcpu))
9952 		r = kvm_check_nested_events(vcpu);
9953 	else
9954 		r = 0;
9955 
9956 	/*
9957 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9958 	 * to/from L2 is needed, as any event that has already been injected
9959 	 * into L2 needs to complete its lifecycle before injecting a new event.
9960 	 *
9961 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9962 	 * This collision arises if an exception occurred while vectoring the
9963 	 * injected event, KVM intercepted said exception, and KVM ultimately
9964 	 * determined the fault belongs to the guest and queues the exception
9965 	 * for injection back into the guest.
9966 	 *
9967 	 * "Injected" interrupts can also collide with pending exceptions if
9968 	 * userspace ignores the "ready for injection" flag and blindly queues
9969 	 * an interrupt.  In that case, prioritizing the exception is correct,
9970 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9971 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9972 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9973 	 * priority, they're only generated (pended) during instruction
9974 	 * execution, and interrupts are recognized at instruction boundaries.
9975 	 * Thus a pending fault-like exception means the fault occurred on the
9976 	 * *previous* instruction and must be serviced prior to recognizing any
9977 	 * new events in order to fully complete the previous instruction.
9978 	 */
9979 	if (vcpu->arch.exception.injected)
9980 		kvm_inject_exception(vcpu);
9981 	else if (kvm_is_exception_pending(vcpu))
9982 		; /* see above */
9983 	else if (vcpu->arch.nmi_injected)
9984 		static_call(kvm_x86_inject_nmi)(vcpu);
9985 	else if (vcpu->arch.interrupt.injected)
9986 		static_call(kvm_x86_inject_irq)(vcpu, true);
9987 
9988 	/*
9989 	 * Exceptions that morph to VM-Exits are handled above, and pending
9990 	 * exceptions on top of injected exceptions that do not VM-Exit should
9991 	 * either morph to #DF or, sadly, override the injected exception.
9992 	 */
9993 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9994 		     vcpu->arch.exception.pending);
9995 
9996 	/*
9997 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9998 	 * nested VM-Enter or event re-injection so that a different pending
9999 	 * event can be serviced (or if KVM needs to exit to userspace).
10000 	 *
10001 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10002 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10003 	 * there may now be events that can be injected into L1.
10004 	 */
10005 	if (r < 0)
10006 		goto out;
10007 
10008 	/*
10009 	 * A pending exception VM-Exit should either result in nested VM-Exit
10010 	 * or force an immediate re-entry and exit to/from L2, and exception
10011 	 * VM-Exits cannot be injected (flag should _never_ be set).
10012 	 */
10013 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10014 		     vcpu->arch.exception_vmexit.pending);
10015 
10016 	/*
10017 	 * New events, other than exceptions, cannot be injected if KVM needs
10018 	 * to re-inject a previous event.  See above comments on re-injecting
10019 	 * for why pending exceptions get priority.
10020 	 */
10021 	can_inject = !kvm_event_needs_reinjection(vcpu);
10022 
10023 	if (vcpu->arch.exception.pending) {
10024 		/*
10025 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10026 		 * value pushed on the stack.  Trap-like exception and all #DBs
10027 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10028 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10029 		 *
10030 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10031 		 * describe the behavior of General Detect #DBs, which are
10032 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10033 		 */
10034 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10035 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10036 					     X86_EFLAGS_RF);
10037 
10038 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10039 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10040 			if (vcpu->arch.dr7 & DR7_GD) {
10041 				vcpu->arch.dr7 &= ~DR7_GD;
10042 				kvm_update_dr7(vcpu);
10043 			}
10044 		}
10045 
10046 		kvm_inject_exception(vcpu);
10047 
10048 		vcpu->arch.exception.pending = false;
10049 		vcpu->arch.exception.injected = true;
10050 
10051 		can_inject = false;
10052 	}
10053 
10054 	/* Don't inject interrupts if the user asked to avoid doing so */
10055 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10056 		return 0;
10057 
10058 	/*
10059 	 * Finally, inject interrupt events.  If an event cannot be injected
10060 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10061 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10062 	 * and can architecturally be injected, but we cannot do it right now:
10063 	 * an interrupt could have arrived just now and we have to inject it
10064 	 * as a vmexit, or there could already an event in the queue, which is
10065 	 * indicated by can_inject.  In that case we request an immediate exit
10066 	 * in order to make progress and get back here for another iteration.
10067 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10068 	 */
10069 #ifdef CONFIG_KVM_SMM
10070 	if (vcpu->arch.smi_pending) {
10071 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10072 		if (r < 0)
10073 			goto out;
10074 		if (r) {
10075 			vcpu->arch.smi_pending = false;
10076 			++vcpu->arch.smi_count;
10077 			enter_smm(vcpu);
10078 			can_inject = false;
10079 		} else
10080 			static_call(kvm_x86_enable_smi_window)(vcpu);
10081 	}
10082 #endif
10083 
10084 	if (vcpu->arch.nmi_pending) {
10085 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10086 		if (r < 0)
10087 			goto out;
10088 		if (r) {
10089 			--vcpu->arch.nmi_pending;
10090 			vcpu->arch.nmi_injected = true;
10091 			static_call(kvm_x86_inject_nmi)(vcpu);
10092 			can_inject = false;
10093 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10094 		}
10095 		if (vcpu->arch.nmi_pending)
10096 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10097 	}
10098 
10099 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10100 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10101 		if (r < 0)
10102 			goto out;
10103 		if (r) {
10104 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10105 			static_call(kvm_x86_inject_irq)(vcpu, false);
10106 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10107 		}
10108 		if (kvm_cpu_has_injectable_intr(vcpu))
10109 			static_call(kvm_x86_enable_irq_window)(vcpu);
10110 	}
10111 
10112 	if (is_guest_mode(vcpu) &&
10113 	    kvm_x86_ops.nested_ops->has_events &&
10114 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10115 		*req_immediate_exit = true;
10116 
10117 	/*
10118 	 * KVM must never queue a new exception while injecting an event; KVM
10119 	 * is done emulating and should only propagate the to-be-injected event
10120 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10121 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10122 	 * exception and start the cycle all over.
10123 	 *
10124 	 * Exempt triple faults as they have special handling and won't put the
10125 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10126 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10127 	 * Mode events (see kvm_inject_realmode_interrupt()).
10128 	 */
10129 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10130 		     vcpu->arch.exception_vmexit.pending);
10131 	return 0;
10132 
10133 out:
10134 	if (r == -EBUSY) {
10135 		*req_immediate_exit = true;
10136 		r = 0;
10137 	}
10138 	return r;
10139 }
10140 
10141 static void process_nmi(struct kvm_vcpu *vcpu)
10142 {
10143 	unsigned limit = 2;
10144 
10145 	/*
10146 	 * x86 is limited to one NMI running, and one NMI pending after it.
10147 	 * If an NMI is already in progress, limit further NMIs to just one.
10148 	 * Otherwise, allow two (and we'll inject the first one immediately).
10149 	 */
10150 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10151 		limit = 1;
10152 
10153 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10154 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10155 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10156 }
10157 
10158 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10159 				       unsigned long *vcpu_bitmap)
10160 {
10161 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10162 }
10163 
10164 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10165 {
10166 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10167 }
10168 
10169 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10170 {
10171 	struct kvm_lapic *apic = vcpu->arch.apic;
10172 	bool activate;
10173 
10174 	if (!lapic_in_kernel(vcpu))
10175 		return;
10176 
10177 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10178 	preempt_disable();
10179 
10180 	/* Do not activate APICV when APIC is disabled */
10181 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10182 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10183 
10184 	if (apic->apicv_active == activate)
10185 		goto out;
10186 
10187 	apic->apicv_active = activate;
10188 	kvm_apic_update_apicv(vcpu);
10189 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10190 
10191 	/*
10192 	 * When APICv gets disabled, we may still have injected interrupts
10193 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10194 	 * still active when the interrupt got accepted. Make sure
10195 	 * kvm_check_and_inject_events() is called to check for that.
10196 	 */
10197 	if (!apic->apicv_active)
10198 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10199 
10200 out:
10201 	preempt_enable();
10202 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10203 }
10204 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10205 
10206 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10207 {
10208 	if (!lapic_in_kernel(vcpu))
10209 		return;
10210 
10211 	/*
10212 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10213 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10214 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10215 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10216 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10217 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10218 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10219 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10220 	 * access page is sticky.
10221 	 */
10222 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10223 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10224 		kvm_inhibit_apic_access_page(vcpu);
10225 
10226 	__kvm_vcpu_update_apicv(vcpu);
10227 }
10228 
10229 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10230 				      enum kvm_apicv_inhibit reason, bool set)
10231 {
10232 	unsigned long old, new;
10233 
10234 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10235 
10236 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10237 		return;
10238 
10239 	old = new = kvm->arch.apicv_inhibit_reasons;
10240 
10241 	set_or_clear_apicv_inhibit(&new, reason, set);
10242 
10243 	if (!!old != !!new) {
10244 		/*
10245 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10246 		 * false positives in the sanity check WARN in svm_vcpu_run().
10247 		 * This task will wait for all vCPUs to ack the kick IRQ before
10248 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10249 		 * block on acquiring apicv_update_lock so that vCPUs can't
10250 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10251 		 *
10252 		 * Note, holding apicv_update_lock and taking it in the read
10253 		 * side (handling the request) also prevents other vCPUs from
10254 		 * servicing the request with a stale apicv_inhibit_reasons.
10255 		 */
10256 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10257 		kvm->arch.apicv_inhibit_reasons = new;
10258 		if (new) {
10259 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10260 			int idx = srcu_read_lock(&kvm->srcu);
10261 
10262 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10263 			srcu_read_unlock(&kvm->srcu, idx);
10264 		}
10265 	} else {
10266 		kvm->arch.apicv_inhibit_reasons = new;
10267 	}
10268 }
10269 
10270 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10271 				    enum kvm_apicv_inhibit reason, bool set)
10272 {
10273 	if (!enable_apicv)
10274 		return;
10275 
10276 	down_write(&kvm->arch.apicv_update_lock);
10277 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10278 	up_write(&kvm->arch.apicv_update_lock);
10279 }
10280 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10281 
10282 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10283 {
10284 	if (!kvm_apic_present(vcpu))
10285 		return;
10286 
10287 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10288 
10289 	if (irqchip_split(vcpu->kvm))
10290 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10291 	else {
10292 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10293 		if (ioapic_in_kernel(vcpu->kvm))
10294 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10295 	}
10296 
10297 	if (is_guest_mode(vcpu))
10298 		vcpu->arch.load_eoi_exitmap_pending = true;
10299 	else
10300 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10301 }
10302 
10303 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10304 {
10305 	u64 eoi_exit_bitmap[4];
10306 
10307 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10308 		return;
10309 
10310 	if (to_hv_vcpu(vcpu)) {
10311 		bitmap_or((ulong *)eoi_exit_bitmap,
10312 			  vcpu->arch.ioapic_handled_vectors,
10313 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10314 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10315 		return;
10316 	}
10317 
10318 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10319 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10320 }
10321 
10322 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10323 					    unsigned long start, unsigned long end)
10324 {
10325 	unsigned long apic_address;
10326 
10327 	/*
10328 	 * The physical address of apic access page is stored in the VMCS.
10329 	 * Update it when it becomes invalid.
10330 	 */
10331 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10332 	if (start <= apic_address && apic_address < end)
10333 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10334 }
10335 
10336 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10337 {
10338 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10339 }
10340 
10341 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10342 {
10343 	if (!lapic_in_kernel(vcpu))
10344 		return;
10345 
10346 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10347 }
10348 
10349 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10350 {
10351 	smp_send_reschedule(vcpu->cpu);
10352 }
10353 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10354 
10355 /*
10356  * Called within kvm->srcu read side.
10357  * Returns 1 to let vcpu_run() continue the guest execution loop without
10358  * exiting to the userspace.  Otherwise, the value will be returned to the
10359  * userspace.
10360  */
10361 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10362 {
10363 	int r;
10364 	bool req_int_win =
10365 		dm_request_for_irq_injection(vcpu) &&
10366 		kvm_cpu_accept_dm_intr(vcpu);
10367 	fastpath_t exit_fastpath;
10368 
10369 	bool req_immediate_exit = false;
10370 
10371 	if (kvm_request_pending(vcpu)) {
10372 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10373 			r = -EIO;
10374 			goto out;
10375 		}
10376 
10377 		if (kvm_dirty_ring_check_request(vcpu)) {
10378 			r = 0;
10379 			goto out;
10380 		}
10381 
10382 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10383 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10384 				r = 0;
10385 				goto out;
10386 			}
10387 		}
10388 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10389 			kvm_mmu_free_obsolete_roots(vcpu);
10390 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10391 			__kvm_migrate_timers(vcpu);
10392 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10393 			kvm_update_masterclock(vcpu->kvm);
10394 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10395 			kvm_gen_kvmclock_update(vcpu);
10396 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10397 			r = kvm_guest_time_update(vcpu);
10398 			if (unlikely(r))
10399 				goto out;
10400 		}
10401 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10402 			kvm_mmu_sync_roots(vcpu);
10403 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10404 			kvm_mmu_load_pgd(vcpu);
10405 
10406 		/*
10407 		 * Note, the order matters here, as flushing "all" TLB entries
10408 		 * also flushes the "current" TLB entries, i.e. servicing the
10409 		 * flush "all" will clear any request to flush "current".
10410 		 */
10411 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10412 			kvm_vcpu_flush_tlb_all(vcpu);
10413 
10414 		kvm_service_local_tlb_flush_requests(vcpu);
10415 
10416 		/*
10417 		 * Fall back to a "full" guest flush if Hyper-V's precise
10418 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10419 		 * the flushes are considered "remote" and not "local" because
10420 		 * the requests can be initiated from other vCPUs.
10421 		 */
10422 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10423 		    kvm_hv_vcpu_flush_tlb(vcpu))
10424 			kvm_vcpu_flush_tlb_guest(vcpu);
10425 
10426 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10427 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10428 			r = 0;
10429 			goto out;
10430 		}
10431 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10432 			if (is_guest_mode(vcpu))
10433 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10434 
10435 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10436 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10437 				vcpu->mmio_needed = 0;
10438 				r = 0;
10439 				goto out;
10440 			}
10441 		}
10442 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10443 			/* Page is swapped out. Do synthetic halt */
10444 			vcpu->arch.apf.halted = true;
10445 			r = 1;
10446 			goto out;
10447 		}
10448 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10449 			record_steal_time(vcpu);
10450 #ifdef CONFIG_KVM_SMM
10451 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10452 			process_smi(vcpu);
10453 #endif
10454 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10455 			process_nmi(vcpu);
10456 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10457 			kvm_pmu_handle_event(vcpu);
10458 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10459 			kvm_pmu_deliver_pmi(vcpu);
10460 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10461 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10462 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10463 				     vcpu->arch.ioapic_handled_vectors)) {
10464 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10465 				vcpu->run->eoi.vector =
10466 						vcpu->arch.pending_ioapic_eoi;
10467 				r = 0;
10468 				goto out;
10469 			}
10470 		}
10471 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10472 			vcpu_scan_ioapic(vcpu);
10473 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10474 			vcpu_load_eoi_exitmap(vcpu);
10475 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10476 			kvm_vcpu_reload_apic_access_page(vcpu);
10477 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10478 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10479 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10480 			vcpu->run->system_event.ndata = 0;
10481 			r = 0;
10482 			goto out;
10483 		}
10484 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10485 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10486 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10487 			vcpu->run->system_event.ndata = 0;
10488 			r = 0;
10489 			goto out;
10490 		}
10491 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10492 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10493 
10494 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10495 			vcpu->run->hyperv = hv_vcpu->exit;
10496 			r = 0;
10497 			goto out;
10498 		}
10499 
10500 		/*
10501 		 * KVM_REQ_HV_STIMER has to be processed after
10502 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10503 		 * depend on the guest clock being up-to-date
10504 		 */
10505 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10506 			kvm_hv_process_stimers(vcpu);
10507 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10508 			kvm_vcpu_update_apicv(vcpu);
10509 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10510 			kvm_check_async_pf_completion(vcpu);
10511 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10512 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10513 
10514 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10515 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10516 	}
10517 
10518 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10519 	    kvm_xen_has_interrupt(vcpu)) {
10520 		++vcpu->stat.req_event;
10521 		r = kvm_apic_accept_events(vcpu);
10522 		if (r < 0) {
10523 			r = 0;
10524 			goto out;
10525 		}
10526 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10527 			r = 1;
10528 			goto out;
10529 		}
10530 
10531 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10532 		if (r < 0) {
10533 			r = 0;
10534 			goto out;
10535 		}
10536 		if (req_int_win)
10537 			static_call(kvm_x86_enable_irq_window)(vcpu);
10538 
10539 		if (kvm_lapic_enabled(vcpu)) {
10540 			update_cr8_intercept(vcpu);
10541 			kvm_lapic_sync_to_vapic(vcpu);
10542 		}
10543 	}
10544 
10545 	r = kvm_mmu_reload(vcpu);
10546 	if (unlikely(r)) {
10547 		goto cancel_injection;
10548 	}
10549 
10550 	preempt_disable();
10551 
10552 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10553 
10554 	/*
10555 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10556 	 * IPI are then delayed after guest entry, which ensures that they
10557 	 * result in virtual interrupt delivery.
10558 	 */
10559 	local_irq_disable();
10560 
10561 	/* Store vcpu->apicv_active before vcpu->mode.  */
10562 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10563 
10564 	kvm_vcpu_srcu_read_unlock(vcpu);
10565 
10566 	/*
10567 	 * 1) We should set ->mode before checking ->requests.  Please see
10568 	 * the comment in kvm_vcpu_exiting_guest_mode().
10569 	 *
10570 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10571 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10572 	 * (see vmx_deliver_posted_interrupt).
10573 	 *
10574 	 * 3) This also orders the write to mode from any reads to the page
10575 	 * tables done while the VCPU is running.  Please see the comment
10576 	 * in kvm_flush_remote_tlbs.
10577 	 */
10578 	smp_mb__after_srcu_read_unlock();
10579 
10580 	/*
10581 	 * Process pending posted interrupts to handle the case where the
10582 	 * notification IRQ arrived in the host, or was never sent (because the
10583 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10584 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10585 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10586 	 */
10587 	if (kvm_lapic_enabled(vcpu))
10588 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10589 
10590 	if (kvm_vcpu_exit_request(vcpu)) {
10591 		vcpu->mode = OUTSIDE_GUEST_MODE;
10592 		smp_wmb();
10593 		local_irq_enable();
10594 		preempt_enable();
10595 		kvm_vcpu_srcu_read_lock(vcpu);
10596 		r = 1;
10597 		goto cancel_injection;
10598 	}
10599 
10600 	if (req_immediate_exit) {
10601 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10602 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10603 	}
10604 
10605 	fpregs_assert_state_consistent();
10606 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10607 		switch_fpu_return();
10608 
10609 	if (vcpu->arch.guest_fpu.xfd_err)
10610 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10611 
10612 	if (unlikely(vcpu->arch.switch_db_regs)) {
10613 		set_debugreg(0, 7);
10614 		set_debugreg(vcpu->arch.eff_db[0], 0);
10615 		set_debugreg(vcpu->arch.eff_db[1], 1);
10616 		set_debugreg(vcpu->arch.eff_db[2], 2);
10617 		set_debugreg(vcpu->arch.eff_db[3], 3);
10618 	} else if (unlikely(hw_breakpoint_active())) {
10619 		set_debugreg(0, 7);
10620 	}
10621 
10622 	guest_timing_enter_irqoff();
10623 
10624 	for (;;) {
10625 		/*
10626 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10627 		 * update must kick and wait for all vCPUs before toggling the
10628 		 * per-VM state, and responsing vCPUs must wait for the update
10629 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10630 		 */
10631 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10632 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10633 
10634 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10635 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10636 			break;
10637 
10638 		if (kvm_lapic_enabled(vcpu))
10639 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10640 
10641 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10642 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10643 			break;
10644 		}
10645 	}
10646 
10647 	/*
10648 	 * Do this here before restoring debug registers on the host.  And
10649 	 * since we do this before handling the vmexit, a DR access vmexit
10650 	 * can (a) read the correct value of the debug registers, (b) set
10651 	 * KVM_DEBUGREG_WONT_EXIT again.
10652 	 */
10653 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10654 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10655 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10656 		kvm_update_dr0123(vcpu);
10657 		kvm_update_dr7(vcpu);
10658 	}
10659 
10660 	/*
10661 	 * If the guest has used debug registers, at least dr7
10662 	 * will be disabled while returning to the host.
10663 	 * If we don't have active breakpoints in the host, we don't
10664 	 * care about the messed up debug address registers. But if
10665 	 * we have some of them active, restore the old state.
10666 	 */
10667 	if (hw_breakpoint_active())
10668 		hw_breakpoint_restore();
10669 
10670 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10671 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10672 
10673 	vcpu->mode = OUTSIDE_GUEST_MODE;
10674 	smp_wmb();
10675 
10676 	/*
10677 	 * Sync xfd before calling handle_exit_irqoff() which may
10678 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10679 	 * in #NM irqoff handler).
10680 	 */
10681 	if (vcpu->arch.xfd_no_write_intercept)
10682 		fpu_sync_guest_vmexit_xfd_state();
10683 
10684 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10685 
10686 	if (vcpu->arch.guest_fpu.xfd_err)
10687 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10688 
10689 	/*
10690 	 * Consume any pending interrupts, including the possible source of
10691 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10692 	 * An instruction is required after local_irq_enable() to fully unblock
10693 	 * interrupts on processors that implement an interrupt shadow, the
10694 	 * stat.exits increment will do nicely.
10695 	 */
10696 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10697 	local_irq_enable();
10698 	++vcpu->stat.exits;
10699 	local_irq_disable();
10700 	kvm_after_interrupt(vcpu);
10701 
10702 	/*
10703 	 * Wait until after servicing IRQs to account guest time so that any
10704 	 * ticks that occurred while running the guest are properly accounted
10705 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10706 	 * of accounting via context tracking, but the loss of accuracy is
10707 	 * acceptable for all known use cases.
10708 	 */
10709 	guest_timing_exit_irqoff();
10710 
10711 	local_irq_enable();
10712 	preempt_enable();
10713 
10714 	kvm_vcpu_srcu_read_lock(vcpu);
10715 
10716 	/*
10717 	 * Profile KVM exit RIPs:
10718 	 */
10719 	if (unlikely(prof_on == KVM_PROFILING)) {
10720 		unsigned long rip = kvm_rip_read(vcpu);
10721 		profile_hit(KVM_PROFILING, (void *)rip);
10722 	}
10723 
10724 	if (unlikely(vcpu->arch.tsc_always_catchup))
10725 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10726 
10727 	if (vcpu->arch.apic_attention)
10728 		kvm_lapic_sync_from_vapic(vcpu);
10729 
10730 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10731 	return r;
10732 
10733 cancel_injection:
10734 	if (req_immediate_exit)
10735 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10736 	static_call(kvm_x86_cancel_injection)(vcpu);
10737 	if (unlikely(vcpu->arch.apic_attention))
10738 		kvm_lapic_sync_from_vapic(vcpu);
10739 out:
10740 	return r;
10741 }
10742 
10743 /* Called within kvm->srcu read side.  */
10744 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10745 {
10746 	bool hv_timer;
10747 
10748 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10749 		/*
10750 		 * Switch to the software timer before halt-polling/blocking as
10751 		 * the guest's timer may be a break event for the vCPU, and the
10752 		 * hypervisor timer runs only when the CPU is in guest mode.
10753 		 * Switch before halt-polling so that KVM recognizes an expired
10754 		 * timer before blocking.
10755 		 */
10756 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10757 		if (hv_timer)
10758 			kvm_lapic_switch_to_sw_timer(vcpu);
10759 
10760 		kvm_vcpu_srcu_read_unlock(vcpu);
10761 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10762 			kvm_vcpu_halt(vcpu);
10763 		else
10764 			kvm_vcpu_block(vcpu);
10765 		kvm_vcpu_srcu_read_lock(vcpu);
10766 
10767 		if (hv_timer)
10768 			kvm_lapic_switch_to_hv_timer(vcpu);
10769 
10770 		/*
10771 		 * If the vCPU is not runnable, a signal or another host event
10772 		 * of some kind is pending; service it without changing the
10773 		 * vCPU's activity state.
10774 		 */
10775 		if (!kvm_arch_vcpu_runnable(vcpu))
10776 			return 1;
10777 	}
10778 
10779 	/*
10780 	 * Evaluate nested events before exiting the halted state.  This allows
10781 	 * the halt state to be recorded properly in the VMCS12's activity
10782 	 * state field (AMD does not have a similar field and a VM-Exit always
10783 	 * causes a spurious wakeup from HLT).
10784 	 */
10785 	if (is_guest_mode(vcpu)) {
10786 		if (kvm_check_nested_events(vcpu) < 0)
10787 			return 0;
10788 	}
10789 
10790 	if (kvm_apic_accept_events(vcpu) < 0)
10791 		return 0;
10792 	switch(vcpu->arch.mp_state) {
10793 	case KVM_MP_STATE_HALTED:
10794 	case KVM_MP_STATE_AP_RESET_HOLD:
10795 		vcpu->arch.pv.pv_unhalted = false;
10796 		vcpu->arch.mp_state =
10797 			KVM_MP_STATE_RUNNABLE;
10798 		fallthrough;
10799 	case KVM_MP_STATE_RUNNABLE:
10800 		vcpu->arch.apf.halted = false;
10801 		break;
10802 	case KVM_MP_STATE_INIT_RECEIVED:
10803 		break;
10804 	default:
10805 		WARN_ON_ONCE(1);
10806 		break;
10807 	}
10808 	return 1;
10809 }
10810 
10811 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10812 {
10813 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10814 		!vcpu->arch.apf.halted);
10815 }
10816 
10817 /* Called within kvm->srcu read side.  */
10818 static int vcpu_run(struct kvm_vcpu *vcpu)
10819 {
10820 	int r;
10821 
10822 	vcpu->arch.l1tf_flush_l1d = true;
10823 
10824 	for (;;) {
10825 		/*
10826 		 * If another guest vCPU requests a PV TLB flush in the middle
10827 		 * of instruction emulation, the rest of the emulation could
10828 		 * use a stale page translation. Assume that any code after
10829 		 * this point can start executing an instruction.
10830 		 */
10831 		vcpu->arch.at_instruction_boundary = false;
10832 		if (kvm_vcpu_running(vcpu)) {
10833 			r = vcpu_enter_guest(vcpu);
10834 		} else {
10835 			r = vcpu_block(vcpu);
10836 		}
10837 
10838 		if (r <= 0)
10839 			break;
10840 
10841 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10842 		if (kvm_xen_has_pending_events(vcpu))
10843 			kvm_xen_inject_pending_events(vcpu);
10844 
10845 		if (kvm_cpu_has_pending_timer(vcpu))
10846 			kvm_inject_pending_timer_irqs(vcpu);
10847 
10848 		if (dm_request_for_irq_injection(vcpu) &&
10849 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10850 			r = 0;
10851 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10852 			++vcpu->stat.request_irq_exits;
10853 			break;
10854 		}
10855 
10856 		if (__xfer_to_guest_mode_work_pending()) {
10857 			kvm_vcpu_srcu_read_unlock(vcpu);
10858 			r = xfer_to_guest_mode_handle_work(vcpu);
10859 			kvm_vcpu_srcu_read_lock(vcpu);
10860 			if (r)
10861 				return r;
10862 		}
10863 	}
10864 
10865 	return r;
10866 }
10867 
10868 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10869 {
10870 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10871 }
10872 
10873 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10874 {
10875 	BUG_ON(!vcpu->arch.pio.count);
10876 
10877 	return complete_emulated_io(vcpu);
10878 }
10879 
10880 /*
10881  * Implements the following, as a state machine:
10882  *
10883  * read:
10884  *   for each fragment
10885  *     for each mmio piece in the fragment
10886  *       write gpa, len
10887  *       exit
10888  *       copy data
10889  *   execute insn
10890  *
10891  * write:
10892  *   for each fragment
10893  *     for each mmio piece in the fragment
10894  *       write gpa, len
10895  *       copy data
10896  *       exit
10897  */
10898 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10899 {
10900 	struct kvm_run *run = vcpu->run;
10901 	struct kvm_mmio_fragment *frag;
10902 	unsigned len;
10903 
10904 	BUG_ON(!vcpu->mmio_needed);
10905 
10906 	/* Complete previous fragment */
10907 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10908 	len = min(8u, frag->len);
10909 	if (!vcpu->mmio_is_write)
10910 		memcpy(frag->data, run->mmio.data, len);
10911 
10912 	if (frag->len <= 8) {
10913 		/* Switch to the next fragment. */
10914 		frag++;
10915 		vcpu->mmio_cur_fragment++;
10916 	} else {
10917 		/* Go forward to the next mmio piece. */
10918 		frag->data += len;
10919 		frag->gpa += len;
10920 		frag->len -= len;
10921 	}
10922 
10923 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10924 		vcpu->mmio_needed = 0;
10925 
10926 		/* FIXME: return into emulator if single-stepping.  */
10927 		if (vcpu->mmio_is_write)
10928 			return 1;
10929 		vcpu->mmio_read_completed = 1;
10930 		return complete_emulated_io(vcpu);
10931 	}
10932 
10933 	run->exit_reason = KVM_EXIT_MMIO;
10934 	run->mmio.phys_addr = frag->gpa;
10935 	if (vcpu->mmio_is_write)
10936 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10937 	run->mmio.len = min(8u, frag->len);
10938 	run->mmio.is_write = vcpu->mmio_is_write;
10939 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10940 	return 0;
10941 }
10942 
10943 /* Swap (qemu) user FPU context for the guest FPU context. */
10944 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10945 {
10946 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10947 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10948 	trace_kvm_fpu(1);
10949 }
10950 
10951 /* When vcpu_run ends, restore user space FPU context. */
10952 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10953 {
10954 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10955 	++vcpu->stat.fpu_reload;
10956 	trace_kvm_fpu(0);
10957 }
10958 
10959 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10960 {
10961 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10962 	struct kvm_run *kvm_run = vcpu->run;
10963 	int r;
10964 
10965 	vcpu_load(vcpu);
10966 	kvm_sigset_activate(vcpu);
10967 	kvm_run->flags = 0;
10968 	kvm_load_guest_fpu(vcpu);
10969 
10970 	kvm_vcpu_srcu_read_lock(vcpu);
10971 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10972 		if (kvm_run->immediate_exit) {
10973 			r = -EINTR;
10974 			goto out;
10975 		}
10976 		/*
10977 		 * It should be impossible for the hypervisor timer to be in
10978 		 * use before KVM has ever run the vCPU.
10979 		 */
10980 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10981 
10982 		kvm_vcpu_srcu_read_unlock(vcpu);
10983 		kvm_vcpu_block(vcpu);
10984 		kvm_vcpu_srcu_read_lock(vcpu);
10985 
10986 		if (kvm_apic_accept_events(vcpu) < 0) {
10987 			r = 0;
10988 			goto out;
10989 		}
10990 		r = -EAGAIN;
10991 		if (signal_pending(current)) {
10992 			r = -EINTR;
10993 			kvm_run->exit_reason = KVM_EXIT_INTR;
10994 			++vcpu->stat.signal_exits;
10995 		}
10996 		goto out;
10997 	}
10998 
10999 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11000 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11001 		r = -EINVAL;
11002 		goto out;
11003 	}
11004 
11005 	if (kvm_run->kvm_dirty_regs) {
11006 		r = sync_regs(vcpu);
11007 		if (r != 0)
11008 			goto out;
11009 	}
11010 
11011 	/* re-sync apic's tpr */
11012 	if (!lapic_in_kernel(vcpu)) {
11013 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11014 			r = -EINVAL;
11015 			goto out;
11016 		}
11017 	}
11018 
11019 	/*
11020 	 * If userspace set a pending exception and L2 is active, convert it to
11021 	 * a pending VM-Exit if L1 wants to intercept the exception.
11022 	 */
11023 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11024 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11025 							ex->error_code)) {
11026 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11027 					   ex->has_error_code, ex->error_code,
11028 					   ex->has_payload, ex->payload);
11029 		ex->injected = false;
11030 		ex->pending = false;
11031 	}
11032 	vcpu->arch.exception_from_userspace = false;
11033 
11034 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11035 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11036 		vcpu->arch.complete_userspace_io = NULL;
11037 		r = cui(vcpu);
11038 		if (r <= 0)
11039 			goto out;
11040 	} else {
11041 		WARN_ON_ONCE(vcpu->arch.pio.count);
11042 		WARN_ON_ONCE(vcpu->mmio_needed);
11043 	}
11044 
11045 	if (kvm_run->immediate_exit) {
11046 		r = -EINTR;
11047 		goto out;
11048 	}
11049 
11050 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11051 	if (r <= 0)
11052 		goto out;
11053 
11054 	r = vcpu_run(vcpu);
11055 
11056 out:
11057 	kvm_put_guest_fpu(vcpu);
11058 	if (kvm_run->kvm_valid_regs)
11059 		store_regs(vcpu);
11060 	post_kvm_run_save(vcpu);
11061 	kvm_vcpu_srcu_read_unlock(vcpu);
11062 
11063 	kvm_sigset_deactivate(vcpu);
11064 	vcpu_put(vcpu);
11065 	return r;
11066 }
11067 
11068 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11069 {
11070 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11071 		/*
11072 		 * We are here if userspace calls get_regs() in the middle of
11073 		 * instruction emulation. Registers state needs to be copied
11074 		 * back from emulation context to vcpu. Userspace shouldn't do
11075 		 * that usually, but some bad designed PV devices (vmware
11076 		 * backdoor interface) need this to work
11077 		 */
11078 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11079 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11080 	}
11081 	regs->rax = kvm_rax_read(vcpu);
11082 	regs->rbx = kvm_rbx_read(vcpu);
11083 	regs->rcx = kvm_rcx_read(vcpu);
11084 	regs->rdx = kvm_rdx_read(vcpu);
11085 	regs->rsi = kvm_rsi_read(vcpu);
11086 	regs->rdi = kvm_rdi_read(vcpu);
11087 	regs->rsp = kvm_rsp_read(vcpu);
11088 	regs->rbp = kvm_rbp_read(vcpu);
11089 #ifdef CONFIG_X86_64
11090 	regs->r8 = kvm_r8_read(vcpu);
11091 	regs->r9 = kvm_r9_read(vcpu);
11092 	regs->r10 = kvm_r10_read(vcpu);
11093 	regs->r11 = kvm_r11_read(vcpu);
11094 	regs->r12 = kvm_r12_read(vcpu);
11095 	regs->r13 = kvm_r13_read(vcpu);
11096 	regs->r14 = kvm_r14_read(vcpu);
11097 	regs->r15 = kvm_r15_read(vcpu);
11098 #endif
11099 
11100 	regs->rip = kvm_rip_read(vcpu);
11101 	regs->rflags = kvm_get_rflags(vcpu);
11102 }
11103 
11104 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11105 {
11106 	vcpu_load(vcpu);
11107 	__get_regs(vcpu, regs);
11108 	vcpu_put(vcpu);
11109 	return 0;
11110 }
11111 
11112 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11113 {
11114 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11115 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11116 
11117 	kvm_rax_write(vcpu, regs->rax);
11118 	kvm_rbx_write(vcpu, regs->rbx);
11119 	kvm_rcx_write(vcpu, regs->rcx);
11120 	kvm_rdx_write(vcpu, regs->rdx);
11121 	kvm_rsi_write(vcpu, regs->rsi);
11122 	kvm_rdi_write(vcpu, regs->rdi);
11123 	kvm_rsp_write(vcpu, regs->rsp);
11124 	kvm_rbp_write(vcpu, regs->rbp);
11125 #ifdef CONFIG_X86_64
11126 	kvm_r8_write(vcpu, regs->r8);
11127 	kvm_r9_write(vcpu, regs->r9);
11128 	kvm_r10_write(vcpu, regs->r10);
11129 	kvm_r11_write(vcpu, regs->r11);
11130 	kvm_r12_write(vcpu, regs->r12);
11131 	kvm_r13_write(vcpu, regs->r13);
11132 	kvm_r14_write(vcpu, regs->r14);
11133 	kvm_r15_write(vcpu, regs->r15);
11134 #endif
11135 
11136 	kvm_rip_write(vcpu, regs->rip);
11137 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11138 
11139 	vcpu->arch.exception.pending = false;
11140 	vcpu->arch.exception_vmexit.pending = false;
11141 
11142 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11143 }
11144 
11145 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11146 {
11147 	vcpu_load(vcpu);
11148 	__set_regs(vcpu, regs);
11149 	vcpu_put(vcpu);
11150 	return 0;
11151 }
11152 
11153 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11154 {
11155 	struct desc_ptr dt;
11156 
11157 	if (vcpu->arch.guest_state_protected)
11158 		goto skip_protected_regs;
11159 
11160 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11161 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11162 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11163 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11164 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11165 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11166 
11167 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11168 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11169 
11170 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11171 	sregs->idt.limit = dt.size;
11172 	sregs->idt.base = dt.address;
11173 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11174 	sregs->gdt.limit = dt.size;
11175 	sregs->gdt.base = dt.address;
11176 
11177 	sregs->cr2 = vcpu->arch.cr2;
11178 	sregs->cr3 = kvm_read_cr3(vcpu);
11179 
11180 skip_protected_regs:
11181 	sregs->cr0 = kvm_read_cr0(vcpu);
11182 	sregs->cr4 = kvm_read_cr4(vcpu);
11183 	sregs->cr8 = kvm_get_cr8(vcpu);
11184 	sregs->efer = vcpu->arch.efer;
11185 	sregs->apic_base = kvm_get_apic_base(vcpu);
11186 }
11187 
11188 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11189 {
11190 	__get_sregs_common(vcpu, sregs);
11191 
11192 	if (vcpu->arch.guest_state_protected)
11193 		return;
11194 
11195 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11196 		set_bit(vcpu->arch.interrupt.nr,
11197 			(unsigned long *)sregs->interrupt_bitmap);
11198 }
11199 
11200 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11201 {
11202 	int i;
11203 
11204 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11205 
11206 	if (vcpu->arch.guest_state_protected)
11207 		return;
11208 
11209 	if (is_pae_paging(vcpu)) {
11210 		for (i = 0 ; i < 4 ; i++)
11211 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11212 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11213 	}
11214 }
11215 
11216 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11217 				  struct kvm_sregs *sregs)
11218 {
11219 	vcpu_load(vcpu);
11220 	__get_sregs(vcpu, sregs);
11221 	vcpu_put(vcpu);
11222 	return 0;
11223 }
11224 
11225 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11226 				    struct kvm_mp_state *mp_state)
11227 {
11228 	int r;
11229 
11230 	vcpu_load(vcpu);
11231 	if (kvm_mpx_supported())
11232 		kvm_load_guest_fpu(vcpu);
11233 
11234 	r = kvm_apic_accept_events(vcpu);
11235 	if (r < 0)
11236 		goto out;
11237 	r = 0;
11238 
11239 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11240 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11241 	    vcpu->arch.pv.pv_unhalted)
11242 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11243 	else
11244 		mp_state->mp_state = vcpu->arch.mp_state;
11245 
11246 out:
11247 	if (kvm_mpx_supported())
11248 		kvm_put_guest_fpu(vcpu);
11249 	vcpu_put(vcpu);
11250 	return r;
11251 }
11252 
11253 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11254 				    struct kvm_mp_state *mp_state)
11255 {
11256 	int ret = -EINVAL;
11257 
11258 	vcpu_load(vcpu);
11259 
11260 	switch (mp_state->mp_state) {
11261 	case KVM_MP_STATE_UNINITIALIZED:
11262 	case KVM_MP_STATE_HALTED:
11263 	case KVM_MP_STATE_AP_RESET_HOLD:
11264 	case KVM_MP_STATE_INIT_RECEIVED:
11265 	case KVM_MP_STATE_SIPI_RECEIVED:
11266 		if (!lapic_in_kernel(vcpu))
11267 			goto out;
11268 		break;
11269 
11270 	case KVM_MP_STATE_RUNNABLE:
11271 		break;
11272 
11273 	default:
11274 		goto out;
11275 	}
11276 
11277 	/*
11278 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11279 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11280 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11281 	 * if an SMI is pending as well.
11282 	 */
11283 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11284 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11285 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11286 		goto out;
11287 
11288 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11289 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11290 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11291 	} else
11292 		vcpu->arch.mp_state = mp_state->mp_state;
11293 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11294 
11295 	ret = 0;
11296 out:
11297 	vcpu_put(vcpu);
11298 	return ret;
11299 }
11300 
11301 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11302 		    int reason, bool has_error_code, u32 error_code)
11303 {
11304 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11305 	int ret;
11306 
11307 	init_emulate_ctxt(vcpu);
11308 
11309 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11310 				   has_error_code, error_code);
11311 	if (ret) {
11312 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11313 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11314 		vcpu->run->internal.ndata = 0;
11315 		return 0;
11316 	}
11317 
11318 	kvm_rip_write(vcpu, ctxt->eip);
11319 	kvm_set_rflags(vcpu, ctxt->eflags);
11320 	return 1;
11321 }
11322 EXPORT_SYMBOL_GPL(kvm_task_switch);
11323 
11324 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11325 {
11326 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11327 		/*
11328 		 * When EFER.LME and CR0.PG are set, the processor is in
11329 		 * 64-bit mode (though maybe in a 32-bit code segment).
11330 		 * CR4.PAE and EFER.LMA must be set.
11331 		 */
11332 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11333 			return false;
11334 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11335 			return false;
11336 	} else {
11337 		/*
11338 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11339 		 * segment cannot be 64-bit.
11340 		 */
11341 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11342 			return false;
11343 	}
11344 
11345 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11346 }
11347 
11348 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11349 		int *mmu_reset_needed, bool update_pdptrs)
11350 {
11351 	struct msr_data apic_base_msr;
11352 	int idx;
11353 	struct desc_ptr dt;
11354 
11355 	if (!kvm_is_valid_sregs(vcpu, sregs))
11356 		return -EINVAL;
11357 
11358 	apic_base_msr.data = sregs->apic_base;
11359 	apic_base_msr.host_initiated = true;
11360 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11361 		return -EINVAL;
11362 
11363 	if (vcpu->arch.guest_state_protected)
11364 		return 0;
11365 
11366 	dt.size = sregs->idt.limit;
11367 	dt.address = sregs->idt.base;
11368 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11369 	dt.size = sregs->gdt.limit;
11370 	dt.address = sregs->gdt.base;
11371 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11372 
11373 	vcpu->arch.cr2 = sregs->cr2;
11374 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11375 	vcpu->arch.cr3 = sregs->cr3;
11376 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11377 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11378 
11379 	kvm_set_cr8(vcpu, sregs->cr8);
11380 
11381 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11382 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11383 
11384 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11385 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11386 	vcpu->arch.cr0 = sregs->cr0;
11387 
11388 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11389 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11390 
11391 	if (update_pdptrs) {
11392 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11393 		if (is_pae_paging(vcpu)) {
11394 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11395 			*mmu_reset_needed = 1;
11396 		}
11397 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11398 	}
11399 
11400 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11401 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11402 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11403 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11404 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11405 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11406 
11407 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11408 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11409 
11410 	update_cr8_intercept(vcpu);
11411 
11412 	/* Older userspace won't unhalt the vcpu on reset. */
11413 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11414 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11415 	    !is_protmode(vcpu))
11416 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11417 
11418 	return 0;
11419 }
11420 
11421 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11422 {
11423 	int pending_vec, max_bits;
11424 	int mmu_reset_needed = 0;
11425 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11426 
11427 	if (ret)
11428 		return ret;
11429 
11430 	if (mmu_reset_needed)
11431 		kvm_mmu_reset_context(vcpu);
11432 
11433 	max_bits = KVM_NR_INTERRUPTS;
11434 	pending_vec = find_first_bit(
11435 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11436 
11437 	if (pending_vec < max_bits) {
11438 		kvm_queue_interrupt(vcpu, pending_vec, false);
11439 		pr_debug("Set back pending irq %d\n", pending_vec);
11440 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11441 	}
11442 	return 0;
11443 }
11444 
11445 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11446 {
11447 	int mmu_reset_needed = 0;
11448 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11449 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11450 		!(sregs2->efer & EFER_LMA);
11451 	int i, ret;
11452 
11453 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11454 		return -EINVAL;
11455 
11456 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11457 		return -EINVAL;
11458 
11459 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11460 				 &mmu_reset_needed, !valid_pdptrs);
11461 	if (ret)
11462 		return ret;
11463 
11464 	if (valid_pdptrs) {
11465 		for (i = 0; i < 4 ; i++)
11466 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11467 
11468 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11469 		mmu_reset_needed = 1;
11470 		vcpu->arch.pdptrs_from_userspace = true;
11471 	}
11472 	if (mmu_reset_needed)
11473 		kvm_mmu_reset_context(vcpu);
11474 	return 0;
11475 }
11476 
11477 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11478 				  struct kvm_sregs *sregs)
11479 {
11480 	int ret;
11481 
11482 	vcpu_load(vcpu);
11483 	ret = __set_sregs(vcpu, sregs);
11484 	vcpu_put(vcpu);
11485 	return ret;
11486 }
11487 
11488 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11489 {
11490 	bool set = false;
11491 	struct kvm_vcpu *vcpu;
11492 	unsigned long i;
11493 
11494 	if (!enable_apicv)
11495 		return;
11496 
11497 	down_write(&kvm->arch.apicv_update_lock);
11498 
11499 	kvm_for_each_vcpu(i, vcpu, kvm) {
11500 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11501 			set = true;
11502 			break;
11503 		}
11504 	}
11505 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11506 	up_write(&kvm->arch.apicv_update_lock);
11507 }
11508 
11509 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11510 					struct kvm_guest_debug *dbg)
11511 {
11512 	unsigned long rflags;
11513 	int i, r;
11514 
11515 	if (vcpu->arch.guest_state_protected)
11516 		return -EINVAL;
11517 
11518 	vcpu_load(vcpu);
11519 
11520 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11521 		r = -EBUSY;
11522 		if (kvm_is_exception_pending(vcpu))
11523 			goto out;
11524 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11525 			kvm_queue_exception(vcpu, DB_VECTOR);
11526 		else
11527 			kvm_queue_exception(vcpu, BP_VECTOR);
11528 	}
11529 
11530 	/*
11531 	 * Read rflags as long as potentially injected trace flags are still
11532 	 * filtered out.
11533 	 */
11534 	rflags = kvm_get_rflags(vcpu);
11535 
11536 	vcpu->guest_debug = dbg->control;
11537 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11538 		vcpu->guest_debug = 0;
11539 
11540 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11541 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11542 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11543 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11544 	} else {
11545 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11546 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11547 	}
11548 	kvm_update_dr7(vcpu);
11549 
11550 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11551 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11552 
11553 	/*
11554 	 * Trigger an rflags update that will inject or remove the trace
11555 	 * flags.
11556 	 */
11557 	kvm_set_rflags(vcpu, rflags);
11558 
11559 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11560 
11561 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11562 
11563 	r = 0;
11564 
11565 out:
11566 	vcpu_put(vcpu);
11567 	return r;
11568 }
11569 
11570 /*
11571  * Translate a guest virtual address to a guest physical address.
11572  */
11573 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11574 				    struct kvm_translation *tr)
11575 {
11576 	unsigned long vaddr = tr->linear_address;
11577 	gpa_t gpa;
11578 	int idx;
11579 
11580 	vcpu_load(vcpu);
11581 
11582 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11583 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11584 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11585 	tr->physical_address = gpa;
11586 	tr->valid = gpa != INVALID_GPA;
11587 	tr->writeable = 1;
11588 	tr->usermode = 0;
11589 
11590 	vcpu_put(vcpu);
11591 	return 0;
11592 }
11593 
11594 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11595 {
11596 	struct fxregs_state *fxsave;
11597 
11598 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11599 		return 0;
11600 
11601 	vcpu_load(vcpu);
11602 
11603 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11604 	memcpy(fpu->fpr, fxsave->st_space, 128);
11605 	fpu->fcw = fxsave->cwd;
11606 	fpu->fsw = fxsave->swd;
11607 	fpu->ftwx = fxsave->twd;
11608 	fpu->last_opcode = fxsave->fop;
11609 	fpu->last_ip = fxsave->rip;
11610 	fpu->last_dp = fxsave->rdp;
11611 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11612 
11613 	vcpu_put(vcpu);
11614 	return 0;
11615 }
11616 
11617 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11618 {
11619 	struct fxregs_state *fxsave;
11620 
11621 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11622 		return 0;
11623 
11624 	vcpu_load(vcpu);
11625 
11626 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11627 
11628 	memcpy(fxsave->st_space, fpu->fpr, 128);
11629 	fxsave->cwd = fpu->fcw;
11630 	fxsave->swd = fpu->fsw;
11631 	fxsave->twd = fpu->ftwx;
11632 	fxsave->fop = fpu->last_opcode;
11633 	fxsave->rip = fpu->last_ip;
11634 	fxsave->rdp = fpu->last_dp;
11635 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11636 
11637 	vcpu_put(vcpu);
11638 	return 0;
11639 }
11640 
11641 static void store_regs(struct kvm_vcpu *vcpu)
11642 {
11643 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11644 
11645 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11646 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11647 
11648 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11649 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11650 
11651 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11652 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11653 				vcpu, &vcpu->run->s.regs.events);
11654 }
11655 
11656 static int sync_regs(struct kvm_vcpu *vcpu)
11657 {
11658 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11659 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11660 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11661 	}
11662 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11663 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11664 			return -EINVAL;
11665 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11666 	}
11667 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11668 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11669 				vcpu, &vcpu->run->s.regs.events))
11670 			return -EINVAL;
11671 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11672 	}
11673 
11674 	return 0;
11675 }
11676 
11677 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11678 {
11679 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11680 		pr_warn_once("SMP vm created on host with unstable TSC; "
11681 			     "guest TSC will not be reliable\n");
11682 
11683 	if (!kvm->arch.max_vcpu_ids)
11684 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11685 
11686 	if (id >= kvm->arch.max_vcpu_ids)
11687 		return -EINVAL;
11688 
11689 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11690 }
11691 
11692 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11693 {
11694 	struct page *page;
11695 	int r;
11696 
11697 	vcpu->arch.last_vmentry_cpu = -1;
11698 	vcpu->arch.regs_avail = ~0;
11699 	vcpu->arch.regs_dirty = ~0;
11700 
11701 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11702 
11703 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11704 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11705 	else
11706 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11707 
11708 	r = kvm_mmu_create(vcpu);
11709 	if (r < 0)
11710 		return r;
11711 
11712 	if (irqchip_in_kernel(vcpu->kvm)) {
11713 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11714 		if (r < 0)
11715 			goto fail_mmu_destroy;
11716 
11717 		/*
11718 		 * Defer evaluating inhibits until the vCPU is first run, as
11719 		 * this vCPU will not get notified of any changes until this
11720 		 * vCPU is visible to other vCPUs (marked online and added to
11721 		 * the set of vCPUs).  Opportunistically mark APICv active as
11722 		 * VMX in particularly is highly unlikely to have inhibits.
11723 		 * Ignore the current per-VM APICv state so that vCPU creation
11724 		 * is guaranteed to run with a deterministic value, the request
11725 		 * will ensure the vCPU gets the correct state before VM-Entry.
11726 		 */
11727 		if (enable_apicv) {
11728 			vcpu->arch.apic->apicv_active = true;
11729 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11730 		}
11731 	} else
11732 		static_branch_inc(&kvm_has_noapic_vcpu);
11733 
11734 	r = -ENOMEM;
11735 
11736 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11737 	if (!page)
11738 		goto fail_free_lapic;
11739 	vcpu->arch.pio_data = page_address(page);
11740 
11741 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11742 				       GFP_KERNEL_ACCOUNT);
11743 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11744 					    GFP_KERNEL_ACCOUNT);
11745 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11746 		goto fail_free_mce_banks;
11747 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11748 
11749 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11750 				GFP_KERNEL_ACCOUNT))
11751 		goto fail_free_mce_banks;
11752 
11753 	if (!alloc_emulate_ctxt(vcpu))
11754 		goto free_wbinvd_dirty_mask;
11755 
11756 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11757 		pr_err("failed to allocate vcpu's fpu\n");
11758 		goto free_emulate_ctxt;
11759 	}
11760 
11761 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11762 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11763 
11764 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11765 
11766 	kvm_async_pf_hash_reset(vcpu);
11767 
11768 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11769 	kvm_pmu_init(vcpu);
11770 
11771 	vcpu->arch.pending_external_vector = -1;
11772 	vcpu->arch.preempted_in_kernel = false;
11773 
11774 #if IS_ENABLED(CONFIG_HYPERV)
11775 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11776 #endif
11777 
11778 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11779 	if (r)
11780 		goto free_guest_fpu;
11781 
11782 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11783 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11784 	kvm_xen_init_vcpu(vcpu);
11785 	kvm_vcpu_mtrr_init(vcpu);
11786 	vcpu_load(vcpu);
11787 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11788 	kvm_vcpu_reset(vcpu, false);
11789 	kvm_init_mmu(vcpu);
11790 	vcpu_put(vcpu);
11791 	return 0;
11792 
11793 free_guest_fpu:
11794 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11795 free_emulate_ctxt:
11796 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11797 free_wbinvd_dirty_mask:
11798 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11799 fail_free_mce_banks:
11800 	kfree(vcpu->arch.mce_banks);
11801 	kfree(vcpu->arch.mci_ctl2_banks);
11802 	free_page((unsigned long)vcpu->arch.pio_data);
11803 fail_free_lapic:
11804 	kvm_free_lapic(vcpu);
11805 fail_mmu_destroy:
11806 	kvm_mmu_destroy(vcpu);
11807 	return r;
11808 }
11809 
11810 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11811 {
11812 	struct kvm *kvm = vcpu->kvm;
11813 
11814 	if (mutex_lock_killable(&vcpu->mutex))
11815 		return;
11816 	vcpu_load(vcpu);
11817 	kvm_synchronize_tsc(vcpu, 0);
11818 	vcpu_put(vcpu);
11819 
11820 	/* poll control enabled by default */
11821 	vcpu->arch.msr_kvm_poll_control = 1;
11822 
11823 	mutex_unlock(&vcpu->mutex);
11824 
11825 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11826 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11827 						KVMCLOCK_SYNC_PERIOD);
11828 }
11829 
11830 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11831 {
11832 	int idx;
11833 
11834 	kvmclock_reset(vcpu);
11835 
11836 	static_call(kvm_x86_vcpu_free)(vcpu);
11837 
11838 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11839 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11840 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11841 
11842 	kvm_xen_destroy_vcpu(vcpu);
11843 	kvm_hv_vcpu_uninit(vcpu);
11844 	kvm_pmu_destroy(vcpu);
11845 	kfree(vcpu->arch.mce_banks);
11846 	kfree(vcpu->arch.mci_ctl2_banks);
11847 	kvm_free_lapic(vcpu);
11848 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11849 	kvm_mmu_destroy(vcpu);
11850 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11851 	free_page((unsigned long)vcpu->arch.pio_data);
11852 	kvfree(vcpu->arch.cpuid_entries);
11853 	if (!lapic_in_kernel(vcpu))
11854 		static_branch_dec(&kvm_has_noapic_vcpu);
11855 }
11856 
11857 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11858 {
11859 	struct kvm_cpuid_entry2 *cpuid_0x1;
11860 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11861 	unsigned long new_cr0;
11862 
11863 	/*
11864 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11865 	 * to handle side effects.  RESET emulation hits those flows and relies
11866 	 * on emulated/virtualized registers, including those that are loaded
11867 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11868 	 * to detect improper or missing initialization.
11869 	 */
11870 	WARN_ON_ONCE(!init_event &&
11871 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11872 
11873 	/*
11874 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11875 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11876 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11877 	 * bits), i.e. virtualization is disabled.
11878 	 */
11879 	if (is_guest_mode(vcpu))
11880 		kvm_leave_nested(vcpu);
11881 
11882 	kvm_lapic_reset(vcpu, init_event);
11883 
11884 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11885 	vcpu->arch.hflags = 0;
11886 
11887 	vcpu->arch.smi_pending = 0;
11888 	vcpu->arch.smi_count = 0;
11889 	atomic_set(&vcpu->arch.nmi_queued, 0);
11890 	vcpu->arch.nmi_pending = 0;
11891 	vcpu->arch.nmi_injected = false;
11892 	kvm_clear_interrupt_queue(vcpu);
11893 	kvm_clear_exception_queue(vcpu);
11894 
11895 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11896 	kvm_update_dr0123(vcpu);
11897 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11898 	vcpu->arch.dr7 = DR7_FIXED_1;
11899 	kvm_update_dr7(vcpu);
11900 
11901 	vcpu->arch.cr2 = 0;
11902 
11903 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11904 	vcpu->arch.apf.msr_en_val = 0;
11905 	vcpu->arch.apf.msr_int_val = 0;
11906 	vcpu->arch.st.msr_val = 0;
11907 
11908 	kvmclock_reset(vcpu);
11909 
11910 	kvm_clear_async_pf_completion_queue(vcpu);
11911 	kvm_async_pf_hash_reset(vcpu);
11912 	vcpu->arch.apf.halted = false;
11913 
11914 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11915 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11916 
11917 		/*
11918 		 * All paths that lead to INIT are required to load the guest's
11919 		 * FPU state (because most paths are buried in KVM_RUN).
11920 		 */
11921 		if (init_event)
11922 			kvm_put_guest_fpu(vcpu);
11923 
11924 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11925 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11926 
11927 		if (init_event)
11928 			kvm_load_guest_fpu(vcpu);
11929 	}
11930 
11931 	if (!init_event) {
11932 		kvm_pmu_reset(vcpu);
11933 		vcpu->arch.smbase = 0x30000;
11934 
11935 		vcpu->arch.msr_misc_features_enables = 0;
11936 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11937 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11938 
11939 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11940 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11941 	}
11942 
11943 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11944 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11945 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11946 
11947 	/*
11948 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11949 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11950 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11951 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11952 	 * on RESET.  But, go through the motions in case that's ever remedied.
11953 	 */
11954 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11955 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11956 
11957 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11958 
11959 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11960 	kvm_rip_write(vcpu, 0xfff0);
11961 
11962 	vcpu->arch.cr3 = 0;
11963 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11964 
11965 	/*
11966 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11967 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11968 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11969 	 */
11970 	new_cr0 = X86_CR0_ET;
11971 	if (init_event)
11972 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11973 	else
11974 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11975 
11976 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11977 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11978 	static_call(kvm_x86_set_efer)(vcpu, 0);
11979 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11980 
11981 	/*
11982 	 * On the standard CR0/CR4/EFER modification paths, there are several
11983 	 * complex conditions determining whether the MMU has to be reset and/or
11984 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11985 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11986 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11987 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11988 	 */
11989 	if (old_cr0 & X86_CR0_PG) {
11990 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11991 		kvm_mmu_reset_context(vcpu);
11992 	}
11993 
11994 	/*
11995 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11996 	 * APM states the TLBs are untouched by INIT, but it also states that
11997 	 * the TLBs are flushed on "External initialization of the processor."
11998 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11999 	 * benefit in relying on the guest to flush the TLB immediately after
12000 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12001 	 * performance perspective.
12002 	 */
12003 	if (init_event)
12004 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12005 }
12006 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12007 
12008 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12009 {
12010 	struct kvm_segment cs;
12011 
12012 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12013 	cs.selector = vector << 8;
12014 	cs.base = vector << 12;
12015 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12016 	kvm_rip_write(vcpu, 0);
12017 }
12018 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12019 
12020 int kvm_arch_hardware_enable(void)
12021 {
12022 	struct kvm *kvm;
12023 	struct kvm_vcpu *vcpu;
12024 	unsigned long i;
12025 	int ret;
12026 	u64 local_tsc;
12027 	u64 max_tsc = 0;
12028 	bool stable, backwards_tsc = false;
12029 
12030 	kvm_user_return_msr_cpu_online();
12031 
12032 	ret = kvm_x86_check_processor_compatibility();
12033 	if (ret)
12034 		return ret;
12035 
12036 	ret = static_call(kvm_x86_hardware_enable)();
12037 	if (ret != 0)
12038 		return ret;
12039 
12040 	local_tsc = rdtsc();
12041 	stable = !kvm_check_tsc_unstable();
12042 	list_for_each_entry(kvm, &vm_list, vm_list) {
12043 		kvm_for_each_vcpu(i, vcpu, kvm) {
12044 			if (!stable && vcpu->cpu == smp_processor_id())
12045 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12046 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12047 				backwards_tsc = true;
12048 				if (vcpu->arch.last_host_tsc > max_tsc)
12049 					max_tsc = vcpu->arch.last_host_tsc;
12050 			}
12051 		}
12052 	}
12053 
12054 	/*
12055 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12056 	 * platforms that reset TSC during suspend or hibernate actions, but
12057 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12058 	 * detect that condition here, which happens early in CPU bringup,
12059 	 * before any KVM threads can be running.  Unfortunately, we can't
12060 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12061 	 * enough into CPU bringup that we know how much real time has actually
12062 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12063 	 * variables that haven't been updated yet.
12064 	 *
12065 	 * So we simply find the maximum observed TSC above, then record the
12066 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12067 	 * the adjustment will be applied.  Note that we accumulate
12068 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12069 	 * gets a chance to run again.  In the event that no KVM threads get a
12070 	 * chance to run, we will miss the entire elapsed period, as we'll have
12071 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12072 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12073 	 * uniform across all VCPUs (not to mention the scenario is extremely
12074 	 * unlikely). It is possible that a second hibernate recovery happens
12075 	 * much faster than a first, causing the observed TSC here to be
12076 	 * smaller; this would require additional padding adjustment, which is
12077 	 * why we set last_host_tsc to the local tsc observed here.
12078 	 *
12079 	 * N.B. - this code below runs only on platforms with reliable TSC,
12080 	 * as that is the only way backwards_tsc is set above.  Also note
12081 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12082 	 * have the same delta_cyc adjustment applied if backwards_tsc
12083 	 * is detected.  Note further, this adjustment is only done once,
12084 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12085 	 * called multiple times (one for each physical CPU bringup).
12086 	 *
12087 	 * Platforms with unreliable TSCs don't have to deal with this, they
12088 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12089 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12090 	 * guarantee that they stay in perfect synchronization.
12091 	 */
12092 	if (backwards_tsc) {
12093 		u64 delta_cyc = max_tsc - local_tsc;
12094 		list_for_each_entry(kvm, &vm_list, vm_list) {
12095 			kvm->arch.backwards_tsc_observed = true;
12096 			kvm_for_each_vcpu(i, vcpu, kvm) {
12097 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12098 				vcpu->arch.last_host_tsc = local_tsc;
12099 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12100 			}
12101 
12102 			/*
12103 			 * We have to disable TSC offset matching.. if you were
12104 			 * booting a VM while issuing an S4 host suspend....
12105 			 * you may have some problem.  Solving this issue is
12106 			 * left as an exercise to the reader.
12107 			 */
12108 			kvm->arch.last_tsc_nsec = 0;
12109 			kvm->arch.last_tsc_write = 0;
12110 		}
12111 
12112 	}
12113 	return 0;
12114 }
12115 
12116 void kvm_arch_hardware_disable(void)
12117 {
12118 	static_call(kvm_x86_hardware_disable)();
12119 	drop_user_return_notifiers();
12120 }
12121 
12122 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12123 {
12124 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12125 }
12126 
12127 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12128 {
12129 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12130 }
12131 
12132 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12133 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12134 
12135 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12136 {
12137 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12138 
12139 	vcpu->arch.l1tf_flush_l1d = true;
12140 	if (pmu->version && unlikely(pmu->event_count)) {
12141 		pmu->need_cleanup = true;
12142 		kvm_make_request(KVM_REQ_PMU, vcpu);
12143 	}
12144 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12145 }
12146 
12147 void kvm_arch_free_vm(struct kvm *kvm)
12148 {
12149 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12150 	__kvm_arch_free_vm(kvm);
12151 }
12152 
12153 
12154 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12155 {
12156 	int ret;
12157 	unsigned long flags;
12158 
12159 	if (type)
12160 		return -EINVAL;
12161 
12162 	ret = kvm_page_track_init(kvm);
12163 	if (ret)
12164 		goto out;
12165 
12166 	ret = kvm_mmu_init_vm(kvm);
12167 	if (ret)
12168 		goto out_page_track;
12169 
12170 	ret = static_call(kvm_x86_vm_init)(kvm);
12171 	if (ret)
12172 		goto out_uninit_mmu;
12173 
12174 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12175 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12176 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12177 
12178 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12179 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12180 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12181 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12182 		&kvm->arch.irq_sources_bitmap);
12183 
12184 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12185 	mutex_init(&kvm->arch.apic_map_lock);
12186 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12187 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12188 
12189 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12190 	pvclock_update_vm_gtod_copy(kvm);
12191 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12192 
12193 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12194 	kvm->arch.guest_can_read_msr_platform_info = true;
12195 	kvm->arch.enable_pmu = enable_pmu;
12196 
12197 #if IS_ENABLED(CONFIG_HYPERV)
12198 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12199 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12200 #endif
12201 
12202 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12203 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12204 
12205 	kvm_apicv_init(kvm);
12206 	kvm_hv_init_vm(kvm);
12207 	kvm_xen_init_vm(kvm);
12208 
12209 	return 0;
12210 
12211 out_uninit_mmu:
12212 	kvm_mmu_uninit_vm(kvm);
12213 out_page_track:
12214 	kvm_page_track_cleanup(kvm);
12215 out:
12216 	return ret;
12217 }
12218 
12219 int kvm_arch_post_init_vm(struct kvm *kvm)
12220 {
12221 	return kvm_mmu_post_init_vm(kvm);
12222 }
12223 
12224 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12225 {
12226 	vcpu_load(vcpu);
12227 	kvm_mmu_unload(vcpu);
12228 	vcpu_put(vcpu);
12229 }
12230 
12231 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12232 {
12233 	unsigned long i;
12234 	struct kvm_vcpu *vcpu;
12235 
12236 	kvm_for_each_vcpu(i, vcpu, kvm) {
12237 		kvm_clear_async_pf_completion_queue(vcpu);
12238 		kvm_unload_vcpu_mmu(vcpu);
12239 	}
12240 }
12241 
12242 void kvm_arch_sync_events(struct kvm *kvm)
12243 {
12244 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12245 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12246 	kvm_free_pit(kvm);
12247 }
12248 
12249 /**
12250  * __x86_set_memory_region: Setup KVM internal memory slot
12251  *
12252  * @kvm: the kvm pointer to the VM.
12253  * @id: the slot ID to setup.
12254  * @gpa: the GPA to install the slot (unused when @size == 0).
12255  * @size: the size of the slot. Set to zero to uninstall a slot.
12256  *
12257  * This function helps to setup a KVM internal memory slot.  Specify
12258  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12259  * slot.  The return code can be one of the following:
12260  *
12261  *   HVA:           on success (uninstall will return a bogus HVA)
12262  *   -errno:        on error
12263  *
12264  * The caller should always use IS_ERR() to check the return value
12265  * before use.  Note, the KVM internal memory slots are guaranteed to
12266  * remain valid and unchanged until the VM is destroyed, i.e., the
12267  * GPA->HVA translation will not change.  However, the HVA is a user
12268  * address, i.e. its accessibility is not guaranteed, and must be
12269  * accessed via __copy_{to,from}_user().
12270  */
12271 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12272 				      u32 size)
12273 {
12274 	int i, r;
12275 	unsigned long hva, old_npages;
12276 	struct kvm_memslots *slots = kvm_memslots(kvm);
12277 	struct kvm_memory_slot *slot;
12278 
12279 	/* Called with kvm->slots_lock held.  */
12280 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12281 		return ERR_PTR_USR(-EINVAL);
12282 
12283 	slot = id_to_memslot(slots, id);
12284 	if (size) {
12285 		if (slot && slot->npages)
12286 			return ERR_PTR_USR(-EEXIST);
12287 
12288 		/*
12289 		 * MAP_SHARED to prevent internal slot pages from being moved
12290 		 * by fork()/COW.
12291 		 */
12292 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12293 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12294 		if (IS_ERR((void *)hva))
12295 			return (void __user *)hva;
12296 	} else {
12297 		if (!slot || !slot->npages)
12298 			return NULL;
12299 
12300 		old_npages = slot->npages;
12301 		hva = slot->userspace_addr;
12302 	}
12303 
12304 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12305 		struct kvm_userspace_memory_region m;
12306 
12307 		m.slot = id | (i << 16);
12308 		m.flags = 0;
12309 		m.guest_phys_addr = gpa;
12310 		m.userspace_addr = hva;
12311 		m.memory_size = size;
12312 		r = __kvm_set_memory_region(kvm, &m);
12313 		if (r < 0)
12314 			return ERR_PTR_USR(r);
12315 	}
12316 
12317 	if (!size)
12318 		vm_munmap(hva, old_npages * PAGE_SIZE);
12319 
12320 	return (void __user *)hva;
12321 }
12322 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12323 
12324 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12325 {
12326 	kvm_mmu_pre_destroy_vm(kvm);
12327 }
12328 
12329 void kvm_arch_destroy_vm(struct kvm *kvm)
12330 {
12331 	if (current->mm == kvm->mm) {
12332 		/*
12333 		 * Free memory regions allocated on behalf of userspace,
12334 		 * unless the memory map has changed due to process exit
12335 		 * or fd copying.
12336 		 */
12337 		mutex_lock(&kvm->slots_lock);
12338 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12339 					0, 0);
12340 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12341 					0, 0);
12342 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12343 		mutex_unlock(&kvm->slots_lock);
12344 	}
12345 	kvm_unload_vcpu_mmus(kvm);
12346 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12347 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12348 	kvm_pic_destroy(kvm);
12349 	kvm_ioapic_destroy(kvm);
12350 	kvm_destroy_vcpus(kvm);
12351 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12352 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12353 	kvm_mmu_uninit_vm(kvm);
12354 	kvm_page_track_cleanup(kvm);
12355 	kvm_xen_destroy_vm(kvm);
12356 	kvm_hv_destroy_vm(kvm);
12357 }
12358 
12359 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12360 {
12361 	int i;
12362 
12363 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12364 		kvfree(slot->arch.rmap[i]);
12365 		slot->arch.rmap[i] = NULL;
12366 	}
12367 }
12368 
12369 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12370 {
12371 	int i;
12372 
12373 	memslot_rmap_free(slot);
12374 
12375 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12376 		kvfree(slot->arch.lpage_info[i - 1]);
12377 		slot->arch.lpage_info[i - 1] = NULL;
12378 	}
12379 
12380 	kvm_page_track_free_memslot(slot);
12381 }
12382 
12383 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12384 {
12385 	const int sz = sizeof(*slot->arch.rmap[0]);
12386 	int i;
12387 
12388 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12389 		int level = i + 1;
12390 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12391 
12392 		if (slot->arch.rmap[i])
12393 			continue;
12394 
12395 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12396 		if (!slot->arch.rmap[i]) {
12397 			memslot_rmap_free(slot);
12398 			return -ENOMEM;
12399 		}
12400 	}
12401 
12402 	return 0;
12403 }
12404 
12405 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12406 				      struct kvm_memory_slot *slot)
12407 {
12408 	unsigned long npages = slot->npages;
12409 	int i, r;
12410 
12411 	/*
12412 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12413 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12414 	 * the new memslot is successful.
12415 	 */
12416 	memset(&slot->arch, 0, sizeof(slot->arch));
12417 
12418 	if (kvm_memslots_have_rmaps(kvm)) {
12419 		r = memslot_rmap_alloc(slot, npages);
12420 		if (r)
12421 			return r;
12422 	}
12423 
12424 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12425 		struct kvm_lpage_info *linfo;
12426 		unsigned long ugfn;
12427 		int lpages;
12428 		int level = i + 1;
12429 
12430 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12431 
12432 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12433 		if (!linfo)
12434 			goto out_free;
12435 
12436 		slot->arch.lpage_info[i - 1] = linfo;
12437 
12438 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12439 			linfo[0].disallow_lpage = 1;
12440 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12441 			linfo[lpages - 1].disallow_lpage = 1;
12442 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12443 		/*
12444 		 * If the gfn and userspace address are not aligned wrt each
12445 		 * other, disable large page support for this slot.
12446 		 */
12447 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12448 			unsigned long j;
12449 
12450 			for (j = 0; j < lpages; ++j)
12451 				linfo[j].disallow_lpage = 1;
12452 		}
12453 	}
12454 
12455 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12456 		goto out_free;
12457 
12458 	return 0;
12459 
12460 out_free:
12461 	memslot_rmap_free(slot);
12462 
12463 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12464 		kvfree(slot->arch.lpage_info[i - 1]);
12465 		slot->arch.lpage_info[i - 1] = NULL;
12466 	}
12467 	return -ENOMEM;
12468 }
12469 
12470 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12471 {
12472 	struct kvm_vcpu *vcpu;
12473 	unsigned long i;
12474 
12475 	/*
12476 	 * memslots->generation has been incremented.
12477 	 * mmio generation may have reached its maximum value.
12478 	 */
12479 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12480 
12481 	/* Force re-initialization of steal_time cache */
12482 	kvm_for_each_vcpu(i, vcpu, kvm)
12483 		kvm_vcpu_kick(vcpu);
12484 }
12485 
12486 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12487 				   const struct kvm_memory_slot *old,
12488 				   struct kvm_memory_slot *new,
12489 				   enum kvm_mr_change change)
12490 {
12491 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12492 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12493 			return -EINVAL;
12494 
12495 		return kvm_alloc_memslot_metadata(kvm, new);
12496 	}
12497 
12498 	if (change == KVM_MR_FLAGS_ONLY)
12499 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12500 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12501 		return -EIO;
12502 
12503 	return 0;
12504 }
12505 
12506 
12507 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12508 {
12509 	struct kvm_arch *ka = &kvm->arch;
12510 
12511 	if (!kvm_x86_ops.cpu_dirty_log_size)
12512 		return;
12513 
12514 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12515 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12516 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12517 
12518 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12519 }
12520 
12521 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12522 				     struct kvm_memory_slot *old,
12523 				     const struct kvm_memory_slot *new,
12524 				     enum kvm_mr_change change)
12525 {
12526 	u32 old_flags = old ? old->flags : 0;
12527 	u32 new_flags = new ? new->flags : 0;
12528 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12529 
12530 	/*
12531 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12532 	 * applies to all operations.
12533 	 */
12534 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12535 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12536 
12537 	/*
12538 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12539 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12540 	 *
12541 	 * For a memslot with dirty logging disabled:
12542 	 * CREATE:      No dirty mappings will already exist.
12543 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12544 	 *		kvm_arch_flush_shadow_memslot()
12545 	 *
12546 	 * For a memslot with dirty logging enabled:
12547 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12548 	 *		and no dirty bits to clear.
12549 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12550 	 *		kvm_arch_flush_shadow_memslot().
12551 	 */
12552 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12553 		return;
12554 
12555 	/*
12556 	 * READONLY and non-flags changes were filtered out above, and the only
12557 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12558 	 * logging isn't being toggled on or off.
12559 	 */
12560 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12561 		return;
12562 
12563 	if (!log_dirty_pages) {
12564 		/*
12565 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12566 		 * large sptes have to be split.  If live migration succeeds,
12567 		 * the guest in the source machine will be destroyed and large
12568 		 * sptes will be created in the destination.  However, if the
12569 		 * guest continues to run in the source machine (for example if
12570 		 * live migration fails), small sptes will remain around and
12571 		 * cause bad performance.
12572 		 *
12573 		 * Scan sptes if dirty logging has been stopped, dropping those
12574 		 * which can be collapsed into a single large-page spte.  Later
12575 		 * page faults will create the large-page sptes.
12576 		 */
12577 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12578 	} else {
12579 		/*
12580 		 * Initially-all-set does not require write protecting any page,
12581 		 * because they're all assumed to be dirty.
12582 		 */
12583 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12584 			return;
12585 
12586 		if (READ_ONCE(eager_page_split))
12587 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12588 
12589 		if (kvm_x86_ops.cpu_dirty_log_size) {
12590 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12591 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12592 		} else {
12593 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12594 		}
12595 
12596 		/*
12597 		 * Unconditionally flush the TLBs after enabling dirty logging.
12598 		 * A flush is almost always going to be necessary (see below),
12599 		 * and unconditionally flushing allows the helpers to omit
12600 		 * the subtly complex checks when removing write access.
12601 		 *
12602 		 * Do the flush outside of mmu_lock to reduce the amount of
12603 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12604 		 * safe as KVM only needs to guarantee the slot is fully
12605 		 * write-protected before returning to userspace, i.e. before
12606 		 * userspace can consume the dirty status.
12607 		 *
12608 		 * Flushing outside of mmu_lock requires KVM to be careful when
12609 		 * making decisions based on writable status of an SPTE, e.g. a
12610 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12611 		 *
12612 		 * Specifically, KVM also write-protects guest page tables to
12613 		 * monitor changes when using shadow paging, and must guarantee
12614 		 * no CPUs can write to those page before mmu_lock is dropped.
12615 		 * Because CPUs may have stale TLB entries at this point, a
12616 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12617 		 *
12618 		 * KVM also allows making SPTES writable outside of mmu_lock,
12619 		 * e.g. to allow dirty logging without taking mmu_lock.
12620 		 *
12621 		 * To handle these scenarios, KVM uses a separate software-only
12622 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12623 		 * a guest page table being write-protected (KVM clears the
12624 		 * MMU-writable flag when write-protecting for shadow paging).
12625 		 *
12626 		 * The use of MMU-writable is also the primary motivation for
12627 		 * the unconditional flush.  Because KVM must guarantee that a
12628 		 * CPU doesn't contain stale, writable TLB entries for a
12629 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12630 		 * MMU-writable SPTE regardless of whether the actual hardware
12631 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12632 		 * to flush, while unconditionally flushing allows the "remove
12633 		 * write access" helpers to ignore MMU-writable entirely.
12634 		 *
12635 		 * See is_writable_pte() for more details (the case involving
12636 		 * access-tracked SPTEs is particularly relevant).
12637 		 */
12638 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12639 	}
12640 }
12641 
12642 void kvm_arch_commit_memory_region(struct kvm *kvm,
12643 				struct kvm_memory_slot *old,
12644 				const struct kvm_memory_slot *new,
12645 				enum kvm_mr_change change)
12646 {
12647 	if (!kvm->arch.n_requested_mmu_pages &&
12648 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12649 		unsigned long nr_mmu_pages;
12650 
12651 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12652 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12653 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12654 	}
12655 
12656 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12657 
12658 	/* Free the arrays associated with the old memslot. */
12659 	if (change == KVM_MR_MOVE)
12660 		kvm_arch_free_memslot(kvm, old);
12661 }
12662 
12663 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12664 {
12665 	kvm_mmu_zap_all(kvm);
12666 }
12667 
12668 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12669 				   struct kvm_memory_slot *slot)
12670 {
12671 	kvm_page_track_flush_slot(kvm, slot);
12672 }
12673 
12674 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12675 {
12676 	return (is_guest_mode(vcpu) &&
12677 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12678 }
12679 
12680 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12681 {
12682 	if (!list_empty_careful(&vcpu->async_pf.done))
12683 		return true;
12684 
12685 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12686 	    kvm_apic_init_sipi_allowed(vcpu))
12687 		return true;
12688 
12689 	if (vcpu->arch.pv.pv_unhalted)
12690 		return true;
12691 
12692 	if (kvm_is_exception_pending(vcpu))
12693 		return true;
12694 
12695 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12696 	    (vcpu->arch.nmi_pending &&
12697 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12698 		return true;
12699 
12700 #ifdef CONFIG_KVM_SMM
12701 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12702 	    (vcpu->arch.smi_pending &&
12703 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12704 		return true;
12705 #endif
12706 
12707 	if (kvm_arch_interrupt_allowed(vcpu) &&
12708 	    (kvm_cpu_has_interrupt(vcpu) ||
12709 	    kvm_guest_apic_has_interrupt(vcpu)))
12710 		return true;
12711 
12712 	if (kvm_hv_has_stimer_pending(vcpu))
12713 		return true;
12714 
12715 	if (is_guest_mode(vcpu) &&
12716 	    kvm_x86_ops.nested_ops->has_events &&
12717 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12718 		return true;
12719 
12720 	if (kvm_xen_has_pending_events(vcpu))
12721 		return true;
12722 
12723 	return false;
12724 }
12725 
12726 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12727 {
12728 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12729 }
12730 
12731 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12732 {
12733 	if (kvm_vcpu_apicv_active(vcpu) &&
12734 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12735 		return true;
12736 
12737 	return false;
12738 }
12739 
12740 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12741 {
12742 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12743 		return true;
12744 
12745 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12746 #ifdef CONFIG_KVM_SMM
12747 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12748 #endif
12749 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12750 		return true;
12751 
12752 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12753 }
12754 
12755 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12756 {
12757 	if (vcpu->arch.guest_state_protected)
12758 		return true;
12759 
12760 	return vcpu->arch.preempted_in_kernel;
12761 }
12762 
12763 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12764 {
12765 	return kvm_rip_read(vcpu);
12766 }
12767 
12768 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12769 {
12770 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12771 }
12772 
12773 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12774 {
12775 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12776 }
12777 
12778 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12779 {
12780 	/* Can't read the RIP when guest state is protected, just return 0 */
12781 	if (vcpu->arch.guest_state_protected)
12782 		return 0;
12783 
12784 	if (is_64_bit_mode(vcpu))
12785 		return kvm_rip_read(vcpu);
12786 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12787 		     kvm_rip_read(vcpu));
12788 }
12789 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12790 
12791 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12792 {
12793 	return kvm_get_linear_rip(vcpu) == linear_rip;
12794 }
12795 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12796 
12797 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12798 {
12799 	unsigned long rflags;
12800 
12801 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12802 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12803 		rflags &= ~X86_EFLAGS_TF;
12804 	return rflags;
12805 }
12806 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12807 
12808 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12809 {
12810 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12811 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12812 		rflags |= X86_EFLAGS_TF;
12813 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12814 }
12815 
12816 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12817 {
12818 	__kvm_set_rflags(vcpu, rflags);
12819 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12820 }
12821 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12822 
12823 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12824 {
12825 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12826 
12827 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12828 }
12829 
12830 static inline u32 kvm_async_pf_next_probe(u32 key)
12831 {
12832 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12833 }
12834 
12835 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12836 {
12837 	u32 key = kvm_async_pf_hash_fn(gfn);
12838 
12839 	while (vcpu->arch.apf.gfns[key] != ~0)
12840 		key = kvm_async_pf_next_probe(key);
12841 
12842 	vcpu->arch.apf.gfns[key] = gfn;
12843 }
12844 
12845 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12846 {
12847 	int i;
12848 	u32 key = kvm_async_pf_hash_fn(gfn);
12849 
12850 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12851 		     (vcpu->arch.apf.gfns[key] != gfn &&
12852 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12853 		key = kvm_async_pf_next_probe(key);
12854 
12855 	return key;
12856 }
12857 
12858 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12859 {
12860 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12861 }
12862 
12863 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12864 {
12865 	u32 i, j, k;
12866 
12867 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12868 
12869 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12870 		return;
12871 
12872 	while (true) {
12873 		vcpu->arch.apf.gfns[i] = ~0;
12874 		do {
12875 			j = kvm_async_pf_next_probe(j);
12876 			if (vcpu->arch.apf.gfns[j] == ~0)
12877 				return;
12878 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12879 			/*
12880 			 * k lies cyclically in ]i,j]
12881 			 * |    i.k.j |
12882 			 * |....j i.k.| or  |.k..j i...|
12883 			 */
12884 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12885 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12886 		i = j;
12887 	}
12888 }
12889 
12890 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12891 {
12892 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12893 
12894 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12895 				      sizeof(reason));
12896 }
12897 
12898 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12899 {
12900 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12901 
12902 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12903 					     &token, offset, sizeof(token));
12904 }
12905 
12906 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12907 {
12908 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12909 	u32 val;
12910 
12911 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12912 					 &val, offset, sizeof(val)))
12913 		return false;
12914 
12915 	return !val;
12916 }
12917 
12918 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12919 {
12920 
12921 	if (!kvm_pv_async_pf_enabled(vcpu))
12922 		return false;
12923 
12924 	if (vcpu->arch.apf.send_user_only &&
12925 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12926 		return false;
12927 
12928 	if (is_guest_mode(vcpu)) {
12929 		/*
12930 		 * L1 needs to opt into the special #PF vmexits that are
12931 		 * used to deliver async page faults.
12932 		 */
12933 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12934 	} else {
12935 		/*
12936 		 * Play it safe in case the guest temporarily disables paging.
12937 		 * The real mode IDT in particular is unlikely to have a #PF
12938 		 * exception setup.
12939 		 */
12940 		return is_paging(vcpu);
12941 	}
12942 }
12943 
12944 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12945 {
12946 	if (unlikely(!lapic_in_kernel(vcpu) ||
12947 		     kvm_event_needs_reinjection(vcpu) ||
12948 		     kvm_is_exception_pending(vcpu)))
12949 		return false;
12950 
12951 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12952 		return false;
12953 
12954 	/*
12955 	 * If interrupts are off we cannot even use an artificial
12956 	 * halt state.
12957 	 */
12958 	return kvm_arch_interrupt_allowed(vcpu);
12959 }
12960 
12961 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12962 				     struct kvm_async_pf *work)
12963 {
12964 	struct x86_exception fault;
12965 
12966 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12967 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12968 
12969 	if (kvm_can_deliver_async_pf(vcpu) &&
12970 	    !apf_put_user_notpresent(vcpu)) {
12971 		fault.vector = PF_VECTOR;
12972 		fault.error_code_valid = true;
12973 		fault.error_code = 0;
12974 		fault.nested_page_fault = false;
12975 		fault.address = work->arch.token;
12976 		fault.async_page_fault = true;
12977 		kvm_inject_page_fault(vcpu, &fault);
12978 		return true;
12979 	} else {
12980 		/*
12981 		 * It is not possible to deliver a paravirtualized asynchronous
12982 		 * page fault, but putting the guest in an artificial halt state
12983 		 * can be beneficial nevertheless: if an interrupt arrives, we
12984 		 * can deliver it timely and perhaps the guest will schedule
12985 		 * another process.  When the instruction that triggered a page
12986 		 * fault is retried, hopefully the page will be ready in the host.
12987 		 */
12988 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12989 		return false;
12990 	}
12991 }
12992 
12993 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12994 				 struct kvm_async_pf *work)
12995 {
12996 	struct kvm_lapic_irq irq = {
12997 		.delivery_mode = APIC_DM_FIXED,
12998 		.vector = vcpu->arch.apf.vec
12999 	};
13000 
13001 	if (work->wakeup_all)
13002 		work->arch.token = ~0; /* broadcast wakeup */
13003 	else
13004 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13005 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13006 
13007 	if ((work->wakeup_all || work->notpresent_injected) &&
13008 	    kvm_pv_async_pf_enabled(vcpu) &&
13009 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13010 		vcpu->arch.apf.pageready_pending = true;
13011 		kvm_apic_set_irq(vcpu, &irq, NULL);
13012 	}
13013 
13014 	vcpu->arch.apf.halted = false;
13015 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13016 }
13017 
13018 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13019 {
13020 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13021 	if (!vcpu->arch.apf.pageready_pending)
13022 		kvm_vcpu_kick(vcpu);
13023 }
13024 
13025 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13026 {
13027 	if (!kvm_pv_async_pf_enabled(vcpu))
13028 		return true;
13029 	else
13030 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13031 }
13032 
13033 void kvm_arch_start_assignment(struct kvm *kvm)
13034 {
13035 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13036 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13037 }
13038 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13039 
13040 void kvm_arch_end_assignment(struct kvm *kvm)
13041 {
13042 	atomic_dec(&kvm->arch.assigned_device_count);
13043 }
13044 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13045 
13046 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13047 {
13048 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13049 }
13050 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13051 
13052 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13053 {
13054 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13055 }
13056 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13057 
13058 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13059 {
13060 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13061 }
13062 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13063 
13064 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13065 {
13066 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13067 }
13068 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13069 
13070 bool kvm_arch_has_irq_bypass(void)
13071 {
13072 	return true;
13073 }
13074 
13075 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13076 				      struct irq_bypass_producer *prod)
13077 {
13078 	struct kvm_kernel_irqfd *irqfd =
13079 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13080 	int ret;
13081 
13082 	irqfd->producer = prod;
13083 	kvm_arch_start_assignment(irqfd->kvm);
13084 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13085 					 prod->irq, irqfd->gsi, 1);
13086 
13087 	if (ret)
13088 		kvm_arch_end_assignment(irqfd->kvm);
13089 
13090 	return ret;
13091 }
13092 
13093 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13094 				      struct irq_bypass_producer *prod)
13095 {
13096 	int ret;
13097 	struct kvm_kernel_irqfd *irqfd =
13098 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13099 
13100 	WARN_ON(irqfd->producer != prod);
13101 	irqfd->producer = NULL;
13102 
13103 	/*
13104 	 * When producer of consumer is unregistered, we change back to
13105 	 * remapped mode, so we can re-use the current implementation
13106 	 * when the irq is masked/disabled or the consumer side (KVM
13107 	 * int this case doesn't want to receive the interrupts.
13108 	*/
13109 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13110 	if (ret)
13111 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13112 		       " fails: %d\n", irqfd->consumer.token, ret);
13113 
13114 	kvm_arch_end_assignment(irqfd->kvm);
13115 }
13116 
13117 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13118 				   uint32_t guest_irq, bool set)
13119 {
13120 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13121 }
13122 
13123 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13124 				  struct kvm_kernel_irq_routing_entry *new)
13125 {
13126 	if (new->type != KVM_IRQ_ROUTING_MSI)
13127 		return true;
13128 
13129 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13130 }
13131 
13132 bool kvm_vector_hashing_enabled(void)
13133 {
13134 	return vector_hashing;
13135 }
13136 
13137 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13138 {
13139 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13140 }
13141 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13142 
13143 
13144 int kvm_spec_ctrl_test_value(u64 value)
13145 {
13146 	/*
13147 	 * test that setting IA32_SPEC_CTRL to given value
13148 	 * is allowed by the host processor
13149 	 */
13150 
13151 	u64 saved_value;
13152 	unsigned long flags;
13153 	int ret = 0;
13154 
13155 	local_irq_save(flags);
13156 
13157 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13158 		ret = 1;
13159 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13160 		ret = 1;
13161 	else
13162 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13163 
13164 	local_irq_restore(flags);
13165 
13166 	return ret;
13167 }
13168 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13169 
13170 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13171 {
13172 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13173 	struct x86_exception fault;
13174 	u64 access = error_code &
13175 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13176 
13177 	if (!(error_code & PFERR_PRESENT_MASK) ||
13178 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13179 		/*
13180 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13181 		 * tables probably do not match the TLB.  Just proceed
13182 		 * with the error code that the processor gave.
13183 		 */
13184 		fault.vector = PF_VECTOR;
13185 		fault.error_code_valid = true;
13186 		fault.error_code = error_code;
13187 		fault.nested_page_fault = false;
13188 		fault.address = gva;
13189 		fault.async_page_fault = false;
13190 	}
13191 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13192 }
13193 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13194 
13195 /*
13196  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13197  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13198  * indicates whether exit to userspace is needed.
13199  */
13200 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13201 			      struct x86_exception *e)
13202 {
13203 	if (r == X86EMUL_PROPAGATE_FAULT) {
13204 		if (KVM_BUG_ON(!e, vcpu->kvm))
13205 			return -EIO;
13206 
13207 		kvm_inject_emulated_page_fault(vcpu, e);
13208 		return 1;
13209 	}
13210 
13211 	/*
13212 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13213 	 * while handling a VMX instruction KVM could've handled the request
13214 	 * correctly by exiting to userspace and performing I/O but there
13215 	 * doesn't seem to be a real use-case behind such requests, just return
13216 	 * KVM_EXIT_INTERNAL_ERROR for now.
13217 	 */
13218 	kvm_prepare_emulation_failure_exit(vcpu);
13219 
13220 	return 0;
13221 }
13222 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13223 
13224 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13225 {
13226 	bool pcid_enabled;
13227 	struct x86_exception e;
13228 	struct {
13229 		u64 pcid;
13230 		u64 gla;
13231 	} operand;
13232 	int r;
13233 
13234 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13235 	if (r != X86EMUL_CONTINUE)
13236 		return kvm_handle_memory_failure(vcpu, r, &e);
13237 
13238 	if (operand.pcid >> 12 != 0) {
13239 		kvm_inject_gp(vcpu, 0);
13240 		return 1;
13241 	}
13242 
13243 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13244 
13245 	switch (type) {
13246 	case INVPCID_TYPE_INDIV_ADDR:
13247 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13248 		    is_noncanonical_address(operand.gla, vcpu)) {
13249 			kvm_inject_gp(vcpu, 0);
13250 			return 1;
13251 		}
13252 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13253 		return kvm_skip_emulated_instruction(vcpu);
13254 
13255 	case INVPCID_TYPE_SINGLE_CTXT:
13256 		if (!pcid_enabled && (operand.pcid != 0)) {
13257 			kvm_inject_gp(vcpu, 0);
13258 			return 1;
13259 		}
13260 
13261 		kvm_invalidate_pcid(vcpu, operand.pcid);
13262 		return kvm_skip_emulated_instruction(vcpu);
13263 
13264 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13265 		/*
13266 		 * Currently, KVM doesn't mark global entries in the shadow
13267 		 * page tables, so a non-global flush just degenerates to a
13268 		 * global flush. If needed, we could optimize this later by
13269 		 * keeping track of global entries in shadow page tables.
13270 		 */
13271 
13272 		fallthrough;
13273 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13274 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13275 		return kvm_skip_emulated_instruction(vcpu);
13276 
13277 	default:
13278 		kvm_inject_gp(vcpu, 0);
13279 		return 1;
13280 	}
13281 }
13282 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13283 
13284 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13285 {
13286 	struct kvm_run *run = vcpu->run;
13287 	struct kvm_mmio_fragment *frag;
13288 	unsigned int len;
13289 
13290 	BUG_ON(!vcpu->mmio_needed);
13291 
13292 	/* Complete previous fragment */
13293 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13294 	len = min(8u, frag->len);
13295 	if (!vcpu->mmio_is_write)
13296 		memcpy(frag->data, run->mmio.data, len);
13297 
13298 	if (frag->len <= 8) {
13299 		/* Switch to the next fragment. */
13300 		frag++;
13301 		vcpu->mmio_cur_fragment++;
13302 	} else {
13303 		/* Go forward to the next mmio piece. */
13304 		frag->data += len;
13305 		frag->gpa += len;
13306 		frag->len -= len;
13307 	}
13308 
13309 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13310 		vcpu->mmio_needed = 0;
13311 
13312 		// VMG change, at this point, we're always done
13313 		// RIP has already been advanced
13314 		return 1;
13315 	}
13316 
13317 	// More MMIO is needed
13318 	run->mmio.phys_addr = frag->gpa;
13319 	run->mmio.len = min(8u, frag->len);
13320 	run->mmio.is_write = vcpu->mmio_is_write;
13321 	if (run->mmio.is_write)
13322 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13323 	run->exit_reason = KVM_EXIT_MMIO;
13324 
13325 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13326 
13327 	return 0;
13328 }
13329 
13330 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13331 			  void *data)
13332 {
13333 	int handled;
13334 	struct kvm_mmio_fragment *frag;
13335 
13336 	if (!data)
13337 		return -EINVAL;
13338 
13339 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13340 	if (handled == bytes)
13341 		return 1;
13342 
13343 	bytes -= handled;
13344 	gpa += handled;
13345 	data += handled;
13346 
13347 	/*TODO: Check if need to increment number of frags */
13348 	frag = vcpu->mmio_fragments;
13349 	vcpu->mmio_nr_fragments = 1;
13350 	frag->len = bytes;
13351 	frag->gpa = gpa;
13352 	frag->data = data;
13353 
13354 	vcpu->mmio_needed = 1;
13355 	vcpu->mmio_cur_fragment = 0;
13356 
13357 	vcpu->run->mmio.phys_addr = gpa;
13358 	vcpu->run->mmio.len = min(8u, frag->len);
13359 	vcpu->run->mmio.is_write = 1;
13360 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13361 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13362 
13363 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13364 
13365 	return 0;
13366 }
13367 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13368 
13369 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13370 			 void *data)
13371 {
13372 	int handled;
13373 	struct kvm_mmio_fragment *frag;
13374 
13375 	if (!data)
13376 		return -EINVAL;
13377 
13378 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13379 	if (handled == bytes)
13380 		return 1;
13381 
13382 	bytes -= handled;
13383 	gpa += handled;
13384 	data += handled;
13385 
13386 	/*TODO: Check if need to increment number of frags */
13387 	frag = vcpu->mmio_fragments;
13388 	vcpu->mmio_nr_fragments = 1;
13389 	frag->len = bytes;
13390 	frag->gpa = gpa;
13391 	frag->data = data;
13392 
13393 	vcpu->mmio_needed = 1;
13394 	vcpu->mmio_cur_fragment = 0;
13395 
13396 	vcpu->run->mmio.phys_addr = gpa;
13397 	vcpu->run->mmio.len = min(8u, frag->len);
13398 	vcpu->run->mmio.is_write = 0;
13399 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13400 
13401 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13402 
13403 	return 0;
13404 }
13405 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13406 
13407 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13408 {
13409 	vcpu->arch.sev_pio_count -= count;
13410 	vcpu->arch.sev_pio_data += count * size;
13411 }
13412 
13413 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13414 			   unsigned int port);
13415 
13416 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13417 {
13418 	int size = vcpu->arch.pio.size;
13419 	int port = vcpu->arch.pio.port;
13420 
13421 	vcpu->arch.pio.count = 0;
13422 	if (vcpu->arch.sev_pio_count)
13423 		return kvm_sev_es_outs(vcpu, size, port);
13424 	return 1;
13425 }
13426 
13427 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13428 			   unsigned int port)
13429 {
13430 	for (;;) {
13431 		unsigned int count =
13432 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13433 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13434 
13435 		/* memcpy done already by emulator_pio_out.  */
13436 		advance_sev_es_emulated_pio(vcpu, count, size);
13437 		if (!ret)
13438 			break;
13439 
13440 		/* Emulation done by the kernel.  */
13441 		if (!vcpu->arch.sev_pio_count)
13442 			return 1;
13443 	}
13444 
13445 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13446 	return 0;
13447 }
13448 
13449 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13450 			  unsigned int port);
13451 
13452 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13453 {
13454 	unsigned count = vcpu->arch.pio.count;
13455 	int size = vcpu->arch.pio.size;
13456 	int port = vcpu->arch.pio.port;
13457 
13458 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13459 	advance_sev_es_emulated_pio(vcpu, count, size);
13460 	if (vcpu->arch.sev_pio_count)
13461 		return kvm_sev_es_ins(vcpu, size, port);
13462 	return 1;
13463 }
13464 
13465 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13466 			  unsigned int port)
13467 {
13468 	for (;;) {
13469 		unsigned int count =
13470 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13471 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13472 			break;
13473 
13474 		/* Emulation done by the kernel.  */
13475 		advance_sev_es_emulated_pio(vcpu, count, size);
13476 		if (!vcpu->arch.sev_pio_count)
13477 			return 1;
13478 	}
13479 
13480 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13481 	return 0;
13482 }
13483 
13484 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13485 			 unsigned int port, void *data,  unsigned int count,
13486 			 int in)
13487 {
13488 	vcpu->arch.sev_pio_data = data;
13489 	vcpu->arch.sev_pio_count = count;
13490 	return in ? kvm_sev_es_ins(vcpu, size, port)
13491 		  : kvm_sev_es_outs(vcpu, size, port);
13492 }
13493 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13494 
13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13524 
13525 static int __init kvm_x86_init(void)
13526 {
13527 	kvm_mmu_x86_module_init();
13528 	return 0;
13529 }
13530 module_init(kvm_x86_init);
13531 
13532 static void __exit kvm_x86_exit(void)
13533 {
13534 	/*
13535 	 * If module_init() is implemented, module_exit() must also be
13536 	 * implemented to allow module unload.
13537 	 */
13538 }
13539 module_exit(kvm_x86_exit);
13540