1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* 197 * Restoring the host value for MSRs that are only consumed when running in 198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 199 * returns to userspace, i.e. the kernel can run with the guest's value. 200 */ 201 #define KVM_MAX_NR_USER_RETURN_MSRS 16 202 203 struct kvm_user_return_msrs { 204 struct user_return_notifier urn; 205 bool registered; 206 struct kvm_user_return_msr_values { 207 u64 host; 208 u64 curr; 209 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 210 }; 211 212 u32 __read_mostly kvm_nr_uret_msrs; 213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 215 static struct kvm_user_return_msrs __percpu *user_return_msrs; 216 217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 221 222 u64 __read_mostly host_efer; 223 EXPORT_SYMBOL_GPL(host_efer); 224 225 bool __read_mostly allow_smaller_maxphyaddr = 0; 226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 227 228 bool __read_mostly enable_apicv = true; 229 EXPORT_SYMBOL_GPL(enable_apicv); 230 231 u64 __read_mostly host_xss; 232 EXPORT_SYMBOL_GPL(host_xss); 233 234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 235 KVM_GENERIC_VM_STATS(), 236 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 237 STATS_DESC_COUNTER(VM, mmu_pte_write), 238 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 239 STATS_DESC_COUNTER(VM, mmu_flooded), 240 STATS_DESC_COUNTER(VM, mmu_recycled), 241 STATS_DESC_COUNTER(VM, mmu_cache_miss), 242 STATS_DESC_ICOUNTER(VM, mmu_unsync), 243 STATS_DESC_ICOUNTER(VM, pages_4k), 244 STATS_DESC_ICOUNTER(VM, pages_2m), 245 STATS_DESC_ICOUNTER(VM, pages_1g), 246 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 247 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 248 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 249 }; 250 251 const struct kvm_stats_header kvm_vm_stats_header = { 252 .name_size = KVM_STATS_NAME_SIZE, 253 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 254 .id_offset = sizeof(struct kvm_stats_header), 255 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 256 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 257 sizeof(kvm_vm_stats_desc), 258 }; 259 260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 261 KVM_GENERIC_VCPU_STATS(), 262 STATS_DESC_COUNTER(VCPU, pf_taken), 263 STATS_DESC_COUNTER(VCPU, pf_fixed), 264 STATS_DESC_COUNTER(VCPU, pf_emulate), 265 STATS_DESC_COUNTER(VCPU, pf_spurious), 266 STATS_DESC_COUNTER(VCPU, pf_fast), 267 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 268 STATS_DESC_COUNTER(VCPU, pf_guest), 269 STATS_DESC_COUNTER(VCPU, tlb_flush), 270 STATS_DESC_COUNTER(VCPU, invlpg), 271 STATS_DESC_COUNTER(VCPU, exits), 272 STATS_DESC_COUNTER(VCPU, io_exits), 273 STATS_DESC_COUNTER(VCPU, mmio_exits), 274 STATS_DESC_COUNTER(VCPU, signal_exits), 275 STATS_DESC_COUNTER(VCPU, irq_window_exits), 276 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 277 STATS_DESC_COUNTER(VCPU, l1d_flush), 278 STATS_DESC_COUNTER(VCPU, halt_exits), 279 STATS_DESC_COUNTER(VCPU, request_irq_exits), 280 STATS_DESC_COUNTER(VCPU, irq_exits), 281 STATS_DESC_COUNTER(VCPU, host_state_reload), 282 STATS_DESC_COUNTER(VCPU, fpu_reload), 283 STATS_DESC_COUNTER(VCPU, insn_emulation), 284 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 285 STATS_DESC_COUNTER(VCPU, hypercalls), 286 STATS_DESC_COUNTER(VCPU, irq_injections), 287 STATS_DESC_COUNTER(VCPU, nmi_injections), 288 STATS_DESC_COUNTER(VCPU, req_event), 289 STATS_DESC_COUNTER(VCPU, nested_run), 290 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 291 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 292 STATS_DESC_COUNTER(VCPU, preemption_reported), 293 STATS_DESC_COUNTER(VCPU, preemption_other), 294 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 295 STATS_DESC_COUNTER(VCPU, notify_window_exits), 296 }; 297 298 const struct kvm_stats_header kvm_vcpu_stats_header = { 299 .name_size = KVM_STATS_NAME_SIZE, 300 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 301 .id_offset = sizeof(struct kvm_stats_header), 302 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 303 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 304 sizeof(kvm_vcpu_stats_desc), 305 }; 306 307 u64 __read_mostly host_xcr0; 308 309 static struct kmem_cache *x86_emulator_cache; 310 311 /* 312 * When called, it means the previous get/set msr reached an invalid msr. 313 * Return true if we want to ignore/silent this failed msr access. 314 */ 315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 316 { 317 const char *op = write ? "wrmsr" : "rdmsr"; 318 319 if (ignore_msrs) { 320 if (report_ignored_msrs) 321 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 322 op, msr, data); 323 /* Mask the error */ 324 return true; 325 } else { 326 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 327 op, msr, data); 328 return false; 329 } 330 } 331 332 static struct kmem_cache *kvm_alloc_emulator_cache(void) 333 { 334 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 335 unsigned int size = sizeof(struct x86_emulate_ctxt); 336 337 return kmem_cache_create_usercopy("x86_emulator", size, 338 __alignof__(struct x86_emulate_ctxt), 339 SLAB_ACCOUNT, useroffset, 340 size - useroffset, NULL); 341 } 342 343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 344 345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 346 { 347 int i; 348 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 349 vcpu->arch.apf.gfns[i] = ~0; 350 } 351 352 static void kvm_on_user_return(struct user_return_notifier *urn) 353 { 354 unsigned slot; 355 struct kvm_user_return_msrs *msrs 356 = container_of(urn, struct kvm_user_return_msrs, urn); 357 struct kvm_user_return_msr_values *values; 358 unsigned long flags; 359 360 /* 361 * Disabling irqs at this point since the following code could be 362 * interrupted and executed through kvm_arch_hardware_disable() 363 */ 364 local_irq_save(flags); 365 if (msrs->registered) { 366 msrs->registered = false; 367 user_return_notifier_unregister(urn); 368 } 369 local_irq_restore(flags); 370 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 371 values = &msrs->values[slot]; 372 if (values->host != values->curr) { 373 wrmsrl(kvm_uret_msrs_list[slot], values->host); 374 values->curr = values->host; 375 } 376 } 377 } 378 379 static int kvm_probe_user_return_msr(u32 msr) 380 { 381 u64 val; 382 int ret; 383 384 preempt_disable(); 385 ret = rdmsrl_safe(msr, &val); 386 if (ret) 387 goto out; 388 ret = wrmsrl_safe(msr, val); 389 out: 390 preempt_enable(); 391 return ret; 392 } 393 394 int kvm_add_user_return_msr(u32 msr) 395 { 396 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 397 398 if (kvm_probe_user_return_msr(msr)) 399 return -1; 400 401 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 402 return kvm_nr_uret_msrs++; 403 } 404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 405 406 int kvm_find_user_return_msr(u32 msr) 407 { 408 int i; 409 410 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 411 if (kvm_uret_msrs_list[i] == msr) 412 return i; 413 } 414 return -1; 415 } 416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 417 418 static void kvm_user_return_msr_cpu_online(void) 419 { 420 unsigned int cpu = smp_processor_id(); 421 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 422 u64 value; 423 int i; 424 425 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 426 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 427 msrs->values[i].host = value; 428 msrs->values[i].curr = value; 429 } 430 } 431 432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 433 { 434 unsigned int cpu = smp_processor_id(); 435 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 436 int err; 437 438 value = (value & mask) | (msrs->values[slot].host & ~mask); 439 if (value == msrs->values[slot].curr) 440 return 0; 441 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 442 if (err) 443 return 1; 444 445 msrs->values[slot].curr = value; 446 if (!msrs->registered) { 447 msrs->urn.on_user_return = kvm_on_user_return; 448 user_return_notifier_register(&msrs->urn); 449 msrs->registered = true; 450 } 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 454 455 static void drop_user_return_notifiers(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 459 460 if (msrs->registered) 461 kvm_on_user_return(&msrs->urn); 462 } 463 464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 465 { 466 return vcpu->arch.apic_base; 467 } 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 496 /* 497 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 498 * 499 * Hardware virtualization extension instructions may fault if a reboot turns 500 * off virtualization while processes are running. Usually after catching the 501 * fault we just panic; during reboot instead the instruction is ignored. 502 */ 503 noinstr void kvm_spurious_fault(void) 504 { 505 /* Fault while not rebooting. We want the trace. */ 506 BUG_ON(!kvm_rebooting); 507 } 508 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 509 510 #define EXCPT_BENIGN 0 511 #define EXCPT_CONTRIBUTORY 1 512 #define EXCPT_PF 2 513 514 static int exception_class(int vector) 515 { 516 switch (vector) { 517 case PF_VECTOR: 518 return EXCPT_PF; 519 case DE_VECTOR: 520 case TS_VECTOR: 521 case NP_VECTOR: 522 case SS_VECTOR: 523 case GP_VECTOR: 524 return EXCPT_CONTRIBUTORY; 525 default: 526 break; 527 } 528 return EXCPT_BENIGN; 529 } 530 531 #define EXCPT_FAULT 0 532 #define EXCPT_TRAP 1 533 #define EXCPT_ABORT 2 534 #define EXCPT_INTERRUPT 3 535 #define EXCPT_DB 4 536 537 static int exception_type(int vector) 538 { 539 unsigned int mask; 540 541 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 542 return EXCPT_INTERRUPT; 543 544 mask = 1 << vector; 545 546 /* 547 * #DBs can be trap-like or fault-like, the caller must check other CPU 548 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 549 */ 550 if (mask & (1 << DB_VECTOR)) 551 return EXCPT_DB; 552 553 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 554 return EXCPT_TRAP; 555 556 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 557 return EXCPT_ABORT; 558 559 /* Reserved exceptions will result in fault */ 560 return EXCPT_FAULT; 561 } 562 563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 564 struct kvm_queued_exception *ex) 565 { 566 if (!ex->has_payload) 567 return; 568 569 switch (ex->vector) { 570 case DB_VECTOR: 571 /* 572 * "Certain debug exceptions may clear bit 0-3. The 573 * remaining contents of the DR6 register are never 574 * cleared by the processor". 575 */ 576 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 577 /* 578 * In order to reflect the #DB exception payload in guest 579 * dr6, three components need to be considered: active low 580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 581 * DR6_BS and DR6_BT) 582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 583 * In the target guest dr6: 584 * FIXED_1 bits should always be set. 585 * Active low bits should be cleared if 1-setting in payload. 586 * Active high bits should be set if 1-setting in payload. 587 * 588 * Note, the payload is compatible with the pending debug 589 * exceptions/exit qualification under VMX, that active_low bits 590 * are active high in payload. 591 * So they need to be flipped for DR6. 592 */ 593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 594 vcpu->arch.dr6 |= ex->payload; 595 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 596 597 /* 598 * The #DB payload is defined as compatible with the 'pending 599 * debug exceptions' field under VMX, not DR6. While bit 12 is 600 * defined in the 'pending debug exceptions' field (enabled 601 * breakpoint), it is reserved and must be zero in DR6. 602 */ 603 vcpu->arch.dr6 &= ~BIT(12); 604 break; 605 case PF_VECTOR: 606 vcpu->arch.cr2 = ex->payload; 607 break; 608 } 609 610 ex->has_payload = false; 611 ex->payload = 0; 612 } 613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 614 615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 616 bool has_error_code, u32 error_code, 617 bool has_payload, unsigned long payload) 618 { 619 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 620 621 ex->vector = vector; 622 ex->injected = false; 623 ex->pending = true; 624 ex->has_error_code = has_error_code; 625 ex->error_code = error_code; 626 ex->has_payload = has_payload; 627 ex->payload = payload; 628 } 629 630 /* Forcibly leave the nested mode in cases like a vCPU reset */ 631 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 632 { 633 kvm_x86_ops.nested_ops->leave_nested(vcpu); 634 } 635 636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 637 unsigned nr, bool has_error, u32 error_code, 638 bool has_payload, unsigned long payload, bool reinject) 639 { 640 u32 prev_nr; 641 int class1, class2; 642 643 kvm_make_request(KVM_REQ_EVENT, vcpu); 644 645 /* 646 * If the exception is destined for L2 and isn't being reinjected, 647 * morph it to a VM-Exit if L1 wants to intercept the exception. A 648 * previously injected exception is not checked because it was checked 649 * when it was original queued, and re-checking is incorrect if _L1_ 650 * injected the exception, in which case it's exempt from interception. 651 */ 652 if (!reinject && is_guest_mode(vcpu) && 653 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 654 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 655 has_payload, payload); 656 return; 657 } 658 659 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 660 queue: 661 if (reinject) { 662 /* 663 * On VM-Entry, an exception can be pending if and only 664 * if event injection was blocked by nested_run_pending. 665 * In that case, however, vcpu_enter_guest() requests an 666 * immediate exit, and the guest shouldn't proceed far 667 * enough to need reinjection. 668 */ 669 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 670 vcpu->arch.exception.injected = true; 671 if (WARN_ON_ONCE(has_payload)) { 672 /* 673 * A reinjected event has already 674 * delivered its payload. 675 */ 676 has_payload = false; 677 payload = 0; 678 } 679 } else { 680 vcpu->arch.exception.pending = true; 681 vcpu->arch.exception.injected = false; 682 } 683 vcpu->arch.exception.has_error_code = has_error; 684 vcpu->arch.exception.vector = nr; 685 vcpu->arch.exception.error_code = error_code; 686 vcpu->arch.exception.has_payload = has_payload; 687 vcpu->arch.exception.payload = payload; 688 if (!is_guest_mode(vcpu)) 689 kvm_deliver_exception_payload(vcpu, 690 &vcpu->arch.exception); 691 return; 692 } 693 694 /* to check exception */ 695 prev_nr = vcpu->arch.exception.vector; 696 if (prev_nr == DF_VECTOR) { 697 /* triple fault -> shutdown */ 698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 699 return; 700 } 701 class1 = exception_class(prev_nr); 702 class2 = exception_class(nr); 703 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 704 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 705 /* 706 * Synthesize #DF. Clear the previously injected or pending 707 * exception so as not to incorrectly trigger shutdown. 708 */ 709 vcpu->arch.exception.injected = false; 710 vcpu->arch.exception.pending = false; 711 712 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 713 } else { 714 /* replace previous exception with a new one in a hope 715 that instruction re-execution will regenerate lost 716 exception */ 717 goto queue; 718 } 719 } 720 721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 724 } 725 EXPORT_SYMBOL_GPL(kvm_queue_exception); 726 727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 730 } 731 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 732 733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 734 unsigned long payload) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 739 740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 741 u32 error_code, unsigned long payload) 742 { 743 kvm_multiple_exception(vcpu, nr, true, error_code, 744 true, payload, false); 745 } 746 747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 748 { 749 if (err) 750 kvm_inject_gp(vcpu, 0); 751 else 752 return kvm_skip_emulated_instruction(vcpu); 753 754 return 1; 755 } 756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 757 758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 759 { 760 if (err) { 761 kvm_inject_gp(vcpu, 0); 762 return 1; 763 } 764 765 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 766 EMULTYPE_COMPLETE_USER_EXIT); 767 } 768 769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 770 { 771 ++vcpu->stat.pf_guest; 772 773 /* 774 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 775 * whether or not L1 wants to intercept "regular" #PF. 776 */ 777 if (is_guest_mode(vcpu) && fault->async_page_fault) 778 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 779 true, fault->error_code, 780 true, fault->address); 781 else 782 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 783 fault->address); 784 } 785 786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 787 struct x86_exception *fault) 788 { 789 struct kvm_mmu *fault_mmu; 790 WARN_ON_ONCE(fault->vector != PF_VECTOR); 791 792 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 793 vcpu->arch.walk_mmu; 794 795 /* 796 * Invalidate the TLB entry for the faulting address, if it exists, 797 * else the access will fault indefinitely (and to emulate hardware). 798 */ 799 if ((fault->error_code & PFERR_PRESENT_MASK) && 800 !(fault->error_code & PFERR_RSVD_MASK)) 801 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 802 fault_mmu->root.hpa); 803 804 fault_mmu->inject_page_fault(vcpu, fault); 805 } 806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 807 808 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 809 { 810 atomic_inc(&vcpu->arch.nmi_queued); 811 kvm_make_request(KVM_REQ_NMI, vcpu); 812 } 813 814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 817 } 818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 819 820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 823 } 824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 825 826 /* 827 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 828 * a #GP and return false. 829 */ 830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 831 { 832 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 833 return true; 834 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 835 return false; 836 } 837 838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 839 { 840 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 841 return true; 842 843 kvm_queue_exception(vcpu, UD_VECTOR); 844 return false; 845 } 846 EXPORT_SYMBOL_GPL(kvm_require_dr); 847 848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 849 { 850 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 851 } 852 853 /* 854 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 855 */ 856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 857 { 858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 859 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 860 gpa_t real_gpa; 861 int i; 862 int ret; 863 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 864 865 /* 866 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 867 * to an L1 GPA. 868 */ 869 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 870 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 871 if (real_gpa == INVALID_GPA) 872 return 0; 873 874 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 875 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 876 cr3 & GENMASK(11, 5), sizeof(pdpte)); 877 if (ret < 0) 878 return 0; 879 880 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 881 if ((pdpte[i] & PT_PRESENT_MASK) && 882 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 883 return 0; 884 } 885 } 886 887 /* 888 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 889 * Shadow page roots need to be reconstructed instead. 890 */ 891 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 892 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 893 894 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 895 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 896 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 897 vcpu->arch.pdptrs_from_userspace = false; 898 899 return 1; 900 } 901 EXPORT_SYMBOL_GPL(load_pdptrs); 902 903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 904 { 905 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 906 kvm_clear_async_pf_completion_queue(vcpu); 907 kvm_async_pf_hash_reset(vcpu); 908 909 /* 910 * Clearing CR0.PG is defined to flush the TLB from the guest's 911 * perspective. 912 */ 913 if (!(cr0 & X86_CR0_PG)) 914 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 915 } 916 917 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 918 kvm_mmu_reset_context(vcpu); 919 920 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 921 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 922 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 923 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 924 } 925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 926 927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 928 { 929 unsigned long old_cr0 = kvm_read_cr0(vcpu); 930 931 cr0 |= X86_CR0_ET; 932 933 #ifdef CONFIG_X86_64 934 if (cr0 & 0xffffffff00000000UL) 935 return 1; 936 #endif 937 938 cr0 &= ~CR0_RESERVED_BITS; 939 940 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 941 return 1; 942 943 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 944 return 1; 945 946 #ifdef CONFIG_X86_64 947 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 948 (cr0 & X86_CR0_PG)) { 949 int cs_db, cs_l; 950 951 if (!is_pae(vcpu)) 952 return 1; 953 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 954 if (cs_l) 955 return 1; 956 } 957 #endif 958 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 959 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 960 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 961 return 1; 962 963 if (!(cr0 & X86_CR0_PG) && 964 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 965 return 1; 966 967 static_call(kvm_x86_set_cr0)(vcpu, cr0); 968 969 kvm_post_set_cr0(vcpu, old_cr0, cr0); 970 971 return 0; 972 } 973 EXPORT_SYMBOL_GPL(kvm_set_cr0); 974 975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 976 { 977 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 978 } 979 EXPORT_SYMBOL_GPL(kvm_lmsw); 980 981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.guest_state_protected) 984 return; 985 986 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 987 988 if (vcpu->arch.xcr0 != host_xcr0) 989 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 990 991 if (vcpu->arch.xsaves_enabled && 992 vcpu->arch.ia32_xss != host_xss) 993 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 994 } 995 996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 997 if (static_cpu_has(X86_FEATURE_PKU) && 998 vcpu->arch.pkru != vcpu->arch.host_pkru && 999 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1000 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1001 write_pkru(vcpu->arch.pkru); 1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1005 1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1007 { 1008 if (vcpu->arch.guest_state_protected) 1009 return; 1010 1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1012 if (static_cpu_has(X86_FEATURE_PKU) && 1013 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1014 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1015 vcpu->arch.pkru = rdpkru(); 1016 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1017 write_pkru(vcpu->arch.host_pkru); 1018 } 1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1020 1021 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, host_xss); 1029 } 1030 1031 } 1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1033 1034 #ifdef CONFIG_X86_64 1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1036 { 1037 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1038 } 1039 #endif 1040 1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1042 { 1043 u64 xcr0 = xcr; 1044 u64 old_xcr0 = vcpu->arch.xcr0; 1045 u64 valid_bits; 1046 1047 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1048 if (index != XCR_XFEATURE_ENABLED_MASK) 1049 return 1; 1050 if (!(xcr0 & XFEATURE_MASK_FP)) 1051 return 1; 1052 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1053 return 1; 1054 1055 /* 1056 * Do not allow the guest to set bits that we do not support 1057 * saving. However, xcr0 bit 0 is always set, even if the 1058 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1059 */ 1060 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1061 if (xcr0 & ~valid_bits) 1062 return 1; 1063 1064 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1065 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1066 return 1; 1067 1068 if (xcr0 & XFEATURE_MASK_AVX512) { 1069 if (!(xcr0 & XFEATURE_MASK_YMM)) 1070 return 1; 1071 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1072 return 1; 1073 } 1074 1075 if ((xcr0 & XFEATURE_MASK_XTILE) && 1076 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1077 return 1; 1078 1079 vcpu->arch.xcr0 = xcr0; 1080 1081 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1082 kvm_update_cpuid_runtime(vcpu); 1083 return 0; 1084 } 1085 1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1087 { 1088 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1089 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1090 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1091 kvm_inject_gp(vcpu, 0); 1092 return 1; 1093 } 1094 1095 return kvm_skip_emulated_instruction(vcpu); 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1098 1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1100 { 1101 if (cr4 & cr4_reserved_bits) 1102 return false; 1103 1104 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1105 return false; 1106 1107 return true; 1108 } 1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1110 1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 return __kvm_is_valid_cr4(vcpu, cr4) && 1114 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1115 } 1116 1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1118 { 1119 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1120 kvm_mmu_reset_context(vcpu); 1121 1122 /* 1123 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1124 * according to the SDM; however, stale prev_roots could be reused 1125 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1126 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1127 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1128 * so fall through. 1129 */ 1130 if (!tdp_enabled && 1131 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1132 kvm_mmu_unload(vcpu); 1133 1134 /* 1135 * The TLB has to be flushed for all PCIDs if any of the following 1136 * (architecturally required) changes happen: 1137 * - CR4.PCIDE is changed from 1 to 0 1138 * - CR4.PGE is toggled 1139 * 1140 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1141 */ 1142 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1143 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for the current PCID if any of the 1148 * following (architecturally required) changes happen: 1149 * - CR4.SMEP is changed from 0 to 1 1150 * - CR4.PAE is toggled 1151 */ 1152 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1153 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1158 1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1160 { 1161 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1162 1163 if (!kvm_is_valid_cr4(vcpu, cr4)) 1164 return 1; 1165 1166 if (is_long_mode(vcpu)) { 1167 if (!(cr4 & X86_CR4_PAE)) 1168 return 1; 1169 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1170 return 1; 1171 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1172 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1173 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1174 return 1; 1175 1176 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1178 return 1; 1179 1180 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1181 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1182 return 1; 1183 } 1184 1185 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1186 1187 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1188 1189 return 0; 1190 } 1191 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1192 1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1194 { 1195 struct kvm_mmu *mmu = vcpu->arch.mmu; 1196 unsigned long roots_to_free = 0; 1197 int i; 1198 1199 /* 1200 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1201 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1202 * also via the emulator. KVM's TDP page tables are not in the scope of 1203 * the invalidation, but the guest's TLB entries need to be flushed as 1204 * the CPU may have cached entries in its TLB for the target PCID. 1205 */ 1206 if (unlikely(tdp_enabled)) { 1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1208 return; 1209 } 1210 1211 /* 1212 * If neither the current CR3 nor any of the prev_roots use the given 1213 * PCID, then nothing needs to be done here because a resync will 1214 * happen anyway before switching to any other CR3. 1215 */ 1216 if (kvm_get_active_pcid(vcpu) == pcid) { 1217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1219 } 1220 1221 /* 1222 * If PCID is disabled, there is no need to free prev_roots even if the 1223 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1224 * with PCIDE=0. 1225 */ 1226 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1227 return; 1228 1229 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1230 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1231 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1232 1233 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1234 } 1235 1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1237 { 1238 bool skip_tlb_flush = false; 1239 unsigned long pcid = 0; 1240 #ifdef CONFIG_X86_64 1241 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1242 1243 if (pcid_enabled) { 1244 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1245 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1246 pcid = cr3 & X86_CR3_PCID_MASK; 1247 } 1248 #endif 1249 1250 /* PDPTRs are always reloaded for PAE paging. */ 1251 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1252 goto handle_tlb_flush; 1253 1254 /* 1255 * Do not condition the GPA check on long mode, this helper is used to 1256 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1257 * the current vCPU mode is accurate. 1258 */ 1259 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1260 return 1; 1261 1262 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1263 return 1; 1264 1265 if (cr3 != kvm_read_cr3(vcpu)) 1266 kvm_mmu_new_pgd(vcpu, cr3); 1267 1268 vcpu->arch.cr3 = cr3; 1269 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1270 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1271 1272 handle_tlb_flush: 1273 /* 1274 * A load of CR3 that flushes the TLB flushes only the current PCID, 1275 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1276 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1277 * and it's impossible to use a non-zero PCID when PCID is disabled, 1278 * i.e. only PCID=0 can be relevant. 1279 */ 1280 if (!skip_tlb_flush) 1281 kvm_invalidate_pcid(vcpu, pcid); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1286 1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1288 { 1289 if (cr8 & CR8_RESERVED_BITS) 1290 return 1; 1291 if (lapic_in_kernel(vcpu)) 1292 kvm_lapic_set_tpr(vcpu, cr8); 1293 else 1294 vcpu->arch.cr8 = cr8; 1295 return 0; 1296 } 1297 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1298 1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1300 { 1301 if (lapic_in_kernel(vcpu)) 1302 return kvm_lapic_get_cr8(vcpu); 1303 else 1304 return vcpu->arch.cr8; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1307 1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1309 { 1310 int i; 1311 1312 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1313 for (i = 0; i < KVM_NR_DB_REGS; i++) 1314 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1315 } 1316 } 1317 1318 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1319 { 1320 unsigned long dr7; 1321 1322 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1323 dr7 = vcpu->arch.guest_debug_dr7; 1324 else 1325 dr7 = vcpu->arch.dr7; 1326 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1327 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1328 if (dr7 & DR7_BP_EN_MASK) 1329 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1332 1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1334 { 1335 u64 fixed = DR6_FIXED_1; 1336 1337 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1338 fixed |= DR6_RTM; 1339 1340 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1341 fixed |= DR6_BUS_LOCK; 1342 return fixed; 1343 } 1344 1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1346 { 1347 size_t size = ARRAY_SIZE(vcpu->arch.db); 1348 1349 switch (dr) { 1350 case 0 ... 3: 1351 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1352 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1353 vcpu->arch.eff_db[dr] = val; 1354 break; 1355 case 4: 1356 case 6: 1357 if (!kvm_dr6_valid(val)) 1358 return 1; /* #GP */ 1359 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1360 break; 1361 case 5: 1362 default: /* 7 */ 1363 if (!kvm_dr7_valid(val)) 1364 return 1; /* #GP */ 1365 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1366 kvm_update_dr7(vcpu); 1367 break; 1368 } 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_set_dr); 1373 1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1375 { 1376 size_t size = ARRAY_SIZE(vcpu->arch.db); 1377 1378 switch (dr) { 1379 case 0 ... 3: 1380 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1381 break; 1382 case 4: 1383 case 6: 1384 *val = vcpu->arch.dr6; 1385 break; 1386 case 5: 1387 default: /* 7 */ 1388 *val = vcpu->arch.dr7; 1389 break; 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_get_dr); 1393 1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1395 { 1396 u32 ecx = kvm_rcx_read(vcpu); 1397 u64 data; 1398 1399 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1400 kvm_inject_gp(vcpu, 0); 1401 return 1; 1402 } 1403 1404 kvm_rax_write(vcpu, (u32)data); 1405 kvm_rdx_write(vcpu, data >> 32); 1406 return kvm_skip_emulated_instruction(vcpu); 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1409 1410 /* 1411 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1412 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1413 * 1414 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1415 * extract the supported MSRs from the related const lists. 1416 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1417 * capabilities of the host cpu. This capabilities test skips MSRs that are 1418 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1419 * may depend on host virtualization features rather than host cpu features. 1420 */ 1421 1422 static const u32 msrs_to_save_base[] = { 1423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1424 MSR_STAR, 1425 #ifdef CONFIG_X86_64 1426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1427 #endif 1428 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1429 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1430 MSR_IA32_SPEC_CTRL, 1431 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1432 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1433 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1434 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1435 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1436 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1437 MSR_IA32_UMWAIT_CONTROL, 1438 1439 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1440 }; 1441 1442 static const u32 msrs_to_save_pmu[] = { 1443 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1444 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1445 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1446 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1447 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1448 1449 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1450 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1451 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1452 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1453 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1454 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1456 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1457 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1458 1459 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1460 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1461 1462 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1463 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1464 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1465 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1466 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1467 }; 1468 1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1470 ARRAY_SIZE(msrs_to_save_pmu)]; 1471 static unsigned num_msrs_to_save; 1472 1473 static const u32 emulated_msrs_all[] = { 1474 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1475 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1476 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1477 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1478 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1479 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1480 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1481 HV_X64_MSR_RESET, 1482 HV_X64_MSR_VP_INDEX, 1483 HV_X64_MSR_VP_RUNTIME, 1484 HV_X64_MSR_SCONTROL, 1485 HV_X64_MSR_STIMER0_CONFIG, 1486 HV_X64_MSR_VP_ASSIST_PAGE, 1487 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1488 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1489 HV_X64_MSR_SYNDBG_OPTIONS, 1490 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1491 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1492 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1493 1494 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1495 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1496 1497 MSR_IA32_TSC_ADJUST, 1498 MSR_IA32_TSC_DEADLINE, 1499 MSR_IA32_ARCH_CAPABILITIES, 1500 MSR_IA32_PERF_CAPABILITIES, 1501 MSR_IA32_MISC_ENABLE, 1502 MSR_IA32_MCG_STATUS, 1503 MSR_IA32_MCG_CTL, 1504 MSR_IA32_MCG_EXT_CTL, 1505 MSR_IA32_SMBASE, 1506 MSR_SMI_COUNT, 1507 MSR_PLATFORM_INFO, 1508 MSR_MISC_FEATURES_ENABLES, 1509 MSR_AMD64_VIRT_SPEC_CTRL, 1510 MSR_AMD64_TSC_RATIO, 1511 MSR_IA32_POWER_CTL, 1512 MSR_IA32_UCODE_REV, 1513 1514 /* 1515 * The following list leaves out MSRs whose values are determined 1516 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1517 * We always support the "true" VMX control MSRs, even if the host 1518 * processor does not, so I am putting these registers here rather 1519 * than in msrs_to_save_all. 1520 */ 1521 MSR_IA32_VMX_BASIC, 1522 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1524 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1525 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1526 MSR_IA32_VMX_MISC, 1527 MSR_IA32_VMX_CR0_FIXED0, 1528 MSR_IA32_VMX_CR4_FIXED0, 1529 MSR_IA32_VMX_VMCS_ENUM, 1530 MSR_IA32_VMX_PROCBASED_CTLS2, 1531 MSR_IA32_VMX_EPT_VPID_CAP, 1532 MSR_IA32_VMX_VMFUNC, 1533 1534 MSR_K7_HWCR, 1535 MSR_KVM_POLL_CONTROL, 1536 }; 1537 1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1539 static unsigned num_emulated_msrs; 1540 1541 /* 1542 * List of msr numbers which are used to expose MSR-based features that 1543 * can be used by a hypervisor to validate requested CPU features. 1544 */ 1545 static const u32 msr_based_features_all[] = { 1546 MSR_IA32_VMX_BASIC, 1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1548 MSR_IA32_VMX_PINBASED_CTLS, 1549 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1550 MSR_IA32_VMX_PROCBASED_CTLS, 1551 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1552 MSR_IA32_VMX_EXIT_CTLS, 1553 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1554 MSR_IA32_VMX_ENTRY_CTLS, 1555 MSR_IA32_VMX_MISC, 1556 MSR_IA32_VMX_CR0_FIXED0, 1557 MSR_IA32_VMX_CR0_FIXED1, 1558 MSR_IA32_VMX_CR4_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED1, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_AMD64_DE_CFG, 1566 MSR_IA32_UCODE_REV, 1567 MSR_IA32_ARCH_CAPABILITIES, 1568 MSR_IA32_PERF_CAPABILITIES, 1569 }; 1570 1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1572 static unsigned int num_msr_based_features; 1573 1574 /* 1575 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1576 * does not yet virtualize. These include: 1577 * 10 - MISC_PACKAGE_CTRLS 1578 * 11 - ENERGY_FILTERING_CTL 1579 * 12 - DOITM 1580 * 18 - FB_CLEAR_CTRL 1581 * 21 - XAPIC_DISABLE_STATUS 1582 * 23 - OVERCLOCKING_STATUS 1583 */ 1584 1585 #define KVM_SUPPORTED_ARCH_CAP \ 1586 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1587 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1588 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1589 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1590 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1591 1592 static u64 kvm_get_arch_capabilities(void) 1593 { 1594 u64 data = 0; 1595 1596 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1597 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1598 data &= KVM_SUPPORTED_ARCH_CAP; 1599 } 1600 1601 /* 1602 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1603 * the nested hypervisor runs with NX huge pages. If it is not, 1604 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1605 * L1 guests, so it need not worry about its own (L2) guests. 1606 */ 1607 data |= ARCH_CAP_PSCHANGE_MC_NO; 1608 1609 /* 1610 * If we're doing cache flushes (either "always" or "cond") 1611 * we will do one whenever the guest does a vmlaunch/vmresume. 1612 * If an outer hypervisor is doing the cache flush for us 1613 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1614 * capability to the guest too, and if EPT is disabled we're not 1615 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1616 * require a nested hypervisor to do a flush of its own. 1617 */ 1618 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1619 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1620 1621 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1622 data |= ARCH_CAP_RDCL_NO; 1623 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1624 data |= ARCH_CAP_SSB_NO; 1625 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1626 data |= ARCH_CAP_MDS_NO; 1627 1628 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1629 /* 1630 * If RTM=0 because the kernel has disabled TSX, the host might 1631 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1632 * and therefore knows that there cannot be TAA) but keep 1633 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1634 * and we want to allow migrating those guests to tsx=off hosts. 1635 */ 1636 data &= ~ARCH_CAP_TAA_NO; 1637 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1638 data |= ARCH_CAP_TAA_NO; 1639 } else { 1640 /* 1641 * Nothing to do here; we emulate TSX_CTRL if present on the 1642 * host so the guest can choose between disabling TSX or 1643 * using VERW to clear CPU buffers. 1644 */ 1645 } 1646 1647 return data; 1648 } 1649 1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1651 { 1652 switch (msr->index) { 1653 case MSR_IA32_ARCH_CAPABILITIES: 1654 msr->data = kvm_get_arch_capabilities(); 1655 break; 1656 case MSR_IA32_PERF_CAPABILITIES: 1657 msr->data = kvm_caps.supported_perf_cap; 1658 break; 1659 case MSR_IA32_UCODE_REV: 1660 rdmsrl_safe(msr->index, &msr->data); 1661 break; 1662 default: 1663 return static_call(kvm_x86_get_msr_feature)(msr); 1664 } 1665 return 0; 1666 } 1667 1668 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1669 { 1670 struct kvm_msr_entry msr; 1671 int r; 1672 1673 msr.index = index; 1674 r = kvm_get_msr_feature(&msr); 1675 1676 if (r == KVM_MSR_RET_INVALID) { 1677 /* Unconditionally clear the output for simplicity */ 1678 *data = 0; 1679 if (kvm_msr_ignored_check(index, 0, false)) 1680 r = 0; 1681 } 1682 1683 if (r) 1684 return r; 1685 1686 *data = msr.data; 1687 1688 return 0; 1689 } 1690 1691 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1692 { 1693 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1694 return false; 1695 1696 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1697 return false; 1698 1699 if (efer & (EFER_LME | EFER_LMA) && 1700 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1701 return false; 1702 1703 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1704 return false; 1705 1706 return true; 1707 1708 } 1709 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1710 { 1711 if (efer & efer_reserved_bits) 1712 return false; 1713 1714 return __kvm_valid_efer(vcpu, efer); 1715 } 1716 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1717 1718 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1719 { 1720 u64 old_efer = vcpu->arch.efer; 1721 u64 efer = msr_info->data; 1722 int r; 1723 1724 if (efer & efer_reserved_bits) 1725 return 1; 1726 1727 if (!msr_info->host_initiated) { 1728 if (!__kvm_valid_efer(vcpu, efer)) 1729 return 1; 1730 1731 if (is_paging(vcpu) && 1732 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1733 return 1; 1734 } 1735 1736 efer &= ~EFER_LMA; 1737 efer |= vcpu->arch.efer & EFER_LMA; 1738 1739 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1740 if (r) { 1741 WARN_ON(r > 0); 1742 return r; 1743 } 1744 1745 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1746 kvm_mmu_reset_context(vcpu); 1747 1748 return 0; 1749 } 1750 1751 void kvm_enable_efer_bits(u64 mask) 1752 { 1753 efer_reserved_bits &= ~mask; 1754 } 1755 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1756 1757 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1758 { 1759 struct kvm_x86_msr_filter *msr_filter; 1760 struct msr_bitmap_range *ranges; 1761 struct kvm *kvm = vcpu->kvm; 1762 bool allowed; 1763 int idx; 1764 u32 i; 1765 1766 /* x2APIC MSRs do not support filtering. */ 1767 if (index >= 0x800 && index <= 0x8ff) 1768 return true; 1769 1770 idx = srcu_read_lock(&kvm->srcu); 1771 1772 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1773 if (!msr_filter) { 1774 allowed = true; 1775 goto out; 1776 } 1777 1778 allowed = msr_filter->default_allow; 1779 ranges = msr_filter->ranges; 1780 1781 for (i = 0; i < msr_filter->count; i++) { 1782 u32 start = ranges[i].base; 1783 u32 end = start + ranges[i].nmsrs; 1784 u32 flags = ranges[i].flags; 1785 unsigned long *bitmap = ranges[i].bitmap; 1786 1787 if ((index >= start) && (index < end) && (flags & type)) { 1788 allowed = !!test_bit(index - start, bitmap); 1789 break; 1790 } 1791 } 1792 1793 out: 1794 srcu_read_unlock(&kvm->srcu, idx); 1795 1796 return allowed; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1799 1800 /* 1801 * Write @data into the MSR specified by @index. Select MSR specific fault 1802 * checks are bypassed if @host_initiated is %true. 1803 * Returns 0 on success, non-0 otherwise. 1804 * Assumes vcpu_load() was already called. 1805 */ 1806 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1807 bool host_initiated) 1808 { 1809 struct msr_data msr; 1810 1811 switch (index) { 1812 case MSR_FS_BASE: 1813 case MSR_GS_BASE: 1814 case MSR_KERNEL_GS_BASE: 1815 case MSR_CSTAR: 1816 case MSR_LSTAR: 1817 if (is_noncanonical_address(data, vcpu)) 1818 return 1; 1819 break; 1820 case MSR_IA32_SYSENTER_EIP: 1821 case MSR_IA32_SYSENTER_ESP: 1822 /* 1823 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1824 * non-canonical address is written on Intel but not on 1825 * AMD (which ignores the top 32-bits, because it does 1826 * not implement 64-bit SYSENTER). 1827 * 1828 * 64-bit code should hence be able to write a non-canonical 1829 * value on AMD. Making the address canonical ensures that 1830 * vmentry does not fail on Intel after writing a non-canonical 1831 * value, and that something deterministic happens if the guest 1832 * invokes 64-bit SYSENTER. 1833 */ 1834 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1835 break; 1836 case MSR_TSC_AUX: 1837 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1838 return 1; 1839 1840 if (!host_initiated && 1841 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1842 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1843 return 1; 1844 1845 /* 1846 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1847 * incomplete and conflicting architectural behavior. Current 1848 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1849 * reserved and always read as zeros. Enforce Intel's reserved 1850 * bits check if and only if the guest CPU is Intel, and clear 1851 * the bits in all other cases. This ensures cross-vendor 1852 * migration will provide consistent behavior for the guest. 1853 */ 1854 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1855 return 1; 1856 1857 data = (u32)data; 1858 break; 1859 } 1860 1861 msr.data = data; 1862 msr.index = index; 1863 msr.host_initiated = host_initiated; 1864 1865 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1866 } 1867 1868 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1869 u32 index, u64 data, bool host_initiated) 1870 { 1871 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1872 1873 if (ret == KVM_MSR_RET_INVALID) 1874 if (kvm_msr_ignored_check(index, data, true)) 1875 ret = 0; 1876 1877 return ret; 1878 } 1879 1880 /* 1881 * Read the MSR specified by @index into @data. Select MSR specific fault 1882 * checks are bypassed if @host_initiated is %true. 1883 * Returns 0 on success, non-0 otherwise. 1884 * Assumes vcpu_load() was already called. 1885 */ 1886 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1887 bool host_initiated) 1888 { 1889 struct msr_data msr; 1890 int ret; 1891 1892 switch (index) { 1893 case MSR_TSC_AUX: 1894 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1895 return 1; 1896 1897 if (!host_initiated && 1898 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1899 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1900 return 1; 1901 break; 1902 } 1903 1904 msr.index = index; 1905 msr.host_initiated = host_initiated; 1906 1907 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1908 if (!ret) 1909 *data = msr.data; 1910 return ret; 1911 } 1912 1913 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1914 u32 index, u64 *data, bool host_initiated) 1915 { 1916 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1917 1918 if (ret == KVM_MSR_RET_INVALID) { 1919 /* Unconditionally clear *data for simplicity */ 1920 *data = 0; 1921 if (kvm_msr_ignored_check(index, 0, false)) 1922 ret = 0; 1923 } 1924 1925 return ret; 1926 } 1927 1928 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1929 { 1930 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1931 return KVM_MSR_RET_FILTERED; 1932 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1933 } 1934 1935 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 1942 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1943 { 1944 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1945 } 1946 EXPORT_SYMBOL_GPL(kvm_get_msr); 1947 1948 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1949 { 1950 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1951 } 1952 EXPORT_SYMBOL_GPL(kvm_set_msr); 1953 1954 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1955 { 1956 if (!vcpu->run->msr.error) { 1957 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1958 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1959 } 1960 } 1961 1962 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1963 { 1964 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1965 } 1966 1967 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1968 { 1969 complete_userspace_rdmsr(vcpu); 1970 return complete_emulated_msr_access(vcpu); 1971 } 1972 1973 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1974 { 1975 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1976 } 1977 1978 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1979 { 1980 complete_userspace_rdmsr(vcpu); 1981 return complete_fast_msr_access(vcpu); 1982 } 1983 1984 static u64 kvm_msr_reason(int r) 1985 { 1986 switch (r) { 1987 case KVM_MSR_RET_INVALID: 1988 return KVM_MSR_EXIT_REASON_UNKNOWN; 1989 case KVM_MSR_RET_FILTERED: 1990 return KVM_MSR_EXIT_REASON_FILTER; 1991 default: 1992 return KVM_MSR_EXIT_REASON_INVAL; 1993 } 1994 } 1995 1996 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1997 u32 exit_reason, u64 data, 1998 int (*completion)(struct kvm_vcpu *vcpu), 1999 int r) 2000 { 2001 u64 msr_reason = kvm_msr_reason(r); 2002 2003 /* Check if the user wanted to know about this MSR fault */ 2004 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2005 return 0; 2006 2007 vcpu->run->exit_reason = exit_reason; 2008 vcpu->run->msr.error = 0; 2009 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2010 vcpu->run->msr.reason = msr_reason; 2011 vcpu->run->msr.index = index; 2012 vcpu->run->msr.data = data; 2013 vcpu->arch.complete_userspace_io = completion; 2014 2015 return 1; 2016 } 2017 2018 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2019 { 2020 u32 ecx = kvm_rcx_read(vcpu); 2021 u64 data; 2022 int r; 2023 2024 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2025 2026 if (!r) { 2027 trace_kvm_msr_read(ecx, data); 2028 2029 kvm_rax_write(vcpu, data & -1u); 2030 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2031 } else { 2032 /* MSR read failed? See if we should ask user space */ 2033 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2034 complete_fast_rdmsr, r)) 2035 return 0; 2036 trace_kvm_msr_read_ex(ecx); 2037 } 2038 2039 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2040 } 2041 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2042 2043 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2044 { 2045 u32 ecx = kvm_rcx_read(vcpu); 2046 u64 data = kvm_read_edx_eax(vcpu); 2047 int r; 2048 2049 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2050 2051 if (!r) { 2052 trace_kvm_msr_write(ecx, data); 2053 } else { 2054 /* MSR write failed? See if we should ask user space */ 2055 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2056 complete_fast_msr_access, r)) 2057 return 0; 2058 /* Signal all other negative errors to userspace */ 2059 if (r < 0) 2060 return r; 2061 trace_kvm_msr_write_ex(ecx, data); 2062 } 2063 2064 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2065 } 2066 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2067 2068 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2069 { 2070 return kvm_skip_emulated_instruction(vcpu); 2071 } 2072 2073 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2074 { 2075 /* Treat an INVD instruction as a NOP and just skip it. */ 2076 return kvm_emulate_as_nop(vcpu); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2079 2080 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2081 { 2082 kvm_queue_exception(vcpu, UD_VECTOR); 2083 return 1; 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2086 2087 2088 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2089 { 2090 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2091 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2092 return kvm_handle_invalid_op(vcpu); 2093 2094 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2095 return kvm_emulate_as_nop(vcpu); 2096 } 2097 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2098 { 2099 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2102 2103 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2104 { 2105 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2108 2109 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2110 { 2111 xfer_to_guest_mode_prepare(); 2112 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2113 xfer_to_guest_mode_work_pending(); 2114 } 2115 2116 /* 2117 * The fast path for frequent and performance sensitive wrmsr emulation, 2118 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2119 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2120 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2121 * other cases which must be called after interrupts are enabled on the host. 2122 */ 2123 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2124 { 2125 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2126 return 1; 2127 2128 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2129 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2130 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2131 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2132 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2133 2134 return 1; 2135 } 2136 2137 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2138 { 2139 if (!kvm_can_use_hv_timer(vcpu)) 2140 return 1; 2141 2142 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2143 return 0; 2144 } 2145 2146 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2147 { 2148 u32 msr = kvm_rcx_read(vcpu); 2149 u64 data; 2150 fastpath_t ret = EXIT_FASTPATH_NONE; 2151 2152 switch (msr) { 2153 case APIC_BASE_MSR + (APIC_ICR >> 4): 2154 data = kvm_read_edx_eax(vcpu); 2155 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2156 kvm_skip_emulated_instruction(vcpu); 2157 ret = EXIT_FASTPATH_EXIT_HANDLED; 2158 } 2159 break; 2160 case MSR_IA32_TSC_DEADLINE: 2161 data = kvm_read_edx_eax(vcpu); 2162 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2163 kvm_skip_emulated_instruction(vcpu); 2164 ret = EXIT_FASTPATH_REENTER_GUEST; 2165 } 2166 break; 2167 default: 2168 break; 2169 } 2170 2171 if (ret != EXIT_FASTPATH_NONE) 2172 trace_kvm_msr_write(msr, data); 2173 2174 return ret; 2175 } 2176 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2177 2178 /* 2179 * Adapt set_msr() to msr_io()'s calling convention 2180 */ 2181 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2182 { 2183 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2184 } 2185 2186 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2187 { 2188 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2189 } 2190 2191 #ifdef CONFIG_X86_64 2192 struct pvclock_clock { 2193 int vclock_mode; 2194 u64 cycle_last; 2195 u64 mask; 2196 u32 mult; 2197 u32 shift; 2198 u64 base_cycles; 2199 u64 offset; 2200 }; 2201 2202 struct pvclock_gtod_data { 2203 seqcount_t seq; 2204 2205 struct pvclock_clock clock; /* extract of a clocksource struct */ 2206 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2207 2208 ktime_t offs_boot; 2209 u64 wall_time_sec; 2210 }; 2211 2212 static struct pvclock_gtod_data pvclock_gtod_data; 2213 2214 static void update_pvclock_gtod(struct timekeeper *tk) 2215 { 2216 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2217 2218 write_seqcount_begin(&vdata->seq); 2219 2220 /* copy pvclock gtod data */ 2221 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2222 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2223 vdata->clock.mask = tk->tkr_mono.mask; 2224 vdata->clock.mult = tk->tkr_mono.mult; 2225 vdata->clock.shift = tk->tkr_mono.shift; 2226 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2227 vdata->clock.offset = tk->tkr_mono.base; 2228 2229 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2230 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2231 vdata->raw_clock.mask = tk->tkr_raw.mask; 2232 vdata->raw_clock.mult = tk->tkr_raw.mult; 2233 vdata->raw_clock.shift = tk->tkr_raw.shift; 2234 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2235 vdata->raw_clock.offset = tk->tkr_raw.base; 2236 2237 vdata->wall_time_sec = tk->xtime_sec; 2238 2239 vdata->offs_boot = tk->offs_boot; 2240 2241 write_seqcount_end(&vdata->seq); 2242 } 2243 2244 static s64 get_kvmclock_base_ns(void) 2245 { 2246 /* Count up from boot time, but with the frequency of the raw clock. */ 2247 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2248 } 2249 #else 2250 static s64 get_kvmclock_base_ns(void) 2251 { 2252 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2253 return ktime_get_boottime_ns(); 2254 } 2255 #endif 2256 2257 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2258 { 2259 int version; 2260 int r; 2261 struct pvclock_wall_clock wc; 2262 u32 wc_sec_hi; 2263 u64 wall_nsec; 2264 2265 if (!wall_clock) 2266 return; 2267 2268 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2269 if (r) 2270 return; 2271 2272 if (version & 1) 2273 ++version; /* first time write, random junk */ 2274 2275 ++version; 2276 2277 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2278 return; 2279 2280 /* 2281 * The guest calculates current wall clock time by adding 2282 * system time (updated by kvm_guest_time_update below) to the 2283 * wall clock specified here. We do the reverse here. 2284 */ 2285 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2286 2287 wc.nsec = do_div(wall_nsec, 1000000000); 2288 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2289 wc.version = version; 2290 2291 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2292 2293 if (sec_hi_ofs) { 2294 wc_sec_hi = wall_nsec >> 32; 2295 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2296 &wc_sec_hi, sizeof(wc_sec_hi)); 2297 } 2298 2299 version++; 2300 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2301 } 2302 2303 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2304 bool old_msr, bool host_initiated) 2305 { 2306 struct kvm_arch *ka = &vcpu->kvm->arch; 2307 2308 if (vcpu->vcpu_id == 0 && !host_initiated) { 2309 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2310 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2311 2312 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2313 } 2314 2315 vcpu->arch.time = system_time; 2316 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2317 2318 /* we verify if the enable bit is set... */ 2319 if (system_time & 1) 2320 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2321 sizeof(struct pvclock_vcpu_time_info)); 2322 else 2323 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2324 2325 return; 2326 } 2327 2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2329 { 2330 do_shl32_div32(dividend, divisor); 2331 return dividend; 2332 } 2333 2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2335 s8 *pshift, u32 *pmultiplier) 2336 { 2337 uint64_t scaled64; 2338 int32_t shift = 0; 2339 uint64_t tps64; 2340 uint32_t tps32; 2341 2342 tps64 = base_hz; 2343 scaled64 = scaled_hz; 2344 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2345 tps64 >>= 1; 2346 shift--; 2347 } 2348 2349 tps32 = (uint32_t)tps64; 2350 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2351 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2352 scaled64 >>= 1; 2353 else 2354 tps32 <<= 1; 2355 shift++; 2356 } 2357 2358 *pshift = shift; 2359 *pmultiplier = div_frac(scaled64, tps32); 2360 } 2361 2362 #ifdef CONFIG_X86_64 2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2364 #endif 2365 2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2367 static unsigned long max_tsc_khz; 2368 2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2370 { 2371 u64 v = (u64)khz * (1000000 + ppm); 2372 do_div(v, 1000000); 2373 return v; 2374 } 2375 2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2377 2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2379 { 2380 u64 ratio; 2381 2382 /* Guest TSC same frequency as host TSC? */ 2383 if (!scale) { 2384 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2385 return 0; 2386 } 2387 2388 /* TSC scaling supported? */ 2389 if (!kvm_caps.has_tsc_control) { 2390 if (user_tsc_khz > tsc_khz) { 2391 vcpu->arch.tsc_catchup = 1; 2392 vcpu->arch.tsc_always_catchup = 1; 2393 return 0; 2394 } else { 2395 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2396 return -1; 2397 } 2398 } 2399 2400 /* TSC scaling required - calculate ratio */ 2401 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2402 user_tsc_khz, tsc_khz); 2403 2404 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2405 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2406 user_tsc_khz); 2407 return -1; 2408 } 2409 2410 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2411 return 0; 2412 } 2413 2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2415 { 2416 u32 thresh_lo, thresh_hi; 2417 int use_scaling = 0; 2418 2419 /* tsc_khz can be zero if TSC calibration fails */ 2420 if (user_tsc_khz == 0) { 2421 /* set tsc_scaling_ratio to a safe value */ 2422 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2423 return -1; 2424 } 2425 2426 /* Compute a scale to convert nanoseconds in TSC cycles */ 2427 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2428 &vcpu->arch.virtual_tsc_shift, 2429 &vcpu->arch.virtual_tsc_mult); 2430 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2431 2432 /* 2433 * Compute the variation in TSC rate which is acceptable 2434 * within the range of tolerance and decide if the 2435 * rate being applied is within that bounds of the hardware 2436 * rate. If so, no scaling or compensation need be done. 2437 */ 2438 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2439 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2440 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2441 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2442 user_tsc_khz, thresh_lo, thresh_hi); 2443 use_scaling = 1; 2444 } 2445 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2446 } 2447 2448 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2449 { 2450 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2451 vcpu->arch.virtual_tsc_mult, 2452 vcpu->arch.virtual_tsc_shift); 2453 tsc += vcpu->arch.this_tsc_write; 2454 return tsc; 2455 } 2456 2457 #ifdef CONFIG_X86_64 2458 static inline int gtod_is_based_on_tsc(int mode) 2459 { 2460 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2461 } 2462 #endif 2463 2464 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2465 { 2466 #ifdef CONFIG_X86_64 2467 bool vcpus_matched; 2468 struct kvm_arch *ka = &vcpu->kvm->arch; 2469 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2470 2471 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2472 atomic_read(&vcpu->kvm->online_vcpus)); 2473 2474 /* 2475 * Once the masterclock is enabled, always perform request in 2476 * order to update it. 2477 * 2478 * In order to enable masterclock, the host clocksource must be TSC 2479 * and the vcpus need to have matched TSCs. When that happens, 2480 * perform request to enable masterclock. 2481 */ 2482 if (ka->use_master_clock || 2483 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2484 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2485 2486 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2487 atomic_read(&vcpu->kvm->online_vcpus), 2488 ka->use_master_clock, gtod->clock.vclock_mode); 2489 #endif 2490 } 2491 2492 /* 2493 * Multiply tsc by a fixed point number represented by ratio. 2494 * 2495 * The most significant 64-N bits (mult) of ratio represent the 2496 * integral part of the fixed point number; the remaining N bits 2497 * (frac) represent the fractional part, ie. ratio represents a fixed 2498 * point number (mult + frac * 2^(-N)). 2499 * 2500 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2501 */ 2502 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2503 { 2504 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2505 } 2506 2507 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2508 { 2509 u64 _tsc = tsc; 2510 2511 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2512 _tsc = __scale_tsc(ratio, tsc); 2513 2514 return _tsc; 2515 } 2516 2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2518 { 2519 u64 tsc; 2520 2521 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2522 2523 return target_tsc - tsc; 2524 } 2525 2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2527 { 2528 return vcpu->arch.l1_tsc_offset + 2529 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2532 2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2534 { 2535 u64 nested_offset; 2536 2537 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2538 nested_offset = l1_offset; 2539 else 2540 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2541 kvm_caps.tsc_scaling_ratio_frac_bits); 2542 2543 nested_offset += l2_offset; 2544 return nested_offset; 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2547 2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2549 { 2550 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2551 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2552 kvm_caps.tsc_scaling_ratio_frac_bits); 2553 2554 return l1_multiplier; 2555 } 2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2557 2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2559 { 2560 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2561 vcpu->arch.l1_tsc_offset, 2562 l1_offset); 2563 2564 vcpu->arch.l1_tsc_offset = l1_offset; 2565 2566 /* 2567 * If we are here because L1 chose not to trap WRMSR to TSC then 2568 * according to the spec this should set L1's TSC (as opposed to 2569 * setting L1's offset for L2). 2570 */ 2571 if (is_guest_mode(vcpu)) 2572 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2573 l1_offset, 2574 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2575 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2576 else 2577 vcpu->arch.tsc_offset = l1_offset; 2578 2579 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2580 } 2581 2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2583 { 2584 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2585 2586 /* Userspace is changing the multiplier while L2 is active */ 2587 if (is_guest_mode(vcpu)) 2588 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2589 l1_multiplier, 2590 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2591 else 2592 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2593 2594 if (kvm_caps.has_tsc_control) 2595 static_call(kvm_x86_write_tsc_multiplier)( 2596 vcpu, vcpu->arch.tsc_scaling_ratio); 2597 } 2598 2599 static inline bool kvm_check_tsc_unstable(void) 2600 { 2601 #ifdef CONFIG_X86_64 2602 /* 2603 * TSC is marked unstable when we're running on Hyper-V, 2604 * 'TSC page' clocksource is good. 2605 */ 2606 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2607 return false; 2608 #endif 2609 return check_tsc_unstable(); 2610 } 2611 2612 /* 2613 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2614 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2615 * participates in. 2616 */ 2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2618 u64 ns, bool matched) 2619 { 2620 struct kvm *kvm = vcpu->kvm; 2621 2622 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2623 2624 /* 2625 * We also track th most recent recorded KHZ, write and time to 2626 * allow the matching interval to be extended at each write. 2627 */ 2628 kvm->arch.last_tsc_nsec = ns; 2629 kvm->arch.last_tsc_write = tsc; 2630 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2631 kvm->arch.last_tsc_offset = offset; 2632 2633 vcpu->arch.last_guest_tsc = tsc; 2634 2635 kvm_vcpu_write_tsc_offset(vcpu, offset); 2636 2637 if (!matched) { 2638 /* 2639 * We split periods of matched TSC writes into generations. 2640 * For each generation, we track the original measured 2641 * nanosecond time, offset, and write, so if TSCs are in 2642 * sync, we can match exact offset, and if not, we can match 2643 * exact software computation in compute_guest_tsc() 2644 * 2645 * These values are tracked in kvm->arch.cur_xxx variables. 2646 */ 2647 kvm->arch.cur_tsc_generation++; 2648 kvm->arch.cur_tsc_nsec = ns; 2649 kvm->arch.cur_tsc_write = tsc; 2650 kvm->arch.cur_tsc_offset = offset; 2651 kvm->arch.nr_vcpus_matched_tsc = 0; 2652 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2653 kvm->arch.nr_vcpus_matched_tsc++; 2654 } 2655 2656 /* Keep track of which generation this VCPU has synchronized to */ 2657 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2658 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2659 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2660 2661 kvm_track_tsc_matching(vcpu); 2662 } 2663 2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2665 { 2666 struct kvm *kvm = vcpu->kvm; 2667 u64 offset, ns, elapsed; 2668 unsigned long flags; 2669 bool matched = false; 2670 bool synchronizing = false; 2671 2672 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2673 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2674 ns = get_kvmclock_base_ns(); 2675 elapsed = ns - kvm->arch.last_tsc_nsec; 2676 2677 if (vcpu->arch.virtual_tsc_khz) { 2678 if (data == 0) { 2679 /* 2680 * detection of vcpu initialization -- need to sync 2681 * with other vCPUs. This particularly helps to keep 2682 * kvm_clock stable after CPU hotplug 2683 */ 2684 synchronizing = true; 2685 } else { 2686 u64 tsc_exp = kvm->arch.last_tsc_write + 2687 nsec_to_cycles(vcpu, elapsed); 2688 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2689 /* 2690 * Special case: TSC write with a small delta (1 second) 2691 * of virtual cycle time against real time is 2692 * interpreted as an attempt to synchronize the CPU. 2693 */ 2694 synchronizing = data < tsc_exp + tsc_hz && 2695 data + tsc_hz > tsc_exp; 2696 } 2697 } 2698 2699 /* 2700 * For a reliable TSC, we can match TSC offsets, and for an unstable 2701 * TSC, we add elapsed time in this computation. We could let the 2702 * compensation code attempt to catch up if we fall behind, but 2703 * it's better to try to match offsets from the beginning. 2704 */ 2705 if (synchronizing && 2706 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2707 if (!kvm_check_tsc_unstable()) { 2708 offset = kvm->arch.cur_tsc_offset; 2709 } else { 2710 u64 delta = nsec_to_cycles(vcpu, elapsed); 2711 data += delta; 2712 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2713 } 2714 matched = true; 2715 } 2716 2717 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2718 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2719 } 2720 2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2722 s64 adjustment) 2723 { 2724 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2725 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2726 } 2727 2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2729 { 2730 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2731 WARN_ON(adjustment < 0); 2732 adjustment = kvm_scale_tsc((u64) adjustment, 2733 vcpu->arch.l1_tsc_scaling_ratio); 2734 adjust_tsc_offset_guest(vcpu, adjustment); 2735 } 2736 2737 #ifdef CONFIG_X86_64 2738 2739 static u64 read_tsc(void) 2740 { 2741 u64 ret = (u64)rdtsc_ordered(); 2742 u64 last = pvclock_gtod_data.clock.cycle_last; 2743 2744 if (likely(ret >= last)) 2745 return ret; 2746 2747 /* 2748 * GCC likes to generate cmov here, but this branch is extremely 2749 * predictable (it's just a function of time and the likely is 2750 * very likely) and there's a data dependence, so force GCC 2751 * to generate a branch instead. I don't barrier() because 2752 * we don't actually need a barrier, and if this function 2753 * ever gets inlined it will generate worse code. 2754 */ 2755 asm volatile (""); 2756 return last; 2757 } 2758 2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2760 int *mode) 2761 { 2762 long v; 2763 u64 tsc_pg_val; 2764 2765 switch (clock->vclock_mode) { 2766 case VDSO_CLOCKMODE_HVCLOCK: 2767 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2768 tsc_timestamp); 2769 if (tsc_pg_val != U64_MAX) { 2770 /* TSC page valid */ 2771 *mode = VDSO_CLOCKMODE_HVCLOCK; 2772 v = (tsc_pg_val - clock->cycle_last) & 2773 clock->mask; 2774 } else { 2775 /* TSC page invalid */ 2776 *mode = VDSO_CLOCKMODE_NONE; 2777 } 2778 break; 2779 case VDSO_CLOCKMODE_TSC: 2780 *mode = VDSO_CLOCKMODE_TSC; 2781 *tsc_timestamp = read_tsc(); 2782 v = (*tsc_timestamp - clock->cycle_last) & 2783 clock->mask; 2784 break; 2785 default: 2786 *mode = VDSO_CLOCKMODE_NONE; 2787 } 2788 2789 if (*mode == VDSO_CLOCKMODE_NONE) 2790 *tsc_timestamp = v = 0; 2791 2792 return v * clock->mult; 2793 } 2794 2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2796 { 2797 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2798 unsigned long seq; 2799 int mode; 2800 u64 ns; 2801 2802 do { 2803 seq = read_seqcount_begin(>od->seq); 2804 ns = gtod->raw_clock.base_cycles; 2805 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2806 ns >>= gtod->raw_clock.shift; 2807 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2808 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2809 *t = ns; 2810 2811 return mode; 2812 } 2813 2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2815 { 2816 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2817 unsigned long seq; 2818 int mode; 2819 u64 ns; 2820 2821 do { 2822 seq = read_seqcount_begin(>od->seq); 2823 ts->tv_sec = gtod->wall_time_sec; 2824 ns = gtod->clock.base_cycles; 2825 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2826 ns >>= gtod->clock.shift; 2827 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2828 2829 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2830 ts->tv_nsec = ns; 2831 2832 return mode; 2833 } 2834 2835 /* returns true if host is using TSC based clocksource */ 2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2837 { 2838 /* checked again under seqlock below */ 2839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2840 return false; 2841 2842 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2843 tsc_timestamp)); 2844 } 2845 2846 /* returns true if host is using TSC based clocksource */ 2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2848 u64 *tsc_timestamp) 2849 { 2850 /* checked again under seqlock below */ 2851 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2852 return false; 2853 2854 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2855 } 2856 #endif 2857 2858 /* 2859 * 2860 * Assuming a stable TSC across physical CPUS, and a stable TSC 2861 * across virtual CPUs, the following condition is possible. 2862 * Each numbered line represents an event visible to both 2863 * CPUs at the next numbered event. 2864 * 2865 * "timespecX" represents host monotonic time. "tscX" represents 2866 * RDTSC value. 2867 * 2868 * VCPU0 on CPU0 | VCPU1 on CPU1 2869 * 2870 * 1. read timespec0,tsc0 2871 * 2. | timespec1 = timespec0 + N 2872 * | tsc1 = tsc0 + M 2873 * 3. transition to guest | transition to guest 2874 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2875 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2876 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2877 * 2878 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2879 * 2880 * - ret0 < ret1 2881 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2882 * ... 2883 * - 0 < N - M => M < N 2884 * 2885 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2886 * always the case (the difference between two distinct xtime instances 2887 * might be smaller then the difference between corresponding TSC reads, 2888 * when updating guest vcpus pvclock areas). 2889 * 2890 * To avoid that problem, do not allow visibility of distinct 2891 * system_timestamp/tsc_timestamp values simultaneously: use a master 2892 * copy of host monotonic time values. Update that master copy 2893 * in lockstep. 2894 * 2895 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2896 * 2897 */ 2898 2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2900 { 2901 #ifdef CONFIG_X86_64 2902 struct kvm_arch *ka = &kvm->arch; 2903 int vclock_mode; 2904 bool host_tsc_clocksource, vcpus_matched; 2905 2906 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2907 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2908 atomic_read(&kvm->online_vcpus)); 2909 2910 /* 2911 * If the host uses TSC clock, then passthrough TSC as stable 2912 * to the guest. 2913 */ 2914 host_tsc_clocksource = kvm_get_time_and_clockread( 2915 &ka->master_kernel_ns, 2916 &ka->master_cycle_now); 2917 2918 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2919 && !ka->backwards_tsc_observed 2920 && !ka->boot_vcpu_runs_old_kvmclock; 2921 2922 if (ka->use_master_clock) 2923 atomic_set(&kvm_guest_has_master_clock, 1); 2924 2925 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2926 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2927 vcpus_matched); 2928 #endif 2929 } 2930 2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2932 { 2933 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2934 } 2935 2936 static void __kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2939 write_seqcount_begin(&kvm->arch.pvclock_sc); 2940 } 2941 2942 static void kvm_start_pvclock_update(struct kvm *kvm) 2943 { 2944 kvm_make_mclock_inprogress_request(kvm); 2945 2946 /* no guest entries from this point */ 2947 __kvm_start_pvclock_update(kvm); 2948 } 2949 2950 static void kvm_end_pvclock_update(struct kvm *kvm) 2951 { 2952 struct kvm_arch *ka = &kvm->arch; 2953 struct kvm_vcpu *vcpu; 2954 unsigned long i; 2955 2956 write_seqcount_end(&ka->pvclock_sc); 2957 raw_spin_unlock_irq(&ka->tsc_write_lock); 2958 kvm_for_each_vcpu(i, vcpu, kvm) 2959 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2960 2961 /* guest entries allowed */ 2962 kvm_for_each_vcpu(i, vcpu, kvm) 2963 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2964 } 2965 2966 static void kvm_update_masterclock(struct kvm *kvm) 2967 { 2968 kvm_hv_request_tsc_page_update(kvm); 2969 kvm_start_pvclock_update(kvm); 2970 pvclock_update_vm_gtod_copy(kvm); 2971 kvm_end_pvclock_update(kvm); 2972 } 2973 2974 /* 2975 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2976 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2977 * can change during boot even if the TSC is constant, as it's possible for KVM 2978 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2979 * notification when calibration completes, but practically speaking calibration 2980 * will complete before userspace is alive enough to create VMs. 2981 */ 2982 static unsigned long get_cpu_tsc_khz(void) 2983 { 2984 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2985 return tsc_khz; 2986 else 2987 return __this_cpu_read(cpu_tsc_khz); 2988 } 2989 2990 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2991 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2992 { 2993 struct kvm_arch *ka = &kvm->arch; 2994 struct pvclock_vcpu_time_info hv_clock; 2995 2996 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2997 get_cpu(); 2998 2999 data->flags = 0; 3000 if (ka->use_master_clock && 3001 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3002 #ifdef CONFIG_X86_64 3003 struct timespec64 ts; 3004 3005 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3006 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3007 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3008 } else 3009 #endif 3010 data->host_tsc = rdtsc(); 3011 3012 data->flags |= KVM_CLOCK_TSC_STABLE; 3013 hv_clock.tsc_timestamp = ka->master_cycle_now; 3014 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3015 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3016 &hv_clock.tsc_shift, 3017 &hv_clock.tsc_to_system_mul); 3018 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3019 } else { 3020 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3021 } 3022 3023 put_cpu(); 3024 } 3025 3026 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3027 { 3028 struct kvm_arch *ka = &kvm->arch; 3029 unsigned seq; 3030 3031 do { 3032 seq = read_seqcount_begin(&ka->pvclock_sc); 3033 __get_kvmclock(kvm, data); 3034 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3035 } 3036 3037 u64 get_kvmclock_ns(struct kvm *kvm) 3038 { 3039 struct kvm_clock_data data; 3040 3041 get_kvmclock(kvm, &data); 3042 return data.clock; 3043 } 3044 3045 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3046 struct gfn_to_pfn_cache *gpc, 3047 unsigned int offset) 3048 { 3049 struct kvm_vcpu_arch *vcpu = &v->arch; 3050 struct pvclock_vcpu_time_info *guest_hv_clock; 3051 unsigned long flags; 3052 3053 read_lock_irqsave(&gpc->lock, flags); 3054 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3055 read_unlock_irqrestore(&gpc->lock, flags); 3056 3057 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3058 return; 3059 3060 read_lock_irqsave(&gpc->lock, flags); 3061 } 3062 3063 guest_hv_clock = (void *)(gpc->khva + offset); 3064 3065 /* 3066 * This VCPU is paused, but it's legal for a guest to read another 3067 * VCPU's kvmclock, so we really have to follow the specification where 3068 * it says that version is odd if data is being modified, and even after 3069 * it is consistent. 3070 */ 3071 3072 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3073 smp_wmb(); 3074 3075 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3076 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3077 3078 if (vcpu->pvclock_set_guest_stopped_request) { 3079 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3080 vcpu->pvclock_set_guest_stopped_request = false; 3081 } 3082 3083 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3084 smp_wmb(); 3085 3086 guest_hv_clock->version = ++vcpu->hv_clock.version; 3087 3088 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3089 read_unlock_irqrestore(&gpc->lock, flags); 3090 3091 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3092 } 3093 3094 static int kvm_guest_time_update(struct kvm_vcpu *v) 3095 { 3096 unsigned long flags, tgt_tsc_khz; 3097 unsigned seq; 3098 struct kvm_vcpu_arch *vcpu = &v->arch; 3099 struct kvm_arch *ka = &v->kvm->arch; 3100 s64 kernel_ns; 3101 u64 tsc_timestamp, host_tsc; 3102 u8 pvclock_flags; 3103 bool use_master_clock; 3104 3105 kernel_ns = 0; 3106 host_tsc = 0; 3107 3108 /* 3109 * If the host uses TSC clock, then passthrough TSC as stable 3110 * to the guest. 3111 */ 3112 do { 3113 seq = read_seqcount_begin(&ka->pvclock_sc); 3114 use_master_clock = ka->use_master_clock; 3115 if (use_master_clock) { 3116 host_tsc = ka->master_cycle_now; 3117 kernel_ns = ka->master_kernel_ns; 3118 } 3119 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3120 3121 /* Keep irq disabled to prevent changes to the clock */ 3122 local_irq_save(flags); 3123 tgt_tsc_khz = get_cpu_tsc_khz(); 3124 if (unlikely(tgt_tsc_khz == 0)) { 3125 local_irq_restore(flags); 3126 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3127 return 1; 3128 } 3129 if (!use_master_clock) { 3130 host_tsc = rdtsc(); 3131 kernel_ns = get_kvmclock_base_ns(); 3132 } 3133 3134 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3135 3136 /* 3137 * We may have to catch up the TSC to match elapsed wall clock 3138 * time for two reasons, even if kvmclock is used. 3139 * 1) CPU could have been running below the maximum TSC rate 3140 * 2) Broken TSC compensation resets the base at each VCPU 3141 * entry to avoid unknown leaps of TSC even when running 3142 * again on the same CPU. This may cause apparent elapsed 3143 * time to disappear, and the guest to stand still or run 3144 * very slowly. 3145 */ 3146 if (vcpu->tsc_catchup) { 3147 u64 tsc = compute_guest_tsc(v, kernel_ns); 3148 if (tsc > tsc_timestamp) { 3149 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3150 tsc_timestamp = tsc; 3151 } 3152 } 3153 3154 local_irq_restore(flags); 3155 3156 /* With all the info we got, fill in the values */ 3157 3158 if (kvm_caps.has_tsc_control) 3159 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3160 v->arch.l1_tsc_scaling_ratio); 3161 3162 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3163 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3164 &vcpu->hv_clock.tsc_shift, 3165 &vcpu->hv_clock.tsc_to_system_mul); 3166 vcpu->hw_tsc_khz = tgt_tsc_khz; 3167 } 3168 3169 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3170 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3171 vcpu->last_guest_tsc = tsc_timestamp; 3172 3173 /* If the host uses TSC clocksource, then it is stable */ 3174 pvclock_flags = 0; 3175 if (use_master_clock) 3176 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3177 3178 vcpu->hv_clock.flags = pvclock_flags; 3179 3180 if (vcpu->pv_time.active) 3181 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3182 if (vcpu->xen.vcpu_info_cache.active) 3183 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3184 offsetof(struct compat_vcpu_info, time)); 3185 if (vcpu->xen.vcpu_time_info_cache.active) 3186 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3187 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3188 return 0; 3189 } 3190 3191 /* 3192 * kvmclock updates which are isolated to a given vcpu, such as 3193 * vcpu->cpu migration, should not allow system_timestamp from 3194 * the rest of the vcpus to remain static. Otherwise ntp frequency 3195 * correction applies to one vcpu's system_timestamp but not 3196 * the others. 3197 * 3198 * So in those cases, request a kvmclock update for all vcpus. 3199 * We need to rate-limit these requests though, as they can 3200 * considerably slow guests that have a large number of vcpus. 3201 * The time for a remote vcpu to update its kvmclock is bound 3202 * by the delay we use to rate-limit the updates. 3203 */ 3204 3205 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3206 3207 static void kvmclock_update_fn(struct work_struct *work) 3208 { 3209 unsigned long i; 3210 struct delayed_work *dwork = to_delayed_work(work); 3211 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3212 kvmclock_update_work); 3213 struct kvm *kvm = container_of(ka, struct kvm, arch); 3214 struct kvm_vcpu *vcpu; 3215 3216 kvm_for_each_vcpu(i, vcpu, kvm) { 3217 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3218 kvm_vcpu_kick(vcpu); 3219 } 3220 } 3221 3222 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3223 { 3224 struct kvm *kvm = v->kvm; 3225 3226 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3227 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3228 KVMCLOCK_UPDATE_DELAY); 3229 } 3230 3231 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3232 3233 static void kvmclock_sync_fn(struct work_struct *work) 3234 { 3235 struct delayed_work *dwork = to_delayed_work(work); 3236 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3237 kvmclock_sync_work); 3238 struct kvm *kvm = container_of(ka, struct kvm, arch); 3239 3240 if (!kvmclock_periodic_sync) 3241 return; 3242 3243 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3244 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3245 KVMCLOCK_SYNC_PERIOD); 3246 } 3247 3248 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3249 static bool is_mci_control_msr(u32 msr) 3250 { 3251 return (msr & 3) == 0; 3252 } 3253 static bool is_mci_status_msr(u32 msr) 3254 { 3255 return (msr & 3) == 1; 3256 } 3257 3258 /* 3259 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3260 */ 3261 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3262 { 3263 /* McStatusWrEn enabled? */ 3264 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3265 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3266 3267 return false; 3268 } 3269 3270 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3271 { 3272 u64 mcg_cap = vcpu->arch.mcg_cap; 3273 unsigned bank_num = mcg_cap & 0xff; 3274 u32 msr = msr_info->index; 3275 u64 data = msr_info->data; 3276 u32 offset, last_msr; 3277 3278 switch (msr) { 3279 case MSR_IA32_MCG_STATUS: 3280 vcpu->arch.mcg_status = data; 3281 break; 3282 case MSR_IA32_MCG_CTL: 3283 if (!(mcg_cap & MCG_CTL_P) && 3284 (data || !msr_info->host_initiated)) 3285 return 1; 3286 if (data != 0 && data != ~(u64)0) 3287 return 1; 3288 vcpu->arch.mcg_ctl = data; 3289 break; 3290 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3291 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3292 if (msr > last_msr) 3293 return 1; 3294 3295 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3296 return 1; 3297 /* An attempt to write a 1 to a reserved bit raises #GP */ 3298 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3299 return 1; 3300 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3301 last_msr + 1 - MSR_IA32_MC0_CTL2); 3302 vcpu->arch.mci_ctl2_banks[offset] = data; 3303 break; 3304 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3305 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3306 if (msr > last_msr) 3307 return 1; 3308 3309 /* 3310 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3311 * values are architecturally undefined. But, some Linux 3312 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3313 * issue on AMD K8s, allow bit 10 to be clear when setting all 3314 * other bits in order to avoid an uncaught #GP in the guest. 3315 * 3316 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3317 * single-bit ECC data errors. 3318 */ 3319 if (is_mci_control_msr(msr) && 3320 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3321 return 1; 3322 3323 /* 3324 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3325 * AMD-based CPUs allow non-zero values, but if and only if 3326 * HWCR[McStatusWrEn] is set. 3327 */ 3328 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3329 data != 0 && !can_set_mci_status(vcpu)) 3330 return 1; 3331 3332 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3333 last_msr + 1 - MSR_IA32_MC0_CTL); 3334 vcpu->arch.mce_banks[offset] = data; 3335 break; 3336 default: 3337 return 1; 3338 } 3339 return 0; 3340 } 3341 3342 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3343 { 3344 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3345 3346 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3347 } 3348 3349 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3350 { 3351 gpa_t gpa = data & ~0x3f; 3352 3353 /* Bits 4:5 are reserved, Should be zero */ 3354 if (data & 0x30) 3355 return 1; 3356 3357 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3358 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3359 return 1; 3360 3361 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3362 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3363 return 1; 3364 3365 if (!lapic_in_kernel(vcpu)) 3366 return data ? 1 : 0; 3367 3368 vcpu->arch.apf.msr_en_val = data; 3369 3370 if (!kvm_pv_async_pf_enabled(vcpu)) { 3371 kvm_clear_async_pf_completion_queue(vcpu); 3372 kvm_async_pf_hash_reset(vcpu); 3373 return 0; 3374 } 3375 3376 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3377 sizeof(u64))) 3378 return 1; 3379 3380 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3381 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3382 3383 kvm_async_pf_wakeup_all(vcpu); 3384 3385 return 0; 3386 } 3387 3388 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3389 { 3390 /* Bits 8-63 are reserved */ 3391 if (data >> 8) 3392 return 1; 3393 3394 if (!lapic_in_kernel(vcpu)) 3395 return 1; 3396 3397 vcpu->arch.apf.msr_int_val = data; 3398 3399 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3400 3401 return 0; 3402 } 3403 3404 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3405 { 3406 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3407 vcpu->arch.time = 0; 3408 } 3409 3410 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3411 { 3412 ++vcpu->stat.tlb_flush; 3413 static_call(kvm_x86_flush_tlb_all)(vcpu); 3414 3415 /* Flushing all ASIDs flushes the current ASID... */ 3416 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3417 } 3418 3419 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3420 { 3421 ++vcpu->stat.tlb_flush; 3422 3423 if (!tdp_enabled) { 3424 /* 3425 * A TLB flush on behalf of the guest is equivalent to 3426 * INVPCID(all), toggling CR4.PGE, etc., which requires 3427 * a forced sync of the shadow page tables. Ensure all the 3428 * roots are synced and the guest TLB in hardware is clean. 3429 */ 3430 kvm_mmu_sync_roots(vcpu); 3431 kvm_mmu_sync_prev_roots(vcpu); 3432 } 3433 3434 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3435 3436 /* 3437 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3438 * grained flushing. 3439 */ 3440 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3441 } 3442 3443 3444 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3445 { 3446 ++vcpu->stat.tlb_flush; 3447 static_call(kvm_x86_flush_tlb_current)(vcpu); 3448 } 3449 3450 /* 3451 * Service "local" TLB flush requests, which are specific to the current MMU 3452 * context. In addition to the generic event handling in vcpu_enter_guest(), 3453 * TLB flushes that are targeted at an MMU context also need to be serviced 3454 * prior before nested VM-Enter/VM-Exit. 3455 */ 3456 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3457 { 3458 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3459 kvm_vcpu_flush_tlb_current(vcpu); 3460 3461 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3462 kvm_vcpu_flush_tlb_guest(vcpu); 3463 } 3464 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3465 3466 static void record_steal_time(struct kvm_vcpu *vcpu) 3467 { 3468 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3469 struct kvm_steal_time __user *st; 3470 struct kvm_memslots *slots; 3471 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3472 u64 steal; 3473 u32 version; 3474 3475 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3476 kvm_xen_runstate_set_running(vcpu); 3477 return; 3478 } 3479 3480 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3481 return; 3482 3483 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3484 return; 3485 3486 slots = kvm_memslots(vcpu->kvm); 3487 3488 if (unlikely(slots->generation != ghc->generation || 3489 gpa != ghc->gpa || 3490 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3491 /* We rely on the fact that it fits in a single page. */ 3492 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3493 3494 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3495 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3496 return; 3497 } 3498 3499 st = (struct kvm_steal_time __user *)ghc->hva; 3500 /* 3501 * Doing a TLB flush here, on the guest's behalf, can avoid 3502 * expensive IPIs. 3503 */ 3504 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3505 u8 st_preempted = 0; 3506 int err = -EFAULT; 3507 3508 if (!user_access_begin(st, sizeof(*st))) 3509 return; 3510 3511 asm volatile("1: xchgb %0, %2\n" 3512 "xor %1, %1\n" 3513 "2:\n" 3514 _ASM_EXTABLE_UA(1b, 2b) 3515 : "+q" (st_preempted), 3516 "+&r" (err), 3517 "+m" (st->preempted)); 3518 if (err) 3519 goto out; 3520 3521 user_access_end(); 3522 3523 vcpu->arch.st.preempted = 0; 3524 3525 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3526 st_preempted & KVM_VCPU_FLUSH_TLB); 3527 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3528 kvm_vcpu_flush_tlb_guest(vcpu); 3529 3530 if (!user_access_begin(st, sizeof(*st))) 3531 goto dirty; 3532 } else { 3533 if (!user_access_begin(st, sizeof(*st))) 3534 return; 3535 3536 unsafe_put_user(0, &st->preempted, out); 3537 vcpu->arch.st.preempted = 0; 3538 } 3539 3540 unsafe_get_user(version, &st->version, out); 3541 if (version & 1) 3542 version += 1; /* first time write, random junk */ 3543 3544 version += 1; 3545 unsafe_put_user(version, &st->version, out); 3546 3547 smp_wmb(); 3548 3549 unsafe_get_user(steal, &st->steal, out); 3550 steal += current->sched_info.run_delay - 3551 vcpu->arch.st.last_steal; 3552 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3553 unsafe_put_user(steal, &st->steal, out); 3554 3555 version += 1; 3556 unsafe_put_user(version, &st->version, out); 3557 3558 out: 3559 user_access_end(); 3560 dirty: 3561 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3562 } 3563 3564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3565 { 3566 u32 msr = msr_info->index; 3567 u64 data = msr_info->data; 3568 3569 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3570 return kvm_xen_write_hypercall_page(vcpu, data); 3571 3572 switch (msr) { 3573 case MSR_AMD64_NB_CFG: 3574 case MSR_IA32_UCODE_WRITE: 3575 case MSR_VM_HSAVE_PA: 3576 case MSR_AMD64_PATCH_LOADER: 3577 case MSR_AMD64_BU_CFG2: 3578 case MSR_AMD64_DC_CFG: 3579 case MSR_F15H_EX_CFG: 3580 break; 3581 3582 case MSR_IA32_UCODE_REV: 3583 if (msr_info->host_initiated) 3584 vcpu->arch.microcode_version = data; 3585 break; 3586 case MSR_IA32_ARCH_CAPABILITIES: 3587 if (!msr_info->host_initiated) 3588 return 1; 3589 vcpu->arch.arch_capabilities = data; 3590 break; 3591 case MSR_IA32_PERF_CAPABILITIES: 3592 if (!msr_info->host_initiated) 3593 return 1; 3594 if (data & ~kvm_caps.supported_perf_cap) 3595 return 1; 3596 3597 vcpu->arch.perf_capabilities = data; 3598 kvm_pmu_refresh(vcpu); 3599 return 0; 3600 case MSR_EFER: 3601 return set_efer(vcpu, msr_info); 3602 case MSR_K7_HWCR: 3603 data &= ~(u64)0x40; /* ignore flush filter disable */ 3604 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3605 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3606 3607 /* Handle McStatusWrEn */ 3608 if (data == BIT_ULL(18)) { 3609 vcpu->arch.msr_hwcr = data; 3610 } else if (data != 0) { 3611 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3612 return 1; 3613 } 3614 break; 3615 case MSR_FAM10H_MMIO_CONF_BASE: 3616 if (data != 0) { 3617 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3618 return 1; 3619 } 3620 break; 3621 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3622 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3623 return kvm_mtrr_set_msr(vcpu, msr, data); 3624 case MSR_IA32_APICBASE: 3625 return kvm_set_apic_base(vcpu, msr_info); 3626 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3627 return kvm_x2apic_msr_write(vcpu, msr, data); 3628 case MSR_IA32_TSC_DEADLINE: 3629 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3630 break; 3631 case MSR_IA32_TSC_ADJUST: 3632 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3633 if (!msr_info->host_initiated) { 3634 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3635 adjust_tsc_offset_guest(vcpu, adj); 3636 /* Before back to guest, tsc_timestamp must be adjusted 3637 * as well, otherwise guest's percpu pvclock time could jump. 3638 */ 3639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3640 } 3641 vcpu->arch.ia32_tsc_adjust_msr = data; 3642 } 3643 break; 3644 case MSR_IA32_MISC_ENABLE: { 3645 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3646 3647 if (!msr_info->host_initiated) { 3648 /* RO bits */ 3649 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3650 return 1; 3651 3652 /* R bits, i.e. writes are ignored, but don't fault. */ 3653 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3654 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3655 } 3656 3657 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3658 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3659 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3660 return 1; 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 kvm_update_cpuid_runtime(vcpu); 3663 } else { 3664 vcpu->arch.ia32_misc_enable_msr = data; 3665 } 3666 break; 3667 } 3668 case MSR_IA32_SMBASE: 3669 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3670 return 1; 3671 vcpu->arch.smbase = data; 3672 break; 3673 case MSR_IA32_POWER_CTL: 3674 vcpu->arch.msr_ia32_power_ctl = data; 3675 break; 3676 case MSR_IA32_TSC: 3677 if (msr_info->host_initiated) { 3678 kvm_synchronize_tsc(vcpu, data); 3679 } else { 3680 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3681 adjust_tsc_offset_guest(vcpu, adj); 3682 vcpu->arch.ia32_tsc_adjust_msr += adj; 3683 } 3684 break; 3685 case MSR_IA32_XSS: 3686 if (!msr_info->host_initiated && 3687 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3688 return 1; 3689 /* 3690 * KVM supports exposing PT to the guest, but does not support 3691 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3692 * XSAVES/XRSTORS to save/restore PT MSRs. 3693 */ 3694 if (data & ~kvm_caps.supported_xss) 3695 return 1; 3696 vcpu->arch.ia32_xss = data; 3697 kvm_update_cpuid_runtime(vcpu); 3698 break; 3699 case MSR_SMI_COUNT: 3700 if (!msr_info->host_initiated) 3701 return 1; 3702 vcpu->arch.smi_count = data; 3703 break; 3704 case MSR_KVM_WALL_CLOCK_NEW: 3705 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3706 return 1; 3707 3708 vcpu->kvm->arch.wall_clock = data; 3709 kvm_write_wall_clock(vcpu->kvm, data, 0); 3710 break; 3711 case MSR_KVM_WALL_CLOCK: 3712 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3713 return 1; 3714 3715 vcpu->kvm->arch.wall_clock = data; 3716 kvm_write_wall_clock(vcpu->kvm, data, 0); 3717 break; 3718 case MSR_KVM_SYSTEM_TIME_NEW: 3719 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3720 return 1; 3721 3722 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3723 break; 3724 case MSR_KVM_SYSTEM_TIME: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3726 return 1; 3727 3728 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3729 break; 3730 case MSR_KVM_ASYNC_PF_EN: 3731 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3732 return 1; 3733 3734 if (kvm_pv_enable_async_pf(vcpu, data)) 3735 return 1; 3736 break; 3737 case MSR_KVM_ASYNC_PF_INT: 3738 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3739 return 1; 3740 3741 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3742 return 1; 3743 break; 3744 case MSR_KVM_ASYNC_PF_ACK: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3746 return 1; 3747 if (data & 0x1) { 3748 vcpu->arch.apf.pageready_pending = false; 3749 kvm_check_async_pf_completion(vcpu); 3750 } 3751 break; 3752 case MSR_KVM_STEAL_TIME: 3753 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3754 return 1; 3755 3756 if (unlikely(!sched_info_on())) 3757 return 1; 3758 3759 if (data & KVM_STEAL_RESERVED_MASK) 3760 return 1; 3761 3762 vcpu->arch.st.msr_val = data; 3763 3764 if (!(data & KVM_MSR_ENABLED)) 3765 break; 3766 3767 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3768 3769 break; 3770 case MSR_KVM_PV_EOI_EN: 3771 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3772 return 1; 3773 3774 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3775 return 1; 3776 break; 3777 3778 case MSR_KVM_POLL_CONTROL: 3779 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3780 return 1; 3781 3782 /* only enable bit supported */ 3783 if (data & (-1ULL << 1)) 3784 return 1; 3785 3786 vcpu->arch.msr_kvm_poll_control = data; 3787 break; 3788 3789 case MSR_IA32_MCG_CTL: 3790 case MSR_IA32_MCG_STATUS: 3791 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3792 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3793 return set_msr_mce(vcpu, msr_info); 3794 3795 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3796 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3797 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3798 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3799 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3800 return kvm_pmu_set_msr(vcpu, msr_info); 3801 3802 if (data) 3803 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3804 break; 3805 case MSR_K7_CLK_CTL: 3806 /* 3807 * Ignore all writes to this no longer documented MSR. 3808 * Writes are only relevant for old K7 processors, 3809 * all pre-dating SVM, but a recommended workaround from 3810 * AMD for these chips. It is possible to specify the 3811 * affected processor models on the command line, hence 3812 * the need to ignore the workaround. 3813 */ 3814 break; 3815 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3816 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3817 case HV_X64_MSR_SYNDBG_OPTIONS: 3818 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3819 case HV_X64_MSR_CRASH_CTL: 3820 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3821 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3822 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3823 case HV_X64_MSR_TSC_EMULATION_STATUS: 3824 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3825 return kvm_hv_set_msr_common(vcpu, msr, data, 3826 msr_info->host_initiated); 3827 case MSR_IA32_BBL_CR_CTL3: 3828 /* Drop writes to this legacy MSR -- see rdmsr 3829 * counterpart for further detail. 3830 */ 3831 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3832 break; 3833 case MSR_AMD64_OSVW_ID_LENGTH: 3834 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3835 return 1; 3836 vcpu->arch.osvw.length = data; 3837 break; 3838 case MSR_AMD64_OSVW_STATUS: 3839 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3840 return 1; 3841 vcpu->arch.osvw.status = data; 3842 break; 3843 case MSR_PLATFORM_INFO: 3844 if (!msr_info->host_initiated || 3845 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3846 cpuid_fault_enabled(vcpu))) 3847 return 1; 3848 vcpu->arch.msr_platform_info = data; 3849 break; 3850 case MSR_MISC_FEATURES_ENABLES: 3851 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3852 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3853 !supports_cpuid_fault(vcpu))) 3854 return 1; 3855 vcpu->arch.msr_misc_features_enables = data; 3856 break; 3857 #ifdef CONFIG_X86_64 3858 case MSR_IA32_XFD: 3859 if (!msr_info->host_initiated && 3860 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3861 return 1; 3862 3863 if (data & ~kvm_guest_supported_xfd(vcpu)) 3864 return 1; 3865 3866 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3867 break; 3868 case MSR_IA32_XFD_ERR: 3869 if (!msr_info->host_initiated && 3870 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3871 return 1; 3872 3873 if (data & ~kvm_guest_supported_xfd(vcpu)) 3874 return 1; 3875 3876 vcpu->arch.guest_fpu.xfd_err = data; 3877 break; 3878 #endif 3879 case MSR_IA32_PEBS_ENABLE: 3880 case MSR_IA32_DS_AREA: 3881 case MSR_PEBS_DATA_CFG: 3882 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3883 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3884 return kvm_pmu_set_msr(vcpu, msr_info); 3885 /* 3886 * Userspace is allowed to write '0' to MSRs that KVM reports 3887 * as to-be-saved, even if an MSRs isn't fully supported. 3888 */ 3889 return !msr_info->host_initiated || data; 3890 default: 3891 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3892 return kvm_pmu_set_msr(vcpu, msr_info); 3893 return KVM_MSR_RET_INVALID; 3894 } 3895 return 0; 3896 } 3897 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3898 3899 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3900 { 3901 u64 data; 3902 u64 mcg_cap = vcpu->arch.mcg_cap; 3903 unsigned bank_num = mcg_cap & 0xff; 3904 u32 offset, last_msr; 3905 3906 switch (msr) { 3907 case MSR_IA32_P5_MC_ADDR: 3908 case MSR_IA32_P5_MC_TYPE: 3909 data = 0; 3910 break; 3911 case MSR_IA32_MCG_CAP: 3912 data = vcpu->arch.mcg_cap; 3913 break; 3914 case MSR_IA32_MCG_CTL: 3915 if (!(mcg_cap & MCG_CTL_P) && !host) 3916 return 1; 3917 data = vcpu->arch.mcg_ctl; 3918 break; 3919 case MSR_IA32_MCG_STATUS: 3920 data = vcpu->arch.mcg_status; 3921 break; 3922 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3923 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3924 if (msr > last_msr) 3925 return 1; 3926 3927 if (!(mcg_cap & MCG_CMCI_P) && !host) 3928 return 1; 3929 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3930 last_msr + 1 - MSR_IA32_MC0_CTL2); 3931 data = vcpu->arch.mci_ctl2_banks[offset]; 3932 break; 3933 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3934 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3935 if (msr > last_msr) 3936 return 1; 3937 3938 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3939 last_msr + 1 - MSR_IA32_MC0_CTL); 3940 data = vcpu->arch.mce_banks[offset]; 3941 break; 3942 default: 3943 return 1; 3944 } 3945 *pdata = data; 3946 return 0; 3947 } 3948 3949 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3950 { 3951 switch (msr_info->index) { 3952 case MSR_IA32_PLATFORM_ID: 3953 case MSR_IA32_EBL_CR_POWERON: 3954 case MSR_IA32_LASTBRANCHFROMIP: 3955 case MSR_IA32_LASTBRANCHTOIP: 3956 case MSR_IA32_LASTINTFROMIP: 3957 case MSR_IA32_LASTINTTOIP: 3958 case MSR_AMD64_SYSCFG: 3959 case MSR_K8_TSEG_ADDR: 3960 case MSR_K8_TSEG_MASK: 3961 case MSR_VM_HSAVE_PA: 3962 case MSR_K8_INT_PENDING_MSG: 3963 case MSR_AMD64_NB_CFG: 3964 case MSR_FAM10H_MMIO_CONF_BASE: 3965 case MSR_AMD64_BU_CFG2: 3966 case MSR_IA32_PERF_CTL: 3967 case MSR_AMD64_DC_CFG: 3968 case MSR_F15H_EX_CFG: 3969 /* 3970 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3971 * limit) MSRs. Just return 0, as we do not want to expose the host 3972 * data here. Do not conditionalize this on CPUID, as KVM does not do 3973 * so for existing CPU-specific MSRs. 3974 */ 3975 case MSR_RAPL_POWER_UNIT: 3976 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3977 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3978 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3979 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3980 msr_info->data = 0; 3981 break; 3982 case MSR_IA32_PEBS_ENABLE: 3983 case MSR_IA32_DS_AREA: 3984 case MSR_PEBS_DATA_CFG: 3985 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3986 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3987 return kvm_pmu_get_msr(vcpu, msr_info); 3988 /* 3989 * Userspace is allowed to read MSRs that KVM reports as 3990 * to-be-saved, even if an MSR isn't fully supported. 3991 */ 3992 if (!msr_info->host_initiated) 3993 return 1; 3994 msr_info->data = 0; 3995 break; 3996 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3997 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3998 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3999 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4000 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4001 return kvm_pmu_get_msr(vcpu, msr_info); 4002 msr_info->data = 0; 4003 break; 4004 case MSR_IA32_UCODE_REV: 4005 msr_info->data = vcpu->arch.microcode_version; 4006 break; 4007 case MSR_IA32_ARCH_CAPABILITIES: 4008 if (!msr_info->host_initiated && 4009 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4010 return 1; 4011 msr_info->data = vcpu->arch.arch_capabilities; 4012 break; 4013 case MSR_IA32_PERF_CAPABILITIES: 4014 if (!msr_info->host_initiated && 4015 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4016 return 1; 4017 msr_info->data = vcpu->arch.perf_capabilities; 4018 break; 4019 case MSR_IA32_POWER_CTL: 4020 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4021 break; 4022 case MSR_IA32_TSC: { 4023 /* 4024 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4025 * even when not intercepted. AMD manual doesn't explicitly 4026 * state this but appears to behave the same. 4027 * 4028 * On userspace reads and writes, however, we unconditionally 4029 * return L1's TSC value to ensure backwards-compatible 4030 * behavior for migration. 4031 */ 4032 u64 offset, ratio; 4033 4034 if (msr_info->host_initiated) { 4035 offset = vcpu->arch.l1_tsc_offset; 4036 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4037 } else { 4038 offset = vcpu->arch.tsc_offset; 4039 ratio = vcpu->arch.tsc_scaling_ratio; 4040 } 4041 4042 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4043 break; 4044 } 4045 case MSR_MTRRcap: 4046 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4047 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4048 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4049 case 0xcd: /* fsb frequency */ 4050 msr_info->data = 3; 4051 break; 4052 /* 4053 * MSR_EBC_FREQUENCY_ID 4054 * Conservative value valid for even the basic CPU models. 4055 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4056 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4057 * and 266MHz for model 3, or 4. Set Core Clock 4058 * Frequency to System Bus Frequency Ratio to 1 (bits 4059 * 31:24) even though these are only valid for CPU 4060 * models > 2, however guests may end up dividing or 4061 * multiplying by zero otherwise. 4062 */ 4063 case MSR_EBC_FREQUENCY_ID: 4064 msr_info->data = 1 << 24; 4065 break; 4066 case MSR_IA32_APICBASE: 4067 msr_info->data = kvm_get_apic_base(vcpu); 4068 break; 4069 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4070 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4071 case MSR_IA32_TSC_DEADLINE: 4072 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4073 break; 4074 case MSR_IA32_TSC_ADJUST: 4075 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4076 break; 4077 case MSR_IA32_MISC_ENABLE: 4078 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4079 break; 4080 case MSR_IA32_SMBASE: 4081 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4082 return 1; 4083 msr_info->data = vcpu->arch.smbase; 4084 break; 4085 case MSR_SMI_COUNT: 4086 msr_info->data = vcpu->arch.smi_count; 4087 break; 4088 case MSR_IA32_PERF_STATUS: 4089 /* TSC increment by tick */ 4090 msr_info->data = 1000ULL; 4091 /* CPU multiplier */ 4092 msr_info->data |= (((uint64_t)4ULL) << 40); 4093 break; 4094 case MSR_EFER: 4095 msr_info->data = vcpu->arch.efer; 4096 break; 4097 case MSR_KVM_WALL_CLOCK: 4098 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4099 return 1; 4100 4101 msr_info->data = vcpu->kvm->arch.wall_clock; 4102 break; 4103 case MSR_KVM_WALL_CLOCK_NEW: 4104 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4105 return 1; 4106 4107 msr_info->data = vcpu->kvm->arch.wall_clock; 4108 break; 4109 case MSR_KVM_SYSTEM_TIME: 4110 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4111 return 1; 4112 4113 msr_info->data = vcpu->arch.time; 4114 break; 4115 case MSR_KVM_SYSTEM_TIME_NEW: 4116 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4117 return 1; 4118 4119 msr_info->data = vcpu->arch.time; 4120 break; 4121 case MSR_KVM_ASYNC_PF_EN: 4122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4123 return 1; 4124 4125 msr_info->data = vcpu->arch.apf.msr_en_val; 4126 break; 4127 case MSR_KVM_ASYNC_PF_INT: 4128 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4129 return 1; 4130 4131 msr_info->data = vcpu->arch.apf.msr_int_val; 4132 break; 4133 case MSR_KVM_ASYNC_PF_ACK: 4134 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4135 return 1; 4136 4137 msr_info->data = 0; 4138 break; 4139 case MSR_KVM_STEAL_TIME: 4140 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4141 return 1; 4142 4143 msr_info->data = vcpu->arch.st.msr_val; 4144 break; 4145 case MSR_KVM_PV_EOI_EN: 4146 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4147 return 1; 4148 4149 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4150 break; 4151 case MSR_KVM_POLL_CONTROL: 4152 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4153 return 1; 4154 4155 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4156 break; 4157 case MSR_IA32_P5_MC_ADDR: 4158 case MSR_IA32_P5_MC_TYPE: 4159 case MSR_IA32_MCG_CAP: 4160 case MSR_IA32_MCG_CTL: 4161 case MSR_IA32_MCG_STATUS: 4162 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4163 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4164 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4165 msr_info->host_initiated); 4166 case MSR_IA32_XSS: 4167 if (!msr_info->host_initiated && 4168 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4169 return 1; 4170 msr_info->data = vcpu->arch.ia32_xss; 4171 break; 4172 case MSR_K7_CLK_CTL: 4173 /* 4174 * Provide expected ramp-up count for K7. All other 4175 * are set to zero, indicating minimum divisors for 4176 * every field. 4177 * 4178 * This prevents guest kernels on AMD host with CPU 4179 * type 6, model 8 and higher from exploding due to 4180 * the rdmsr failing. 4181 */ 4182 msr_info->data = 0x20000000; 4183 break; 4184 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4185 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4186 case HV_X64_MSR_SYNDBG_OPTIONS: 4187 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4188 case HV_X64_MSR_CRASH_CTL: 4189 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4190 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4191 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4192 case HV_X64_MSR_TSC_EMULATION_STATUS: 4193 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4194 return kvm_hv_get_msr_common(vcpu, 4195 msr_info->index, &msr_info->data, 4196 msr_info->host_initiated); 4197 case MSR_IA32_BBL_CR_CTL3: 4198 /* This legacy MSR exists but isn't fully documented in current 4199 * silicon. It is however accessed by winxp in very narrow 4200 * scenarios where it sets bit #19, itself documented as 4201 * a "reserved" bit. Best effort attempt to source coherent 4202 * read data here should the balance of the register be 4203 * interpreted by the guest: 4204 * 4205 * L2 cache control register 3: 64GB range, 256KB size, 4206 * enabled, latency 0x1, configured 4207 */ 4208 msr_info->data = 0xbe702111; 4209 break; 4210 case MSR_AMD64_OSVW_ID_LENGTH: 4211 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4212 return 1; 4213 msr_info->data = vcpu->arch.osvw.length; 4214 break; 4215 case MSR_AMD64_OSVW_STATUS: 4216 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4217 return 1; 4218 msr_info->data = vcpu->arch.osvw.status; 4219 break; 4220 case MSR_PLATFORM_INFO: 4221 if (!msr_info->host_initiated && 4222 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4223 return 1; 4224 msr_info->data = vcpu->arch.msr_platform_info; 4225 break; 4226 case MSR_MISC_FEATURES_ENABLES: 4227 msr_info->data = vcpu->arch.msr_misc_features_enables; 4228 break; 4229 case MSR_K7_HWCR: 4230 msr_info->data = vcpu->arch.msr_hwcr; 4231 break; 4232 #ifdef CONFIG_X86_64 4233 case MSR_IA32_XFD: 4234 if (!msr_info->host_initiated && 4235 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4236 return 1; 4237 4238 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4239 break; 4240 case MSR_IA32_XFD_ERR: 4241 if (!msr_info->host_initiated && 4242 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4243 return 1; 4244 4245 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4246 break; 4247 #endif 4248 default: 4249 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4250 return kvm_pmu_get_msr(vcpu, msr_info); 4251 return KVM_MSR_RET_INVALID; 4252 } 4253 return 0; 4254 } 4255 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4256 4257 /* 4258 * Read or write a bunch of msrs. All parameters are kernel addresses. 4259 * 4260 * @return number of msrs set successfully. 4261 */ 4262 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4263 struct kvm_msr_entry *entries, 4264 int (*do_msr)(struct kvm_vcpu *vcpu, 4265 unsigned index, u64 *data)) 4266 { 4267 int i; 4268 4269 for (i = 0; i < msrs->nmsrs; ++i) 4270 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4271 break; 4272 4273 return i; 4274 } 4275 4276 /* 4277 * Read or write a bunch of msrs. Parameters are user addresses. 4278 * 4279 * @return number of msrs set successfully. 4280 */ 4281 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4282 int (*do_msr)(struct kvm_vcpu *vcpu, 4283 unsigned index, u64 *data), 4284 int writeback) 4285 { 4286 struct kvm_msrs msrs; 4287 struct kvm_msr_entry *entries; 4288 int r, n; 4289 unsigned size; 4290 4291 r = -EFAULT; 4292 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4293 goto out; 4294 4295 r = -E2BIG; 4296 if (msrs.nmsrs >= MAX_IO_MSRS) 4297 goto out; 4298 4299 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4300 entries = memdup_user(user_msrs->entries, size); 4301 if (IS_ERR(entries)) { 4302 r = PTR_ERR(entries); 4303 goto out; 4304 } 4305 4306 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4307 if (r < 0) 4308 goto out_free; 4309 4310 r = -EFAULT; 4311 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4312 goto out_free; 4313 4314 r = n; 4315 4316 out_free: 4317 kfree(entries); 4318 out: 4319 return r; 4320 } 4321 4322 static inline bool kvm_can_mwait_in_guest(void) 4323 { 4324 return boot_cpu_has(X86_FEATURE_MWAIT) && 4325 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4326 boot_cpu_has(X86_FEATURE_ARAT); 4327 } 4328 4329 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4330 struct kvm_cpuid2 __user *cpuid_arg) 4331 { 4332 struct kvm_cpuid2 cpuid; 4333 int r; 4334 4335 r = -EFAULT; 4336 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4337 return r; 4338 4339 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4340 if (r) 4341 return r; 4342 4343 r = -EFAULT; 4344 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4345 return r; 4346 4347 return 0; 4348 } 4349 4350 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4351 { 4352 int r = 0; 4353 4354 switch (ext) { 4355 case KVM_CAP_IRQCHIP: 4356 case KVM_CAP_HLT: 4357 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4358 case KVM_CAP_SET_TSS_ADDR: 4359 case KVM_CAP_EXT_CPUID: 4360 case KVM_CAP_EXT_EMUL_CPUID: 4361 case KVM_CAP_CLOCKSOURCE: 4362 case KVM_CAP_PIT: 4363 case KVM_CAP_NOP_IO_DELAY: 4364 case KVM_CAP_MP_STATE: 4365 case KVM_CAP_SYNC_MMU: 4366 case KVM_CAP_USER_NMI: 4367 case KVM_CAP_REINJECT_CONTROL: 4368 case KVM_CAP_IRQ_INJECT_STATUS: 4369 case KVM_CAP_IOEVENTFD: 4370 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4371 case KVM_CAP_PIT2: 4372 case KVM_CAP_PIT_STATE2: 4373 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4374 case KVM_CAP_VCPU_EVENTS: 4375 case KVM_CAP_HYPERV: 4376 case KVM_CAP_HYPERV_VAPIC: 4377 case KVM_CAP_HYPERV_SPIN: 4378 case KVM_CAP_HYPERV_SYNIC: 4379 case KVM_CAP_HYPERV_SYNIC2: 4380 case KVM_CAP_HYPERV_VP_INDEX: 4381 case KVM_CAP_HYPERV_EVENTFD: 4382 case KVM_CAP_HYPERV_TLBFLUSH: 4383 case KVM_CAP_HYPERV_SEND_IPI: 4384 case KVM_CAP_HYPERV_CPUID: 4385 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4386 case KVM_CAP_SYS_HYPERV_CPUID: 4387 case KVM_CAP_PCI_SEGMENT: 4388 case KVM_CAP_DEBUGREGS: 4389 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4390 case KVM_CAP_XSAVE: 4391 case KVM_CAP_ASYNC_PF: 4392 case KVM_CAP_ASYNC_PF_INT: 4393 case KVM_CAP_GET_TSC_KHZ: 4394 case KVM_CAP_KVMCLOCK_CTRL: 4395 case KVM_CAP_READONLY_MEM: 4396 case KVM_CAP_HYPERV_TIME: 4397 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4398 case KVM_CAP_TSC_DEADLINE_TIMER: 4399 case KVM_CAP_DISABLE_QUIRKS: 4400 case KVM_CAP_SET_BOOT_CPU_ID: 4401 case KVM_CAP_SPLIT_IRQCHIP: 4402 case KVM_CAP_IMMEDIATE_EXIT: 4403 case KVM_CAP_PMU_EVENT_FILTER: 4404 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4405 case KVM_CAP_GET_MSR_FEATURES: 4406 case KVM_CAP_MSR_PLATFORM_INFO: 4407 case KVM_CAP_EXCEPTION_PAYLOAD: 4408 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4409 case KVM_CAP_SET_GUEST_DEBUG: 4410 case KVM_CAP_LAST_CPU: 4411 case KVM_CAP_X86_USER_SPACE_MSR: 4412 case KVM_CAP_X86_MSR_FILTER: 4413 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4414 #ifdef CONFIG_X86_SGX_KVM 4415 case KVM_CAP_SGX_ATTRIBUTE: 4416 #endif 4417 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4418 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4419 case KVM_CAP_SREGS2: 4420 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4421 case KVM_CAP_VCPU_ATTRIBUTES: 4422 case KVM_CAP_SYS_ATTRIBUTES: 4423 case KVM_CAP_VAPIC: 4424 case KVM_CAP_ENABLE_CAP: 4425 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4426 r = 1; 4427 break; 4428 case KVM_CAP_EXIT_HYPERCALL: 4429 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4430 break; 4431 case KVM_CAP_SET_GUEST_DEBUG2: 4432 return KVM_GUESTDBG_VALID_MASK; 4433 #ifdef CONFIG_KVM_XEN 4434 case KVM_CAP_XEN_HVM: 4435 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4436 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4437 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4438 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4439 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4440 if (sched_info_on()) 4441 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4442 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4443 break; 4444 #endif 4445 case KVM_CAP_SYNC_REGS: 4446 r = KVM_SYNC_X86_VALID_FIELDS; 4447 break; 4448 case KVM_CAP_ADJUST_CLOCK: 4449 r = KVM_CLOCK_VALID_FLAGS; 4450 break; 4451 case KVM_CAP_X86_DISABLE_EXITS: 4452 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4453 KVM_X86_DISABLE_EXITS_CSTATE; 4454 if(kvm_can_mwait_in_guest()) 4455 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4456 break; 4457 case KVM_CAP_X86_SMM: 4458 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4459 break; 4460 4461 /* SMBASE is usually relocated above 1M on modern chipsets, 4462 * and SMM handlers might indeed rely on 4G segment limits, 4463 * so do not report SMM to be available if real mode is 4464 * emulated via vm86 mode. Still, do not go to great lengths 4465 * to avoid userspace's usage of the feature, because it is a 4466 * fringe case that is not enabled except via specific settings 4467 * of the module parameters. 4468 */ 4469 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4470 break; 4471 case KVM_CAP_NR_VCPUS: 4472 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4473 break; 4474 case KVM_CAP_MAX_VCPUS: 4475 r = KVM_MAX_VCPUS; 4476 break; 4477 case KVM_CAP_MAX_VCPU_ID: 4478 r = KVM_MAX_VCPU_IDS; 4479 break; 4480 case KVM_CAP_PV_MMU: /* obsolete */ 4481 r = 0; 4482 break; 4483 case KVM_CAP_MCE: 4484 r = KVM_MAX_MCE_BANKS; 4485 break; 4486 case KVM_CAP_XCRS: 4487 r = boot_cpu_has(X86_FEATURE_XSAVE); 4488 break; 4489 case KVM_CAP_TSC_CONTROL: 4490 case KVM_CAP_VM_TSC_CONTROL: 4491 r = kvm_caps.has_tsc_control; 4492 break; 4493 case KVM_CAP_X2APIC_API: 4494 r = KVM_X2APIC_API_VALID_FLAGS; 4495 break; 4496 case KVM_CAP_NESTED_STATE: 4497 r = kvm_x86_ops.nested_ops->get_state ? 4498 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4499 break; 4500 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4501 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4502 break; 4503 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4504 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4505 break; 4506 case KVM_CAP_SMALLER_MAXPHYADDR: 4507 r = (int) allow_smaller_maxphyaddr; 4508 break; 4509 case KVM_CAP_STEAL_TIME: 4510 r = sched_info_on(); 4511 break; 4512 case KVM_CAP_X86_BUS_LOCK_EXIT: 4513 if (kvm_caps.has_bus_lock_exit) 4514 r = KVM_BUS_LOCK_DETECTION_OFF | 4515 KVM_BUS_LOCK_DETECTION_EXIT; 4516 else 4517 r = 0; 4518 break; 4519 case KVM_CAP_XSAVE2: { 4520 u64 guest_perm = xstate_get_guest_group_perm(); 4521 4522 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4523 if (r < sizeof(struct kvm_xsave)) 4524 r = sizeof(struct kvm_xsave); 4525 break; 4526 } 4527 case KVM_CAP_PMU_CAPABILITY: 4528 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4529 break; 4530 case KVM_CAP_DISABLE_QUIRKS2: 4531 r = KVM_X86_VALID_QUIRKS; 4532 break; 4533 case KVM_CAP_X86_NOTIFY_VMEXIT: 4534 r = kvm_caps.has_notify_vmexit; 4535 break; 4536 default: 4537 break; 4538 } 4539 return r; 4540 } 4541 4542 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4543 { 4544 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4545 4546 if ((u64)(unsigned long)uaddr != attr->addr) 4547 return ERR_PTR_USR(-EFAULT); 4548 return uaddr; 4549 } 4550 4551 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4552 { 4553 u64 __user *uaddr = kvm_get_attr_addr(attr); 4554 4555 if (attr->group) 4556 return -ENXIO; 4557 4558 if (IS_ERR(uaddr)) 4559 return PTR_ERR(uaddr); 4560 4561 switch (attr->attr) { 4562 case KVM_X86_XCOMP_GUEST_SUPP: 4563 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4564 return -EFAULT; 4565 return 0; 4566 default: 4567 return -ENXIO; 4568 break; 4569 } 4570 } 4571 4572 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4573 { 4574 if (attr->group) 4575 return -ENXIO; 4576 4577 switch (attr->attr) { 4578 case KVM_X86_XCOMP_GUEST_SUPP: 4579 return 0; 4580 default: 4581 return -ENXIO; 4582 } 4583 } 4584 4585 long kvm_arch_dev_ioctl(struct file *filp, 4586 unsigned int ioctl, unsigned long arg) 4587 { 4588 void __user *argp = (void __user *)arg; 4589 long r; 4590 4591 switch (ioctl) { 4592 case KVM_GET_MSR_INDEX_LIST: { 4593 struct kvm_msr_list __user *user_msr_list = argp; 4594 struct kvm_msr_list msr_list; 4595 unsigned n; 4596 4597 r = -EFAULT; 4598 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4599 goto out; 4600 n = msr_list.nmsrs; 4601 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4602 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4603 goto out; 4604 r = -E2BIG; 4605 if (n < msr_list.nmsrs) 4606 goto out; 4607 r = -EFAULT; 4608 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4609 num_msrs_to_save * sizeof(u32))) 4610 goto out; 4611 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4612 &emulated_msrs, 4613 num_emulated_msrs * sizeof(u32))) 4614 goto out; 4615 r = 0; 4616 break; 4617 } 4618 case KVM_GET_SUPPORTED_CPUID: 4619 case KVM_GET_EMULATED_CPUID: { 4620 struct kvm_cpuid2 __user *cpuid_arg = argp; 4621 struct kvm_cpuid2 cpuid; 4622 4623 r = -EFAULT; 4624 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4625 goto out; 4626 4627 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4628 ioctl); 4629 if (r) 4630 goto out; 4631 4632 r = -EFAULT; 4633 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4634 goto out; 4635 r = 0; 4636 break; 4637 } 4638 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4639 r = -EFAULT; 4640 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4641 sizeof(kvm_caps.supported_mce_cap))) 4642 goto out; 4643 r = 0; 4644 break; 4645 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4646 struct kvm_msr_list __user *user_msr_list = argp; 4647 struct kvm_msr_list msr_list; 4648 unsigned int n; 4649 4650 r = -EFAULT; 4651 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4652 goto out; 4653 n = msr_list.nmsrs; 4654 msr_list.nmsrs = num_msr_based_features; 4655 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4656 goto out; 4657 r = -E2BIG; 4658 if (n < msr_list.nmsrs) 4659 goto out; 4660 r = -EFAULT; 4661 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4662 num_msr_based_features * sizeof(u32))) 4663 goto out; 4664 r = 0; 4665 break; 4666 } 4667 case KVM_GET_MSRS: 4668 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4669 break; 4670 case KVM_GET_SUPPORTED_HV_CPUID: 4671 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4672 break; 4673 case KVM_GET_DEVICE_ATTR: { 4674 struct kvm_device_attr attr; 4675 r = -EFAULT; 4676 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4677 break; 4678 r = kvm_x86_dev_get_attr(&attr); 4679 break; 4680 } 4681 case KVM_HAS_DEVICE_ATTR: { 4682 struct kvm_device_attr attr; 4683 r = -EFAULT; 4684 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4685 break; 4686 r = kvm_x86_dev_has_attr(&attr); 4687 break; 4688 } 4689 default: 4690 r = -EINVAL; 4691 break; 4692 } 4693 out: 4694 return r; 4695 } 4696 4697 static void wbinvd_ipi(void *garbage) 4698 { 4699 wbinvd(); 4700 } 4701 4702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4703 { 4704 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4705 } 4706 4707 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4708 { 4709 /* Address WBINVD may be executed by guest */ 4710 if (need_emulate_wbinvd(vcpu)) { 4711 if (static_call(kvm_x86_has_wbinvd_exit)()) 4712 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4713 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4714 smp_call_function_single(vcpu->cpu, 4715 wbinvd_ipi, NULL, 1); 4716 } 4717 4718 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4719 4720 /* Save host pkru register if supported */ 4721 vcpu->arch.host_pkru = read_pkru(); 4722 4723 /* Apply any externally detected TSC adjustments (due to suspend) */ 4724 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4725 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4726 vcpu->arch.tsc_offset_adjustment = 0; 4727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4728 } 4729 4730 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4731 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4732 rdtsc() - vcpu->arch.last_host_tsc; 4733 if (tsc_delta < 0) 4734 mark_tsc_unstable("KVM discovered backwards TSC"); 4735 4736 if (kvm_check_tsc_unstable()) { 4737 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4738 vcpu->arch.last_guest_tsc); 4739 kvm_vcpu_write_tsc_offset(vcpu, offset); 4740 vcpu->arch.tsc_catchup = 1; 4741 } 4742 4743 if (kvm_lapic_hv_timer_in_use(vcpu)) 4744 kvm_lapic_restart_hv_timer(vcpu); 4745 4746 /* 4747 * On a host with synchronized TSC, there is no need to update 4748 * kvmclock on vcpu->cpu migration 4749 */ 4750 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4751 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4752 if (vcpu->cpu != cpu) 4753 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4754 vcpu->cpu = cpu; 4755 } 4756 4757 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4758 } 4759 4760 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4761 { 4762 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4763 struct kvm_steal_time __user *st; 4764 struct kvm_memslots *slots; 4765 static const u8 preempted = KVM_VCPU_PREEMPTED; 4766 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4767 4768 /* 4769 * The vCPU can be marked preempted if and only if the VM-Exit was on 4770 * an instruction boundary and will not trigger guest emulation of any 4771 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4772 * when this is true, for example allowing the vCPU to be marked 4773 * preempted if and only if the VM-Exit was due to a host interrupt. 4774 */ 4775 if (!vcpu->arch.at_instruction_boundary) { 4776 vcpu->stat.preemption_other++; 4777 return; 4778 } 4779 4780 vcpu->stat.preemption_reported++; 4781 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4782 return; 4783 4784 if (vcpu->arch.st.preempted) 4785 return; 4786 4787 /* This happens on process exit */ 4788 if (unlikely(current->mm != vcpu->kvm->mm)) 4789 return; 4790 4791 slots = kvm_memslots(vcpu->kvm); 4792 4793 if (unlikely(slots->generation != ghc->generation || 4794 gpa != ghc->gpa || 4795 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4796 return; 4797 4798 st = (struct kvm_steal_time __user *)ghc->hva; 4799 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4800 4801 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4802 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4803 4804 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4805 } 4806 4807 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4808 { 4809 int idx; 4810 4811 if (vcpu->preempted) { 4812 if (!vcpu->arch.guest_state_protected) 4813 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4814 4815 /* 4816 * Take the srcu lock as memslots will be accessed to check the gfn 4817 * cache generation against the memslots generation. 4818 */ 4819 idx = srcu_read_lock(&vcpu->kvm->srcu); 4820 if (kvm_xen_msr_enabled(vcpu->kvm)) 4821 kvm_xen_runstate_set_preempted(vcpu); 4822 else 4823 kvm_steal_time_set_preempted(vcpu); 4824 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4825 } 4826 4827 static_call(kvm_x86_vcpu_put)(vcpu); 4828 vcpu->arch.last_host_tsc = rdtsc(); 4829 } 4830 4831 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4832 struct kvm_lapic_state *s) 4833 { 4834 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4835 4836 return kvm_apic_get_state(vcpu, s); 4837 } 4838 4839 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4840 struct kvm_lapic_state *s) 4841 { 4842 int r; 4843 4844 r = kvm_apic_set_state(vcpu, s); 4845 if (r) 4846 return r; 4847 update_cr8_intercept(vcpu); 4848 4849 return 0; 4850 } 4851 4852 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4853 { 4854 /* 4855 * We can accept userspace's request for interrupt injection 4856 * as long as we have a place to store the interrupt number. 4857 * The actual injection will happen when the CPU is able to 4858 * deliver the interrupt. 4859 */ 4860 if (kvm_cpu_has_extint(vcpu)) 4861 return false; 4862 4863 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4864 return (!lapic_in_kernel(vcpu) || 4865 kvm_apic_accept_pic_intr(vcpu)); 4866 } 4867 4868 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4869 { 4870 /* 4871 * Do not cause an interrupt window exit if an exception 4872 * is pending or an event needs reinjection; userspace 4873 * might want to inject the interrupt manually using KVM_SET_REGS 4874 * or KVM_SET_SREGS. For that to work, we must be at an 4875 * instruction boundary and with no events half-injected. 4876 */ 4877 return (kvm_arch_interrupt_allowed(vcpu) && 4878 kvm_cpu_accept_dm_intr(vcpu) && 4879 !kvm_event_needs_reinjection(vcpu) && 4880 !kvm_is_exception_pending(vcpu)); 4881 } 4882 4883 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4884 struct kvm_interrupt *irq) 4885 { 4886 if (irq->irq >= KVM_NR_INTERRUPTS) 4887 return -EINVAL; 4888 4889 if (!irqchip_in_kernel(vcpu->kvm)) { 4890 kvm_queue_interrupt(vcpu, irq->irq, false); 4891 kvm_make_request(KVM_REQ_EVENT, vcpu); 4892 return 0; 4893 } 4894 4895 /* 4896 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4897 * fail for in-kernel 8259. 4898 */ 4899 if (pic_in_kernel(vcpu->kvm)) 4900 return -ENXIO; 4901 4902 if (vcpu->arch.pending_external_vector != -1) 4903 return -EEXIST; 4904 4905 vcpu->arch.pending_external_vector = irq->irq; 4906 kvm_make_request(KVM_REQ_EVENT, vcpu); 4907 return 0; 4908 } 4909 4910 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4911 { 4912 kvm_inject_nmi(vcpu); 4913 4914 return 0; 4915 } 4916 4917 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4918 struct kvm_tpr_access_ctl *tac) 4919 { 4920 if (tac->flags) 4921 return -EINVAL; 4922 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4923 return 0; 4924 } 4925 4926 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4927 u64 mcg_cap) 4928 { 4929 int r; 4930 unsigned bank_num = mcg_cap & 0xff, bank; 4931 4932 r = -EINVAL; 4933 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4934 goto out; 4935 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4936 goto out; 4937 r = 0; 4938 vcpu->arch.mcg_cap = mcg_cap; 4939 /* Init IA32_MCG_CTL to all 1s */ 4940 if (mcg_cap & MCG_CTL_P) 4941 vcpu->arch.mcg_ctl = ~(u64)0; 4942 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4943 for (bank = 0; bank < bank_num; bank++) { 4944 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4945 if (mcg_cap & MCG_CMCI_P) 4946 vcpu->arch.mci_ctl2_banks[bank] = 0; 4947 } 4948 4949 kvm_apic_after_set_mcg_cap(vcpu); 4950 4951 static_call(kvm_x86_setup_mce)(vcpu); 4952 out: 4953 return r; 4954 } 4955 4956 /* 4957 * Validate this is an UCNA (uncorrectable no action) error by checking the 4958 * MCG_STATUS and MCi_STATUS registers: 4959 * - none of the bits for Machine Check Exceptions are set 4960 * - both the VAL (valid) and UC (uncorrectable) bits are set 4961 * MCI_STATUS_PCC - Processor Context Corrupted 4962 * MCI_STATUS_S - Signaled as a Machine Check Exception 4963 * MCI_STATUS_AR - Software recoverable Action Required 4964 */ 4965 static bool is_ucna(struct kvm_x86_mce *mce) 4966 { 4967 return !mce->mcg_status && 4968 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4969 (mce->status & MCI_STATUS_VAL) && 4970 (mce->status & MCI_STATUS_UC); 4971 } 4972 4973 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4974 { 4975 u64 mcg_cap = vcpu->arch.mcg_cap; 4976 4977 banks[1] = mce->status; 4978 banks[2] = mce->addr; 4979 banks[3] = mce->misc; 4980 vcpu->arch.mcg_status = mce->mcg_status; 4981 4982 if (!(mcg_cap & MCG_CMCI_P) || 4983 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4984 return 0; 4985 4986 if (lapic_in_kernel(vcpu)) 4987 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4988 4989 return 0; 4990 } 4991 4992 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4993 struct kvm_x86_mce *mce) 4994 { 4995 u64 mcg_cap = vcpu->arch.mcg_cap; 4996 unsigned bank_num = mcg_cap & 0xff; 4997 u64 *banks = vcpu->arch.mce_banks; 4998 4999 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5000 return -EINVAL; 5001 5002 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5003 5004 if (is_ucna(mce)) 5005 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5006 5007 /* 5008 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5009 * reporting is disabled 5010 */ 5011 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5012 vcpu->arch.mcg_ctl != ~(u64)0) 5013 return 0; 5014 /* 5015 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5016 * reporting is disabled for the bank 5017 */ 5018 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5019 return 0; 5020 if (mce->status & MCI_STATUS_UC) { 5021 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5022 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5023 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5024 return 0; 5025 } 5026 if (banks[1] & MCI_STATUS_VAL) 5027 mce->status |= MCI_STATUS_OVER; 5028 banks[2] = mce->addr; 5029 banks[3] = mce->misc; 5030 vcpu->arch.mcg_status = mce->mcg_status; 5031 banks[1] = mce->status; 5032 kvm_queue_exception(vcpu, MC_VECTOR); 5033 } else if (!(banks[1] & MCI_STATUS_VAL) 5034 || !(banks[1] & MCI_STATUS_UC)) { 5035 if (banks[1] & MCI_STATUS_VAL) 5036 mce->status |= MCI_STATUS_OVER; 5037 banks[2] = mce->addr; 5038 banks[3] = mce->misc; 5039 banks[1] = mce->status; 5040 } else 5041 banks[1] |= MCI_STATUS_OVER; 5042 return 0; 5043 } 5044 5045 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5046 struct kvm_vcpu_events *events) 5047 { 5048 struct kvm_queued_exception *ex; 5049 5050 process_nmi(vcpu); 5051 5052 #ifdef CONFIG_KVM_SMM 5053 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5054 process_smi(vcpu); 5055 #endif 5056 5057 /* 5058 * KVM's ABI only allows for one exception to be migrated. Luckily, 5059 * the only time there can be two queued exceptions is if there's a 5060 * non-exiting _injected_ exception, and a pending exiting exception. 5061 * In that case, ignore the VM-Exiting exception as it's an extension 5062 * of the injected exception. 5063 */ 5064 if (vcpu->arch.exception_vmexit.pending && 5065 !vcpu->arch.exception.pending && 5066 !vcpu->arch.exception.injected) 5067 ex = &vcpu->arch.exception_vmexit; 5068 else 5069 ex = &vcpu->arch.exception; 5070 5071 /* 5072 * In guest mode, payload delivery should be deferred if the exception 5073 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5074 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5075 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5076 * propagate the payload and so it cannot be safely deferred. Deliver 5077 * the payload if the capability hasn't been requested. 5078 */ 5079 if (!vcpu->kvm->arch.exception_payload_enabled && 5080 ex->pending && ex->has_payload) 5081 kvm_deliver_exception_payload(vcpu, ex); 5082 5083 memset(events, 0, sizeof(*events)); 5084 5085 /* 5086 * The API doesn't provide the instruction length for software 5087 * exceptions, so don't report them. As long as the guest RIP 5088 * isn't advanced, we should expect to encounter the exception 5089 * again. 5090 */ 5091 if (!kvm_exception_is_soft(ex->vector)) { 5092 events->exception.injected = ex->injected; 5093 events->exception.pending = ex->pending; 5094 /* 5095 * For ABI compatibility, deliberately conflate 5096 * pending and injected exceptions when 5097 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5098 */ 5099 if (!vcpu->kvm->arch.exception_payload_enabled) 5100 events->exception.injected |= ex->pending; 5101 } 5102 events->exception.nr = ex->vector; 5103 events->exception.has_error_code = ex->has_error_code; 5104 events->exception.error_code = ex->error_code; 5105 events->exception_has_payload = ex->has_payload; 5106 events->exception_payload = ex->payload; 5107 5108 events->interrupt.injected = 5109 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5110 events->interrupt.nr = vcpu->arch.interrupt.nr; 5111 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5112 5113 events->nmi.injected = vcpu->arch.nmi_injected; 5114 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5115 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5116 5117 /* events->sipi_vector is never valid when reporting to user space */ 5118 5119 #ifdef CONFIG_KVM_SMM 5120 events->smi.smm = is_smm(vcpu); 5121 events->smi.pending = vcpu->arch.smi_pending; 5122 events->smi.smm_inside_nmi = 5123 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5124 #endif 5125 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5126 5127 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5128 | KVM_VCPUEVENT_VALID_SHADOW 5129 | KVM_VCPUEVENT_VALID_SMM); 5130 if (vcpu->kvm->arch.exception_payload_enabled) 5131 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5132 if (vcpu->kvm->arch.triple_fault_event) { 5133 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5134 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5135 } 5136 } 5137 5138 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5139 struct kvm_vcpu_events *events) 5140 { 5141 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5142 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5143 | KVM_VCPUEVENT_VALID_SHADOW 5144 | KVM_VCPUEVENT_VALID_SMM 5145 | KVM_VCPUEVENT_VALID_PAYLOAD 5146 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5147 return -EINVAL; 5148 5149 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5150 if (!vcpu->kvm->arch.exception_payload_enabled) 5151 return -EINVAL; 5152 if (events->exception.pending) 5153 events->exception.injected = 0; 5154 else 5155 events->exception_has_payload = 0; 5156 } else { 5157 events->exception.pending = 0; 5158 events->exception_has_payload = 0; 5159 } 5160 5161 if ((events->exception.injected || events->exception.pending) && 5162 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5163 return -EINVAL; 5164 5165 /* INITs are latched while in SMM */ 5166 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5167 (events->smi.smm || events->smi.pending) && 5168 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5169 return -EINVAL; 5170 5171 process_nmi(vcpu); 5172 5173 /* 5174 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5175 * morph the exception to a VM-Exit if appropriate. Do this only for 5176 * pending exceptions, already-injected exceptions are not subject to 5177 * intercpetion. Note, userspace that conflates pending and injected 5178 * is hosed, and will incorrectly convert an injected exception into a 5179 * pending exception, which in turn may cause a spurious VM-Exit. 5180 */ 5181 vcpu->arch.exception_from_userspace = events->exception.pending; 5182 5183 vcpu->arch.exception_vmexit.pending = false; 5184 5185 vcpu->arch.exception.injected = events->exception.injected; 5186 vcpu->arch.exception.pending = events->exception.pending; 5187 vcpu->arch.exception.vector = events->exception.nr; 5188 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5189 vcpu->arch.exception.error_code = events->exception.error_code; 5190 vcpu->arch.exception.has_payload = events->exception_has_payload; 5191 vcpu->arch.exception.payload = events->exception_payload; 5192 5193 vcpu->arch.interrupt.injected = events->interrupt.injected; 5194 vcpu->arch.interrupt.nr = events->interrupt.nr; 5195 vcpu->arch.interrupt.soft = events->interrupt.soft; 5196 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5197 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5198 events->interrupt.shadow); 5199 5200 vcpu->arch.nmi_injected = events->nmi.injected; 5201 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5202 vcpu->arch.nmi_pending = events->nmi.pending; 5203 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5204 5205 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5206 lapic_in_kernel(vcpu)) 5207 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5208 5209 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5210 #ifdef CONFIG_KVM_SMM 5211 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5212 kvm_leave_nested(vcpu); 5213 kvm_smm_changed(vcpu, events->smi.smm); 5214 } 5215 5216 vcpu->arch.smi_pending = events->smi.pending; 5217 5218 if (events->smi.smm) { 5219 if (events->smi.smm_inside_nmi) 5220 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5221 else 5222 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5223 } 5224 5225 #else 5226 if (events->smi.smm || events->smi.pending || 5227 events->smi.smm_inside_nmi) 5228 return -EINVAL; 5229 #endif 5230 5231 if (lapic_in_kernel(vcpu)) { 5232 if (events->smi.latched_init) 5233 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5234 else 5235 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5236 } 5237 } 5238 5239 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5240 if (!vcpu->kvm->arch.triple_fault_event) 5241 return -EINVAL; 5242 if (events->triple_fault.pending) 5243 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5244 else 5245 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5246 } 5247 5248 kvm_make_request(KVM_REQ_EVENT, vcpu); 5249 5250 return 0; 5251 } 5252 5253 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5254 struct kvm_debugregs *dbgregs) 5255 { 5256 unsigned long val; 5257 5258 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5259 kvm_get_dr(vcpu, 6, &val); 5260 dbgregs->dr6 = val; 5261 dbgregs->dr7 = vcpu->arch.dr7; 5262 dbgregs->flags = 0; 5263 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5264 } 5265 5266 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5267 struct kvm_debugregs *dbgregs) 5268 { 5269 if (dbgregs->flags) 5270 return -EINVAL; 5271 5272 if (!kvm_dr6_valid(dbgregs->dr6)) 5273 return -EINVAL; 5274 if (!kvm_dr7_valid(dbgregs->dr7)) 5275 return -EINVAL; 5276 5277 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5278 kvm_update_dr0123(vcpu); 5279 vcpu->arch.dr6 = dbgregs->dr6; 5280 vcpu->arch.dr7 = dbgregs->dr7; 5281 kvm_update_dr7(vcpu); 5282 5283 return 0; 5284 } 5285 5286 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5287 struct kvm_xsave *guest_xsave) 5288 { 5289 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5290 return; 5291 5292 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5293 guest_xsave->region, 5294 sizeof(guest_xsave->region), 5295 vcpu->arch.pkru); 5296 } 5297 5298 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5299 u8 *state, unsigned int size) 5300 { 5301 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5302 return; 5303 5304 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5305 state, size, vcpu->arch.pkru); 5306 } 5307 5308 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5309 struct kvm_xsave *guest_xsave) 5310 { 5311 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5312 return 0; 5313 5314 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5315 guest_xsave->region, 5316 kvm_caps.supported_xcr0, 5317 &vcpu->arch.pkru); 5318 } 5319 5320 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5321 struct kvm_xcrs *guest_xcrs) 5322 { 5323 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5324 guest_xcrs->nr_xcrs = 0; 5325 return; 5326 } 5327 5328 guest_xcrs->nr_xcrs = 1; 5329 guest_xcrs->flags = 0; 5330 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5331 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5332 } 5333 5334 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5335 struct kvm_xcrs *guest_xcrs) 5336 { 5337 int i, r = 0; 5338 5339 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5340 return -EINVAL; 5341 5342 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5343 return -EINVAL; 5344 5345 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5346 /* Only support XCR0 currently */ 5347 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5348 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5349 guest_xcrs->xcrs[i].value); 5350 break; 5351 } 5352 if (r) 5353 r = -EINVAL; 5354 return r; 5355 } 5356 5357 /* 5358 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5359 * stopped by the hypervisor. This function will be called from the host only. 5360 * EINVAL is returned when the host attempts to set the flag for a guest that 5361 * does not support pv clocks. 5362 */ 5363 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5364 { 5365 if (!vcpu->arch.pv_time.active) 5366 return -EINVAL; 5367 vcpu->arch.pvclock_set_guest_stopped_request = true; 5368 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5369 return 0; 5370 } 5371 5372 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5373 struct kvm_device_attr *attr) 5374 { 5375 int r; 5376 5377 switch (attr->attr) { 5378 case KVM_VCPU_TSC_OFFSET: 5379 r = 0; 5380 break; 5381 default: 5382 r = -ENXIO; 5383 } 5384 5385 return r; 5386 } 5387 5388 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5389 struct kvm_device_attr *attr) 5390 { 5391 u64 __user *uaddr = kvm_get_attr_addr(attr); 5392 int r; 5393 5394 if (IS_ERR(uaddr)) 5395 return PTR_ERR(uaddr); 5396 5397 switch (attr->attr) { 5398 case KVM_VCPU_TSC_OFFSET: 5399 r = -EFAULT; 5400 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5401 break; 5402 r = 0; 5403 break; 5404 default: 5405 r = -ENXIO; 5406 } 5407 5408 return r; 5409 } 5410 5411 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5412 struct kvm_device_attr *attr) 5413 { 5414 u64 __user *uaddr = kvm_get_attr_addr(attr); 5415 struct kvm *kvm = vcpu->kvm; 5416 int r; 5417 5418 if (IS_ERR(uaddr)) 5419 return PTR_ERR(uaddr); 5420 5421 switch (attr->attr) { 5422 case KVM_VCPU_TSC_OFFSET: { 5423 u64 offset, tsc, ns; 5424 unsigned long flags; 5425 bool matched; 5426 5427 r = -EFAULT; 5428 if (get_user(offset, uaddr)) 5429 break; 5430 5431 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5432 5433 matched = (vcpu->arch.virtual_tsc_khz && 5434 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5435 kvm->arch.last_tsc_offset == offset); 5436 5437 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5438 ns = get_kvmclock_base_ns(); 5439 5440 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5441 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5442 5443 r = 0; 5444 break; 5445 } 5446 default: 5447 r = -ENXIO; 5448 } 5449 5450 return r; 5451 } 5452 5453 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5454 unsigned int ioctl, 5455 void __user *argp) 5456 { 5457 struct kvm_device_attr attr; 5458 int r; 5459 5460 if (copy_from_user(&attr, argp, sizeof(attr))) 5461 return -EFAULT; 5462 5463 if (attr.group != KVM_VCPU_TSC_CTRL) 5464 return -ENXIO; 5465 5466 switch (ioctl) { 5467 case KVM_HAS_DEVICE_ATTR: 5468 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5469 break; 5470 case KVM_GET_DEVICE_ATTR: 5471 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5472 break; 5473 case KVM_SET_DEVICE_ATTR: 5474 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5475 break; 5476 } 5477 5478 return r; 5479 } 5480 5481 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5482 struct kvm_enable_cap *cap) 5483 { 5484 int r; 5485 uint16_t vmcs_version; 5486 void __user *user_ptr; 5487 5488 if (cap->flags) 5489 return -EINVAL; 5490 5491 switch (cap->cap) { 5492 case KVM_CAP_HYPERV_SYNIC2: 5493 if (cap->args[0]) 5494 return -EINVAL; 5495 fallthrough; 5496 5497 case KVM_CAP_HYPERV_SYNIC: 5498 if (!irqchip_in_kernel(vcpu->kvm)) 5499 return -EINVAL; 5500 return kvm_hv_activate_synic(vcpu, cap->cap == 5501 KVM_CAP_HYPERV_SYNIC2); 5502 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5503 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5504 return -ENOTTY; 5505 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5506 if (!r) { 5507 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5508 if (copy_to_user(user_ptr, &vmcs_version, 5509 sizeof(vmcs_version))) 5510 r = -EFAULT; 5511 } 5512 return r; 5513 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5514 if (!kvm_x86_ops.enable_l2_tlb_flush) 5515 return -ENOTTY; 5516 5517 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5518 5519 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5520 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5521 5522 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5523 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5524 if (vcpu->arch.pv_cpuid.enforce) 5525 kvm_update_pv_runtime(vcpu); 5526 5527 return 0; 5528 default: 5529 return -EINVAL; 5530 } 5531 } 5532 5533 long kvm_arch_vcpu_ioctl(struct file *filp, 5534 unsigned int ioctl, unsigned long arg) 5535 { 5536 struct kvm_vcpu *vcpu = filp->private_data; 5537 void __user *argp = (void __user *)arg; 5538 int r; 5539 union { 5540 struct kvm_sregs2 *sregs2; 5541 struct kvm_lapic_state *lapic; 5542 struct kvm_xsave *xsave; 5543 struct kvm_xcrs *xcrs; 5544 void *buffer; 5545 } u; 5546 5547 vcpu_load(vcpu); 5548 5549 u.buffer = NULL; 5550 switch (ioctl) { 5551 case KVM_GET_LAPIC: { 5552 r = -EINVAL; 5553 if (!lapic_in_kernel(vcpu)) 5554 goto out; 5555 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5556 GFP_KERNEL_ACCOUNT); 5557 5558 r = -ENOMEM; 5559 if (!u.lapic) 5560 goto out; 5561 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5562 if (r) 5563 goto out; 5564 r = -EFAULT; 5565 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5566 goto out; 5567 r = 0; 5568 break; 5569 } 5570 case KVM_SET_LAPIC: { 5571 r = -EINVAL; 5572 if (!lapic_in_kernel(vcpu)) 5573 goto out; 5574 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5575 if (IS_ERR(u.lapic)) { 5576 r = PTR_ERR(u.lapic); 5577 goto out_nofree; 5578 } 5579 5580 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5581 break; 5582 } 5583 case KVM_INTERRUPT: { 5584 struct kvm_interrupt irq; 5585 5586 r = -EFAULT; 5587 if (copy_from_user(&irq, argp, sizeof(irq))) 5588 goto out; 5589 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5590 break; 5591 } 5592 case KVM_NMI: { 5593 r = kvm_vcpu_ioctl_nmi(vcpu); 5594 break; 5595 } 5596 case KVM_SMI: { 5597 r = kvm_inject_smi(vcpu); 5598 break; 5599 } 5600 case KVM_SET_CPUID: { 5601 struct kvm_cpuid __user *cpuid_arg = argp; 5602 struct kvm_cpuid cpuid; 5603 5604 r = -EFAULT; 5605 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5606 goto out; 5607 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5608 break; 5609 } 5610 case KVM_SET_CPUID2: { 5611 struct kvm_cpuid2 __user *cpuid_arg = argp; 5612 struct kvm_cpuid2 cpuid; 5613 5614 r = -EFAULT; 5615 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5616 goto out; 5617 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5618 cpuid_arg->entries); 5619 break; 5620 } 5621 case KVM_GET_CPUID2: { 5622 struct kvm_cpuid2 __user *cpuid_arg = argp; 5623 struct kvm_cpuid2 cpuid; 5624 5625 r = -EFAULT; 5626 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5627 goto out; 5628 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5629 cpuid_arg->entries); 5630 if (r) 5631 goto out; 5632 r = -EFAULT; 5633 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5634 goto out; 5635 r = 0; 5636 break; 5637 } 5638 case KVM_GET_MSRS: { 5639 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5640 r = msr_io(vcpu, argp, do_get_msr, 1); 5641 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5642 break; 5643 } 5644 case KVM_SET_MSRS: { 5645 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5646 r = msr_io(vcpu, argp, do_set_msr, 0); 5647 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5648 break; 5649 } 5650 case KVM_TPR_ACCESS_REPORTING: { 5651 struct kvm_tpr_access_ctl tac; 5652 5653 r = -EFAULT; 5654 if (copy_from_user(&tac, argp, sizeof(tac))) 5655 goto out; 5656 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5657 if (r) 5658 goto out; 5659 r = -EFAULT; 5660 if (copy_to_user(argp, &tac, sizeof(tac))) 5661 goto out; 5662 r = 0; 5663 break; 5664 }; 5665 case KVM_SET_VAPIC_ADDR: { 5666 struct kvm_vapic_addr va; 5667 int idx; 5668 5669 r = -EINVAL; 5670 if (!lapic_in_kernel(vcpu)) 5671 goto out; 5672 r = -EFAULT; 5673 if (copy_from_user(&va, argp, sizeof(va))) 5674 goto out; 5675 idx = srcu_read_lock(&vcpu->kvm->srcu); 5676 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5677 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5678 break; 5679 } 5680 case KVM_X86_SETUP_MCE: { 5681 u64 mcg_cap; 5682 5683 r = -EFAULT; 5684 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5685 goto out; 5686 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5687 break; 5688 } 5689 case KVM_X86_SET_MCE: { 5690 struct kvm_x86_mce mce; 5691 5692 r = -EFAULT; 5693 if (copy_from_user(&mce, argp, sizeof(mce))) 5694 goto out; 5695 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5696 break; 5697 } 5698 case KVM_GET_VCPU_EVENTS: { 5699 struct kvm_vcpu_events events; 5700 5701 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5702 5703 r = -EFAULT; 5704 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5705 break; 5706 r = 0; 5707 break; 5708 } 5709 case KVM_SET_VCPU_EVENTS: { 5710 struct kvm_vcpu_events events; 5711 5712 r = -EFAULT; 5713 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5714 break; 5715 5716 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5717 break; 5718 } 5719 case KVM_GET_DEBUGREGS: { 5720 struct kvm_debugregs dbgregs; 5721 5722 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5723 5724 r = -EFAULT; 5725 if (copy_to_user(argp, &dbgregs, 5726 sizeof(struct kvm_debugregs))) 5727 break; 5728 r = 0; 5729 break; 5730 } 5731 case KVM_SET_DEBUGREGS: { 5732 struct kvm_debugregs dbgregs; 5733 5734 r = -EFAULT; 5735 if (copy_from_user(&dbgregs, argp, 5736 sizeof(struct kvm_debugregs))) 5737 break; 5738 5739 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5740 break; 5741 } 5742 case KVM_GET_XSAVE: { 5743 r = -EINVAL; 5744 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5745 break; 5746 5747 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5748 r = -ENOMEM; 5749 if (!u.xsave) 5750 break; 5751 5752 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5753 5754 r = -EFAULT; 5755 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5756 break; 5757 r = 0; 5758 break; 5759 } 5760 case KVM_SET_XSAVE: { 5761 int size = vcpu->arch.guest_fpu.uabi_size; 5762 5763 u.xsave = memdup_user(argp, size); 5764 if (IS_ERR(u.xsave)) { 5765 r = PTR_ERR(u.xsave); 5766 goto out_nofree; 5767 } 5768 5769 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5770 break; 5771 } 5772 5773 case KVM_GET_XSAVE2: { 5774 int size = vcpu->arch.guest_fpu.uabi_size; 5775 5776 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5777 r = -ENOMEM; 5778 if (!u.xsave) 5779 break; 5780 5781 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5782 5783 r = -EFAULT; 5784 if (copy_to_user(argp, u.xsave, size)) 5785 break; 5786 5787 r = 0; 5788 break; 5789 } 5790 5791 case KVM_GET_XCRS: { 5792 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5793 r = -ENOMEM; 5794 if (!u.xcrs) 5795 break; 5796 5797 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5798 5799 r = -EFAULT; 5800 if (copy_to_user(argp, u.xcrs, 5801 sizeof(struct kvm_xcrs))) 5802 break; 5803 r = 0; 5804 break; 5805 } 5806 case KVM_SET_XCRS: { 5807 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5808 if (IS_ERR(u.xcrs)) { 5809 r = PTR_ERR(u.xcrs); 5810 goto out_nofree; 5811 } 5812 5813 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5814 break; 5815 } 5816 case KVM_SET_TSC_KHZ: { 5817 u32 user_tsc_khz; 5818 5819 r = -EINVAL; 5820 user_tsc_khz = (u32)arg; 5821 5822 if (kvm_caps.has_tsc_control && 5823 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5824 goto out; 5825 5826 if (user_tsc_khz == 0) 5827 user_tsc_khz = tsc_khz; 5828 5829 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5830 r = 0; 5831 5832 goto out; 5833 } 5834 case KVM_GET_TSC_KHZ: { 5835 r = vcpu->arch.virtual_tsc_khz; 5836 goto out; 5837 } 5838 case KVM_KVMCLOCK_CTRL: { 5839 r = kvm_set_guest_paused(vcpu); 5840 goto out; 5841 } 5842 case KVM_ENABLE_CAP: { 5843 struct kvm_enable_cap cap; 5844 5845 r = -EFAULT; 5846 if (copy_from_user(&cap, argp, sizeof(cap))) 5847 goto out; 5848 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5849 break; 5850 } 5851 case KVM_GET_NESTED_STATE: { 5852 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5853 u32 user_data_size; 5854 5855 r = -EINVAL; 5856 if (!kvm_x86_ops.nested_ops->get_state) 5857 break; 5858 5859 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5860 r = -EFAULT; 5861 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5862 break; 5863 5864 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5865 user_data_size); 5866 if (r < 0) 5867 break; 5868 5869 if (r > user_data_size) { 5870 if (put_user(r, &user_kvm_nested_state->size)) 5871 r = -EFAULT; 5872 else 5873 r = -E2BIG; 5874 break; 5875 } 5876 5877 r = 0; 5878 break; 5879 } 5880 case KVM_SET_NESTED_STATE: { 5881 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5882 struct kvm_nested_state kvm_state; 5883 int idx; 5884 5885 r = -EINVAL; 5886 if (!kvm_x86_ops.nested_ops->set_state) 5887 break; 5888 5889 r = -EFAULT; 5890 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5891 break; 5892 5893 r = -EINVAL; 5894 if (kvm_state.size < sizeof(kvm_state)) 5895 break; 5896 5897 if (kvm_state.flags & 5898 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5899 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5900 | KVM_STATE_NESTED_GIF_SET)) 5901 break; 5902 5903 /* nested_run_pending implies guest_mode. */ 5904 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5905 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5906 break; 5907 5908 idx = srcu_read_lock(&vcpu->kvm->srcu); 5909 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5910 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5911 break; 5912 } 5913 case KVM_GET_SUPPORTED_HV_CPUID: 5914 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5915 break; 5916 #ifdef CONFIG_KVM_XEN 5917 case KVM_XEN_VCPU_GET_ATTR: { 5918 struct kvm_xen_vcpu_attr xva; 5919 5920 r = -EFAULT; 5921 if (copy_from_user(&xva, argp, sizeof(xva))) 5922 goto out; 5923 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5924 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5925 r = -EFAULT; 5926 break; 5927 } 5928 case KVM_XEN_VCPU_SET_ATTR: { 5929 struct kvm_xen_vcpu_attr xva; 5930 5931 r = -EFAULT; 5932 if (copy_from_user(&xva, argp, sizeof(xva))) 5933 goto out; 5934 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5935 break; 5936 } 5937 #endif 5938 case KVM_GET_SREGS2: { 5939 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5940 r = -ENOMEM; 5941 if (!u.sregs2) 5942 goto out; 5943 __get_sregs2(vcpu, u.sregs2); 5944 r = -EFAULT; 5945 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5946 goto out; 5947 r = 0; 5948 break; 5949 } 5950 case KVM_SET_SREGS2: { 5951 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5952 if (IS_ERR(u.sregs2)) { 5953 r = PTR_ERR(u.sregs2); 5954 u.sregs2 = NULL; 5955 goto out; 5956 } 5957 r = __set_sregs2(vcpu, u.sregs2); 5958 break; 5959 } 5960 case KVM_HAS_DEVICE_ATTR: 5961 case KVM_GET_DEVICE_ATTR: 5962 case KVM_SET_DEVICE_ATTR: 5963 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5964 break; 5965 default: 5966 r = -EINVAL; 5967 } 5968 out: 5969 kfree(u.buffer); 5970 out_nofree: 5971 vcpu_put(vcpu); 5972 return r; 5973 } 5974 5975 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5976 { 5977 return VM_FAULT_SIGBUS; 5978 } 5979 5980 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5981 { 5982 int ret; 5983 5984 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5985 return -EINVAL; 5986 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5987 return ret; 5988 } 5989 5990 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5991 u64 ident_addr) 5992 { 5993 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5994 } 5995 5996 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5997 unsigned long kvm_nr_mmu_pages) 5998 { 5999 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6000 return -EINVAL; 6001 6002 mutex_lock(&kvm->slots_lock); 6003 6004 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6005 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6006 6007 mutex_unlock(&kvm->slots_lock); 6008 return 0; 6009 } 6010 6011 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6012 { 6013 return kvm->arch.n_max_mmu_pages; 6014 } 6015 6016 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6017 { 6018 struct kvm_pic *pic = kvm->arch.vpic; 6019 int r; 6020 6021 r = 0; 6022 switch (chip->chip_id) { 6023 case KVM_IRQCHIP_PIC_MASTER: 6024 memcpy(&chip->chip.pic, &pic->pics[0], 6025 sizeof(struct kvm_pic_state)); 6026 break; 6027 case KVM_IRQCHIP_PIC_SLAVE: 6028 memcpy(&chip->chip.pic, &pic->pics[1], 6029 sizeof(struct kvm_pic_state)); 6030 break; 6031 case KVM_IRQCHIP_IOAPIC: 6032 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6033 break; 6034 default: 6035 r = -EINVAL; 6036 break; 6037 } 6038 return r; 6039 } 6040 6041 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6042 { 6043 struct kvm_pic *pic = kvm->arch.vpic; 6044 int r; 6045 6046 r = 0; 6047 switch (chip->chip_id) { 6048 case KVM_IRQCHIP_PIC_MASTER: 6049 spin_lock(&pic->lock); 6050 memcpy(&pic->pics[0], &chip->chip.pic, 6051 sizeof(struct kvm_pic_state)); 6052 spin_unlock(&pic->lock); 6053 break; 6054 case KVM_IRQCHIP_PIC_SLAVE: 6055 spin_lock(&pic->lock); 6056 memcpy(&pic->pics[1], &chip->chip.pic, 6057 sizeof(struct kvm_pic_state)); 6058 spin_unlock(&pic->lock); 6059 break; 6060 case KVM_IRQCHIP_IOAPIC: 6061 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6062 break; 6063 default: 6064 r = -EINVAL; 6065 break; 6066 } 6067 kvm_pic_update_irq(pic); 6068 return r; 6069 } 6070 6071 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6072 { 6073 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6074 6075 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6076 6077 mutex_lock(&kps->lock); 6078 memcpy(ps, &kps->channels, sizeof(*ps)); 6079 mutex_unlock(&kps->lock); 6080 return 0; 6081 } 6082 6083 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6084 { 6085 int i; 6086 struct kvm_pit *pit = kvm->arch.vpit; 6087 6088 mutex_lock(&pit->pit_state.lock); 6089 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6090 for (i = 0; i < 3; i++) 6091 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6092 mutex_unlock(&pit->pit_state.lock); 6093 return 0; 6094 } 6095 6096 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6097 { 6098 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6099 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6100 sizeof(ps->channels)); 6101 ps->flags = kvm->arch.vpit->pit_state.flags; 6102 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6103 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6104 return 0; 6105 } 6106 6107 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6108 { 6109 int start = 0; 6110 int i; 6111 u32 prev_legacy, cur_legacy; 6112 struct kvm_pit *pit = kvm->arch.vpit; 6113 6114 mutex_lock(&pit->pit_state.lock); 6115 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6116 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6117 if (!prev_legacy && cur_legacy) 6118 start = 1; 6119 memcpy(&pit->pit_state.channels, &ps->channels, 6120 sizeof(pit->pit_state.channels)); 6121 pit->pit_state.flags = ps->flags; 6122 for (i = 0; i < 3; i++) 6123 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6124 start && i == 0); 6125 mutex_unlock(&pit->pit_state.lock); 6126 return 0; 6127 } 6128 6129 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6130 struct kvm_reinject_control *control) 6131 { 6132 struct kvm_pit *pit = kvm->arch.vpit; 6133 6134 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6135 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6136 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6137 */ 6138 mutex_lock(&pit->pit_state.lock); 6139 kvm_pit_set_reinject(pit, control->pit_reinject); 6140 mutex_unlock(&pit->pit_state.lock); 6141 6142 return 0; 6143 } 6144 6145 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6146 { 6147 6148 /* 6149 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6150 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6151 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6152 * VM-Exit. 6153 */ 6154 struct kvm_vcpu *vcpu; 6155 unsigned long i; 6156 6157 kvm_for_each_vcpu(i, vcpu, kvm) 6158 kvm_vcpu_kick(vcpu); 6159 } 6160 6161 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6162 bool line_status) 6163 { 6164 if (!irqchip_in_kernel(kvm)) 6165 return -ENXIO; 6166 6167 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6168 irq_event->irq, irq_event->level, 6169 line_status); 6170 return 0; 6171 } 6172 6173 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6174 struct kvm_enable_cap *cap) 6175 { 6176 int r; 6177 6178 if (cap->flags) 6179 return -EINVAL; 6180 6181 switch (cap->cap) { 6182 case KVM_CAP_DISABLE_QUIRKS2: 6183 r = -EINVAL; 6184 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6185 break; 6186 fallthrough; 6187 case KVM_CAP_DISABLE_QUIRKS: 6188 kvm->arch.disabled_quirks = cap->args[0]; 6189 r = 0; 6190 break; 6191 case KVM_CAP_SPLIT_IRQCHIP: { 6192 mutex_lock(&kvm->lock); 6193 r = -EINVAL; 6194 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6195 goto split_irqchip_unlock; 6196 r = -EEXIST; 6197 if (irqchip_in_kernel(kvm)) 6198 goto split_irqchip_unlock; 6199 if (kvm->created_vcpus) 6200 goto split_irqchip_unlock; 6201 r = kvm_setup_empty_irq_routing(kvm); 6202 if (r) 6203 goto split_irqchip_unlock; 6204 /* Pairs with irqchip_in_kernel. */ 6205 smp_wmb(); 6206 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6207 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6208 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6209 r = 0; 6210 split_irqchip_unlock: 6211 mutex_unlock(&kvm->lock); 6212 break; 6213 } 6214 case KVM_CAP_X2APIC_API: 6215 r = -EINVAL; 6216 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6217 break; 6218 6219 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6220 kvm->arch.x2apic_format = true; 6221 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6222 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6223 6224 r = 0; 6225 break; 6226 case KVM_CAP_X86_DISABLE_EXITS: 6227 r = -EINVAL; 6228 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6229 break; 6230 6231 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6232 kvm_can_mwait_in_guest()) 6233 kvm->arch.mwait_in_guest = true; 6234 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6235 kvm->arch.hlt_in_guest = true; 6236 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6237 kvm->arch.pause_in_guest = true; 6238 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6239 kvm->arch.cstate_in_guest = true; 6240 r = 0; 6241 break; 6242 case KVM_CAP_MSR_PLATFORM_INFO: 6243 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6244 r = 0; 6245 break; 6246 case KVM_CAP_EXCEPTION_PAYLOAD: 6247 kvm->arch.exception_payload_enabled = cap->args[0]; 6248 r = 0; 6249 break; 6250 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6251 kvm->arch.triple_fault_event = cap->args[0]; 6252 r = 0; 6253 break; 6254 case KVM_CAP_X86_USER_SPACE_MSR: 6255 r = -EINVAL; 6256 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6257 break; 6258 kvm->arch.user_space_msr_mask = cap->args[0]; 6259 r = 0; 6260 break; 6261 case KVM_CAP_X86_BUS_LOCK_EXIT: 6262 r = -EINVAL; 6263 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6264 break; 6265 6266 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6267 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6268 break; 6269 6270 if (kvm_caps.has_bus_lock_exit && 6271 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6272 kvm->arch.bus_lock_detection_enabled = true; 6273 r = 0; 6274 break; 6275 #ifdef CONFIG_X86_SGX_KVM 6276 case KVM_CAP_SGX_ATTRIBUTE: { 6277 unsigned long allowed_attributes = 0; 6278 6279 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6280 if (r) 6281 break; 6282 6283 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6284 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6285 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6286 kvm->arch.sgx_provisioning_allowed = true; 6287 else 6288 r = -EINVAL; 6289 break; 6290 } 6291 #endif 6292 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6293 r = -EINVAL; 6294 if (!kvm_x86_ops.vm_copy_enc_context_from) 6295 break; 6296 6297 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6298 break; 6299 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6300 r = -EINVAL; 6301 if (!kvm_x86_ops.vm_move_enc_context_from) 6302 break; 6303 6304 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6305 break; 6306 case KVM_CAP_EXIT_HYPERCALL: 6307 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6308 r = -EINVAL; 6309 break; 6310 } 6311 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6312 r = 0; 6313 break; 6314 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6315 r = -EINVAL; 6316 if (cap->args[0] & ~1) 6317 break; 6318 kvm->arch.exit_on_emulation_error = cap->args[0]; 6319 r = 0; 6320 break; 6321 case KVM_CAP_PMU_CAPABILITY: 6322 r = -EINVAL; 6323 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6324 break; 6325 6326 mutex_lock(&kvm->lock); 6327 if (!kvm->created_vcpus) { 6328 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6329 r = 0; 6330 } 6331 mutex_unlock(&kvm->lock); 6332 break; 6333 case KVM_CAP_MAX_VCPU_ID: 6334 r = -EINVAL; 6335 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6336 break; 6337 6338 mutex_lock(&kvm->lock); 6339 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6340 r = 0; 6341 } else if (!kvm->arch.max_vcpu_ids) { 6342 kvm->arch.max_vcpu_ids = cap->args[0]; 6343 r = 0; 6344 } 6345 mutex_unlock(&kvm->lock); 6346 break; 6347 case KVM_CAP_X86_NOTIFY_VMEXIT: 6348 r = -EINVAL; 6349 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6350 break; 6351 if (!kvm_caps.has_notify_vmexit) 6352 break; 6353 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6354 break; 6355 mutex_lock(&kvm->lock); 6356 if (!kvm->created_vcpus) { 6357 kvm->arch.notify_window = cap->args[0] >> 32; 6358 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6359 r = 0; 6360 } 6361 mutex_unlock(&kvm->lock); 6362 break; 6363 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6364 r = -EINVAL; 6365 6366 /* 6367 * Since the risk of disabling NX hugepages is a guest crashing 6368 * the system, ensure the userspace process has permission to 6369 * reboot the system. 6370 * 6371 * Note that unlike the reboot() syscall, the process must have 6372 * this capability in the root namespace because exposing 6373 * /dev/kvm into a container does not limit the scope of the 6374 * iTLB multihit bug to that container. In other words, 6375 * this must use capable(), not ns_capable(). 6376 */ 6377 if (!capable(CAP_SYS_BOOT)) { 6378 r = -EPERM; 6379 break; 6380 } 6381 6382 if (cap->args[0]) 6383 break; 6384 6385 mutex_lock(&kvm->lock); 6386 if (!kvm->created_vcpus) { 6387 kvm->arch.disable_nx_huge_pages = true; 6388 r = 0; 6389 } 6390 mutex_unlock(&kvm->lock); 6391 break; 6392 default: 6393 r = -EINVAL; 6394 break; 6395 } 6396 return r; 6397 } 6398 6399 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6400 { 6401 struct kvm_x86_msr_filter *msr_filter; 6402 6403 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6404 if (!msr_filter) 6405 return NULL; 6406 6407 msr_filter->default_allow = default_allow; 6408 return msr_filter; 6409 } 6410 6411 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6412 { 6413 u32 i; 6414 6415 if (!msr_filter) 6416 return; 6417 6418 for (i = 0; i < msr_filter->count; i++) 6419 kfree(msr_filter->ranges[i].bitmap); 6420 6421 kfree(msr_filter); 6422 } 6423 6424 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6425 struct kvm_msr_filter_range *user_range) 6426 { 6427 unsigned long *bitmap = NULL; 6428 size_t bitmap_size; 6429 6430 if (!user_range->nmsrs) 6431 return 0; 6432 6433 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6434 return -EINVAL; 6435 6436 if (!user_range->flags) 6437 return -EINVAL; 6438 6439 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6440 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6441 return -EINVAL; 6442 6443 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6444 if (IS_ERR(bitmap)) 6445 return PTR_ERR(bitmap); 6446 6447 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6448 .flags = user_range->flags, 6449 .base = user_range->base, 6450 .nmsrs = user_range->nmsrs, 6451 .bitmap = bitmap, 6452 }; 6453 6454 msr_filter->count++; 6455 return 0; 6456 } 6457 6458 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6459 struct kvm_msr_filter *filter) 6460 { 6461 struct kvm_x86_msr_filter *new_filter, *old_filter; 6462 bool default_allow; 6463 bool empty = true; 6464 int r = 0; 6465 u32 i; 6466 6467 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6468 return -EINVAL; 6469 6470 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6471 empty &= !filter->ranges[i].nmsrs; 6472 6473 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6474 if (empty && !default_allow) 6475 return -EINVAL; 6476 6477 new_filter = kvm_alloc_msr_filter(default_allow); 6478 if (!new_filter) 6479 return -ENOMEM; 6480 6481 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6482 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6483 if (r) { 6484 kvm_free_msr_filter(new_filter); 6485 return r; 6486 } 6487 } 6488 6489 mutex_lock(&kvm->lock); 6490 6491 /* The per-VM filter is protected by kvm->lock... */ 6492 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6493 6494 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6495 synchronize_srcu(&kvm->srcu); 6496 6497 kvm_free_msr_filter(old_filter); 6498 6499 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6500 mutex_unlock(&kvm->lock); 6501 6502 return 0; 6503 } 6504 6505 #ifdef CONFIG_KVM_COMPAT 6506 /* for KVM_X86_SET_MSR_FILTER */ 6507 struct kvm_msr_filter_range_compat { 6508 __u32 flags; 6509 __u32 nmsrs; 6510 __u32 base; 6511 __u32 bitmap; 6512 }; 6513 6514 struct kvm_msr_filter_compat { 6515 __u32 flags; 6516 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6517 }; 6518 6519 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6520 6521 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6522 unsigned long arg) 6523 { 6524 void __user *argp = (void __user *)arg; 6525 struct kvm *kvm = filp->private_data; 6526 long r = -ENOTTY; 6527 6528 switch (ioctl) { 6529 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6530 struct kvm_msr_filter __user *user_msr_filter = argp; 6531 struct kvm_msr_filter_compat filter_compat; 6532 struct kvm_msr_filter filter; 6533 int i; 6534 6535 if (copy_from_user(&filter_compat, user_msr_filter, 6536 sizeof(filter_compat))) 6537 return -EFAULT; 6538 6539 filter.flags = filter_compat.flags; 6540 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6541 struct kvm_msr_filter_range_compat *cr; 6542 6543 cr = &filter_compat.ranges[i]; 6544 filter.ranges[i] = (struct kvm_msr_filter_range) { 6545 .flags = cr->flags, 6546 .nmsrs = cr->nmsrs, 6547 .base = cr->base, 6548 .bitmap = (__u8 *)(ulong)cr->bitmap, 6549 }; 6550 } 6551 6552 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6553 break; 6554 } 6555 } 6556 6557 return r; 6558 } 6559 #endif 6560 6561 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6562 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6563 { 6564 struct kvm_vcpu *vcpu; 6565 unsigned long i; 6566 int ret = 0; 6567 6568 mutex_lock(&kvm->lock); 6569 kvm_for_each_vcpu(i, vcpu, kvm) { 6570 if (!vcpu->arch.pv_time.active) 6571 continue; 6572 6573 ret = kvm_set_guest_paused(vcpu); 6574 if (ret) { 6575 kvm_err("Failed to pause guest VCPU%d: %d\n", 6576 vcpu->vcpu_id, ret); 6577 break; 6578 } 6579 } 6580 mutex_unlock(&kvm->lock); 6581 6582 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6583 } 6584 6585 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6586 { 6587 switch (state) { 6588 case PM_HIBERNATION_PREPARE: 6589 case PM_SUSPEND_PREPARE: 6590 return kvm_arch_suspend_notifier(kvm); 6591 } 6592 6593 return NOTIFY_DONE; 6594 } 6595 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6596 6597 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6598 { 6599 struct kvm_clock_data data = { 0 }; 6600 6601 get_kvmclock(kvm, &data); 6602 if (copy_to_user(argp, &data, sizeof(data))) 6603 return -EFAULT; 6604 6605 return 0; 6606 } 6607 6608 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6609 { 6610 struct kvm_arch *ka = &kvm->arch; 6611 struct kvm_clock_data data; 6612 u64 now_raw_ns; 6613 6614 if (copy_from_user(&data, argp, sizeof(data))) 6615 return -EFAULT; 6616 6617 /* 6618 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6619 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6620 */ 6621 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6622 return -EINVAL; 6623 6624 kvm_hv_request_tsc_page_update(kvm); 6625 kvm_start_pvclock_update(kvm); 6626 pvclock_update_vm_gtod_copy(kvm); 6627 6628 /* 6629 * This pairs with kvm_guest_time_update(): when masterclock is 6630 * in use, we use master_kernel_ns + kvmclock_offset to set 6631 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6632 * is slightly ahead) here we risk going negative on unsigned 6633 * 'system_time' when 'data.clock' is very small. 6634 */ 6635 if (data.flags & KVM_CLOCK_REALTIME) { 6636 u64 now_real_ns = ktime_get_real_ns(); 6637 6638 /* 6639 * Avoid stepping the kvmclock backwards. 6640 */ 6641 if (now_real_ns > data.realtime) 6642 data.clock += now_real_ns - data.realtime; 6643 } 6644 6645 if (ka->use_master_clock) 6646 now_raw_ns = ka->master_kernel_ns; 6647 else 6648 now_raw_ns = get_kvmclock_base_ns(); 6649 ka->kvmclock_offset = data.clock - now_raw_ns; 6650 kvm_end_pvclock_update(kvm); 6651 return 0; 6652 } 6653 6654 long kvm_arch_vm_ioctl(struct file *filp, 6655 unsigned int ioctl, unsigned long arg) 6656 { 6657 struct kvm *kvm = filp->private_data; 6658 void __user *argp = (void __user *)arg; 6659 int r = -ENOTTY; 6660 /* 6661 * This union makes it completely explicit to gcc-3.x 6662 * that these two variables' stack usage should be 6663 * combined, not added together. 6664 */ 6665 union { 6666 struct kvm_pit_state ps; 6667 struct kvm_pit_state2 ps2; 6668 struct kvm_pit_config pit_config; 6669 } u; 6670 6671 switch (ioctl) { 6672 case KVM_SET_TSS_ADDR: 6673 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6674 break; 6675 case KVM_SET_IDENTITY_MAP_ADDR: { 6676 u64 ident_addr; 6677 6678 mutex_lock(&kvm->lock); 6679 r = -EINVAL; 6680 if (kvm->created_vcpus) 6681 goto set_identity_unlock; 6682 r = -EFAULT; 6683 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6684 goto set_identity_unlock; 6685 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6686 set_identity_unlock: 6687 mutex_unlock(&kvm->lock); 6688 break; 6689 } 6690 case KVM_SET_NR_MMU_PAGES: 6691 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6692 break; 6693 case KVM_GET_NR_MMU_PAGES: 6694 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6695 break; 6696 case KVM_CREATE_IRQCHIP: { 6697 mutex_lock(&kvm->lock); 6698 6699 r = -EEXIST; 6700 if (irqchip_in_kernel(kvm)) 6701 goto create_irqchip_unlock; 6702 6703 r = -EINVAL; 6704 if (kvm->created_vcpus) 6705 goto create_irqchip_unlock; 6706 6707 r = kvm_pic_init(kvm); 6708 if (r) 6709 goto create_irqchip_unlock; 6710 6711 r = kvm_ioapic_init(kvm); 6712 if (r) { 6713 kvm_pic_destroy(kvm); 6714 goto create_irqchip_unlock; 6715 } 6716 6717 r = kvm_setup_default_irq_routing(kvm); 6718 if (r) { 6719 kvm_ioapic_destroy(kvm); 6720 kvm_pic_destroy(kvm); 6721 goto create_irqchip_unlock; 6722 } 6723 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6724 smp_wmb(); 6725 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6726 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6727 create_irqchip_unlock: 6728 mutex_unlock(&kvm->lock); 6729 break; 6730 } 6731 case KVM_CREATE_PIT: 6732 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6733 goto create_pit; 6734 case KVM_CREATE_PIT2: 6735 r = -EFAULT; 6736 if (copy_from_user(&u.pit_config, argp, 6737 sizeof(struct kvm_pit_config))) 6738 goto out; 6739 create_pit: 6740 mutex_lock(&kvm->lock); 6741 r = -EEXIST; 6742 if (kvm->arch.vpit) 6743 goto create_pit_unlock; 6744 r = -ENOMEM; 6745 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6746 if (kvm->arch.vpit) 6747 r = 0; 6748 create_pit_unlock: 6749 mutex_unlock(&kvm->lock); 6750 break; 6751 case KVM_GET_IRQCHIP: { 6752 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6753 struct kvm_irqchip *chip; 6754 6755 chip = memdup_user(argp, sizeof(*chip)); 6756 if (IS_ERR(chip)) { 6757 r = PTR_ERR(chip); 6758 goto out; 6759 } 6760 6761 r = -ENXIO; 6762 if (!irqchip_kernel(kvm)) 6763 goto get_irqchip_out; 6764 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6765 if (r) 6766 goto get_irqchip_out; 6767 r = -EFAULT; 6768 if (copy_to_user(argp, chip, sizeof(*chip))) 6769 goto get_irqchip_out; 6770 r = 0; 6771 get_irqchip_out: 6772 kfree(chip); 6773 break; 6774 } 6775 case KVM_SET_IRQCHIP: { 6776 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6777 struct kvm_irqchip *chip; 6778 6779 chip = memdup_user(argp, sizeof(*chip)); 6780 if (IS_ERR(chip)) { 6781 r = PTR_ERR(chip); 6782 goto out; 6783 } 6784 6785 r = -ENXIO; 6786 if (!irqchip_kernel(kvm)) 6787 goto set_irqchip_out; 6788 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6789 set_irqchip_out: 6790 kfree(chip); 6791 break; 6792 } 6793 case KVM_GET_PIT: { 6794 r = -EFAULT; 6795 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6796 goto out; 6797 r = -ENXIO; 6798 if (!kvm->arch.vpit) 6799 goto out; 6800 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6801 if (r) 6802 goto out; 6803 r = -EFAULT; 6804 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6805 goto out; 6806 r = 0; 6807 break; 6808 } 6809 case KVM_SET_PIT: { 6810 r = -EFAULT; 6811 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6812 goto out; 6813 mutex_lock(&kvm->lock); 6814 r = -ENXIO; 6815 if (!kvm->arch.vpit) 6816 goto set_pit_out; 6817 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6818 set_pit_out: 6819 mutex_unlock(&kvm->lock); 6820 break; 6821 } 6822 case KVM_GET_PIT2: { 6823 r = -ENXIO; 6824 if (!kvm->arch.vpit) 6825 goto out; 6826 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6827 if (r) 6828 goto out; 6829 r = -EFAULT; 6830 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6831 goto out; 6832 r = 0; 6833 break; 6834 } 6835 case KVM_SET_PIT2: { 6836 r = -EFAULT; 6837 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6838 goto out; 6839 mutex_lock(&kvm->lock); 6840 r = -ENXIO; 6841 if (!kvm->arch.vpit) 6842 goto set_pit2_out; 6843 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6844 set_pit2_out: 6845 mutex_unlock(&kvm->lock); 6846 break; 6847 } 6848 case KVM_REINJECT_CONTROL: { 6849 struct kvm_reinject_control control; 6850 r = -EFAULT; 6851 if (copy_from_user(&control, argp, sizeof(control))) 6852 goto out; 6853 r = -ENXIO; 6854 if (!kvm->arch.vpit) 6855 goto out; 6856 r = kvm_vm_ioctl_reinject(kvm, &control); 6857 break; 6858 } 6859 case KVM_SET_BOOT_CPU_ID: 6860 r = 0; 6861 mutex_lock(&kvm->lock); 6862 if (kvm->created_vcpus) 6863 r = -EBUSY; 6864 else 6865 kvm->arch.bsp_vcpu_id = arg; 6866 mutex_unlock(&kvm->lock); 6867 break; 6868 #ifdef CONFIG_KVM_XEN 6869 case KVM_XEN_HVM_CONFIG: { 6870 struct kvm_xen_hvm_config xhc; 6871 r = -EFAULT; 6872 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6873 goto out; 6874 r = kvm_xen_hvm_config(kvm, &xhc); 6875 break; 6876 } 6877 case KVM_XEN_HVM_GET_ATTR: { 6878 struct kvm_xen_hvm_attr xha; 6879 6880 r = -EFAULT; 6881 if (copy_from_user(&xha, argp, sizeof(xha))) 6882 goto out; 6883 r = kvm_xen_hvm_get_attr(kvm, &xha); 6884 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6885 r = -EFAULT; 6886 break; 6887 } 6888 case KVM_XEN_HVM_SET_ATTR: { 6889 struct kvm_xen_hvm_attr xha; 6890 6891 r = -EFAULT; 6892 if (copy_from_user(&xha, argp, sizeof(xha))) 6893 goto out; 6894 r = kvm_xen_hvm_set_attr(kvm, &xha); 6895 break; 6896 } 6897 case KVM_XEN_HVM_EVTCHN_SEND: { 6898 struct kvm_irq_routing_xen_evtchn uxe; 6899 6900 r = -EFAULT; 6901 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6902 goto out; 6903 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6904 break; 6905 } 6906 #endif 6907 case KVM_SET_CLOCK: 6908 r = kvm_vm_ioctl_set_clock(kvm, argp); 6909 break; 6910 case KVM_GET_CLOCK: 6911 r = kvm_vm_ioctl_get_clock(kvm, argp); 6912 break; 6913 case KVM_SET_TSC_KHZ: { 6914 u32 user_tsc_khz; 6915 6916 r = -EINVAL; 6917 user_tsc_khz = (u32)arg; 6918 6919 if (kvm_caps.has_tsc_control && 6920 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6921 goto out; 6922 6923 if (user_tsc_khz == 0) 6924 user_tsc_khz = tsc_khz; 6925 6926 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6927 r = 0; 6928 6929 goto out; 6930 } 6931 case KVM_GET_TSC_KHZ: { 6932 r = READ_ONCE(kvm->arch.default_tsc_khz); 6933 goto out; 6934 } 6935 case KVM_MEMORY_ENCRYPT_OP: { 6936 r = -ENOTTY; 6937 if (!kvm_x86_ops.mem_enc_ioctl) 6938 goto out; 6939 6940 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6941 break; 6942 } 6943 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6944 struct kvm_enc_region region; 6945 6946 r = -EFAULT; 6947 if (copy_from_user(®ion, argp, sizeof(region))) 6948 goto out; 6949 6950 r = -ENOTTY; 6951 if (!kvm_x86_ops.mem_enc_register_region) 6952 goto out; 6953 6954 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6955 break; 6956 } 6957 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6958 struct kvm_enc_region region; 6959 6960 r = -EFAULT; 6961 if (copy_from_user(®ion, argp, sizeof(region))) 6962 goto out; 6963 6964 r = -ENOTTY; 6965 if (!kvm_x86_ops.mem_enc_unregister_region) 6966 goto out; 6967 6968 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6969 break; 6970 } 6971 case KVM_HYPERV_EVENTFD: { 6972 struct kvm_hyperv_eventfd hvevfd; 6973 6974 r = -EFAULT; 6975 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6976 goto out; 6977 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6978 break; 6979 } 6980 case KVM_SET_PMU_EVENT_FILTER: 6981 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6982 break; 6983 case KVM_X86_SET_MSR_FILTER: { 6984 struct kvm_msr_filter __user *user_msr_filter = argp; 6985 struct kvm_msr_filter filter; 6986 6987 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6988 return -EFAULT; 6989 6990 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6991 break; 6992 } 6993 default: 6994 r = -ENOTTY; 6995 } 6996 out: 6997 return r; 6998 } 6999 7000 static void kvm_probe_msr_to_save(u32 msr_index) 7001 { 7002 u32 dummy[2]; 7003 7004 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7005 return; 7006 7007 /* 7008 * Even MSRs that are valid in the host may not be exposed to guests in 7009 * some cases. 7010 */ 7011 switch (msr_index) { 7012 case MSR_IA32_BNDCFGS: 7013 if (!kvm_mpx_supported()) 7014 return; 7015 break; 7016 case MSR_TSC_AUX: 7017 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7018 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7019 return; 7020 break; 7021 case MSR_IA32_UMWAIT_CONTROL: 7022 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7023 return; 7024 break; 7025 case MSR_IA32_RTIT_CTL: 7026 case MSR_IA32_RTIT_STATUS: 7027 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7028 return; 7029 break; 7030 case MSR_IA32_RTIT_CR3_MATCH: 7031 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7032 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7033 return; 7034 break; 7035 case MSR_IA32_RTIT_OUTPUT_BASE: 7036 case MSR_IA32_RTIT_OUTPUT_MASK: 7037 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7038 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7039 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7040 return; 7041 break; 7042 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7043 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7044 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7045 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7046 return; 7047 break; 7048 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7049 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7050 kvm_pmu_cap.num_counters_gp) 7051 return; 7052 break; 7053 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7054 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7055 kvm_pmu_cap.num_counters_gp) 7056 return; 7057 break; 7058 case MSR_IA32_XFD: 7059 case MSR_IA32_XFD_ERR: 7060 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7061 return; 7062 break; 7063 default: 7064 break; 7065 } 7066 7067 msrs_to_save[num_msrs_to_save++] = msr_index; 7068 } 7069 7070 static void kvm_init_msr_list(void) 7071 { 7072 unsigned i; 7073 7074 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7075 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7076 7077 num_msrs_to_save = 0; 7078 num_emulated_msrs = 0; 7079 num_msr_based_features = 0; 7080 7081 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7082 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7083 7084 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7085 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7086 7087 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7088 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7089 continue; 7090 7091 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7092 } 7093 7094 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7095 struct kvm_msr_entry msr; 7096 7097 msr.index = msr_based_features_all[i]; 7098 if (kvm_get_msr_feature(&msr)) 7099 continue; 7100 7101 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7102 } 7103 } 7104 7105 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7106 const void *v) 7107 { 7108 int handled = 0; 7109 int n; 7110 7111 do { 7112 n = min(len, 8); 7113 if (!(lapic_in_kernel(vcpu) && 7114 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7115 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7116 break; 7117 handled += n; 7118 addr += n; 7119 len -= n; 7120 v += n; 7121 } while (len); 7122 7123 return handled; 7124 } 7125 7126 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7127 { 7128 int handled = 0; 7129 int n; 7130 7131 do { 7132 n = min(len, 8); 7133 if (!(lapic_in_kernel(vcpu) && 7134 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7135 addr, n, v)) 7136 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7137 break; 7138 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7139 handled += n; 7140 addr += n; 7141 len -= n; 7142 v += n; 7143 } while (len); 7144 7145 return handled; 7146 } 7147 7148 void kvm_set_segment(struct kvm_vcpu *vcpu, 7149 struct kvm_segment *var, int seg) 7150 { 7151 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7152 } 7153 7154 void kvm_get_segment(struct kvm_vcpu *vcpu, 7155 struct kvm_segment *var, int seg) 7156 { 7157 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7158 } 7159 7160 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7161 struct x86_exception *exception) 7162 { 7163 struct kvm_mmu *mmu = vcpu->arch.mmu; 7164 gpa_t t_gpa; 7165 7166 BUG_ON(!mmu_is_nested(vcpu)); 7167 7168 /* NPT walks are always user-walks */ 7169 access |= PFERR_USER_MASK; 7170 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7171 7172 return t_gpa; 7173 } 7174 7175 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7176 struct x86_exception *exception) 7177 { 7178 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7179 7180 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7181 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7182 } 7183 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7184 7185 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7186 struct x86_exception *exception) 7187 { 7188 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7189 7190 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7191 access |= PFERR_WRITE_MASK; 7192 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7193 } 7194 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7195 7196 /* uses this to access any guest's mapped memory without checking CPL */ 7197 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7198 struct x86_exception *exception) 7199 { 7200 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7201 7202 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7203 } 7204 7205 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7206 struct kvm_vcpu *vcpu, u64 access, 7207 struct x86_exception *exception) 7208 { 7209 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7210 void *data = val; 7211 int r = X86EMUL_CONTINUE; 7212 7213 while (bytes) { 7214 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7215 unsigned offset = addr & (PAGE_SIZE-1); 7216 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7217 int ret; 7218 7219 if (gpa == INVALID_GPA) 7220 return X86EMUL_PROPAGATE_FAULT; 7221 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7222 offset, toread); 7223 if (ret < 0) { 7224 r = X86EMUL_IO_NEEDED; 7225 goto out; 7226 } 7227 7228 bytes -= toread; 7229 data += toread; 7230 addr += toread; 7231 } 7232 out: 7233 return r; 7234 } 7235 7236 /* used for instruction fetching */ 7237 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7238 gva_t addr, void *val, unsigned int bytes, 7239 struct x86_exception *exception) 7240 { 7241 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7242 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7243 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7244 unsigned offset; 7245 int ret; 7246 7247 /* Inline kvm_read_guest_virt_helper for speed. */ 7248 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7249 exception); 7250 if (unlikely(gpa == INVALID_GPA)) 7251 return X86EMUL_PROPAGATE_FAULT; 7252 7253 offset = addr & (PAGE_SIZE-1); 7254 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7255 bytes = (unsigned)PAGE_SIZE - offset; 7256 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7257 offset, bytes); 7258 if (unlikely(ret < 0)) 7259 return X86EMUL_IO_NEEDED; 7260 7261 return X86EMUL_CONTINUE; 7262 } 7263 7264 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7265 gva_t addr, void *val, unsigned int bytes, 7266 struct x86_exception *exception) 7267 { 7268 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7269 7270 /* 7271 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7272 * is returned, but our callers are not ready for that and they blindly 7273 * call kvm_inject_page_fault. Ensure that they at least do not leak 7274 * uninitialized kernel stack memory into cr2 and error code. 7275 */ 7276 memset(exception, 0, sizeof(*exception)); 7277 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7278 exception); 7279 } 7280 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7281 7282 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7283 gva_t addr, void *val, unsigned int bytes, 7284 struct x86_exception *exception, bool system) 7285 { 7286 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7287 u64 access = 0; 7288 7289 if (system) 7290 access |= PFERR_IMPLICIT_ACCESS; 7291 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7292 access |= PFERR_USER_MASK; 7293 7294 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7295 } 7296 7297 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7298 struct kvm_vcpu *vcpu, u64 access, 7299 struct x86_exception *exception) 7300 { 7301 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7302 void *data = val; 7303 int r = X86EMUL_CONTINUE; 7304 7305 while (bytes) { 7306 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7307 unsigned offset = addr & (PAGE_SIZE-1); 7308 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7309 int ret; 7310 7311 if (gpa == INVALID_GPA) 7312 return X86EMUL_PROPAGATE_FAULT; 7313 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7314 if (ret < 0) { 7315 r = X86EMUL_IO_NEEDED; 7316 goto out; 7317 } 7318 7319 bytes -= towrite; 7320 data += towrite; 7321 addr += towrite; 7322 } 7323 out: 7324 return r; 7325 } 7326 7327 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7328 unsigned int bytes, struct x86_exception *exception, 7329 bool system) 7330 { 7331 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7332 u64 access = PFERR_WRITE_MASK; 7333 7334 if (system) 7335 access |= PFERR_IMPLICIT_ACCESS; 7336 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7337 access |= PFERR_USER_MASK; 7338 7339 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7340 access, exception); 7341 } 7342 7343 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7344 unsigned int bytes, struct x86_exception *exception) 7345 { 7346 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7347 vcpu->arch.l1tf_flush_l1d = true; 7348 7349 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7350 PFERR_WRITE_MASK, exception); 7351 } 7352 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7353 7354 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7355 void *insn, int insn_len) 7356 { 7357 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7358 insn, insn_len); 7359 } 7360 7361 int handle_ud(struct kvm_vcpu *vcpu) 7362 { 7363 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7364 int fep_flags = READ_ONCE(force_emulation_prefix); 7365 int emul_type = EMULTYPE_TRAP_UD; 7366 char sig[5]; /* ud2; .ascii "kvm" */ 7367 struct x86_exception e; 7368 7369 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7370 return 1; 7371 7372 if (fep_flags && 7373 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7374 sig, sizeof(sig), &e) == 0 && 7375 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7376 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7377 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7378 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7379 emul_type = EMULTYPE_TRAP_UD_FORCED; 7380 } 7381 7382 return kvm_emulate_instruction(vcpu, emul_type); 7383 } 7384 EXPORT_SYMBOL_GPL(handle_ud); 7385 7386 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7387 gpa_t gpa, bool write) 7388 { 7389 /* For APIC access vmexit */ 7390 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7391 return 1; 7392 7393 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7394 trace_vcpu_match_mmio(gva, gpa, write, true); 7395 return 1; 7396 } 7397 7398 return 0; 7399 } 7400 7401 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7402 gpa_t *gpa, struct x86_exception *exception, 7403 bool write) 7404 { 7405 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7406 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7407 | (write ? PFERR_WRITE_MASK : 0); 7408 7409 /* 7410 * currently PKRU is only applied to ept enabled guest so 7411 * there is no pkey in EPT page table for L1 guest or EPT 7412 * shadow page table for L2 guest. 7413 */ 7414 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7415 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7416 vcpu->arch.mmio_access, 0, access))) { 7417 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7418 (gva & (PAGE_SIZE - 1)); 7419 trace_vcpu_match_mmio(gva, *gpa, write, false); 7420 return 1; 7421 } 7422 7423 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7424 7425 if (*gpa == INVALID_GPA) 7426 return -1; 7427 7428 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7429 } 7430 7431 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7432 const void *val, int bytes) 7433 { 7434 int ret; 7435 7436 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7437 if (ret < 0) 7438 return 0; 7439 kvm_page_track_write(vcpu, gpa, val, bytes); 7440 return 1; 7441 } 7442 7443 struct read_write_emulator_ops { 7444 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7445 int bytes); 7446 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7447 void *val, int bytes); 7448 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7449 int bytes, void *val); 7450 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7451 void *val, int bytes); 7452 bool write; 7453 }; 7454 7455 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7456 { 7457 if (vcpu->mmio_read_completed) { 7458 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7459 vcpu->mmio_fragments[0].gpa, val); 7460 vcpu->mmio_read_completed = 0; 7461 return 1; 7462 } 7463 7464 return 0; 7465 } 7466 7467 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7468 void *val, int bytes) 7469 { 7470 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7471 } 7472 7473 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7474 void *val, int bytes) 7475 { 7476 return emulator_write_phys(vcpu, gpa, val, bytes); 7477 } 7478 7479 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7480 { 7481 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7482 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7483 } 7484 7485 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7486 void *val, int bytes) 7487 { 7488 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7489 return X86EMUL_IO_NEEDED; 7490 } 7491 7492 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7493 void *val, int bytes) 7494 { 7495 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7496 7497 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7498 return X86EMUL_CONTINUE; 7499 } 7500 7501 static const struct read_write_emulator_ops read_emultor = { 7502 .read_write_prepare = read_prepare, 7503 .read_write_emulate = read_emulate, 7504 .read_write_mmio = vcpu_mmio_read, 7505 .read_write_exit_mmio = read_exit_mmio, 7506 }; 7507 7508 static const struct read_write_emulator_ops write_emultor = { 7509 .read_write_emulate = write_emulate, 7510 .read_write_mmio = write_mmio, 7511 .read_write_exit_mmio = write_exit_mmio, 7512 .write = true, 7513 }; 7514 7515 static int emulator_read_write_onepage(unsigned long addr, void *val, 7516 unsigned int bytes, 7517 struct x86_exception *exception, 7518 struct kvm_vcpu *vcpu, 7519 const struct read_write_emulator_ops *ops) 7520 { 7521 gpa_t gpa; 7522 int handled, ret; 7523 bool write = ops->write; 7524 struct kvm_mmio_fragment *frag; 7525 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7526 7527 /* 7528 * If the exit was due to a NPF we may already have a GPA. 7529 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7530 * Note, this cannot be used on string operations since string 7531 * operation using rep will only have the initial GPA from the NPF 7532 * occurred. 7533 */ 7534 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7535 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7536 gpa = ctxt->gpa_val; 7537 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7538 } else { 7539 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7540 if (ret < 0) 7541 return X86EMUL_PROPAGATE_FAULT; 7542 } 7543 7544 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7545 return X86EMUL_CONTINUE; 7546 7547 /* 7548 * Is this MMIO handled locally? 7549 */ 7550 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7551 if (handled == bytes) 7552 return X86EMUL_CONTINUE; 7553 7554 gpa += handled; 7555 bytes -= handled; 7556 val += handled; 7557 7558 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7559 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7560 frag->gpa = gpa; 7561 frag->data = val; 7562 frag->len = bytes; 7563 return X86EMUL_CONTINUE; 7564 } 7565 7566 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7567 unsigned long addr, 7568 void *val, unsigned int bytes, 7569 struct x86_exception *exception, 7570 const struct read_write_emulator_ops *ops) 7571 { 7572 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7573 gpa_t gpa; 7574 int rc; 7575 7576 if (ops->read_write_prepare && 7577 ops->read_write_prepare(vcpu, val, bytes)) 7578 return X86EMUL_CONTINUE; 7579 7580 vcpu->mmio_nr_fragments = 0; 7581 7582 /* Crossing a page boundary? */ 7583 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7584 int now; 7585 7586 now = -addr & ~PAGE_MASK; 7587 rc = emulator_read_write_onepage(addr, val, now, exception, 7588 vcpu, ops); 7589 7590 if (rc != X86EMUL_CONTINUE) 7591 return rc; 7592 addr += now; 7593 if (ctxt->mode != X86EMUL_MODE_PROT64) 7594 addr = (u32)addr; 7595 val += now; 7596 bytes -= now; 7597 } 7598 7599 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7600 vcpu, ops); 7601 if (rc != X86EMUL_CONTINUE) 7602 return rc; 7603 7604 if (!vcpu->mmio_nr_fragments) 7605 return rc; 7606 7607 gpa = vcpu->mmio_fragments[0].gpa; 7608 7609 vcpu->mmio_needed = 1; 7610 vcpu->mmio_cur_fragment = 0; 7611 7612 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7613 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7614 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7615 vcpu->run->mmio.phys_addr = gpa; 7616 7617 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7618 } 7619 7620 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7621 unsigned long addr, 7622 void *val, 7623 unsigned int bytes, 7624 struct x86_exception *exception) 7625 { 7626 return emulator_read_write(ctxt, addr, val, bytes, 7627 exception, &read_emultor); 7628 } 7629 7630 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7631 unsigned long addr, 7632 const void *val, 7633 unsigned int bytes, 7634 struct x86_exception *exception) 7635 { 7636 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7637 exception, &write_emultor); 7638 } 7639 7640 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7641 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7642 7643 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7644 unsigned long addr, 7645 const void *old, 7646 const void *new, 7647 unsigned int bytes, 7648 struct x86_exception *exception) 7649 { 7650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7651 u64 page_line_mask; 7652 unsigned long hva; 7653 gpa_t gpa; 7654 int r; 7655 7656 /* guests cmpxchg8b have to be emulated atomically */ 7657 if (bytes > 8 || (bytes & (bytes - 1))) 7658 goto emul_write; 7659 7660 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7661 7662 if (gpa == INVALID_GPA || 7663 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7664 goto emul_write; 7665 7666 /* 7667 * Emulate the atomic as a straight write to avoid #AC if SLD is 7668 * enabled in the host and the access splits a cache line. 7669 */ 7670 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7671 page_line_mask = ~(cache_line_size() - 1); 7672 else 7673 page_line_mask = PAGE_MASK; 7674 7675 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7676 goto emul_write; 7677 7678 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7679 if (kvm_is_error_hva(hva)) 7680 goto emul_write; 7681 7682 hva += offset_in_page(gpa); 7683 7684 switch (bytes) { 7685 case 1: 7686 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7687 break; 7688 case 2: 7689 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7690 break; 7691 case 4: 7692 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7693 break; 7694 case 8: 7695 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7696 break; 7697 default: 7698 BUG(); 7699 } 7700 7701 if (r < 0) 7702 return X86EMUL_UNHANDLEABLE; 7703 if (r) 7704 return X86EMUL_CMPXCHG_FAILED; 7705 7706 kvm_page_track_write(vcpu, gpa, new, bytes); 7707 7708 return X86EMUL_CONTINUE; 7709 7710 emul_write: 7711 pr_warn_once("emulating exchange as write\n"); 7712 7713 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7714 } 7715 7716 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7717 unsigned short port, void *data, 7718 unsigned int count, bool in) 7719 { 7720 unsigned i; 7721 int r; 7722 7723 WARN_ON_ONCE(vcpu->arch.pio.count); 7724 for (i = 0; i < count; i++) { 7725 if (in) 7726 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7727 else 7728 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7729 7730 if (r) { 7731 if (i == 0) 7732 goto userspace_io; 7733 7734 /* 7735 * Userspace must have unregistered the device while PIO 7736 * was running. Drop writes / read as 0. 7737 */ 7738 if (in) 7739 memset(data, 0, size * (count - i)); 7740 break; 7741 } 7742 7743 data += size; 7744 } 7745 return 1; 7746 7747 userspace_io: 7748 vcpu->arch.pio.port = port; 7749 vcpu->arch.pio.in = in; 7750 vcpu->arch.pio.count = count; 7751 vcpu->arch.pio.size = size; 7752 7753 if (in) 7754 memset(vcpu->arch.pio_data, 0, size * count); 7755 else 7756 memcpy(vcpu->arch.pio_data, data, size * count); 7757 7758 vcpu->run->exit_reason = KVM_EXIT_IO; 7759 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7760 vcpu->run->io.size = size; 7761 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7762 vcpu->run->io.count = count; 7763 vcpu->run->io.port = port; 7764 return 0; 7765 } 7766 7767 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7768 unsigned short port, void *val, unsigned int count) 7769 { 7770 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7771 if (r) 7772 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7773 7774 return r; 7775 } 7776 7777 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7778 { 7779 int size = vcpu->arch.pio.size; 7780 unsigned int count = vcpu->arch.pio.count; 7781 memcpy(val, vcpu->arch.pio_data, size * count); 7782 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7783 vcpu->arch.pio.count = 0; 7784 } 7785 7786 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7787 int size, unsigned short port, void *val, 7788 unsigned int count) 7789 { 7790 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7791 if (vcpu->arch.pio.count) { 7792 /* 7793 * Complete a previous iteration that required userspace I/O. 7794 * Note, @count isn't guaranteed to match pio.count as userspace 7795 * can modify ECX before rerunning the vCPU. Ignore any such 7796 * shenanigans as KVM doesn't support modifying the rep count, 7797 * and the emulator ensures @count doesn't overflow the buffer. 7798 */ 7799 complete_emulator_pio_in(vcpu, val); 7800 return 1; 7801 } 7802 7803 return emulator_pio_in(vcpu, size, port, val, count); 7804 } 7805 7806 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7807 unsigned short port, const void *val, 7808 unsigned int count) 7809 { 7810 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7811 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7812 } 7813 7814 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7815 int size, unsigned short port, 7816 const void *val, unsigned int count) 7817 { 7818 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7819 } 7820 7821 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7822 { 7823 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7824 } 7825 7826 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7827 { 7828 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7829 } 7830 7831 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7832 { 7833 if (!need_emulate_wbinvd(vcpu)) 7834 return X86EMUL_CONTINUE; 7835 7836 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7837 int cpu = get_cpu(); 7838 7839 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7840 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7841 wbinvd_ipi, NULL, 1); 7842 put_cpu(); 7843 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7844 } else 7845 wbinvd(); 7846 return X86EMUL_CONTINUE; 7847 } 7848 7849 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7850 { 7851 kvm_emulate_wbinvd_noskip(vcpu); 7852 return kvm_skip_emulated_instruction(vcpu); 7853 } 7854 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7855 7856 7857 7858 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7859 { 7860 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7861 } 7862 7863 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7864 unsigned long *dest) 7865 { 7866 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7867 } 7868 7869 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7870 unsigned long value) 7871 { 7872 7873 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7874 } 7875 7876 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7877 { 7878 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7879 } 7880 7881 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7882 { 7883 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7884 unsigned long value; 7885 7886 switch (cr) { 7887 case 0: 7888 value = kvm_read_cr0(vcpu); 7889 break; 7890 case 2: 7891 value = vcpu->arch.cr2; 7892 break; 7893 case 3: 7894 value = kvm_read_cr3(vcpu); 7895 break; 7896 case 4: 7897 value = kvm_read_cr4(vcpu); 7898 break; 7899 case 8: 7900 value = kvm_get_cr8(vcpu); 7901 break; 7902 default: 7903 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7904 return 0; 7905 } 7906 7907 return value; 7908 } 7909 7910 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7911 { 7912 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7913 int res = 0; 7914 7915 switch (cr) { 7916 case 0: 7917 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7918 break; 7919 case 2: 7920 vcpu->arch.cr2 = val; 7921 break; 7922 case 3: 7923 res = kvm_set_cr3(vcpu, val); 7924 break; 7925 case 4: 7926 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7927 break; 7928 case 8: 7929 res = kvm_set_cr8(vcpu, val); 7930 break; 7931 default: 7932 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7933 res = -1; 7934 } 7935 7936 return res; 7937 } 7938 7939 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7940 { 7941 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7942 } 7943 7944 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7945 { 7946 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7947 } 7948 7949 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7950 { 7951 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7952 } 7953 7954 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7955 { 7956 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7957 } 7958 7959 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7960 { 7961 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7962 } 7963 7964 static unsigned long emulator_get_cached_segment_base( 7965 struct x86_emulate_ctxt *ctxt, int seg) 7966 { 7967 return get_segment_base(emul_to_vcpu(ctxt), seg); 7968 } 7969 7970 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7971 struct desc_struct *desc, u32 *base3, 7972 int seg) 7973 { 7974 struct kvm_segment var; 7975 7976 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7977 *selector = var.selector; 7978 7979 if (var.unusable) { 7980 memset(desc, 0, sizeof(*desc)); 7981 if (base3) 7982 *base3 = 0; 7983 return false; 7984 } 7985 7986 if (var.g) 7987 var.limit >>= 12; 7988 set_desc_limit(desc, var.limit); 7989 set_desc_base(desc, (unsigned long)var.base); 7990 #ifdef CONFIG_X86_64 7991 if (base3) 7992 *base3 = var.base >> 32; 7993 #endif 7994 desc->type = var.type; 7995 desc->s = var.s; 7996 desc->dpl = var.dpl; 7997 desc->p = var.present; 7998 desc->avl = var.avl; 7999 desc->l = var.l; 8000 desc->d = var.db; 8001 desc->g = var.g; 8002 8003 return true; 8004 } 8005 8006 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8007 struct desc_struct *desc, u32 base3, 8008 int seg) 8009 { 8010 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8011 struct kvm_segment var; 8012 8013 var.selector = selector; 8014 var.base = get_desc_base(desc); 8015 #ifdef CONFIG_X86_64 8016 var.base |= ((u64)base3) << 32; 8017 #endif 8018 var.limit = get_desc_limit(desc); 8019 if (desc->g) 8020 var.limit = (var.limit << 12) | 0xfff; 8021 var.type = desc->type; 8022 var.dpl = desc->dpl; 8023 var.db = desc->d; 8024 var.s = desc->s; 8025 var.l = desc->l; 8026 var.g = desc->g; 8027 var.avl = desc->avl; 8028 var.present = desc->p; 8029 var.unusable = !var.present; 8030 var.padding = 0; 8031 8032 kvm_set_segment(vcpu, &var, seg); 8033 return; 8034 } 8035 8036 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8037 u32 msr_index, u64 *pdata) 8038 { 8039 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8040 int r; 8041 8042 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8043 if (r < 0) 8044 return X86EMUL_UNHANDLEABLE; 8045 8046 if (r) { 8047 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8048 complete_emulated_rdmsr, r)) 8049 return X86EMUL_IO_NEEDED; 8050 8051 trace_kvm_msr_read_ex(msr_index); 8052 return X86EMUL_PROPAGATE_FAULT; 8053 } 8054 8055 trace_kvm_msr_read(msr_index, *pdata); 8056 return X86EMUL_CONTINUE; 8057 } 8058 8059 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8060 u32 msr_index, u64 data) 8061 { 8062 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8063 int r; 8064 8065 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8066 if (r < 0) 8067 return X86EMUL_UNHANDLEABLE; 8068 8069 if (r) { 8070 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8071 complete_emulated_msr_access, r)) 8072 return X86EMUL_IO_NEEDED; 8073 8074 trace_kvm_msr_write_ex(msr_index, data); 8075 return X86EMUL_PROPAGATE_FAULT; 8076 } 8077 8078 trace_kvm_msr_write(msr_index, data); 8079 return X86EMUL_CONTINUE; 8080 } 8081 8082 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8083 u32 msr_index, u64 *pdata) 8084 { 8085 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8086 } 8087 8088 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8089 u32 pmc) 8090 { 8091 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8092 return 0; 8093 return -EINVAL; 8094 } 8095 8096 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8097 u32 pmc, u64 *pdata) 8098 { 8099 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8100 } 8101 8102 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8103 { 8104 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8105 } 8106 8107 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8108 struct x86_instruction_info *info, 8109 enum x86_intercept_stage stage) 8110 { 8111 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8112 &ctxt->exception); 8113 } 8114 8115 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8116 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8117 bool exact_only) 8118 { 8119 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8120 } 8121 8122 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8123 { 8124 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8125 } 8126 8127 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8128 { 8129 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8130 } 8131 8132 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8133 { 8134 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8135 } 8136 8137 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8138 { 8139 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8140 } 8141 8142 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8143 { 8144 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8145 } 8146 8147 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8148 { 8149 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8150 } 8151 8152 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8153 { 8154 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8155 } 8156 8157 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8158 { 8159 return emul_to_vcpu(ctxt)->arch.hflags; 8160 } 8161 8162 #ifndef CONFIG_KVM_SMM 8163 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8164 { 8165 WARN_ON_ONCE(1); 8166 return X86EMUL_UNHANDLEABLE; 8167 } 8168 #endif 8169 8170 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8171 { 8172 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8173 } 8174 8175 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8176 { 8177 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8178 } 8179 8180 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8181 { 8182 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8183 8184 if (!kvm->vm_bugged) 8185 kvm_vm_bugged(kvm); 8186 } 8187 8188 static const struct x86_emulate_ops emulate_ops = { 8189 .vm_bugged = emulator_vm_bugged, 8190 .read_gpr = emulator_read_gpr, 8191 .write_gpr = emulator_write_gpr, 8192 .read_std = emulator_read_std, 8193 .write_std = emulator_write_std, 8194 .fetch = kvm_fetch_guest_virt, 8195 .read_emulated = emulator_read_emulated, 8196 .write_emulated = emulator_write_emulated, 8197 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8198 .invlpg = emulator_invlpg, 8199 .pio_in_emulated = emulator_pio_in_emulated, 8200 .pio_out_emulated = emulator_pio_out_emulated, 8201 .get_segment = emulator_get_segment, 8202 .set_segment = emulator_set_segment, 8203 .get_cached_segment_base = emulator_get_cached_segment_base, 8204 .get_gdt = emulator_get_gdt, 8205 .get_idt = emulator_get_idt, 8206 .set_gdt = emulator_set_gdt, 8207 .set_idt = emulator_set_idt, 8208 .get_cr = emulator_get_cr, 8209 .set_cr = emulator_set_cr, 8210 .cpl = emulator_get_cpl, 8211 .get_dr = emulator_get_dr, 8212 .set_dr = emulator_set_dr, 8213 .set_msr_with_filter = emulator_set_msr_with_filter, 8214 .get_msr_with_filter = emulator_get_msr_with_filter, 8215 .get_msr = emulator_get_msr, 8216 .check_pmc = emulator_check_pmc, 8217 .read_pmc = emulator_read_pmc, 8218 .halt = emulator_halt, 8219 .wbinvd = emulator_wbinvd, 8220 .fix_hypercall = emulator_fix_hypercall, 8221 .intercept = emulator_intercept, 8222 .get_cpuid = emulator_get_cpuid, 8223 .guest_has_long_mode = emulator_guest_has_long_mode, 8224 .guest_has_movbe = emulator_guest_has_movbe, 8225 .guest_has_fxsr = emulator_guest_has_fxsr, 8226 .guest_has_rdpid = emulator_guest_has_rdpid, 8227 .set_nmi_mask = emulator_set_nmi_mask, 8228 .get_hflags = emulator_get_hflags, 8229 .leave_smm = emulator_leave_smm, 8230 .triple_fault = emulator_triple_fault, 8231 .set_xcr = emulator_set_xcr, 8232 }; 8233 8234 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8235 { 8236 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8237 /* 8238 * an sti; sti; sequence only disable interrupts for the first 8239 * instruction. So, if the last instruction, be it emulated or 8240 * not, left the system with the INT_STI flag enabled, it 8241 * means that the last instruction is an sti. We should not 8242 * leave the flag on in this case. The same goes for mov ss 8243 */ 8244 if (int_shadow & mask) 8245 mask = 0; 8246 if (unlikely(int_shadow || mask)) { 8247 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8248 if (!mask) 8249 kvm_make_request(KVM_REQ_EVENT, vcpu); 8250 } 8251 } 8252 8253 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8254 { 8255 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8256 8257 if (ctxt->exception.vector == PF_VECTOR) 8258 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8259 else if (ctxt->exception.error_code_valid) 8260 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8261 ctxt->exception.error_code); 8262 else 8263 kvm_queue_exception(vcpu, ctxt->exception.vector); 8264 } 8265 8266 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8267 { 8268 struct x86_emulate_ctxt *ctxt; 8269 8270 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8271 if (!ctxt) { 8272 pr_err("failed to allocate vcpu's emulator\n"); 8273 return NULL; 8274 } 8275 8276 ctxt->vcpu = vcpu; 8277 ctxt->ops = &emulate_ops; 8278 vcpu->arch.emulate_ctxt = ctxt; 8279 8280 return ctxt; 8281 } 8282 8283 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8284 { 8285 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8286 int cs_db, cs_l; 8287 8288 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8289 8290 ctxt->gpa_available = false; 8291 ctxt->eflags = kvm_get_rflags(vcpu); 8292 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8293 8294 ctxt->eip = kvm_rip_read(vcpu); 8295 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8296 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8297 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8298 cs_db ? X86EMUL_MODE_PROT32 : 8299 X86EMUL_MODE_PROT16; 8300 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8301 8302 ctxt->interruptibility = 0; 8303 ctxt->have_exception = false; 8304 ctxt->exception.vector = -1; 8305 ctxt->perm_ok = false; 8306 8307 init_decode_cache(ctxt); 8308 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8309 } 8310 8311 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8312 { 8313 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8314 int ret; 8315 8316 init_emulate_ctxt(vcpu); 8317 8318 ctxt->op_bytes = 2; 8319 ctxt->ad_bytes = 2; 8320 ctxt->_eip = ctxt->eip + inc_eip; 8321 ret = emulate_int_real(ctxt, irq); 8322 8323 if (ret != X86EMUL_CONTINUE) { 8324 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8325 } else { 8326 ctxt->eip = ctxt->_eip; 8327 kvm_rip_write(vcpu, ctxt->eip); 8328 kvm_set_rflags(vcpu, ctxt->eflags); 8329 } 8330 } 8331 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8332 8333 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8334 u8 ndata, u8 *insn_bytes, u8 insn_size) 8335 { 8336 struct kvm_run *run = vcpu->run; 8337 u64 info[5]; 8338 u8 info_start; 8339 8340 /* 8341 * Zero the whole array used to retrieve the exit info, as casting to 8342 * u32 for select entries will leave some chunks uninitialized. 8343 */ 8344 memset(&info, 0, sizeof(info)); 8345 8346 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8347 &info[2], (u32 *)&info[3], 8348 (u32 *)&info[4]); 8349 8350 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8351 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8352 8353 /* 8354 * There's currently space for 13 entries, but 5 are used for the exit 8355 * reason and info. Restrict to 4 to reduce the maintenance burden 8356 * when expanding kvm_run.emulation_failure in the future. 8357 */ 8358 if (WARN_ON_ONCE(ndata > 4)) 8359 ndata = 4; 8360 8361 /* Always include the flags as a 'data' entry. */ 8362 info_start = 1; 8363 run->emulation_failure.flags = 0; 8364 8365 if (insn_size) { 8366 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8367 sizeof(run->emulation_failure.insn_bytes) != 16)); 8368 info_start += 2; 8369 run->emulation_failure.flags |= 8370 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8371 run->emulation_failure.insn_size = insn_size; 8372 memset(run->emulation_failure.insn_bytes, 0x90, 8373 sizeof(run->emulation_failure.insn_bytes)); 8374 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8375 } 8376 8377 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8378 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8379 ndata * sizeof(data[0])); 8380 8381 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8382 } 8383 8384 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8385 { 8386 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8387 8388 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8389 ctxt->fetch.end - ctxt->fetch.data); 8390 } 8391 8392 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8393 u8 ndata) 8394 { 8395 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8396 } 8397 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8398 8399 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8400 { 8401 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8402 } 8403 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8404 8405 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8406 { 8407 struct kvm *kvm = vcpu->kvm; 8408 8409 ++vcpu->stat.insn_emulation_fail; 8410 trace_kvm_emulate_insn_failed(vcpu); 8411 8412 if (emulation_type & EMULTYPE_VMWARE_GP) { 8413 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8414 return 1; 8415 } 8416 8417 if (kvm->arch.exit_on_emulation_error || 8418 (emulation_type & EMULTYPE_SKIP)) { 8419 prepare_emulation_ctxt_failure_exit(vcpu); 8420 return 0; 8421 } 8422 8423 kvm_queue_exception(vcpu, UD_VECTOR); 8424 8425 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8426 prepare_emulation_ctxt_failure_exit(vcpu); 8427 return 0; 8428 } 8429 8430 return 1; 8431 } 8432 8433 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8434 bool write_fault_to_shadow_pgtable, 8435 int emulation_type) 8436 { 8437 gpa_t gpa = cr2_or_gpa; 8438 kvm_pfn_t pfn; 8439 8440 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8441 return false; 8442 8443 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8444 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8445 return false; 8446 8447 if (!vcpu->arch.mmu->root_role.direct) { 8448 /* 8449 * Write permission should be allowed since only 8450 * write access need to be emulated. 8451 */ 8452 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8453 8454 /* 8455 * If the mapping is invalid in guest, let cpu retry 8456 * it to generate fault. 8457 */ 8458 if (gpa == INVALID_GPA) 8459 return true; 8460 } 8461 8462 /* 8463 * Do not retry the unhandleable instruction if it faults on the 8464 * readonly host memory, otherwise it will goto a infinite loop: 8465 * retry instruction -> write #PF -> emulation fail -> retry 8466 * instruction -> ... 8467 */ 8468 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8469 8470 /* 8471 * If the instruction failed on the error pfn, it can not be fixed, 8472 * report the error to userspace. 8473 */ 8474 if (is_error_noslot_pfn(pfn)) 8475 return false; 8476 8477 kvm_release_pfn_clean(pfn); 8478 8479 /* The instructions are well-emulated on direct mmu. */ 8480 if (vcpu->arch.mmu->root_role.direct) { 8481 unsigned int indirect_shadow_pages; 8482 8483 write_lock(&vcpu->kvm->mmu_lock); 8484 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8485 write_unlock(&vcpu->kvm->mmu_lock); 8486 8487 if (indirect_shadow_pages) 8488 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8489 8490 return true; 8491 } 8492 8493 /* 8494 * if emulation was due to access to shadowed page table 8495 * and it failed try to unshadow page and re-enter the 8496 * guest to let CPU execute the instruction. 8497 */ 8498 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8499 8500 /* 8501 * If the access faults on its page table, it can not 8502 * be fixed by unprotecting shadow page and it should 8503 * be reported to userspace. 8504 */ 8505 return !write_fault_to_shadow_pgtable; 8506 } 8507 8508 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8509 gpa_t cr2_or_gpa, int emulation_type) 8510 { 8511 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8512 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8513 8514 last_retry_eip = vcpu->arch.last_retry_eip; 8515 last_retry_addr = vcpu->arch.last_retry_addr; 8516 8517 /* 8518 * If the emulation is caused by #PF and it is non-page_table 8519 * writing instruction, it means the VM-EXIT is caused by shadow 8520 * page protected, we can zap the shadow page and retry this 8521 * instruction directly. 8522 * 8523 * Note: if the guest uses a non-page-table modifying instruction 8524 * on the PDE that points to the instruction, then we will unmap 8525 * the instruction and go to an infinite loop. So, we cache the 8526 * last retried eip and the last fault address, if we meet the eip 8527 * and the address again, we can break out of the potential infinite 8528 * loop. 8529 */ 8530 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8531 8532 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8533 return false; 8534 8535 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8536 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8537 return false; 8538 8539 if (x86_page_table_writing_insn(ctxt)) 8540 return false; 8541 8542 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8543 return false; 8544 8545 vcpu->arch.last_retry_eip = ctxt->eip; 8546 vcpu->arch.last_retry_addr = cr2_or_gpa; 8547 8548 if (!vcpu->arch.mmu->root_role.direct) 8549 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8550 8551 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8552 8553 return true; 8554 } 8555 8556 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8557 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8558 8559 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8560 unsigned long *db) 8561 { 8562 u32 dr6 = 0; 8563 int i; 8564 u32 enable, rwlen; 8565 8566 enable = dr7; 8567 rwlen = dr7 >> 16; 8568 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8569 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8570 dr6 |= (1 << i); 8571 return dr6; 8572 } 8573 8574 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8575 { 8576 struct kvm_run *kvm_run = vcpu->run; 8577 8578 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8579 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8580 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8581 kvm_run->debug.arch.exception = DB_VECTOR; 8582 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8583 return 0; 8584 } 8585 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8586 return 1; 8587 } 8588 8589 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8590 { 8591 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8592 int r; 8593 8594 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8595 if (unlikely(!r)) 8596 return 0; 8597 8598 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8599 8600 /* 8601 * rflags is the old, "raw" value of the flags. The new value has 8602 * not been saved yet. 8603 * 8604 * This is correct even for TF set by the guest, because "the 8605 * processor will not generate this exception after the instruction 8606 * that sets the TF flag". 8607 */ 8608 if (unlikely(rflags & X86_EFLAGS_TF)) 8609 r = kvm_vcpu_do_singlestep(vcpu); 8610 return r; 8611 } 8612 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8613 8614 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8615 { 8616 u32 shadow; 8617 8618 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8619 return true; 8620 8621 /* 8622 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8623 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8624 * to avoid the relatively expensive CPUID lookup. 8625 */ 8626 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8627 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8628 guest_cpuid_is_intel(vcpu); 8629 } 8630 8631 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8632 int emulation_type, int *r) 8633 { 8634 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8635 8636 /* 8637 * Do not check for code breakpoints if hardware has already done the 8638 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8639 * the instruction has passed all exception checks, and all intercepted 8640 * exceptions that trigger emulation have lower priority than code 8641 * breakpoints, i.e. the fact that the intercepted exception occurred 8642 * means any code breakpoints have already been serviced. 8643 * 8644 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8645 * hardware has checked the RIP of the magic prefix, but not the RIP of 8646 * the instruction being emulated. The intent of forced emulation is 8647 * to behave as if KVM intercepted the instruction without an exception 8648 * and without a prefix. 8649 */ 8650 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8651 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8652 return false; 8653 8654 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8655 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8656 struct kvm_run *kvm_run = vcpu->run; 8657 unsigned long eip = kvm_get_linear_rip(vcpu); 8658 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8659 vcpu->arch.guest_debug_dr7, 8660 vcpu->arch.eff_db); 8661 8662 if (dr6 != 0) { 8663 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8664 kvm_run->debug.arch.pc = eip; 8665 kvm_run->debug.arch.exception = DB_VECTOR; 8666 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8667 *r = 0; 8668 return true; 8669 } 8670 } 8671 8672 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8673 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8674 unsigned long eip = kvm_get_linear_rip(vcpu); 8675 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8676 vcpu->arch.dr7, 8677 vcpu->arch.db); 8678 8679 if (dr6 != 0) { 8680 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8681 *r = 1; 8682 return true; 8683 } 8684 } 8685 8686 return false; 8687 } 8688 8689 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8690 { 8691 switch (ctxt->opcode_len) { 8692 case 1: 8693 switch (ctxt->b) { 8694 case 0xe4: /* IN */ 8695 case 0xe5: 8696 case 0xec: 8697 case 0xed: 8698 case 0xe6: /* OUT */ 8699 case 0xe7: 8700 case 0xee: 8701 case 0xef: 8702 case 0x6c: /* INS */ 8703 case 0x6d: 8704 case 0x6e: /* OUTS */ 8705 case 0x6f: 8706 return true; 8707 } 8708 break; 8709 case 2: 8710 switch (ctxt->b) { 8711 case 0x33: /* RDPMC */ 8712 return true; 8713 } 8714 break; 8715 } 8716 8717 return false; 8718 } 8719 8720 /* 8721 * Decode an instruction for emulation. The caller is responsible for handling 8722 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8723 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8724 * code breakpoints have higher priority and thus have already been done by 8725 * hardware. 8726 * 8727 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8728 * response to a machine check. 8729 */ 8730 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8731 void *insn, int insn_len) 8732 { 8733 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8734 int r; 8735 8736 init_emulate_ctxt(vcpu); 8737 8738 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8739 8740 trace_kvm_emulate_insn_start(vcpu); 8741 ++vcpu->stat.insn_emulation; 8742 8743 return r; 8744 } 8745 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8746 8747 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8748 int emulation_type, void *insn, int insn_len) 8749 { 8750 int r; 8751 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8752 bool writeback = true; 8753 bool write_fault_to_spt; 8754 8755 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8756 return 1; 8757 8758 vcpu->arch.l1tf_flush_l1d = true; 8759 8760 /* 8761 * Clear write_fault_to_shadow_pgtable here to ensure it is 8762 * never reused. 8763 */ 8764 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8765 vcpu->arch.write_fault_to_shadow_pgtable = false; 8766 8767 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8768 kvm_clear_exception_queue(vcpu); 8769 8770 /* 8771 * Return immediately if RIP hits a code breakpoint, such #DBs 8772 * are fault-like and are higher priority than any faults on 8773 * the code fetch itself. 8774 */ 8775 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8776 return r; 8777 8778 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8779 insn, insn_len); 8780 if (r != EMULATION_OK) { 8781 if ((emulation_type & EMULTYPE_TRAP_UD) || 8782 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8783 kvm_queue_exception(vcpu, UD_VECTOR); 8784 return 1; 8785 } 8786 if (reexecute_instruction(vcpu, cr2_or_gpa, 8787 write_fault_to_spt, 8788 emulation_type)) 8789 return 1; 8790 8791 if (ctxt->have_exception && 8792 !(emulation_type & EMULTYPE_SKIP)) { 8793 /* 8794 * #UD should result in just EMULATION_FAILED, and trap-like 8795 * exception should not be encountered during decode. 8796 */ 8797 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8798 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8799 inject_emulated_exception(vcpu); 8800 return 1; 8801 } 8802 return handle_emulation_failure(vcpu, emulation_type); 8803 } 8804 } 8805 8806 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8807 !is_vmware_backdoor_opcode(ctxt)) { 8808 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8809 return 1; 8810 } 8811 8812 /* 8813 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8814 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8815 * The caller is responsible for updating interruptibility state and 8816 * injecting single-step #DBs. 8817 */ 8818 if (emulation_type & EMULTYPE_SKIP) { 8819 if (ctxt->mode != X86EMUL_MODE_PROT64) 8820 ctxt->eip = (u32)ctxt->_eip; 8821 else 8822 ctxt->eip = ctxt->_eip; 8823 8824 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8825 r = 1; 8826 goto writeback; 8827 } 8828 8829 kvm_rip_write(vcpu, ctxt->eip); 8830 if (ctxt->eflags & X86_EFLAGS_RF) 8831 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8832 return 1; 8833 } 8834 8835 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8836 return 1; 8837 8838 /* this is needed for vmware backdoor interface to work since it 8839 changes registers values during IO operation */ 8840 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8841 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8842 emulator_invalidate_register_cache(ctxt); 8843 } 8844 8845 restart: 8846 if (emulation_type & EMULTYPE_PF) { 8847 /* Save the faulting GPA (cr2) in the address field */ 8848 ctxt->exception.address = cr2_or_gpa; 8849 8850 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8851 if (vcpu->arch.mmu->root_role.direct) { 8852 ctxt->gpa_available = true; 8853 ctxt->gpa_val = cr2_or_gpa; 8854 } 8855 } else { 8856 /* Sanitize the address out of an abundance of paranoia. */ 8857 ctxt->exception.address = 0; 8858 } 8859 8860 r = x86_emulate_insn(ctxt); 8861 8862 if (r == EMULATION_INTERCEPTED) 8863 return 1; 8864 8865 if (r == EMULATION_FAILED) { 8866 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8867 emulation_type)) 8868 return 1; 8869 8870 return handle_emulation_failure(vcpu, emulation_type); 8871 } 8872 8873 if (ctxt->have_exception) { 8874 r = 1; 8875 inject_emulated_exception(vcpu); 8876 } else if (vcpu->arch.pio.count) { 8877 if (!vcpu->arch.pio.in) { 8878 /* FIXME: return into emulator if single-stepping. */ 8879 vcpu->arch.pio.count = 0; 8880 } else { 8881 writeback = false; 8882 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8883 } 8884 r = 0; 8885 } else if (vcpu->mmio_needed) { 8886 ++vcpu->stat.mmio_exits; 8887 8888 if (!vcpu->mmio_is_write) 8889 writeback = false; 8890 r = 0; 8891 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8892 } else if (vcpu->arch.complete_userspace_io) { 8893 writeback = false; 8894 r = 0; 8895 } else if (r == EMULATION_RESTART) 8896 goto restart; 8897 else 8898 r = 1; 8899 8900 writeback: 8901 if (writeback) { 8902 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8903 toggle_interruptibility(vcpu, ctxt->interruptibility); 8904 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8905 8906 /* 8907 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8908 * only supports code breakpoints and general detect #DB, both 8909 * of which are fault-like. 8910 */ 8911 if (!ctxt->have_exception || 8912 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8913 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8914 if (ctxt->is_branch) 8915 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8916 kvm_rip_write(vcpu, ctxt->eip); 8917 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8918 r = kvm_vcpu_do_singlestep(vcpu); 8919 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8920 __kvm_set_rflags(vcpu, ctxt->eflags); 8921 } 8922 8923 /* 8924 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8925 * do nothing, and it will be requested again as soon as 8926 * the shadow expires. But we still need to check here, 8927 * because POPF has no interrupt shadow. 8928 */ 8929 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8930 kvm_make_request(KVM_REQ_EVENT, vcpu); 8931 } else 8932 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8933 8934 return r; 8935 } 8936 8937 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8938 { 8939 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8940 } 8941 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8942 8943 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8944 void *insn, int insn_len) 8945 { 8946 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8947 } 8948 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8949 8950 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8951 { 8952 vcpu->arch.pio.count = 0; 8953 return 1; 8954 } 8955 8956 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8957 { 8958 vcpu->arch.pio.count = 0; 8959 8960 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8961 return 1; 8962 8963 return kvm_skip_emulated_instruction(vcpu); 8964 } 8965 8966 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8967 unsigned short port) 8968 { 8969 unsigned long val = kvm_rax_read(vcpu); 8970 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8971 8972 if (ret) 8973 return ret; 8974 8975 /* 8976 * Workaround userspace that relies on old KVM behavior of %rip being 8977 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8978 */ 8979 if (port == 0x7e && 8980 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8981 vcpu->arch.complete_userspace_io = 8982 complete_fast_pio_out_port_0x7e; 8983 kvm_skip_emulated_instruction(vcpu); 8984 } else { 8985 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8986 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8987 } 8988 return 0; 8989 } 8990 8991 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8992 { 8993 unsigned long val; 8994 8995 /* We should only ever be called with arch.pio.count equal to 1 */ 8996 BUG_ON(vcpu->arch.pio.count != 1); 8997 8998 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8999 vcpu->arch.pio.count = 0; 9000 return 1; 9001 } 9002 9003 /* For size less than 4 we merge, else we zero extend */ 9004 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9005 9006 complete_emulator_pio_in(vcpu, &val); 9007 kvm_rax_write(vcpu, val); 9008 9009 return kvm_skip_emulated_instruction(vcpu); 9010 } 9011 9012 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9013 unsigned short port) 9014 { 9015 unsigned long val; 9016 int ret; 9017 9018 /* For size less than 4 we merge, else we zero extend */ 9019 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9020 9021 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9022 if (ret) { 9023 kvm_rax_write(vcpu, val); 9024 return ret; 9025 } 9026 9027 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9028 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9029 9030 return 0; 9031 } 9032 9033 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9034 { 9035 int ret; 9036 9037 if (in) 9038 ret = kvm_fast_pio_in(vcpu, size, port); 9039 else 9040 ret = kvm_fast_pio_out(vcpu, size, port); 9041 return ret && kvm_skip_emulated_instruction(vcpu); 9042 } 9043 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9044 9045 static int kvmclock_cpu_down_prep(unsigned int cpu) 9046 { 9047 __this_cpu_write(cpu_tsc_khz, 0); 9048 return 0; 9049 } 9050 9051 static void tsc_khz_changed(void *data) 9052 { 9053 struct cpufreq_freqs *freq = data; 9054 unsigned long khz = 0; 9055 9056 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9057 9058 if (data) 9059 khz = freq->new; 9060 else 9061 khz = cpufreq_quick_get(raw_smp_processor_id()); 9062 if (!khz) 9063 khz = tsc_khz; 9064 __this_cpu_write(cpu_tsc_khz, khz); 9065 } 9066 9067 #ifdef CONFIG_X86_64 9068 static void kvm_hyperv_tsc_notifier(void) 9069 { 9070 struct kvm *kvm; 9071 int cpu; 9072 9073 mutex_lock(&kvm_lock); 9074 list_for_each_entry(kvm, &vm_list, vm_list) 9075 kvm_make_mclock_inprogress_request(kvm); 9076 9077 /* no guest entries from this point */ 9078 hyperv_stop_tsc_emulation(); 9079 9080 /* TSC frequency always matches when on Hyper-V */ 9081 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9082 for_each_present_cpu(cpu) 9083 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9084 } 9085 kvm_caps.max_guest_tsc_khz = tsc_khz; 9086 9087 list_for_each_entry(kvm, &vm_list, vm_list) { 9088 __kvm_start_pvclock_update(kvm); 9089 pvclock_update_vm_gtod_copy(kvm); 9090 kvm_end_pvclock_update(kvm); 9091 } 9092 9093 mutex_unlock(&kvm_lock); 9094 } 9095 #endif 9096 9097 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9098 { 9099 struct kvm *kvm; 9100 struct kvm_vcpu *vcpu; 9101 int send_ipi = 0; 9102 unsigned long i; 9103 9104 /* 9105 * We allow guests to temporarily run on slowing clocks, 9106 * provided we notify them after, or to run on accelerating 9107 * clocks, provided we notify them before. Thus time never 9108 * goes backwards. 9109 * 9110 * However, we have a problem. We can't atomically update 9111 * the frequency of a given CPU from this function; it is 9112 * merely a notifier, which can be called from any CPU. 9113 * Changing the TSC frequency at arbitrary points in time 9114 * requires a recomputation of local variables related to 9115 * the TSC for each VCPU. We must flag these local variables 9116 * to be updated and be sure the update takes place with the 9117 * new frequency before any guests proceed. 9118 * 9119 * Unfortunately, the combination of hotplug CPU and frequency 9120 * change creates an intractable locking scenario; the order 9121 * of when these callouts happen is undefined with respect to 9122 * CPU hotplug, and they can race with each other. As such, 9123 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9124 * undefined; you can actually have a CPU frequency change take 9125 * place in between the computation of X and the setting of the 9126 * variable. To protect against this problem, all updates of 9127 * the per_cpu tsc_khz variable are done in an interrupt 9128 * protected IPI, and all callers wishing to update the value 9129 * must wait for a synchronous IPI to complete (which is trivial 9130 * if the caller is on the CPU already). This establishes the 9131 * necessary total order on variable updates. 9132 * 9133 * Note that because a guest time update may take place 9134 * anytime after the setting of the VCPU's request bit, the 9135 * correct TSC value must be set before the request. However, 9136 * to ensure the update actually makes it to any guest which 9137 * starts running in hardware virtualization between the set 9138 * and the acquisition of the spinlock, we must also ping the 9139 * CPU after setting the request bit. 9140 * 9141 */ 9142 9143 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9144 9145 mutex_lock(&kvm_lock); 9146 list_for_each_entry(kvm, &vm_list, vm_list) { 9147 kvm_for_each_vcpu(i, vcpu, kvm) { 9148 if (vcpu->cpu != cpu) 9149 continue; 9150 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9151 if (vcpu->cpu != raw_smp_processor_id()) 9152 send_ipi = 1; 9153 } 9154 } 9155 mutex_unlock(&kvm_lock); 9156 9157 if (freq->old < freq->new && send_ipi) { 9158 /* 9159 * We upscale the frequency. Must make the guest 9160 * doesn't see old kvmclock values while running with 9161 * the new frequency, otherwise we risk the guest sees 9162 * time go backwards. 9163 * 9164 * In case we update the frequency for another cpu 9165 * (which might be in guest context) send an interrupt 9166 * to kick the cpu out of guest context. Next time 9167 * guest context is entered kvmclock will be updated, 9168 * so the guest will not see stale values. 9169 */ 9170 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9171 } 9172 } 9173 9174 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9175 void *data) 9176 { 9177 struct cpufreq_freqs *freq = data; 9178 int cpu; 9179 9180 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9181 return 0; 9182 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9183 return 0; 9184 9185 for_each_cpu(cpu, freq->policy->cpus) 9186 __kvmclock_cpufreq_notifier(freq, cpu); 9187 9188 return 0; 9189 } 9190 9191 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9192 .notifier_call = kvmclock_cpufreq_notifier 9193 }; 9194 9195 static int kvmclock_cpu_online(unsigned int cpu) 9196 { 9197 tsc_khz_changed(NULL); 9198 return 0; 9199 } 9200 9201 static void kvm_timer_init(void) 9202 { 9203 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9204 max_tsc_khz = tsc_khz; 9205 9206 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9207 struct cpufreq_policy *policy; 9208 int cpu; 9209 9210 cpu = get_cpu(); 9211 policy = cpufreq_cpu_get(cpu); 9212 if (policy) { 9213 if (policy->cpuinfo.max_freq) 9214 max_tsc_khz = policy->cpuinfo.max_freq; 9215 cpufreq_cpu_put(policy); 9216 } 9217 put_cpu(); 9218 } 9219 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9220 CPUFREQ_TRANSITION_NOTIFIER); 9221 9222 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9223 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9224 } 9225 } 9226 9227 #ifdef CONFIG_X86_64 9228 static void pvclock_gtod_update_fn(struct work_struct *work) 9229 { 9230 struct kvm *kvm; 9231 struct kvm_vcpu *vcpu; 9232 unsigned long i; 9233 9234 mutex_lock(&kvm_lock); 9235 list_for_each_entry(kvm, &vm_list, vm_list) 9236 kvm_for_each_vcpu(i, vcpu, kvm) 9237 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9238 atomic_set(&kvm_guest_has_master_clock, 0); 9239 mutex_unlock(&kvm_lock); 9240 } 9241 9242 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9243 9244 /* 9245 * Indirection to move queue_work() out of the tk_core.seq write held 9246 * region to prevent possible deadlocks against time accessors which 9247 * are invoked with work related locks held. 9248 */ 9249 static void pvclock_irq_work_fn(struct irq_work *w) 9250 { 9251 queue_work(system_long_wq, &pvclock_gtod_work); 9252 } 9253 9254 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9255 9256 /* 9257 * Notification about pvclock gtod data update. 9258 */ 9259 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9260 void *priv) 9261 { 9262 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9263 struct timekeeper *tk = priv; 9264 9265 update_pvclock_gtod(tk); 9266 9267 /* 9268 * Disable master clock if host does not trust, or does not use, 9269 * TSC based clocksource. Delegate queue_work() to irq_work as 9270 * this is invoked with tk_core.seq write held. 9271 */ 9272 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9273 atomic_read(&kvm_guest_has_master_clock) != 0) 9274 irq_work_queue(&pvclock_irq_work); 9275 return 0; 9276 } 9277 9278 static struct notifier_block pvclock_gtod_notifier = { 9279 .notifier_call = pvclock_gtod_notify, 9280 }; 9281 #endif 9282 9283 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9284 { 9285 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9286 9287 #define __KVM_X86_OP(func) \ 9288 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9289 #define KVM_X86_OP(func) \ 9290 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9291 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9292 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9293 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9294 (void *)__static_call_return0); 9295 #include <asm/kvm-x86-ops.h> 9296 #undef __KVM_X86_OP 9297 9298 kvm_pmu_ops_update(ops->pmu_ops); 9299 } 9300 9301 static int kvm_x86_check_processor_compatibility(void) 9302 { 9303 int cpu = smp_processor_id(); 9304 struct cpuinfo_x86 *c = &cpu_data(cpu); 9305 9306 /* 9307 * Compatibility checks are done when loading KVM and when enabling 9308 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9309 * compatible, i.e. KVM should never perform a compatibility check on 9310 * an offline CPU. 9311 */ 9312 WARN_ON(!cpu_online(cpu)); 9313 9314 if (__cr4_reserved_bits(cpu_has, c) != 9315 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9316 return -EIO; 9317 9318 return static_call(kvm_x86_check_processor_compatibility)(); 9319 } 9320 9321 static void kvm_x86_check_cpu_compat(void *ret) 9322 { 9323 *(int *)ret = kvm_x86_check_processor_compatibility(); 9324 } 9325 9326 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9327 { 9328 u64 host_pat; 9329 int r, cpu; 9330 9331 if (kvm_x86_ops.hardware_enable) { 9332 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9333 return -EEXIST; 9334 } 9335 9336 /* 9337 * KVM explicitly assumes that the guest has an FPU and 9338 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9339 * vCPU's FPU state as a fxregs_state struct. 9340 */ 9341 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9342 pr_err("inadequate fpu\n"); 9343 return -EOPNOTSUPP; 9344 } 9345 9346 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9347 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9348 return -EOPNOTSUPP; 9349 } 9350 9351 /* 9352 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9353 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9354 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9355 * with an exception. PAT[0] is set to WB on RESET and also by the 9356 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9357 */ 9358 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9359 (host_pat & GENMASK(2, 0)) != 6) { 9360 pr_err("host PAT[0] is not WB\n"); 9361 return -EIO; 9362 } 9363 9364 x86_emulator_cache = kvm_alloc_emulator_cache(); 9365 if (!x86_emulator_cache) { 9366 pr_err("failed to allocate cache for x86 emulator\n"); 9367 return -ENOMEM; 9368 } 9369 9370 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9371 if (!user_return_msrs) { 9372 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9373 r = -ENOMEM; 9374 goto out_free_x86_emulator_cache; 9375 } 9376 kvm_nr_uret_msrs = 0; 9377 9378 r = kvm_mmu_vendor_module_init(); 9379 if (r) 9380 goto out_free_percpu; 9381 9382 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9383 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9384 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9385 } 9386 9387 rdmsrl_safe(MSR_EFER, &host_efer); 9388 9389 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9390 rdmsrl(MSR_IA32_XSS, host_xss); 9391 9392 kvm_init_pmu_capability(ops->pmu_ops); 9393 9394 r = ops->hardware_setup(); 9395 if (r != 0) 9396 goto out_mmu_exit; 9397 9398 kvm_ops_update(ops); 9399 9400 for_each_online_cpu(cpu) { 9401 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9402 if (r < 0) 9403 goto out_unwind_ops; 9404 } 9405 9406 /* 9407 * Point of no return! DO NOT add error paths below this point unless 9408 * absolutely necessary, as most operations from this point forward 9409 * require unwinding. 9410 */ 9411 kvm_timer_init(); 9412 9413 if (pi_inject_timer == -1) 9414 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9415 #ifdef CONFIG_X86_64 9416 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9417 9418 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9419 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9420 #endif 9421 9422 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9423 9424 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9425 kvm_caps.supported_xss = 0; 9426 9427 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9428 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9429 #undef __kvm_cpu_cap_has 9430 9431 if (kvm_caps.has_tsc_control) { 9432 /* 9433 * Make sure the user can only configure tsc_khz values that 9434 * fit into a signed integer. 9435 * A min value is not calculated because it will always 9436 * be 1 on all machines. 9437 */ 9438 u64 max = min(0x7fffffffULL, 9439 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9440 kvm_caps.max_guest_tsc_khz = max; 9441 } 9442 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9443 kvm_init_msr_list(); 9444 return 0; 9445 9446 out_unwind_ops: 9447 kvm_x86_ops.hardware_enable = NULL; 9448 static_call(kvm_x86_hardware_unsetup)(); 9449 out_mmu_exit: 9450 kvm_mmu_vendor_module_exit(); 9451 out_free_percpu: 9452 free_percpu(user_return_msrs); 9453 out_free_x86_emulator_cache: 9454 kmem_cache_destroy(x86_emulator_cache); 9455 return r; 9456 } 9457 9458 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9459 { 9460 int r; 9461 9462 mutex_lock(&vendor_module_lock); 9463 r = __kvm_x86_vendor_init(ops); 9464 mutex_unlock(&vendor_module_lock); 9465 9466 return r; 9467 } 9468 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9469 9470 void kvm_x86_vendor_exit(void) 9471 { 9472 kvm_unregister_perf_callbacks(); 9473 9474 #ifdef CONFIG_X86_64 9475 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9476 clear_hv_tscchange_cb(); 9477 #endif 9478 kvm_lapic_exit(); 9479 9480 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9481 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9482 CPUFREQ_TRANSITION_NOTIFIER); 9483 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9484 } 9485 #ifdef CONFIG_X86_64 9486 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9487 irq_work_sync(&pvclock_irq_work); 9488 cancel_work_sync(&pvclock_gtod_work); 9489 #endif 9490 static_call(kvm_x86_hardware_unsetup)(); 9491 kvm_mmu_vendor_module_exit(); 9492 free_percpu(user_return_msrs); 9493 kmem_cache_destroy(x86_emulator_cache); 9494 #ifdef CONFIG_KVM_XEN 9495 static_key_deferred_flush(&kvm_xen_enabled); 9496 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9497 #endif 9498 mutex_lock(&vendor_module_lock); 9499 kvm_x86_ops.hardware_enable = NULL; 9500 mutex_unlock(&vendor_module_lock); 9501 } 9502 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9503 9504 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9505 { 9506 /* 9507 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9508 * local APIC is in-kernel, the run loop will detect the non-runnable 9509 * state and halt the vCPU. Exit to userspace if the local APIC is 9510 * managed by userspace, in which case userspace is responsible for 9511 * handling wake events. 9512 */ 9513 ++vcpu->stat.halt_exits; 9514 if (lapic_in_kernel(vcpu)) { 9515 vcpu->arch.mp_state = state; 9516 return 1; 9517 } else { 9518 vcpu->run->exit_reason = reason; 9519 return 0; 9520 } 9521 } 9522 9523 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9524 { 9525 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9526 } 9527 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9528 9529 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9530 { 9531 int ret = kvm_skip_emulated_instruction(vcpu); 9532 /* 9533 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9534 * KVM_EXIT_DEBUG here. 9535 */ 9536 return kvm_emulate_halt_noskip(vcpu) && ret; 9537 } 9538 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9539 9540 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9541 { 9542 int ret = kvm_skip_emulated_instruction(vcpu); 9543 9544 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9545 KVM_EXIT_AP_RESET_HOLD) && ret; 9546 } 9547 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9548 9549 #ifdef CONFIG_X86_64 9550 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9551 unsigned long clock_type) 9552 { 9553 struct kvm_clock_pairing clock_pairing; 9554 struct timespec64 ts; 9555 u64 cycle; 9556 int ret; 9557 9558 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9559 return -KVM_EOPNOTSUPP; 9560 9561 /* 9562 * When tsc is in permanent catchup mode guests won't be able to use 9563 * pvclock_read_retry loop to get consistent view of pvclock 9564 */ 9565 if (vcpu->arch.tsc_always_catchup) 9566 return -KVM_EOPNOTSUPP; 9567 9568 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9569 return -KVM_EOPNOTSUPP; 9570 9571 clock_pairing.sec = ts.tv_sec; 9572 clock_pairing.nsec = ts.tv_nsec; 9573 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9574 clock_pairing.flags = 0; 9575 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9576 9577 ret = 0; 9578 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9579 sizeof(struct kvm_clock_pairing))) 9580 ret = -KVM_EFAULT; 9581 9582 return ret; 9583 } 9584 #endif 9585 9586 /* 9587 * kvm_pv_kick_cpu_op: Kick a vcpu. 9588 * 9589 * @apicid - apicid of vcpu to be kicked. 9590 */ 9591 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9592 { 9593 /* 9594 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9595 * common code, e.g. for tracing. Defer initialization to the compiler. 9596 */ 9597 struct kvm_lapic_irq lapic_irq = { 9598 .delivery_mode = APIC_DM_REMRD, 9599 .dest_mode = APIC_DEST_PHYSICAL, 9600 .shorthand = APIC_DEST_NOSHORT, 9601 .dest_id = apicid, 9602 }; 9603 9604 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9605 } 9606 9607 bool kvm_apicv_activated(struct kvm *kvm) 9608 { 9609 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9610 } 9611 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9612 9613 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9614 { 9615 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9616 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9617 9618 return (vm_reasons | vcpu_reasons) == 0; 9619 } 9620 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9621 9622 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9623 enum kvm_apicv_inhibit reason, bool set) 9624 { 9625 if (set) 9626 __set_bit(reason, inhibits); 9627 else 9628 __clear_bit(reason, inhibits); 9629 9630 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9631 } 9632 9633 static void kvm_apicv_init(struct kvm *kvm) 9634 { 9635 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9636 9637 init_rwsem(&kvm->arch.apicv_update_lock); 9638 9639 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9640 9641 if (!enable_apicv) 9642 set_or_clear_apicv_inhibit(inhibits, 9643 APICV_INHIBIT_REASON_DISABLE, true); 9644 } 9645 9646 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9647 { 9648 struct kvm_vcpu *target = NULL; 9649 struct kvm_apic_map *map; 9650 9651 vcpu->stat.directed_yield_attempted++; 9652 9653 if (single_task_running()) 9654 goto no_yield; 9655 9656 rcu_read_lock(); 9657 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9658 9659 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9660 target = map->phys_map[dest_id]->vcpu; 9661 9662 rcu_read_unlock(); 9663 9664 if (!target || !READ_ONCE(target->ready)) 9665 goto no_yield; 9666 9667 /* Ignore requests to yield to self */ 9668 if (vcpu == target) 9669 goto no_yield; 9670 9671 if (kvm_vcpu_yield_to(target) <= 0) 9672 goto no_yield; 9673 9674 vcpu->stat.directed_yield_successful++; 9675 9676 no_yield: 9677 return; 9678 } 9679 9680 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9681 { 9682 u64 ret = vcpu->run->hypercall.ret; 9683 9684 if (!is_64_bit_mode(vcpu)) 9685 ret = (u32)ret; 9686 kvm_rax_write(vcpu, ret); 9687 ++vcpu->stat.hypercalls; 9688 return kvm_skip_emulated_instruction(vcpu); 9689 } 9690 9691 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9692 { 9693 unsigned long nr, a0, a1, a2, a3, ret; 9694 int op_64_bit; 9695 9696 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9697 return kvm_xen_hypercall(vcpu); 9698 9699 if (kvm_hv_hypercall_enabled(vcpu)) 9700 return kvm_hv_hypercall(vcpu); 9701 9702 nr = kvm_rax_read(vcpu); 9703 a0 = kvm_rbx_read(vcpu); 9704 a1 = kvm_rcx_read(vcpu); 9705 a2 = kvm_rdx_read(vcpu); 9706 a3 = kvm_rsi_read(vcpu); 9707 9708 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9709 9710 op_64_bit = is_64_bit_hypercall(vcpu); 9711 if (!op_64_bit) { 9712 nr &= 0xFFFFFFFF; 9713 a0 &= 0xFFFFFFFF; 9714 a1 &= 0xFFFFFFFF; 9715 a2 &= 0xFFFFFFFF; 9716 a3 &= 0xFFFFFFFF; 9717 } 9718 9719 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9720 ret = -KVM_EPERM; 9721 goto out; 9722 } 9723 9724 ret = -KVM_ENOSYS; 9725 9726 switch (nr) { 9727 case KVM_HC_VAPIC_POLL_IRQ: 9728 ret = 0; 9729 break; 9730 case KVM_HC_KICK_CPU: 9731 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9732 break; 9733 9734 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9735 kvm_sched_yield(vcpu, a1); 9736 ret = 0; 9737 break; 9738 #ifdef CONFIG_X86_64 9739 case KVM_HC_CLOCK_PAIRING: 9740 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9741 break; 9742 #endif 9743 case KVM_HC_SEND_IPI: 9744 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9745 break; 9746 9747 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9748 break; 9749 case KVM_HC_SCHED_YIELD: 9750 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9751 break; 9752 9753 kvm_sched_yield(vcpu, a0); 9754 ret = 0; 9755 break; 9756 case KVM_HC_MAP_GPA_RANGE: { 9757 u64 gpa = a0, npages = a1, attrs = a2; 9758 9759 ret = -KVM_ENOSYS; 9760 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9761 break; 9762 9763 if (!PAGE_ALIGNED(gpa) || !npages || 9764 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9765 ret = -KVM_EINVAL; 9766 break; 9767 } 9768 9769 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9770 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9771 vcpu->run->hypercall.args[0] = gpa; 9772 vcpu->run->hypercall.args[1] = npages; 9773 vcpu->run->hypercall.args[2] = attrs; 9774 vcpu->run->hypercall.longmode = op_64_bit; 9775 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9776 return 0; 9777 } 9778 default: 9779 ret = -KVM_ENOSYS; 9780 break; 9781 } 9782 out: 9783 if (!op_64_bit) 9784 ret = (u32)ret; 9785 kvm_rax_write(vcpu, ret); 9786 9787 ++vcpu->stat.hypercalls; 9788 return kvm_skip_emulated_instruction(vcpu); 9789 } 9790 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9791 9792 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9793 { 9794 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9795 char instruction[3]; 9796 unsigned long rip = kvm_rip_read(vcpu); 9797 9798 /* 9799 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9800 * the pieces. 9801 */ 9802 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9803 ctxt->exception.error_code_valid = false; 9804 ctxt->exception.vector = UD_VECTOR; 9805 ctxt->have_exception = true; 9806 return X86EMUL_PROPAGATE_FAULT; 9807 } 9808 9809 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9810 9811 return emulator_write_emulated(ctxt, rip, instruction, 3, 9812 &ctxt->exception); 9813 } 9814 9815 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9816 { 9817 return vcpu->run->request_interrupt_window && 9818 likely(!pic_in_kernel(vcpu->kvm)); 9819 } 9820 9821 /* Called within kvm->srcu read side. */ 9822 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9823 { 9824 struct kvm_run *kvm_run = vcpu->run; 9825 9826 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9827 kvm_run->cr8 = kvm_get_cr8(vcpu); 9828 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9829 9830 kvm_run->ready_for_interrupt_injection = 9831 pic_in_kernel(vcpu->kvm) || 9832 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9833 9834 if (is_smm(vcpu)) 9835 kvm_run->flags |= KVM_RUN_X86_SMM; 9836 } 9837 9838 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9839 { 9840 int max_irr, tpr; 9841 9842 if (!kvm_x86_ops.update_cr8_intercept) 9843 return; 9844 9845 if (!lapic_in_kernel(vcpu)) 9846 return; 9847 9848 if (vcpu->arch.apic->apicv_active) 9849 return; 9850 9851 if (!vcpu->arch.apic->vapic_addr) 9852 max_irr = kvm_lapic_find_highest_irr(vcpu); 9853 else 9854 max_irr = -1; 9855 9856 if (max_irr != -1) 9857 max_irr >>= 4; 9858 9859 tpr = kvm_lapic_get_cr8(vcpu); 9860 9861 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9862 } 9863 9864 9865 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9866 { 9867 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9868 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9869 return 1; 9870 } 9871 9872 return kvm_x86_ops.nested_ops->check_events(vcpu); 9873 } 9874 9875 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9876 { 9877 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9878 vcpu->arch.exception.has_error_code, 9879 vcpu->arch.exception.error_code, 9880 vcpu->arch.exception.injected); 9881 9882 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9883 vcpu->arch.exception.error_code = false; 9884 static_call(kvm_x86_inject_exception)(vcpu); 9885 } 9886 9887 /* 9888 * Check for any event (interrupt or exception) that is ready to be injected, 9889 * and if there is at least one event, inject the event with the highest 9890 * priority. This handles both "pending" events, i.e. events that have never 9891 * been injected into the guest, and "injected" events, i.e. events that were 9892 * injected as part of a previous VM-Enter, but weren't successfully delivered 9893 * and need to be re-injected. 9894 * 9895 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9896 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9897 * be able to inject exceptions in the "middle" of an instruction, and so must 9898 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9899 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9900 * boundaries is necessary and correct. 9901 * 9902 * For simplicity, KVM uses a single path to inject all events (except events 9903 * that are injected directly from L1 to L2) and doesn't explicitly track 9904 * instruction boundaries for asynchronous events. However, because VM-Exits 9905 * that can occur during instruction execution typically result in KVM skipping 9906 * the instruction or injecting an exception, e.g. instruction and exception 9907 * intercepts, and because pending exceptions have higher priority than pending 9908 * interrupts, KVM still honors instruction boundaries in most scenarios. 9909 * 9910 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9911 * the instruction or inject an exception, then KVM can incorrecty inject a new 9912 * asynchrounous event if the event became pending after the CPU fetched the 9913 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9914 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9915 * injected on the restarted instruction instead of being deferred until the 9916 * instruction completes. 9917 * 9918 * In practice, this virtualization hole is unlikely to be observed by the 9919 * guest, and even less likely to cause functional problems. To detect the 9920 * hole, the guest would have to trigger an event on a side effect of an early 9921 * phase of instruction execution, e.g. on the instruction fetch from memory. 9922 * And for it to be a functional problem, the guest would need to depend on the 9923 * ordering between that side effect, the instruction completing, _and_ the 9924 * delivery of the asynchronous event. 9925 */ 9926 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9927 bool *req_immediate_exit) 9928 { 9929 bool can_inject; 9930 int r; 9931 9932 /* 9933 * Process nested events first, as nested VM-Exit supercedes event 9934 * re-injection. If there's an event queued for re-injection, it will 9935 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9936 */ 9937 if (is_guest_mode(vcpu)) 9938 r = kvm_check_nested_events(vcpu); 9939 else 9940 r = 0; 9941 9942 /* 9943 * Re-inject exceptions and events *especially* if immediate entry+exit 9944 * to/from L2 is needed, as any event that has already been injected 9945 * into L2 needs to complete its lifecycle before injecting a new event. 9946 * 9947 * Don't re-inject an NMI or interrupt if there is a pending exception. 9948 * This collision arises if an exception occurred while vectoring the 9949 * injected event, KVM intercepted said exception, and KVM ultimately 9950 * determined the fault belongs to the guest and queues the exception 9951 * for injection back into the guest. 9952 * 9953 * "Injected" interrupts can also collide with pending exceptions if 9954 * userspace ignores the "ready for injection" flag and blindly queues 9955 * an interrupt. In that case, prioritizing the exception is correct, 9956 * as the exception "occurred" before the exit to userspace. Trap-like 9957 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9958 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9959 * priority, they're only generated (pended) during instruction 9960 * execution, and interrupts are recognized at instruction boundaries. 9961 * Thus a pending fault-like exception means the fault occurred on the 9962 * *previous* instruction and must be serviced prior to recognizing any 9963 * new events in order to fully complete the previous instruction. 9964 */ 9965 if (vcpu->arch.exception.injected) 9966 kvm_inject_exception(vcpu); 9967 else if (kvm_is_exception_pending(vcpu)) 9968 ; /* see above */ 9969 else if (vcpu->arch.nmi_injected) 9970 static_call(kvm_x86_inject_nmi)(vcpu); 9971 else if (vcpu->arch.interrupt.injected) 9972 static_call(kvm_x86_inject_irq)(vcpu, true); 9973 9974 /* 9975 * Exceptions that morph to VM-Exits are handled above, and pending 9976 * exceptions on top of injected exceptions that do not VM-Exit should 9977 * either morph to #DF or, sadly, override the injected exception. 9978 */ 9979 WARN_ON_ONCE(vcpu->arch.exception.injected && 9980 vcpu->arch.exception.pending); 9981 9982 /* 9983 * Bail if immediate entry+exit to/from the guest is needed to complete 9984 * nested VM-Enter or event re-injection so that a different pending 9985 * event can be serviced (or if KVM needs to exit to userspace). 9986 * 9987 * Otherwise, continue processing events even if VM-Exit occurred. The 9988 * VM-Exit will have cleared exceptions that were meant for L2, but 9989 * there may now be events that can be injected into L1. 9990 */ 9991 if (r < 0) 9992 goto out; 9993 9994 /* 9995 * A pending exception VM-Exit should either result in nested VM-Exit 9996 * or force an immediate re-entry and exit to/from L2, and exception 9997 * VM-Exits cannot be injected (flag should _never_ be set). 9998 */ 9999 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10000 vcpu->arch.exception_vmexit.pending); 10001 10002 /* 10003 * New events, other than exceptions, cannot be injected if KVM needs 10004 * to re-inject a previous event. See above comments on re-injecting 10005 * for why pending exceptions get priority. 10006 */ 10007 can_inject = !kvm_event_needs_reinjection(vcpu); 10008 10009 if (vcpu->arch.exception.pending) { 10010 /* 10011 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10012 * value pushed on the stack. Trap-like exception and all #DBs 10013 * leave RF as-is (KVM follows Intel's behavior in this regard; 10014 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10015 * 10016 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10017 * describe the behavior of General Detect #DBs, which are 10018 * fault-like. They do _not_ set RF, a la code breakpoints. 10019 */ 10020 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10021 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10022 X86_EFLAGS_RF); 10023 10024 if (vcpu->arch.exception.vector == DB_VECTOR) { 10025 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10026 if (vcpu->arch.dr7 & DR7_GD) { 10027 vcpu->arch.dr7 &= ~DR7_GD; 10028 kvm_update_dr7(vcpu); 10029 } 10030 } 10031 10032 kvm_inject_exception(vcpu); 10033 10034 vcpu->arch.exception.pending = false; 10035 vcpu->arch.exception.injected = true; 10036 10037 can_inject = false; 10038 } 10039 10040 /* Don't inject interrupts if the user asked to avoid doing so */ 10041 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10042 return 0; 10043 10044 /* 10045 * Finally, inject interrupt events. If an event cannot be injected 10046 * due to architectural conditions (e.g. IF=0) a window-open exit 10047 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10048 * and can architecturally be injected, but we cannot do it right now: 10049 * an interrupt could have arrived just now and we have to inject it 10050 * as a vmexit, or there could already an event in the queue, which is 10051 * indicated by can_inject. In that case we request an immediate exit 10052 * in order to make progress and get back here for another iteration. 10053 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10054 */ 10055 #ifdef CONFIG_KVM_SMM 10056 if (vcpu->arch.smi_pending) { 10057 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10058 if (r < 0) 10059 goto out; 10060 if (r) { 10061 vcpu->arch.smi_pending = false; 10062 ++vcpu->arch.smi_count; 10063 enter_smm(vcpu); 10064 can_inject = false; 10065 } else 10066 static_call(kvm_x86_enable_smi_window)(vcpu); 10067 } 10068 #endif 10069 10070 if (vcpu->arch.nmi_pending) { 10071 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10072 if (r < 0) 10073 goto out; 10074 if (r) { 10075 --vcpu->arch.nmi_pending; 10076 vcpu->arch.nmi_injected = true; 10077 static_call(kvm_x86_inject_nmi)(vcpu); 10078 can_inject = false; 10079 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10080 } 10081 if (vcpu->arch.nmi_pending) 10082 static_call(kvm_x86_enable_nmi_window)(vcpu); 10083 } 10084 10085 if (kvm_cpu_has_injectable_intr(vcpu)) { 10086 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10087 if (r < 0) 10088 goto out; 10089 if (r) { 10090 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10091 static_call(kvm_x86_inject_irq)(vcpu, false); 10092 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10093 } 10094 if (kvm_cpu_has_injectable_intr(vcpu)) 10095 static_call(kvm_x86_enable_irq_window)(vcpu); 10096 } 10097 10098 if (is_guest_mode(vcpu) && 10099 kvm_x86_ops.nested_ops->has_events && 10100 kvm_x86_ops.nested_ops->has_events(vcpu)) 10101 *req_immediate_exit = true; 10102 10103 /* 10104 * KVM must never queue a new exception while injecting an event; KVM 10105 * is done emulating and should only propagate the to-be-injected event 10106 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10107 * infinite loop as KVM will bail from VM-Enter to inject the pending 10108 * exception and start the cycle all over. 10109 * 10110 * Exempt triple faults as they have special handling and won't put the 10111 * vCPU into an infinite loop. Triple fault can be queued when running 10112 * VMX without unrestricted guest, as that requires KVM to emulate Real 10113 * Mode events (see kvm_inject_realmode_interrupt()). 10114 */ 10115 WARN_ON_ONCE(vcpu->arch.exception.pending || 10116 vcpu->arch.exception_vmexit.pending); 10117 return 0; 10118 10119 out: 10120 if (r == -EBUSY) { 10121 *req_immediate_exit = true; 10122 r = 0; 10123 } 10124 return r; 10125 } 10126 10127 static void process_nmi(struct kvm_vcpu *vcpu) 10128 { 10129 unsigned limit = 2; 10130 10131 /* 10132 * x86 is limited to one NMI running, and one NMI pending after it. 10133 * If an NMI is already in progress, limit further NMIs to just one. 10134 * Otherwise, allow two (and we'll inject the first one immediately). 10135 */ 10136 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10137 limit = 1; 10138 10139 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10140 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10141 kvm_make_request(KVM_REQ_EVENT, vcpu); 10142 } 10143 10144 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10145 unsigned long *vcpu_bitmap) 10146 { 10147 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10148 } 10149 10150 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10151 { 10152 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10153 } 10154 10155 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10156 { 10157 struct kvm_lapic *apic = vcpu->arch.apic; 10158 bool activate; 10159 10160 if (!lapic_in_kernel(vcpu)) 10161 return; 10162 10163 down_read(&vcpu->kvm->arch.apicv_update_lock); 10164 preempt_disable(); 10165 10166 /* Do not activate APICV when APIC is disabled */ 10167 activate = kvm_vcpu_apicv_activated(vcpu) && 10168 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10169 10170 if (apic->apicv_active == activate) 10171 goto out; 10172 10173 apic->apicv_active = activate; 10174 kvm_apic_update_apicv(vcpu); 10175 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10176 10177 /* 10178 * When APICv gets disabled, we may still have injected interrupts 10179 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10180 * still active when the interrupt got accepted. Make sure 10181 * kvm_check_and_inject_events() is called to check for that. 10182 */ 10183 if (!apic->apicv_active) 10184 kvm_make_request(KVM_REQ_EVENT, vcpu); 10185 10186 out: 10187 preempt_enable(); 10188 up_read(&vcpu->kvm->arch.apicv_update_lock); 10189 } 10190 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10191 10192 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10193 { 10194 if (!lapic_in_kernel(vcpu)) 10195 return; 10196 10197 /* 10198 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10199 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10200 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10201 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10202 * this case so that KVM can the AVIC doorbell to inject interrupts to 10203 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10204 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10205 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10206 * access page is sticky. 10207 */ 10208 if (apic_x2apic_mode(vcpu->arch.apic) && 10209 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10210 kvm_inhibit_apic_access_page(vcpu); 10211 10212 __kvm_vcpu_update_apicv(vcpu); 10213 } 10214 10215 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10216 enum kvm_apicv_inhibit reason, bool set) 10217 { 10218 unsigned long old, new; 10219 10220 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10221 10222 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10223 return; 10224 10225 old = new = kvm->arch.apicv_inhibit_reasons; 10226 10227 set_or_clear_apicv_inhibit(&new, reason, set); 10228 10229 if (!!old != !!new) { 10230 /* 10231 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10232 * false positives in the sanity check WARN in svm_vcpu_run(). 10233 * This task will wait for all vCPUs to ack the kick IRQ before 10234 * updating apicv_inhibit_reasons, and all other vCPUs will 10235 * block on acquiring apicv_update_lock so that vCPUs can't 10236 * redo svm_vcpu_run() without seeing the new inhibit state. 10237 * 10238 * Note, holding apicv_update_lock and taking it in the read 10239 * side (handling the request) also prevents other vCPUs from 10240 * servicing the request with a stale apicv_inhibit_reasons. 10241 */ 10242 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10243 kvm->arch.apicv_inhibit_reasons = new; 10244 if (new) { 10245 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10246 int idx = srcu_read_lock(&kvm->srcu); 10247 10248 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10249 srcu_read_unlock(&kvm->srcu, idx); 10250 } 10251 } else { 10252 kvm->arch.apicv_inhibit_reasons = new; 10253 } 10254 } 10255 10256 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10257 enum kvm_apicv_inhibit reason, bool set) 10258 { 10259 if (!enable_apicv) 10260 return; 10261 10262 down_write(&kvm->arch.apicv_update_lock); 10263 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10264 up_write(&kvm->arch.apicv_update_lock); 10265 } 10266 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10267 10268 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10269 { 10270 if (!kvm_apic_present(vcpu)) 10271 return; 10272 10273 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10274 10275 if (irqchip_split(vcpu->kvm)) 10276 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10277 else { 10278 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10279 if (ioapic_in_kernel(vcpu->kvm)) 10280 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10281 } 10282 10283 if (is_guest_mode(vcpu)) 10284 vcpu->arch.load_eoi_exitmap_pending = true; 10285 else 10286 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10287 } 10288 10289 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10290 { 10291 u64 eoi_exit_bitmap[4]; 10292 10293 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10294 return; 10295 10296 if (to_hv_vcpu(vcpu)) { 10297 bitmap_or((ulong *)eoi_exit_bitmap, 10298 vcpu->arch.ioapic_handled_vectors, 10299 to_hv_synic(vcpu)->vec_bitmap, 256); 10300 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10301 return; 10302 } 10303 10304 static_call_cond(kvm_x86_load_eoi_exitmap)( 10305 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10306 } 10307 10308 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10309 unsigned long start, unsigned long end) 10310 { 10311 unsigned long apic_address; 10312 10313 /* 10314 * The physical address of apic access page is stored in the VMCS. 10315 * Update it when it becomes invalid. 10316 */ 10317 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10318 if (start <= apic_address && apic_address < end) 10319 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10320 } 10321 10322 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10323 { 10324 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10325 } 10326 10327 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10328 { 10329 if (!lapic_in_kernel(vcpu)) 10330 return; 10331 10332 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10333 } 10334 10335 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10336 { 10337 smp_send_reschedule(vcpu->cpu); 10338 } 10339 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10340 10341 /* 10342 * Called within kvm->srcu read side. 10343 * Returns 1 to let vcpu_run() continue the guest execution loop without 10344 * exiting to the userspace. Otherwise, the value will be returned to the 10345 * userspace. 10346 */ 10347 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10348 { 10349 int r; 10350 bool req_int_win = 10351 dm_request_for_irq_injection(vcpu) && 10352 kvm_cpu_accept_dm_intr(vcpu); 10353 fastpath_t exit_fastpath; 10354 10355 bool req_immediate_exit = false; 10356 10357 if (kvm_request_pending(vcpu)) { 10358 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10359 r = -EIO; 10360 goto out; 10361 } 10362 10363 if (kvm_dirty_ring_check_request(vcpu)) { 10364 r = 0; 10365 goto out; 10366 } 10367 10368 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10369 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10370 r = 0; 10371 goto out; 10372 } 10373 } 10374 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10375 kvm_mmu_free_obsolete_roots(vcpu); 10376 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10377 __kvm_migrate_timers(vcpu); 10378 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10379 kvm_update_masterclock(vcpu->kvm); 10380 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10381 kvm_gen_kvmclock_update(vcpu); 10382 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10383 r = kvm_guest_time_update(vcpu); 10384 if (unlikely(r)) 10385 goto out; 10386 } 10387 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10388 kvm_mmu_sync_roots(vcpu); 10389 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10390 kvm_mmu_load_pgd(vcpu); 10391 10392 /* 10393 * Note, the order matters here, as flushing "all" TLB entries 10394 * also flushes the "current" TLB entries, i.e. servicing the 10395 * flush "all" will clear any request to flush "current". 10396 */ 10397 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10398 kvm_vcpu_flush_tlb_all(vcpu); 10399 10400 kvm_service_local_tlb_flush_requests(vcpu); 10401 10402 /* 10403 * Fall back to a "full" guest flush if Hyper-V's precise 10404 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10405 * the flushes are considered "remote" and not "local" because 10406 * the requests can be initiated from other vCPUs. 10407 */ 10408 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10409 kvm_hv_vcpu_flush_tlb(vcpu)) 10410 kvm_vcpu_flush_tlb_guest(vcpu); 10411 10412 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10413 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10414 r = 0; 10415 goto out; 10416 } 10417 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10418 if (is_guest_mode(vcpu)) 10419 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10420 10421 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10422 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10423 vcpu->mmio_needed = 0; 10424 r = 0; 10425 goto out; 10426 } 10427 } 10428 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10429 /* Page is swapped out. Do synthetic halt */ 10430 vcpu->arch.apf.halted = true; 10431 r = 1; 10432 goto out; 10433 } 10434 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10435 record_steal_time(vcpu); 10436 #ifdef CONFIG_KVM_SMM 10437 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10438 process_smi(vcpu); 10439 #endif 10440 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10441 process_nmi(vcpu); 10442 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10443 kvm_pmu_handle_event(vcpu); 10444 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10445 kvm_pmu_deliver_pmi(vcpu); 10446 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10447 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10448 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10449 vcpu->arch.ioapic_handled_vectors)) { 10450 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10451 vcpu->run->eoi.vector = 10452 vcpu->arch.pending_ioapic_eoi; 10453 r = 0; 10454 goto out; 10455 } 10456 } 10457 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10458 vcpu_scan_ioapic(vcpu); 10459 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10460 vcpu_load_eoi_exitmap(vcpu); 10461 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10462 kvm_vcpu_reload_apic_access_page(vcpu); 10463 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10464 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10465 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10466 vcpu->run->system_event.ndata = 0; 10467 r = 0; 10468 goto out; 10469 } 10470 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10471 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10472 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10473 vcpu->run->system_event.ndata = 0; 10474 r = 0; 10475 goto out; 10476 } 10477 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10478 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10479 10480 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10481 vcpu->run->hyperv = hv_vcpu->exit; 10482 r = 0; 10483 goto out; 10484 } 10485 10486 /* 10487 * KVM_REQ_HV_STIMER has to be processed after 10488 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10489 * depend on the guest clock being up-to-date 10490 */ 10491 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10492 kvm_hv_process_stimers(vcpu); 10493 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10494 kvm_vcpu_update_apicv(vcpu); 10495 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10496 kvm_check_async_pf_completion(vcpu); 10497 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10498 static_call(kvm_x86_msr_filter_changed)(vcpu); 10499 10500 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10501 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10502 } 10503 10504 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10505 kvm_xen_has_interrupt(vcpu)) { 10506 ++vcpu->stat.req_event; 10507 r = kvm_apic_accept_events(vcpu); 10508 if (r < 0) { 10509 r = 0; 10510 goto out; 10511 } 10512 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10513 r = 1; 10514 goto out; 10515 } 10516 10517 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10518 if (r < 0) { 10519 r = 0; 10520 goto out; 10521 } 10522 if (req_int_win) 10523 static_call(kvm_x86_enable_irq_window)(vcpu); 10524 10525 if (kvm_lapic_enabled(vcpu)) { 10526 update_cr8_intercept(vcpu); 10527 kvm_lapic_sync_to_vapic(vcpu); 10528 } 10529 } 10530 10531 r = kvm_mmu_reload(vcpu); 10532 if (unlikely(r)) { 10533 goto cancel_injection; 10534 } 10535 10536 preempt_disable(); 10537 10538 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10539 10540 /* 10541 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10542 * IPI are then delayed after guest entry, which ensures that they 10543 * result in virtual interrupt delivery. 10544 */ 10545 local_irq_disable(); 10546 10547 /* Store vcpu->apicv_active before vcpu->mode. */ 10548 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10549 10550 kvm_vcpu_srcu_read_unlock(vcpu); 10551 10552 /* 10553 * 1) We should set ->mode before checking ->requests. Please see 10554 * the comment in kvm_vcpu_exiting_guest_mode(). 10555 * 10556 * 2) For APICv, we should set ->mode before checking PID.ON. This 10557 * pairs with the memory barrier implicit in pi_test_and_set_on 10558 * (see vmx_deliver_posted_interrupt). 10559 * 10560 * 3) This also orders the write to mode from any reads to the page 10561 * tables done while the VCPU is running. Please see the comment 10562 * in kvm_flush_remote_tlbs. 10563 */ 10564 smp_mb__after_srcu_read_unlock(); 10565 10566 /* 10567 * Process pending posted interrupts to handle the case where the 10568 * notification IRQ arrived in the host, or was never sent (because the 10569 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10570 * status, KVM doesn't update assigned devices when APICv is inhibited, 10571 * i.e. they can post interrupts even if APICv is temporarily disabled. 10572 */ 10573 if (kvm_lapic_enabled(vcpu)) 10574 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10575 10576 if (kvm_vcpu_exit_request(vcpu)) { 10577 vcpu->mode = OUTSIDE_GUEST_MODE; 10578 smp_wmb(); 10579 local_irq_enable(); 10580 preempt_enable(); 10581 kvm_vcpu_srcu_read_lock(vcpu); 10582 r = 1; 10583 goto cancel_injection; 10584 } 10585 10586 if (req_immediate_exit) { 10587 kvm_make_request(KVM_REQ_EVENT, vcpu); 10588 static_call(kvm_x86_request_immediate_exit)(vcpu); 10589 } 10590 10591 fpregs_assert_state_consistent(); 10592 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10593 switch_fpu_return(); 10594 10595 if (vcpu->arch.guest_fpu.xfd_err) 10596 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10597 10598 if (unlikely(vcpu->arch.switch_db_regs)) { 10599 set_debugreg(0, 7); 10600 set_debugreg(vcpu->arch.eff_db[0], 0); 10601 set_debugreg(vcpu->arch.eff_db[1], 1); 10602 set_debugreg(vcpu->arch.eff_db[2], 2); 10603 set_debugreg(vcpu->arch.eff_db[3], 3); 10604 } else if (unlikely(hw_breakpoint_active())) { 10605 set_debugreg(0, 7); 10606 } 10607 10608 guest_timing_enter_irqoff(); 10609 10610 for (;;) { 10611 /* 10612 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10613 * update must kick and wait for all vCPUs before toggling the 10614 * per-VM state, and responsing vCPUs must wait for the update 10615 * to complete before servicing KVM_REQ_APICV_UPDATE. 10616 */ 10617 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10618 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10619 10620 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10621 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10622 break; 10623 10624 if (kvm_lapic_enabled(vcpu)) 10625 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10626 10627 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10628 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10629 break; 10630 } 10631 } 10632 10633 /* 10634 * Do this here before restoring debug registers on the host. And 10635 * since we do this before handling the vmexit, a DR access vmexit 10636 * can (a) read the correct value of the debug registers, (b) set 10637 * KVM_DEBUGREG_WONT_EXIT again. 10638 */ 10639 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10640 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10641 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10642 kvm_update_dr0123(vcpu); 10643 kvm_update_dr7(vcpu); 10644 } 10645 10646 /* 10647 * If the guest has used debug registers, at least dr7 10648 * will be disabled while returning to the host. 10649 * If we don't have active breakpoints in the host, we don't 10650 * care about the messed up debug address registers. But if 10651 * we have some of them active, restore the old state. 10652 */ 10653 if (hw_breakpoint_active()) 10654 hw_breakpoint_restore(); 10655 10656 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10657 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10658 10659 vcpu->mode = OUTSIDE_GUEST_MODE; 10660 smp_wmb(); 10661 10662 /* 10663 * Sync xfd before calling handle_exit_irqoff() which may 10664 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10665 * in #NM irqoff handler). 10666 */ 10667 if (vcpu->arch.xfd_no_write_intercept) 10668 fpu_sync_guest_vmexit_xfd_state(); 10669 10670 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10671 10672 if (vcpu->arch.guest_fpu.xfd_err) 10673 wrmsrl(MSR_IA32_XFD_ERR, 0); 10674 10675 /* 10676 * Consume any pending interrupts, including the possible source of 10677 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10678 * An instruction is required after local_irq_enable() to fully unblock 10679 * interrupts on processors that implement an interrupt shadow, the 10680 * stat.exits increment will do nicely. 10681 */ 10682 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10683 local_irq_enable(); 10684 ++vcpu->stat.exits; 10685 local_irq_disable(); 10686 kvm_after_interrupt(vcpu); 10687 10688 /* 10689 * Wait until after servicing IRQs to account guest time so that any 10690 * ticks that occurred while running the guest are properly accounted 10691 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10692 * of accounting via context tracking, but the loss of accuracy is 10693 * acceptable for all known use cases. 10694 */ 10695 guest_timing_exit_irqoff(); 10696 10697 local_irq_enable(); 10698 preempt_enable(); 10699 10700 kvm_vcpu_srcu_read_lock(vcpu); 10701 10702 /* 10703 * Profile KVM exit RIPs: 10704 */ 10705 if (unlikely(prof_on == KVM_PROFILING)) { 10706 unsigned long rip = kvm_rip_read(vcpu); 10707 profile_hit(KVM_PROFILING, (void *)rip); 10708 } 10709 10710 if (unlikely(vcpu->arch.tsc_always_catchup)) 10711 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10712 10713 if (vcpu->arch.apic_attention) 10714 kvm_lapic_sync_from_vapic(vcpu); 10715 10716 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10717 return r; 10718 10719 cancel_injection: 10720 if (req_immediate_exit) 10721 kvm_make_request(KVM_REQ_EVENT, vcpu); 10722 static_call(kvm_x86_cancel_injection)(vcpu); 10723 if (unlikely(vcpu->arch.apic_attention)) 10724 kvm_lapic_sync_from_vapic(vcpu); 10725 out: 10726 return r; 10727 } 10728 10729 /* Called within kvm->srcu read side. */ 10730 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10731 { 10732 bool hv_timer; 10733 10734 if (!kvm_arch_vcpu_runnable(vcpu)) { 10735 /* 10736 * Switch to the software timer before halt-polling/blocking as 10737 * the guest's timer may be a break event for the vCPU, and the 10738 * hypervisor timer runs only when the CPU is in guest mode. 10739 * Switch before halt-polling so that KVM recognizes an expired 10740 * timer before blocking. 10741 */ 10742 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10743 if (hv_timer) 10744 kvm_lapic_switch_to_sw_timer(vcpu); 10745 10746 kvm_vcpu_srcu_read_unlock(vcpu); 10747 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10748 kvm_vcpu_halt(vcpu); 10749 else 10750 kvm_vcpu_block(vcpu); 10751 kvm_vcpu_srcu_read_lock(vcpu); 10752 10753 if (hv_timer) 10754 kvm_lapic_switch_to_hv_timer(vcpu); 10755 10756 /* 10757 * If the vCPU is not runnable, a signal or another host event 10758 * of some kind is pending; service it without changing the 10759 * vCPU's activity state. 10760 */ 10761 if (!kvm_arch_vcpu_runnable(vcpu)) 10762 return 1; 10763 } 10764 10765 /* 10766 * Evaluate nested events before exiting the halted state. This allows 10767 * the halt state to be recorded properly in the VMCS12's activity 10768 * state field (AMD does not have a similar field and a VM-Exit always 10769 * causes a spurious wakeup from HLT). 10770 */ 10771 if (is_guest_mode(vcpu)) { 10772 if (kvm_check_nested_events(vcpu) < 0) 10773 return 0; 10774 } 10775 10776 if (kvm_apic_accept_events(vcpu) < 0) 10777 return 0; 10778 switch(vcpu->arch.mp_state) { 10779 case KVM_MP_STATE_HALTED: 10780 case KVM_MP_STATE_AP_RESET_HOLD: 10781 vcpu->arch.pv.pv_unhalted = false; 10782 vcpu->arch.mp_state = 10783 KVM_MP_STATE_RUNNABLE; 10784 fallthrough; 10785 case KVM_MP_STATE_RUNNABLE: 10786 vcpu->arch.apf.halted = false; 10787 break; 10788 case KVM_MP_STATE_INIT_RECEIVED: 10789 break; 10790 default: 10791 WARN_ON_ONCE(1); 10792 break; 10793 } 10794 return 1; 10795 } 10796 10797 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10798 { 10799 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10800 !vcpu->arch.apf.halted); 10801 } 10802 10803 /* Called within kvm->srcu read side. */ 10804 static int vcpu_run(struct kvm_vcpu *vcpu) 10805 { 10806 int r; 10807 10808 vcpu->arch.l1tf_flush_l1d = true; 10809 10810 for (;;) { 10811 /* 10812 * If another guest vCPU requests a PV TLB flush in the middle 10813 * of instruction emulation, the rest of the emulation could 10814 * use a stale page translation. Assume that any code after 10815 * this point can start executing an instruction. 10816 */ 10817 vcpu->arch.at_instruction_boundary = false; 10818 if (kvm_vcpu_running(vcpu)) { 10819 r = vcpu_enter_guest(vcpu); 10820 } else { 10821 r = vcpu_block(vcpu); 10822 } 10823 10824 if (r <= 0) 10825 break; 10826 10827 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10828 if (kvm_xen_has_pending_events(vcpu)) 10829 kvm_xen_inject_pending_events(vcpu); 10830 10831 if (kvm_cpu_has_pending_timer(vcpu)) 10832 kvm_inject_pending_timer_irqs(vcpu); 10833 10834 if (dm_request_for_irq_injection(vcpu) && 10835 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10836 r = 0; 10837 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10838 ++vcpu->stat.request_irq_exits; 10839 break; 10840 } 10841 10842 if (__xfer_to_guest_mode_work_pending()) { 10843 kvm_vcpu_srcu_read_unlock(vcpu); 10844 r = xfer_to_guest_mode_handle_work(vcpu); 10845 kvm_vcpu_srcu_read_lock(vcpu); 10846 if (r) 10847 return r; 10848 } 10849 } 10850 10851 return r; 10852 } 10853 10854 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10855 { 10856 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10857 } 10858 10859 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10860 { 10861 BUG_ON(!vcpu->arch.pio.count); 10862 10863 return complete_emulated_io(vcpu); 10864 } 10865 10866 /* 10867 * Implements the following, as a state machine: 10868 * 10869 * read: 10870 * for each fragment 10871 * for each mmio piece in the fragment 10872 * write gpa, len 10873 * exit 10874 * copy data 10875 * execute insn 10876 * 10877 * write: 10878 * for each fragment 10879 * for each mmio piece in the fragment 10880 * write gpa, len 10881 * copy data 10882 * exit 10883 */ 10884 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10885 { 10886 struct kvm_run *run = vcpu->run; 10887 struct kvm_mmio_fragment *frag; 10888 unsigned len; 10889 10890 BUG_ON(!vcpu->mmio_needed); 10891 10892 /* Complete previous fragment */ 10893 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10894 len = min(8u, frag->len); 10895 if (!vcpu->mmio_is_write) 10896 memcpy(frag->data, run->mmio.data, len); 10897 10898 if (frag->len <= 8) { 10899 /* Switch to the next fragment. */ 10900 frag++; 10901 vcpu->mmio_cur_fragment++; 10902 } else { 10903 /* Go forward to the next mmio piece. */ 10904 frag->data += len; 10905 frag->gpa += len; 10906 frag->len -= len; 10907 } 10908 10909 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10910 vcpu->mmio_needed = 0; 10911 10912 /* FIXME: return into emulator if single-stepping. */ 10913 if (vcpu->mmio_is_write) 10914 return 1; 10915 vcpu->mmio_read_completed = 1; 10916 return complete_emulated_io(vcpu); 10917 } 10918 10919 run->exit_reason = KVM_EXIT_MMIO; 10920 run->mmio.phys_addr = frag->gpa; 10921 if (vcpu->mmio_is_write) 10922 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10923 run->mmio.len = min(8u, frag->len); 10924 run->mmio.is_write = vcpu->mmio_is_write; 10925 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10926 return 0; 10927 } 10928 10929 /* Swap (qemu) user FPU context for the guest FPU context. */ 10930 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10931 { 10932 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10933 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10934 trace_kvm_fpu(1); 10935 } 10936 10937 /* When vcpu_run ends, restore user space FPU context. */ 10938 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10939 { 10940 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10941 ++vcpu->stat.fpu_reload; 10942 trace_kvm_fpu(0); 10943 } 10944 10945 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10946 { 10947 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10948 struct kvm_run *kvm_run = vcpu->run; 10949 int r; 10950 10951 vcpu_load(vcpu); 10952 kvm_sigset_activate(vcpu); 10953 kvm_run->flags = 0; 10954 kvm_load_guest_fpu(vcpu); 10955 10956 kvm_vcpu_srcu_read_lock(vcpu); 10957 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10958 if (kvm_run->immediate_exit) { 10959 r = -EINTR; 10960 goto out; 10961 } 10962 /* 10963 * It should be impossible for the hypervisor timer to be in 10964 * use before KVM has ever run the vCPU. 10965 */ 10966 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10967 10968 kvm_vcpu_srcu_read_unlock(vcpu); 10969 kvm_vcpu_block(vcpu); 10970 kvm_vcpu_srcu_read_lock(vcpu); 10971 10972 if (kvm_apic_accept_events(vcpu) < 0) { 10973 r = 0; 10974 goto out; 10975 } 10976 r = -EAGAIN; 10977 if (signal_pending(current)) { 10978 r = -EINTR; 10979 kvm_run->exit_reason = KVM_EXIT_INTR; 10980 ++vcpu->stat.signal_exits; 10981 } 10982 goto out; 10983 } 10984 10985 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10986 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10987 r = -EINVAL; 10988 goto out; 10989 } 10990 10991 if (kvm_run->kvm_dirty_regs) { 10992 r = sync_regs(vcpu); 10993 if (r != 0) 10994 goto out; 10995 } 10996 10997 /* re-sync apic's tpr */ 10998 if (!lapic_in_kernel(vcpu)) { 10999 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11000 r = -EINVAL; 11001 goto out; 11002 } 11003 } 11004 11005 /* 11006 * If userspace set a pending exception and L2 is active, convert it to 11007 * a pending VM-Exit if L1 wants to intercept the exception. 11008 */ 11009 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11010 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11011 ex->error_code)) { 11012 kvm_queue_exception_vmexit(vcpu, ex->vector, 11013 ex->has_error_code, ex->error_code, 11014 ex->has_payload, ex->payload); 11015 ex->injected = false; 11016 ex->pending = false; 11017 } 11018 vcpu->arch.exception_from_userspace = false; 11019 11020 if (unlikely(vcpu->arch.complete_userspace_io)) { 11021 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11022 vcpu->arch.complete_userspace_io = NULL; 11023 r = cui(vcpu); 11024 if (r <= 0) 11025 goto out; 11026 } else { 11027 WARN_ON_ONCE(vcpu->arch.pio.count); 11028 WARN_ON_ONCE(vcpu->mmio_needed); 11029 } 11030 11031 if (kvm_run->immediate_exit) { 11032 r = -EINTR; 11033 goto out; 11034 } 11035 11036 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11037 if (r <= 0) 11038 goto out; 11039 11040 r = vcpu_run(vcpu); 11041 11042 out: 11043 kvm_put_guest_fpu(vcpu); 11044 if (kvm_run->kvm_valid_regs) 11045 store_regs(vcpu); 11046 post_kvm_run_save(vcpu); 11047 kvm_vcpu_srcu_read_unlock(vcpu); 11048 11049 kvm_sigset_deactivate(vcpu); 11050 vcpu_put(vcpu); 11051 return r; 11052 } 11053 11054 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11055 { 11056 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11057 /* 11058 * We are here if userspace calls get_regs() in the middle of 11059 * instruction emulation. Registers state needs to be copied 11060 * back from emulation context to vcpu. Userspace shouldn't do 11061 * that usually, but some bad designed PV devices (vmware 11062 * backdoor interface) need this to work 11063 */ 11064 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11065 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11066 } 11067 regs->rax = kvm_rax_read(vcpu); 11068 regs->rbx = kvm_rbx_read(vcpu); 11069 regs->rcx = kvm_rcx_read(vcpu); 11070 regs->rdx = kvm_rdx_read(vcpu); 11071 regs->rsi = kvm_rsi_read(vcpu); 11072 regs->rdi = kvm_rdi_read(vcpu); 11073 regs->rsp = kvm_rsp_read(vcpu); 11074 regs->rbp = kvm_rbp_read(vcpu); 11075 #ifdef CONFIG_X86_64 11076 regs->r8 = kvm_r8_read(vcpu); 11077 regs->r9 = kvm_r9_read(vcpu); 11078 regs->r10 = kvm_r10_read(vcpu); 11079 regs->r11 = kvm_r11_read(vcpu); 11080 regs->r12 = kvm_r12_read(vcpu); 11081 regs->r13 = kvm_r13_read(vcpu); 11082 regs->r14 = kvm_r14_read(vcpu); 11083 regs->r15 = kvm_r15_read(vcpu); 11084 #endif 11085 11086 regs->rip = kvm_rip_read(vcpu); 11087 regs->rflags = kvm_get_rflags(vcpu); 11088 } 11089 11090 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11091 { 11092 vcpu_load(vcpu); 11093 __get_regs(vcpu, regs); 11094 vcpu_put(vcpu); 11095 return 0; 11096 } 11097 11098 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11099 { 11100 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11101 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11102 11103 kvm_rax_write(vcpu, regs->rax); 11104 kvm_rbx_write(vcpu, regs->rbx); 11105 kvm_rcx_write(vcpu, regs->rcx); 11106 kvm_rdx_write(vcpu, regs->rdx); 11107 kvm_rsi_write(vcpu, regs->rsi); 11108 kvm_rdi_write(vcpu, regs->rdi); 11109 kvm_rsp_write(vcpu, regs->rsp); 11110 kvm_rbp_write(vcpu, regs->rbp); 11111 #ifdef CONFIG_X86_64 11112 kvm_r8_write(vcpu, regs->r8); 11113 kvm_r9_write(vcpu, regs->r9); 11114 kvm_r10_write(vcpu, regs->r10); 11115 kvm_r11_write(vcpu, regs->r11); 11116 kvm_r12_write(vcpu, regs->r12); 11117 kvm_r13_write(vcpu, regs->r13); 11118 kvm_r14_write(vcpu, regs->r14); 11119 kvm_r15_write(vcpu, regs->r15); 11120 #endif 11121 11122 kvm_rip_write(vcpu, regs->rip); 11123 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11124 11125 vcpu->arch.exception.pending = false; 11126 vcpu->arch.exception_vmexit.pending = false; 11127 11128 kvm_make_request(KVM_REQ_EVENT, vcpu); 11129 } 11130 11131 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11132 { 11133 vcpu_load(vcpu); 11134 __set_regs(vcpu, regs); 11135 vcpu_put(vcpu); 11136 return 0; 11137 } 11138 11139 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11140 { 11141 struct desc_ptr dt; 11142 11143 if (vcpu->arch.guest_state_protected) 11144 goto skip_protected_regs; 11145 11146 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11147 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11148 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11149 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11150 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11151 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11152 11153 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11154 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11155 11156 static_call(kvm_x86_get_idt)(vcpu, &dt); 11157 sregs->idt.limit = dt.size; 11158 sregs->idt.base = dt.address; 11159 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11160 sregs->gdt.limit = dt.size; 11161 sregs->gdt.base = dt.address; 11162 11163 sregs->cr2 = vcpu->arch.cr2; 11164 sregs->cr3 = kvm_read_cr3(vcpu); 11165 11166 skip_protected_regs: 11167 sregs->cr0 = kvm_read_cr0(vcpu); 11168 sregs->cr4 = kvm_read_cr4(vcpu); 11169 sregs->cr8 = kvm_get_cr8(vcpu); 11170 sregs->efer = vcpu->arch.efer; 11171 sregs->apic_base = kvm_get_apic_base(vcpu); 11172 } 11173 11174 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11175 { 11176 __get_sregs_common(vcpu, sregs); 11177 11178 if (vcpu->arch.guest_state_protected) 11179 return; 11180 11181 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11182 set_bit(vcpu->arch.interrupt.nr, 11183 (unsigned long *)sregs->interrupt_bitmap); 11184 } 11185 11186 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11187 { 11188 int i; 11189 11190 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11191 11192 if (vcpu->arch.guest_state_protected) 11193 return; 11194 11195 if (is_pae_paging(vcpu)) { 11196 for (i = 0 ; i < 4 ; i++) 11197 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11198 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11199 } 11200 } 11201 11202 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11203 struct kvm_sregs *sregs) 11204 { 11205 vcpu_load(vcpu); 11206 __get_sregs(vcpu, sregs); 11207 vcpu_put(vcpu); 11208 return 0; 11209 } 11210 11211 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11212 struct kvm_mp_state *mp_state) 11213 { 11214 int r; 11215 11216 vcpu_load(vcpu); 11217 if (kvm_mpx_supported()) 11218 kvm_load_guest_fpu(vcpu); 11219 11220 r = kvm_apic_accept_events(vcpu); 11221 if (r < 0) 11222 goto out; 11223 r = 0; 11224 11225 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11226 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11227 vcpu->arch.pv.pv_unhalted) 11228 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11229 else 11230 mp_state->mp_state = vcpu->arch.mp_state; 11231 11232 out: 11233 if (kvm_mpx_supported()) 11234 kvm_put_guest_fpu(vcpu); 11235 vcpu_put(vcpu); 11236 return r; 11237 } 11238 11239 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11240 struct kvm_mp_state *mp_state) 11241 { 11242 int ret = -EINVAL; 11243 11244 vcpu_load(vcpu); 11245 11246 switch (mp_state->mp_state) { 11247 case KVM_MP_STATE_UNINITIALIZED: 11248 case KVM_MP_STATE_HALTED: 11249 case KVM_MP_STATE_AP_RESET_HOLD: 11250 case KVM_MP_STATE_INIT_RECEIVED: 11251 case KVM_MP_STATE_SIPI_RECEIVED: 11252 if (!lapic_in_kernel(vcpu)) 11253 goto out; 11254 break; 11255 11256 case KVM_MP_STATE_RUNNABLE: 11257 break; 11258 11259 default: 11260 goto out; 11261 } 11262 11263 /* 11264 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11265 * forcing the guest into INIT/SIPI if those events are supposed to be 11266 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11267 * if an SMI is pending as well. 11268 */ 11269 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11270 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11271 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11272 goto out; 11273 11274 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11275 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11276 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11277 } else 11278 vcpu->arch.mp_state = mp_state->mp_state; 11279 kvm_make_request(KVM_REQ_EVENT, vcpu); 11280 11281 ret = 0; 11282 out: 11283 vcpu_put(vcpu); 11284 return ret; 11285 } 11286 11287 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11288 int reason, bool has_error_code, u32 error_code) 11289 { 11290 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11291 int ret; 11292 11293 init_emulate_ctxt(vcpu); 11294 11295 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11296 has_error_code, error_code); 11297 if (ret) { 11298 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11299 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11300 vcpu->run->internal.ndata = 0; 11301 return 0; 11302 } 11303 11304 kvm_rip_write(vcpu, ctxt->eip); 11305 kvm_set_rflags(vcpu, ctxt->eflags); 11306 return 1; 11307 } 11308 EXPORT_SYMBOL_GPL(kvm_task_switch); 11309 11310 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11311 { 11312 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11313 /* 11314 * When EFER.LME and CR0.PG are set, the processor is in 11315 * 64-bit mode (though maybe in a 32-bit code segment). 11316 * CR4.PAE and EFER.LMA must be set. 11317 */ 11318 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11319 return false; 11320 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11321 return false; 11322 } else { 11323 /* 11324 * Not in 64-bit mode: EFER.LMA is clear and the code 11325 * segment cannot be 64-bit. 11326 */ 11327 if (sregs->efer & EFER_LMA || sregs->cs.l) 11328 return false; 11329 } 11330 11331 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11332 } 11333 11334 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11335 int *mmu_reset_needed, bool update_pdptrs) 11336 { 11337 struct msr_data apic_base_msr; 11338 int idx; 11339 struct desc_ptr dt; 11340 11341 if (!kvm_is_valid_sregs(vcpu, sregs)) 11342 return -EINVAL; 11343 11344 apic_base_msr.data = sregs->apic_base; 11345 apic_base_msr.host_initiated = true; 11346 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11347 return -EINVAL; 11348 11349 if (vcpu->arch.guest_state_protected) 11350 return 0; 11351 11352 dt.size = sregs->idt.limit; 11353 dt.address = sregs->idt.base; 11354 static_call(kvm_x86_set_idt)(vcpu, &dt); 11355 dt.size = sregs->gdt.limit; 11356 dt.address = sregs->gdt.base; 11357 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11358 11359 vcpu->arch.cr2 = sregs->cr2; 11360 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11361 vcpu->arch.cr3 = sregs->cr3; 11362 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11363 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11364 11365 kvm_set_cr8(vcpu, sregs->cr8); 11366 11367 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11368 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11369 11370 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11371 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11372 vcpu->arch.cr0 = sregs->cr0; 11373 11374 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11375 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11376 11377 if (update_pdptrs) { 11378 idx = srcu_read_lock(&vcpu->kvm->srcu); 11379 if (is_pae_paging(vcpu)) { 11380 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11381 *mmu_reset_needed = 1; 11382 } 11383 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11384 } 11385 11386 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11387 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11388 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11389 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11390 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11391 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11392 11393 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11394 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11395 11396 update_cr8_intercept(vcpu); 11397 11398 /* Older userspace won't unhalt the vcpu on reset. */ 11399 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11400 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11401 !is_protmode(vcpu)) 11402 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11403 11404 return 0; 11405 } 11406 11407 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11408 { 11409 int pending_vec, max_bits; 11410 int mmu_reset_needed = 0; 11411 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11412 11413 if (ret) 11414 return ret; 11415 11416 if (mmu_reset_needed) 11417 kvm_mmu_reset_context(vcpu); 11418 11419 max_bits = KVM_NR_INTERRUPTS; 11420 pending_vec = find_first_bit( 11421 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11422 11423 if (pending_vec < max_bits) { 11424 kvm_queue_interrupt(vcpu, pending_vec, false); 11425 pr_debug("Set back pending irq %d\n", pending_vec); 11426 kvm_make_request(KVM_REQ_EVENT, vcpu); 11427 } 11428 return 0; 11429 } 11430 11431 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11432 { 11433 int mmu_reset_needed = 0; 11434 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11435 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11436 !(sregs2->efer & EFER_LMA); 11437 int i, ret; 11438 11439 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11440 return -EINVAL; 11441 11442 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11443 return -EINVAL; 11444 11445 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11446 &mmu_reset_needed, !valid_pdptrs); 11447 if (ret) 11448 return ret; 11449 11450 if (valid_pdptrs) { 11451 for (i = 0; i < 4 ; i++) 11452 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11453 11454 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11455 mmu_reset_needed = 1; 11456 vcpu->arch.pdptrs_from_userspace = true; 11457 } 11458 if (mmu_reset_needed) 11459 kvm_mmu_reset_context(vcpu); 11460 return 0; 11461 } 11462 11463 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11464 struct kvm_sregs *sregs) 11465 { 11466 int ret; 11467 11468 vcpu_load(vcpu); 11469 ret = __set_sregs(vcpu, sregs); 11470 vcpu_put(vcpu); 11471 return ret; 11472 } 11473 11474 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11475 { 11476 bool set = false; 11477 struct kvm_vcpu *vcpu; 11478 unsigned long i; 11479 11480 if (!enable_apicv) 11481 return; 11482 11483 down_write(&kvm->arch.apicv_update_lock); 11484 11485 kvm_for_each_vcpu(i, vcpu, kvm) { 11486 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11487 set = true; 11488 break; 11489 } 11490 } 11491 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11492 up_write(&kvm->arch.apicv_update_lock); 11493 } 11494 11495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11496 struct kvm_guest_debug *dbg) 11497 { 11498 unsigned long rflags; 11499 int i, r; 11500 11501 if (vcpu->arch.guest_state_protected) 11502 return -EINVAL; 11503 11504 vcpu_load(vcpu); 11505 11506 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11507 r = -EBUSY; 11508 if (kvm_is_exception_pending(vcpu)) 11509 goto out; 11510 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11511 kvm_queue_exception(vcpu, DB_VECTOR); 11512 else 11513 kvm_queue_exception(vcpu, BP_VECTOR); 11514 } 11515 11516 /* 11517 * Read rflags as long as potentially injected trace flags are still 11518 * filtered out. 11519 */ 11520 rflags = kvm_get_rflags(vcpu); 11521 11522 vcpu->guest_debug = dbg->control; 11523 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11524 vcpu->guest_debug = 0; 11525 11526 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11527 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11528 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11529 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11530 } else { 11531 for (i = 0; i < KVM_NR_DB_REGS; i++) 11532 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11533 } 11534 kvm_update_dr7(vcpu); 11535 11536 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11537 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11538 11539 /* 11540 * Trigger an rflags update that will inject or remove the trace 11541 * flags. 11542 */ 11543 kvm_set_rflags(vcpu, rflags); 11544 11545 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11546 11547 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11548 11549 r = 0; 11550 11551 out: 11552 vcpu_put(vcpu); 11553 return r; 11554 } 11555 11556 /* 11557 * Translate a guest virtual address to a guest physical address. 11558 */ 11559 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11560 struct kvm_translation *tr) 11561 { 11562 unsigned long vaddr = tr->linear_address; 11563 gpa_t gpa; 11564 int idx; 11565 11566 vcpu_load(vcpu); 11567 11568 idx = srcu_read_lock(&vcpu->kvm->srcu); 11569 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11570 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11571 tr->physical_address = gpa; 11572 tr->valid = gpa != INVALID_GPA; 11573 tr->writeable = 1; 11574 tr->usermode = 0; 11575 11576 vcpu_put(vcpu); 11577 return 0; 11578 } 11579 11580 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11581 { 11582 struct fxregs_state *fxsave; 11583 11584 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11585 return 0; 11586 11587 vcpu_load(vcpu); 11588 11589 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11590 memcpy(fpu->fpr, fxsave->st_space, 128); 11591 fpu->fcw = fxsave->cwd; 11592 fpu->fsw = fxsave->swd; 11593 fpu->ftwx = fxsave->twd; 11594 fpu->last_opcode = fxsave->fop; 11595 fpu->last_ip = fxsave->rip; 11596 fpu->last_dp = fxsave->rdp; 11597 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11598 11599 vcpu_put(vcpu); 11600 return 0; 11601 } 11602 11603 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11604 { 11605 struct fxregs_state *fxsave; 11606 11607 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11608 return 0; 11609 11610 vcpu_load(vcpu); 11611 11612 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11613 11614 memcpy(fxsave->st_space, fpu->fpr, 128); 11615 fxsave->cwd = fpu->fcw; 11616 fxsave->swd = fpu->fsw; 11617 fxsave->twd = fpu->ftwx; 11618 fxsave->fop = fpu->last_opcode; 11619 fxsave->rip = fpu->last_ip; 11620 fxsave->rdp = fpu->last_dp; 11621 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11622 11623 vcpu_put(vcpu); 11624 return 0; 11625 } 11626 11627 static void store_regs(struct kvm_vcpu *vcpu) 11628 { 11629 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11630 11631 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11632 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11633 11634 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11635 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11636 11637 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11638 kvm_vcpu_ioctl_x86_get_vcpu_events( 11639 vcpu, &vcpu->run->s.regs.events); 11640 } 11641 11642 static int sync_regs(struct kvm_vcpu *vcpu) 11643 { 11644 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11645 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11646 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11647 } 11648 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11649 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11650 return -EINVAL; 11651 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11652 } 11653 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11654 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11655 vcpu, &vcpu->run->s.regs.events)) 11656 return -EINVAL; 11657 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11658 } 11659 11660 return 0; 11661 } 11662 11663 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11664 { 11665 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11666 pr_warn_once("SMP vm created on host with unstable TSC; " 11667 "guest TSC will not be reliable\n"); 11668 11669 if (!kvm->arch.max_vcpu_ids) 11670 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11671 11672 if (id >= kvm->arch.max_vcpu_ids) 11673 return -EINVAL; 11674 11675 return static_call(kvm_x86_vcpu_precreate)(kvm); 11676 } 11677 11678 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11679 { 11680 struct page *page; 11681 int r; 11682 11683 vcpu->arch.last_vmentry_cpu = -1; 11684 vcpu->arch.regs_avail = ~0; 11685 vcpu->arch.regs_dirty = ~0; 11686 11687 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11688 11689 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11690 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11691 else 11692 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11693 11694 r = kvm_mmu_create(vcpu); 11695 if (r < 0) 11696 return r; 11697 11698 if (irqchip_in_kernel(vcpu->kvm)) { 11699 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11700 if (r < 0) 11701 goto fail_mmu_destroy; 11702 11703 /* 11704 * Defer evaluating inhibits until the vCPU is first run, as 11705 * this vCPU will not get notified of any changes until this 11706 * vCPU is visible to other vCPUs (marked online and added to 11707 * the set of vCPUs). Opportunistically mark APICv active as 11708 * VMX in particularly is highly unlikely to have inhibits. 11709 * Ignore the current per-VM APICv state so that vCPU creation 11710 * is guaranteed to run with a deterministic value, the request 11711 * will ensure the vCPU gets the correct state before VM-Entry. 11712 */ 11713 if (enable_apicv) { 11714 vcpu->arch.apic->apicv_active = true; 11715 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11716 } 11717 } else 11718 static_branch_inc(&kvm_has_noapic_vcpu); 11719 11720 r = -ENOMEM; 11721 11722 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11723 if (!page) 11724 goto fail_free_lapic; 11725 vcpu->arch.pio_data = page_address(page); 11726 11727 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11728 GFP_KERNEL_ACCOUNT); 11729 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11730 GFP_KERNEL_ACCOUNT); 11731 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11732 goto fail_free_mce_banks; 11733 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11734 11735 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11736 GFP_KERNEL_ACCOUNT)) 11737 goto fail_free_mce_banks; 11738 11739 if (!alloc_emulate_ctxt(vcpu)) 11740 goto free_wbinvd_dirty_mask; 11741 11742 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11743 pr_err("failed to allocate vcpu's fpu\n"); 11744 goto free_emulate_ctxt; 11745 } 11746 11747 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11748 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11749 11750 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11751 11752 kvm_async_pf_hash_reset(vcpu); 11753 11754 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11755 kvm_pmu_init(vcpu); 11756 11757 vcpu->arch.pending_external_vector = -1; 11758 vcpu->arch.preempted_in_kernel = false; 11759 11760 #if IS_ENABLED(CONFIG_HYPERV) 11761 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11762 #endif 11763 11764 r = static_call(kvm_x86_vcpu_create)(vcpu); 11765 if (r) 11766 goto free_guest_fpu; 11767 11768 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11769 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11770 kvm_xen_init_vcpu(vcpu); 11771 kvm_vcpu_mtrr_init(vcpu); 11772 vcpu_load(vcpu); 11773 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11774 kvm_vcpu_reset(vcpu, false); 11775 kvm_init_mmu(vcpu); 11776 vcpu_put(vcpu); 11777 return 0; 11778 11779 free_guest_fpu: 11780 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11781 free_emulate_ctxt: 11782 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11783 free_wbinvd_dirty_mask: 11784 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11785 fail_free_mce_banks: 11786 kfree(vcpu->arch.mce_banks); 11787 kfree(vcpu->arch.mci_ctl2_banks); 11788 free_page((unsigned long)vcpu->arch.pio_data); 11789 fail_free_lapic: 11790 kvm_free_lapic(vcpu); 11791 fail_mmu_destroy: 11792 kvm_mmu_destroy(vcpu); 11793 return r; 11794 } 11795 11796 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11797 { 11798 struct kvm *kvm = vcpu->kvm; 11799 11800 if (mutex_lock_killable(&vcpu->mutex)) 11801 return; 11802 vcpu_load(vcpu); 11803 kvm_synchronize_tsc(vcpu, 0); 11804 vcpu_put(vcpu); 11805 11806 /* poll control enabled by default */ 11807 vcpu->arch.msr_kvm_poll_control = 1; 11808 11809 mutex_unlock(&vcpu->mutex); 11810 11811 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11812 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11813 KVMCLOCK_SYNC_PERIOD); 11814 } 11815 11816 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11817 { 11818 int idx; 11819 11820 kvmclock_reset(vcpu); 11821 11822 static_call(kvm_x86_vcpu_free)(vcpu); 11823 11824 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11825 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11826 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11827 11828 kvm_xen_destroy_vcpu(vcpu); 11829 kvm_hv_vcpu_uninit(vcpu); 11830 kvm_pmu_destroy(vcpu); 11831 kfree(vcpu->arch.mce_banks); 11832 kfree(vcpu->arch.mci_ctl2_banks); 11833 kvm_free_lapic(vcpu); 11834 idx = srcu_read_lock(&vcpu->kvm->srcu); 11835 kvm_mmu_destroy(vcpu); 11836 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11837 free_page((unsigned long)vcpu->arch.pio_data); 11838 kvfree(vcpu->arch.cpuid_entries); 11839 if (!lapic_in_kernel(vcpu)) 11840 static_branch_dec(&kvm_has_noapic_vcpu); 11841 } 11842 11843 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11844 { 11845 struct kvm_cpuid_entry2 *cpuid_0x1; 11846 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11847 unsigned long new_cr0; 11848 11849 /* 11850 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11851 * to handle side effects. RESET emulation hits those flows and relies 11852 * on emulated/virtualized registers, including those that are loaded 11853 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11854 * to detect improper or missing initialization. 11855 */ 11856 WARN_ON_ONCE(!init_event && 11857 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11858 11859 /* 11860 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11861 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11862 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11863 * bits), i.e. virtualization is disabled. 11864 */ 11865 if (is_guest_mode(vcpu)) 11866 kvm_leave_nested(vcpu); 11867 11868 kvm_lapic_reset(vcpu, init_event); 11869 11870 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11871 vcpu->arch.hflags = 0; 11872 11873 vcpu->arch.smi_pending = 0; 11874 vcpu->arch.smi_count = 0; 11875 atomic_set(&vcpu->arch.nmi_queued, 0); 11876 vcpu->arch.nmi_pending = 0; 11877 vcpu->arch.nmi_injected = false; 11878 kvm_clear_interrupt_queue(vcpu); 11879 kvm_clear_exception_queue(vcpu); 11880 11881 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11882 kvm_update_dr0123(vcpu); 11883 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11884 vcpu->arch.dr7 = DR7_FIXED_1; 11885 kvm_update_dr7(vcpu); 11886 11887 vcpu->arch.cr2 = 0; 11888 11889 kvm_make_request(KVM_REQ_EVENT, vcpu); 11890 vcpu->arch.apf.msr_en_val = 0; 11891 vcpu->arch.apf.msr_int_val = 0; 11892 vcpu->arch.st.msr_val = 0; 11893 11894 kvmclock_reset(vcpu); 11895 11896 kvm_clear_async_pf_completion_queue(vcpu); 11897 kvm_async_pf_hash_reset(vcpu); 11898 vcpu->arch.apf.halted = false; 11899 11900 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11901 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11902 11903 /* 11904 * All paths that lead to INIT are required to load the guest's 11905 * FPU state (because most paths are buried in KVM_RUN). 11906 */ 11907 if (init_event) 11908 kvm_put_guest_fpu(vcpu); 11909 11910 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11911 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11912 11913 if (init_event) 11914 kvm_load_guest_fpu(vcpu); 11915 } 11916 11917 if (!init_event) { 11918 kvm_pmu_reset(vcpu); 11919 vcpu->arch.smbase = 0x30000; 11920 11921 vcpu->arch.msr_misc_features_enables = 0; 11922 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11923 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11924 11925 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11926 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11927 } 11928 11929 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11930 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11931 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11932 11933 /* 11934 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11935 * if no CPUID match is found. Note, it's impossible to get a match at 11936 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11937 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11938 * on RESET. But, go through the motions in case that's ever remedied. 11939 */ 11940 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11941 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11942 11943 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11944 11945 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11946 kvm_rip_write(vcpu, 0xfff0); 11947 11948 vcpu->arch.cr3 = 0; 11949 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11950 11951 /* 11952 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11953 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11954 * (or qualify) that with a footnote stating that CD/NW are preserved. 11955 */ 11956 new_cr0 = X86_CR0_ET; 11957 if (init_event) 11958 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11959 else 11960 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11961 11962 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11963 static_call(kvm_x86_set_cr4)(vcpu, 0); 11964 static_call(kvm_x86_set_efer)(vcpu, 0); 11965 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11966 11967 /* 11968 * On the standard CR0/CR4/EFER modification paths, there are several 11969 * complex conditions determining whether the MMU has to be reset and/or 11970 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11971 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11972 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11973 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11974 */ 11975 if (old_cr0 & X86_CR0_PG) { 11976 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11977 kvm_mmu_reset_context(vcpu); 11978 } 11979 11980 /* 11981 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11982 * APM states the TLBs are untouched by INIT, but it also states that 11983 * the TLBs are flushed on "External initialization of the processor." 11984 * Flush the guest TLB regardless of vendor, there is no meaningful 11985 * benefit in relying on the guest to flush the TLB immediately after 11986 * INIT. A spurious TLB flush is benign and likely negligible from a 11987 * performance perspective. 11988 */ 11989 if (init_event) 11990 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11991 } 11992 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11993 11994 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11995 { 11996 struct kvm_segment cs; 11997 11998 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11999 cs.selector = vector << 8; 12000 cs.base = vector << 12; 12001 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12002 kvm_rip_write(vcpu, 0); 12003 } 12004 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12005 12006 int kvm_arch_hardware_enable(void) 12007 { 12008 struct kvm *kvm; 12009 struct kvm_vcpu *vcpu; 12010 unsigned long i; 12011 int ret; 12012 u64 local_tsc; 12013 u64 max_tsc = 0; 12014 bool stable, backwards_tsc = false; 12015 12016 kvm_user_return_msr_cpu_online(); 12017 12018 ret = kvm_x86_check_processor_compatibility(); 12019 if (ret) 12020 return ret; 12021 12022 ret = static_call(kvm_x86_hardware_enable)(); 12023 if (ret != 0) 12024 return ret; 12025 12026 local_tsc = rdtsc(); 12027 stable = !kvm_check_tsc_unstable(); 12028 list_for_each_entry(kvm, &vm_list, vm_list) { 12029 kvm_for_each_vcpu(i, vcpu, kvm) { 12030 if (!stable && vcpu->cpu == smp_processor_id()) 12031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12032 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12033 backwards_tsc = true; 12034 if (vcpu->arch.last_host_tsc > max_tsc) 12035 max_tsc = vcpu->arch.last_host_tsc; 12036 } 12037 } 12038 } 12039 12040 /* 12041 * Sometimes, even reliable TSCs go backwards. This happens on 12042 * platforms that reset TSC during suspend or hibernate actions, but 12043 * maintain synchronization. We must compensate. Fortunately, we can 12044 * detect that condition here, which happens early in CPU bringup, 12045 * before any KVM threads can be running. Unfortunately, we can't 12046 * bring the TSCs fully up to date with real time, as we aren't yet far 12047 * enough into CPU bringup that we know how much real time has actually 12048 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12049 * variables that haven't been updated yet. 12050 * 12051 * So we simply find the maximum observed TSC above, then record the 12052 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12053 * the adjustment will be applied. Note that we accumulate 12054 * adjustments, in case multiple suspend cycles happen before some VCPU 12055 * gets a chance to run again. In the event that no KVM threads get a 12056 * chance to run, we will miss the entire elapsed period, as we'll have 12057 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12058 * loose cycle time. This isn't too big a deal, since the loss will be 12059 * uniform across all VCPUs (not to mention the scenario is extremely 12060 * unlikely). It is possible that a second hibernate recovery happens 12061 * much faster than a first, causing the observed TSC here to be 12062 * smaller; this would require additional padding adjustment, which is 12063 * why we set last_host_tsc to the local tsc observed here. 12064 * 12065 * N.B. - this code below runs only on platforms with reliable TSC, 12066 * as that is the only way backwards_tsc is set above. Also note 12067 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12068 * have the same delta_cyc adjustment applied if backwards_tsc 12069 * is detected. Note further, this adjustment is only done once, 12070 * as we reset last_host_tsc on all VCPUs to stop this from being 12071 * called multiple times (one for each physical CPU bringup). 12072 * 12073 * Platforms with unreliable TSCs don't have to deal with this, they 12074 * will be compensated by the logic in vcpu_load, which sets the TSC to 12075 * catchup mode. This will catchup all VCPUs to real time, but cannot 12076 * guarantee that they stay in perfect synchronization. 12077 */ 12078 if (backwards_tsc) { 12079 u64 delta_cyc = max_tsc - local_tsc; 12080 list_for_each_entry(kvm, &vm_list, vm_list) { 12081 kvm->arch.backwards_tsc_observed = true; 12082 kvm_for_each_vcpu(i, vcpu, kvm) { 12083 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12084 vcpu->arch.last_host_tsc = local_tsc; 12085 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12086 } 12087 12088 /* 12089 * We have to disable TSC offset matching.. if you were 12090 * booting a VM while issuing an S4 host suspend.... 12091 * you may have some problem. Solving this issue is 12092 * left as an exercise to the reader. 12093 */ 12094 kvm->arch.last_tsc_nsec = 0; 12095 kvm->arch.last_tsc_write = 0; 12096 } 12097 12098 } 12099 return 0; 12100 } 12101 12102 void kvm_arch_hardware_disable(void) 12103 { 12104 static_call(kvm_x86_hardware_disable)(); 12105 drop_user_return_notifiers(); 12106 } 12107 12108 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12109 { 12110 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12111 } 12112 12113 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12114 { 12115 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12116 } 12117 12118 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12119 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12120 12121 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12122 { 12123 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12124 12125 vcpu->arch.l1tf_flush_l1d = true; 12126 if (pmu->version && unlikely(pmu->event_count)) { 12127 pmu->need_cleanup = true; 12128 kvm_make_request(KVM_REQ_PMU, vcpu); 12129 } 12130 static_call(kvm_x86_sched_in)(vcpu, cpu); 12131 } 12132 12133 void kvm_arch_free_vm(struct kvm *kvm) 12134 { 12135 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12136 __kvm_arch_free_vm(kvm); 12137 } 12138 12139 12140 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12141 { 12142 int ret; 12143 unsigned long flags; 12144 12145 if (type) 12146 return -EINVAL; 12147 12148 ret = kvm_page_track_init(kvm); 12149 if (ret) 12150 goto out; 12151 12152 ret = kvm_mmu_init_vm(kvm); 12153 if (ret) 12154 goto out_page_track; 12155 12156 ret = static_call(kvm_x86_vm_init)(kvm); 12157 if (ret) 12158 goto out_uninit_mmu; 12159 12160 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12161 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12162 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12163 12164 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12165 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12166 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12167 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12168 &kvm->arch.irq_sources_bitmap); 12169 12170 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12171 mutex_init(&kvm->arch.apic_map_lock); 12172 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12173 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12174 12175 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12176 pvclock_update_vm_gtod_copy(kvm); 12177 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12178 12179 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12180 kvm->arch.guest_can_read_msr_platform_info = true; 12181 kvm->arch.enable_pmu = enable_pmu; 12182 12183 #if IS_ENABLED(CONFIG_HYPERV) 12184 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12185 kvm->arch.hv_root_tdp = INVALID_PAGE; 12186 #endif 12187 12188 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12189 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12190 12191 kvm_apicv_init(kvm); 12192 kvm_hv_init_vm(kvm); 12193 kvm_xen_init_vm(kvm); 12194 12195 return 0; 12196 12197 out_uninit_mmu: 12198 kvm_mmu_uninit_vm(kvm); 12199 out_page_track: 12200 kvm_page_track_cleanup(kvm); 12201 out: 12202 return ret; 12203 } 12204 12205 int kvm_arch_post_init_vm(struct kvm *kvm) 12206 { 12207 return kvm_mmu_post_init_vm(kvm); 12208 } 12209 12210 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12211 { 12212 vcpu_load(vcpu); 12213 kvm_mmu_unload(vcpu); 12214 vcpu_put(vcpu); 12215 } 12216 12217 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12218 { 12219 unsigned long i; 12220 struct kvm_vcpu *vcpu; 12221 12222 kvm_for_each_vcpu(i, vcpu, kvm) { 12223 kvm_clear_async_pf_completion_queue(vcpu); 12224 kvm_unload_vcpu_mmu(vcpu); 12225 } 12226 } 12227 12228 void kvm_arch_sync_events(struct kvm *kvm) 12229 { 12230 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12231 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12232 kvm_free_pit(kvm); 12233 } 12234 12235 /** 12236 * __x86_set_memory_region: Setup KVM internal memory slot 12237 * 12238 * @kvm: the kvm pointer to the VM. 12239 * @id: the slot ID to setup. 12240 * @gpa: the GPA to install the slot (unused when @size == 0). 12241 * @size: the size of the slot. Set to zero to uninstall a slot. 12242 * 12243 * This function helps to setup a KVM internal memory slot. Specify 12244 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12245 * slot. The return code can be one of the following: 12246 * 12247 * HVA: on success (uninstall will return a bogus HVA) 12248 * -errno: on error 12249 * 12250 * The caller should always use IS_ERR() to check the return value 12251 * before use. Note, the KVM internal memory slots are guaranteed to 12252 * remain valid and unchanged until the VM is destroyed, i.e., the 12253 * GPA->HVA translation will not change. However, the HVA is a user 12254 * address, i.e. its accessibility is not guaranteed, and must be 12255 * accessed via __copy_{to,from}_user(). 12256 */ 12257 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12258 u32 size) 12259 { 12260 int i, r; 12261 unsigned long hva, old_npages; 12262 struct kvm_memslots *slots = kvm_memslots(kvm); 12263 struct kvm_memory_slot *slot; 12264 12265 /* Called with kvm->slots_lock held. */ 12266 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12267 return ERR_PTR_USR(-EINVAL); 12268 12269 slot = id_to_memslot(slots, id); 12270 if (size) { 12271 if (slot && slot->npages) 12272 return ERR_PTR_USR(-EEXIST); 12273 12274 /* 12275 * MAP_SHARED to prevent internal slot pages from being moved 12276 * by fork()/COW. 12277 */ 12278 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12279 MAP_SHARED | MAP_ANONYMOUS, 0); 12280 if (IS_ERR((void *)hva)) 12281 return (void __user *)hva; 12282 } else { 12283 if (!slot || !slot->npages) 12284 return NULL; 12285 12286 old_npages = slot->npages; 12287 hva = slot->userspace_addr; 12288 } 12289 12290 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12291 struct kvm_userspace_memory_region m; 12292 12293 m.slot = id | (i << 16); 12294 m.flags = 0; 12295 m.guest_phys_addr = gpa; 12296 m.userspace_addr = hva; 12297 m.memory_size = size; 12298 r = __kvm_set_memory_region(kvm, &m); 12299 if (r < 0) 12300 return ERR_PTR_USR(r); 12301 } 12302 12303 if (!size) 12304 vm_munmap(hva, old_npages * PAGE_SIZE); 12305 12306 return (void __user *)hva; 12307 } 12308 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12309 12310 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12311 { 12312 kvm_mmu_pre_destroy_vm(kvm); 12313 } 12314 12315 void kvm_arch_destroy_vm(struct kvm *kvm) 12316 { 12317 if (current->mm == kvm->mm) { 12318 /* 12319 * Free memory regions allocated on behalf of userspace, 12320 * unless the memory map has changed due to process exit 12321 * or fd copying. 12322 */ 12323 mutex_lock(&kvm->slots_lock); 12324 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12325 0, 0); 12326 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12327 0, 0); 12328 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12329 mutex_unlock(&kvm->slots_lock); 12330 } 12331 kvm_unload_vcpu_mmus(kvm); 12332 static_call_cond(kvm_x86_vm_destroy)(kvm); 12333 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12334 kvm_pic_destroy(kvm); 12335 kvm_ioapic_destroy(kvm); 12336 kvm_destroy_vcpus(kvm); 12337 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12338 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12339 kvm_mmu_uninit_vm(kvm); 12340 kvm_page_track_cleanup(kvm); 12341 kvm_xen_destroy_vm(kvm); 12342 kvm_hv_destroy_vm(kvm); 12343 } 12344 12345 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12346 { 12347 int i; 12348 12349 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12350 kvfree(slot->arch.rmap[i]); 12351 slot->arch.rmap[i] = NULL; 12352 } 12353 } 12354 12355 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12356 { 12357 int i; 12358 12359 memslot_rmap_free(slot); 12360 12361 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12362 kvfree(slot->arch.lpage_info[i - 1]); 12363 slot->arch.lpage_info[i - 1] = NULL; 12364 } 12365 12366 kvm_page_track_free_memslot(slot); 12367 } 12368 12369 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12370 { 12371 const int sz = sizeof(*slot->arch.rmap[0]); 12372 int i; 12373 12374 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12375 int level = i + 1; 12376 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12377 12378 if (slot->arch.rmap[i]) 12379 continue; 12380 12381 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12382 if (!slot->arch.rmap[i]) { 12383 memslot_rmap_free(slot); 12384 return -ENOMEM; 12385 } 12386 } 12387 12388 return 0; 12389 } 12390 12391 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12392 struct kvm_memory_slot *slot) 12393 { 12394 unsigned long npages = slot->npages; 12395 int i, r; 12396 12397 /* 12398 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12399 * old arrays will be freed by __kvm_set_memory_region() if installing 12400 * the new memslot is successful. 12401 */ 12402 memset(&slot->arch, 0, sizeof(slot->arch)); 12403 12404 if (kvm_memslots_have_rmaps(kvm)) { 12405 r = memslot_rmap_alloc(slot, npages); 12406 if (r) 12407 return r; 12408 } 12409 12410 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12411 struct kvm_lpage_info *linfo; 12412 unsigned long ugfn; 12413 int lpages; 12414 int level = i + 1; 12415 12416 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12417 12418 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12419 if (!linfo) 12420 goto out_free; 12421 12422 slot->arch.lpage_info[i - 1] = linfo; 12423 12424 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12425 linfo[0].disallow_lpage = 1; 12426 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12427 linfo[lpages - 1].disallow_lpage = 1; 12428 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12429 /* 12430 * If the gfn and userspace address are not aligned wrt each 12431 * other, disable large page support for this slot. 12432 */ 12433 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12434 unsigned long j; 12435 12436 for (j = 0; j < lpages; ++j) 12437 linfo[j].disallow_lpage = 1; 12438 } 12439 } 12440 12441 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12442 goto out_free; 12443 12444 return 0; 12445 12446 out_free: 12447 memslot_rmap_free(slot); 12448 12449 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12450 kvfree(slot->arch.lpage_info[i - 1]); 12451 slot->arch.lpage_info[i - 1] = NULL; 12452 } 12453 return -ENOMEM; 12454 } 12455 12456 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12457 { 12458 struct kvm_vcpu *vcpu; 12459 unsigned long i; 12460 12461 /* 12462 * memslots->generation has been incremented. 12463 * mmio generation may have reached its maximum value. 12464 */ 12465 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12466 12467 /* Force re-initialization of steal_time cache */ 12468 kvm_for_each_vcpu(i, vcpu, kvm) 12469 kvm_vcpu_kick(vcpu); 12470 } 12471 12472 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12473 const struct kvm_memory_slot *old, 12474 struct kvm_memory_slot *new, 12475 enum kvm_mr_change change) 12476 { 12477 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12478 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12479 return -EINVAL; 12480 12481 return kvm_alloc_memslot_metadata(kvm, new); 12482 } 12483 12484 if (change == KVM_MR_FLAGS_ONLY) 12485 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12486 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12487 return -EIO; 12488 12489 return 0; 12490 } 12491 12492 12493 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12494 { 12495 struct kvm_arch *ka = &kvm->arch; 12496 12497 if (!kvm_x86_ops.cpu_dirty_log_size) 12498 return; 12499 12500 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12501 (!enable && --ka->cpu_dirty_logging_count == 0)) 12502 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12503 12504 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12505 } 12506 12507 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12508 struct kvm_memory_slot *old, 12509 const struct kvm_memory_slot *new, 12510 enum kvm_mr_change change) 12511 { 12512 u32 old_flags = old ? old->flags : 0; 12513 u32 new_flags = new ? new->flags : 0; 12514 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12515 12516 /* 12517 * Update CPU dirty logging if dirty logging is being toggled. This 12518 * applies to all operations. 12519 */ 12520 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12521 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12522 12523 /* 12524 * Nothing more to do for RO slots (which can't be dirtied and can't be 12525 * made writable) or CREATE/MOVE/DELETE of a slot. 12526 * 12527 * For a memslot with dirty logging disabled: 12528 * CREATE: No dirty mappings will already exist. 12529 * MOVE/DELETE: The old mappings will already have been cleaned up by 12530 * kvm_arch_flush_shadow_memslot() 12531 * 12532 * For a memslot with dirty logging enabled: 12533 * CREATE: No shadow pages exist, thus nothing to write-protect 12534 * and no dirty bits to clear. 12535 * MOVE/DELETE: The old mappings will already have been cleaned up by 12536 * kvm_arch_flush_shadow_memslot(). 12537 */ 12538 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12539 return; 12540 12541 /* 12542 * READONLY and non-flags changes were filtered out above, and the only 12543 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12544 * logging isn't being toggled on or off. 12545 */ 12546 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12547 return; 12548 12549 if (!log_dirty_pages) { 12550 /* 12551 * Dirty logging tracks sptes in 4k granularity, meaning that 12552 * large sptes have to be split. If live migration succeeds, 12553 * the guest in the source machine will be destroyed and large 12554 * sptes will be created in the destination. However, if the 12555 * guest continues to run in the source machine (for example if 12556 * live migration fails), small sptes will remain around and 12557 * cause bad performance. 12558 * 12559 * Scan sptes if dirty logging has been stopped, dropping those 12560 * which can be collapsed into a single large-page spte. Later 12561 * page faults will create the large-page sptes. 12562 */ 12563 kvm_mmu_zap_collapsible_sptes(kvm, new); 12564 } else { 12565 /* 12566 * Initially-all-set does not require write protecting any page, 12567 * because they're all assumed to be dirty. 12568 */ 12569 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12570 return; 12571 12572 if (READ_ONCE(eager_page_split)) 12573 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12574 12575 if (kvm_x86_ops.cpu_dirty_log_size) { 12576 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12577 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12578 } else { 12579 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12580 } 12581 12582 /* 12583 * Unconditionally flush the TLBs after enabling dirty logging. 12584 * A flush is almost always going to be necessary (see below), 12585 * and unconditionally flushing allows the helpers to omit 12586 * the subtly complex checks when removing write access. 12587 * 12588 * Do the flush outside of mmu_lock to reduce the amount of 12589 * time mmu_lock is held. Flushing after dropping mmu_lock is 12590 * safe as KVM only needs to guarantee the slot is fully 12591 * write-protected before returning to userspace, i.e. before 12592 * userspace can consume the dirty status. 12593 * 12594 * Flushing outside of mmu_lock requires KVM to be careful when 12595 * making decisions based on writable status of an SPTE, e.g. a 12596 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12597 * 12598 * Specifically, KVM also write-protects guest page tables to 12599 * monitor changes when using shadow paging, and must guarantee 12600 * no CPUs can write to those page before mmu_lock is dropped. 12601 * Because CPUs may have stale TLB entries at this point, a 12602 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12603 * 12604 * KVM also allows making SPTES writable outside of mmu_lock, 12605 * e.g. to allow dirty logging without taking mmu_lock. 12606 * 12607 * To handle these scenarios, KVM uses a separate software-only 12608 * bit (MMU-writable) to track if a SPTE is !writable due to 12609 * a guest page table being write-protected (KVM clears the 12610 * MMU-writable flag when write-protecting for shadow paging). 12611 * 12612 * The use of MMU-writable is also the primary motivation for 12613 * the unconditional flush. Because KVM must guarantee that a 12614 * CPU doesn't contain stale, writable TLB entries for a 12615 * !MMU-writable SPTE, KVM must flush if it encounters any 12616 * MMU-writable SPTE regardless of whether the actual hardware 12617 * writable bit was set. I.e. KVM is almost guaranteed to need 12618 * to flush, while unconditionally flushing allows the "remove 12619 * write access" helpers to ignore MMU-writable entirely. 12620 * 12621 * See is_writable_pte() for more details (the case involving 12622 * access-tracked SPTEs is particularly relevant). 12623 */ 12624 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12625 } 12626 } 12627 12628 void kvm_arch_commit_memory_region(struct kvm *kvm, 12629 struct kvm_memory_slot *old, 12630 const struct kvm_memory_slot *new, 12631 enum kvm_mr_change change) 12632 { 12633 if (!kvm->arch.n_requested_mmu_pages && 12634 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12635 unsigned long nr_mmu_pages; 12636 12637 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12638 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12639 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12640 } 12641 12642 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12643 12644 /* Free the arrays associated with the old memslot. */ 12645 if (change == KVM_MR_MOVE) 12646 kvm_arch_free_memslot(kvm, old); 12647 } 12648 12649 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12650 { 12651 kvm_mmu_zap_all(kvm); 12652 } 12653 12654 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12655 struct kvm_memory_slot *slot) 12656 { 12657 kvm_page_track_flush_slot(kvm, slot); 12658 } 12659 12660 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12661 { 12662 return (is_guest_mode(vcpu) && 12663 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12664 } 12665 12666 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12667 { 12668 if (!list_empty_careful(&vcpu->async_pf.done)) 12669 return true; 12670 12671 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12672 kvm_apic_init_sipi_allowed(vcpu)) 12673 return true; 12674 12675 if (vcpu->arch.pv.pv_unhalted) 12676 return true; 12677 12678 if (kvm_is_exception_pending(vcpu)) 12679 return true; 12680 12681 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12682 (vcpu->arch.nmi_pending && 12683 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12684 return true; 12685 12686 #ifdef CONFIG_KVM_SMM 12687 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12688 (vcpu->arch.smi_pending && 12689 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12690 return true; 12691 #endif 12692 12693 if (kvm_arch_interrupt_allowed(vcpu) && 12694 (kvm_cpu_has_interrupt(vcpu) || 12695 kvm_guest_apic_has_interrupt(vcpu))) 12696 return true; 12697 12698 if (kvm_hv_has_stimer_pending(vcpu)) 12699 return true; 12700 12701 if (is_guest_mode(vcpu) && 12702 kvm_x86_ops.nested_ops->has_events && 12703 kvm_x86_ops.nested_ops->has_events(vcpu)) 12704 return true; 12705 12706 if (kvm_xen_has_pending_events(vcpu)) 12707 return true; 12708 12709 return false; 12710 } 12711 12712 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12713 { 12714 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12715 } 12716 12717 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12718 { 12719 if (kvm_vcpu_apicv_active(vcpu) && 12720 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12721 return true; 12722 12723 return false; 12724 } 12725 12726 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12727 { 12728 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12729 return true; 12730 12731 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12732 #ifdef CONFIG_KVM_SMM 12733 kvm_test_request(KVM_REQ_SMI, vcpu) || 12734 #endif 12735 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12736 return true; 12737 12738 return kvm_arch_dy_has_pending_interrupt(vcpu); 12739 } 12740 12741 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12742 { 12743 if (vcpu->arch.guest_state_protected) 12744 return true; 12745 12746 return vcpu->arch.preempted_in_kernel; 12747 } 12748 12749 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12750 { 12751 return kvm_rip_read(vcpu); 12752 } 12753 12754 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12755 { 12756 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12757 } 12758 12759 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12760 { 12761 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12762 } 12763 12764 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12765 { 12766 /* Can't read the RIP when guest state is protected, just return 0 */ 12767 if (vcpu->arch.guest_state_protected) 12768 return 0; 12769 12770 if (is_64_bit_mode(vcpu)) 12771 return kvm_rip_read(vcpu); 12772 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12773 kvm_rip_read(vcpu)); 12774 } 12775 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12776 12777 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12778 { 12779 return kvm_get_linear_rip(vcpu) == linear_rip; 12780 } 12781 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12782 12783 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12784 { 12785 unsigned long rflags; 12786 12787 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12788 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12789 rflags &= ~X86_EFLAGS_TF; 12790 return rflags; 12791 } 12792 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12793 12794 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12795 { 12796 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12797 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12798 rflags |= X86_EFLAGS_TF; 12799 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12800 } 12801 12802 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12803 { 12804 __kvm_set_rflags(vcpu, rflags); 12805 kvm_make_request(KVM_REQ_EVENT, vcpu); 12806 } 12807 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12808 12809 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12810 { 12811 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12812 12813 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12814 } 12815 12816 static inline u32 kvm_async_pf_next_probe(u32 key) 12817 { 12818 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12819 } 12820 12821 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12822 { 12823 u32 key = kvm_async_pf_hash_fn(gfn); 12824 12825 while (vcpu->arch.apf.gfns[key] != ~0) 12826 key = kvm_async_pf_next_probe(key); 12827 12828 vcpu->arch.apf.gfns[key] = gfn; 12829 } 12830 12831 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12832 { 12833 int i; 12834 u32 key = kvm_async_pf_hash_fn(gfn); 12835 12836 for (i = 0; i < ASYNC_PF_PER_VCPU && 12837 (vcpu->arch.apf.gfns[key] != gfn && 12838 vcpu->arch.apf.gfns[key] != ~0); i++) 12839 key = kvm_async_pf_next_probe(key); 12840 12841 return key; 12842 } 12843 12844 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12845 { 12846 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12847 } 12848 12849 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12850 { 12851 u32 i, j, k; 12852 12853 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12854 12855 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12856 return; 12857 12858 while (true) { 12859 vcpu->arch.apf.gfns[i] = ~0; 12860 do { 12861 j = kvm_async_pf_next_probe(j); 12862 if (vcpu->arch.apf.gfns[j] == ~0) 12863 return; 12864 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12865 /* 12866 * k lies cyclically in ]i,j] 12867 * | i.k.j | 12868 * |....j i.k.| or |.k..j i...| 12869 */ 12870 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12871 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12872 i = j; 12873 } 12874 } 12875 12876 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12877 { 12878 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12879 12880 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12881 sizeof(reason)); 12882 } 12883 12884 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12885 { 12886 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12887 12888 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12889 &token, offset, sizeof(token)); 12890 } 12891 12892 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12893 { 12894 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12895 u32 val; 12896 12897 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12898 &val, offset, sizeof(val))) 12899 return false; 12900 12901 return !val; 12902 } 12903 12904 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12905 { 12906 12907 if (!kvm_pv_async_pf_enabled(vcpu)) 12908 return false; 12909 12910 if (vcpu->arch.apf.send_user_only && 12911 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12912 return false; 12913 12914 if (is_guest_mode(vcpu)) { 12915 /* 12916 * L1 needs to opt into the special #PF vmexits that are 12917 * used to deliver async page faults. 12918 */ 12919 return vcpu->arch.apf.delivery_as_pf_vmexit; 12920 } else { 12921 /* 12922 * Play it safe in case the guest temporarily disables paging. 12923 * The real mode IDT in particular is unlikely to have a #PF 12924 * exception setup. 12925 */ 12926 return is_paging(vcpu); 12927 } 12928 } 12929 12930 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12931 { 12932 if (unlikely(!lapic_in_kernel(vcpu) || 12933 kvm_event_needs_reinjection(vcpu) || 12934 kvm_is_exception_pending(vcpu))) 12935 return false; 12936 12937 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12938 return false; 12939 12940 /* 12941 * If interrupts are off we cannot even use an artificial 12942 * halt state. 12943 */ 12944 return kvm_arch_interrupt_allowed(vcpu); 12945 } 12946 12947 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12948 struct kvm_async_pf *work) 12949 { 12950 struct x86_exception fault; 12951 12952 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12953 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12954 12955 if (kvm_can_deliver_async_pf(vcpu) && 12956 !apf_put_user_notpresent(vcpu)) { 12957 fault.vector = PF_VECTOR; 12958 fault.error_code_valid = true; 12959 fault.error_code = 0; 12960 fault.nested_page_fault = false; 12961 fault.address = work->arch.token; 12962 fault.async_page_fault = true; 12963 kvm_inject_page_fault(vcpu, &fault); 12964 return true; 12965 } else { 12966 /* 12967 * It is not possible to deliver a paravirtualized asynchronous 12968 * page fault, but putting the guest in an artificial halt state 12969 * can be beneficial nevertheless: if an interrupt arrives, we 12970 * can deliver it timely and perhaps the guest will schedule 12971 * another process. When the instruction that triggered a page 12972 * fault is retried, hopefully the page will be ready in the host. 12973 */ 12974 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12975 return false; 12976 } 12977 } 12978 12979 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12980 struct kvm_async_pf *work) 12981 { 12982 struct kvm_lapic_irq irq = { 12983 .delivery_mode = APIC_DM_FIXED, 12984 .vector = vcpu->arch.apf.vec 12985 }; 12986 12987 if (work->wakeup_all) 12988 work->arch.token = ~0; /* broadcast wakeup */ 12989 else 12990 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12991 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12992 12993 if ((work->wakeup_all || work->notpresent_injected) && 12994 kvm_pv_async_pf_enabled(vcpu) && 12995 !apf_put_user_ready(vcpu, work->arch.token)) { 12996 vcpu->arch.apf.pageready_pending = true; 12997 kvm_apic_set_irq(vcpu, &irq, NULL); 12998 } 12999 13000 vcpu->arch.apf.halted = false; 13001 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13002 } 13003 13004 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13005 { 13006 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13007 if (!vcpu->arch.apf.pageready_pending) 13008 kvm_vcpu_kick(vcpu); 13009 } 13010 13011 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13012 { 13013 if (!kvm_pv_async_pf_enabled(vcpu)) 13014 return true; 13015 else 13016 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13017 } 13018 13019 void kvm_arch_start_assignment(struct kvm *kvm) 13020 { 13021 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13022 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13023 } 13024 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13025 13026 void kvm_arch_end_assignment(struct kvm *kvm) 13027 { 13028 atomic_dec(&kvm->arch.assigned_device_count); 13029 } 13030 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13031 13032 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13033 { 13034 return arch_atomic_read(&kvm->arch.assigned_device_count); 13035 } 13036 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13037 13038 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13039 { 13040 atomic_inc(&kvm->arch.noncoherent_dma_count); 13041 } 13042 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13043 13044 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13045 { 13046 atomic_dec(&kvm->arch.noncoherent_dma_count); 13047 } 13048 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13049 13050 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13051 { 13052 return atomic_read(&kvm->arch.noncoherent_dma_count); 13053 } 13054 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13055 13056 bool kvm_arch_has_irq_bypass(void) 13057 { 13058 return true; 13059 } 13060 13061 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13062 struct irq_bypass_producer *prod) 13063 { 13064 struct kvm_kernel_irqfd *irqfd = 13065 container_of(cons, struct kvm_kernel_irqfd, consumer); 13066 int ret; 13067 13068 irqfd->producer = prod; 13069 kvm_arch_start_assignment(irqfd->kvm); 13070 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13071 prod->irq, irqfd->gsi, 1); 13072 13073 if (ret) 13074 kvm_arch_end_assignment(irqfd->kvm); 13075 13076 return ret; 13077 } 13078 13079 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13080 struct irq_bypass_producer *prod) 13081 { 13082 int ret; 13083 struct kvm_kernel_irqfd *irqfd = 13084 container_of(cons, struct kvm_kernel_irqfd, consumer); 13085 13086 WARN_ON(irqfd->producer != prod); 13087 irqfd->producer = NULL; 13088 13089 /* 13090 * When producer of consumer is unregistered, we change back to 13091 * remapped mode, so we can re-use the current implementation 13092 * when the irq is masked/disabled or the consumer side (KVM 13093 * int this case doesn't want to receive the interrupts. 13094 */ 13095 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13096 if (ret) 13097 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13098 " fails: %d\n", irqfd->consumer.token, ret); 13099 13100 kvm_arch_end_assignment(irqfd->kvm); 13101 } 13102 13103 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13104 uint32_t guest_irq, bool set) 13105 { 13106 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13107 } 13108 13109 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13110 struct kvm_kernel_irq_routing_entry *new) 13111 { 13112 if (new->type != KVM_IRQ_ROUTING_MSI) 13113 return true; 13114 13115 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13116 } 13117 13118 bool kvm_vector_hashing_enabled(void) 13119 { 13120 return vector_hashing; 13121 } 13122 13123 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13124 { 13125 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13126 } 13127 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13128 13129 13130 int kvm_spec_ctrl_test_value(u64 value) 13131 { 13132 /* 13133 * test that setting IA32_SPEC_CTRL to given value 13134 * is allowed by the host processor 13135 */ 13136 13137 u64 saved_value; 13138 unsigned long flags; 13139 int ret = 0; 13140 13141 local_irq_save(flags); 13142 13143 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13144 ret = 1; 13145 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13146 ret = 1; 13147 else 13148 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13149 13150 local_irq_restore(flags); 13151 13152 return ret; 13153 } 13154 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13155 13156 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13157 { 13158 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13159 struct x86_exception fault; 13160 u64 access = error_code & 13161 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13162 13163 if (!(error_code & PFERR_PRESENT_MASK) || 13164 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13165 /* 13166 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13167 * tables probably do not match the TLB. Just proceed 13168 * with the error code that the processor gave. 13169 */ 13170 fault.vector = PF_VECTOR; 13171 fault.error_code_valid = true; 13172 fault.error_code = error_code; 13173 fault.nested_page_fault = false; 13174 fault.address = gva; 13175 fault.async_page_fault = false; 13176 } 13177 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13178 } 13179 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13180 13181 /* 13182 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13183 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13184 * indicates whether exit to userspace is needed. 13185 */ 13186 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13187 struct x86_exception *e) 13188 { 13189 if (r == X86EMUL_PROPAGATE_FAULT) { 13190 if (KVM_BUG_ON(!e, vcpu->kvm)) 13191 return -EIO; 13192 13193 kvm_inject_emulated_page_fault(vcpu, e); 13194 return 1; 13195 } 13196 13197 /* 13198 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13199 * while handling a VMX instruction KVM could've handled the request 13200 * correctly by exiting to userspace and performing I/O but there 13201 * doesn't seem to be a real use-case behind such requests, just return 13202 * KVM_EXIT_INTERNAL_ERROR for now. 13203 */ 13204 kvm_prepare_emulation_failure_exit(vcpu); 13205 13206 return 0; 13207 } 13208 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13209 13210 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13211 { 13212 bool pcid_enabled; 13213 struct x86_exception e; 13214 struct { 13215 u64 pcid; 13216 u64 gla; 13217 } operand; 13218 int r; 13219 13220 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13221 if (r != X86EMUL_CONTINUE) 13222 return kvm_handle_memory_failure(vcpu, r, &e); 13223 13224 if (operand.pcid >> 12 != 0) { 13225 kvm_inject_gp(vcpu, 0); 13226 return 1; 13227 } 13228 13229 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13230 13231 switch (type) { 13232 case INVPCID_TYPE_INDIV_ADDR: 13233 if ((!pcid_enabled && (operand.pcid != 0)) || 13234 is_noncanonical_address(operand.gla, vcpu)) { 13235 kvm_inject_gp(vcpu, 0); 13236 return 1; 13237 } 13238 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13239 return kvm_skip_emulated_instruction(vcpu); 13240 13241 case INVPCID_TYPE_SINGLE_CTXT: 13242 if (!pcid_enabled && (operand.pcid != 0)) { 13243 kvm_inject_gp(vcpu, 0); 13244 return 1; 13245 } 13246 13247 kvm_invalidate_pcid(vcpu, operand.pcid); 13248 return kvm_skip_emulated_instruction(vcpu); 13249 13250 case INVPCID_TYPE_ALL_NON_GLOBAL: 13251 /* 13252 * Currently, KVM doesn't mark global entries in the shadow 13253 * page tables, so a non-global flush just degenerates to a 13254 * global flush. If needed, we could optimize this later by 13255 * keeping track of global entries in shadow page tables. 13256 */ 13257 13258 fallthrough; 13259 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13260 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13261 return kvm_skip_emulated_instruction(vcpu); 13262 13263 default: 13264 kvm_inject_gp(vcpu, 0); 13265 return 1; 13266 } 13267 } 13268 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13269 13270 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13271 { 13272 struct kvm_run *run = vcpu->run; 13273 struct kvm_mmio_fragment *frag; 13274 unsigned int len; 13275 13276 BUG_ON(!vcpu->mmio_needed); 13277 13278 /* Complete previous fragment */ 13279 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13280 len = min(8u, frag->len); 13281 if (!vcpu->mmio_is_write) 13282 memcpy(frag->data, run->mmio.data, len); 13283 13284 if (frag->len <= 8) { 13285 /* Switch to the next fragment. */ 13286 frag++; 13287 vcpu->mmio_cur_fragment++; 13288 } else { 13289 /* Go forward to the next mmio piece. */ 13290 frag->data += len; 13291 frag->gpa += len; 13292 frag->len -= len; 13293 } 13294 13295 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13296 vcpu->mmio_needed = 0; 13297 13298 // VMG change, at this point, we're always done 13299 // RIP has already been advanced 13300 return 1; 13301 } 13302 13303 // More MMIO is needed 13304 run->mmio.phys_addr = frag->gpa; 13305 run->mmio.len = min(8u, frag->len); 13306 run->mmio.is_write = vcpu->mmio_is_write; 13307 if (run->mmio.is_write) 13308 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13309 run->exit_reason = KVM_EXIT_MMIO; 13310 13311 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13312 13313 return 0; 13314 } 13315 13316 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13317 void *data) 13318 { 13319 int handled; 13320 struct kvm_mmio_fragment *frag; 13321 13322 if (!data) 13323 return -EINVAL; 13324 13325 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13326 if (handled == bytes) 13327 return 1; 13328 13329 bytes -= handled; 13330 gpa += handled; 13331 data += handled; 13332 13333 /*TODO: Check if need to increment number of frags */ 13334 frag = vcpu->mmio_fragments; 13335 vcpu->mmio_nr_fragments = 1; 13336 frag->len = bytes; 13337 frag->gpa = gpa; 13338 frag->data = data; 13339 13340 vcpu->mmio_needed = 1; 13341 vcpu->mmio_cur_fragment = 0; 13342 13343 vcpu->run->mmio.phys_addr = gpa; 13344 vcpu->run->mmio.len = min(8u, frag->len); 13345 vcpu->run->mmio.is_write = 1; 13346 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13347 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13348 13349 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13350 13351 return 0; 13352 } 13353 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13354 13355 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13356 void *data) 13357 { 13358 int handled; 13359 struct kvm_mmio_fragment *frag; 13360 13361 if (!data) 13362 return -EINVAL; 13363 13364 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13365 if (handled == bytes) 13366 return 1; 13367 13368 bytes -= handled; 13369 gpa += handled; 13370 data += handled; 13371 13372 /*TODO: Check if need to increment number of frags */ 13373 frag = vcpu->mmio_fragments; 13374 vcpu->mmio_nr_fragments = 1; 13375 frag->len = bytes; 13376 frag->gpa = gpa; 13377 frag->data = data; 13378 13379 vcpu->mmio_needed = 1; 13380 vcpu->mmio_cur_fragment = 0; 13381 13382 vcpu->run->mmio.phys_addr = gpa; 13383 vcpu->run->mmio.len = min(8u, frag->len); 13384 vcpu->run->mmio.is_write = 0; 13385 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13386 13387 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13388 13389 return 0; 13390 } 13391 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13392 13393 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13394 { 13395 vcpu->arch.sev_pio_count -= count; 13396 vcpu->arch.sev_pio_data += count * size; 13397 } 13398 13399 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13400 unsigned int port); 13401 13402 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13403 { 13404 int size = vcpu->arch.pio.size; 13405 int port = vcpu->arch.pio.port; 13406 13407 vcpu->arch.pio.count = 0; 13408 if (vcpu->arch.sev_pio_count) 13409 return kvm_sev_es_outs(vcpu, size, port); 13410 return 1; 13411 } 13412 13413 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13414 unsigned int port) 13415 { 13416 for (;;) { 13417 unsigned int count = 13418 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13419 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13420 13421 /* memcpy done already by emulator_pio_out. */ 13422 advance_sev_es_emulated_pio(vcpu, count, size); 13423 if (!ret) 13424 break; 13425 13426 /* Emulation done by the kernel. */ 13427 if (!vcpu->arch.sev_pio_count) 13428 return 1; 13429 } 13430 13431 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13432 return 0; 13433 } 13434 13435 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13436 unsigned int port); 13437 13438 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13439 { 13440 unsigned count = vcpu->arch.pio.count; 13441 int size = vcpu->arch.pio.size; 13442 int port = vcpu->arch.pio.port; 13443 13444 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13445 advance_sev_es_emulated_pio(vcpu, count, size); 13446 if (vcpu->arch.sev_pio_count) 13447 return kvm_sev_es_ins(vcpu, size, port); 13448 return 1; 13449 } 13450 13451 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13452 unsigned int port) 13453 { 13454 for (;;) { 13455 unsigned int count = 13456 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13457 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13458 break; 13459 13460 /* Emulation done by the kernel. */ 13461 advance_sev_es_emulated_pio(vcpu, count, size); 13462 if (!vcpu->arch.sev_pio_count) 13463 return 1; 13464 } 13465 13466 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13467 return 0; 13468 } 13469 13470 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13471 unsigned int port, void *data, unsigned int count, 13472 int in) 13473 { 13474 vcpu->arch.sev_pio_data = data; 13475 vcpu->arch.sev_pio_count = count; 13476 return in ? kvm_sev_es_ins(vcpu, size, port) 13477 : kvm_sev_es_outs(vcpu, size, port); 13478 } 13479 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13480 13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13510 13511 static int __init kvm_x86_init(void) 13512 { 13513 kvm_mmu_x86_module_init(); 13514 return 0; 13515 } 13516 module_init(kvm_x86_init); 13517 13518 static void __exit kvm_x86_exit(void) 13519 { 13520 /* 13521 * If module_init() is implemented, module_exit() must also be 13522 * implemented to allow module unload. 13523 */ 13524 } 13525 module_exit(kvm_x86_exit); 13526