xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 14329b825ffb7f2710c13fdcc37fc2e7c67b6781)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 
64 #include <trace/events/kvm.h>
65 
66 #include <asm/debugreg.h>
67 #include <asm/msr.h>
68 #include <asm/desc.h>
69 #include <asm/mce.h>
70 #include <asm/pkru.h>
71 #include <linux/kernel_stat.h>
72 #include <asm/fpu/api.h>
73 #include <asm/fpu/xcr.h>
74 #include <asm/fpu/xstate.h>
75 #include <asm/pvclock.h>
76 #include <asm/div64.h>
77 #include <asm/irq_remapping.h>
78 #include <asm/mshyperv.h>
79 #include <asm/hypervisor.h>
80 #include <asm/tlbflush.h>
81 #include <asm/intel_pt.h>
82 #include <asm/emulate_prefix.h>
83 #include <asm/sgx.h>
84 #include <clocksource/hyperv_timer.h>
85 
86 #define CREATE_TRACE_POINTS
87 #include "trace.h"
88 
89 #define MAX_IO_MSRS 256
90 #define KVM_MAX_MCE_BANKS 32
91 
92 struct kvm_caps kvm_caps __read_mostly = {
93 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
94 };
95 EXPORT_SYMBOL_GPL(kvm_caps);
96 
97 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
98 
99 #define emul_to_vcpu(ctxt) \
100 	((struct kvm_vcpu *)(ctxt)->vcpu)
101 
102 /* EFER defaults:
103  * - enable syscall per default because its emulated by KVM
104  * - enable LME and LMA per default on 64 bit KVM
105  */
106 #ifdef CONFIG_X86_64
107 static
108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
109 #else
110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
111 #endif
112 
113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
114 
115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
116 
117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
118 
119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
120                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
121 
122 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
123 static void process_nmi(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 static DEFINE_MUTEX(vendor_module_lock);
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134 
135 #define KVM_X86_OP(func)					     \
136 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
137 				*(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143 
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146 
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150 
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153 
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156 
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160 
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /*
197  * Restoring the host value for MSRs that are only consumed when running in
198  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
199  * returns to userspace, i.e. the kernel can run with the guest's value.
200  */
201 #define KVM_MAX_NR_USER_RETURN_MSRS 16
202 
203 struct kvm_user_return_msrs {
204 	struct user_return_notifier urn;
205 	bool registered;
206 	struct kvm_user_return_msr_values {
207 		u64 host;
208 		u64 curr;
209 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
210 };
211 
212 u32 __read_mostly kvm_nr_uret_msrs;
213 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
215 static struct kvm_user_return_msrs __percpu *user_return_msrs;
216 
217 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
218 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
219 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
220 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
221 
222 u64 __read_mostly host_efer;
223 EXPORT_SYMBOL_GPL(host_efer);
224 
225 bool __read_mostly allow_smaller_maxphyaddr = 0;
226 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
227 
228 bool __read_mostly enable_apicv = true;
229 EXPORT_SYMBOL_GPL(enable_apicv);
230 
231 u64 __read_mostly host_xss;
232 EXPORT_SYMBOL_GPL(host_xss);
233 
234 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
235 	KVM_GENERIC_VM_STATS(),
236 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_pte_write),
238 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
239 	STATS_DESC_COUNTER(VM, mmu_flooded),
240 	STATS_DESC_COUNTER(VM, mmu_recycled),
241 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
242 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
243 	STATS_DESC_ICOUNTER(VM, pages_4k),
244 	STATS_DESC_ICOUNTER(VM, pages_2m),
245 	STATS_DESC_ICOUNTER(VM, pages_1g),
246 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
247 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
248 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
249 };
250 
251 const struct kvm_stats_header kvm_vm_stats_header = {
252 	.name_size = KVM_STATS_NAME_SIZE,
253 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
254 	.id_offset = sizeof(struct kvm_stats_header),
255 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
256 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
257 		       sizeof(kvm_vm_stats_desc),
258 };
259 
260 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
261 	KVM_GENERIC_VCPU_STATS(),
262 	STATS_DESC_COUNTER(VCPU, pf_taken),
263 	STATS_DESC_COUNTER(VCPU, pf_fixed),
264 	STATS_DESC_COUNTER(VCPU, pf_emulate),
265 	STATS_DESC_COUNTER(VCPU, pf_spurious),
266 	STATS_DESC_COUNTER(VCPU, pf_fast),
267 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
268 	STATS_DESC_COUNTER(VCPU, pf_guest),
269 	STATS_DESC_COUNTER(VCPU, tlb_flush),
270 	STATS_DESC_COUNTER(VCPU, invlpg),
271 	STATS_DESC_COUNTER(VCPU, exits),
272 	STATS_DESC_COUNTER(VCPU, io_exits),
273 	STATS_DESC_COUNTER(VCPU, mmio_exits),
274 	STATS_DESC_COUNTER(VCPU, signal_exits),
275 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
276 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
277 	STATS_DESC_COUNTER(VCPU, l1d_flush),
278 	STATS_DESC_COUNTER(VCPU, halt_exits),
279 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
280 	STATS_DESC_COUNTER(VCPU, irq_exits),
281 	STATS_DESC_COUNTER(VCPU, host_state_reload),
282 	STATS_DESC_COUNTER(VCPU, fpu_reload),
283 	STATS_DESC_COUNTER(VCPU, insn_emulation),
284 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
285 	STATS_DESC_COUNTER(VCPU, hypercalls),
286 	STATS_DESC_COUNTER(VCPU, irq_injections),
287 	STATS_DESC_COUNTER(VCPU, nmi_injections),
288 	STATS_DESC_COUNTER(VCPU, req_event),
289 	STATS_DESC_COUNTER(VCPU, nested_run),
290 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
291 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
292 	STATS_DESC_COUNTER(VCPU, preemption_reported),
293 	STATS_DESC_COUNTER(VCPU, preemption_other),
294 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
295 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
296 };
297 
298 const struct kvm_stats_header kvm_vcpu_stats_header = {
299 	.name_size = KVM_STATS_NAME_SIZE,
300 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
301 	.id_offset = sizeof(struct kvm_stats_header),
302 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
303 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
304 		       sizeof(kvm_vcpu_stats_desc),
305 };
306 
307 u64 __read_mostly host_xcr0;
308 
309 static struct kmem_cache *x86_emulator_cache;
310 
311 /*
312  * When called, it means the previous get/set msr reached an invalid msr.
313  * Return true if we want to ignore/silent this failed msr access.
314  */
315 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
316 {
317 	const char *op = write ? "wrmsr" : "rdmsr";
318 
319 	if (ignore_msrs) {
320 		if (report_ignored_msrs)
321 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		/* Mask the error */
324 		return true;
325 	} else {
326 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
327 				      op, msr, data);
328 		return false;
329 	}
330 }
331 
332 static struct kmem_cache *kvm_alloc_emulator_cache(void)
333 {
334 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
335 	unsigned int size = sizeof(struct x86_emulate_ctxt);
336 
337 	return kmem_cache_create_usercopy("x86_emulator", size,
338 					  __alignof__(struct x86_emulate_ctxt),
339 					  SLAB_ACCOUNT, useroffset,
340 					  size - useroffset, NULL);
341 }
342 
343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
344 
345 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
346 {
347 	int i;
348 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
349 		vcpu->arch.apf.gfns[i] = ~0;
350 }
351 
352 static void kvm_on_user_return(struct user_return_notifier *urn)
353 {
354 	unsigned slot;
355 	struct kvm_user_return_msrs *msrs
356 		= container_of(urn, struct kvm_user_return_msrs, urn);
357 	struct kvm_user_return_msr_values *values;
358 	unsigned long flags;
359 
360 	/*
361 	 * Disabling irqs at this point since the following code could be
362 	 * interrupted and executed through kvm_arch_hardware_disable()
363 	 */
364 	local_irq_save(flags);
365 	if (msrs->registered) {
366 		msrs->registered = false;
367 		user_return_notifier_unregister(urn);
368 	}
369 	local_irq_restore(flags);
370 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
371 		values = &msrs->values[slot];
372 		if (values->host != values->curr) {
373 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
374 			values->curr = values->host;
375 		}
376 	}
377 }
378 
379 static int kvm_probe_user_return_msr(u32 msr)
380 {
381 	u64 val;
382 	int ret;
383 
384 	preempt_disable();
385 	ret = rdmsrl_safe(msr, &val);
386 	if (ret)
387 		goto out;
388 	ret = wrmsrl_safe(msr, val);
389 out:
390 	preempt_enable();
391 	return ret;
392 }
393 
394 int kvm_add_user_return_msr(u32 msr)
395 {
396 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
397 
398 	if (kvm_probe_user_return_msr(msr))
399 		return -1;
400 
401 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
402 	return kvm_nr_uret_msrs++;
403 }
404 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
405 
406 int kvm_find_user_return_msr(u32 msr)
407 {
408 	int i;
409 
410 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
411 		if (kvm_uret_msrs_list[i] == msr)
412 			return i;
413 	}
414 	return -1;
415 }
416 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
417 
418 static void kvm_user_return_msr_cpu_online(void)
419 {
420 	unsigned int cpu = smp_processor_id();
421 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
422 	u64 value;
423 	int i;
424 
425 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
426 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
427 		msrs->values[i].host = value;
428 		msrs->values[i].curr = value;
429 	}
430 }
431 
432 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
433 {
434 	unsigned int cpu = smp_processor_id();
435 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
436 	int err;
437 
438 	value = (value & mask) | (msrs->values[slot].host & ~mask);
439 	if (value == msrs->values[slot].curr)
440 		return 0;
441 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
442 	if (err)
443 		return 1;
444 
445 	msrs->values[slot].curr = value;
446 	if (!msrs->registered) {
447 		msrs->urn.on_user_return = kvm_on_user_return;
448 		user_return_notifier_register(&msrs->urn);
449 		msrs->registered = true;
450 	}
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
454 
455 static void drop_user_return_notifiers(void)
456 {
457 	unsigned int cpu = smp_processor_id();
458 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
459 
460 	if (msrs->registered)
461 		kvm_on_user_return(&msrs->urn);
462 }
463 
464 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
465 {
466 	return vcpu->arch.apic_base;
467 }
468 
469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474 
475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481 
482 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 		return 1;
484 	if (!msr_info->host_initiated) {
485 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 			return 1;
487 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 			return 1;
489 	}
490 
491 	kvm_lapic_set_base(vcpu, msr_info->data);
492 	kvm_recalculate_apic_map(vcpu->kvm);
493 	return 0;
494 }
495 
496 /*
497  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
498  *
499  * Hardware virtualization extension instructions may fault if a reboot turns
500  * off virtualization while processes are running.  Usually after catching the
501  * fault we just panic; during reboot instead the instruction is ignored.
502  */
503 noinstr void kvm_spurious_fault(void)
504 {
505 	/* Fault while not rebooting.  We want the trace. */
506 	BUG_ON(!kvm_rebooting);
507 }
508 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
509 
510 #define EXCPT_BENIGN		0
511 #define EXCPT_CONTRIBUTORY	1
512 #define EXCPT_PF		2
513 
514 static int exception_class(int vector)
515 {
516 	switch (vector) {
517 	case PF_VECTOR:
518 		return EXCPT_PF;
519 	case DE_VECTOR:
520 	case TS_VECTOR:
521 	case NP_VECTOR:
522 	case SS_VECTOR:
523 	case GP_VECTOR:
524 		return EXCPT_CONTRIBUTORY;
525 	default:
526 		break;
527 	}
528 	return EXCPT_BENIGN;
529 }
530 
531 #define EXCPT_FAULT		0
532 #define EXCPT_TRAP		1
533 #define EXCPT_ABORT		2
534 #define EXCPT_INTERRUPT		3
535 #define EXCPT_DB		4
536 
537 static int exception_type(int vector)
538 {
539 	unsigned int mask;
540 
541 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
542 		return EXCPT_INTERRUPT;
543 
544 	mask = 1 << vector;
545 
546 	/*
547 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
548 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
549 	 */
550 	if (mask & (1 << DB_VECTOR))
551 		return EXCPT_DB;
552 
553 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
554 		return EXCPT_TRAP;
555 
556 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
557 		return EXCPT_ABORT;
558 
559 	/* Reserved exceptions will result in fault */
560 	return EXCPT_FAULT;
561 }
562 
563 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
564 				   struct kvm_queued_exception *ex)
565 {
566 	if (!ex->has_payload)
567 		return;
568 
569 	switch (ex->vector) {
570 	case DB_VECTOR:
571 		/*
572 		 * "Certain debug exceptions may clear bit 0-3.  The
573 		 * remaining contents of the DR6 register are never
574 		 * cleared by the processor".
575 		 */
576 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
577 		/*
578 		 * In order to reflect the #DB exception payload in guest
579 		 * dr6, three components need to be considered: active low
580 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
581 		 * DR6_BS and DR6_BT)
582 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
583 		 * In the target guest dr6:
584 		 * FIXED_1 bits should always be set.
585 		 * Active low bits should be cleared if 1-setting in payload.
586 		 * Active high bits should be set if 1-setting in payload.
587 		 *
588 		 * Note, the payload is compatible with the pending debug
589 		 * exceptions/exit qualification under VMX, that active_low bits
590 		 * are active high in payload.
591 		 * So they need to be flipped for DR6.
592 		 */
593 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
594 		vcpu->arch.dr6 |= ex->payload;
595 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
596 
597 		/*
598 		 * The #DB payload is defined as compatible with the 'pending
599 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
600 		 * defined in the 'pending debug exceptions' field (enabled
601 		 * breakpoint), it is reserved and must be zero in DR6.
602 		 */
603 		vcpu->arch.dr6 &= ~BIT(12);
604 		break;
605 	case PF_VECTOR:
606 		vcpu->arch.cr2 = ex->payload;
607 		break;
608 	}
609 
610 	ex->has_payload = false;
611 	ex->payload = 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
614 
615 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
616 				       bool has_error_code, u32 error_code,
617 				       bool has_payload, unsigned long payload)
618 {
619 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
620 
621 	ex->vector = vector;
622 	ex->injected = false;
623 	ex->pending = true;
624 	ex->has_error_code = has_error_code;
625 	ex->error_code = error_code;
626 	ex->has_payload = has_payload;
627 	ex->payload = payload;
628 }
629 
630 /* Forcibly leave the nested mode in cases like a vCPU reset */
631 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
632 {
633 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
634 }
635 
636 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
637 		unsigned nr, bool has_error, u32 error_code,
638 	        bool has_payload, unsigned long payload, bool reinject)
639 {
640 	u32 prev_nr;
641 	int class1, class2;
642 
643 	kvm_make_request(KVM_REQ_EVENT, vcpu);
644 
645 	/*
646 	 * If the exception is destined for L2 and isn't being reinjected,
647 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
648 	 * previously injected exception is not checked because it was checked
649 	 * when it was original queued, and re-checking is incorrect if _L1_
650 	 * injected the exception, in which case it's exempt from interception.
651 	 */
652 	if (!reinject && is_guest_mode(vcpu) &&
653 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
654 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
655 					   has_payload, payload);
656 		return;
657 	}
658 
659 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
660 	queue:
661 		if (reinject) {
662 			/*
663 			 * On VM-Entry, an exception can be pending if and only
664 			 * if event injection was blocked by nested_run_pending.
665 			 * In that case, however, vcpu_enter_guest() requests an
666 			 * immediate exit, and the guest shouldn't proceed far
667 			 * enough to need reinjection.
668 			 */
669 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
670 			vcpu->arch.exception.injected = true;
671 			if (WARN_ON_ONCE(has_payload)) {
672 				/*
673 				 * A reinjected event has already
674 				 * delivered its payload.
675 				 */
676 				has_payload = false;
677 				payload = 0;
678 			}
679 		} else {
680 			vcpu->arch.exception.pending = true;
681 			vcpu->arch.exception.injected = false;
682 		}
683 		vcpu->arch.exception.has_error_code = has_error;
684 		vcpu->arch.exception.vector = nr;
685 		vcpu->arch.exception.error_code = error_code;
686 		vcpu->arch.exception.has_payload = has_payload;
687 		vcpu->arch.exception.payload = payload;
688 		if (!is_guest_mode(vcpu))
689 			kvm_deliver_exception_payload(vcpu,
690 						      &vcpu->arch.exception);
691 		return;
692 	}
693 
694 	/* to check exception */
695 	prev_nr = vcpu->arch.exception.vector;
696 	if (prev_nr == DF_VECTOR) {
697 		/* triple fault -> shutdown */
698 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
699 		return;
700 	}
701 	class1 = exception_class(prev_nr);
702 	class2 = exception_class(nr);
703 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
704 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
705 		/*
706 		 * Synthesize #DF.  Clear the previously injected or pending
707 		 * exception so as not to incorrectly trigger shutdown.
708 		 */
709 		vcpu->arch.exception.injected = false;
710 		vcpu->arch.exception.pending = false;
711 
712 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
713 	} else {
714 		/* replace previous exception with a new one in a hope
715 		   that instruction re-execution will regenerate lost
716 		   exception */
717 		goto queue;
718 	}
719 }
720 
721 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
722 {
723 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
724 }
725 EXPORT_SYMBOL_GPL(kvm_queue_exception);
726 
727 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
730 }
731 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
732 
733 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
734 			   unsigned long payload)
735 {
736 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
737 }
738 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
739 
740 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
741 				    u32 error_code, unsigned long payload)
742 {
743 	kvm_multiple_exception(vcpu, nr, true, error_code,
744 			       true, payload, false);
745 }
746 
747 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
748 {
749 	if (err)
750 		kvm_inject_gp(vcpu, 0);
751 	else
752 		return kvm_skip_emulated_instruction(vcpu);
753 
754 	return 1;
755 }
756 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
757 
758 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
759 {
760 	if (err) {
761 		kvm_inject_gp(vcpu, 0);
762 		return 1;
763 	}
764 
765 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
766 				       EMULTYPE_COMPLETE_USER_EXIT);
767 }
768 
769 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
770 {
771 	++vcpu->stat.pf_guest;
772 
773 	/*
774 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
775 	 * whether or not L1 wants to intercept "regular" #PF.
776 	 */
777 	if (is_guest_mode(vcpu) && fault->async_page_fault)
778 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
779 					   true, fault->error_code,
780 					   true, fault->address);
781 	else
782 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
783 					fault->address);
784 }
785 
786 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
787 				    struct x86_exception *fault)
788 {
789 	struct kvm_mmu *fault_mmu;
790 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
791 
792 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
793 					       vcpu->arch.walk_mmu;
794 
795 	/*
796 	 * Invalidate the TLB entry for the faulting address, if it exists,
797 	 * else the access will fault indefinitely (and to emulate hardware).
798 	 */
799 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
800 	    !(fault->error_code & PFERR_RSVD_MASK))
801 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
802 				       fault_mmu->root.hpa);
803 
804 	fault_mmu->inject_page_fault(vcpu, fault);
805 }
806 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
807 
808 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
809 {
810 	atomic_inc(&vcpu->arch.nmi_queued);
811 	kvm_make_request(KVM_REQ_NMI, vcpu);
812 }
813 
814 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
815 {
816 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
817 }
818 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
819 
820 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
823 }
824 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
825 
826 /*
827  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
828  * a #GP and return false.
829  */
830 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
831 {
832 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
833 		return true;
834 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
835 	return false;
836 }
837 
838 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
839 {
840 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
841 		return true;
842 
843 	kvm_queue_exception(vcpu, UD_VECTOR);
844 	return false;
845 }
846 EXPORT_SYMBOL_GPL(kvm_require_dr);
847 
848 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
849 {
850 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
851 }
852 
853 /*
854  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
855  */
856 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
857 {
858 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
859 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
860 	gpa_t real_gpa;
861 	int i;
862 	int ret;
863 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
864 
865 	/*
866 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
867 	 * to an L1 GPA.
868 	 */
869 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
870 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
871 	if (real_gpa == INVALID_GPA)
872 		return 0;
873 
874 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
875 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
876 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
877 	if (ret < 0)
878 		return 0;
879 
880 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
881 		if ((pdpte[i] & PT_PRESENT_MASK) &&
882 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
883 			return 0;
884 		}
885 	}
886 
887 	/*
888 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
889 	 * Shadow page roots need to be reconstructed instead.
890 	 */
891 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
892 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
893 
894 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
895 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
896 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
897 	vcpu->arch.pdptrs_from_userspace = false;
898 
899 	return 1;
900 }
901 EXPORT_SYMBOL_GPL(load_pdptrs);
902 
903 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
904 {
905 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
906 		kvm_clear_async_pf_completion_queue(vcpu);
907 		kvm_async_pf_hash_reset(vcpu);
908 
909 		/*
910 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
911 		 * perspective.
912 		 */
913 		if (!(cr0 & X86_CR0_PG))
914 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
915 	}
916 
917 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
918 		kvm_mmu_reset_context(vcpu);
919 
920 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
921 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
922 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
923 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
924 }
925 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
926 
927 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
928 {
929 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
930 
931 	cr0 |= X86_CR0_ET;
932 
933 #ifdef CONFIG_X86_64
934 	if (cr0 & 0xffffffff00000000UL)
935 		return 1;
936 #endif
937 
938 	cr0 &= ~CR0_RESERVED_BITS;
939 
940 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
941 		return 1;
942 
943 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
944 		return 1;
945 
946 #ifdef CONFIG_X86_64
947 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
948 	    (cr0 & X86_CR0_PG)) {
949 		int cs_db, cs_l;
950 
951 		if (!is_pae(vcpu))
952 			return 1;
953 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
954 		if (cs_l)
955 			return 1;
956 	}
957 #endif
958 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
959 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
960 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
961 		return 1;
962 
963 	if (!(cr0 & X86_CR0_PG) &&
964 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
965 		return 1;
966 
967 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
968 
969 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
970 
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_set_cr0);
974 
975 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
976 {
977 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
978 }
979 EXPORT_SYMBOL_GPL(kvm_lmsw);
980 
981 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
982 {
983 	if (vcpu->arch.guest_state_protected)
984 		return;
985 
986 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
987 
988 		if (vcpu->arch.xcr0 != host_xcr0)
989 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
990 
991 		if (vcpu->arch.xsaves_enabled &&
992 		    vcpu->arch.ia32_xss != host_xss)
993 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
994 	}
995 
996 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
997 	if (static_cpu_has(X86_FEATURE_PKU) &&
998 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
999 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1000 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1001 		write_pkru(vcpu->arch.pkru);
1002 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1005 
1006 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1007 {
1008 	if (vcpu->arch.guest_state_protected)
1009 		return;
1010 
1011 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1012 	if (static_cpu_has(X86_FEATURE_PKU) &&
1013 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1014 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1015 		vcpu->arch.pkru = rdpkru();
1016 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1017 			write_pkru(vcpu->arch.host_pkru);
1018 	}
1019 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1020 
1021 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1022 
1023 		if (vcpu->arch.xcr0 != host_xcr0)
1024 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1025 
1026 		if (vcpu->arch.xsaves_enabled &&
1027 		    vcpu->arch.ia32_xss != host_xss)
1028 			wrmsrl(MSR_IA32_XSS, host_xss);
1029 	}
1030 
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1033 
1034 #ifdef CONFIG_X86_64
1035 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1036 {
1037 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1038 }
1039 #endif
1040 
1041 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1042 {
1043 	u64 xcr0 = xcr;
1044 	u64 old_xcr0 = vcpu->arch.xcr0;
1045 	u64 valid_bits;
1046 
1047 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1048 	if (index != XCR_XFEATURE_ENABLED_MASK)
1049 		return 1;
1050 	if (!(xcr0 & XFEATURE_MASK_FP))
1051 		return 1;
1052 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1053 		return 1;
1054 
1055 	/*
1056 	 * Do not allow the guest to set bits that we do not support
1057 	 * saving.  However, xcr0 bit 0 is always set, even if the
1058 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1059 	 */
1060 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1061 	if (xcr0 & ~valid_bits)
1062 		return 1;
1063 
1064 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1065 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1066 		return 1;
1067 
1068 	if (xcr0 & XFEATURE_MASK_AVX512) {
1069 		if (!(xcr0 & XFEATURE_MASK_YMM))
1070 			return 1;
1071 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1072 			return 1;
1073 	}
1074 
1075 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1076 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1077 		return 1;
1078 
1079 	vcpu->arch.xcr0 = xcr0;
1080 
1081 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1082 		kvm_update_cpuid_runtime(vcpu);
1083 	return 0;
1084 }
1085 
1086 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1087 {
1088 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1089 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1090 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1091 		kvm_inject_gp(vcpu, 0);
1092 		return 1;
1093 	}
1094 
1095 	return kvm_skip_emulated_instruction(vcpu);
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1098 
1099 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1100 {
1101 	if (cr4 & cr4_reserved_bits)
1102 		return false;
1103 
1104 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1105 		return false;
1106 
1107 	return true;
1108 }
1109 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1110 
1111 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1112 {
1113 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1114 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1115 }
1116 
1117 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1118 {
1119 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1120 		kvm_mmu_reset_context(vcpu);
1121 
1122 	/*
1123 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1124 	 * according to the SDM; however, stale prev_roots could be reused
1125 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1126 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1127 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1128 	 * so fall through.
1129 	 */
1130 	if (!tdp_enabled &&
1131 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1132 		kvm_mmu_unload(vcpu);
1133 
1134 	/*
1135 	 * The TLB has to be flushed for all PCIDs if any of the following
1136 	 * (architecturally required) changes happen:
1137 	 * - CR4.PCIDE is changed from 1 to 0
1138 	 * - CR4.PGE is toggled
1139 	 *
1140 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1141 	 */
1142 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1143 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1144 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1145 
1146 	/*
1147 	 * The TLB has to be flushed for the current PCID if any of the
1148 	 * following (architecturally required) changes happen:
1149 	 * - CR4.SMEP is changed from 0 to 1
1150 	 * - CR4.PAE is toggled
1151 	 */
1152 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1153 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1154 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1155 
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1158 
1159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1160 {
1161 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1162 
1163 	if (!kvm_is_valid_cr4(vcpu, cr4))
1164 		return 1;
1165 
1166 	if (is_long_mode(vcpu)) {
1167 		if (!(cr4 & X86_CR4_PAE))
1168 			return 1;
1169 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1170 			return 1;
1171 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1172 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1173 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1174 		return 1;
1175 
1176 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1177 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1178 			return 1;
1179 
1180 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1181 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1182 			return 1;
1183 	}
1184 
1185 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1186 
1187 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1192 
1193 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1194 {
1195 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1196 	unsigned long roots_to_free = 0;
1197 	int i;
1198 
1199 	/*
1200 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1201 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1202 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1203 	 * the invalidation, but the guest's TLB entries need to be flushed as
1204 	 * the CPU may have cached entries in its TLB for the target PCID.
1205 	 */
1206 	if (unlikely(tdp_enabled)) {
1207 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * If neither the current CR3 nor any of the prev_roots use the given
1213 	 * PCID, then nothing needs to be done here because a resync will
1214 	 * happen anyway before switching to any other CR3.
1215 	 */
1216 	if (kvm_get_active_pcid(vcpu) == pcid) {
1217 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1218 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219 	}
1220 
1221 	/*
1222 	 * If PCID is disabled, there is no need to free prev_roots even if the
1223 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1224 	 * with PCIDE=0.
1225 	 */
1226 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1227 		return;
1228 
1229 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1230 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1231 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1232 
1233 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1234 }
1235 
1236 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1237 {
1238 	bool skip_tlb_flush = false;
1239 	unsigned long pcid = 0;
1240 #ifdef CONFIG_X86_64
1241 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1242 
1243 	if (pcid_enabled) {
1244 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1245 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1246 		pcid = cr3 & X86_CR3_PCID_MASK;
1247 	}
1248 #endif
1249 
1250 	/* PDPTRs are always reloaded for PAE paging. */
1251 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1252 		goto handle_tlb_flush;
1253 
1254 	/*
1255 	 * Do not condition the GPA check on long mode, this helper is used to
1256 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1257 	 * the current vCPU mode is accurate.
1258 	 */
1259 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1260 		return 1;
1261 
1262 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1263 		return 1;
1264 
1265 	if (cr3 != kvm_read_cr3(vcpu))
1266 		kvm_mmu_new_pgd(vcpu, cr3);
1267 
1268 	vcpu->arch.cr3 = cr3;
1269 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1270 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1271 
1272 handle_tlb_flush:
1273 	/*
1274 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1275 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1276 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1277 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1278 	 * i.e. only PCID=0 can be relevant.
1279 	 */
1280 	if (!skip_tlb_flush)
1281 		kvm_invalidate_pcid(vcpu, pcid);
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1286 
1287 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1288 {
1289 	if (cr8 & CR8_RESERVED_BITS)
1290 		return 1;
1291 	if (lapic_in_kernel(vcpu))
1292 		kvm_lapic_set_tpr(vcpu, cr8);
1293 	else
1294 		vcpu->arch.cr8 = cr8;
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1298 
1299 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1300 {
1301 	if (lapic_in_kernel(vcpu))
1302 		return kvm_lapic_get_cr8(vcpu);
1303 	else
1304 		return vcpu->arch.cr8;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1307 
1308 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1309 {
1310 	int i;
1311 
1312 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1313 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1314 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1315 	}
1316 }
1317 
1318 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1319 {
1320 	unsigned long dr7;
1321 
1322 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1323 		dr7 = vcpu->arch.guest_debug_dr7;
1324 	else
1325 		dr7 = vcpu->arch.dr7;
1326 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1327 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1328 	if (dr7 & DR7_BP_EN_MASK)
1329 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1332 
1333 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1334 {
1335 	u64 fixed = DR6_FIXED_1;
1336 
1337 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1338 		fixed |= DR6_RTM;
1339 
1340 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1341 		fixed |= DR6_BUS_LOCK;
1342 	return fixed;
1343 }
1344 
1345 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1346 {
1347 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1348 
1349 	switch (dr) {
1350 	case 0 ... 3:
1351 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1352 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1353 			vcpu->arch.eff_db[dr] = val;
1354 		break;
1355 	case 4:
1356 	case 6:
1357 		if (!kvm_dr6_valid(val))
1358 			return 1; /* #GP */
1359 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1360 		break;
1361 	case 5:
1362 	default: /* 7 */
1363 		if (!kvm_dr7_valid(val))
1364 			return 1; /* #GP */
1365 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1366 		kvm_update_dr7(vcpu);
1367 		break;
1368 	}
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_set_dr);
1373 
1374 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1375 {
1376 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1377 
1378 	switch (dr) {
1379 	case 0 ... 3:
1380 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1381 		break;
1382 	case 4:
1383 	case 6:
1384 		*val = vcpu->arch.dr6;
1385 		break;
1386 	case 5:
1387 	default: /* 7 */
1388 		*val = vcpu->arch.dr7;
1389 		break;
1390 	}
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_get_dr);
1393 
1394 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1395 {
1396 	u32 ecx = kvm_rcx_read(vcpu);
1397 	u64 data;
1398 
1399 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1400 		kvm_inject_gp(vcpu, 0);
1401 		return 1;
1402 	}
1403 
1404 	kvm_rax_write(vcpu, (u32)data);
1405 	kvm_rdx_write(vcpu, data >> 32);
1406 	return kvm_skip_emulated_instruction(vcpu);
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1409 
1410 /*
1411  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1412  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1413  *
1414  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1415  * extract the supported MSRs from the related const lists.
1416  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1417  * capabilities of the host cpu. This capabilities test skips MSRs that are
1418  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1419  * may depend on host virtualization features rather than host cpu features.
1420  */
1421 
1422 static const u32 msrs_to_save_all[] = {
1423 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1424 	MSR_STAR,
1425 #ifdef CONFIG_X86_64
1426 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1427 #endif
1428 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1429 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1430 	MSR_IA32_SPEC_CTRL,
1431 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1432 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1433 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1434 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1435 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1436 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1437 	MSR_IA32_UMWAIT_CONTROL,
1438 
1439 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1440 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1441 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1442 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1443 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1444 
1445 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1446 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1447 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1448 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1449 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1450 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1453 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1454 
1455 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1456 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1457 
1458 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1459 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1460 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1461 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1462 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1463 
1464 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1465 };
1466 
1467 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1468 static unsigned num_msrs_to_save;
1469 
1470 static const u32 emulated_msrs_all[] = {
1471 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1472 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1473 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1474 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1475 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1476 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1477 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1478 	HV_X64_MSR_RESET,
1479 	HV_X64_MSR_VP_INDEX,
1480 	HV_X64_MSR_VP_RUNTIME,
1481 	HV_X64_MSR_SCONTROL,
1482 	HV_X64_MSR_STIMER0_CONFIG,
1483 	HV_X64_MSR_VP_ASSIST_PAGE,
1484 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1485 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1486 	HV_X64_MSR_SYNDBG_OPTIONS,
1487 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1488 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1489 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1490 
1491 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1492 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1493 
1494 	MSR_IA32_TSC_ADJUST,
1495 	MSR_IA32_TSC_DEADLINE,
1496 	MSR_IA32_ARCH_CAPABILITIES,
1497 	MSR_IA32_PERF_CAPABILITIES,
1498 	MSR_IA32_MISC_ENABLE,
1499 	MSR_IA32_MCG_STATUS,
1500 	MSR_IA32_MCG_CTL,
1501 	MSR_IA32_MCG_EXT_CTL,
1502 	MSR_IA32_SMBASE,
1503 	MSR_SMI_COUNT,
1504 	MSR_PLATFORM_INFO,
1505 	MSR_MISC_FEATURES_ENABLES,
1506 	MSR_AMD64_VIRT_SPEC_CTRL,
1507 	MSR_AMD64_TSC_RATIO,
1508 	MSR_IA32_POWER_CTL,
1509 	MSR_IA32_UCODE_REV,
1510 
1511 	/*
1512 	 * The following list leaves out MSRs whose values are determined
1513 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1514 	 * We always support the "true" VMX control MSRs, even if the host
1515 	 * processor does not, so I am putting these registers here rather
1516 	 * than in msrs_to_save_all.
1517 	 */
1518 	MSR_IA32_VMX_BASIC,
1519 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1520 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1521 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1522 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1523 	MSR_IA32_VMX_MISC,
1524 	MSR_IA32_VMX_CR0_FIXED0,
1525 	MSR_IA32_VMX_CR4_FIXED0,
1526 	MSR_IA32_VMX_VMCS_ENUM,
1527 	MSR_IA32_VMX_PROCBASED_CTLS2,
1528 	MSR_IA32_VMX_EPT_VPID_CAP,
1529 	MSR_IA32_VMX_VMFUNC,
1530 
1531 	MSR_K7_HWCR,
1532 	MSR_KVM_POLL_CONTROL,
1533 };
1534 
1535 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1536 static unsigned num_emulated_msrs;
1537 
1538 /*
1539  * List of msr numbers which are used to expose MSR-based features that
1540  * can be used by a hypervisor to validate requested CPU features.
1541  */
1542 static const u32 msr_based_features_all[] = {
1543 	MSR_IA32_VMX_BASIC,
1544 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1545 	MSR_IA32_VMX_PINBASED_CTLS,
1546 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1547 	MSR_IA32_VMX_PROCBASED_CTLS,
1548 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1549 	MSR_IA32_VMX_EXIT_CTLS,
1550 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1551 	MSR_IA32_VMX_ENTRY_CTLS,
1552 	MSR_IA32_VMX_MISC,
1553 	MSR_IA32_VMX_CR0_FIXED0,
1554 	MSR_IA32_VMX_CR0_FIXED1,
1555 	MSR_IA32_VMX_CR4_FIXED0,
1556 	MSR_IA32_VMX_CR4_FIXED1,
1557 	MSR_IA32_VMX_VMCS_ENUM,
1558 	MSR_IA32_VMX_PROCBASED_CTLS2,
1559 	MSR_IA32_VMX_EPT_VPID_CAP,
1560 	MSR_IA32_VMX_VMFUNC,
1561 
1562 	MSR_AMD64_DE_CFG,
1563 	MSR_IA32_UCODE_REV,
1564 	MSR_IA32_ARCH_CAPABILITIES,
1565 	MSR_IA32_PERF_CAPABILITIES,
1566 };
1567 
1568 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1569 static unsigned int num_msr_based_features;
1570 
1571 /*
1572  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1573  * does not yet virtualize. These include:
1574  *   10 - MISC_PACKAGE_CTRLS
1575  *   11 - ENERGY_FILTERING_CTL
1576  *   12 - DOITM
1577  *   18 - FB_CLEAR_CTRL
1578  *   21 - XAPIC_DISABLE_STATUS
1579  *   23 - OVERCLOCKING_STATUS
1580  */
1581 
1582 #define KVM_SUPPORTED_ARCH_CAP \
1583 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1584 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1585 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1586 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1587 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1588 
1589 static u64 kvm_get_arch_capabilities(void)
1590 {
1591 	u64 data = 0;
1592 
1593 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1594 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1595 		data &= KVM_SUPPORTED_ARCH_CAP;
1596 	}
1597 
1598 	/*
1599 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1601 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 	 * L1 guests, so it need not worry about its own (L2) guests.
1603 	 */
1604 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1605 
1606 	/*
1607 	 * If we're doing cache flushes (either "always" or "cond")
1608 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 	 * If an outer hypervisor is doing the cache flush for us
1610 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1611 	 * capability to the guest too, and if EPT is disabled we're not
1612 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 	 * require a nested hypervisor to do a flush of its own.
1614 	 */
1615 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617 
1618 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 		data |= ARCH_CAP_RDCL_NO;
1620 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 		data |= ARCH_CAP_SSB_NO;
1622 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 		data |= ARCH_CAP_MDS_NO;
1624 
1625 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1626 		/*
1627 		 * If RTM=0 because the kernel has disabled TSX, the host might
1628 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1629 		 * and therefore knows that there cannot be TAA) but keep
1630 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1631 		 * and we want to allow migrating those guests to tsx=off hosts.
1632 		 */
1633 		data &= ~ARCH_CAP_TAA_NO;
1634 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1635 		data |= ARCH_CAP_TAA_NO;
1636 	} else {
1637 		/*
1638 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1639 		 * host so the guest can choose between disabling TSX or
1640 		 * using VERW to clear CPU buffers.
1641 		 */
1642 	}
1643 
1644 	return data;
1645 }
1646 
1647 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1648 {
1649 	switch (msr->index) {
1650 	case MSR_IA32_ARCH_CAPABILITIES:
1651 		msr->data = kvm_get_arch_capabilities();
1652 		break;
1653 	case MSR_IA32_PERF_CAPABILITIES:
1654 		msr->data = kvm_caps.supported_perf_cap;
1655 		break;
1656 	case MSR_IA32_UCODE_REV:
1657 		rdmsrl_safe(msr->index, &msr->data);
1658 		break;
1659 	default:
1660 		return static_call(kvm_x86_get_msr_feature)(msr);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1666 {
1667 	struct kvm_msr_entry msr;
1668 	int r;
1669 
1670 	msr.index = index;
1671 	r = kvm_get_msr_feature(&msr);
1672 
1673 	if (r == KVM_MSR_RET_INVALID) {
1674 		/* Unconditionally clear the output for simplicity */
1675 		*data = 0;
1676 		if (kvm_msr_ignored_check(index, 0, false))
1677 			r = 0;
1678 	}
1679 
1680 	if (r)
1681 		return r;
1682 
1683 	*data = msr.data;
1684 
1685 	return 0;
1686 }
1687 
1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1691 		return false;
1692 
1693 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1694 		return false;
1695 
1696 	if (efer & (EFER_LME | EFER_LMA) &&
1697 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1698 		return false;
1699 
1700 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1701 		return false;
1702 
1703 	return true;
1704 
1705 }
1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1707 {
1708 	if (efer & efer_reserved_bits)
1709 		return false;
1710 
1711 	return __kvm_valid_efer(vcpu, efer);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1714 
1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1716 {
1717 	u64 old_efer = vcpu->arch.efer;
1718 	u64 efer = msr_info->data;
1719 	int r;
1720 
1721 	if (efer & efer_reserved_bits)
1722 		return 1;
1723 
1724 	if (!msr_info->host_initiated) {
1725 		if (!__kvm_valid_efer(vcpu, efer))
1726 			return 1;
1727 
1728 		if (is_paging(vcpu) &&
1729 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1730 			return 1;
1731 	}
1732 
1733 	efer &= ~EFER_LMA;
1734 	efer |= vcpu->arch.efer & EFER_LMA;
1735 
1736 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1737 	if (r) {
1738 		WARN_ON(r > 0);
1739 		return r;
1740 	}
1741 
1742 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1743 		kvm_mmu_reset_context(vcpu);
1744 
1745 	return 0;
1746 }
1747 
1748 void kvm_enable_efer_bits(u64 mask)
1749 {
1750        efer_reserved_bits &= ~mask;
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1753 
1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1755 {
1756 	struct kvm_x86_msr_filter *msr_filter;
1757 	struct msr_bitmap_range *ranges;
1758 	struct kvm *kvm = vcpu->kvm;
1759 	bool allowed;
1760 	int idx;
1761 	u32 i;
1762 
1763 	/* x2APIC MSRs do not support filtering. */
1764 	if (index >= 0x800 && index <= 0x8ff)
1765 		return true;
1766 
1767 	idx = srcu_read_lock(&kvm->srcu);
1768 
1769 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1770 	if (!msr_filter) {
1771 		allowed = true;
1772 		goto out;
1773 	}
1774 
1775 	allowed = msr_filter->default_allow;
1776 	ranges = msr_filter->ranges;
1777 
1778 	for (i = 0; i < msr_filter->count; i++) {
1779 		u32 start = ranges[i].base;
1780 		u32 end = start + ranges[i].nmsrs;
1781 		u32 flags = ranges[i].flags;
1782 		unsigned long *bitmap = ranges[i].bitmap;
1783 
1784 		if ((index >= start) && (index < end) && (flags & type)) {
1785 			allowed = !!test_bit(index - start, bitmap);
1786 			break;
1787 		}
1788 	}
1789 
1790 out:
1791 	srcu_read_unlock(&kvm->srcu, idx);
1792 
1793 	return allowed;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1796 
1797 /*
1798  * Write @data into the MSR specified by @index.  Select MSR specific fault
1799  * checks are bypassed if @host_initiated is %true.
1800  * Returns 0 on success, non-0 otherwise.
1801  * Assumes vcpu_load() was already called.
1802  */
1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1804 			 bool host_initiated)
1805 {
1806 	struct msr_data msr;
1807 
1808 	switch (index) {
1809 	case MSR_FS_BASE:
1810 	case MSR_GS_BASE:
1811 	case MSR_KERNEL_GS_BASE:
1812 	case MSR_CSTAR:
1813 	case MSR_LSTAR:
1814 		if (is_noncanonical_address(data, vcpu))
1815 			return 1;
1816 		break;
1817 	case MSR_IA32_SYSENTER_EIP:
1818 	case MSR_IA32_SYSENTER_ESP:
1819 		/*
1820 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1821 		 * non-canonical address is written on Intel but not on
1822 		 * AMD (which ignores the top 32-bits, because it does
1823 		 * not implement 64-bit SYSENTER).
1824 		 *
1825 		 * 64-bit code should hence be able to write a non-canonical
1826 		 * value on AMD.  Making the address canonical ensures that
1827 		 * vmentry does not fail on Intel after writing a non-canonical
1828 		 * value, and that something deterministic happens if the guest
1829 		 * invokes 64-bit SYSENTER.
1830 		 */
1831 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1832 		break;
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 
1842 		/*
1843 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1844 		 * incomplete and conflicting architectural behavior.  Current
1845 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1846 		 * reserved and always read as zeros.  Enforce Intel's reserved
1847 		 * bits check if and only if the guest CPU is Intel, and clear
1848 		 * the bits in all other cases.  This ensures cross-vendor
1849 		 * migration will provide consistent behavior for the guest.
1850 		 */
1851 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1852 			return 1;
1853 
1854 		data = (u32)data;
1855 		break;
1856 	}
1857 
1858 	msr.data = data;
1859 	msr.index = index;
1860 	msr.host_initiated = host_initiated;
1861 
1862 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1863 }
1864 
1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1866 				     u32 index, u64 data, bool host_initiated)
1867 {
1868 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1869 
1870 	if (ret == KVM_MSR_RET_INVALID)
1871 		if (kvm_msr_ignored_check(index, data, true))
1872 			ret = 0;
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Read the MSR specified by @index into @data.  Select MSR specific fault
1879  * checks are bypassed if @host_initiated is %true.
1880  * Returns 0 on success, non-0 otherwise.
1881  * Assumes vcpu_load() was already called.
1882  */
1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1884 		  bool host_initiated)
1885 {
1886 	struct msr_data msr;
1887 	int ret;
1888 
1889 	switch (index) {
1890 	case MSR_TSC_AUX:
1891 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1892 			return 1;
1893 
1894 		if (!host_initiated &&
1895 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1896 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1897 			return 1;
1898 		break;
1899 	}
1900 
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1905 	if (!ret)
1906 		*data = msr.data;
1907 	return ret;
1908 }
1909 
1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1911 				     u32 index, u64 *data, bool host_initiated)
1912 {
1913 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1914 
1915 	if (ret == KVM_MSR_RET_INVALID) {
1916 		/* Unconditionally clear *data for simplicity */
1917 		*data = 0;
1918 		if (kvm_msr_ignored_check(index, 0, false))
1919 			ret = 0;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1928 		return KVM_MSR_RET_FILTERED;
1929 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 
1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1933 {
1934 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1935 		return KVM_MSR_RET_FILTERED;
1936 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 
1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1940 {
1941 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_get_msr);
1944 
1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1946 {
1947 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_set_msr);
1950 
1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 	if (!vcpu->run->msr.error) {
1954 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1955 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1956 	}
1957 }
1958 
1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1960 {
1961 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1962 }
1963 
1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1965 {
1966 	complete_userspace_rdmsr(vcpu);
1967 	return complete_emulated_msr_access(vcpu);
1968 }
1969 
1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1971 {
1972 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1973 }
1974 
1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1976 {
1977 	complete_userspace_rdmsr(vcpu);
1978 	return complete_fast_msr_access(vcpu);
1979 }
1980 
1981 static u64 kvm_msr_reason(int r)
1982 {
1983 	switch (r) {
1984 	case KVM_MSR_RET_INVALID:
1985 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1986 	case KVM_MSR_RET_FILTERED:
1987 		return KVM_MSR_EXIT_REASON_FILTER;
1988 	default:
1989 		return KVM_MSR_EXIT_REASON_INVAL;
1990 	}
1991 }
1992 
1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1994 			      u32 exit_reason, u64 data,
1995 			      int (*completion)(struct kvm_vcpu *vcpu),
1996 			      int r)
1997 {
1998 	u64 msr_reason = kvm_msr_reason(r);
1999 
2000 	/* Check if the user wanted to know about this MSR fault */
2001 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2002 		return 0;
2003 
2004 	vcpu->run->exit_reason = exit_reason;
2005 	vcpu->run->msr.error = 0;
2006 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2007 	vcpu->run->msr.reason = msr_reason;
2008 	vcpu->run->msr.index = index;
2009 	vcpu->run->msr.data = data;
2010 	vcpu->arch.complete_userspace_io = completion;
2011 
2012 	return 1;
2013 }
2014 
2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	u32 ecx = kvm_rcx_read(vcpu);
2018 	u64 data;
2019 	int r;
2020 
2021 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2022 
2023 	if (!r) {
2024 		trace_kvm_msr_read(ecx, data);
2025 
2026 		kvm_rax_write(vcpu, data & -1u);
2027 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2028 	} else {
2029 		/* MSR read failed? See if we should ask user space */
2030 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2031 				       complete_fast_rdmsr, r))
2032 			return 0;
2033 		trace_kvm_msr_read_ex(ecx);
2034 	}
2035 
2036 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2039 
2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2041 {
2042 	u32 ecx = kvm_rcx_read(vcpu);
2043 	u64 data = kvm_read_edx_eax(vcpu);
2044 	int r;
2045 
2046 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2047 
2048 	if (!r) {
2049 		trace_kvm_msr_write(ecx, data);
2050 	} else {
2051 		/* MSR write failed? See if we should ask user space */
2052 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2053 				       complete_fast_msr_access, r))
2054 			return 0;
2055 		/* Signal all other negative errors to userspace */
2056 		if (r < 0)
2057 			return r;
2058 		trace_kvm_msr_write_ex(ecx, data);
2059 	}
2060 
2061 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2064 
2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2066 {
2067 	return kvm_skip_emulated_instruction(vcpu);
2068 }
2069 
2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2071 {
2072 	/* Treat an INVD instruction as a NOP and just skip it. */
2073 	return kvm_emulate_as_nop(vcpu);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2076 
2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2078 {
2079 	kvm_queue_exception(vcpu, UD_VECTOR);
2080 	return 1;
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2083 
2084 
2085 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2086 {
2087 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2088 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2089 		return kvm_handle_invalid_op(vcpu);
2090 
2091 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2092 	return kvm_emulate_as_nop(vcpu);
2093 }
2094 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2095 {
2096 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2099 
2100 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2101 {
2102 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2103 }
2104 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2105 
2106 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2107 {
2108 	xfer_to_guest_mode_prepare();
2109 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2110 		xfer_to_guest_mode_work_pending();
2111 }
2112 
2113 /*
2114  * The fast path for frequent and performance sensitive wrmsr emulation,
2115  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2116  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2117  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2118  * other cases which must be called after interrupts are enabled on the host.
2119  */
2120 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2121 {
2122 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2123 		return 1;
2124 
2125 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2126 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2127 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2128 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2129 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2130 
2131 	return 1;
2132 }
2133 
2134 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2135 {
2136 	if (!kvm_can_use_hv_timer(vcpu))
2137 		return 1;
2138 
2139 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2140 	return 0;
2141 }
2142 
2143 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2144 {
2145 	u32 msr = kvm_rcx_read(vcpu);
2146 	u64 data;
2147 	fastpath_t ret = EXIT_FASTPATH_NONE;
2148 
2149 	switch (msr) {
2150 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 		data = kvm_read_edx_eax(vcpu);
2152 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2153 			kvm_skip_emulated_instruction(vcpu);
2154 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2155 		}
2156 		break;
2157 	case MSR_IA32_TSC_DEADLINE:
2158 		data = kvm_read_edx_eax(vcpu);
2159 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2160 			kvm_skip_emulated_instruction(vcpu);
2161 			ret = EXIT_FASTPATH_REENTER_GUEST;
2162 		}
2163 		break;
2164 	default:
2165 		break;
2166 	}
2167 
2168 	if (ret != EXIT_FASTPATH_NONE)
2169 		trace_kvm_msr_write(msr, data);
2170 
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2174 
2175 /*
2176  * Adapt set_msr() to msr_io()'s calling convention
2177  */
2178 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2179 {
2180 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2181 }
2182 
2183 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2184 {
2185 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2186 }
2187 
2188 #ifdef CONFIG_X86_64
2189 struct pvclock_clock {
2190 	int vclock_mode;
2191 	u64 cycle_last;
2192 	u64 mask;
2193 	u32 mult;
2194 	u32 shift;
2195 	u64 base_cycles;
2196 	u64 offset;
2197 };
2198 
2199 struct pvclock_gtod_data {
2200 	seqcount_t	seq;
2201 
2202 	struct pvclock_clock clock; /* extract of a clocksource struct */
2203 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2204 
2205 	ktime_t		offs_boot;
2206 	u64		wall_time_sec;
2207 };
2208 
2209 static struct pvclock_gtod_data pvclock_gtod_data;
2210 
2211 static void update_pvclock_gtod(struct timekeeper *tk)
2212 {
2213 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2214 
2215 	write_seqcount_begin(&vdata->seq);
2216 
2217 	/* copy pvclock gtod data */
2218 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2219 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2220 	vdata->clock.mask		= tk->tkr_mono.mask;
2221 	vdata->clock.mult		= tk->tkr_mono.mult;
2222 	vdata->clock.shift		= tk->tkr_mono.shift;
2223 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2224 	vdata->clock.offset		= tk->tkr_mono.base;
2225 
2226 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2227 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2228 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2229 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2230 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2231 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2232 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2233 
2234 	vdata->wall_time_sec            = tk->xtime_sec;
2235 
2236 	vdata->offs_boot		= tk->offs_boot;
2237 
2238 	write_seqcount_end(&vdata->seq);
2239 }
2240 
2241 static s64 get_kvmclock_base_ns(void)
2242 {
2243 	/* Count up from boot time, but with the frequency of the raw clock.  */
2244 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2245 }
2246 #else
2247 static s64 get_kvmclock_base_ns(void)
2248 {
2249 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2250 	return ktime_get_boottime_ns();
2251 }
2252 #endif
2253 
2254 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2255 {
2256 	int version;
2257 	int r;
2258 	struct pvclock_wall_clock wc;
2259 	u32 wc_sec_hi;
2260 	u64 wall_nsec;
2261 
2262 	if (!wall_clock)
2263 		return;
2264 
2265 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2266 	if (r)
2267 		return;
2268 
2269 	if (version & 1)
2270 		++version;  /* first time write, random junk */
2271 
2272 	++version;
2273 
2274 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2275 		return;
2276 
2277 	/*
2278 	 * The guest calculates current wall clock time by adding
2279 	 * system time (updated by kvm_guest_time_update below) to the
2280 	 * wall clock specified here.  We do the reverse here.
2281 	 */
2282 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2283 
2284 	wc.nsec = do_div(wall_nsec, 1000000000);
2285 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2286 	wc.version = version;
2287 
2288 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2289 
2290 	if (sec_hi_ofs) {
2291 		wc_sec_hi = wall_nsec >> 32;
2292 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2293 				&wc_sec_hi, sizeof(wc_sec_hi));
2294 	}
2295 
2296 	version++;
2297 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2298 }
2299 
2300 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2301 				  bool old_msr, bool host_initiated)
2302 {
2303 	struct kvm_arch *ka = &vcpu->kvm->arch;
2304 
2305 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2306 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2307 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2308 
2309 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2310 	}
2311 
2312 	vcpu->arch.time = system_time;
2313 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2314 
2315 	/* we verify if the enable bit is set... */
2316 	if (system_time & 1)
2317 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2318 				 sizeof(struct pvclock_vcpu_time_info));
2319 	else
2320 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2321 
2322 	return;
2323 }
2324 
2325 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2326 {
2327 	do_shl32_div32(dividend, divisor);
2328 	return dividend;
2329 }
2330 
2331 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2332 			       s8 *pshift, u32 *pmultiplier)
2333 {
2334 	uint64_t scaled64;
2335 	int32_t  shift = 0;
2336 	uint64_t tps64;
2337 	uint32_t tps32;
2338 
2339 	tps64 = base_hz;
2340 	scaled64 = scaled_hz;
2341 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2342 		tps64 >>= 1;
2343 		shift--;
2344 	}
2345 
2346 	tps32 = (uint32_t)tps64;
2347 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2348 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2349 			scaled64 >>= 1;
2350 		else
2351 			tps32 <<= 1;
2352 		shift++;
2353 	}
2354 
2355 	*pshift = shift;
2356 	*pmultiplier = div_frac(scaled64, tps32);
2357 }
2358 
2359 #ifdef CONFIG_X86_64
2360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2361 #endif
2362 
2363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2364 static unsigned long max_tsc_khz;
2365 
2366 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2367 {
2368 	u64 v = (u64)khz * (1000000 + ppm);
2369 	do_div(v, 1000000);
2370 	return v;
2371 }
2372 
2373 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2374 
2375 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2376 {
2377 	u64 ratio;
2378 
2379 	/* Guest TSC same frequency as host TSC? */
2380 	if (!scale) {
2381 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2382 		return 0;
2383 	}
2384 
2385 	/* TSC scaling supported? */
2386 	if (!kvm_caps.has_tsc_control) {
2387 		if (user_tsc_khz > tsc_khz) {
2388 			vcpu->arch.tsc_catchup = 1;
2389 			vcpu->arch.tsc_always_catchup = 1;
2390 			return 0;
2391 		} else {
2392 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2393 			return -1;
2394 		}
2395 	}
2396 
2397 	/* TSC scaling required  - calculate ratio */
2398 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2399 				user_tsc_khz, tsc_khz);
2400 
2401 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2402 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2403 			            user_tsc_khz);
2404 		return -1;
2405 	}
2406 
2407 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2408 	return 0;
2409 }
2410 
2411 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2412 {
2413 	u32 thresh_lo, thresh_hi;
2414 	int use_scaling = 0;
2415 
2416 	/* tsc_khz can be zero if TSC calibration fails */
2417 	if (user_tsc_khz == 0) {
2418 		/* set tsc_scaling_ratio to a safe value */
2419 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2420 		return -1;
2421 	}
2422 
2423 	/* Compute a scale to convert nanoseconds in TSC cycles */
2424 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2425 			   &vcpu->arch.virtual_tsc_shift,
2426 			   &vcpu->arch.virtual_tsc_mult);
2427 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2428 
2429 	/*
2430 	 * Compute the variation in TSC rate which is acceptable
2431 	 * within the range of tolerance and decide if the
2432 	 * rate being applied is within that bounds of the hardware
2433 	 * rate.  If so, no scaling or compensation need be done.
2434 	 */
2435 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2436 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2437 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2438 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2439 			 user_tsc_khz, thresh_lo, thresh_hi);
2440 		use_scaling = 1;
2441 	}
2442 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2443 }
2444 
2445 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2446 {
2447 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2448 				      vcpu->arch.virtual_tsc_mult,
2449 				      vcpu->arch.virtual_tsc_shift);
2450 	tsc += vcpu->arch.this_tsc_write;
2451 	return tsc;
2452 }
2453 
2454 #ifdef CONFIG_X86_64
2455 static inline int gtod_is_based_on_tsc(int mode)
2456 {
2457 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2458 }
2459 #endif
2460 
2461 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2462 {
2463 #ifdef CONFIG_X86_64
2464 	bool vcpus_matched;
2465 	struct kvm_arch *ka = &vcpu->kvm->arch;
2466 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2467 
2468 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2469 			 atomic_read(&vcpu->kvm->online_vcpus));
2470 
2471 	/*
2472 	 * Once the masterclock is enabled, always perform request in
2473 	 * order to update it.
2474 	 *
2475 	 * In order to enable masterclock, the host clocksource must be TSC
2476 	 * and the vcpus need to have matched TSCs.  When that happens,
2477 	 * perform request to enable masterclock.
2478 	 */
2479 	if (ka->use_master_clock ||
2480 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2481 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2482 
2483 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2484 			    atomic_read(&vcpu->kvm->online_vcpus),
2485 		            ka->use_master_clock, gtod->clock.vclock_mode);
2486 #endif
2487 }
2488 
2489 /*
2490  * Multiply tsc by a fixed point number represented by ratio.
2491  *
2492  * The most significant 64-N bits (mult) of ratio represent the
2493  * integral part of the fixed point number; the remaining N bits
2494  * (frac) represent the fractional part, ie. ratio represents a fixed
2495  * point number (mult + frac * 2^(-N)).
2496  *
2497  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2498  */
2499 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2500 {
2501 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2502 }
2503 
2504 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2505 {
2506 	u64 _tsc = tsc;
2507 
2508 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2509 		_tsc = __scale_tsc(ratio, tsc);
2510 
2511 	return _tsc;
2512 }
2513 
2514 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2515 {
2516 	u64 tsc;
2517 
2518 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2519 
2520 	return target_tsc - tsc;
2521 }
2522 
2523 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2524 {
2525 	return vcpu->arch.l1_tsc_offset +
2526 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2529 
2530 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2531 {
2532 	u64 nested_offset;
2533 
2534 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2535 		nested_offset = l1_offset;
2536 	else
2537 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2538 						kvm_caps.tsc_scaling_ratio_frac_bits);
2539 
2540 	nested_offset += l2_offset;
2541 	return nested_offset;
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2544 
2545 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2546 {
2547 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2548 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2549 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2550 
2551 	return l1_multiplier;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2554 
2555 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2556 {
2557 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2558 				   vcpu->arch.l1_tsc_offset,
2559 				   l1_offset);
2560 
2561 	vcpu->arch.l1_tsc_offset = l1_offset;
2562 
2563 	/*
2564 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2565 	 * according to the spec this should set L1's TSC (as opposed to
2566 	 * setting L1's offset for L2).
2567 	 */
2568 	if (is_guest_mode(vcpu))
2569 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2570 			l1_offset,
2571 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2572 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2573 	else
2574 		vcpu->arch.tsc_offset = l1_offset;
2575 
2576 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2577 }
2578 
2579 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2580 {
2581 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2582 
2583 	/* Userspace is changing the multiplier while L2 is active */
2584 	if (is_guest_mode(vcpu))
2585 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2586 			l1_multiplier,
2587 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2588 	else
2589 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2590 
2591 	if (kvm_caps.has_tsc_control)
2592 		static_call(kvm_x86_write_tsc_multiplier)(
2593 			vcpu, vcpu->arch.tsc_scaling_ratio);
2594 }
2595 
2596 static inline bool kvm_check_tsc_unstable(void)
2597 {
2598 #ifdef CONFIG_X86_64
2599 	/*
2600 	 * TSC is marked unstable when we're running on Hyper-V,
2601 	 * 'TSC page' clocksource is good.
2602 	 */
2603 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2604 		return false;
2605 #endif
2606 	return check_tsc_unstable();
2607 }
2608 
2609 /*
2610  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2611  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2612  * participates in.
2613  */
2614 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2615 				  u64 ns, bool matched)
2616 {
2617 	struct kvm *kvm = vcpu->kvm;
2618 
2619 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2620 
2621 	/*
2622 	 * We also track th most recent recorded KHZ, write and time to
2623 	 * allow the matching interval to be extended at each write.
2624 	 */
2625 	kvm->arch.last_tsc_nsec = ns;
2626 	kvm->arch.last_tsc_write = tsc;
2627 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2628 	kvm->arch.last_tsc_offset = offset;
2629 
2630 	vcpu->arch.last_guest_tsc = tsc;
2631 
2632 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2633 
2634 	if (!matched) {
2635 		/*
2636 		 * We split periods of matched TSC writes into generations.
2637 		 * For each generation, we track the original measured
2638 		 * nanosecond time, offset, and write, so if TSCs are in
2639 		 * sync, we can match exact offset, and if not, we can match
2640 		 * exact software computation in compute_guest_tsc()
2641 		 *
2642 		 * These values are tracked in kvm->arch.cur_xxx variables.
2643 		 */
2644 		kvm->arch.cur_tsc_generation++;
2645 		kvm->arch.cur_tsc_nsec = ns;
2646 		kvm->arch.cur_tsc_write = tsc;
2647 		kvm->arch.cur_tsc_offset = offset;
2648 		kvm->arch.nr_vcpus_matched_tsc = 0;
2649 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2650 		kvm->arch.nr_vcpus_matched_tsc++;
2651 	}
2652 
2653 	/* Keep track of which generation this VCPU has synchronized to */
2654 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2655 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2656 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2657 
2658 	kvm_track_tsc_matching(vcpu);
2659 }
2660 
2661 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2662 {
2663 	struct kvm *kvm = vcpu->kvm;
2664 	u64 offset, ns, elapsed;
2665 	unsigned long flags;
2666 	bool matched = false;
2667 	bool synchronizing = false;
2668 
2669 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2670 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2671 	ns = get_kvmclock_base_ns();
2672 	elapsed = ns - kvm->arch.last_tsc_nsec;
2673 
2674 	if (vcpu->arch.virtual_tsc_khz) {
2675 		if (data == 0) {
2676 			/*
2677 			 * detection of vcpu initialization -- need to sync
2678 			 * with other vCPUs. This particularly helps to keep
2679 			 * kvm_clock stable after CPU hotplug
2680 			 */
2681 			synchronizing = true;
2682 		} else {
2683 			u64 tsc_exp = kvm->arch.last_tsc_write +
2684 						nsec_to_cycles(vcpu, elapsed);
2685 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2686 			/*
2687 			 * Special case: TSC write with a small delta (1 second)
2688 			 * of virtual cycle time against real time is
2689 			 * interpreted as an attempt to synchronize the CPU.
2690 			 */
2691 			synchronizing = data < tsc_exp + tsc_hz &&
2692 					data + tsc_hz > tsc_exp;
2693 		}
2694 	}
2695 
2696 	/*
2697 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2698 	 * TSC, we add elapsed time in this computation.  We could let the
2699 	 * compensation code attempt to catch up if we fall behind, but
2700 	 * it's better to try to match offsets from the beginning.
2701          */
2702 	if (synchronizing &&
2703 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2704 		if (!kvm_check_tsc_unstable()) {
2705 			offset = kvm->arch.cur_tsc_offset;
2706 		} else {
2707 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2708 			data += delta;
2709 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2710 		}
2711 		matched = true;
2712 	}
2713 
2714 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2715 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2716 }
2717 
2718 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2719 					   s64 adjustment)
2720 {
2721 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2722 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2723 }
2724 
2725 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2726 {
2727 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2728 		WARN_ON(adjustment < 0);
2729 	adjustment = kvm_scale_tsc((u64) adjustment,
2730 				   vcpu->arch.l1_tsc_scaling_ratio);
2731 	adjust_tsc_offset_guest(vcpu, adjustment);
2732 }
2733 
2734 #ifdef CONFIG_X86_64
2735 
2736 static u64 read_tsc(void)
2737 {
2738 	u64 ret = (u64)rdtsc_ordered();
2739 	u64 last = pvclock_gtod_data.clock.cycle_last;
2740 
2741 	if (likely(ret >= last))
2742 		return ret;
2743 
2744 	/*
2745 	 * GCC likes to generate cmov here, but this branch is extremely
2746 	 * predictable (it's just a function of time and the likely is
2747 	 * very likely) and there's a data dependence, so force GCC
2748 	 * to generate a branch instead.  I don't barrier() because
2749 	 * we don't actually need a barrier, and if this function
2750 	 * ever gets inlined it will generate worse code.
2751 	 */
2752 	asm volatile ("");
2753 	return last;
2754 }
2755 
2756 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2757 			  int *mode)
2758 {
2759 	long v;
2760 	u64 tsc_pg_val;
2761 
2762 	switch (clock->vclock_mode) {
2763 	case VDSO_CLOCKMODE_HVCLOCK:
2764 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2765 						  tsc_timestamp);
2766 		if (tsc_pg_val != U64_MAX) {
2767 			/* TSC page valid */
2768 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2769 			v = (tsc_pg_val - clock->cycle_last) &
2770 				clock->mask;
2771 		} else {
2772 			/* TSC page invalid */
2773 			*mode = VDSO_CLOCKMODE_NONE;
2774 		}
2775 		break;
2776 	case VDSO_CLOCKMODE_TSC:
2777 		*mode = VDSO_CLOCKMODE_TSC;
2778 		*tsc_timestamp = read_tsc();
2779 		v = (*tsc_timestamp - clock->cycle_last) &
2780 			clock->mask;
2781 		break;
2782 	default:
2783 		*mode = VDSO_CLOCKMODE_NONE;
2784 	}
2785 
2786 	if (*mode == VDSO_CLOCKMODE_NONE)
2787 		*tsc_timestamp = v = 0;
2788 
2789 	return v * clock->mult;
2790 }
2791 
2792 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2793 {
2794 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2795 	unsigned long seq;
2796 	int mode;
2797 	u64 ns;
2798 
2799 	do {
2800 		seq = read_seqcount_begin(&gtod->seq);
2801 		ns = gtod->raw_clock.base_cycles;
2802 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2803 		ns >>= gtod->raw_clock.shift;
2804 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2805 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2806 	*t = ns;
2807 
2808 	return mode;
2809 }
2810 
2811 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2812 {
2813 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2814 	unsigned long seq;
2815 	int mode;
2816 	u64 ns;
2817 
2818 	do {
2819 		seq = read_seqcount_begin(&gtod->seq);
2820 		ts->tv_sec = gtod->wall_time_sec;
2821 		ns = gtod->clock.base_cycles;
2822 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2823 		ns >>= gtod->clock.shift;
2824 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2825 
2826 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2827 	ts->tv_nsec = ns;
2828 
2829 	return mode;
2830 }
2831 
2832 /* returns true if host is using TSC based clocksource */
2833 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2834 {
2835 	/* checked again under seqlock below */
2836 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2837 		return false;
2838 
2839 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2840 						      tsc_timestamp));
2841 }
2842 
2843 /* returns true if host is using TSC based clocksource */
2844 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2845 					   u64 *tsc_timestamp)
2846 {
2847 	/* checked again under seqlock below */
2848 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2849 		return false;
2850 
2851 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2852 }
2853 #endif
2854 
2855 /*
2856  *
2857  * Assuming a stable TSC across physical CPUS, and a stable TSC
2858  * across virtual CPUs, the following condition is possible.
2859  * Each numbered line represents an event visible to both
2860  * CPUs at the next numbered event.
2861  *
2862  * "timespecX" represents host monotonic time. "tscX" represents
2863  * RDTSC value.
2864  *
2865  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2866  *
2867  * 1.  read timespec0,tsc0
2868  * 2.					| timespec1 = timespec0 + N
2869  * 					| tsc1 = tsc0 + M
2870  * 3. transition to guest		| transition to guest
2871  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2872  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2873  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2874  *
2875  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2876  *
2877  * 	- ret0 < ret1
2878  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2879  *		...
2880  *	- 0 < N - M => M < N
2881  *
2882  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2883  * always the case (the difference between two distinct xtime instances
2884  * might be smaller then the difference between corresponding TSC reads,
2885  * when updating guest vcpus pvclock areas).
2886  *
2887  * To avoid that problem, do not allow visibility of distinct
2888  * system_timestamp/tsc_timestamp values simultaneously: use a master
2889  * copy of host monotonic time values. Update that master copy
2890  * in lockstep.
2891  *
2892  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2893  *
2894  */
2895 
2896 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2897 {
2898 #ifdef CONFIG_X86_64
2899 	struct kvm_arch *ka = &kvm->arch;
2900 	int vclock_mode;
2901 	bool host_tsc_clocksource, vcpus_matched;
2902 
2903 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2904 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2905 			atomic_read(&kvm->online_vcpus));
2906 
2907 	/*
2908 	 * If the host uses TSC clock, then passthrough TSC as stable
2909 	 * to the guest.
2910 	 */
2911 	host_tsc_clocksource = kvm_get_time_and_clockread(
2912 					&ka->master_kernel_ns,
2913 					&ka->master_cycle_now);
2914 
2915 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2916 				&& !ka->backwards_tsc_observed
2917 				&& !ka->boot_vcpu_runs_old_kvmclock;
2918 
2919 	if (ka->use_master_clock)
2920 		atomic_set(&kvm_guest_has_master_clock, 1);
2921 
2922 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2923 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2924 					vcpus_matched);
2925 #endif
2926 }
2927 
2928 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2929 {
2930 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2931 }
2932 
2933 static void __kvm_start_pvclock_update(struct kvm *kvm)
2934 {
2935 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2936 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2937 }
2938 
2939 static void kvm_start_pvclock_update(struct kvm *kvm)
2940 {
2941 	kvm_make_mclock_inprogress_request(kvm);
2942 
2943 	/* no guest entries from this point */
2944 	__kvm_start_pvclock_update(kvm);
2945 }
2946 
2947 static void kvm_end_pvclock_update(struct kvm *kvm)
2948 {
2949 	struct kvm_arch *ka = &kvm->arch;
2950 	struct kvm_vcpu *vcpu;
2951 	unsigned long i;
2952 
2953 	write_seqcount_end(&ka->pvclock_sc);
2954 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2955 	kvm_for_each_vcpu(i, vcpu, kvm)
2956 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2957 
2958 	/* guest entries allowed */
2959 	kvm_for_each_vcpu(i, vcpu, kvm)
2960 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2961 }
2962 
2963 static void kvm_update_masterclock(struct kvm *kvm)
2964 {
2965 	kvm_hv_request_tsc_page_update(kvm);
2966 	kvm_start_pvclock_update(kvm);
2967 	pvclock_update_vm_gtod_copy(kvm);
2968 	kvm_end_pvclock_update(kvm);
2969 }
2970 
2971 /*
2972  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2973  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2974  * can change during boot even if the TSC is constant, as it's possible for KVM
2975  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2976  * notification when calibration completes, but practically speaking calibration
2977  * will complete before userspace is alive enough to create VMs.
2978  */
2979 static unsigned long get_cpu_tsc_khz(void)
2980 {
2981 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2982 		return tsc_khz;
2983 	else
2984 		return __this_cpu_read(cpu_tsc_khz);
2985 }
2986 
2987 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2988 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2989 {
2990 	struct kvm_arch *ka = &kvm->arch;
2991 	struct pvclock_vcpu_time_info hv_clock;
2992 
2993 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2994 	get_cpu();
2995 
2996 	data->flags = 0;
2997 	if (ka->use_master_clock &&
2998 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
2999 #ifdef CONFIG_X86_64
3000 		struct timespec64 ts;
3001 
3002 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3003 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3004 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3005 		} else
3006 #endif
3007 		data->host_tsc = rdtsc();
3008 
3009 		data->flags |= KVM_CLOCK_TSC_STABLE;
3010 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3011 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3012 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3013 				   &hv_clock.tsc_shift,
3014 				   &hv_clock.tsc_to_system_mul);
3015 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3016 	} else {
3017 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3018 	}
3019 
3020 	put_cpu();
3021 }
3022 
3023 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3024 {
3025 	struct kvm_arch *ka = &kvm->arch;
3026 	unsigned seq;
3027 
3028 	do {
3029 		seq = read_seqcount_begin(&ka->pvclock_sc);
3030 		__get_kvmclock(kvm, data);
3031 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3032 }
3033 
3034 u64 get_kvmclock_ns(struct kvm *kvm)
3035 {
3036 	struct kvm_clock_data data;
3037 
3038 	get_kvmclock(kvm, &data);
3039 	return data.clock;
3040 }
3041 
3042 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3043 				    struct gfn_to_pfn_cache *gpc,
3044 				    unsigned int offset)
3045 {
3046 	struct kvm_vcpu_arch *vcpu = &v->arch;
3047 	struct pvclock_vcpu_time_info *guest_hv_clock;
3048 	unsigned long flags;
3049 
3050 	read_lock_irqsave(&gpc->lock, flags);
3051 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3052 		read_unlock_irqrestore(&gpc->lock, flags);
3053 
3054 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3055 			return;
3056 
3057 		read_lock_irqsave(&gpc->lock, flags);
3058 	}
3059 
3060 	guest_hv_clock = (void *)(gpc->khva + offset);
3061 
3062 	/*
3063 	 * This VCPU is paused, but it's legal for a guest to read another
3064 	 * VCPU's kvmclock, so we really have to follow the specification where
3065 	 * it says that version is odd if data is being modified, and even after
3066 	 * it is consistent.
3067 	 */
3068 
3069 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3070 	smp_wmb();
3071 
3072 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3073 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3074 
3075 	if (vcpu->pvclock_set_guest_stopped_request) {
3076 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3077 		vcpu->pvclock_set_guest_stopped_request = false;
3078 	}
3079 
3080 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3081 	smp_wmb();
3082 
3083 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3084 
3085 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3086 	read_unlock_irqrestore(&gpc->lock, flags);
3087 
3088 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3089 }
3090 
3091 static int kvm_guest_time_update(struct kvm_vcpu *v)
3092 {
3093 	unsigned long flags, tgt_tsc_khz;
3094 	unsigned seq;
3095 	struct kvm_vcpu_arch *vcpu = &v->arch;
3096 	struct kvm_arch *ka = &v->kvm->arch;
3097 	s64 kernel_ns;
3098 	u64 tsc_timestamp, host_tsc;
3099 	u8 pvclock_flags;
3100 	bool use_master_clock;
3101 
3102 	kernel_ns = 0;
3103 	host_tsc = 0;
3104 
3105 	/*
3106 	 * If the host uses TSC clock, then passthrough TSC as stable
3107 	 * to the guest.
3108 	 */
3109 	do {
3110 		seq = read_seqcount_begin(&ka->pvclock_sc);
3111 		use_master_clock = ka->use_master_clock;
3112 		if (use_master_clock) {
3113 			host_tsc = ka->master_cycle_now;
3114 			kernel_ns = ka->master_kernel_ns;
3115 		}
3116 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3117 
3118 	/* Keep irq disabled to prevent changes to the clock */
3119 	local_irq_save(flags);
3120 	tgt_tsc_khz = get_cpu_tsc_khz();
3121 	if (unlikely(tgt_tsc_khz == 0)) {
3122 		local_irq_restore(flags);
3123 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3124 		return 1;
3125 	}
3126 	if (!use_master_clock) {
3127 		host_tsc = rdtsc();
3128 		kernel_ns = get_kvmclock_base_ns();
3129 	}
3130 
3131 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3132 
3133 	/*
3134 	 * We may have to catch up the TSC to match elapsed wall clock
3135 	 * time for two reasons, even if kvmclock is used.
3136 	 *   1) CPU could have been running below the maximum TSC rate
3137 	 *   2) Broken TSC compensation resets the base at each VCPU
3138 	 *      entry to avoid unknown leaps of TSC even when running
3139 	 *      again on the same CPU.  This may cause apparent elapsed
3140 	 *      time to disappear, and the guest to stand still or run
3141 	 *	very slowly.
3142 	 */
3143 	if (vcpu->tsc_catchup) {
3144 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3145 		if (tsc > tsc_timestamp) {
3146 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3147 			tsc_timestamp = tsc;
3148 		}
3149 	}
3150 
3151 	local_irq_restore(flags);
3152 
3153 	/* With all the info we got, fill in the values */
3154 
3155 	if (kvm_caps.has_tsc_control)
3156 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3157 					    v->arch.l1_tsc_scaling_ratio);
3158 
3159 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3160 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3161 				   &vcpu->hv_clock.tsc_shift,
3162 				   &vcpu->hv_clock.tsc_to_system_mul);
3163 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3164 	}
3165 
3166 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3167 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3168 	vcpu->last_guest_tsc = tsc_timestamp;
3169 
3170 	/* If the host uses TSC clocksource, then it is stable */
3171 	pvclock_flags = 0;
3172 	if (use_master_clock)
3173 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3174 
3175 	vcpu->hv_clock.flags = pvclock_flags;
3176 
3177 	if (vcpu->pv_time.active)
3178 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3179 	if (vcpu->xen.vcpu_info_cache.active)
3180 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3181 					offsetof(struct compat_vcpu_info, time));
3182 	if (vcpu->xen.vcpu_time_info_cache.active)
3183 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3184 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3185 	return 0;
3186 }
3187 
3188 /*
3189  * kvmclock updates which are isolated to a given vcpu, such as
3190  * vcpu->cpu migration, should not allow system_timestamp from
3191  * the rest of the vcpus to remain static. Otherwise ntp frequency
3192  * correction applies to one vcpu's system_timestamp but not
3193  * the others.
3194  *
3195  * So in those cases, request a kvmclock update for all vcpus.
3196  * We need to rate-limit these requests though, as they can
3197  * considerably slow guests that have a large number of vcpus.
3198  * The time for a remote vcpu to update its kvmclock is bound
3199  * by the delay we use to rate-limit the updates.
3200  */
3201 
3202 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3203 
3204 static void kvmclock_update_fn(struct work_struct *work)
3205 {
3206 	unsigned long i;
3207 	struct delayed_work *dwork = to_delayed_work(work);
3208 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3209 					   kvmclock_update_work);
3210 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3211 	struct kvm_vcpu *vcpu;
3212 
3213 	kvm_for_each_vcpu(i, vcpu, kvm) {
3214 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3215 		kvm_vcpu_kick(vcpu);
3216 	}
3217 }
3218 
3219 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3220 {
3221 	struct kvm *kvm = v->kvm;
3222 
3223 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3224 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3225 					KVMCLOCK_UPDATE_DELAY);
3226 }
3227 
3228 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3229 
3230 static void kvmclock_sync_fn(struct work_struct *work)
3231 {
3232 	struct delayed_work *dwork = to_delayed_work(work);
3233 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3234 					   kvmclock_sync_work);
3235 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3236 
3237 	if (!kvmclock_periodic_sync)
3238 		return;
3239 
3240 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3241 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3242 					KVMCLOCK_SYNC_PERIOD);
3243 }
3244 
3245 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3246 static bool is_mci_control_msr(u32 msr)
3247 {
3248 	return (msr & 3) == 0;
3249 }
3250 static bool is_mci_status_msr(u32 msr)
3251 {
3252 	return (msr & 3) == 1;
3253 }
3254 
3255 /*
3256  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3257  */
3258 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3259 {
3260 	/* McStatusWrEn enabled? */
3261 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3262 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3263 
3264 	return false;
3265 }
3266 
3267 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3268 {
3269 	u64 mcg_cap = vcpu->arch.mcg_cap;
3270 	unsigned bank_num = mcg_cap & 0xff;
3271 	u32 msr = msr_info->index;
3272 	u64 data = msr_info->data;
3273 	u32 offset, last_msr;
3274 
3275 	switch (msr) {
3276 	case MSR_IA32_MCG_STATUS:
3277 		vcpu->arch.mcg_status = data;
3278 		break;
3279 	case MSR_IA32_MCG_CTL:
3280 		if (!(mcg_cap & MCG_CTL_P) &&
3281 		    (data || !msr_info->host_initiated))
3282 			return 1;
3283 		if (data != 0 && data != ~(u64)0)
3284 			return 1;
3285 		vcpu->arch.mcg_ctl = data;
3286 		break;
3287 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3288 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3289 		if (msr > last_msr)
3290 			return 1;
3291 
3292 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3293 			return 1;
3294 		/* An attempt to write a 1 to a reserved bit raises #GP */
3295 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3296 			return 1;
3297 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3298 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3299 		vcpu->arch.mci_ctl2_banks[offset] = data;
3300 		break;
3301 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3302 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3303 		if (msr > last_msr)
3304 			return 1;
3305 
3306 		/*
3307 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3308 		 * values are architecturally undefined.  But, some Linux
3309 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3310 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3311 		 * other bits in order to avoid an uncaught #GP in the guest.
3312 		 *
3313 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3314 		 * single-bit ECC data errors.
3315 		 */
3316 		if (is_mci_control_msr(msr) &&
3317 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3318 			return 1;
3319 
3320 		/*
3321 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3322 		 * AMD-based CPUs allow non-zero values, but if and only if
3323 		 * HWCR[McStatusWrEn] is set.
3324 		 */
3325 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3326 		    data != 0 && !can_set_mci_status(vcpu))
3327 			return 1;
3328 
3329 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3330 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3331 		vcpu->arch.mce_banks[offset] = data;
3332 		break;
3333 	default:
3334 		return 1;
3335 	}
3336 	return 0;
3337 }
3338 
3339 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3340 {
3341 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3342 
3343 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3344 }
3345 
3346 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3347 {
3348 	gpa_t gpa = data & ~0x3f;
3349 
3350 	/* Bits 4:5 are reserved, Should be zero */
3351 	if (data & 0x30)
3352 		return 1;
3353 
3354 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3355 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3356 		return 1;
3357 
3358 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3359 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3360 		return 1;
3361 
3362 	if (!lapic_in_kernel(vcpu))
3363 		return data ? 1 : 0;
3364 
3365 	vcpu->arch.apf.msr_en_val = data;
3366 
3367 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3368 		kvm_clear_async_pf_completion_queue(vcpu);
3369 		kvm_async_pf_hash_reset(vcpu);
3370 		return 0;
3371 	}
3372 
3373 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3374 					sizeof(u64)))
3375 		return 1;
3376 
3377 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3378 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3379 
3380 	kvm_async_pf_wakeup_all(vcpu);
3381 
3382 	return 0;
3383 }
3384 
3385 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3386 {
3387 	/* Bits 8-63 are reserved */
3388 	if (data >> 8)
3389 		return 1;
3390 
3391 	if (!lapic_in_kernel(vcpu))
3392 		return 1;
3393 
3394 	vcpu->arch.apf.msr_int_val = data;
3395 
3396 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3397 
3398 	return 0;
3399 }
3400 
3401 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3402 {
3403 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3404 	vcpu->arch.time = 0;
3405 }
3406 
3407 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3408 {
3409 	++vcpu->stat.tlb_flush;
3410 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3411 
3412 	/* Flushing all ASIDs flushes the current ASID... */
3413 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3414 }
3415 
3416 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3417 {
3418 	++vcpu->stat.tlb_flush;
3419 
3420 	if (!tdp_enabled) {
3421 		/*
3422 		 * A TLB flush on behalf of the guest is equivalent to
3423 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3424 		 * a forced sync of the shadow page tables.  Ensure all the
3425 		 * roots are synced and the guest TLB in hardware is clean.
3426 		 */
3427 		kvm_mmu_sync_roots(vcpu);
3428 		kvm_mmu_sync_prev_roots(vcpu);
3429 	}
3430 
3431 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3432 
3433 	/*
3434 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3435 	 * grained flushing.
3436 	 */
3437 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3438 }
3439 
3440 
3441 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3442 {
3443 	++vcpu->stat.tlb_flush;
3444 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3445 }
3446 
3447 /*
3448  * Service "local" TLB flush requests, which are specific to the current MMU
3449  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3450  * TLB flushes that are targeted at an MMU context also need to be serviced
3451  * prior before nested VM-Enter/VM-Exit.
3452  */
3453 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3454 {
3455 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3456 		kvm_vcpu_flush_tlb_current(vcpu);
3457 
3458 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3459 		kvm_vcpu_flush_tlb_guest(vcpu);
3460 }
3461 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3462 
3463 static void record_steal_time(struct kvm_vcpu *vcpu)
3464 {
3465 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3466 	struct kvm_steal_time __user *st;
3467 	struct kvm_memslots *slots;
3468 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3469 	u64 steal;
3470 	u32 version;
3471 
3472 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3473 		kvm_xen_runstate_set_running(vcpu);
3474 		return;
3475 	}
3476 
3477 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3478 		return;
3479 
3480 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3481 		return;
3482 
3483 	slots = kvm_memslots(vcpu->kvm);
3484 
3485 	if (unlikely(slots->generation != ghc->generation ||
3486 		     gpa != ghc->gpa ||
3487 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3488 		/* We rely on the fact that it fits in a single page. */
3489 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3490 
3491 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3492 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3493 			return;
3494 	}
3495 
3496 	st = (struct kvm_steal_time __user *)ghc->hva;
3497 	/*
3498 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3499 	 * expensive IPIs.
3500 	 */
3501 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3502 		u8 st_preempted = 0;
3503 		int err = -EFAULT;
3504 
3505 		if (!user_access_begin(st, sizeof(*st)))
3506 			return;
3507 
3508 		asm volatile("1: xchgb %0, %2\n"
3509 			     "xor %1, %1\n"
3510 			     "2:\n"
3511 			     _ASM_EXTABLE_UA(1b, 2b)
3512 			     : "+q" (st_preempted),
3513 			       "+&r" (err),
3514 			       "+m" (st->preempted));
3515 		if (err)
3516 			goto out;
3517 
3518 		user_access_end();
3519 
3520 		vcpu->arch.st.preempted = 0;
3521 
3522 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3523 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3524 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3525 			kvm_vcpu_flush_tlb_guest(vcpu);
3526 
3527 		if (!user_access_begin(st, sizeof(*st)))
3528 			goto dirty;
3529 	} else {
3530 		if (!user_access_begin(st, sizeof(*st)))
3531 			return;
3532 
3533 		unsafe_put_user(0, &st->preempted, out);
3534 		vcpu->arch.st.preempted = 0;
3535 	}
3536 
3537 	unsafe_get_user(version, &st->version, out);
3538 	if (version & 1)
3539 		version += 1;  /* first time write, random junk */
3540 
3541 	version += 1;
3542 	unsafe_put_user(version, &st->version, out);
3543 
3544 	smp_wmb();
3545 
3546 	unsafe_get_user(steal, &st->steal, out);
3547 	steal += current->sched_info.run_delay -
3548 		vcpu->arch.st.last_steal;
3549 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3550 	unsafe_put_user(steal, &st->steal, out);
3551 
3552 	version += 1;
3553 	unsafe_put_user(version, &st->version, out);
3554 
3555  out:
3556 	user_access_end();
3557  dirty:
3558 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3559 }
3560 
3561 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3562 {
3563 	bool pr = false;
3564 	u32 msr = msr_info->index;
3565 	u64 data = msr_info->data;
3566 
3567 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3568 		return kvm_xen_write_hypercall_page(vcpu, data);
3569 
3570 	switch (msr) {
3571 	case MSR_AMD64_NB_CFG:
3572 	case MSR_IA32_UCODE_WRITE:
3573 	case MSR_VM_HSAVE_PA:
3574 	case MSR_AMD64_PATCH_LOADER:
3575 	case MSR_AMD64_BU_CFG2:
3576 	case MSR_AMD64_DC_CFG:
3577 	case MSR_F15H_EX_CFG:
3578 		break;
3579 
3580 	case MSR_IA32_UCODE_REV:
3581 		if (msr_info->host_initiated)
3582 			vcpu->arch.microcode_version = data;
3583 		break;
3584 	case MSR_IA32_ARCH_CAPABILITIES:
3585 		if (!msr_info->host_initiated)
3586 			return 1;
3587 		vcpu->arch.arch_capabilities = data;
3588 		break;
3589 	case MSR_IA32_PERF_CAPABILITIES:
3590 		if (!msr_info->host_initiated)
3591 			return 1;
3592 		if (data & ~kvm_caps.supported_perf_cap)
3593 			return 1;
3594 
3595 		vcpu->arch.perf_capabilities = data;
3596 		kvm_pmu_refresh(vcpu);
3597 		return 0;
3598 	case MSR_EFER:
3599 		return set_efer(vcpu, msr_info);
3600 	case MSR_K7_HWCR:
3601 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3602 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3603 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3604 
3605 		/* Handle McStatusWrEn */
3606 		if (data == BIT_ULL(18)) {
3607 			vcpu->arch.msr_hwcr = data;
3608 		} else if (data != 0) {
3609 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3610 				    data);
3611 			return 1;
3612 		}
3613 		break;
3614 	case MSR_FAM10H_MMIO_CONF_BASE:
3615 		if (data != 0) {
3616 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3617 				    "0x%llx\n", data);
3618 			return 1;
3619 		}
3620 		break;
3621 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3622 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3623 		return kvm_mtrr_set_msr(vcpu, msr, data);
3624 	case MSR_IA32_APICBASE:
3625 		return kvm_set_apic_base(vcpu, msr_info);
3626 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3627 		return kvm_x2apic_msr_write(vcpu, msr, data);
3628 	case MSR_IA32_TSC_DEADLINE:
3629 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3630 		break;
3631 	case MSR_IA32_TSC_ADJUST:
3632 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3633 			if (!msr_info->host_initiated) {
3634 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3635 				adjust_tsc_offset_guest(vcpu, adj);
3636 				/* Before back to guest, tsc_timestamp must be adjusted
3637 				 * as well, otherwise guest's percpu pvclock time could jump.
3638 				 */
3639 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3640 			}
3641 			vcpu->arch.ia32_tsc_adjust_msr = data;
3642 		}
3643 		break;
3644 	case MSR_IA32_MISC_ENABLE: {
3645 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3646 
3647 		if (!msr_info->host_initiated) {
3648 			/* RO bits */
3649 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3650 				return 1;
3651 
3652 			/* R bits, i.e. writes are ignored, but don't fault. */
3653 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3654 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3655 		}
3656 
3657 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3658 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3659 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3660 				return 1;
3661 			vcpu->arch.ia32_misc_enable_msr = data;
3662 			kvm_update_cpuid_runtime(vcpu);
3663 		} else {
3664 			vcpu->arch.ia32_misc_enable_msr = data;
3665 		}
3666 		break;
3667 	}
3668 	case MSR_IA32_SMBASE:
3669 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3670 			return 1;
3671 		vcpu->arch.smbase = data;
3672 		break;
3673 	case MSR_IA32_POWER_CTL:
3674 		vcpu->arch.msr_ia32_power_ctl = data;
3675 		break;
3676 	case MSR_IA32_TSC:
3677 		if (msr_info->host_initiated) {
3678 			kvm_synchronize_tsc(vcpu, data);
3679 		} else {
3680 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3681 			adjust_tsc_offset_guest(vcpu, adj);
3682 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3683 		}
3684 		break;
3685 	case MSR_IA32_XSS:
3686 		if (!msr_info->host_initiated &&
3687 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3688 			return 1;
3689 		/*
3690 		 * KVM supports exposing PT to the guest, but does not support
3691 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3692 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3693 		 */
3694 		if (data & ~kvm_caps.supported_xss)
3695 			return 1;
3696 		vcpu->arch.ia32_xss = data;
3697 		kvm_update_cpuid_runtime(vcpu);
3698 		break;
3699 	case MSR_SMI_COUNT:
3700 		if (!msr_info->host_initiated)
3701 			return 1;
3702 		vcpu->arch.smi_count = data;
3703 		break;
3704 	case MSR_KVM_WALL_CLOCK_NEW:
3705 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3706 			return 1;
3707 
3708 		vcpu->kvm->arch.wall_clock = data;
3709 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3710 		break;
3711 	case MSR_KVM_WALL_CLOCK:
3712 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3713 			return 1;
3714 
3715 		vcpu->kvm->arch.wall_clock = data;
3716 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3717 		break;
3718 	case MSR_KVM_SYSTEM_TIME_NEW:
3719 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3720 			return 1;
3721 
3722 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3723 		break;
3724 	case MSR_KVM_SYSTEM_TIME:
3725 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3726 			return 1;
3727 
3728 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3729 		break;
3730 	case MSR_KVM_ASYNC_PF_EN:
3731 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3732 			return 1;
3733 
3734 		if (kvm_pv_enable_async_pf(vcpu, data))
3735 			return 1;
3736 		break;
3737 	case MSR_KVM_ASYNC_PF_INT:
3738 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3739 			return 1;
3740 
3741 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3742 			return 1;
3743 		break;
3744 	case MSR_KVM_ASYNC_PF_ACK:
3745 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3746 			return 1;
3747 		if (data & 0x1) {
3748 			vcpu->arch.apf.pageready_pending = false;
3749 			kvm_check_async_pf_completion(vcpu);
3750 		}
3751 		break;
3752 	case MSR_KVM_STEAL_TIME:
3753 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3754 			return 1;
3755 
3756 		if (unlikely(!sched_info_on()))
3757 			return 1;
3758 
3759 		if (data & KVM_STEAL_RESERVED_MASK)
3760 			return 1;
3761 
3762 		vcpu->arch.st.msr_val = data;
3763 
3764 		if (!(data & KVM_MSR_ENABLED))
3765 			break;
3766 
3767 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3768 
3769 		break;
3770 	case MSR_KVM_PV_EOI_EN:
3771 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3772 			return 1;
3773 
3774 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3775 			return 1;
3776 		break;
3777 
3778 	case MSR_KVM_POLL_CONTROL:
3779 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3780 			return 1;
3781 
3782 		/* only enable bit supported */
3783 		if (data & (-1ULL << 1))
3784 			return 1;
3785 
3786 		vcpu->arch.msr_kvm_poll_control = data;
3787 		break;
3788 
3789 	case MSR_IA32_MCG_CTL:
3790 	case MSR_IA32_MCG_STATUS:
3791 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3792 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3793 		return set_msr_mce(vcpu, msr_info);
3794 
3795 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3796 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3797 		pr = true;
3798 		fallthrough;
3799 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3800 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3801 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3802 			return kvm_pmu_set_msr(vcpu, msr_info);
3803 
3804 		if (pr || data != 0)
3805 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3806 				    "0x%x data 0x%llx\n", msr, data);
3807 		break;
3808 	case MSR_K7_CLK_CTL:
3809 		/*
3810 		 * Ignore all writes to this no longer documented MSR.
3811 		 * Writes are only relevant for old K7 processors,
3812 		 * all pre-dating SVM, but a recommended workaround from
3813 		 * AMD for these chips. It is possible to specify the
3814 		 * affected processor models on the command line, hence
3815 		 * the need to ignore the workaround.
3816 		 */
3817 		break;
3818 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3819 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3820 	case HV_X64_MSR_SYNDBG_OPTIONS:
3821 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3822 	case HV_X64_MSR_CRASH_CTL:
3823 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3824 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3825 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3826 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3827 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3828 		return kvm_hv_set_msr_common(vcpu, msr, data,
3829 					     msr_info->host_initiated);
3830 	case MSR_IA32_BBL_CR_CTL3:
3831 		/* Drop writes to this legacy MSR -- see rdmsr
3832 		 * counterpart for further detail.
3833 		 */
3834 		if (report_ignored_msrs)
3835 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3836 				msr, data);
3837 		break;
3838 	case MSR_AMD64_OSVW_ID_LENGTH:
3839 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3840 			return 1;
3841 		vcpu->arch.osvw.length = data;
3842 		break;
3843 	case MSR_AMD64_OSVW_STATUS:
3844 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3845 			return 1;
3846 		vcpu->arch.osvw.status = data;
3847 		break;
3848 	case MSR_PLATFORM_INFO:
3849 		if (!msr_info->host_initiated ||
3850 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3851 		     cpuid_fault_enabled(vcpu)))
3852 			return 1;
3853 		vcpu->arch.msr_platform_info = data;
3854 		break;
3855 	case MSR_MISC_FEATURES_ENABLES:
3856 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3857 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3858 		     !supports_cpuid_fault(vcpu)))
3859 			return 1;
3860 		vcpu->arch.msr_misc_features_enables = data;
3861 		break;
3862 #ifdef CONFIG_X86_64
3863 	case MSR_IA32_XFD:
3864 		if (!msr_info->host_initiated &&
3865 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3866 			return 1;
3867 
3868 		if (data & ~kvm_guest_supported_xfd(vcpu))
3869 			return 1;
3870 
3871 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3872 		break;
3873 	case MSR_IA32_XFD_ERR:
3874 		if (!msr_info->host_initiated &&
3875 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3876 			return 1;
3877 
3878 		if (data & ~kvm_guest_supported_xfd(vcpu))
3879 			return 1;
3880 
3881 		vcpu->arch.guest_fpu.xfd_err = data;
3882 		break;
3883 #endif
3884 	case MSR_IA32_PEBS_ENABLE:
3885 	case MSR_IA32_DS_AREA:
3886 	case MSR_PEBS_DATA_CFG:
3887 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3888 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3889 			return kvm_pmu_set_msr(vcpu, msr_info);
3890 		/*
3891 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3892 		 * as to-be-saved, even if an MSRs isn't fully supported.
3893 		 */
3894 		return !msr_info->host_initiated || data;
3895 	default:
3896 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3897 			return kvm_pmu_set_msr(vcpu, msr_info);
3898 		return KVM_MSR_RET_INVALID;
3899 	}
3900 	return 0;
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3903 
3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3905 {
3906 	u64 data;
3907 	u64 mcg_cap = vcpu->arch.mcg_cap;
3908 	unsigned bank_num = mcg_cap & 0xff;
3909 	u32 offset, last_msr;
3910 
3911 	switch (msr) {
3912 	case MSR_IA32_P5_MC_ADDR:
3913 	case MSR_IA32_P5_MC_TYPE:
3914 		data = 0;
3915 		break;
3916 	case MSR_IA32_MCG_CAP:
3917 		data = vcpu->arch.mcg_cap;
3918 		break;
3919 	case MSR_IA32_MCG_CTL:
3920 		if (!(mcg_cap & MCG_CTL_P) && !host)
3921 			return 1;
3922 		data = vcpu->arch.mcg_ctl;
3923 		break;
3924 	case MSR_IA32_MCG_STATUS:
3925 		data = vcpu->arch.mcg_status;
3926 		break;
3927 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3928 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3929 		if (msr > last_msr)
3930 			return 1;
3931 
3932 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3933 			return 1;
3934 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3935 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3936 		data = vcpu->arch.mci_ctl2_banks[offset];
3937 		break;
3938 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3939 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3940 		if (msr > last_msr)
3941 			return 1;
3942 
3943 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3944 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3945 		data = vcpu->arch.mce_banks[offset];
3946 		break;
3947 	default:
3948 		return 1;
3949 	}
3950 	*pdata = data;
3951 	return 0;
3952 }
3953 
3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3955 {
3956 	switch (msr_info->index) {
3957 	case MSR_IA32_PLATFORM_ID:
3958 	case MSR_IA32_EBL_CR_POWERON:
3959 	case MSR_IA32_LASTBRANCHFROMIP:
3960 	case MSR_IA32_LASTBRANCHTOIP:
3961 	case MSR_IA32_LASTINTFROMIP:
3962 	case MSR_IA32_LASTINTTOIP:
3963 	case MSR_AMD64_SYSCFG:
3964 	case MSR_K8_TSEG_ADDR:
3965 	case MSR_K8_TSEG_MASK:
3966 	case MSR_VM_HSAVE_PA:
3967 	case MSR_K8_INT_PENDING_MSG:
3968 	case MSR_AMD64_NB_CFG:
3969 	case MSR_FAM10H_MMIO_CONF_BASE:
3970 	case MSR_AMD64_BU_CFG2:
3971 	case MSR_IA32_PERF_CTL:
3972 	case MSR_AMD64_DC_CFG:
3973 	case MSR_F15H_EX_CFG:
3974 	/*
3975 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3976 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3977 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3978 	 * so for existing CPU-specific MSRs.
3979 	 */
3980 	case MSR_RAPL_POWER_UNIT:
3981 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3982 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3983 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3984 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3985 		msr_info->data = 0;
3986 		break;
3987 	case MSR_IA32_PEBS_ENABLE:
3988 	case MSR_IA32_DS_AREA:
3989 	case MSR_PEBS_DATA_CFG:
3990 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3991 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3992 			return kvm_pmu_get_msr(vcpu, msr_info);
3993 		/*
3994 		 * Userspace is allowed to read MSRs that KVM reports as
3995 		 * to-be-saved, even if an MSR isn't fully supported.
3996 		 */
3997 		if (!msr_info->host_initiated)
3998 			return 1;
3999 		msr_info->data = 0;
4000 		break;
4001 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4002 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4003 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4004 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4005 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4006 			return kvm_pmu_get_msr(vcpu, msr_info);
4007 		msr_info->data = 0;
4008 		break;
4009 	case MSR_IA32_UCODE_REV:
4010 		msr_info->data = vcpu->arch.microcode_version;
4011 		break;
4012 	case MSR_IA32_ARCH_CAPABILITIES:
4013 		if (!msr_info->host_initiated &&
4014 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4015 			return 1;
4016 		msr_info->data = vcpu->arch.arch_capabilities;
4017 		break;
4018 	case MSR_IA32_PERF_CAPABILITIES:
4019 		if (!msr_info->host_initiated &&
4020 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4021 			return 1;
4022 		msr_info->data = vcpu->arch.perf_capabilities;
4023 		break;
4024 	case MSR_IA32_POWER_CTL:
4025 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4026 		break;
4027 	case MSR_IA32_TSC: {
4028 		/*
4029 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4030 		 * even when not intercepted. AMD manual doesn't explicitly
4031 		 * state this but appears to behave the same.
4032 		 *
4033 		 * On userspace reads and writes, however, we unconditionally
4034 		 * return L1's TSC value to ensure backwards-compatible
4035 		 * behavior for migration.
4036 		 */
4037 		u64 offset, ratio;
4038 
4039 		if (msr_info->host_initiated) {
4040 			offset = vcpu->arch.l1_tsc_offset;
4041 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4042 		} else {
4043 			offset = vcpu->arch.tsc_offset;
4044 			ratio = vcpu->arch.tsc_scaling_ratio;
4045 		}
4046 
4047 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4048 		break;
4049 	}
4050 	case MSR_MTRRcap:
4051 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4052 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4053 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4054 	case 0xcd: /* fsb frequency */
4055 		msr_info->data = 3;
4056 		break;
4057 		/*
4058 		 * MSR_EBC_FREQUENCY_ID
4059 		 * Conservative value valid for even the basic CPU models.
4060 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4061 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4062 		 * and 266MHz for model 3, or 4. Set Core Clock
4063 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4064 		 * 31:24) even though these are only valid for CPU
4065 		 * models > 2, however guests may end up dividing or
4066 		 * multiplying by zero otherwise.
4067 		 */
4068 	case MSR_EBC_FREQUENCY_ID:
4069 		msr_info->data = 1 << 24;
4070 		break;
4071 	case MSR_IA32_APICBASE:
4072 		msr_info->data = kvm_get_apic_base(vcpu);
4073 		break;
4074 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4075 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4076 	case MSR_IA32_TSC_DEADLINE:
4077 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4078 		break;
4079 	case MSR_IA32_TSC_ADJUST:
4080 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4081 		break;
4082 	case MSR_IA32_MISC_ENABLE:
4083 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4084 		break;
4085 	case MSR_IA32_SMBASE:
4086 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4087 			return 1;
4088 		msr_info->data = vcpu->arch.smbase;
4089 		break;
4090 	case MSR_SMI_COUNT:
4091 		msr_info->data = vcpu->arch.smi_count;
4092 		break;
4093 	case MSR_IA32_PERF_STATUS:
4094 		/* TSC increment by tick */
4095 		msr_info->data = 1000ULL;
4096 		/* CPU multiplier */
4097 		msr_info->data |= (((uint64_t)4ULL) << 40);
4098 		break;
4099 	case MSR_EFER:
4100 		msr_info->data = vcpu->arch.efer;
4101 		break;
4102 	case MSR_KVM_WALL_CLOCK:
4103 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4104 			return 1;
4105 
4106 		msr_info->data = vcpu->kvm->arch.wall_clock;
4107 		break;
4108 	case MSR_KVM_WALL_CLOCK_NEW:
4109 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4110 			return 1;
4111 
4112 		msr_info->data = vcpu->kvm->arch.wall_clock;
4113 		break;
4114 	case MSR_KVM_SYSTEM_TIME:
4115 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4116 			return 1;
4117 
4118 		msr_info->data = vcpu->arch.time;
4119 		break;
4120 	case MSR_KVM_SYSTEM_TIME_NEW:
4121 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4122 			return 1;
4123 
4124 		msr_info->data = vcpu->arch.time;
4125 		break;
4126 	case MSR_KVM_ASYNC_PF_EN:
4127 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4128 			return 1;
4129 
4130 		msr_info->data = vcpu->arch.apf.msr_en_val;
4131 		break;
4132 	case MSR_KVM_ASYNC_PF_INT:
4133 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4134 			return 1;
4135 
4136 		msr_info->data = vcpu->arch.apf.msr_int_val;
4137 		break;
4138 	case MSR_KVM_ASYNC_PF_ACK:
4139 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4140 			return 1;
4141 
4142 		msr_info->data = 0;
4143 		break;
4144 	case MSR_KVM_STEAL_TIME:
4145 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4146 			return 1;
4147 
4148 		msr_info->data = vcpu->arch.st.msr_val;
4149 		break;
4150 	case MSR_KVM_PV_EOI_EN:
4151 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4152 			return 1;
4153 
4154 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4155 		break;
4156 	case MSR_KVM_POLL_CONTROL:
4157 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4158 			return 1;
4159 
4160 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4161 		break;
4162 	case MSR_IA32_P5_MC_ADDR:
4163 	case MSR_IA32_P5_MC_TYPE:
4164 	case MSR_IA32_MCG_CAP:
4165 	case MSR_IA32_MCG_CTL:
4166 	case MSR_IA32_MCG_STATUS:
4167 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4168 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4169 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4170 				   msr_info->host_initiated);
4171 	case MSR_IA32_XSS:
4172 		if (!msr_info->host_initiated &&
4173 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4174 			return 1;
4175 		msr_info->data = vcpu->arch.ia32_xss;
4176 		break;
4177 	case MSR_K7_CLK_CTL:
4178 		/*
4179 		 * Provide expected ramp-up count for K7. All other
4180 		 * are set to zero, indicating minimum divisors for
4181 		 * every field.
4182 		 *
4183 		 * This prevents guest kernels on AMD host with CPU
4184 		 * type 6, model 8 and higher from exploding due to
4185 		 * the rdmsr failing.
4186 		 */
4187 		msr_info->data = 0x20000000;
4188 		break;
4189 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4190 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4191 	case HV_X64_MSR_SYNDBG_OPTIONS:
4192 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4193 	case HV_X64_MSR_CRASH_CTL:
4194 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4195 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4196 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4197 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4198 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4199 		return kvm_hv_get_msr_common(vcpu,
4200 					     msr_info->index, &msr_info->data,
4201 					     msr_info->host_initiated);
4202 	case MSR_IA32_BBL_CR_CTL3:
4203 		/* This legacy MSR exists but isn't fully documented in current
4204 		 * silicon.  It is however accessed by winxp in very narrow
4205 		 * scenarios where it sets bit #19, itself documented as
4206 		 * a "reserved" bit.  Best effort attempt to source coherent
4207 		 * read data here should the balance of the register be
4208 		 * interpreted by the guest:
4209 		 *
4210 		 * L2 cache control register 3: 64GB range, 256KB size,
4211 		 * enabled, latency 0x1, configured
4212 		 */
4213 		msr_info->data = 0xbe702111;
4214 		break;
4215 	case MSR_AMD64_OSVW_ID_LENGTH:
4216 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4217 			return 1;
4218 		msr_info->data = vcpu->arch.osvw.length;
4219 		break;
4220 	case MSR_AMD64_OSVW_STATUS:
4221 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4222 			return 1;
4223 		msr_info->data = vcpu->arch.osvw.status;
4224 		break;
4225 	case MSR_PLATFORM_INFO:
4226 		if (!msr_info->host_initiated &&
4227 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4228 			return 1;
4229 		msr_info->data = vcpu->arch.msr_platform_info;
4230 		break;
4231 	case MSR_MISC_FEATURES_ENABLES:
4232 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4233 		break;
4234 	case MSR_K7_HWCR:
4235 		msr_info->data = vcpu->arch.msr_hwcr;
4236 		break;
4237 #ifdef CONFIG_X86_64
4238 	case MSR_IA32_XFD:
4239 		if (!msr_info->host_initiated &&
4240 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4241 			return 1;
4242 
4243 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4244 		break;
4245 	case MSR_IA32_XFD_ERR:
4246 		if (!msr_info->host_initiated &&
4247 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4248 			return 1;
4249 
4250 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4251 		break;
4252 #endif
4253 	default:
4254 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4255 			return kvm_pmu_get_msr(vcpu, msr_info);
4256 		return KVM_MSR_RET_INVALID;
4257 	}
4258 	return 0;
4259 }
4260 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4261 
4262 /*
4263  * Read or write a bunch of msrs. All parameters are kernel addresses.
4264  *
4265  * @return number of msrs set successfully.
4266  */
4267 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4268 		    struct kvm_msr_entry *entries,
4269 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4270 				  unsigned index, u64 *data))
4271 {
4272 	int i;
4273 
4274 	for (i = 0; i < msrs->nmsrs; ++i)
4275 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4276 			break;
4277 
4278 	return i;
4279 }
4280 
4281 /*
4282  * Read or write a bunch of msrs. Parameters are user addresses.
4283  *
4284  * @return number of msrs set successfully.
4285  */
4286 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4287 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4288 				unsigned index, u64 *data),
4289 		  int writeback)
4290 {
4291 	struct kvm_msrs msrs;
4292 	struct kvm_msr_entry *entries;
4293 	int r, n;
4294 	unsigned size;
4295 
4296 	r = -EFAULT;
4297 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4298 		goto out;
4299 
4300 	r = -E2BIG;
4301 	if (msrs.nmsrs >= MAX_IO_MSRS)
4302 		goto out;
4303 
4304 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4305 	entries = memdup_user(user_msrs->entries, size);
4306 	if (IS_ERR(entries)) {
4307 		r = PTR_ERR(entries);
4308 		goto out;
4309 	}
4310 
4311 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4312 	if (r < 0)
4313 		goto out_free;
4314 
4315 	r = -EFAULT;
4316 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4317 		goto out_free;
4318 
4319 	r = n;
4320 
4321 out_free:
4322 	kfree(entries);
4323 out:
4324 	return r;
4325 }
4326 
4327 static inline bool kvm_can_mwait_in_guest(void)
4328 {
4329 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4330 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4331 		boot_cpu_has(X86_FEATURE_ARAT);
4332 }
4333 
4334 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4335 					    struct kvm_cpuid2 __user *cpuid_arg)
4336 {
4337 	struct kvm_cpuid2 cpuid;
4338 	int r;
4339 
4340 	r = -EFAULT;
4341 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4342 		return r;
4343 
4344 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4345 	if (r)
4346 		return r;
4347 
4348 	r = -EFAULT;
4349 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4350 		return r;
4351 
4352 	return 0;
4353 }
4354 
4355 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4356 {
4357 	int r = 0;
4358 
4359 	switch (ext) {
4360 	case KVM_CAP_IRQCHIP:
4361 	case KVM_CAP_HLT:
4362 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4363 	case KVM_CAP_SET_TSS_ADDR:
4364 	case KVM_CAP_EXT_CPUID:
4365 	case KVM_CAP_EXT_EMUL_CPUID:
4366 	case KVM_CAP_CLOCKSOURCE:
4367 	case KVM_CAP_PIT:
4368 	case KVM_CAP_NOP_IO_DELAY:
4369 	case KVM_CAP_MP_STATE:
4370 	case KVM_CAP_SYNC_MMU:
4371 	case KVM_CAP_USER_NMI:
4372 	case KVM_CAP_REINJECT_CONTROL:
4373 	case KVM_CAP_IRQ_INJECT_STATUS:
4374 	case KVM_CAP_IOEVENTFD:
4375 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4376 	case KVM_CAP_PIT2:
4377 	case KVM_CAP_PIT_STATE2:
4378 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4379 	case KVM_CAP_VCPU_EVENTS:
4380 	case KVM_CAP_HYPERV:
4381 	case KVM_CAP_HYPERV_VAPIC:
4382 	case KVM_CAP_HYPERV_SPIN:
4383 	case KVM_CAP_HYPERV_SYNIC:
4384 	case KVM_CAP_HYPERV_SYNIC2:
4385 	case KVM_CAP_HYPERV_VP_INDEX:
4386 	case KVM_CAP_HYPERV_EVENTFD:
4387 	case KVM_CAP_HYPERV_TLBFLUSH:
4388 	case KVM_CAP_HYPERV_SEND_IPI:
4389 	case KVM_CAP_HYPERV_CPUID:
4390 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4391 	case KVM_CAP_SYS_HYPERV_CPUID:
4392 	case KVM_CAP_PCI_SEGMENT:
4393 	case KVM_CAP_DEBUGREGS:
4394 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4395 	case KVM_CAP_XSAVE:
4396 	case KVM_CAP_ASYNC_PF:
4397 	case KVM_CAP_ASYNC_PF_INT:
4398 	case KVM_CAP_GET_TSC_KHZ:
4399 	case KVM_CAP_KVMCLOCK_CTRL:
4400 	case KVM_CAP_READONLY_MEM:
4401 	case KVM_CAP_HYPERV_TIME:
4402 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4403 	case KVM_CAP_TSC_DEADLINE_TIMER:
4404 	case KVM_CAP_DISABLE_QUIRKS:
4405 	case KVM_CAP_SET_BOOT_CPU_ID:
4406  	case KVM_CAP_SPLIT_IRQCHIP:
4407 	case KVM_CAP_IMMEDIATE_EXIT:
4408 	case KVM_CAP_PMU_EVENT_FILTER:
4409 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4410 	case KVM_CAP_GET_MSR_FEATURES:
4411 	case KVM_CAP_MSR_PLATFORM_INFO:
4412 	case KVM_CAP_EXCEPTION_PAYLOAD:
4413 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4414 	case KVM_CAP_SET_GUEST_DEBUG:
4415 	case KVM_CAP_LAST_CPU:
4416 	case KVM_CAP_X86_USER_SPACE_MSR:
4417 	case KVM_CAP_X86_MSR_FILTER:
4418 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4419 #ifdef CONFIG_X86_SGX_KVM
4420 	case KVM_CAP_SGX_ATTRIBUTE:
4421 #endif
4422 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4423 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4424 	case KVM_CAP_SREGS2:
4425 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4426 	case KVM_CAP_VCPU_ATTRIBUTES:
4427 	case KVM_CAP_SYS_ATTRIBUTES:
4428 	case KVM_CAP_VAPIC:
4429 	case KVM_CAP_ENABLE_CAP:
4430 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4431 		r = 1;
4432 		break;
4433 	case KVM_CAP_EXIT_HYPERCALL:
4434 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4435 		break;
4436 	case KVM_CAP_SET_GUEST_DEBUG2:
4437 		return KVM_GUESTDBG_VALID_MASK;
4438 #ifdef CONFIG_KVM_XEN
4439 	case KVM_CAP_XEN_HVM:
4440 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4441 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4442 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4443 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4444 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4445 		if (sched_info_on())
4446 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4447 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4448 		break;
4449 #endif
4450 	case KVM_CAP_SYNC_REGS:
4451 		r = KVM_SYNC_X86_VALID_FIELDS;
4452 		break;
4453 	case KVM_CAP_ADJUST_CLOCK:
4454 		r = KVM_CLOCK_VALID_FLAGS;
4455 		break;
4456 	case KVM_CAP_X86_DISABLE_EXITS:
4457 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4458 		      KVM_X86_DISABLE_EXITS_CSTATE;
4459 		if(kvm_can_mwait_in_guest())
4460 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4461 		break;
4462 	case KVM_CAP_X86_SMM:
4463 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4464 			break;
4465 
4466 		/* SMBASE is usually relocated above 1M on modern chipsets,
4467 		 * and SMM handlers might indeed rely on 4G segment limits,
4468 		 * so do not report SMM to be available if real mode is
4469 		 * emulated via vm86 mode.  Still, do not go to great lengths
4470 		 * to avoid userspace's usage of the feature, because it is a
4471 		 * fringe case that is not enabled except via specific settings
4472 		 * of the module parameters.
4473 		 */
4474 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4475 		break;
4476 	case KVM_CAP_NR_VCPUS:
4477 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4478 		break;
4479 	case KVM_CAP_MAX_VCPUS:
4480 		r = KVM_MAX_VCPUS;
4481 		break;
4482 	case KVM_CAP_MAX_VCPU_ID:
4483 		r = KVM_MAX_VCPU_IDS;
4484 		break;
4485 	case KVM_CAP_PV_MMU:	/* obsolete */
4486 		r = 0;
4487 		break;
4488 	case KVM_CAP_MCE:
4489 		r = KVM_MAX_MCE_BANKS;
4490 		break;
4491 	case KVM_CAP_XCRS:
4492 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4493 		break;
4494 	case KVM_CAP_TSC_CONTROL:
4495 	case KVM_CAP_VM_TSC_CONTROL:
4496 		r = kvm_caps.has_tsc_control;
4497 		break;
4498 	case KVM_CAP_X2APIC_API:
4499 		r = KVM_X2APIC_API_VALID_FLAGS;
4500 		break;
4501 	case KVM_CAP_NESTED_STATE:
4502 		r = kvm_x86_ops.nested_ops->get_state ?
4503 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4504 		break;
4505 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4506 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4507 		break;
4508 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4509 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4510 		break;
4511 	case KVM_CAP_SMALLER_MAXPHYADDR:
4512 		r = (int) allow_smaller_maxphyaddr;
4513 		break;
4514 	case KVM_CAP_STEAL_TIME:
4515 		r = sched_info_on();
4516 		break;
4517 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4518 		if (kvm_caps.has_bus_lock_exit)
4519 			r = KVM_BUS_LOCK_DETECTION_OFF |
4520 			    KVM_BUS_LOCK_DETECTION_EXIT;
4521 		else
4522 			r = 0;
4523 		break;
4524 	case KVM_CAP_XSAVE2: {
4525 		u64 guest_perm = xstate_get_guest_group_perm();
4526 
4527 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4528 		if (r < sizeof(struct kvm_xsave))
4529 			r = sizeof(struct kvm_xsave);
4530 		break;
4531 	}
4532 	case KVM_CAP_PMU_CAPABILITY:
4533 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4534 		break;
4535 	case KVM_CAP_DISABLE_QUIRKS2:
4536 		r = KVM_X86_VALID_QUIRKS;
4537 		break;
4538 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4539 		r = kvm_caps.has_notify_vmexit;
4540 		break;
4541 	default:
4542 		break;
4543 	}
4544 	return r;
4545 }
4546 
4547 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4548 {
4549 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4550 
4551 	if ((u64)(unsigned long)uaddr != attr->addr)
4552 		return ERR_PTR_USR(-EFAULT);
4553 	return uaddr;
4554 }
4555 
4556 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4557 {
4558 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4559 
4560 	if (attr->group)
4561 		return -ENXIO;
4562 
4563 	if (IS_ERR(uaddr))
4564 		return PTR_ERR(uaddr);
4565 
4566 	switch (attr->attr) {
4567 	case KVM_X86_XCOMP_GUEST_SUPP:
4568 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4569 			return -EFAULT;
4570 		return 0;
4571 	default:
4572 		return -ENXIO;
4573 		break;
4574 	}
4575 }
4576 
4577 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4578 {
4579 	if (attr->group)
4580 		return -ENXIO;
4581 
4582 	switch (attr->attr) {
4583 	case KVM_X86_XCOMP_GUEST_SUPP:
4584 		return 0;
4585 	default:
4586 		return -ENXIO;
4587 	}
4588 }
4589 
4590 long kvm_arch_dev_ioctl(struct file *filp,
4591 			unsigned int ioctl, unsigned long arg)
4592 {
4593 	void __user *argp = (void __user *)arg;
4594 	long r;
4595 
4596 	switch (ioctl) {
4597 	case KVM_GET_MSR_INDEX_LIST: {
4598 		struct kvm_msr_list __user *user_msr_list = argp;
4599 		struct kvm_msr_list msr_list;
4600 		unsigned n;
4601 
4602 		r = -EFAULT;
4603 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4604 			goto out;
4605 		n = msr_list.nmsrs;
4606 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4607 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4608 			goto out;
4609 		r = -E2BIG;
4610 		if (n < msr_list.nmsrs)
4611 			goto out;
4612 		r = -EFAULT;
4613 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4614 				 num_msrs_to_save * sizeof(u32)))
4615 			goto out;
4616 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4617 				 &emulated_msrs,
4618 				 num_emulated_msrs * sizeof(u32)))
4619 			goto out;
4620 		r = 0;
4621 		break;
4622 	}
4623 	case KVM_GET_SUPPORTED_CPUID:
4624 	case KVM_GET_EMULATED_CPUID: {
4625 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4626 		struct kvm_cpuid2 cpuid;
4627 
4628 		r = -EFAULT;
4629 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4630 			goto out;
4631 
4632 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4633 					    ioctl);
4634 		if (r)
4635 			goto out;
4636 
4637 		r = -EFAULT;
4638 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4639 			goto out;
4640 		r = 0;
4641 		break;
4642 	}
4643 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4644 		r = -EFAULT;
4645 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4646 				 sizeof(kvm_caps.supported_mce_cap)))
4647 			goto out;
4648 		r = 0;
4649 		break;
4650 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4651 		struct kvm_msr_list __user *user_msr_list = argp;
4652 		struct kvm_msr_list msr_list;
4653 		unsigned int n;
4654 
4655 		r = -EFAULT;
4656 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4657 			goto out;
4658 		n = msr_list.nmsrs;
4659 		msr_list.nmsrs = num_msr_based_features;
4660 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4661 			goto out;
4662 		r = -E2BIG;
4663 		if (n < msr_list.nmsrs)
4664 			goto out;
4665 		r = -EFAULT;
4666 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4667 				 num_msr_based_features * sizeof(u32)))
4668 			goto out;
4669 		r = 0;
4670 		break;
4671 	}
4672 	case KVM_GET_MSRS:
4673 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4674 		break;
4675 	case KVM_GET_SUPPORTED_HV_CPUID:
4676 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4677 		break;
4678 	case KVM_GET_DEVICE_ATTR: {
4679 		struct kvm_device_attr attr;
4680 		r = -EFAULT;
4681 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4682 			break;
4683 		r = kvm_x86_dev_get_attr(&attr);
4684 		break;
4685 	}
4686 	case KVM_HAS_DEVICE_ATTR: {
4687 		struct kvm_device_attr attr;
4688 		r = -EFAULT;
4689 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4690 			break;
4691 		r = kvm_x86_dev_has_attr(&attr);
4692 		break;
4693 	}
4694 	default:
4695 		r = -EINVAL;
4696 		break;
4697 	}
4698 out:
4699 	return r;
4700 }
4701 
4702 static void wbinvd_ipi(void *garbage)
4703 {
4704 	wbinvd();
4705 }
4706 
4707 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4708 {
4709 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4710 }
4711 
4712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4713 {
4714 	/* Address WBINVD may be executed by guest */
4715 	if (need_emulate_wbinvd(vcpu)) {
4716 		if (static_call(kvm_x86_has_wbinvd_exit)())
4717 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4718 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4719 			smp_call_function_single(vcpu->cpu,
4720 					wbinvd_ipi, NULL, 1);
4721 	}
4722 
4723 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4724 
4725 	/* Save host pkru register if supported */
4726 	vcpu->arch.host_pkru = read_pkru();
4727 
4728 	/* Apply any externally detected TSC adjustments (due to suspend) */
4729 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4730 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4731 		vcpu->arch.tsc_offset_adjustment = 0;
4732 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4733 	}
4734 
4735 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4736 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4737 				rdtsc() - vcpu->arch.last_host_tsc;
4738 		if (tsc_delta < 0)
4739 			mark_tsc_unstable("KVM discovered backwards TSC");
4740 
4741 		if (kvm_check_tsc_unstable()) {
4742 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4743 						vcpu->arch.last_guest_tsc);
4744 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4745 			vcpu->arch.tsc_catchup = 1;
4746 		}
4747 
4748 		if (kvm_lapic_hv_timer_in_use(vcpu))
4749 			kvm_lapic_restart_hv_timer(vcpu);
4750 
4751 		/*
4752 		 * On a host with synchronized TSC, there is no need to update
4753 		 * kvmclock on vcpu->cpu migration
4754 		 */
4755 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4756 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4757 		if (vcpu->cpu != cpu)
4758 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4759 		vcpu->cpu = cpu;
4760 	}
4761 
4762 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4763 }
4764 
4765 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4766 {
4767 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4768 	struct kvm_steal_time __user *st;
4769 	struct kvm_memslots *slots;
4770 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4771 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4772 
4773 	/*
4774 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4775 	 * an instruction boundary and will not trigger guest emulation of any
4776 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4777 	 * when this is true, for example allowing the vCPU to be marked
4778 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4779 	 */
4780 	if (!vcpu->arch.at_instruction_boundary) {
4781 		vcpu->stat.preemption_other++;
4782 		return;
4783 	}
4784 
4785 	vcpu->stat.preemption_reported++;
4786 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4787 		return;
4788 
4789 	if (vcpu->arch.st.preempted)
4790 		return;
4791 
4792 	/* This happens on process exit */
4793 	if (unlikely(current->mm != vcpu->kvm->mm))
4794 		return;
4795 
4796 	slots = kvm_memslots(vcpu->kvm);
4797 
4798 	if (unlikely(slots->generation != ghc->generation ||
4799 		     gpa != ghc->gpa ||
4800 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4801 		return;
4802 
4803 	st = (struct kvm_steal_time __user *)ghc->hva;
4804 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4805 
4806 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4807 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4808 
4809 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4810 }
4811 
4812 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4813 {
4814 	int idx;
4815 
4816 	if (vcpu->preempted) {
4817 		if (!vcpu->arch.guest_state_protected)
4818 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4819 
4820 		/*
4821 		 * Take the srcu lock as memslots will be accessed to check the gfn
4822 		 * cache generation against the memslots generation.
4823 		 */
4824 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4825 		if (kvm_xen_msr_enabled(vcpu->kvm))
4826 			kvm_xen_runstate_set_preempted(vcpu);
4827 		else
4828 			kvm_steal_time_set_preempted(vcpu);
4829 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4830 	}
4831 
4832 	static_call(kvm_x86_vcpu_put)(vcpu);
4833 	vcpu->arch.last_host_tsc = rdtsc();
4834 }
4835 
4836 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4837 				    struct kvm_lapic_state *s)
4838 {
4839 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4840 
4841 	return kvm_apic_get_state(vcpu, s);
4842 }
4843 
4844 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4845 				    struct kvm_lapic_state *s)
4846 {
4847 	int r;
4848 
4849 	r = kvm_apic_set_state(vcpu, s);
4850 	if (r)
4851 		return r;
4852 	update_cr8_intercept(vcpu);
4853 
4854 	return 0;
4855 }
4856 
4857 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4858 {
4859 	/*
4860 	 * We can accept userspace's request for interrupt injection
4861 	 * as long as we have a place to store the interrupt number.
4862 	 * The actual injection will happen when the CPU is able to
4863 	 * deliver the interrupt.
4864 	 */
4865 	if (kvm_cpu_has_extint(vcpu))
4866 		return false;
4867 
4868 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4869 	return (!lapic_in_kernel(vcpu) ||
4870 		kvm_apic_accept_pic_intr(vcpu));
4871 }
4872 
4873 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4874 {
4875 	/*
4876 	 * Do not cause an interrupt window exit if an exception
4877 	 * is pending or an event needs reinjection; userspace
4878 	 * might want to inject the interrupt manually using KVM_SET_REGS
4879 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4880 	 * instruction boundary and with no events half-injected.
4881 	 */
4882 	return (kvm_arch_interrupt_allowed(vcpu) &&
4883 		kvm_cpu_accept_dm_intr(vcpu) &&
4884 		!kvm_event_needs_reinjection(vcpu) &&
4885 		!kvm_is_exception_pending(vcpu));
4886 }
4887 
4888 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4889 				    struct kvm_interrupt *irq)
4890 {
4891 	if (irq->irq >= KVM_NR_INTERRUPTS)
4892 		return -EINVAL;
4893 
4894 	if (!irqchip_in_kernel(vcpu->kvm)) {
4895 		kvm_queue_interrupt(vcpu, irq->irq, false);
4896 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4897 		return 0;
4898 	}
4899 
4900 	/*
4901 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4902 	 * fail for in-kernel 8259.
4903 	 */
4904 	if (pic_in_kernel(vcpu->kvm))
4905 		return -ENXIO;
4906 
4907 	if (vcpu->arch.pending_external_vector != -1)
4908 		return -EEXIST;
4909 
4910 	vcpu->arch.pending_external_vector = irq->irq;
4911 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4912 	return 0;
4913 }
4914 
4915 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4916 {
4917 	kvm_inject_nmi(vcpu);
4918 
4919 	return 0;
4920 }
4921 
4922 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4923 					   struct kvm_tpr_access_ctl *tac)
4924 {
4925 	if (tac->flags)
4926 		return -EINVAL;
4927 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4928 	return 0;
4929 }
4930 
4931 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4932 					u64 mcg_cap)
4933 {
4934 	int r;
4935 	unsigned bank_num = mcg_cap & 0xff, bank;
4936 
4937 	r = -EINVAL;
4938 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4939 		goto out;
4940 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4941 		goto out;
4942 	r = 0;
4943 	vcpu->arch.mcg_cap = mcg_cap;
4944 	/* Init IA32_MCG_CTL to all 1s */
4945 	if (mcg_cap & MCG_CTL_P)
4946 		vcpu->arch.mcg_ctl = ~(u64)0;
4947 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4948 	for (bank = 0; bank < bank_num; bank++) {
4949 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4950 		if (mcg_cap & MCG_CMCI_P)
4951 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4952 	}
4953 
4954 	kvm_apic_after_set_mcg_cap(vcpu);
4955 
4956 	static_call(kvm_x86_setup_mce)(vcpu);
4957 out:
4958 	return r;
4959 }
4960 
4961 /*
4962  * Validate this is an UCNA (uncorrectable no action) error by checking the
4963  * MCG_STATUS and MCi_STATUS registers:
4964  * - none of the bits for Machine Check Exceptions are set
4965  * - both the VAL (valid) and UC (uncorrectable) bits are set
4966  * MCI_STATUS_PCC - Processor Context Corrupted
4967  * MCI_STATUS_S - Signaled as a Machine Check Exception
4968  * MCI_STATUS_AR - Software recoverable Action Required
4969  */
4970 static bool is_ucna(struct kvm_x86_mce *mce)
4971 {
4972 	return	!mce->mcg_status &&
4973 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4974 		(mce->status & MCI_STATUS_VAL) &&
4975 		(mce->status & MCI_STATUS_UC);
4976 }
4977 
4978 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4979 {
4980 	u64 mcg_cap = vcpu->arch.mcg_cap;
4981 
4982 	banks[1] = mce->status;
4983 	banks[2] = mce->addr;
4984 	banks[3] = mce->misc;
4985 	vcpu->arch.mcg_status = mce->mcg_status;
4986 
4987 	if (!(mcg_cap & MCG_CMCI_P) ||
4988 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4989 		return 0;
4990 
4991 	if (lapic_in_kernel(vcpu))
4992 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4993 
4994 	return 0;
4995 }
4996 
4997 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4998 				      struct kvm_x86_mce *mce)
4999 {
5000 	u64 mcg_cap = vcpu->arch.mcg_cap;
5001 	unsigned bank_num = mcg_cap & 0xff;
5002 	u64 *banks = vcpu->arch.mce_banks;
5003 
5004 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5005 		return -EINVAL;
5006 
5007 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5008 
5009 	if (is_ucna(mce))
5010 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5011 
5012 	/*
5013 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5014 	 * reporting is disabled
5015 	 */
5016 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5017 	    vcpu->arch.mcg_ctl != ~(u64)0)
5018 		return 0;
5019 	/*
5020 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5021 	 * reporting is disabled for the bank
5022 	 */
5023 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5024 		return 0;
5025 	if (mce->status & MCI_STATUS_UC) {
5026 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5027 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5028 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5029 			return 0;
5030 		}
5031 		if (banks[1] & MCI_STATUS_VAL)
5032 			mce->status |= MCI_STATUS_OVER;
5033 		banks[2] = mce->addr;
5034 		banks[3] = mce->misc;
5035 		vcpu->arch.mcg_status = mce->mcg_status;
5036 		banks[1] = mce->status;
5037 		kvm_queue_exception(vcpu, MC_VECTOR);
5038 	} else if (!(banks[1] & MCI_STATUS_VAL)
5039 		   || !(banks[1] & MCI_STATUS_UC)) {
5040 		if (banks[1] & MCI_STATUS_VAL)
5041 			mce->status |= MCI_STATUS_OVER;
5042 		banks[2] = mce->addr;
5043 		banks[3] = mce->misc;
5044 		banks[1] = mce->status;
5045 	} else
5046 		banks[1] |= MCI_STATUS_OVER;
5047 	return 0;
5048 }
5049 
5050 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5051 					       struct kvm_vcpu_events *events)
5052 {
5053 	struct kvm_queued_exception *ex;
5054 
5055 	process_nmi(vcpu);
5056 
5057 #ifdef CONFIG_KVM_SMM
5058 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5059 		process_smi(vcpu);
5060 #endif
5061 
5062 	/*
5063 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5064 	 * the only time there can be two queued exceptions is if there's a
5065 	 * non-exiting _injected_ exception, and a pending exiting exception.
5066 	 * In that case, ignore the VM-Exiting exception as it's an extension
5067 	 * of the injected exception.
5068 	 */
5069 	if (vcpu->arch.exception_vmexit.pending &&
5070 	    !vcpu->arch.exception.pending &&
5071 	    !vcpu->arch.exception.injected)
5072 		ex = &vcpu->arch.exception_vmexit;
5073 	else
5074 		ex = &vcpu->arch.exception;
5075 
5076 	/*
5077 	 * In guest mode, payload delivery should be deferred if the exception
5078 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5079 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5080 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5081 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5082 	 * the payload if the capability hasn't been requested.
5083 	 */
5084 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5085 	    ex->pending && ex->has_payload)
5086 		kvm_deliver_exception_payload(vcpu, ex);
5087 
5088 	memset(events, 0, sizeof(*events));
5089 
5090 	/*
5091 	 * The API doesn't provide the instruction length for software
5092 	 * exceptions, so don't report them. As long as the guest RIP
5093 	 * isn't advanced, we should expect to encounter the exception
5094 	 * again.
5095 	 */
5096 	if (!kvm_exception_is_soft(ex->vector)) {
5097 		events->exception.injected = ex->injected;
5098 		events->exception.pending = ex->pending;
5099 		/*
5100 		 * For ABI compatibility, deliberately conflate
5101 		 * pending and injected exceptions when
5102 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5103 		 */
5104 		if (!vcpu->kvm->arch.exception_payload_enabled)
5105 			events->exception.injected |= ex->pending;
5106 	}
5107 	events->exception.nr = ex->vector;
5108 	events->exception.has_error_code = ex->has_error_code;
5109 	events->exception.error_code = ex->error_code;
5110 	events->exception_has_payload = ex->has_payload;
5111 	events->exception_payload = ex->payload;
5112 
5113 	events->interrupt.injected =
5114 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5115 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5116 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5117 
5118 	events->nmi.injected = vcpu->arch.nmi_injected;
5119 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5120 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5121 
5122 	/* events->sipi_vector is never valid when reporting to user space */
5123 
5124 #ifdef CONFIG_KVM_SMM
5125 	events->smi.smm = is_smm(vcpu);
5126 	events->smi.pending = vcpu->arch.smi_pending;
5127 	events->smi.smm_inside_nmi =
5128 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5129 #endif
5130 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5131 
5132 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5133 			 | KVM_VCPUEVENT_VALID_SHADOW
5134 			 | KVM_VCPUEVENT_VALID_SMM);
5135 	if (vcpu->kvm->arch.exception_payload_enabled)
5136 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5137 	if (vcpu->kvm->arch.triple_fault_event) {
5138 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5139 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5140 	}
5141 }
5142 
5143 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5144 					      struct kvm_vcpu_events *events)
5145 {
5146 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5147 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5148 			      | KVM_VCPUEVENT_VALID_SHADOW
5149 			      | KVM_VCPUEVENT_VALID_SMM
5150 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5151 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5152 		return -EINVAL;
5153 
5154 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5155 		if (!vcpu->kvm->arch.exception_payload_enabled)
5156 			return -EINVAL;
5157 		if (events->exception.pending)
5158 			events->exception.injected = 0;
5159 		else
5160 			events->exception_has_payload = 0;
5161 	} else {
5162 		events->exception.pending = 0;
5163 		events->exception_has_payload = 0;
5164 	}
5165 
5166 	if ((events->exception.injected || events->exception.pending) &&
5167 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5168 		return -EINVAL;
5169 
5170 	/* INITs are latched while in SMM */
5171 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5172 	    (events->smi.smm || events->smi.pending) &&
5173 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5174 		return -EINVAL;
5175 
5176 	process_nmi(vcpu);
5177 
5178 	/*
5179 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5180 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5181 	 * pending exceptions, already-injected exceptions are not subject to
5182 	 * intercpetion.  Note, userspace that conflates pending and injected
5183 	 * is hosed, and will incorrectly convert an injected exception into a
5184 	 * pending exception, which in turn may cause a spurious VM-Exit.
5185 	 */
5186 	vcpu->arch.exception_from_userspace = events->exception.pending;
5187 
5188 	vcpu->arch.exception_vmexit.pending = false;
5189 
5190 	vcpu->arch.exception.injected = events->exception.injected;
5191 	vcpu->arch.exception.pending = events->exception.pending;
5192 	vcpu->arch.exception.vector = events->exception.nr;
5193 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5194 	vcpu->arch.exception.error_code = events->exception.error_code;
5195 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5196 	vcpu->arch.exception.payload = events->exception_payload;
5197 
5198 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5199 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5200 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5201 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5202 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5203 						events->interrupt.shadow);
5204 
5205 	vcpu->arch.nmi_injected = events->nmi.injected;
5206 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5207 		vcpu->arch.nmi_pending = events->nmi.pending;
5208 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5209 
5210 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5211 	    lapic_in_kernel(vcpu))
5212 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5213 
5214 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5215 #ifdef CONFIG_KVM_SMM
5216 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5217 			kvm_leave_nested(vcpu);
5218 			kvm_smm_changed(vcpu, events->smi.smm);
5219 		}
5220 
5221 		vcpu->arch.smi_pending = events->smi.pending;
5222 
5223 		if (events->smi.smm) {
5224 			if (events->smi.smm_inside_nmi)
5225 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5226 			else
5227 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5228 		}
5229 
5230 #else
5231 		if (events->smi.smm || events->smi.pending ||
5232 		    events->smi.smm_inside_nmi)
5233 			return -EINVAL;
5234 #endif
5235 
5236 		if (lapic_in_kernel(vcpu)) {
5237 			if (events->smi.latched_init)
5238 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5239 			else
5240 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5241 		}
5242 	}
5243 
5244 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5245 		if (!vcpu->kvm->arch.triple_fault_event)
5246 			return -EINVAL;
5247 		if (events->triple_fault.pending)
5248 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5249 		else
5250 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5251 	}
5252 
5253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5254 
5255 	return 0;
5256 }
5257 
5258 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5259 					     struct kvm_debugregs *dbgregs)
5260 {
5261 	unsigned long val;
5262 
5263 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5264 	kvm_get_dr(vcpu, 6, &val);
5265 	dbgregs->dr6 = val;
5266 	dbgregs->dr7 = vcpu->arch.dr7;
5267 	dbgregs->flags = 0;
5268 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5269 }
5270 
5271 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5272 					    struct kvm_debugregs *dbgregs)
5273 {
5274 	if (dbgregs->flags)
5275 		return -EINVAL;
5276 
5277 	if (!kvm_dr6_valid(dbgregs->dr6))
5278 		return -EINVAL;
5279 	if (!kvm_dr7_valid(dbgregs->dr7))
5280 		return -EINVAL;
5281 
5282 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5283 	kvm_update_dr0123(vcpu);
5284 	vcpu->arch.dr6 = dbgregs->dr6;
5285 	vcpu->arch.dr7 = dbgregs->dr7;
5286 	kvm_update_dr7(vcpu);
5287 
5288 	return 0;
5289 }
5290 
5291 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5292 					 struct kvm_xsave *guest_xsave)
5293 {
5294 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5295 		return;
5296 
5297 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5298 				       guest_xsave->region,
5299 				       sizeof(guest_xsave->region),
5300 				       vcpu->arch.pkru);
5301 }
5302 
5303 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5304 					  u8 *state, unsigned int size)
5305 {
5306 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5307 		return;
5308 
5309 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5310 				       state, size, vcpu->arch.pkru);
5311 }
5312 
5313 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5314 					struct kvm_xsave *guest_xsave)
5315 {
5316 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5317 		return 0;
5318 
5319 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5320 					      guest_xsave->region,
5321 					      kvm_caps.supported_xcr0,
5322 					      &vcpu->arch.pkru);
5323 }
5324 
5325 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5326 					struct kvm_xcrs *guest_xcrs)
5327 {
5328 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5329 		guest_xcrs->nr_xcrs = 0;
5330 		return;
5331 	}
5332 
5333 	guest_xcrs->nr_xcrs = 1;
5334 	guest_xcrs->flags = 0;
5335 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5336 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5337 }
5338 
5339 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5340 				       struct kvm_xcrs *guest_xcrs)
5341 {
5342 	int i, r = 0;
5343 
5344 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5345 		return -EINVAL;
5346 
5347 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5348 		return -EINVAL;
5349 
5350 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5351 		/* Only support XCR0 currently */
5352 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5353 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5354 				guest_xcrs->xcrs[i].value);
5355 			break;
5356 		}
5357 	if (r)
5358 		r = -EINVAL;
5359 	return r;
5360 }
5361 
5362 /*
5363  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5364  * stopped by the hypervisor.  This function will be called from the host only.
5365  * EINVAL is returned when the host attempts to set the flag for a guest that
5366  * does not support pv clocks.
5367  */
5368 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5369 {
5370 	if (!vcpu->arch.pv_time.active)
5371 		return -EINVAL;
5372 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5373 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5374 	return 0;
5375 }
5376 
5377 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5378 				 struct kvm_device_attr *attr)
5379 {
5380 	int r;
5381 
5382 	switch (attr->attr) {
5383 	case KVM_VCPU_TSC_OFFSET:
5384 		r = 0;
5385 		break;
5386 	default:
5387 		r = -ENXIO;
5388 	}
5389 
5390 	return r;
5391 }
5392 
5393 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5394 				 struct kvm_device_attr *attr)
5395 {
5396 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5397 	int r;
5398 
5399 	if (IS_ERR(uaddr))
5400 		return PTR_ERR(uaddr);
5401 
5402 	switch (attr->attr) {
5403 	case KVM_VCPU_TSC_OFFSET:
5404 		r = -EFAULT;
5405 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5406 			break;
5407 		r = 0;
5408 		break;
5409 	default:
5410 		r = -ENXIO;
5411 	}
5412 
5413 	return r;
5414 }
5415 
5416 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5417 				 struct kvm_device_attr *attr)
5418 {
5419 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5420 	struct kvm *kvm = vcpu->kvm;
5421 	int r;
5422 
5423 	if (IS_ERR(uaddr))
5424 		return PTR_ERR(uaddr);
5425 
5426 	switch (attr->attr) {
5427 	case KVM_VCPU_TSC_OFFSET: {
5428 		u64 offset, tsc, ns;
5429 		unsigned long flags;
5430 		bool matched;
5431 
5432 		r = -EFAULT;
5433 		if (get_user(offset, uaddr))
5434 			break;
5435 
5436 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5437 
5438 		matched = (vcpu->arch.virtual_tsc_khz &&
5439 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5440 			   kvm->arch.last_tsc_offset == offset);
5441 
5442 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5443 		ns = get_kvmclock_base_ns();
5444 
5445 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5446 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5447 
5448 		r = 0;
5449 		break;
5450 	}
5451 	default:
5452 		r = -ENXIO;
5453 	}
5454 
5455 	return r;
5456 }
5457 
5458 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5459 				      unsigned int ioctl,
5460 				      void __user *argp)
5461 {
5462 	struct kvm_device_attr attr;
5463 	int r;
5464 
5465 	if (copy_from_user(&attr, argp, sizeof(attr)))
5466 		return -EFAULT;
5467 
5468 	if (attr.group != KVM_VCPU_TSC_CTRL)
5469 		return -ENXIO;
5470 
5471 	switch (ioctl) {
5472 	case KVM_HAS_DEVICE_ATTR:
5473 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5474 		break;
5475 	case KVM_GET_DEVICE_ATTR:
5476 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5477 		break;
5478 	case KVM_SET_DEVICE_ATTR:
5479 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5480 		break;
5481 	}
5482 
5483 	return r;
5484 }
5485 
5486 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5487 				     struct kvm_enable_cap *cap)
5488 {
5489 	int r;
5490 	uint16_t vmcs_version;
5491 	void __user *user_ptr;
5492 
5493 	if (cap->flags)
5494 		return -EINVAL;
5495 
5496 	switch (cap->cap) {
5497 	case KVM_CAP_HYPERV_SYNIC2:
5498 		if (cap->args[0])
5499 			return -EINVAL;
5500 		fallthrough;
5501 
5502 	case KVM_CAP_HYPERV_SYNIC:
5503 		if (!irqchip_in_kernel(vcpu->kvm))
5504 			return -EINVAL;
5505 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5506 					     KVM_CAP_HYPERV_SYNIC2);
5507 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5508 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5509 			return -ENOTTY;
5510 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5511 		if (!r) {
5512 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5513 			if (copy_to_user(user_ptr, &vmcs_version,
5514 					 sizeof(vmcs_version)))
5515 				r = -EFAULT;
5516 		}
5517 		return r;
5518 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5519 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5520 			return -ENOTTY;
5521 
5522 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5523 
5524 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5525 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5526 
5527 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5528 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5529 		if (vcpu->arch.pv_cpuid.enforce)
5530 			kvm_update_pv_runtime(vcpu);
5531 
5532 		return 0;
5533 	default:
5534 		return -EINVAL;
5535 	}
5536 }
5537 
5538 long kvm_arch_vcpu_ioctl(struct file *filp,
5539 			 unsigned int ioctl, unsigned long arg)
5540 {
5541 	struct kvm_vcpu *vcpu = filp->private_data;
5542 	void __user *argp = (void __user *)arg;
5543 	int r;
5544 	union {
5545 		struct kvm_sregs2 *sregs2;
5546 		struct kvm_lapic_state *lapic;
5547 		struct kvm_xsave *xsave;
5548 		struct kvm_xcrs *xcrs;
5549 		void *buffer;
5550 	} u;
5551 
5552 	vcpu_load(vcpu);
5553 
5554 	u.buffer = NULL;
5555 	switch (ioctl) {
5556 	case KVM_GET_LAPIC: {
5557 		r = -EINVAL;
5558 		if (!lapic_in_kernel(vcpu))
5559 			goto out;
5560 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5561 				GFP_KERNEL_ACCOUNT);
5562 
5563 		r = -ENOMEM;
5564 		if (!u.lapic)
5565 			goto out;
5566 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5567 		if (r)
5568 			goto out;
5569 		r = -EFAULT;
5570 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5571 			goto out;
5572 		r = 0;
5573 		break;
5574 	}
5575 	case KVM_SET_LAPIC: {
5576 		r = -EINVAL;
5577 		if (!lapic_in_kernel(vcpu))
5578 			goto out;
5579 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5580 		if (IS_ERR(u.lapic)) {
5581 			r = PTR_ERR(u.lapic);
5582 			goto out_nofree;
5583 		}
5584 
5585 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5586 		break;
5587 	}
5588 	case KVM_INTERRUPT: {
5589 		struct kvm_interrupt irq;
5590 
5591 		r = -EFAULT;
5592 		if (copy_from_user(&irq, argp, sizeof(irq)))
5593 			goto out;
5594 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5595 		break;
5596 	}
5597 	case KVM_NMI: {
5598 		r = kvm_vcpu_ioctl_nmi(vcpu);
5599 		break;
5600 	}
5601 	case KVM_SMI: {
5602 		r = kvm_inject_smi(vcpu);
5603 		break;
5604 	}
5605 	case KVM_SET_CPUID: {
5606 		struct kvm_cpuid __user *cpuid_arg = argp;
5607 		struct kvm_cpuid cpuid;
5608 
5609 		r = -EFAULT;
5610 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5611 			goto out;
5612 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5613 		break;
5614 	}
5615 	case KVM_SET_CPUID2: {
5616 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5617 		struct kvm_cpuid2 cpuid;
5618 
5619 		r = -EFAULT;
5620 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5621 			goto out;
5622 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5623 					      cpuid_arg->entries);
5624 		break;
5625 	}
5626 	case KVM_GET_CPUID2: {
5627 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5628 		struct kvm_cpuid2 cpuid;
5629 
5630 		r = -EFAULT;
5631 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5632 			goto out;
5633 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5634 					      cpuid_arg->entries);
5635 		if (r)
5636 			goto out;
5637 		r = -EFAULT;
5638 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5639 			goto out;
5640 		r = 0;
5641 		break;
5642 	}
5643 	case KVM_GET_MSRS: {
5644 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5645 		r = msr_io(vcpu, argp, do_get_msr, 1);
5646 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5647 		break;
5648 	}
5649 	case KVM_SET_MSRS: {
5650 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5651 		r = msr_io(vcpu, argp, do_set_msr, 0);
5652 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5653 		break;
5654 	}
5655 	case KVM_TPR_ACCESS_REPORTING: {
5656 		struct kvm_tpr_access_ctl tac;
5657 
5658 		r = -EFAULT;
5659 		if (copy_from_user(&tac, argp, sizeof(tac)))
5660 			goto out;
5661 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5662 		if (r)
5663 			goto out;
5664 		r = -EFAULT;
5665 		if (copy_to_user(argp, &tac, sizeof(tac)))
5666 			goto out;
5667 		r = 0;
5668 		break;
5669 	};
5670 	case KVM_SET_VAPIC_ADDR: {
5671 		struct kvm_vapic_addr va;
5672 		int idx;
5673 
5674 		r = -EINVAL;
5675 		if (!lapic_in_kernel(vcpu))
5676 			goto out;
5677 		r = -EFAULT;
5678 		if (copy_from_user(&va, argp, sizeof(va)))
5679 			goto out;
5680 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5681 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5682 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5683 		break;
5684 	}
5685 	case KVM_X86_SETUP_MCE: {
5686 		u64 mcg_cap;
5687 
5688 		r = -EFAULT;
5689 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5690 			goto out;
5691 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5692 		break;
5693 	}
5694 	case KVM_X86_SET_MCE: {
5695 		struct kvm_x86_mce mce;
5696 
5697 		r = -EFAULT;
5698 		if (copy_from_user(&mce, argp, sizeof(mce)))
5699 			goto out;
5700 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5701 		break;
5702 	}
5703 	case KVM_GET_VCPU_EVENTS: {
5704 		struct kvm_vcpu_events events;
5705 
5706 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5707 
5708 		r = -EFAULT;
5709 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5710 			break;
5711 		r = 0;
5712 		break;
5713 	}
5714 	case KVM_SET_VCPU_EVENTS: {
5715 		struct kvm_vcpu_events events;
5716 
5717 		r = -EFAULT;
5718 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5719 			break;
5720 
5721 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5722 		break;
5723 	}
5724 	case KVM_GET_DEBUGREGS: {
5725 		struct kvm_debugregs dbgregs;
5726 
5727 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5728 
5729 		r = -EFAULT;
5730 		if (copy_to_user(argp, &dbgregs,
5731 				 sizeof(struct kvm_debugregs)))
5732 			break;
5733 		r = 0;
5734 		break;
5735 	}
5736 	case KVM_SET_DEBUGREGS: {
5737 		struct kvm_debugregs dbgregs;
5738 
5739 		r = -EFAULT;
5740 		if (copy_from_user(&dbgregs, argp,
5741 				   sizeof(struct kvm_debugregs)))
5742 			break;
5743 
5744 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5745 		break;
5746 	}
5747 	case KVM_GET_XSAVE: {
5748 		r = -EINVAL;
5749 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5750 			break;
5751 
5752 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5753 		r = -ENOMEM;
5754 		if (!u.xsave)
5755 			break;
5756 
5757 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5758 
5759 		r = -EFAULT;
5760 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5761 			break;
5762 		r = 0;
5763 		break;
5764 	}
5765 	case KVM_SET_XSAVE: {
5766 		int size = vcpu->arch.guest_fpu.uabi_size;
5767 
5768 		u.xsave = memdup_user(argp, size);
5769 		if (IS_ERR(u.xsave)) {
5770 			r = PTR_ERR(u.xsave);
5771 			goto out_nofree;
5772 		}
5773 
5774 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5775 		break;
5776 	}
5777 
5778 	case KVM_GET_XSAVE2: {
5779 		int size = vcpu->arch.guest_fpu.uabi_size;
5780 
5781 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5782 		r = -ENOMEM;
5783 		if (!u.xsave)
5784 			break;
5785 
5786 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5787 
5788 		r = -EFAULT;
5789 		if (copy_to_user(argp, u.xsave, size))
5790 			break;
5791 
5792 		r = 0;
5793 		break;
5794 	}
5795 
5796 	case KVM_GET_XCRS: {
5797 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5798 		r = -ENOMEM;
5799 		if (!u.xcrs)
5800 			break;
5801 
5802 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5803 
5804 		r = -EFAULT;
5805 		if (copy_to_user(argp, u.xcrs,
5806 				 sizeof(struct kvm_xcrs)))
5807 			break;
5808 		r = 0;
5809 		break;
5810 	}
5811 	case KVM_SET_XCRS: {
5812 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5813 		if (IS_ERR(u.xcrs)) {
5814 			r = PTR_ERR(u.xcrs);
5815 			goto out_nofree;
5816 		}
5817 
5818 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5819 		break;
5820 	}
5821 	case KVM_SET_TSC_KHZ: {
5822 		u32 user_tsc_khz;
5823 
5824 		r = -EINVAL;
5825 		user_tsc_khz = (u32)arg;
5826 
5827 		if (kvm_caps.has_tsc_control &&
5828 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5829 			goto out;
5830 
5831 		if (user_tsc_khz == 0)
5832 			user_tsc_khz = tsc_khz;
5833 
5834 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5835 			r = 0;
5836 
5837 		goto out;
5838 	}
5839 	case KVM_GET_TSC_KHZ: {
5840 		r = vcpu->arch.virtual_tsc_khz;
5841 		goto out;
5842 	}
5843 	case KVM_KVMCLOCK_CTRL: {
5844 		r = kvm_set_guest_paused(vcpu);
5845 		goto out;
5846 	}
5847 	case KVM_ENABLE_CAP: {
5848 		struct kvm_enable_cap cap;
5849 
5850 		r = -EFAULT;
5851 		if (copy_from_user(&cap, argp, sizeof(cap)))
5852 			goto out;
5853 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5854 		break;
5855 	}
5856 	case KVM_GET_NESTED_STATE: {
5857 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5858 		u32 user_data_size;
5859 
5860 		r = -EINVAL;
5861 		if (!kvm_x86_ops.nested_ops->get_state)
5862 			break;
5863 
5864 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5865 		r = -EFAULT;
5866 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5867 			break;
5868 
5869 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5870 						     user_data_size);
5871 		if (r < 0)
5872 			break;
5873 
5874 		if (r > user_data_size) {
5875 			if (put_user(r, &user_kvm_nested_state->size))
5876 				r = -EFAULT;
5877 			else
5878 				r = -E2BIG;
5879 			break;
5880 		}
5881 
5882 		r = 0;
5883 		break;
5884 	}
5885 	case KVM_SET_NESTED_STATE: {
5886 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5887 		struct kvm_nested_state kvm_state;
5888 		int idx;
5889 
5890 		r = -EINVAL;
5891 		if (!kvm_x86_ops.nested_ops->set_state)
5892 			break;
5893 
5894 		r = -EFAULT;
5895 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5896 			break;
5897 
5898 		r = -EINVAL;
5899 		if (kvm_state.size < sizeof(kvm_state))
5900 			break;
5901 
5902 		if (kvm_state.flags &
5903 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5904 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5905 		      | KVM_STATE_NESTED_GIF_SET))
5906 			break;
5907 
5908 		/* nested_run_pending implies guest_mode.  */
5909 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5910 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5911 			break;
5912 
5913 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5914 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5915 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5916 		break;
5917 	}
5918 	case KVM_GET_SUPPORTED_HV_CPUID:
5919 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5920 		break;
5921 #ifdef CONFIG_KVM_XEN
5922 	case KVM_XEN_VCPU_GET_ATTR: {
5923 		struct kvm_xen_vcpu_attr xva;
5924 
5925 		r = -EFAULT;
5926 		if (copy_from_user(&xva, argp, sizeof(xva)))
5927 			goto out;
5928 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5929 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5930 			r = -EFAULT;
5931 		break;
5932 	}
5933 	case KVM_XEN_VCPU_SET_ATTR: {
5934 		struct kvm_xen_vcpu_attr xva;
5935 
5936 		r = -EFAULT;
5937 		if (copy_from_user(&xva, argp, sizeof(xva)))
5938 			goto out;
5939 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5940 		break;
5941 	}
5942 #endif
5943 	case KVM_GET_SREGS2: {
5944 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5945 		r = -ENOMEM;
5946 		if (!u.sregs2)
5947 			goto out;
5948 		__get_sregs2(vcpu, u.sregs2);
5949 		r = -EFAULT;
5950 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5951 			goto out;
5952 		r = 0;
5953 		break;
5954 	}
5955 	case KVM_SET_SREGS2: {
5956 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5957 		if (IS_ERR(u.sregs2)) {
5958 			r = PTR_ERR(u.sregs2);
5959 			u.sregs2 = NULL;
5960 			goto out;
5961 		}
5962 		r = __set_sregs2(vcpu, u.sregs2);
5963 		break;
5964 	}
5965 	case KVM_HAS_DEVICE_ATTR:
5966 	case KVM_GET_DEVICE_ATTR:
5967 	case KVM_SET_DEVICE_ATTR:
5968 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5969 		break;
5970 	default:
5971 		r = -EINVAL;
5972 	}
5973 out:
5974 	kfree(u.buffer);
5975 out_nofree:
5976 	vcpu_put(vcpu);
5977 	return r;
5978 }
5979 
5980 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5981 {
5982 	return VM_FAULT_SIGBUS;
5983 }
5984 
5985 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5986 {
5987 	int ret;
5988 
5989 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5990 		return -EINVAL;
5991 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5992 	return ret;
5993 }
5994 
5995 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5996 					      u64 ident_addr)
5997 {
5998 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5999 }
6000 
6001 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6002 					 unsigned long kvm_nr_mmu_pages)
6003 {
6004 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6005 		return -EINVAL;
6006 
6007 	mutex_lock(&kvm->slots_lock);
6008 
6009 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6010 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6011 
6012 	mutex_unlock(&kvm->slots_lock);
6013 	return 0;
6014 }
6015 
6016 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6017 {
6018 	return kvm->arch.n_max_mmu_pages;
6019 }
6020 
6021 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6022 {
6023 	struct kvm_pic *pic = kvm->arch.vpic;
6024 	int r;
6025 
6026 	r = 0;
6027 	switch (chip->chip_id) {
6028 	case KVM_IRQCHIP_PIC_MASTER:
6029 		memcpy(&chip->chip.pic, &pic->pics[0],
6030 			sizeof(struct kvm_pic_state));
6031 		break;
6032 	case KVM_IRQCHIP_PIC_SLAVE:
6033 		memcpy(&chip->chip.pic, &pic->pics[1],
6034 			sizeof(struct kvm_pic_state));
6035 		break;
6036 	case KVM_IRQCHIP_IOAPIC:
6037 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6038 		break;
6039 	default:
6040 		r = -EINVAL;
6041 		break;
6042 	}
6043 	return r;
6044 }
6045 
6046 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6047 {
6048 	struct kvm_pic *pic = kvm->arch.vpic;
6049 	int r;
6050 
6051 	r = 0;
6052 	switch (chip->chip_id) {
6053 	case KVM_IRQCHIP_PIC_MASTER:
6054 		spin_lock(&pic->lock);
6055 		memcpy(&pic->pics[0], &chip->chip.pic,
6056 			sizeof(struct kvm_pic_state));
6057 		spin_unlock(&pic->lock);
6058 		break;
6059 	case KVM_IRQCHIP_PIC_SLAVE:
6060 		spin_lock(&pic->lock);
6061 		memcpy(&pic->pics[1], &chip->chip.pic,
6062 			sizeof(struct kvm_pic_state));
6063 		spin_unlock(&pic->lock);
6064 		break;
6065 	case KVM_IRQCHIP_IOAPIC:
6066 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6067 		break;
6068 	default:
6069 		r = -EINVAL;
6070 		break;
6071 	}
6072 	kvm_pic_update_irq(pic);
6073 	return r;
6074 }
6075 
6076 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6077 {
6078 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6079 
6080 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6081 
6082 	mutex_lock(&kps->lock);
6083 	memcpy(ps, &kps->channels, sizeof(*ps));
6084 	mutex_unlock(&kps->lock);
6085 	return 0;
6086 }
6087 
6088 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6089 {
6090 	int i;
6091 	struct kvm_pit *pit = kvm->arch.vpit;
6092 
6093 	mutex_lock(&pit->pit_state.lock);
6094 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6095 	for (i = 0; i < 3; i++)
6096 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6097 	mutex_unlock(&pit->pit_state.lock);
6098 	return 0;
6099 }
6100 
6101 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6102 {
6103 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6104 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6105 		sizeof(ps->channels));
6106 	ps->flags = kvm->arch.vpit->pit_state.flags;
6107 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6108 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6109 	return 0;
6110 }
6111 
6112 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6113 {
6114 	int start = 0;
6115 	int i;
6116 	u32 prev_legacy, cur_legacy;
6117 	struct kvm_pit *pit = kvm->arch.vpit;
6118 
6119 	mutex_lock(&pit->pit_state.lock);
6120 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6121 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6122 	if (!prev_legacy && cur_legacy)
6123 		start = 1;
6124 	memcpy(&pit->pit_state.channels, &ps->channels,
6125 	       sizeof(pit->pit_state.channels));
6126 	pit->pit_state.flags = ps->flags;
6127 	for (i = 0; i < 3; i++)
6128 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6129 				   start && i == 0);
6130 	mutex_unlock(&pit->pit_state.lock);
6131 	return 0;
6132 }
6133 
6134 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6135 				 struct kvm_reinject_control *control)
6136 {
6137 	struct kvm_pit *pit = kvm->arch.vpit;
6138 
6139 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6140 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6141 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6142 	 */
6143 	mutex_lock(&pit->pit_state.lock);
6144 	kvm_pit_set_reinject(pit, control->pit_reinject);
6145 	mutex_unlock(&pit->pit_state.lock);
6146 
6147 	return 0;
6148 }
6149 
6150 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6151 {
6152 
6153 	/*
6154 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6155 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6156 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6157 	 * VM-Exit.
6158 	 */
6159 	struct kvm_vcpu *vcpu;
6160 	unsigned long i;
6161 
6162 	kvm_for_each_vcpu(i, vcpu, kvm)
6163 		kvm_vcpu_kick(vcpu);
6164 }
6165 
6166 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6167 			bool line_status)
6168 {
6169 	if (!irqchip_in_kernel(kvm))
6170 		return -ENXIO;
6171 
6172 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6173 					irq_event->irq, irq_event->level,
6174 					line_status);
6175 	return 0;
6176 }
6177 
6178 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6179 			    struct kvm_enable_cap *cap)
6180 {
6181 	int r;
6182 
6183 	if (cap->flags)
6184 		return -EINVAL;
6185 
6186 	switch (cap->cap) {
6187 	case KVM_CAP_DISABLE_QUIRKS2:
6188 		r = -EINVAL;
6189 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6190 			break;
6191 		fallthrough;
6192 	case KVM_CAP_DISABLE_QUIRKS:
6193 		kvm->arch.disabled_quirks = cap->args[0];
6194 		r = 0;
6195 		break;
6196 	case KVM_CAP_SPLIT_IRQCHIP: {
6197 		mutex_lock(&kvm->lock);
6198 		r = -EINVAL;
6199 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6200 			goto split_irqchip_unlock;
6201 		r = -EEXIST;
6202 		if (irqchip_in_kernel(kvm))
6203 			goto split_irqchip_unlock;
6204 		if (kvm->created_vcpus)
6205 			goto split_irqchip_unlock;
6206 		r = kvm_setup_empty_irq_routing(kvm);
6207 		if (r)
6208 			goto split_irqchip_unlock;
6209 		/* Pairs with irqchip_in_kernel. */
6210 		smp_wmb();
6211 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6212 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6213 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6214 		r = 0;
6215 split_irqchip_unlock:
6216 		mutex_unlock(&kvm->lock);
6217 		break;
6218 	}
6219 	case KVM_CAP_X2APIC_API:
6220 		r = -EINVAL;
6221 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6222 			break;
6223 
6224 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6225 			kvm->arch.x2apic_format = true;
6226 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6227 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6228 
6229 		r = 0;
6230 		break;
6231 	case KVM_CAP_X86_DISABLE_EXITS:
6232 		r = -EINVAL;
6233 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6234 			break;
6235 
6236 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6237 			kvm_can_mwait_in_guest())
6238 			kvm->arch.mwait_in_guest = true;
6239 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6240 			kvm->arch.hlt_in_guest = true;
6241 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6242 			kvm->arch.pause_in_guest = true;
6243 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6244 			kvm->arch.cstate_in_guest = true;
6245 		r = 0;
6246 		break;
6247 	case KVM_CAP_MSR_PLATFORM_INFO:
6248 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6249 		r = 0;
6250 		break;
6251 	case KVM_CAP_EXCEPTION_PAYLOAD:
6252 		kvm->arch.exception_payload_enabled = cap->args[0];
6253 		r = 0;
6254 		break;
6255 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6256 		kvm->arch.triple_fault_event = cap->args[0];
6257 		r = 0;
6258 		break;
6259 	case KVM_CAP_X86_USER_SPACE_MSR:
6260 		r = -EINVAL;
6261 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6262 			break;
6263 		kvm->arch.user_space_msr_mask = cap->args[0];
6264 		r = 0;
6265 		break;
6266 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6267 		r = -EINVAL;
6268 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6269 			break;
6270 
6271 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6272 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6273 			break;
6274 
6275 		if (kvm_caps.has_bus_lock_exit &&
6276 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6277 			kvm->arch.bus_lock_detection_enabled = true;
6278 		r = 0;
6279 		break;
6280 #ifdef CONFIG_X86_SGX_KVM
6281 	case KVM_CAP_SGX_ATTRIBUTE: {
6282 		unsigned long allowed_attributes = 0;
6283 
6284 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6285 		if (r)
6286 			break;
6287 
6288 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6289 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6290 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6291 			kvm->arch.sgx_provisioning_allowed = true;
6292 		else
6293 			r = -EINVAL;
6294 		break;
6295 	}
6296 #endif
6297 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6298 		r = -EINVAL;
6299 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6300 			break;
6301 
6302 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6303 		break;
6304 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6305 		r = -EINVAL;
6306 		if (!kvm_x86_ops.vm_move_enc_context_from)
6307 			break;
6308 
6309 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6310 		break;
6311 	case KVM_CAP_EXIT_HYPERCALL:
6312 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6313 			r = -EINVAL;
6314 			break;
6315 		}
6316 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6317 		r = 0;
6318 		break;
6319 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6320 		r = -EINVAL;
6321 		if (cap->args[0] & ~1)
6322 			break;
6323 		kvm->arch.exit_on_emulation_error = cap->args[0];
6324 		r = 0;
6325 		break;
6326 	case KVM_CAP_PMU_CAPABILITY:
6327 		r = -EINVAL;
6328 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6329 			break;
6330 
6331 		mutex_lock(&kvm->lock);
6332 		if (!kvm->created_vcpus) {
6333 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6334 			r = 0;
6335 		}
6336 		mutex_unlock(&kvm->lock);
6337 		break;
6338 	case KVM_CAP_MAX_VCPU_ID:
6339 		r = -EINVAL;
6340 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6341 			break;
6342 
6343 		mutex_lock(&kvm->lock);
6344 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6345 			r = 0;
6346 		} else if (!kvm->arch.max_vcpu_ids) {
6347 			kvm->arch.max_vcpu_ids = cap->args[0];
6348 			r = 0;
6349 		}
6350 		mutex_unlock(&kvm->lock);
6351 		break;
6352 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6353 		r = -EINVAL;
6354 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6355 			break;
6356 		if (!kvm_caps.has_notify_vmexit)
6357 			break;
6358 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6359 			break;
6360 		mutex_lock(&kvm->lock);
6361 		if (!kvm->created_vcpus) {
6362 			kvm->arch.notify_window = cap->args[0] >> 32;
6363 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6364 			r = 0;
6365 		}
6366 		mutex_unlock(&kvm->lock);
6367 		break;
6368 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6369 		r = -EINVAL;
6370 
6371 		/*
6372 		 * Since the risk of disabling NX hugepages is a guest crashing
6373 		 * the system, ensure the userspace process has permission to
6374 		 * reboot the system.
6375 		 *
6376 		 * Note that unlike the reboot() syscall, the process must have
6377 		 * this capability in the root namespace because exposing
6378 		 * /dev/kvm into a container does not limit the scope of the
6379 		 * iTLB multihit bug to that container. In other words,
6380 		 * this must use capable(), not ns_capable().
6381 		 */
6382 		if (!capable(CAP_SYS_BOOT)) {
6383 			r = -EPERM;
6384 			break;
6385 		}
6386 
6387 		if (cap->args[0])
6388 			break;
6389 
6390 		mutex_lock(&kvm->lock);
6391 		if (!kvm->created_vcpus) {
6392 			kvm->arch.disable_nx_huge_pages = true;
6393 			r = 0;
6394 		}
6395 		mutex_unlock(&kvm->lock);
6396 		break;
6397 	default:
6398 		r = -EINVAL;
6399 		break;
6400 	}
6401 	return r;
6402 }
6403 
6404 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6405 {
6406 	struct kvm_x86_msr_filter *msr_filter;
6407 
6408 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6409 	if (!msr_filter)
6410 		return NULL;
6411 
6412 	msr_filter->default_allow = default_allow;
6413 	return msr_filter;
6414 }
6415 
6416 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6417 {
6418 	u32 i;
6419 
6420 	if (!msr_filter)
6421 		return;
6422 
6423 	for (i = 0; i < msr_filter->count; i++)
6424 		kfree(msr_filter->ranges[i].bitmap);
6425 
6426 	kfree(msr_filter);
6427 }
6428 
6429 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6430 			      struct kvm_msr_filter_range *user_range)
6431 {
6432 	unsigned long *bitmap = NULL;
6433 	size_t bitmap_size;
6434 
6435 	if (!user_range->nmsrs)
6436 		return 0;
6437 
6438 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6439 		return -EINVAL;
6440 
6441 	if (!user_range->flags)
6442 		return -EINVAL;
6443 
6444 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6445 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6446 		return -EINVAL;
6447 
6448 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6449 	if (IS_ERR(bitmap))
6450 		return PTR_ERR(bitmap);
6451 
6452 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6453 		.flags = user_range->flags,
6454 		.base = user_range->base,
6455 		.nmsrs = user_range->nmsrs,
6456 		.bitmap = bitmap,
6457 	};
6458 
6459 	msr_filter->count++;
6460 	return 0;
6461 }
6462 
6463 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6464 				       struct kvm_msr_filter *filter)
6465 {
6466 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6467 	bool default_allow;
6468 	bool empty = true;
6469 	int r = 0;
6470 	u32 i;
6471 
6472 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6473 		return -EINVAL;
6474 
6475 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6476 		empty &= !filter->ranges[i].nmsrs;
6477 
6478 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6479 	if (empty && !default_allow)
6480 		return -EINVAL;
6481 
6482 	new_filter = kvm_alloc_msr_filter(default_allow);
6483 	if (!new_filter)
6484 		return -ENOMEM;
6485 
6486 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6487 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6488 		if (r) {
6489 			kvm_free_msr_filter(new_filter);
6490 			return r;
6491 		}
6492 	}
6493 
6494 	mutex_lock(&kvm->lock);
6495 
6496 	/* The per-VM filter is protected by kvm->lock... */
6497 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6498 
6499 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6500 	synchronize_srcu(&kvm->srcu);
6501 
6502 	kvm_free_msr_filter(old_filter);
6503 
6504 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6505 	mutex_unlock(&kvm->lock);
6506 
6507 	return 0;
6508 }
6509 
6510 #ifdef CONFIG_KVM_COMPAT
6511 /* for KVM_X86_SET_MSR_FILTER */
6512 struct kvm_msr_filter_range_compat {
6513 	__u32 flags;
6514 	__u32 nmsrs;
6515 	__u32 base;
6516 	__u32 bitmap;
6517 };
6518 
6519 struct kvm_msr_filter_compat {
6520 	__u32 flags;
6521 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6522 };
6523 
6524 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6525 
6526 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6527 			      unsigned long arg)
6528 {
6529 	void __user *argp = (void __user *)arg;
6530 	struct kvm *kvm = filp->private_data;
6531 	long r = -ENOTTY;
6532 
6533 	switch (ioctl) {
6534 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6535 		struct kvm_msr_filter __user *user_msr_filter = argp;
6536 		struct kvm_msr_filter_compat filter_compat;
6537 		struct kvm_msr_filter filter;
6538 		int i;
6539 
6540 		if (copy_from_user(&filter_compat, user_msr_filter,
6541 				   sizeof(filter_compat)))
6542 			return -EFAULT;
6543 
6544 		filter.flags = filter_compat.flags;
6545 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6546 			struct kvm_msr_filter_range_compat *cr;
6547 
6548 			cr = &filter_compat.ranges[i];
6549 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6550 				.flags = cr->flags,
6551 				.nmsrs = cr->nmsrs,
6552 				.base = cr->base,
6553 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6554 			};
6555 		}
6556 
6557 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6558 		break;
6559 	}
6560 	}
6561 
6562 	return r;
6563 }
6564 #endif
6565 
6566 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6567 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6568 {
6569 	struct kvm_vcpu *vcpu;
6570 	unsigned long i;
6571 	int ret = 0;
6572 
6573 	mutex_lock(&kvm->lock);
6574 	kvm_for_each_vcpu(i, vcpu, kvm) {
6575 		if (!vcpu->arch.pv_time.active)
6576 			continue;
6577 
6578 		ret = kvm_set_guest_paused(vcpu);
6579 		if (ret) {
6580 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6581 				vcpu->vcpu_id, ret);
6582 			break;
6583 		}
6584 	}
6585 	mutex_unlock(&kvm->lock);
6586 
6587 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6588 }
6589 
6590 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6591 {
6592 	switch (state) {
6593 	case PM_HIBERNATION_PREPARE:
6594 	case PM_SUSPEND_PREPARE:
6595 		return kvm_arch_suspend_notifier(kvm);
6596 	}
6597 
6598 	return NOTIFY_DONE;
6599 }
6600 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6601 
6602 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6603 {
6604 	struct kvm_clock_data data = { 0 };
6605 
6606 	get_kvmclock(kvm, &data);
6607 	if (copy_to_user(argp, &data, sizeof(data)))
6608 		return -EFAULT;
6609 
6610 	return 0;
6611 }
6612 
6613 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6614 {
6615 	struct kvm_arch *ka = &kvm->arch;
6616 	struct kvm_clock_data data;
6617 	u64 now_raw_ns;
6618 
6619 	if (copy_from_user(&data, argp, sizeof(data)))
6620 		return -EFAULT;
6621 
6622 	/*
6623 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6624 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6625 	 */
6626 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6627 		return -EINVAL;
6628 
6629 	kvm_hv_request_tsc_page_update(kvm);
6630 	kvm_start_pvclock_update(kvm);
6631 	pvclock_update_vm_gtod_copy(kvm);
6632 
6633 	/*
6634 	 * This pairs with kvm_guest_time_update(): when masterclock is
6635 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6636 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6637 	 * is slightly ahead) here we risk going negative on unsigned
6638 	 * 'system_time' when 'data.clock' is very small.
6639 	 */
6640 	if (data.flags & KVM_CLOCK_REALTIME) {
6641 		u64 now_real_ns = ktime_get_real_ns();
6642 
6643 		/*
6644 		 * Avoid stepping the kvmclock backwards.
6645 		 */
6646 		if (now_real_ns > data.realtime)
6647 			data.clock += now_real_ns - data.realtime;
6648 	}
6649 
6650 	if (ka->use_master_clock)
6651 		now_raw_ns = ka->master_kernel_ns;
6652 	else
6653 		now_raw_ns = get_kvmclock_base_ns();
6654 	ka->kvmclock_offset = data.clock - now_raw_ns;
6655 	kvm_end_pvclock_update(kvm);
6656 	return 0;
6657 }
6658 
6659 long kvm_arch_vm_ioctl(struct file *filp,
6660 		       unsigned int ioctl, unsigned long arg)
6661 {
6662 	struct kvm *kvm = filp->private_data;
6663 	void __user *argp = (void __user *)arg;
6664 	int r = -ENOTTY;
6665 	/*
6666 	 * This union makes it completely explicit to gcc-3.x
6667 	 * that these two variables' stack usage should be
6668 	 * combined, not added together.
6669 	 */
6670 	union {
6671 		struct kvm_pit_state ps;
6672 		struct kvm_pit_state2 ps2;
6673 		struct kvm_pit_config pit_config;
6674 	} u;
6675 
6676 	switch (ioctl) {
6677 	case KVM_SET_TSS_ADDR:
6678 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6679 		break;
6680 	case KVM_SET_IDENTITY_MAP_ADDR: {
6681 		u64 ident_addr;
6682 
6683 		mutex_lock(&kvm->lock);
6684 		r = -EINVAL;
6685 		if (kvm->created_vcpus)
6686 			goto set_identity_unlock;
6687 		r = -EFAULT;
6688 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6689 			goto set_identity_unlock;
6690 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6691 set_identity_unlock:
6692 		mutex_unlock(&kvm->lock);
6693 		break;
6694 	}
6695 	case KVM_SET_NR_MMU_PAGES:
6696 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6697 		break;
6698 	case KVM_GET_NR_MMU_PAGES:
6699 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6700 		break;
6701 	case KVM_CREATE_IRQCHIP: {
6702 		mutex_lock(&kvm->lock);
6703 
6704 		r = -EEXIST;
6705 		if (irqchip_in_kernel(kvm))
6706 			goto create_irqchip_unlock;
6707 
6708 		r = -EINVAL;
6709 		if (kvm->created_vcpus)
6710 			goto create_irqchip_unlock;
6711 
6712 		r = kvm_pic_init(kvm);
6713 		if (r)
6714 			goto create_irqchip_unlock;
6715 
6716 		r = kvm_ioapic_init(kvm);
6717 		if (r) {
6718 			kvm_pic_destroy(kvm);
6719 			goto create_irqchip_unlock;
6720 		}
6721 
6722 		r = kvm_setup_default_irq_routing(kvm);
6723 		if (r) {
6724 			kvm_ioapic_destroy(kvm);
6725 			kvm_pic_destroy(kvm);
6726 			goto create_irqchip_unlock;
6727 		}
6728 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6729 		smp_wmb();
6730 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6731 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6732 	create_irqchip_unlock:
6733 		mutex_unlock(&kvm->lock);
6734 		break;
6735 	}
6736 	case KVM_CREATE_PIT:
6737 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6738 		goto create_pit;
6739 	case KVM_CREATE_PIT2:
6740 		r = -EFAULT;
6741 		if (copy_from_user(&u.pit_config, argp,
6742 				   sizeof(struct kvm_pit_config)))
6743 			goto out;
6744 	create_pit:
6745 		mutex_lock(&kvm->lock);
6746 		r = -EEXIST;
6747 		if (kvm->arch.vpit)
6748 			goto create_pit_unlock;
6749 		r = -ENOMEM;
6750 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6751 		if (kvm->arch.vpit)
6752 			r = 0;
6753 	create_pit_unlock:
6754 		mutex_unlock(&kvm->lock);
6755 		break;
6756 	case KVM_GET_IRQCHIP: {
6757 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6758 		struct kvm_irqchip *chip;
6759 
6760 		chip = memdup_user(argp, sizeof(*chip));
6761 		if (IS_ERR(chip)) {
6762 			r = PTR_ERR(chip);
6763 			goto out;
6764 		}
6765 
6766 		r = -ENXIO;
6767 		if (!irqchip_kernel(kvm))
6768 			goto get_irqchip_out;
6769 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6770 		if (r)
6771 			goto get_irqchip_out;
6772 		r = -EFAULT;
6773 		if (copy_to_user(argp, chip, sizeof(*chip)))
6774 			goto get_irqchip_out;
6775 		r = 0;
6776 	get_irqchip_out:
6777 		kfree(chip);
6778 		break;
6779 	}
6780 	case KVM_SET_IRQCHIP: {
6781 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6782 		struct kvm_irqchip *chip;
6783 
6784 		chip = memdup_user(argp, sizeof(*chip));
6785 		if (IS_ERR(chip)) {
6786 			r = PTR_ERR(chip);
6787 			goto out;
6788 		}
6789 
6790 		r = -ENXIO;
6791 		if (!irqchip_kernel(kvm))
6792 			goto set_irqchip_out;
6793 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6794 	set_irqchip_out:
6795 		kfree(chip);
6796 		break;
6797 	}
6798 	case KVM_GET_PIT: {
6799 		r = -EFAULT;
6800 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6801 			goto out;
6802 		r = -ENXIO;
6803 		if (!kvm->arch.vpit)
6804 			goto out;
6805 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6806 		if (r)
6807 			goto out;
6808 		r = -EFAULT;
6809 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6810 			goto out;
6811 		r = 0;
6812 		break;
6813 	}
6814 	case KVM_SET_PIT: {
6815 		r = -EFAULT;
6816 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6817 			goto out;
6818 		mutex_lock(&kvm->lock);
6819 		r = -ENXIO;
6820 		if (!kvm->arch.vpit)
6821 			goto set_pit_out;
6822 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6823 set_pit_out:
6824 		mutex_unlock(&kvm->lock);
6825 		break;
6826 	}
6827 	case KVM_GET_PIT2: {
6828 		r = -ENXIO;
6829 		if (!kvm->arch.vpit)
6830 			goto out;
6831 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6832 		if (r)
6833 			goto out;
6834 		r = -EFAULT;
6835 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6836 			goto out;
6837 		r = 0;
6838 		break;
6839 	}
6840 	case KVM_SET_PIT2: {
6841 		r = -EFAULT;
6842 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6843 			goto out;
6844 		mutex_lock(&kvm->lock);
6845 		r = -ENXIO;
6846 		if (!kvm->arch.vpit)
6847 			goto set_pit2_out;
6848 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6849 set_pit2_out:
6850 		mutex_unlock(&kvm->lock);
6851 		break;
6852 	}
6853 	case KVM_REINJECT_CONTROL: {
6854 		struct kvm_reinject_control control;
6855 		r =  -EFAULT;
6856 		if (copy_from_user(&control, argp, sizeof(control)))
6857 			goto out;
6858 		r = -ENXIO;
6859 		if (!kvm->arch.vpit)
6860 			goto out;
6861 		r = kvm_vm_ioctl_reinject(kvm, &control);
6862 		break;
6863 	}
6864 	case KVM_SET_BOOT_CPU_ID:
6865 		r = 0;
6866 		mutex_lock(&kvm->lock);
6867 		if (kvm->created_vcpus)
6868 			r = -EBUSY;
6869 		else
6870 			kvm->arch.bsp_vcpu_id = arg;
6871 		mutex_unlock(&kvm->lock);
6872 		break;
6873 #ifdef CONFIG_KVM_XEN
6874 	case KVM_XEN_HVM_CONFIG: {
6875 		struct kvm_xen_hvm_config xhc;
6876 		r = -EFAULT;
6877 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6878 			goto out;
6879 		r = kvm_xen_hvm_config(kvm, &xhc);
6880 		break;
6881 	}
6882 	case KVM_XEN_HVM_GET_ATTR: {
6883 		struct kvm_xen_hvm_attr xha;
6884 
6885 		r = -EFAULT;
6886 		if (copy_from_user(&xha, argp, sizeof(xha)))
6887 			goto out;
6888 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6889 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6890 			r = -EFAULT;
6891 		break;
6892 	}
6893 	case KVM_XEN_HVM_SET_ATTR: {
6894 		struct kvm_xen_hvm_attr xha;
6895 
6896 		r = -EFAULT;
6897 		if (copy_from_user(&xha, argp, sizeof(xha)))
6898 			goto out;
6899 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6900 		break;
6901 	}
6902 	case KVM_XEN_HVM_EVTCHN_SEND: {
6903 		struct kvm_irq_routing_xen_evtchn uxe;
6904 
6905 		r = -EFAULT;
6906 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6907 			goto out;
6908 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6909 		break;
6910 	}
6911 #endif
6912 	case KVM_SET_CLOCK:
6913 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6914 		break;
6915 	case KVM_GET_CLOCK:
6916 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6917 		break;
6918 	case KVM_SET_TSC_KHZ: {
6919 		u32 user_tsc_khz;
6920 
6921 		r = -EINVAL;
6922 		user_tsc_khz = (u32)arg;
6923 
6924 		if (kvm_caps.has_tsc_control &&
6925 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6926 			goto out;
6927 
6928 		if (user_tsc_khz == 0)
6929 			user_tsc_khz = tsc_khz;
6930 
6931 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6932 		r = 0;
6933 
6934 		goto out;
6935 	}
6936 	case KVM_GET_TSC_KHZ: {
6937 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6938 		goto out;
6939 	}
6940 	case KVM_MEMORY_ENCRYPT_OP: {
6941 		r = -ENOTTY;
6942 		if (!kvm_x86_ops.mem_enc_ioctl)
6943 			goto out;
6944 
6945 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6946 		break;
6947 	}
6948 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6949 		struct kvm_enc_region region;
6950 
6951 		r = -EFAULT;
6952 		if (copy_from_user(&region, argp, sizeof(region)))
6953 			goto out;
6954 
6955 		r = -ENOTTY;
6956 		if (!kvm_x86_ops.mem_enc_register_region)
6957 			goto out;
6958 
6959 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6960 		break;
6961 	}
6962 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6963 		struct kvm_enc_region region;
6964 
6965 		r = -EFAULT;
6966 		if (copy_from_user(&region, argp, sizeof(region)))
6967 			goto out;
6968 
6969 		r = -ENOTTY;
6970 		if (!kvm_x86_ops.mem_enc_unregister_region)
6971 			goto out;
6972 
6973 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6974 		break;
6975 	}
6976 	case KVM_HYPERV_EVENTFD: {
6977 		struct kvm_hyperv_eventfd hvevfd;
6978 
6979 		r = -EFAULT;
6980 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6981 			goto out;
6982 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6983 		break;
6984 	}
6985 	case KVM_SET_PMU_EVENT_FILTER:
6986 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6987 		break;
6988 	case KVM_X86_SET_MSR_FILTER: {
6989 		struct kvm_msr_filter __user *user_msr_filter = argp;
6990 		struct kvm_msr_filter filter;
6991 
6992 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6993 			return -EFAULT;
6994 
6995 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6996 		break;
6997 	}
6998 	default:
6999 		r = -ENOTTY;
7000 	}
7001 out:
7002 	return r;
7003 }
7004 
7005 static void kvm_init_msr_list(void)
7006 {
7007 	u32 dummy[2];
7008 	unsigned i;
7009 
7010 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7011 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
7012 
7013 	num_msrs_to_save = 0;
7014 	num_emulated_msrs = 0;
7015 	num_msr_based_features = 0;
7016 
7017 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7018 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7019 			continue;
7020 
7021 		/*
7022 		 * Even MSRs that are valid in the host may not be exposed
7023 		 * to the guests in some cases.
7024 		 */
7025 		switch (msrs_to_save_all[i]) {
7026 		case MSR_IA32_BNDCFGS:
7027 			if (!kvm_mpx_supported())
7028 				continue;
7029 			break;
7030 		case MSR_TSC_AUX:
7031 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7032 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7033 				continue;
7034 			break;
7035 		case MSR_IA32_UMWAIT_CONTROL:
7036 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7037 				continue;
7038 			break;
7039 		case MSR_IA32_RTIT_CTL:
7040 		case MSR_IA32_RTIT_STATUS:
7041 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7042 				continue;
7043 			break;
7044 		case MSR_IA32_RTIT_CR3_MATCH:
7045 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7046 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7047 				continue;
7048 			break;
7049 		case MSR_IA32_RTIT_OUTPUT_BASE:
7050 		case MSR_IA32_RTIT_OUTPUT_MASK:
7051 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7052 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7053 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7054 				continue;
7055 			break;
7056 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7057 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7058 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7059 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7060 				continue;
7061 			break;
7062 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7063 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7064 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7065 				continue;
7066 			break;
7067 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7068 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7069 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7070 				continue;
7071 			break;
7072 		case MSR_IA32_XFD:
7073 		case MSR_IA32_XFD_ERR:
7074 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7075 				continue;
7076 			break;
7077 		default:
7078 			break;
7079 		}
7080 
7081 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7082 	}
7083 
7084 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7085 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7086 			continue;
7087 
7088 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7089 	}
7090 
7091 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7092 		struct kvm_msr_entry msr;
7093 
7094 		msr.index = msr_based_features_all[i];
7095 		if (kvm_get_msr_feature(&msr))
7096 			continue;
7097 
7098 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7099 	}
7100 }
7101 
7102 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7103 			   const void *v)
7104 {
7105 	int handled = 0;
7106 	int n;
7107 
7108 	do {
7109 		n = min(len, 8);
7110 		if (!(lapic_in_kernel(vcpu) &&
7111 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7112 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7113 			break;
7114 		handled += n;
7115 		addr += n;
7116 		len -= n;
7117 		v += n;
7118 	} while (len);
7119 
7120 	return handled;
7121 }
7122 
7123 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7124 {
7125 	int handled = 0;
7126 	int n;
7127 
7128 	do {
7129 		n = min(len, 8);
7130 		if (!(lapic_in_kernel(vcpu) &&
7131 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7132 					 addr, n, v))
7133 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7134 			break;
7135 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7136 		handled += n;
7137 		addr += n;
7138 		len -= n;
7139 		v += n;
7140 	} while (len);
7141 
7142 	return handled;
7143 }
7144 
7145 void kvm_set_segment(struct kvm_vcpu *vcpu,
7146 		     struct kvm_segment *var, int seg)
7147 {
7148 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7149 }
7150 
7151 void kvm_get_segment(struct kvm_vcpu *vcpu,
7152 		     struct kvm_segment *var, int seg)
7153 {
7154 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7155 }
7156 
7157 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7158 			   struct x86_exception *exception)
7159 {
7160 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7161 	gpa_t t_gpa;
7162 
7163 	BUG_ON(!mmu_is_nested(vcpu));
7164 
7165 	/* NPT walks are always user-walks */
7166 	access |= PFERR_USER_MASK;
7167 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7168 
7169 	return t_gpa;
7170 }
7171 
7172 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7173 			      struct x86_exception *exception)
7174 {
7175 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7176 
7177 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7178 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7179 }
7180 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7181 
7182 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7183 			       struct x86_exception *exception)
7184 {
7185 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7186 
7187 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7188 	access |= PFERR_WRITE_MASK;
7189 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7190 }
7191 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7192 
7193 /* uses this to access any guest's mapped memory without checking CPL */
7194 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7195 				struct x86_exception *exception)
7196 {
7197 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7198 
7199 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7200 }
7201 
7202 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7203 				      struct kvm_vcpu *vcpu, u64 access,
7204 				      struct x86_exception *exception)
7205 {
7206 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7207 	void *data = val;
7208 	int r = X86EMUL_CONTINUE;
7209 
7210 	while (bytes) {
7211 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7212 		unsigned offset = addr & (PAGE_SIZE-1);
7213 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7214 		int ret;
7215 
7216 		if (gpa == INVALID_GPA)
7217 			return X86EMUL_PROPAGATE_FAULT;
7218 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7219 					       offset, toread);
7220 		if (ret < 0) {
7221 			r = X86EMUL_IO_NEEDED;
7222 			goto out;
7223 		}
7224 
7225 		bytes -= toread;
7226 		data += toread;
7227 		addr += toread;
7228 	}
7229 out:
7230 	return r;
7231 }
7232 
7233 /* used for instruction fetching */
7234 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7235 				gva_t addr, void *val, unsigned int bytes,
7236 				struct x86_exception *exception)
7237 {
7238 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7239 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7240 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7241 	unsigned offset;
7242 	int ret;
7243 
7244 	/* Inline kvm_read_guest_virt_helper for speed.  */
7245 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7246 				    exception);
7247 	if (unlikely(gpa == INVALID_GPA))
7248 		return X86EMUL_PROPAGATE_FAULT;
7249 
7250 	offset = addr & (PAGE_SIZE-1);
7251 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7252 		bytes = (unsigned)PAGE_SIZE - offset;
7253 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7254 				       offset, bytes);
7255 	if (unlikely(ret < 0))
7256 		return X86EMUL_IO_NEEDED;
7257 
7258 	return X86EMUL_CONTINUE;
7259 }
7260 
7261 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7262 			       gva_t addr, void *val, unsigned int bytes,
7263 			       struct x86_exception *exception)
7264 {
7265 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7266 
7267 	/*
7268 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7269 	 * is returned, but our callers are not ready for that and they blindly
7270 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7271 	 * uninitialized kernel stack memory into cr2 and error code.
7272 	 */
7273 	memset(exception, 0, sizeof(*exception));
7274 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7275 					  exception);
7276 }
7277 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7278 
7279 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7280 			     gva_t addr, void *val, unsigned int bytes,
7281 			     struct x86_exception *exception, bool system)
7282 {
7283 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7284 	u64 access = 0;
7285 
7286 	if (system)
7287 		access |= PFERR_IMPLICIT_ACCESS;
7288 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7289 		access |= PFERR_USER_MASK;
7290 
7291 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7292 }
7293 
7294 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7295 				      struct kvm_vcpu *vcpu, u64 access,
7296 				      struct x86_exception *exception)
7297 {
7298 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7299 	void *data = val;
7300 	int r = X86EMUL_CONTINUE;
7301 
7302 	while (bytes) {
7303 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7304 		unsigned offset = addr & (PAGE_SIZE-1);
7305 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7306 		int ret;
7307 
7308 		if (gpa == INVALID_GPA)
7309 			return X86EMUL_PROPAGATE_FAULT;
7310 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7311 		if (ret < 0) {
7312 			r = X86EMUL_IO_NEEDED;
7313 			goto out;
7314 		}
7315 
7316 		bytes -= towrite;
7317 		data += towrite;
7318 		addr += towrite;
7319 	}
7320 out:
7321 	return r;
7322 }
7323 
7324 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7325 			      unsigned int bytes, struct x86_exception *exception,
7326 			      bool system)
7327 {
7328 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7329 	u64 access = PFERR_WRITE_MASK;
7330 
7331 	if (system)
7332 		access |= PFERR_IMPLICIT_ACCESS;
7333 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7334 		access |= PFERR_USER_MASK;
7335 
7336 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7337 					   access, exception);
7338 }
7339 
7340 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7341 				unsigned int bytes, struct x86_exception *exception)
7342 {
7343 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7344 	vcpu->arch.l1tf_flush_l1d = true;
7345 
7346 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7347 					   PFERR_WRITE_MASK, exception);
7348 }
7349 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7350 
7351 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7352 				void *insn, int insn_len)
7353 {
7354 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7355 							    insn, insn_len);
7356 }
7357 
7358 int handle_ud(struct kvm_vcpu *vcpu)
7359 {
7360 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7361 	int fep_flags = READ_ONCE(force_emulation_prefix);
7362 	int emul_type = EMULTYPE_TRAP_UD;
7363 	char sig[5]; /* ud2; .ascii "kvm" */
7364 	struct x86_exception e;
7365 
7366 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7367 		return 1;
7368 
7369 	if (fep_flags &&
7370 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7371 				sig, sizeof(sig), &e) == 0 &&
7372 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7373 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7374 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7375 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7376 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7377 	}
7378 
7379 	return kvm_emulate_instruction(vcpu, emul_type);
7380 }
7381 EXPORT_SYMBOL_GPL(handle_ud);
7382 
7383 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7384 			    gpa_t gpa, bool write)
7385 {
7386 	/* For APIC access vmexit */
7387 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7388 		return 1;
7389 
7390 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7391 		trace_vcpu_match_mmio(gva, gpa, write, true);
7392 		return 1;
7393 	}
7394 
7395 	return 0;
7396 }
7397 
7398 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7399 				gpa_t *gpa, struct x86_exception *exception,
7400 				bool write)
7401 {
7402 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7403 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7404 		| (write ? PFERR_WRITE_MASK : 0);
7405 
7406 	/*
7407 	 * currently PKRU is only applied to ept enabled guest so
7408 	 * there is no pkey in EPT page table for L1 guest or EPT
7409 	 * shadow page table for L2 guest.
7410 	 */
7411 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7412 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7413 			      vcpu->arch.mmio_access, 0, access))) {
7414 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7415 					(gva & (PAGE_SIZE - 1));
7416 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7417 		return 1;
7418 	}
7419 
7420 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7421 
7422 	if (*gpa == INVALID_GPA)
7423 		return -1;
7424 
7425 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7426 }
7427 
7428 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7429 			const void *val, int bytes)
7430 {
7431 	int ret;
7432 
7433 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7434 	if (ret < 0)
7435 		return 0;
7436 	kvm_page_track_write(vcpu, gpa, val, bytes);
7437 	return 1;
7438 }
7439 
7440 struct read_write_emulator_ops {
7441 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7442 				  int bytes);
7443 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7444 				  void *val, int bytes);
7445 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7446 			       int bytes, void *val);
7447 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7448 				    void *val, int bytes);
7449 	bool write;
7450 };
7451 
7452 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7453 {
7454 	if (vcpu->mmio_read_completed) {
7455 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7456 			       vcpu->mmio_fragments[0].gpa, val);
7457 		vcpu->mmio_read_completed = 0;
7458 		return 1;
7459 	}
7460 
7461 	return 0;
7462 }
7463 
7464 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7465 			void *val, int bytes)
7466 {
7467 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7468 }
7469 
7470 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7471 			 void *val, int bytes)
7472 {
7473 	return emulator_write_phys(vcpu, gpa, val, bytes);
7474 }
7475 
7476 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7477 {
7478 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7479 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7480 }
7481 
7482 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7483 			  void *val, int bytes)
7484 {
7485 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7486 	return X86EMUL_IO_NEEDED;
7487 }
7488 
7489 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7490 			   void *val, int bytes)
7491 {
7492 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7493 
7494 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7495 	return X86EMUL_CONTINUE;
7496 }
7497 
7498 static const struct read_write_emulator_ops read_emultor = {
7499 	.read_write_prepare = read_prepare,
7500 	.read_write_emulate = read_emulate,
7501 	.read_write_mmio = vcpu_mmio_read,
7502 	.read_write_exit_mmio = read_exit_mmio,
7503 };
7504 
7505 static const struct read_write_emulator_ops write_emultor = {
7506 	.read_write_emulate = write_emulate,
7507 	.read_write_mmio = write_mmio,
7508 	.read_write_exit_mmio = write_exit_mmio,
7509 	.write = true,
7510 };
7511 
7512 static int emulator_read_write_onepage(unsigned long addr, void *val,
7513 				       unsigned int bytes,
7514 				       struct x86_exception *exception,
7515 				       struct kvm_vcpu *vcpu,
7516 				       const struct read_write_emulator_ops *ops)
7517 {
7518 	gpa_t gpa;
7519 	int handled, ret;
7520 	bool write = ops->write;
7521 	struct kvm_mmio_fragment *frag;
7522 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7523 
7524 	/*
7525 	 * If the exit was due to a NPF we may already have a GPA.
7526 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7527 	 * Note, this cannot be used on string operations since string
7528 	 * operation using rep will only have the initial GPA from the NPF
7529 	 * occurred.
7530 	 */
7531 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7532 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7533 		gpa = ctxt->gpa_val;
7534 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7535 	} else {
7536 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7537 		if (ret < 0)
7538 			return X86EMUL_PROPAGATE_FAULT;
7539 	}
7540 
7541 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7542 		return X86EMUL_CONTINUE;
7543 
7544 	/*
7545 	 * Is this MMIO handled locally?
7546 	 */
7547 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7548 	if (handled == bytes)
7549 		return X86EMUL_CONTINUE;
7550 
7551 	gpa += handled;
7552 	bytes -= handled;
7553 	val += handled;
7554 
7555 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7556 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7557 	frag->gpa = gpa;
7558 	frag->data = val;
7559 	frag->len = bytes;
7560 	return X86EMUL_CONTINUE;
7561 }
7562 
7563 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7564 			unsigned long addr,
7565 			void *val, unsigned int bytes,
7566 			struct x86_exception *exception,
7567 			const struct read_write_emulator_ops *ops)
7568 {
7569 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7570 	gpa_t gpa;
7571 	int rc;
7572 
7573 	if (ops->read_write_prepare &&
7574 		  ops->read_write_prepare(vcpu, val, bytes))
7575 		return X86EMUL_CONTINUE;
7576 
7577 	vcpu->mmio_nr_fragments = 0;
7578 
7579 	/* Crossing a page boundary? */
7580 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7581 		int now;
7582 
7583 		now = -addr & ~PAGE_MASK;
7584 		rc = emulator_read_write_onepage(addr, val, now, exception,
7585 						 vcpu, ops);
7586 
7587 		if (rc != X86EMUL_CONTINUE)
7588 			return rc;
7589 		addr += now;
7590 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7591 			addr = (u32)addr;
7592 		val += now;
7593 		bytes -= now;
7594 	}
7595 
7596 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7597 					 vcpu, ops);
7598 	if (rc != X86EMUL_CONTINUE)
7599 		return rc;
7600 
7601 	if (!vcpu->mmio_nr_fragments)
7602 		return rc;
7603 
7604 	gpa = vcpu->mmio_fragments[0].gpa;
7605 
7606 	vcpu->mmio_needed = 1;
7607 	vcpu->mmio_cur_fragment = 0;
7608 
7609 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7610 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7611 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7612 	vcpu->run->mmio.phys_addr = gpa;
7613 
7614 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7615 }
7616 
7617 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7618 				  unsigned long addr,
7619 				  void *val,
7620 				  unsigned int bytes,
7621 				  struct x86_exception *exception)
7622 {
7623 	return emulator_read_write(ctxt, addr, val, bytes,
7624 				   exception, &read_emultor);
7625 }
7626 
7627 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7628 			    unsigned long addr,
7629 			    const void *val,
7630 			    unsigned int bytes,
7631 			    struct x86_exception *exception)
7632 {
7633 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7634 				   exception, &write_emultor);
7635 }
7636 
7637 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7638 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7639 
7640 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7641 				     unsigned long addr,
7642 				     const void *old,
7643 				     const void *new,
7644 				     unsigned int bytes,
7645 				     struct x86_exception *exception)
7646 {
7647 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7648 	u64 page_line_mask;
7649 	unsigned long hva;
7650 	gpa_t gpa;
7651 	int r;
7652 
7653 	/* guests cmpxchg8b have to be emulated atomically */
7654 	if (bytes > 8 || (bytes & (bytes - 1)))
7655 		goto emul_write;
7656 
7657 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7658 
7659 	if (gpa == INVALID_GPA ||
7660 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7661 		goto emul_write;
7662 
7663 	/*
7664 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7665 	 * enabled in the host and the access splits a cache line.
7666 	 */
7667 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7668 		page_line_mask = ~(cache_line_size() - 1);
7669 	else
7670 		page_line_mask = PAGE_MASK;
7671 
7672 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7673 		goto emul_write;
7674 
7675 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7676 	if (kvm_is_error_hva(hva))
7677 		goto emul_write;
7678 
7679 	hva += offset_in_page(gpa);
7680 
7681 	switch (bytes) {
7682 	case 1:
7683 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7684 		break;
7685 	case 2:
7686 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7687 		break;
7688 	case 4:
7689 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7690 		break;
7691 	case 8:
7692 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7693 		break;
7694 	default:
7695 		BUG();
7696 	}
7697 
7698 	if (r < 0)
7699 		return X86EMUL_UNHANDLEABLE;
7700 	if (r)
7701 		return X86EMUL_CMPXCHG_FAILED;
7702 
7703 	kvm_page_track_write(vcpu, gpa, new, bytes);
7704 
7705 	return X86EMUL_CONTINUE;
7706 
7707 emul_write:
7708 	pr_warn_once("emulating exchange as write\n");
7709 
7710 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7711 }
7712 
7713 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7714 			       unsigned short port, void *data,
7715 			       unsigned int count, bool in)
7716 {
7717 	unsigned i;
7718 	int r;
7719 
7720 	WARN_ON_ONCE(vcpu->arch.pio.count);
7721 	for (i = 0; i < count; i++) {
7722 		if (in)
7723 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7724 		else
7725 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7726 
7727 		if (r) {
7728 			if (i == 0)
7729 				goto userspace_io;
7730 
7731 			/*
7732 			 * Userspace must have unregistered the device while PIO
7733 			 * was running.  Drop writes / read as 0.
7734 			 */
7735 			if (in)
7736 				memset(data, 0, size * (count - i));
7737 			break;
7738 		}
7739 
7740 		data += size;
7741 	}
7742 	return 1;
7743 
7744 userspace_io:
7745 	vcpu->arch.pio.port = port;
7746 	vcpu->arch.pio.in = in;
7747 	vcpu->arch.pio.count = count;
7748 	vcpu->arch.pio.size = size;
7749 
7750 	if (in)
7751 		memset(vcpu->arch.pio_data, 0, size * count);
7752 	else
7753 		memcpy(vcpu->arch.pio_data, data, size * count);
7754 
7755 	vcpu->run->exit_reason = KVM_EXIT_IO;
7756 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7757 	vcpu->run->io.size = size;
7758 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7759 	vcpu->run->io.count = count;
7760 	vcpu->run->io.port = port;
7761 	return 0;
7762 }
7763 
7764 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7765       			   unsigned short port, void *val, unsigned int count)
7766 {
7767 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7768 	if (r)
7769 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7770 
7771 	return r;
7772 }
7773 
7774 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7775 {
7776 	int size = vcpu->arch.pio.size;
7777 	unsigned int count = vcpu->arch.pio.count;
7778 	memcpy(val, vcpu->arch.pio_data, size * count);
7779 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7780 	vcpu->arch.pio.count = 0;
7781 }
7782 
7783 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7784 				    int size, unsigned short port, void *val,
7785 				    unsigned int count)
7786 {
7787 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7788 	if (vcpu->arch.pio.count) {
7789 		/*
7790 		 * Complete a previous iteration that required userspace I/O.
7791 		 * Note, @count isn't guaranteed to match pio.count as userspace
7792 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7793 		 * shenanigans as KVM doesn't support modifying the rep count,
7794 		 * and the emulator ensures @count doesn't overflow the buffer.
7795 		 */
7796 		complete_emulator_pio_in(vcpu, val);
7797 		return 1;
7798 	}
7799 
7800 	return emulator_pio_in(vcpu, size, port, val, count);
7801 }
7802 
7803 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7804 			    unsigned short port, const void *val,
7805 			    unsigned int count)
7806 {
7807 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7808 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7809 }
7810 
7811 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7812 				     int size, unsigned short port,
7813 				     const void *val, unsigned int count)
7814 {
7815 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7816 }
7817 
7818 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7819 {
7820 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7821 }
7822 
7823 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7824 {
7825 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7826 }
7827 
7828 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7829 {
7830 	if (!need_emulate_wbinvd(vcpu))
7831 		return X86EMUL_CONTINUE;
7832 
7833 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7834 		int cpu = get_cpu();
7835 
7836 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7837 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7838 				wbinvd_ipi, NULL, 1);
7839 		put_cpu();
7840 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7841 	} else
7842 		wbinvd();
7843 	return X86EMUL_CONTINUE;
7844 }
7845 
7846 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7847 {
7848 	kvm_emulate_wbinvd_noskip(vcpu);
7849 	return kvm_skip_emulated_instruction(vcpu);
7850 }
7851 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7852 
7853 
7854 
7855 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7856 {
7857 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7858 }
7859 
7860 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7861 			    unsigned long *dest)
7862 {
7863 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7864 }
7865 
7866 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7867 			   unsigned long value)
7868 {
7869 
7870 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7871 }
7872 
7873 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7874 {
7875 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7876 }
7877 
7878 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7879 {
7880 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7881 	unsigned long value;
7882 
7883 	switch (cr) {
7884 	case 0:
7885 		value = kvm_read_cr0(vcpu);
7886 		break;
7887 	case 2:
7888 		value = vcpu->arch.cr2;
7889 		break;
7890 	case 3:
7891 		value = kvm_read_cr3(vcpu);
7892 		break;
7893 	case 4:
7894 		value = kvm_read_cr4(vcpu);
7895 		break;
7896 	case 8:
7897 		value = kvm_get_cr8(vcpu);
7898 		break;
7899 	default:
7900 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7901 		return 0;
7902 	}
7903 
7904 	return value;
7905 }
7906 
7907 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7908 {
7909 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7910 	int res = 0;
7911 
7912 	switch (cr) {
7913 	case 0:
7914 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7915 		break;
7916 	case 2:
7917 		vcpu->arch.cr2 = val;
7918 		break;
7919 	case 3:
7920 		res = kvm_set_cr3(vcpu, val);
7921 		break;
7922 	case 4:
7923 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7924 		break;
7925 	case 8:
7926 		res = kvm_set_cr8(vcpu, val);
7927 		break;
7928 	default:
7929 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7930 		res = -1;
7931 	}
7932 
7933 	return res;
7934 }
7935 
7936 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7937 {
7938 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7939 }
7940 
7941 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7942 {
7943 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7944 }
7945 
7946 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7947 {
7948 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7949 }
7950 
7951 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7952 {
7953 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7954 }
7955 
7956 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7957 {
7958 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7959 }
7960 
7961 static unsigned long emulator_get_cached_segment_base(
7962 	struct x86_emulate_ctxt *ctxt, int seg)
7963 {
7964 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7965 }
7966 
7967 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7968 				 struct desc_struct *desc, u32 *base3,
7969 				 int seg)
7970 {
7971 	struct kvm_segment var;
7972 
7973 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7974 	*selector = var.selector;
7975 
7976 	if (var.unusable) {
7977 		memset(desc, 0, sizeof(*desc));
7978 		if (base3)
7979 			*base3 = 0;
7980 		return false;
7981 	}
7982 
7983 	if (var.g)
7984 		var.limit >>= 12;
7985 	set_desc_limit(desc, var.limit);
7986 	set_desc_base(desc, (unsigned long)var.base);
7987 #ifdef CONFIG_X86_64
7988 	if (base3)
7989 		*base3 = var.base >> 32;
7990 #endif
7991 	desc->type = var.type;
7992 	desc->s = var.s;
7993 	desc->dpl = var.dpl;
7994 	desc->p = var.present;
7995 	desc->avl = var.avl;
7996 	desc->l = var.l;
7997 	desc->d = var.db;
7998 	desc->g = var.g;
7999 
8000 	return true;
8001 }
8002 
8003 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8004 				 struct desc_struct *desc, u32 base3,
8005 				 int seg)
8006 {
8007 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8008 	struct kvm_segment var;
8009 
8010 	var.selector = selector;
8011 	var.base = get_desc_base(desc);
8012 #ifdef CONFIG_X86_64
8013 	var.base |= ((u64)base3) << 32;
8014 #endif
8015 	var.limit = get_desc_limit(desc);
8016 	if (desc->g)
8017 		var.limit = (var.limit << 12) | 0xfff;
8018 	var.type = desc->type;
8019 	var.dpl = desc->dpl;
8020 	var.db = desc->d;
8021 	var.s = desc->s;
8022 	var.l = desc->l;
8023 	var.g = desc->g;
8024 	var.avl = desc->avl;
8025 	var.present = desc->p;
8026 	var.unusable = !var.present;
8027 	var.padding = 0;
8028 
8029 	kvm_set_segment(vcpu, &var, seg);
8030 	return;
8031 }
8032 
8033 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8034 					u32 msr_index, u64 *pdata)
8035 {
8036 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8037 	int r;
8038 
8039 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8040 	if (r < 0)
8041 		return X86EMUL_UNHANDLEABLE;
8042 
8043 	if (r) {
8044 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8045 				       complete_emulated_rdmsr, r))
8046 			return X86EMUL_IO_NEEDED;
8047 
8048 		trace_kvm_msr_read_ex(msr_index);
8049 		return X86EMUL_PROPAGATE_FAULT;
8050 	}
8051 
8052 	trace_kvm_msr_read(msr_index, *pdata);
8053 	return X86EMUL_CONTINUE;
8054 }
8055 
8056 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8057 					u32 msr_index, u64 data)
8058 {
8059 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8060 	int r;
8061 
8062 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8063 	if (r < 0)
8064 		return X86EMUL_UNHANDLEABLE;
8065 
8066 	if (r) {
8067 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8068 				       complete_emulated_msr_access, r))
8069 			return X86EMUL_IO_NEEDED;
8070 
8071 		trace_kvm_msr_write_ex(msr_index, data);
8072 		return X86EMUL_PROPAGATE_FAULT;
8073 	}
8074 
8075 	trace_kvm_msr_write(msr_index, data);
8076 	return X86EMUL_CONTINUE;
8077 }
8078 
8079 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8080 			    u32 msr_index, u64 *pdata)
8081 {
8082 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8083 }
8084 
8085 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8086 			      u32 pmc)
8087 {
8088 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8089 		return 0;
8090 	return -EINVAL;
8091 }
8092 
8093 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8094 			     u32 pmc, u64 *pdata)
8095 {
8096 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8097 }
8098 
8099 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8100 {
8101 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8102 }
8103 
8104 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8105 			      struct x86_instruction_info *info,
8106 			      enum x86_intercept_stage stage)
8107 {
8108 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8109 					    &ctxt->exception);
8110 }
8111 
8112 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8113 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8114 			      bool exact_only)
8115 {
8116 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8117 }
8118 
8119 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8120 {
8121 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8122 }
8123 
8124 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8125 {
8126 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8127 }
8128 
8129 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8130 {
8131 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8132 }
8133 
8134 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8135 {
8136 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8137 }
8138 
8139 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8140 {
8141 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8142 }
8143 
8144 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8145 {
8146 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8147 }
8148 
8149 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8150 {
8151 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8152 }
8153 
8154 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8155 {
8156 	return emul_to_vcpu(ctxt)->arch.hflags;
8157 }
8158 
8159 #ifndef CONFIG_KVM_SMM
8160 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8161 {
8162 	WARN_ON_ONCE(1);
8163 	return X86EMUL_UNHANDLEABLE;
8164 }
8165 #endif
8166 
8167 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8168 {
8169 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8170 }
8171 
8172 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8173 {
8174 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8175 }
8176 
8177 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8178 {
8179 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8180 
8181 	if (!kvm->vm_bugged)
8182 		kvm_vm_bugged(kvm);
8183 }
8184 
8185 static const struct x86_emulate_ops emulate_ops = {
8186 	.vm_bugged           = emulator_vm_bugged,
8187 	.read_gpr            = emulator_read_gpr,
8188 	.write_gpr           = emulator_write_gpr,
8189 	.read_std            = emulator_read_std,
8190 	.write_std           = emulator_write_std,
8191 	.fetch               = kvm_fetch_guest_virt,
8192 	.read_emulated       = emulator_read_emulated,
8193 	.write_emulated      = emulator_write_emulated,
8194 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8195 	.invlpg              = emulator_invlpg,
8196 	.pio_in_emulated     = emulator_pio_in_emulated,
8197 	.pio_out_emulated    = emulator_pio_out_emulated,
8198 	.get_segment         = emulator_get_segment,
8199 	.set_segment         = emulator_set_segment,
8200 	.get_cached_segment_base = emulator_get_cached_segment_base,
8201 	.get_gdt             = emulator_get_gdt,
8202 	.get_idt	     = emulator_get_idt,
8203 	.set_gdt             = emulator_set_gdt,
8204 	.set_idt	     = emulator_set_idt,
8205 	.get_cr              = emulator_get_cr,
8206 	.set_cr              = emulator_set_cr,
8207 	.cpl                 = emulator_get_cpl,
8208 	.get_dr              = emulator_get_dr,
8209 	.set_dr              = emulator_set_dr,
8210 	.set_msr_with_filter = emulator_set_msr_with_filter,
8211 	.get_msr_with_filter = emulator_get_msr_with_filter,
8212 	.get_msr             = emulator_get_msr,
8213 	.check_pmc	     = emulator_check_pmc,
8214 	.read_pmc            = emulator_read_pmc,
8215 	.halt                = emulator_halt,
8216 	.wbinvd              = emulator_wbinvd,
8217 	.fix_hypercall       = emulator_fix_hypercall,
8218 	.intercept           = emulator_intercept,
8219 	.get_cpuid           = emulator_get_cpuid,
8220 	.guest_has_long_mode = emulator_guest_has_long_mode,
8221 	.guest_has_movbe     = emulator_guest_has_movbe,
8222 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8223 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8224 	.set_nmi_mask        = emulator_set_nmi_mask,
8225 	.get_hflags          = emulator_get_hflags,
8226 	.leave_smm           = emulator_leave_smm,
8227 	.triple_fault        = emulator_triple_fault,
8228 	.set_xcr             = emulator_set_xcr,
8229 };
8230 
8231 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8232 {
8233 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8234 	/*
8235 	 * an sti; sti; sequence only disable interrupts for the first
8236 	 * instruction. So, if the last instruction, be it emulated or
8237 	 * not, left the system with the INT_STI flag enabled, it
8238 	 * means that the last instruction is an sti. We should not
8239 	 * leave the flag on in this case. The same goes for mov ss
8240 	 */
8241 	if (int_shadow & mask)
8242 		mask = 0;
8243 	if (unlikely(int_shadow || mask)) {
8244 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8245 		if (!mask)
8246 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8247 	}
8248 }
8249 
8250 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8251 {
8252 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8253 
8254 	if (ctxt->exception.vector == PF_VECTOR)
8255 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8256 	else if (ctxt->exception.error_code_valid)
8257 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8258 				      ctxt->exception.error_code);
8259 	else
8260 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8261 }
8262 
8263 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8264 {
8265 	struct x86_emulate_ctxt *ctxt;
8266 
8267 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8268 	if (!ctxt) {
8269 		pr_err("failed to allocate vcpu's emulator\n");
8270 		return NULL;
8271 	}
8272 
8273 	ctxt->vcpu = vcpu;
8274 	ctxt->ops = &emulate_ops;
8275 	vcpu->arch.emulate_ctxt = ctxt;
8276 
8277 	return ctxt;
8278 }
8279 
8280 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8281 {
8282 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8283 	int cs_db, cs_l;
8284 
8285 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8286 
8287 	ctxt->gpa_available = false;
8288 	ctxt->eflags = kvm_get_rflags(vcpu);
8289 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8290 
8291 	ctxt->eip = kvm_rip_read(vcpu);
8292 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8293 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8294 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8295 		     cs_db				? X86EMUL_MODE_PROT32 :
8296 							  X86EMUL_MODE_PROT16;
8297 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8298 
8299 	ctxt->interruptibility = 0;
8300 	ctxt->have_exception = false;
8301 	ctxt->exception.vector = -1;
8302 	ctxt->perm_ok = false;
8303 
8304 	init_decode_cache(ctxt);
8305 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8306 }
8307 
8308 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8309 {
8310 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8311 	int ret;
8312 
8313 	init_emulate_ctxt(vcpu);
8314 
8315 	ctxt->op_bytes = 2;
8316 	ctxt->ad_bytes = 2;
8317 	ctxt->_eip = ctxt->eip + inc_eip;
8318 	ret = emulate_int_real(ctxt, irq);
8319 
8320 	if (ret != X86EMUL_CONTINUE) {
8321 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8322 	} else {
8323 		ctxt->eip = ctxt->_eip;
8324 		kvm_rip_write(vcpu, ctxt->eip);
8325 		kvm_set_rflags(vcpu, ctxt->eflags);
8326 	}
8327 }
8328 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8329 
8330 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8331 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8332 {
8333 	struct kvm_run *run = vcpu->run;
8334 	u64 info[5];
8335 	u8 info_start;
8336 
8337 	/*
8338 	 * Zero the whole array used to retrieve the exit info, as casting to
8339 	 * u32 for select entries will leave some chunks uninitialized.
8340 	 */
8341 	memset(&info, 0, sizeof(info));
8342 
8343 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8344 					   &info[2], (u32 *)&info[3],
8345 					   (u32 *)&info[4]);
8346 
8347 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8348 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8349 
8350 	/*
8351 	 * There's currently space for 13 entries, but 5 are used for the exit
8352 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8353 	 * when expanding kvm_run.emulation_failure in the future.
8354 	 */
8355 	if (WARN_ON_ONCE(ndata > 4))
8356 		ndata = 4;
8357 
8358 	/* Always include the flags as a 'data' entry. */
8359 	info_start = 1;
8360 	run->emulation_failure.flags = 0;
8361 
8362 	if (insn_size) {
8363 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8364 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8365 		info_start += 2;
8366 		run->emulation_failure.flags |=
8367 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8368 		run->emulation_failure.insn_size = insn_size;
8369 		memset(run->emulation_failure.insn_bytes, 0x90,
8370 		       sizeof(run->emulation_failure.insn_bytes));
8371 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8372 	}
8373 
8374 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8375 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8376 	       ndata * sizeof(data[0]));
8377 
8378 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8379 }
8380 
8381 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8382 {
8383 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8384 
8385 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8386 				       ctxt->fetch.end - ctxt->fetch.data);
8387 }
8388 
8389 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8390 					  u8 ndata)
8391 {
8392 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8393 }
8394 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8395 
8396 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8397 {
8398 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8399 }
8400 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8401 
8402 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8403 {
8404 	struct kvm *kvm = vcpu->kvm;
8405 
8406 	++vcpu->stat.insn_emulation_fail;
8407 	trace_kvm_emulate_insn_failed(vcpu);
8408 
8409 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8410 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8411 		return 1;
8412 	}
8413 
8414 	if (kvm->arch.exit_on_emulation_error ||
8415 	    (emulation_type & EMULTYPE_SKIP)) {
8416 		prepare_emulation_ctxt_failure_exit(vcpu);
8417 		return 0;
8418 	}
8419 
8420 	kvm_queue_exception(vcpu, UD_VECTOR);
8421 
8422 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8423 		prepare_emulation_ctxt_failure_exit(vcpu);
8424 		return 0;
8425 	}
8426 
8427 	return 1;
8428 }
8429 
8430 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8431 				  bool write_fault_to_shadow_pgtable,
8432 				  int emulation_type)
8433 {
8434 	gpa_t gpa = cr2_or_gpa;
8435 	kvm_pfn_t pfn;
8436 
8437 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8438 		return false;
8439 
8440 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8441 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8442 		return false;
8443 
8444 	if (!vcpu->arch.mmu->root_role.direct) {
8445 		/*
8446 		 * Write permission should be allowed since only
8447 		 * write access need to be emulated.
8448 		 */
8449 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8450 
8451 		/*
8452 		 * If the mapping is invalid in guest, let cpu retry
8453 		 * it to generate fault.
8454 		 */
8455 		if (gpa == INVALID_GPA)
8456 			return true;
8457 	}
8458 
8459 	/*
8460 	 * Do not retry the unhandleable instruction if it faults on the
8461 	 * readonly host memory, otherwise it will goto a infinite loop:
8462 	 * retry instruction -> write #PF -> emulation fail -> retry
8463 	 * instruction -> ...
8464 	 */
8465 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8466 
8467 	/*
8468 	 * If the instruction failed on the error pfn, it can not be fixed,
8469 	 * report the error to userspace.
8470 	 */
8471 	if (is_error_noslot_pfn(pfn))
8472 		return false;
8473 
8474 	kvm_release_pfn_clean(pfn);
8475 
8476 	/* The instructions are well-emulated on direct mmu. */
8477 	if (vcpu->arch.mmu->root_role.direct) {
8478 		unsigned int indirect_shadow_pages;
8479 
8480 		write_lock(&vcpu->kvm->mmu_lock);
8481 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8482 		write_unlock(&vcpu->kvm->mmu_lock);
8483 
8484 		if (indirect_shadow_pages)
8485 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8486 
8487 		return true;
8488 	}
8489 
8490 	/*
8491 	 * if emulation was due to access to shadowed page table
8492 	 * and it failed try to unshadow page and re-enter the
8493 	 * guest to let CPU execute the instruction.
8494 	 */
8495 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8496 
8497 	/*
8498 	 * If the access faults on its page table, it can not
8499 	 * be fixed by unprotecting shadow page and it should
8500 	 * be reported to userspace.
8501 	 */
8502 	return !write_fault_to_shadow_pgtable;
8503 }
8504 
8505 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8506 			      gpa_t cr2_or_gpa,  int emulation_type)
8507 {
8508 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8509 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8510 
8511 	last_retry_eip = vcpu->arch.last_retry_eip;
8512 	last_retry_addr = vcpu->arch.last_retry_addr;
8513 
8514 	/*
8515 	 * If the emulation is caused by #PF and it is non-page_table
8516 	 * writing instruction, it means the VM-EXIT is caused by shadow
8517 	 * page protected, we can zap the shadow page and retry this
8518 	 * instruction directly.
8519 	 *
8520 	 * Note: if the guest uses a non-page-table modifying instruction
8521 	 * on the PDE that points to the instruction, then we will unmap
8522 	 * the instruction and go to an infinite loop. So, we cache the
8523 	 * last retried eip and the last fault address, if we meet the eip
8524 	 * and the address again, we can break out of the potential infinite
8525 	 * loop.
8526 	 */
8527 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8528 
8529 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8530 		return false;
8531 
8532 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8533 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8534 		return false;
8535 
8536 	if (x86_page_table_writing_insn(ctxt))
8537 		return false;
8538 
8539 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8540 		return false;
8541 
8542 	vcpu->arch.last_retry_eip = ctxt->eip;
8543 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8544 
8545 	if (!vcpu->arch.mmu->root_role.direct)
8546 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8547 
8548 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8549 
8550 	return true;
8551 }
8552 
8553 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8554 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8555 
8556 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8557 				unsigned long *db)
8558 {
8559 	u32 dr6 = 0;
8560 	int i;
8561 	u32 enable, rwlen;
8562 
8563 	enable = dr7;
8564 	rwlen = dr7 >> 16;
8565 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8566 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8567 			dr6 |= (1 << i);
8568 	return dr6;
8569 }
8570 
8571 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8572 {
8573 	struct kvm_run *kvm_run = vcpu->run;
8574 
8575 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8576 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8577 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8578 		kvm_run->debug.arch.exception = DB_VECTOR;
8579 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8580 		return 0;
8581 	}
8582 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8583 	return 1;
8584 }
8585 
8586 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8587 {
8588 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8589 	int r;
8590 
8591 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8592 	if (unlikely(!r))
8593 		return 0;
8594 
8595 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8596 
8597 	/*
8598 	 * rflags is the old, "raw" value of the flags.  The new value has
8599 	 * not been saved yet.
8600 	 *
8601 	 * This is correct even for TF set by the guest, because "the
8602 	 * processor will not generate this exception after the instruction
8603 	 * that sets the TF flag".
8604 	 */
8605 	if (unlikely(rflags & X86_EFLAGS_TF))
8606 		r = kvm_vcpu_do_singlestep(vcpu);
8607 	return r;
8608 }
8609 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8610 
8611 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8612 {
8613 	u32 shadow;
8614 
8615 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8616 		return true;
8617 
8618 	/*
8619 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8620 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8621 	 * to avoid the relatively expensive CPUID lookup.
8622 	 */
8623 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8624 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8625 	       guest_cpuid_is_intel(vcpu);
8626 }
8627 
8628 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8629 					   int emulation_type, int *r)
8630 {
8631 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8632 
8633 	/*
8634 	 * Do not check for code breakpoints if hardware has already done the
8635 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8636 	 * the instruction has passed all exception checks, and all intercepted
8637 	 * exceptions that trigger emulation have lower priority than code
8638 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8639 	 * means any code breakpoints have already been serviced.
8640 	 *
8641 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8642 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8643 	 * the instruction being emulated.  The intent of forced emulation is
8644 	 * to behave as if KVM intercepted the instruction without an exception
8645 	 * and without a prefix.
8646 	 */
8647 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8648 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8649 		return false;
8650 
8651 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8652 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8653 		struct kvm_run *kvm_run = vcpu->run;
8654 		unsigned long eip = kvm_get_linear_rip(vcpu);
8655 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8656 					   vcpu->arch.guest_debug_dr7,
8657 					   vcpu->arch.eff_db);
8658 
8659 		if (dr6 != 0) {
8660 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8661 			kvm_run->debug.arch.pc = eip;
8662 			kvm_run->debug.arch.exception = DB_VECTOR;
8663 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8664 			*r = 0;
8665 			return true;
8666 		}
8667 	}
8668 
8669 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8670 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8671 		unsigned long eip = kvm_get_linear_rip(vcpu);
8672 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8673 					   vcpu->arch.dr7,
8674 					   vcpu->arch.db);
8675 
8676 		if (dr6 != 0) {
8677 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8678 			*r = 1;
8679 			return true;
8680 		}
8681 	}
8682 
8683 	return false;
8684 }
8685 
8686 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8687 {
8688 	switch (ctxt->opcode_len) {
8689 	case 1:
8690 		switch (ctxt->b) {
8691 		case 0xe4:	/* IN */
8692 		case 0xe5:
8693 		case 0xec:
8694 		case 0xed:
8695 		case 0xe6:	/* OUT */
8696 		case 0xe7:
8697 		case 0xee:
8698 		case 0xef:
8699 		case 0x6c:	/* INS */
8700 		case 0x6d:
8701 		case 0x6e:	/* OUTS */
8702 		case 0x6f:
8703 			return true;
8704 		}
8705 		break;
8706 	case 2:
8707 		switch (ctxt->b) {
8708 		case 0x33:	/* RDPMC */
8709 			return true;
8710 		}
8711 		break;
8712 	}
8713 
8714 	return false;
8715 }
8716 
8717 /*
8718  * Decode an instruction for emulation.  The caller is responsible for handling
8719  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8720  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8721  * code breakpoints have higher priority and thus have already been done by
8722  * hardware.
8723  *
8724  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8725  *     response to a machine check.
8726  */
8727 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8728 				    void *insn, int insn_len)
8729 {
8730 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8731 	int r;
8732 
8733 	init_emulate_ctxt(vcpu);
8734 
8735 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8736 
8737 	trace_kvm_emulate_insn_start(vcpu);
8738 	++vcpu->stat.insn_emulation;
8739 
8740 	return r;
8741 }
8742 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8743 
8744 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8745 			    int emulation_type, void *insn, int insn_len)
8746 {
8747 	int r;
8748 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8749 	bool writeback = true;
8750 	bool write_fault_to_spt;
8751 
8752 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8753 		return 1;
8754 
8755 	vcpu->arch.l1tf_flush_l1d = true;
8756 
8757 	/*
8758 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8759 	 * never reused.
8760 	 */
8761 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8762 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8763 
8764 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8765 		kvm_clear_exception_queue(vcpu);
8766 
8767 		/*
8768 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8769 		 * are fault-like and are higher priority than any faults on
8770 		 * the code fetch itself.
8771 		 */
8772 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8773 			return r;
8774 
8775 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8776 						    insn, insn_len);
8777 		if (r != EMULATION_OK)  {
8778 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8779 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8780 				kvm_queue_exception(vcpu, UD_VECTOR);
8781 				return 1;
8782 			}
8783 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8784 						  write_fault_to_spt,
8785 						  emulation_type))
8786 				return 1;
8787 
8788 			if (ctxt->have_exception &&
8789 			    !(emulation_type & EMULTYPE_SKIP)) {
8790 				/*
8791 				 * #UD should result in just EMULATION_FAILED, and trap-like
8792 				 * exception should not be encountered during decode.
8793 				 */
8794 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8795 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8796 				inject_emulated_exception(vcpu);
8797 				return 1;
8798 			}
8799 			return handle_emulation_failure(vcpu, emulation_type);
8800 		}
8801 	}
8802 
8803 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8804 	    !is_vmware_backdoor_opcode(ctxt)) {
8805 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8806 		return 1;
8807 	}
8808 
8809 	/*
8810 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8811 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8812 	 * The caller is responsible for updating interruptibility state and
8813 	 * injecting single-step #DBs.
8814 	 */
8815 	if (emulation_type & EMULTYPE_SKIP) {
8816 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8817 			ctxt->eip = (u32)ctxt->_eip;
8818 		else
8819 			ctxt->eip = ctxt->_eip;
8820 
8821 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8822 			r = 1;
8823 			goto writeback;
8824 		}
8825 
8826 		kvm_rip_write(vcpu, ctxt->eip);
8827 		if (ctxt->eflags & X86_EFLAGS_RF)
8828 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8829 		return 1;
8830 	}
8831 
8832 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8833 		return 1;
8834 
8835 	/* this is needed for vmware backdoor interface to work since it
8836 	   changes registers values  during IO operation */
8837 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8838 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8839 		emulator_invalidate_register_cache(ctxt);
8840 	}
8841 
8842 restart:
8843 	if (emulation_type & EMULTYPE_PF) {
8844 		/* Save the faulting GPA (cr2) in the address field */
8845 		ctxt->exception.address = cr2_or_gpa;
8846 
8847 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8848 		if (vcpu->arch.mmu->root_role.direct) {
8849 			ctxt->gpa_available = true;
8850 			ctxt->gpa_val = cr2_or_gpa;
8851 		}
8852 	} else {
8853 		/* Sanitize the address out of an abundance of paranoia. */
8854 		ctxt->exception.address = 0;
8855 	}
8856 
8857 	r = x86_emulate_insn(ctxt);
8858 
8859 	if (r == EMULATION_INTERCEPTED)
8860 		return 1;
8861 
8862 	if (r == EMULATION_FAILED) {
8863 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8864 					emulation_type))
8865 			return 1;
8866 
8867 		return handle_emulation_failure(vcpu, emulation_type);
8868 	}
8869 
8870 	if (ctxt->have_exception) {
8871 		r = 1;
8872 		inject_emulated_exception(vcpu);
8873 	} else if (vcpu->arch.pio.count) {
8874 		if (!vcpu->arch.pio.in) {
8875 			/* FIXME: return into emulator if single-stepping.  */
8876 			vcpu->arch.pio.count = 0;
8877 		} else {
8878 			writeback = false;
8879 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8880 		}
8881 		r = 0;
8882 	} else if (vcpu->mmio_needed) {
8883 		++vcpu->stat.mmio_exits;
8884 
8885 		if (!vcpu->mmio_is_write)
8886 			writeback = false;
8887 		r = 0;
8888 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8889 	} else if (vcpu->arch.complete_userspace_io) {
8890 		writeback = false;
8891 		r = 0;
8892 	} else if (r == EMULATION_RESTART)
8893 		goto restart;
8894 	else
8895 		r = 1;
8896 
8897 writeback:
8898 	if (writeback) {
8899 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8900 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8901 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8902 
8903 		/*
8904 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8905 		 * only supports code breakpoints and general detect #DB, both
8906 		 * of which are fault-like.
8907 		 */
8908 		if (!ctxt->have_exception ||
8909 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8910 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8911 			if (ctxt->is_branch)
8912 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8913 			kvm_rip_write(vcpu, ctxt->eip);
8914 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8915 				r = kvm_vcpu_do_singlestep(vcpu);
8916 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8917 			__kvm_set_rflags(vcpu, ctxt->eflags);
8918 		}
8919 
8920 		/*
8921 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8922 		 * do nothing, and it will be requested again as soon as
8923 		 * the shadow expires.  But we still need to check here,
8924 		 * because POPF has no interrupt shadow.
8925 		 */
8926 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8927 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8928 	} else
8929 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8930 
8931 	return r;
8932 }
8933 
8934 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8935 {
8936 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8937 }
8938 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8939 
8940 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8941 					void *insn, int insn_len)
8942 {
8943 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8944 }
8945 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8946 
8947 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8948 {
8949 	vcpu->arch.pio.count = 0;
8950 	return 1;
8951 }
8952 
8953 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8954 {
8955 	vcpu->arch.pio.count = 0;
8956 
8957 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8958 		return 1;
8959 
8960 	return kvm_skip_emulated_instruction(vcpu);
8961 }
8962 
8963 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8964 			    unsigned short port)
8965 {
8966 	unsigned long val = kvm_rax_read(vcpu);
8967 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8968 
8969 	if (ret)
8970 		return ret;
8971 
8972 	/*
8973 	 * Workaround userspace that relies on old KVM behavior of %rip being
8974 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8975 	 */
8976 	if (port == 0x7e &&
8977 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8978 		vcpu->arch.complete_userspace_io =
8979 			complete_fast_pio_out_port_0x7e;
8980 		kvm_skip_emulated_instruction(vcpu);
8981 	} else {
8982 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8983 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8984 	}
8985 	return 0;
8986 }
8987 
8988 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8989 {
8990 	unsigned long val;
8991 
8992 	/* We should only ever be called with arch.pio.count equal to 1 */
8993 	BUG_ON(vcpu->arch.pio.count != 1);
8994 
8995 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8996 		vcpu->arch.pio.count = 0;
8997 		return 1;
8998 	}
8999 
9000 	/* For size less than 4 we merge, else we zero extend */
9001 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9002 
9003 	complete_emulator_pio_in(vcpu, &val);
9004 	kvm_rax_write(vcpu, val);
9005 
9006 	return kvm_skip_emulated_instruction(vcpu);
9007 }
9008 
9009 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9010 			   unsigned short port)
9011 {
9012 	unsigned long val;
9013 	int ret;
9014 
9015 	/* For size less than 4 we merge, else we zero extend */
9016 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9017 
9018 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9019 	if (ret) {
9020 		kvm_rax_write(vcpu, val);
9021 		return ret;
9022 	}
9023 
9024 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9025 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9026 
9027 	return 0;
9028 }
9029 
9030 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9031 {
9032 	int ret;
9033 
9034 	if (in)
9035 		ret = kvm_fast_pio_in(vcpu, size, port);
9036 	else
9037 		ret = kvm_fast_pio_out(vcpu, size, port);
9038 	return ret && kvm_skip_emulated_instruction(vcpu);
9039 }
9040 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9041 
9042 static int kvmclock_cpu_down_prep(unsigned int cpu)
9043 {
9044 	__this_cpu_write(cpu_tsc_khz, 0);
9045 	return 0;
9046 }
9047 
9048 static void tsc_khz_changed(void *data)
9049 {
9050 	struct cpufreq_freqs *freq = data;
9051 	unsigned long khz = 0;
9052 
9053 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9054 
9055 	if (data)
9056 		khz = freq->new;
9057 	else
9058 		khz = cpufreq_quick_get(raw_smp_processor_id());
9059 	if (!khz)
9060 		khz = tsc_khz;
9061 	__this_cpu_write(cpu_tsc_khz, khz);
9062 }
9063 
9064 #ifdef CONFIG_X86_64
9065 static void kvm_hyperv_tsc_notifier(void)
9066 {
9067 	struct kvm *kvm;
9068 	int cpu;
9069 
9070 	mutex_lock(&kvm_lock);
9071 	list_for_each_entry(kvm, &vm_list, vm_list)
9072 		kvm_make_mclock_inprogress_request(kvm);
9073 
9074 	/* no guest entries from this point */
9075 	hyperv_stop_tsc_emulation();
9076 
9077 	/* TSC frequency always matches when on Hyper-V */
9078 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9079 		for_each_present_cpu(cpu)
9080 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9081 	}
9082 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9083 
9084 	list_for_each_entry(kvm, &vm_list, vm_list) {
9085 		__kvm_start_pvclock_update(kvm);
9086 		pvclock_update_vm_gtod_copy(kvm);
9087 		kvm_end_pvclock_update(kvm);
9088 	}
9089 
9090 	mutex_unlock(&kvm_lock);
9091 }
9092 #endif
9093 
9094 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9095 {
9096 	struct kvm *kvm;
9097 	struct kvm_vcpu *vcpu;
9098 	int send_ipi = 0;
9099 	unsigned long i;
9100 
9101 	/*
9102 	 * We allow guests to temporarily run on slowing clocks,
9103 	 * provided we notify them after, or to run on accelerating
9104 	 * clocks, provided we notify them before.  Thus time never
9105 	 * goes backwards.
9106 	 *
9107 	 * However, we have a problem.  We can't atomically update
9108 	 * the frequency of a given CPU from this function; it is
9109 	 * merely a notifier, which can be called from any CPU.
9110 	 * Changing the TSC frequency at arbitrary points in time
9111 	 * requires a recomputation of local variables related to
9112 	 * the TSC for each VCPU.  We must flag these local variables
9113 	 * to be updated and be sure the update takes place with the
9114 	 * new frequency before any guests proceed.
9115 	 *
9116 	 * Unfortunately, the combination of hotplug CPU and frequency
9117 	 * change creates an intractable locking scenario; the order
9118 	 * of when these callouts happen is undefined with respect to
9119 	 * CPU hotplug, and they can race with each other.  As such,
9120 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9121 	 * undefined; you can actually have a CPU frequency change take
9122 	 * place in between the computation of X and the setting of the
9123 	 * variable.  To protect against this problem, all updates of
9124 	 * the per_cpu tsc_khz variable are done in an interrupt
9125 	 * protected IPI, and all callers wishing to update the value
9126 	 * must wait for a synchronous IPI to complete (which is trivial
9127 	 * if the caller is on the CPU already).  This establishes the
9128 	 * necessary total order on variable updates.
9129 	 *
9130 	 * Note that because a guest time update may take place
9131 	 * anytime after the setting of the VCPU's request bit, the
9132 	 * correct TSC value must be set before the request.  However,
9133 	 * to ensure the update actually makes it to any guest which
9134 	 * starts running in hardware virtualization between the set
9135 	 * and the acquisition of the spinlock, we must also ping the
9136 	 * CPU after setting the request bit.
9137 	 *
9138 	 */
9139 
9140 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9141 
9142 	mutex_lock(&kvm_lock);
9143 	list_for_each_entry(kvm, &vm_list, vm_list) {
9144 		kvm_for_each_vcpu(i, vcpu, kvm) {
9145 			if (vcpu->cpu != cpu)
9146 				continue;
9147 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9148 			if (vcpu->cpu != raw_smp_processor_id())
9149 				send_ipi = 1;
9150 		}
9151 	}
9152 	mutex_unlock(&kvm_lock);
9153 
9154 	if (freq->old < freq->new && send_ipi) {
9155 		/*
9156 		 * We upscale the frequency.  Must make the guest
9157 		 * doesn't see old kvmclock values while running with
9158 		 * the new frequency, otherwise we risk the guest sees
9159 		 * time go backwards.
9160 		 *
9161 		 * In case we update the frequency for another cpu
9162 		 * (which might be in guest context) send an interrupt
9163 		 * to kick the cpu out of guest context.  Next time
9164 		 * guest context is entered kvmclock will be updated,
9165 		 * so the guest will not see stale values.
9166 		 */
9167 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9168 	}
9169 }
9170 
9171 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9172 				     void *data)
9173 {
9174 	struct cpufreq_freqs *freq = data;
9175 	int cpu;
9176 
9177 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9178 		return 0;
9179 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9180 		return 0;
9181 
9182 	for_each_cpu(cpu, freq->policy->cpus)
9183 		__kvmclock_cpufreq_notifier(freq, cpu);
9184 
9185 	return 0;
9186 }
9187 
9188 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9189 	.notifier_call  = kvmclock_cpufreq_notifier
9190 };
9191 
9192 static int kvmclock_cpu_online(unsigned int cpu)
9193 {
9194 	tsc_khz_changed(NULL);
9195 	return 0;
9196 }
9197 
9198 static void kvm_timer_init(void)
9199 {
9200 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9201 		max_tsc_khz = tsc_khz;
9202 
9203 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9204 			struct cpufreq_policy *policy;
9205 			int cpu;
9206 
9207 			cpu = get_cpu();
9208 			policy = cpufreq_cpu_get(cpu);
9209 			if (policy) {
9210 				if (policy->cpuinfo.max_freq)
9211 					max_tsc_khz = policy->cpuinfo.max_freq;
9212 				cpufreq_cpu_put(policy);
9213 			}
9214 			put_cpu();
9215 		}
9216 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9217 					  CPUFREQ_TRANSITION_NOTIFIER);
9218 
9219 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9220 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9221 	}
9222 }
9223 
9224 #ifdef CONFIG_X86_64
9225 static void pvclock_gtod_update_fn(struct work_struct *work)
9226 {
9227 	struct kvm *kvm;
9228 	struct kvm_vcpu *vcpu;
9229 	unsigned long i;
9230 
9231 	mutex_lock(&kvm_lock);
9232 	list_for_each_entry(kvm, &vm_list, vm_list)
9233 		kvm_for_each_vcpu(i, vcpu, kvm)
9234 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9235 	atomic_set(&kvm_guest_has_master_clock, 0);
9236 	mutex_unlock(&kvm_lock);
9237 }
9238 
9239 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9240 
9241 /*
9242  * Indirection to move queue_work() out of the tk_core.seq write held
9243  * region to prevent possible deadlocks against time accessors which
9244  * are invoked with work related locks held.
9245  */
9246 static void pvclock_irq_work_fn(struct irq_work *w)
9247 {
9248 	queue_work(system_long_wq, &pvclock_gtod_work);
9249 }
9250 
9251 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9252 
9253 /*
9254  * Notification about pvclock gtod data update.
9255  */
9256 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9257 			       void *priv)
9258 {
9259 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9260 	struct timekeeper *tk = priv;
9261 
9262 	update_pvclock_gtod(tk);
9263 
9264 	/*
9265 	 * Disable master clock if host does not trust, or does not use,
9266 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9267 	 * this is invoked with tk_core.seq write held.
9268 	 */
9269 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9270 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9271 		irq_work_queue(&pvclock_irq_work);
9272 	return 0;
9273 }
9274 
9275 static struct notifier_block pvclock_gtod_notifier = {
9276 	.notifier_call = pvclock_gtod_notify,
9277 };
9278 #endif
9279 
9280 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9281 {
9282 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9283 
9284 #define __KVM_X86_OP(func) \
9285 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9286 #define KVM_X86_OP(func) \
9287 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9288 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9289 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9290 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9291 					   (void *)__static_call_return0);
9292 #include <asm/kvm-x86-ops.h>
9293 #undef __KVM_X86_OP
9294 
9295 	kvm_pmu_ops_update(ops->pmu_ops);
9296 }
9297 
9298 static int kvm_x86_check_processor_compatibility(void)
9299 {
9300 	int cpu = smp_processor_id();
9301 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9302 
9303 	/*
9304 	 * Compatibility checks are done when loading KVM and when enabling
9305 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9306 	 * compatible, i.e. KVM should never perform a compatibility check on
9307 	 * an offline CPU.
9308 	 */
9309 	WARN_ON(!cpu_online(cpu));
9310 
9311 	if (__cr4_reserved_bits(cpu_has, c) !=
9312 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9313 		return -EIO;
9314 
9315 	return static_call(kvm_x86_check_processor_compatibility)();
9316 }
9317 
9318 static void kvm_x86_check_cpu_compat(void *ret)
9319 {
9320 	*(int *)ret = kvm_x86_check_processor_compatibility();
9321 }
9322 
9323 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9324 {
9325 	u64 host_pat;
9326 	int r, cpu;
9327 
9328 	if (kvm_x86_ops.hardware_enable) {
9329 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9330 		return -EEXIST;
9331 	}
9332 
9333 	/*
9334 	 * KVM explicitly assumes that the guest has an FPU and
9335 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9336 	 * vCPU's FPU state as a fxregs_state struct.
9337 	 */
9338 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9339 		pr_err("inadequate fpu\n");
9340 		return -EOPNOTSUPP;
9341 	}
9342 
9343 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9344 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9345 		return -EOPNOTSUPP;
9346 	}
9347 
9348 	/*
9349 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9350 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9351 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9352 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9353 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9354 	 */
9355 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9356 	    (host_pat & GENMASK(2, 0)) != 6) {
9357 		pr_err("host PAT[0] is not WB\n");
9358 		return -EIO;
9359 	}
9360 
9361 	x86_emulator_cache = kvm_alloc_emulator_cache();
9362 	if (!x86_emulator_cache) {
9363 		pr_err("failed to allocate cache for x86 emulator\n");
9364 		return -ENOMEM;
9365 	}
9366 
9367 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9368 	if (!user_return_msrs) {
9369 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9370 		r = -ENOMEM;
9371 		goto out_free_x86_emulator_cache;
9372 	}
9373 	kvm_nr_uret_msrs = 0;
9374 
9375 	r = kvm_mmu_vendor_module_init();
9376 	if (r)
9377 		goto out_free_percpu;
9378 
9379 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9380 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9381 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9382 	}
9383 
9384 	rdmsrl_safe(MSR_EFER, &host_efer);
9385 
9386 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9387 		rdmsrl(MSR_IA32_XSS, host_xss);
9388 
9389 	kvm_init_pmu_capability();
9390 
9391 	r = ops->hardware_setup();
9392 	if (r != 0)
9393 		goto out_mmu_exit;
9394 
9395 	kvm_ops_update(ops);
9396 
9397 	for_each_online_cpu(cpu) {
9398 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9399 		if (r < 0)
9400 			goto out_unwind_ops;
9401 	}
9402 
9403 	/*
9404 	 * Point of no return!  DO NOT add error paths below this point unless
9405 	 * absolutely necessary, as most operations from this point forward
9406 	 * require unwinding.
9407 	 */
9408 	kvm_timer_init();
9409 
9410 	if (pi_inject_timer == -1)
9411 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9412 #ifdef CONFIG_X86_64
9413 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9414 
9415 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9416 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9417 #endif
9418 
9419 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9420 
9421 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9422 		kvm_caps.supported_xss = 0;
9423 
9424 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9425 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9426 #undef __kvm_cpu_cap_has
9427 
9428 	if (kvm_caps.has_tsc_control) {
9429 		/*
9430 		 * Make sure the user can only configure tsc_khz values that
9431 		 * fit into a signed integer.
9432 		 * A min value is not calculated because it will always
9433 		 * be 1 on all machines.
9434 		 */
9435 		u64 max = min(0x7fffffffULL,
9436 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9437 		kvm_caps.max_guest_tsc_khz = max;
9438 	}
9439 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9440 	kvm_init_msr_list();
9441 	return 0;
9442 
9443 out_unwind_ops:
9444 	kvm_x86_ops.hardware_enable = NULL;
9445 	static_call(kvm_x86_hardware_unsetup)();
9446 out_mmu_exit:
9447 	kvm_mmu_vendor_module_exit();
9448 out_free_percpu:
9449 	free_percpu(user_return_msrs);
9450 out_free_x86_emulator_cache:
9451 	kmem_cache_destroy(x86_emulator_cache);
9452 	return r;
9453 }
9454 
9455 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9456 {
9457 	int r;
9458 
9459 	mutex_lock(&vendor_module_lock);
9460 	r = __kvm_x86_vendor_init(ops);
9461 	mutex_unlock(&vendor_module_lock);
9462 
9463 	return r;
9464 }
9465 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9466 
9467 void kvm_x86_vendor_exit(void)
9468 {
9469 	kvm_unregister_perf_callbacks();
9470 
9471 #ifdef CONFIG_X86_64
9472 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9473 		clear_hv_tscchange_cb();
9474 #endif
9475 	kvm_lapic_exit();
9476 
9477 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9478 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9479 					    CPUFREQ_TRANSITION_NOTIFIER);
9480 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9481 	}
9482 #ifdef CONFIG_X86_64
9483 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9484 	irq_work_sync(&pvclock_irq_work);
9485 	cancel_work_sync(&pvclock_gtod_work);
9486 #endif
9487 	static_call(kvm_x86_hardware_unsetup)();
9488 	kvm_mmu_vendor_module_exit();
9489 	free_percpu(user_return_msrs);
9490 	kmem_cache_destroy(x86_emulator_cache);
9491 #ifdef CONFIG_KVM_XEN
9492 	static_key_deferred_flush(&kvm_xen_enabled);
9493 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9494 #endif
9495 	mutex_lock(&vendor_module_lock);
9496 	kvm_x86_ops.hardware_enable = NULL;
9497 	mutex_unlock(&vendor_module_lock);
9498 }
9499 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9500 
9501 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9502 {
9503 	/*
9504 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9505 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9506 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9507 	 * managed by userspace, in which case userspace is responsible for
9508 	 * handling wake events.
9509 	 */
9510 	++vcpu->stat.halt_exits;
9511 	if (lapic_in_kernel(vcpu)) {
9512 		vcpu->arch.mp_state = state;
9513 		return 1;
9514 	} else {
9515 		vcpu->run->exit_reason = reason;
9516 		return 0;
9517 	}
9518 }
9519 
9520 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9521 {
9522 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9523 }
9524 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9525 
9526 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9527 {
9528 	int ret = kvm_skip_emulated_instruction(vcpu);
9529 	/*
9530 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9531 	 * KVM_EXIT_DEBUG here.
9532 	 */
9533 	return kvm_emulate_halt_noskip(vcpu) && ret;
9534 }
9535 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9536 
9537 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9538 {
9539 	int ret = kvm_skip_emulated_instruction(vcpu);
9540 
9541 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9542 					KVM_EXIT_AP_RESET_HOLD) && ret;
9543 }
9544 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9545 
9546 #ifdef CONFIG_X86_64
9547 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9548 			        unsigned long clock_type)
9549 {
9550 	struct kvm_clock_pairing clock_pairing;
9551 	struct timespec64 ts;
9552 	u64 cycle;
9553 	int ret;
9554 
9555 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9556 		return -KVM_EOPNOTSUPP;
9557 
9558 	/*
9559 	 * When tsc is in permanent catchup mode guests won't be able to use
9560 	 * pvclock_read_retry loop to get consistent view of pvclock
9561 	 */
9562 	if (vcpu->arch.tsc_always_catchup)
9563 		return -KVM_EOPNOTSUPP;
9564 
9565 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9566 		return -KVM_EOPNOTSUPP;
9567 
9568 	clock_pairing.sec = ts.tv_sec;
9569 	clock_pairing.nsec = ts.tv_nsec;
9570 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9571 	clock_pairing.flags = 0;
9572 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9573 
9574 	ret = 0;
9575 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9576 			    sizeof(struct kvm_clock_pairing)))
9577 		ret = -KVM_EFAULT;
9578 
9579 	return ret;
9580 }
9581 #endif
9582 
9583 /*
9584  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9585  *
9586  * @apicid - apicid of vcpu to be kicked.
9587  */
9588 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9589 {
9590 	/*
9591 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9592 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9593 	 */
9594 	struct kvm_lapic_irq lapic_irq = {
9595 		.delivery_mode = APIC_DM_REMRD,
9596 		.dest_mode = APIC_DEST_PHYSICAL,
9597 		.shorthand = APIC_DEST_NOSHORT,
9598 		.dest_id = apicid,
9599 	};
9600 
9601 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9602 }
9603 
9604 bool kvm_apicv_activated(struct kvm *kvm)
9605 {
9606 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9607 }
9608 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9609 
9610 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9611 {
9612 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9613 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9614 
9615 	return (vm_reasons | vcpu_reasons) == 0;
9616 }
9617 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9618 
9619 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9620 				       enum kvm_apicv_inhibit reason, bool set)
9621 {
9622 	if (set)
9623 		__set_bit(reason, inhibits);
9624 	else
9625 		__clear_bit(reason, inhibits);
9626 
9627 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9628 }
9629 
9630 static void kvm_apicv_init(struct kvm *kvm)
9631 {
9632 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9633 
9634 	init_rwsem(&kvm->arch.apicv_update_lock);
9635 
9636 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9637 
9638 	if (!enable_apicv)
9639 		set_or_clear_apicv_inhibit(inhibits,
9640 					   APICV_INHIBIT_REASON_DISABLE, true);
9641 }
9642 
9643 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9644 {
9645 	struct kvm_vcpu *target = NULL;
9646 	struct kvm_apic_map *map;
9647 
9648 	vcpu->stat.directed_yield_attempted++;
9649 
9650 	if (single_task_running())
9651 		goto no_yield;
9652 
9653 	rcu_read_lock();
9654 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9655 
9656 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9657 		target = map->phys_map[dest_id]->vcpu;
9658 
9659 	rcu_read_unlock();
9660 
9661 	if (!target || !READ_ONCE(target->ready))
9662 		goto no_yield;
9663 
9664 	/* Ignore requests to yield to self */
9665 	if (vcpu == target)
9666 		goto no_yield;
9667 
9668 	if (kvm_vcpu_yield_to(target) <= 0)
9669 		goto no_yield;
9670 
9671 	vcpu->stat.directed_yield_successful++;
9672 
9673 no_yield:
9674 	return;
9675 }
9676 
9677 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9678 {
9679 	u64 ret = vcpu->run->hypercall.ret;
9680 
9681 	if (!is_64_bit_mode(vcpu))
9682 		ret = (u32)ret;
9683 	kvm_rax_write(vcpu, ret);
9684 	++vcpu->stat.hypercalls;
9685 	return kvm_skip_emulated_instruction(vcpu);
9686 }
9687 
9688 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9689 {
9690 	unsigned long nr, a0, a1, a2, a3, ret;
9691 	int op_64_bit;
9692 
9693 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9694 		return kvm_xen_hypercall(vcpu);
9695 
9696 	if (kvm_hv_hypercall_enabled(vcpu))
9697 		return kvm_hv_hypercall(vcpu);
9698 
9699 	nr = kvm_rax_read(vcpu);
9700 	a0 = kvm_rbx_read(vcpu);
9701 	a1 = kvm_rcx_read(vcpu);
9702 	a2 = kvm_rdx_read(vcpu);
9703 	a3 = kvm_rsi_read(vcpu);
9704 
9705 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9706 
9707 	op_64_bit = is_64_bit_hypercall(vcpu);
9708 	if (!op_64_bit) {
9709 		nr &= 0xFFFFFFFF;
9710 		a0 &= 0xFFFFFFFF;
9711 		a1 &= 0xFFFFFFFF;
9712 		a2 &= 0xFFFFFFFF;
9713 		a3 &= 0xFFFFFFFF;
9714 	}
9715 
9716 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9717 		ret = -KVM_EPERM;
9718 		goto out;
9719 	}
9720 
9721 	ret = -KVM_ENOSYS;
9722 
9723 	switch (nr) {
9724 	case KVM_HC_VAPIC_POLL_IRQ:
9725 		ret = 0;
9726 		break;
9727 	case KVM_HC_KICK_CPU:
9728 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9729 			break;
9730 
9731 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9732 		kvm_sched_yield(vcpu, a1);
9733 		ret = 0;
9734 		break;
9735 #ifdef CONFIG_X86_64
9736 	case KVM_HC_CLOCK_PAIRING:
9737 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9738 		break;
9739 #endif
9740 	case KVM_HC_SEND_IPI:
9741 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9742 			break;
9743 
9744 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9745 		break;
9746 	case KVM_HC_SCHED_YIELD:
9747 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9748 			break;
9749 
9750 		kvm_sched_yield(vcpu, a0);
9751 		ret = 0;
9752 		break;
9753 	case KVM_HC_MAP_GPA_RANGE: {
9754 		u64 gpa = a0, npages = a1, attrs = a2;
9755 
9756 		ret = -KVM_ENOSYS;
9757 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9758 			break;
9759 
9760 		if (!PAGE_ALIGNED(gpa) || !npages ||
9761 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9762 			ret = -KVM_EINVAL;
9763 			break;
9764 		}
9765 
9766 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9767 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9768 		vcpu->run->hypercall.args[0]  = gpa;
9769 		vcpu->run->hypercall.args[1]  = npages;
9770 		vcpu->run->hypercall.args[2]  = attrs;
9771 		vcpu->run->hypercall.longmode = op_64_bit;
9772 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9773 		return 0;
9774 	}
9775 	default:
9776 		ret = -KVM_ENOSYS;
9777 		break;
9778 	}
9779 out:
9780 	if (!op_64_bit)
9781 		ret = (u32)ret;
9782 	kvm_rax_write(vcpu, ret);
9783 
9784 	++vcpu->stat.hypercalls;
9785 	return kvm_skip_emulated_instruction(vcpu);
9786 }
9787 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9788 
9789 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9790 {
9791 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9792 	char instruction[3];
9793 	unsigned long rip = kvm_rip_read(vcpu);
9794 
9795 	/*
9796 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9797 	 * the pieces.
9798 	 */
9799 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9800 		ctxt->exception.error_code_valid = false;
9801 		ctxt->exception.vector = UD_VECTOR;
9802 		ctxt->have_exception = true;
9803 		return X86EMUL_PROPAGATE_FAULT;
9804 	}
9805 
9806 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9807 
9808 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9809 		&ctxt->exception);
9810 }
9811 
9812 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9813 {
9814 	return vcpu->run->request_interrupt_window &&
9815 		likely(!pic_in_kernel(vcpu->kvm));
9816 }
9817 
9818 /* Called within kvm->srcu read side.  */
9819 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9820 {
9821 	struct kvm_run *kvm_run = vcpu->run;
9822 
9823 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9824 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9825 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9826 
9827 	kvm_run->ready_for_interrupt_injection =
9828 		pic_in_kernel(vcpu->kvm) ||
9829 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9830 
9831 	if (is_smm(vcpu))
9832 		kvm_run->flags |= KVM_RUN_X86_SMM;
9833 }
9834 
9835 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9836 {
9837 	int max_irr, tpr;
9838 
9839 	if (!kvm_x86_ops.update_cr8_intercept)
9840 		return;
9841 
9842 	if (!lapic_in_kernel(vcpu))
9843 		return;
9844 
9845 	if (vcpu->arch.apic->apicv_active)
9846 		return;
9847 
9848 	if (!vcpu->arch.apic->vapic_addr)
9849 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9850 	else
9851 		max_irr = -1;
9852 
9853 	if (max_irr != -1)
9854 		max_irr >>= 4;
9855 
9856 	tpr = kvm_lapic_get_cr8(vcpu);
9857 
9858 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9859 }
9860 
9861 
9862 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9863 {
9864 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9865 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9866 		return 1;
9867 	}
9868 
9869 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9870 }
9871 
9872 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9873 {
9874 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9875 				vcpu->arch.exception.has_error_code,
9876 				vcpu->arch.exception.error_code,
9877 				vcpu->arch.exception.injected);
9878 
9879 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9880 		vcpu->arch.exception.error_code = false;
9881 	static_call(kvm_x86_inject_exception)(vcpu);
9882 }
9883 
9884 /*
9885  * Check for any event (interrupt or exception) that is ready to be injected,
9886  * and if there is at least one event, inject the event with the highest
9887  * priority.  This handles both "pending" events, i.e. events that have never
9888  * been injected into the guest, and "injected" events, i.e. events that were
9889  * injected as part of a previous VM-Enter, but weren't successfully delivered
9890  * and need to be re-injected.
9891  *
9892  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9893  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9894  * be able to inject exceptions in the "middle" of an instruction, and so must
9895  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9896  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9897  * boundaries is necessary and correct.
9898  *
9899  * For simplicity, KVM uses a single path to inject all events (except events
9900  * that are injected directly from L1 to L2) and doesn't explicitly track
9901  * instruction boundaries for asynchronous events.  However, because VM-Exits
9902  * that can occur during instruction execution typically result in KVM skipping
9903  * the instruction or injecting an exception, e.g. instruction and exception
9904  * intercepts, and because pending exceptions have higher priority than pending
9905  * interrupts, KVM still honors instruction boundaries in most scenarios.
9906  *
9907  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9908  * the instruction or inject an exception, then KVM can incorrecty inject a new
9909  * asynchrounous event if the event became pending after the CPU fetched the
9910  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9911  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9912  * injected on the restarted instruction instead of being deferred until the
9913  * instruction completes.
9914  *
9915  * In practice, this virtualization hole is unlikely to be observed by the
9916  * guest, and even less likely to cause functional problems.  To detect the
9917  * hole, the guest would have to trigger an event on a side effect of an early
9918  * phase of instruction execution, e.g. on the instruction fetch from memory.
9919  * And for it to be a functional problem, the guest would need to depend on the
9920  * ordering between that side effect, the instruction completing, _and_ the
9921  * delivery of the asynchronous event.
9922  */
9923 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9924 				       bool *req_immediate_exit)
9925 {
9926 	bool can_inject;
9927 	int r;
9928 
9929 	/*
9930 	 * Process nested events first, as nested VM-Exit supercedes event
9931 	 * re-injection.  If there's an event queued for re-injection, it will
9932 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9933 	 */
9934 	if (is_guest_mode(vcpu))
9935 		r = kvm_check_nested_events(vcpu);
9936 	else
9937 		r = 0;
9938 
9939 	/*
9940 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9941 	 * to/from L2 is needed, as any event that has already been injected
9942 	 * into L2 needs to complete its lifecycle before injecting a new event.
9943 	 *
9944 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9945 	 * This collision arises if an exception occurred while vectoring the
9946 	 * injected event, KVM intercepted said exception, and KVM ultimately
9947 	 * determined the fault belongs to the guest and queues the exception
9948 	 * for injection back into the guest.
9949 	 *
9950 	 * "Injected" interrupts can also collide with pending exceptions if
9951 	 * userspace ignores the "ready for injection" flag and blindly queues
9952 	 * an interrupt.  In that case, prioritizing the exception is correct,
9953 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9954 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9955 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9956 	 * priority, they're only generated (pended) during instruction
9957 	 * execution, and interrupts are recognized at instruction boundaries.
9958 	 * Thus a pending fault-like exception means the fault occurred on the
9959 	 * *previous* instruction and must be serviced prior to recognizing any
9960 	 * new events in order to fully complete the previous instruction.
9961 	 */
9962 	if (vcpu->arch.exception.injected)
9963 		kvm_inject_exception(vcpu);
9964 	else if (kvm_is_exception_pending(vcpu))
9965 		; /* see above */
9966 	else if (vcpu->arch.nmi_injected)
9967 		static_call(kvm_x86_inject_nmi)(vcpu);
9968 	else if (vcpu->arch.interrupt.injected)
9969 		static_call(kvm_x86_inject_irq)(vcpu, true);
9970 
9971 	/*
9972 	 * Exceptions that morph to VM-Exits are handled above, and pending
9973 	 * exceptions on top of injected exceptions that do not VM-Exit should
9974 	 * either morph to #DF or, sadly, override the injected exception.
9975 	 */
9976 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9977 		     vcpu->arch.exception.pending);
9978 
9979 	/*
9980 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9981 	 * nested VM-Enter or event re-injection so that a different pending
9982 	 * event can be serviced (or if KVM needs to exit to userspace).
9983 	 *
9984 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9985 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9986 	 * there may now be events that can be injected into L1.
9987 	 */
9988 	if (r < 0)
9989 		goto out;
9990 
9991 	/*
9992 	 * A pending exception VM-Exit should either result in nested VM-Exit
9993 	 * or force an immediate re-entry and exit to/from L2, and exception
9994 	 * VM-Exits cannot be injected (flag should _never_ be set).
9995 	 */
9996 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9997 		     vcpu->arch.exception_vmexit.pending);
9998 
9999 	/*
10000 	 * New events, other than exceptions, cannot be injected if KVM needs
10001 	 * to re-inject a previous event.  See above comments on re-injecting
10002 	 * for why pending exceptions get priority.
10003 	 */
10004 	can_inject = !kvm_event_needs_reinjection(vcpu);
10005 
10006 	if (vcpu->arch.exception.pending) {
10007 		/*
10008 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10009 		 * value pushed on the stack.  Trap-like exception and all #DBs
10010 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10011 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10012 		 *
10013 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10014 		 * describe the behavior of General Detect #DBs, which are
10015 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10016 		 */
10017 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10018 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10019 					     X86_EFLAGS_RF);
10020 
10021 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10022 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10023 			if (vcpu->arch.dr7 & DR7_GD) {
10024 				vcpu->arch.dr7 &= ~DR7_GD;
10025 				kvm_update_dr7(vcpu);
10026 			}
10027 		}
10028 
10029 		kvm_inject_exception(vcpu);
10030 
10031 		vcpu->arch.exception.pending = false;
10032 		vcpu->arch.exception.injected = true;
10033 
10034 		can_inject = false;
10035 	}
10036 
10037 	/* Don't inject interrupts if the user asked to avoid doing so */
10038 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10039 		return 0;
10040 
10041 	/*
10042 	 * Finally, inject interrupt events.  If an event cannot be injected
10043 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10044 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10045 	 * and can architecturally be injected, but we cannot do it right now:
10046 	 * an interrupt could have arrived just now and we have to inject it
10047 	 * as a vmexit, or there could already an event in the queue, which is
10048 	 * indicated by can_inject.  In that case we request an immediate exit
10049 	 * in order to make progress and get back here for another iteration.
10050 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10051 	 */
10052 #ifdef CONFIG_KVM_SMM
10053 	if (vcpu->arch.smi_pending) {
10054 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10055 		if (r < 0)
10056 			goto out;
10057 		if (r) {
10058 			vcpu->arch.smi_pending = false;
10059 			++vcpu->arch.smi_count;
10060 			enter_smm(vcpu);
10061 			can_inject = false;
10062 		} else
10063 			static_call(kvm_x86_enable_smi_window)(vcpu);
10064 	}
10065 #endif
10066 
10067 	if (vcpu->arch.nmi_pending) {
10068 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10069 		if (r < 0)
10070 			goto out;
10071 		if (r) {
10072 			--vcpu->arch.nmi_pending;
10073 			vcpu->arch.nmi_injected = true;
10074 			static_call(kvm_x86_inject_nmi)(vcpu);
10075 			can_inject = false;
10076 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10077 		}
10078 		if (vcpu->arch.nmi_pending)
10079 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10080 	}
10081 
10082 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10083 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10084 		if (r < 0)
10085 			goto out;
10086 		if (r) {
10087 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10088 			static_call(kvm_x86_inject_irq)(vcpu, false);
10089 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10090 		}
10091 		if (kvm_cpu_has_injectable_intr(vcpu))
10092 			static_call(kvm_x86_enable_irq_window)(vcpu);
10093 	}
10094 
10095 	if (is_guest_mode(vcpu) &&
10096 	    kvm_x86_ops.nested_ops->has_events &&
10097 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10098 		*req_immediate_exit = true;
10099 
10100 	/*
10101 	 * KVM must never queue a new exception while injecting an event; KVM
10102 	 * is done emulating and should only propagate the to-be-injected event
10103 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10104 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10105 	 * exception and start the cycle all over.
10106 	 *
10107 	 * Exempt triple faults as they have special handling and won't put the
10108 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10109 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10110 	 * Mode events (see kvm_inject_realmode_interrupt()).
10111 	 */
10112 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10113 		     vcpu->arch.exception_vmexit.pending);
10114 	return 0;
10115 
10116 out:
10117 	if (r == -EBUSY) {
10118 		*req_immediate_exit = true;
10119 		r = 0;
10120 	}
10121 	return r;
10122 }
10123 
10124 static void process_nmi(struct kvm_vcpu *vcpu)
10125 {
10126 	unsigned limit = 2;
10127 
10128 	/*
10129 	 * x86 is limited to one NMI running, and one NMI pending after it.
10130 	 * If an NMI is already in progress, limit further NMIs to just one.
10131 	 * Otherwise, allow two (and we'll inject the first one immediately).
10132 	 */
10133 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10134 		limit = 1;
10135 
10136 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10137 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10138 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10139 }
10140 
10141 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10142 				       unsigned long *vcpu_bitmap)
10143 {
10144 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10145 }
10146 
10147 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10148 {
10149 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10150 }
10151 
10152 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10153 {
10154 	struct kvm_lapic *apic = vcpu->arch.apic;
10155 	bool activate;
10156 
10157 	if (!lapic_in_kernel(vcpu))
10158 		return;
10159 
10160 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10161 	preempt_disable();
10162 
10163 	/* Do not activate APICV when APIC is disabled */
10164 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10165 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10166 
10167 	if (apic->apicv_active == activate)
10168 		goto out;
10169 
10170 	apic->apicv_active = activate;
10171 	kvm_apic_update_apicv(vcpu);
10172 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10173 
10174 	/*
10175 	 * When APICv gets disabled, we may still have injected interrupts
10176 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10177 	 * still active when the interrupt got accepted. Make sure
10178 	 * kvm_check_and_inject_events() is called to check for that.
10179 	 */
10180 	if (!apic->apicv_active)
10181 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10182 
10183 out:
10184 	preempt_enable();
10185 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10186 }
10187 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10188 
10189 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10190 {
10191 	if (!lapic_in_kernel(vcpu))
10192 		return;
10193 
10194 	/*
10195 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10196 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10197 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10198 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10199 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10200 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10201 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10202 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10203 	 * access page is sticky.
10204 	 */
10205 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10206 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10207 		kvm_inhibit_apic_access_page(vcpu);
10208 
10209 	__kvm_vcpu_update_apicv(vcpu);
10210 }
10211 
10212 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10213 				      enum kvm_apicv_inhibit reason, bool set)
10214 {
10215 	unsigned long old, new;
10216 
10217 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10218 
10219 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10220 		return;
10221 
10222 	old = new = kvm->arch.apicv_inhibit_reasons;
10223 
10224 	set_or_clear_apicv_inhibit(&new, reason, set);
10225 
10226 	if (!!old != !!new) {
10227 		/*
10228 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10229 		 * false positives in the sanity check WARN in svm_vcpu_run().
10230 		 * This task will wait for all vCPUs to ack the kick IRQ before
10231 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10232 		 * block on acquiring apicv_update_lock so that vCPUs can't
10233 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10234 		 *
10235 		 * Note, holding apicv_update_lock and taking it in the read
10236 		 * side (handling the request) also prevents other vCPUs from
10237 		 * servicing the request with a stale apicv_inhibit_reasons.
10238 		 */
10239 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10240 		kvm->arch.apicv_inhibit_reasons = new;
10241 		if (new) {
10242 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10243 			int idx = srcu_read_lock(&kvm->srcu);
10244 
10245 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10246 			srcu_read_unlock(&kvm->srcu, idx);
10247 		}
10248 	} else {
10249 		kvm->arch.apicv_inhibit_reasons = new;
10250 	}
10251 }
10252 
10253 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10254 				    enum kvm_apicv_inhibit reason, bool set)
10255 {
10256 	if (!enable_apicv)
10257 		return;
10258 
10259 	down_write(&kvm->arch.apicv_update_lock);
10260 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10261 	up_write(&kvm->arch.apicv_update_lock);
10262 }
10263 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10264 
10265 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10266 {
10267 	if (!kvm_apic_present(vcpu))
10268 		return;
10269 
10270 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10271 
10272 	if (irqchip_split(vcpu->kvm))
10273 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10274 	else {
10275 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10276 		if (ioapic_in_kernel(vcpu->kvm))
10277 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10278 	}
10279 
10280 	if (is_guest_mode(vcpu))
10281 		vcpu->arch.load_eoi_exitmap_pending = true;
10282 	else
10283 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10284 }
10285 
10286 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10287 {
10288 	u64 eoi_exit_bitmap[4];
10289 
10290 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10291 		return;
10292 
10293 	if (to_hv_vcpu(vcpu)) {
10294 		bitmap_or((ulong *)eoi_exit_bitmap,
10295 			  vcpu->arch.ioapic_handled_vectors,
10296 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10297 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10298 		return;
10299 	}
10300 
10301 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10302 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10303 }
10304 
10305 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10306 					    unsigned long start, unsigned long end)
10307 {
10308 	unsigned long apic_address;
10309 
10310 	/*
10311 	 * The physical address of apic access page is stored in the VMCS.
10312 	 * Update it when it becomes invalid.
10313 	 */
10314 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10315 	if (start <= apic_address && apic_address < end)
10316 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10317 }
10318 
10319 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10320 {
10321 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10322 }
10323 
10324 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10325 {
10326 	if (!lapic_in_kernel(vcpu))
10327 		return;
10328 
10329 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10330 }
10331 
10332 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10333 {
10334 	smp_send_reschedule(vcpu->cpu);
10335 }
10336 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10337 
10338 /*
10339  * Called within kvm->srcu read side.
10340  * Returns 1 to let vcpu_run() continue the guest execution loop without
10341  * exiting to the userspace.  Otherwise, the value will be returned to the
10342  * userspace.
10343  */
10344 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10345 {
10346 	int r;
10347 	bool req_int_win =
10348 		dm_request_for_irq_injection(vcpu) &&
10349 		kvm_cpu_accept_dm_intr(vcpu);
10350 	fastpath_t exit_fastpath;
10351 
10352 	bool req_immediate_exit = false;
10353 
10354 	if (kvm_request_pending(vcpu)) {
10355 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10356 			r = -EIO;
10357 			goto out;
10358 		}
10359 
10360 		if (kvm_dirty_ring_check_request(vcpu)) {
10361 			r = 0;
10362 			goto out;
10363 		}
10364 
10365 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10366 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10367 				r = 0;
10368 				goto out;
10369 			}
10370 		}
10371 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10372 			kvm_mmu_free_obsolete_roots(vcpu);
10373 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10374 			__kvm_migrate_timers(vcpu);
10375 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10376 			kvm_update_masterclock(vcpu->kvm);
10377 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10378 			kvm_gen_kvmclock_update(vcpu);
10379 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10380 			r = kvm_guest_time_update(vcpu);
10381 			if (unlikely(r))
10382 				goto out;
10383 		}
10384 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10385 			kvm_mmu_sync_roots(vcpu);
10386 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10387 			kvm_mmu_load_pgd(vcpu);
10388 
10389 		/*
10390 		 * Note, the order matters here, as flushing "all" TLB entries
10391 		 * also flushes the "current" TLB entries, i.e. servicing the
10392 		 * flush "all" will clear any request to flush "current".
10393 		 */
10394 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10395 			kvm_vcpu_flush_tlb_all(vcpu);
10396 
10397 		kvm_service_local_tlb_flush_requests(vcpu);
10398 
10399 		/*
10400 		 * Fall back to a "full" guest flush if Hyper-V's precise
10401 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10402 		 * the flushes are considered "remote" and not "local" because
10403 		 * the requests can be initiated from other vCPUs.
10404 		 */
10405 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10406 		    kvm_hv_vcpu_flush_tlb(vcpu))
10407 			kvm_vcpu_flush_tlb_guest(vcpu);
10408 
10409 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10410 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10411 			r = 0;
10412 			goto out;
10413 		}
10414 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10415 			if (is_guest_mode(vcpu))
10416 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10417 
10418 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10419 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10420 				vcpu->mmio_needed = 0;
10421 				r = 0;
10422 				goto out;
10423 			}
10424 		}
10425 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10426 			/* Page is swapped out. Do synthetic halt */
10427 			vcpu->arch.apf.halted = true;
10428 			r = 1;
10429 			goto out;
10430 		}
10431 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10432 			record_steal_time(vcpu);
10433 #ifdef CONFIG_KVM_SMM
10434 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10435 			process_smi(vcpu);
10436 #endif
10437 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10438 			process_nmi(vcpu);
10439 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10440 			kvm_pmu_handle_event(vcpu);
10441 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10442 			kvm_pmu_deliver_pmi(vcpu);
10443 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10444 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10445 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10446 				     vcpu->arch.ioapic_handled_vectors)) {
10447 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10448 				vcpu->run->eoi.vector =
10449 						vcpu->arch.pending_ioapic_eoi;
10450 				r = 0;
10451 				goto out;
10452 			}
10453 		}
10454 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10455 			vcpu_scan_ioapic(vcpu);
10456 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10457 			vcpu_load_eoi_exitmap(vcpu);
10458 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10459 			kvm_vcpu_reload_apic_access_page(vcpu);
10460 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10461 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10462 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10463 			vcpu->run->system_event.ndata = 0;
10464 			r = 0;
10465 			goto out;
10466 		}
10467 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10468 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10469 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10470 			vcpu->run->system_event.ndata = 0;
10471 			r = 0;
10472 			goto out;
10473 		}
10474 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10475 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10476 
10477 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10478 			vcpu->run->hyperv = hv_vcpu->exit;
10479 			r = 0;
10480 			goto out;
10481 		}
10482 
10483 		/*
10484 		 * KVM_REQ_HV_STIMER has to be processed after
10485 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10486 		 * depend on the guest clock being up-to-date
10487 		 */
10488 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10489 			kvm_hv_process_stimers(vcpu);
10490 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10491 			kvm_vcpu_update_apicv(vcpu);
10492 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10493 			kvm_check_async_pf_completion(vcpu);
10494 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10495 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10496 
10497 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10498 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10499 	}
10500 
10501 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10502 	    kvm_xen_has_interrupt(vcpu)) {
10503 		++vcpu->stat.req_event;
10504 		r = kvm_apic_accept_events(vcpu);
10505 		if (r < 0) {
10506 			r = 0;
10507 			goto out;
10508 		}
10509 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10510 			r = 1;
10511 			goto out;
10512 		}
10513 
10514 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10515 		if (r < 0) {
10516 			r = 0;
10517 			goto out;
10518 		}
10519 		if (req_int_win)
10520 			static_call(kvm_x86_enable_irq_window)(vcpu);
10521 
10522 		if (kvm_lapic_enabled(vcpu)) {
10523 			update_cr8_intercept(vcpu);
10524 			kvm_lapic_sync_to_vapic(vcpu);
10525 		}
10526 	}
10527 
10528 	r = kvm_mmu_reload(vcpu);
10529 	if (unlikely(r)) {
10530 		goto cancel_injection;
10531 	}
10532 
10533 	preempt_disable();
10534 
10535 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10536 
10537 	/*
10538 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10539 	 * IPI are then delayed after guest entry, which ensures that they
10540 	 * result in virtual interrupt delivery.
10541 	 */
10542 	local_irq_disable();
10543 
10544 	/* Store vcpu->apicv_active before vcpu->mode.  */
10545 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10546 
10547 	kvm_vcpu_srcu_read_unlock(vcpu);
10548 
10549 	/*
10550 	 * 1) We should set ->mode before checking ->requests.  Please see
10551 	 * the comment in kvm_vcpu_exiting_guest_mode().
10552 	 *
10553 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10554 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10555 	 * (see vmx_deliver_posted_interrupt).
10556 	 *
10557 	 * 3) This also orders the write to mode from any reads to the page
10558 	 * tables done while the VCPU is running.  Please see the comment
10559 	 * in kvm_flush_remote_tlbs.
10560 	 */
10561 	smp_mb__after_srcu_read_unlock();
10562 
10563 	/*
10564 	 * Process pending posted interrupts to handle the case where the
10565 	 * notification IRQ arrived in the host, or was never sent (because the
10566 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10567 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10568 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10569 	 */
10570 	if (kvm_lapic_enabled(vcpu))
10571 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10572 
10573 	if (kvm_vcpu_exit_request(vcpu)) {
10574 		vcpu->mode = OUTSIDE_GUEST_MODE;
10575 		smp_wmb();
10576 		local_irq_enable();
10577 		preempt_enable();
10578 		kvm_vcpu_srcu_read_lock(vcpu);
10579 		r = 1;
10580 		goto cancel_injection;
10581 	}
10582 
10583 	if (req_immediate_exit) {
10584 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10585 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10586 	}
10587 
10588 	fpregs_assert_state_consistent();
10589 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10590 		switch_fpu_return();
10591 
10592 	if (vcpu->arch.guest_fpu.xfd_err)
10593 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10594 
10595 	if (unlikely(vcpu->arch.switch_db_regs)) {
10596 		set_debugreg(0, 7);
10597 		set_debugreg(vcpu->arch.eff_db[0], 0);
10598 		set_debugreg(vcpu->arch.eff_db[1], 1);
10599 		set_debugreg(vcpu->arch.eff_db[2], 2);
10600 		set_debugreg(vcpu->arch.eff_db[3], 3);
10601 	} else if (unlikely(hw_breakpoint_active())) {
10602 		set_debugreg(0, 7);
10603 	}
10604 
10605 	guest_timing_enter_irqoff();
10606 
10607 	for (;;) {
10608 		/*
10609 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10610 		 * update must kick and wait for all vCPUs before toggling the
10611 		 * per-VM state, and responsing vCPUs must wait for the update
10612 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10613 		 */
10614 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10615 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10616 
10617 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10618 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10619 			break;
10620 
10621 		if (kvm_lapic_enabled(vcpu))
10622 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10623 
10624 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10625 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10626 			break;
10627 		}
10628 	}
10629 
10630 	/*
10631 	 * Do this here before restoring debug registers on the host.  And
10632 	 * since we do this before handling the vmexit, a DR access vmexit
10633 	 * can (a) read the correct value of the debug registers, (b) set
10634 	 * KVM_DEBUGREG_WONT_EXIT again.
10635 	 */
10636 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10637 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10638 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10639 		kvm_update_dr0123(vcpu);
10640 		kvm_update_dr7(vcpu);
10641 	}
10642 
10643 	/*
10644 	 * If the guest has used debug registers, at least dr7
10645 	 * will be disabled while returning to the host.
10646 	 * If we don't have active breakpoints in the host, we don't
10647 	 * care about the messed up debug address registers. But if
10648 	 * we have some of them active, restore the old state.
10649 	 */
10650 	if (hw_breakpoint_active())
10651 		hw_breakpoint_restore();
10652 
10653 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10654 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10655 
10656 	vcpu->mode = OUTSIDE_GUEST_MODE;
10657 	smp_wmb();
10658 
10659 	/*
10660 	 * Sync xfd before calling handle_exit_irqoff() which may
10661 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10662 	 * in #NM irqoff handler).
10663 	 */
10664 	if (vcpu->arch.xfd_no_write_intercept)
10665 		fpu_sync_guest_vmexit_xfd_state();
10666 
10667 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10668 
10669 	if (vcpu->arch.guest_fpu.xfd_err)
10670 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10671 
10672 	/*
10673 	 * Consume any pending interrupts, including the possible source of
10674 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10675 	 * An instruction is required after local_irq_enable() to fully unblock
10676 	 * interrupts on processors that implement an interrupt shadow, the
10677 	 * stat.exits increment will do nicely.
10678 	 */
10679 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10680 	local_irq_enable();
10681 	++vcpu->stat.exits;
10682 	local_irq_disable();
10683 	kvm_after_interrupt(vcpu);
10684 
10685 	/*
10686 	 * Wait until after servicing IRQs to account guest time so that any
10687 	 * ticks that occurred while running the guest are properly accounted
10688 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10689 	 * of accounting via context tracking, but the loss of accuracy is
10690 	 * acceptable for all known use cases.
10691 	 */
10692 	guest_timing_exit_irqoff();
10693 
10694 	local_irq_enable();
10695 	preempt_enable();
10696 
10697 	kvm_vcpu_srcu_read_lock(vcpu);
10698 
10699 	/*
10700 	 * Profile KVM exit RIPs:
10701 	 */
10702 	if (unlikely(prof_on == KVM_PROFILING)) {
10703 		unsigned long rip = kvm_rip_read(vcpu);
10704 		profile_hit(KVM_PROFILING, (void *)rip);
10705 	}
10706 
10707 	if (unlikely(vcpu->arch.tsc_always_catchup))
10708 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10709 
10710 	if (vcpu->arch.apic_attention)
10711 		kvm_lapic_sync_from_vapic(vcpu);
10712 
10713 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10714 	return r;
10715 
10716 cancel_injection:
10717 	if (req_immediate_exit)
10718 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10719 	static_call(kvm_x86_cancel_injection)(vcpu);
10720 	if (unlikely(vcpu->arch.apic_attention))
10721 		kvm_lapic_sync_from_vapic(vcpu);
10722 out:
10723 	return r;
10724 }
10725 
10726 /* Called within kvm->srcu read side.  */
10727 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10728 {
10729 	bool hv_timer;
10730 
10731 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10732 		/*
10733 		 * Switch to the software timer before halt-polling/blocking as
10734 		 * the guest's timer may be a break event for the vCPU, and the
10735 		 * hypervisor timer runs only when the CPU is in guest mode.
10736 		 * Switch before halt-polling so that KVM recognizes an expired
10737 		 * timer before blocking.
10738 		 */
10739 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10740 		if (hv_timer)
10741 			kvm_lapic_switch_to_sw_timer(vcpu);
10742 
10743 		kvm_vcpu_srcu_read_unlock(vcpu);
10744 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10745 			kvm_vcpu_halt(vcpu);
10746 		else
10747 			kvm_vcpu_block(vcpu);
10748 		kvm_vcpu_srcu_read_lock(vcpu);
10749 
10750 		if (hv_timer)
10751 			kvm_lapic_switch_to_hv_timer(vcpu);
10752 
10753 		/*
10754 		 * If the vCPU is not runnable, a signal or another host event
10755 		 * of some kind is pending; service it without changing the
10756 		 * vCPU's activity state.
10757 		 */
10758 		if (!kvm_arch_vcpu_runnable(vcpu))
10759 			return 1;
10760 	}
10761 
10762 	/*
10763 	 * Evaluate nested events before exiting the halted state.  This allows
10764 	 * the halt state to be recorded properly in the VMCS12's activity
10765 	 * state field (AMD does not have a similar field and a VM-Exit always
10766 	 * causes a spurious wakeup from HLT).
10767 	 */
10768 	if (is_guest_mode(vcpu)) {
10769 		if (kvm_check_nested_events(vcpu) < 0)
10770 			return 0;
10771 	}
10772 
10773 	if (kvm_apic_accept_events(vcpu) < 0)
10774 		return 0;
10775 	switch(vcpu->arch.mp_state) {
10776 	case KVM_MP_STATE_HALTED:
10777 	case KVM_MP_STATE_AP_RESET_HOLD:
10778 		vcpu->arch.pv.pv_unhalted = false;
10779 		vcpu->arch.mp_state =
10780 			KVM_MP_STATE_RUNNABLE;
10781 		fallthrough;
10782 	case KVM_MP_STATE_RUNNABLE:
10783 		vcpu->arch.apf.halted = false;
10784 		break;
10785 	case KVM_MP_STATE_INIT_RECEIVED:
10786 		break;
10787 	default:
10788 		WARN_ON_ONCE(1);
10789 		break;
10790 	}
10791 	return 1;
10792 }
10793 
10794 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10795 {
10796 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10797 		!vcpu->arch.apf.halted);
10798 }
10799 
10800 /* Called within kvm->srcu read side.  */
10801 static int vcpu_run(struct kvm_vcpu *vcpu)
10802 {
10803 	int r;
10804 
10805 	vcpu->arch.l1tf_flush_l1d = true;
10806 
10807 	for (;;) {
10808 		/*
10809 		 * If another guest vCPU requests a PV TLB flush in the middle
10810 		 * of instruction emulation, the rest of the emulation could
10811 		 * use a stale page translation. Assume that any code after
10812 		 * this point can start executing an instruction.
10813 		 */
10814 		vcpu->arch.at_instruction_boundary = false;
10815 		if (kvm_vcpu_running(vcpu)) {
10816 			r = vcpu_enter_guest(vcpu);
10817 		} else {
10818 			r = vcpu_block(vcpu);
10819 		}
10820 
10821 		if (r <= 0)
10822 			break;
10823 
10824 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10825 		if (kvm_xen_has_pending_events(vcpu))
10826 			kvm_xen_inject_pending_events(vcpu);
10827 
10828 		if (kvm_cpu_has_pending_timer(vcpu))
10829 			kvm_inject_pending_timer_irqs(vcpu);
10830 
10831 		if (dm_request_for_irq_injection(vcpu) &&
10832 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10833 			r = 0;
10834 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10835 			++vcpu->stat.request_irq_exits;
10836 			break;
10837 		}
10838 
10839 		if (__xfer_to_guest_mode_work_pending()) {
10840 			kvm_vcpu_srcu_read_unlock(vcpu);
10841 			r = xfer_to_guest_mode_handle_work(vcpu);
10842 			kvm_vcpu_srcu_read_lock(vcpu);
10843 			if (r)
10844 				return r;
10845 		}
10846 	}
10847 
10848 	return r;
10849 }
10850 
10851 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10852 {
10853 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10854 }
10855 
10856 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10857 {
10858 	BUG_ON(!vcpu->arch.pio.count);
10859 
10860 	return complete_emulated_io(vcpu);
10861 }
10862 
10863 /*
10864  * Implements the following, as a state machine:
10865  *
10866  * read:
10867  *   for each fragment
10868  *     for each mmio piece in the fragment
10869  *       write gpa, len
10870  *       exit
10871  *       copy data
10872  *   execute insn
10873  *
10874  * write:
10875  *   for each fragment
10876  *     for each mmio piece in the fragment
10877  *       write gpa, len
10878  *       copy data
10879  *       exit
10880  */
10881 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10882 {
10883 	struct kvm_run *run = vcpu->run;
10884 	struct kvm_mmio_fragment *frag;
10885 	unsigned len;
10886 
10887 	BUG_ON(!vcpu->mmio_needed);
10888 
10889 	/* Complete previous fragment */
10890 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10891 	len = min(8u, frag->len);
10892 	if (!vcpu->mmio_is_write)
10893 		memcpy(frag->data, run->mmio.data, len);
10894 
10895 	if (frag->len <= 8) {
10896 		/* Switch to the next fragment. */
10897 		frag++;
10898 		vcpu->mmio_cur_fragment++;
10899 	} else {
10900 		/* Go forward to the next mmio piece. */
10901 		frag->data += len;
10902 		frag->gpa += len;
10903 		frag->len -= len;
10904 	}
10905 
10906 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10907 		vcpu->mmio_needed = 0;
10908 
10909 		/* FIXME: return into emulator if single-stepping.  */
10910 		if (vcpu->mmio_is_write)
10911 			return 1;
10912 		vcpu->mmio_read_completed = 1;
10913 		return complete_emulated_io(vcpu);
10914 	}
10915 
10916 	run->exit_reason = KVM_EXIT_MMIO;
10917 	run->mmio.phys_addr = frag->gpa;
10918 	if (vcpu->mmio_is_write)
10919 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10920 	run->mmio.len = min(8u, frag->len);
10921 	run->mmio.is_write = vcpu->mmio_is_write;
10922 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10923 	return 0;
10924 }
10925 
10926 /* Swap (qemu) user FPU context for the guest FPU context. */
10927 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10928 {
10929 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10930 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10931 	trace_kvm_fpu(1);
10932 }
10933 
10934 /* When vcpu_run ends, restore user space FPU context. */
10935 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10936 {
10937 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10938 	++vcpu->stat.fpu_reload;
10939 	trace_kvm_fpu(0);
10940 }
10941 
10942 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10943 {
10944 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10945 	struct kvm_run *kvm_run = vcpu->run;
10946 	int r;
10947 
10948 	vcpu_load(vcpu);
10949 	kvm_sigset_activate(vcpu);
10950 	kvm_run->flags = 0;
10951 	kvm_load_guest_fpu(vcpu);
10952 
10953 	kvm_vcpu_srcu_read_lock(vcpu);
10954 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10955 		if (kvm_run->immediate_exit) {
10956 			r = -EINTR;
10957 			goto out;
10958 		}
10959 		/*
10960 		 * It should be impossible for the hypervisor timer to be in
10961 		 * use before KVM has ever run the vCPU.
10962 		 */
10963 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10964 
10965 		kvm_vcpu_srcu_read_unlock(vcpu);
10966 		kvm_vcpu_block(vcpu);
10967 		kvm_vcpu_srcu_read_lock(vcpu);
10968 
10969 		if (kvm_apic_accept_events(vcpu) < 0) {
10970 			r = 0;
10971 			goto out;
10972 		}
10973 		r = -EAGAIN;
10974 		if (signal_pending(current)) {
10975 			r = -EINTR;
10976 			kvm_run->exit_reason = KVM_EXIT_INTR;
10977 			++vcpu->stat.signal_exits;
10978 		}
10979 		goto out;
10980 	}
10981 
10982 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10983 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10984 		r = -EINVAL;
10985 		goto out;
10986 	}
10987 
10988 	if (kvm_run->kvm_dirty_regs) {
10989 		r = sync_regs(vcpu);
10990 		if (r != 0)
10991 			goto out;
10992 	}
10993 
10994 	/* re-sync apic's tpr */
10995 	if (!lapic_in_kernel(vcpu)) {
10996 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10997 			r = -EINVAL;
10998 			goto out;
10999 		}
11000 	}
11001 
11002 	/*
11003 	 * If userspace set a pending exception and L2 is active, convert it to
11004 	 * a pending VM-Exit if L1 wants to intercept the exception.
11005 	 */
11006 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11007 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11008 							ex->error_code)) {
11009 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11010 					   ex->has_error_code, ex->error_code,
11011 					   ex->has_payload, ex->payload);
11012 		ex->injected = false;
11013 		ex->pending = false;
11014 	}
11015 	vcpu->arch.exception_from_userspace = false;
11016 
11017 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11018 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11019 		vcpu->arch.complete_userspace_io = NULL;
11020 		r = cui(vcpu);
11021 		if (r <= 0)
11022 			goto out;
11023 	} else {
11024 		WARN_ON_ONCE(vcpu->arch.pio.count);
11025 		WARN_ON_ONCE(vcpu->mmio_needed);
11026 	}
11027 
11028 	if (kvm_run->immediate_exit) {
11029 		r = -EINTR;
11030 		goto out;
11031 	}
11032 
11033 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11034 	if (r <= 0)
11035 		goto out;
11036 
11037 	r = vcpu_run(vcpu);
11038 
11039 out:
11040 	kvm_put_guest_fpu(vcpu);
11041 	if (kvm_run->kvm_valid_regs)
11042 		store_regs(vcpu);
11043 	post_kvm_run_save(vcpu);
11044 	kvm_vcpu_srcu_read_unlock(vcpu);
11045 
11046 	kvm_sigset_deactivate(vcpu);
11047 	vcpu_put(vcpu);
11048 	return r;
11049 }
11050 
11051 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11052 {
11053 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11054 		/*
11055 		 * We are here if userspace calls get_regs() in the middle of
11056 		 * instruction emulation. Registers state needs to be copied
11057 		 * back from emulation context to vcpu. Userspace shouldn't do
11058 		 * that usually, but some bad designed PV devices (vmware
11059 		 * backdoor interface) need this to work
11060 		 */
11061 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11062 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11063 	}
11064 	regs->rax = kvm_rax_read(vcpu);
11065 	regs->rbx = kvm_rbx_read(vcpu);
11066 	regs->rcx = kvm_rcx_read(vcpu);
11067 	regs->rdx = kvm_rdx_read(vcpu);
11068 	regs->rsi = kvm_rsi_read(vcpu);
11069 	regs->rdi = kvm_rdi_read(vcpu);
11070 	regs->rsp = kvm_rsp_read(vcpu);
11071 	regs->rbp = kvm_rbp_read(vcpu);
11072 #ifdef CONFIG_X86_64
11073 	regs->r8 = kvm_r8_read(vcpu);
11074 	regs->r9 = kvm_r9_read(vcpu);
11075 	regs->r10 = kvm_r10_read(vcpu);
11076 	regs->r11 = kvm_r11_read(vcpu);
11077 	regs->r12 = kvm_r12_read(vcpu);
11078 	regs->r13 = kvm_r13_read(vcpu);
11079 	regs->r14 = kvm_r14_read(vcpu);
11080 	regs->r15 = kvm_r15_read(vcpu);
11081 #endif
11082 
11083 	regs->rip = kvm_rip_read(vcpu);
11084 	regs->rflags = kvm_get_rflags(vcpu);
11085 }
11086 
11087 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11088 {
11089 	vcpu_load(vcpu);
11090 	__get_regs(vcpu, regs);
11091 	vcpu_put(vcpu);
11092 	return 0;
11093 }
11094 
11095 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11096 {
11097 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11098 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11099 
11100 	kvm_rax_write(vcpu, regs->rax);
11101 	kvm_rbx_write(vcpu, regs->rbx);
11102 	kvm_rcx_write(vcpu, regs->rcx);
11103 	kvm_rdx_write(vcpu, regs->rdx);
11104 	kvm_rsi_write(vcpu, regs->rsi);
11105 	kvm_rdi_write(vcpu, regs->rdi);
11106 	kvm_rsp_write(vcpu, regs->rsp);
11107 	kvm_rbp_write(vcpu, regs->rbp);
11108 #ifdef CONFIG_X86_64
11109 	kvm_r8_write(vcpu, regs->r8);
11110 	kvm_r9_write(vcpu, regs->r9);
11111 	kvm_r10_write(vcpu, regs->r10);
11112 	kvm_r11_write(vcpu, regs->r11);
11113 	kvm_r12_write(vcpu, regs->r12);
11114 	kvm_r13_write(vcpu, regs->r13);
11115 	kvm_r14_write(vcpu, regs->r14);
11116 	kvm_r15_write(vcpu, regs->r15);
11117 #endif
11118 
11119 	kvm_rip_write(vcpu, regs->rip);
11120 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11121 
11122 	vcpu->arch.exception.pending = false;
11123 	vcpu->arch.exception_vmexit.pending = false;
11124 
11125 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11126 }
11127 
11128 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11129 {
11130 	vcpu_load(vcpu);
11131 	__set_regs(vcpu, regs);
11132 	vcpu_put(vcpu);
11133 	return 0;
11134 }
11135 
11136 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11137 {
11138 	struct desc_ptr dt;
11139 
11140 	if (vcpu->arch.guest_state_protected)
11141 		goto skip_protected_regs;
11142 
11143 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11144 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11145 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11146 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11147 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11148 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11149 
11150 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11151 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11152 
11153 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11154 	sregs->idt.limit = dt.size;
11155 	sregs->idt.base = dt.address;
11156 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11157 	sregs->gdt.limit = dt.size;
11158 	sregs->gdt.base = dt.address;
11159 
11160 	sregs->cr2 = vcpu->arch.cr2;
11161 	sregs->cr3 = kvm_read_cr3(vcpu);
11162 
11163 skip_protected_regs:
11164 	sregs->cr0 = kvm_read_cr0(vcpu);
11165 	sregs->cr4 = kvm_read_cr4(vcpu);
11166 	sregs->cr8 = kvm_get_cr8(vcpu);
11167 	sregs->efer = vcpu->arch.efer;
11168 	sregs->apic_base = kvm_get_apic_base(vcpu);
11169 }
11170 
11171 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11172 {
11173 	__get_sregs_common(vcpu, sregs);
11174 
11175 	if (vcpu->arch.guest_state_protected)
11176 		return;
11177 
11178 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11179 		set_bit(vcpu->arch.interrupt.nr,
11180 			(unsigned long *)sregs->interrupt_bitmap);
11181 }
11182 
11183 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11184 {
11185 	int i;
11186 
11187 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11188 
11189 	if (vcpu->arch.guest_state_protected)
11190 		return;
11191 
11192 	if (is_pae_paging(vcpu)) {
11193 		for (i = 0 ; i < 4 ; i++)
11194 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11195 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11196 	}
11197 }
11198 
11199 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11200 				  struct kvm_sregs *sregs)
11201 {
11202 	vcpu_load(vcpu);
11203 	__get_sregs(vcpu, sregs);
11204 	vcpu_put(vcpu);
11205 	return 0;
11206 }
11207 
11208 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11209 				    struct kvm_mp_state *mp_state)
11210 {
11211 	int r;
11212 
11213 	vcpu_load(vcpu);
11214 	if (kvm_mpx_supported())
11215 		kvm_load_guest_fpu(vcpu);
11216 
11217 	r = kvm_apic_accept_events(vcpu);
11218 	if (r < 0)
11219 		goto out;
11220 	r = 0;
11221 
11222 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11223 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11224 	    vcpu->arch.pv.pv_unhalted)
11225 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11226 	else
11227 		mp_state->mp_state = vcpu->arch.mp_state;
11228 
11229 out:
11230 	if (kvm_mpx_supported())
11231 		kvm_put_guest_fpu(vcpu);
11232 	vcpu_put(vcpu);
11233 	return r;
11234 }
11235 
11236 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11237 				    struct kvm_mp_state *mp_state)
11238 {
11239 	int ret = -EINVAL;
11240 
11241 	vcpu_load(vcpu);
11242 
11243 	switch (mp_state->mp_state) {
11244 	case KVM_MP_STATE_UNINITIALIZED:
11245 	case KVM_MP_STATE_HALTED:
11246 	case KVM_MP_STATE_AP_RESET_HOLD:
11247 	case KVM_MP_STATE_INIT_RECEIVED:
11248 	case KVM_MP_STATE_SIPI_RECEIVED:
11249 		if (!lapic_in_kernel(vcpu))
11250 			goto out;
11251 		break;
11252 
11253 	case KVM_MP_STATE_RUNNABLE:
11254 		break;
11255 
11256 	default:
11257 		goto out;
11258 	}
11259 
11260 	/*
11261 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11262 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11263 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11264 	 * if an SMI is pending as well.
11265 	 */
11266 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11267 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11268 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11269 		goto out;
11270 
11271 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11272 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11273 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11274 	} else
11275 		vcpu->arch.mp_state = mp_state->mp_state;
11276 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11277 
11278 	ret = 0;
11279 out:
11280 	vcpu_put(vcpu);
11281 	return ret;
11282 }
11283 
11284 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11285 		    int reason, bool has_error_code, u32 error_code)
11286 {
11287 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11288 	int ret;
11289 
11290 	init_emulate_ctxt(vcpu);
11291 
11292 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11293 				   has_error_code, error_code);
11294 	if (ret) {
11295 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11296 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11297 		vcpu->run->internal.ndata = 0;
11298 		return 0;
11299 	}
11300 
11301 	kvm_rip_write(vcpu, ctxt->eip);
11302 	kvm_set_rflags(vcpu, ctxt->eflags);
11303 	return 1;
11304 }
11305 EXPORT_SYMBOL_GPL(kvm_task_switch);
11306 
11307 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11308 {
11309 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11310 		/*
11311 		 * When EFER.LME and CR0.PG are set, the processor is in
11312 		 * 64-bit mode (though maybe in a 32-bit code segment).
11313 		 * CR4.PAE and EFER.LMA must be set.
11314 		 */
11315 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11316 			return false;
11317 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11318 			return false;
11319 	} else {
11320 		/*
11321 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11322 		 * segment cannot be 64-bit.
11323 		 */
11324 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11325 			return false;
11326 	}
11327 
11328 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11329 }
11330 
11331 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11332 		int *mmu_reset_needed, bool update_pdptrs)
11333 {
11334 	struct msr_data apic_base_msr;
11335 	int idx;
11336 	struct desc_ptr dt;
11337 
11338 	if (!kvm_is_valid_sregs(vcpu, sregs))
11339 		return -EINVAL;
11340 
11341 	apic_base_msr.data = sregs->apic_base;
11342 	apic_base_msr.host_initiated = true;
11343 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11344 		return -EINVAL;
11345 
11346 	if (vcpu->arch.guest_state_protected)
11347 		return 0;
11348 
11349 	dt.size = sregs->idt.limit;
11350 	dt.address = sregs->idt.base;
11351 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11352 	dt.size = sregs->gdt.limit;
11353 	dt.address = sregs->gdt.base;
11354 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11355 
11356 	vcpu->arch.cr2 = sregs->cr2;
11357 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11358 	vcpu->arch.cr3 = sregs->cr3;
11359 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11360 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11361 
11362 	kvm_set_cr8(vcpu, sregs->cr8);
11363 
11364 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11365 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11366 
11367 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11368 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11369 	vcpu->arch.cr0 = sregs->cr0;
11370 
11371 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11372 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11373 
11374 	if (update_pdptrs) {
11375 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11376 		if (is_pae_paging(vcpu)) {
11377 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11378 			*mmu_reset_needed = 1;
11379 		}
11380 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11381 	}
11382 
11383 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11384 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11385 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11386 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11387 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11388 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11389 
11390 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11391 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11392 
11393 	update_cr8_intercept(vcpu);
11394 
11395 	/* Older userspace won't unhalt the vcpu on reset. */
11396 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11397 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11398 	    !is_protmode(vcpu))
11399 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11400 
11401 	return 0;
11402 }
11403 
11404 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11405 {
11406 	int pending_vec, max_bits;
11407 	int mmu_reset_needed = 0;
11408 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11409 
11410 	if (ret)
11411 		return ret;
11412 
11413 	if (mmu_reset_needed)
11414 		kvm_mmu_reset_context(vcpu);
11415 
11416 	max_bits = KVM_NR_INTERRUPTS;
11417 	pending_vec = find_first_bit(
11418 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11419 
11420 	if (pending_vec < max_bits) {
11421 		kvm_queue_interrupt(vcpu, pending_vec, false);
11422 		pr_debug("Set back pending irq %d\n", pending_vec);
11423 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11424 	}
11425 	return 0;
11426 }
11427 
11428 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11429 {
11430 	int mmu_reset_needed = 0;
11431 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11432 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11433 		!(sregs2->efer & EFER_LMA);
11434 	int i, ret;
11435 
11436 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11437 		return -EINVAL;
11438 
11439 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11440 		return -EINVAL;
11441 
11442 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11443 				 &mmu_reset_needed, !valid_pdptrs);
11444 	if (ret)
11445 		return ret;
11446 
11447 	if (valid_pdptrs) {
11448 		for (i = 0; i < 4 ; i++)
11449 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11450 
11451 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11452 		mmu_reset_needed = 1;
11453 		vcpu->arch.pdptrs_from_userspace = true;
11454 	}
11455 	if (mmu_reset_needed)
11456 		kvm_mmu_reset_context(vcpu);
11457 	return 0;
11458 }
11459 
11460 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11461 				  struct kvm_sregs *sregs)
11462 {
11463 	int ret;
11464 
11465 	vcpu_load(vcpu);
11466 	ret = __set_sregs(vcpu, sregs);
11467 	vcpu_put(vcpu);
11468 	return ret;
11469 }
11470 
11471 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11472 {
11473 	bool set = false;
11474 	struct kvm_vcpu *vcpu;
11475 	unsigned long i;
11476 
11477 	if (!enable_apicv)
11478 		return;
11479 
11480 	down_write(&kvm->arch.apicv_update_lock);
11481 
11482 	kvm_for_each_vcpu(i, vcpu, kvm) {
11483 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11484 			set = true;
11485 			break;
11486 		}
11487 	}
11488 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11489 	up_write(&kvm->arch.apicv_update_lock);
11490 }
11491 
11492 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11493 					struct kvm_guest_debug *dbg)
11494 {
11495 	unsigned long rflags;
11496 	int i, r;
11497 
11498 	if (vcpu->arch.guest_state_protected)
11499 		return -EINVAL;
11500 
11501 	vcpu_load(vcpu);
11502 
11503 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11504 		r = -EBUSY;
11505 		if (kvm_is_exception_pending(vcpu))
11506 			goto out;
11507 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11508 			kvm_queue_exception(vcpu, DB_VECTOR);
11509 		else
11510 			kvm_queue_exception(vcpu, BP_VECTOR);
11511 	}
11512 
11513 	/*
11514 	 * Read rflags as long as potentially injected trace flags are still
11515 	 * filtered out.
11516 	 */
11517 	rflags = kvm_get_rflags(vcpu);
11518 
11519 	vcpu->guest_debug = dbg->control;
11520 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11521 		vcpu->guest_debug = 0;
11522 
11523 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11524 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11525 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11526 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11527 	} else {
11528 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11529 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11530 	}
11531 	kvm_update_dr7(vcpu);
11532 
11533 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11534 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11535 
11536 	/*
11537 	 * Trigger an rflags update that will inject or remove the trace
11538 	 * flags.
11539 	 */
11540 	kvm_set_rflags(vcpu, rflags);
11541 
11542 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11543 
11544 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11545 
11546 	r = 0;
11547 
11548 out:
11549 	vcpu_put(vcpu);
11550 	return r;
11551 }
11552 
11553 /*
11554  * Translate a guest virtual address to a guest physical address.
11555  */
11556 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11557 				    struct kvm_translation *tr)
11558 {
11559 	unsigned long vaddr = tr->linear_address;
11560 	gpa_t gpa;
11561 	int idx;
11562 
11563 	vcpu_load(vcpu);
11564 
11565 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11566 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11567 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11568 	tr->physical_address = gpa;
11569 	tr->valid = gpa != INVALID_GPA;
11570 	tr->writeable = 1;
11571 	tr->usermode = 0;
11572 
11573 	vcpu_put(vcpu);
11574 	return 0;
11575 }
11576 
11577 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11578 {
11579 	struct fxregs_state *fxsave;
11580 
11581 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11582 		return 0;
11583 
11584 	vcpu_load(vcpu);
11585 
11586 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11587 	memcpy(fpu->fpr, fxsave->st_space, 128);
11588 	fpu->fcw = fxsave->cwd;
11589 	fpu->fsw = fxsave->swd;
11590 	fpu->ftwx = fxsave->twd;
11591 	fpu->last_opcode = fxsave->fop;
11592 	fpu->last_ip = fxsave->rip;
11593 	fpu->last_dp = fxsave->rdp;
11594 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11595 
11596 	vcpu_put(vcpu);
11597 	return 0;
11598 }
11599 
11600 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11601 {
11602 	struct fxregs_state *fxsave;
11603 
11604 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11605 		return 0;
11606 
11607 	vcpu_load(vcpu);
11608 
11609 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11610 
11611 	memcpy(fxsave->st_space, fpu->fpr, 128);
11612 	fxsave->cwd = fpu->fcw;
11613 	fxsave->swd = fpu->fsw;
11614 	fxsave->twd = fpu->ftwx;
11615 	fxsave->fop = fpu->last_opcode;
11616 	fxsave->rip = fpu->last_ip;
11617 	fxsave->rdp = fpu->last_dp;
11618 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11619 
11620 	vcpu_put(vcpu);
11621 	return 0;
11622 }
11623 
11624 static void store_regs(struct kvm_vcpu *vcpu)
11625 {
11626 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11627 
11628 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11629 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11630 
11631 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11632 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11633 
11634 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11635 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11636 				vcpu, &vcpu->run->s.regs.events);
11637 }
11638 
11639 static int sync_regs(struct kvm_vcpu *vcpu)
11640 {
11641 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11642 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11643 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11644 	}
11645 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11646 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11647 			return -EINVAL;
11648 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11649 	}
11650 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11651 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11652 				vcpu, &vcpu->run->s.regs.events))
11653 			return -EINVAL;
11654 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11655 	}
11656 
11657 	return 0;
11658 }
11659 
11660 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11661 {
11662 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11663 		pr_warn_once("SMP vm created on host with unstable TSC; "
11664 			     "guest TSC will not be reliable\n");
11665 
11666 	if (!kvm->arch.max_vcpu_ids)
11667 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11668 
11669 	if (id >= kvm->arch.max_vcpu_ids)
11670 		return -EINVAL;
11671 
11672 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11673 }
11674 
11675 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11676 {
11677 	struct page *page;
11678 	int r;
11679 
11680 	vcpu->arch.last_vmentry_cpu = -1;
11681 	vcpu->arch.regs_avail = ~0;
11682 	vcpu->arch.regs_dirty = ~0;
11683 
11684 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11685 
11686 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11687 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11688 	else
11689 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11690 
11691 	r = kvm_mmu_create(vcpu);
11692 	if (r < 0)
11693 		return r;
11694 
11695 	if (irqchip_in_kernel(vcpu->kvm)) {
11696 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11697 		if (r < 0)
11698 			goto fail_mmu_destroy;
11699 
11700 		/*
11701 		 * Defer evaluating inhibits until the vCPU is first run, as
11702 		 * this vCPU will not get notified of any changes until this
11703 		 * vCPU is visible to other vCPUs (marked online and added to
11704 		 * the set of vCPUs).  Opportunistically mark APICv active as
11705 		 * VMX in particularly is highly unlikely to have inhibits.
11706 		 * Ignore the current per-VM APICv state so that vCPU creation
11707 		 * is guaranteed to run with a deterministic value, the request
11708 		 * will ensure the vCPU gets the correct state before VM-Entry.
11709 		 */
11710 		if (enable_apicv) {
11711 			vcpu->arch.apic->apicv_active = true;
11712 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11713 		}
11714 	} else
11715 		static_branch_inc(&kvm_has_noapic_vcpu);
11716 
11717 	r = -ENOMEM;
11718 
11719 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11720 	if (!page)
11721 		goto fail_free_lapic;
11722 	vcpu->arch.pio_data = page_address(page);
11723 
11724 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11725 				       GFP_KERNEL_ACCOUNT);
11726 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11727 					    GFP_KERNEL_ACCOUNT);
11728 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11729 		goto fail_free_mce_banks;
11730 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11731 
11732 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11733 				GFP_KERNEL_ACCOUNT))
11734 		goto fail_free_mce_banks;
11735 
11736 	if (!alloc_emulate_ctxt(vcpu))
11737 		goto free_wbinvd_dirty_mask;
11738 
11739 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11740 		pr_err("failed to allocate vcpu's fpu\n");
11741 		goto free_emulate_ctxt;
11742 	}
11743 
11744 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11745 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11746 
11747 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11748 
11749 	kvm_async_pf_hash_reset(vcpu);
11750 
11751 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11752 	kvm_pmu_init(vcpu);
11753 
11754 	vcpu->arch.pending_external_vector = -1;
11755 	vcpu->arch.preempted_in_kernel = false;
11756 
11757 #if IS_ENABLED(CONFIG_HYPERV)
11758 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11759 #endif
11760 
11761 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11762 	if (r)
11763 		goto free_guest_fpu;
11764 
11765 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11766 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11767 	kvm_xen_init_vcpu(vcpu);
11768 	kvm_vcpu_mtrr_init(vcpu);
11769 	vcpu_load(vcpu);
11770 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11771 	kvm_vcpu_reset(vcpu, false);
11772 	kvm_init_mmu(vcpu);
11773 	vcpu_put(vcpu);
11774 	return 0;
11775 
11776 free_guest_fpu:
11777 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11778 free_emulate_ctxt:
11779 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11780 free_wbinvd_dirty_mask:
11781 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11782 fail_free_mce_banks:
11783 	kfree(vcpu->arch.mce_banks);
11784 	kfree(vcpu->arch.mci_ctl2_banks);
11785 	free_page((unsigned long)vcpu->arch.pio_data);
11786 fail_free_lapic:
11787 	kvm_free_lapic(vcpu);
11788 fail_mmu_destroy:
11789 	kvm_mmu_destroy(vcpu);
11790 	return r;
11791 }
11792 
11793 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11794 {
11795 	struct kvm *kvm = vcpu->kvm;
11796 
11797 	if (mutex_lock_killable(&vcpu->mutex))
11798 		return;
11799 	vcpu_load(vcpu);
11800 	kvm_synchronize_tsc(vcpu, 0);
11801 	vcpu_put(vcpu);
11802 
11803 	/* poll control enabled by default */
11804 	vcpu->arch.msr_kvm_poll_control = 1;
11805 
11806 	mutex_unlock(&vcpu->mutex);
11807 
11808 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11809 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11810 						KVMCLOCK_SYNC_PERIOD);
11811 }
11812 
11813 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11814 {
11815 	int idx;
11816 
11817 	kvmclock_reset(vcpu);
11818 
11819 	static_call(kvm_x86_vcpu_free)(vcpu);
11820 
11821 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11822 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11823 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11824 
11825 	kvm_xen_destroy_vcpu(vcpu);
11826 	kvm_hv_vcpu_uninit(vcpu);
11827 	kvm_pmu_destroy(vcpu);
11828 	kfree(vcpu->arch.mce_banks);
11829 	kfree(vcpu->arch.mci_ctl2_banks);
11830 	kvm_free_lapic(vcpu);
11831 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11832 	kvm_mmu_destroy(vcpu);
11833 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11834 	free_page((unsigned long)vcpu->arch.pio_data);
11835 	kvfree(vcpu->arch.cpuid_entries);
11836 	if (!lapic_in_kernel(vcpu))
11837 		static_branch_dec(&kvm_has_noapic_vcpu);
11838 }
11839 
11840 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11841 {
11842 	struct kvm_cpuid_entry2 *cpuid_0x1;
11843 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11844 	unsigned long new_cr0;
11845 
11846 	/*
11847 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11848 	 * to handle side effects.  RESET emulation hits those flows and relies
11849 	 * on emulated/virtualized registers, including those that are loaded
11850 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11851 	 * to detect improper or missing initialization.
11852 	 */
11853 	WARN_ON_ONCE(!init_event &&
11854 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11855 
11856 	/*
11857 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11858 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11859 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11860 	 * bits), i.e. virtualization is disabled.
11861 	 */
11862 	if (is_guest_mode(vcpu))
11863 		kvm_leave_nested(vcpu);
11864 
11865 	kvm_lapic_reset(vcpu, init_event);
11866 
11867 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11868 	vcpu->arch.hflags = 0;
11869 
11870 	vcpu->arch.smi_pending = 0;
11871 	vcpu->arch.smi_count = 0;
11872 	atomic_set(&vcpu->arch.nmi_queued, 0);
11873 	vcpu->arch.nmi_pending = 0;
11874 	vcpu->arch.nmi_injected = false;
11875 	kvm_clear_interrupt_queue(vcpu);
11876 	kvm_clear_exception_queue(vcpu);
11877 
11878 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11879 	kvm_update_dr0123(vcpu);
11880 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11881 	vcpu->arch.dr7 = DR7_FIXED_1;
11882 	kvm_update_dr7(vcpu);
11883 
11884 	vcpu->arch.cr2 = 0;
11885 
11886 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11887 	vcpu->arch.apf.msr_en_val = 0;
11888 	vcpu->arch.apf.msr_int_val = 0;
11889 	vcpu->arch.st.msr_val = 0;
11890 
11891 	kvmclock_reset(vcpu);
11892 
11893 	kvm_clear_async_pf_completion_queue(vcpu);
11894 	kvm_async_pf_hash_reset(vcpu);
11895 	vcpu->arch.apf.halted = false;
11896 
11897 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11898 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11899 
11900 		/*
11901 		 * All paths that lead to INIT are required to load the guest's
11902 		 * FPU state (because most paths are buried in KVM_RUN).
11903 		 */
11904 		if (init_event)
11905 			kvm_put_guest_fpu(vcpu);
11906 
11907 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11908 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11909 
11910 		if (init_event)
11911 			kvm_load_guest_fpu(vcpu);
11912 	}
11913 
11914 	if (!init_event) {
11915 		kvm_pmu_reset(vcpu);
11916 		vcpu->arch.smbase = 0x30000;
11917 
11918 		vcpu->arch.msr_misc_features_enables = 0;
11919 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11920 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11921 
11922 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11923 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11924 	}
11925 
11926 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11927 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11928 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11929 
11930 	/*
11931 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11932 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11933 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11934 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11935 	 * on RESET.  But, go through the motions in case that's ever remedied.
11936 	 */
11937 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11938 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11939 
11940 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11941 
11942 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11943 	kvm_rip_write(vcpu, 0xfff0);
11944 
11945 	vcpu->arch.cr3 = 0;
11946 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11947 
11948 	/*
11949 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11950 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11951 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11952 	 */
11953 	new_cr0 = X86_CR0_ET;
11954 	if (init_event)
11955 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11956 	else
11957 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11958 
11959 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11960 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11961 	static_call(kvm_x86_set_efer)(vcpu, 0);
11962 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11963 
11964 	/*
11965 	 * On the standard CR0/CR4/EFER modification paths, there are several
11966 	 * complex conditions determining whether the MMU has to be reset and/or
11967 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11968 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11969 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11970 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11971 	 */
11972 	if (old_cr0 & X86_CR0_PG) {
11973 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11974 		kvm_mmu_reset_context(vcpu);
11975 	}
11976 
11977 	/*
11978 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11979 	 * APM states the TLBs are untouched by INIT, but it also states that
11980 	 * the TLBs are flushed on "External initialization of the processor."
11981 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11982 	 * benefit in relying on the guest to flush the TLB immediately after
11983 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11984 	 * performance perspective.
11985 	 */
11986 	if (init_event)
11987 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11988 }
11989 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11990 
11991 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11992 {
11993 	struct kvm_segment cs;
11994 
11995 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11996 	cs.selector = vector << 8;
11997 	cs.base = vector << 12;
11998 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11999 	kvm_rip_write(vcpu, 0);
12000 }
12001 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12002 
12003 int kvm_arch_hardware_enable(void)
12004 {
12005 	struct kvm *kvm;
12006 	struct kvm_vcpu *vcpu;
12007 	unsigned long i;
12008 	int ret;
12009 	u64 local_tsc;
12010 	u64 max_tsc = 0;
12011 	bool stable, backwards_tsc = false;
12012 
12013 	kvm_user_return_msr_cpu_online();
12014 
12015 	ret = kvm_x86_check_processor_compatibility();
12016 	if (ret)
12017 		return ret;
12018 
12019 	ret = static_call(kvm_x86_hardware_enable)();
12020 	if (ret != 0)
12021 		return ret;
12022 
12023 	local_tsc = rdtsc();
12024 	stable = !kvm_check_tsc_unstable();
12025 	list_for_each_entry(kvm, &vm_list, vm_list) {
12026 		kvm_for_each_vcpu(i, vcpu, kvm) {
12027 			if (!stable && vcpu->cpu == smp_processor_id())
12028 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12029 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12030 				backwards_tsc = true;
12031 				if (vcpu->arch.last_host_tsc > max_tsc)
12032 					max_tsc = vcpu->arch.last_host_tsc;
12033 			}
12034 		}
12035 	}
12036 
12037 	/*
12038 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12039 	 * platforms that reset TSC during suspend or hibernate actions, but
12040 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12041 	 * detect that condition here, which happens early in CPU bringup,
12042 	 * before any KVM threads can be running.  Unfortunately, we can't
12043 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12044 	 * enough into CPU bringup that we know how much real time has actually
12045 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12046 	 * variables that haven't been updated yet.
12047 	 *
12048 	 * So we simply find the maximum observed TSC above, then record the
12049 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12050 	 * the adjustment will be applied.  Note that we accumulate
12051 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12052 	 * gets a chance to run again.  In the event that no KVM threads get a
12053 	 * chance to run, we will miss the entire elapsed period, as we'll have
12054 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12055 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12056 	 * uniform across all VCPUs (not to mention the scenario is extremely
12057 	 * unlikely). It is possible that a second hibernate recovery happens
12058 	 * much faster than a first, causing the observed TSC here to be
12059 	 * smaller; this would require additional padding adjustment, which is
12060 	 * why we set last_host_tsc to the local tsc observed here.
12061 	 *
12062 	 * N.B. - this code below runs only on platforms with reliable TSC,
12063 	 * as that is the only way backwards_tsc is set above.  Also note
12064 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12065 	 * have the same delta_cyc adjustment applied if backwards_tsc
12066 	 * is detected.  Note further, this adjustment is only done once,
12067 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12068 	 * called multiple times (one for each physical CPU bringup).
12069 	 *
12070 	 * Platforms with unreliable TSCs don't have to deal with this, they
12071 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12072 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12073 	 * guarantee that they stay in perfect synchronization.
12074 	 */
12075 	if (backwards_tsc) {
12076 		u64 delta_cyc = max_tsc - local_tsc;
12077 		list_for_each_entry(kvm, &vm_list, vm_list) {
12078 			kvm->arch.backwards_tsc_observed = true;
12079 			kvm_for_each_vcpu(i, vcpu, kvm) {
12080 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12081 				vcpu->arch.last_host_tsc = local_tsc;
12082 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12083 			}
12084 
12085 			/*
12086 			 * We have to disable TSC offset matching.. if you were
12087 			 * booting a VM while issuing an S4 host suspend....
12088 			 * you may have some problem.  Solving this issue is
12089 			 * left as an exercise to the reader.
12090 			 */
12091 			kvm->arch.last_tsc_nsec = 0;
12092 			kvm->arch.last_tsc_write = 0;
12093 		}
12094 
12095 	}
12096 	return 0;
12097 }
12098 
12099 void kvm_arch_hardware_disable(void)
12100 {
12101 	static_call(kvm_x86_hardware_disable)();
12102 	drop_user_return_notifiers();
12103 }
12104 
12105 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12106 {
12107 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12108 }
12109 
12110 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12111 {
12112 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12113 }
12114 
12115 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12116 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12117 
12118 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12119 {
12120 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12121 
12122 	vcpu->arch.l1tf_flush_l1d = true;
12123 	if (pmu->version && unlikely(pmu->event_count)) {
12124 		pmu->need_cleanup = true;
12125 		kvm_make_request(KVM_REQ_PMU, vcpu);
12126 	}
12127 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12128 }
12129 
12130 void kvm_arch_free_vm(struct kvm *kvm)
12131 {
12132 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12133 	__kvm_arch_free_vm(kvm);
12134 }
12135 
12136 
12137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12138 {
12139 	int ret;
12140 	unsigned long flags;
12141 
12142 	if (type)
12143 		return -EINVAL;
12144 
12145 	ret = kvm_page_track_init(kvm);
12146 	if (ret)
12147 		goto out;
12148 
12149 	ret = kvm_mmu_init_vm(kvm);
12150 	if (ret)
12151 		goto out_page_track;
12152 
12153 	ret = static_call(kvm_x86_vm_init)(kvm);
12154 	if (ret)
12155 		goto out_uninit_mmu;
12156 
12157 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12158 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12159 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12160 
12161 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12162 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12163 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12164 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12165 		&kvm->arch.irq_sources_bitmap);
12166 
12167 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12168 	mutex_init(&kvm->arch.apic_map_lock);
12169 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12170 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12171 
12172 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12173 	pvclock_update_vm_gtod_copy(kvm);
12174 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12175 
12176 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12177 	kvm->arch.guest_can_read_msr_platform_info = true;
12178 	kvm->arch.enable_pmu = enable_pmu;
12179 
12180 #if IS_ENABLED(CONFIG_HYPERV)
12181 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12182 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12183 #endif
12184 
12185 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12186 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12187 
12188 	kvm_apicv_init(kvm);
12189 	kvm_hv_init_vm(kvm);
12190 	kvm_xen_init_vm(kvm);
12191 
12192 	return 0;
12193 
12194 out_uninit_mmu:
12195 	kvm_mmu_uninit_vm(kvm);
12196 out_page_track:
12197 	kvm_page_track_cleanup(kvm);
12198 out:
12199 	return ret;
12200 }
12201 
12202 int kvm_arch_post_init_vm(struct kvm *kvm)
12203 {
12204 	return kvm_mmu_post_init_vm(kvm);
12205 }
12206 
12207 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12208 {
12209 	vcpu_load(vcpu);
12210 	kvm_mmu_unload(vcpu);
12211 	vcpu_put(vcpu);
12212 }
12213 
12214 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12215 {
12216 	unsigned long i;
12217 	struct kvm_vcpu *vcpu;
12218 
12219 	kvm_for_each_vcpu(i, vcpu, kvm) {
12220 		kvm_clear_async_pf_completion_queue(vcpu);
12221 		kvm_unload_vcpu_mmu(vcpu);
12222 	}
12223 }
12224 
12225 void kvm_arch_sync_events(struct kvm *kvm)
12226 {
12227 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12228 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12229 	kvm_free_pit(kvm);
12230 }
12231 
12232 /**
12233  * __x86_set_memory_region: Setup KVM internal memory slot
12234  *
12235  * @kvm: the kvm pointer to the VM.
12236  * @id: the slot ID to setup.
12237  * @gpa: the GPA to install the slot (unused when @size == 0).
12238  * @size: the size of the slot. Set to zero to uninstall a slot.
12239  *
12240  * This function helps to setup a KVM internal memory slot.  Specify
12241  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12242  * slot.  The return code can be one of the following:
12243  *
12244  *   HVA:           on success (uninstall will return a bogus HVA)
12245  *   -errno:        on error
12246  *
12247  * The caller should always use IS_ERR() to check the return value
12248  * before use.  Note, the KVM internal memory slots are guaranteed to
12249  * remain valid and unchanged until the VM is destroyed, i.e., the
12250  * GPA->HVA translation will not change.  However, the HVA is a user
12251  * address, i.e. its accessibility is not guaranteed, and must be
12252  * accessed via __copy_{to,from}_user().
12253  */
12254 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12255 				      u32 size)
12256 {
12257 	int i, r;
12258 	unsigned long hva, old_npages;
12259 	struct kvm_memslots *slots = kvm_memslots(kvm);
12260 	struct kvm_memory_slot *slot;
12261 
12262 	/* Called with kvm->slots_lock held.  */
12263 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12264 		return ERR_PTR_USR(-EINVAL);
12265 
12266 	slot = id_to_memslot(slots, id);
12267 	if (size) {
12268 		if (slot && slot->npages)
12269 			return ERR_PTR_USR(-EEXIST);
12270 
12271 		/*
12272 		 * MAP_SHARED to prevent internal slot pages from being moved
12273 		 * by fork()/COW.
12274 		 */
12275 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12276 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12277 		if (IS_ERR((void *)hva))
12278 			return (void __user *)hva;
12279 	} else {
12280 		if (!slot || !slot->npages)
12281 			return NULL;
12282 
12283 		old_npages = slot->npages;
12284 		hva = slot->userspace_addr;
12285 	}
12286 
12287 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12288 		struct kvm_userspace_memory_region m;
12289 
12290 		m.slot = id | (i << 16);
12291 		m.flags = 0;
12292 		m.guest_phys_addr = gpa;
12293 		m.userspace_addr = hva;
12294 		m.memory_size = size;
12295 		r = __kvm_set_memory_region(kvm, &m);
12296 		if (r < 0)
12297 			return ERR_PTR_USR(r);
12298 	}
12299 
12300 	if (!size)
12301 		vm_munmap(hva, old_npages * PAGE_SIZE);
12302 
12303 	return (void __user *)hva;
12304 }
12305 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12306 
12307 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12308 {
12309 	kvm_mmu_pre_destroy_vm(kvm);
12310 }
12311 
12312 void kvm_arch_destroy_vm(struct kvm *kvm)
12313 {
12314 	if (current->mm == kvm->mm) {
12315 		/*
12316 		 * Free memory regions allocated on behalf of userspace,
12317 		 * unless the memory map has changed due to process exit
12318 		 * or fd copying.
12319 		 */
12320 		mutex_lock(&kvm->slots_lock);
12321 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12322 					0, 0);
12323 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12324 					0, 0);
12325 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12326 		mutex_unlock(&kvm->slots_lock);
12327 	}
12328 	kvm_unload_vcpu_mmus(kvm);
12329 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12330 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12331 	kvm_pic_destroy(kvm);
12332 	kvm_ioapic_destroy(kvm);
12333 	kvm_destroy_vcpus(kvm);
12334 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12335 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12336 	kvm_mmu_uninit_vm(kvm);
12337 	kvm_page_track_cleanup(kvm);
12338 	kvm_xen_destroy_vm(kvm);
12339 	kvm_hv_destroy_vm(kvm);
12340 }
12341 
12342 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12343 {
12344 	int i;
12345 
12346 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12347 		kvfree(slot->arch.rmap[i]);
12348 		slot->arch.rmap[i] = NULL;
12349 	}
12350 }
12351 
12352 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12353 {
12354 	int i;
12355 
12356 	memslot_rmap_free(slot);
12357 
12358 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12359 		kvfree(slot->arch.lpage_info[i - 1]);
12360 		slot->arch.lpage_info[i - 1] = NULL;
12361 	}
12362 
12363 	kvm_page_track_free_memslot(slot);
12364 }
12365 
12366 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12367 {
12368 	const int sz = sizeof(*slot->arch.rmap[0]);
12369 	int i;
12370 
12371 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12372 		int level = i + 1;
12373 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12374 
12375 		if (slot->arch.rmap[i])
12376 			continue;
12377 
12378 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12379 		if (!slot->arch.rmap[i]) {
12380 			memslot_rmap_free(slot);
12381 			return -ENOMEM;
12382 		}
12383 	}
12384 
12385 	return 0;
12386 }
12387 
12388 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12389 				      struct kvm_memory_slot *slot)
12390 {
12391 	unsigned long npages = slot->npages;
12392 	int i, r;
12393 
12394 	/*
12395 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12396 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12397 	 * the new memslot is successful.
12398 	 */
12399 	memset(&slot->arch, 0, sizeof(slot->arch));
12400 
12401 	if (kvm_memslots_have_rmaps(kvm)) {
12402 		r = memslot_rmap_alloc(slot, npages);
12403 		if (r)
12404 			return r;
12405 	}
12406 
12407 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12408 		struct kvm_lpage_info *linfo;
12409 		unsigned long ugfn;
12410 		int lpages;
12411 		int level = i + 1;
12412 
12413 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12414 
12415 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12416 		if (!linfo)
12417 			goto out_free;
12418 
12419 		slot->arch.lpage_info[i - 1] = linfo;
12420 
12421 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12422 			linfo[0].disallow_lpage = 1;
12423 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12424 			linfo[lpages - 1].disallow_lpage = 1;
12425 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12426 		/*
12427 		 * If the gfn and userspace address are not aligned wrt each
12428 		 * other, disable large page support for this slot.
12429 		 */
12430 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12431 			unsigned long j;
12432 
12433 			for (j = 0; j < lpages; ++j)
12434 				linfo[j].disallow_lpage = 1;
12435 		}
12436 	}
12437 
12438 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12439 		goto out_free;
12440 
12441 	return 0;
12442 
12443 out_free:
12444 	memslot_rmap_free(slot);
12445 
12446 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12447 		kvfree(slot->arch.lpage_info[i - 1]);
12448 		slot->arch.lpage_info[i - 1] = NULL;
12449 	}
12450 	return -ENOMEM;
12451 }
12452 
12453 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12454 {
12455 	struct kvm_vcpu *vcpu;
12456 	unsigned long i;
12457 
12458 	/*
12459 	 * memslots->generation has been incremented.
12460 	 * mmio generation may have reached its maximum value.
12461 	 */
12462 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12463 
12464 	/* Force re-initialization of steal_time cache */
12465 	kvm_for_each_vcpu(i, vcpu, kvm)
12466 		kvm_vcpu_kick(vcpu);
12467 }
12468 
12469 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12470 				   const struct kvm_memory_slot *old,
12471 				   struct kvm_memory_slot *new,
12472 				   enum kvm_mr_change change)
12473 {
12474 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12475 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12476 			return -EINVAL;
12477 
12478 		return kvm_alloc_memslot_metadata(kvm, new);
12479 	}
12480 
12481 	if (change == KVM_MR_FLAGS_ONLY)
12482 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12483 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12484 		return -EIO;
12485 
12486 	return 0;
12487 }
12488 
12489 
12490 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12491 {
12492 	struct kvm_arch *ka = &kvm->arch;
12493 
12494 	if (!kvm_x86_ops.cpu_dirty_log_size)
12495 		return;
12496 
12497 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12498 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12499 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12500 
12501 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12502 }
12503 
12504 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12505 				     struct kvm_memory_slot *old,
12506 				     const struct kvm_memory_slot *new,
12507 				     enum kvm_mr_change change)
12508 {
12509 	u32 old_flags = old ? old->flags : 0;
12510 	u32 new_flags = new ? new->flags : 0;
12511 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12512 
12513 	/*
12514 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12515 	 * applies to all operations.
12516 	 */
12517 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12518 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12519 
12520 	/*
12521 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12522 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12523 	 *
12524 	 * For a memslot with dirty logging disabled:
12525 	 * CREATE:      No dirty mappings will already exist.
12526 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12527 	 *		kvm_arch_flush_shadow_memslot()
12528 	 *
12529 	 * For a memslot with dirty logging enabled:
12530 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12531 	 *		and no dirty bits to clear.
12532 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12533 	 *		kvm_arch_flush_shadow_memslot().
12534 	 */
12535 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12536 		return;
12537 
12538 	/*
12539 	 * READONLY and non-flags changes were filtered out above, and the only
12540 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12541 	 * logging isn't being toggled on or off.
12542 	 */
12543 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12544 		return;
12545 
12546 	if (!log_dirty_pages) {
12547 		/*
12548 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12549 		 * large sptes have to be split.  If live migration succeeds,
12550 		 * the guest in the source machine will be destroyed and large
12551 		 * sptes will be created in the destination.  However, if the
12552 		 * guest continues to run in the source machine (for example if
12553 		 * live migration fails), small sptes will remain around and
12554 		 * cause bad performance.
12555 		 *
12556 		 * Scan sptes if dirty logging has been stopped, dropping those
12557 		 * which can be collapsed into a single large-page spte.  Later
12558 		 * page faults will create the large-page sptes.
12559 		 */
12560 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12561 	} else {
12562 		/*
12563 		 * Initially-all-set does not require write protecting any page,
12564 		 * because they're all assumed to be dirty.
12565 		 */
12566 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12567 			return;
12568 
12569 		if (READ_ONCE(eager_page_split))
12570 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12571 
12572 		if (kvm_x86_ops.cpu_dirty_log_size) {
12573 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12574 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12575 		} else {
12576 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12577 		}
12578 
12579 		/*
12580 		 * Unconditionally flush the TLBs after enabling dirty logging.
12581 		 * A flush is almost always going to be necessary (see below),
12582 		 * and unconditionally flushing allows the helpers to omit
12583 		 * the subtly complex checks when removing write access.
12584 		 *
12585 		 * Do the flush outside of mmu_lock to reduce the amount of
12586 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12587 		 * safe as KVM only needs to guarantee the slot is fully
12588 		 * write-protected before returning to userspace, i.e. before
12589 		 * userspace can consume the dirty status.
12590 		 *
12591 		 * Flushing outside of mmu_lock requires KVM to be careful when
12592 		 * making decisions based on writable status of an SPTE, e.g. a
12593 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12594 		 *
12595 		 * Specifically, KVM also write-protects guest page tables to
12596 		 * monitor changes when using shadow paging, and must guarantee
12597 		 * no CPUs can write to those page before mmu_lock is dropped.
12598 		 * Because CPUs may have stale TLB entries at this point, a
12599 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12600 		 *
12601 		 * KVM also allows making SPTES writable outside of mmu_lock,
12602 		 * e.g. to allow dirty logging without taking mmu_lock.
12603 		 *
12604 		 * To handle these scenarios, KVM uses a separate software-only
12605 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12606 		 * a guest page table being write-protected (KVM clears the
12607 		 * MMU-writable flag when write-protecting for shadow paging).
12608 		 *
12609 		 * The use of MMU-writable is also the primary motivation for
12610 		 * the unconditional flush.  Because KVM must guarantee that a
12611 		 * CPU doesn't contain stale, writable TLB entries for a
12612 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12613 		 * MMU-writable SPTE regardless of whether the actual hardware
12614 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12615 		 * to flush, while unconditionally flushing allows the "remove
12616 		 * write access" helpers to ignore MMU-writable entirely.
12617 		 *
12618 		 * See is_writable_pte() for more details (the case involving
12619 		 * access-tracked SPTEs is particularly relevant).
12620 		 */
12621 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12622 	}
12623 }
12624 
12625 void kvm_arch_commit_memory_region(struct kvm *kvm,
12626 				struct kvm_memory_slot *old,
12627 				const struct kvm_memory_slot *new,
12628 				enum kvm_mr_change change)
12629 {
12630 	if (!kvm->arch.n_requested_mmu_pages &&
12631 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12632 		unsigned long nr_mmu_pages;
12633 
12634 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12635 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12636 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12637 	}
12638 
12639 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12640 
12641 	/* Free the arrays associated with the old memslot. */
12642 	if (change == KVM_MR_MOVE)
12643 		kvm_arch_free_memslot(kvm, old);
12644 }
12645 
12646 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12647 {
12648 	kvm_mmu_zap_all(kvm);
12649 }
12650 
12651 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12652 				   struct kvm_memory_slot *slot)
12653 {
12654 	kvm_page_track_flush_slot(kvm, slot);
12655 }
12656 
12657 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12658 {
12659 	return (is_guest_mode(vcpu) &&
12660 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12661 }
12662 
12663 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12664 {
12665 	if (!list_empty_careful(&vcpu->async_pf.done))
12666 		return true;
12667 
12668 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12669 	    kvm_apic_init_sipi_allowed(vcpu))
12670 		return true;
12671 
12672 	if (vcpu->arch.pv.pv_unhalted)
12673 		return true;
12674 
12675 	if (kvm_is_exception_pending(vcpu))
12676 		return true;
12677 
12678 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12679 	    (vcpu->arch.nmi_pending &&
12680 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12681 		return true;
12682 
12683 #ifdef CONFIG_KVM_SMM
12684 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12685 	    (vcpu->arch.smi_pending &&
12686 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12687 		return true;
12688 #endif
12689 
12690 	if (kvm_arch_interrupt_allowed(vcpu) &&
12691 	    (kvm_cpu_has_interrupt(vcpu) ||
12692 	    kvm_guest_apic_has_interrupt(vcpu)))
12693 		return true;
12694 
12695 	if (kvm_hv_has_stimer_pending(vcpu))
12696 		return true;
12697 
12698 	if (is_guest_mode(vcpu) &&
12699 	    kvm_x86_ops.nested_ops->has_events &&
12700 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12701 		return true;
12702 
12703 	if (kvm_xen_has_pending_events(vcpu))
12704 		return true;
12705 
12706 	return false;
12707 }
12708 
12709 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12710 {
12711 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12712 }
12713 
12714 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12715 {
12716 	if (kvm_vcpu_apicv_active(vcpu) &&
12717 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12718 		return true;
12719 
12720 	return false;
12721 }
12722 
12723 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12724 {
12725 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12726 		return true;
12727 
12728 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12729 #ifdef CONFIG_KVM_SMM
12730 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12731 #endif
12732 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12733 		return true;
12734 
12735 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12736 }
12737 
12738 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12739 {
12740 	if (vcpu->arch.guest_state_protected)
12741 		return true;
12742 
12743 	return vcpu->arch.preempted_in_kernel;
12744 }
12745 
12746 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12747 {
12748 	return kvm_rip_read(vcpu);
12749 }
12750 
12751 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12752 {
12753 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12754 }
12755 
12756 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12757 {
12758 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12759 }
12760 
12761 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12762 {
12763 	/* Can't read the RIP when guest state is protected, just return 0 */
12764 	if (vcpu->arch.guest_state_protected)
12765 		return 0;
12766 
12767 	if (is_64_bit_mode(vcpu))
12768 		return kvm_rip_read(vcpu);
12769 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12770 		     kvm_rip_read(vcpu));
12771 }
12772 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12773 
12774 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12775 {
12776 	return kvm_get_linear_rip(vcpu) == linear_rip;
12777 }
12778 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12779 
12780 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12781 {
12782 	unsigned long rflags;
12783 
12784 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12785 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12786 		rflags &= ~X86_EFLAGS_TF;
12787 	return rflags;
12788 }
12789 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12790 
12791 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12792 {
12793 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12794 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12795 		rflags |= X86_EFLAGS_TF;
12796 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12797 }
12798 
12799 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12800 {
12801 	__kvm_set_rflags(vcpu, rflags);
12802 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12803 }
12804 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12805 
12806 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12807 {
12808 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12809 
12810 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12811 }
12812 
12813 static inline u32 kvm_async_pf_next_probe(u32 key)
12814 {
12815 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12816 }
12817 
12818 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12819 {
12820 	u32 key = kvm_async_pf_hash_fn(gfn);
12821 
12822 	while (vcpu->arch.apf.gfns[key] != ~0)
12823 		key = kvm_async_pf_next_probe(key);
12824 
12825 	vcpu->arch.apf.gfns[key] = gfn;
12826 }
12827 
12828 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12829 {
12830 	int i;
12831 	u32 key = kvm_async_pf_hash_fn(gfn);
12832 
12833 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12834 		     (vcpu->arch.apf.gfns[key] != gfn &&
12835 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12836 		key = kvm_async_pf_next_probe(key);
12837 
12838 	return key;
12839 }
12840 
12841 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12842 {
12843 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12844 }
12845 
12846 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12847 {
12848 	u32 i, j, k;
12849 
12850 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12851 
12852 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12853 		return;
12854 
12855 	while (true) {
12856 		vcpu->arch.apf.gfns[i] = ~0;
12857 		do {
12858 			j = kvm_async_pf_next_probe(j);
12859 			if (vcpu->arch.apf.gfns[j] == ~0)
12860 				return;
12861 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12862 			/*
12863 			 * k lies cyclically in ]i,j]
12864 			 * |    i.k.j |
12865 			 * |....j i.k.| or  |.k..j i...|
12866 			 */
12867 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12868 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12869 		i = j;
12870 	}
12871 }
12872 
12873 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12874 {
12875 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12876 
12877 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12878 				      sizeof(reason));
12879 }
12880 
12881 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12882 {
12883 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12884 
12885 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12886 					     &token, offset, sizeof(token));
12887 }
12888 
12889 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12890 {
12891 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12892 	u32 val;
12893 
12894 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12895 					 &val, offset, sizeof(val)))
12896 		return false;
12897 
12898 	return !val;
12899 }
12900 
12901 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12902 {
12903 
12904 	if (!kvm_pv_async_pf_enabled(vcpu))
12905 		return false;
12906 
12907 	if (vcpu->arch.apf.send_user_only &&
12908 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12909 		return false;
12910 
12911 	if (is_guest_mode(vcpu)) {
12912 		/*
12913 		 * L1 needs to opt into the special #PF vmexits that are
12914 		 * used to deliver async page faults.
12915 		 */
12916 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12917 	} else {
12918 		/*
12919 		 * Play it safe in case the guest temporarily disables paging.
12920 		 * The real mode IDT in particular is unlikely to have a #PF
12921 		 * exception setup.
12922 		 */
12923 		return is_paging(vcpu);
12924 	}
12925 }
12926 
12927 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12928 {
12929 	if (unlikely(!lapic_in_kernel(vcpu) ||
12930 		     kvm_event_needs_reinjection(vcpu) ||
12931 		     kvm_is_exception_pending(vcpu)))
12932 		return false;
12933 
12934 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12935 		return false;
12936 
12937 	/*
12938 	 * If interrupts are off we cannot even use an artificial
12939 	 * halt state.
12940 	 */
12941 	return kvm_arch_interrupt_allowed(vcpu);
12942 }
12943 
12944 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12945 				     struct kvm_async_pf *work)
12946 {
12947 	struct x86_exception fault;
12948 
12949 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12950 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12951 
12952 	if (kvm_can_deliver_async_pf(vcpu) &&
12953 	    !apf_put_user_notpresent(vcpu)) {
12954 		fault.vector = PF_VECTOR;
12955 		fault.error_code_valid = true;
12956 		fault.error_code = 0;
12957 		fault.nested_page_fault = false;
12958 		fault.address = work->arch.token;
12959 		fault.async_page_fault = true;
12960 		kvm_inject_page_fault(vcpu, &fault);
12961 		return true;
12962 	} else {
12963 		/*
12964 		 * It is not possible to deliver a paravirtualized asynchronous
12965 		 * page fault, but putting the guest in an artificial halt state
12966 		 * can be beneficial nevertheless: if an interrupt arrives, we
12967 		 * can deliver it timely and perhaps the guest will schedule
12968 		 * another process.  When the instruction that triggered a page
12969 		 * fault is retried, hopefully the page will be ready in the host.
12970 		 */
12971 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12972 		return false;
12973 	}
12974 }
12975 
12976 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12977 				 struct kvm_async_pf *work)
12978 {
12979 	struct kvm_lapic_irq irq = {
12980 		.delivery_mode = APIC_DM_FIXED,
12981 		.vector = vcpu->arch.apf.vec
12982 	};
12983 
12984 	if (work->wakeup_all)
12985 		work->arch.token = ~0; /* broadcast wakeup */
12986 	else
12987 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12988 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12989 
12990 	if ((work->wakeup_all || work->notpresent_injected) &&
12991 	    kvm_pv_async_pf_enabled(vcpu) &&
12992 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12993 		vcpu->arch.apf.pageready_pending = true;
12994 		kvm_apic_set_irq(vcpu, &irq, NULL);
12995 	}
12996 
12997 	vcpu->arch.apf.halted = false;
12998 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12999 }
13000 
13001 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13002 {
13003 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13004 	if (!vcpu->arch.apf.pageready_pending)
13005 		kvm_vcpu_kick(vcpu);
13006 }
13007 
13008 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13009 {
13010 	if (!kvm_pv_async_pf_enabled(vcpu))
13011 		return true;
13012 	else
13013 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13014 }
13015 
13016 void kvm_arch_start_assignment(struct kvm *kvm)
13017 {
13018 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13019 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13020 }
13021 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13022 
13023 void kvm_arch_end_assignment(struct kvm *kvm)
13024 {
13025 	atomic_dec(&kvm->arch.assigned_device_count);
13026 }
13027 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13028 
13029 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13030 {
13031 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13032 }
13033 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13034 
13035 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13036 {
13037 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13038 }
13039 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13040 
13041 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13042 {
13043 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13044 }
13045 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13046 
13047 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13048 {
13049 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13050 }
13051 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13052 
13053 bool kvm_arch_has_irq_bypass(void)
13054 {
13055 	return true;
13056 }
13057 
13058 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13059 				      struct irq_bypass_producer *prod)
13060 {
13061 	struct kvm_kernel_irqfd *irqfd =
13062 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13063 	int ret;
13064 
13065 	irqfd->producer = prod;
13066 	kvm_arch_start_assignment(irqfd->kvm);
13067 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13068 					 prod->irq, irqfd->gsi, 1);
13069 
13070 	if (ret)
13071 		kvm_arch_end_assignment(irqfd->kvm);
13072 
13073 	return ret;
13074 }
13075 
13076 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13077 				      struct irq_bypass_producer *prod)
13078 {
13079 	int ret;
13080 	struct kvm_kernel_irqfd *irqfd =
13081 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13082 
13083 	WARN_ON(irqfd->producer != prod);
13084 	irqfd->producer = NULL;
13085 
13086 	/*
13087 	 * When producer of consumer is unregistered, we change back to
13088 	 * remapped mode, so we can re-use the current implementation
13089 	 * when the irq is masked/disabled or the consumer side (KVM
13090 	 * int this case doesn't want to receive the interrupts.
13091 	*/
13092 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13093 	if (ret)
13094 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13095 		       " fails: %d\n", irqfd->consumer.token, ret);
13096 
13097 	kvm_arch_end_assignment(irqfd->kvm);
13098 }
13099 
13100 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13101 				   uint32_t guest_irq, bool set)
13102 {
13103 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13104 }
13105 
13106 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13107 				  struct kvm_kernel_irq_routing_entry *new)
13108 {
13109 	if (new->type != KVM_IRQ_ROUTING_MSI)
13110 		return true;
13111 
13112 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13113 }
13114 
13115 bool kvm_vector_hashing_enabled(void)
13116 {
13117 	return vector_hashing;
13118 }
13119 
13120 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13121 {
13122 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13123 }
13124 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13125 
13126 
13127 int kvm_spec_ctrl_test_value(u64 value)
13128 {
13129 	/*
13130 	 * test that setting IA32_SPEC_CTRL to given value
13131 	 * is allowed by the host processor
13132 	 */
13133 
13134 	u64 saved_value;
13135 	unsigned long flags;
13136 	int ret = 0;
13137 
13138 	local_irq_save(flags);
13139 
13140 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13141 		ret = 1;
13142 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13143 		ret = 1;
13144 	else
13145 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13146 
13147 	local_irq_restore(flags);
13148 
13149 	return ret;
13150 }
13151 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13152 
13153 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13154 {
13155 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13156 	struct x86_exception fault;
13157 	u64 access = error_code &
13158 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13159 
13160 	if (!(error_code & PFERR_PRESENT_MASK) ||
13161 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13162 		/*
13163 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13164 		 * tables probably do not match the TLB.  Just proceed
13165 		 * with the error code that the processor gave.
13166 		 */
13167 		fault.vector = PF_VECTOR;
13168 		fault.error_code_valid = true;
13169 		fault.error_code = error_code;
13170 		fault.nested_page_fault = false;
13171 		fault.address = gva;
13172 		fault.async_page_fault = false;
13173 	}
13174 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13175 }
13176 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13177 
13178 /*
13179  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13180  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13181  * indicates whether exit to userspace is needed.
13182  */
13183 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13184 			      struct x86_exception *e)
13185 {
13186 	if (r == X86EMUL_PROPAGATE_FAULT) {
13187 		if (KVM_BUG_ON(!e, vcpu->kvm))
13188 			return -EIO;
13189 
13190 		kvm_inject_emulated_page_fault(vcpu, e);
13191 		return 1;
13192 	}
13193 
13194 	/*
13195 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13196 	 * while handling a VMX instruction KVM could've handled the request
13197 	 * correctly by exiting to userspace and performing I/O but there
13198 	 * doesn't seem to be a real use-case behind such requests, just return
13199 	 * KVM_EXIT_INTERNAL_ERROR for now.
13200 	 */
13201 	kvm_prepare_emulation_failure_exit(vcpu);
13202 
13203 	return 0;
13204 }
13205 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13206 
13207 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13208 {
13209 	bool pcid_enabled;
13210 	struct x86_exception e;
13211 	struct {
13212 		u64 pcid;
13213 		u64 gla;
13214 	} operand;
13215 	int r;
13216 
13217 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13218 	if (r != X86EMUL_CONTINUE)
13219 		return kvm_handle_memory_failure(vcpu, r, &e);
13220 
13221 	if (operand.pcid >> 12 != 0) {
13222 		kvm_inject_gp(vcpu, 0);
13223 		return 1;
13224 	}
13225 
13226 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13227 
13228 	switch (type) {
13229 	case INVPCID_TYPE_INDIV_ADDR:
13230 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13231 		    is_noncanonical_address(operand.gla, vcpu)) {
13232 			kvm_inject_gp(vcpu, 0);
13233 			return 1;
13234 		}
13235 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13236 		return kvm_skip_emulated_instruction(vcpu);
13237 
13238 	case INVPCID_TYPE_SINGLE_CTXT:
13239 		if (!pcid_enabled && (operand.pcid != 0)) {
13240 			kvm_inject_gp(vcpu, 0);
13241 			return 1;
13242 		}
13243 
13244 		kvm_invalidate_pcid(vcpu, operand.pcid);
13245 		return kvm_skip_emulated_instruction(vcpu);
13246 
13247 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13248 		/*
13249 		 * Currently, KVM doesn't mark global entries in the shadow
13250 		 * page tables, so a non-global flush just degenerates to a
13251 		 * global flush. If needed, we could optimize this later by
13252 		 * keeping track of global entries in shadow page tables.
13253 		 */
13254 
13255 		fallthrough;
13256 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13257 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13258 		return kvm_skip_emulated_instruction(vcpu);
13259 
13260 	default:
13261 		kvm_inject_gp(vcpu, 0);
13262 		return 1;
13263 	}
13264 }
13265 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13266 
13267 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13268 {
13269 	struct kvm_run *run = vcpu->run;
13270 	struct kvm_mmio_fragment *frag;
13271 	unsigned int len;
13272 
13273 	BUG_ON(!vcpu->mmio_needed);
13274 
13275 	/* Complete previous fragment */
13276 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13277 	len = min(8u, frag->len);
13278 	if (!vcpu->mmio_is_write)
13279 		memcpy(frag->data, run->mmio.data, len);
13280 
13281 	if (frag->len <= 8) {
13282 		/* Switch to the next fragment. */
13283 		frag++;
13284 		vcpu->mmio_cur_fragment++;
13285 	} else {
13286 		/* Go forward to the next mmio piece. */
13287 		frag->data += len;
13288 		frag->gpa += len;
13289 		frag->len -= len;
13290 	}
13291 
13292 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13293 		vcpu->mmio_needed = 0;
13294 
13295 		// VMG change, at this point, we're always done
13296 		// RIP has already been advanced
13297 		return 1;
13298 	}
13299 
13300 	// More MMIO is needed
13301 	run->mmio.phys_addr = frag->gpa;
13302 	run->mmio.len = min(8u, frag->len);
13303 	run->mmio.is_write = vcpu->mmio_is_write;
13304 	if (run->mmio.is_write)
13305 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13306 	run->exit_reason = KVM_EXIT_MMIO;
13307 
13308 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13309 
13310 	return 0;
13311 }
13312 
13313 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13314 			  void *data)
13315 {
13316 	int handled;
13317 	struct kvm_mmio_fragment *frag;
13318 
13319 	if (!data)
13320 		return -EINVAL;
13321 
13322 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13323 	if (handled == bytes)
13324 		return 1;
13325 
13326 	bytes -= handled;
13327 	gpa += handled;
13328 	data += handled;
13329 
13330 	/*TODO: Check if need to increment number of frags */
13331 	frag = vcpu->mmio_fragments;
13332 	vcpu->mmio_nr_fragments = 1;
13333 	frag->len = bytes;
13334 	frag->gpa = gpa;
13335 	frag->data = data;
13336 
13337 	vcpu->mmio_needed = 1;
13338 	vcpu->mmio_cur_fragment = 0;
13339 
13340 	vcpu->run->mmio.phys_addr = gpa;
13341 	vcpu->run->mmio.len = min(8u, frag->len);
13342 	vcpu->run->mmio.is_write = 1;
13343 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13344 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13345 
13346 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13347 
13348 	return 0;
13349 }
13350 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13351 
13352 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13353 			 void *data)
13354 {
13355 	int handled;
13356 	struct kvm_mmio_fragment *frag;
13357 
13358 	if (!data)
13359 		return -EINVAL;
13360 
13361 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13362 	if (handled == bytes)
13363 		return 1;
13364 
13365 	bytes -= handled;
13366 	gpa += handled;
13367 	data += handled;
13368 
13369 	/*TODO: Check if need to increment number of frags */
13370 	frag = vcpu->mmio_fragments;
13371 	vcpu->mmio_nr_fragments = 1;
13372 	frag->len = bytes;
13373 	frag->gpa = gpa;
13374 	frag->data = data;
13375 
13376 	vcpu->mmio_needed = 1;
13377 	vcpu->mmio_cur_fragment = 0;
13378 
13379 	vcpu->run->mmio.phys_addr = gpa;
13380 	vcpu->run->mmio.len = min(8u, frag->len);
13381 	vcpu->run->mmio.is_write = 0;
13382 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13383 
13384 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13385 
13386 	return 0;
13387 }
13388 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13389 
13390 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13391 {
13392 	vcpu->arch.sev_pio_count -= count;
13393 	vcpu->arch.sev_pio_data += count * size;
13394 }
13395 
13396 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13397 			   unsigned int port);
13398 
13399 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13400 {
13401 	int size = vcpu->arch.pio.size;
13402 	int port = vcpu->arch.pio.port;
13403 
13404 	vcpu->arch.pio.count = 0;
13405 	if (vcpu->arch.sev_pio_count)
13406 		return kvm_sev_es_outs(vcpu, size, port);
13407 	return 1;
13408 }
13409 
13410 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13411 			   unsigned int port)
13412 {
13413 	for (;;) {
13414 		unsigned int count =
13415 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13416 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13417 
13418 		/* memcpy done already by emulator_pio_out.  */
13419 		advance_sev_es_emulated_pio(vcpu, count, size);
13420 		if (!ret)
13421 			break;
13422 
13423 		/* Emulation done by the kernel.  */
13424 		if (!vcpu->arch.sev_pio_count)
13425 			return 1;
13426 	}
13427 
13428 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13429 	return 0;
13430 }
13431 
13432 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13433 			  unsigned int port);
13434 
13435 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13436 {
13437 	unsigned count = vcpu->arch.pio.count;
13438 	int size = vcpu->arch.pio.size;
13439 	int port = vcpu->arch.pio.port;
13440 
13441 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13442 	advance_sev_es_emulated_pio(vcpu, count, size);
13443 	if (vcpu->arch.sev_pio_count)
13444 		return kvm_sev_es_ins(vcpu, size, port);
13445 	return 1;
13446 }
13447 
13448 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13449 			  unsigned int port)
13450 {
13451 	for (;;) {
13452 		unsigned int count =
13453 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13454 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13455 			break;
13456 
13457 		/* Emulation done by the kernel.  */
13458 		advance_sev_es_emulated_pio(vcpu, count, size);
13459 		if (!vcpu->arch.sev_pio_count)
13460 			return 1;
13461 	}
13462 
13463 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13464 	return 0;
13465 }
13466 
13467 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13468 			 unsigned int port, void *data,  unsigned int count,
13469 			 int in)
13470 {
13471 	vcpu->arch.sev_pio_data = data;
13472 	vcpu->arch.sev_pio_count = count;
13473 	return in ? kvm_sev_es_ins(vcpu, size, port)
13474 		  : kvm_sev_es_outs(vcpu, size, port);
13475 }
13476 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13477 
13478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13507 
13508 static int __init kvm_x86_init(void)
13509 {
13510 	kvm_mmu_x86_module_init();
13511 	return 0;
13512 }
13513 module_init(kvm_x86_init);
13514 
13515 static void __exit kvm_x86_exit(void)
13516 {
13517 	/*
13518 	 * If module_init() is implemented, module_exit() must also be
13519 	 * implemented to allow module unload.
13520 	 */
13521 }
13522 module_exit(kvm_x86_exit);
13523