xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.h (revision 6614a3c3164a5df2b54abb0b3559f51041cf705b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 
10 #include "capabilities.h"
11 #include "../kvm_cache_regs.h"
12 #include "posted_intr.h"
13 #include "vmcs.h"
14 #include "vmx_ops.h"
15 #include "../cpuid.h"
16 #include "run_flags.h"
17 
18 #define MSR_TYPE_R	1
19 #define MSR_TYPE_W	2
20 #define MSR_TYPE_RW	3
21 
22 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
23 
24 #ifdef CONFIG_X86_64
25 #define MAX_NR_USER_RETURN_MSRS	7
26 #else
27 #define MAX_NR_USER_RETURN_MSRS	4
28 #endif
29 
30 #define MAX_NR_LOADSTORE_MSRS	8
31 
32 struct vmx_msrs {
33 	unsigned int		nr;
34 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
35 };
36 
37 struct vmx_uret_msr {
38 	bool load_into_hardware;
39 	u64 data;
40 	u64 mask;
41 };
42 
43 enum segment_cache_field {
44 	SEG_FIELD_SEL = 0,
45 	SEG_FIELD_BASE = 1,
46 	SEG_FIELD_LIMIT = 2,
47 	SEG_FIELD_AR = 3,
48 
49 	SEG_FIELD_NR = 4
50 };
51 
52 #define RTIT_ADDR_RANGE		4
53 
54 struct pt_ctx {
55 	u64 ctl;
56 	u64 status;
57 	u64 output_base;
58 	u64 output_mask;
59 	u64 cr3_match;
60 	u64 addr_a[RTIT_ADDR_RANGE];
61 	u64 addr_b[RTIT_ADDR_RANGE];
62 };
63 
64 struct pt_desc {
65 	u64 ctl_bitmask;
66 	u32 num_address_ranges;
67 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
68 	struct pt_ctx host;
69 	struct pt_ctx guest;
70 };
71 
72 union vmx_exit_reason {
73 	struct {
74 		u32	basic			: 16;
75 		u32	reserved16		: 1;
76 		u32	reserved17		: 1;
77 		u32	reserved18		: 1;
78 		u32	reserved19		: 1;
79 		u32	reserved20		: 1;
80 		u32	reserved21		: 1;
81 		u32	reserved22		: 1;
82 		u32	reserved23		: 1;
83 		u32	reserved24		: 1;
84 		u32	reserved25		: 1;
85 		u32	bus_lock_detected	: 1;
86 		u32	enclave_mode		: 1;
87 		u32	smi_pending_mtf		: 1;
88 		u32	smi_from_vmx_root	: 1;
89 		u32	reserved30		: 1;
90 		u32	failed_vmentry		: 1;
91 	};
92 	u32 full;
93 };
94 
95 static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
96 {
97 	/*
98 	 * Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is
99 	 * supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is
100 	 * greater than zero.  However, KVM only exposes and emulates the MSR
101 	 * to/for the guest if the guest PMU supports at least "Architectural
102 	 * Performance Monitoring Version 2".
103 	 */
104 	return pmu->version > 1;
105 }
106 
107 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
108 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
109 
110 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
111 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
112 
113 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
114 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
115 
116 struct lbr_desc {
117 	/* Basic info about guest LBR records. */
118 	struct x86_pmu_lbr records;
119 
120 	/*
121 	 * Emulate LBR feature via passthrough LBR registers when the
122 	 * per-vcpu guest LBR event is scheduled on the current pcpu.
123 	 *
124 	 * The records may be inaccurate if the host reclaims the LBR.
125 	 */
126 	struct perf_event *event;
127 
128 	/* True if LBRs are marked as not intercepted in the MSR bitmap */
129 	bool msr_passthrough;
130 };
131 
132 /*
133  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
134  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
135  */
136 struct nested_vmx {
137 	/* Has the level1 guest done vmxon? */
138 	bool vmxon;
139 	gpa_t vmxon_ptr;
140 	bool pml_full;
141 
142 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
143 	gpa_t current_vmptr;
144 	/*
145 	 * Cache of the guest's VMCS, existing outside of guest memory.
146 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
147 	 * memory during VMCLEAR and VMPTRLD.
148 	 */
149 	struct vmcs12 *cached_vmcs12;
150 	/*
151 	 * Cache of the guest's shadow VMCS, existing outside of guest
152 	 * memory. Loaded from guest memory during VM entry. Flushed
153 	 * to guest memory during VM exit.
154 	 */
155 	struct vmcs12 *cached_shadow_vmcs12;
156 
157 	/*
158 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
159 	 */
160 	struct gfn_to_hva_cache shadow_vmcs12_cache;
161 
162 	/*
163 	 * GPA to HVA cache for VMCS12
164 	 */
165 	struct gfn_to_hva_cache vmcs12_cache;
166 
167 	/*
168 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
169 	 * with the data held by struct vmcs12.
170 	 */
171 	bool need_vmcs12_to_shadow_sync;
172 	bool dirty_vmcs12;
173 
174 	/*
175 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
176 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
177 	 * this flag can only be used reliably in conjunction with a paravirt L1
178 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
179 	 * on its side.
180 	 */
181 	bool force_msr_bitmap_recalc;
182 
183 	/*
184 	 * Indicates lazily loaded guest state has not yet been decached from
185 	 * vmcs02.
186 	 */
187 	bool need_sync_vmcs02_to_vmcs12_rare;
188 
189 	/*
190 	 * vmcs02 has been initialized, i.e. state that is constant for
191 	 * vmcs02 has been written to the backing VMCS.  Initialization
192 	 * is delayed until L1 actually attempts to run a nested VM.
193 	 */
194 	bool vmcs02_initialized;
195 
196 	bool change_vmcs01_virtual_apic_mode;
197 	bool reload_vmcs01_apic_access_page;
198 	bool update_vmcs01_cpu_dirty_logging;
199 	bool update_vmcs01_apicv_status;
200 
201 	/*
202 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
203 	 * use it. However, VMX features available to L1 will be limited based
204 	 * on what the enlightened VMCS supports.
205 	 */
206 	bool enlightened_vmcs_enabled;
207 
208 	/* L2 must run next, and mustn't decide to exit to L1. */
209 	bool nested_run_pending;
210 
211 	/* Pending MTF VM-exit into L1.  */
212 	bool mtf_pending;
213 
214 	struct loaded_vmcs vmcs02;
215 
216 	/*
217 	 * Guest pages referred to in the vmcs02 with host-physical
218 	 * pointers, so we must keep them pinned while L2 runs.
219 	 */
220 	struct kvm_host_map apic_access_page_map;
221 	struct kvm_host_map virtual_apic_map;
222 	struct kvm_host_map pi_desc_map;
223 
224 	struct kvm_host_map msr_bitmap_map;
225 
226 	struct pi_desc *pi_desc;
227 	bool pi_pending;
228 	u16 posted_intr_nv;
229 
230 	struct hrtimer preemption_timer;
231 	u64 preemption_timer_deadline;
232 	bool has_preemption_timer_deadline;
233 	bool preemption_timer_expired;
234 
235 	/*
236 	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
237 	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
238 	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
239 	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
240 	 * userspace restores MSRs before nested state.  If userspace restores
241 	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
242 	 * detect that, and the garbage value in vmcs02 will be overwritten by
243 	 * MSR restoration in any case.
244 	 */
245 	u64 pre_vmenter_debugctl;
246 	u64 pre_vmenter_bndcfgs;
247 
248 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
249 	int l1_tpr_threshold;
250 
251 	u16 vpid02;
252 	u16 last_vpid;
253 
254 	struct nested_vmx_msrs msrs;
255 
256 	/* SMM related state */
257 	struct {
258 		/* in VMX operation on SMM entry? */
259 		bool vmxon;
260 		/* in guest mode on SMM entry? */
261 		bool guest_mode;
262 	} smm;
263 
264 	gpa_t hv_evmcs_vmptr;
265 	struct kvm_host_map hv_evmcs_map;
266 	struct hv_enlightened_vmcs *hv_evmcs;
267 };
268 
269 struct vcpu_vmx {
270 	struct kvm_vcpu       vcpu;
271 	u8                    fail;
272 	u8		      x2apic_msr_bitmap_mode;
273 
274 	/*
275 	 * If true, host state has been stored in vmx->loaded_vmcs for
276 	 * the CPU registers that only need to be switched when transitioning
277 	 * to/from the kernel, and the registers have been loaded with guest
278 	 * values.  If false, host state is loaded in the CPU registers
279 	 * and vmx->loaded_vmcs->host_state is invalid.
280 	 */
281 	bool		      guest_state_loaded;
282 
283 	unsigned long         exit_qualification;
284 	u32                   exit_intr_info;
285 	u32                   idt_vectoring_info;
286 	ulong                 rflags;
287 
288 	/*
289 	 * User return MSRs are always emulated when enabled in the guest, but
290 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
291 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
292 	 * be loaded into hardware if those conditions aren't met.
293 	 */
294 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
295 	bool                  guest_uret_msrs_loaded;
296 #ifdef CONFIG_X86_64
297 	u64		      msr_host_kernel_gs_base;
298 	u64		      msr_guest_kernel_gs_base;
299 #endif
300 
301 	u64		      spec_ctrl;
302 	u32		      msr_ia32_umwait_control;
303 
304 	/*
305 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
306 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
307 	 * guest (L2), it points to a different VMCS.
308 	 */
309 	struct loaded_vmcs    vmcs01;
310 	struct loaded_vmcs   *loaded_vmcs;
311 
312 	struct msr_autoload {
313 		struct vmx_msrs guest;
314 		struct vmx_msrs host;
315 	} msr_autoload;
316 
317 	struct msr_autostore {
318 		struct vmx_msrs guest;
319 	} msr_autostore;
320 
321 	struct {
322 		int vm86_active;
323 		ulong save_rflags;
324 		struct kvm_segment segs[8];
325 	} rmode;
326 	struct {
327 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
328 		struct kvm_save_segment {
329 			u16 selector;
330 			unsigned long base;
331 			u32 limit;
332 			u32 ar;
333 		} seg[8];
334 	} segment_cache;
335 	int vpid;
336 	bool emulation_required;
337 
338 	union vmx_exit_reason exit_reason;
339 
340 	/* Posted interrupt descriptor */
341 	struct pi_desc pi_desc;
342 
343 	/* Used if this vCPU is waiting for PI notification wakeup. */
344 	struct list_head pi_wakeup_list;
345 
346 	/* Support for a guest hypervisor (nested VMX) */
347 	struct nested_vmx nested;
348 
349 	/* Dynamic PLE window. */
350 	unsigned int ple_window;
351 	bool ple_window_dirty;
352 
353 	bool req_immediate_exit;
354 
355 	/* Support for PML */
356 #define PML_ENTITY_NUM		512
357 	struct page *pml_pg;
358 
359 	/* apic deadline value in host tsc */
360 	u64 hv_deadline_tsc;
361 
362 	unsigned long host_debugctlmsr;
363 
364 	/*
365 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
366 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
367 	 * in msr_ia32_feature_control_valid_bits.
368 	 */
369 	u64 msr_ia32_feature_control;
370 	u64 msr_ia32_feature_control_valid_bits;
371 	/* SGX Launch Control public key hash */
372 	u64 msr_ia32_sgxlepubkeyhash[4];
373 	u64 msr_ia32_mcu_opt_ctrl;
374 	bool disable_fb_clear;
375 
376 	struct pt_desc pt_desc;
377 	struct lbr_desc lbr_desc;
378 
379 	/* Save desired MSR intercept (read: pass-through) state */
380 #define MAX_POSSIBLE_PASSTHROUGH_MSRS	15
381 	struct {
382 		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
383 		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
384 	} shadow_msr_intercept;
385 };
386 
387 struct kvm_vmx {
388 	struct kvm kvm;
389 
390 	unsigned int tss_addr;
391 	bool ept_identity_pagetable_done;
392 	gpa_t ept_identity_map_addr;
393 	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
394 	u64 *pid_table;
395 };
396 
397 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
398 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
399 			struct loaded_vmcs *buddy);
400 int allocate_vpid(void);
401 void free_vpid(int vpid);
402 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
403 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
404 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
405 			unsigned long fs_base, unsigned long gs_base);
406 int vmx_get_cpl(struct kvm_vcpu *vcpu);
407 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
408 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
409 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
410 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
411 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
412 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
413 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
414 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
415 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
416 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
417 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
418 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
419 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
420 
421 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
422 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
423 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
424 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
425 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
426 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
427 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
428 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
429 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
430 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
431 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
432 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
433 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
434 		    unsigned int flags);
435 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
436 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
437 
438 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
439 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
440 
441 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
442 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
443 
444 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
445 					     int type, bool value)
446 {
447 	if (value)
448 		vmx_enable_intercept_for_msr(vcpu, msr, type);
449 	else
450 		vmx_disable_intercept_for_msr(vcpu, msr, type);
451 }
452 
453 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
454 
455 /*
456  * Note, early Intel manuals have the write-low and read-high bitmap offsets
457  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
458  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
459  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
460  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
461  * VM-Exit.
462  */
463 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
464 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
465 						       u32 msr)		       \
466 {									       \
467 	int f = sizeof(unsigned long);					       \
468 									       \
469 	if (msr <= 0x1fff)						       \
470 		return bitop##_bit(msr, bitmap + base / f);		       \
471 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
472 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
473 	return (rtype)true;						       \
474 }
475 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
476 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
477 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
478 
479 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
480 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
481 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
482 
483 static inline u8 vmx_get_rvi(void)
484 {
485 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
486 }
487 
488 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)				\
489 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)	\
490 {										\
491 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {			\
492 		vmcs_write##bits(uname, val);					\
493 		vmx->loaded_vmcs->controls_shadow.lname = val;			\
494 	}									\
495 }										\
496 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)	\
497 {										\
498 	return vmcs->controls_shadow.lname;					\
499 }										\
500 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)		\
501 {										\
502 	return __##lname##_controls_get(vmx->loaded_vmcs);			\
503 }										\
504 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)	\
505 {										\
506 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);		\
507 }										\
508 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
509 {										\
510 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);		\
511 }
512 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
513 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
514 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
515 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
516 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
517 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
518 
519 /*
520  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
521  * cache on demand.  Other registers not listed here are synced to
522  * the cache immediately after VM-Exit.
523  */
524 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
525 				(1 << VCPU_REGS_RSP) |          \
526 				(1 << VCPU_EXREG_RFLAGS) |      \
527 				(1 << VCPU_EXREG_PDPTR) |       \
528 				(1 << VCPU_EXREG_SEGMENTS) |    \
529 				(1 << VCPU_EXREG_CR0) |         \
530 				(1 << VCPU_EXREG_CR3) |         \
531 				(1 << VCPU_EXREG_CR4) |         \
532 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
533 				(1 << VCPU_EXREG_EXIT_INFO_2))
534 
535 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
536 {
537 	return container_of(kvm, struct kvm_vmx, kvm);
538 }
539 
540 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
541 {
542 	return container_of(vcpu, struct vcpu_vmx, vcpu);
543 }
544 
545 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
546 {
547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
548 
549 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
550 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
551 		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
552 	}
553 	return vmx->exit_qualification;
554 }
555 
556 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
557 {
558 	struct vcpu_vmx *vmx = to_vmx(vcpu);
559 
560 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
561 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
562 		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
563 	}
564 	return vmx->exit_intr_info;
565 }
566 
567 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
568 void free_vmcs(struct vmcs *vmcs);
569 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
570 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
571 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
572 
573 static inline struct vmcs *alloc_vmcs(bool shadow)
574 {
575 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
576 			      GFP_KERNEL_ACCOUNT);
577 }
578 
579 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
580 {
581 	return secondary_exec_controls_get(vmx) &
582 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
583 }
584 
585 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
586 {
587 	if (!enable_ept)
588 		return true;
589 
590 	return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
591 }
592 
593 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
594 {
595 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
596 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
597 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
598 }
599 
600 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
601 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
602 {
603 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
604 }
605 
606 void dump_vmcs(struct kvm_vcpu *vcpu);
607 
608 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
609 {
610 	return (vmx_instr_info >> 28) & 0xf;
611 }
612 
613 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
614 {
615 	return  lapic_in_kernel(vcpu) && enable_ipiv;
616 }
617 
618 #endif /* __KVM_X86_VMX_H */
619