1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/io.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kexec.h> 42 #include <asm/perf_event.h> 43 #include <asm/mmu_context.h> 44 #include <asm/mshyperv.h> 45 #include <asm/mwait.h> 46 #include <asm/spec-ctrl.h> 47 #include <asm/virtext.h> 48 #include <asm/vmx.h> 49 50 #include "capabilities.h" 51 #include "cpuid.h" 52 #include "evmcs.h" 53 #include "hyperv.h" 54 #include "irq.h" 55 #include "kvm_cache_regs.h" 56 #include "lapic.h" 57 #include "mmu.h" 58 #include "nested.h" 59 #include "pmu.h" 60 #include "trace.h" 61 #include "vmcs.h" 62 #include "vmcs12.h" 63 #include "vmx.h" 64 #include "x86.h" 65 66 MODULE_AUTHOR("Qumranet"); 67 MODULE_LICENSE("GPL"); 68 69 #ifdef MODULE 70 static const struct x86_cpu_id vmx_cpu_id[] = { 71 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 72 {} 73 }; 74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 75 #endif 76 77 bool __read_mostly enable_vpid = 1; 78 module_param_named(vpid, enable_vpid, bool, 0444); 79 80 static bool __read_mostly enable_vnmi = 1; 81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 82 83 bool __read_mostly flexpriority_enabled = 1; 84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 85 86 bool __read_mostly enable_ept = 1; 87 module_param_named(ept, enable_ept, bool, S_IRUGO); 88 89 bool __read_mostly enable_unrestricted_guest = 1; 90 module_param_named(unrestricted_guest, 91 enable_unrestricted_guest, bool, S_IRUGO); 92 93 bool __read_mostly enable_ept_ad_bits = 1; 94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 95 96 static bool __read_mostly emulate_invalid_guest_state = true; 97 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 98 99 static bool __read_mostly fasteoi = 1; 100 module_param(fasteoi, bool, S_IRUGO); 101 102 bool __read_mostly enable_apicv = 1; 103 module_param(enable_apicv, bool, S_IRUGO); 104 105 /* 106 * If nested=1, nested virtualization is supported, i.e., guests may use 107 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 108 * use VMX instructions. 109 */ 110 static bool __read_mostly nested = 1; 111 module_param(nested, bool, S_IRUGO); 112 113 bool __read_mostly enable_pml = 1; 114 module_param_named(pml, enable_pml, bool, S_IRUGO); 115 116 static bool __read_mostly dump_invalid_vmcs = 0; 117 module_param(dump_invalid_vmcs, bool, 0644); 118 119 #define MSR_BITMAP_MODE_X2APIC 1 120 #define MSR_BITMAP_MODE_X2APIC_APICV 2 121 122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 123 124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 125 static int __read_mostly cpu_preemption_timer_multi; 126 static bool __read_mostly enable_preemption_timer = 1; 127 #ifdef CONFIG_X86_64 128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 129 #endif 130 131 extern bool __read_mostly allow_smaller_maxphyaddr; 132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 133 134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 136 #define KVM_VM_CR0_ALWAYS_ON \ 137 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 138 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 139 140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 143 144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 145 146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 147 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 148 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 149 RTIT_STATUS_BYTECNT)) 150 151 /* 152 * List of MSRs that can be directly passed to the guest. 153 * In addition to these x2apic and PT MSRs are handled specially. 154 */ 155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 156 MSR_IA32_SPEC_CTRL, 157 MSR_IA32_PRED_CMD, 158 MSR_IA32_TSC, 159 MSR_FS_BASE, 160 MSR_GS_BASE, 161 MSR_KERNEL_GS_BASE, 162 MSR_IA32_SYSENTER_CS, 163 MSR_IA32_SYSENTER_ESP, 164 MSR_IA32_SYSENTER_EIP, 165 MSR_CORE_C1_RES, 166 MSR_CORE_C3_RESIDENCY, 167 MSR_CORE_C6_RESIDENCY, 168 MSR_CORE_C7_RESIDENCY, 169 }; 170 171 /* 172 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 173 * ple_gap: upper bound on the amount of time between two successive 174 * executions of PAUSE in a loop. Also indicate if ple enabled. 175 * According to test, this time is usually smaller than 128 cycles. 176 * ple_window: upper bound on the amount of time a guest is allowed to execute 177 * in a PAUSE loop. Tests indicate that most spinlocks are held for 178 * less than 2^12 cycles 179 * Time is measured based on a counter that runs at the same rate as the TSC, 180 * refer SDM volume 3b section 21.6.13 & 22.1.3. 181 */ 182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 183 module_param(ple_gap, uint, 0444); 184 185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 186 module_param(ple_window, uint, 0444); 187 188 /* Default doubles per-vcpu window every exit. */ 189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 190 module_param(ple_window_grow, uint, 0444); 191 192 /* Default resets per-vcpu window every exit to ple_window. */ 193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 194 module_param(ple_window_shrink, uint, 0444); 195 196 /* Default is to compute the maximum so we can never overflow. */ 197 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 198 module_param(ple_window_max, uint, 0444); 199 200 /* Default is SYSTEM mode, 1 for host-guest mode */ 201 int __read_mostly pt_mode = PT_MODE_SYSTEM; 202 module_param(pt_mode, int, S_IRUGO); 203 204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 206 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 207 208 /* Storage for pre module init parameter parsing */ 209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 210 211 static const struct { 212 const char *option; 213 bool for_parse; 214 } vmentry_l1d_param[] = { 215 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 216 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 217 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 218 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 219 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 220 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 221 }; 222 223 #define L1D_CACHE_ORDER 4 224 static void *vmx_l1d_flush_pages; 225 226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 227 { 228 struct page *page; 229 unsigned int i; 230 231 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 232 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 233 return 0; 234 } 235 236 if (!enable_ept) { 237 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 238 return 0; 239 } 240 241 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 242 u64 msr; 243 244 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 245 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 247 return 0; 248 } 249 } 250 251 /* If set to auto use the default l1tf mitigation method */ 252 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 253 switch (l1tf_mitigation) { 254 case L1TF_MITIGATION_OFF: 255 l1tf = VMENTER_L1D_FLUSH_NEVER; 256 break; 257 case L1TF_MITIGATION_FLUSH_NOWARN: 258 case L1TF_MITIGATION_FLUSH: 259 case L1TF_MITIGATION_FLUSH_NOSMT: 260 l1tf = VMENTER_L1D_FLUSH_COND; 261 break; 262 case L1TF_MITIGATION_FULL: 263 case L1TF_MITIGATION_FULL_FORCE: 264 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 265 break; 266 } 267 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 268 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 269 } 270 271 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 272 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 273 /* 274 * This allocation for vmx_l1d_flush_pages is not tied to a VM 275 * lifetime and so should not be charged to a memcg. 276 */ 277 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 278 if (!page) 279 return -ENOMEM; 280 vmx_l1d_flush_pages = page_address(page); 281 282 /* 283 * Initialize each page with a different pattern in 284 * order to protect against KSM in the nested 285 * virtualization case. 286 */ 287 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 288 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 289 PAGE_SIZE); 290 } 291 } 292 293 l1tf_vmx_mitigation = l1tf; 294 295 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 296 static_branch_enable(&vmx_l1d_should_flush); 297 else 298 static_branch_disable(&vmx_l1d_should_flush); 299 300 if (l1tf == VMENTER_L1D_FLUSH_COND) 301 static_branch_enable(&vmx_l1d_flush_cond); 302 else 303 static_branch_disable(&vmx_l1d_flush_cond); 304 return 0; 305 } 306 307 static int vmentry_l1d_flush_parse(const char *s) 308 { 309 unsigned int i; 310 311 if (s) { 312 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 313 if (vmentry_l1d_param[i].for_parse && 314 sysfs_streq(s, vmentry_l1d_param[i].option)) 315 return i; 316 } 317 } 318 return -EINVAL; 319 } 320 321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 322 { 323 int l1tf, ret; 324 325 l1tf = vmentry_l1d_flush_parse(s); 326 if (l1tf < 0) 327 return l1tf; 328 329 if (!boot_cpu_has(X86_BUG_L1TF)) 330 return 0; 331 332 /* 333 * Has vmx_init() run already? If not then this is the pre init 334 * parameter parsing. In that case just store the value and let 335 * vmx_init() do the proper setup after enable_ept has been 336 * established. 337 */ 338 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 339 vmentry_l1d_flush_param = l1tf; 340 return 0; 341 } 342 343 mutex_lock(&vmx_l1d_flush_mutex); 344 ret = vmx_setup_l1d_flush(l1tf); 345 mutex_unlock(&vmx_l1d_flush_mutex); 346 return ret; 347 } 348 349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 350 { 351 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 352 return sprintf(s, "???\n"); 353 354 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 355 } 356 357 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 358 .set = vmentry_l1d_flush_set, 359 .get = vmentry_l1d_flush_get, 360 }; 361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 362 363 static u32 vmx_segment_access_rights(struct kvm_segment *var); 364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, 365 u32 msr, int type); 366 367 void vmx_vmexit(void); 368 369 #define vmx_insn_failed(fmt...) \ 370 do { \ 371 WARN_ONCE(1, fmt); \ 372 pr_warn_ratelimited(fmt); \ 373 } while (0) 374 375 asmlinkage void vmread_error(unsigned long field, bool fault) 376 { 377 if (fault) 378 kvm_spurious_fault(); 379 else 380 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 381 } 382 383 noinline void vmwrite_error(unsigned long field, unsigned long value) 384 { 385 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 386 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 387 } 388 389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 390 { 391 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 392 } 393 394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 395 { 396 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 397 } 398 399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 400 { 401 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 402 ext, vpid, gva); 403 } 404 405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 406 { 407 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 408 ext, eptp, gpa); 409 } 410 411 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 412 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 413 /* 414 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 415 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 416 */ 417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 418 419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 420 static DEFINE_SPINLOCK(vmx_vpid_lock); 421 422 struct vmcs_config vmcs_config; 423 struct vmx_capability vmx_capability; 424 425 #define VMX_SEGMENT_FIELD(seg) \ 426 [VCPU_SREG_##seg] = { \ 427 .selector = GUEST_##seg##_SELECTOR, \ 428 .base = GUEST_##seg##_BASE, \ 429 .limit = GUEST_##seg##_LIMIT, \ 430 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 431 } 432 433 static const struct kvm_vmx_segment_field { 434 unsigned selector; 435 unsigned base; 436 unsigned limit; 437 unsigned ar_bytes; 438 } kvm_vmx_segment_fields[] = { 439 VMX_SEGMENT_FIELD(CS), 440 VMX_SEGMENT_FIELD(DS), 441 VMX_SEGMENT_FIELD(ES), 442 VMX_SEGMENT_FIELD(FS), 443 VMX_SEGMENT_FIELD(GS), 444 VMX_SEGMENT_FIELD(SS), 445 VMX_SEGMENT_FIELD(TR), 446 VMX_SEGMENT_FIELD(LDTR), 447 }; 448 449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 450 { 451 vmx->segment_cache.bitmask = 0; 452 } 453 454 static unsigned long host_idt_base; 455 456 /* 457 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 458 * will emulate SYSCALL in legacy mode if the vendor string in guest 459 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 460 * support this emulation, IA32_STAR must always be included in 461 * vmx_uret_msrs_list[], even in i386 builds. 462 */ 463 static const u32 vmx_uret_msrs_list[] = { 464 #ifdef CONFIG_X86_64 465 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 466 #endif 467 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 468 MSR_IA32_TSX_CTRL, 469 }; 470 471 #if IS_ENABLED(CONFIG_HYPERV) 472 static bool __read_mostly enlightened_vmcs = true; 473 module_param(enlightened_vmcs, bool, 0444); 474 475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */ 476 static void check_ept_pointer_match(struct kvm *kvm) 477 { 478 struct kvm_vcpu *vcpu; 479 u64 tmp_eptp = INVALID_PAGE; 480 int i; 481 482 kvm_for_each_vcpu(i, vcpu, kvm) { 483 if (!VALID_PAGE(tmp_eptp)) { 484 tmp_eptp = to_vmx(vcpu)->ept_pointer; 485 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { 486 to_kvm_vmx(kvm)->ept_pointers_match 487 = EPT_POINTERS_MISMATCH; 488 return; 489 } 490 } 491 492 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; 493 } 494 495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 496 void *data) 497 { 498 struct kvm_tlb_range *range = data; 499 500 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 501 range->pages); 502 } 503 504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, 505 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) 506 { 507 u64 ept_pointer = to_vmx(vcpu)->ept_pointer; 508 509 /* 510 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address 511 * of the base of EPT PML4 table, strip off EPT configuration 512 * information. 513 */ 514 if (range) 515 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, 516 kvm_fill_hv_flush_list_func, (void *)range); 517 else 518 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); 519 } 520 521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 522 struct kvm_tlb_range *range) 523 { 524 struct kvm_vcpu *vcpu; 525 int ret = 0, i; 526 527 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 528 529 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) 530 check_ept_pointer_match(kvm); 531 532 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { 533 kvm_for_each_vcpu(i, vcpu, kvm) { 534 /* If ept_pointer is invalid pointer, bypass flush request. */ 535 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) 536 ret |= __hv_remote_flush_tlb_with_range( 537 kvm, vcpu, range); 538 } 539 } else { 540 ret = __hv_remote_flush_tlb_with_range(kvm, 541 kvm_get_vcpu(kvm, 0), range); 542 } 543 544 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 545 return ret; 546 } 547 static int hv_remote_flush_tlb(struct kvm *kvm) 548 { 549 return hv_remote_flush_tlb_with_range(kvm, NULL); 550 } 551 552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 553 { 554 struct hv_enlightened_vmcs *evmcs; 555 struct hv_partition_assist_pg **p_hv_pa_pg = 556 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 557 /* 558 * Synthetic VM-Exit is not enabled in current code and so All 559 * evmcs in singe VM shares same assist page. 560 */ 561 if (!*p_hv_pa_pg) 562 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL); 563 564 if (!*p_hv_pa_pg) 565 return -ENOMEM; 566 567 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 568 569 evmcs->partition_assist_page = 570 __pa(*p_hv_pa_pg); 571 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 572 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 573 574 return 0; 575 } 576 577 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 578 579 /* 580 * Comment's format: document - errata name - stepping - processor name. 581 * Refer from 582 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 583 */ 584 static u32 vmx_preemption_cpu_tfms[] = { 585 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 586 0x000206E6, 587 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 588 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 589 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 590 0x00020652, 591 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 592 0x00020655, 593 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 594 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 595 /* 596 * 320767.pdf - AAP86 - B1 - 597 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 598 */ 599 0x000106E5, 600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 601 0x000106A0, 602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 603 0x000106A1, 604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 605 0x000106A4, 606 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 607 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 608 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 609 0x000106A5, 610 /* Xeon E3-1220 V2 */ 611 0x000306A8, 612 }; 613 614 static inline bool cpu_has_broken_vmx_preemption_timer(void) 615 { 616 u32 eax = cpuid_eax(0x00000001), i; 617 618 /* Clear the reserved bits */ 619 eax &= ~(0x3U << 14 | 0xfU << 28); 620 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 621 if (eax == vmx_preemption_cpu_tfms[i]) 622 return true; 623 624 return false; 625 } 626 627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 628 { 629 return flexpriority_enabled && lapic_in_kernel(vcpu); 630 } 631 632 static inline bool report_flexpriority(void) 633 { 634 return flexpriority_enabled; 635 } 636 637 static int possible_passthrough_msr_slot(u32 msr) 638 { 639 u32 i; 640 641 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 642 if (vmx_possible_passthrough_msrs[i] == msr) 643 return i; 644 645 return -ENOENT; 646 } 647 648 static bool is_valid_passthrough_msr(u32 msr) 649 { 650 bool r; 651 652 switch (msr) { 653 case 0x800 ... 0x8ff: 654 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 655 return true; 656 case MSR_IA32_RTIT_STATUS: 657 case MSR_IA32_RTIT_OUTPUT_BASE: 658 case MSR_IA32_RTIT_OUTPUT_MASK: 659 case MSR_IA32_RTIT_CR3_MATCH: 660 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 661 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 662 case MSR_LBR_SELECT: 663 case MSR_LBR_TOS: 664 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 665 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 666 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 667 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 668 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 669 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 670 return true; 671 } 672 673 r = possible_passthrough_msr_slot(msr) != -ENOENT; 674 675 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 676 677 return r; 678 } 679 680 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 681 { 682 int i; 683 684 for (i = 0; i < vmx->nr_uret_msrs; ++i) 685 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr) 686 return i; 687 return -1; 688 } 689 690 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 691 { 692 int i; 693 694 i = __vmx_find_uret_msr(vmx, msr); 695 if (i >= 0) 696 return &vmx->guest_uret_msrs[i]; 697 return NULL; 698 } 699 700 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 701 struct vmx_uret_msr *msr, u64 data) 702 { 703 int ret = 0; 704 705 u64 old_msr_data = msr->data; 706 msr->data = data; 707 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) { 708 preempt_disable(); 709 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask); 710 preempt_enable(); 711 if (ret) 712 msr->data = old_msr_data; 713 } 714 return ret; 715 } 716 717 #ifdef CONFIG_KEXEC_CORE 718 static void crash_vmclear_local_loaded_vmcss(void) 719 { 720 int cpu = raw_smp_processor_id(); 721 struct loaded_vmcs *v; 722 723 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 724 loaded_vmcss_on_cpu_link) 725 vmcs_clear(v->vmcs); 726 } 727 #endif /* CONFIG_KEXEC_CORE */ 728 729 static void __loaded_vmcs_clear(void *arg) 730 { 731 struct loaded_vmcs *loaded_vmcs = arg; 732 int cpu = raw_smp_processor_id(); 733 734 if (loaded_vmcs->cpu != cpu) 735 return; /* vcpu migration can race with cpu offline */ 736 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 737 per_cpu(current_vmcs, cpu) = NULL; 738 739 vmcs_clear(loaded_vmcs->vmcs); 740 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 741 vmcs_clear(loaded_vmcs->shadow_vmcs); 742 743 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 744 745 /* 746 * Ensure all writes to loaded_vmcs, including deleting it from its 747 * current percpu list, complete before setting loaded_vmcs->vcpu to 748 * -1, otherwise a different cpu can see vcpu == -1 first and add 749 * loaded_vmcs to its percpu list before it's deleted from this cpu's 750 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 751 */ 752 smp_wmb(); 753 754 loaded_vmcs->cpu = -1; 755 loaded_vmcs->launched = 0; 756 } 757 758 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 759 { 760 int cpu = loaded_vmcs->cpu; 761 762 if (cpu != -1) 763 smp_call_function_single(cpu, 764 __loaded_vmcs_clear, loaded_vmcs, 1); 765 } 766 767 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 768 unsigned field) 769 { 770 bool ret; 771 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 772 773 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 774 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 775 vmx->segment_cache.bitmask = 0; 776 } 777 ret = vmx->segment_cache.bitmask & mask; 778 vmx->segment_cache.bitmask |= mask; 779 return ret; 780 } 781 782 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 783 { 784 u16 *p = &vmx->segment_cache.seg[seg].selector; 785 786 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 787 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 788 return *p; 789 } 790 791 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 792 { 793 ulong *p = &vmx->segment_cache.seg[seg].base; 794 795 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 796 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 797 return *p; 798 } 799 800 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 801 { 802 u32 *p = &vmx->segment_cache.seg[seg].limit; 803 804 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 805 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 806 return *p; 807 } 808 809 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 810 { 811 u32 *p = &vmx->segment_cache.seg[seg].ar; 812 813 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 814 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 815 return *p; 816 } 817 818 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 819 { 820 u32 eb; 821 822 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 823 (1u << DB_VECTOR) | (1u << AC_VECTOR); 824 /* 825 * Guest access to VMware backdoor ports could legitimately 826 * trigger #GP because of TSS I/O permission bitmap. 827 * We intercept those #GP and allow access to them anyway 828 * as VMware does. 829 */ 830 if (enable_vmware_backdoor) 831 eb |= (1u << GP_VECTOR); 832 if ((vcpu->guest_debug & 833 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 834 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 835 eb |= 1u << BP_VECTOR; 836 if (to_vmx(vcpu)->rmode.vm86_active) 837 eb = ~0; 838 if (!vmx_need_pf_intercept(vcpu)) 839 eb &= ~(1u << PF_VECTOR); 840 841 /* When we are running a nested L2 guest and L1 specified for it a 842 * certain exception bitmap, we must trap the same exceptions and pass 843 * them to L1. When running L2, we will only handle the exceptions 844 * specified above if L1 did not want them. 845 */ 846 if (is_guest_mode(vcpu)) 847 eb |= get_vmcs12(vcpu)->exception_bitmap; 848 else { 849 /* 850 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched 851 * between guest and host. In that case we only care about present 852 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in 853 * prepare_vmcs02_rare. 854 */ 855 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR)); 856 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0; 857 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 858 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask); 859 } 860 861 vmcs_write32(EXCEPTION_BITMAP, eb); 862 } 863 864 /* 865 * Check if MSR is intercepted for currently loaded MSR bitmap. 866 */ 867 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 868 { 869 unsigned long *msr_bitmap; 870 int f = sizeof(unsigned long); 871 872 if (!cpu_has_vmx_msr_bitmap()) 873 return true; 874 875 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 876 877 if (msr <= 0x1fff) { 878 return !!test_bit(msr, msr_bitmap + 0x800 / f); 879 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 880 msr &= 0x1fff; 881 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 882 } 883 884 return true; 885 } 886 887 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 888 unsigned long entry, unsigned long exit) 889 { 890 vm_entry_controls_clearbit(vmx, entry); 891 vm_exit_controls_clearbit(vmx, exit); 892 } 893 894 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 895 { 896 unsigned int i; 897 898 for (i = 0; i < m->nr; ++i) { 899 if (m->val[i].index == msr) 900 return i; 901 } 902 return -ENOENT; 903 } 904 905 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 906 { 907 int i; 908 struct msr_autoload *m = &vmx->msr_autoload; 909 910 switch (msr) { 911 case MSR_EFER: 912 if (cpu_has_load_ia32_efer()) { 913 clear_atomic_switch_msr_special(vmx, 914 VM_ENTRY_LOAD_IA32_EFER, 915 VM_EXIT_LOAD_IA32_EFER); 916 return; 917 } 918 break; 919 case MSR_CORE_PERF_GLOBAL_CTRL: 920 if (cpu_has_load_perf_global_ctrl()) { 921 clear_atomic_switch_msr_special(vmx, 922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 924 return; 925 } 926 break; 927 } 928 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 929 if (i < 0) 930 goto skip_guest; 931 --m->guest.nr; 932 m->guest.val[i] = m->guest.val[m->guest.nr]; 933 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 934 935 skip_guest: 936 i = vmx_find_loadstore_msr_slot(&m->host, msr); 937 if (i < 0) 938 return; 939 940 --m->host.nr; 941 m->host.val[i] = m->host.val[m->host.nr]; 942 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 943 } 944 945 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 946 unsigned long entry, unsigned long exit, 947 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 948 u64 guest_val, u64 host_val) 949 { 950 vmcs_write64(guest_val_vmcs, guest_val); 951 if (host_val_vmcs != HOST_IA32_EFER) 952 vmcs_write64(host_val_vmcs, host_val); 953 vm_entry_controls_setbit(vmx, entry); 954 vm_exit_controls_setbit(vmx, exit); 955 } 956 957 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 958 u64 guest_val, u64 host_val, bool entry_only) 959 { 960 int i, j = 0; 961 struct msr_autoload *m = &vmx->msr_autoload; 962 963 switch (msr) { 964 case MSR_EFER: 965 if (cpu_has_load_ia32_efer()) { 966 add_atomic_switch_msr_special(vmx, 967 VM_ENTRY_LOAD_IA32_EFER, 968 VM_EXIT_LOAD_IA32_EFER, 969 GUEST_IA32_EFER, 970 HOST_IA32_EFER, 971 guest_val, host_val); 972 return; 973 } 974 break; 975 case MSR_CORE_PERF_GLOBAL_CTRL: 976 if (cpu_has_load_perf_global_ctrl()) { 977 add_atomic_switch_msr_special(vmx, 978 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 979 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 980 GUEST_IA32_PERF_GLOBAL_CTRL, 981 HOST_IA32_PERF_GLOBAL_CTRL, 982 guest_val, host_val); 983 return; 984 } 985 break; 986 case MSR_IA32_PEBS_ENABLE: 987 /* PEBS needs a quiescent period after being disabled (to write 988 * a record). Disabling PEBS through VMX MSR swapping doesn't 989 * provide that period, so a CPU could write host's record into 990 * guest's memory. 991 */ 992 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 993 } 994 995 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 996 if (!entry_only) 997 j = vmx_find_loadstore_msr_slot(&m->host, msr); 998 999 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1000 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1001 printk_once(KERN_WARNING "Not enough msr switch entries. " 1002 "Can't add msr %x\n", msr); 1003 return; 1004 } 1005 if (i < 0) { 1006 i = m->guest.nr++; 1007 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1008 } 1009 m->guest.val[i].index = msr; 1010 m->guest.val[i].value = guest_val; 1011 1012 if (entry_only) 1013 return; 1014 1015 if (j < 0) { 1016 j = m->host.nr++; 1017 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1018 } 1019 m->host.val[j].index = msr; 1020 m->host.val[j].value = host_val; 1021 } 1022 1023 static bool update_transition_efer(struct vcpu_vmx *vmx) 1024 { 1025 u64 guest_efer = vmx->vcpu.arch.efer; 1026 u64 ignore_bits = 0; 1027 int i; 1028 1029 /* Shadow paging assumes NX to be available. */ 1030 if (!enable_ept) 1031 guest_efer |= EFER_NX; 1032 1033 /* 1034 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1035 */ 1036 ignore_bits |= EFER_SCE; 1037 #ifdef CONFIG_X86_64 1038 ignore_bits |= EFER_LMA | EFER_LME; 1039 /* SCE is meaningful only in long mode on Intel */ 1040 if (guest_efer & EFER_LMA) 1041 ignore_bits &= ~(u64)EFER_SCE; 1042 #endif 1043 1044 /* 1045 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1046 * On CPUs that support "load IA32_EFER", always switch EFER 1047 * atomically, since it's faster than switching it manually. 1048 */ 1049 if (cpu_has_load_ia32_efer() || 1050 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1051 if (!(guest_efer & EFER_LMA)) 1052 guest_efer &= ~EFER_LME; 1053 if (guest_efer != host_efer) 1054 add_atomic_switch_msr(vmx, MSR_EFER, 1055 guest_efer, host_efer, false); 1056 else 1057 clear_atomic_switch_msr(vmx, MSR_EFER); 1058 return false; 1059 } 1060 1061 i = __vmx_find_uret_msr(vmx, MSR_EFER); 1062 if (i < 0) 1063 return false; 1064 1065 clear_atomic_switch_msr(vmx, MSR_EFER); 1066 1067 guest_efer &= ~ignore_bits; 1068 guest_efer |= host_efer & ignore_bits; 1069 1070 vmx->guest_uret_msrs[i].data = guest_efer; 1071 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1072 1073 return true; 1074 } 1075 1076 #ifdef CONFIG_X86_32 1077 /* 1078 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1079 * VMCS rather than the segment table. KVM uses this helper to figure 1080 * out the current bases to poke them into the VMCS before entry. 1081 */ 1082 static unsigned long segment_base(u16 selector) 1083 { 1084 struct desc_struct *table; 1085 unsigned long v; 1086 1087 if (!(selector & ~SEGMENT_RPL_MASK)) 1088 return 0; 1089 1090 table = get_current_gdt_ro(); 1091 1092 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1093 u16 ldt_selector = kvm_read_ldt(); 1094 1095 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1096 return 0; 1097 1098 table = (struct desc_struct *)segment_base(ldt_selector); 1099 } 1100 v = get_desc_base(&table[selector >> 3]); 1101 return v; 1102 } 1103 #endif 1104 1105 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1106 { 1107 return vmx_pt_mode_is_host_guest() && 1108 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1109 } 1110 1111 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1112 { 1113 /* The base must be 128-byte aligned and a legal physical address. */ 1114 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1115 } 1116 1117 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1118 { 1119 u32 i; 1120 1121 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1122 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1123 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1124 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1125 for (i = 0; i < addr_range; i++) { 1126 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1127 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1128 } 1129 } 1130 1131 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1132 { 1133 u32 i; 1134 1135 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1136 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1137 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1138 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1139 for (i = 0; i < addr_range; i++) { 1140 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1141 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1142 } 1143 } 1144 1145 static void pt_guest_enter(struct vcpu_vmx *vmx) 1146 { 1147 if (vmx_pt_mode_is_system()) 1148 return; 1149 1150 /* 1151 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1152 * Save host state before VM entry. 1153 */ 1154 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1155 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1156 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1157 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1158 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1159 } 1160 } 1161 1162 static void pt_guest_exit(struct vcpu_vmx *vmx) 1163 { 1164 if (vmx_pt_mode_is_system()) 1165 return; 1166 1167 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1168 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1169 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1170 } 1171 1172 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1173 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1174 } 1175 1176 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1177 unsigned long fs_base, unsigned long gs_base) 1178 { 1179 if (unlikely(fs_sel != host->fs_sel)) { 1180 if (!(fs_sel & 7)) 1181 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1182 else 1183 vmcs_write16(HOST_FS_SELECTOR, 0); 1184 host->fs_sel = fs_sel; 1185 } 1186 if (unlikely(gs_sel != host->gs_sel)) { 1187 if (!(gs_sel & 7)) 1188 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1189 else 1190 vmcs_write16(HOST_GS_SELECTOR, 0); 1191 host->gs_sel = gs_sel; 1192 } 1193 if (unlikely(fs_base != host->fs_base)) { 1194 vmcs_writel(HOST_FS_BASE, fs_base); 1195 host->fs_base = fs_base; 1196 } 1197 if (unlikely(gs_base != host->gs_base)) { 1198 vmcs_writel(HOST_GS_BASE, gs_base); 1199 host->gs_base = gs_base; 1200 } 1201 } 1202 1203 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1204 { 1205 struct vcpu_vmx *vmx = to_vmx(vcpu); 1206 struct vmcs_host_state *host_state; 1207 #ifdef CONFIG_X86_64 1208 int cpu = raw_smp_processor_id(); 1209 #endif 1210 unsigned long fs_base, gs_base; 1211 u16 fs_sel, gs_sel; 1212 int i; 1213 1214 vmx->req_immediate_exit = false; 1215 1216 /* 1217 * Note that guest MSRs to be saved/restored can also be changed 1218 * when guest state is loaded. This happens when guest transitions 1219 * to/from long-mode by setting MSR_EFER.LMA. 1220 */ 1221 if (!vmx->guest_uret_msrs_loaded) { 1222 vmx->guest_uret_msrs_loaded = true; 1223 for (i = 0; i < vmx->nr_active_uret_msrs; ++i) 1224 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot, 1225 vmx->guest_uret_msrs[i].data, 1226 vmx->guest_uret_msrs[i].mask); 1227 1228 } 1229 1230 if (vmx->nested.need_vmcs12_to_shadow_sync) 1231 nested_sync_vmcs12_to_shadow(vcpu); 1232 1233 if (vmx->guest_state_loaded) 1234 return; 1235 1236 host_state = &vmx->loaded_vmcs->host_state; 1237 1238 /* 1239 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1240 * allow segment selectors with cpl > 0 or ti == 1. 1241 */ 1242 host_state->ldt_sel = kvm_read_ldt(); 1243 1244 #ifdef CONFIG_X86_64 1245 savesegment(ds, host_state->ds_sel); 1246 savesegment(es, host_state->es_sel); 1247 1248 gs_base = cpu_kernelmode_gs_base(cpu); 1249 if (likely(is_64bit_mm(current->mm))) { 1250 current_save_fsgs(); 1251 fs_sel = current->thread.fsindex; 1252 gs_sel = current->thread.gsindex; 1253 fs_base = current->thread.fsbase; 1254 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1255 } else { 1256 savesegment(fs, fs_sel); 1257 savesegment(gs, gs_sel); 1258 fs_base = read_msr(MSR_FS_BASE); 1259 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1260 } 1261 1262 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1263 #else 1264 savesegment(fs, fs_sel); 1265 savesegment(gs, gs_sel); 1266 fs_base = segment_base(fs_sel); 1267 gs_base = segment_base(gs_sel); 1268 #endif 1269 1270 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1271 vmx->guest_state_loaded = true; 1272 } 1273 1274 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1275 { 1276 struct vmcs_host_state *host_state; 1277 1278 if (!vmx->guest_state_loaded) 1279 return; 1280 1281 host_state = &vmx->loaded_vmcs->host_state; 1282 1283 ++vmx->vcpu.stat.host_state_reload; 1284 1285 #ifdef CONFIG_X86_64 1286 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1287 #endif 1288 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1289 kvm_load_ldt(host_state->ldt_sel); 1290 #ifdef CONFIG_X86_64 1291 load_gs_index(host_state->gs_sel); 1292 #else 1293 loadsegment(gs, host_state->gs_sel); 1294 #endif 1295 } 1296 if (host_state->fs_sel & 7) 1297 loadsegment(fs, host_state->fs_sel); 1298 #ifdef CONFIG_X86_64 1299 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1300 loadsegment(ds, host_state->ds_sel); 1301 loadsegment(es, host_state->es_sel); 1302 } 1303 #endif 1304 invalidate_tss_limit(); 1305 #ifdef CONFIG_X86_64 1306 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1307 #endif 1308 load_fixmap_gdt(raw_smp_processor_id()); 1309 vmx->guest_state_loaded = false; 1310 vmx->guest_uret_msrs_loaded = false; 1311 } 1312 1313 #ifdef CONFIG_X86_64 1314 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1315 { 1316 preempt_disable(); 1317 if (vmx->guest_state_loaded) 1318 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1319 preempt_enable(); 1320 return vmx->msr_guest_kernel_gs_base; 1321 } 1322 1323 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1324 { 1325 preempt_disable(); 1326 if (vmx->guest_state_loaded) 1327 wrmsrl(MSR_KERNEL_GS_BASE, data); 1328 preempt_enable(); 1329 vmx->msr_guest_kernel_gs_base = data; 1330 } 1331 #endif 1332 1333 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1334 struct loaded_vmcs *buddy) 1335 { 1336 struct vcpu_vmx *vmx = to_vmx(vcpu); 1337 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1338 struct vmcs *prev; 1339 1340 if (!already_loaded) { 1341 loaded_vmcs_clear(vmx->loaded_vmcs); 1342 local_irq_disable(); 1343 1344 /* 1345 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1346 * this cpu's percpu list, otherwise it may not yet be deleted 1347 * from its previous cpu's percpu list. Pairs with the 1348 * smb_wmb() in __loaded_vmcs_clear(). 1349 */ 1350 smp_rmb(); 1351 1352 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1353 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1354 local_irq_enable(); 1355 } 1356 1357 prev = per_cpu(current_vmcs, cpu); 1358 if (prev != vmx->loaded_vmcs->vmcs) { 1359 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1360 vmcs_load(vmx->loaded_vmcs->vmcs); 1361 1362 /* 1363 * No indirect branch prediction barrier needed when switching 1364 * the active VMCS within a guest, e.g. on nested VM-Enter. 1365 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1366 */ 1367 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1368 indirect_branch_prediction_barrier(); 1369 } 1370 1371 if (!already_loaded) { 1372 void *gdt = get_current_gdt_ro(); 1373 unsigned long sysenter_esp; 1374 1375 /* 1376 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1377 * TLB entries from its previous association with the vCPU. 1378 */ 1379 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1380 1381 /* 1382 * Linux uses per-cpu TSS and GDT, so set these when switching 1383 * processors. See 22.2.4. 1384 */ 1385 vmcs_writel(HOST_TR_BASE, 1386 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1387 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1388 1389 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1390 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1391 1392 vmx->loaded_vmcs->cpu = cpu; 1393 } 1394 1395 /* Setup TSC multiplier */ 1396 if (kvm_has_tsc_control && 1397 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1398 decache_tsc_multiplier(vmx); 1399 } 1400 1401 /* 1402 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1403 * vcpu mutex is already taken. 1404 */ 1405 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1406 { 1407 struct vcpu_vmx *vmx = to_vmx(vcpu); 1408 1409 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1410 1411 vmx_vcpu_pi_load(vcpu, cpu); 1412 1413 vmx->host_debugctlmsr = get_debugctlmsr(); 1414 } 1415 1416 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1417 { 1418 vmx_vcpu_pi_put(vcpu); 1419 1420 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1421 } 1422 1423 static bool emulation_required(struct kvm_vcpu *vcpu) 1424 { 1425 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1426 } 1427 1428 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1429 { 1430 struct vcpu_vmx *vmx = to_vmx(vcpu); 1431 unsigned long rflags, save_rflags; 1432 1433 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1434 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1435 rflags = vmcs_readl(GUEST_RFLAGS); 1436 if (vmx->rmode.vm86_active) { 1437 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1438 save_rflags = vmx->rmode.save_rflags; 1439 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1440 } 1441 vmx->rflags = rflags; 1442 } 1443 return vmx->rflags; 1444 } 1445 1446 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1447 { 1448 struct vcpu_vmx *vmx = to_vmx(vcpu); 1449 unsigned long old_rflags; 1450 1451 if (is_unrestricted_guest(vcpu)) { 1452 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1453 vmx->rflags = rflags; 1454 vmcs_writel(GUEST_RFLAGS, rflags); 1455 return; 1456 } 1457 1458 old_rflags = vmx_get_rflags(vcpu); 1459 vmx->rflags = rflags; 1460 if (vmx->rmode.vm86_active) { 1461 vmx->rmode.save_rflags = rflags; 1462 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1463 } 1464 vmcs_writel(GUEST_RFLAGS, rflags); 1465 1466 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1467 vmx->emulation_required = emulation_required(vcpu); 1468 } 1469 1470 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1471 { 1472 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1473 int ret = 0; 1474 1475 if (interruptibility & GUEST_INTR_STATE_STI) 1476 ret |= KVM_X86_SHADOW_INT_STI; 1477 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1478 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1479 1480 return ret; 1481 } 1482 1483 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1484 { 1485 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1486 u32 interruptibility = interruptibility_old; 1487 1488 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1489 1490 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1491 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1492 else if (mask & KVM_X86_SHADOW_INT_STI) 1493 interruptibility |= GUEST_INTR_STATE_STI; 1494 1495 if ((interruptibility != interruptibility_old)) 1496 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1497 } 1498 1499 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1500 { 1501 struct vcpu_vmx *vmx = to_vmx(vcpu); 1502 unsigned long value; 1503 1504 /* 1505 * Any MSR write that attempts to change bits marked reserved will 1506 * case a #GP fault. 1507 */ 1508 if (data & vmx->pt_desc.ctl_bitmask) 1509 return 1; 1510 1511 /* 1512 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1513 * result in a #GP unless the same write also clears TraceEn. 1514 */ 1515 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1516 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1517 return 1; 1518 1519 /* 1520 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1521 * and FabricEn would cause #GP, if 1522 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1523 */ 1524 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1525 !(data & RTIT_CTL_FABRIC_EN) && 1526 !intel_pt_validate_cap(vmx->pt_desc.caps, 1527 PT_CAP_single_range_output)) 1528 return 1; 1529 1530 /* 1531 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1532 * utilize encodings marked reserved will casue a #GP fault. 1533 */ 1534 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1535 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1536 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1537 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1538 return 1; 1539 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1540 PT_CAP_cycle_thresholds); 1541 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1542 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1543 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1544 return 1; 1545 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1546 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1547 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1548 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1549 return 1; 1550 1551 /* 1552 * If ADDRx_CFG is reserved or the encodings is >2 will 1553 * cause a #GP fault. 1554 */ 1555 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1556 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1557 return 1; 1558 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1559 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1560 return 1; 1561 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1562 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1563 return 1; 1564 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1565 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1566 return 1; 1567 1568 return 0; 1569 } 1570 1571 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1572 { 1573 return true; 1574 } 1575 1576 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1577 { 1578 unsigned long rip, orig_rip; 1579 1580 /* 1581 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1582 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1583 * set when EPT misconfig occurs. In practice, real hardware updates 1584 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1585 * (namely Hyper-V) don't set it due to it being undefined behavior, 1586 * i.e. we end up advancing IP with some random value. 1587 */ 1588 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1589 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1590 orig_rip = kvm_rip_read(vcpu); 1591 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1592 #ifdef CONFIG_X86_64 1593 /* 1594 * We need to mask out the high 32 bits of RIP if not in 64-bit 1595 * mode, but just finding out that we are in 64-bit mode is 1596 * quite expensive. Only do it if there was a carry. 1597 */ 1598 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1599 rip = (u32)rip; 1600 #endif 1601 kvm_rip_write(vcpu, rip); 1602 } else { 1603 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1604 return 0; 1605 } 1606 1607 /* skipping an emulated instruction also counts */ 1608 vmx_set_interrupt_shadow(vcpu, 0); 1609 1610 return 1; 1611 } 1612 1613 /* 1614 * Recognizes a pending MTF VM-exit and records the nested state for later 1615 * delivery. 1616 */ 1617 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1618 { 1619 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1620 struct vcpu_vmx *vmx = to_vmx(vcpu); 1621 1622 if (!is_guest_mode(vcpu)) 1623 return; 1624 1625 /* 1626 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1627 * T-bit traps. As instruction emulation is completed (i.e. at the 1628 * instruction boundary), any #DB exception pending delivery must be a 1629 * debug-trap. Record the pending MTF state to be delivered in 1630 * vmx_check_nested_events(). 1631 */ 1632 if (nested_cpu_has_mtf(vmcs12) && 1633 (!vcpu->arch.exception.pending || 1634 vcpu->arch.exception.nr == DB_VECTOR)) 1635 vmx->nested.mtf_pending = true; 1636 else 1637 vmx->nested.mtf_pending = false; 1638 } 1639 1640 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1641 { 1642 vmx_update_emulated_instruction(vcpu); 1643 return skip_emulated_instruction(vcpu); 1644 } 1645 1646 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1647 { 1648 /* 1649 * Ensure that we clear the HLT state in the VMCS. We don't need to 1650 * explicitly skip the instruction because if the HLT state is set, 1651 * then the instruction is already executing and RIP has already been 1652 * advanced. 1653 */ 1654 if (kvm_hlt_in_guest(vcpu->kvm) && 1655 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1656 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1657 } 1658 1659 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1660 { 1661 struct vcpu_vmx *vmx = to_vmx(vcpu); 1662 unsigned nr = vcpu->arch.exception.nr; 1663 bool has_error_code = vcpu->arch.exception.has_error_code; 1664 u32 error_code = vcpu->arch.exception.error_code; 1665 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1666 1667 kvm_deliver_exception_payload(vcpu); 1668 1669 if (has_error_code) { 1670 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1671 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1672 } 1673 1674 if (vmx->rmode.vm86_active) { 1675 int inc_eip = 0; 1676 if (kvm_exception_is_soft(nr)) 1677 inc_eip = vcpu->arch.event_exit_inst_len; 1678 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1679 return; 1680 } 1681 1682 WARN_ON_ONCE(vmx->emulation_required); 1683 1684 if (kvm_exception_is_soft(nr)) { 1685 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1686 vmx->vcpu.arch.event_exit_inst_len); 1687 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1688 } else 1689 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1690 1691 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1692 1693 vmx_clear_hlt(vcpu); 1694 } 1695 1696 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr) 1697 { 1698 struct vmx_uret_msr tmp; 1699 int from, to; 1700 1701 from = __vmx_find_uret_msr(vmx, msr); 1702 if (from < 0) 1703 return; 1704 to = vmx->nr_active_uret_msrs++; 1705 1706 tmp = vmx->guest_uret_msrs[to]; 1707 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from]; 1708 vmx->guest_uret_msrs[from] = tmp; 1709 } 1710 1711 /* 1712 * Set up the vmcs to automatically save and restore system 1713 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1714 * mode, as fiddling with msrs is very expensive. 1715 */ 1716 static void setup_msrs(struct vcpu_vmx *vmx) 1717 { 1718 vmx->guest_uret_msrs_loaded = false; 1719 vmx->nr_active_uret_msrs = 0; 1720 #ifdef CONFIG_X86_64 1721 /* 1722 * The SYSCALL MSRs are only needed on long mode guests, and only 1723 * when EFER.SCE is set. 1724 */ 1725 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1726 vmx_setup_uret_msr(vmx, MSR_STAR); 1727 vmx_setup_uret_msr(vmx, MSR_LSTAR); 1728 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK); 1729 } 1730 #endif 1731 if (update_transition_efer(vmx)) 1732 vmx_setup_uret_msr(vmx, MSR_EFER); 1733 1734 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1735 vmx_setup_uret_msr(vmx, MSR_TSC_AUX); 1736 1737 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL); 1738 1739 if (cpu_has_vmx_msr_bitmap()) 1740 vmx_update_msr_bitmap(&vmx->vcpu); 1741 } 1742 1743 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1744 { 1745 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1746 u64 g_tsc_offset = 0; 1747 1748 /* 1749 * We're here if L1 chose not to trap WRMSR to TSC. According 1750 * to the spec, this should set L1's TSC; The offset that L1 1751 * set for L2 remains unchanged, and still needs to be added 1752 * to the newly set TSC to get L2's TSC. 1753 */ 1754 if (is_guest_mode(vcpu) && 1755 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)) 1756 g_tsc_offset = vmcs12->tsc_offset; 1757 1758 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1759 vcpu->arch.tsc_offset - g_tsc_offset, 1760 offset); 1761 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1762 return offset + g_tsc_offset; 1763 } 1764 1765 /* 1766 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1767 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1768 * all guests if the "nested" module option is off, and can also be disabled 1769 * for a single guest by disabling its VMX cpuid bit. 1770 */ 1771 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1772 { 1773 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1774 } 1775 1776 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1777 uint64_t val) 1778 { 1779 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1780 1781 return !(val & ~valid_bits); 1782 } 1783 1784 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1785 { 1786 switch (msr->index) { 1787 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1788 if (!nested) 1789 return 1; 1790 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1791 case MSR_IA32_PERF_CAPABILITIES: 1792 msr->data = vmx_get_perf_capabilities(); 1793 return 0; 1794 default: 1795 return KVM_MSR_RET_INVALID; 1796 } 1797 } 1798 1799 /* 1800 * Reads an msr value (of 'msr_index') into 'pdata'. 1801 * Returns 0 on success, non-0 otherwise. 1802 * Assumes vcpu_load() was already called. 1803 */ 1804 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1805 { 1806 struct vcpu_vmx *vmx = to_vmx(vcpu); 1807 struct vmx_uret_msr *msr; 1808 u32 index; 1809 1810 switch (msr_info->index) { 1811 #ifdef CONFIG_X86_64 1812 case MSR_FS_BASE: 1813 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1814 break; 1815 case MSR_GS_BASE: 1816 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1817 break; 1818 case MSR_KERNEL_GS_BASE: 1819 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1820 break; 1821 #endif 1822 case MSR_EFER: 1823 return kvm_get_msr_common(vcpu, msr_info); 1824 case MSR_IA32_TSX_CTRL: 1825 if (!msr_info->host_initiated && 1826 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1827 return 1; 1828 goto find_uret_msr; 1829 case MSR_IA32_UMWAIT_CONTROL: 1830 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1831 return 1; 1832 1833 msr_info->data = vmx->msr_ia32_umwait_control; 1834 break; 1835 case MSR_IA32_SPEC_CTRL: 1836 if (!msr_info->host_initiated && 1837 !guest_has_spec_ctrl_msr(vcpu)) 1838 return 1; 1839 1840 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1841 break; 1842 case MSR_IA32_SYSENTER_CS: 1843 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1844 break; 1845 case MSR_IA32_SYSENTER_EIP: 1846 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1847 break; 1848 case MSR_IA32_SYSENTER_ESP: 1849 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1850 break; 1851 case MSR_IA32_BNDCFGS: 1852 if (!kvm_mpx_supported() || 1853 (!msr_info->host_initiated && 1854 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1855 return 1; 1856 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1857 break; 1858 case MSR_IA32_MCG_EXT_CTL: 1859 if (!msr_info->host_initiated && 1860 !(vmx->msr_ia32_feature_control & 1861 FEAT_CTL_LMCE_ENABLED)) 1862 return 1; 1863 msr_info->data = vcpu->arch.mcg_ext_ctl; 1864 break; 1865 case MSR_IA32_FEAT_CTL: 1866 msr_info->data = vmx->msr_ia32_feature_control; 1867 break; 1868 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1869 if (!nested_vmx_allowed(vcpu)) 1870 return 1; 1871 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1872 &msr_info->data)) 1873 return 1; 1874 /* 1875 * Enlightened VMCS v1 doesn't have certain fields, but buggy 1876 * Hyper-V versions are still trying to use corresponding 1877 * features when they are exposed. Filter out the essential 1878 * minimum. 1879 */ 1880 if (!msr_info->host_initiated && 1881 vmx->nested.enlightened_vmcs_enabled) 1882 nested_evmcs_filter_control_msr(msr_info->index, 1883 &msr_info->data); 1884 break; 1885 case MSR_IA32_RTIT_CTL: 1886 if (!vmx_pt_mode_is_host_guest()) 1887 return 1; 1888 msr_info->data = vmx->pt_desc.guest.ctl; 1889 break; 1890 case MSR_IA32_RTIT_STATUS: 1891 if (!vmx_pt_mode_is_host_guest()) 1892 return 1; 1893 msr_info->data = vmx->pt_desc.guest.status; 1894 break; 1895 case MSR_IA32_RTIT_CR3_MATCH: 1896 if (!vmx_pt_mode_is_host_guest() || 1897 !intel_pt_validate_cap(vmx->pt_desc.caps, 1898 PT_CAP_cr3_filtering)) 1899 return 1; 1900 msr_info->data = vmx->pt_desc.guest.cr3_match; 1901 break; 1902 case MSR_IA32_RTIT_OUTPUT_BASE: 1903 if (!vmx_pt_mode_is_host_guest() || 1904 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1905 PT_CAP_topa_output) && 1906 !intel_pt_validate_cap(vmx->pt_desc.caps, 1907 PT_CAP_single_range_output))) 1908 return 1; 1909 msr_info->data = vmx->pt_desc.guest.output_base; 1910 break; 1911 case MSR_IA32_RTIT_OUTPUT_MASK: 1912 if (!vmx_pt_mode_is_host_guest() || 1913 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1914 PT_CAP_topa_output) && 1915 !intel_pt_validate_cap(vmx->pt_desc.caps, 1916 PT_CAP_single_range_output))) 1917 return 1; 1918 msr_info->data = vmx->pt_desc.guest.output_mask; 1919 break; 1920 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1921 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1922 if (!vmx_pt_mode_is_host_guest() || 1923 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1924 PT_CAP_num_address_ranges))) 1925 return 1; 1926 if (index % 2) 1927 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1928 else 1929 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1930 break; 1931 case MSR_TSC_AUX: 1932 if (!msr_info->host_initiated && 1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1934 return 1; 1935 goto find_uret_msr; 1936 case MSR_IA32_DEBUGCTLMSR: 1937 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1938 break; 1939 default: 1940 find_uret_msr: 1941 msr = vmx_find_uret_msr(vmx, msr_info->index); 1942 if (msr) { 1943 msr_info->data = msr->data; 1944 break; 1945 } 1946 return kvm_get_msr_common(vcpu, msr_info); 1947 } 1948 1949 return 0; 1950 } 1951 1952 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1953 u64 data) 1954 { 1955 #ifdef CONFIG_X86_64 1956 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1957 return (u32)data; 1958 #endif 1959 return (unsigned long)data; 1960 } 1961 1962 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1963 { 1964 u64 debugctl = vmx_supported_debugctl(); 1965 1966 if (!intel_pmu_lbr_is_enabled(vcpu)) 1967 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1968 1969 return debugctl; 1970 } 1971 1972 /* 1973 * Writes msr value into the appropriate "register". 1974 * Returns 0 on success, non-0 otherwise. 1975 * Assumes vcpu_load() was already called. 1976 */ 1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1978 { 1979 struct vcpu_vmx *vmx = to_vmx(vcpu); 1980 struct vmx_uret_msr *msr; 1981 int ret = 0; 1982 u32 msr_index = msr_info->index; 1983 u64 data = msr_info->data; 1984 u32 index; 1985 1986 switch (msr_index) { 1987 case MSR_EFER: 1988 ret = kvm_set_msr_common(vcpu, msr_info); 1989 break; 1990 #ifdef CONFIG_X86_64 1991 case MSR_FS_BASE: 1992 vmx_segment_cache_clear(vmx); 1993 vmcs_writel(GUEST_FS_BASE, data); 1994 break; 1995 case MSR_GS_BASE: 1996 vmx_segment_cache_clear(vmx); 1997 vmcs_writel(GUEST_GS_BASE, data); 1998 break; 1999 case MSR_KERNEL_GS_BASE: 2000 vmx_write_guest_kernel_gs_base(vmx, data); 2001 break; 2002 #endif 2003 case MSR_IA32_SYSENTER_CS: 2004 if (is_guest_mode(vcpu)) 2005 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2006 vmcs_write32(GUEST_SYSENTER_CS, data); 2007 break; 2008 case MSR_IA32_SYSENTER_EIP: 2009 if (is_guest_mode(vcpu)) { 2010 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2011 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2012 } 2013 vmcs_writel(GUEST_SYSENTER_EIP, data); 2014 break; 2015 case MSR_IA32_SYSENTER_ESP: 2016 if (is_guest_mode(vcpu)) { 2017 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2018 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2019 } 2020 vmcs_writel(GUEST_SYSENTER_ESP, data); 2021 break; 2022 case MSR_IA32_DEBUGCTLMSR: { 2023 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2024 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2025 if (report_ignored_msrs) 2026 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2027 __func__, data); 2028 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2029 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2030 } 2031 2032 if (invalid) 2033 return 1; 2034 2035 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2036 VM_EXIT_SAVE_DEBUG_CONTROLS) 2037 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2038 2039 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2040 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2041 (data & DEBUGCTLMSR_LBR)) 2042 intel_pmu_create_guest_lbr_event(vcpu); 2043 return 0; 2044 } 2045 case MSR_IA32_BNDCFGS: 2046 if (!kvm_mpx_supported() || 2047 (!msr_info->host_initiated && 2048 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2049 return 1; 2050 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2051 (data & MSR_IA32_BNDCFGS_RSVD)) 2052 return 1; 2053 vmcs_write64(GUEST_BNDCFGS, data); 2054 break; 2055 case MSR_IA32_UMWAIT_CONTROL: 2056 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2057 return 1; 2058 2059 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2060 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2061 return 1; 2062 2063 vmx->msr_ia32_umwait_control = data; 2064 break; 2065 case MSR_IA32_SPEC_CTRL: 2066 if (!msr_info->host_initiated && 2067 !guest_has_spec_ctrl_msr(vcpu)) 2068 return 1; 2069 2070 if (kvm_spec_ctrl_test_value(data)) 2071 return 1; 2072 2073 vmx->spec_ctrl = data; 2074 if (!data) 2075 break; 2076 2077 /* 2078 * For non-nested: 2079 * When it's written (to non-zero) for the first time, pass 2080 * it through. 2081 * 2082 * For nested: 2083 * The handling of the MSR bitmap for L2 guests is done in 2084 * nested_vmx_prepare_msr_bitmap. We should not touch the 2085 * vmcs02.msr_bitmap here since it gets completely overwritten 2086 * in the merging. We update the vmcs01 here for L1 as well 2087 * since it will end up touching the MSR anyway now. 2088 */ 2089 vmx_disable_intercept_for_msr(vcpu, 2090 MSR_IA32_SPEC_CTRL, 2091 MSR_TYPE_RW); 2092 break; 2093 case MSR_IA32_TSX_CTRL: 2094 if (!msr_info->host_initiated && 2095 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2096 return 1; 2097 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2098 return 1; 2099 goto find_uret_msr; 2100 case MSR_IA32_PRED_CMD: 2101 if (!msr_info->host_initiated && 2102 !guest_has_pred_cmd_msr(vcpu)) 2103 return 1; 2104 2105 if (data & ~PRED_CMD_IBPB) 2106 return 1; 2107 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2108 return 1; 2109 if (!data) 2110 break; 2111 2112 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2113 2114 /* 2115 * For non-nested: 2116 * When it's written (to non-zero) for the first time, pass 2117 * it through. 2118 * 2119 * For nested: 2120 * The handling of the MSR bitmap for L2 guests is done in 2121 * nested_vmx_prepare_msr_bitmap. We should not touch the 2122 * vmcs02.msr_bitmap here since it gets completely overwritten 2123 * in the merging. 2124 */ 2125 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2126 break; 2127 case MSR_IA32_CR_PAT: 2128 if (!kvm_pat_valid(data)) 2129 return 1; 2130 2131 if (is_guest_mode(vcpu) && 2132 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2133 get_vmcs12(vcpu)->guest_ia32_pat = data; 2134 2135 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2136 vmcs_write64(GUEST_IA32_PAT, data); 2137 vcpu->arch.pat = data; 2138 break; 2139 } 2140 ret = kvm_set_msr_common(vcpu, msr_info); 2141 break; 2142 case MSR_IA32_TSC_ADJUST: 2143 ret = kvm_set_msr_common(vcpu, msr_info); 2144 break; 2145 case MSR_IA32_MCG_EXT_CTL: 2146 if ((!msr_info->host_initiated && 2147 !(to_vmx(vcpu)->msr_ia32_feature_control & 2148 FEAT_CTL_LMCE_ENABLED)) || 2149 (data & ~MCG_EXT_CTL_LMCE_EN)) 2150 return 1; 2151 vcpu->arch.mcg_ext_ctl = data; 2152 break; 2153 case MSR_IA32_FEAT_CTL: 2154 if (!vmx_feature_control_msr_valid(vcpu, data) || 2155 (to_vmx(vcpu)->msr_ia32_feature_control & 2156 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2157 return 1; 2158 vmx->msr_ia32_feature_control = data; 2159 if (msr_info->host_initiated && data == 0) 2160 vmx_leave_nested(vcpu); 2161 break; 2162 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2163 if (!msr_info->host_initiated) 2164 return 1; /* they are read-only */ 2165 if (!nested_vmx_allowed(vcpu)) 2166 return 1; 2167 return vmx_set_vmx_msr(vcpu, msr_index, data); 2168 case MSR_IA32_RTIT_CTL: 2169 if (!vmx_pt_mode_is_host_guest() || 2170 vmx_rtit_ctl_check(vcpu, data) || 2171 vmx->nested.vmxon) 2172 return 1; 2173 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2174 vmx->pt_desc.guest.ctl = data; 2175 pt_update_intercept_for_msr(vcpu); 2176 break; 2177 case MSR_IA32_RTIT_STATUS: 2178 if (!pt_can_write_msr(vmx)) 2179 return 1; 2180 if (data & MSR_IA32_RTIT_STATUS_MASK) 2181 return 1; 2182 vmx->pt_desc.guest.status = data; 2183 break; 2184 case MSR_IA32_RTIT_CR3_MATCH: 2185 if (!pt_can_write_msr(vmx)) 2186 return 1; 2187 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2188 PT_CAP_cr3_filtering)) 2189 return 1; 2190 vmx->pt_desc.guest.cr3_match = data; 2191 break; 2192 case MSR_IA32_RTIT_OUTPUT_BASE: 2193 if (!pt_can_write_msr(vmx)) 2194 return 1; 2195 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2196 PT_CAP_topa_output) && 2197 !intel_pt_validate_cap(vmx->pt_desc.caps, 2198 PT_CAP_single_range_output)) 2199 return 1; 2200 if (!pt_output_base_valid(vcpu, data)) 2201 return 1; 2202 vmx->pt_desc.guest.output_base = data; 2203 break; 2204 case MSR_IA32_RTIT_OUTPUT_MASK: 2205 if (!pt_can_write_msr(vmx)) 2206 return 1; 2207 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2208 PT_CAP_topa_output) && 2209 !intel_pt_validate_cap(vmx->pt_desc.caps, 2210 PT_CAP_single_range_output)) 2211 return 1; 2212 vmx->pt_desc.guest.output_mask = data; 2213 break; 2214 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2215 if (!pt_can_write_msr(vmx)) 2216 return 1; 2217 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2218 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2219 PT_CAP_num_address_ranges)) 2220 return 1; 2221 if (is_noncanonical_address(data, vcpu)) 2222 return 1; 2223 if (index % 2) 2224 vmx->pt_desc.guest.addr_b[index / 2] = data; 2225 else 2226 vmx->pt_desc.guest.addr_a[index / 2] = data; 2227 break; 2228 case MSR_TSC_AUX: 2229 if (!msr_info->host_initiated && 2230 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2231 return 1; 2232 /* Check reserved bit, higher 32 bits should be zero */ 2233 if ((data >> 32) != 0) 2234 return 1; 2235 goto find_uret_msr; 2236 case MSR_IA32_PERF_CAPABILITIES: 2237 if (data && !vcpu_to_pmu(vcpu)->version) 2238 return 1; 2239 if (data & PMU_CAP_LBR_FMT) { 2240 if ((data & PMU_CAP_LBR_FMT) != 2241 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2242 return 1; 2243 if (!intel_pmu_lbr_is_compatible(vcpu)) 2244 return 1; 2245 } 2246 ret = kvm_set_msr_common(vcpu, msr_info); 2247 break; 2248 2249 default: 2250 find_uret_msr: 2251 msr = vmx_find_uret_msr(vmx, msr_index); 2252 if (msr) 2253 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2254 else 2255 ret = kvm_set_msr_common(vcpu, msr_info); 2256 } 2257 2258 return ret; 2259 } 2260 2261 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2262 { 2263 unsigned long guest_owned_bits; 2264 2265 kvm_register_mark_available(vcpu, reg); 2266 2267 switch (reg) { 2268 case VCPU_REGS_RSP: 2269 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2270 break; 2271 case VCPU_REGS_RIP: 2272 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2273 break; 2274 case VCPU_EXREG_PDPTR: 2275 if (enable_ept) 2276 ept_save_pdptrs(vcpu); 2277 break; 2278 case VCPU_EXREG_CR0: 2279 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2280 2281 vcpu->arch.cr0 &= ~guest_owned_bits; 2282 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2283 break; 2284 case VCPU_EXREG_CR3: 2285 if (is_unrestricted_guest(vcpu) || 2286 (enable_ept && is_paging(vcpu))) 2287 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2288 break; 2289 case VCPU_EXREG_CR4: 2290 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2291 2292 vcpu->arch.cr4 &= ~guest_owned_bits; 2293 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2294 break; 2295 default: 2296 WARN_ON_ONCE(1); 2297 break; 2298 } 2299 } 2300 2301 static __init int cpu_has_kvm_support(void) 2302 { 2303 return cpu_has_vmx(); 2304 } 2305 2306 static __init int vmx_disabled_by_bios(void) 2307 { 2308 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2309 !boot_cpu_has(X86_FEATURE_VMX); 2310 } 2311 2312 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2313 { 2314 u64 msr; 2315 2316 cr4_set_bits(X86_CR4_VMXE); 2317 2318 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2319 _ASM_EXTABLE(1b, %l[fault]) 2320 : : [vmxon_pointer] "m"(vmxon_pointer) 2321 : : fault); 2322 return 0; 2323 2324 fault: 2325 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2326 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2327 cr4_clear_bits(X86_CR4_VMXE); 2328 2329 return -EFAULT; 2330 } 2331 2332 static int hardware_enable(void) 2333 { 2334 int cpu = raw_smp_processor_id(); 2335 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2336 int r; 2337 2338 if (cr4_read_shadow() & X86_CR4_VMXE) 2339 return -EBUSY; 2340 2341 /* 2342 * This can happen if we hot-added a CPU but failed to allocate 2343 * VP assist page for it. 2344 */ 2345 if (static_branch_unlikely(&enable_evmcs) && 2346 !hv_get_vp_assist_page(cpu)) 2347 return -EFAULT; 2348 2349 intel_pt_handle_vmx(1); 2350 2351 r = kvm_cpu_vmxon(phys_addr); 2352 if (r) { 2353 intel_pt_handle_vmx(0); 2354 return r; 2355 } 2356 2357 if (enable_ept) 2358 ept_sync_global(); 2359 2360 return 0; 2361 } 2362 2363 static void vmclear_local_loaded_vmcss(void) 2364 { 2365 int cpu = raw_smp_processor_id(); 2366 struct loaded_vmcs *v, *n; 2367 2368 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2369 loaded_vmcss_on_cpu_link) 2370 __loaded_vmcs_clear(v); 2371 } 2372 2373 static void hardware_disable(void) 2374 { 2375 vmclear_local_loaded_vmcss(); 2376 2377 if (cpu_vmxoff()) 2378 kvm_spurious_fault(); 2379 2380 intel_pt_handle_vmx(0); 2381 } 2382 2383 /* 2384 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2385 * directly instead of going through cpu_has(), to ensure KVM is trapping 2386 * ENCLS whenever it's supported in hardware. It does not matter whether 2387 * the host OS supports or has enabled SGX. 2388 */ 2389 static bool cpu_has_sgx(void) 2390 { 2391 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2392 } 2393 2394 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2395 u32 msr, u32 *result) 2396 { 2397 u32 vmx_msr_low, vmx_msr_high; 2398 u32 ctl = ctl_min | ctl_opt; 2399 2400 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2401 2402 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2403 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2404 2405 /* Ensure minimum (required) set of control bits are supported. */ 2406 if (ctl_min & ~ctl) 2407 return -EIO; 2408 2409 *result = ctl; 2410 return 0; 2411 } 2412 2413 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2414 struct vmx_capability *vmx_cap) 2415 { 2416 u32 vmx_msr_low, vmx_msr_high; 2417 u32 min, opt, min2, opt2; 2418 u32 _pin_based_exec_control = 0; 2419 u32 _cpu_based_exec_control = 0; 2420 u32 _cpu_based_2nd_exec_control = 0; 2421 u32 _vmexit_control = 0; 2422 u32 _vmentry_control = 0; 2423 2424 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2425 min = CPU_BASED_HLT_EXITING | 2426 #ifdef CONFIG_X86_64 2427 CPU_BASED_CR8_LOAD_EXITING | 2428 CPU_BASED_CR8_STORE_EXITING | 2429 #endif 2430 CPU_BASED_CR3_LOAD_EXITING | 2431 CPU_BASED_CR3_STORE_EXITING | 2432 CPU_BASED_UNCOND_IO_EXITING | 2433 CPU_BASED_MOV_DR_EXITING | 2434 CPU_BASED_USE_TSC_OFFSETTING | 2435 CPU_BASED_MWAIT_EXITING | 2436 CPU_BASED_MONITOR_EXITING | 2437 CPU_BASED_INVLPG_EXITING | 2438 CPU_BASED_RDPMC_EXITING; 2439 2440 opt = CPU_BASED_TPR_SHADOW | 2441 CPU_BASED_USE_MSR_BITMAPS | 2442 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2443 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2444 &_cpu_based_exec_control) < 0) 2445 return -EIO; 2446 #ifdef CONFIG_X86_64 2447 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2448 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2449 ~CPU_BASED_CR8_STORE_EXITING; 2450 #endif 2451 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2452 min2 = 0; 2453 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2454 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2455 SECONDARY_EXEC_WBINVD_EXITING | 2456 SECONDARY_EXEC_ENABLE_VPID | 2457 SECONDARY_EXEC_ENABLE_EPT | 2458 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2459 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2460 SECONDARY_EXEC_DESC | 2461 SECONDARY_EXEC_ENABLE_RDTSCP | 2462 SECONDARY_EXEC_ENABLE_INVPCID | 2463 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2464 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2465 SECONDARY_EXEC_SHADOW_VMCS | 2466 SECONDARY_EXEC_XSAVES | 2467 SECONDARY_EXEC_RDSEED_EXITING | 2468 SECONDARY_EXEC_RDRAND_EXITING | 2469 SECONDARY_EXEC_ENABLE_PML | 2470 SECONDARY_EXEC_TSC_SCALING | 2471 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2472 SECONDARY_EXEC_PT_USE_GPA | 2473 SECONDARY_EXEC_PT_CONCEAL_VMX | 2474 SECONDARY_EXEC_ENABLE_VMFUNC | 2475 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2476 if (cpu_has_sgx()) 2477 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2478 if (adjust_vmx_controls(min2, opt2, 2479 MSR_IA32_VMX_PROCBASED_CTLS2, 2480 &_cpu_based_2nd_exec_control) < 0) 2481 return -EIO; 2482 } 2483 #ifndef CONFIG_X86_64 2484 if (!(_cpu_based_2nd_exec_control & 2485 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2486 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2487 #endif 2488 2489 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2490 _cpu_based_2nd_exec_control &= ~( 2491 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2492 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2493 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2494 2495 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2496 &vmx_cap->ept, &vmx_cap->vpid); 2497 2498 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2499 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2500 enabled */ 2501 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2502 CPU_BASED_CR3_STORE_EXITING | 2503 CPU_BASED_INVLPG_EXITING); 2504 } else if (vmx_cap->ept) { 2505 vmx_cap->ept = 0; 2506 pr_warn_once("EPT CAP should not exist if not support " 2507 "1-setting enable EPT VM-execution control\n"); 2508 } 2509 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2510 vmx_cap->vpid) { 2511 vmx_cap->vpid = 0; 2512 pr_warn_once("VPID CAP should not exist if not support " 2513 "1-setting enable VPID VM-execution control\n"); 2514 } 2515 2516 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2517 #ifdef CONFIG_X86_64 2518 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2519 #endif 2520 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2521 VM_EXIT_LOAD_IA32_PAT | 2522 VM_EXIT_LOAD_IA32_EFER | 2523 VM_EXIT_CLEAR_BNDCFGS | 2524 VM_EXIT_PT_CONCEAL_PIP | 2525 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2526 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2527 &_vmexit_control) < 0) 2528 return -EIO; 2529 2530 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2531 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2532 PIN_BASED_VMX_PREEMPTION_TIMER; 2533 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2534 &_pin_based_exec_control) < 0) 2535 return -EIO; 2536 2537 if (cpu_has_broken_vmx_preemption_timer()) 2538 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2539 if (!(_cpu_based_2nd_exec_control & 2540 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2541 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2542 2543 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2544 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2545 VM_ENTRY_LOAD_IA32_PAT | 2546 VM_ENTRY_LOAD_IA32_EFER | 2547 VM_ENTRY_LOAD_BNDCFGS | 2548 VM_ENTRY_PT_CONCEAL_PIP | 2549 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2550 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2551 &_vmentry_control) < 0) 2552 return -EIO; 2553 2554 /* 2555 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2556 * can't be used due to an errata where VM Exit may incorrectly clear 2557 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2558 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2559 */ 2560 if (boot_cpu_data.x86 == 0x6) { 2561 switch (boot_cpu_data.x86_model) { 2562 case 26: /* AAK155 */ 2563 case 30: /* AAP115 */ 2564 case 37: /* AAT100 */ 2565 case 44: /* BC86,AAY89,BD102 */ 2566 case 46: /* BA97 */ 2567 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2568 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2569 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2570 "does not work properly. Using workaround\n"); 2571 break; 2572 default: 2573 break; 2574 } 2575 } 2576 2577 2578 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2579 2580 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2581 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2582 return -EIO; 2583 2584 #ifdef CONFIG_X86_64 2585 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2586 if (vmx_msr_high & (1u<<16)) 2587 return -EIO; 2588 #endif 2589 2590 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2591 if (((vmx_msr_high >> 18) & 15) != 6) 2592 return -EIO; 2593 2594 vmcs_conf->size = vmx_msr_high & 0x1fff; 2595 vmcs_conf->order = get_order(vmcs_conf->size); 2596 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2597 2598 vmcs_conf->revision_id = vmx_msr_low; 2599 2600 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2601 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2602 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2603 vmcs_conf->vmexit_ctrl = _vmexit_control; 2604 vmcs_conf->vmentry_ctrl = _vmentry_control; 2605 2606 #if IS_ENABLED(CONFIG_HYPERV) 2607 if (enlightened_vmcs) 2608 evmcs_sanitize_exec_ctrls(vmcs_conf); 2609 #endif 2610 2611 return 0; 2612 } 2613 2614 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2615 { 2616 int node = cpu_to_node(cpu); 2617 struct page *pages; 2618 struct vmcs *vmcs; 2619 2620 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2621 if (!pages) 2622 return NULL; 2623 vmcs = page_address(pages); 2624 memset(vmcs, 0, vmcs_config.size); 2625 2626 /* KVM supports Enlightened VMCS v1 only */ 2627 if (static_branch_unlikely(&enable_evmcs)) 2628 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2629 else 2630 vmcs->hdr.revision_id = vmcs_config.revision_id; 2631 2632 if (shadow) 2633 vmcs->hdr.shadow_vmcs = 1; 2634 return vmcs; 2635 } 2636 2637 void free_vmcs(struct vmcs *vmcs) 2638 { 2639 free_pages((unsigned long)vmcs, vmcs_config.order); 2640 } 2641 2642 /* 2643 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2644 */ 2645 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2646 { 2647 if (!loaded_vmcs->vmcs) 2648 return; 2649 loaded_vmcs_clear(loaded_vmcs); 2650 free_vmcs(loaded_vmcs->vmcs); 2651 loaded_vmcs->vmcs = NULL; 2652 if (loaded_vmcs->msr_bitmap) 2653 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2654 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2655 } 2656 2657 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2658 { 2659 loaded_vmcs->vmcs = alloc_vmcs(false); 2660 if (!loaded_vmcs->vmcs) 2661 return -ENOMEM; 2662 2663 vmcs_clear(loaded_vmcs->vmcs); 2664 2665 loaded_vmcs->shadow_vmcs = NULL; 2666 loaded_vmcs->hv_timer_soft_disabled = false; 2667 loaded_vmcs->cpu = -1; 2668 loaded_vmcs->launched = 0; 2669 2670 if (cpu_has_vmx_msr_bitmap()) { 2671 loaded_vmcs->msr_bitmap = (unsigned long *) 2672 __get_free_page(GFP_KERNEL_ACCOUNT); 2673 if (!loaded_vmcs->msr_bitmap) 2674 goto out_vmcs; 2675 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2676 2677 if (IS_ENABLED(CONFIG_HYPERV) && 2678 static_branch_unlikely(&enable_evmcs) && 2679 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2680 struct hv_enlightened_vmcs *evmcs = 2681 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2682 2683 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2684 } 2685 } 2686 2687 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2688 memset(&loaded_vmcs->controls_shadow, 0, 2689 sizeof(struct vmcs_controls_shadow)); 2690 2691 return 0; 2692 2693 out_vmcs: 2694 free_loaded_vmcs(loaded_vmcs); 2695 return -ENOMEM; 2696 } 2697 2698 static void free_kvm_area(void) 2699 { 2700 int cpu; 2701 2702 for_each_possible_cpu(cpu) { 2703 free_vmcs(per_cpu(vmxarea, cpu)); 2704 per_cpu(vmxarea, cpu) = NULL; 2705 } 2706 } 2707 2708 static __init int alloc_kvm_area(void) 2709 { 2710 int cpu; 2711 2712 for_each_possible_cpu(cpu) { 2713 struct vmcs *vmcs; 2714 2715 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2716 if (!vmcs) { 2717 free_kvm_area(); 2718 return -ENOMEM; 2719 } 2720 2721 /* 2722 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2723 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2724 * revision_id reported by MSR_IA32_VMX_BASIC. 2725 * 2726 * However, even though not explicitly documented by 2727 * TLFS, VMXArea passed as VMXON argument should 2728 * still be marked with revision_id reported by 2729 * physical CPU. 2730 */ 2731 if (static_branch_unlikely(&enable_evmcs)) 2732 vmcs->hdr.revision_id = vmcs_config.revision_id; 2733 2734 per_cpu(vmxarea, cpu) = vmcs; 2735 } 2736 return 0; 2737 } 2738 2739 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2740 struct kvm_segment *save) 2741 { 2742 if (!emulate_invalid_guest_state) { 2743 /* 2744 * CS and SS RPL should be equal during guest entry according 2745 * to VMX spec, but in reality it is not always so. Since vcpu 2746 * is in the middle of the transition from real mode to 2747 * protected mode it is safe to assume that RPL 0 is a good 2748 * default value. 2749 */ 2750 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2751 save->selector &= ~SEGMENT_RPL_MASK; 2752 save->dpl = save->selector & SEGMENT_RPL_MASK; 2753 save->s = 1; 2754 } 2755 vmx_set_segment(vcpu, save, seg); 2756 } 2757 2758 static void enter_pmode(struct kvm_vcpu *vcpu) 2759 { 2760 unsigned long flags; 2761 struct vcpu_vmx *vmx = to_vmx(vcpu); 2762 2763 /* 2764 * Update real mode segment cache. It may be not up-to-date if sement 2765 * register was written while vcpu was in a guest mode. 2766 */ 2767 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2768 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2769 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2770 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2771 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2772 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2773 2774 vmx->rmode.vm86_active = 0; 2775 2776 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2777 2778 flags = vmcs_readl(GUEST_RFLAGS); 2779 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2780 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2781 vmcs_writel(GUEST_RFLAGS, flags); 2782 2783 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2784 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2785 2786 vmx_update_exception_bitmap(vcpu); 2787 2788 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2789 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2790 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2791 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2792 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2793 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2794 } 2795 2796 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2797 { 2798 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2799 struct kvm_segment var = *save; 2800 2801 var.dpl = 0x3; 2802 if (seg == VCPU_SREG_CS) 2803 var.type = 0x3; 2804 2805 if (!emulate_invalid_guest_state) { 2806 var.selector = var.base >> 4; 2807 var.base = var.base & 0xffff0; 2808 var.limit = 0xffff; 2809 var.g = 0; 2810 var.db = 0; 2811 var.present = 1; 2812 var.s = 1; 2813 var.l = 0; 2814 var.unusable = 0; 2815 var.type = 0x3; 2816 var.avl = 0; 2817 if (save->base & 0xf) 2818 printk_once(KERN_WARNING "kvm: segment base is not " 2819 "paragraph aligned when entering " 2820 "protected mode (seg=%d)", seg); 2821 } 2822 2823 vmcs_write16(sf->selector, var.selector); 2824 vmcs_writel(sf->base, var.base); 2825 vmcs_write32(sf->limit, var.limit); 2826 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2827 } 2828 2829 static void enter_rmode(struct kvm_vcpu *vcpu) 2830 { 2831 unsigned long flags; 2832 struct vcpu_vmx *vmx = to_vmx(vcpu); 2833 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2834 2835 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2836 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2837 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2838 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2839 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2840 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2841 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2842 2843 vmx->rmode.vm86_active = 1; 2844 2845 /* 2846 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2847 * vcpu. Warn the user that an update is overdue. 2848 */ 2849 if (!kvm_vmx->tss_addr) 2850 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2851 "called before entering vcpu\n"); 2852 2853 vmx_segment_cache_clear(vmx); 2854 2855 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2856 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2857 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2858 2859 flags = vmcs_readl(GUEST_RFLAGS); 2860 vmx->rmode.save_rflags = flags; 2861 2862 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2863 2864 vmcs_writel(GUEST_RFLAGS, flags); 2865 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2866 vmx_update_exception_bitmap(vcpu); 2867 2868 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2869 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2870 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2871 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2872 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2873 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2874 2875 kvm_mmu_reset_context(vcpu); 2876 } 2877 2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2879 { 2880 struct vcpu_vmx *vmx = to_vmx(vcpu); 2881 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2882 2883 /* Nothing to do if hardware doesn't support EFER. */ 2884 if (!msr) 2885 return 0; 2886 2887 vcpu->arch.efer = efer; 2888 if (efer & EFER_LMA) { 2889 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2890 msr->data = efer; 2891 } else { 2892 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2893 2894 msr->data = efer & ~EFER_LME; 2895 } 2896 setup_msrs(vmx); 2897 return 0; 2898 } 2899 2900 #ifdef CONFIG_X86_64 2901 2902 static void enter_lmode(struct kvm_vcpu *vcpu) 2903 { 2904 u32 guest_tr_ar; 2905 2906 vmx_segment_cache_clear(to_vmx(vcpu)); 2907 2908 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2909 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2910 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2911 __func__); 2912 vmcs_write32(GUEST_TR_AR_BYTES, 2913 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2914 | VMX_AR_TYPE_BUSY_64_TSS); 2915 } 2916 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2917 } 2918 2919 static void exit_lmode(struct kvm_vcpu *vcpu) 2920 { 2921 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2922 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2923 } 2924 2925 #endif 2926 2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2928 { 2929 struct vcpu_vmx *vmx = to_vmx(vcpu); 2930 2931 /* 2932 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2933 * the CPU is not required to invalidate guest-physical mappings on 2934 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2935 * associated with the root EPT structure and not any particular VPID 2936 * (INVVPID also isn't required to invalidate guest-physical mappings). 2937 */ 2938 if (enable_ept) { 2939 ept_sync_global(); 2940 } else if (enable_vpid) { 2941 if (cpu_has_vmx_invvpid_global()) { 2942 vpid_sync_vcpu_global(); 2943 } else { 2944 vpid_sync_vcpu_single(vmx->vpid); 2945 vpid_sync_vcpu_single(vmx->nested.vpid02); 2946 } 2947 } 2948 } 2949 2950 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2951 { 2952 struct kvm_mmu *mmu = vcpu->arch.mmu; 2953 u64 root_hpa = mmu->root_hpa; 2954 2955 /* No flush required if the current context is invalid. */ 2956 if (!VALID_PAGE(root_hpa)) 2957 return; 2958 2959 if (enable_ept) 2960 ept_sync_context(construct_eptp(vcpu, root_hpa, 2961 mmu->shadow_root_level)); 2962 else if (!is_guest_mode(vcpu)) 2963 vpid_sync_context(to_vmx(vcpu)->vpid); 2964 else 2965 vpid_sync_context(nested_get_vpid02(vcpu)); 2966 } 2967 2968 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2969 { 2970 /* 2971 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2972 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2973 */ 2974 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2975 } 2976 2977 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2978 { 2979 /* 2980 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2981 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2982 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2983 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2984 * i.e. no explicit INVVPID is necessary. 2985 */ 2986 vpid_sync_context(to_vmx(vcpu)->vpid); 2987 } 2988 2989 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2990 { 2991 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2992 2993 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2994 return; 2995 2996 if (is_pae_paging(vcpu)) { 2997 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2998 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2999 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3000 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3001 } 3002 } 3003 3004 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3005 { 3006 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3007 3008 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3009 return; 3010 3011 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3012 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3013 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3014 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3015 3016 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 3017 } 3018 3019 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 3020 unsigned long cr0, 3021 struct kvm_vcpu *vcpu) 3022 { 3023 struct vcpu_vmx *vmx = to_vmx(vcpu); 3024 3025 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3026 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3027 if (!(cr0 & X86_CR0_PG)) { 3028 /* From paging/starting to nonpaging */ 3029 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3030 CPU_BASED_CR3_STORE_EXITING); 3031 vcpu->arch.cr0 = cr0; 3032 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3033 } else if (!is_paging(vcpu)) { 3034 /* From nonpaging to paging */ 3035 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3036 CPU_BASED_CR3_STORE_EXITING); 3037 vcpu->arch.cr0 = cr0; 3038 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3039 } 3040 3041 if (!(cr0 & X86_CR0_WP)) 3042 *hw_cr0 &= ~X86_CR0_WP; 3043 } 3044 3045 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3046 { 3047 struct vcpu_vmx *vmx = to_vmx(vcpu); 3048 unsigned long hw_cr0; 3049 3050 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3051 if (is_unrestricted_guest(vcpu)) 3052 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3053 else { 3054 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3055 3056 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3057 enter_pmode(vcpu); 3058 3059 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3060 enter_rmode(vcpu); 3061 } 3062 3063 #ifdef CONFIG_X86_64 3064 if (vcpu->arch.efer & EFER_LME) { 3065 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 3066 enter_lmode(vcpu); 3067 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 3068 exit_lmode(vcpu); 3069 } 3070 #endif 3071 3072 if (enable_ept && !is_unrestricted_guest(vcpu)) 3073 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 3074 3075 vmcs_writel(CR0_READ_SHADOW, cr0); 3076 vmcs_writel(GUEST_CR0, hw_cr0); 3077 vcpu->arch.cr0 = cr0; 3078 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3079 3080 /* depends on vcpu->arch.cr0 to be set to a new value */ 3081 vmx->emulation_required = emulation_required(vcpu); 3082 } 3083 3084 static int vmx_get_max_tdp_level(void) 3085 { 3086 if (cpu_has_vmx_ept_5levels()) 3087 return 5; 3088 return 4; 3089 } 3090 3091 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa, 3092 int root_level) 3093 { 3094 u64 eptp = VMX_EPTP_MT_WB; 3095 3096 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3097 3098 if (enable_ept_ad_bits && 3099 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3100 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3101 eptp |= (root_hpa & PAGE_MASK); 3102 3103 return eptp; 3104 } 3105 3106 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd, 3107 int pgd_level) 3108 { 3109 struct kvm *kvm = vcpu->kvm; 3110 bool update_guest_cr3 = true; 3111 unsigned long guest_cr3; 3112 u64 eptp; 3113 3114 if (enable_ept) { 3115 eptp = construct_eptp(vcpu, pgd, pgd_level); 3116 vmcs_write64(EPT_POINTER, eptp); 3117 3118 if (kvm_x86_ops.tlb_remote_flush) { 3119 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 3120 to_vmx(vcpu)->ept_pointer = eptp; 3121 to_kvm_vmx(kvm)->ept_pointers_match 3122 = EPT_POINTERS_CHECK; 3123 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 3124 } 3125 3126 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3127 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3128 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3129 guest_cr3 = vcpu->arch.cr3; 3130 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3131 update_guest_cr3 = false; 3132 vmx_ept_load_pdptrs(vcpu); 3133 } else { 3134 guest_cr3 = pgd; 3135 } 3136 3137 if (update_guest_cr3) 3138 vmcs_writel(GUEST_CR3, guest_cr3); 3139 } 3140 3141 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3142 { 3143 /* 3144 * We operate under the default treatment of SMM, so VMX cannot be 3145 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3146 * handled by kvm_is_valid_cr4(). 3147 */ 3148 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3149 return false; 3150 3151 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3152 return false; 3153 3154 return true; 3155 } 3156 3157 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3158 { 3159 unsigned long old_cr4 = vcpu->arch.cr4; 3160 struct vcpu_vmx *vmx = to_vmx(vcpu); 3161 /* 3162 * Pass through host's Machine Check Enable value to hw_cr4, which 3163 * is in force while we are in guest mode. Do not let guests control 3164 * this bit, even if host CR4.MCE == 0. 3165 */ 3166 unsigned long hw_cr4; 3167 3168 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3169 if (is_unrestricted_guest(vcpu)) 3170 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3171 else if (vmx->rmode.vm86_active) 3172 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3173 else 3174 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3175 3176 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3177 if (cr4 & X86_CR4_UMIP) { 3178 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3179 hw_cr4 &= ~X86_CR4_UMIP; 3180 } else if (!is_guest_mode(vcpu) || 3181 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3182 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3183 } 3184 } 3185 3186 vcpu->arch.cr4 = cr4; 3187 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3188 3189 if (!is_unrestricted_guest(vcpu)) { 3190 if (enable_ept) { 3191 if (!is_paging(vcpu)) { 3192 hw_cr4 &= ~X86_CR4_PAE; 3193 hw_cr4 |= X86_CR4_PSE; 3194 } else if (!(cr4 & X86_CR4_PAE)) { 3195 hw_cr4 &= ~X86_CR4_PAE; 3196 } 3197 } 3198 3199 /* 3200 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3201 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3202 * to be manually disabled when guest switches to non-paging 3203 * mode. 3204 * 3205 * If !enable_unrestricted_guest, the CPU is always running 3206 * with CR0.PG=1 and CR4 needs to be modified. 3207 * If enable_unrestricted_guest, the CPU automatically 3208 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3209 */ 3210 if (!is_paging(vcpu)) 3211 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3212 } 3213 3214 vmcs_writel(CR4_READ_SHADOW, cr4); 3215 vmcs_writel(GUEST_CR4, hw_cr4); 3216 3217 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3218 kvm_update_cpuid_runtime(vcpu); 3219 } 3220 3221 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3222 { 3223 struct vcpu_vmx *vmx = to_vmx(vcpu); 3224 u32 ar; 3225 3226 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3227 *var = vmx->rmode.segs[seg]; 3228 if (seg == VCPU_SREG_TR 3229 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3230 return; 3231 var->base = vmx_read_guest_seg_base(vmx, seg); 3232 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3233 return; 3234 } 3235 var->base = vmx_read_guest_seg_base(vmx, seg); 3236 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3237 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3238 ar = vmx_read_guest_seg_ar(vmx, seg); 3239 var->unusable = (ar >> 16) & 1; 3240 var->type = ar & 15; 3241 var->s = (ar >> 4) & 1; 3242 var->dpl = (ar >> 5) & 3; 3243 /* 3244 * Some userspaces do not preserve unusable property. Since usable 3245 * segment has to be present according to VMX spec we can use present 3246 * property to amend userspace bug by making unusable segment always 3247 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3248 * segment as unusable. 3249 */ 3250 var->present = !var->unusable; 3251 var->avl = (ar >> 12) & 1; 3252 var->l = (ar >> 13) & 1; 3253 var->db = (ar >> 14) & 1; 3254 var->g = (ar >> 15) & 1; 3255 } 3256 3257 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3258 { 3259 struct kvm_segment s; 3260 3261 if (to_vmx(vcpu)->rmode.vm86_active) { 3262 vmx_get_segment(vcpu, &s, seg); 3263 return s.base; 3264 } 3265 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3266 } 3267 3268 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3269 { 3270 struct vcpu_vmx *vmx = to_vmx(vcpu); 3271 3272 if (unlikely(vmx->rmode.vm86_active)) 3273 return 0; 3274 else { 3275 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3276 return VMX_AR_DPL(ar); 3277 } 3278 } 3279 3280 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3281 { 3282 u32 ar; 3283 3284 if (var->unusable || !var->present) 3285 ar = 1 << 16; 3286 else { 3287 ar = var->type & 15; 3288 ar |= (var->s & 1) << 4; 3289 ar |= (var->dpl & 3) << 5; 3290 ar |= (var->present & 1) << 7; 3291 ar |= (var->avl & 1) << 12; 3292 ar |= (var->l & 1) << 13; 3293 ar |= (var->db & 1) << 14; 3294 ar |= (var->g & 1) << 15; 3295 } 3296 3297 return ar; 3298 } 3299 3300 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3301 { 3302 struct vcpu_vmx *vmx = to_vmx(vcpu); 3303 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3304 3305 vmx_segment_cache_clear(vmx); 3306 3307 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3308 vmx->rmode.segs[seg] = *var; 3309 if (seg == VCPU_SREG_TR) 3310 vmcs_write16(sf->selector, var->selector); 3311 else if (var->s) 3312 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3313 goto out; 3314 } 3315 3316 vmcs_writel(sf->base, var->base); 3317 vmcs_write32(sf->limit, var->limit); 3318 vmcs_write16(sf->selector, var->selector); 3319 3320 /* 3321 * Fix the "Accessed" bit in AR field of segment registers for older 3322 * qemu binaries. 3323 * IA32 arch specifies that at the time of processor reset the 3324 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3325 * is setting it to 0 in the userland code. This causes invalid guest 3326 * state vmexit when "unrestricted guest" mode is turned on. 3327 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3328 * tree. Newer qemu binaries with that qemu fix would not need this 3329 * kvm hack. 3330 */ 3331 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3332 var->type |= 0x1; /* Accessed */ 3333 3334 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3335 3336 out: 3337 vmx->emulation_required = emulation_required(vcpu); 3338 } 3339 3340 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3341 { 3342 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3343 3344 *db = (ar >> 14) & 1; 3345 *l = (ar >> 13) & 1; 3346 } 3347 3348 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3349 { 3350 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3351 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3352 } 3353 3354 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3355 { 3356 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3357 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3358 } 3359 3360 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3361 { 3362 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3363 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3364 } 3365 3366 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3367 { 3368 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3369 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3370 } 3371 3372 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3373 { 3374 struct kvm_segment var; 3375 u32 ar; 3376 3377 vmx_get_segment(vcpu, &var, seg); 3378 var.dpl = 0x3; 3379 if (seg == VCPU_SREG_CS) 3380 var.type = 0x3; 3381 ar = vmx_segment_access_rights(&var); 3382 3383 if (var.base != (var.selector << 4)) 3384 return false; 3385 if (var.limit != 0xffff) 3386 return false; 3387 if (ar != 0xf3) 3388 return false; 3389 3390 return true; 3391 } 3392 3393 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3394 { 3395 struct kvm_segment cs; 3396 unsigned int cs_rpl; 3397 3398 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3399 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3400 3401 if (cs.unusable) 3402 return false; 3403 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3404 return false; 3405 if (!cs.s) 3406 return false; 3407 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3408 if (cs.dpl > cs_rpl) 3409 return false; 3410 } else { 3411 if (cs.dpl != cs_rpl) 3412 return false; 3413 } 3414 if (!cs.present) 3415 return false; 3416 3417 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3418 return true; 3419 } 3420 3421 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3422 { 3423 struct kvm_segment ss; 3424 unsigned int ss_rpl; 3425 3426 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3427 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3428 3429 if (ss.unusable) 3430 return true; 3431 if (ss.type != 3 && ss.type != 7) 3432 return false; 3433 if (!ss.s) 3434 return false; 3435 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3436 return false; 3437 if (!ss.present) 3438 return false; 3439 3440 return true; 3441 } 3442 3443 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3444 { 3445 struct kvm_segment var; 3446 unsigned int rpl; 3447 3448 vmx_get_segment(vcpu, &var, seg); 3449 rpl = var.selector & SEGMENT_RPL_MASK; 3450 3451 if (var.unusable) 3452 return true; 3453 if (!var.s) 3454 return false; 3455 if (!var.present) 3456 return false; 3457 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3458 if (var.dpl < rpl) /* DPL < RPL */ 3459 return false; 3460 } 3461 3462 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3463 * rights flags 3464 */ 3465 return true; 3466 } 3467 3468 static bool tr_valid(struct kvm_vcpu *vcpu) 3469 { 3470 struct kvm_segment tr; 3471 3472 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3473 3474 if (tr.unusable) 3475 return false; 3476 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3477 return false; 3478 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3479 return false; 3480 if (!tr.present) 3481 return false; 3482 3483 return true; 3484 } 3485 3486 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3487 { 3488 struct kvm_segment ldtr; 3489 3490 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3491 3492 if (ldtr.unusable) 3493 return true; 3494 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3495 return false; 3496 if (ldtr.type != 2) 3497 return false; 3498 if (!ldtr.present) 3499 return false; 3500 3501 return true; 3502 } 3503 3504 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3505 { 3506 struct kvm_segment cs, ss; 3507 3508 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3509 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3510 3511 return ((cs.selector & SEGMENT_RPL_MASK) == 3512 (ss.selector & SEGMENT_RPL_MASK)); 3513 } 3514 3515 /* 3516 * Check if guest state is valid. Returns true if valid, false if 3517 * not. 3518 * We assume that registers are always usable 3519 */ 3520 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3521 { 3522 /* real mode guest state checks */ 3523 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3524 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3525 return false; 3526 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3527 return false; 3528 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3529 return false; 3530 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3531 return false; 3532 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3533 return false; 3534 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3535 return false; 3536 } else { 3537 /* protected mode guest state checks */ 3538 if (!cs_ss_rpl_check(vcpu)) 3539 return false; 3540 if (!code_segment_valid(vcpu)) 3541 return false; 3542 if (!stack_segment_valid(vcpu)) 3543 return false; 3544 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3545 return false; 3546 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3547 return false; 3548 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3549 return false; 3550 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3551 return false; 3552 if (!tr_valid(vcpu)) 3553 return false; 3554 if (!ldtr_valid(vcpu)) 3555 return false; 3556 } 3557 /* TODO: 3558 * - Add checks on RIP 3559 * - Add checks on RFLAGS 3560 */ 3561 3562 return true; 3563 } 3564 3565 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3566 { 3567 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3568 u16 data; 3569 int i; 3570 3571 for (i = 0; i < 3; i++) { 3572 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3573 return -EFAULT; 3574 } 3575 3576 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3577 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3578 return -EFAULT; 3579 3580 data = ~0; 3581 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3582 return -EFAULT; 3583 3584 return 0; 3585 } 3586 3587 static int init_rmode_identity_map(struct kvm *kvm) 3588 { 3589 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3590 int i, r = 0; 3591 void __user *uaddr; 3592 u32 tmp; 3593 3594 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3595 mutex_lock(&kvm->slots_lock); 3596 3597 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3598 goto out; 3599 3600 if (!kvm_vmx->ept_identity_map_addr) 3601 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3602 3603 uaddr = __x86_set_memory_region(kvm, 3604 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3605 kvm_vmx->ept_identity_map_addr, 3606 PAGE_SIZE); 3607 if (IS_ERR(uaddr)) { 3608 r = PTR_ERR(uaddr); 3609 goto out; 3610 } 3611 3612 /* Set up identity-mapping pagetable for EPT in real mode */ 3613 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3614 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3615 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3616 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3617 r = -EFAULT; 3618 goto out; 3619 } 3620 } 3621 kvm_vmx->ept_identity_pagetable_done = true; 3622 3623 out: 3624 mutex_unlock(&kvm->slots_lock); 3625 return r; 3626 } 3627 3628 static void seg_setup(int seg) 3629 { 3630 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3631 unsigned int ar; 3632 3633 vmcs_write16(sf->selector, 0); 3634 vmcs_writel(sf->base, 0); 3635 vmcs_write32(sf->limit, 0xffff); 3636 ar = 0x93; 3637 if (seg == VCPU_SREG_CS) 3638 ar |= 0x08; /* code segment */ 3639 3640 vmcs_write32(sf->ar_bytes, ar); 3641 } 3642 3643 static int alloc_apic_access_page(struct kvm *kvm) 3644 { 3645 struct page *page; 3646 void __user *hva; 3647 int ret = 0; 3648 3649 mutex_lock(&kvm->slots_lock); 3650 if (kvm->arch.apic_access_page_done) 3651 goto out; 3652 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3653 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3654 if (IS_ERR(hva)) { 3655 ret = PTR_ERR(hva); 3656 goto out; 3657 } 3658 3659 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3660 if (is_error_page(page)) { 3661 ret = -EFAULT; 3662 goto out; 3663 } 3664 3665 /* 3666 * Do not pin the page in memory, so that memory hot-unplug 3667 * is able to migrate it. 3668 */ 3669 put_page(page); 3670 kvm->arch.apic_access_page_done = true; 3671 out: 3672 mutex_unlock(&kvm->slots_lock); 3673 return ret; 3674 } 3675 3676 int allocate_vpid(void) 3677 { 3678 int vpid; 3679 3680 if (!enable_vpid) 3681 return 0; 3682 spin_lock(&vmx_vpid_lock); 3683 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3684 if (vpid < VMX_NR_VPIDS) 3685 __set_bit(vpid, vmx_vpid_bitmap); 3686 else 3687 vpid = 0; 3688 spin_unlock(&vmx_vpid_lock); 3689 return vpid; 3690 } 3691 3692 void free_vpid(int vpid) 3693 { 3694 if (!enable_vpid || vpid == 0) 3695 return; 3696 spin_lock(&vmx_vpid_lock); 3697 __clear_bit(vpid, vmx_vpid_bitmap); 3698 spin_unlock(&vmx_vpid_lock); 3699 } 3700 3701 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3702 { 3703 int f = sizeof(unsigned long); 3704 3705 if (msr <= 0x1fff) 3706 __clear_bit(msr, msr_bitmap + 0x000 / f); 3707 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3708 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3709 } 3710 3711 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3712 { 3713 int f = sizeof(unsigned long); 3714 3715 if (msr <= 0x1fff) 3716 __clear_bit(msr, msr_bitmap + 0x800 / f); 3717 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3718 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3719 } 3720 3721 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3722 { 3723 int f = sizeof(unsigned long); 3724 3725 if (msr <= 0x1fff) 3726 __set_bit(msr, msr_bitmap + 0x000 / f); 3727 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3728 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3729 } 3730 3731 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3732 { 3733 int f = sizeof(unsigned long); 3734 3735 if (msr <= 0x1fff) 3736 __set_bit(msr, msr_bitmap + 0x800 / f); 3737 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3738 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3739 } 3740 3741 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, 3742 u32 msr, int type) 3743 { 3744 struct vcpu_vmx *vmx = to_vmx(vcpu); 3745 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3746 3747 if (!cpu_has_vmx_msr_bitmap()) 3748 return; 3749 3750 if (static_branch_unlikely(&enable_evmcs)) 3751 evmcs_touch_msr_bitmap(); 3752 3753 /* 3754 * Mark the desired intercept state in shadow bitmap, this is needed 3755 * for resync when the MSR filters change. 3756 */ 3757 if (is_valid_passthrough_msr(msr)) { 3758 int idx = possible_passthrough_msr_slot(msr); 3759 3760 if (idx != -ENOENT) { 3761 if (type & MSR_TYPE_R) 3762 clear_bit(idx, vmx->shadow_msr_intercept.read); 3763 if (type & MSR_TYPE_W) 3764 clear_bit(idx, vmx->shadow_msr_intercept.write); 3765 } 3766 } 3767 3768 if ((type & MSR_TYPE_R) && 3769 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3770 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3771 type &= ~MSR_TYPE_R; 3772 } 3773 3774 if ((type & MSR_TYPE_W) && 3775 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3776 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3777 type &= ~MSR_TYPE_W; 3778 } 3779 3780 if (type & MSR_TYPE_R) 3781 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3782 3783 if (type & MSR_TYPE_W) 3784 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3785 } 3786 3787 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, 3788 u32 msr, int type) 3789 { 3790 struct vcpu_vmx *vmx = to_vmx(vcpu); 3791 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3792 3793 if (!cpu_has_vmx_msr_bitmap()) 3794 return; 3795 3796 if (static_branch_unlikely(&enable_evmcs)) 3797 evmcs_touch_msr_bitmap(); 3798 3799 /* 3800 * Mark the desired intercept state in shadow bitmap, this is needed 3801 * for resync when the MSR filter changes. 3802 */ 3803 if (is_valid_passthrough_msr(msr)) { 3804 int idx = possible_passthrough_msr_slot(msr); 3805 3806 if (idx != -ENOENT) { 3807 if (type & MSR_TYPE_R) 3808 set_bit(idx, vmx->shadow_msr_intercept.read); 3809 if (type & MSR_TYPE_W) 3810 set_bit(idx, vmx->shadow_msr_intercept.write); 3811 } 3812 } 3813 3814 if (type & MSR_TYPE_R) 3815 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3816 3817 if (type & MSR_TYPE_W) 3818 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3819 } 3820 3821 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, 3822 u32 msr, int type, bool value) 3823 { 3824 if (value) 3825 vmx_enable_intercept_for_msr(vcpu, msr, type); 3826 else 3827 vmx_disable_intercept_for_msr(vcpu, msr, type); 3828 } 3829 3830 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3831 { 3832 u8 mode = 0; 3833 3834 if (cpu_has_secondary_exec_ctrls() && 3835 (secondary_exec_controls_get(to_vmx(vcpu)) & 3836 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3837 mode |= MSR_BITMAP_MODE_X2APIC; 3838 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3839 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3840 } 3841 3842 return mode; 3843 } 3844 3845 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3846 { 3847 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3848 unsigned long read_intercept; 3849 int msr; 3850 3851 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3852 3853 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3854 unsigned int read_idx = msr / BITS_PER_LONG; 3855 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3856 3857 msr_bitmap[read_idx] = read_intercept; 3858 msr_bitmap[write_idx] = ~0ul; 3859 } 3860 } 3861 3862 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode) 3863 { 3864 if (!cpu_has_vmx_msr_bitmap()) 3865 return; 3866 3867 vmx_reset_x2apic_msrs(vcpu, mode); 3868 3869 /* 3870 * TPR reads and writes can be virtualized even if virtual interrupt 3871 * delivery is not in use. 3872 */ 3873 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3874 !(mode & MSR_BITMAP_MODE_X2APIC)); 3875 3876 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3877 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3878 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3879 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3880 } 3881 } 3882 3883 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3884 { 3885 struct vcpu_vmx *vmx = to_vmx(vcpu); 3886 u8 mode = vmx_msr_bitmap_mode(vcpu); 3887 u8 changed = mode ^ vmx->msr_bitmap_mode; 3888 3889 if (!changed) 3890 return; 3891 3892 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3893 vmx_update_msr_bitmap_x2apic(vcpu, mode); 3894 3895 vmx->msr_bitmap_mode = mode; 3896 } 3897 3898 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3899 { 3900 struct vcpu_vmx *vmx = to_vmx(vcpu); 3901 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3902 u32 i; 3903 3904 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3905 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3906 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3907 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3908 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3909 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3910 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3911 } 3912 } 3913 3914 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3915 { 3916 struct vcpu_vmx *vmx = to_vmx(vcpu); 3917 void *vapic_page; 3918 u32 vppr; 3919 int rvi; 3920 3921 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3922 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3923 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3924 return false; 3925 3926 rvi = vmx_get_rvi(); 3927 3928 vapic_page = vmx->nested.virtual_apic_map.hva; 3929 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3930 3931 return ((rvi & 0xf0) > (vppr & 0xf0)); 3932 } 3933 3934 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3935 { 3936 struct vcpu_vmx *vmx = to_vmx(vcpu); 3937 u32 i; 3938 3939 /* 3940 * Set intercept permissions for all potentially passed through MSRs 3941 * again. They will automatically get filtered through the MSR filter, 3942 * so we are back in sync after this. 3943 */ 3944 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3945 u32 msr = vmx_possible_passthrough_msrs[i]; 3946 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3947 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3948 3949 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3950 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3951 } 3952 3953 pt_update_intercept_for_msr(vcpu); 3954 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu)); 3955 } 3956 3957 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3958 bool nested) 3959 { 3960 #ifdef CONFIG_SMP 3961 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3962 3963 if (vcpu->mode == IN_GUEST_MODE) { 3964 /* 3965 * The vector of interrupt to be delivered to vcpu had 3966 * been set in PIR before this function. 3967 * 3968 * Following cases will be reached in this block, and 3969 * we always send a notification event in all cases as 3970 * explained below. 3971 * 3972 * Case 1: vcpu keeps in non-root mode. Sending a 3973 * notification event posts the interrupt to vcpu. 3974 * 3975 * Case 2: vcpu exits to root mode and is still 3976 * runnable. PIR will be synced to vIRR before the 3977 * next vcpu entry. Sending a notification event in 3978 * this case has no effect, as vcpu is not in root 3979 * mode. 3980 * 3981 * Case 3: vcpu exits to root mode and is blocked. 3982 * vcpu_block() has already synced PIR to vIRR and 3983 * never blocks vcpu if vIRR is not cleared. Therefore, 3984 * a blocked vcpu here does not wait for any requested 3985 * interrupts in PIR, and sending a notification event 3986 * which has no effect is safe here. 3987 */ 3988 3989 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3990 return true; 3991 } 3992 #endif 3993 return false; 3994 } 3995 3996 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3997 int vector) 3998 { 3999 struct vcpu_vmx *vmx = to_vmx(vcpu); 4000 4001 if (is_guest_mode(vcpu) && 4002 vector == vmx->nested.posted_intr_nv) { 4003 /* 4004 * If a posted intr is not recognized by hardware, 4005 * we will accomplish it in the next vmentry. 4006 */ 4007 vmx->nested.pi_pending = true; 4008 kvm_make_request(KVM_REQ_EVENT, vcpu); 4009 /* the PIR and ON have been set by L1. */ 4010 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 4011 kvm_vcpu_kick(vcpu); 4012 return 0; 4013 } 4014 return -1; 4015 } 4016 /* 4017 * Send interrupt to vcpu via posted interrupt way. 4018 * 1. If target vcpu is running(non-root mode), send posted interrupt 4019 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4020 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4021 * interrupt from PIR in next vmentry. 4022 */ 4023 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4024 { 4025 struct vcpu_vmx *vmx = to_vmx(vcpu); 4026 int r; 4027 4028 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4029 if (!r) 4030 return 0; 4031 4032 if (!vcpu->arch.apicv_active) 4033 return -1; 4034 4035 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4036 return 0; 4037 4038 /* If a previous notification has sent the IPI, nothing to do. */ 4039 if (pi_test_and_set_on(&vmx->pi_desc)) 4040 return 0; 4041 4042 if (vcpu != kvm_get_running_vcpu() && 4043 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4044 kvm_vcpu_kick(vcpu); 4045 4046 return 0; 4047 } 4048 4049 /* 4050 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4051 * will not change in the lifetime of the guest. 4052 * Note that host-state that does change is set elsewhere. E.g., host-state 4053 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4054 */ 4055 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4056 { 4057 u32 low32, high32; 4058 unsigned long tmpl; 4059 unsigned long cr0, cr3, cr4; 4060 4061 cr0 = read_cr0(); 4062 WARN_ON(cr0 & X86_CR0_TS); 4063 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4064 4065 /* 4066 * Save the most likely value for this task's CR3 in the VMCS. 4067 * We can't use __get_current_cr3_fast() because we're not atomic. 4068 */ 4069 cr3 = __read_cr3(); 4070 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4071 vmx->loaded_vmcs->host_state.cr3 = cr3; 4072 4073 /* Save the most likely value for this task's CR4 in the VMCS. */ 4074 cr4 = cr4_read_shadow(); 4075 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4076 vmx->loaded_vmcs->host_state.cr4 = cr4; 4077 4078 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4079 #ifdef CONFIG_X86_64 4080 /* 4081 * Load null selectors, so we can avoid reloading them in 4082 * vmx_prepare_switch_to_host(), in case userspace uses 4083 * the null selectors too (the expected case). 4084 */ 4085 vmcs_write16(HOST_DS_SELECTOR, 0); 4086 vmcs_write16(HOST_ES_SELECTOR, 0); 4087 #else 4088 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4089 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4090 #endif 4091 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4092 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4093 4094 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4095 4096 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4097 4098 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4099 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4100 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4101 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4102 4103 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4104 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4105 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4106 } 4107 4108 if (cpu_has_load_ia32_efer()) 4109 vmcs_write64(HOST_IA32_EFER, host_efer); 4110 } 4111 4112 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4113 { 4114 struct kvm_vcpu *vcpu = &vmx->vcpu; 4115 4116 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4117 ~vcpu->arch.cr4_guest_rsvd_bits; 4118 if (!enable_ept) 4119 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4120 if (is_guest_mode(&vmx->vcpu)) 4121 vcpu->arch.cr4_guest_owned_bits &= 4122 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4123 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4124 } 4125 4126 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4127 { 4128 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4129 4130 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4131 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4132 4133 if (!enable_vnmi) 4134 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4135 4136 if (!enable_preemption_timer) 4137 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4138 4139 return pin_based_exec_ctrl; 4140 } 4141 4142 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4143 { 4144 struct vcpu_vmx *vmx = to_vmx(vcpu); 4145 4146 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4147 if (cpu_has_secondary_exec_ctrls()) { 4148 if (kvm_vcpu_apicv_active(vcpu)) 4149 secondary_exec_controls_setbit(vmx, 4150 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4151 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4152 else 4153 secondary_exec_controls_clearbit(vmx, 4154 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4155 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4156 } 4157 4158 if (cpu_has_vmx_msr_bitmap()) 4159 vmx_update_msr_bitmap(vcpu); 4160 } 4161 4162 u32 vmx_exec_control(struct vcpu_vmx *vmx) 4163 { 4164 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4165 4166 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4167 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4168 4169 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4170 exec_control &= ~CPU_BASED_TPR_SHADOW; 4171 #ifdef CONFIG_X86_64 4172 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4173 CPU_BASED_CR8_LOAD_EXITING; 4174 #endif 4175 } 4176 if (!enable_ept) 4177 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4178 CPU_BASED_CR3_LOAD_EXITING | 4179 CPU_BASED_INVLPG_EXITING; 4180 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4181 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4182 CPU_BASED_MONITOR_EXITING); 4183 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4184 exec_control &= ~CPU_BASED_HLT_EXITING; 4185 return exec_control; 4186 } 4187 4188 /* 4189 * Adjust a single secondary execution control bit to intercept/allow an 4190 * instruction in the guest. This is usually done based on whether or not a 4191 * feature has been exposed to the guest in order to correctly emulate faults. 4192 */ 4193 static inline void 4194 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4195 u32 control, bool enabled, bool exiting) 4196 { 4197 /* 4198 * If the control is for an opt-in feature, clear the control if the 4199 * feature is not exposed to the guest, i.e. not enabled. If the 4200 * control is opt-out, i.e. an exiting control, clear the control if 4201 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4202 * disabled for the associated instruction. Note, the caller is 4203 * responsible presetting exec_control to set all supported bits. 4204 */ 4205 if (enabled == exiting) 4206 *exec_control &= ~control; 4207 4208 /* 4209 * Update the nested MSR settings so that a nested VMM can/can't set 4210 * controls for features that are/aren't exposed to the guest. 4211 */ 4212 if (nested) { 4213 if (enabled) 4214 vmx->nested.msrs.secondary_ctls_high |= control; 4215 else 4216 vmx->nested.msrs.secondary_ctls_high &= ~control; 4217 } 4218 } 4219 4220 /* 4221 * Wrapper macro for the common case of adjusting a secondary execution control 4222 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4223 * verifies that the control is actually supported by KVM and hardware. 4224 */ 4225 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4226 ({ \ 4227 bool __enabled; \ 4228 \ 4229 if (cpu_has_vmx_##name()) { \ 4230 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4231 X86_FEATURE_##feat_name); \ 4232 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4233 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4234 } \ 4235 }) 4236 4237 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4238 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4239 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4240 4241 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4242 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4243 4244 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 4245 { 4246 struct kvm_vcpu *vcpu = &vmx->vcpu; 4247 4248 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4249 4250 if (vmx_pt_mode_is_system()) 4251 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4252 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4253 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4254 if (vmx->vpid == 0) 4255 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4256 if (!enable_ept) { 4257 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4258 enable_unrestricted_guest = 0; 4259 } 4260 if (!enable_unrestricted_guest) 4261 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4262 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4263 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4264 if (!kvm_vcpu_apicv_active(vcpu)) 4265 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4266 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4267 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4268 4269 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4270 * in vmx_set_cr4. */ 4271 exec_control &= ~SECONDARY_EXEC_DESC; 4272 4273 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4274 (handle_vmptrld). 4275 We can NOT enable shadow_vmcs here because we don't have yet 4276 a current VMCS12 4277 */ 4278 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4279 4280 /* 4281 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4282 * it needs to be set here when dirty logging is already active, e.g. 4283 * if this vCPU was created after dirty logging was enabled. 4284 */ 4285 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4286 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4287 4288 if (cpu_has_vmx_xsaves()) { 4289 /* Exposing XSAVES only when XSAVE is exposed */ 4290 bool xsaves_enabled = 4291 boot_cpu_has(X86_FEATURE_XSAVE) && 4292 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4293 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4294 4295 vcpu->arch.xsaves_enabled = xsaves_enabled; 4296 4297 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4298 SECONDARY_EXEC_XSAVES, 4299 xsaves_enabled, false); 4300 } 4301 4302 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP); 4303 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4304 4305 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4306 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4307 4308 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4309 ENABLE_USR_WAIT_PAUSE, false); 4310 4311 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4312 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4313 4314 vmx->secondary_exec_control = exec_control; 4315 } 4316 4317 #define VMX_XSS_EXIT_BITMAP 0 4318 4319 /* 4320 * Noting that the initialization of Guest-state Area of VMCS is in 4321 * vmx_vcpu_reset(). 4322 */ 4323 static void init_vmcs(struct vcpu_vmx *vmx) 4324 { 4325 if (nested) 4326 nested_vmx_set_vmcs_shadowing_bitmap(); 4327 4328 if (cpu_has_vmx_msr_bitmap()) 4329 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4330 4331 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4332 4333 /* Control */ 4334 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4335 4336 exec_controls_set(vmx, vmx_exec_control(vmx)); 4337 4338 if (cpu_has_secondary_exec_ctrls()) { 4339 vmx_compute_secondary_exec_control(vmx); 4340 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4341 } 4342 4343 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4344 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4345 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4346 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4347 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4348 4349 vmcs_write16(GUEST_INTR_STATUS, 0); 4350 4351 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4352 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4353 } 4354 4355 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4356 vmcs_write32(PLE_GAP, ple_gap); 4357 vmx->ple_window = ple_window; 4358 vmx->ple_window_dirty = true; 4359 } 4360 4361 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4362 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4363 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4364 4365 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4366 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4367 vmx_set_constant_host_state(vmx); 4368 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4369 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4370 4371 if (cpu_has_vmx_vmfunc()) 4372 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4373 4374 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4375 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4376 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4377 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4378 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4379 4380 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4381 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4382 4383 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4384 4385 /* 22.2.1, 20.8.1 */ 4386 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4387 4388 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4389 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4390 4391 set_cr4_guest_host_mask(vmx); 4392 4393 if (vmx->vpid != 0) 4394 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4395 4396 if (cpu_has_vmx_xsaves()) 4397 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4398 4399 if (enable_pml) { 4400 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4401 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4402 } 4403 4404 if (cpu_has_vmx_encls_vmexit()) 4405 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 4406 4407 if (vmx_pt_mode_is_host_guest()) { 4408 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4409 /* Bit[6~0] are forced to 1, writes are ignored. */ 4410 vmx->pt_desc.guest.output_mask = 0x7F; 4411 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4412 } 4413 } 4414 4415 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4416 { 4417 struct vcpu_vmx *vmx = to_vmx(vcpu); 4418 struct msr_data apic_base_msr; 4419 u64 cr0; 4420 4421 vmx->rmode.vm86_active = 0; 4422 vmx->spec_ctrl = 0; 4423 4424 vmx->msr_ia32_umwait_control = 0; 4425 4426 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4427 vmx->hv_deadline_tsc = -1; 4428 kvm_set_cr8(vcpu, 0); 4429 4430 if (!init_event) { 4431 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4432 MSR_IA32_APICBASE_ENABLE; 4433 if (kvm_vcpu_is_reset_bsp(vcpu)) 4434 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4435 apic_base_msr.host_initiated = true; 4436 kvm_set_apic_base(vcpu, &apic_base_msr); 4437 } 4438 4439 vmx_segment_cache_clear(vmx); 4440 4441 seg_setup(VCPU_SREG_CS); 4442 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4443 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4444 4445 seg_setup(VCPU_SREG_DS); 4446 seg_setup(VCPU_SREG_ES); 4447 seg_setup(VCPU_SREG_FS); 4448 seg_setup(VCPU_SREG_GS); 4449 seg_setup(VCPU_SREG_SS); 4450 4451 vmcs_write16(GUEST_TR_SELECTOR, 0); 4452 vmcs_writel(GUEST_TR_BASE, 0); 4453 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4454 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4455 4456 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4457 vmcs_writel(GUEST_LDTR_BASE, 0); 4458 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4459 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4460 4461 if (!init_event) { 4462 vmcs_write32(GUEST_SYSENTER_CS, 0); 4463 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4464 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4465 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4466 } 4467 4468 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4469 kvm_rip_write(vcpu, 0xfff0); 4470 4471 vmcs_writel(GUEST_GDTR_BASE, 0); 4472 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4473 4474 vmcs_writel(GUEST_IDTR_BASE, 0); 4475 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4476 4477 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4478 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4479 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4480 if (kvm_mpx_supported()) 4481 vmcs_write64(GUEST_BNDCFGS, 0); 4482 4483 setup_msrs(vmx); 4484 4485 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4486 4487 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4488 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4489 if (cpu_need_tpr_shadow(vcpu)) 4490 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4491 __pa(vcpu->arch.apic->regs)); 4492 vmcs_write32(TPR_THRESHOLD, 0); 4493 } 4494 4495 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4496 4497 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4498 vmx->vcpu.arch.cr0 = cr0; 4499 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4500 vmx_set_cr4(vcpu, 0); 4501 vmx_set_efer(vcpu, 0); 4502 4503 vmx_update_exception_bitmap(vcpu); 4504 4505 vpid_sync_context(vmx->vpid); 4506 if (init_event) 4507 vmx_clear_hlt(vcpu); 4508 } 4509 4510 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4511 { 4512 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4513 } 4514 4515 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4516 { 4517 if (!enable_vnmi || 4518 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4519 vmx_enable_irq_window(vcpu); 4520 return; 4521 } 4522 4523 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4524 } 4525 4526 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4527 { 4528 struct vcpu_vmx *vmx = to_vmx(vcpu); 4529 uint32_t intr; 4530 int irq = vcpu->arch.interrupt.nr; 4531 4532 trace_kvm_inj_virq(irq); 4533 4534 ++vcpu->stat.irq_injections; 4535 if (vmx->rmode.vm86_active) { 4536 int inc_eip = 0; 4537 if (vcpu->arch.interrupt.soft) 4538 inc_eip = vcpu->arch.event_exit_inst_len; 4539 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4540 return; 4541 } 4542 intr = irq | INTR_INFO_VALID_MASK; 4543 if (vcpu->arch.interrupt.soft) { 4544 intr |= INTR_TYPE_SOFT_INTR; 4545 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4546 vmx->vcpu.arch.event_exit_inst_len); 4547 } else 4548 intr |= INTR_TYPE_EXT_INTR; 4549 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4550 4551 vmx_clear_hlt(vcpu); 4552 } 4553 4554 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4555 { 4556 struct vcpu_vmx *vmx = to_vmx(vcpu); 4557 4558 if (!enable_vnmi) { 4559 /* 4560 * Tracking the NMI-blocked state in software is built upon 4561 * finding the next open IRQ window. This, in turn, depends on 4562 * well-behaving guests: They have to keep IRQs disabled at 4563 * least as long as the NMI handler runs. Otherwise we may 4564 * cause NMI nesting, maybe breaking the guest. But as this is 4565 * highly unlikely, we can live with the residual risk. 4566 */ 4567 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4568 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4569 } 4570 4571 ++vcpu->stat.nmi_injections; 4572 vmx->loaded_vmcs->nmi_known_unmasked = false; 4573 4574 if (vmx->rmode.vm86_active) { 4575 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4576 return; 4577 } 4578 4579 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4580 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4581 4582 vmx_clear_hlt(vcpu); 4583 } 4584 4585 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4586 { 4587 struct vcpu_vmx *vmx = to_vmx(vcpu); 4588 bool masked; 4589 4590 if (!enable_vnmi) 4591 return vmx->loaded_vmcs->soft_vnmi_blocked; 4592 if (vmx->loaded_vmcs->nmi_known_unmasked) 4593 return false; 4594 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4595 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4596 return masked; 4597 } 4598 4599 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4600 { 4601 struct vcpu_vmx *vmx = to_vmx(vcpu); 4602 4603 if (!enable_vnmi) { 4604 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4605 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4606 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4607 } 4608 } else { 4609 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4610 if (masked) 4611 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4612 GUEST_INTR_STATE_NMI); 4613 else 4614 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4615 GUEST_INTR_STATE_NMI); 4616 } 4617 } 4618 4619 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4620 { 4621 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4622 return false; 4623 4624 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4625 return true; 4626 4627 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4628 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4629 GUEST_INTR_STATE_NMI)); 4630 } 4631 4632 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4633 { 4634 if (to_vmx(vcpu)->nested.nested_run_pending) 4635 return -EBUSY; 4636 4637 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4638 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4639 return -EBUSY; 4640 4641 return !vmx_nmi_blocked(vcpu); 4642 } 4643 4644 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4645 { 4646 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4647 return false; 4648 4649 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4650 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4651 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4652 } 4653 4654 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4655 { 4656 if (to_vmx(vcpu)->nested.nested_run_pending) 4657 return -EBUSY; 4658 4659 /* 4660 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4661 * e.g. if the IRQ arrived asynchronously after checking nested events. 4662 */ 4663 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4664 return -EBUSY; 4665 4666 return !vmx_interrupt_blocked(vcpu); 4667 } 4668 4669 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4670 { 4671 void __user *ret; 4672 4673 if (enable_unrestricted_guest) 4674 return 0; 4675 4676 mutex_lock(&kvm->slots_lock); 4677 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4678 PAGE_SIZE * 3); 4679 mutex_unlock(&kvm->slots_lock); 4680 4681 if (IS_ERR(ret)) 4682 return PTR_ERR(ret); 4683 4684 to_kvm_vmx(kvm)->tss_addr = addr; 4685 4686 return init_rmode_tss(kvm, ret); 4687 } 4688 4689 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4690 { 4691 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4692 return 0; 4693 } 4694 4695 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4696 { 4697 switch (vec) { 4698 case BP_VECTOR: 4699 /* 4700 * Update instruction length as we may reinject the exception 4701 * from user space while in guest debugging mode. 4702 */ 4703 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4704 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4705 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4706 return false; 4707 fallthrough; 4708 case DB_VECTOR: 4709 return !(vcpu->guest_debug & 4710 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4711 case DE_VECTOR: 4712 case OF_VECTOR: 4713 case BR_VECTOR: 4714 case UD_VECTOR: 4715 case DF_VECTOR: 4716 case SS_VECTOR: 4717 case GP_VECTOR: 4718 case MF_VECTOR: 4719 return true; 4720 } 4721 return false; 4722 } 4723 4724 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4725 int vec, u32 err_code) 4726 { 4727 /* 4728 * Instruction with address size override prefix opcode 0x67 4729 * Cause the #SS fault with 0 error code in VM86 mode. 4730 */ 4731 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4732 if (kvm_emulate_instruction(vcpu, 0)) { 4733 if (vcpu->arch.halt_request) { 4734 vcpu->arch.halt_request = 0; 4735 return kvm_vcpu_halt(vcpu); 4736 } 4737 return 1; 4738 } 4739 return 0; 4740 } 4741 4742 /* 4743 * Forward all other exceptions that are valid in real mode. 4744 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4745 * the required debugging infrastructure rework. 4746 */ 4747 kvm_queue_exception(vcpu, vec); 4748 return 1; 4749 } 4750 4751 static int handle_machine_check(struct kvm_vcpu *vcpu) 4752 { 4753 /* handled by vmx_vcpu_run() */ 4754 return 1; 4755 } 4756 4757 /* 4758 * If the host has split lock detection disabled, then #AC is 4759 * unconditionally injected into the guest, which is the pre split lock 4760 * detection behaviour. 4761 * 4762 * If the host has split lock detection enabled then #AC is 4763 * only injected into the guest when: 4764 * - Guest CPL == 3 (user mode) 4765 * - Guest has #AC detection enabled in CR0 4766 * - Guest EFLAGS has AC bit set 4767 */ 4768 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu) 4769 { 4770 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4771 return true; 4772 4773 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4774 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4775 } 4776 4777 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4778 { 4779 struct vcpu_vmx *vmx = to_vmx(vcpu); 4780 struct kvm_run *kvm_run = vcpu->run; 4781 u32 intr_info, ex_no, error_code; 4782 unsigned long cr2, rip, dr6; 4783 u32 vect_info; 4784 4785 vect_info = vmx->idt_vectoring_info; 4786 intr_info = vmx_get_intr_info(vcpu); 4787 4788 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4789 return 1; /* handled by handle_exception_nmi_irqoff() */ 4790 4791 if (is_invalid_opcode(intr_info)) 4792 return handle_ud(vcpu); 4793 4794 error_code = 0; 4795 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4796 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4797 4798 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4799 WARN_ON_ONCE(!enable_vmware_backdoor); 4800 4801 /* 4802 * VMware backdoor emulation on #GP interception only handles 4803 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4804 * error code on #GP. 4805 */ 4806 if (error_code) { 4807 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4808 return 1; 4809 } 4810 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4811 } 4812 4813 /* 4814 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4815 * MMIO, it is better to report an internal error. 4816 * See the comments in vmx_handle_exit. 4817 */ 4818 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4819 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4820 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4821 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4822 vcpu->run->internal.ndata = 4; 4823 vcpu->run->internal.data[0] = vect_info; 4824 vcpu->run->internal.data[1] = intr_info; 4825 vcpu->run->internal.data[2] = error_code; 4826 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4827 return 0; 4828 } 4829 4830 if (is_page_fault(intr_info)) { 4831 cr2 = vmx_get_exit_qual(vcpu); 4832 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4833 /* 4834 * EPT will cause page fault only if we need to 4835 * detect illegal GPAs. 4836 */ 4837 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4838 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4839 return 1; 4840 } else 4841 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4842 } 4843 4844 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4845 4846 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4847 return handle_rmode_exception(vcpu, ex_no, error_code); 4848 4849 switch (ex_no) { 4850 case DB_VECTOR: 4851 dr6 = vmx_get_exit_qual(vcpu); 4852 if (!(vcpu->guest_debug & 4853 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4854 if (is_icebp(intr_info)) 4855 WARN_ON(!skip_emulated_instruction(vcpu)); 4856 4857 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4858 return 1; 4859 } 4860 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4861 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4862 fallthrough; 4863 case BP_VECTOR: 4864 /* 4865 * Update instruction length as we may reinject #BP from 4866 * user space while in guest debugging mode. Reading it for 4867 * #DB as well causes no harm, it is not used in that case. 4868 */ 4869 vmx->vcpu.arch.event_exit_inst_len = 4870 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4871 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4872 rip = kvm_rip_read(vcpu); 4873 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4874 kvm_run->debug.arch.exception = ex_no; 4875 break; 4876 case AC_VECTOR: 4877 if (guest_inject_ac(vcpu)) { 4878 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4879 return 1; 4880 } 4881 4882 /* 4883 * Handle split lock. Depending on detection mode this will 4884 * either warn and disable split lock detection for this 4885 * task or force SIGBUS on it. 4886 */ 4887 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4888 return 1; 4889 fallthrough; 4890 default: 4891 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4892 kvm_run->ex.exception = ex_no; 4893 kvm_run->ex.error_code = error_code; 4894 break; 4895 } 4896 return 0; 4897 } 4898 4899 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4900 { 4901 ++vcpu->stat.irq_exits; 4902 return 1; 4903 } 4904 4905 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4906 { 4907 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4908 vcpu->mmio_needed = 0; 4909 return 0; 4910 } 4911 4912 static int handle_io(struct kvm_vcpu *vcpu) 4913 { 4914 unsigned long exit_qualification; 4915 int size, in, string; 4916 unsigned port; 4917 4918 exit_qualification = vmx_get_exit_qual(vcpu); 4919 string = (exit_qualification & 16) != 0; 4920 4921 ++vcpu->stat.io_exits; 4922 4923 if (string) 4924 return kvm_emulate_instruction(vcpu, 0); 4925 4926 port = exit_qualification >> 16; 4927 size = (exit_qualification & 7) + 1; 4928 in = (exit_qualification & 8) != 0; 4929 4930 return kvm_fast_pio(vcpu, size, port, in); 4931 } 4932 4933 static void 4934 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4935 { 4936 /* 4937 * Patch in the VMCALL instruction: 4938 */ 4939 hypercall[0] = 0x0f; 4940 hypercall[1] = 0x01; 4941 hypercall[2] = 0xc1; 4942 } 4943 4944 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4945 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4946 { 4947 if (is_guest_mode(vcpu)) { 4948 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4949 unsigned long orig_val = val; 4950 4951 /* 4952 * We get here when L2 changed cr0 in a way that did not change 4953 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4954 * but did change L0 shadowed bits. So we first calculate the 4955 * effective cr0 value that L1 would like to write into the 4956 * hardware. It consists of the L2-owned bits from the new 4957 * value combined with the L1-owned bits from L1's guest_cr0. 4958 */ 4959 val = (val & ~vmcs12->cr0_guest_host_mask) | 4960 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4961 4962 if (!nested_guest_cr0_valid(vcpu, val)) 4963 return 1; 4964 4965 if (kvm_set_cr0(vcpu, val)) 4966 return 1; 4967 vmcs_writel(CR0_READ_SHADOW, orig_val); 4968 return 0; 4969 } else { 4970 if (to_vmx(vcpu)->nested.vmxon && 4971 !nested_host_cr0_valid(vcpu, val)) 4972 return 1; 4973 4974 return kvm_set_cr0(vcpu, val); 4975 } 4976 } 4977 4978 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4979 { 4980 if (is_guest_mode(vcpu)) { 4981 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4982 unsigned long orig_val = val; 4983 4984 /* analogously to handle_set_cr0 */ 4985 val = (val & ~vmcs12->cr4_guest_host_mask) | 4986 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4987 if (kvm_set_cr4(vcpu, val)) 4988 return 1; 4989 vmcs_writel(CR4_READ_SHADOW, orig_val); 4990 return 0; 4991 } else 4992 return kvm_set_cr4(vcpu, val); 4993 } 4994 4995 static int handle_desc(struct kvm_vcpu *vcpu) 4996 { 4997 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4998 return kvm_emulate_instruction(vcpu, 0); 4999 } 5000 5001 static int handle_cr(struct kvm_vcpu *vcpu) 5002 { 5003 unsigned long exit_qualification, val; 5004 int cr; 5005 int reg; 5006 int err; 5007 int ret; 5008 5009 exit_qualification = vmx_get_exit_qual(vcpu); 5010 cr = exit_qualification & 15; 5011 reg = (exit_qualification >> 8) & 15; 5012 switch ((exit_qualification >> 4) & 3) { 5013 case 0: /* mov to cr */ 5014 val = kvm_register_readl(vcpu, reg); 5015 trace_kvm_cr_write(cr, val); 5016 switch (cr) { 5017 case 0: 5018 err = handle_set_cr0(vcpu, val); 5019 return kvm_complete_insn_gp(vcpu, err); 5020 case 3: 5021 WARN_ON_ONCE(enable_unrestricted_guest); 5022 err = kvm_set_cr3(vcpu, val); 5023 return kvm_complete_insn_gp(vcpu, err); 5024 case 4: 5025 err = handle_set_cr4(vcpu, val); 5026 return kvm_complete_insn_gp(vcpu, err); 5027 case 8: { 5028 u8 cr8_prev = kvm_get_cr8(vcpu); 5029 u8 cr8 = (u8)val; 5030 err = kvm_set_cr8(vcpu, cr8); 5031 ret = kvm_complete_insn_gp(vcpu, err); 5032 if (lapic_in_kernel(vcpu)) 5033 return ret; 5034 if (cr8_prev <= cr8) 5035 return ret; 5036 /* 5037 * TODO: we might be squashing a 5038 * KVM_GUESTDBG_SINGLESTEP-triggered 5039 * KVM_EXIT_DEBUG here. 5040 */ 5041 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5042 return 0; 5043 } 5044 } 5045 break; 5046 case 2: /* clts */ 5047 WARN_ONCE(1, "Guest should always own CR0.TS"); 5048 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 5049 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 5050 return kvm_skip_emulated_instruction(vcpu); 5051 case 1: /*mov from cr*/ 5052 switch (cr) { 5053 case 3: 5054 WARN_ON_ONCE(enable_unrestricted_guest); 5055 val = kvm_read_cr3(vcpu); 5056 kvm_register_write(vcpu, reg, val); 5057 trace_kvm_cr_read(cr, val); 5058 return kvm_skip_emulated_instruction(vcpu); 5059 case 8: 5060 val = kvm_get_cr8(vcpu); 5061 kvm_register_write(vcpu, reg, val); 5062 trace_kvm_cr_read(cr, val); 5063 return kvm_skip_emulated_instruction(vcpu); 5064 } 5065 break; 5066 case 3: /* lmsw */ 5067 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5068 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5069 kvm_lmsw(vcpu, val); 5070 5071 return kvm_skip_emulated_instruction(vcpu); 5072 default: 5073 break; 5074 } 5075 vcpu->run->exit_reason = 0; 5076 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5077 (int)(exit_qualification >> 4) & 3, cr); 5078 return 0; 5079 } 5080 5081 static int handle_dr(struct kvm_vcpu *vcpu) 5082 { 5083 unsigned long exit_qualification; 5084 int dr, dr7, reg; 5085 int err = 1; 5086 5087 exit_qualification = vmx_get_exit_qual(vcpu); 5088 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5089 5090 /* First, if DR does not exist, trigger UD */ 5091 if (!kvm_require_dr(vcpu, dr)) 5092 return 1; 5093 5094 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5095 goto out; 5096 5097 dr7 = vmcs_readl(GUEST_DR7); 5098 if (dr7 & DR7_GD) { 5099 /* 5100 * As the vm-exit takes precedence over the debug trap, we 5101 * need to emulate the latter, either for the host or the 5102 * guest debugging itself. 5103 */ 5104 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5105 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5106 vcpu->run->debug.arch.dr7 = dr7; 5107 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5108 vcpu->run->debug.arch.exception = DB_VECTOR; 5109 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5110 return 0; 5111 } else { 5112 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5113 return 1; 5114 } 5115 } 5116 5117 if (vcpu->guest_debug == 0) { 5118 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5119 5120 /* 5121 * No more DR vmexits; force a reload of the debug registers 5122 * and reenter on this instruction. The next vmexit will 5123 * retrieve the full state of the debug registers. 5124 */ 5125 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5126 return 1; 5127 } 5128 5129 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5130 if (exit_qualification & TYPE_MOV_FROM_DR) { 5131 unsigned long val; 5132 5133 kvm_get_dr(vcpu, dr, &val); 5134 kvm_register_write(vcpu, reg, val); 5135 err = 0; 5136 } else { 5137 err = kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)); 5138 } 5139 5140 out: 5141 return kvm_complete_insn_gp(vcpu, err); 5142 } 5143 5144 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5145 { 5146 get_debugreg(vcpu->arch.db[0], 0); 5147 get_debugreg(vcpu->arch.db[1], 1); 5148 get_debugreg(vcpu->arch.db[2], 2); 5149 get_debugreg(vcpu->arch.db[3], 3); 5150 get_debugreg(vcpu->arch.dr6, 6); 5151 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5152 5153 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5154 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5155 } 5156 5157 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5158 { 5159 vmcs_writel(GUEST_DR7, val); 5160 } 5161 5162 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5163 { 5164 kvm_apic_update_ppr(vcpu); 5165 return 1; 5166 } 5167 5168 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5169 { 5170 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5171 5172 kvm_make_request(KVM_REQ_EVENT, vcpu); 5173 5174 ++vcpu->stat.irq_window_exits; 5175 return 1; 5176 } 5177 5178 static int handle_invlpg(struct kvm_vcpu *vcpu) 5179 { 5180 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5181 5182 kvm_mmu_invlpg(vcpu, exit_qualification); 5183 return kvm_skip_emulated_instruction(vcpu); 5184 } 5185 5186 static int handle_apic_access(struct kvm_vcpu *vcpu) 5187 { 5188 if (likely(fasteoi)) { 5189 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5190 int access_type, offset; 5191 5192 access_type = exit_qualification & APIC_ACCESS_TYPE; 5193 offset = exit_qualification & APIC_ACCESS_OFFSET; 5194 /* 5195 * Sane guest uses MOV to write EOI, with written value 5196 * not cared. So make a short-circuit here by avoiding 5197 * heavy instruction emulation. 5198 */ 5199 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5200 (offset == APIC_EOI)) { 5201 kvm_lapic_set_eoi(vcpu); 5202 return kvm_skip_emulated_instruction(vcpu); 5203 } 5204 } 5205 return kvm_emulate_instruction(vcpu, 0); 5206 } 5207 5208 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5209 { 5210 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5211 int vector = exit_qualification & 0xff; 5212 5213 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5214 kvm_apic_set_eoi_accelerated(vcpu, vector); 5215 return 1; 5216 } 5217 5218 static int handle_apic_write(struct kvm_vcpu *vcpu) 5219 { 5220 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5221 u32 offset = exit_qualification & 0xfff; 5222 5223 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5224 kvm_apic_write_nodecode(vcpu, offset); 5225 return 1; 5226 } 5227 5228 static int handle_task_switch(struct kvm_vcpu *vcpu) 5229 { 5230 struct vcpu_vmx *vmx = to_vmx(vcpu); 5231 unsigned long exit_qualification; 5232 bool has_error_code = false; 5233 u32 error_code = 0; 5234 u16 tss_selector; 5235 int reason, type, idt_v, idt_index; 5236 5237 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5238 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5239 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5240 5241 exit_qualification = vmx_get_exit_qual(vcpu); 5242 5243 reason = (u32)exit_qualification >> 30; 5244 if (reason == TASK_SWITCH_GATE && idt_v) { 5245 switch (type) { 5246 case INTR_TYPE_NMI_INTR: 5247 vcpu->arch.nmi_injected = false; 5248 vmx_set_nmi_mask(vcpu, true); 5249 break; 5250 case INTR_TYPE_EXT_INTR: 5251 case INTR_TYPE_SOFT_INTR: 5252 kvm_clear_interrupt_queue(vcpu); 5253 break; 5254 case INTR_TYPE_HARD_EXCEPTION: 5255 if (vmx->idt_vectoring_info & 5256 VECTORING_INFO_DELIVER_CODE_MASK) { 5257 has_error_code = true; 5258 error_code = 5259 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5260 } 5261 fallthrough; 5262 case INTR_TYPE_SOFT_EXCEPTION: 5263 kvm_clear_exception_queue(vcpu); 5264 break; 5265 default: 5266 break; 5267 } 5268 } 5269 tss_selector = exit_qualification; 5270 5271 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5272 type != INTR_TYPE_EXT_INTR && 5273 type != INTR_TYPE_NMI_INTR)) 5274 WARN_ON(!skip_emulated_instruction(vcpu)); 5275 5276 /* 5277 * TODO: What about debug traps on tss switch? 5278 * Are we supposed to inject them and update dr6? 5279 */ 5280 return kvm_task_switch(vcpu, tss_selector, 5281 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5282 reason, has_error_code, error_code); 5283 } 5284 5285 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5286 { 5287 unsigned long exit_qualification; 5288 gpa_t gpa; 5289 u64 error_code; 5290 5291 exit_qualification = vmx_get_exit_qual(vcpu); 5292 5293 /* 5294 * EPT violation happened while executing iret from NMI, 5295 * "blocked by NMI" bit has to be set before next VM entry. 5296 * There are errata that may cause this bit to not be set: 5297 * AAK134, BY25. 5298 */ 5299 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5300 enable_vnmi && 5301 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5302 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5303 5304 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5305 trace_kvm_page_fault(gpa, exit_qualification); 5306 5307 /* Is it a read fault? */ 5308 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5309 ? PFERR_USER_MASK : 0; 5310 /* Is it a write fault? */ 5311 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5312 ? PFERR_WRITE_MASK : 0; 5313 /* Is it a fetch fault? */ 5314 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5315 ? PFERR_FETCH_MASK : 0; 5316 /* ept page table entry is present? */ 5317 error_code |= (exit_qualification & 5318 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5319 EPT_VIOLATION_EXECUTABLE)) 5320 ? PFERR_PRESENT_MASK : 0; 5321 5322 error_code |= (exit_qualification & 0x100) != 0 ? 5323 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5324 5325 vcpu->arch.exit_qualification = exit_qualification; 5326 5327 /* 5328 * Check that the GPA doesn't exceed physical memory limits, as that is 5329 * a guest page fault. We have to emulate the instruction here, because 5330 * if the illegal address is that of a paging structure, then 5331 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5332 * would also use advanced VM-exit information for EPT violations to 5333 * reconstruct the page fault error code. 5334 */ 5335 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5336 return kvm_emulate_instruction(vcpu, 0); 5337 5338 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5339 } 5340 5341 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5342 { 5343 gpa_t gpa; 5344 5345 /* 5346 * A nested guest cannot optimize MMIO vmexits, because we have an 5347 * nGPA here instead of the required GPA. 5348 */ 5349 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5350 if (!is_guest_mode(vcpu) && 5351 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5352 trace_kvm_fast_mmio(gpa); 5353 return kvm_skip_emulated_instruction(vcpu); 5354 } 5355 5356 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5357 } 5358 5359 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5360 { 5361 WARN_ON_ONCE(!enable_vnmi); 5362 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5363 ++vcpu->stat.nmi_window_exits; 5364 kvm_make_request(KVM_REQ_EVENT, vcpu); 5365 5366 return 1; 5367 } 5368 5369 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5370 { 5371 struct vcpu_vmx *vmx = to_vmx(vcpu); 5372 bool intr_window_requested; 5373 unsigned count = 130; 5374 5375 intr_window_requested = exec_controls_get(vmx) & 5376 CPU_BASED_INTR_WINDOW_EXITING; 5377 5378 while (vmx->emulation_required && count-- != 0) { 5379 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5380 return handle_interrupt_window(&vmx->vcpu); 5381 5382 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5383 return 1; 5384 5385 if (!kvm_emulate_instruction(vcpu, 0)) 5386 return 0; 5387 5388 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5389 vcpu->arch.exception.pending) { 5390 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5391 vcpu->run->internal.suberror = 5392 KVM_INTERNAL_ERROR_EMULATION; 5393 vcpu->run->internal.ndata = 0; 5394 return 0; 5395 } 5396 5397 if (vcpu->arch.halt_request) { 5398 vcpu->arch.halt_request = 0; 5399 return kvm_vcpu_halt(vcpu); 5400 } 5401 5402 /* 5403 * Note, return 1 and not 0, vcpu_run() will invoke 5404 * xfer_to_guest_mode() which will create a proper return 5405 * code. 5406 */ 5407 if (__xfer_to_guest_mode_work_pending()) 5408 return 1; 5409 } 5410 5411 return 1; 5412 } 5413 5414 static void grow_ple_window(struct kvm_vcpu *vcpu) 5415 { 5416 struct vcpu_vmx *vmx = to_vmx(vcpu); 5417 unsigned int old = vmx->ple_window; 5418 5419 vmx->ple_window = __grow_ple_window(old, ple_window, 5420 ple_window_grow, 5421 ple_window_max); 5422 5423 if (vmx->ple_window != old) { 5424 vmx->ple_window_dirty = true; 5425 trace_kvm_ple_window_update(vcpu->vcpu_id, 5426 vmx->ple_window, old); 5427 } 5428 } 5429 5430 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5431 { 5432 struct vcpu_vmx *vmx = to_vmx(vcpu); 5433 unsigned int old = vmx->ple_window; 5434 5435 vmx->ple_window = __shrink_ple_window(old, ple_window, 5436 ple_window_shrink, 5437 ple_window); 5438 5439 if (vmx->ple_window != old) { 5440 vmx->ple_window_dirty = true; 5441 trace_kvm_ple_window_update(vcpu->vcpu_id, 5442 vmx->ple_window, old); 5443 } 5444 } 5445 5446 /* 5447 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5448 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5449 */ 5450 static int handle_pause(struct kvm_vcpu *vcpu) 5451 { 5452 if (!kvm_pause_in_guest(vcpu->kvm)) 5453 grow_ple_window(vcpu); 5454 5455 /* 5456 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5457 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5458 * never set PAUSE_EXITING and just set PLE if supported, 5459 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5460 */ 5461 kvm_vcpu_on_spin(vcpu, true); 5462 return kvm_skip_emulated_instruction(vcpu); 5463 } 5464 5465 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5466 { 5467 return 1; 5468 } 5469 5470 static int handle_invpcid(struct kvm_vcpu *vcpu) 5471 { 5472 u32 vmx_instruction_info; 5473 unsigned long type; 5474 gva_t gva; 5475 struct { 5476 u64 pcid; 5477 u64 gla; 5478 } operand; 5479 5480 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5481 kvm_queue_exception(vcpu, UD_VECTOR); 5482 return 1; 5483 } 5484 5485 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5486 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5487 5488 if (type > 3) { 5489 kvm_inject_gp(vcpu, 0); 5490 return 1; 5491 } 5492 5493 /* According to the Intel instruction reference, the memory operand 5494 * is read even if it isn't needed (e.g., for type==all) 5495 */ 5496 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5497 vmx_instruction_info, false, 5498 sizeof(operand), &gva)) 5499 return 1; 5500 5501 return kvm_handle_invpcid(vcpu, type, gva); 5502 } 5503 5504 static int handle_pml_full(struct kvm_vcpu *vcpu) 5505 { 5506 unsigned long exit_qualification; 5507 5508 trace_kvm_pml_full(vcpu->vcpu_id); 5509 5510 exit_qualification = vmx_get_exit_qual(vcpu); 5511 5512 /* 5513 * PML buffer FULL happened while executing iret from NMI, 5514 * "blocked by NMI" bit has to be set before next VM entry. 5515 */ 5516 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5517 enable_vnmi && 5518 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5519 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5520 GUEST_INTR_STATE_NMI); 5521 5522 /* 5523 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5524 * here.., and there's no userspace involvement needed for PML. 5525 */ 5526 return 1; 5527 } 5528 5529 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5530 { 5531 struct vcpu_vmx *vmx = to_vmx(vcpu); 5532 5533 if (!vmx->req_immediate_exit && 5534 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5535 kvm_lapic_expired_hv_timer(vcpu); 5536 return EXIT_FASTPATH_REENTER_GUEST; 5537 } 5538 5539 return EXIT_FASTPATH_NONE; 5540 } 5541 5542 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5543 { 5544 handle_fastpath_preemption_timer(vcpu); 5545 return 1; 5546 } 5547 5548 /* 5549 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5550 * are overwritten by nested_vmx_setup() when nested=1. 5551 */ 5552 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5553 { 5554 kvm_queue_exception(vcpu, UD_VECTOR); 5555 return 1; 5556 } 5557 5558 static int handle_encls(struct kvm_vcpu *vcpu) 5559 { 5560 /* 5561 * SGX virtualization is not yet supported. There is no software 5562 * enable bit for SGX, so we have to trap ENCLS and inject a #UD 5563 * to prevent the guest from executing ENCLS. 5564 */ 5565 kvm_queue_exception(vcpu, UD_VECTOR); 5566 return 1; 5567 } 5568 5569 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5570 { 5571 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 5572 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 5573 return 0; 5574 } 5575 5576 /* 5577 * The exit handlers return 1 if the exit was handled fully and guest execution 5578 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5579 * to be done to userspace and return 0. 5580 */ 5581 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5582 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5583 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5584 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5585 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5586 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5587 [EXIT_REASON_CR_ACCESS] = handle_cr, 5588 [EXIT_REASON_DR_ACCESS] = handle_dr, 5589 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5590 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5591 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5592 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5593 [EXIT_REASON_HLT] = kvm_emulate_halt, 5594 [EXIT_REASON_INVD] = kvm_emulate_invd, 5595 [EXIT_REASON_INVLPG] = handle_invlpg, 5596 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5597 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5598 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5599 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5600 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5601 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5602 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5603 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5604 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5605 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5606 [EXIT_REASON_VMON] = handle_vmx_instruction, 5607 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5608 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5609 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5610 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5611 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5612 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5613 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5614 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5615 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5616 [EXIT_REASON_LDTR_TR] = handle_desc, 5617 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5618 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5619 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5620 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5621 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5622 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5623 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5624 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5625 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5626 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5627 [EXIT_REASON_PML_FULL] = handle_pml_full, 5628 [EXIT_REASON_INVPCID] = handle_invpcid, 5629 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5630 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5631 [EXIT_REASON_ENCLS] = handle_encls, 5632 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5633 }; 5634 5635 static const int kvm_vmx_max_exit_handlers = 5636 ARRAY_SIZE(kvm_vmx_exit_handlers); 5637 5638 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5639 u32 *intr_info, u32 *error_code) 5640 { 5641 struct vcpu_vmx *vmx = to_vmx(vcpu); 5642 5643 *info1 = vmx_get_exit_qual(vcpu); 5644 if (!(vmx->exit_reason.failed_vmentry)) { 5645 *info2 = vmx->idt_vectoring_info; 5646 *intr_info = vmx_get_intr_info(vcpu); 5647 if (is_exception_with_error_code(*intr_info)) 5648 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5649 else 5650 *error_code = 0; 5651 } else { 5652 *info2 = 0; 5653 *intr_info = 0; 5654 *error_code = 0; 5655 } 5656 } 5657 5658 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5659 { 5660 if (vmx->pml_pg) { 5661 __free_page(vmx->pml_pg); 5662 vmx->pml_pg = NULL; 5663 } 5664 } 5665 5666 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5667 { 5668 struct vcpu_vmx *vmx = to_vmx(vcpu); 5669 u64 *pml_buf; 5670 u16 pml_idx; 5671 5672 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5673 5674 /* Do nothing if PML buffer is empty */ 5675 if (pml_idx == (PML_ENTITY_NUM - 1)) 5676 return; 5677 5678 /* PML index always points to next available PML buffer entity */ 5679 if (pml_idx >= PML_ENTITY_NUM) 5680 pml_idx = 0; 5681 else 5682 pml_idx++; 5683 5684 pml_buf = page_address(vmx->pml_pg); 5685 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5686 u64 gpa; 5687 5688 gpa = pml_buf[pml_idx]; 5689 WARN_ON(gpa & (PAGE_SIZE - 1)); 5690 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5691 } 5692 5693 /* reset PML index */ 5694 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5695 } 5696 5697 static void vmx_dump_sel(char *name, uint32_t sel) 5698 { 5699 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5700 name, vmcs_read16(sel), 5701 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5702 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5703 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5704 } 5705 5706 static void vmx_dump_dtsel(char *name, uint32_t limit) 5707 { 5708 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5709 name, vmcs_read32(limit), 5710 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5711 } 5712 5713 void dump_vmcs(void) 5714 { 5715 u32 vmentry_ctl, vmexit_ctl; 5716 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5717 unsigned long cr4; 5718 u64 efer; 5719 5720 if (!dump_invalid_vmcs) { 5721 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5722 return; 5723 } 5724 5725 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5726 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5727 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5728 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5729 cr4 = vmcs_readl(GUEST_CR4); 5730 efer = vmcs_read64(GUEST_IA32_EFER); 5731 secondary_exec_control = 0; 5732 if (cpu_has_secondary_exec_ctrls()) 5733 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5734 5735 pr_err("*** Guest State ***\n"); 5736 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5737 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5738 vmcs_readl(CR0_GUEST_HOST_MASK)); 5739 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5740 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5741 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5742 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 5743 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) 5744 { 5745 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5746 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5747 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5748 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5749 } 5750 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5751 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5752 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5753 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5754 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5755 vmcs_readl(GUEST_SYSENTER_ESP), 5756 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5757 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5758 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5759 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5760 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5761 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5762 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5763 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5764 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5765 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5766 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5767 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || 5768 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) 5769 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5770 efer, vmcs_read64(GUEST_IA32_PAT)); 5771 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5772 vmcs_read64(GUEST_IA32_DEBUGCTL), 5773 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5774 if (cpu_has_load_perf_global_ctrl() && 5775 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5776 pr_err("PerfGlobCtl = 0x%016llx\n", 5777 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5778 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5779 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5780 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5781 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5782 vmcs_read32(GUEST_ACTIVITY_STATE)); 5783 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5784 pr_err("InterruptStatus = %04x\n", 5785 vmcs_read16(GUEST_INTR_STATUS)); 5786 5787 pr_err("*** Host State ***\n"); 5788 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5789 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5790 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5791 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5792 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5793 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5794 vmcs_read16(HOST_TR_SELECTOR)); 5795 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5796 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5797 vmcs_readl(HOST_TR_BASE)); 5798 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5799 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5800 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5801 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5802 vmcs_readl(HOST_CR4)); 5803 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5804 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5805 vmcs_read32(HOST_IA32_SYSENTER_CS), 5806 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5807 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) 5808 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5809 vmcs_read64(HOST_IA32_EFER), 5810 vmcs_read64(HOST_IA32_PAT)); 5811 if (cpu_has_load_perf_global_ctrl() && 5812 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5813 pr_err("PerfGlobCtl = 0x%016llx\n", 5814 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5815 5816 pr_err("*** Control State ***\n"); 5817 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5818 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5819 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5820 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5821 vmcs_read32(EXCEPTION_BITMAP), 5822 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5823 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5824 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5825 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5826 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5827 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5828 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5829 vmcs_read32(VM_EXIT_INTR_INFO), 5830 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5831 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5832 pr_err(" reason=%08x qualification=%016lx\n", 5833 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5834 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5835 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5836 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5837 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5838 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5839 pr_err("TSC Multiplier = 0x%016llx\n", 5840 vmcs_read64(TSC_MULTIPLIER)); 5841 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5842 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5843 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5844 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5845 } 5846 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5847 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5848 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5849 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5850 } 5851 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5852 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5853 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5854 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5855 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5856 pr_err("PLE Gap=%08x Window=%08x\n", 5857 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5858 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5859 pr_err("Virtual processor ID = 0x%04x\n", 5860 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5861 } 5862 5863 /* 5864 * The guest has exited. See if we can fix it or if we need userspace 5865 * assistance. 5866 */ 5867 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5868 { 5869 struct vcpu_vmx *vmx = to_vmx(vcpu); 5870 union vmx_exit_reason exit_reason = vmx->exit_reason; 5871 u32 vectoring_info = vmx->idt_vectoring_info; 5872 u16 exit_handler_index; 5873 5874 /* 5875 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5876 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5877 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5878 * mode as if vcpus is in root mode, the PML buffer must has been 5879 * flushed already. Note, PML is never enabled in hardware while 5880 * running L2. 5881 */ 5882 if (enable_pml && !is_guest_mode(vcpu)) 5883 vmx_flush_pml_buffer(vcpu); 5884 5885 /* 5886 * We should never reach this point with a pending nested VM-Enter, and 5887 * more specifically emulation of L2 due to invalid guest state (see 5888 * below) should never happen as that means we incorrectly allowed a 5889 * nested VM-Enter with an invalid vmcs12. 5890 */ 5891 WARN_ON_ONCE(vmx->nested.nested_run_pending); 5892 5893 /* If guest state is invalid, start emulating */ 5894 if (vmx->emulation_required) 5895 return handle_invalid_guest_state(vcpu); 5896 5897 if (is_guest_mode(vcpu)) { 5898 /* 5899 * PML is never enabled when running L2, bail immediately if a 5900 * PML full exit occurs as something is horribly wrong. 5901 */ 5902 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5903 goto unexpected_vmexit; 5904 5905 /* 5906 * The host physical addresses of some pages of guest memory 5907 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5908 * Page). The CPU may write to these pages via their host 5909 * physical address while L2 is running, bypassing any 5910 * address-translation-based dirty tracking (e.g. EPT write 5911 * protection). 5912 * 5913 * Mark them dirty on every exit from L2 to prevent them from 5914 * getting out of sync with dirty tracking. 5915 */ 5916 nested_mark_vmcs12_pages_dirty(vcpu); 5917 5918 if (nested_vmx_reflect_vmexit(vcpu)) 5919 return 1; 5920 } 5921 5922 if (exit_reason.failed_vmentry) { 5923 dump_vmcs(); 5924 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5925 vcpu->run->fail_entry.hardware_entry_failure_reason 5926 = exit_reason.full; 5927 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5928 return 0; 5929 } 5930 5931 if (unlikely(vmx->fail)) { 5932 dump_vmcs(); 5933 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5934 vcpu->run->fail_entry.hardware_entry_failure_reason 5935 = vmcs_read32(VM_INSTRUCTION_ERROR); 5936 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5937 return 0; 5938 } 5939 5940 /* 5941 * Note: 5942 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5943 * delivery event since it indicates guest is accessing MMIO. 5944 * The vm-exit can be triggered again after return to guest that 5945 * will cause infinite loop. 5946 */ 5947 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5948 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5949 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5950 exit_reason.basic != EXIT_REASON_PML_FULL && 5951 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5952 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5953 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5954 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5955 vcpu->run->internal.ndata = 3; 5956 vcpu->run->internal.data[0] = vectoring_info; 5957 vcpu->run->internal.data[1] = exit_reason.full; 5958 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5959 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5960 vcpu->run->internal.ndata++; 5961 vcpu->run->internal.data[3] = 5962 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5963 } 5964 vcpu->run->internal.data[vcpu->run->internal.ndata++] = 5965 vcpu->arch.last_vmentry_cpu; 5966 return 0; 5967 } 5968 5969 if (unlikely(!enable_vnmi && 5970 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5971 if (!vmx_interrupt_blocked(vcpu)) { 5972 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5973 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5974 vcpu->arch.nmi_pending) { 5975 /* 5976 * This CPU don't support us in finding the end of an 5977 * NMI-blocked window if the guest runs with IRQs 5978 * disabled. So we pull the trigger after 1 s of 5979 * futile waiting, but inform the user about this. 5980 */ 5981 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5982 "state on VCPU %d after 1 s timeout\n", 5983 __func__, vcpu->vcpu_id); 5984 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5985 } 5986 } 5987 5988 if (exit_fastpath != EXIT_FASTPATH_NONE) 5989 return 1; 5990 5991 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 5992 goto unexpected_vmexit; 5993 #ifdef CONFIG_RETPOLINE 5994 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 5995 return kvm_emulate_wrmsr(vcpu); 5996 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 5997 return handle_preemption_timer(vcpu); 5998 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 5999 return handle_interrupt_window(vcpu); 6000 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6001 return handle_external_interrupt(vcpu); 6002 else if (exit_reason.basic == EXIT_REASON_HLT) 6003 return kvm_emulate_halt(vcpu); 6004 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6005 return handle_ept_misconfig(vcpu); 6006 #endif 6007 6008 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6009 kvm_vmx_max_exit_handlers); 6010 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6011 goto unexpected_vmexit; 6012 6013 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6014 6015 unexpected_vmexit: 6016 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6017 exit_reason.full); 6018 dump_vmcs(); 6019 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6020 vcpu->run->internal.suberror = 6021 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6022 vcpu->run->internal.ndata = 2; 6023 vcpu->run->internal.data[0] = exit_reason.full; 6024 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6025 return 0; 6026 } 6027 6028 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6029 { 6030 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6031 6032 /* 6033 * Even when current exit reason is handled by KVM internally, we 6034 * still need to exit to user space when bus lock detected to inform 6035 * that there is a bus lock in guest. 6036 */ 6037 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6038 if (ret > 0) 6039 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6040 6041 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6042 return 0; 6043 } 6044 return ret; 6045 } 6046 6047 /* 6048 * Software based L1D cache flush which is used when microcode providing 6049 * the cache control MSR is not loaded. 6050 * 6051 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6052 * flush it is required to read in 64 KiB because the replacement algorithm 6053 * is not exactly LRU. This could be sized at runtime via topology 6054 * information but as all relevant affected CPUs have 32KiB L1D cache size 6055 * there is no point in doing so. 6056 */ 6057 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6058 { 6059 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6060 6061 /* 6062 * This code is only executed when the the flush mode is 'cond' or 6063 * 'always' 6064 */ 6065 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6066 bool flush_l1d; 6067 6068 /* 6069 * Clear the per-vcpu flush bit, it gets set again 6070 * either from vcpu_run() or from one of the unsafe 6071 * VMEXIT handlers. 6072 */ 6073 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6074 vcpu->arch.l1tf_flush_l1d = false; 6075 6076 /* 6077 * Clear the per-cpu flush bit, it gets set again from 6078 * the interrupt handlers. 6079 */ 6080 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6081 kvm_clear_cpu_l1tf_flush_l1d(); 6082 6083 if (!flush_l1d) 6084 return; 6085 } 6086 6087 vcpu->stat.l1d_flush++; 6088 6089 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6090 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6091 return; 6092 } 6093 6094 asm volatile( 6095 /* First ensure the pages are in the TLB */ 6096 "xorl %%eax, %%eax\n" 6097 ".Lpopulate_tlb:\n\t" 6098 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6099 "addl $4096, %%eax\n\t" 6100 "cmpl %%eax, %[size]\n\t" 6101 "jne .Lpopulate_tlb\n\t" 6102 "xorl %%eax, %%eax\n\t" 6103 "cpuid\n\t" 6104 /* Now fill the cache */ 6105 "xorl %%eax, %%eax\n" 6106 ".Lfill_cache:\n" 6107 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6108 "addl $64, %%eax\n\t" 6109 "cmpl %%eax, %[size]\n\t" 6110 "jne .Lfill_cache\n\t" 6111 "lfence\n" 6112 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6113 [size] "r" (size) 6114 : "eax", "ebx", "ecx", "edx"); 6115 } 6116 6117 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6118 { 6119 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6120 int tpr_threshold; 6121 6122 if (is_guest_mode(vcpu) && 6123 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6124 return; 6125 6126 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6127 if (is_guest_mode(vcpu)) 6128 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6129 else 6130 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6131 } 6132 6133 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6134 { 6135 struct vcpu_vmx *vmx = to_vmx(vcpu); 6136 u32 sec_exec_control; 6137 6138 if (!lapic_in_kernel(vcpu)) 6139 return; 6140 6141 if (!flexpriority_enabled && 6142 !cpu_has_vmx_virtualize_x2apic_mode()) 6143 return; 6144 6145 /* Postpone execution until vmcs01 is the current VMCS. */ 6146 if (is_guest_mode(vcpu)) { 6147 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6148 return; 6149 } 6150 6151 sec_exec_control = secondary_exec_controls_get(vmx); 6152 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6153 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6154 6155 switch (kvm_get_apic_mode(vcpu)) { 6156 case LAPIC_MODE_INVALID: 6157 WARN_ONCE(true, "Invalid local APIC state"); 6158 case LAPIC_MODE_DISABLED: 6159 break; 6160 case LAPIC_MODE_XAPIC: 6161 if (flexpriority_enabled) { 6162 sec_exec_control |= 6163 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6164 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6165 6166 /* 6167 * Flush the TLB, reloading the APIC access page will 6168 * only do so if its physical address has changed, but 6169 * the guest may have inserted a non-APIC mapping into 6170 * the TLB while the APIC access page was disabled. 6171 */ 6172 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6173 } 6174 break; 6175 case LAPIC_MODE_X2APIC: 6176 if (cpu_has_vmx_virtualize_x2apic_mode()) 6177 sec_exec_control |= 6178 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6179 break; 6180 } 6181 secondary_exec_controls_set(vmx, sec_exec_control); 6182 6183 vmx_update_msr_bitmap(vcpu); 6184 } 6185 6186 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6187 { 6188 struct page *page; 6189 6190 /* Defer reload until vmcs01 is the current VMCS. */ 6191 if (is_guest_mode(vcpu)) { 6192 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6193 return; 6194 } 6195 6196 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6197 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6198 return; 6199 6200 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6201 if (is_error_page(page)) 6202 return; 6203 6204 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6205 vmx_flush_tlb_current(vcpu); 6206 6207 /* 6208 * Do not pin apic access page in memory, the MMU notifier 6209 * will call us again if it is migrated or swapped out. 6210 */ 6211 put_page(page); 6212 } 6213 6214 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6215 { 6216 u16 status; 6217 u8 old; 6218 6219 if (max_isr == -1) 6220 max_isr = 0; 6221 6222 status = vmcs_read16(GUEST_INTR_STATUS); 6223 old = status >> 8; 6224 if (max_isr != old) { 6225 status &= 0xff; 6226 status |= max_isr << 8; 6227 vmcs_write16(GUEST_INTR_STATUS, status); 6228 } 6229 } 6230 6231 static void vmx_set_rvi(int vector) 6232 { 6233 u16 status; 6234 u8 old; 6235 6236 if (vector == -1) 6237 vector = 0; 6238 6239 status = vmcs_read16(GUEST_INTR_STATUS); 6240 old = (u8)status & 0xff; 6241 if ((u8)vector != old) { 6242 status &= ~0xff; 6243 status |= (u8)vector; 6244 vmcs_write16(GUEST_INTR_STATUS, status); 6245 } 6246 } 6247 6248 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6249 { 6250 /* 6251 * When running L2, updating RVI is only relevant when 6252 * vmcs12 virtual-interrupt-delivery enabled. 6253 * However, it can be enabled only when L1 also 6254 * intercepts external-interrupts and in that case 6255 * we should not update vmcs02 RVI but instead intercept 6256 * interrupt. Therefore, do nothing when running L2. 6257 */ 6258 if (!is_guest_mode(vcpu)) 6259 vmx_set_rvi(max_irr); 6260 } 6261 6262 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6263 { 6264 struct vcpu_vmx *vmx = to_vmx(vcpu); 6265 int max_irr; 6266 bool max_irr_updated; 6267 6268 WARN_ON(!vcpu->arch.apicv_active); 6269 if (pi_test_on(&vmx->pi_desc)) { 6270 pi_clear_on(&vmx->pi_desc); 6271 /* 6272 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6273 * But on x86 this is just a compiler barrier anyway. 6274 */ 6275 smp_mb__after_atomic(); 6276 max_irr_updated = 6277 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6278 6279 /* 6280 * If we are running L2 and L1 has a new pending interrupt 6281 * which can be injected, we should re-evaluate 6282 * what should be done with this new L1 interrupt. 6283 * If L1 intercepts external-interrupts, we should 6284 * exit from L2 to L1. Otherwise, interrupt should be 6285 * delivered directly to L2. 6286 */ 6287 if (is_guest_mode(vcpu) && max_irr_updated) { 6288 if (nested_exit_on_intr(vcpu)) 6289 kvm_vcpu_exiting_guest_mode(vcpu); 6290 else 6291 kvm_make_request(KVM_REQ_EVENT, vcpu); 6292 } 6293 } else { 6294 max_irr = kvm_lapic_find_highest_irr(vcpu); 6295 } 6296 vmx_hwapic_irr_update(vcpu, max_irr); 6297 return max_irr; 6298 } 6299 6300 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6301 { 6302 if (!kvm_vcpu_apicv_active(vcpu)) 6303 return; 6304 6305 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6306 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6307 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6308 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6309 } 6310 6311 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6312 { 6313 struct vcpu_vmx *vmx = to_vmx(vcpu); 6314 6315 pi_clear_on(&vmx->pi_desc); 6316 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6317 } 6318 6319 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6320 6321 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 6322 { 6323 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6324 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6325 6326 kvm_before_interrupt(vcpu); 6327 vmx_do_interrupt_nmi_irqoff(gate_offset(desc)); 6328 kvm_after_interrupt(vcpu); 6329 } 6330 6331 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6332 { 6333 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6334 6335 /* if exit due to PF check for async PF */ 6336 if (is_page_fault(intr_info)) 6337 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6338 /* Handle machine checks before interrupts are enabled */ 6339 else if (is_machine_check(intr_info)) 6340 kvm_machine_check(); 6341 /* We need to handle NMIs before interrupts are enabled */ 6342 else if (is_nmi(intr_info)) 6343 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info); 6344 } 6345 6346 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6347 { 6348 u32 intr_info = vmx_get_intr_info(vcpu); 6349 6350 if (WARN_ONCE(!is_external_intr(intr_info), 6351 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6352 return; 6353 6354 handle_interrupt_nmi_irqoff(vcpu, intr_info); 6355 } 6356 6357 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6358 { 6359 struct vcpu_vmx *vmx = to_vmx(vcpu); 6360 6361 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6362 handle_external_interrupt_irqoff(vcpu); 6363 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6364 handle_exception_nmi_irqoff(vmx); 6365 } 6366 6367 /* 6368 * The kvm parameter can be NULL (module initialization, or invocation before 6369 * VM creation). Be sure to check the kvm parameter before using it. 6370 */ 6371 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6372 { 6373 switch (index) { 6374 case MSR_IA32_SMBASE: 6375 /* 6376 * We cannot do SMM unless we can run the guest in big 6377 * real mode. 6378 */ 6379 return enable_unrestricted_guest || emulate_invalid_guest_state; 6380 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6381 return nested; 6382 case MSR_AMD64_VIRT_SPEC_CTRL: 6383 /* This is AMD only. */ 6384 return false; 6385 default: 6386 return true; 6387 } 6388 } 6389 6390 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6391 { 6392 u32 exit_intr_info; 6393 bool unblock_nmi; 6394 u8 vector; 6395 bool idtv_info_valid; 6396 6397 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6398 6399 if (enable_vnmi) { 6400 if (vmx->loaded_vmcs->nmi_known_unmasked) 6401 return; 6402 6403 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6404 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6405 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6406 /* 6407 * SDM 3: 27.7.1.2 (September 2008) 6408 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6409 * a guest IRET fault. 6410 * SDM 3: 23.2.2 (September 2008) 6411 * Bit 12 is undefined in any of the following cases: 6412 * If the VM exit sets the valid bit in the IDT-vectoring 6413 * information field. 6414 * If the VM exit is due to a double fault. 6415 */ 6416 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6417 vector != DF_VECTOR && !idtv_info_valid) 6418 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6419 GUEST_INTR_STATE_NMI); 6420 else 6421 vmx->loaded_vmcs->nmi_known_unmasked = 6422 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6423 & GUEST_INTR_STATE_NMI); 6424 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6425 vmx->loaded_vmcs->vnmi_blocked_time += 6426 ktime_to_ns(ktime_sub(ktime_get(), 6427 vmx->loaded_vmcs->entry_time)); 6428 } 6429 6430 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6431 u32 idt_vectoring_info, 6432 int instr_len_field, 6433 int error_code_field) 6434 { 6435 u8 vector; 6436 int type; 6437 bool idtv_info_valid; 6438 6439 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6440 6441 vcpu->arch.nmi_injected = false; 6442 kvm_clear_exception_queue(vcpu); 6443 kvm_clear_interrupt_queue(vcpu); 6444 6445 if (!idtv_info_valid) 6446 return; 6447 6448 kvm_make_request(KVM_REQ_EVENT, vcpu); 6449 6450 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6451 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6452 6453 switch (type) { 6454 case INTR_TYPE_NMI_INTR: 6455 vcpu->arch.nmi_injected = true; 6456 /* 6457 * SDM 3: 27.7.1.2 (September 2008) 6458 * Clear bit "block by NMI" before VM entry if a NMI 6459 * delivery faulted. 6460 */ 6461 vmx_set_nmi_mask(vcpu, false); 6462 break; 6463 case INTR_TYPE_SOFT_EXCEPTION: 6464 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6465 fallthrough; 6466 case INTR_TYPE_HARD_EXCEPTION: 6467 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6468 u32 err = vmcs_read32(error_code_field); 6469 kvm_requeue_exception_e(vcpu, vector, err); 6470 } else 6471 kvm_requeue_exception(vcpu, vector); 6472 break; 6473 case INTR_TYPE_SOFT_INTR: 6474 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6475 fallthrough; 6476 case INTR_TYPE_EXT_INTR: 6477 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6478 break; 6479 default: 6480 break; 6481 } 6482 } 6483 6484 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6485 { 6486 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6487 VM_EXIT_INSTRUCTION_LEN, 6488 IDT_VECTORING_ERROR_CODE); 6489 } 6490 6491 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6492 { 6493 __vmx_complete_interrupts(vcpu, 6494 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6495 VM_ENTRY_INSTRUCTION_LEN, 6496 VM_ENTRY_EXCEPTION_ERROR_CODE); 6497 6498 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6499 } 6500 6501 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6502 { 6503 int i, nr_msrs; 6504 struct perf_guest_switch_msr *msrs; 6505 6506 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6507 msrs = perf_guest_get_msrs(&nr_msrs); 6508 if (!msrs) 6509 return; 6510 6511 for (i = 0; i < nr_msrs; i++) 6512 if (msrs[i].host == msrs[i].guest) 6513 clear_atomic_switch_msr(vmx, msrs[i].msr); 6514 else 6515 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6516 msrs[i].host, false); 6517 } 6518 6519 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6520 { 6521 struct vcpu_vmx *vmx = to_vmx(vcpu); 6522 u64 tscl; 6523 u32 delta_tsc; 6524 6525 if (vmx->req_immediate_exit) { 6526 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6527 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6528 } else if (vmx->hv_deadline_tsc != -1) { 6529 tscl = rdtsc(); 6530 if (vmx->hv_deadline_tsc > tscl) 6531 /* set_hv_timer ensures the delta fits in 32-bits */ 6532 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6533 cpu_preemption_timer_multi); 6534 else 6535 delta_tsc = 0; 6536 6537 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6538 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6539 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6540 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6541 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6542 } 6543 } 6544 6545 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6546 { 6547 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6548 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6549 vmcs_writel(HOST_RSP, host_rsp); 6550 } 6551 } 6552 6553 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6554 { 6555 switch (to_vmx(vcpu)->exit_reason.basic) { 6556 case EXIT_REASON_MSR_WRITE: 6557 return handle_fastpath_set_msr_irqoff(vcpu); 6558 case EXIT_REASON_PREEMPTION_TIMER: 6559 return handle_fastpath_preemption_timer(vcpu); 6560 default: 6561 return EXIT_FASTPATH_NONE; 6562 } 6563 } 6564 6565 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6566 struct vcpu_vmx *vmx) 6567 { 6568 /* 6569 * VMENTER enables interrupts (host state), but the kernel state is 6570 * interrupts disabled when this is invoked. Also tell RCU about 6571 * it. This is the same logic as for exit_to_user_mode(). 6572 * 6573 * This ensures that e.g. latency analysis on the host observes 6574 * guest mode as interrupt enabled. 6575 * 6576 * guest_enter_irqoff() informs context tracking about the 6577 * transition to guest mode and if enabled adjusts RCU state 6578 * accordingly. 6579 */ 6580 instrumentation_begin(); 6581 trace_hardirqs_on_prepare(); 6582 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 6583 instrumentation_end(); 6584 6585 guest_enter_irqoff(); 6586 lockdep_hardirqs_on(CALLER_ADDR0); 6587 6588 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6589 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6590 vmx_l1d_flush(vcpu); 6591 else if (static_branch_unlikely(&mds_user_clear)) 6592 mds_clear_cpu_buffers(); 6593 6594 if (vcpu->arch.cr2 != native_read_cr2()) 6595 native_write_cr2(vcpu->arch.cr2); 6596 6597 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6598 vmx->loaded_vmcs->launched); 6599 6600 vcpu->arch.cr2 = native_read_cr2(); 6601 6602 /* 6603 * VMEXIT disables interrupts (host state), but tracing and lockdep 6604 * have them in state 'on' as recorded before entering guest mode. 6605 * Same as enter_from_user_mode(). 6606 * 6607 * guest_exit_irqoff() restores host context and reinstates RCU if 6608 * enabled and required. 6609 * 6610 * This needs to be done before the below as native_read_msr() 6611 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 6612 * into world and some more. 6613 */ 6614 lockdep_hardirqs_off(CALLER_ADDR0); 6615 guest_exit_irqoff(); 6616 6617 instrumentation_begin(); 6618 trace_hardirqs_off_finish(); 6619 instrumentation_end(); 6620 } 6621 6622 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6623 { 6624 struct vcpu_vmx *vmx = to_vmx(vcpu); 6625 unsigned long cr3, cr4; 6626 6627 /* Record the guest's net vcpu time for enforced NMI injections. */ 6628 if (unlikely(!enable_vnmi && 6629 vmx->loaded_vmcs->soft_vnmi_blocked)) 6630 vmx->loaded_vmcs->entry_time = ktime_get(); 6631 6632 /* Don't enter VMX if guest state is invalid, let the exit handler 6633 start emulation until we arrive back to a valid state */ 6634 if (vmx->emulation_required) 6635 return EXIT_FASTPATH_NONE; 6636 6637 trace_kvm_entry(vcpu); 6638 6639 if (vmx->ple_window_dirty) { 6640 vmx->ple_window_dirty = false; 6641 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6642 } 6643 6644 /* 6645 * We did this in prepare_switch_to_guest, because it needs to 6646 * be within srcu_read_lock. 6647 */ 6648 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6649 6650 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6651 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6652 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6653 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6654 6655 cr3 = __get_current_cr3_fast(); 6656 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6657 vmcs_writel(HOST_CR3, cr3); 6658 vmx->loaded_vmcs->host_state.cr3 = cr3; 6659 } 6660 6661 cr4 = cr4_read_shadow(); 6662 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6663 vmcs_writel(HOST_CR4, cr4); 6664 vmx->loaded_vmcs->host_state.cr4 = cr4; 6665 } 6666 6667 /* When single-stepping over STI and MOV SS, we must clear the 6668 * corresponding interruptibility bits in the guest state. Otherwise 6669 * vmentry fails as it then expects bit 14 (BS) in pending debug 6670 * exceptions being set, but that's not correct for the guest debugging 6671 * case. */ 6672 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6673 vmx_set_interrupt_shadow(vcpu, 0); 6674 6675 kvm_load_guest_xsave_state(vcpu); 6676 6677 pt_guest_enter(vmx); 6678 6679 atomic_switch_perf_msrs(vmx); 6680 if (intel_pmu_lbr_is_enabled(vcpu)) 6681 vmx_passthrough_lbr_msrs(vcpu); 6682 6683 if (enable_preemption_timer) 6684 vmx_update_hv_timer(vcpu); 6685 6686 kvm_wait_lapic_expire(vcpu); 6687 6688 /* 6689 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6690 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6691 * is no need to worry about the conditional branch over the wrmsr 6692 * being speculatively taken. 6693 */ 6694 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6695 6696 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6697 vmx_vcpu_enter_exit(vcpu, vmx); 6698 6699 /* 6700 * We do not use IBRS in the kernel. If this vCPU has used the 6701 * SPEC_CTRL MSR it may have left it on; save the value and 6702 * turn it off. This is much more efficient than blindly adding 6703 * it to the atomic save/restore list. Especially as the former 6704 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6705 * 6706 * For non-nested case: 6707 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6708 * save it. 6709 * 6710 * For nested case: 6711 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6712 * save it. 6713 */ 6714 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6715 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6716 6717 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6718 6719 /* All fields are clean at this point */ 6720 if (static_branch_unlikely(&enable_evmcs)) { 6721 current_evmcs->hv_clean_fields |= 6722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6723 6724 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6725 } 6726 6727 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6728 if (vmx->host_debugctlmsr) 6729 update_debugctlmsr(vmx->host_debugctlmsr); 6730 6731 #ifndef CONFIG_X86_64 6732 /* 6733 * The sysexit path does not restore ds/es, so we must set them to 6734 * a reasonable value ourselves. 6735 * 6736 * We can't defer this to vmx_prepare_switch_to_host() since that 6737 * function may be executed in interrupt context, which saves and 6738 * restore segments around it, nullifying its effect. 6739 */ 6740 loadsegment(ds, __USER_DS); 6741 loadsegment(es, __USER_DS); 6742 #endif 6743 6744 vmx_register_cache_reset(vcpu); 6745 6746 pt_guest_exit(vmx); 6747 6748 kvm_load_host_xsave_state(vcpu); 6749 6750 vmx->nested.nested_run_pending = 0; 6751 vmx->idt_vectoring_info = 0; 6752 6753 if (unlikely(vmx->fail)) { 6754 vmx->exit_reason.full = 0xdead; 6755 return EXIT_FASTPATH_NONE; 6756 } 6757 6758 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6759 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6760 kvm_machine_check(); 6761 6762 if (likely(!vmx->exit_reason.failed_vmentry)) 6763 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6764 6765 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX); 6766 6767 if (unlikely(vmx->exit_reason.failed_vmentry)) 6768 return EXIT_FASTPATH_NONE; 6769 6770 vmx->loaded_vmcs->launched = 1; 6771 6772 vmx_recover_nmi_blocking(vmx); 6773 vmx_complete_interrupts(vmx); 6774 6775 if (is_guest_mode(vcpu)) 6776 return EXIT_FASTPATH_NONE; 6777 6778 return vmx_exit_handlers_fastpath(vcpu); 6779 } 6780 6781 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6782 { 6783 struct vcpu_vmx *vmx = to_vmx(vcpu); 6784 6785 if (enable_pml) 6786 vmx_destroy_pml_buffer(vmx); 6787 free_vpid(vmx->vpid); 6788 nested_vmx_free_vcpu(vcpu); 6789 free_loaded_vmcs(vmx->loaded_vmcs); 6790 } 6791 6792 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6793 { 6794 struct vcpu_vmx *vmx; 6795 int i, cpu, err; 6796 6797 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6798 vmx = to_vmx(vcpu); 6799 6800 err = -ENOMEM; 6801 6802 vmx->vpid = allocate_vpid(); 6803 6804 /* 6805 * If PML is turned on, failure on enabling PML just results in failure 6806 * of creating the vcpu, therefore we can simplify PML logic (by 6807 * avoiding dealing with cases, such as enabling PML partially on vcpus 6808 * for the guest), etc. 6809 */ 6810 if (enable_pml) { 6811 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6812 if (!vmx->pml_pg) 6813 goto free_vpid; 6814 } 6815 6816 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 6817 6818 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) { 6819 u32 index = vmx_uret_msrs_list[i]; 6820 u32 data_low, data_high; 6821 int j = vmx->nr_uret_msrs; 6822 6823 if (rdmsr_safe(index, &data_low, &data_high) < 0) 6824 continue; 6825 if (wrmsr_safe(index, data_low, data_high) < 0) 6826 continue; 6827 6828 vmx->guest_uret_msrs[j].slot = i; 6829 vmx->guest_uret_msrs[j].data = 0; 6830 switch (index) { 6831 case MSR_IA32_TSX_CTRL: 6832 /* 6833 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID 6834 * interception. Keep the host value unchanged to avoid 6835 * changing CPUID bits under the host kernel's feet. 6836 * 6837 * hle=0, rtm=0, tsx_ctrl=1 can be found with some 6838 * combinations of new kernel and old userspace. If 6839 * those guests run on a tsx=off host, do allow guests 6840 * to use TSX_CTRL, but do not change the value on the 6841 * host so that TSX remains always disabled. 6842 */ 6843 if (boot_cpu_has(X86_FEATURE_RTM)) 6844 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6845 else 6846 vmx->guest_uret_msrs[j].mask = 0; 6847 break; 6848 default: 6849 vmx->guest_uret_msrs[j].mask = -1ull; 6850 break; 6851 } 6852 ++vmx->nr_uret_msrs; 6853 } 6854 6855 err = alloc_loaded_vmcs(&vmx->vmcs01); 6856 if (err < 0) 6857 goto free_pml; 6858 6859 /* The MSR bitmap starts with all ones */ 6860 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6861 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6862 6863 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6864 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6865 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6866 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6867 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6868 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6869 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6870 if (kvm_cstate_in_guest(vcpu->kvm)) { 6871 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6872 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6873 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6874 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6875 } 6876 vmx->msr_bitmap_mode = 0; 6877 6878 vmx->loaded_vmcs = &vmx->vmcs01; 6879 cpu = get_cpu(); 6880 vmx_vcpu_load(vcpu, cpu); 6881 vcpu->cpu = cpu; 6882 init_vmcs(vmx); 6883 vmx_vcpu_put(vcpu); 6884 put_cpu(); 6885 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6886 err = alloc_apic_access_page(vcpu->kvm); 6887 if (err) 6888 goto free_vmcs; 6889 } 6890 6891 if (enable_ept && !enable_unrestricted_guest) { 6892 err = init_rmode_identity_map(vcpu->kvm); 6893 if (err) 6894 goto free_vmcs; 6895 } 6896 6897 if (nested) 6898 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6899 else 6900 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6901 6902 vmx->nested.posted_intr_nv = -1; 6903 vmx->nested.current_vmptr = -1ull; 6904 6905 vcpu->arch.microcode_version = 0x100000000ULL; 6906 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 6907 6908 /* 6909 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6910 * or POSTED_INTR_WAKEUP_VECTOR. 6911 */ 6912 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6913 vmx->pi_desc.sn = 1; 6914 6915 vmx->ept_pointer = INVALID_PAGE; 6916 6917 return 0; 6918 6919 free_vmcs: 6920 free_loaded_vmcs(vmx->loaded_vmcs); 6921 free_pml: 6922 vmx_destroy_pml_buffer(vmx); 6923 free_vpid: 6924 free_vpid(vmx->vpid); 6925 return err; 6926 } 6927 6928 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6929 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6930 6931 static int vmx_vm_init(struct kvm *kvm) 6932 { 6933 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); 6934 6935 if (!ple_gap) 6936 kvm->arch.pause_in_guest = true; 6937 6938 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6939 switch (l1tf_mitigation) { 6940 case L1TF_MITIGATION_OFF: 6941 case L1TF_MITIGATION_FLUSH_NOWARN: 6942 /* 'I explicitly don't care' is set */ 6943 break; 6944 case L1TF_MITIGATION_FLUSH: 6945 case L1TF_MITIGATION_FLUSH_NOSMT: 6946 case L1TF_MITIGATION_FULL: 6947 /* 6948 * Warn upon starting the first VM in a potentially 6949 * insecure environment. 6950 */ 6951 if (sched_smt_active()) 6952 pr_warn_once(L1TF_MSG_SMT); 6953 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6954 pr_warn_once(L1TF_MSG_L1D); 6955 break; 6956 case L1TF_MITIGATION_FULL_FORCE: 6957 /* Flush is enforced */ 6958 break; 6959 } 6960 } 6961 kvm_apicv_init(kvm, enable_apicv); 6962 return 0; 6963 } 6964 6965 static int __init vmx_check_processor_compat(void) 6966 { 6967 struct vmcs_config vmcs_conf; 6968 struct vmx_capability vmx_cap; 6969 6970 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6971 !this_cpu_has(X86_FEATURE_VMX)) { 6972 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6973 return -EIO; 6974 } 6975 6976 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6977 return -EIO; 6978 if (nested) 6979 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6980 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6981 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6982 smp_processor_id()); 6983 return -EIO; 6984 } 6985 return 0; 6986 } 6987 6988 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6989 { 6990 u8 cache; 6991 u64 ipat = 0; 6992 6993 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6994 * memory aliases with conflicting memory types and sometimes MCEs. 6995 * We have to be careful as to what are honored and when. 6996 * 6997 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6998 * UC. The effective memory type is UC or WC depending on guest PAT. 6999 * This was historically the source of MCEs and we want to be 7000 * conservative. 7001 * 7002 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7003 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7004 * EPT memory type is set to WB. The effective memory type is forced 7005 * WB. 7006 * 7007 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7008 * EPT memory type is used to emulate guest CD/MTRR. 7009 */ 7010 7011 if (is_mmio) { 7012 cache = MTRR_TYPE_UNCACHABLE; 7013 goto exit; 7014 } 7015 7016 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7017 ipat = VMX_EPT_IPAT_BIT; 7018 cache = MTRR_TYPE_WRBACK; 7019 goto exit; 7020 } 7021 7022 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7023 ipat = VMX_EPT_IPAT_BIT; 7024 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7025 cache = MTRR_TYPE_WRBACK; 7026 else 7027 cache = MTRR_TYPE_UNCACHABLE; 7028 goto exit; 7029 } 7030 7031 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7032 7033 exit: 7034 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7035 } 7036 7037 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 7038 { 7039 /* 7040 * These bits in the secondary execution controls field 7041 * are dynamic, the others are mostly based on the hypervisor 7042 * architecture and the guest's CPUID. Do not touch the 7043 * dynamic bits. 7044 */ 7045 u32 mask = 7046 SECONDARY_EXEC_SHADOW_VMCS | 7047 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7048 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7049 SECONDARY_EXEC_DESC; 7050 7051 u32 new_ctl = vmx->secondary_exec_control; 7052 u32 cur_ctl = secondary_exec_controls_get(vmx); 7053 7054 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7055 } 7056 7057 /* 7058 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7059 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7060 */ 7061 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7062 { 7063 struct vcpu_vmx *vmx = to_vmx(vcpu); 7064 struct kvm_cpuid_entry2 *entry; 7065 7066 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7067 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7068 7069 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7070 if (entry && (entry->_reg & (_cpuid_mask))) \ 7071 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7072 } while (0) 7073 7074 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7075 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7076 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7077 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7078 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7079 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7080 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7081 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7082 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7083 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7084 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7085 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7086 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7087 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7088 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7089 7090 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7091 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7092 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7093 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7094 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7095 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7096 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7097 7098 #undef cr4_fixed1_update 7099 } 7100 7101 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7102 { 7103 struct vcpu_vmx *vmx = to_vmx(vcpu); 7104 7105 if (kvm_mpx_supported()) { 7106 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7107 7108 if (mpx_enabled) { 7109 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7110 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7111 } else { 7112 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7113 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7114 } 7115 } 7116 } 7117 7118 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7119 { 7120 struct vcpu_vmx *vmx = to_vmx(vcpu); 7121 struct kvm_cpuid_entry2 *best = NULL; 7122 int i; 7123 7124 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7125 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7126 if (!best) 7127 return; 7128 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7129 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7130 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7131 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7132 } 7133 7134 /* Get the number of configurable Address Ranges for filtering */ 7135 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7136 PT_CAP_num_address_ranges); 7137 7138 /* Initialize and clear the no dependency bits */ 7139 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7140 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7141 7142 /* 7143 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7144 * will inject an #GP 7145 */ 7146 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7147 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7148 7149 /* 7150 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7151 * PSBFreq can be set 7152 */ 7153 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7154 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7155 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7156 7157 /* 7158 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7159 * MTCFreq can be set 7160 */ 7161 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7162 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7163 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7164 7165 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7166 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7167 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7168 RTIT_CTL_PTW_EN); 7169 7170 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7171 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7172 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7173 7174 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7175 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7176 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7177 7178 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ 7179 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7180 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7181 7182 /* unmask address range configure area */ 7183 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7184 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7185 } 7186 7187 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7188 { 7189 struct vcpu_vmx *vmx = to_vmx(vcpu); 7190 7191 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7192 vcpu->arch.xsaves_enabled = false; 7193 7194 if (cpu_has_secondary_exec_ctrls()) { 7195 vmx_compute_secondary_exec_control(vmx); 7196 vmcs_set_secondary_exec_control(vmx); 7197 } 7198 7199 if (nested_vmx_allowed(vcpu)) 7200 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7201 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7202 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7203 else 7204 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7205 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7206 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7207 7208 if (nested_vmx_allowed(vcpu)) { 7209 nested_vmx_cr_fixed1_bits_update(vcpu); 7210 nested_vmx_entry_exit_ctls_update(vcpu); 7211 } 7212 7213 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7214 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7215 update_intel_pt_cfg(vcpu); 7216 7217 if (boot_cpu_has(X86_FEATURE_RTM)) { 7218 struct vmx_uret_msr *msr; 7219 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7220 if (msr) { 7221 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7222 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7223 } 7224 } 7225 7226 set_cr4_guest_host_mask(vmx); 7227 7228 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7229 vmx_update_exception_bitmap(vcpu); 7230 } 7231 7232 static __init void vmx_set_cpu_caps(void) 7233 { 7234 kvm_set_cpu_caps(); 7235 7236 /* CPUID 0x1 */ 7237 if (nested) 7238 kvm_cpu_cap_set(X86_FEATURE_VMX); 7239 7240 /* CPUID 0x7 */ 7241 if (kvm_mpx_supported()) 7242 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7243 if (!cpu_has_vmx_invpcid()) 7244 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7245 if (vmx_pt_mode_is_host_guest()) 7246 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7247 7248 if (vmx_umip_emulated()) 7249 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7250 7251 /* CPUID 0xD.1 */ 7252 supported_xss = 0; 7253 if (!cpu_has_vmx_xsaves()) 7254 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7255 7256 /* CPUID 0x80000001 */ 7257 if (!cpu_has_vmx_rdtscp()) 7258 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7259 7260 if (cpu_has_vmx_waitpkg()) 7261 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7262 } 7263 7264 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7265 { 7266 to_vmx(vcpu)->req_immediate_exit = true; 7267 } 7268 7269 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7270 struct x86_instruction_info *info) 7271 { 7272 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7273 unsigned short port; 7274 bool intercept; 7275 int size; 7276 7277 if (info->intercept == x86_intercept_in || 7278 info->intercept == x86_intercept_ins) { 7279 port = info->src_val; 7280 size = info->dst_bytes; 7281 } else { 7282 port = info->dst_val; 7283 size = info->src_bytes; 7284 } 7285 7286 /* 7287 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7288 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7289 * control. 7290 * 7291 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7292 */ 7293 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7294 intercept = nested_cpu_has(vmcs12, 7295 CPU_BASED_UNCOND_IO_EXITING); 7296 else 7297 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7298 7299 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7300 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7301 } 7302 7303 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7304 struct x86_instruction_info *info, 7305 enum x86_intercept_stage stage, 7306 struct x86_exception *exception) 7307 { 7308 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7309 7310 switch (info->intercept) { 7311 /* 7312 * RDPID causes #UD if disabled through secondary execution controls. 7313 * Because it is marked as EmulateOnUD, we need to intercept it here. 7314 */ 7315 case x86_intercept_rdtscp: 7316 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7317 exception->vector = UD_VECTOR; 7318 exception->error_code_valid = false; 7319 return X86EMUL_PROPAGATE_FAULT; 7320 } 7321 break; 7322 7323 case x86_intercept_in: 7324 case x86_intercept_ins: 7325 case x86_intercept_out: 7326 case x86_intercept_outs: 7327 return vmx_check_intercept_io(vcpu, info); 7328 7329 case x86_intercept_lgdt: 7330 case x86_intercept_lidt: 7331 case x86_intercept_lldt: 7332 case x86_intercept_ltr: 7333 case x86_intercept_sgdt: 7334 case x86_intercept_sidt: 7335 case x86_intercept_sldt: 7336 case x86_intercept_str: 7337 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7338 return X86EMUL_CONTINUE; 7339 7340 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7341 break; 7342 7343 /* TODO: check more intercepts... */ 7344 default: 7345 break; 7346 } 7347 7348 return X86EMUL_UNHANDLEABLE; 7349 } 7350 7351 #ifdef CONFIG_X86_64 7352 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7353 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7354 u64 divisor, u64 *result) 7355 { 7356 u64 low = a << shift, high = a >> (64 - shift); 7357 7358 /* To avoid the overflow on divq */ 7359 if (high >= divisor) 7360 return 1; 7361 7362 /* Low hold the result, high hold rem which is discarded */ 7363 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7364 "rm" (divisor), "0" (low), "1" (high)); 7365 *result = low; 7366 7367 return 0; 7368 } 7369 7370 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7371 bool *expired) 7372 { 7373 struct vcpu_vmx *vmx; 7374 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7375 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7376 7377 vmx = to_vmx(vcpu); 7378 tscl = rdtsc(); 7379 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7380 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7381 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7382 ktimer->timer_advance_ns); 7383 7384 if (delta_tsc > lapic_timer_advance_cycles) 7385 delta_tsc -= lapic_timer_advance_cycles; 7386 else 7387 delta_tsc = 0; 7388 7389 /* Convert to host delta tsc if tsc scaling is enabled */ 7390 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7391 delta_tsc && u64_shl_div_u64(delta_tsc, 7392 kvm_tsc_scaling_ratio_frac_bits, 7393 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7394 return -ERANGE; 7395 7396 /* 7397 * If the delta tsc can't fit in the 32 bit after the multi shift, 7398 * we can't use the preemption timer. 7399 * It's possible that it fits on later vmentries, but checking 7400 * on every vmentry is costly so we just use an hrtimer. 7401 */ 7402 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7403 return -ERANGE; 7404 7405 vmx->hv_deadline_tsc = tscl + delta_tsc; 7406 *expired = !delta_tsc; 7407 return 0; 7408 } 7409 7410 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7411 { 7412 to_vmx(vcpu)->hv_deadline_tsc = -1; 7413 } 7414 #endif 7415 7416 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7417 { 7418 if (!kvm_pause_in_guest(vcpu->kvm)) 7419 shrink_ple_window(vcpu); 7420 } 7421 7422 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7423 { 7424 struct vcpu_vmx *vmx = to_vmx(vcpu); 7425 7426 if (is_guest_mode(vcpu)) { 7427 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7428 return; 7429 } 7430 7431 /* 7432 * Note, cpu_dirty_logging_count can be changed concurrent with this 7433 * code, but in that case another update request will be made and so 7434 * the guest will never run with a stale PML value. 7435 */ 7436 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7437 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7438 else 7439 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7440 } 7441 7442 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7443 { 7444 if (pi_pre_block(vcpu)) 7445 return 1; 7446 7447 if (kvm_lapic_hv_timer_in_use(vcpu)) 7448 kvm_lapic_switch_to_sw_timer(vcpu); 7449 7450 return 0; 7451 } 7452 7453 static void vmx_post_block(struct kvm_vcpu *vcpu) 7454 { 7455 if (kvm_x86_ops.set_hv_timer) 7456 kvm_lapic_switch_to_hv_timer(vcpu); 7457 7458 pi_post_block(vcpu); 7459 } 7460 7461 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7462 { 7463 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7464 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7465 FEAT_CTL_LMCE_ENABLED; 7466 else 7467 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7468 ~FEAT_CTL_LMCE_ENABLED; 7469 } 7470 7471 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7472 { 7473 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7474 if (to_vmx(vcpu)->nested.nested_run_pending) 7475 return -EBUSY; 7476 return !is_smm(vcpu); 7477 } 7478 7479 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7480 { 7481 struct vcpu_vmx *vmx = to_vmx(vcpu); 7482 7483 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7484 if (vmx->nested.smm.guest_mode) 7485 nested_vmx_vmexit(vcpu, -1, 0, 0); 7486 7487 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7488 vmx->nested.vmxon = false; 7489 vmx_clear_hlt(vcpu); 7490 return 0; 7491 } 7492 7493 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7494 { 7495 struct vcpu_vmx *vmx = to_vmx(vcpu); 7496 int ret; 7497 7498 if (vmx->nested.smm.vmxon) { 7499 vmx->nested.vmxon = true; 7500 vmx->nested.smm.vmxon = false; 7501 } 7502 7503 if (vmx->nested.smm.guest_mode) { 7504 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7505 if (ret) 7506 return ret; 7507 7508 vmx->nested.smm.guest_mode = false; 7509 } 7510 return 0; 7511 } 7512 7513 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7514 { 7515 /* RSM will cause a vmexit anyway. */ 7516 } 7517 7518 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7519 { 7520 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7521 } 7522 7523 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7524 { 7525 if (is_guest_mode(vcpu)) { 7526 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7527 7528 if (hrtimer_try_to_cancel(timer) == 1) 7529 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7530 } 7531 } 7532 7533 static void hardware_unsetup(void) 7534 { 7535 if (nested) 7536 nested_vmx_hardware_unsetup(); 7537 7538 free_kvm_area(); 7539 } 7540 7541 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7542 { 7543 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7544 BIT(APICV_INHIBIT_REASON_HYPERV); 7545 7546 return supported & BIT(bit); 7547 } 7548 7549 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7550 .hardware_unsetup = hardware_unsetup, 7551 7552 .hardware_enable = hardware_enable, 7553 .hardware_disable = hardware_disable, 7554 .cpu_has_accelerated_tpr = report_flexpriority, 7555 .has_emulated_msr = vmx_has_emulated_msr, 7556 7557 .vm_size = sizeof(struct kvm_vmx), 7558 .vm_init = vmx_vm_init, 7559 7560 .vcpu_create = vmx_create_vcpu, 7561 .vcpu_free = vmx_free_vcpu, 7562 .vcpu_reset = vmx_vcpu_reset, 7563 7564 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7565 .vcpu_load = vmx_vcpu_load, 7566 .vcpu_put = vmx_vcpu_put, 7567 7568 .update_exception_bitmap = vmx_update_exception_bitmap, 7569 .get_msr_feature = vmx_get_msr_feature, 7570 .get_msr = vmx_get_msr, 7571 .set_msr = vmx_set_msr, 7572 .get_segment_base = vmx_get_segment_base, 7573 .get_segment = vmx_get_segment, 7574 .set_segment = vmx_set_segment, 7575 .get_cpl = vmx_get_cpl, 7576 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7577 .set_cr0 = vmx_set_cr0, 7578 .is_valid_cr4 = vmx_is_valid_cr4, 7579 .set_cr4 = vmx_set_cr4, 7580 .set_efer = vmx_set_efer, 7581 .get_idt = vmx_get_idt, 7582 .set_idt = vmx_set_idt, 7583 .get_gdt = vmx_get_gdt, 7584 .set_gdt = vmx_set_gdt, 7585 .set_dr7 = vmx_set_dr7, 7586 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7587 .cache_reg = vmx_cache_reg, 7588 .get_rflags = vmx_get_rflags, 7589 .set_rflags = vmx_set_rflags, 7590 7591 .tlb_flush_all = vmx_flush_tlb_all, 7592 .tlb_flush_current = vmx_flush_tlb_current, 7593 .tlb_flush_gva = vmx_flush_tlb_gva, 7594 .tlb_flush_guest = vmx_flush_tlb_guest, 7595 7596 .run = vmx_vcpu_run, 7597 .handle_exit = vmx_handle_exit, 7598 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7599 .update_emulated_instruction = vmx_update_emulated_instruction, 7600 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7601 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7602 .patch_hypercall = vmx_patch_hypercall, 7603 .set_irq = vmx_inject_irq, 7604 .set_nmi = vmx_inject_nmi, 7605 .queue_exception = vmx_queue_exception, 7606 .cancel_injection = vmx_cancel_injection, 7607 .interrupt_allowed = vmx_interrupt_allowed, 7608 .nmi_allowed = vmx_nmi_allowed, 7609 .get_nmi_mask = vmx_get_nmi_mask, 7610 .set_nmi_mask = vmx_set_nmi_mask, 7611 .enable_nmi_window = vmx_enable_nmi_window, 7612 .enable_irq_window = vmx_enable_irq_window, 7613 .update_cr8_intercept = vmx_update_cr8_intercept, 7614 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7615 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7616 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7617 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7618 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7619 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7620 .hwapic_irr_update = vmx_hwapic_irr_update, 7621 .hwapic_isr_update = vmx_hwapic_isr_update, 7622 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7623 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7624 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7625 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7626 7627 .set_tss_addr = vmx_set_tss_addr, 7628 .set_identity_map_addr = vmx_set_identity_map_addr, 7629 .get_mt_mask = vmx_get_mt_mask, 7630 7631 .get_exit_info = vmx_get_exit_info, 7632 7633 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7634 7635 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7636 7637 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7638 7639 .load_mmu_pgd = vmx_load_mmu_pgd, 7640 7641 .check_intercept = vmx_check_intercept, 7642 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7643 7644 .request_immediate_exit = vmx_request_immediate_exit, 7645 7646 .sched_in = vmx_sched_in, 7647 7648 .cpu_dirty_log_size = PML_ENTITY_NUM, 7649 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7650 7651 .pre_block = vmx_pre_block, 7652 .post_block = vmx_post_block, 7653 7654 .pmu_ops = &intel_pmu_ops, 7655 .nested_ops = &vmx_nested_ops, 7656 7657 .update_pi_irte = pi_update_irte, 7658 7659 #ifdef CONFIG_X86_64 7660 .set_hv_timer = vmx_set_hv_timer, 7661 .cancel_hv_timer = vmx_cancel_hv_timer, 7662 #endif 7663 7664 .setup_mce = vmx_setup_mce, 7665 7666 .smi_allowed = vmx_smi_allowed, 7667 .pre_enter_smm = vmx_pre_enter_smm, 7668 .pre_leave_smm = vmx_pre_leave_smm, 7669 .enable_smi_window = vmx_enable_smi_window, 7670 7671 .can_emulate_instruction = vmx_can_emulate_instruction, 7672 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7673 .migrate_timers = vmx_migrate_timers, 7674 7675 .msr_filter_changed = vmx_msr_filter_changed, 7676 .complete_emulated_msr = kvm_complete_insn_gp, 7677 7678 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7679 }; 7680 7681 static __init int hardware_setup(void) 7682 { 7683 unsigned long host_bndcfgs; 7684 struct desc_ptr dt; 7685 int r, i, ept_lpage_level; 7686 7687 store_idt(&dt); 7688 host_idt_base = dt.address; 7689 7690 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7691 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]); 7692 7693 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7694 return -EIO; 7695 7696 if (boot_cpu_has(X86_FEATURE_NX)) 7697 kvm_enable_efer_bits(EFER_NX); 7698 7699 if (boot_cpu_has(X86_FEATURE_MPX)) { 7700 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7701 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7702 } 7703 7704 if (!cpu_has_vmx_mpx()) 7705 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7706 XFEATURE_MASK_BNDCSR); 7707 7708 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7709 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7710 enable_vpid = 0; 7711 7712 if (!cpu_has_vmx_ept() || 7713 !cpu_has_vmx_ept_4levels() || 7714 !cpu_has_vmx_ept_mt_wb() || 7715 !cpu_has_vmx_invept_global()) 7716 enable_ept = 0; 7717 7718 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7719 enable_ept_ad_bits = 0; 7720 7721 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7722 enable_unrestricted_guest = 0; 7723 7724 if (!cpu_has_vmx_flexpriority()) 7725 flexpriority_enabled = 0; 7726 7727 if (!cpu_has_virtual_nmis()) 7728 enable_vnmi = 0; 7729 7730 /* 7731 * set_apic_access_page_addr() is used to reload apic access 7732 * page upon invalidation. No need to do anything if not 7733 * using the APIC_ACCESS_ADDR VMCS field. 7734 */ 7735 if (!flexpriority_enabled) 7736 vmx_x86_ops.set_apic_access_page_addr = NULL; 7737 7738 if (!cpu_has_vmx_tpr_shadow()) 7739 vmx_x86_ops.update_cr8_intercept = NULL; 7740 7741 #if IS_ENABLED(CONFIG_HYPERV) 7742 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7743 && enable_ept) { 7744 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7745 vmx_x86_ops.tlb_remote_flush_with_range = 7746 hv_remote_flush_tlb_with_range; 7747 } 7748 #endif 7749 7750 if (!cpu_has_vmx_ple()) { 7751 ple_gap = 0; 7752 ple_window = 0; 7753 ple_window_grow = 0; 7754 ple_window_max = 0; 7755 ple_window_shrink = 0; 7756 } 7757 7758 if (!cpu_has_vmx_apicv()) { 7759 enable_apicv = 0; 7760 vmx_x86_ops.sync_pir_to_irr = NULL; 7761 } 7762 7763 if (cpu_has_vmx_tsc_scaling()) { 7764 kvm_has_tsc_control = true; 7765 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7766 kvm_tsc_scaling_ratio_frac_bits = 48; 7767 } 7768 7769 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7770 7771 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7772 7773 if (enable_ept) 7774 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7775 cpu_has_vmx_ept_execute_only()); 7776 7777 if (!enable_ept) 7778 ept_lpage_level = 0; 7779 else if (cpu_has_vmx_ept_1g_page()) 7780 ept_lpage_level = PG_LEVEL_1G; 7781 else if (cpu_has_vmx_ept_2m_page()) 7782 ept_lpage_level = PG_LEVEL_2M; 7783 else 7784 ept_lpage_level = PG_LEVEL_4K; 7785 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level); 7786 7787 /* 7788 * Only enable PML when hardware supports PML feature, and both EPT 7789 * and EPT A/D bit features are enabled -- PML depends on them to work. 7790 */ 7791 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7792 enable_pml = 0; 7793 7794 if (!enable_pml) 7795 vmx_x86_ops.cpu_dirty_log_size = 0; 7796 7797 if (!cpu_has_vmx_preemption_timer()) 7798 enable_preemption_timer = false; 7799 7800 if (enable_preemption_timer) { 7801 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7802 u64 vmx_msr; 7803 7804 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7805 cpu_preemption_timer_multi = 7806 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7807 7808 if (tsc_khz) 7809 use_timer_freq = (u64)tsc_khz * 1000; 7810 use_timer_freq >>= cpu_preemption_timer_multi; 7811 7812 /* 7813 * KVM "disables" the preemption timer by setting it to its max 7814 * value. Don't use the timer if it might cause spurious exits 7815 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7816 */ 7817 if (use_timer_freq > 0xffffffffu / 10) 7818 enable_preemption_timer = false; 7819 } 7820 7821 if (!enable_preemption_timer) { 7822 vmx_x86_ops.set_hv_timer = NULL; 7823 vmx_x86_ops.cancel_hv_timer = NULL; 7824 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7825 } 7826 7827 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7828 7829 kvm_mce_cap_supported |= MCG_LMCE_P; 7830 7831 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7832 return -EINVAL; 7833 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7834 pt_mode = PT_MODE_SYSTEM; 7835 7836 if (nested) { 7837 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7838 vmx_capability.ept); 7839 7840 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7841 if (r) 7842 return r; 7843 } 7844 7845 vmx_set_cpu_caps(); 7846 7847 r = alloc_kvm_area(); 7848 if (r) 7849 nested_vmx_hardware_unsetup(); 7850 return r; 7851 } 7852 7853 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7854 .cpu_has_kvm_support = cpu_has_kvm_support, 7855 .disabled_by_bios = vmx_disabled_by_bios, 7856 .check_processor_compatibility = vmx_check_processor_compat, 7857 .hardware_setup = hardware_setup, 7858 7859 .runtime_ops = &vmx_x86_ops, 7860 }; 7861 7862 static void vmx_cleanup_l1d_flush(void) 7863 { 7864 if (vmx_l1d_flush_pages) { 7865 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7866 vmx_l1d_flush_pages = NULL; 7867 } 7868 /* Restore state so sysfs ignores VMX */ 7869 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7870 } 7871 7872 static void vmx_exit(void) 7873 { 7874 #ifdef CONFIG_KEXEC_CORE 7875 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7876 synchronize_rcu(); 7877 #endif 7878 7879 kvm_exit(); 7880 7881 #if IS_ENABLED(CONFIG_HYPERV) 7882 if (static_branch_unlikely(&enable_evmcs)) { 7883 int cpu; 7884 struct hv_vp_assist_page *vp_ap; 7885 /* 7886 * Reset everything to support using non-enlightened VMCS 7887 * access later (e.g. when we reload the module with 7888 * enlightened_vmcs=0) 7889 */ 7890 for_each_online_cpu(cpu) { 7891 vp_ap = hv_get_vp_assist_page(cpu); 7892 7893 if (!vp_ap) 7894 continue; 7895 7896 vp_ap->nested_control.features.directhypercall = 0; 7897 vp_ap->current_nested_vmcs = 0; 7898 vp_ap->enlighten_vmentry = 0; 7899 } 7900 7901 static_branch_disable(&enable_evmcs); 7902 } 7903 #endif 7904 vmx_cleanup_l1d_flush(); 7905 } 7906 module_exit(vmx_exit); 7907 7908 static int __init vmx_init(void) 7909 { 7910 int r, cpu; 7911 7912 #if IS_ENABLED(CONFIG_HYPERV) 7913 /* 7914 * Enlightened VMCS usage should be recommended and the host needs 7915 * to support eVMCS v1 or above. We can also disable eVMCS support 7916 * with module parameter. 7917 */ 7918 if (enlightened_vmcs && 7919 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7920 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7921 KVM_EVMCS_VERSION) { 7922 int cpu; 7923 7924 /* Check that we have assist pages on all online CPUs */ 7925 for_each_online_cpu(cpu) { 7926 if (!hv_get_vp_assist_page(cpu)) { 7927 enlightened_vmcs = false; 7928 break; 7929 } 7930 } 7931 7932 if (enlightened_vmcs) { 7933 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7934 static_branch_enable(&enable_evmcs); 7935 } 7936 7937 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7938 vmx_x86_ops.enable_direct_tlbflush 7939 = hv_enable_direct_tlbflush; 7940 7941 } else { 7942 enlightened_vmcs = false; 7943 } 7944 #endif 7945 7946 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7947 __alignof__(struct vcpu_vmx), THIS_MODULE); 7948 if (r) 7949 return r; 7950 7951 /* 7952 * Must be called after kvm_init() so enable_ept is properly set 7953 * up. Hand the parameter mitigation value in which was stored in 7954 * the pre module init parser. If no parameter was given, it will 7955 * contain 'auto' which will be turned into the default 'cond' 7956 * mitigation mode. 7957 */ 7958 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7959 if (r) { 7960 vmx_exit(); 7961 return r; 7962 } 7963 7964 for_each_possible_cpu(cpu) { 7965 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 7966 7967 pi_init_cpu(cpu); 7968 } 7969 7970 #ifdef CONFIG_KEXEC_CORE 7971 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7972 crash_vmclear_local_loaded_vmcss); 7973 #endif 7974 vmx_check_vmcs12_offsets(); 7975 7976 /* 7977 * Shadow paging doesn't have a (further) performance penalty 7978 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 7979 * by default 7980 */ 7981 if (!enable_ept) 7982 allow_smaller_maxphyaddr = true; 7983 7984 return 0; 7985 } 7986 module_init(vmx_init); 7987