1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 #include "svm_ops.h" 45 46 #define __ex(x) __kvm_handle_fault_on_reboot(x) 47 48 MODULE_AUTHOR("Qumranet"); 49 MODULE_LICENSE("GPL"); 50 51 #ifdef MODULE 52 static const struct x86_cpu_id svm_cpu_id[] = { 53 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 54 {} 55 }; 56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 57 #endif 58 59 #define SEG_TYPE_LDT 2 60 #define SEG_TYPE_BUSY_TSS16 3 61 62 #define SVM_FEATURE_LBRV (1 << 1) 63 #define SVM_FEATURE_SVML (1 << 2) 64 #define SVM_FEATURE_TSC_RATE (1 << 4) 65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 66 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 69 70 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 71 72 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 73 #define TSC_RATIO_MIN 0x0000000000000001ULL 74 #define TSC_RATIO_MAX 0x000000ffffffffffULL 75 76 static bool erratum_383_found __read_mostly; 77 78 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 79 80 /* 81 * Set osvw_len to higher value when updated Revision Guides 82 * are published and we know what the new status bits are 83 */ 84 static uint64_t osvw_len = 4, osvw_status; 85 86 static DEFINE_PER_CPU(u64, current_tsc_ratio); 87 #define TSC_RATIO_DEFAULT 0x0100000000ULL 88 89 static const struct svm_direct_access_msrs { 90 u32 index; /* Index of the MSR */ 91 bool always; /* True if intercept is initially cleared */ 92 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 93 { .index = MSR_STAR, .always = true }, 94 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 95 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 96 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 97 #ifdef CONFIG_X86_64 98 { .index = MSR_GS_BASE, .always = true }, 99 { .index = MSR_FS_BASE, .always = true }, 100 { .index = MSR_KERNEL_GS_BASE, .always = true }, 101 { .index = MSR_LSTAR, .always = true }, 102 { .index = MSR_CSTAR, .always = true }, 103 { .index = MSR_SYSCALL_MASK, .always = true }, 104 #endif 105 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 106 { .index = MSR_IA32_PRED_CMD, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 109 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 110 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 111 { .index = MSR_EFER, .always = false }, 112 { .index = MSR_IA32_CR_PAT, .always = false }, 113 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 114 { .index = MSR_INVALID, .always = false }, 115 }; 116 117 /* 118 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 119 * pause_filter_count: On processors that support Pause filtering(indicated 120 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 121 * count value. On VMRUN this value is loaded into an internal counter. 122 * Each time a pause instruction is executed, this counter is decremented 123 * until it reaches zero at which time a #VMEXIT is generated if pause 124 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 125 * Intercept Filtering for more details. 126 * This also indicate if ple logic enabled. 127 * 128 * pause_filter_thresh: In addition, some processor families support advanced 129 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 130 * the amount of time a guest is allowed to execute in a pause loop. 131 * In this mode, a 16-bit pause filter threshold field is added in the 132 * VMCB. The threshold value is a cycle count that is used to reset the 133 * pause counter. As with simple pause filtering, VMRUN loads the pause 134 * count value from VMCB into an internal counter. Then, on each pause 135 * instruction the hardware checks the elapsed number of cycles since 136 * the most recent pause instruction against the pause filter threshold. 137 * If the elapsed cycle count is greater than the pause filter threshold, 138 * then the internal pause count is reloaded from the VMCB and execution 139 * continues. If the elapsed cycle count is less than the pause filter 140 * threshold, then the internal pause count is decremented. If the count 141 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 142 * triggered. If advanced pause filtering is supported and pause filter 143 * threshold field is set to zero, the filter will operate in the simpler, 144 * count only mode. 145 */ 146 147 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 148 module_param(pause_filter_thresh, ushort, 0444); 149 150 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 151 module_param(pause_filter_count, ushort, 0444); 152 153 /* Default doubles per-vcpu window every exit. */ 154 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 155 module_param(pause_filter_count_grow, ushort, 0444); 156 157 /* Default resets per-vcpu window every exit to pause_filter_count. */ 158 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 159 module_param(pause_filter_count_shrink, ushort, 0444); 160 161 /* Default is to compute the maximum so we can never overflow. */ 162 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 163 module_param(pause_filter_count_max, ushort, 0444); 164 165 /* 166 * Use nested page tables by default. Note, NPT may get forced off by 167 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 168 */ 169 bool npt_enabled = true; 170 module_param_named(npt, npt_enabled, bool, 0444); 171 172 /* allow nested virtualization in KVM/SVM */ 173 static int nested = true; 174 module_param(nested, int, S_IRUGO); 175 176 /* enable/disable Next RIP Save */ 177 static int nrips = true; 178 module_param(nrips, int, 0444); 179 180 /* enable/disable Virtual VMLOAD VMSAVE */ 181 static int vls = true; 182 module_param(vls, int, 0444); 183 184 /* enable/disable Virtual GIF */ 185 static int vgif = true; 186 module_param(vgif, int, 0444); 187 188 bool __read_mostly dump_invalid_vmcb; 189 module_param(dump_invalid_vmcb, bool, 0644); 190 191 static bool svm_gp_erratum_intercept = true; 192 193 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 194 195 static unsigned long iopm_base; 196 197 struct kvm_ldttss_desc { 198 u16 limit0; 199 u16 base0; 200 unsigned base1:8, type:5, dpl:2, p:1; 201 unsigned limit1:4, zero0:3, g:1, base2:8; 202 u32 base3; 203 u32 zero1; 204 } __attribute__((packed)); 205 206 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 207 208 /* 209 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 210 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 211 * 212 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 213 * defer the restoration of TSC_AUX until the CPU returns to userspace. 214 */ 215 static int tsc_aux_uret_slot __read_mostly = -1; 216 217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 218 219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 220 #define MSRS_RANGE_SIZE 2048 221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 222 223 u32 svm_msrpm_offset(u32 msr) 224 { 225 u32 offset; 226 int i; 227 228 for (i = 0; i < NUM_MSR_MAPS; i++) { 229 if (msr < msrpm_ranges[i] || 230 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 231 continue; 232 233 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 234 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 235 236 /* Now we have the u8 offset - but need the u32 offset */ 237 return offset / 4; 238 } 239 240 /* MSR not in any range */ 241 return MSR_INVALID; 242 } 243 244 #define MAX_INST_SIZE 15 245 246 static int get_max_npt_level(void) 247 { 248 #ifdef CONFIG_X86_64 249 return PT64_ROOT_4LEVEL; 250 #else 251 return PT32E_ROOT_LEVEL; 252 #endif 253 } 254 255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 256 { 257 struct vcpu_svm *svm = to_svm(vcpu); 258 u64 old_efer = vcpu->arch.efer; 259 vcpu->arch.efer = efer; 260 261 if (!npt_enabled) { 262 /* Shadow paging assumes NX to be available. */ 263 efer |= EFER_NX; 264 265 if (!(efer & EFER_LMA)) 266 efer &= ~EFER_LME; 267 } 268 269 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 270 if (!(efer & EFER_SVME)) { 271 svm_leave_nested(svm); 272 svm_set_gif(svm, true); 273 /* #GP intercept is still needed for vmware backdoor */ 274 if (!enable_vmware_backdoor) 275 clr_exception_intercept(svm, GP_VECTOR); 276 277 /* 278 * Free the nested guest state, unless we are in SMM. 279 * In this case we will return to the nested guest 280 * as soon as we leave SMM. 281 */ 282 if (!is_smm(vcpu)) 283 svm_free_nested(svm); 284 285 } else { 286 int ret = svm_allocate_nested(svm); 287 288 if (ret) { 289 vcpu->arch.efer = old_efer; 290 return ret; 291 } 292 293 if (svm_gp_erratum_intercept) 294 set_exception_intercept(svm, GP_VECTOR); 295 } 296 } 297 298 svm->vmcb->save.efer = efer | EFER_SVME; 299 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 300 return 0; 301 } 302 303 static int is_external_interrupt(u32 info) 304 { 305 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 306 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 307 } 308 309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 310 { 311 struct vcpu_svm *svm = to_svm(vcpu); 312 u32 ret = 0; 313 314 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 315 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 316 return ret; 317 } 318 319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 320 { 321 struct vcpu_svm *svm = to_svm(vcpu); 322 323 if (mask == 0) 324 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 325 else 326 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 327 328 } 329 330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 331 { 332 struct vcpu_svm *svm = to_svm(vcpu); 333 334 /* 335 * SEV-ES does not expose the next RIP. The RIP update is controlled by 336 * the type of exit and the #VC handler in the guest. 337 */ 338 if (sev_es_guest(vcpu->kvm)) 339 goto done; 340 341 if (nrips && svm->vmcb->control.next_rip != 0) { 342 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 343 svm->next_rip = svm->vmcb->control.next_rip; 344 } 345 346 if (!svm->next_rip) { 347 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 348 return 0; 349 } else { 350 kvm_rip_write(vcpu, svm->next_rip); 351 } 352 353 done: 354 svm_set_interrupt_shadow(vcpu, 0); 355 356 return 1; 357 } 358 359 static void svm_queue_exception(struct kvm_vcpu *vcpu) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 unsigned nr = vcpu->arch.exception.nr; 363 bool has_error_code = vcpu->arch.exception.has_error_code; 364 u32 error_code = vcpu->arch.exception.error_code; 365 366 kvm_deliver_exception_payload(vcpu); 367 368 if (nr == BP_VECTOR && !nrips) { 369 unsigned long rip, old_rip = kvm_rip_read(vcpu); 370 371 /* 372 * For guest debugging where we have to reinject #BP if some 373 * INT3 is guest-owned: 374 * Emulate nRIP by moving RIP forward. Will fail if injection 375 * raises a fault that is not intercepted. Still better than 376 * failing in all cases. 377 */ 378 (void)skip_emulated_instruction(vcpu); 379 rip = kvm_rip_read(vcpu); 380 svm->int3_rip = rip + svm->vmcb->save.cs.base; 381 svm->int3_injected = rip - old_rip; 382 } 383 384 svm->vmcb->control.event_inj = nr 385 | SVM_EVTINJ_VALID 386 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 387 | SVM_EVTINJ_TYPE_EXEPT; 388 svm->vmcb->control.event_inj_err = error_code; 389 } 390 391 static void svm_init_erratum_383(void) 392 { 393 u32 low, high; 394 int err; 395 u64 val; 396 397 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 398 return; 399 400 /* Use _safe variants to not break nested virtualization */ 401 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 402 if (err) 403 return; 404 405 val |= (1ULL << 47); 406 407 low = lower_32_bits(val); 408 high = upper_32_bits(val); 409 410 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 411 412 erratum_383_found = true; 413 } 414 415 static void svm_init_osvw(struct kvm_vcpu *vcpu) 416 { 417 /* 418 * Guests should see errata 400 and 415 as fixed (assuming that 419 * HLT and IO instructions are intercepted). 420 */ 421 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 422 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 423 424 /* 425 * By increasing VCPU's osvw.length to 3 we are telling the guest that 426 * all osvw.status bits inside that length, including bit 0 (which is 427 * reserved for erratum 298), are valid. However, if host processor's 428 * osvw_len is 0 then osvw_status[0] carries no information. We need to 429 * be conservative here and therefore we tell the guest that erratum 298 430 * is present (because we really don't know). 431 */ 432 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 433 vcpu->arch.osvw.status |= 1; 434 } 435 436 static int has_svm(void) 437 { 438 const char *msg; 439 440 if (!cpu_has_svm(&msg)) { 441 printk(KERN_INFO "has_svm: %s\n", msg); 442 return 0; 443 } 444 445 if (sev_active()) { 446 pr_info("KVM is unsupported when running as an SEV guest\n"); 447 return 0; 448 } 449 450 if (pgtable_l5_enabled()) { 451 pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n"); 452 return 0; 453 } 454 455 return 1; 456 } 457 458 static void svm_hardware_disable(void) 459 { 460 /* Make sure we clean up behind us */ 461 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 462 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 463 464 cpu_svm_disable(); 465 466 amd_pmu_disable_virt(); 467 } 468 469 static int svm_hardware_enable(void) 470 { 471 472 struct svm_cpu_data *sd; 473 uint64_t efer; 474 struct desc_struct *gdt; 475 int me = raw_smp_processor_id(); 476 477 rdmsrl(MSR_EFER, efer); 478 if (efer & EFER_SVME) 479 return -EBUSY; 480 481 if (!has_svm()) { 482 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 483 return -EINVAL; 484 } 485 sd = per_cpu(svm_data, me); 486 if (!sd) { 487 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 488 return -EINVAL; 489 } 490 491 sd->asid_generation = 1; 492 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 493 sd->next_asid = sd->max_asid + 1; 494 sd->min_asid = max_sev_asid + 1; 495 496 gdt = get_current_gdt_rw(); 497 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 498 499 wrmsrl(MSR_EFER, efer | EFER_SVME); 500 501 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 502 503 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 504 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 505 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 506 } 507 508 509 /* 510 * Get OSVW bits. 511 * 512 * Note that it is possible to have a system with mixed processor 513 * revisions and therefore different OSVW bits. If bits are not the same 514 * on different processors then choose the worst case (i.e. if erratum 515 * is present on one processor and not on another then assume that the 516 * erratum is present everywhere). 517 */ 518 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 519 uint64_t len, status = 0; 520 int err; 521 522 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 523 if (!err) 524 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 525 &err); 526 527 if (err) 528 osvw_status = osvw_len = 0; 529 else { 530 if (len < osvw_len) 531 osvw_len = len; 532 osvw_status |= status; 533 osvw_status &= (1ULL << osvw_len) - 1; 534 } 535 } else 536 osvw_status = osvw_len = 0; 537 538 svm_init_erratum_383(); 539 540 amd_pmu_enable_virt(); 541 542 return 0; 543 } 544 545 static void svm_cpu_uninit(int cpu) 546 { 547 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 548 549 if (!sd) 550 return; 551 552 per_cpu(svm_data, cpu) = NULL; 553 kfree(sd->sev_vmcbs); 554 __free_page(sd->save_area); 555 kfree(sd); 556 } 557 558 static int svm_cpu_init(int cpu) 559 { 560 struct svm_cpu_data *sd; 561 int ret = -ENOMEM; 562 563 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 564 if (!sd) 565 return ret; 566 sd->cpu = cpu; 567 sd->save_area = alloc_page(GFP_KERNEL); 568 if (!sd->save_area) 569 goto free_cpu_data; 570 571 clear_page(page_address(sd->save_area)); 572 573 ret = sev_cpu_init(sd); 574 if (ret) 575 goto free_save_area; 576 577 per_cpu(svm_data, cpu) = sd; 578 579 return 0; 580 581 free_save_area: 582 __free_page(sd->save_area); 583 free_cpu_data: 584 kfree(sd); 585 return ret; 586 587 } 588 589 static int direct_access_msr_slot(u32 msr) 590 { 591 u32 i; 592 593 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 594 if (direct_access_msrs[i].index == msr) 595 return i; 596 597 return -ENOENT; 598 } 599 600 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 601 int write) 602 { 603 struct vcpu_svm *svm = to_svm(vcpu); 604 int slot = direct_access_msr_slot(msr); 605 606 if (slot == -ENOENT) 607 return; 608 609 /* Set the shadow bitmaps to the desired intercept states */ 610 if (read) 611 set_bit(slot, svm->shadow_msr_intercept.read); 612 else 613 clear_bit(slot, svm->shadow_msr_intercept.read); 614 615 if (write) 616 set_bit(slot, svm->shadow_msr_intercept.write); 617 else 618 clear_bit(slot, svm->shadow_msr_intercept.write); 619 } 620 621 static bool valid_msr_intercept(u32 index) 622 { 623 return direct_access_msr_slot(index) != -ENOENT; 624 } 625 626 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 627 { 628 u8 bit_write; 629 unsigned long tmp; 630 u32 offset; 631 u32 *msrpm; 632 633 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 634 to_svm(vcpu)->msrpm; 635 636 offset = svm_msrpm_offset(msr); 637 bit_write = 2 * (msr & 0x0f) + 1; 638 tmp = msrpm[offset]; 639 640 BUG_ON(offset == MSR_INVALID); 641 642 return !!test_bit(bit_write, &tmp); 643 } 644 645 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 646 u32 msr, int read, int write) 647 { 648 u8 bit_read, bit_write; 649 unsigned long tmp; 650 u32 offset; 651 652 /* 653 * If this warning triggers extend the direct_access_msrs list at the 654 * beginning of the file 655 */ 656 WARN_ON(!valid_msr_intercept(msr)); 657 658 /* Enforce non allowed MSRs to trap */ 659 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 660 read = 0; 661 662 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 663 write = 0; 664 665 offset = svm_msrpm_offset(msr); 666 bit_read = 2 * (msr & 0x0f); 667 bit_write = 2 * (msr & 0x0f) + 1; 668 tmp = msrpm[offset]; 669 670 BUG_ON(offset == MSR_INVALID); 671 672 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 673 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 674 675 msrpm[offset] = tmp; 676 } 677 678 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 679 int read, int write) 680 { 681 set_shadow_msr_intercept(vcpu, msr, read, write); 682 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 683 } 684 685 u32 *svm_vcpu_alloc_msrpm(void) 686 { 687 unsigned int order = get_order(MSRPM_SIZE); 688 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 689 u32 *msrpm; 690 691 if (!pages) 692 return NULL; 693 694 msrpm = page_address(pages); 695 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 696 697 return msrpm; 698 } 699 700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 701 { 702 int i; 703 704 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 705 if (!direct_access_msrs[i].always) 706 continue; 707 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 708 } 709 } 710 711 712 void svm_vcpu_free_msrpm(u32 *msrpm) 713 { 714 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 715 } 716 717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 718 { 719 struct vcpu_svm *svm = to_svm(vcpu); 720 u32 i; 721 722 /* 723 * Set intercept permissions for all direct access MSRs again. They 724 * will automatically get filtered through the MSR filter, so we are 725 * back in sync after this. 726 */ 727 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 728 u32 msr = direct_access_msrs[i].index; 729 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 730 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 731 732 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 733 } 734 } 735 736 static void add_msr_offset(u32 offset) 737 { 738 int i; 739 740 for (i = 0; i < MSRPM_OFFSETS; ++i) { 741 742 /* Offset already in list? */ 743 if (msrpm_offsets[i] == offset) 744 return; 745 746 /* Slot used by another offset? */ 747 if (msrpm_offsets[i] != MSR_INVALID) 748 continue; 749 750 /* Add offset to list */ 751 msrpm_offsets[i] = offset; 752 753 return; 754 } 755 756 /* 757 * If this BUG triggers the msrpm_offsets table has an overflow. Just 758 * increase MSRPM_OFFSETS in this case. 759 */ 760 BUG(); 761 } 762 763 static void init_msrpm_offsets(void) 764 { 765 int i; 766 767 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 768 769 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 770 u32 offset; 771 772 offset = svm_msrpm_offset(direct_access_msrs[i].index); 773 BUG_ON(offset == MSR_INVALID); 774 775 add_msr_offset(offset); 776 } 777 } 778 779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 780 { 781 struct vcpu_svm *svm = to_svm(vcpu); 782 783 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 784 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 785 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 786 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 787 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 788 } 789 790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 791 { 792 struct vcpu_svm *svm = to_svm(vcpu); 793 794 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 795 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 796 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 799 } 800 801 void disable_nmi_singlestep(struct vcpu_svm *svm) 802 { 803 svm->nmi_singlestep = false; 804 805 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 806 /* Clear our flags if they were not set by the guest */ 807 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 808 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 809 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 810 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 811 } 812 } 813 814 static void grow_ple_window(struct kvm_vcpu *vcpu) 815 { 816 struct vcpu_svm *svm = to_svm(vcpu); 817 struct vmcb_control_area *control = &svm->vmcb->control; 818 int old = control->pause_filter_count; 819 820 control->pause_filter_count = __grow_ple_window(old, 821 pause_filter_count, 822 pause_filter_count_grow, 823 pause_filter_count_max); 824 825 if (control->pause_filter_count != old) { 826 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 827 trace_kvm_ple_window_update(vcpu->vcpu_id, 828 control->pause_filter_count, old); 829 } 830 } 831 832 static void shrink_ple_window(struct kvm_vcpu *vcpu) 833 { 834 struct vcpu_svm *svm = to_svm(vcpu); 835 struct vmcb_control_area *control = &svm->vmcb->control; 836 int old = control->pause_filter_count; 837 838 control->pause_filter_count = 839 __shrink_ple_window(old, 840 pause_filter_count, 841 pause_filter_count_shrink, 842 pause_filter_count); 843 if (control->pause_filter_count != old) { 844 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 845 trace_kvm_ple_window_update(vcpu->vcpu_id, 846 control->pause_filter_count, old); 847 } 848 } 849 850 /* 851 * The default MMIO mask is a single bit (excluding the present bit), 852 * which could conflict with the memory encryption bit. Check for 853 * memory encryption support and override the default MMIO mask if 854 * memory encryption is enabled. 855 */ 856 static __init void svm_adjust_mmio_mask(void) 857 { 858 unsigned int enc_bit, mask_bit; 859 u64 msr, mask; 860 861 /* If there is no memory encryption support, use existing mask */ 862 if (cpuid_eax(0x80000000) < 0x8000001f) 863 return; 864 865 /* If memory encryption is not enabled, use existing mask */ 866 rdmsrl(MSR_AMD64_SYSCFG, msr); 867 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 868 return; 869 870 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 871 mask_bit = boot_cpu_data.x86_phys_bits; 872 873 /* Increment the mask bit if it is the same as the encryption bit */ 874 if (enc_bit == mask_bit) 875 mask_bit++; 876 877 /* 878 * If the mask bit location is below 52, then some bits above the 879 * physical addressing limit will always be reserved, so use the 880 * rsvd_bits() function to generate the mask. This mask, along with 881 * the present bit, will be used to generate a page fault with 882 * PFER.RSV = 1. 883 * 884 * If the mask bit location is 52 (or above), then clear the mask. 885 */ 886 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 887 888 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 889 } 890 891 static void svm_hardware_teardown(void) 892 { 893 int cpu; 894 895 sev_hardware_teardown(); 896 897 for_each_possible_cpu(cpu) 898 svm_cpu_uninit(cpu); 899 900 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 901 get_order(IOPM_SIZE)); 902 iopm_base = 0; 903 } 904 905 static __init void svm_set_cpu_caps(void) 906 { 907 kvm_set_cpu_caps(); 908 909 supported_xss = 0; 910 911 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 912 if (nested) { 913 kvm_cpu_cap_set(X86_FEATURE_SVM); 914 915 if (nrips) 916 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 917 918 if (npt_enabled) 919 kvm_cpu_cap_set(X86_FEATURE_NPT); 920 921 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 922 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 923 } 924 925 /* CPUID 0x80000008 */ 926 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 927 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 928 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 929 930 /* CPUID 0x8000001F (SME/SEV features) */ 931 sev_set_cpu_caps(); 932 } 933 934 static __init int svm_hardware_setup(void) 935 { 936 int cpu; 937 struct page *iopm_pages; 938 void *iopm_va; 939 int r; 940 unsigned int order = get_order(IOPM_SIZE); 941 942 iopm_pages = alloc_pages(GFP_KERNEL, order); 943 944 if (!iopm_pages) 945 return -ENOMEM; 946 947 iopm_va = page_address(iopm_pages); 948 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 949 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 950 951 init_msrpm_offsets(); 952 953 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 954 955 if (boot_cpu_has(X86_FEATURE_NX)) 956 kvm_enable_efer_bits(EFER_NX); 957 958 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 959 kvm_enable_efer_bits(EFER_FFXSR); 960 961 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 962 kvm_has_tsc_control = true; 963 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 964 kvm_tsc_scaling_ratio_frac_bits = 32; 965 } 966 967 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 968 969 /* Check for pause filtering support */ 970 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 971 pause_filter_count = 0; 972 pause_filter_thresh = 0; 973 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 974 pause_filter_thresh = 0; 975 } 976 977 if (nested) { 978 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 979 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 980 } 981 982 /* 983 * KVM's MMU doesn't support using 2-level paging for itself, and thus 984 * NPT isn't supported if the host is using 2-level paging since host 985 * CR4 is unchanged on VMRUN. 986 */ 987 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 988 npt_enabled = false; 989 990 if (!boot_cpu_has(X86_FEATURE_NPT)) 991 npt_enabled = false; 992 993 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 994 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 995 996 /* Note, SEV setup consumes npt_enabled. */ 997 sev_hardware_setup(); 998 999 svm_adjust_mmio_mask(); 1000 1001 for_each_possible_cpu(cpu) { 1002 r = svm_cpu_init(cpu); 1003 if (r) 1004 goto err; 1005 } 1006 1007 if (nrips) { 1008 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1009 nrips = false; 1010 } 1011 1012 if (avic) { 1013 if (!npt_enabled || !boot_cpu_has(X86_FEATURE_AVIC)) { 1014 avic = false; 1015 } else { 1016 pr_info("AVIC enabled\n"); 1017 1018 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1019 } 1020 } 1021 1022 if (vls) { 1023 if (!npt_enabled || 1024 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1025 !IS_ENABLED(CONFIG_X86_64)) { 1026 vls = false; 1027 } else { 1028 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1029 } 1030 } 1031 1032 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1033 svm_gp_erratum_intercept = false; 1034 1035 if (vgif) { 1036 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1037 vgif = false; 1038 else 1039 pr_info("Virtual GIF supported\n"); 1040 } 1041 1042 svm_set_cpu_caps(); 1043 1044 /* 1045 * It seems that on AMD processors PTE's accessed bit is 1046 * being set by the CPU hardware before the NPF vmexit. 1047 * This is not expected behaviour and our tests fail because 1048 * of it. 1049 * A workaround here is to disable support for 1050 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1051 * In this case userspace can know if there is support using 1052 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1053 * it 1054 * If future AMD CPU models change the behaviour described above, 1055 * this variable can be changed accordingly 1056 */ 1057 allow_smaller_maxphyaddr = !npt_enabled; 1058 1059 return 0; 1060 1061 err: 1062 svm_hardware_teardown(); 1063 return r; 1064 } 1065 1066 static void init_seg(struct vmcb_seg *seg) 1067 { 1068 seg->selector = 0; 1069 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1070 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1071 seg->limit = 0xffff; 1072 seg->base = 0; 1073 } 1074 1075 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1076 { 1077 seg->selector = 0; 1078 seg->attrib = SVM_SELECTOR_P_MASK | type; 1079 seg->limit = 0xffff; 1080 seg->base = 0; 1081 } 1082 1083 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1084 { 1085 struct vcpu_svm *svm = to_svm(vcpu); 1086 u64 g_tsc_offset = 0; 1087 1088 if (is_guest_mode(vcpu)) { 1089 /* Write L1's TSC offset. */ 1090 g_tsc_offset = svm->vmcb->control.tsc_offset - 1091 svm->vmcb01.ptr->control.tsc_offset; 1092 svm->vmcb01.ptr->control.tsc_offset = offset; 1093 } 1094 1095 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1096 svm->vmcb->control.tsc_offset - g_tsc_offset, 1097 offset); 1098 1099 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 1100 1101 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1102 return svm->vmcb->control.tsc_offset; 1103 } 1104 1105 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1106 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1107 struct vcpu_svm *svm) 1108 { 1109 /* 1110 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1111 * roots, or if INVPCID is disabled in the guest to inject #UD. 1112 */ 1113 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1114 if (!npt_enabled || 1115 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1116 svm_set_intercept(svm, INTERCEPT_INVPCID); 1117 else 1118 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1119 } 1120 1121 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1122 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1123 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1124 else 1125 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1126 } 1127 } 1128 1129 static void init_vmcb(struct kvm_vcpu *vcpu) 1130 { 1131 struct vcpu_svm *svm = to_svm(vcpu); 1132 struct vmcb_control_area *control = &svm->vmcb->control; 1133 struct vmcb_save_area *save = &svm->vmcb->save; 1134 1135 vcpu->arch.hflags = 0; 1136 1137 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1138 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1139 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1140 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1141 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1142 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1143 if (!kvm_vcpu_apicv_active(vcpu)) 1144 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1145 1146 set_dr_intercepts(svm); 1147 1148 set_exception_intercept(svm, PF_VECTOR); 1149 set_exception_intercept(svm, UD_VECTOR); 1150 set_exception_intercept(svm, MC_VECTOR); 1151 set_exception_intercept(svm, AC_VECTOR); 1152 set_exception_intercept(svm, DB_VECTOR); 1153 /* 1154 * Guest access to VMware backdoor ports could legitimately 1155 * trigger #GP because of TSS I/O permission bitmap. 1156 * We intercept those #GP and allow access to them anyway 1157 * as VMware does. 1158 */ 1159 if (enable_vmware_backdoor) 1160 set_exception_intercept(svm, GP_VECTOR); 1161 1162 svm_set_intercept(svm, INTERCEPT_INTR); 1163 svm_set_intercept(svm, INTERCEPT_NMI); 1164 svm_set_intercept(svm, INTERCEPT_SMI); 1165 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1166 svm_set_intercept(svm, INTERCEPT_RDPMC); 1167 svm_set_intercept(svm, INTERCEPT_CPUID); 1168 svm_set_intercept(svm, INTERCEPT_INVD); 1169 svm_set_intercept(svm, INTERCEPT_INVLPG); 1170 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1171 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1172 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1173 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1174 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1175 svm_set_intercept(svm, INTERCEPT_VMRUN); 1176 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1177 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1178 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1179 svm_set_intercept(svm, INTERCEPT_STGI); 1180 svm_set_intercept(svm, INTERCEPT_CLGI); 1181 svm_set_intercept(svm, INTERCEPT_SKINIT); 1182 svm_set_intercept(svm, INTERCEPT_WBINVD); 1183 svm_set_intercept(svm, INTERCEPT_XSETBV); 1184 svm_set_intercept(svm, INTERCEPT_RDPRU); 1185 svm_set_intercept(svm, INTERCEPT_RSM); 1186 1187 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1188 svm_set_intercept(svm, INTERCEPT_MONITOR); 1189 svm_set_intercept(svm, INTERCEPT_MWAIT); 1190 } 1191 1192 if (!kvm_hlt_in_guest(vcpu->kvm)) 1193 svm_set_intercept(svm, INTERCEPT_HLT); 1194 1195 control->iopm_base_pa = __sme_set(iopm_base); 1196 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1197 control->int_ctl = V_INTR_MASKING_MASK; 1198 1199 init_seg(&save->es); 1200 init_seg(&save->ss); 1201 init_seg(&save->ds); 1202 init_seg(&save->fs); 1203 init_seg(&save->gs); 1204 1205 save->cs.selector = 0xf000; 1206 save->cs.base = 0xffff0000; 1207 /* Executable/Readable Code Segment */ 1208 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1209 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1210 save->cs.limit = 0xffff; 1211 1212 save->gdtr.limit = 0xffff; 1213 save->idtr.limit = 0xffff; 1214 1215 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1216 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1217 1218 svm_set_cr4(vcpu, 0); 1219 svm_set_efer(vcpu, 0); 1220 save->dr6 = 0xffff0ff0; 1221 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 1222 save->rip = 0x0000fff0; 1223 vcpu->arch.regs[VCPU_REGS_RIP] = save->rip; 1224 1225 /* 1226 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1227 * It also updates the guest-visible cr0 value. 1228 */ 1229 svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1230 kvm_mmu_reset_context(vcpu); 1231 1232 save->cr4 = X86_CR4_PAE; 1233 /* rdx = ?? */ 1234 1235 if (npt_enabled) { 1236 /* Setup VMCB for Nested Paging */ 1237 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1238 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1239 clr_exception_intercept(svm, PF_VECTOR); 1240 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1241 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1242 save->g_pat = vcpu->arch.pat; 1243 save->cr3 = 0; 1244 save->cr4 = 0; 1245 } 1246 svm->current_vmcb->asid_generation = 0; 1247 svm->asid = 0; 1248 1249 svm->nested.vmcb12_gpa = INVALID_GPA; 1250 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1251 vcpu->arch.hflags = 0; 1252 1253 if (!kvm_pause_in_guest(vcpu->kvm)) { 1254 control->pause_filter_count = pause_filter_count; 1255 if (pause_filter_thresh) 1256 control->pause_filter_thresh = pause_filter_thresh; 1257 svm_set_intercept(svm, INTERCEPT_PAUSE); 1258 } else { 1259 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1260 } 1261 1262 svm_recalc_instruction_intercepts(vcpu, svm); 1263 1264 /* 1265 * If the host supports V_SPEC_CTRL then disable the interception 1266 * of MSR_IA32_SPEC_CTRL. 1267 */ 1268 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1269 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1270 1271 if (kvm_vcpu_apicv_active(vcpu)) 1272 avic_init_vmcb(svm); 1273 1274 if (vgif) { 1275 svm_clr_intercept(svm, INTERCEPT_STGI); 1276 svm_clr_intercept(svm, INTERCEPT_CLGI); 1277 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1278 } 1279 1280 if (sev_guest(vcpu->kvm)) { 1281 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1282 clr_exception_intercept(svm, UD_VECTOR); 1283 1284 if (sev_es_guest(vcpu->kvm)) { 1285 /* Perform SEV-ES specific VMCB updates */ 1286 sev_es_init_vmcb(svm); 1287 } 1288 } 1289 1290 vmcb_mark_all_dirty(svm->vmcb); 1291 1292 enable_gif(svm); 1293 1294 } 1295 1296 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1297 { 1298 struct vcpu_svm *svm = to_svm(vcpu); 1299 u32 dummy; 1300 u32 eax = 1; 1301 1302 svm->spec_ctrl = 0; 1303 svm->virt_spec_ctrl = 0; 1304 1305 if (!init_event) { 1306 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1307 MSR_IA32_APICBASE_ENABLE; 1308 if (kvm_vcpu_is_reset_bsp(vcpu)) 1309 vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; 1310 } 1311 init_vmcb(vcpu); 1312 1313 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1314 kvm_rdx_write(vcpu, eax); 1315 1316 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1317 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1318 } 1319 1320 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1321 { 1322 svm->current_vmcb = target_vmcb; 1323 svm->vmcb = target_vmcb->ptr; 1324 } 1325 1326 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1327 { 1328 struct vcpu_svm *svm; 1329 struct page *vmcb01_page; 1330 struct page *vmsa_page = NULL; 1331 int err; 1332 1333 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1334 svm = to_svm(vcpu); 1335 1336 err = -ENOMEM; 1337 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1338 if (!vmcb01_page) 1339 goto out; 1340 1341 if (sev_es_guest(vcpu->kvm)) { 1342 /* 1343 * SEV-ES guests require a separate VMSA page used to contain 1344 * the encrypted register state of the guest. 1345 */ 1346 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1347 if (!vmsa_page) 1348 goto error_free_vmcb_page; 1349 1350 /* 1351 * SEV-ES guests maintain an encrypted version of their FPU 1352 * state which is restored and saved on VMRUN and VMEXIT. 1353 * Free the fpu structure to prevent KVM from attempting to 1354 * access the FPU state. 1355 */ 1356 kvm_free_guest_fpu(vcpu); 1357 } 1358 1359 err = avic_init_vcpu(svm); 1360 if (err) 1361 goto error_free_vmsa_page; 1362 1363 /* We initialize this flag to true to make sure that the is_running 1364 * bit would be set the first time the vcpu is loaded. 1365 */ 1366 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1367 svm->avic_is_running = true; 1368 1369 svm->msrpm = svm_vcpu_alloc_msrpm(); 1370 if (!svm->msrpm) { 1371 err = -ENOMEM; 1372 goto error_free_vmsa_page; 1373 } 1374 1375 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1376 1377 svm->vmcb01.ptr = page_address(vmcb01_page); 1378 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1379 1380 if (vmsa_page) 1381 svm->vmsa = page_address(vmsa_page); 1382 1383 svm->guest_state_loaded = false; 1384 1385 svm_switch_vmcb(svm, &svm->vmcb01); 1386 init_vmcb(vcpu); 1387 1388 svm_init_osvw(vcpu); 1389 vcpu->arch.microcode_version = 0x01000065; 1390 1391 if (sev_es_guest(vcpu->kvm)) 1392 /* Perform SEV-ES specific VMCB creation updates */ 1393 sev_es_create_vcpu(svm); 1394 1395 return 0; 1396 1397 error_free_vmsa_page: 1398 if (vmsa_page) 1399 __free_page(vmsa_page); 1400 error_free_vmcb_page: 1401 __free_page(vmcb01_page); 1402 out: 1403 return err; 1404 } 1405 1406 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1407 { 1408 int i; 1409 1410 for_each_online_cpu(i) 1411 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1412 } 1413 1414 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1415 { 1416 struct vcpu_svm *svm = to_svm(vcpu); 1417 1418 /* 1419 * The vmcb page can be recycled, causing a false negative in 1420 * svm_vcpu_load(). So, ensure that no logical CPU has this 1421 * vmcb page recorded as its current vmcb. 1422 */ 1423 svm_clear_current_vmcb(svm->vmcb); 1424 1425 svm_free_nested(svm); 1426 1427 sev_free_vcpu(vcpu); 1428 1429 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1430 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1431 } 1432 1433 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1434 { 1435 struct vcpu_svm *svm = to_svm(vcpu); 1436 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1437 1438 if (sev_es_guest(vcpu->kvm)) 1439 sev_es_unmap_ghcb(svm); 1440 1441 if (svm->guest_state_loaded) 1442 return; 1443 1444 /* 1445 * Save additional host state that will be restored on VMEXIT (sev-es) 1446 * or subsequent vmload of host save area. 1447 */ 1448 if (sev_es_guest(vcpu->kvm)) { 1449 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1450 } else { 1451 vmsave(__sme_page_pa(sd->save_area)); 1452 } 1453 1454 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1455 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1456 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1457 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1458 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1459 } 1460 } 1461 1462 if (likely(tsc_aux_uret_slot >= 0)) 1463 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1464 1465 svm->guest_state_loaded = true; 1466 } 1467 1468 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1469 { 1470 to_svm(vcpu)->guest_state_loaded = false; 1471 } 1472 1473 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1474 { 1475 struct vcpu_svm *svm = to_svm(vcpu); 1476 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1477 1478 if (sd->current_vmcb != svm->vmcb) { 1479 sd->current_vmcb = svm->vmcb; 1480 indirect_branch_prediction_barrier(); 1481 } 1482 avic_vcpu_load(vcpu, cpu); 1483 } 1484 1485 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1486 { 1487 avic_vcpu_put(vcpu); 1488 svm_prepare_host_switch(vcpu); 1489 1490 ++vcpu->stat.host_state_reload; 1491 } 1492 1493 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1494 { 1495 struct vcpu_svm *svm = to_svm(vcpu); 1496 unsigned long rflags = svm->vmcb->save.rflags; 1497 1498 if (svm->nmi_singlestep) { 1499 /* Hide our flags if they were not set by the guest */ 1500 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1501 rflags &= ~X86_EFLAGS_TF; 1502 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1503 rflags &= ~X86_EFLAGS_RF; 1504 } 1505 return rflags; 1506 } 1507 1508 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1509 { 1510 if (to_svm(vcpu)->nmi_singlestep) 1511 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1512 1513 /* 1514 * Any change of EFLAGS.VM is accompanied by a reload of SS 1515 * (caused by either a task switch or an inter-privilege IRET), 1516 * so we do not need to update the CPL here. 1517 */ 1518 to_svm(vcpu)->vmcb->save.rflags = rflags; 1519 } 1520 1521 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1522 { 1523 switch (reg) { 1524 case VCPU_EXREG_PDPTR: 1525 BUG_ON(!npt_enabled); 1526 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1527 break; 1528 default: 1529 WARN_ON_ONCE(1); 1530 } 1531 } 1532 1533 static void svm_set_vintr(struct vcpu_svm *svm) 1534 { 1535 struct vmcb_control_area *control; 1536 1537 /* The following fields are ignored when AVIC is enabled */ 1538 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1539 svm_set_intercept(svm, INTERCEPT_VINTR); 1540 1541 /* 1542 * This is just a dummy VINTR to actually cause a vmexit to happen. 1543 * Actual injection of virtual interrupts happens through EVENTINJ. 1544 */ 1545 control = &svm->vmcb->control; 1546 control->int_vector = 0x0; 1547 control->int_ctl &= ~V_INTR_PRIO_MASK; 1548 control->int_ctl |= V_IRQ_MASK | 1549 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1550 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1551 } 1552 1553 static void svm_clear_vintr(struct vcpu_svm *svm) 1554 { 1555 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1556 svm_clr_intercept(svm, INTERCEPT_VINTR); 1557 1558 /* Drop int_ctl fields related to VINTR injection. */ 1559 svm->vmcb->control.int_ctl &= mask; 1560 if (is_guest_mode(&svm->vcpu)) { 1561 svm->vmcb01.ptr->control.int_ctl &= mask; 1562 1563 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1564 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1565 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1566 } 1567 1568 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1569 } 1570 1571 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1572 { 1573 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1574 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1575 1576 switch (seg) { 1577 case VCPU_SREG_CS: return &save->cs; 1578 case VCPU_SREG_DS: return &save->ds; 1579 case VCPU_SREG_ES: return &save->es; 1580 case VCPU_SREG_FS: return &save01->fs; 1581 case VCPU_SREG_GS: return &save01->gs; 1582 case VCPU_SREG_SS: return &save->ss; 1583 case VCPU_SREG_TR: return &save01->tr; 1584 case VCPU_SREG_LDTR: return &save01->ldtr; 1585 } 1586 BUG(); 1587 return NULL; 1588 } 1589 1590 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1591 { 1592 struct vmcb_seg *s = svm_seg(vcpu, seg); 1593 1594 return s->base; 1595 } 1596 1597 static void svm_get_segment(struct kvm_vcpu *vcpu, 1598 struct kvm_segment *var, int seg) 1599 { 1600 struct vmcb_seg *s = svm_seg(vcpu, seg); 1601 1602 var->base = s->base; 1603 var->limit = s->limit; 1604 var->selector = s->selector; 1605 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1606 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1607 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1608 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1609 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1610 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1611 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1612 1613 /* 1614 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1615 * However, the SVM spec states that the G bit is not observed by the 1616 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1617 * So let's synthesize a legal G bit for all segments, this helps 1618 * running KVM nested. It also helps cross-vendor migration, because 1619 * Intel's vmentry has a check on the 'G' bit. 1620 */ 1621 var->g = s->limit > 0xfffff; 1622 1623 /* 1624 * AMD's VMCB does not have an explicit unusable field, so emulate it 1625 * for cross vendor migration purposes by "not present" 1626 */ 1627 var->unusable = !var->present; 1628 1629 switch (seg) { 1630 case VCPU_SREG_TR: 1631 /* 1632 * Work around a bug where the busy flag in the tr selector 1633 * isn't exposed 1634 */ 1635 var->type |= 0x2; 1636 break; 1637 case VCPU_SREG_DS: 1638 case VCPU_SREG_ES: 1639 case VCPU_SREG_FS: 1640 case VCPU_SREG_GS: 1641 /* 1642 * The accessed bit must always be set in the segment 1643 * descriptor cache, although it can be cleared in the 1644 * descriptor, the cached bit always remains at 1. Since 1645 * Intel has a check on this, set it here to support 1646 * cross-vendor migration. 1647 */ 1648 if (!var->unusable) 1649 var->type |= 0x1; 1650 break; 1651 case VCPU_SREG_SS: 1652 /* 1653 * On AMD CPUs sometimes the DB bit in the segment 1654 * descriptor is left as 1, although the whole segment has 1655 * been made unusable. Clear it here to pass an Intel VMX 1656 * entry check when cross vendor migrating. 1657 */ 1658 if (var->unusable) 1659 var->db = 0; 1660 /* This is symmetric with svm_set_segment() */ 1661 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1662 break; 1663 } 1664 } 1665 1666 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1667 { 1668 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1669 1670 return save->cpl; 1671 } 1672 1673 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1674 { 1675 struct vcpu_svm *svm = to_svm(vcpu); 1676 1677 dt->size = svm->vmcb->save.idtr.limit; 1678 dt->address = svm->vmcb->save.idtr.base; 1679 } 1680 1681 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1682 { 1683 struct vcpu_svm *svm = to_svm(vcpu); 1684 1685 svm->vmcb->save.idtr.limit = dt->size; 1686 svm->vmcb->save.idtr.base = dt->address ; 1687 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1688 } 1689 1690 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1691 { 1692 struct vcpu_svm *svm = to_svm(vcpu); 1693 1694 dt->size = svm->vmcb->save.gdtr.limit; 1695 dt->address = svm->vmcb->save.gdtr.base; 1696 } 1697 1698 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1699 { 1700 struct vcpu_svm *svm = to_svm(vcpu); 1701 1702 svm->vmcb->save.gdtr.limit = dt->size; 1703 svm->vmcb->save.gdtr.base = dt->address ; 1704 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1705 } 1706 1707 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1708 { 1709 struct vcpu_svm *svm = to_svm(vcpu); 1710 u64 hcr0 = cr0; 1711 1712 #ifdef CONFIG_X86_64 1713 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1714 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1715 vcpu->arch.efer |= EFER_LMA; 1716 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1717 } 1718 1719 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1720 vcpu->arch.efer &= ~EFER_LMA; 1721 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1722 } 1723 } 1724 #endif 1725 vcpu->arch.cr0 = cr0; 1726 1727 if (!npt_enabled) 1728 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1729 1730 /* 1731 * re-enable caching here because the QEMU bios 1732 * does not do it - this results in some delay at 1733 * reboot 1734 */ 1735 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1736 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1737 1738 svm->vmcb->save.cr0 = hcr0; 1739 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1740 1741 /* 1742 * SEV-ES guests must always keep the CR intercepts cleared. CR 1743 * tracking is done using the CR write traps. 1744 */ 1745 if (sev_es_guest(vcpu->kvm)) 1746 return; 1747 1748 if (hcr0 == cr0) { 1749 /* Selective CR0 write remains on. */ 1750 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1751 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1752 } else { 1753 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1754 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1755 } 1756 } 1757 1758 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1759 { 1760 return true; 1761 } 1762 1763 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1764 { 1765 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1766 unsigned long old_cr4 = vcpu->arch.cr4; 1767 1768 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1769 svm_flush_tlb(vcpu); 1770 1771 vcpu->arch.cr4 = cr4; 1772 if (!npt_enabled) 1773 cr4 |= X86_CR4_PAE; 1774 cr4 |= host_cr4_mce; 1775 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1776 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1777 1778 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1779 kvm_update_cpuid_runtime(vcpu); 1780 } 1781 1782 static void svm_set_segment(struct kvm_vcpu *vcpu, 1783 struct kvm_segment *var, int seg) 1784 { 1785 struct vcpu_svm *svm = to_svm(vcpu); 1786 struct vmcb_seg *s = svm_seg(vcpu, seg); 1787 1788 s->base = var->base; 1789 s->limit = var->limit; 1790 s->selector = var->selector; 1791 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1792 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1793 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1794 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1795 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1796 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1797 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1798 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1799 1800 /* 1801 * This is always accurate, except if SYSRET returned to a segment 1802 * with SS.DPL != 3. Intel does not have this quirk, and always 1803 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1804 * would entail passing the CPL to userspace and back. 1805 */ 1806 if (seg == VCPU_SREG_SS) 1807 /* This is symmetric with svm_get_segment() */ 1808 svm->vmcb->save.cpl = (var->dpl & 3); 1809 1810 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1811 } 1812 1813 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1814 { 1815 struct vcpu_svm *svm = to_svm(vcpu); 1816 1817 clr_exception_intercept(svm, BP_VECTOR); 1818 1819 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1820 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1821 set_exception_intercept(svm, BP_VECTOR); 1822 } 1823 } 1824 1825 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1826 { 1827 if (sd->next_asid > sd->max_asid) { 1828 ++sd->asid_generation; 1829 sd->next_asid = sd->min_asid; 1830 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1831 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1832 } 1833 1834 svm->current_vmcb->asid_generation = sd->asid_generation; 1835 svm->asid = sd->next_asid++; 1836 } 1837 1838 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1839 { 1840 struct vmcb *vmcb = svm->vmcb; 1841 1842 if (svm->vcpu.arch.guest_state_protected) 1843 return; 1844 1845 if (unlikely(value != vmcb->save.dr6)) { 1846 vmcb->save.dr6 = value; 1847 vmcb_mark_dirty(vmcb, VMCB_DR); 1848 } 1849 } 1850 1851 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1852 { 1853 struct vcpu_svm *svm = to_svm(vcpu); 1854 1855 if (vcpu->arch.guest_state_protected) 1856 return; 1857 1858 get_debugreg(vcpu->arch.db[0], 0); 1859 get_debugreg(vcpu->arch.db[1], 1); 1860 get_debugreg(vcpu->arch.db[2], 2); 1861 get_debugreg(vcpu->arch.db[3], 3); 1862 /* 1863 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1864 * because db_interception might need it. We can do it before vmentry. 1865 */ 1866 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1867 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1868 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1869 set_dr_intercepts(svm); 1870 } 1871 1872 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1873 { 1874 struct vcpu_svm *svm = to_svm(vcpu); 1875 1876 if (vcpu->arch.guest_state_protected) 1877 return; 1878 1879 svm->vmcb->save.dr7 = value; 1880 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1881 } 1882 1883 static int pf_interception(struct kvm_vcpu *vcpu) 1884 { 1885 struct vcpu_svm *svm = to_svm(vcpu); 1886 1887 u64 fault_address = svm->vmcb->control.exit_info_2; 1888 u64 error_code = svm->vmcb->control.exit_info_1; 1889 1890 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1891 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1892 svm->vmcb->control.insn_bytes : NULL, 1893 svm->vmcb->control.insn_len); 1894 } 1895 1896 static int npf_interception(struct kvm_vcpu *vcpu) 1897 { 1898 struct vcpu_svm *svm = to_svm(vcpu); 1899 1900 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1901 u64 error_code = svm->vmcb->control.exit_info_1; 1902 1903 trace_kvm_page_fault(fault_address, error_code); 1904 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1905 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1906 svm->vmcb->control.insn_bytes : NULL, 1907 svm->vmcb->control.insn_len); 1908 } 1909 1910 static int db_interception(struct kvm_vcpu *vcpu) 1911 { 1912 struct kvm_run *kvm_run = vcpu->run; 1913 struct vcpu_svm *svm = to_svm(vcpu); 1914 1915 if (!(vcpu->guest_debug & 1916 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1917 !svm->nmi_singlestep) { 1918 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1919 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1920 return 1; 1921 } 1922 1923 if (svm->nmi_singlestep) { 1924 disable_nmi_singlestep(svm); 1925 /* Make sure we check for pending NMIs upon entry */ 1926 kvm_make_request(KVM_REQ_EVENT, vcpu); 1927 } 1928 1929 if (vcpu->guest_debug & 1930 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1931 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1932 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1933 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1934 kvm_run->debug.arch.pc = 1935 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1936 kvm_run->debug.arch.exception = DB_VECTOR; 1937 return 0; 1938 } 1939 1940 return 1; 1941 } 1942 1943 static int bp_interception(struct kvm_vcpu *vcpu) 1944 { 1945 struct vcpu_svm *svm = to_svm(vcpu); 1946 struct kvm_run *kvm_run = vcpu->run; 1947 1948 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1949 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1950 kvm_run->debug.arch.exception = BP_VECTOR; 1951 return 0; 1952 } 1953 1954 static int ud_interception(struct kvm_vcpu *vcpu) 1955 { 1956 return handle_ud(vcpu); 1957 } 1958 1959 static int ac_interception(struct kvm_vcpu *vcpu) 1960 { 1961 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1962 return 1; 1963 } 1964 1965 static bool is_erratum_383(void) 1966 { 1967 int err, i; 1968 u64 value; 1969 1970 if (!erratum_383_found) 1971 return false; 1972 1973 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1974 if (err) 1975 return false; 1976 1977 /* Bit 62 may or may not be set for this mce */ 1978 value &= ~(1ULL << 62); 1979 1980 if (value != 0xb600000000010015ULL) 1981 return false; 1982 1983 /* Clear MCi_STATUS registers */ 1984 for (i = 0; i < 6; ++i) 1985 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1986 1987 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1988 if (!err) { 1989 u32 low, high; 1990 1991 value &= ~(1ULL << 2); 1992 low = lower_32_bits(value); 1993 high = upper_32_bits(value); 1994 1995 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1996 } 1997 1998 /* Flush tlb to evict multi-match entries */ 1999 __flush_tlb_all(); 2000 2001 return true; 2002 } 2003 2004 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2005 { 2006 if (is_erratum_383()) { 2007 /* 2008 * Erratum 383 triggered. Guest state is corrupt so kill the 2009 * guest. 2010 */ 2011 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2012 2013 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2014 2015 return; 2016 } 2017 2018 /* 2019 * On an #MC intercept the MCE handler is not called automatically in 2020 * the host. So do it by hand here. 2021 */ 2022 kvm_machine_check(); 2023 } 2024 2025 static int mc_interception(struct kvm_vcpu *vcpu) 2026 { 2027 return 1; 2028 } 2029 2030 static int shutdown_interception(struct kvm_vcpu *vcpu) 2031 { 2032 struct kvm_run *kvm_run = vcpu->run; 2033 struct vcpu_svm *svm = to_svm(vcpu); 2034 2035 /* 2036 * The VM save area has already been encrypted so it 2037 * cannot be reinitialized - just terminate. 2038 */ 2039 if (sev_es_guest(vcpu->kvm)) 2040 return -EINVAL; 2041 2042 /* 2043 * VMCB is undefined after a SHUTDOWN intercept 2044 * so reinitialize it. 2045 */ 2046 clear_page(svm->vmcb); 2047 init_vmcb(vcpu); 2048 2049 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2050 return 0; 2051 } 2052 2053 static int io_interception(struct kvm_vcpu *vcpu) 2054 { 2055 struct vcpu_svm *svm = to_svm(vcpu); 2056 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2057 int size, in, string; 2058 unsigned port; 2059 2060 ++vcpu->stat.io_exits; 2061 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2062 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2063 port = io_info >> 16; 2064 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2065 2066 if (string) { 2067 if (sev_es_guest(vcpu->kvm)) 2068 return sev_es_string_io(svm, size, port, in); 2069 else 2070 return kvm_emulate_instruction(vcpu, 0); 2071 } 2072 2073 svm->next_rip = svm->vmcb->control.exit_info_2; 2074 2075 return kvm_fast_pio(vcpu, size, port, in); 2076 } 2077 2078 static int nmi_interception(struct kvm_vcpu *vcpu) 2079 { 2080 return 1; 2081 } 2082 2083 static int intr_interception(struct kvm_vcpu *vcpu) 2084 { 2085 ++vcpu->stat.irq_exits; 2086 return 1; 2087 } 2088 2089 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2090 { 2091 struct vcpu_svm *svm = to_svm(vcpu); 2092 struct vmcb *vmcb12; 2093 struct kvm_host_map map; 2094 int ret; 2095 2096 if (nested_svm_check_permissions(vcpu)) 2097 return 1; 2098 2099 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2100 if (ret) { 2101 if (ret == -EINVAL) 2102 kvm_inject_gp(vcpu, 0); 2103 return 1; 2104 } 2105 2106 vmcb12 = map.hva; 2107 2108 ret = kvm_skip_emulated_instruction(vcpu); 2109 2110 if (vmload) { 2111 nested_svm_vmloadsave(vmcb12, svm->vmcb); 2112 svm->sysenter_eip_hi = 0; 2113 svm->sysenter_esp_hi = 0; 2114 } else 2115 nested_svm_vmloadsave(svm->vmcb, vmcb12); 2116 2117 kvm_vcpu_unmap(vcpu, &map, true); 2118 2119 return ret; 2120 } 2121 2122 static int vmload_interception(struct kvm_vcpu *vcpu) 2123 { 2124 return vmload_vmsave_interception(vcpu, true); 2125 } 2126 2127 static int vmsave_interception(struct kvm_vcpu *vcpu) 2128 { 2129 return vmload_vmsave_interception(vcpu, false); 2130 } 2131 2132 static int vmrun_interception(struct kvm_vcpu *vcpu) 2133 { 2134 if (nested_svm_check_permissions(vcpu)) 2135 return 1; 2136 2137 return nested_svm_vmrun(vcpu); 2138 } 2139 2140 enum { 2141 NONE_SVM_INSTR, 2142 SVM_INSTR_VMRUN, 2143 SVM_INSTR_VMLOAD, 2144 SVM_INSTR_VMSAVE, 2145 }; 2146 2147 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2148 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2149 { 2150 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2151 2152 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2153 return NONE_SVM_INSTR; 2154 2155 switch (ctxt->modrm) { 2156 case 0xd8: /* VMRUN */ 2157 return SVM_INSTR_VMRUN; 2158 case 0xda: /* VMLOAD */ 2159 return SVM_INSTR_VMLOAD; 2160 case 0xdb: /* VMSAVE */ 2161 return SVM_INSTR_VMSAVE; 2162 default: 2163 break; 2164 } 2165 2166 return NONE_SVM_INSTR; 2167 } 2168 2169 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2170 { 2171 const int guest_mode_exit_codes[] = { 2172 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2173 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2174 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2175 }; 2176 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2177 [SVM_INSTR_VMRUN] = vmrun_interception, 2178 [SVM_INSTR_VMLOAD] = vmload_interception, 2179 [SVM_INSTR_VMSAVE] = vmsave_interception, 2180 }; 2181 struct vcpu_svm *svm = to_svm(vcpu); 2182 int ret; 2183 2184 if (is_guest_mode(vcpu)) { 2185 /* Returns '1' or -errno on failure, '0' on success. */ 2186 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2187 if (ret) 2188 return ret; 2189 return 1; 2190 } 2191 return svm_instr_handlers[opcode](vcpu); 2192 } 2193 2194 /* 2195 * #GP handling code. Note that #GP can be triggered under the following two 2196 * cases: 2197 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2198 * some AMD CPUs when EAX of these instructions are in the reserved memory 2199 * regions (e.g. SMM memory on host). 2200 * 2) VMware backdoor 2201 */ 2202 static int gp_interception(struct kvm_vcpu *vcpu) 2203 { 2204 struct vcpu_svm *svm = to_svm(vcpu); 2205 u32 error_code = svm->vmcb->control.exit_info_1; 2206 int opcode; 2207 2208 /* Both #GP cases have zero error_code */ 2209 if (error_code) 2210 goto reinject; 2211 2212 /* Decode the instruction for usage later */ 2213 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2214 goto reinject; 2215 2216 opcode = svm_instr_opcode(vcpu); 2217 2218 if (opcode == NONE_SVM_INSTR) { 2219 if (!enable_vmware_backdoor) 2220 goto reinject; 2221 2222 /* 2223 * VMware backdoor emulation on #GP interception only handles 2224 * IN{S}, OUT{S}, and RDPMC. 2225 */ 2226 if (!is_guest_mode(vcpu)) 2227 return kvm_emulate_instruction(vcpu, 2228 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2229 } else 2230 return emulate_svm_instr(vcpu, opcode); 2231 2232 reinject: 2233 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2234 return 1; 2235 } 2236 2237 void svm_set_gif(struct vcpu_svm *svm, bool value) 2238 { 2239 if (value) { 2240 /* 2241 * If VGIF is enabled, the STGI intercept is only added to 2242 * detect the opening of the SMI/NMI window; remove it now. 2243 * Likewise, clear the VINTR intercept, we will set it 2244 * again while processing KVM_REQ_EVENT if needed. 2245 */ 2246 if (vgif_enabled(svm)) 2247 svm_clr_intercept(svm, INTERCEPT_STGI); 2248 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2249 svm_clear_vintr(svm); 2250 2251 enable_gif(svm); 2252 if (svm->vcpu.arch.smi_pending || 2253 svm->vcpu.arch.nmi_pending || 2254 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2255 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2256 } else { 2257 disable_gif(svm); 2258 2259 /* 2260 * After a CLGI no interrupts should come. But if vGIF is 2261 * in use, we still rely on the VINTR intercept (rather than 2262 * STGI) to detect an open interrupt window. 2263 */ 2264 if (!vgif_enabled(svm)) 2265 svm_clear_vintr(svm); 2266 } 2267 } 2268 2269 static int stgi_interception(struct kvm_vcpu *vcpu) 2270 { 2271 int ret; 2272 2273 if (nested_svm_check_permissions(vcpu)) 2274 return 1; 2275 2276 ret = kvm_skip_emulated_instruction(vcpu); 2277 svm_set_gif(to_svm(vcpu), true); 2278 return ret; 2279 } 2280 2281 static int clgi_interception(struct kvm_vcpu *vcpu) 2282 { 2283 int ret; 2284 2285 if (nested_svm_check_permissions(vcpu)) 2286 return 1; 2287 2288 ret = kvm_skip_emulated_instruction(vcpu); 2289 svm_set_gif(to_svm(vcpu), false); 2290 return ret; 2291 } 2292 2293 static int invlpga_interception(struct kvm_vcpu *vcpu) 2294 { 2295 gva_t gva = kvm_rax_read(vcpu); 2296 u32 asid = kvm_rcx_read(vcpu); 2297 2298 /* FIXME: Handle an address size prefix. */ 2299 if (!is_long_mode(vcpu)) 2300 gva = (u32)gva; 2301 2302 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2303 2304 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2305 kvm_mmu_invlpg(vcpu, gva); 2306 2307 return kvm_skip_emulated_instruction(vcpu); 2308 } 2309 2310 static int skinit_interception(struct kvm_vcpu *vcpu) 2311 { 2312 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2313 2314 kvm_queue_exception(vcpu, UD_VECTOR); 2315 return 1; 2316 } 2317 2318 static int task_switch_interception(struct kvm_vcpu *vcpu) 2319 { 2320 struct vcpu_svm *svm = to_svm(vcpu); 2321 u16 tss_selector; 2322 int reason; 2323 int int_type = svm->vmcb->control.exit_int_info & 2324 SVM_EXITINTINFO_TYPE_MASK; 2325 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2326 uint32_t type = 2327 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2328 uint32_t idt_v = 2329 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2330 bool has_error_code = false; 2331 u32 error_code = 0; 2332 2333 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2334 2335 if (svm->vmcb->control.exit_info_2 & 2336 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2337 reason = TASK_SWITCH_IRET; 2338 else if (svm->vmcb->control.exit_info_2 & 2339 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2340 reason = TASK_SWITCH_JMP; 2341 else if (idt_v) 2342 reason = TASK_SWITCH_GATE; 2343 else 2344 reason = TASK_SWITCH_CALL; 2345 2346 if (reason == TASK_SWITCH_GATE) { 2347 switch (type) { 2348 case SVM_EXITINTINFO_TYPE_NMI: 2349 vcpu->arch.nmi_injected = false; 2350 break; 2351 case SVM_EXITINTINFO_TYPE_EXEPT: 2352 if (svm->vmcb->control.exit_info_2 & 2353 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2354 has_error_code = true; 2355 error_code = 2356 (u32)svm->vmcb->control.exit_info_2; 2357 } 2358 kvm_clear_exception_queue(vcpu); 2359 break; 2360 case SVM_EXITINTINFO_TYPE_INTR: 2361 kvm_clear_interrupt_queue(vcpu); 2362 break; 2363 default: 2364 break; 2365 } 2366 } 2367 2368 if (reason != TASK_SWITCH_GATE || 2369 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2370 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2371 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2372 if (!skip_emulated_instruction(vcpu)) 2373 return 0; 2374 } 2375 2376 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2377 int_vec = -1; 2378 2379 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2380 has_error_code, error_code); 2381 } 2382 2383 static int iret_interception(struct kvm_vcpu *vcpu) 2384 { 2385 struct vcpu_svm *svm = to_svm(vcpu); 2386 2387 ++vcpu->stat.nmi_window_exits; 2388 vcpu->arch.hflags |= HF_IRET_MASK; 2389 if (!sev_es_guest(vcpu->kvm)) { 2390 svm_clr_intercept(svm, INTERCEPT_IRET); 2391 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2392 } 2393 kvm_make_request(KVM_REQ_EVENT, vcpu); 2394 return 1; 2395 } 2396 2397 static int invlpg_interception(struct kvm_vcpu *vcpu) 2398 { 2399 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2400 return kvm_emulate_instruction(vcpu, 0); 2401 2402 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2403 return kvm_skip_emulated_instruction(vcpu); 2404 } 2405 2406 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2407 { 2408 return kvm_emulate_instruction(vcpu, 0); 2409 } 2410 2411 static int rsm_interception(struct kvm_vcpu *vcpu) 2412 { 2413 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2414 } 2415 2416 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2417 unsigned long val) 2418 { 2419 struct vcpu_svm *svm = to_svm(vcpu); 2420 unsigned long cr0 = vcpu->arch.cr0; 2421 bool ret = false; 2422 2423 if (!is_guest_mode(vcpu) || 2424 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2425 return false; 2426 2427 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2428 val &= ~SVM_CR0_SELECTIVE_MASK; 2429 2430 if (cr0 ^ val) { 2431 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2432 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2433 } 2434 2435 return ret; 2436 } 2437 2438 #define CR_VALID (1ULL << 63) 2439 2440 static int cr_interception(struct kvm_vcpu *vcpu) 2441 { 2442 struct vcpu_svm *svm = to_svm(vcpu); 2443 int reg, cr; 2444 unsigned long val; 2445 int err; 2446 2447 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2448 return emulate_on_interception(vcpu); 2449 2450 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2451 return emulate_on_interception(vcpu); 2452 2453 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2454 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2455 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2456 else 2457 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2458 2459 err = 0; 2460 if (cr >= 16) { /* mov to cr */ 2461 cr -= 16; 2462 val = kvm_register_read(vcpu, reg); 2463 trace_kvm_cr_write(cr, val); 2464 switch (cr) { 2465 case 0: 2466 if (!check_selective_cr0_intercepted(vcpu, val)) 2467 err = kvm_set_cr0(vcpu, val); 2468 else 2469 return 1; 2470 2471 break; 2472 case 3: 2473 err = kvm_set_cr3(vcpu, val); 2474 break; 2475 case 4: 2476 err = kvm_set_cr4(vcpu, val); 2477 break; 2478 case 8: 2479 err = kvm_set_cr8(vcpu, val); 2480 break; 2481 default: 2482 WARN(1, "unhandled write to CR%d", cr); 2483 kvm_queue_exception(vcpu, UD_VECTOR); 2484 return 1; 2485 } 2486 } else { /* mov from cr */ 2487 switch (cr) { 2488 case 0: 2489 val = kvm_read_cr0(vcpu); 2490 break; 2491 case 2: 2492 val = vcpu->arch.cr2; 2493 break; 2494 case 3: 2495 val = kvm_read_cr3(vcpu); 2496 break; 2497 case 4: 2498 val = kvm_read_cr4(vcpu); 2499 break; 2500 case 8: 2501 val = kvm_get_cr8(vcpu); 2502 break; 2503 default: 2504 WARN(1, "unhandled read from CR%d", cr); 2505 kvm_queue_exception(vcpu, UD_VECTOR); 2506 return 1; 2507 } 2508 kvm_register_write(vcpu, reg, val); 2509 trace_kvm_cr_read(cr, val); 2510 } 2511 return kvm_complete_insn_gp(vcpu, err); 2512 } 2513 2514 static int cr_trap(struct kvm_vcpu *vcpu) 2515 { 2516 struct vcpu_svm *svm = to_svm(vcpu); 2517 unsigned long old_value, new_value; 2518 unsigned int cr; 2519 int ret = 0; 2520 2521 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2522 2523 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2524 switch (cr) { 2525 case 0: 2526 old_value = kvm_read_cr0(vcpu); 2527 svm_set_cr0(vcpu, new_value); 2528 2529 kvm_post_set_cr0(vcpu, old_value, new_value); 2530 break; 2531 case 4: 2532 old_value = kvm_read_cr4(vcpu); 2533 svm_set_cr4(vcpu, new_value); 2534 2535 kvm_post_set_cr4(vcpu, old_value, new_value); 2536 break; 2537 case 8: 2538 ret = kvm_set_cr8(vcpu, new_value); 2539 break; 2540 default: 2541 WARN(1, "unhandled CR%d write trap", cr); 2542 kvm_queue_exception(vcpu, UD_VECTOR); 2543 return 1; 2544 } 2545 2546 return kvm_complete_insn_gp(vcpu, ret); 2547 } 2548 2549 static int dr_interception(struct kvm_vcpu *vcpu) 2550 { 2551 struct vcpu_svm *svm = to_svm(vcpu); 2552 int reg, dr; 2553 unsigned long val; 2554 int err = 0; 2555 2556 if (vcpu->guest_debug == 0) { 2557 /* 2558 * No more DR vmexits; force a reload of the debug registers 2559 * and reenter on this instruction. The next vmexit will 2560 * retrieve the full state of the debug registers. 2561 */ 2562 clr_dr_intercepts(svm); 2563 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2564 return 1; 2565 } 2566 2567 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2568 return emulate_on_interception(vcpu); 2569 2570 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2571 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2572 if (dr >= 16) { /* mov to DRn */ 2573 dr -= 16; 2574 val = kvm_register_read(vcpu, reg); 2575 err = kvm_set_dr(vcpu, dr, val); 2576 } else { 2577 kvm_get_dr(vcpu, dr, &val); 2578 kvm_register_write(vcpu, reg, val); 2579 } 2580 2581 return kvm_complete_insn_gp(vcpu, err); 2582 } 2583 2584 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2585 { 2586 int r; 2587 2588 u8 cr8_prev = kvm_get_cr8(vcpu); 2589 /* instruction emulation calls kvm_set_cr8() */ 2590 r = cr_interception(vcpu); 2591 if (lapic_in_kernel(vcpu)) 2592 return r; 2593 if (cr8_prev <= kvm_get_cr8(vcpu)) 2594 return r; 2595 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2596 return 0; 2597 } 2598 2599 static int efer_trap(struct kvm_vcpu *vcpu) 2600 { 2601 struct msr_data msr_info; 2602 int ret; 2603 2604 /* 2605 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2606 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2607 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2608 * the guest doesn't have X86_FEATURE_SVM. 2609 */ 2610 msr_info.host_initiated = false; 2611 msr_info.index = MSR_EFER; 2612 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2613 ret = kvm_set_msr_common(vcpu, &msr_info); 2614 2615 return kvm_complete_insn_gp(vcpu, ret); 2616 } 2617 2618 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2619 { 2620 msr->data = 0; 2621 2622 switch (msr->index) { 2623 case MSR_F10H_DECFG: 2624 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2625 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2626 break; 2627 case MSR_IA32_PERF_CAPABILITIES: 2628 return 0; 2629 default: 2630 return KVM_MSR_RET_INVALID; 2631 } 2632 2633 return 0; 2634 } 2635 2636 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2637 { 2638 struct vcpu_svm *svm = to_svm(vcpu); 2639 2640 switch (msr_info->index) { 2641 case MSR_STAR: 2642 msr_info->data = svm->vmcb01.ptr->save.star; 2643 break; 2644 #ifdef CONFIG_X86_64 2645 case MSR_LSTAR: 2646 msr_info->data = svm->vmcb01.ptr->save.lstar; 2647 break; 2648 case MSR_CSTAR: 2649 msr_info->data = svm->vmcb01.ptr->save.cstar; 2650 break; 2651 case MSR_KERNEL_GS_BASE: 2652 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2653 break; 2654 case MSR_SYSCALL_MASK: 2655 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2656 break; 2657 #endif 2658 case MSR_IA32_SYSENTER_CS: 2659 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2660 break; 2661 case MSR_IA32_SYSENTER_EIP: 2662 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2663 if (guest_cpuid_is_intel(vcpu)) 2664 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2665 break; 2666 case MSR_IA32_SYSENTER_ESP: 2667 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2668 if (guest_cpuid_is_intel(vcpu)) 2669 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2670 break; 2671 case MSR_TSC_AUX: 2672 msr_info->data = svm->tsc_aux; 2673 break; 2674 /* 2675 * Nobody will change the following 5 values in the VMCB so we can 2676 * safely return them on rdmsr. They will always be 0 until LBRV is 2677 * implemented. 2678 */ 2679 case MSR_IA32_DEBUGCTLMSR: 2680 msr_info->data = svm->vmcb->save.dbgctl; 2681 break; 2682 case MSR_IA32_LASTBRANCHFROMIP: 2683 msr_info->data = svm->vmcb->save.br_from; 2684 break; 2685 case MSR_IA32_LASTBRANCHTOIP: 2686 msr_info->data = svm->vmcb->save.br_to; 2687 break; 2688 case MSR_IA32_LASTINTFROMIP: 2689 msr_info->data = svm->vmcb->save.last_excp_from; 2690 break; 2691 case MSR_IA32_LASTINTTOIP: 2692 msr_info->data = svm->vmcb->save.last_excp_to; 2693 break; 2694 case MSR_VM_HSAVE_PA: 2695 msr_info->data = svm->nested.hsave_msr; 2696 break; 2697 case MSR_VM_CR: 2698 msr_info->data = svm->nested.vm_cr_msr; 2699 break; 2700 case MSR_IA32_SPEC_CTRL: 2701 if (!msr_info->host_initiated && 2702 !guest_has_spec_ctrl_msr(vcpu)) 2703 return 1; 2704 2705 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2706 msr_info->data = svm->vmcb->save.spec_ctrl; 2707 else 2708 msr_info->data = svm->spec_ctrl; 2709 break; 2710 case MSR_AMD64_VIRT_SPEC_CTRL: 2711 if (!msr_info->host_initiated && 2712 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2713 return 1; 2714 2715 msr_info->data = svm->virt_spec_ctrl; 2716 break; 2717 case MSR_F15H_IC_CFG: { 2718 2719 int family, model; 2720 2721 family = guest_cpuid_family(vcpu); 2722 model = guest_cpuid_model(vcpu); 2723 2724 if (family < 0 || model < 0) 2725 return kvm_get_msr_common(vcpu, msr_info); 2726 2727 msr_info->data = 0; 2728 2729 if (family == 0x15 && 2730 (model >= 0x2 && model < 0x20)) 2731 msr_info->data = 0x1E; 2732 } 2733 break; 2734 case MSR_F10H_DECFG: 2735 msr_info->data = svm->msr_decfg; 2736 break; 2737 default: 2738 return kvm_get_msr_common(vcpu, msr_info); 2739 } 2740 return 0; 2741 } 2742 2743 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2744 { 2745 struct vcpu_svm *svm = to_svm(vcpu); 2746 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb)) 2747 return kvm_complete_insn_gp(vcpu, err); 2748 2749 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2750 ghcb_set_sw_exit_info_2(svm->ghcb, 2751 X86_TRAP_GP | 2752 SVM_EVTINJ_TYPE_EXEPT | 2753 SVM_EVTINJ_VALID); 2754 return 1; 2755 } 2756 2757 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2758 { 2759 struct vcpu_svm *svm = to_svm(vcpu); 2760 int svm_dis, chg_mask; 2761 2762 if (data & ~SVM_VM_CR_VALID_MASK) 2763 return 1; 2764 2765 chg_mask = SVM_VM_CR_VALID_MASK; 2766 2767 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2768 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2769 2770 svm->nested.vm_cr_msr &= ~chg_mask; 2771 svm->nested.vm_cr_msr |= (data & chg_mask); 2772 2773 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2774 2775 /* check for svm_disable while efer.svme is set */ 2776 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2777 return 1; 2778 2779 return 0; 2780 } 2781 2782 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2783 { 2784 struct vcpu_svm *svm = to_svm(vcpu); 2785 int r; 2786 2787 u32 ecx = msr->index; 2788 u64 data = msr->data; 2789 switch (ecx) { 2790 case MSR_IA32_CR_PAT: 2791 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2792 return 1; 2793 vcpu->arch.pat = data; 2794 svm->vmcb01.ptr->save.g_pat = data; 2795 if (is_guest_mode(vcpu)) 2796 nested_vmcb02_compute_g_pat(svm); 2797 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2798 break; 2799 case MSR_IA32_SPEC_CTRL: 2800 if (!msr->host_initiated && 2801 !guest_has_spec_ctrl_msr(vcpu)) 2802 return 1; 2803 2804 if (kvm_spec_ctrl_test_value(data)) 2805 return 1; 2806 2807 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2808 svm->vmcb->save.spec_ctrl = data; 2809 else 2810 svm->spec_ctrl = data; 2811 if (!data) 2812 break; 2813 2814 /* 2815 * For non-nested: 2816 * When it's written (to non-zero) for the first time, pass 2817 * it through. 2818 * 2819 * For nested: 2820 * The handling of the MSR bitmap for L2 guests is done in 2821 * nested_svm_vmrun_msrpm. 2822 * We update the L1 MSR bit as well since it will end up 2823 * touching the MSR anyway now. 2824 */ 2825 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2826 break; 2827 case MSR_IA32_PRED_CMD: 2828 if (!msr->host_initiated && 2829 !guest_has_pred_cmd_msr(vcpu)) 2830 return 1; 2831 2832 if (data & ~PRED_CMD_IBPB) 2833 return 1; 2834 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2835 return 1; 2836 if (!data) 2837 break; 2838 2839 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2840 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2841 break; 2842 case MSR_AMD64_VIRT_SPEC_CTRL: 2843 if (!msr->host_initiated && 2844 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2845 return 1; 2846 2847 if (data & ~SPEC_CTRL_SSBD) 2848 return 1; 2849 2850 svm->virt_spec_ctrl = data; 2851 break; 2852 case MSR_STAR: 2853 svm->vmcb01.ptr->save.star = data; 2854 break; 2855 #ifdef CONFIG_X86_64 2856 case MSR_LSTAR: 2857 svm->vmcb01.ptr->save.lstar = data; 2858 break; 2859 case MSR_CSTAR: 2860 svm->vmcb01.ptr->save.cstar = data; 2861 break; 2862 case MSR_KERNEL_GS_BASE: 2863 svm->vmcb01.ptr->save.kernel_gs_base = data; 2864 break; 2865 case MSR_SYSCALL_MASK: 2866 svm->vmcb01.ptr->save.sfmask = data; 2867 break; 2868 #endif 2869 case MSR_IA32_SYSENTER_CS: 2870 svm->vmcb01.ptr->save.sysenter_cs = data; 2871 break; 2872 case MSR_IA32_SYSENTER_EIP: 2873 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2874 /* 2875 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2876 * when we spoof an Intel vendor ID (for cross vendor migration). 2877 * In this case we use this intercept to track the high 2878 * 32 bit part of these msrs to support Intel's 2879 * implementation of SYSENTER/SYSEXIT. 2880 */ 2881 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2882 break; 2883 case MSR_IA32_SYSENTER_ESP: 2884 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2885 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2886 break; 2887 case MSR_TSC_AUX: 2888 /* 2889 * TSC_AUX is usually changed only during boot and never read 2890 * directly. Intercept TSC_AUX instead of exposing it to the 2891 * guest via direct_access_msrs, and switch it via user return. 2892 */ 2893 preempt_disable(); 2894 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2895 preempt_enable(); 2896 if (r) 2897 return 1; 2898 2899 svm->tsc_aux = data; 2900 break; 2901 case MSR_IA32_DEBUGCTLMSR: 2902 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2903 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2904 __func__, data); 2905 break; 2906 } 2907 if (data & DEBUGCTL_RESERVED_BITS) 2908 return 1; 2909 2910 svm->vmcb->save.dbgctl = data; 2911 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2912 if (data & (1ULL<<0)) 2913 svm_enable_lbrv(vcpu); 2914 else 2915 svm_disable_lbrv(vcpu); 2916 break; 2917 case MSR_VM_HSAVE_PA: 2918 svm->nested.hsave_msr = data; 2919 break; 2920 case MSR_VM_CR: 2921 return svm_set_vm_cr(vcpu, data); 2922 case MSR_VM_IGNNE: 2923 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2924 break; 2925 case MSR_F10H_DECFG: { 2926 struct kvm_msr_entry msr_entry; 2927 2928 msr_entry.index = msr->index; 2929 if (svm_get_msr_feature(&msr_entry)) 2930 return 1; 2931 2932 /* Check the supported bits */ 2933 if (data & ~msr_entry.data) 2934 return 1; 2935 2936 /* Don't allow the guest to change a bit, #GP */ 2937 if (!msr->host_initiated && (data ^ msr_entry.data)) 2938 return 1; 2939 2940 svm->msr_decfg = data; 2941 break; 2942 } 2943 case MSR_IA32_APICBASE: 2944 if (kvm_vcpu_apicv_active(vcpu)) 2945 avic_update_vapic_bar(to_svm(vcpu), data); 2946 fallthrough; 2947 default: 2948 return kvm_set_msr_common(vcpu, msr); 2949 } 2950 return 0; 2951 } 2952 2953 static int msr_interception(struct kvm_vcpu *vcpu) 2954 { 2955 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2956 return kvm_emulate_wrmsr(vcpu); 2957 else 2958 return kvm_emulate_rdmsr(vcpu); 2959 } 2960 2961 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2962 { 2963 kvm_make_request(KVM_REQ_EVENT, vcpu); 2964 svm_clear_vintr(to_svm(vcpu)); 2965 2966 /* 2967 * For AVIC, the only reason to end up here is ExtINTs. 2968 * In this case AVIC was temporarily disabled for 2969 * requesting the IRQ window and we have to re-enable it. 2970 */ 2971 svm_toggle_avic_for_irq_window(vcpu, true); 2972 2973 ++vcpu->stat.irq_window_exits; 2974 return 1; 2975 } 2976 2977 static int pause_interception(struct kvm_vcpu *vcpu) 2978 { 2979 bool in_kernel; 2980 2981 /* 2982 * CPL is not made available for an SEV-ES guest, therefore 2983 * vcpu->arch.preempted_in_kernel can never be true. Just 2984 * set in_kernel to false as well. 2985 */ 2986 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 2987 2988 if (!kvm_pause_in_guest(vcpu->kvm)) 2989 grow_ple_window(vcpu); 2990 2991 kvm_vcpu_on_spin(vcpu, in_kernel); 2992 return kvm_skip_emulated_instruction(vcpu); 2993 } 2994 2995 static int invpcid_interception(struct kvm_vcpu *vcpu) 2996 { 2997 struct vcpu_svm *svm = to_svm(vcpu); 2998 unsigned long type; 2999 gva_t gva; 3000 3001 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3002 kvm_queue_exception(vcpu, UD_VECTOR); 3003 return 1; 3004 } 3005 3006 /* 3007 * For an INVPCID intercept: 3008 * EXITINFO1 provides the linear address of the memory operand. 3009 * EXITINFO2 provides the contents of the register operand. 3010 */ 3011 type = svm->vmcb->control.exit_info_2; 3012 gva = svm->vmcb->control.exit_info_1; 3013 3014 if (type > 3) { 3015 kvm_inject_gp(vcpu, 0); 3016 return 1; 3017 } 3018 3019 return kvm_handle_invpcid(vcpu, type, gva); 3020 } 3021 3022 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3023 [SVM_EXIT_READ_CR0] = cr_interception, 3024 [SVM_EXIT_READ_CR3] = cr_interception, 3025 [SVM_EXIT_READ_CR4] = cr_interception, 3026 [SVM_EXIT_READ_CR8] = cr_interception, 3027 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3028 [SVM_EXIT_WRITE_CR0] = cr_interception, 3029 [SVM_EXIT_WRITE_CR3] = cr_interception, 3030 [SVM_EXIT_WRITE_CR4] = cr_interception, 3031 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3032 [SVM_EXIT_READ_DR0] = dr_interception, 3033 [SVM_EXIT_READ_DR1] = dr_interception, 3034 [SVM_EXIT_READ_DR2] = dr_interception, 3035 [SVM_EXIT_READ_DR3] = dr_interception, 3036 [SVM_EXIT_READ_DR4] = dr_interception, 3037 [SVM_EXIT_READ_DR5] = dr_interception, 3038 [SVM_EXIT_READ_DR6] = dr_interception, 3039 [SVM_EXIT_READ_DR7] = dr_interception, 3040 [SVM_EXIT_WRITE_DR0] = dr_interception, 3041 [SVM_EXIT_WRITE_DR1] = dr_interception, 3042 [SVM_EXIT_WRITE_DR2] = dr_interception, 3043 [SVM_EXIT_WRITE_DR3] = dr_interception, 3044 [SVM_EXIT_WRITE_DR4] = dr_interception, 3045 [SVM_EXIT_WRITE_DR5] = dr_interception, 3046 [SVM_EXIT_WRITE_DR6] = dr_interception, 3047 [SVM_EXIT_WRITE_DR7] = dr_interception, 3048 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3049 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3050 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3051 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3052 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3053 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3054 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3055 [SVM_EXIT_INTR] = intr_interception, 3056 [SVM_EXIT_NMI] = nmi_interception, 3057 [SVM_EXIT_SMI] = kvm_emulate_as_nop, 3058 [SVM_EXIT_INIT] = kvm_emulate_as_nop, 3059 [SVM_EXIT_VINTR] = interrupt_window_interception, 3060 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3061 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3062 [SVM_EXIT_IRET] = iret_interception, 3063 [SVM_EXIT_INVD] = kvm_emulate_invd, 3064 [SVM_EXIT_PAUSE] = pause_interception, 3065 [SVM_EXIT_HLT] = kvm_emulate_halt, 3066 [SVM_EXIT_INVLPG] = invlpg_interception, 3067 [SVM_EXIT_INVLPGA] = invlpga_interception, 3068 [SVM_EXIT_IOIO] = io_interception, 3069 [SVM_EXIT_MSR] = msr_interception, 3070 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3071 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3072 [SVM_EXIT_VMRUN] = vmrun_interception, 3073 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3074 [SVM_EXIT_VMLOAD] = vmload_interception, 3075 [SVM_EXIT_VMSAVE] = vmsave_interception, 3076 [SVM_EXIT_STGI] = stgi_interception, 3077 [SVM_EXIT_CLGI] = clgi_interception, 3078 [SVM_EXIT_SKINIT] = skinit_interception, 3079 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3080 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3081 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3082 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3083 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3084 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3085 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3086 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3087 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3088 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3089 [SVM_EXIT_INVPCID] = invpcid_interception, 3090 [SVM_EXIT_NPF] = npf_interception, 3091 [SVM_EXIT_RSM] = rsm_interception, 3092 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3093 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3094 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3095 }; 3096 3097 static void dump_vmcb(struct kvm_vcpu *vcpu) 3098 { 3099 struct vcpu_svm *svm = to_svm(vcpu); 3100 struct vmcb_control_area *control = &svm->vmcb->control; 3101 struct vmcb_save_area *save = &svm->vmcb->save; 3102 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3103 3104 if (!dump_invalid_vmcb) { 3105 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3106 return; 3107 } 3108 3109 pr_err("VMCB Control Area:\n"); 3110 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3111 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3112 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3113 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3114 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3115 pr_err("%-20s%08x %08x\n", "intercepts:", 3116 control->intercepts[INTERCEPT_WORD3], 3117 control->intercepts[INTERCEPT_WORD4]); 3118 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3119 pr_err("%-20s%d\n", "pause filter threshold:", 3120 control->pause_filter_thresh); 3121 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3122 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3123 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3124 pr_err("%-20s%d\n", "asid:", control->asid); 3125 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3126 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3127 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3128 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3129 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3130 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3131 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3132 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3133 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3134 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3135 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3136 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3137 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3138 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3139 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3140 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3141 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3142 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3143 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3144 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3145 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3146 pr_err("VMCB State Save Area:\n"); 3147 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3148 "es:", 3149 save->es.selector, save->es.attrib, 3150 save->es.limit, save->es.base); 3151 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3152 "cs:", 3153 save->cs.selector, save->cs.attrib, 3154 save->cs.limit, save->cs.base); 3155 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3156 "ss:", 3157 save->ss.selector, save->ss.attrib, 3158 save->ss.limit, save->ss.base); 3159 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3160 "ds:", 3161 save->ds.selector, save->ds.attrib, 3162 save->ds.limit, save->ds.base); 3163 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3164 "fs:", 3165 save01->fs.selector, save01->fs.attrib, 3166 save01->fs.limit, save01->fs.base); 3167 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3168 "gs:", 3169 save01->gs.selector, save01->gs.attrib, 3170 save01->gs.limit, save01->gs.base); 3171 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3172 "gdtr:", 3173 save->gdtr.selector, save->gdtr.attrib, 3174 save->gdtr.limit, save->gdtr.base); 3175 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3176 "ldtr:", 3177 save01->ldtr.selector, save01->ldtr.attrib, 3178 save01->ldtr.limit, save01->ldtr.base); 3179 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3180 "idtr:", 3181 save->idtr.selector, save->idtr.attrib, 3182 save->idtr.limit, save->idtr.base); 3183 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3184 "tr:", 3185 save01->tr.selector, save01->tr.attrib, 3186 save01->tr.limit, save01->tr.base); 3187 pr_err("cpl: %d efer: %016llx\n", 3188 save->cpl, save->efer); 3189 pr_err("%-15s %016llx %-13s %016llx\n", 3190 "cr0:", save->cr0, "cr2:", save->cr2); 3191 pr_err("%-15s %016llx %-13s %016llx\n", 3192 "cr3:", save->cr3, "cr4:", save->cr4); 3193 pr_err("%-15s %016llx %-13s %016llx\n", 3194 "dr6:", save->dr6, "dr7:", save->dr7); 3195 pr_err("%-15s %016llx %-13s %016llx\n", 3196 "rip:", save->rip, "rflags:", save->rflags); 3197 pr_err("%-15s %016llx %-13s %016llx\n", 3198 "rsp:", save->rsp, "rax:", save->rax); 3199 pr_err("%-15s %016llx %-13s %016llx\n", 3200 "star:", save01->star, "lstar:", save01->lstar); 3201 pr_err("%-15s %016llx %-13s %016llx\n", 3202 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3203 pr_err("%-15s %016llx %-13s %016llx\n", 3204 "kernel_gs_base:", save01->kernel_gs_base, 3205 "sysenter_cs:", save01->sysenter_cs); 3206 pr_err("%-15s %016llx %-13s %016llx\n", 3207 "sysenter_esp:", save01->sysenter_esp, 3208 "sysenter_eip:", save01->sysenter_eip); 3209 pr_err("%-15s %016llx %-13s %016llx\n", 3210 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3211 pr_err("%-15s %016llx %-13s %016llx\n", 3212 "br_from:", save->br_from, "br_to:", save->br_to); 3213 pr_err("%-15s %016llx %-13s %016llx\n", 3214 "excp_from:", save->last_excp_from, 3215 "excp_to:", save->last_excp_to); 3216 } 3217 3218 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3219 { 3220 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3221 svm_exit_handlers[exit_code]) 3222 return 0; 3223 3224 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3225 dump_vmcb(vcpu); 3226 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3227 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3228 vcpu->run->internal.ndata = 2; 3229 vcpu->run->internal.data[0] = exit_code; 3230 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3231 3232 return -EINVAL; 3233 } 3234 3235 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3236 { 3237 if (svm_handle_invalid_exit(vcpu, exit_code)) 3238 return 0; 3239 3240 #ifdef CONFIG_RETPOLINE 3241 if (exit_code == SVM_EXIT_MSR) 3242 return msr_interception(vcpu); 3243 else if (exit_code == SVM_EXIT_VINTR) 3244 return interrupt_window_interception(vcpu); 3245 else if (exit_code == SVM_EXIT_INTR) 3246 return intr_interception(vcpu); 3247 else if (exit_code == SVM_EXIT_HLT) 3248 return kvm_emulate_halt(vcpu); 3249 else if (exit_code == SVM_EXIT_NPF) 3250 return npf_interception(vcpu); 3251 #endif 3252 return svm_exit_handlers[exit_code](vcpu); 3253 } 3254 3255 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3256 u32 *intr_info, u32 *error_code) 3257 { 3258 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3259 3260 *info1 = control->exit_info_1; 3261 *info2 = control->exit_info_2; 3262 *intr_info = control->exit_int_info; 3263 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3264 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3265 *error_code = control->exit_int_info_err; 3266 else 3267 *error_code = 0; 3268 } 3269 3270 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3271 { 3272 struct vcpu_svm *svm = to_svm(vcpu); 3273 struct kvm_run *kvm_run = vcpu->run; 3274 u32 exit_code = svm->vmcb->control.exit_code; 3275 3276 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3277 3278 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3279 if (!sev_es_guest(vcpu->kvm)) { 3280 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3281 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3282 if (npt_enabled) 3283 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3284 } 3285 3286 if (is_guest_mode(vcpu)) { 3287 int vmexit; 3288 3289 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3290 3291 vmexit = nested_svm_exit_special(svm); 3292 3293 if (vmexit == NESTED_EXIT_CONTINUE) 3294 vmexit = nested_svm_exit_handled(svm); 3295 3296 if (vmexit == NESTED_EXIT_DONE) 3297 return 1; 3298 } 3299 3300 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3301 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3302 kvm_run->fail_entry.hardware_entry_failure_reason 3303 = svm->vmcb->control.exit_code; 3304 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3305 dump_vmcb(vcpu); 3306 return 0; 3307 } 3308 3309 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3310 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3311 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3312 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3313 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3314 "exit_code 0x%x\n", 3315 __func__, svm->vmcb->control.exit_int_info, 3316 exit_code); 3317 3318 if (exit_fastpath != EXIT_FASTPATH_NONE) 3319 return 1; 3320 3321 return svm_invoke_exit_handler(vcpu, exit_code); 3322 } 3323 3324 static void reload_tss(struct kvm_vcpu *vcpu) 3325 { 3326 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3327 3328 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3329 load_TR_desc(); 3330 } 3331 3332 static void pre_svm_run(struct kvm_vcpu *vcpu) 3333 { 3334 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3335 struct vcpu_svm *svm = to_svm(vcpu); 3336 3337 /* 3338 * If the previous vmrun of the vmcb occurred on a different physical 3339 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3340 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3341 */ 3342 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3343 svm->current_vmcb->asid_generation = 0; 3344 vmcb_mark_all_dirty(svm->vmcb); 3345 svm->current_vmcb->cpu = vcpu->cpu; 3346 } 3347 3348 if (sev_guest(vcpu->kvm)) 3349 return pre_sev_run(svm, vcpu->cpu); 3350 3351 /* FIXME: handle wraparound of asid_generation */ 3352 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3353 new_asid(svm, sd); 3354 } 3355 3356 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3357 { 3358 struct vcpu_svm *svm = to_svm(vcpu); 3359 3360 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3361 vcpu->arch.hflags |= HF_NMI_MASK; 3362 if (!sev_es_guest(vcpu->kvm)) 3363 svm_set_intercept(svm, INTERCEPT_IRET); 3364 ++vcpu->stat.nmi_injections; 3365 } 3366 3367 static void svm_set_irq(struct kvm_vcpu *vcpu) 3368 { 3369 struct vcpu_svm *svm = to_svm(vcpu); 3370 3371 BUG_ON(!(gif_set(svm))); 3372 3373 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3374 ++vcpu->stat.irq_injections; 3375 3376 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3377 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3378 } 3379 3380 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3381 { 3382 struct vcpu_svm *svm = to_svm(vcpu); 3383 3384 /* 3385 * SEV-ES guests must always keep the CR intercepts cleared. CR 3386 * tracking is done using the CR write traps. 3387 */ 3388 if (sev_es_guest(vcpu->kvm)) 3389 return; 3390 3391 if (nested_svm_virtualize_tpr(vcpu)) 3392 return; 3393 3394 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3395 3396 if (irr == -1) 3397 return; 3398 3399 if (tpr >= irr) 3400 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3401 } 3402 3403 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3404 { 3405 struct vcpu_svm *svm = to_svm(vcpu); 3406 struct vmcb *vmcb = svm->vmcb; 3407 bool ret; 3408 3409 if (!gif_set(svm)) 3410 return true; 3411 3412 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3413 return false; 3414 3415 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3416 (vcpu->arch.hflags & HF_NMI_MASK); 3417 3418 return ret; 3419 } 3420 3421 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3422 { 3423 struct vcpu_svm *svm = to_svm(vcpu); 3424 if (svm->nested.nested_run_pending) 3425 return -EBUSY; 3426 3427 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3428 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3429 return -EBUSY; 3430 3431 return !svm_nmi_blocked(vcpu); 3432 } 3433 3434 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3435 { 3436 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3437 } 3438 3439 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3440 { 3441 struct vcpu_svm *svm = to_svm(vcpu); 3442 3443 if (masked) { 3444 vcpu->arch.hflags |= HF_NMI_MASK; 3445 if (!sev_es_guest(vcpu->kvm)) 3446 svm_set_intercept(svm, INTERCEPT_IRET); 3447 } else { 3448 vcpu->arch.hflags &= ~HF_NMI_MASK; 3449 if (!sev_es_guest(vcpu->kvm)) 3450 svm_clr_intercept(svm, INTERCEPT_IRET); 3451 } 3452 } 3453 3454 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3455 { 3456 struct vcpu_svm *svm = to_svm(vcpu); 3457 struct vmcb *vmcb = svm->vmcb; 3458 3459 if (!gif_set(svm)) 3460 return true; 3461 3462 if (sev_es_guest(vcpu->kvm)) { 3463 /* 3464 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3465 * bit to determine the state of the IF flag. 3466 */ 3467 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3468 return true; 3469 } else if (is_guest_mode(vcpu)) { 3470 /* As long as interrupts are being delivered... */ 3471 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3472 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3473 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3474 return true; 3475 3476 /* ... vmexits aren't blocked by the interrupt shadow */ 3477 if (nested_exit_on_intr(svm)) 3478 return false; 3479 } else { 3480 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3481 return true; 3482 } 3483 3484 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3485 } 3486 3487 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3488 { 3489 struct vcpu_svm *svm = to_svm(vcpu); 3490 if (svm->nested.nested_run_pending) 3491 return -EBUSY; 3492 3493 /* 3494 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3495 * e.g. if the IRQ arrived asynchronously after checking nested events. 3496 */ 3497 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3498 return -EBUSY; 3499 3500 return !svm_interrupt_blocked(vcpu); 3501 } 3502 3503 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3504 { 3505 struct vcpu_svm *svm = to_svm(vcpu); 3506 3507 /* 3508 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3509 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3510 * get that intercept, this function will be called again though and 3511 * we'll get the vintr intercept. However, if the vGIF feature is 3512 * enabled, the STGI interception will not occur. Enable the irq 3513 * window under the assumption that the hardware will set the GIF. 3514 */ 3515 if (vgif_enabled(svm) || gif_set(svm)) { 3516 /* 3517 * IRQ window is not needed when AVIC is enabled, 3518 * unless we have pending ExtINT since it cannot be injected 3519 * via AVIC. In such case, we need to temporarily disable AVIC, 3520 * and fallback to injecting IRQ via V_IRQ. 3521 */ 3522 svm_toggle_avic_for_irq_window(vcpu, false); 3523 svm_set_vintr(svm); 3524 } 3525 } 3526 3527 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3528 { 3529 struct vcpu_svm *svm = to_svm(vcpu); 3530 3531 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3532 return; /* IRET will cause a vm exit */ 3533 3534 if (!gif_set(svm)) { 3535 if (vgif_enabled(svm)) 3536 svm_set_intercept(svm, INTERCEPT_STGI); 3537 return; /* STGI will cause a vm exit */ 3538 } 3539 3540 /* 3541 * Something prevents NMI from been injected. Single step over possible 3542 * problem (IRET or exception injection or interrupt shadow) 3543 */ 3544 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3545 svm->nmi_singlestep = true; 3546 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3547 } 3548 3549 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3550 { 3551 return 0; 3552 } 3553 3554 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3555 { 3556 return 0; 3557 } 3558 3559 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3560 { 3561 struct vcpu_svm *svm = to_svm(vcpu); 3562 3563 /* 3564 * Flush only the current ASID even if the TLB flush was invoked via 3565 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3566 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3567 * unconditionally does a TLB flush on both nested VM-Enter and nested 3568 * VM-Exit (via kvm_mmu_reset_context()). 3569 */ 3570 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3571 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3572 else 3573 svm->current_vmcb->asid_generation--; 3574 } 3575 3576 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3577 { 3578 struct vcpu_svm *svm = to_svm(vcpu); 3579 3580 invlpga(gva, svm->vmcb->control.asid); 3581 } 3582 3583 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3584 { 3585 struct vcpu_svm *svm = to_svm(vcpu); 3586 3587 if (nested_svm_virtualize_tpr(vcpu)) 3588 return; 3589 3590 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3591 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3592 kvm_set_cr8(vcpu, cr8); 3593 } 3594 } 3595 3596 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3597 { 3598 struct vcpu_svm *svm = to_svm(vcpu); 3599 u64 cr8; 3600 3601 if (nested_svm_virtualize_tpr(vcpu) || 3602 kvm_vcpu_apicv_active(vcpu)) 3603 return; 3604 3605 cr8 = kvm_get_cr8(vcpu); 3606 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3607 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3608 } 3609 3610 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3611 { 3612 struct vcpu_svm *svm = to_svm(vcpu); 3613 u8 vector; 3614 int type; 3615 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3616 unsigned int3_injected = svm->int3_injected; 3617 3618 svm->int3_injected = 0; 3619 3620 /* 3621 * If we've made progress since setting HF_IRET_MASK, we've 3622 * executed an IRET and can allow NMI injection. 3623 */ 3624 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3625 (sev_es_guest(vcpu->kvm) || 3626 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3627 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3628 kvm_make_request(KVM_REQ_EVENT, vcpu); 3629 } 3630 3631 vcpu->arch.nmi_injected = false; 3632 kvm_clear_exception_queue(vcpu); 3633 kvm_clear_interrupt_queue(vcpu); 3634 3635 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3636 return; 3637 3638 kvm_make_request(KVM_REQ_EVENT, vcpu); 3639 3640 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3641 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3642 3643 switch (type) { 3644 case SVM_EXITINTINFO_TYPE_NMI: 3645 vcpu->arch.nmi_injected = true; 3646 break; 3647 case SVM_EXITINTINFO_TYPE_EXEPT: 3648 /* 3649 * Never re-inject a #VC exception. 3650 */ 3651 if (vector == X86_TRAP_VC) 3652 break; 3653 3654 /* 3655 * In case of software exceptions, do not reinject the vector, 3656 * but re-execute the instruction instead. Rewind RIP first 3657 * if we emulated INT3 before. 3658 */ 3659 if (kvm_exception_is_soft(vector)) { 3660 if (vector == BP_VECTOR && int3_injected && 3661 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3662 kvm_rip_write(vcpu, 3663 kvm_rip_read(vcpu) - int3_injected); 3664 break; 3665 } 3666 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3667 u32 err = svm->vmcb->control.exit_int_info_err; 3668 kvm_requeue_exception_e(vcpu, vector, err); 3669 3670 } else 3671 kvm_requeue_exception(vcpu, vector); 3672 break; 3673 case SVM_EXITINTINFO_TYPE_INTR: 3674 kvm_queue_interrupt(vcpu, vector, false); 3675 break; 3676 default: 3677 break; 3678 } 3679 } 3680 3681 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3682 { 3683 struct vcpu_svm *svm = to_svm(vcpu); 3684 struct vmcb_control_area *control = &svm->vmcb->control; 3685 3686 control->exit_int_info = control->event_inj; 3687 control->exit_int_info_err = control->event_inj_err; 3688 control->event_inj = 0; 3689 svm_complete_interrupts(vcpu); 3690 } 3691 3692 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3693 { 3694 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3695 to_svm(vcpu)->vmcb->control.exit_info_1) 3696 return handle_fastpath_set_msr_irqoff(vcpu); 3697 3698 return EXIT_FASTPATH_NONE; 3699 } 3700 3701 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3702 { 3703 struct vcpu_svm *svm = to_svm(vcpu); 3704 unsigned long vmcb_pa = svm->current_vmcb->pa; 3705 3706 kvm_guest_enter_irqoff(); 3707 3708 if (sev_es_guest(vcpu->kvm)) { 3709 __svm_sev_es_vcpu_run(vmcb_pa); 3710 } else { 3711 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3712 3713 /* 3714 * Use a single vmcb (vmcb01 because it's always valid) for 3715 * context switching guest state via VMLOAD/VMSAVE, that way 3716 * the state doesn't need to be copied between vmcb01 and 3717 * vmcb02 when switching vmcbs for nested virtualization. 3718 */ 3719 vmload(svm->vmcb01.pa); 3720 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3721 vmsave(svm->vmcb01.pa); 3722 3723 vmload(__sme_page_pa(sd->save_area)); 3724 } 3725 3726 kvm_guest_exit_irqoff(); 3727 } 3728 3729 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3730 { 3731 struct vcpu_svm *svm = to_svm(vcpu); 3732 3733 trace_kvm_entry(vcpu); 3734 3735 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3736 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3737 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3738 3739 /* 3740 * Disable singlestep if we're injecting an interrupt/exception. 3741 * We don't want our modified rflags to be pushed on the stack where 3742 * we might not be able to easily reset them if we disabled NMI 3743 * singlestep later. 3744 */ 3745 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3746 /* 3747 * Event injection happens before external interrupts cause a 3748 * vmexit and interrupts are disabled here, so smp_send_reschedule 3749 * is enough to force an immediate vmexit. 3750 */ 3751 disable_nmi_singlestep(svm); 3752 smp_send_reschedule(vcpu->cpu); 3753 } 3754 3755 pre_svm_run(vcpu); 3756 3757 sync_lapic_to_cr8(vcpu); 3758 3759 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3760 svm->vmcb->control.asid = svm->asid; 3761 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3762 } 3763 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3764 3765 /* 3766 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3767 * of a #DB. 3768 */ 3769 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3770 svm_set_dr6(svm, vcpu->arch.dr6); 3771 else 3772 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3773 3774 clgi(); 3775 kvm_load_guest_xsave_state(vcpu); 3776 3777 kvm_wait_lapic_expire(vcpu); 3778 3779 /* 3780 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3781 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3782 * is no need to worry about the conditional branch over the wrmsr 3783 * being speculatively taken. 3784 */ 3785 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3786 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3787 3788 svm_vcpu_enter_exit(vcpu); 3789 3790 /* 3791 * We do not use IBRS in the kernel. If this vCPU has used the 3792 * SPEC_CTRL MSR it may have left it on; save the value and 3793 * turn it off. This is much more efficient than blindly adding 3794 * it to the atomic save/restore list. Especially as the former 3795 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3796 * 3797 * For non-nested case: 3798 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3799 * save it. 3800 * 3801 * For nested case: 3802 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3803 * save it. 3804 */ 3805 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3806 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3807 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3808 3809 if (!sev_es_guest(vcpu->kvm)) 3810 reload_tss(vcpu); 3811 3812 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3813 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3814 3815 if (!sev_es_guest(vcpu->kvm)) { 3816 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3817 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3818 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3819 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3820 } 3821 3822 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3823 kvm_before_interrupt(vcpu); 3824 3825 kvm_load_host_xsave_state(vcpu); 3826 stgi(); 3827 3828 /* Any pending NMI will happen here */ 3829 3830 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3831 kvm_after_interrupt(vcpu); 3832 3833 sync_cr8_to_lapic(vcpu); 3834 3835 svm->next_rip = 0; 3836 if (is_guest_mode(vcpu)) { 3837 nested_sync_control_from_vmcb02(svm); 3838 svm->nested.nested_run_pending = 0; 3839 } 3840 3841 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3842 vmcb_mark_all_clean(svm->vmcb); 3843 3844 /* if exit due to PF check for async PF */ 3845 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3846 vcpu->arch.apf.host_apf_flags = 3847 kvm_read_and_reset_apf_flags(); 3848 3849 if (npt_enabled) { 3850 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3851 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3852 } 3853 3854 /* 3855 * We need to handle MC intercepts here before the vcpu has a chance to 3856 * change the physical cpu 3857 */ 3858 if (unlikely(svm->vmcb->control.exit_code == 3859 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3860 svm_handle_mce(vcpu); 3861 3862 svm_complete_interrupts(vcpu); 3863 3864 if (is_guest_mode(vcpu)) 3865 return EXIT_FASTPATH_NONE; 3866 3867 return svm_exit_handlers_fastpath(vcpu); 3868 } 3869 3870 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3871 int root_level) 3872 { 3873 struct vcpu_svm *svm = to_svm(vcpu); 3874 unsigned long cr3; 3875 3876 if (npt_enabled) { 3877 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3878 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3879 3880 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3881 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3882 return; 3883 cr3 = vcpu->arch.cr3; 3884 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3885 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3886 } else { 3887 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3888 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3889 cr3 = root_hpa; 3890 } 3891 3892 svm->vmcb->save.cr3 = cr3; 3893 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3894 } 3895 3896 static int is_disabled(void) 3897 { 3898 u64 vm_cr; 3899 3900 rdmsrl(MSR_VM_CR, vm_cr); 3901 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3902 return 1; 3903 3904 return 0; 3905 } 3906 3907 static void 3908 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3909 { 3910 /* 3911 * Patch in the VMMCALL instruction: 3912 */ 3913 hypercall[0] = 0x0f; 3914 hypercall[1] = 0x01; 3915 hypercall[2] = 0xd9; 3916 } 3917 3918 static int __init svm_check_processor_compat(void) 3919 { 3920 return 0; 3921 } 3922 3923 static bool svm_cpu_has_accelerated_tpr(void) 3924 { 3925 return false; 3926 } 3927 3928 /* 3929 * The kvm parameter can be NULL (module initialization, or invocation before 3930 * VM creation). Be sure to check the kvm parameter before using it. 3931 */ 3932 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3933 { 3934 switch (index) { 3935 case MSR_IA32_MCG_EXT_CTL: 3936 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3937 return false; 3938 case MSR_IA32_SMBASE: 3939 /* SEV-ES guests do not support SMM, so report false */ 3940 if (kvm && sev_es_guest(kvm)) 3941 return false; 3942 break; 3943 default: 3944 break; 3945 } 3946 3947 return true; 3948 } 3949 3950 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3951 { 3952 return 0; 3953 } 3954 3955 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3956 { 3957 struct vcpu_svm *svm = to_svm(vcpu); 3958 struct kvm_cpuid_entry2 *best; 3959 3960 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3961 boot_cpu_has(X86_FEATURE_XSAVE) && 3962 boot_cpu_has(X86_FEATURE_XSAVES); 3963 3964 /* Update nrips enabled cache */ 3965 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3966 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 3967 3968 svm_recalc_instruction_intercepts(vcpu, svm); 3969 3970 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3971 if (sev_guest(vcpu->kvm)) { 3972 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 3973 if (best) 3974 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3975 } 3976 3977 if (kvm_vcpu_apicv_active(vcpu)) { 3978 /* 3979 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3980 * is exposed to the guest, disable AVIC. 3981 */ 3982 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3983 kvm_request_apicv_update(vcpu->kvm, false, 3984 APICV_INHIBIT_REASON_X2APIC); 3985 3986 /* 3987 * Currently, AVIC does not work with nested virtualization. 3988 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3989 */ 3990 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3991 kvm_request_apicv_update(vcpu->kvm, false, 3992 APICV_INHIBIT_REASON_NESTED); 3993 } 3994 3995 if (guest_cpuid_is_intel(vcpu)) { 3996 /* 3997 * We must intercept SYSENTER_EIP and SYSENTER_ESP 3998 * accesses because the processor only stores 32 bits. 3999 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 4000 */ 4001 svm_set_intercept(svm, INTERCEPT_VMLOAD); 4002 svm_set_intercept(svm, INTERCEPT_VMSAVE); 4003 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4004 4005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 4006 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 4007 } else { 4008 /* 4009 * If hardware supports Virtual VMLOAD VMSAVE then enable it 4010 * in VMCB and clear intercepts to avoid #VMEXIT. 4011 */ 4012 if (vls) { 4013 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 4014 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 4015 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4016 } 4017 /* No need to intercept these MSRs */ 4018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 4019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 4020 } 4021 } 4022 4023 static bool svm_has_wbinvd_exit(void) 4024 { 4025 return true; 4026 } 4027 4028 #define PRE_EX(exit) { .exit_code = (exit), \ 4029 .stage = X86_ICPT_PRE_EXCEPT, } 4030 #define POST_EX(exit) { .exit_code = (exit), \ 4031 .stage = X86_ICPT_POST_EXCEPT, } 4032 #define POST_MEM(exit) { .exit_code = (exit), \ 4033 .stage = X86_ICPT_POST_MEMACCESS, } 4034 4035 static const struct __x86_intercept { 4036 u32 exit_code; 4037 enum x86_intercept_stage stage; 4038 } x86_intercept_map[] = { 4039 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4040 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4041 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4042 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4043 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4044 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4045 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4046 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4047 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4048 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4049 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4050 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4051 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4052 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4053 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4054 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4055 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4056 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4057 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4058 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4059 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4060 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4061 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4062 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4063 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4064 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4065 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4066 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4067 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4068 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4069 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4070 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4071 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4072 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4073 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4074 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4075 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4076 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4077 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4078 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4079 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4080 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4081 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4082 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4083 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4084 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4085 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4086 }; 4087 4088 #undef PRE_EX 4089 #undef POST_EX 4090 #undef POST_MEM 4091 4092 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4093 struct x86_instruction_info *info, 4094 enum x86_intercept_stage stage, 4095 struct x86_exception *exception) 4096 { 4097 struct vcpu_svm *svm = to_svm(vcpu); 4098 int vmexit, ret = X86EMUL_CONTINUE; 4099 struct __x86_intercept icpt_info; 4100 struct vmcb *vmcb = svm->vmcb; 4101 4102 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4103 goto out; 4104 4105 icpt_info = x86_intercept_map[info->intercept]; 4106 4107 if (stage != icpt_info.stage) 4108 goto out; 4109 4110 switch (icpt_info.exit_code) { 4111 case SVM_EXIT_READ_CR0: 4112 if (info->intercept == x86_intercept_cr_read) 4113 icpt_info.exit_code += info->modrm_reg; 4114 break; 4115 case SVM_EXIT_WRITE_CR0: { 4116 unsigned long cr0, val; 4117 4118 if (info->intercept == x86_intercept_cr_write) 4119 icpt_info.exit_code += info->modrm_reg; 4120 4121 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4122 info->intercept == x86_intercept_clts) 4123 break; 4124 4125 if (!(vmcb_is_intercept(&svm->nested.ctl, 4126 INTERCEPT_SELECTIVE_CR0))) 4127 break; 4128 4129 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4130 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4131 4132 if (info->intercept == x86_intercept_lmsw) { 4133 cr0 &= 0xfUL; 4134 val &= 0xfUL; 4135 /* lmsw can't clear PE - catch this here */ 4136 if (cr0 & X86_CR0_PE) 4137 val |= X86_CR0_PE; 4138 } 4139 4140 if (cr0 ^ val) 4141 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4142 4143 break; 4144 } 4145 case SVM_EXIT_READ_DR0: 4146 case SVM_EXIT_WRITE_DR0: 4147 icpt_info.exit_code += info->modrm_reg; 4148 break; 4149 case SVM_EXIT_MSR: 4150 if (info->intercept == x86_intercept_wrmsr) 4151 vmcb->control.exit_info_1 = 1; 4152 else 4153 vmcb->control.exit_info_1 = 0; 4154 break; 4155 case SVM_EXIT_PAUSE: 4156 /* 4157 * We get this for NOP only, but pause 4158 * is rep not, check this here 4159 */ 4160 if (info->rep_prefix != REPE_PREFIX) 4161 goto out; 4162 break; 4163 case SVM_EXIT_IOIO: { 4164 u64 exit_info; 4165 u32 bytes; 4166 4167 if (info->intercept == x86_intercept_in || 4168 info->intercept == x86_intercept_ins) { 4169 exit_info = ((info->src_val & 0xffff) << 16) | 4170 SVM_IOIO_TYPE_MASK; 4171 bytes = info->dst_bytes; 4172 } else { 4173 exit_info = (info->dst_val & 0xffff) << 16; 4174 bytes = info->src_bytes; 4175 } 4176 4177 if (info->intercept == x86_intercept_outs || 4178 info->intercept == x86_intercept_ins) 4179 exit_info |= SVM_IOIO_STR_MASK; 4180 4181 if (info->rep_prefix) 4182 exit_info |= SVM_IOIO_REP_MASK; 4183 4184 bytes = min(bytes, 4u); 4185 4186 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4187 4188 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4189 4190 vmcb->control.exit_info_1 = exit_info; 4191 vmcb->control.exit_info_2 = info->next_rip; 4192 4193 break; 4194 } 4195 default: 4196 break; 4197 } 4198 4199 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4200 if (static_cpu_has(X86_FEATURE_NRIPS)) 4201 vmcb->control.next_rip = info->next_rip; 4202 vmcb->control.exit_code = icpt_info.exit_code; 4203 vmexit = nested_svm_exit_handled(svm); 4204 4205 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4206 : X86EMUL_CONTINUE; 4207 4208 out: 4209 return ret; 4210 } 4211 4212 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4213 { 4214 } 4215 4216 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4217 { 4218 if (!kvm_pause_in_guest(vcpu->kvm)) 4219 shrink_ple_window(vcpu); 4220 } 4221 4222 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4223 { 4224 /* [63:9] are reserved. */ 4225 vcpu->arch.mcg_cap &= 0x1ff; 4226 } 4227 4228 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4229 { 4230 struct vcpu_svm *svm = to_svm(vcpu); 4231 4232 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4233 if (!gif_set(svm)) 4234 return true; 4235 4236 return is_smm(vcpu); 4237 } 4238 4239 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4240 { 4241 struct vcpu_svm *svm = to_svm(vcpu); 4242 if (svm->nested.nested_run_pending) 4243 return -EBUSY; 4244 4245 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4246 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4247 return -EBUSY; 4248 4249 return !svm_smi_blocked(vcpu); 4250 } 4251 4252 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4253 { 4254 struct vcpu_svm *svm = to_svm(vcpu); 4255 int ret; 4256 4257 if (is_guest_mode(vcpu)) { 4258 /* FED8h - SVM Guest */ 4259 put_smstate(u64, smstate, 0x7ed8, 1); 4260 /* FEE0h - SVM Guest VMCB Physical Address */ 4261 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4262 4263 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4264 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4265 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4266 4267 ret = nested_svm_vmexit(svm); 4268 if (ret) 4269 return ret; 4270 } 4271 return 0; 4272 } 4273 4274 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4275 { 4276 struct vcpu_svm *svm = to_svm(vcpu); 4277 struct kvm_host_map map; 4278 int ret = 0; 4279 4280 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4281 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4282 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4283 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4284 4285 if (guest) { 4286 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4287 return 1; 4288 4289 if (!(saved_efer & EFER_SVME)) 4290 return 1; 4291 4292 if (kvm_vcpu_map(vcpu, 4293 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4294 return 1; 4295 4296 if (svm_allocate_nested(svm)) 4297 return 1; 4298 4299 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva); 4300 kvm_vcpu_unmap(vcpu, &map, true); 4301 } 4302 } 4303 4304 return ret; 4305 } 4306 4307 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4308 { 4309 struct vcpu_svm *svm = to_svm(vcpu); 4310 4311 if (!gif_set(svm)) { 4312 if (vgif_enabled(svm)) 4313 svm_set_intercept(svm, INTERCEPT_STGI); 4314 /* STGI will cause a vm exit */ 4315 } else { 4316 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4317 } 4318 } 4319 4320 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4321 { 4322 bool smep, smap, is_user; 4323 unsigned long cr4; 4324 4325 /* 4326 * When the guest is an SEV-ES guest, emulation is not possible. 4327 */ 4328 if (sev_es_guest(vcpu->kvm)) 4329 return false; 4330 4331 /* 4332 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4333 * 4334 * Errata: 4335 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4336 * possible that CPU microcode implementing DecodeAssist will fail 4337 * to read bytes of instruction which caused #NPF. In this case, 4338 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4339 * return 0 instead of the correct guest instruction bytes. 4340 * 4341 * This happens because CPU microcode reading instruction bytes 4342 * uses a special opcode which attempts to read data using CPL=0 4343 * privileges. The microcode reads CS:RIP and if it hits a SMAP 4344 * fault, it gives up and returns no instruction bytes. 4345 * 4346 * Detection: 4347 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4348 * returned 0 in GuestIntrBytes field of the VMCB. 4349 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4350 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4351 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4352 * a SMEP fault instead of #NPF). 4353 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4354 * As most guests enable SMAP if they have also enabled SMEP, use above 4355 * logic in order to attempt minimize false-positive of detecting errata 4356 * while still preserving all cases semantic correctness. 4357 * 4358 * Workaround: 4359 * To determine what instruction the guest was executing, the hypervisor 4360 * will have to decode the instruction at the instruction pointer. 4361 * 4362 * In non SEV guest, hypervisor will be able to read the guest 4363 * memory to decode the instruction pointer when insn_len is zero 4364 * so we return true to indicate that decoding is possible. 4365 * 4366 * But in the SEV guest, the guest memory is encrypted with the 4367 * guest specific key and hypervisor will not be able to decode the 4368 * instruction pointer so we will not able to workaround it. Lets 4369 * print the error and request to kill the guest. 4370 */ 4371 if (likely(!insn || insn_len)) 4372 return true; 4373 4374 /* 4375 * If RIP is invalid, go ahead with emulation which will cause an 4376 * internal error exit. 4377 */ 4378 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4379 return true; 4380 4381 cr4 = kvm_read_cr4(vcpu); 4382 smep = cr4 & X86_CR4_SMEP; 4383 smap = cr4 & X86_CR4_SMAP; 4384 is_user = svm_get_cpl(vcpu) == 3; 4385 if (smap && (!smep || is_user)) { 4386 if (!sev_guest(vcpu->kvm)) 4387 return true; 4388 4389 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4390 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4391 } 4392 4393 return false; 4394 } 4395 4396 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4397 { 4398 struct vcpu_svm *svm = to_svm(vcpu); 4399 4400 /* 4401 * TODO: Last condition latch INIT signals on vCPU when 4402 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4403 * To properly emulate the INIT intercept, 4404 * svm_check_nested_events() should call nested_svm_vmexit() 4405 * if an INIT signal is pending. 4406 */ 4407 return !gif_set(svm) || 4408 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4409 } 4410 4411 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4412 { 4413 if (!sev_es_guest(vcpu->kvm)) 4414 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4415 4416 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4417 } 4418 4419 static void svm_vm_destroy(struct kvm *kvm) 4420 { 4421 avic_vm_destroy(kvm); 4422 sev_vm_destroy(kvm); 4423 } 4424 4425 static int svm_vm_init(struct kvm *kvm) 4426 { 4427 if (!pause_filter_count || !pause_filter_thresh) 4428 kvm->arch.pause_in_guest = true; 4429 4430 if (avic) { 4431 int ret = avic_vm_init(kvm); 4432 if (ret) 4433 return ret; 4434 } 4435 4436 kvm_apicv_init(kvm, avic); 4437 return 0; 4438 } 4439 4440 static struct kvm_x86_ops svm_x86_ops __initdata = { 4441 .hardware_unsetup = svm_hardware_teardown, 4442 .hardware_enable = svm_hardware_enable, 4443 .hardware_disable = svm_hardware_disable, 4444 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4445 .has_emulated_msr = svm_has_emulated_msr, 4446 4447 .vcpu_create = svm_create_vcpu, 4448 .vcpu_free = svm_free_vcpu, 4449 .vcpu_reset = svm_vcpu_reset, 4450 4451 .vm_size = sizeof(struct kvm_svm), 4452 .vm_init = svm_vm_init, 4453 .vm_destroy = svm_vm_destroy, 4454 4455 .prepare_guest_switch = svm_prepare_guest_switch, 4456 .vcpu_load = svm_vcpu_load, 4457 .vcpu_put = svm_vcpu_put, 4458 .vcpu_blocking = svm_vcpu_blocking, 4459 .vcpu_unblocking = svm_vcpu_unblocking, 4460 4461 .update_exception_bitmap = svm_update_exception_bitmap, 4462 .get_msr_feature = svm_get_msr_feature, 4463 .get_msr = svm_get_msr, 4464 .set_msr = svm_set_msr, 4465 .get_segment_base = svm_get_segment_base, 4466 .get_segment = svm_get_segment, 4467 .set_segment = svm_set_segment, 4468 .get_cpl = svm_get_cpl, 4469 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4470 .set_cr0 = svm_set_cr0, 4471 .is_valid_cr4 = svm_is_valid_cr4, 4472 .set_cr4 = svm_set_cr4, 4473 .set_efer = svm_set_efer, 4474 .get_idt = svm_get_idt, 4475 .set_idt = svm_set_idt, 4476 .get_gdt = svm_get_gdt, 4477 .set_gdt = svm_set_gdt, 4478 .set_dr7 = svm_set_dr7, 4479 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4480 .cache_reg = svm_cache_reg, 4481 .get_rflags = svm_get_rflags, 4482 .set_rflags = svm_set_rflags, 4483 4484 .tlb_flush_all = svm_flush_tlb, 4485 .tlb_flush_current = svm_flush_tlb, 4486 .tlb_flush_gva = svm_flush_tlb_gva, 4487 .tlb_flush_guest = svm_flush_tlb, 4488 4489 .run = svm_vcpu_run, 4490 .handle_exit = handle_exit, 4491 .skip_emulated_instruction = skip_emulated_instruction, 4492 .update_emulated_instruction = NULL, 4493 .set_interrupt_shadow = svm_set_interrupt_shadow, 4494 .get_interrupt_shadow = svm_get_interrupt_shadow, 4495 .patch_hypercall = svm_patch_hypercall, 4496 .set_irq = svm_set_irq, 4497 .set_nmi = svm_inject_nmi, 4498 .queue_exception = svm_queue_exception, 4499 .cancel_injection = svm_cancel_injection, 4500 .interrupt_allowed = svm_interrupt_allowed, 4501 .nmi_allowed = svm_nmi_allowed, 4502 .get_nmi_mask = svm_get_nmi_mask, 4503 .set_nmi_mask = svm_set_nmi_mask, 4504 .enable_nmi_window = svm_enable_nmi_window, 4505 .enable_irq_window = svm_enable_irq_window, 4506 .update_cr8_intercept = svm_update_cr8_intercept, 4507 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4508 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4509 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4510 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4511 .load_eoi_exitmap = svm_load_eoi_exitmap, 4512 .hwapic_irr_update = svm_hwapic_irr_update, 4513 .hwapic_isr_update = svm_hwapic_isr_update, 4514 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4515 .apicv_post_state_restore = avic_post_state_restore, 4516 4517 .set_tss_addr = svm_set_tss_addr, 4518 .set_identity_map_addr = svm_set_identity_map_addr, 4519 .get_mt_mask = svm_get_mt_mask, 4520 4521 .get_exit_info = svm_get_exit_info, 4522 4523 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4524 4525 .has_wbinvd_exit = svm_has_wbinvd_exit, 4526 4527 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4528 4529 .load_mmu_pgd = svm_load_mmu_pgd, 4530 4531 .check_intercept = svm_check_intercept, 4532 .handle_exit_irqoff = svm_handle_exit_irqoff, 4533 4534 .request_immediate_exit = __kvm_request_immediate_exit, 4535 4536 .sched_in = svm_sched_in, 4537 4538 .pmu_ops = &amd_pmu_ops, 4539 .nested_ops = &svm_nested_ops, 4540 4541 .deliver_posted_interrupt = svm_deliver_avic_intr, 4542 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4543 .update_pi_irte = svm_update_pi_irte, 4544 .setup_mce = svm_setup_mce, 4545 4546 .smi_allowed = svm_smi_allowed, 4547 .pre_enter_smm = svm_pre_enter_smm, 4548 .pre_leave_smm = svm_pre_leave_smm, 4549 .enable_smi_window = svm_enable_smi_window, 4550 4551 .mem_enc_op = svm_mem_enc_op, 4552 .mem_enc_reg_region = svm_register_enc_region, 4553 .mem_enc_unreg_region = svm_unregister_enc_region, 4554 4555 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4556 4557 .can_emulate_instruction = svm_can_emulate_instruction, 4558 4559 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4560 4561 .msr_filter_changed = svm_msr_filter_changed, 4562 .complete_emulated_msr = svm_complete_emulated_msr, 4563 4564 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4565 }; 4566 4567 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4568 .cpu_has_kvm_support = has_svm, 4569 .disabled_by_bios = is_disabled, 4570 .hardware_setup = svm_hardware_setup, 4571 .check_processor_compatibility = svm_check_processor_compat, 4572 4573 .runtime_ops = &svm_x86_ops, 4574 }; 4575 4576 static int __init svm_init(void) 4577 { 4578 __unused_size_checks(); 4579 4580 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4581 __alignof__(struct vcpu_svm), THIS_MODULE); 4582 } 4583 4584 static void __exit svm_exit(void) 4585 { 4586 kvm_exit(); 4587 } 4588 4589 module_init(svm_init) 4590 module_exit(svm_exit) 4591