xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 0d346d2a6f54f06f36b224fd27cd6eafe8c83be9)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 #include "svm_ops.h"
45 
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50 
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54 	{}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58 
59 #define SEG_TYPE_LDT 2
60 #define SEG_TYPE_BUSY_TSS16 3
61 
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69 
70 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
71 
72 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
73 #define TSC_RATIO_MIN		0x0000000000000001ULL
74 #define TSC_RATIO_MAX		0x000000ffffffffffULL
75 
76 static bool erratum_383_found __read_mostly;
77 
78 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
79 
80 /*
81  * Set osvw_len to higher value when updated Revision Guides
82  * are published and we know what the new status bits are
83  */
84 static uint64_t osvw_len = 4, osvw_status;
85 
86 static DEFINE_PER_CPU(u64, current_tsc_ratio);
87 #define TSC_RATIO_DEFAULT	0x0100000000ULL
88 
89 static const struct svm_direct_access_msrs {
90 	u32 index;   /* Index of the MSR */
91 	bool always; /* True if intercept is initially cleared */
92 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
93 	{ .index = MSR_STAR,				.always = true  },
94 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
95 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
96 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_EFER,				.always = false },
112 	{ .index = MSR_IA32_CR_PAT,			.always = false },
113 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
114 	{ .index = MSR_INVALID,				.always = false },
115 };
116 
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * pause_filter_count: On processors that support Pause filtering(indicated
120  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
121  *	count value. On VMRUN this value is loaded into an internal counter.
122  *	Each time a pause instruction is executed, this counter is decremented
123  *	until it reaches zero at which time a #VMEXIT is generated if pause
124  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
125  *	Intercept Filtering for more details.
126  *	This also indicate if ple logic enabled.
127  *
128  * pause_filter_thresh: In addition, some processor families support advanced
129  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
130  *	the amount of time a guest is allowed to execute in a pause loop.
131  *	In this mode, a 16-bit pause filter threshold field is added in the
132  *	VMCB. The threshold value is a cycle count that is used to reset the
133  *	pause counter. As with simple pause filtering, VMRUN loads the pause
134  *	count value from VMCB into an internal counter. Then, on each pause
135  *	instruction the hardware checks the elapsed number of cycles since
136  *	the most recent pause instruction against the pause filter threshold.
137  *	If the elapsed cycle count is greater than the pause filter threshold,
138  *	then the internal pause count is reloaded from the VMCB and execution
139  *	continues. If the elapsed cycle count is less than the pause filter
140  *	threshold, then the internal pause count is decremented. If the count
141  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
142  *	triggered. If advanced pause filtering is supported and pause filter
143  *	threshold field is set to zero, the filter will operate in the simpler,
144  *	count only mode.
145  */
146 
147 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
148 module_param(pause_filter_thresh, ushort, 0444);
149 
150 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
151 module_param(pause_filter_count, ushort, 0444);
152 
153 /* Default doubles per-vcpu window every exit. */
154 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
155 module_param(pause_filter_count_grow, ushort, 0444);
156 
157 /* Default resets per-vcpu window every exit to pause_filter_count. */
158 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
159 module_param(pause_filter_count_shrink, ushort, 0444);
160 
161 /* Default is to compute the maximum so we can never overflow. */
162 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
163 module_param(pause_filter_count_max, ushort, 0444);
164 
165 /*
166  * Use nested page tables by default.  Note, NPT may get forced off by
167  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
168  */
169 bool npt_enabled = true;
170 module_param_named(npt, npt_enabled, bool, 0444);
171 
172 /* allow nested virtualization in KVM/SVM */
173 static int nested = true;
174 module_param(nested, int, S_IRUGO);
175 
176 /* enable/disable Next RIP Save */
177 static int nrips = true;
178 module_param(nrips, int, 0444);
179 
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls = true;
182 module_param(vls, int, 0444);
183 
184 /* enable/disable Virtual GIF */
185 static int vgif = true;
186 module_param(vgif, int, 0444);
187 
188 bool __read_mostly dump_invalid_vmcb;
189 module_param(dump_invalid_vmcb, bool, 0644);
190 
191 static bool svm_gp_erratum_intercept = true;
192 
193 static u8 rsm_ins_bytes[] = "\x0f\xaa";
194 
195 static unsigned long iopm_base;
196 
197 struct kvm_ldttss_desc {
198 	u16 limit0;
199 	u16 base0;
200 	unsigned base1:8, type:5, dpl:2, p:1;
201 	unsigned limit1:4, zero0:3, g:1, base2:8;
202 	u32 base3;
203 	u32 zero1;
204 } __attribute__((packed));
205 
206 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
207 
208 /*
209  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
210  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
211  *
212  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
213  * defer the restoration of TSC_AUX until the CPU returns to userspace.
214  */
215 static int tsc_aux_uret_slot __read_mostly = -1;
216 
217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
218 
219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
220 #define MSRS_RANGE_SIZE 2048
221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
222 
223 u32 svm_msrpm_offset(u32 msr)
224 {
225 	u32 offset;
226 	int i;
227 
228 	for (i = 0; i < NUM_MSR_MAPS; i++) {
229 		if (msr < msrpm_ranges[i] ||
230 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
231 			continue;
232 
233 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
234 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
235 
236 		/* Now we have the u8 offset - but need the u32 offset */
237 		return offset / 4;
238 	}
239 
240 	/* MSR not in any range */
241 	return MSR_INVALID;
242 }
243 
244 #define MAX_INST_SIZE 15
245 
246 static int get_max_npt_level(void)
247 {
248 #ifdef CONFIG_X86_64
249 	return PT64_ROOT_4LEVEL;
250 #else
251 	return PT32E_ROOT_LEVEL;
252 #endif
253 }
254 
255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
256 {
257 	struct vcpu_svm *svm = to_svm(vcpu);
258 	u64 old_efer = vcpu->arch.efer;
259 	vcpu->arch.efer = efer;
260 
261 	if (!npt_enabled) {
262 		/* Shadow paging assumes NX to be available.  */
263 		efer |= EFER_NX;
264 
265 		if (!(efer & EFER_LMA))
266 			efer &= ~EFER_LME;
267 	}
268 
269 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
270 		if (!(efer & EFER_SVME)) {
271 			svm_leave_nested(svm);
272 			svm_set_gif(svm, true);
273 			/* #GP intercept is still needed for vmware backdoor */
274 			if (!enable_vmware_backdoor)
275 				clr_exception_intercept(svm, GP_VECTOR);
276 
277 			/*
278 			 * Free the nested guest state, unless we are in SMM.
279 			 * In this case we will return to the nested guest
280 			 * as soon as we leave SMM.
281 			 */
282 			if (!is_smm(vcpu))
283 				svm_free_nested(svm);
284 
285 		} else {
286 			int ret = svm_allocate_nested(svm);
287 
288 			if (ret) {
289 				vcpu->arch.efer = old_efer;
290 				return ret;
291 			}
292 
293 			if (svm_gp_erratum_intercept)
294 				set_exception_intercept(svm, GP_VECTOR);
295 		}
296 	}
297 
298 	svm->vmcb->save.efer = efer | EFER_SVME;
299 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
300 	return 0;
301 }
302 
303 static int is_external_interrupt(u32 info)
304 {
305 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
306 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
307 }
308 
309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
310 {
311 	struct vcpu_svm *svm = to_svm(vcpu);
312 	u32 ret = 0;
313 
314 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
315 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
316 	return ret;
317 }
318 
319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
320 {
321 	struct vcpu_svm *svm = to_svm(vcpu);
322 
323 	if (mask == 0)
324 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
325 	else
326 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
327 
328 }
329 
330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
331 {
332 	struct vcpu_svm *svm = to_svm(vcpu);
333 
334 	/*
335 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
336 	 * the type of exit and the #VC handler in the guest.
337 	 */
338 	if (sev_es_guest(vcpu->kvm))
339 		goto done;
340 
341 	if (nrips && svm->vmcb->control.next_rip != 0) {
342 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
343 		svm->next_rip = svm->vmcb->control.next_rip;
344 	}
345 
346 	if (!svm->next_rip) {
347 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
348 			return 0;
349 	} else {
350 		kvm_rip_write(vcpu, svm->next_rip);
351 	}
352 
353 done:
354 	svm_set_interrupt_shadow(vcpu, 0);
355 
356 	return 1;
357 }
358 
359 static void svm_queue_exception(struct kvm_vcpu *vcpu)
360 {
361 	struct vcpu_svm *svm = to_svm(vcpu);
362 	unsigned nr = vcpu->arch.exception.nr;
363 	bool has_error_code = vcpu->arch.exception.has_error_code;
364 	u32 error_code = vcpu->arch.exception.error_code;
365 
366 	kvm_deliver_exception_payload(vcpu);
367 
368 	if (nr == BP_VECTOR && !nrips) {
369 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
370 
371 		/*
372 		 * For guest debugging where we have to reinject #BP if some
373 		 * INT3 is guest-owned:
374 		 * Emulate nRIP by moving RIP forward. Will fail if injection
375 		 * raises a fault that is not intercepted. Still better than
376 		 * failing in all cases.
377 		 */
378 		(void)skip_emulated_instruction(vcpu);
379 		rip = kvm_rip_read(vcpu);
380 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
381 		svm->int3_injected = rip - old_rip;
382 	}
383 
384 	svm->vmcb->control.event_inj = nr
385 		| SVM_EVTINJ_VALID
386 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
387 		| SVM_EVTINJ_TYPE_EXEPT;
388 	svm->vmcb->control.event_inj_err = error_code;
389 }
390 
391 static void svm_init_erratum_383(void)
392 {
393 	u32 low, high;
394 	int err;
395 	u64 val;
396 
397 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
398 		return;
399 
400 	/* Use _safe variants to not break nested virtualization */
401 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
402 	if (err)
403 		return;
404 
405 	val |= (1ULL << 47);
406 
407 	low  = lower_32_bits(val);
408 	high = upper_32_bits(val);
409 
410 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
411 
412 	erratum_383_found = true;
413 }
414 
415 static void svm_init_osvw(struct kvm_vcpu *vcpu)
416 {
417 	/*
418 	 * Guests should see errata 400 and 415 as fixed (assuming that
419 	 * HLT and IO instructions are intercepted).
420 	 */
421 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
422 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
423 
424 	/*
425 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
426 	 * all osvw.status bits inside that length, including bit 0 (which is
427 	 * reserved for erratum 298), are valid. However, if host processor's
428 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
429 	 * be conservative here and therefore we tell the guest that erratum 298
430 	 * is present (because we really don't know).
431 	 */
432 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
433 		vcpu->arch.osvw.status |= 1;
434 }
435 
436 static int has_svm(void)
437 {
438 	const char *msg;
439 
440 	if (!cpu_has_svm(&msg)) {
441 		printk(KERN_INFO "has_svm: %s\n", msg);
442 		return 0;
443 	}
444 
445 	if (sev_active()) {
446 		pr_info("KVM is unsupported when running as an SEV guest\n");
447 		return 0;
448 	}
449 
450 	if (pgtable_l5_enabled()) {
451 		pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n");
452 		return 0;
453 	}
454 
455 	return 1;
456 }
457 
458 static void svm_hardware_disable(void)
459 {
460 	/* Make sure we clean up behind us */
461 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
462 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
463 
464 	cpu_svm_disable();
465 
466 	amd_pmu_disable_virt();
467 }
468 
469 static int svm_hardware_enable(void)
470 {
471 
472 	struct svm_cpu_data *sd;
473 	uint64_t efer;
474 	struct desc_struct *gdt;
475 	int me = raw_smp_processor_id();
476 
477 	rdmsrl(MSR_EFER, efer);
478 	if (efer & EFER_SVME)
479 		return -EBUSY;
480 
481 	if (!has_svm()) {
482 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
483 		return -EINVAL;
484 	}
485 	sd = per_cpu(svm_data, me);
486 	if (!sd) {
487 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
488 		return -EINVAL;
489 	}
490 
491 	sd->asid_generation = 1;
492 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
493 	sd->next_asid = sd->max_asid + 1;
494 	sd->min_asid = max_sev_asid + 1;
495 
496 	gdt = get_current_gdt_rw();
497 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
498 
499 	wrmsrl(MSR_EFER, efer | EFER_SVME);
500 
501 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
502 
503 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
504 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
505 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
506 	}
507 
508 
509 	/*
510 	 * Get OSVW bits.
511 	 *
512 	 * Note that it is possible to have a system with mixed processor
513 	 * revisions and therefore different OSVW bits. If bits are not the same
514 	 * on different processors then choose the worst case (i.e. if erratum
515 	 * is present on one processor and not on another then assume that the
516 	 * erratum is present everywhere).
517 	 */
518 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
519 		uint64_t len, status = 0;
520 		int err;
521 
522 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
523 		if (!err)
524 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
525 						      &err);
526 
527 		if (err)
528 			osvw_status = osvw_len = 0;
529 		else {
530 			if (len < osvw_len)
531 				osvw_len = len;
532 			osvw_status |= status;
533 			osvw_status &= (1ULL << osvw_len) - 1;
534 		}
535 	} else
536 		osvw_status = osvw_len = 0;
537 
538 	svm_init_erratum_383();
539 
540 	amd_pmu_enable_virt();
541 
542 	return 0;
543 }
544 
545 static void svm_cpu_uninit(int cpu)
546 {
547 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
548 
549 	if (!sd)
550 		return;
551 
552 	per_cpu(svm_data, cpu) = NULL;
553 	kfree(sd->sev_vmcbs);
554 	__free_page(sd->save_area);
555 	kfree(sd);
556 }
557 
558 static int svm_cpu_init(int cpu)
559 {
560 	struct svm_cpu_data *sd;
561 	int ret = -ENOMEM;
562 
563 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
564 	if (!sd)
565 		return ret;
566 	sd->cpu = cpu;
567 	sd->save_area = alloc_page(GFP_KERNEL);
568 	if (!sd->save_area)
569 		goto free_cpu_data;
570 
571 	clear_page(page_address(sd->save_area));
572 
573 	ret = sev_cpu_init(sd);
574 	if (ret)
575 		goto free_save_area;
576 
577 	per_cpu(svm_data, cpu) = sd;
578 
579 	return 0;
580 
581 free_save_area:
582 	__free_page(sd->save_area);
583 free_cpu_data:
584 	kfree(sd);
585 	return ret;
586 
587 }
588 
589 static int direct_access_msr_slot(u32 msr)
590 {
591 	u32 i;
592 
593 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
594 		if (direct_access_msrs[i].index == msr)
595 			return i;
596 
597 	return -ENOENT;
598 }
599 
600 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
601 				     int write)
602 {
603 	struct vcpu_svm *svm = to_svm(vcpu);
604 	int slot = direct_access_msr_slot(msr);
605 
606 	if (slot == -ENOENT)
607 		return;
608 
609 	/* Set the shadow bitmaps to the desired intercept states */
610 	if (read)
611 		set_bit(slot, svm->shadow_msr_intercept.read);
612 	else
613 		clear_bit(slot, svm->shadow_msr_intercept.read);
614 
615 	if (write)
616 		set_bit(slot, svm->shadow_msr_intercept.write);
617 	else
618 		clear_bit(slot, svm->shadow_msr_intercept.write);
619 }
620 
621 static bool valid_msr_intercept(u32 index)
622 {
623 	return direct_access_msr_slot(index) != -ENOENT;
624 }
625 
626 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
627 {
628 	u8 bit_write;
629 	unsigned long tmp;
630 	u32 offset;
631 	u32 *msrpm;
632 
633 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
634 				      to_svm(vcpu)->msrpm;
635 
636 	offset    = svm_msrpm_offset(msr);
637 	bit_write = 2 * (msr & 0x0f) + 1;
638 	tmp       = msrpm[offset];
639 
640 	BUG_ON(offset == MSR_INVALID);
641 
642 	return !!test_bit(bit_write,  &tmp);
643 }
644 
645 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
646 					u32 msr, int read, int write)
647 {
648 	u8 bit_read, bit_write;
649 	unsigned long tmp;
650 	u32 offset;
651 
652 	/*
653 	 * If this warning triggers extend the direct_access_msrs list at the
654 	 * beginning of the file
655 	 */
656 	WARN_ON(!valid_msr_intercept(msr));
657 
658 	/* Enforce non allowed MSRs to trap */
659 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
660 		read = 0;
661 
662 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
663 		write = 0;
664 
665 	offset    = svm_msrpm_offset(msr);
666 	bit_read  = 2 * (msr & 0x0f);
667 	bit_write = 2 * (msr & 0x0f) + 1;
668 	tmp       = msrpm[offset];
669 
670 	BUG_ON(offset == MSR_INVALID);
671 
672 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
673 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
674 
675 	msrpm[offset] = tmp;
676 }
677 
678 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
679 			  int read, int write)
680 {
681 	set_shadow_msr_intercept(vcpu, msr, read, write);
682 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
683 }
684 
685 u32 *svm_vcpu_alloc_msrpm(void)
686 {
687 	unsigned int order = get_order(MSRPM_SIZE);
688 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
689 	u32 *msrpm;
690 
691 	if (!pages)
692 		return NULL;
693 
694 	msrpm = page_address(pages);
695 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
696 
697 	return msrpm;
698 }
699 
700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
701 {
702 	int i;
703 
704 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
705 		if (!direct_access_msrs[i].always)
706 			continue;
707 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
708 	}
709 }
710 
711 
712 void svm_vcpu_free_msrpm(u32 *msrpm)
713 {
714 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
715 }
716 
717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
718 {
719 	struct vcpu_svm *svm = to_svm(vcpu);
720 	u32 i;
721 
722 	/*
723 	 * Set intercept permissions for all direct access MSRs again. They
724 	 * will automatically get filtered through the MSR filter, so we are
725 	 * back in sync after this.
726 	 */
727 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
728 		u32 msr = direct_access_msrs[i].index;
729 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
730 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
731 
732 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
733 	}
734 }
735 
736 static void add_msr_offset(u32 offset)
737 {
738 	int i;
739 
740 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
741 
742 		/* Offset already in list? */
743 		if (msrpm_offsets[i] == offset)
744 			return;
745 
746 		/* Slot used by another offset? */
747 		if (msrpm_offsets[i] != MSR_INVALID)
748 			continue;
749 
750 		/* Add offset to list */
751 		msrpm_offsets[i] = offset;
752 
753 		return;
754 	}
755 
756 	/*
757 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
758 	 * increase MSRPM_OFFSETS in this case.
759 	 */
760 	BUG();
761 }
762 
763 static void init_msrpm_offsets(void)
764 {
765 	int i;
766 
767 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
768 
769 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
770 		u32 offset;
771 
772 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
773 		BUG_ON(offset == MSR_INVALID);
774 
775 		add_msr_offset(offset);
776 	}
777 }
778 
779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
780 {
781 	struct vcpu_svm *svm = to_svm(vcpu);
782 
783 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
784 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
785 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
786 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
787 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
788 }
789 
790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
791 {
792 	struct vcpu_svm *svm = to_svm(vcpu);
793 
794 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
795 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
796 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
797 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
798 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
799 }
800 
801 void disable_nmi_singlestep(struct vcpu_svm *svm)
802 {
803 	svm->nmi_singlestep = false;
804 
805 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
806 		/* Clear our flags if they were not set by the guest */
807 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
808 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
809 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
810 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
811 	}
812 }
813 
814 static void grow_ple_window(struct kvm_vcpu *vcpu)
815 {
816 	struct vcpu_svm *svm = to_svm(vcpu);
817 	struct vmcb_control_area *control = &svm->vmcb->control;
818 	int old = control->pause_filter_count;
819 
820 	control->pause_filter_count = __grow_ple_window(old,
821 							pause_filter_count,
822 							pause_filter_count_grow,
823 							pause_filter_count_max);
824 
825 	if (control->pause_filter_count != old) {
826 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
827 		trace_kvm_ple_window_update(vcpu->vcpu_id,
828 					    control->pause_filter_count, old);
829 	}
830 }
831 
832 static void shrink_ple_window(struct kvm_vcpu *vcpu)
833 {
834 	struct vcpu_svm *svm = to_svm(vcpu);
835 	struct vmcb_control_area *control = &svm->vmcb->control;
836 	int old = control->pause_filter_count;
837 
838 	control->pause_filter_count =
839 				__shrink_ple_window(old,
840 						    pause_filter_count,
841 						    pause_filter_count_shrink,
842 						    pause_filter_count);
843 	if (control->pause_filter_count != old) {
844 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
845 		trace_kvm_ple_window_update(vcpu->vcpu_id,
846 					    control->pause_filter_count, old);
847 	}
848 }
849 
850 /*
851  * The default MMIO mask is a single bit (excluding the present bit),
852  * which could conflict with the memory encryption bit. Check for
853  * memory encryption support and override the default MMIO mask if
854  * memory encryption is enabled.
855  */
856 static __init void svm_adjust_mmio_mask(void)
857 {
858 	unsigned int enc_bit, mask_bit;
859 	u64 msr, mask;
860 
861 	/* If there is no memory encryption support, use existing mask */
862 	if (cpuid_eax(0x80000000) < 0x8000001f)
863 		return;
864 
865 	/* If memory encryption is not enabled, use existing mask */
866 	rdmsrl(MSR_AMD64_SYSCFG, msr);
867 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
868 		return;
869 
870 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
871 	mask_bit = boot_cpu_data.x86_phys_bits;
872 
873 	/* Increment the mask bit if it is the same as the encryption bit */
874 	if (enc_bit == mask_bit)
875 		mask_bit++;
876 
877 	/*
878 	 * If the mask bit location is below 52, then some bits above the
879 	 * physical addressing limit will always be reserved, so use the
880 	 * rsvd_bits() function to generate the mask. This mask, along with
881 	 * the present bit, will be used to generate a page fault with
882 	 * PFER.RSV = 1.
883 	 *
884 	 * If the mask bit location is 52 (or above), then clear the mask.
885 	 */
886 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
887 
888 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
889 }
890 
891 static void svm_hardware_teardown(void)
892 {
893 	int cpu;
894 
895 	sev_hardware_teardown();
896 
897 	for_each_possible_cpu(cpu)
898 		svm_cpu_uninit(cpu);
899 
900 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
901 	get_order(IOPM_SIZE));
902 	iopm_base = 0;
903 }
904 
905 static __init void svm_set_cpu_caps(void)
906 {
907 	kvm_set_cpu_caps();
908 
909 	supported_xss = 0;
910 
911 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
912 	if (nested) {
913 		kvm_cpu_cap_set(X86_FEATURE_SVM);
914 
915 		if (nrips)
916 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
917 
918 		if (npt_enabled)
919 			kvm_cpu_cap_set(X86_FEATURE_NPT);
920 
921 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
922 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
923 	}
924 
925 	/* CPUID 0x80000008 */
926 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
927 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
928 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
929 
930 	/* CPUID 0x8000001F (SME/SEV features) */
931 	sev_set_cpu_caps();
932 }
933 
934 static __init int svm_hardware_setup(void)
935 {
936 	int cpu;
937 	struct page *iopm_pages;
938 	void *iopm_va;
939 	int r;
940 	unsigned int order = get_order(IOPM_SIZE);
941 
942 	iopm_pages = alloc_pages(GFP_KERNEL, order);
943 
944 	if (!iopm_pages)
945 		return -ENOMEM;
946 
947 	iopm_va = page_address(iopm_pages);
948 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
949 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
950 
951 	init_msrpm_offsets();
952 
953 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
954 
955 	if (boot_cpu_has(X86_FEATURE_NX))
956 		kvm_enable_efer_bits(EFER_NX);
957 
958 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
959 		kvm_enable_efer_bits(EFER_FFXSR);
960 
961 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
962 		kvm_has_tsc_control = true;
963 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
964 		kvm_tsc_scaling_ratio_frac_bits = 32;
965 	}
966 
967 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
968 
969 	/* Check for pause filtering support */
970 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
971 		pause_filter_count = 0;
972 		pause_filter_thresh = 0;
973 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
974 		pause_filter_thresh = 0;
975 	}
976 
977 	if (nested) {
978 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
979 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
980 	}
981 
982 	/*
983 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
984 	 * NPT isn't supported if the host is using 2-level paging since host
985 	 * CR4 is unchanged on VMRUN.
986 	 */
987 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
988 		npt_enabled = false;
989 
990 	if (!boot_cpu_has(X86_FEATURE_NPT))
991 		npt_enabled = false;
992 
993 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
994 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
995 
996 	/* Note, SEV setup consumes npt_enabled. */
997 	sev_hardware_setup();
998 
999 	svm_adjust_mmio_mask();
1000 
1001 	for_each_possible_cpu(cpu) {
1002 		r = svm_cpu_init(cpu);
1003 		if (r)
1004 			goto err;
1005 	}
1006 
1007 	if (nrips) {
1008 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1009 			nrips = false;
1010 	}
1011 
1012 	if (avic) {
1013 		if (!npt_enabled || !boot_cpu_has(X86_FEATURE_AVIC)) {
1014 			avic = false;
1015 		} else {
1016 			pr_info("AVIC enabled\n");
1017 
1018 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1019 		}
1020 	}
1021 
1022 	if (vls) {
1023 		if (!npt_enabled ||
1024 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1025 		    !IS_ENABLED(CONFIG_X86_64)) {
1026 			vls = false;
1027 		} else {
1028 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1029 		}
1030 	}
1031 
1032 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1033 		svm_gp_erratum_intercept = false;
1034 
1035 	if (vgif) {
1036 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1037 			vgif = false;
1038 		else
1039 			pr_info("Virtual GIF supported\n");
1040 	}
1041 
1042 	svm_set_cpu_caps();
1043 
1044 	/*
1045 	 * It seems that on AMD processors PTE's accessed bit is
1046 	 * being set by the CPU hardware before the NPF vmexit.
1047 	 * This is not expected behaviour and our tests fail because
1048 	 * of it.
1049 	 * A workaround here is to disable support for
1050 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1051 	 * In this case userspace can know if there is support using
1052 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1053 	 * it
1054 	 * If future AMD CPU models change the behaviour described above,
1055 	 * this variable can be changed accordingly
1056 	 */
1057 	allow_smaller_maxphyaddr = !npt_enabled;
1058 
1059 	return 0;
1060 
1061 err:
1062 	svm_hardware_teardown();
1063 	return r;
1064 }
1065 
1066 static void init_seg(struct vmcb_seg *seg)
1067 {
1068 	seg->selector = 0;
1069 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1070 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1071 	seg->limit = 0xffff;
1072 	seg->base = 0;
1073 }
1074 
1075 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1076 {
1077 	seg->selector = 0;
1078 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1079 	seg->limit = 0xffff;
1080 	seg->base = 0;
1081 }
1082 
1083 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1084 {
1085 	struct vcpu_svm *svm = to_svm(vcpu);
1086 	u64 g_tsc_offset = 0;
1087 
1088 	if (is_guest_mode(vcpu)) {
1089 		/* Write L1's TSC offset.  */
1090 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1091 			       svm->vmcb01.ptr->control.tsc_offset;
1092 		svm->vmcb01.ptr->control.tsc_offset = offset;
1093 	}
1094 
1095 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1096 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1097 				   offset);
1098 
1099 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1100 
1101 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1102 	return svm->vmcb->control.tsc_offset;
1103 }
1104 
1105 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1106 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1107 					      struct vcpu_svm *svm)
1108 {
1109 	/*
1110 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1111 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1112 	 */
1113 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1114 		if (!npt_enabled ||
1115 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1116 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1117 		else
1118 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1119 	}
1120 
1121 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1122 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1123 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1124 		else
1125 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1126 	}
1127 }
1128 
1129 static void init_vmcb(struct kvm_vcpu *vcpu)
1130 {
1131 	struct vcpu_svm *svm = to_svm(vcpu);
1132 	struct vmcb_control_area *control = &svm->vmcb->control;
1133 	struct vmcb_save_area *save = &svm->vmcb->save;
1134 
1135 	vcpu->arch.hflags = 0;
1136 
1137 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1138 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1139 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1140 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1141 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1142 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1143 	if (!kvm_vcpu_apicv_active(vcpu))
1144 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1145 
1146 	set_dr_intercepts(svm);
1147 
1148 	set_exception_intercept(svm, PF_VECTOR);
1149 	set_exception_intercept(svm, UD_VECTOR);
1150 	set_exception_intercept(svm, MC_VECTOR);
1151 	set_exception_intercept(svm, AC_VECTOR);
1152 	set_exception_intercept(svm, DB_VECTOR);
1153 	/*
1154 	 * Guest access to VMware backdoor ports could legitimately
1155 	 * trigger #GP because of TSS I/O permission bitmap.
1156 	 * We intercept those #GP and allow access to them anyway
1157 	 * as VMware does.
1158 	 */
1159 	if (enable_vmware_backdoor)
1160 		set_exception_intercept(svm, GP_VECTOR);
1161 
1162 	svm_set_intercept(svm, INTERCEPT_INTR);
1163 	svm_set_intercept(svm, INTERCEPT_NMI);
1164 	svm_set_intercept(svm, INTERCEPT_SMI);
1165 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1166 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1167 	svm_set_intercept(svm, INTERCEPT_CPUID);
1168 	svm_set_intercept(svm, INTERCEPT_INVD);
1169 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1170 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1171 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1172 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1173 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1174 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1175 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1176 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1177 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1178 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1179 	svm_set_intercept(svm, INTERCEPT_STGI);
1180 	svm_set_intercept(svm, INTERCEPT_CLGI);
1181 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1182 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1183 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1184 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1185 	svm_set_intercept(svm, INTERCEPT_RSM);
1186 
1187 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1188 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1189 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1190 	}
1191 
1192 	if (!kvm_hlt_in_guest(vcpu->kvm))
1193 		svm_set_intercept(svm, INTERCEPT_HLT);
1194 
1195 	control->iopm_base_pa = __sme_set(iopm_base);
1196 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1197 	control->int_ctl = V_INTR_MASKING_MASK;
1198 
1199 	init_seg(&save->es);
1200 	init_seg(&save->ss);
1201 	init_seg(&save->ds);
1202 	init_seg(&save->fs);
1203 	init_seg(&save->gs);
1204 
1205 	save->cs.selector = 0xf000;
1206 	save->cs.base = 0xffff0000;
1207 	/* Executable/Readable Code Segment */
1208 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1209 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1210 	save->cs.limit = 0xffff;
1211 
1212 	save->gdtr.limit = 0xffff;
1213 	save->idtr.limit = 0xffff;
1214 
1215 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1216 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1217 
1218 	svm_set_cr4(vcpu, 0);
1219 	svm_set_efer(vcpu, 0);
1220 	save->dr6 = 0xffff0ff0;
1221 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
1222 	save->rip = 0x0000fff0;
1223 	vcpu->arch.regs[VCPU_REGS_RIP] = save->rip;
1224 
1225 	/*
1226 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1227 	 * It also updates the guest-visible cr0 value.
1228 	 */
1229 	svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1230 	kvm_mmu_reset_context(vcpu);
1231 
1232 	save->cr4 = X86_CR4_PAE;
1233 	/* rdx = ?? */
1234 
1235 	if (npt_enabled) {
1236 		/* Setup VMCB for Nested Paging */
1237 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1238 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1239 		clr_exception_intercept(svm, PF_VECTOR);
1240 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1241 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1242 		save->g_pat = vcpu->arch.pat;
1243 		save->cr3 = 0;
1244 		save->cr4 = 0;
1245 	}
1246 	svm->current_vmcb->asid_generation = 0;
1247 	svm->asid = 0;
1248 
1249 	svm->nested.vmcb12_gpa = INVALID_GPA;
1250 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1251 	vcpu->arch.hflags = 0;
1252 
1253 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1254 		control->pause_filter_count = pause_filter_count;
1255 		if (pause_filter_thresh)
1256 			control->pause_filter_thresh = pause_filter_thresh;
1257 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1258 	} else {
1259 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1260 	}
1261 
1262 	svm_recalc_instruction_intercepts(vcpu, svm);
1263 
1264 	/*
1265 	 * If the host supports V_SPEC_CTRL then disable the interception
1266 	 * of MSR_IA32_SPEC_CTRL.
1267 	 */
1268 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1269 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1270 
1271 	if (kvm_vcpu_apicv_active(vcpu))
1272 		avic_init_vmcb(svm);
1273 
1274 	if (vgif) {
1275 		svm_clr_intercept(svm, INTERCEPT_STGI);
1276 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1277 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1278 	}
1279 
1280 	if (sev_guest(vcpu->kvm)) {
1281 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1282 		clr_exception_intercept(svm, UD_VECTOR);
1283 
1284 		if (sev_es_guest(vcpu->kvm)) {
1285 			/* Perform SEV-ES specific VMCB updates */
1286 			sev_es_init_vmcb(svm);
1287 		}
1288 	}
1289 
1290 	vmcb_mark_all_dirty(svm->vmcb);
1291 
1292 	enable_gif(svm);
1293 
1294 }
1295 
1296 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1297 {
1298 	struct vcpu_svm *svm = to_svm(vcpu);
1299 	u32 dummy;
1300 	u32 eax = 1;
1301 
1302 	svm->spec_ctrl = 0;
1303 	svm->virt_spec_ctrl = 0;
1304 
1305 	if (!init_event) {
1306 		vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1307 				       MSR_IA32_APICBASE_ENABLE;
1308 		if (kvm_vcpu_is_reset_bsp(vcpu))
1309 			vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
1310 	}
1311 	init_vmcb(vcpu);
1312 
1313 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1314 	kvm_rdx_write(vcpu, eax);
1315 
1316 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1317 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1318 }
1319 
1320 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1321 {
1322 	svm->current_vmcb = target_vmcb;
1323 	svm->vmcb = target_vmcb->ptr;
1324 }
1325 
1326 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1327 {
1328 	struct vcpu_svm *svm;
1329 	struct page *vmcb01_page;
1330 	struct page *vmsa_page = NULL;
1331 	int err;
1332 
1333 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1334 	svm = to_svm(vcpu);
1335 
1336 	err = -ENOMEM;
1337 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1338 	if (!vmcb01_page)
1339 		goto out;
1340 
1341 	if (sev_es_guest(vcpu->kvm)) {
1342 		/*
1343 		 * SEV-ES guests require a separate VMSA page used to contain
1344 		 * the encrypted register state of the guest.
1345 		 */
1346 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1347 		if (!vmsa_page)
1348 			goto error_free_vmcb_page;
1349 
1350 		/*
1351 		 * SEV-ES guests maintain an encrypted version of their FPU
1352 		 * state which is restored and saved on VMRUN and VMEXIT.
1353 		 * Free the fpu structure to prevent KVM from attempting to
1354 		 * access the FPU state.
1355 		 */
1356 		kvm_free_guest_fpu(vcpu);
1357 	}
1358 
1359 	err = avic_init_vcpu(svm);
1360 	if (err)
1361 		goto error_free_vmsa_page;
1362 
1363 	/* We initialize this flag to true to make sure that the is_running
1364 	 * bit would be set the first time the vcpu is loaded.
1365 	 */
1366 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1367 		svm->avic_is_running = true;
1368 
1369 	svm->msrpm = svm_vcpu_alloc_msrpm();
1370 	if (!svm->msrpm) {
1371 		err = -ENOMEM;
1372 		goto error_free_vmsa_page;
1373 	}
1374 
1375 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1376 
1377 	svm->vmcb01.ptr = page_address(vmcb01_page);
1378 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1379 
1380 	if (vmsa_page)
1381 		svm->vmsa = page_address(vmsa_page);
1382 
1383 	svm->guest_state_loaded = false;
1384 
1385 	svm_switch_vmcb(svm, &svm->vmcb01);
1386 	init_vmcb(vcpu);
1387 
1388 	svm_init_osvw(vcpu);
1389 	vcpu->arch.microcode_version = 0x01000065;
1390 
1391 	if (sev_es_guest(vcpu->kvm))
1392 		/* Perform SEV-ES specific VMCB creation updates */
1393 		sev_es_create_vcpu(svm);
1394 
1395 	return 0;
1396 
1397 error_free_vmsa_page:
1398 	if (vmsa_page)
1399 		__free_page(vmsa_page);
1400 error_free_vmcb_page:
1401 	__free_page(vmcb01_page);
1402 out:
1403 	return err;
1404 }
1405 
1406 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1407 {
1408 	int i;
1409 
1410 	for_each_online_cpu(i)
1411 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1412 }
1413 
1414 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1415 {
1416 	struct vcpu_svm *svm = to_svm(vcpu);
1417 
1418 	/*
1419 	 * The vmcb page can be recycled, causing a false negative in
1420 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1421 	 * vmcb page recorded as its current vmcb.
1422 	 */
1423 	svm_clear_current_vmcb(svm->vmcb);
1424 
1425 	svm_free_nested(svm);
1426 
1427 	sev_free_vcpu(vcpu);
1428 
1429 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1430 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1431 }
1432 
1433 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1434 {
1435 	struct vcpu_svm *svm = to_svm(vcpu);
1436 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1437 
1438 	if (sev_es_guest(vcpu->kvm))
1439 		sev_es_unmap_ghcb(svm);
1440 
1441 	if (svm->guest_state_loaded)
1442 		return;
1443 
1444 	/*
1445 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1446 	 * or subsequent vmload of host save area.
1447 	 */
1448 	if (sev_es_guest(vcpu->kvm)) {
1449 		sev_es_prepare_guest_switch(svm, vcpu->cpu);
1450 	} else {
1451 		vmsave(__sme_page_pa(sd->save_area));
1452 	}
1453 
1454 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1455 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1456 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1457 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1458 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1459 		}
1460 	}
1461 
1462 	if (likely(tsc_aux_uret_slot >= 0))
1463 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1464 
1465 	svm->guest_state_loaded = true;
1466 }
1467 
1468 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1469 {
1470 	to_svm(vcpu)->guest_state_loaded = false;
1471 }
1472 
1473 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1474 {
1475 	struct vcpu_svm *svm = to_svm(vcpu);
1476 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1477 
1478 	if (sd->current_vmcb != svm->vmcb) {
1479 		sd->current_vmcb = svm->vmcb;
1480 		indirect_branch_prediction_barrier();
1481 	}
1482 	avic_vcpu_load(vcpu, cpu);
1483 }
1484 
1485 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1486 {
1487 	avic_vcpu_put(vcpu);
1488 	svm_prepare_host_switch(vcpu);
1489 
1490 	++vcpu->stat.host_state_reload;
1491 }
1492 
1493 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1494 {
1495 	struct vcpu_svm *svm = to_svm(vcpu);
1496 	unsigned long rflags = svm->vmcb->save.rflags;
1497 
1498 	if (svm->nmi_singlestep) {
1499 		/* Hide our flags if they were not set by the guest */
1500 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1501 			rflags &= ~X86_EFLAGS_TF;
1502 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1503 			rflags &= ~X86_EFLAGS_RF;
1504 	}
1505 	return rflags;
1506 }
1507 
1508 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1509 {
1510 	if (to_svm(vcpu)->nmi_singlestep)
1511 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1512 
1513        /*
1514         * Any change of EFLAGS.VM is accompanied by a reload of SS
1515         * (caused by either a task switch or an inter-privilege IRET),
1516         * so we do not need to update the CPL here.
1517         */
1518 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1519 }
1520 
1521 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1522 {
1523 	switch (reg) {
1524 	case VCPU_EXREG_PDPTR:
1525 		BUG_ON(!npt_enabled);
1526 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1527 		break;
1528 	default:
1529 		WARN_ON_ONCE(1);
1530 	}
1531 }
1532 
1533 static void svm_set_vintr(struct vcpu_svm *svm)
1534 {
1535 	struct vmcb_control_area *control;
1536 
1537 	/* The following fields are ignored when AVIC is enabled */
1538 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1539 	svm_set_intercept(svm, INTERCEPT_VINTR);
1540 
1541 	/*
1542 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1543 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1544 	 */
1545 	control = &svm->vmcb->control;
1546 	control->int_vector = 0x0;
1547 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1548 	control->int_ctl |= V_IRQ_MASK |
1549 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1550 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1551 }
1552 
1553 static void svm_clear_vintr(struct vcpu_svm *svm)
1554 {
1555 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1556 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1557 
1558 	/* Drop int_ctl fields related to VINTR injection.  */
1559 	svm->vmcb->control.int_ctl &= mask;
1560 	if (is_guest_mode(&svm->vcpu)) {
1561 		svm->vmcb01.ptr->control.int_ctl &= mask;
1562 
1563 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1564 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1565 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1566 	}
1567 
1568 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1569 }
1570 
1571 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1572 {
1573 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1574 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1575 
1576 	switch (seg) {
1577 	case VCPU_SREG_CS: return &save->cs;
1578 	case VCPU_SREG_DS: return &save->ds;
1579 	case VCPU_SREG_ES: return &save->es;
1580 	case VCPU_SREG_FS: return &save01->fs;
1581 	case VCPU_SREG_GS: return &save01->gs;
1582 	case VCPU_SREG_SS: return &save->ss;
1583 	case VCPU_SREG_TR: return &save01->tr;
1584 	case VCPU_SREG_LDTR: return &save01->ldtr;
1585 	}
1586 	BUG();
1587 	return NULL;
1588 }
1589 
1590 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1591 {
1592 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1593 
1594 	return s->base;
1595 }
1596 
1597 static void svm_get_segment(struct kvm_vcpu *vcpu,
1598 			    struct kvm_segment *var, int seg)
1599 {
1600 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1601 
1602 	var->base = s->base;
1603 	var->limit = s->limit;
1604 	var->selector = s->selector;
1605 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1606 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1607 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1608 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1609 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1610 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1611 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1612 
1613 	/*
1614 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1615 	 * However, the SVM spec states that the G bit is not observed by the
1616 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1617 	 * So let's synthesize a legal G bit for all segments, this helps
1618 	 * running KVM nested. It also helps cross-vendor migration, because
1619 	 * Intel's vmentry has a check on the 'G' bit.
1620 	 */
1621 	var->g = s->limit > 0xfffff;
1622 
1623 	/*
1624 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1625 	 * for cross vendor migration purposes by "not present"
1626 	 */
1627 	var->unusable = !var->present;
1628 
1629 	switch (seg) {
1630 	case VCPU_SREG_TR:
1631 		/*
1632 		 * Work around a bug where the busy flag in the tr selector
1633 		 * isn't exposed
1634 		 */
1635 		var->type |= 0x2;
1636 		break;
1637 	case VCPU_SREG_DS:
1638 	case VCPU_SREG_ES:
1639 	case VCPU_SREG_FS:
1640 	case VCPU_SREG_GS:
1641 		/*
1642 		 * The accessed bit must always be set in the segment
1643 		 * descriptor cache, although it can be cleared in the
1644 		 * descriptor, the cached bit always remains at 1. Since
1645 		 * Intel has a check on this, set it here to support
1646 		 * cross-vendor migration.
1647 		 */
1648 		if (!var->unusable)
1649 			var->type |= 0x1;
1650 		break;
1651 	case VCPU_SREG_SS:
1652 		/*
1653 		 * On AMD CPUs sometimes the DB bit in the segment
1654 		 * descriptor is left as 1, although the whole segment has
1655 		 * been made unusable. Clear it here to pass an Intel VMX
1656 		 * entry check when cross vendor migrating.
1657 		 */
1658 		if (var->unusable)
1659 			var->db = 0;
1660 		/* This is symmetric with svm_set_segment() */
1661 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1662 		break;
1663 	}
1664 }
1665 
1666 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1667 {
1668 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1669 
1670 	return save->cpl;
1671 }
1672 
1673 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1674 {
1675 	struct vcpu_svm *svm = to_svm(vcpu);
1676 
1677 	dt->size = svm->vmcb->save.idtr.limit;
1678 	dt->address = svm->vmcb->save.idtr.base;
1679 }
1680 
1681 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1682 {
1683 	struct vcpu_svm *svm = to_svm(vcpu);
1684 
1685 	svm->vmcb->save.idtr.limit = dt->size;
1686 	svm->vmcb->save.idtr.base = dt->address ;
1687 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1688 }
1689 
1690 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1691 {
1692 	struct vcpu_svm *svm = to_svm(vcpu);
1693 
1694 	dt->size = svm->vmcb->save.gdtr.limit;
1695 	dt->address = svm->vmcb->save.gdtr.base;
1696 }
1697 
1698 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1699 {
1700 	struct vcpu_svm *svm = to_svm(vcpu);
1701 
1702 	svm->vmcb->save.gdtr.limit = dt->size;
1703 	svm->vmcb->save.gdtr.base = dt->address ;
1704 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1705 }
1706 
1707 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1708 {
1709 	struct vcpu_svm *svm = to_svm(vcpu);
1710 	u64 hcr0 = cr0;
1711 
1712 #ifdef CONFIG_X86_64
1713 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1714 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1715 			vcpu->arch.efer |= EFER_LMA;
1716 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1717 		}
1718 
1719 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1720 			vcpu->arch.efer &= ~EFER_LMA;
1721 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1722 		}
1723 	}
1724 #endif
1725 	vcpu->arch.cr0 = cr0;
1726 
1727 	if (!npt_enabled)
1728 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1729 
1730 	/*
1731 	 * re-enable caching here because the QEMU bios
1732 	 * does not do it - this results in some delay at
1733 	 * reboot
1734 	 */
1735 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1736 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1737 
1738 	svm->vmcb->save.cr0 = hcr0;
1739 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1740 
1741 	/*
1742 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1743 	 * tracking is done using the CR write traps.
1744 	 */
1745 	if (sev_es_guest(vcpu->kvm))
1746 		return;
1747 
1748 	if (hcr0 == cr0) {
1749 		/* Selective CR0 write remains on.  */
1750 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1751 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1752 	} else {
1753 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1754 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1755 	}
1756 }
1757 
1758 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1759 {
1760 	return true;
1761 }
1762 
1763 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1764 {
1765 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1766 	unsigned long old_cr4 = vcpu->arch.cr4;
1767 
1768 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1769 		svm_flush_tlb(vcpu);
1770 
1771 	vcpu->arch.cr4 = cr4;
1772 	if (!npt_enabled)
1773 		cr4 |= X86_CR4_PAE;
1774 	cr4 |= host_cr4_mce;
1775 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1776 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1777 
1778 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1779 		kvm_update_cpuid_runtime(vcpu);
1780 }
1781 
1782 static void svm_set_segment(struct kvm_vcpu *vcpu,
1783 			    struct kvm_segment *var, int seg)
1784 {
1785 	struct vcpu_svm *svm = to_svm(vcpu);
1786 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1787 
1788 	s->base = var->base;
1789 	s->limit = var->limit;
1790 	s->selector = var->selector;
1791 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1792 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1793 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1794 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1795 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1796 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1797 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1798 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1799 
1800 	/*
1801 	 * This is always accurate, except if SYSRET returned to a segment
1802 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1803 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1804 	 * would entail passing the CPL to userspace and back.
1805 	 */
1806 	if (seg == VCPU_SREG_SS)
1807 		/* This is symmetric with svm_get_segment() */
1808 		svm->vmcb->save.cpl = (var->dpl & 3);
1809 
1810 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1811 }
1812 
1813 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1814 {
1815 	struct vcpu_svm *svm = to_svm(vcpu);
1816 
1817 	clr_exception_intercept(svm, BP_VECTOR);
1818 
1819 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1820 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1821 			set_exception_intercept(svm, BP_VECTOR);
1822 	}
1823 }
1824 
1825 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1826 {
1827 	if (sd->next_asid > sd->max_asid) {
1828 		++sd->asid_generation;
1829 		sd->next_asid = sd->min_asid;
1830 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1831 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1832 	}
1833 
1834 	svm->current_vmcb->asid_generation = sd->asid_generation;
1835 	svm->asid = sd->next_asid++;
1836 }
1837 
1838 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1839 {
1840 	struct vmcb *vmcb = svm->vmcb;
1841 
1842 	if (svm->vcpu.arch.guest_state_protected)
1843 		return;
1844 
1845 	if (unlikely(value != vmcb->save.dr6)) {
1846 		vmcb->save.dr6 = value;
1847 		vmcb_mark_dirty(vmcb, VMCB_DR);
1848 	}
1849 }
1850 
1851 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1852 {
1853 	struct vcpu_svm *svm = to_svm(vcpu);
1854 
1855 	if (vcpu->arch.guest_state_protected)
1856 		return;
1857 
1858 	get_debugreg(vcpu->arch.db[0], 0);
1859 	get_debugreg(vcpu->arch.db[1], 1);
1860 	get_debugreg(vcpu->arch.db[2], 2);
1861 	get_debugreg(vcpu->arch.db[3], 3);
1862 	/*
1863 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1864 	 * because db_interception might need it.  We can do it before vmentry.
1865 	 */
1866 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1867 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1868 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1869 	set_dr_intercepts(svm);
1870 }
1871 
1872 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1873 {
1874 	struct vcpu_svm *svm = to_svm(vcpu);
1875 
1876 	if (vcpu->arch.guest_state_protected)
1877 		return;
1878 
1879 	svm->vmcb->save.dr7 = value;
1880 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1881 }
1882 
1883 static int pf_interception(struct kvm_vcpu *vcpu)
1884 {
1885 	struct vcpu_svm *svm = to_svm(vcpu);
1886 
1887 	u64 fault_address = svm->vmcb->control.exit_info_2;
1888 	u64 error_code = svm->vmcb->control.exit_info_1;
1889 
1890 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1891 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1892 			svm->vmcb->control.insn_bytes : NULL,
1893 			svm->vmcb->control.insn_len);
1894 }
1895 
1896 static int npf_interception(struct kvm_vcpu *vcpu)
1897 {
1898 	struct vcpu_svm *svm = to_svm(vcpu);
1899 
1900 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1901 	u64 error_code = svm->vmcb->control.exit_info_1;
1902 
1903 	trace_kvm_page_fault(fault_address, error_code);
1904 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1905 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1906 			svm->vmcb->control.insn_bytes : NULL,
1907 			svm->vmcb->control.insn_len);
1908 }
1909 
1910 static int db_interception(struct kvm_vcpu *vcpu)
1911 {
1912 	struct kvm_run *kvm_run = vcpu->run;
1913 	struct vcpu_svm *svm = to_svm(vcpu);
1914 
1915 	if (!(vcpu->guest_debug &
1916 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1917 		!svm->nmi_singlestep) {
1918 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1919 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1920 		return 1;
1921 	}
1922 
1923 	if (svm->nmi_singlestep) {
1924 		disable_nmi_singlestep(svm);
1925 		/* Make sure we check for pending NMIs upon entry */
1926 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1927 	}
1928 
1929 	if (vcpu->guest_debug &
1930 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1931 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1932 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1933 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1934 		kvm_run->debug.arch.pc =
1935 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1936 		kvm_run->debug.arch.exception = DB_VECTOR;
1937 		return 0;
1938 	}
1939 
1940 	return 1;
1941 }
1942 
1943 static int bp_interception(struct kvm_vcpu *vcpu)
1944 {
1945 	struct vcpu_svm *svm = to_svm(vcpu);
1946 	struct kvm_run *kvm_run = vcpu->run;
1947 
1948 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1949 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1950 	kvm_run->debug.arch.exception = BP_VECTOR;
1951 	return 0;
1952 }
1953 
1954 static int ud_interception(struct kvm_vcpu *vcpu)
1955 {
1956 	return handle_ud(vcpu);
1957 }
1958 
1959 static int ac_interception(struct kvm_vcpu *vcpu)
1960 {
1961 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1962 	return 1;
1963 }
1964 
1965 static bool is_erratum_383(void)
1966 {
1967 	int err, i;
1968 	u64 value;
1969 
1970 	if (!erratum_383_found)
1971 		return false;
1972 
1973 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1974 	if (err)
1975 		return false;
1976 
1977 	/* Bit 62 may or may not be set for this mce */
1978 	value &= ~(1ULL << 62);
1979 
1980 	if (value != 0xb600000000010015ULL)
1981 		return false;
1982 
1983 	/* Clear MCi_STATUS registers */
1984 	for (i = 0; i < 6; ++i)
1985 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1986 
1987 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1988 	if (!err) {
1989 		u32 low, high;
1990 
1991 		value &= ~(1ULL << 2);
1992 		low    = lower_32_bits(value);
1993 		high   = upper_32_bits(value);
1994 
1995 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1996 	}
1997 
1998 	/* Flush tlb to evict multi-match entries */
1999 	__flush_tlb_all();
2000 
2001 	return true;
2002 }
2003 
2004 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2005 {
2006 	if (is_erratum_383()) {
2007 		/*
2008 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2009 		 * guest.
2010 		 */
2011 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2012 
2013 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2014 
2015 		return;
2016 	}
2017 
2018 	/*
2019 	 * On an #MC intercept the MCE handler is not called automatically in
2020 	 * the host. So do it by hand here.
2021 	 */
2022 	kvm_machine_check();
2023 }
2024 
2025 static int mc_interception(struct kvm_vcpu *vcpu)
2026 {
2027 	return 1;
2028 }
2029 
2030 static int shutdown_interception(struct kvm_vcpu *vcpu)
2031 {
2032 	struct kvm_run *kvm_run = vcpu->run;
2033 	struct vcpu_svm *svm = to_svm(vcpu);
2034 
2035 	/*
2036 	 * The VM save area has already been encrypted so it
2037 	 * cannot be reinitialized - just terminate.
2038 	 */
2039 	if (sev_es_guest(vcpu->kvm))
2040 		return -EINVAL;
2041 
2042 	/*
2043 	 * VMCB is undefined after a SHUTDOWN intercept
2044 	 * so reinitialize it.
2045 	 */
2046 	clear_page(svm->vmcb);
2047 	init_vmcb(vcpu);
2048 
2049 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2050 	return 0;
2051 }
2052 
2053 static int io_interception(struct kvm_vcpu *vcpu)
2054 {
2055 	struct vcpu_svm *svm = to_svm(vcpu);
2056 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2057 	int size, in, string;
2058 	unsigned port;
2059 
2060 	++vcpu->stat.io_exits;
2061 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2062 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2063 	port = io_info >> 16;
2064 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2065 
2066 	if (string) {
2067 		if (sev_es_guest(vcpu->kvm))
2068 			return sev_es_string_io(svm, size, port, in);
2069 		else
2070 			return kvm_emulate_instruction(vcpu, 0);
2071 	}
2072 
2073 	svm->next_rip = svm->vmcb->control.exit_info_2;
2074 
2075 	return kvm_fast_pio(vcpu, size, port, in);
2076 }
2077 
2078 static int nmi_interception(struct kvm_vcpu *vcpu)
2079 {
2080 	return 1;
2081 }
2082 
2083 static int intr_interception(struct kvm_vcpu *vcpu)
2084 {
2085 	++vcpu->stat.irq_exits;
2086 	return 1;
2087 }
2088 
2089 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2090 {
2091 	struct vcpu_svm *svm = to_svm(vcpu);
2092 	struct vmcb *vmcb12;
2093 	struct kvm_host_map map;
2094 	int ret;
2095 
2096 	if (nested_svm_check_permissions(vcpu))
2097 		return 1;
2098 
2099 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2100 	if (ret) {
2101 		if (ret == -EINVAL)
2102 			kvm_inject_gp(vcpu, 0);
2103 		return 1;
2104 	}
2105 
2106 	vmcb12 = map.hva;
2107 
2108 	ret = kvm_skip_emulated_instruction(vcpu);
2109 
2110 	if (vmload) {
2111 		nested_svm_vmloadsave(vmcb12, svm->vmcb);
2112 		svm->sysenter_eip_hi = 0;
2113 		svm->sysenter_esp_hi = 0;
2114 	} else
2115 		nested_svm_vmloadsave(svm->vmcb, vmcb12);
2116 
2117 	kvm_vcpu_unmap(vcpu, &map, true);
2118 
2119 	return ret;
2120 }
2121 
2122 static int vmload_interception(struct kvm_vcpu *vcpu)
2123 {
2124 	return vmload_vmsave_interception(vcpu, true);
2125 }
2126 
2127 static int vmsave_interception(struct kvm_vcpu *vcpu)
2128 {
2129 	return vmload_vmsave_interception(vcpu, false);
2130 }
2131 
2132 static int vmrun_interception(struct kvm_vcpu *vcpu)
2133 {
2134 	if (nested_svm_check_permissions(vcpu))
2135 		return 1;
2136 
2137 	return nested_svm_vmrun(vcpu);
2138 }
2139 
2140 enum {
2141 	NONE_SVM_INSTR,
2142 	SVM_INSTR_VMRUN,
2143 	SVM_INSTR_VMLOAD,
2144 	SVM_INSTR_VMSAVE,
2145 };
2146 
2147 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2148 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2149 {
2150 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2151 
2152 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2153 		return NONE_SVM_INSTR;
2154 
2155 	switch (ctxt->modrm) {
2156 	case 0xd8: /* VMRUN */
2157 		return SVM_INSTR_VMRUN;
2158 	case 0xda: /* VMLOAD */
2159 		return SVM_INSTR_VMLOAD;
2160 	case 0xdb: /* VMSAVE */
2161 		return SVM_INSTR_VMSAVE;
2162 	default:
2163 		break;
2164 	}
2165 
2166 	return NONE_SVM_INSTR;
2167 }
2168 
2169 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2170 {
2171 	const int guest_mode_exit_codes[] = {
2172 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2173 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2174 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2175 	};
2176 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2177 		[SVM_INSTR_VMRUN] = vmrun_interception,
2178 		[SVM_INSTR_VMLOAD] = vmload_interception,
2179 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2180 	};
2181 	struct vcpu_svm *svm = to_svm(vcpu);
2182 	int ret;
2183 
2184 	if (is_guest_mode(vcpu)) {
2185 		/* Returns '1' or -errno on failure, '0' on success. */
2186 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2187 		if (ret)
2188 			return ret;
2189 		return 1;
2190 	}
2191 	return svm_instr_handlers[opcode](vcpu);
2192 }
2193 
2194 /*
2195  * #GP handling code. Note that #GP can be triggered under the following two
2196  * cases:
2197  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2198  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2199  *      regions (e.g. SMM memory on host).
2200  *   2) VMware backdoor
2201  */
2202 static int gp_interception(struct kvm_vcpu *vcpu)
2203 {
2204 	struct vcpu_svm *svm = to_svm(vcpu);
2205 	u32 error_code = svm->vmcb->control.exit_info_1;
2206 	int opcode;
2207 
2208 	/* Both #GP cases have zero error_code */
2209 	if (error_code)
2210 		goto reinject;
2211 
2212 	/* Decode the instruction for usage later */
2213 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2214 		goto reinject;
2215 
2216 	opcode = svm_instr_opcode(vcpu);
2217 
2218 	if (opcode == NONE_SVM_INSTR) {
2219 		if (!enable_vmware_backdoor)
2220 			goto reinject;
2221 
2222 		/*
2223 		 * VMware backdoor emulation on #GP interception only handles
2224 		 * IN{S}, OUT{S}, and RDPMC.
2225 		 */
2226 		if (!is_guest_mode(vcpu))
2227 			return kvm_emulate_instruction(vcpu,
2228 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2229 	} else
2230 		return emulate_svm_instr(vcpu, opcode);
2231 
2232 reinject:
2233 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2234 	return 1;
2235 }
2236 
2237 void svm_set_gif(struct vcpu_svm *svm, bool value)
2238 {
2239 	if (value) {
2240 		/*
2241 		 * If VGIF is enabled, the STGI intercept is only added to
2242 		 * detect the opening of the SMI/NMI window; remove it now.
2243 		 * Likewise, clear the VINTR intercept, we will set it
2244 		 * again while processing KVM_REQ_EVENT if needed.
2245 		 */
2246 		if (vgif_enabled(svm))
2247 			svm_clr_intercept(svm, INTERCEPT_STGI);
2248 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2249 			svm_clear_vintr(svm);
2250 
2251 		enable_gif(svm);
2252 		if (svm->vcpu.arch.smi_pending ||
2253 		    svm->vcpu.arch.nmi_pending ||
2254 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2255 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2256 	} else {
2257 		disable_gif(svm);
2258 
2259 		/*
2260 		 * After a CLGI no interrupts should come.  But if vGIF is
2261 		 * in use, we still rely on the VINTR intercept (rather than
2262 		 * STGI) to detect an open interrupt window.
2263 		*/
2264 		if (!vgif_enabled(svm))
2265 			svm_clear_vintr(svm);
2266 	}
2267 }
2268 
2269 static int stgi_interception(struct kvm_vcpu *vcpu)
2270 {
2271 	int ret;
2272 
2273 	if (nested_svm_check_permissions(vcpu))
2274 		return 1;
2275 
2276 	ret = kvm_skip_emulated_instruction(vcpu);
2277 	svm_set_gif(to_svm(vcpu), true);
2278 	return ret;
2279 }
2280 
2281 static int clgi_interception(struct kvm_vcpu *vcpu)
2282 {
2283 	int ret;
2284 
2285 	if (nested_svm_check_permissions(vcpu))
2286 		return 1;
2287 
2288 	ret = kvm_skip_emulated_instruction(vcpu);
2289 	svm_set_gif(to_svm(vcpu), false);
2290 	return ret;
2291 }
2292 
2293 static int invlpga_interception(struct kvm_vcpu *vcpu)
2294 {
2295 	gva_t gva = kvm_rax_read(vcpu);
2296 	u32 asid = kvm_rcx_read(vcpu);
2297 
2298 	/* FIXME: Handle an address size prefix. */
2299 	if (!is_long_mode(vcpu))
2300 		gva = (u32)gva;
2301 
2302 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2303 
2304 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2305 	kvm_mmu_invlpg(vcpu, gva);
2306 
2307 	return kvm_skip_emulated_instruction(vcpu);
2308 }
2309 
2310 static int skinit_interception(struct kvm_vcpu *vcpu)
2311 {
2312 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2313 
2314 	kvm_queue_exception(vcpu, UD_VECTOR);
2315 	return 1;
2316 }
2317 
2318 static int task_switch_interception(struct kvm_vcpu *vcpu)
2319 {
2320 	struct vcpu_svm *svm = to_svm(vcpu);
2321 	u16 tss_selector;
2322 	int reason;
2323 	int int_type = svm->vmcb->control.exit_int_info &
2324 		SVM_EXITINTINFO_TYPE_MASK;
2325 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2326 	uint32_t type =
2327 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2328 	uint32_t idt_v =
2329 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2330 	bool has_error_code = false;
2331 	u32 error_code = 0;
2332 
2333 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2334 
2335 	if (svm->vmcb->control.exit_info_2 &
2336 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2337 		reason = TASK_SWITCH_IRET;
2338 	else if (svm->vmcb->control.exit_info_2 &
2339 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2340 		reason = TASK_SWITCH_JMP;
2341 	else if (idt_v)
2342 		reason = TASK_SWITCH_GATE;
2343 	else
2344 		reason = TASK_SWITCH_CALL;
2345 
2346 	if (reason == TASK_SWITCH_GATE) {
2347 		switch (type) {
2348 		case SVM_EXITINTINFO_TYPE_NMI:
2349 			vcpu->arch.nmi_injected = false;
2350 			break;
2351 		case SVM_EXITINTINFO_TYPE_EXEPT:
2352 			if (svm->vmcb->control.exit_info_2 &
2353 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2354 				has_error_code = true;
2355 				error_code =
2356 					(u32)svm->vmcb->control.exit_info_2;
2357 			}
2358 			kvm_clear_exception_queue(vcpu);
2359 			break;
2360 		case SVM_EXITINTINFO_TYPE_INTR:
2361 			kvm_clear_interrupt_queue(vcpu);
2362 			break;
2363 		default:
2364 			break;
2365 		}
2366 	}
2367 
2368 	if (reason != TASK_SWITCH_GATE ||
2369 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2370 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2371 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2372 		if (!skip_emulated_instruction(vcpu))
2373 			return 0;
2374 	}
2375 
2376 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2377 		int_vec = -1;
2378 
2379 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2380 			       has_error_code, error_code);
2381 }
2382 
2383 static int iret_interception(struct kvm_vcpu *vcpu)
2384 {
2385 	struct vcpu_svm *svm = to_svm(vcpu);
2386 
2387 	++vcpu->stat.nmi_window_exits;
2388 	vcpu->arch.hflags |= HF_IRET_MASK;
2389 	if (!sev_es_guest(vcpu->kvm)) {
2390 		svm_clr_intercept(svm, INTERCEPT_IRET);
2391 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2392 	}
2393 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2394 	return 1;
2395 }
2396 
2397 static int invlpg_interception(struct kvm_vcpu *vcpu)
2398 {
2399 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2400 		return kvm_emulate_instruction(vcpu, 0);
2401 
2402 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2403 	return kvm_skip_emulated_instruction(vcpu);
2404 }
2405 
2406 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2407 {
2408 	return kvm_emulate_instruction(vcpu, 0);
2409 }
2410 
2411 static int rsm_interception(struct kvm_vcpu *vcpu)
2412 {
2413 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2414 }
2415 
2416 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2417 					    unsigned long val)
2418 {
2419 	struct vcpu_svm *svm = to_svm(vcpu);
2420 	unsigned long cr0 = vcpu->arch.cr0;
2421 	bool ret = false;
2422 
2423 	if (!is_guest_mode(vcpu) ||
2424 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2425 		return false;
2426 
2427 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2428 	val &= ~SVM_CR0_SELECTIVE_MASK;
2429 
2430 	if (cr0 ^ val) {
2431 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2432 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2433 	}
2434 
2435 	return ret;
2436 }
2437 
2438 #define CR_VALID (1ULL << 63)
2439 
2440 static int cr_interception(struct kvm_vcpu *vcpu)
2441 {
2442 	struct vcpu_svm *svm = to_svm(vcpu);
2443 	int reg, cr;
2444 	unsigned long val;
2445 	int err;
2446 
2447 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2448 		return emulate_on_interception(vcpu);
2449 
2450 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2451 		return emulate_on_interception(vcpu);
2452 
2453 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2454 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2455 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2456 	else
2457 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2458 
2459 	err = 0;
2460 	if (cr >= 16) { /* mov to cr */
2461 		cr -= 16;
2462 		val = kvm_register_read(vcpu, reg);
2463 		trace_kvm_cr_write(cr, val);
2464 		switch (cr) {
2465 		case 0:
2466 			if (!check_selective_cr0_intercepted(vcpu, val))
2467 				err = kvm_set_cr0(vcpu, val);
2468 			else
2469 				return 1;
2470 
2471 			break;
2472 		case 3:
2473 			err = kvm_set_cr3(vcpu, val);
2474 			break;
2475 		case 4:
2476 			err = kvm_set_cr4(vcpu, val);
2477 			break;
2478 		case 8:
2479 			err = kvm_set_cr8(vcpu, val);
2480 			break;
2481 		default:
2482 			WARN(1, "unhandled write to CR%d", cr);
2483 			kvm_queue_exception(vcpu, UD_VECTOR);
2484 			return 1;
2485 		}
2486 	} else { /* mov from cr */
2487 		switch (cr) {
2488 		case 0:
2489 			val = kvm_read_cr0(vcpu);
2490 			break;
2491 		case 2:
2492 			val = vcpu->arch.cr2;
2493 			break;
2494 		case 3:
2495 			val = kvm_read_cr3(vcpu);
2496 			break;
2497 		case 4:
2498 			val = kvm_read_cr4(vcpu);
2499 			break;
2500 		case 8:
2501 			val = kvm_get_cr8(vcpu);
2502 			break;
2503 		default:
2504 			WARN(1, "unhandled read from CR%d", cr);
2505 			kvm_queue_exception(vcpu, UD_VECTOR);
2506 			return 1;
2507 		}
2508 		kvm_register_write(vcpu, reg, val);
2509 		trace_kvm_cr_read(cr, val);
2510 	}
2511 	return kvm_complete_insn_gp(vcpu, err);
2512 }
2513 
2514 static int cr_trap(struct kvm_vcpu *vcpu)
2515 {
2516 	struct vcpu_svm *svm = to_svm(vcpu);
2517 	unsigned long old_value, new_value;
2518 	unsigned int cr;
2519 	int ret = 0;
2520 
2521 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2522 
2523 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2524 	switch (cr) {
2525 	case 0:
2526 		old_value = kvm_read_cr0(vcpu);
2527 		svm_set_cr0(vcpu, new_value);
2528 
2529 		kvm_post_set_cr0(vcpu, old_value, new_value);
2530 		break;
2531 	case 4:
2532 		old_value = kvm_read_cr4(vcpu);
2533 		svm_set_cr4(vcpu, new_value);
2534 
2535 		kvm_post_set_cr4(vcpu, old_value, new_value);
2536 		break;
2537 	case 8:
2538 		ret = kvm_set_cr8(vcpu, new_value);
2539 		break;
2540 	default:
2541 		WARN(1, "unhandled CR%d write trap", cr);
2542 		kvm_queue_exception(vcpu, UD_VECTOR);
2543 		return 1;
2544 	}
2545 
2546 	return kvm_complete_insn_gp(vcpu, ret);
2547 }
2548 
2549 static int dr_interception(struct kvm_vcpu *vcpu)
2550 {
2551 	struct vcpu_svm *svm = to_svm(vcpu);
2552 	int reg, dr;
2553 	unsigned long val;
2554 	int err = 0;
2555 
2556 	if (vcpu->guest_debug == 0) {
2557 		/*
2558 		 * No more DR vmexits; force a reload of the debug registers
2559 		 * and reenter on this instruction.  The next vmexit will
2560 		 * retrieve the full state of the debug registers.
2561 		 */
2562 		clr_dr_intercepts(svm);
2563 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2564 		return 1;
2565 	}
2566 
2567 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2568 		return emulate_on_interception(vcpu);
2569 
2570 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2571 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2572 	if (dr >= 16) { /* mov to DRn  */
2573 		dr -= 16;
2574 		val = kvm_register_read(vcpu, reg);
2575 		err = kvm_set_dr(vcpu, dr, val);
2576 	} else {
2577 		kvm_get_dr(vcpu, dr, &val);
2578 		kvm_register_write(vcpu, reg, val);
2579 	}
2580 
2581 	return kvm_complete_insn_gp(vcpu, err);
2582 }
2583 
2584 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2585 {
2586 	int r;
2587 
2588 	u8 cr8_prev = kvm_get_cr8(vcpu);
2589 	/* instruction emulation calls kvm_set_cr8() */
2590 	r = cr_interception(vcpu);
2591 	if (lapic_in_kernel(vcpu))
2592 		return r;
2593 	if (cr8_prev <= kvm_get_cr8(vcpu))
2594 		return r;
2595 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2596 	return 0;
2597 }
2598 
2599 static int efer_trap(struct kvm_vcpu *vcpu)
2600 {
2601 	struct msr_data msr_info;
2602 	int ret;
2603 
2604 	/*
2605 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2606 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2607 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2608 	 * the guest doesn't have X86_FEATURE_SVM.
2609 	 */
2610 	msr_info.host_initiated = false;
2611 	msr_info.index = MSR_EFER;
2612 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2613 	ret = kvm_set_msr_common(vcpu, &msr_info);
2614 
2615 	return kvm_complete_insn_gp(vcpu, ret);
2616 }
2617 
2618 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2619 {
2620 	msr->data = 0;
2621 
2622 	switch (msr->index) {
2623 	case MSR_F10H_DECFG:
2624 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2625 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2626 		break;
2627 	case MSR_IA32_PERF_CAPABILITIES:
2628 		return 0;
2629 	default:
2630 		return KVM_MSR_RET_INVALID;
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2637 {
2638 	struct vcpu_svm *svm = to_svm(vcpu);
2639 
2640 	switch (msr_info->index) {
2641 	case MSR_STAR:
2642 		msr_info->data = svm->vmcb01.ptr->save.star;
2643 		break;
2644 #ifdef CONFIG_X86_64
2645 	case MSR_LSTAR:
2646 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2647 		break;
2648 	case MSR_CSTAR:
2649 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2650 		break;
2651 	case MSR_KERNEL_GS_BASE:
2652 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2653 		break;
2654 	case MSR_SYSCALL_MASK:
2655 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2656 		break;
2657 #endif
2658 	case MSR_IA32_SYSENTER_CS:
2659 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2660 		break;
2661 	case MSR_IA32_SYSENTER_EIP:
2662 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2663 		if (guest_cpuid_is_intel(vcpu))
2664 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2665 		break;
2666 	case MSR_IA32_SYSENTER_ESP:
2667 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2668 		if (guest_cpuid_is_intel(vcpu))
2669 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2670 		break;
2671 	case MSR_TSC_AUX:
2672 		msr_info->data = svm->tsc_aux;
2673 		break;
2674 	/*
2675 	 * Nobody will change the following 5 values in the VMCB so we can
2676 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2677 	 * implemented.
2678 	 */
2679 	case MSR_IA32_DEBUGCTLMSR:
2680 		msr_info->data = svm->vmcb->save.dbgctl;
2681 		break;
2682 	case MSR_IA32_LASTBRANCHFROMIP:
2683 		msr_info->data = svm->vmcb->save.br_from;
2684 		break;
2685 	case MSR_IA32_LASTBRANCHTOIP:
2686 		msr_info->data = svm->vmcb->save.br_to;
2687 		break;
2688 	case MSR_IA32_LASTINTFROMIP:
2689 		msr_info->data = svm->vmcb->save.last_excp_from;
2690 		break;
2691 	case MSR_IA32_LASTINTTOIP:
2692 		msr_info->data = svm->vmcb->save.last_excp_to;
2693 		break;
2694 	case MSR_VM_HSAVE_PA:
2695 		msr_info->data = svm->nested.hsave_msr;
2696 		break;
2697 	case MSR_VM_CR:
2698 		msr_info->data = svm->nested.vm_cr_msr;
2699 		break;
2700 	case MSR_IA32_SPEC_CTRL:
2701 		if (!msr_info->host_initiated &&
2702 		    !guest_has_spec_ctrl_msr(vcpu))
2703 			return 1;
2704 
2705 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2706 			msr_info->data = svm->vmcb->save.spec_ctrl;
2707 		else
2708 			msr_info->data = svm->spec_ctrl;
2709 		break;
2710 	case MSR_AMD64_VIRT_SPEC_CTRL:
2711 		if (!msr_info->host_initiated &&
2712 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2713 			return 1;
2714 
2715 		msr_info->data = svm->virt_spec_ctrl;
2716 		break;
2717 	case MSR_F15H_IC_CFG: {
2718 
2719 		int family, model;
2720 
2721 		family = guest_cpuid_family(vcpu);
2722 		model  = guest_cpuid_model(vcpu);
2723 
2724 		if (family < 0 || model < 0)
2725 			return kvm_get_msr_common(vcpu, msr_info);
2726 
2727 		msr_info->data = 0;
2728 
2729 		if (family == 0x15 &&
2730 		    (model >= 0x2 && model < 0x20))
2731 			msr_info->data = 0x1E;
2732 		}
2733 		break;
2734 	case MSR_F10H_DECFG:
2735 		msr_info->data = svm->msr_decfg;
2736 		break;
2737 	default:
2738 		return kvm_get_msr_common(vcpu, msr_info);
2739 	}
2740 	return 0;
2741 }
2742 
2743 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2744 {
2745 	struct vcpu_svm *svm = to_svm(vcpu);
2746 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2747 		return kvm_complete_insn_gp(vcpu, err);
2748 
2749 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2750 	ghcb_set_sw_exit_info_2(svm->ghcb,
2751 				X86_TRAP_GP |
2752 				SVM_EVTINJ_TYPE_EXEPT |
2753 				SVM_EVTINJ_VALID);
2754 	return 1;
2755 }
2756 
2757 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2758 {
2759 	struct vcpu_svm *svm = to_svm(vcpu);
2760 	int svm_dis, chg_mask;
2761 
2762 	if (data & ~SVM_VM_CR_VALID_MASK)
2763 		return 1;
2764 
2765 	chg_mask = SVM_VM_CR_VALID_MASK;
2766 
2767 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2768 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2769 
2770 	svm->nested.vm_cr_msr &= ~chg_mask;
2771 	svm->nested.vm_cr_msr |= (data & chg_mask);
2772 
2773 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2774 
2775 	/* check for svm_disable while efer.svme is set */
2776 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2777 		return 1;
2778 
2779 	return 0;
2780 }
2781 
2782 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2783 {
2784 	struct vcpu_svm *svm = to_svm(vcpu);
2785 	int r;
2786 
2787 	u32 ecx = msr->index;
2788 	u64 data = msr->data;
2789 	switch (ecx) {
2790 	case MSR_IA32_CR_PAT:
2791 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2792 			return 1;
2793 		vcpu->arch.pat = data;
2794 		svm->vmcb01.ptr->save.g_pat = data;
2795 		if (is_guest_mode(vcpu))
2796 			nested_vmcb02_compute_g_pat(svm);
2797 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2798 		break;
2799 	case MSR_IA32_SPEC_CTRL:
2800 		if (!msr->host_initiated &&
2801 		    !guest_has_spec_ctrl_msr(vcpu))
2802 			return 1;
2803 
2804 		if (kvm_spec_ctrl_test_value(data))
2805 			return 1;
2806 
2807 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2808 			svm->vmcb->save.spec_ctrl = data;
2809 		else
2810 			svm->spec_ctrl = data;
2811 		if (!data)
2812 			break;
2813 
2814 		/*
2815 		 * For non-nested:
2816 		 * When it's written (to non-zero) for the first time, pass
2817 		 * it through.
2818 		 *
2819 		 * For nested:
2820 		 * The handling of the MSR bitmap for L2 guests is done in
2821 		 * nested_svm_vmrun_msrpm.
2822 		 * We update the L1 MSR bit as well since it will end up
2823 		 * touching the MSR anyway now.
2824 		 */
2825 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2826 		break;
2827 	case MSR_IA32_PRED_CMD:
2828 		if (!msr->host_initiated &&
2829 		    !guest_has_pred_cmd_msr(vcpu))
2830 			return 1;
2831 
2832 		if (data & ~PRED_CMD_IBPB)
2833 			return 1;
2834 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2835 			return 1;
2836 		if (!data)
2837 			break;
2838 
2839 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2840 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2841 		break;
2842 	case MSR_AMD64_VIRT_SPEC_CTRL:
2843 		if (!msr->host_initiated &&
2844 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2845 			return 1;
2846 
2847 		if (data & ~SPEC_CTRL_SSBD)
2848 			return 1;
2849 
2850 		svm->virt_spec_ctrl = data;
2851 		break;
2852 	case MSR_STAR:
2853 		svm->vmcb01.ptr->save.star = data;
2854 		break;
2855 #ifdef CONFIG_X86_64
2856 	case MSR_LSTAR:
2857 		svm->vmcb01.ptr->save.lstar = data;
2858 		break;
2859 	case MSR_CSTAR:
2860 		svm->vmcb01.ptr->save.cstar = data;
2861 		break;
2862 	case MSR_KERNEL_GS_BASE:
2863 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2864 		break;
2865 	case MSR_SYSCALL_MASK:
2866 		svm->vmcb01.ptr->save.sfmask = data;
2867 		break;
2868 #endif
2869 	case MSR_IA32_SYSENTER_CS:
2870 		svm->vmcb01.ptr->save.sysenter_cs = data;
2871 		break;
2872 	case MSR_IA32_SYSENTER_EIP:
2873 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2874 		/*
2875 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2876 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2877 		 * In this case we use this intercept to track the high
2878 		 * 32 bit part of these msrs to support Intel's
2879 		 * implementation of SYSENTER/SYSEXIT.
2880 		 */
2881 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2882 		break;
2883 	case MSR_IA32_SYSENTER_ESP:
2884 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2885 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2886 		break;
2887 	case MSR_TSC_AUX:
2888 		/*
2889 		 * TSC_AUX is usually changed only during boot and never read
2890 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2891 		 * guest via direct_access_msrs, and switch it via user return.
2892 		 */
2893 		preempt_disable();
2894 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2895 		preempt_enable();
2896 		if (r)
2897 			return 1;
2898 
2899 		svm->tsc_aux = data;
2900 		break;
2901 	case MSR_IA32_DEBUGCTLMSR:
2902 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2903 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2904 				    __func__, data);
2905 			break;
2906 		}
2907 		if (data & DEBUGCTL_RESERVED_BITS)
2908 			return 1;
2909 
2910 		svm->vmcb->save.dbgctl = data;
2911 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2912 		if (data & (1ULL<<0))
2913 			svm_enable_lbrv(vcpu);
2914 		else
2915 			svm_disable_lbrv(vcpu);
2916 		break;
2917 	case MSR_VM_HSAVE_PA:
2918 		svm->nested.hsave_msr = data;
2919 		break;
2920 	case MSR_VM_CR:
2921 		return svm_set_vm_cr(vcpu, data);
2922 	case MSR_VM_IGNNE:
2923 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2924 		break;
2925 	case MSR_F10H_DECFG: {
2926 		struct kvm_msr_entry msr_entry;
2927 
2928 		msr_entry.index = msr->index;
2929 		if (svm_get_msr_feature(&msr_entry))
2930 			return 1;
2931 
2932 		/* Check the supported bits */
2933 		if (data & ~msr_entry.data)
2934 			return 1;
2935 
2936 		/* Don't allow the guest to change a bit, #GP */
2937 		if (!msr->host_initiated && (data ^ msr_entry.data))
2938 			return 1;
2939 
2940 		svm->msr_decfg = data;
2941 		break;
2942 	}
2943 	case MSR_IA32_APICBASE:
2944 		if (kvm_vcpu_apicv_active(vcpu))
2945 			avic_update_vapic_bar(to_svm(vcpu), data);
2946 		fallthrough;
2947 	default:
2948 		return kvm_set_msr_common(vcpu, msr);
2949 	}
2950 	return 0;
2951 }
2952 
2953 static int msr_interception(struct kvm_vcpu *vcpu)
2954 {
2955 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
2956 		return kvm_emulate_wrmsr(vcpu);
2957 	else
2958 		return kvm_emulate_rdmsr(vcpu);
2959 }
2960 
2961 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2962 {
2963 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2964 	svm_clear_vintr(to_svm(vcpu));
2965 
2966 	/*
2967 	 * For AVIC, the only reason to end up here is ExtINTs.
2968 	 * In this case AVIC was temporarily disabled for
2969 	 * requesting the IRQ window and we have to re-enable it.
2970 	 */
2971 	svm_toggle_avic_for_irq_window(vcpu, true);
2972 
2973 	++vcpu->stat.irq_window_exits;
2974 	return 1;
2975 }
2976 
2977 static int pause_interception(struct kvm_vcpu *vcpu)
2978 {
2979 	bool in_kernel;
2980 
2981 	/*
2982 	 * CPL is not made available for an SEV-ES guest, therefore
2983 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
2984 	 * set in_kernel to false as well.
2985 	 */
2986 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2987 
2988 	if (!kvm_pause_in_guest(vcpu->kvm))
2989 		grow_ple_window(vcpu);
2990 
2991 	kvm_vcpu_on_spin(vcpu, in_kernel);
2992 	return kvm_skip_emulated_instruction(vcpu);
2993 }
2994 
2995 static int invpcid_interception(struct kvm_vcpu *vcpu)
2996 {
2997 	struct vcpu_svm *svm = to_svm(vcpu);
2998 	unsigned long type;
2999 	gva_t gva;
3000 
3001 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3002 		kvm_queue_exception(vcpu, UD_VECTOR);
3003 		return 1;
3004 	}
3005 
3006 	/*
3007 	 * For an INVPCID intercept:
3008 	 * EXITINFO1 provides the linear address of the memory operand.
3009 	 * EXITINFO2 provides the contents of the register operand.
3010 	 */
3011 	type = svm->vmcb->control.exit_info_2;
3012 	gva = svm->vmcb->control.exit_info_1;
3013 
3014 	if (type > 3) {
3015 		kvm_inject_gp(vcpu, 0);
3016 		return 1;
3017 	}
3018 
3019 	return kvm_handle_invpcid(vcpu, type, gva);
3020 }
3021 
3022 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3023 	[SVM_EXIT_READ_CR0]			= cr_interception,
3024 	[SVM_EXIT_READ_CR3]			= cr_interception,
3025 	[SVM_EXIT_READ_CR4]			= cr_interception,
3026 	[SVM_EXIT_READ_CR8]			= cr_interception,
3027 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3028 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3029 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3030 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3031 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3032 	[SVM_EXIT_READ_DR0]			= dr_interception,
3033 	[SVM_EXIT_READ_DR1]			= dr_interception,
3034 	[SVM_EXIT_READ_DR2]			= dr_interception,
3035 	[SVM_EXIT_READ_DR3]			= dr_interception,
3036 	[SVM_EXIT_READ_DR4]			= dr_interception,
3037 	[SVM_EXIT_READ_DR5]			= dr_interception,
3038 	[SVM_EXIT_READ_DR6]			= dr_interception,
3039 	[SVM_EXIT_READ_DR7]			= dr_interception,
3040 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3041 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3042 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3043 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3044 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3045 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3046 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3047 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3048 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3049 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3050 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3051 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3052 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3053 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3054 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3055 	[SVM_EXIT_INTR]				= intr_interception,
3056 	[SVM_EXIT_NMI]				= nmi_interception,
3057 	[SVM_EXIT_SMI]				= kvm_emulate_as_nop,
3058 	[SVM_EXIT_INIT]				= kvm_emulate_as_nop,
3059 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3060 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3061 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3062 	[SVM_EXIT_IRET]                         = iret_interception,
3063 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3064 	[SVM_EXIT_PAUSE]			= pause_interception,
3065 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3066 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3067 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3068 	[SVM_EXIT_IOIO]				= io_interception,
3069 	[SVM_EXIT_MSR]				= msr_interception,
3070 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3071 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3072 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3073 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3074 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3075 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3076 	[SVM_EXIT_STGI]				= stgi_interception,
3077 	[SVM_EXIT_CLGI]				= clgi_interception,
3078 	[SVM_EXIT_SKINIT]			= skinit_interception,
3079 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3080 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3081 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3082 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3083 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3084 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3085 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3086 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3087 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3088 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3089 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3090 	[SVM_EXIT_NPF]				= npf_interception,
3091 	[SVM_EXIT_RSM]                          = rsm_interception,
3092 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3093 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3094 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3095 };
3096 
3097 static void dump_vmcb(struct kvm_vcpu *vcpu)
3098 {
3099 	struct vcpu_svm *svm = to_svm(vcpu);
3100 	struct vmcb_control_area *control = &svm->vmcb->control;
3101 	struct vmcb_save_area *save = &svm->vmcb->save;
3102 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3103 
3104 	if (!dump_invalid_vmcb) {
3105 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3106 		return;
3107 	}
3108 
3109 	pr_err("VMCB Control Area:\n");
3110 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3111 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3112 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3113 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3114 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3115 	pr_err("%-20s%08x %08x\n", "intercepts:",
3116               control->intercepts[INTERCEPT_WORD3],
3117 	       control->intercepts[INTERCEPT_WORD4]);
3118 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3119 	pr_err("%-20s%d\n", "pause filter threshold:",
3120 	       control->pause_filter_thresh);
3121 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3122 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3123 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3124 	pr_err("%-20s%d\n", "asid:", control->asid);
3125 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3126 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3127 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3128 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3129 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3130 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3131 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3132 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3133 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3134 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3135 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3136 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3137 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3138 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3139 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3140 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3141 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3142 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3143 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3144 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3145 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3146 	pr_err("VMCB State Save Area:\n");
3147 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3148 	       "es:",
3149 	       save->es.selector, save->es.attrib,
3150 	       save->es.limit, save->es.base);
3151 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3152 	       "cs:",
3153 	       save->cs.selector, save->cs.attrib,
3154 	       save->cs.limit, save->cs.base);
3155 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3156 	       "ss:",
3157 	       save->ss.selector, save->ss.attrib,
3158 	       save->ss.limit, save->ss.base);
3159 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3160 	       "ds:",
3161 	       save->ds.selector, save->ds.attrib,
3162 	       save->ds.limit, save->ds.base);
3163 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3164 	       "fs:",
3165 	       save01->fs.selector, save01->fs.attrib,
3166 	       save01->fs.limit, save01->fs.base);
3167 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3168 	       "gs:",
3169 	       save01->gs.selector, save01->gs.attrib,
3170 	       save01->gs.limit, save01->gs.base);
3171 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3172 	       "gdtr:",
3173 	       save->gdtr.selector, save->gdtr.attrib,
3174 	       save->gdtr.limit, save->gdtr.base);
3175 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3176 	       "ldtr:",
3177 	       save01->ldtr.selector, save01->ldtr.attrib,
3178 	       save01->ldtr.limit, save01->ldtr.base);
3179 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3180 	       "idtr:",
3181 	       save->idtr.selector, save->idtr.attrib,
3182 	       save->idtr.limit, save->idtr.base);
3183 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3184 	       "tr:",
3185 	       save01->tr.selector, save01->tr.attrib,
3186 	       save01->tr.limit, save01->tr.base);
3187 	pr_err("cpl:            %d                efer:         %016llx\n",
3188 		save->cpl, save->efer);
3189 	pr_err("%-15s %016llx %-13s %016llx\n",
3190 	       "cr0:", save->cr0, "cr2:", save->cr2);
3191 	pr_err("%-15s %016llx %-13s %016llx\n",
3192 	       "cr3:", save->cr3, "cr4:", save->cr4);
3193 	pr_err("%-15s %016llx %-13s %016llx\n",
3194 	       "dr6:", save->dr6, "dr7:", save->dr7);
3195 	pr_err("%-15s %016llx %-13s %016llx\n",
3196 	       "rip:", save->rip, "rflags:", save->rflags);
3197 	pr_err("%-15s %016llx %-13s %016llx\n",
3198 	       "rsp:", save->rsp, "rax:", save->rax);
3199 	pr_err("%-15s %016llx %-13s %016llx\n",
3200 	       "star:", save01->star, "lstar:", save01->lstar);
3201 	pr_err("%-15s %016llx %-13s %016llx\n",
3202 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3203 	pr_err("%-15s %016llx %-13s %016llx\n",
3204 	       "kernel_gs_base:", save01->kernel_gs_base,
3205 	       "sysenter_cs:", save01->sysenter_cs);
3206 	pr_err("%-15s %016llx %-13s %016llx\n",
3207 	       "sysenter_esp:", save01->sysenter_esp,
3208 	       "sysenter_eip:", save01->sysenter_eip);
3209 	pr_err("%-15s %016llx %-13s %016llx\n",
3210 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3211 	pr_err("%-15s %016llx %-13s %016llx\n",
3212 	       "br_from:", save->br_from, "br_to:", save->br_to);
3213 	pr_err("%-15s %016llx %-13s %016llx\n",
3214 	       "excp_from:", save->last_excp_from,
3215 	       "excp_to:", save->last_excp_to);
3216 }
3217 
3218 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3219 {
3220 	if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3221 	    svm_exit_handlers[exit_code])
3222 		return 0;
3223 
3224 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3225 	dump_vmcb(vcpu);
3226 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3227 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3228 	vcpu->run->internal.ndata = 2;
3229 	vcpu->run->internal.data[0] = exit_code;
3230 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3231 
3232 	return -EINVAL;
3233 }
3234 
3235 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3236 {
3237 	if (svm_handle_invalid_exit(vcpu, exit_code))
3238 		return 0;
3239 
3240 #ifdef CONFIG_RETPOLINE
3241 	if (exit_code == SVM_EXIT_MSR)
3242 		return msr_interception(vcpu);
3243 	else if (exit_code == SVM_EXIT_VINTR)
3244 		return interrupt_window_interception(vcpu);
3245 	else if (exit_code == SVM_EXIT_INTR)
3246 		return intr_interception(vcpu);
3247 	else if (exit_code == SVM_EXIT_HLT)
3248 		return kvm_emulate_halt(vcpu);
3249 	else if (exit_code == SVM_EXIT_NPF)
3250 		return npf_interception(vcpu);
3251 #endif
3252 	return svm_exit_handlers[exit_code](vcpu);
3253 }
3254 
3255 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3256 			      u32 *intr_info, u32 *error_code)
3257 {
3258 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3259 
3260 	*info1 = control->exit_info_1;
3261 	*info2 = control->exit_info_2;
3262 	*intr_info = control->exit_int_info;
3263 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3264 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3265 		*error_code = control->exit_int_info_err;
3266 	else
3267 		*error_code = 0;
3268 }
3269 
3270 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3271 {
3272 	struct vcpu_svm *svm = to_svm(vcpu);
3273 	struct kvm_run *kvm_run = vcpu->run;
3274 	u32 exit_code = svm->vmcb->control.exit_code;
3275 
3276 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3277 
3278 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3279 	if (!sev_es_guest(vcpu->kvm)) {
3280 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3281 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3282 		if (npt_enabled)
3283 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3284 	}
3285 
3286 	if (is_guest_mode(vcpu)) {
3287 		int vmexit;
3288 
3289 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3290 
3291 		vmexit = nested_svm_exit_special(svm);
3292 
3293 		if (vmexit == NESTED_EXIT_CONTINUE)
3294 			vmexit = nested_svm_exit_handled(svm);
3295 
3296 		if (vmexit == NESTED_EXIT_DONE)
3297 			return 1;
3298 	}
3299 
3300 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3301 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3302 		kvm_run->fail_entry.hardware_entry_failure_reason
3303 			= svm->vmcb->control.exit_code;
3304 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3305 		dump_vmcb(vcpu);
3306 		return 0;
3307 	}
3308 
3309 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3310 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3311 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3312 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3313 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3314 		       "exit_code 0x%x\n",
3315 		       __func__, svm->vmcb->control.exit_int_info,
3316 		       exit_code);
3317 
3318 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3319 		return 1;
3320 
3321 	return svm_invoke_exit_handler(vcpu, exit_code);
3322 }
3323 
3324 static void reload_tss(struct kvm_vcpu *vcpu)
3325 {
3326 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3327 
3328 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3329 	load_TR_desc();
3330 }
3331 
3332 static void pre_svm_run(struct kvm_vcpu *vcpu)
3333 {
3334 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3335 	struct vcpu_svm *svm = to_svm(vcpu);
3336 
3337 	/*
3338 	 * If the previous vmrun of the vmcb occurred on a different physical
3339 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3340 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3341 	 */
3342 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3343 		svm->current_vmcb->asid_generation = 0;
3344 		vmcb_mark_all_dirty(svm->vmcb);
3345 		svm->current_vmcb->cpu = vcpu->cpu;
3346         }
3347 
3348 	if (sev_guest(vcpu->kvm))
3349 		return pre_sev_run(svm, vcpu->cpu);
3350 
3351 	/* FIXME: handle wraparound of asid_generation */
3352 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3353 		new_asid(svm, sd);
3354 }
3355 
3356 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3357 {
3358 	struct vcpu_svm *svm = to_svm(vcpu);
3359 
3360 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3361 	vcpu->arch.hflags |= HF_NMI_MASK;
3362 	if (!sev_es_guest(vcpu->kvm))
3363 		svm_set_intercept(svm, INTERCEPT_IRET);
3364 	++vcpu->stat.nmi_injections;
3365 }
3366 
3367 static void svm_set_irq(struct kvm_vcpu *vcpu)
3368 {
3369 	struct vcpu_svm *svm = to_svm(vcpu);
3370 
3371 	BUG_ON(!(gif_set(svm)));
3372 
3373 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3374 	++vcpu->stat.irq_injections;
3375 
3376 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3377 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3378 }
3379 
3380 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3381 {
3382 	struct vcpu_svm *svm = to_svm(vcpu);
3383 
3384 	/*
3385 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3386 	 * tracking is done using the CR write traps.
3387 	 */
3388 	if (sev_es_guest(vcpu->kvm))
3389 		return;
3390 
3391 	if (nested_svm_virtualize_tpr(vcpu))
3392 		return;
3393 
3394 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3395 
3396 	if (irr == -1)
3397 		return;
3398 
3399 	if (tpr >= irr)
3400 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3401 }
3402 
3403 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3404 {
3405 	struct vcpu_svm *svm = to_svm(vcpu);
3406 	struct vmcb *vmcb = svm->vmcb;
3407 	bool ret;
3408 
3409 	if (!gif_set(svm))
3410 		return true;
3411 
3412 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3413 		return false;
3414 
3415 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3416 	      (vcpu->arch.hflags & HF_NMI_MASK);
3417 
3418 	return ret;
3419 }
3420 
3421 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3422 {
3423 	struct vcpu_svm *svm = to_svm(vcpu);
3424 	if (svm->nested.nested_run_pending)
3425 		return -EBUSY;
3426 
3427 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3428 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3429 		return -EBUSY;
3430 
3431 	return !svm_nmi_blocked(vcpu);
3432 }
3433 
3434 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3435 {
3436 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3437 }
3438 
3439 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3440 {
3441 	struct vcpu_svm *svm = to_svm(vcpu);
3442 
3443 	if (masked) {
3444 		vcpu->arch.hflags |= HF_NMI_MASK;
3445 		if (!sev_es_guest(vcpu->kvm))
3446 			svm_set_intercept(svm, INTERCEPT_IRET);
3447 	} else {
3448 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3449 		if (!sev_es_guest(vcpu->kvm))
3450 			svm_clr_intercept(svm, INTERCEPT_IRET);
3451 	}
3452 }
3453 
3454 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3455 {
3456 	struct vcpu_svm *svm = to_svm(vcpu);
3457 	struct vmcb *vmcb = svm->vmcb;
3458 
3459 	if (!gif_set(svm))
3460 		return true;
3461 
3462 	if (sev_es_guest(vcpu->kvm)) {
3463 		/*
3464 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3465 		 * bit to determine the state of the IF flag.
3466 		 */
3467 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3468 			return true;
3469 	} else if (is_guest_mode(vcpu)) {
3470 		/* As long as interrupts are being delivered...  */
3471 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3472 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3473 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3474 			return true;
3475 
3476 		/* ... vmexits aren't blocked by the interrupt shadow  */
3477 		if (nested_exit_on_intr(svm))
3478 			return false;
3479 	} else {
3480 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3481 			return true;
3482 	}
3483 
3484 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3485 }
3486 
3487 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3488 {
3489 	struct vcpu_svm *svm = to_svm(vcpu);
3490 	if (svm->nested.nested_run_pending)
3491 		return -EBUSY;
3492 
3493 	/*
3494 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3495 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3496 	 */
3497 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3498 		return -EBUSY;
3499 
3500 	return !svm_interrupt_blocked(vcpu);
3501 }
3502 
3503 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3504 {
3505 	struct vcpu_svm *svm = to_svm(vcpu);
3506 
3507 	/*
3508 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3509 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3510 	 * get that intercept, this function will be called again though and
3511 	 * we'll get the vintr intercept. However, if the vGIF feature is
3512 	 * enabled, the STGI interception will not occur. Enable the irq
3513 	 * window under the assumption that the hardware will set the GIF.
3514 	 */
3515 	if (vgif_enabled(svm) || gif_set(svm)) {
3516 		/*
3517 		 * IRQ window is not needed when AVIC is enabled,
3518 		 * unless we have pending ExtINT since it cannot be injected
3519 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3520 		 * and fallback to injecting IRQ via V_IRQ.
3521 		 */
3522 		svm_toggle_avic_for_irq_window(vcpu, false);
3523 		svm_set_vintr(svm);
3524 	}
3525 }
3526 
3527 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3528 {
3529 	struct vcpu_svm *svm = to_svm(vcpu);
3530 
3531 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3532 		return; /* IRET will cause a vm exit */
3533 
3534 	if (!gif_set(svm)) {
3535 		if (vgif_enabled(svm))
3536 			svm_set_intercept(svm, INTERCEPT_STGI);
3537 		return; /* STGI will cause a vm exit */
3538 	}
3539 
3540 	/*
3541 	 * Something prevents NMI from been injected. Single step over possible
3542 	 * problem (IRET or exception injection or interrupt shadow)
3543 	 */
3544 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3545 	svm->nmi_singlestep = true;
3546 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3547 }
3548 
3549 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3550 {
3551 	return 0;
3552 }
3553 
3554 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3555 {
3556 	return 0;
3557 }
3558 
3559 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3560 {
3561 	struct vcpu_svm *svm = to_svm(vcpu);
3562 
3563 	/*
3564 	 * Flush only the current ASID even if the TLB flush was invoked via
3565 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3566 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3567 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3568 	 * VM-Exit (via kvm_mmu_reset_context()).
3569 	 */
3570 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3571 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3572 	else
3573 		svm->current_vmcb->asid_generation--;
3574 }
3575 
3576 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3577 {
3578 	struct vcpu_svm *svm = to_svm(vcpu);
3579 
3580 	invlpga(gva, svm->vmcb->control.asid);
3581 }
3582 
3583 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3584 {
3585 	struct vcpu_svm *svm = to_svm(vcpu);
3586 
3587 	if (nested_svm_virtualize_tpr(vcpu))
3588 		return;
3589 
3590 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3591 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3592 		kvm_set_cr8(vcpu, cr8);
3593 	}
3594 }
3595 
3596 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3597 {
3598 	struct vcpu_svm *svm = to_svm(vcpu);
3599 	u64 cr8;
3600 
3601 	if (nested_svm_virtualize_tpr(vcpu) ||
3602 	    kvm_vcpu_apicv_active(vcpu))
3603 		return;
3604 
3605 	cr8 = kvm_get_cr8(vcpu);
3606 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3607 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3608 }
3609 
3610 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3611 {
3612 	struct vcpu_svm *svm = to_svm(vcpu);
3613 	u8 vector;
3614 	int type;
3615 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3616 	unsigned int3_injected = svm->int3_injected;
3617 
3618 	svm->int3_injected = 0;
3619 
3620 	/*
3621 	 * If we've made progress since setting HF_IRET_MASK, we've
3622 	 * executed an IRET and can allow NMI injection.
3623 	 */
3624 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3625 	    (sev_es_guest(vcpu->kvm) ||
3626 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3627 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3628 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3629 	}
3630 
3631 	vcpu->arch.nmi_injected = false;
3632 	kvm_clear_exception_queue(vcpu);
3633 	kvm_clear_interrupt_queue(vcpu);
3634 
3635 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3636 		return;
3637 
3638 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3639 
3640 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3641 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3642 
3643 	switch (type) {
3644 	case SVM_EXITINTINFO_TYPE_NMI:
3645 		vcpu->arch.nmi_injected = true;
3646 		break;
3647 	case SVM_EXITINTINFO_TYPE_EXEPT:
3648 		/*
3649 		 * Never re-inject a #VC exception.
3650 		 */
3651 		if (vector == X86_TRAP_VC)
3652 			break;
3653 
3654 		/*
3655 		 * In case of software exceptions, do not reinject the vector,
3656 		 * but re-execute the instruction instead. Rewind RIP first
3657 		 * if we emulated INT3 before.
3658 		 */
3659 		if (kvm_exception_is_soft(vector)) {
3660 			if (vector == BP_VECTOR && int3_injected &&
3661 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
3662 				kvm_rip_write(vcpu,
3663 					      kvm_rip_read(vcpu) - int3_injected);
3664 			break;
3665 		}
3666 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3667 			u32 err = svm->vmcb->control.exit_int_info_err;
3668 			kvm_requeue_exception_e(vcpu, vector, err);
3669 
3670 		} else
3671 			kvm_requeue_exception(vcpu, vector);
3672 		break;
3673 	case SVM_EXITINTINFO_TYPE_INTR:
3674 		kvm_queue_interrupt(vcpu, vector, false);
3675 		break;
3676 	default:
3677 		break;
3678 	}
3679 }
3680 
3681 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3682 {
3683 	struct vcpu_svm *svm = to_svm(vcpu);
3684 	struct vmcb_control_area *control = &svm->vmcb->control;
3685 
3686 	control->exit_int_info = control->event_inj;
3687 	control->exit_int_info_err = control->event_inj_err;
3688 	control->event_inj = 0;
3689 	svm_complete_interrupts(vcpu);
3690 }
3691 
3692 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3693 {
3694 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3695 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3696 		return handle_fastpath_set_msr_irqoff(vcpu);
3697 
3698 	return EXIT_FASTPATH_NONE;
3699 }
3700 
3701 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3702 {
3703 	struct vcpu_svm *svm = to_svm(vcpu);
3704 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3705 
3706 	kvm_guest_enter_irqoff();
3707 
3708 	if (sev_es_guest(vcpu->kvm)) {
3709 		__svm_sev_es_vcpu_run(vmcb_pa);
3710 	} else {
3711 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3712 
3713 		/*
3714 		 * Use a single vmcb (vmcb01 because it's always valid) for
3715 		 * context switching guest state via VMLOAD/VMSAVE, that way
3716 		 * the state doesn't need to be copied between vmcb01 and
3717 		 * vmcb02 when switching vmcbs for nested virtualization.
3718 		 */
3719 		vmload(svm->vmcb01.pa);
3720 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3721 		vmsave(svm->vmcb01.pa);
3722 
3723 		vmload(__sme_page_pa(sd->save_area));
3724 	}
3725 
3726 	kvm_guest_exit_irqoff();
3727 }
3728 
3729 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3730 {
3731 	struct vcpu_svm *svm = to_svm(vcpu);
3732 
3733 	trace_kvm_entry(vcpu);
3734 
3735 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3736 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3737 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3738 
3739 	/*
3740 	 * Disable singlestep if we're injecting an interrupt/exception.
3741 	 * We don't want our modified rflags to be pushed on the stack where
3742 	 * we might not be able to easily reset them if we disabled NMI
3743 	 * singlestep later.
3744 	 */
3745 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3746 		/*
3747 		 * Event injection happens before external interrupts cause a
3748 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3749 		 * is enough to force an immediate vmexit.
3750 		 */
3751 		disable_nmi_singlestep(svm);
3752 		smp_send_reschedule(vcpu->cpu);
3753 	}
3754 
3755 	pre_svm_run(vcpu);
3756 
3757 	sync_lapic_to_cr8(vcpu);
3758 
3759 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3760 		svm->vmcb->control.asid = svm->asid;
3761 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3762 	}
3763 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3764 
3765 	/*
3766 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3767 	 * of a #DB.
3768 	 */
3769 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3770 		svm_set_dr6(svm, vcpu->arch.dr6);
3771 	else
3772 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3773 
3774 	clgi();
3775 	kvm_load_guest_xsave_state(vcpu);
3776 
3777 	kvm_wait_lapic_expire(vcpu);
3778 
3779 	/*
3780 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3781 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3782 	 * is no need to worry about the conditional branch over the wrmsr
3783 	 * being speculatively taken.
3784 	 */
3785 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3786 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3787 
3788 	svm_vcpu_enter_exit(vcpu);
3789 
3790 	/*
3791 	 * We do not use IBRS in the kernel. If this vCPU has used the
3792 	 * SPEC_CTRL MSR it may have left it on; save the value and
3793 	 * turn it off. This is much more efficient than blindly adding
3794 	 * it to the atomic save/restore list. Especially as the former
3795 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3796 	 *
3797 	 * For non-nested case:
3798 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3799 	 * save it.
3800 	 *
3801 	 * For nested case:
3802 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3803 	 * save it.
3804 	 */
3805 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3806 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3807 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3808 
3809 	if (!sev_es_guest(vcpu->kvm))
3810 		reload_tss(vcpu);
3811 
3812 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3813 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3814 
3815 	if (!sev_es_guest(vcpu->kvm)) {
3816 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3817 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3818 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3819 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3820 	}
3821 
3822 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3823 		kvm_before_interrupt(vcpu);
3824 
3825 	kvm_load_host_xsave_state(vcpu);
3826 	stgi();
3827 
3828 	/* Any pending NMI will happen here */
3829 
3830 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3831 		kvm_after_interrupt(vcpu);
3832 
3833 	sync_cr8_to_lapic(vcpu);
3834 
3835 	svm->next_rip = 0;
3836 	if (is_guest_mode(vcpu)) {
3837 		nested_sync_control_from_vmcb02(svm);
3838 		svm->nested.nested_run_pending = 0;
3839 	}
3840 
3841 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3842 	vmcb_mark_all_clean(svm->vmcb);
3843 
3844 	/* if exit due to PF check for async PF */
3845 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3846 		vcpu->arch.apf.host_apf_flags =
3847 			kvm_read_and_reset_apf_flags();
3848 
3849 	if (npt_enabled) {
3850 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3851 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3852 	}
3853 
3854 	/*
3855 	 * We need to handle MC intercepts here before the vcpu has a chance to
3856 	 * change the physical cpu
3857 	 */
3858 	if (unlikely(svm->vmcb->control.exit_code ==
3859 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3860 		svm_handle_mce(vcpu);
3861 
3862 	svm_complete_interrupts(vcpu);
3863 
3864 	if (is_guest_mode(vcpu))
3865 		return EXIT_FASTPATH_NONE;
3866 
3867 	return svm_exit_handlers_fastpath(vcpu);
3868 }
3869 
3870 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3871 			     int root_level)
3872 {
3873 	struct vcpu_svm *svm = to_svm(vcpu);
3874 	unsigned long cr3;
3875 
3876 	if (npt_enabled) {
3877 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3878 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3879 
3880 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3881 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3882 			return;
3883 		cr3 = vcpu->arch.cr3;
3884 	} else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3885 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3886 	} else {
3887 		/* PCID in the guest should be impossible with a 32-bit MMU. */
3888 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3889 		cr3 = root_hpa;
3890 	}
3891 
3892 	svm->vmcb->save.cr3 = cr3;
3893 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3894 }
3895 
3896 static int is_disabled(void)
3897 {
3898 	u64 vm_cr;
3899 
3900 	rdmsrl(MSR_VM_CR, vm_cr);
3901 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3902 		return 1;
3903 
3904 	return 0;
3905 }
3906 
3907 static void
3908 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3909 {
3910 	/*
3911 	 * Patch in the VMMCALL instruction:
3912 	 */
3913 	hypercall[0] = 0x0f;
3914 	hypercall[1] = 0x01;
3915 	hypercall[2] = 0xd9;
3916 }
3917 
3918 static int __init svm_check_processor_compat(void)
3919 {
3920 	return 0;
3921 }
3922 
3923 static bool svm_cpu_has_accelerated_tpr(void)
3924 {
3925 	return false;
3926 }
3927 
3928 /*
3929  * The kvm parameter can be NULL (module initialization, or invocation before
3930  * VM creation). Be sure to check the kvm parameter before using it.
3931  */
3932 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3933 {
3934 	switch (index) {
3935 	case MSR_IA32_MCG_EXT_CTL:
3936 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3937 		return false;
3938 	case MSR_IA32_SMBASE:
3939 		/* SEV-ES guests do not support SMM, so report false */
3940 		if (kvm && sev_es_guest(kvm))
3941 			return false;
3942 		break;
3943 	default:
3944 		break;
3945 	}
3946 
3947 	return true;
3948 }
3949 
3950 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3951 {
3952 	return 0;
3953 }
3954 
3955 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3956 {
3957 	struct vcpu_svm *svm = to_svm(vcpu);
3958 	struct kvm_cpuid_entry2 *best;
3959 
3960 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3961 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3962 				    boot_cpu_has(X86_FEATURE_XSAVES);
3963 
3964 	/* Update nrips enabled cache */
3965 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3966 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3967 
3968 	svm_recalc_instruction_intercepts(vcpu, svm);
3969 
3970 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3971 	if (sev_guest(vcpu->kvm)) {
3972 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3973 		if (best)
3974 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3975 	}
3976 
3977 	if (kvm_vcpu_apicv_active(vcpu)) {
3978 		/*
3979 		 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3980 		 * is exposed to the guest, disable AVIC.
3981 		 */
3982 		if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3983 			kvm_request_apicv_update(vcpu->kvm, false,
3984 						 APICV_INHIBIT_REASON_X2APIC);
3985 
3986 		/*
3987 		 * Currently, AVIC does not work with nested virtualization.
3988 		 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3989 		 */
3990 		if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3991 			kvm_request_apicv_update(vcpu->kvm, false,
3992 						 APICV_INHIBIT_REASON_NESTED);
3993 	}
3994 
3995 	if (guest_cpuid_is_intel(vcpu)) {
3996 		/*
3997 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
3998 		 * accesses because the processor only stores 32 bits.
3999 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4000 		 */
4001 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
4002 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
4003 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4004 
4005 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4006 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4007 	} else {
4008 		/*
4009 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
4010 		 * in VMCB and clear intercepts to avoid #VMEXIT.
4011 		 */
4012 		if (vls) {
4013 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4014 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4015 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4016 		}
4017 		/* No need to intercept these MSRs */
4018 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4019 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4020 	}
4021 }
4022 
4023 static bool svm_has_wbinvd_exit(void)
4024 {
4025 	return true;
4026 }
4027 
4028 #define PRE_EX(exit)  { .exit_code = (exit), \
4029 			.stage = X86_ICPT_PRE_EXCEPT, }
4030 #define POST_EX(exit) { .exit_code = (exit), \
4031 			.stage = X86_ICPT_POST_EXCEPT, }
4032 #define POST_MEM(exit) { .exit_code = (exit), \
4033 			.stage = X86_ICPT_POST_MEMACCESS, }
4034 
4035 static const struct __x86_intercept {
4036 	u32 exit_code;
4037 	enum x86_intercept_stage stage;
4038 } x86_intercept_map[] = {
4039 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4040 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4041 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4042 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4043 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4044 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4045 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4046 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4047 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4048 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4049 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4050 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4051 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4052 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4053 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4054 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4055 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4056 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4057 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4058 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4059 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4060 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4061 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4062 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4063 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4064 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4065 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4066 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4067 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4068 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4069 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4070 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4071 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4072 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4073 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4074 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4075 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4076 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4077 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4078 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4079 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4080 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4081 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4082 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4083 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4084 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4085 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4086 };
4087 
4088 #undef PRE_EX
4089 #undef POST_EX
4090 #undef POST_MEM
4091 
4092 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4093 			       struct x86_instruction_info *info,
4094 			       enum x86_intercept_stage stage,
4095 			       struct x86_exception *exception)
4096 {
4097 	struct vcpu_svm *svm = to_svm(vcpu);
4098 	int vmexit, ret = X86EMUL_CONTINUE;
4099 	struct __x86_intercept icpt_info;
4100 	struct vmcb *vmcb = svm->vmcb;
4101 
4102 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4103 		goto out;
4104 
4105 	icpt_info = x86_intercept_map[info->intercept];
4106 
4107 	if (stage != icpt_info.stage)
4108 		goto out;
4109 
4110 	switch (icpt_info.exit_code) {
4111 	case SVM_EXIT_READ_CR0:
4112 		if (info->intercept == x86_intercept_cr_read)
4113 			icpt_info.exit_code += info->modrm_reg;
4114 		break;
4115 	case SVM_EXIT_WRITE_CR0: {
4116 		unsigned long cr0, val;
4117 
4118 		if (info->intercept == x86_intercept_cr_write)
4119 			icpt_info.exit_code += info->modrm_reg;
4120 
4121 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4122 		    info->intercept == x86_intercept_clts)
4123 			break;
4124 
4125 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4126 					INTERCEPT_SELECTIVE_CR0)))
4127 			break;
4128 
4129 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4130 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4131 
4132 		if (info->intercept == x86_intercept_lmsw) {
4133 			cr0 &= 0xfUL;
4134 			val &= 0xfUL;
4135 			/* lmsw can't clear PE - catch this here */
4136 			if (cr0 & X86_CR0_PE)
4137 				val |= X86_CR0_PE;
4138 		}
4139 
4140 		if (cr0 ^ val)
4141 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4142 
4143 		break;
4144 	}
4145 	case SVM_EXIT_READ_DR0:
4146 	case SVM_EXIT_WRITE_DR0:
4147 		icpt_info.exit_code += info->modrm_reg;
4148 		break;
4149 	case SVM_EXIT_MSR:
4150 		if (info->intercept == x86_intercept_wrmsr)
4151 			vmcb->control.exit_info_1 = 1;
4152 		else
4153 			vmcb->control.exit_info_1 = 0;
4154 		break;
4155 	case SVM_EXIT_PAUSE:
4156 		/*
4157 		 * We get this for NOP only, but pause
4158 		 * is rep not, check this here
4159 		 */
4160 		if (info->rep_prefix != REPE_PREFIX)
4161 			goto out;
4162 		break;
4163 	case SVM_EXIT_IOIO: {
4164 		u64 exit_info;
4165 		u32 bytes;
4166 
4167 		if (info->intercept == x86_intercept_in ||
4168 		    info->intercept == x86_intercept_ins) {
4169 			exit_info = ((info->src_val & 0xffff) << 16) |
4170 				SVM_IOIO_TYPE_MASK;
4171 			bytes = info->dst_bytes;
4172 		} else {
4173 			exit_info = (info->dst_val & 0xffff) << 16;
4174 			bytes = info->src_bytes;
4175 		}
4176 
4177 		if (info->intercept == x86_intercept_outs ||
4178 		    info->intercept == x86_intercept_ins)
4179 			exit_info |= SVM_IOIO_STR_MASK;
4180 
4181 		if (info->rep_prefix)
4182 			exit_info |= SVM_IOIO_REP_MASK;
4183 
4184 		bytes = min(bytes, 4u);
4185 
4186 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4187 
4188 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4189 
4190 		vmcb->control.exit_info_1 = exit_info;
4191 		vmcb->control.exit_info_2 = info->next_rip;
4192 
4193 		break;
4194 	}
4195 	default:
4196 		break;
4197 	}
4198 
4199 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4200 	if (static_cpu_has(X86_FEATURE_NRIPS))
4201 		vmcb->control.next_rip  = info->next_rip;
4202 	vmcb->control.exit_code = icpt_info.exit_code;
4203 	vmexit = nested_svm_exit_handled(svm);
4204 
4205 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4206 					   : X86EMUL_CONTINUE;
4207 
4208 out:
4209 	return ret;
4210 }
4211 
4212 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4213 {
4214 }
4215 
4216 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4217 {
4218 	if (!kvm_pause_in_guest(vcpu->kvm))
4219 		shrink_ple_window(vcpu);
4220 }
4221 
4222 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4223 {
4224 	/* [63:9] are reserved. */
4225 	vcpu->arch.mcg_cap &= 0x1ff;
4226 }
4227 
4228 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4229 {
4230 	struct vcpu_svm *svm = to_svm(vcpu);
4231 
4232 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4233 	if (!gif_set(svm))
4234 		return true;
4235 
4236 	return is_smm(vcpu);
4237 }
4238 
4239 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4240 {
4241 	struct vcpu_svm *svm = to_svm(vcpu);
4242 	if (svm->nested.nested_run_pending)
4243 		return -EBUSY;
4244 
4245 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4246 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4247 		return -EBUSY;
4248 
4249 	return !svm_smi_blocked(vcpu);
4250 }
4251 
4252 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4253 {
4254 	struct vcpu_svm *svm = to_svm(vcpu);
4255 	int ret;
4256 
4257 	if (is_guest_mode(vcpu)) {
4258 		/* FED8h - SVM Guest */
4259 		put_smstate(u64, smstate, 0x7ed8, 1);
4260 		/* FEE0h - SVM Guest VMCB Physical Address */
4261 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4262 
4263 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4264 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4265 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4266 
4267 		ret = nested_svm_vmexit(svm);
4268 		if (ret)
4269 			return ret;
4270 	}
4271 	return 0;
4272 }
4273 
4274 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4275 {
4276 	struct vcpu_svm *svm = to_svm(vcpu);
4277 	struct kvm_host_map map;
4278 	int ret = 0;
4279 
4280 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4281 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4282 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4283 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4284 
4285 		if (guest) {
4286 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4287 				return 1;
4288 
4289 			if (!(saved_efer & EFER_SVME))
4290 				return 1;
4291 
4292 			if (kvm_vcpu_map(vcpu,
4293 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4294 				return 1;
4295 
4296 			if (svm_allocate_nested(svm))
4297 				return 1;
4298 
4299 			ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva);
4300 			kvm_vcpu_unmap(vcpu, &map, true);
4301 		}
4302 	}
4303 
4304 	return ret;
4305 }
4306 
4307 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4308 {
4309 	struct vcpu_svm *svm = to_svm(vcpu);
4310 
4311 	if (!gif_set(svm)) {
4312 		if (vgif_enabled(svm))
4313 			svm_set_intercept(svm, INTERCEPT_STGI);
4314 		/* STGI will cause a vm exit */
4315 	} else {
4316 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4317 	}
4318 }
4319 
4320 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4321 {
4322 	bool smep, smap, is_user;
4323 	unsigned long cr4;
4324 
4325 	/*
4326 	 * When the guest is an SEV-ES guest, emulation is not possible.
4327 	 */
4328 	if (sev_es_guest(vcpu->kvm))
4329 		return false;
4330 
4331 	/*
4332 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4333 	 *
4334 	 * Errata:
4335 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4336 	 * possible that CPU microcode implementing DecodeAssist will fail
4337 	 * to read bytes of instruction which caused #NPF. In this case,
4338 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4339 	 * return 0 instead of the correct guest instruction bytes.
4340 	 *
4341 	 * This happens because CPU microcode reading instruction bytes
4342 	 * uses a special opcode which attempts to read data using CPL=0
4343 	 * privileges. The microcode reads CS:RIP and if it hits a SMAP
4344 	 * fault, it gives up and returns no instruction bytes.
4345 	 *
4346 	 * Detection:
4347 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4348 	 * returned 0 in GuestIntrBytes field of the VMCB.
4349 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4350 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4351 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4352 	 * a SMEP fault instead of #NPF).
4353 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4354 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4355 	 * logic in order to attempt minimize false-positive of detecting errata
4356 	 * while still preserving all cases semantic correctness.
4357 	 *
4358 	 * Workaround:
4359 	 * To determine what instruction the guest was executing, the hypervisor
4360 	 * will have to decode the instruction at the instruction pointer.
4361 	 *
4362 	 * In non SEV guest, hypervisor will be able to read the guest
4363 	 * memory to decode the instruction pointer when insn_len is zero
4364 	 * so we return true to indicate that decoding is possible.
4365 	 *
4366 	 * But in the SEV guest, the guest memory is encrypted with the
4367 	 * guest specific key and hypervisor will not be able to decode the
4368 	 * instruction pointer so we will not able to workaround it. Lets
4369 	 * print the error and request to kill the guest.
4370 	 */
4371 	if (likely(!insn || insn_len))
4372 		return true;
4373 
4374 	/*
4375 	 * If RIP is invalid, go ahead with emulation which will cause an
4376 	 * internal error exit.
4377 	 */
4378 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4379 		return true;
4380 
4381 	cr4 = kvm_read_cr4(vcpu);
4382 	smep = cr4 & X86_CR4_SMEP;
4383 	smap = cr4 & X86_CR4_SMAP;
4384 	is_user = svm_get_cpl(vcpu) == 3;
4385 	if (smap && (!smep || is_user)) {
4386 		if (!sev_guest(vcpu->kvm))
4387 			return true;
4388 
4389 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4390 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4391 	}
4392 
4393 	return false;
4394 }
4395 
4396 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4397 {
4398 	struct vcpu_svm *svm = to_svm(vcpu);
4399 
4400 	/*
4401 	 * TODO: Last condition latch INIT signals on vCPU when
4402 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4403 	 * To properly emulate the INIT intercept,
4404 	 * svm_check_nested_events() should call nested_svm_vmexit()
4405 	 * if an INIT signal is pending.
4406 	 */
4407 	return !gif_set(svm) ||
4408 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4409 }
4410 
4411 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4412 {
4413 	if (!sev_es_guest(vcpu->kvm))
4414 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4415 
4416 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4417 }
4418 
4419 static void svm_vm_destroy(struct kvm *kvm)
4420 {
4421 	avic_vm_destroy(kvm);
4422 	sev_vm_destroy(kvm);
4423 }
4424 
4425 static int svm_vm_init(struct kvm *kvm)
4426 {
4427 	if (!pause_filter_count || !pause_filter_thresh)
4428 		kvm->arch.pause_in_guest = true;
4429 
4430 	if (avic) {
4431 		int ret = avic_vm_init(kvm);
4432 		if (ret)
4433 			return ret;
4434 	}
4435 
4436 	kvm_apicv_init(kvm, avic);
4437 	return 0;
4438 }
4439 
4440 static struct kvm_x86_ops svm_x86_ops __initdata = {
4441 	.hardware_unsetup = svm_hardware_teardown,
4442 	.hardware_enable = svm_hardware_enable,
4443 	.hardware_disable = svm_hardware_disable,
4444 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4445 	.has_emulated_msr = svm_has_emulated_msr,
4446 
4447 	.vcpu_create = svm_create_vcpu,
4448 	.vcpu_free = svm_free_vcpu,
4449 	.vcpu_reset = svm_vcpu_reset,
4450 
4451 	.vm_size = sizeof(struct kvm_svm),
4452 	.vm_init = svm_vm_init,
4453 	.vm_destroy = svm_vm_destroy,
4454 
4455 	.prepare_guest_switch = svm_prepare_guest_switch,
4456 	.vcpu_load = svm_vcpu_load,
4457 	.vcpu_put = svm_vcpu_put,
4458 	.vcpu_blocking = svm_vcpu_blocking,
4459 	.vcpu_unblocking = svm_vcpu_unblocking,
4460 
4461 	.update_exception_bitmap = svm_update_exception_bitmap,
4462 	.get_msr_feature = svm_get_msr_feature,
4463 	.get_msr = svm_get_msr,
4464 	.set_msr = svm_set_msr,
4465 	.get_segment_base = svm_get_segment_base,
4466 	.get_segment = svm_get_segment,
4467 	.set_segment = svm_set_segment,
4468 	.get_cpl = svm_get_cpl,
4469 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4470 	.set_cr0 = svm_set_cr0,
4471 	.is_valid_cr4 = svm_is_valid_cr4,
4472 	.set_cr4 = svm_set_cr4,
4473 	.set_efer = svm_set_efer,
4474 	.get_idt = svm_get_idt,
4475 	.set_idt = svm_set_idt,
4476 	.get_gdt = svm_get_gdt,
4477 	.set_gdt = svm_set_gdt,
4478 	.set_dr7 = svm_set_dr7,
4479 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4480 	.cache_reg = svm_cache_reg,
4481 	.get_rflags = svm_get_rflags,
4482 	.set_rflags = svm_set_rflags,
4483 
4484 	.tlb_flush_all = svm_flush_tlb,
4485 	.tlb_flush_current = svm_flush_tlb,
4486 	.tlb_flush_gva = svm_flush_tlb_gva,
4487 	.tlb_flush_guest = svm_flush_tlb,
4488 
4489 	.run = svm_vcpu_run,
4490 	.handle_exit = handle_exit,
4491 	.skip_emulated_instruction = skip_emulated_instruction,
4492 	.update_emulated_instruction = NULL,
4493 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4494 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4495 	.patch_hypercall = svm_patch_hypercall,
4496 	.set_irq = svm_set_irq,
4497 	.set_nmi = svm_inject_nmi,
4498 	.queue_exception = svm_queue_exception,
4499 	.cancel_injection = svm_cancel_injection,
4500 	.interrupt_allowed = svm_interrupt_allowed,
4501 	.nmi_allowed = svm_nmi_allowed,
4502 	.get_nmi_mask = svm_get_nmi_mask,
4503 	.set_nmi_mask = svm_set_nmi_mask,
4504 	.enable_nmi_window = svm_enable_nmi_window,
4505 	.enable_irq_window = svm_enable_irq_window,
4506 	.update_cr8_intercept = svm_update_cr8_intercept,
4507 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4508 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4509 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4510 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4511 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4512 	.hwapic_irr_update = svm_hwapic_irr_update,
4513 	.hwapic_isr_update = svm_hwapic_isr_update,
4514 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4515 	.apicv_post_state_restore = avic_post_state_restore,
4516 
4517 	.set_tss_addr = svm_set_tss_addr,
4518 	.set_identity_map_addr = svm_set_identity_map_addr,
4519 	.get_mt_mask = svm_get_mt_mask,
4520 
4521 	.get_exit_info = svm_get_exit_info,
4522 
4523 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4524 
4525 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4526 
4527 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4528 
4529 	.load_mmu_pgd = svm_load_mmu_pgd,
4530 
4531 	.check_intercept = svm_check_intercept,
4532 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4533 
4534 	.request_immediate_exit = __kvm_request_immediate_exit,
4535 
4536 	.sched_in = svm_sched_in,
4537 
4538 	.pmu_ops = &amd_pmu_ops,
4539 	.nested_ops = &svm_nested_ops,
4540 
4541 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4542 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4543 	.update_pi_irte = svm_update_pi_irte,
4544 	.setup_mce = svm_setup_mce,
4545 
4546 	.smi_allowed = svm_smi_allowed,
4547 	.pre_enter_smm = svm_pre_enter_smm,
4548 	.pre_leave_smm = svm_pre_leave_smm,
4549 	.enable_smi_window = svm_enable_smi_window,
4550 
4551 	.mem_enc_op = svm_mem_enc_op,
4552 	.mem_enc_reg_region = svm_register_enc_region,
4553 	.mem_enc_unreg_region = svm_unregister_enc_region,
4554 
4555 	.vm_copy_enc_context_from = svm_vm_copy_asid_from,
4556 
4557 	.can_emulate_instruction = svm_can_emulate_instruction,
4558 
4559 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4560 
4561 	.msr_filter_changed = svm_msr_filter_changed,
4562 	.complete_emulated_msr = svm_complete_emulated_msr,
4563 
4564 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4565 };
4566 
4567 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4568 	.cpu_has_kvm_support = has_svm,
4569 	.disabled_by_bios = is_disabled,
4570 	.hardware_setup = svm_hardware_setup,
4571 	.check_processor_compatibility = svm_check_processor_compat,
4572 
4573 	.runtime_ops = &svm_x86_ops,
4574 };
4575 
4576 static int __init svm_init(void)
4577 {
4578 	__unused_size_checks();
4579 
4580 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4581 			__alignof__(struct vcpu_svm), THIS_MODULE);
4582 }
4583 
4584 static void __exit svm_exit(void)
4585 {
4586 	kvm_exit();
4587 }
4588 
4589 module_init(svm_init)
4590 module_exit(svm_exit)
4591