xref: /openbmc/linux/arch/x86/kvm/svm/avic.c (revision 4e541b06b0e8ae6ebd85a913dba8db43d3ce6fe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) "SVM: " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21 
22 #include <asm/irq_remapping.h>
23 
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29 
30 #define SVM_AVIC_DOORBELL	0xc001011b
31 
32 #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
33 
34 /*
35  * 0xff is broadcast, so the max index allowed for physical APIC ID
36  * table is 0xfe.  APIC IDs above 0xff are reserved.
37  */
38 #define AVIC_MAX_PHYSICAL_ID_COUNT	255
39 
40 #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
41 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
42 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
43 
44 /* AVIC GATAG is encoded using VM and VCPU IDs */
45 #define AVIC_VCPU_ID_BITS		8
46 #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
47 
48 #define AVIC_VM_ID_BITS			24
49 #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
50 #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
51 
52 #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
53 						(y & AVIC_VCPU_ID_MASK))
54 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
55 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
56 
57 /* Note:
58  * This hash table is used to map VM_ID to a struct kvm_svm,
59  * when handling AMD IOMMU GALOG notification to schedule in
60  * a particular vCPU.
61  */
62 #define SVM_VM_DATA_HASH_BITS	8
63 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
64 static u32 next_vm_id = 0;
65 static bool next_vm_id_wrapped = 0;
66 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
67 
68 /*
69  * This is a wrapper of struct amd_iommu_ir_data.
70  */
71 struct amd_svm_iommu_ir {
72 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
73 	void *data;		/* Storing pointer to struct amd_ir_data */
74 };
75 
76 enum avic_ipi_failure_cause {
77 	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
78 	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
79 	AVIC_IPI_FAILURE_INVALID_TARGET,
80 	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
81 };
82 
83 /* Note:
84  * This function is called from IOMMU driver to notify
85  * SVM to schedule in a particular vCPU of a particular VM.
86  */
87 int avic_ga_log_notifier(u32 ga_tag)
88 {
89 	unsigned long flags;
90 	struct kvm_svm *kvm_svm;
91 	struct kvm_vcpu *vcpu = NULL;
92 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
93 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
94 
95 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
96 	trace_kvm_avic_ga_log(vm_id, vcpu_id);
97 
98 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
99 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
100 		if (kvm_svm->avic_vm_id != vm_id)
101 			continue;
102 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
103 		break;
104 	}
105 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
106 
107 	/* Note:
108 	 * At this point, the IOMMU should have already set the pending
109 	 * bit in the vAPIC backing page. So, we just need to schedule
110 	 * in the vcpu.
111 	 */
112 	if (vcpu)
113 		kvm_vcpu_wake_up(vcpu);
114 
115 	return 0;
116 }
117 
118 void avic_vm_destroy(struct kvm *kvm)
119 {
120 	unsigned long flags;
121 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
122 
123 	if (!enable_apicv)
124 		return;
125 
126 	if (kvm_svm->avic_logical_id_table_page)
127 		__free_page(kvm_svm->avic_logical_id_table_page);
128 	if (kvm_svm->avic_physical_id_table_page)
129 		__free_page(kvm_svm->avic_physical_id_table_page);
130 
131 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
132 	hash_del(&kvm_svm->hnode);
133 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
134 }
135 
136 int avic_vm_init(struct kvm *kvm)
137 {
138 	unsigned long flags;
139 	int err = -ENOMEM;
140 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
141 	struct kvm_svm *k2;
142 	struct page *p_page;
143 	struct page *l_page;
144 	u32 vm_id;
145 
146 	if (!enable_apicv)
147 		return 0;
148 
149 	/* Allocating physical APIC ID table (4KB) */
150 	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
151 	if (!p_page)
152 		goto free_avic;
153 
154 	kvm_svm->avic_physical_id_table_page = p_page;
155 
156 	/* Allocating logical APIC ID table (4KB) */
157 	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
158 	if (!l_page)
159 		goto free_avic;
160 
161 	kvm_svm->avic_logical_id_table_page = l_page;
162 
163 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
164  again:
165 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
166 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
167 		next_vm_id_wrapped = 1;
168 		goto again;
169 	}
170 	/* Is it still in use? Only possible if wrapped at least once */
171 	if (next_vm_id_wrapped) {
172 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
173 			if (k2->avic_vm_id == vm_id)
174 				goto again;
175 		}
176 	}
177 	kvm_svm->avic_vm_id = vm_id;
178 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
179 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
180 
181 	return 0;
182 
183 free_avic:
184 	avic_vm_destroy(kvm);
185 	return err;
186 }
187 
188 void avic_init_vmcb(struct vcpu_svm *svm)
189 {
190 	struct vmcb *vmcb = svm->vmcb;
191 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
192 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
193 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
194 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
195 
196 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
197 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
198 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
199 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
200 	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
201 
202 	if (kvm_apicv_activated(svm->vcpu.kvm))
203 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
204 	else
205 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
206 }
207 
208 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
209 				       unsigned int index)
210 {
211 	u64 *avic_physical_id_table;
212 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
213 
214 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
215 		return NULL;
216 
217 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
218 
219 	return &avic_physical_id_table[index];
220 }
221 
222 /*
223  * Note:
224  * AVIC hardware walks the nested page table to check permissions,
225  * but does not use the SPA address specified in the leaf page
226  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
227  * field of the VMCB. Therefore, we set up the
228  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
229  */
230 static int avic_alloc_access_page(struct kvm *kvm)
231 {
232 	void __user *ret;
233 	int r = 0;
234 
235 	mutex_lock(&kvm->slots_lock);
236 
237 	if (kvm->arch.apic_access_memslot_enabled)
238 		goto out;
239 
240 	ret = __x86_set_memory_region(kvm,
241 				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
242 				      APIC_DEFAULT_PHYS_BASE,
243 				      PAGE_SIZE);
244 	if (IS_ERR(ret)) {
245 		r = PTR_ERR(ret);
246 		goto out;
247 	}
248 
249 	kvm->arch.apic_access_memslot_enabled = true;
250 out:
251 	mutex_unlock(&kvm->slots_lock);
252 	return r;
253 }
254 
255 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
256 {
257 	u64 *entry, new_entry;
258 	int id = vcpu->vcpu_id;
259 	struct vcpu_svm *svm = to_svm(vcpu);
260 
261 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
262 		return -EINVAL;
263 
264 	if (!vcpu->arch.apic->regs)
265 		return -EINVAL;
266 
267 	if (kvm_apicv_activated(vcpu->kvm)) {
268 		int ret;
269 
270 		ret = avic_alloc_access_page(vcpu->kvm);
271 		if (ret)
272 			return ret;
273 	}
274 
275 	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
276 
277 	/* Setting AVIC backing page address in the phy APIC ID table */
278 	entry = avic_get_physical_id_entry(vcpu, id);
279 	if (!entry)
280 		return -EINVAL;
281 
282 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
283 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
284 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
285 	WRITE_ONCE(*entry, new_entry);
286 
287 	svm->avic_physical_id_cache = entry;
288 
289 	return 0;
290 }
291 
292 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
293 				   u32 icrl, u32 icrh)
294 {
295 	struct kvm_vcpu *vcpu;
296 	unsigned long i;
297 
298 	/*
299 	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
300 	 * event.  There's no need to signal doorbells, as hardware has handled
301 	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
302 	 * since entered the guest will have processed pending IRQs at VMRUN.
303 	 */
304 	kvm_for_each_vcpu(i, vcpu, kvm) {
305 		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
306 					GET_APIC_DEST_FIELD(icrh),
307 					icrl & APIC_DEST_MASK))
308 			kvm_vcpu_wake_up(vcpu);
309 	}
310 }
311 
312 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
313 {
314 	struct vcpu_svm *svm = to_svm(vcpu);
315 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
316 	u32 icrl = svm->vmcb->control.exit_info_1;
317 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
318 	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
319 	struct kvm_lapic *apic = vcpu->arch.apic;
320 
321 	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
322 
323 	switch (id) {
324 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
325 		/*
326 		 * AVIC hardware handles the generation of
327 		 * IPIs when the specified Message Type is Fixed
328 		 * (also known as fixed delivery mode) and
329 		 * the Trigger Mode is edge-triggered. The hardware
330 		 * also supports self and broadcast delivery modes
331 		 * specified via the Destination Shorthand(DSH)
332 		 * field of the ICRL. Logical and physical APIC ID
333 		 * formats are supported. All other IPI types cause
334 		 * a #VMEXIT, which needs to emulated.
335 		 */
336 		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
337 		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
338 		break;
339 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
340 		/*
341 		 * At this point, we expect that the AVIC HW has already
342 		 * set the appropriate IRR bits on the valid target
343 		 * vcpus. So, we just need to kick the appropriate vcpu.
344 		 */
345 		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
346 		break;
347 	case AVIC_IPI_FAILURE_INVALID_TARGET:
348 		WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
349 			  index, vcpu->vcpu_id, icrh, icrl);
350 		break;
351 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
352 		WARN_ONCE(1, "Invalid backing page\n");
353 		break;
354 	default:
355 		pr_err("Unknown IPI interception\n");
356 	}
357 
358 	return 1;
359 }
360 
361 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
362 {
363 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
364 	int index;
365 	u32 *logical_apic_id_table;
366 	int dlid = GET_APIC_LOGICAL_ID(ldr);
367 
368 	if (!dlid)
369 		return NULL;
370 
371 	if (flat) { /* flat */
372 		index = ffs(dlid) - 1;
373 		if (index > 7)
374 			return NULL;
375 	} else { /* cluster */
376 		int cluster = (dlid & 0xf0) >> 4;
377 		int apic = ffs(dlid & 0x0f) - 1;
378 
379 		if ((apic < 0) || (apic > 7) ||
380 		    (cluster >= 0xf))
381 			return NULL;
382 		index = (cluster << 2) + apic;
383 	}
384 
385 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
386 
387 	return &logical_apic_id_table[index];
388 }
389 
390 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
391 {
392 	bool flat;
393 	u32 *entry, new_entry;
394 
395 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
396 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
397 	if (!entry)
398 		return -EINVAL;
399 
400 	new_entry = READ_ONCE(*entry);
401 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
402 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
403 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
404 	WRITE_ONCE(*entry, new_entry);
405 
406 	return 0;
407 }
408 
409 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
410 {
411 	struct vcpu_svm *svm = to_svm(vcpu);
412 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
413 	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
414 
415 	if (entry)
416 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
417 }
418 
419 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
420 {
421 	int ret = 0;
422 	struct vcpu_svm *svm = to_svm(vcpu);
423 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
424 	u32 id = kvm_xapic_id(vcpu->arch.apic);
425 
426 	if (ldr == svm->ldr_reg)
427 		return 0;
428 
429 	avic_invalidate_logical_id_entry(vcpu);
430 
431 	if (ldr)
432 		ret = avic_ldr_write(vcpu, id, ldr);
433 
434 	if (!ret)
435 		svm->ldr_reg = ldr;
436 
437 	return ret;
438 }
439 
440 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
441 {
442 	u64 *old, *new;
443 	struct vcpu_svm *svm = to_svm(vcpu);
444 	u32 id = kvm_xapic_id(vcpu->arch.apic);
445 
446 	if (vcpu->vcpu_id == id)
447 		return 0;
448 
449 	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
450 	new = avic_get_physical_id_entry(vcpu, id);
451 	if (!new || !old)
452 		return 1;
453 
454 	/* We need to move physical_id_entry to new offset */
455 	*new = *old;
456 	*old = 0ULL;
457 	to_svm(vcpu)->avic_physical_id_cache = new;
458 
459 	/*
460 	 * Also update the guest physical APIC ID in the logical
461 	 * APIC ID table entry if already setup the LDR.
462 	 */
463 	if (svm->ldr_reg)
464 		avic_handle_ldr_update(vcpu);
465 
466 	return 0;
467 }
468 
469 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
470 {
471 	struct vcpu_svm *svm = to_svm(vcpu);
472 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
473 
474 	if (svm->dfr_reg == dfr)
475 		return;
476 
477 	avic_invalidate_logical_id_entry(vcpu);
478 	svm->dfr_reg = dfr;
479 }
480 
481 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
482 {
483 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
484 	u32 offset = svm->vmcb->control.exit_info_1 &
485 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
486 
487 	switch (offset) {
488 	case APIC_ID:
489 		if (avic_handle_apic_id_update(&svm->vcpu))
490 			return 0;
491 		break;
492 	case APIC_LDR:
493 		if (avic_handle_ldr_update(&svm->vcpu))
494 			return 0;
495 		break;
496 	case APIC_DFR:
497 		avic_handle_dfr_update(&svm->vcpu);
498 		break;
499 	default:
500 		break;
501 	}
502 
503 	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
504 
505 	return 1;
506 }
507 
508 static bool is_avic_unaccelerated_access_trap(u32 offset)
509 {
510 	bool ret = false;
511 
512 	switch (offset) {
513 	case APIC_ID:
514 	case APIC_EOI:
515 	case APIC_RRR:
516 	case APIC_LDR:
517 	case APIC_DFR:
518 	case APIC_SPIV:
519 	case APIC_ESR:
520 	case APIC_ICR:
521 	case APIC_LVTT:
522 	case APIC_LVTTHMR:
523 	case APIC_LVTPC:
524 	case APIC_LVT0:
525 	case APIC_LVT1:
526 	case APIC_LVTERR:
527 	case APIC_TMICT:
528 	case APIC_TDCR:
529 		ret = true;
530 		break;
531 	default:
532 		break;
533 	}
534 	return ret;
535 }
536 
537 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
538 {
539 	struct vcpu_svm *svm = to_svm(vcpu);
540 	int ret = 0;
541 	u32 offset = svm->vmcb->control.exit_info_1 &
542 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
543 	u32 vector = svm->vmcb->control.exit_info_2 &
544 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
545 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
546 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
547 	bool trap = is_avic_unaccelerated_access_trap(offset);
548 
549 	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
550 					    trap, write, vector);
551 	if (trap) {
552 		/* Handling Trap */
553 		WARN_ONCE(!write, "svm: Handling trap read.\n");
554 		ret = avic_unaccel_trap_write(svm);
555 	} else {
556 		/* Handling Fault */
557 		ret = kvm_emulate_instruction(vcpu, 0);
558 	}
559 
560 	return ret;
561 }
562 
563 int avic_init_vcpu(struct vcpu_svm *svm)
564 {
565 	int ret;
566 	struct kvm_vcpu *vcpu = &svm->vcpu;
567 
568 	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
569 		return 0;
570 
571 	ret = avic_init_backing_page(vcpu);
572 	if (ret)
573 		return ret;
574 
575 	INIT_LIST_HEAD(&svm->ir_list);
576 	spin_lock_init(&svm->ir_list_lock);
577 	svm->dfr_reg = APIC_DFR_FLAT;
578 
579 	return ret;
580 }
581 
582 void avic_post_state_restore(struct kvm_vcpu *vcpu)
583 {
584 	if (avic_handle_apic_id_update(vcpu) != 0)
585 		return;
586 	avic_handle_dfr_update(vcpu);
587 	avic_handle_ldr_update(vcpu);
588 }
589 
590 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
591 {
592 	return;
593 }
594 
595 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
596 {
597 }
598 
599 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
600 {
601 }
602 
603 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
604 {
605 	int ret = 0;
606 	unsigned long flags;
607 	struct amd_svm_iommu_ir *ir;
608 	struct vcpu_svm *svm = to_svm(vcpu);
609 
610 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
611 		return 0;
612 
613 	/*
614 	 * Here, we go through the per-vcpu ir_list to update all existing
615 	 * interrupt remapping table entry targeting this vcpu.
616 	 */
617 	spin_lock_irqsave(&svm->ir_list_lock, flags);
618 
619 	if (list_empty(&svm->ir_list))
620 		goto out;
621 
622 	list_for_each_entry(ir, &svm->ir_list, node) {
623 		if (activate)
624 			ret = amd_iommu_activate_guest_mode(ir->data);
625 		else
626 			ret = amd_iommu_deactivate_guest_mode(ir->data);
627 		if (ret)
628 			break;
629 	}
630 out:
631 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
632 	return ret;
633 }
634 
635 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
636 {
637 	struct vcpu_svm *svm = to_svm(vcpu);
638 	struct vmcb *vmcb = svm->vmcb01.ptr;
639 	bool activated = kvm_vcpu_apicv_active(vcpu);
640 
641 	if (!enable_apicv)
642 		return;
643 
644 	if (activated) {
645 		/**
646 		 * During AVIC temporary deactivation, guest could update
647 		 * APIC ID, DFR and LDR registers, which would not be trapped
648 		 * by avic_unaccelerated_access_interception(). In this case,
649 		 * we need to check and update the AVIC logical APIC ID table
650 		 * accordingly before re-activating.
651 		 */
652 		avic_post_state_restore(vcpu);
653 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
654 	} else {
655 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
656 	}
657 	vmcb_mark_dirty(vmcb, VMCB_AVIC);
658 
659 	if (activated)
660 		avic_vcpu_load(vcpu, vcpu->cpu);
661 	else
662 		avic_vcpu_put(vcpu);
663 
664 	svm_set_pi_irte_mode(vcpu, activated);
665 }
666 
667 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
668 {
669 	return;
670 }
671 
672 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
673 {
674 	if (!vcpu->arch.apicv_active)
675 		return -1;
676 
677 	kvm_lapic_set_irr(vec, vcpu->arch.apic);
678 
679 	/*
680 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
681 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
682 	 * the read of guest_mode, which guarantees that either VMRUN will see
683 	 * and process the new vIRR entry, or that the below code will signal
684 	 * the doorbell if the vCPU is already running in the guest.
685 	 */
686 	smp_mb__after_atomic();
687 
688 	/*
689 	 * Signal the doorbell to tell hardware to inject the IRQ if the vCPU
690 	 * is in the guest.  If the vCPU is not in the guest, hardware will
691 	 * automatically process AVIC interrupts at VMRUN.
692 	 */
693 	if (vcpu->mode == IN_GUEST_MODE) {
694 		int cpu = READ_ONCE(vcpu->cpu);
695 
696 		/*
697 		 * Note, the vCPU could get migrated to a different pCPU at any
698 		 * point, which could result in signalling the wrong/previous
699 		 * pCPU.  But if that happens the vCPU is guaranteed to do a
700 		 * VMRUN (after being migrated) and thus will process pending
701 		 * interrupts, i.e. a doorbell is not needed (and the spurious
702 		 * one is harmless).
703 		 */
704 		if (cpu != get_cpu())
705 			wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
706 		put_cpu();
707 	} else {
708 		/*
709 		 * Wake the vCPU if it was blocking.  KVM will then detect the
710 		 * pending IRQ when checking if the vCPU has a wake event.
711 		 */
712 		kvm_vcpu_wake_up(vcpu);
713 	}
714 
715 	return 0;
716 }
717 
718 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
719 {
720 	return false;
721 }
722 
723 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
724 {
725 	unsigned long flags;
726 	struct amd_svm_iommu_ir *cur;
727 
728 	spin_lock_irqsave(&svm->ir_list_lock, flags);
729 	list_for_each_entry(cur, &svm->ir_list, node) {
730 		if (cur->data != pi->ir_data)
731 			continue;
732 		list_del(&cur->node);
733 		kfree(cur);
734 		break;
735 	}
736 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
737 }
738 
739 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
740 {
741 	int ret = 0;
742 	unsigned long flags;
743 	struct amd_svm_iommu_ir *ir;
744 
745 	/**
746 	 * In some cases, the existing irte is updated and re-set,
747 	 * so we need to check here if it's already been * added
748 	 * to the ir_list.
749 	 */
750 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
751 		struct kvm *kvm = svm->vcpu.kvm;
752 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
753 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
754 		struct vcpu_svm *prev_svm;
755 
756 		if (!prev_vcpu) {
757 			ret = -EINVAL;
758 			goto out;
759 		}
760 
761 		prev_svm = to_svm(prev_vcpu);
762 		svm_ir_list_del(prev_svm, pi);
763 	}
764 
765 	/**
766 	 * Allocating new amd_iommu_pi_data, which will get
767 	 * add to the per-vcpu ir_list.
768 	 */
769 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
770 	if (!ir) {
771 		ret = -ENOMEM;
772 		goto out;
773 	}
774 	ir->data = pi->ir_data;
775 
776 	spin_lock_irqsave(&svm->ir_list_lock, flags);
777 	list_add(&ir->node, &svm->ir_list);
778 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
779 out:
780 	return ret;
781 }
782 
783 /*
784  * Note:
785  * The HW cannot support posting multicast/broadcast
786  * interrupts to a vCPU. So, we still use legacy interrupt
787  * remapping for these kind of interrupts.
788  *
789  * For lowest-priority interrupts, we only support
790  * those with single CPU as the destination, e.g. user
791  * configures the interrupts via /proc/irq or uses
792  * irqbalance to make the interrupts single-CPU.
793  */
794 static int
795 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
796 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
797 {
798 	struct kvm_lapic_irq irq;
799 	struct kvm_vcpu *vcpu = NULL;
800 
801 	kvm_set_msi_irq(kvm, e, &irq);
802 
803 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
804 	    !kvm_irq_is_postable(&irq)) {
805 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
806 			 __func__, irq.vector);
807 		return -1;
808 	}
809 
810 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
811 		 irq.vector);
812 	*svm = to_svm(vcpu);
813 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
814 	vcpu_info->vector = irq.vector;
815 
816 	return 0;
817 }
818 
819 /*
820  * svm_update_pi_irte - set IRTE for Posted-Interrupts
821  *
822  * @kvm: kvm
823  * @host_irq: host irq of the interrupt
824  * @guest_irq: gsi of the interrupt
825  * @set: set or unset PI
826  * returns 0 on success, < 0 on failure
827  */
828 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
829 		       uint32_t guest_irq, bool set)
830 {
831 	struct kvm_kernel_irq_routing_entry *e;
832 	struct kvm_irq_routing_table *irq_rt;
833 	int idx, ret = -EINVAL;
834 
835 	if (!kvm_arch_has_assigned_device(kvm) ||
836 	    !irq_remapping_cap(IRQ_POSTING_CAP))
837 		return 0;
838 
839 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
840 		 __func__, host_irq, guest_irq, set);
841 
842 	idx = srcu_read_lock(&kvm->irq_srcu);
843 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
844 	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
845 
846 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
847 		struct vcpu_data vcpu_info;
848 		struct vcpu_svm *svm = NULL;
849 
850 		if (e->type != KVM_IRQ_ROUTING_MSI)
851 			continue;
852 
853 		/**
854 		 * Here, we setup with legacy mode in the following cases:
855 		 * 1. When cannot target interrupt to a specific vcpu.
856 		 * 2. Unsetting posted interrupt.
857 		 * 3. APIC virtualization is disabled for the vcpu.
858 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
859 		 */
860 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
861 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
862 			struct amd_iommu_pi_data pi;
863 
864 			/* Try to enable guest_mode in IRTE */
865 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
866 					    AVIC_HPA_MASK);
867 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
868 						     svm->vcpu.vcpu_id);
869 			pi.is_guest_mode = true;
870 			pi.vcpu_data = &vcpu_info;
871 			ret = irq_set_vcpu_affinity(host_irq, &pi);
872 
873 			/**
874 			 * Here, we successfully setting up vcpu affinity in
875 			 * IOMMU guest mode. Now, we need to store the posted
876 			 * interrupt information in a per-vcpu ir_list so that
877 			 * we can reference to them directly when we update vcpu
878 			 * scheduling information in IOMMU irte.
879 			 */
880 			if (!ret && pi.is_guest_mode)
881 				svm_ir_list_add(svm, &pi);
882 		} else {
883 			/* Use legacy mode in IRTE */
884 			struct amd_iommu_pi_data pi;
885 
886 			/**
887 			 * Here, pi is used to:
888 			 * - Tell IOMMU to use legacy mode for this interrupt.
889 			 * - Retrieve ga_tag of prior interrupt remapping data.
890 			 */
891 			pi.prev_ga_tag = 0;
892 			pi.is_guest_mode = false;
893 			ret = irq_set_vcpu_affinity(host_irq, &pi);
894 
895 			/**
896 			 * Check if the posted interrupt was previously
897 			 * setup with the guest_mode by checking if the ga_tag
898 			 * was cached. If so, we need to clean up the per-vcpu
899 			 * ir_list.
900 			 */
901 			if (!ret && pi.prev_ga_tag) {
902 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
903 				struct kvm_vcpu *vcpu;
904 
905 				vcpu = kvm_get_vcpu_by_id(kvm, id);
906 				if (vcpu)
907 					svm_ir_list_del(to_svm(vcpu), &pi);
908 			}
909 		}
910 
911 		if (!ret && svm) {
912 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
913 						 e->gsi, vcpu_info.vector,
914 						 vcpu_info.pi_desc_addr, set);
915 		}
916 
917 		if (ret < 0) {
918 			pr_err("%s: failed to update PI IRTE\n", __func__);
919 			goto out;
920 		}
921 	}
922 
923 	ret = 0;
924 out:
925 	srcu_read_unlock(&kvm->irq_srcu, idx);
926 	return ret;
927 }
928 
929 bool svm_check_apicv_inhibit_reasons(ulong bit)
930 {
931 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
932 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
933 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
934 			  BIT(APICV_INHIBIT_REASON_NESTED) |
935 			  BIT(APICV_INHIBIT_REASON_IRQWIN) |
936 			  BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
937 			  BIT(APICV_INHIBIT_REASON_X2APIC) |
938 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
939 
940 	return supported & BIT(bit);
941 }
942 
943 
944 static inline int
945 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
946 {
947 	int ret = 0;
948 	unsigned long flags;
949 	struct amd_svm_iommu_ir *ir;
950 	struct vcpu_svm *svm = to_svm(vcpu);
951 
952 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
953 		return 0;
954 
955 	/*
956 	 * Here, we go through the per-vcpu ir_list to update all existing
957 	 * interrupt remapping table entry targeting this vcpu.
958 	 */
959 	spin_lock_irqsave(&svm->ir_list_lock, flags);
960 
961 	if (list_empty(&svm->ir_list))
962 		goto out;
963 
964 	list_for_each_entry(ir, &svm->ir_list, node) {
965 		ret = amd_iommu_update_ga(cpu, r, ir->data);
966 		if (ret)
967 			break;
968 	}
969 out:
970 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
971 	return ret;
972 }
973 
974 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
975 {
976 	u64 entry;
977 	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
978 	int h_physical_id = kvm_cpu_get_apicid(cpu);
979 	struct vcpu_svm *svm = to_svm(vcpu);
980 
981 	lockdep_assert_preemption_disabled();
982 
983 	/*
984 	 * Since the host physical APIC id is 8 bits,
985 	 * we can support host APIC ID upto 255.
986 	 */
987 	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
988 		return;
989 
990 	/*
991 	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
992 	 * is being scheduled in after being preempted.  The CPU entries in the
993 	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
994 	 * If the vCPU was migrated, its new CPU value will be stuffed when the
995 	 * vCPU unblocks.
996 	 */
997 	if (kvm_vcpu_is_blocking(vcpu))
998 		return;
999 
1000 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1001 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1002 
1003 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1004 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1005 	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1006 
1007 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1008 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1009 }
1010 
1011 void avic_vcpu_put(struct kvm_vcpu *vcpu)
1012 {
1013 	u64 entry;
1014 	struct vcpu_svm *svm = to_svm(vcpu);
1015 
1016 	lockdep_assert_preemption_disabled();
1017 
1018 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1019 
1020 	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1021 	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1022 		return;
1023 
1024 	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1025 
1026 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1027 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1028 }
1029 
1030 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1031 {
1032 	if (!kvm_vcpu_apicv_active(vcpu))
1033 		return;
1034 
1035 	preempt_disable();
1036 
1037        /*
1038         * Unload the AVIC when the vCPU is about to block, _before_
1039         * the vCPU actually blocks.
1040         *
1041         * Any IRQs that arrive before IsRunning=0 will not cause an
1042         * incomplete IPI vmexit on the source, therefore vIRR will also
1043         * be checked by kvm_vcpu_check_block() before blocking.  The
1044         * memory barrier implicit in set_current_state orders writing
1045         * IsRunning=0 before reading the vIRR.  The processor needs a
1046         * matching memory barrier on interrupt delivery between writing
1047         * IRR and reading IsRunning; the lack of this barrier might be
1048         * the cause of errata #1235).
1049         */
1050 	avic_vcpu_put(vcpu);
1051 
1052 	preempt_enable();
1053 }
1054 
1055 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1056 {
1057 	int cpu;
1058 
1059 	if (!kvm_vcpu_apicv_active(vcpu))
1060 		return;
1061 
1062 	cpu = get_cpu();
1063 	WARN_ON(cpu != vcpu->cpu);
1064 
1065 	avic_vcpu_load(vcpu, cpu);
1066 
1067 	put_cpu();
1068 }
1069