xref: /openbmc/linux/arch/x86/kvm/pmu.c (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <linux/bsearch.h>
17 #include <linux/sort.h>
18 #include <asm/perf_event.h>
19 #include "x86.h"
20 #include "cpuid.h"
21 #include "lapic.h"
22 #include "pmu.h"
23 
24 /* This is enough to filter the vast majority of currently defined events. */
25 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
26 
27 /* NOTE:
28  * - Each perf counter is defined as "struct kvm_pmc";
29  * - There are two types of perf counters: general purpose (gp) and fixed.
30  *   gp counters are stored in gp_counters[] and fixed counters are stored
31  *   in fixed_counters[] respectively. Both of them are part of "struct
32  *   kvm_pmu";
33  * - pmu.c understands the difference between gp counters and fixed counters.
34  *   However AMD doesn't support fixed-counters;
35  * - There are three types of index to access perf counters (PMC):
36  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
37  *        has MSR_K7_PERFCTRn.
38  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
39  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
40  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
41  *        that it also supports fixed counters. idx can be used to as index to
42  *        gp and fixed counters.
43  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
44  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
45  *        all perf counters (both gp and fixed). The mapping relationship
46  *        between pmc and perf counters is as the following:
47  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
48  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
49  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50  */
51 
52 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
53 {
54 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
55 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
56 
57 	kvm_pmu_deliver_pmi(vcpu);
58 }
59 
60 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
61 {
62 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
63 
64 	/* Ignore counters that have been reprogrammed already. */
65 	if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
66 		return;
67 
68 	__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
69 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
70 
71 	if (!pmc->intr)
72 		return;
73 
74 	/*
75 	 * Inject PMI. If vcpu was in a guest mode during NMI PMI
76 	 * can be ejected on a guest mode re-entry. Otherwise we can't
77 	 * be sure that vcpu wasn't executing hlt instruction at the
78 	 * time of vmexit and is not going to re-enter guest mode until
79 	 * woken up. So we should wake it, but this is impossible from
80 	 * NMI context. Do it from irq work instead.
81 	 */
82 	if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
83 		irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
84 	else
85 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
86 }
87 
88 static void kvm_perf_overflow(struct perf_event *perf_event,
89 			      struct perf_sample_data *data,
90 			      struct pt_regs *regs)
91 {
92 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
93 
94 	__kvm_perf_overflow(pmc, true);
95 }
96 
97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
98 				  u64 config, bool exclude_user,
99 				  bool exclude_kernel, bool intr)
100 {
101 	struct perf_event *event;
102 	struct perf_event_attr attr = {
103 		.type = type,
104 		.size = sizeof(attr),
105 		.pinned = true,
106 		.exclude_idle = true,
107 		.exclude_host = 1,
108 		.exclude_user = exclude_user,
109 		.exclude_kernel = exclude_kernel,
110 		.config = config,
111 	};
112 
113 	if (type == PERF_TYPE_HARDWARE && config >= PERF_COUNT_HW_MAX)
114 		return;
115 
116 	attr.sample_period = get_sample_period(pmc, pmc->counter);
117 
118 	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
119 	    guest_cpuid_is_intel(pmc->vcpu)) {
120 		/*
121 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
122 		 * period. Just clear the sample period so at least
123 		 * allocating the counter doesn't fail.
124 		 */
125 		attr.sample_period = 0;
126 	}
127 
128 	event = perf_event_create_kernel_counter(&attr, -1, current,
129 						 kvm_perf_overflow, pmc);
130 	if (IS_ERR(event)) {
131 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
132 			    PTR_ERR(event), pmc->idx);
133 		return;
134 	}
135 
136 	pmc->perf_event = event;
137 	pmc_to_pmu(pmc)->event_count++;
138 	clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
139 	pmc->is_paused = false;
140 	pmc->intr = intr;
141 }
142 
143 static void pmc_pause_counter(struct kvm_pmc *pmc)
144 {
145 	u64 counter = pmc->counter;
146 
147 	if (!pmc->perf_event || pmc->is_paused)
148 		return;
149 
150 	/* update counter, reset event value to avoid redundant accumulation */
151 	counter += perf_event_pause(pmc->perf_event, true);
152 	pmc->counter = counter & pmc_bitmask(pmc);
153 	pmc->is_paused = true;
154 }
155 
156 static bool pmc_resume_counter(struct kvm_pmc *pmc)
157 {
158 	if (!pmc->perf_event)
159 		return false;
160 
161 	/* recalibrate sample period and check if it's accepted by perf core */
162 	if (perf_event_period(pmc->perf_event,
163 			      get_sample_period(pmc, pmc->counter)))
164 		return false;
165 
166 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
167 	perf_event_enable(pmc->perf_event);
168 	pmc->is_paused = false;
169 
170 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
171 	return true;
172 }
173 
174 static int cmp_u64(const void *a, const void *b)
175 {
176 	return *(__u64 *)a - *(__u64 *)b;
177 }
178 
179 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
180 {
181 	u64 config;
182 	u32 type = PERF_TYPE_RAW;
183 	struct kvm *kvm = pmc->vcpu->kvm;
184 	struct kvm_pmu_event_filter *filter;
185 	struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu);
186 	bool allow_event = true;
187 
188 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
189 		printk_once("kvm pmu: pin control bit is ignored\n");
190 
191 	pmc->eventsel = eventsel;
192 
193 	pmc_pause_counter(pmc);
194 
195 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
196 		return;
197 
198 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
199 	if (filter) {
200 		__u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
201 
202 		if (bsearch(&key, filter->events, filter->nevents,
203 			    sizeof(__u64), cmp_u64))
204 			allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
205 		else
206 			allow_event = filter->action == KVM_PMU_EVENT_DENY;
207 	}
208 	if (!allow_event)
209 		return;
210 
211 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
212 			  ARCH_PERFMON_EVENTSEL_INV |
213 			  ARCH_PERFMON_EVENTSEL_CMASK |
214 			  HSW_IN_TX |
215 			  HSW_IN_TX_CHECKPOINTED))) {
216 		config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
217 		if (config != PERF_COUNT_HW_MAX)
218 			type = PERF_TYPE_HARDWARE;
219 	}
220 
221 	if (type == PERF_TYPE_RAW)
222 		config = eventsel & pmu->raw_event_mask;
223 
224 	if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
225 		return;
226 
227 	pmc_release_perf_event(pmc);
228 
229 	pmc->current_config = eventsel;
230 	pmc_reprogram_counter(pmc, type, config,
231 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
232 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
233 			      eventsel & ARCH_PERFMON_EVENTSEL_INT);
234 }
235 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
236 
237 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
238 {
239 	unsigned en_field = ctrl & 0x3;
240 	bool pmi = ctrl & 0x8;
241 	struct kvm_pmu_event_filter *filter;
242 	struct kvm *kvm = pmc->vcpu->kvm;
243 
244 	pmc_pause_counter(pmc);
245 
246 	if (!en_field || !pmc_is_enabled(pmc))
247 		return;
248 
249 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
250 	if (filter) {
251 		if (filter->action == KVM_PMU_EVENT_DENY &&
252 		    test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
253 			return;
254 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
255 		    !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
256 			return;
257 	}
258 
259 	if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
260 		return;
261 
262 	pmc_release_perf_event(pmc);
263 
264 	pmc->current_config = (u64)ctrl;
265 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
266 			      kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc),
267 			      !(en_field & 0x2), /* exclude user */
268 			      !(en_field & 0x1), /* exclude kernel */
269 			      pmi);
270 }
271 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
272 
273 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
274 {
275 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
276 
277 	if (!pmc)
278 		return;
279 
280 	if (pmc_is_gp(pmc))
281 		reprogram_gp_counter(pmc, pmc->eventsel);
282 	else {
283 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
284 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
285 
286 		reprogram_fixed_counter(pmc, ctrl, idx);
287 	}
288 }
289 EXPORT_SYMBOL_GPL(reprogram_counter);
290 
291 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
292 {
293 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
294 	int bit;
295 
296 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
297 		struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
298 
299 		if (unlikely(!pmc || !pmc->perf_event)) {
300 			clear_bit(bit, pmu->reprogram_pmi);
301 			continue;
302 		}
303 
304 		reprogram_counter(pmu, bit);
305 	}
306 
307 	/*
308 	 * Unused perf_events are only released if the corresponding MSRs
309 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
310 	 * triggers KVM_REQ_PMU if cleanup is needed.
311 	 */
312 	if (unlikely(pmu->need_cleanup))
313 		kvm_pmu_cleanup(vcpu);
314 }
315 
316 /* check if idx is a valid index to access PMU */
317 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
318 {
319 	return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
320 }
321 
322 bool is_vmware_backdoor_pmc(u32 pmc_idx)
323 {
324 	switch (pmc_idx) {
325 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
326 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
327 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
328 		return true;
329 	}
330 	return false;
331 }
332 
333 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
334 {
335 	u64 ctr_val;
336 
337 	switch (idx) {
338 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
339 		ctr_val = rdtsc();
340 		break;
341 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
342 		ctr_val = ktime_get_boottime_ns();
343 		break;
344 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
345 		ctr_val = ktime_get_boottime_ns() +
346 			vcpu->kvm->arch.kvmclock_offset;
347 		break;
348 	default:
349 		return 1;
350 	}
351 
352 	*data = ctr_val;
353 	return 0;
354 }
355 
356 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
357 {
358 	bool fast_mode = idx & (1u << 31);
359 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
360 	struct kvm_pmc *pmc;
361 	u64 mask = fast_mode ? ~0u : ~0ull;
362 
363 	if (!pmu->version)
364 		return 1;
365 
366 	if (is_vmware_backdoor_pmc(idx))
367 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
368 
369 	pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
370 	if (!pmc)
371 		return 1;
372 
373 	if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
374 	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
375 	    (kvm_read_cr0(vcpu) & X86_CR0_PE))
376 		return 1;
377 
378 	*data = pmc_read_counter(pmc) & mask;
379 	return 0;
380 }
381 
382 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
383 {
384 	if (lapic_in_kernel(vcpu)) {
385 		if (kvm_x86_ops.pmu_ops->deliver_pmi)
386 			kvm_x86_ops.pmu_ops->deliver_pmi(vcpu);
387 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
388 	}
389 }
390 
391 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
392 {
393 	return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
394 		kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
395 }
396 
397 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
398 {
399 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
400 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
401 
402 	if (pmc)
403 		__set_bit(pmc->idx, pmu->pmc_in_use);
404 }
405 
406 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 {
408 	return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
409 }
410 
411 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
412 {
413 	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
414 	return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
415 }
416 
417 /* refresh PMU settings. This function generally is called when underlying
418  * settings are changed (such as changes of PMU CPUID by guest VMs), which
419  * should rarely happen.
420  */
421 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
422 {
423 	kvm_x86_ops.pmu_ops->refresh(vcpu);
424 }
425 
426 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
427 {
428 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
429 
430 	irq_work_sync(&pmu->irq_work);
431 	kvm_x86_ops.pmu_ops->reset(vcpu);
432 }
433 
434 void kvm_pmu_init(struct kvm_vcpu *vcpu)
435 {
436 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
437 
438 	memset(pmu, 0, sizeof(*pmu));
439 	kvm_x86_ops.pmu_ops->init(vcpu);
440 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
441 	pmu->event_count = 0;
442 	pmu->need_cleanup = false;
443 	kvm_pmu_refresh(vcpu);
444 }
445 
446 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
447 {
448 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
449 
450 	if (pmc_is_fixed(pmc))
451 		return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
452 			pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
453 
454 	return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
455 }
456 
457 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
458 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
459 {
460 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
461 	struct kvm_pmc *pmc = NULL;
462 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
463 	int i;
464 
465 	pmu->need_cleanup = false;
466 
467 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
468 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
469 
470 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
471 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
472 
473 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
474 			pmc_stop_counter(pmc);
475 	}
476 
477 	if (kvm_x86_ops.pmu_ops->cleanup)
478 		kvm_x86_ops.pmu_ops->cleanup(vcpu);
479 
480 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
481 }
482 
483 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
484 {
485 	kvm_pmu_reset(vcpu);
486 }
487 
488 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
489 {
490 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
491 	u64 prev_count;
492 
493 	prev_count = pmc->counter;
494 	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
495 
496 	reprogram_counter(pmu, pmc->idx);
497 	if (pmc->counter < prev_count)
498 		__kvm_perf_overflow(pmc, false);
499 }
500 
501 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
502 	unsigned int perf_hw_id)
503 {
504 	u64 old_eventsel = pmc->eventsel;
505 	unsigned int config;
506 
507 	pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK);
508 	config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
509 	pmc->eventsel = old_eventsel;
510 	return config == perf_hw_id;
511 }
512 
513 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
514 {
515 	bool select_os, select_user;
516 	u64 config = pmc->current_config;
517 
518 	if (pmc_is_gp(pmc)) {
519 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
520 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
521 	} else {
522 		select_os = config & 0x1;
523 		select_user = config & 0x2;
524 	}
525 
526 	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
527 }
528 
529 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
530 {
531 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
532 	struct kvm_pmc *pmc;
533 	int i;
534 
535 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
536 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
537 
538 		if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
539 			continue;
540 
541 		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
542 		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
543 			kvm_pmu_incr_counter(pmc);
544 	}
545 }
546 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
547 
548 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
549 {
550 	struct kvm_pmu_event_filter tmp, *filter;
551 	size_t size;
552 	int r;
553 
554 	if (copy_from_user(&tmp, argp, sizeof(tmp)))
555 		return -EFAULT;
556 
557 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
558 	    tmp.action != KVM_PMU_EVENT_DENY)
559 		return -EINVAL;
560 
561 	if (tmp.flags != 0)
562 		return -EINVAL;
563 
564 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
565 		return -E2BIG;
566 
567 	size = struct_size(filter, events, tmp.nevents);
568 	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
569 	if (!filter)
570 		return -ENOMEM;
571 
572 	r = -EFAULT;
573 	if (copy_from_user(filter, argp, size))
574 		goto cleanup;
575 
576 	/* Ensure nevents can't be changed between the user copies. */
577 	*filter = tmp;
578 
579 	/*
580 	 * Sort the in-kernel list so that we can search it with bsearch.
581 	 */
582 	sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
583 
584 	mutex_lock(&kvm->lock);
585 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
586 				     mutex_is_locked(&kvm->lock));
587 	mutex_unlock(&kvm->lock);
588 
589 	synchronize_srcu_expedited(&kvm->srcu);
590 	r = 0;
591 cleanup:
592 	kfree(filter);
593 	return r;
594 }
595