1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/types.h> 15 #include <linux/kvm_host.h> 16 #include <linux/perf_event.h> 17 #include <linux/bsearch.h> 18 #include <linux/sort.h> 19 #include <asm/perf_event.h> 20 #include <asm/cpu_device_id.h> 21 #include "x86.h" 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "pmu.h" 25 26 /* This is enough to filter the vast majority of currently defined events. */ 27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 28 29 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 30 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 31 32 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = { 33 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 35 {} 36 }; 37 38 /* NOTE: 39 * - Each perf counter is defined as "struct kvm_pmc"; 40 * - There are two types of perf counters: general purpose (gp) and fixed. 41 * gp counters are stored in gp_counters[] and fixed counters are stored 42 * in fixed_counters[] respectively. Both of them are part of "struct 43 * kvm_pmu"; 44 * - pmu.c understands the difference between gp counters and fixed counters. 45 * However AMD doesn't support fixed-counters; 46 * - There are three types of index to access perf counters (PMC): 47 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 48 * has MSR_K7_PERFCTRn and, for families 15H and later, 49 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 50 * aliased to MSR_K7_PERFCTRn. 51 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 52 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 53 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 54 * that it also supports fixed counters. idx can be used to as index to 55 * gp and fixed counters. 56 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 57 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 58 * all perf counters (both gp and fixed). The mapping relationship 59 * between pmc and perf counters is as the following: 60 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 61 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 62 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 63 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 64 */ 65 66 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 67 68 #define KVM_X86_PMU_OP(func) \ 69 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 70 *(((struct kvm_pmu_ops *)0)->func)); 71 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 72 #include <asm/kvm-x86-pmu-ops.h> 73 74 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 75 { 76 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 77 78 #define __KVM_X86_PMU_OP(func) \ 79 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 80 #define KVM_X86_PMU_OP(func) \ 81 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 82 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 83 #include <asm/kvm-x86-pmu-ops.h> 84 #undef __KVM_X86_PMU_OP 85 } 86 87 static inline bool pmc_is_enabled(struct kvm_pmc *pmc) 88 { 89 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); 90 } 91 92 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 93 { 94 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 95 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 96 97 kvm_pmu_deliver_pmi(vcpu); 98 } 99 100 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 101 { 102 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 103 bool skip_pmi = false; 104 105 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 106 if (!in_pmi) { 107 /* 108 * TODO: KVM is currently _choosing_ to not generate records 109 * for emulated instructions, avoiding BUFFER_OVF PMI when 110 * there are no records. Strictly speaking, it should be done 111 * as well in the right context to improve sampling accuracy. 112 */ 113 skip_pmi = true; 114 } else { 115 /* Indicate PEBS overflow PMI to guest. */ 116 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 117 (unsigned long *)&pmu->global_status); 118 } 119 } else { 120 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 121 } 122 123 if (!pmc->intr || skip_pmi) 124 return; 125 126 /* 127 * Inject PMI. If vcpu was in a guest mode during NMI PMI 128 * can be ejected on a guest mode re-entry. Otherwise we can't 129 * be sure that vcpu wasn't executing hlt instruction at the 130 * time of vmexit and is not going to re-enter guest mode until 131 * woken up. So we should wake it, but this is impossible from 132 * NMI context. Do it from irq work instead. 133 */ 134 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 135 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 136 else 137 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 138 } 139 140 static void kvm_perf_overflow(struct perf_event *perf_event, 141 struct perf_sample_data *data, 142 struct pt_regs *regs) 143 { 144 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 145 146 /* 147 * Ignore overflow events for counters that are scheduled to be 148 * reprogrammed, e.g. if a PMI for the previous event races with KVM's 149 * handling of a related guest WRMSR. 150 */ 151 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 152 return; 153 154 __kvm_perf_overflow(pmc, true); 155 156 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 157 } 158 159 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 160 bool exclude_user, bool exclude_kernel, 161 bool intr) 162 { 163 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 164 struct perf_event *event; 165 struct perf_event_attr attr = { 166 .type = type, 167 .size = sizeof(attr), 168 .pinned = true, 169 .exclude_idle = true, 170 .exclude_host = 1, 171 .exclude_user = exclude_user, 172 .exclude_kernel = exclude_kernel, 173 .config = config, 174 }; 175 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 176 177 attr.sample_period = get_sample_period(pmc, pmc->counter); 178 179 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 180 guest_cpuid_is_intel(pmc->vcpu)) { 181 /* 182 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 183 * period. Just clear the sample period so at least 184 * allocating the counter doesn't fail. 185 */ 186 attr.sample_period = 0; 187 } 188 if (pebs) { 189 /* 190 * The non-zero precision level of guest event makes the ordinary 191 * guest event becomes a guest PEBS event and triggers the host 192 * PEBS PMI handler to determine whether the PEBS overflow PMI 193 * comes from the host counters or the guest. 194 * 195 * For most PEBS hardware events, the difference in the software 196 * precision levels of guest and host PEBS events will not affect 197 * the accuracy of the PEBS profiling result, because the "event IP" 198 * in the PEBS record is calibrated on the guest side. 199 * 200 * On Icelake everything is fine. Other hardware (GLC+, TNT+) that 201 * could possibly care here is unsupported and needs changes. 202 */ 203 attr.precise_ip = 1; 204 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32) 205 attr.precise_ip = 3; 206 } 207 208 event = perf_event_create_kernel_counter(&attr, -1, current, 209 kvm_perf_overflow, pmc); 210 if (IS_ERR(event)) { 211 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 212 PTR_ERR(event), pmc->idx); 213 return PTR_ERR(event); 214 } 215 216 pmc->perf_event = event; 217 pmc_to_pmu(pmc)->event_count++; 218 pmc->is_paused = false; 219 pmc->intr = intr || pebs; 220 return 0; 221 } 222 223 static void pmc_pause_counter(struct kvm_pmc *pmc) 224 { 225 u64 counter = pmc->counter; 226 227 if (!pmc->perf_event || pmc->is_paused) 228 return; 229 230 /* update counter, reset event value to avoid redundant accumulation */ 231 counter += perf_event_pause(pmc->perf_event, true); 232 pmc->counter = counter & pmc_bitmask(pmc); 233 pmc->is_paused = true; 234 } 235 236 static bool pmc_resume_counter(struct kvm_pmc *pmc) 237 { 238 if (!pmc->perf_event) 239 return false; 240 241 /* recalibrate sample period and check if it's accepted by perf core */ 242 if (is_sampling_event(pmc->perf_event) && 243 perf_event_period(pmc->perf_event, 244 get_sample_period(pmc, pmc->counter))) 245 return false; 246 247 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 248 (!!pmc->perf_event->attr.precise_ip)) 249 return false; 250 251 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 252 perf_event_enable(pmc->perf_event); 253 pmc->is_paused = false; 254 255 return true; 256 } 257 258 static int cmp_u64(const void *pa, const void *pb) 259 { 260 u64 a = *(u64 *)pa; 261 u64 b = *(u64 *)pb; 262 263 return (a > b) - (a < b); 264 } 265 266 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 267 { 268 struct kvm_pmu_event_filter *filter; 269 struct kvm *kvm = pmc->vcpu->kvm; 270 bool allow_event = true; 271 __u64 key; 272 int idx; 273 274 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) 275 return false; 276 277 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 278 if (!filter) 279 goto out; 280 281 if (pmc_is_gp(pmc)) { 282 key = pmc->eventsel & (kvm_pmu_ops.EVENTSEL_EVENT | 283 ARCH_PERFMON_EVENTSEL_UMASK); 284 if (bsearch(&key, filter->events, filter->nevents, 285 sizeof(__u64), cmp_u64)) 286 allow_event = filter->action == KVM_PMU_EVENT_ALLOW; 287 else 288 allow_event = filter->action == KVM_PMU_EVENT_DENY; 289 } else { 290 idx = pmc->idx - INTEL_PMC_IDX_FIXED; 291 if (filter->action == KVM_PMU_EVENT_DENY && 292 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 293 allow_event = false; 294 if (filter->action == KVM_PMU_EVENT_ALLOW && 295 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 296 allow_event = false; 297 } 298 299 out: 300 return allow_event; 301 } 302 303 static void reprogram_counter(struct kvm_pmc *pmc) 304 { 305 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 306 u64 eventsel = pmc->eventsel; 307 u64 new_config = eventsel; 308 u8 fixed_ctr_ctrl; 309 310 pmc_pause_counter(pmc); 311 312 if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc)) 313 goto reprogram_complete; 314 315 if (!check_pmu_event_filter(pmc)) 316 goto reprogram_complete; 317 318 if (pmc->counter < pmc->prev_counter) 319 __kvm_perf_overflow(pmc, false); 320 321 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 322 printk_once("kvm pmu: pin control bit is ignored\n"); 323 324 if (pmc_is_fixed(pmc)) { 325 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 326 pmc->idx - INTEL_PMC_IDX_FIXED); 327 if (fixed_ctr_ctrl & 0x1) 328 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 329 if (fixed_ctr_ctrl & 0x2) 330 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 331 if (fixed_ctr_ctrl & 0x8) 332 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 333 new_config = (u64)fixed_ctr_ctrl; 334 } 335 336 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 337 goto reprogram_complete; 338 339 pmc_release_perf_event(pmc); 340 341 pmc->current_config = new_config; 342 343 /* 344 * If reprogramming fails, e.g. due to contention, leave the counter's 345 * regprogram bit set, i.e. opportunistically try again on the next PMU 346 * refresh. Don't make a new request as doing so can stall the guest 347 * if reprogramming repeatedly fails. 348 */ 349 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 350 (eventsel & pmu->raw_event_mask), 351 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 352 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 353 eventsel & ARCH_PERFMON_EVENTSEL_INT)) 354 return; 355 356 reprogram_complete: 357 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 358 pmc->prev_counter = 0; 359 } 360 361 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 362 { 363 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 364 int bit; 365 366 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 367 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 368 369 if (unlikely(!pmc)) { 370 clear_bit(bit, pmu->reprogram_pmi); 371 continue; 372 } 373 374 reprogram_counter(pmc); 375 } 376 377 /* 378 * Unused perf_events are only released if the corresponding MSRs 379 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 380 * triggers KVM_REQ_PMU if cleanup is needed. 381 */ 382 if (unlikely(pmu->need_cleanup)) 383 kvm_pmu_cleanup(vcpu); 384 } 385 386 /* check if idx is a valid index to access PMU */ 387 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 388 { 389 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 390 } 391 392 bool is_vmware_backdoor_pmc(u32 pmc_idx) 393 { 394 switch (pmc_idx) { 395 case VMWARE_BACKDOOR_PMC_HOST_TSC: 396 case VMWARE_BACKDOOR_PMC_REAL_TIME: 397 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 398 return true; 399 } 400 return false; 401 } 402 403 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 404 { 405 u64 ctr_val; 406 407 switch (idx) { 408 case VMWARE_BACKDOOR_PMC_HOST_TSC: 409 ctr_val = rdtsc(); 410 break; 411 case VMWARE_BACKDOOR_PMC_REAL_TIME: 412 ctr_val = ktime_get_boottime_ns(); 413 break; 414 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 415 ctr_val = ktime_get_boottime_ns() + 416 vcpu->kvm->arch.kvmclock_offset; 417 break; 418 default: 419 return 1; 420 } 421 422 *data = ctr_val; 423 return 0; 424 } 425 426 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 427 { 428 bool fast_mode = idx & (1u << 31); 429 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 430 struct kvm_pmc *pmc; 431 u64 mask = fast_mode ? ~0u : ~0ull; 432 433 if (!pmu->version) 434 return 1; 435 436 if (is_vmware_backdoor_pmc(idx)) 437 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 438 439 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 440 if (!pmc) 441 return 1; 442 443 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && 444 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 445 (kvm_read_cr0(vcpu) & X86_CR0_PE)) 446 return 1; 447 448 *data = pmc_read_counter(pmc) & mask; 449 return 0; 450 } 451 452 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 453 { 454 if (lapic_in_kernel(vcpu)) { 455 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 456 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 457 } 458 } 459 460 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 461 { 462 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 463 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 464 } 465 466 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 467 { 468 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 469 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 470 471 if (pmc) 472 __set_bit(pmc->idx, pmu->pmc_in_use); 473 } 474 475 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 478 } 479 480 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 481 { 482 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 483 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 484 } 485 486 /* refresh PMU settings. This function generally is called when underlying 487 * settings are changed (such as changes of PMU CPUID by guest VMs), which 488 * should rarely happen. 489 */ 490 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 491 { 492 static_call(kvm_x86_pmu_refresh)(vcpu); 493 } 494 495 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 496 { 497 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 498 499 irq_work_sync(&pmu->irq_work); 500 static_call(kvm_x86_pmu_reset)(vcpu); 501 } 502 503 void kvm_pmu_init(struct kvm_vcpu *vcpu) 504 { 505 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 506 507 memset(pmu, 0, sizeof(*pmu)); 508 static_call(kvm_x86_pmu_init)(vcpu); 509 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 510 pmu->event_count = 0; 511 pmu->need_cleanup = false; 512 kvm_pmu_refresh(vcpu); 513 } 514 515 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 516 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 517 { 518 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 519 struct kvm_pmc *pmc = NULL; 520 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 521 int i; 522 523 pmu->need_cleanup = false; 524 525 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 526 pmu->pmc_in_use, X86_PMC_IDX_MAX); 527 528 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 529 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 530 531 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 532 pmc_stop_counter(pmc); 533 } 534 535 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 536 537 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 538 } 539 540 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 541 { 542 kvm_pmu_reset(vcpu); 543 } 544 545 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 546 { 547 pmc->prev_counter = pmc->counter; 548 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 549 kvm_pmu_request_counter_reprogam(pmc); 550 } 551 552 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 553 unsigned int perf_hw_id) 554 { 555 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 556 AMD64_RAW_EVENT_MASK_NB); 557 } 558 559 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 560 { 561 bool select_os, select_user; 562 u64 config; 563 564 if (pmc_is_gp(pmc)) { 565 config = pmc->eventsel; 566 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 567 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 568 } else { 569 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 570 pmc->idx - INTEL_PMC_IDX_FIXED); 571 select_os = config & 0x1; 572 select_user = config & 0x2; 573 } 574 575 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 576 } 577 578 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 579 { 580 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 581 struct kvm_pmc *pmc; 582 int i; 583 584 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 585 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 586 587 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) 588 continue; 589 590 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 591 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 592 kvm_pmu_incr_counter(pmc); 593 } 594 } 595 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 596 597 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 598 { 599 struct kvm_pmu_event_filter tmp, *filter; 600 struct kvm_vcpu *vcpu; 601 unsigned long i; 602 size_t size; 603 int r; 604 605 if (copy_from_user(&tmp, argp, sizeof(tmp))) 606 return -EFAULT; 607 608 if (tmp.action != KVM_PMU_EVENT_ALLOW && 609 tmp.action != KVM_PMU_EVENT_DENY) 610 return -EINVAL; 611 612 if (tmp.flags != 0) 613 return -EINVAL; 614 615 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 616 return -E2BIG; 617 618 size = struct_size(filter, events, tmp.nevents); 619 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 620 if (!filter) 621 return -ENOMEM; 622 623 r = -EFAULT; 624 if (copy_from_user(filter, argp, size)) 625 goto cleanup; 626 627 /* Ensure nevents can't be changed between the user copies. */ 628 *filter = tmp; 629 630 /* 631 * Sort the in-kernel list so that we can search it with bsearch. 632 */ 633 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL); 634 635 mutex_lock(&kvm->lock); 636 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 637 mutex_is_locked(&kvm->lock)); 638 synchronize_srcu_expedited(&kvm->srcu); 639 640 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 641 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 642 643 kvm_for_each_vcpu(i, vcpu, kvm) 644 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 645 646 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 647 648 mutex_unlock(&kvm->lock); 649 650 r = 0; 651 cleanup: 652 kfree(filter); 653 return r; 654 } 655