1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 #ifdef CONFIG_PREEMPT_RT 62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 64 #else 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 66 #endif 67 68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 70 71 static const struct kernel_param_ops nx_huge_pages_ops = { 72 .set = set_nx_huge_pages, 73 .get = param_get_bool, 74 }; 75 76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 77 .set = set_nx_huge_pages_recovery_ratio, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 84 &nx_huge_pages_recovery_ratio, 0644); 85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 86 87 static bool __read_mostly force_flush_and_sync_on_reuse; 88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 89 90 /* 91 * When setting this variable to true it enables Two-Dimensional-Paging 92 * where the hardware walks 2 page tables: 93 * 1. the guest-virtual to guest-physical 94 * 2. while doing 1. it walks guest-physical to host-physical 95 * If the hardware supports that we don't need to do shadow paging. 96 */ 97 bool tdp_enabled = false; 98 99 static int max_huge_page_level __read_mostly; 100 static int tdp_root_level __read_mostly; 101 static int max_tdp_level __read_mostly; 102 103 enum { 104 AUDIT_PRE_PAGE_FAULT, 105 AUDIT_POST_PAGE_FAULT, 106 AUDIT_PRE_PTE_WRITE, 107 AUDIT_POST_PTE_WRITE, 108 AUDIT_PRE_SYNC, 109 AUDIT_POST_SYNC 110 }; 111 112 #ifdef MMU_DEBUG 113 bool dbg = 0; 114 module_param(dbg, bool, 0644); 115 #endif 116 117 #define PTE_PREFETCH_NUM 8 118 119 #define PT32_LEVEL_BITS 10 120 121 #define PT32_LEVEL_SHIFT(level) \ 122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 123 124 #define PT32_LVL_OFFSET_MASK(level) \ 125 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 126 * PT32_LEVEL_BITS))) - 1)) 127 128 #define PT32_INDEX(address, level)\ 129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 130 131 132 #define PT32_BASE_ADDR_MASK PAGE_MASK 133 #define PT32_DIR_BASE_ADDR_MASK \ 134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 135 #define PT32_LVL_ADDR_MASK(level) \ 136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 137 * PT32_LEVEL_BITS))) - 1)) 138 139 #include <trace/events/kvm.h> 140 141 /* make pte_list_desc fit well in cache lines */ 142 #define PTE_LIST_EXT 14 143 144 /* 145 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 146 * at the start; then accessing it will only use one single cacheline for 147 * either full (entries==PTE_LIST_EXT) case or entries<=6. 148 */ 149 struct pte_list_desc { 150 struct pte_list_desc *more; 151 /* 152 * Stores number of entries stored in the pte_list_desc. No need to be 153 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 154 */ 155 u64 spte_count; 156 u64 *sptes[PTE_LIST_EXT]; 157 }; 158 159 struct kvm_shadow_walk_iterator { 160 u64 addr; 161 hpa_t shadow_addr; 162 u64 *sptep; 163 int level; 164 unsigned index; 165 }; 166 167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 168 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 169 (_root), (_addr)); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)); \ 176 shadow_walk_next(&(_walker))) 177 178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 179 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 180 shadow_walk_okay(&(_walker)) && \ 181 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 182 __shadow_walk_next(&(_walker), spte)) 183 184 static struct kmem_cache *pte_list_desc_cache; 185 struct kmem_cache *mmu_page_header_cache; 186 static struct percpu_counter kvm_total_used_mmu_pages; 187 188 static void mmu_spte_set(u64 *sptep, u64 spte); 189 static union kvm_mmu_page_role 190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 191 192 struct kvm_mmu_role_regs { 193 const unsigned long cr0; 194 const unsigned long cr4; 195 const u64 efer; 196 }; 197 198 #define CREATE_TRACE_POINTS 199 #include "mmutrace.h" 200 201 /* 202 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 203 * reading from the role_regs. Once the mmu_role is constructed, it becomes 204 * the single source of truth for the MMU's state. 205 */ 206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 208 { \ 209 return !!(regs->reg & flag); \ 210 } 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 221 222 /* 223 * The MMU itself (with a valid role) is the single source of truth for the 224 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 225 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 226 * and the vCPU may be incorrect/irrelevant. 227 */ 228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 230 { \ 231 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 232 } 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 235 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 236 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 237 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 238 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 240 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 242 243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 244 { 245 struct kvm_mmu_role_regs regs = { 246 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 247 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 248 .efer = vcpu->arch.efer, 249 }; 250 251 return regs; 252 } 253 254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 255 { 256 if (!____is_cr0_pg(regs)) 257 return 0; 258 else if (____is_efer_lma(regs)) 259 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 260 PT64_ROOT_4LEVEL; 261 else if (____is_cr4_pae(regs)) 262 return PT32E_ROOT_LEVEL; 263 else 264 return PT32_ROOT_LEVEL; 265 } 266 267 static inline bool kvm_available_flush_tlb_with_range(void) 268 { 269 return kvm_x86_ops.tlb_remote_flush_with_range; 270 } 271 272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 273 struct kvm_tlb_range *range) 274 { 275 int ret = -ENOTSUPP; 276 277 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 278 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 279 280 if (ret) 281 kvm_flush_remote_tlbs(kvm); 282 } 283 284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 285 u64 start_gfn, u64 pages) 286 { 287 struct kvm_tlb_range range; 288 289 range.start_gfn = start_gfn; 290 range.pages = pages; 291 292 kvm_flush_remote_tlbs_with_range(kvm, &range); 293 } 294 295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 296 unsigned int access) 297 { 298 u64 spte = make_mmio_spte(vcpu, gfn, access); 299 300 trace_mark_mmio_spte(sptep, gfn, spte); 301 mmu_spte_set(sptep, spte); 302 } 303 304 static gfn_t get_mmio_spte_gfn(u64 spte) 305 { 306 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 307 308 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 309 & shadow_nonpresent_or_rsvd_mask; 310 311 return gpa >> PAGE_SHIFT; 312 } 313 314 static unsigned get_mmio_spte_access(u64 spte) 315 { 316 return spte & shadow_mmio_access_mask; 317 } 318 319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 320 { 321 u64 kvm_gen, spte_gen, gen; 322 323 gen = kvm_vcpu_memslots(vcpu)->generation; 324 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 325 return false; 326 327 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 328 spte_gen = get_mmio_spte_generation(spte); 329 330 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 331 return likely(kvm_gen == spte_gen); 332 } 333 334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 335 struct x86_exception *exception) 336 { 337 return gpa; 338 } 339 340 static int is_cpuid_PSE36(void) 341 { 342 return 1; 343 } 344 345 static gfn_t pse36_gfn_delta(u32 gpte) 346 { 347 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 348 349 return (gpte & PT32_DIR_PSE36_MASK) << shift; 350 } 351 352 #ifdef CONFIG_X86_64 353 static void __set_spte(u64 *sptep, u64 spte) 354 { 355 WRITE_ONCE(*sptep, spte); 356 } 357 358 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 359 { 360 WRITE_ONCE(*sptep, spte); 361 } 362 363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 364 { 365 return xchg(sptep, spte); 366 } 367 368 static u64 __get_spte_lockless(u64 *sptep) 369 { 370 return READ_ONCE(*sptep); 371 } 372 #else 373 union split_spte { 374 struct { 375 u32 spte_low; 376 u32 spte_high; 377 }; 378 u64 spte; 379 }; 380 381 static void count_spte_clear(u64 *sptep, u64 spte) 382 { 383 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 384 385 if (is_shadow_present_pte(spte)) 386 return; 387 388 /* Ensure the spte is completely set before we increase the count */ 389 smp_wmb(); 390 sp->clear_spte_count++; 391 } 392 393 static void __set_spte(u64 *sptep, u64 spte) 394 { 395 union split_spte *ssptep, sspte; 396 397 ssptep = (union split_spte *)sptep; 398 sspte = (union split_spte)spte; 399 400 ssptep->spte_high = sspte.spte_high; 401 402 /* 403 * If we map the spte from nonpresent to present, We should store 404 * the high bits firstly, then set present bit, so cpu can not 405 * fetch this spte while we are setting the spte. 406 */ 407 smp_wmb(); 408 409 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 410 } 411 412 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 413 { 414 union split_spte *ssptep, sspte; 415 416 ssptep = (union split_spte *)sptep; 417 sspte = (union split_spte)spte; 418 419 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 420 421 /* 422 * If we map the spte from present to nonpresent, we should clear 423 * present bit firstly to avoid vcpu fetch the old high bits. 424 */ 425 smp_wmb(); 426 427 ssptep->spte_high = sspte.spte_high; 428 count_spte_clear(sptep, spte); 429 } 430 431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 432 { 433 union split_spte *ssptep, sspte, orig; 434 435 ssptep = (union split_spte *)sptep; 436 sspte = (union split_spte)spte; 437 438 /* xchg acts as a barrier before the setting of the high bits */ 439 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 440 orig.spte_high = ssptep->spte_high; 441 ssptep->spte_high = sspte.spte_high; 442 count_spte_clear(sptep, spte); 443 444 return orig.spte; 445 } 446 447 /* 448 * The idea using the light way get the spte on x86_32 guest is from 449 * gup_get_pte (mm/gup.c). 450 * 451 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 452 * coalesces them and we are running out of the MMU lock. Therefore 453 * we need to protect against in-progress updates of the spte. 454 * 455 * Reading the spte while an update is in progress may get the old value 456 * for the high part of the spte. The race is fine for a present->non-present 457 * change (because the high part of the spte is ignored for non-present spte), 458 * but for a present->present change we must reread the spte. 459 * 460 * All such changes are done in two steps (present->non-present and 461 * non-present->present), hence it is enough to count the number of 462 * present->non-present updates: if it changed while reading the spte, 463 * we might have hit the race. This is done using clear_spte_count. 464 */ 465 static u64 __get_spte_lockless(u64 *sptep) 466 { 467 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 468 union split_spte spte, *orig = (union split_spte *)sptep; 469 int count; 470 471 retry: 472 count = sp->clear_spte_count; 473 smp_rmb(); 474 475 spte.spte_low = orig->spte_low; 476 smp_rmb(); 477 478 spte.spte_high = orig->spte_high; 479 smp_rmb(); 480 481 if (unlikely(spte.spte_low != orig->spte_low || 482 count != sp->clear_spte_count)) 483 goto retry; 484 485 return spte.spte; 486 } 487 #endif 488 489 static bool spte_has_volatile_bits(u64 spte) 490 { 491 if (!is_shadow_present_pte(spte)) 492 return false; 493 494 /* 495 * Always atomically update spte if it can be updated 496 * out of mmu-lock, it can ensure dirty bit is not lost, 497 * also, it can help us to get a stable is_writable_pte() 498 * to ensure tlb flush is not missed. 499 */ 500 if (spte_can_locklessly_be_made_writable(spte) || 501 is_access_track_spte(spte)) 502 return true; 503 504 if (spte_ad_enabled(spte)) { 505 if ((spte & shadow_accessed_mask) == 0 || 506 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 507 return true; 508 } 509 510 return false; 511 } 512 513 /* Rules for using mmu_spte_set: 514 * Set the sptep from nonpresent to present. 515 * Note: the sptep being assigned *must* be either not present 516 * or in a state where the hardware will not attempt to update 517 * the spte. 518 */ 519 static void mmu_spte_set(u64 *sptep, u64 new_spte) 520 { 521 WARN_ON(is_shadow_present_pte(*sptep)); 522 __set_spte(sptep, new_spte); 523 } 524 525 /* 526 * Update the SPTE (excluding the PFN), but do not track changes in its 527 * accessed/dirty status. 528 */ 529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 530 { 531 u64 old_spte = *sptep; 532 533 WARN_ON(!is_shadow_present_pte(new_spte)); 534 535 if (!is_shadow_present_pte(old_spte)) { 536 mmu_spte_set(sptep, new_spte); 537 return old_spte; 538 } 539 540 if (!spte_has_volatile_bits(old_spte)) 541 __update_clear_spte_fast(sptep, new_spte); 542 else 543 old_spte = __update_clear_spte_slow(sptep, new_spte); 544 545 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 546 547 return old_spte; 548 } 549 550 /* Rules for using mmu_spte_update: 551 * Update the state bits, it means the mapped pfn is not changed. 552 * 553 * Whenever we overwrite a writable spte with a read-only one we 554 * should flush remote TLBs. Otherwise rmap_write_protect 555 * will find a read-only spte, even though the writable spte 556 * might be cached on a CPU's TLB, the return value indicates this 557 * case. 558 * 559 * Returns true if the TLB needs to be flushed 560 */ 561 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 562 { 563 bool flush = false; 564 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 565 566 if (!is_shadow_present_pte(old_spte)) 567 return false; 568 569 /* 570 * For the spte updated out of mmu-lock is safe, since 571 * we always atomically update it, see the comments in 572 * spte_has_volatile_bits(). 573 */ 574 if (spte_can_locklessly_be_made_writable(old_spte) && 575 !is_writable_pte(new_spte)) 576 flush = true; 577 578 /* 579 * Flush TLB when accessed/dirty states are changed in the page tables, 580 * to guarantee consistency between TLB and page tables. 581 */ 582 583 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 584 flush = true; 585 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 586 } 587 588 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 589 flush = true; 590 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 591 } 592 593 return flush; 594 } 595 596 /* 597 * Rules for using mmu_spte_clear_track_bits: 598 * It sets the sptep from present to nonpresent, and track the 599 * state bits, it is used to clear the last level sptep. 600 * Returns the old PTE. 601 */ 602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 603 { 604 kvm_pfn_t pfn; 605 u64 old_spte = *sptep; 606 int level = sptep_to_sp(sptep)->role.level; 607 608 if (!spte_has_volatile_bits(old_spte)) 609 __update_clear_spte_fast(sptep, 0ull); 610 else 611 old_spte = __update_clear_spte_slow(sptep, 0ull); 612 613 if (!is_shadow_present_pte(old_spte)) 614 return old_spte; 615 616 kvm_update_page_stats(kvm, level, -1); 617 618 pfn = spte_to_pfn(old_spte); 619 620 /* 621 * KVM does not hold the refcount of the page used by 622 * kvm mmu, before reclaiming the page, we should 623 * unmap it from mmu first. 624 */ 625 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 626 627 if (is_accessed_spte(old_spte)) 628 kvm_set_pfn_accessed(pfn); 629 630 if (is_dirty_spte(old_spte)) 631 kvm_set_pfn_dirty(pfn); 632 633 return old_spte; 634 } 635 636 /* 637 * Rules for using mmu_spte_clear_no_track: 638 * Directly clear spte without caring the state bits of sptep, 639 * it is used to set the upper level spte. 640 */ 641 static void mmu_spte_clear_no_track(u64 *sptep) 642 { 643 __update_clear_spte_fast(sptep, 0ull); 644 } 645 646 static u64 mmu_spte_get_lockless(u64 *sptep) 647 { 648 return __get_spte_lockless(sptep); 649 } 650 651 /* Restore an acc-track PTE back to a regular PTE */ 652 static u64 restore_acc_track_spte(u64 spte) 653 { 654 u64 new_spte = spte; 655 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 656 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 657 658 WARN_ON_ONCE(spte_ad_enabled(spte)); 659 WARN_ON_ONCE(!is_access_track_spte(spte)); 660 661 new_spte &= ~shadow_acc_track_mask; 662 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 663 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 664 new_spte |= saved_bits; 665 666 return new_spte; 667 } 668 669 /* Returns the Accessed status of the PTE and resets it at the same time. */ 670 static bool mmu_spte_age(u64 *sptep) 671 { 672 u64 spte = mmu_spte_get_lockless(sptep); 673 674 if (!is_accessed_spte(spte)) 675 return false; 676 677 if (spte_ad_enabled(spte)) { 678 clear_bit((ffs(shadow_accessed_mask) - 1), 679 (unsigned long *)sptep); 680 } else { 681 /* 682 * Capture the dirty status of the page, so that it doesn't get 683 * lost when the SPTE is marked for access tracking. 684 */ 685 if (is_writable_pte(spte)) 686 kvm_set_pfn_dirty(spte_to_pfn(spte)); 687 688 spte = mark_spte_for_access_track(spte); 689 mmu_spte_update_no_track(sptep, spte); 690 } 691 692 return true; 693 } 694 695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 696 { 697 if (is_tdp_mmu(vcpu->arch.mmu)) { 698 kvm_tdp_mmu_walk_lockless_begin(); 699 } else { 700 /* 701 * Prevent page table teardown by making any free-er wait during 702 * kvm_flush_remote_tlbs() IPI to all active vcpus. 703 */ 704 local_irq_disable(); 705 706 /* 707 * Make sure a following spte read is not reordered ahead of the write 708 * to vcpu->mode. 709 */ 710 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 711 } 712 } 713 714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 715 { 716 if (is_tdp_mmu(vcpu->arch.mmu)) { 717 kvm_tdp_mmu_walk_lockless_end(); 718 } else { 719 /* 720 * Make sure the write to vcpu->mode is not reordered in front of 721 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 722 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 723 */ 724 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 725 local_irq_enable(); 726 } 727 } 728 729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 730 { 731 int r; 732 733 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 734 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 735 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 736 if (r) 737 return r; 738 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 739 PT64_ROOT_MAX_LEVEL); 740 if (r) 741 return r; 742 if (maybe_indirect) { 743 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 744 PT64_ROOT_MAX_LEVEL); 745 if (r) 746 return r; 747 } 748 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 749 PT64_ROOT_MAX_LEVEL); 750 } 751 752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 753 { 754 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 755 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 756 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 757 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 758 } 759 760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 761 { 762 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 763 } 764 765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 766 { 767 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 768 } 769 770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 771 { 772 if (!sp->role.direct) 773 return sp->gfns[index]; 774 775 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 776 } 777 778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 779 { 780 if (!sp->role.direct) { 781 sp->gfns[index] = gfn; 782 return; 783 } 784 785 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 786 pr_err_ratelimited("gfn mismatch under direct page %llx " 787 "(expected %llx, got %llx)\n", 788 sp->gfn, 789 kvm_mmu_page_get_gfn(sp, index), gfn); 790 } 791 792 /* 793 * Return the pointer to the large page information for a given gfn, 794 * handling slots that are not large page aligned. 795 */ 796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 797 const struct kvm_memory_slot *slot, int level) 798 { 799 unsigned long idx; 800 801 idx = gfn_to_index(gfn, slot->base_gfn, level); 802 return &slot->arch.lpage_info[level - 2][idx]; 803 } 804 805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 806 gfn_t gfn, int count) 807 { 808 struct kvm_lpage_info *linfo; 809 int i; 810 811 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 812 linfo = lpage_info_slot(gfn, slot, i); 813 linfo->disallow_lpage += count; 814 WARN_ON(linfo->disallow_lpage < 0); 815 } 816 } 817 818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 819 { 820 update_gfn_disallow_lpage_count(slot, gfn, 1); 821 } 822 823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 824 { 825 update_gfn_disallow_lpage_count(slot, gfn, -1); 826 } 827 828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 829 { 830 struct kvm_memslots *slots; 831 struct kvm_memory_slot *slot; 832 gfn_t gfn; 833 834 kvm->arch.indirect_shadow_pages++; 835 gfn = sp->gfn; 836 slots = kvm_memslots_for_spte_role(kvm, sp->role); 837 slot = __gfn_to_memslot(slots, gfn); 838 839 /* the non-leaf shadow pages are keeping readonly. */ 840 if (sp->role.level > PG_LEVEL_4K) 841 return kvm_slot_page_track_add_page(kvm, slot, gfn, 842 KVM_PAGE_TRACK_WRITE); 843 844 kvm_mmu_gfn_disallow_lpage(slot, gfn); 845 } 846 847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 848 { 849 if (sp->lpage_disallowed) 850 return; 851 852 ++kvm->stat.nx_lpage_splits; 853 list_add_tail(&sp->lpage_disallowed_link, 854 &kvm->arch.lpage_disallowed_mmu_pages); 855 sp->lpage_disallowed = true; 856 } 857 858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 859 { 860 struct kvm_memslots *slots; 861 struct kvm_memory_slot *slot; 862 gfn_t gfn; 863 864 kvm->arch.indirect_shadow_pages--; 865 gfn = sp->gfn; 866 slots = kvm_memslots_for_spte_role(kvm, sp->role); 867 slot = __gfn_to_memslot(slots, gfn); 868 if (sp->role.level > PG_LEVEL_4K) 869 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 870 KVM_PAGE_TRACK_WRITE); 871 872 kvm_mmu_gfn_allow_lpage(slot, gfn); 873 } 874 875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 876 { 877 --kvm->stat.nx_lpage_splits; 878 sp->lpage_disallowed = false; 879 list_del(&sp->lpage_disallowed_link); 880 } 881 882 static struct kvm_memory_slot * 883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 884 bool no_dirty_log) 885 { 886 struct kvm_memory_slot *slot; 887 888 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 889 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 890 return NULL; 891 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 892 return NULL; 893 894 return slot; 895 } 896 897 /* 898 * About rmap_head encoding: 899 * 900 * If the bit zero of rmap_head->val is clear, then it points to the only spte 901 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 902 * pte_list_desc containing more mappings. 903 */ 904 905 /* 906 * Returns the number of pointers in the rmap chain, not counting the new one. 907 */ 908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 909 struct kvm_rmap_head *rmap_head) 910 { 911 struct pte_list_desc *desc; 912 int count = 0; 913 914 if (!rmap_head->val) { 915 rmap_printk("%p %llx 0->1\n", spte, *spte); 916 rmap_head->val = (unsigned long)spte; 917 } else if (!(rmap_head->val & 1)) { 918 rmap_printk("%p %llx 1->many\n", spte, *spte); 919 desc = mmu_alloc_pte_list_desc(vcpu); 920 desc->sptes[0] = (u64 *)rmap_head->val; 921 desc->sptes[1] = spte; 922 desc->spte_count = 2; 923 rmap_head->val = (unsigned long)desc | 1; 924 ++count; 925 } else { 926 rmap_printk("%p %llx many->many\n", spte, *spte); 927 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 928 while (desc->spte_count == PTE_LIST_EXT) { 929 count += PTE_LIST_EXT; 930 if (!desc->more) { 931 desc->more = mmu_alloc_pte_list_desc(vcpu); 932 desc = desc->more; 933 desc->spte_count = 0; 934 break; 935 } 936 desc = desc->more; 937 } 938 count += desc->spte_count; 939 desc->sptes[desc->spte_count++] = spte; 940 } 941 return count; 942 } 943 944 static void 945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 946 struct pte_list_desc *desc, int i, 947 struct pte_list_desc *prev_desc) 948 { 949 int j = desc->spte_count - 1; 950 951 desc->sptes[i] = desc->sptes[j]; 952 desc->sptes[j] = NULL; 953 desc->spte_count--; 954 if (desc->spte_count) 955 return; 956 if (!prev_desc && !desc->more) 957 rmap_head->val = 0; 958 else 959 if (prev_desc) 960 prev_desc->more = desc->more; 961 else 962 rmap_head->val = (unsigned long)desc->more | 1; 963 mmu_free_pte_list_desc(desc); 964 } 965 966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 967 { 968 struct pte_list_desc *desc; 969 struct pte_list_desc *prev_desc; 970 int i; 971 972 if (!rmap_head->val) { 973 pr_err("%s: %p 0->BUG\n", __func__, spte); 974 BUG(); 975 } else if (!(rmap_head->val & 1)) { 976 rmap_printk("%p 1->0\n", spte); 977 if ((u64 *)rmap_head->val != spte) { 978 pr_err("%s: %p 1->BUG\n", __func__, spte); 979 BUG(); 980 } 981 rmap_head->val = 0; 982 } else { 983 rmap_printk("%p many->many\n", spte); 984 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 985 prev_desc = NULL; 986 while (desc) { 987 for (i = 0; i < desc->spte_count; ++i) { 988 if (desc->sptes[i] == spte) { 989 pte_list_desc_remove_entry(rmap_head, 990 desc, i, prev_desc); 991 return; 992 } 993 } 994 prev_desc = desc; 995 desc = desc->more; 996 } 997 pr_err("%s: %p many->many\n", __func__, spte); 998 BUG(); 999 } 1000 } 1001 1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1003 u64 *sptep) 1004 { 1005 mmu_spte_clear_track_bits(kvm, sptep); 1006 __pte_list_remove(sptep, rmap_head); 1007 } 1008 1009 /* Return true if rmap existed, false otherwise */ 1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1011 { 1012 struct pte_list_desc *desc, *next; 1013 int i; 1014 1015 if (!rmap_head->val) 1016 return false; 1017 1018 if (!(rmap_head->val & 1)) { 1019 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1020 goto out; 1021 } 1022 1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1024 1025 for (; desc; desc = next) { 1026 for (i = 0; i < desc->spte_count; i++) 1027 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1028 next = desc->more; 1029 mmu_free_pte_list_desc(desc); 1030 } 1031 out: 1032 /* rmap_head is meaningless now, remember to reset it */ 1033 rmap_head->val = 0; 1034 return true; 1035 } 1036 1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1038 { 1039 struct pte_list_desc *desc; 1040 unsigned int count = 0; 1041 1042 if (!rmap_head->val) 1043 return 0; 1044 else if (!(rmap_head->val & 1)) 1045 return 1; 1046 1047 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1048 1049 while (desc) { 1050 count += desc->spte_count; 1051 desc = desc->more; 1052 } 1053 1054 return count; 1055 } 1056 1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1058 const struct kvm_memory_slot *slot) 1059 { 1060 unsigned long idx; 1061 1062 idx = gfn_to_index(gfn, slot->base_gfn, level); 1063 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1064 } 1065 1066 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1067 { 1068 struct kvm_mmu_memory_cache *mc; 1069 1070 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1071 return kvm_mmu_memory_cache_nr_free_objects(mc); 1072 } 1073 1074 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1075 { 1076 struct kvm_memory_slot *slot; 1077 struct kvm_mmu_page *sp; 1078 struct kvm_rmap_head *rmap_head; 1079 1080 sp = sptep_to_sp(spte); 1081 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1082 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1083 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1084 return pte_list_add(vcpu, spte, rmap_head); 1085 } 1086 1087 1088 static void rmap_remove(struct kvm *kvm, u64 *spte) 1089 { 1090 struct kvm_memslots *slots; 1091 struct kvm_memory_slot *slot; 1092 struct kvm_mmu_page *sp; 1093 gfn_t gfn; 1094 struct kvm_rmap_head *rmap_head; 1095 1096 sp = sptep_to_sp(spte); 1097 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1098 1099 /* 1100 * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the 1101 * context of a vCPU so have to determine which memslots to use based 1102 * on context information in sp->role. 1103 */ 1104 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1105 1106 slot = __gfn_to_memslot(slots, gfn); 1107 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1108 1109 __pte_list_remove(spte, rmap_head); 1110 } 1111 1112 /* 1113 * Used by the following functions to iterate through the sptes linked by a 1114 * rmap. All fields are private and not assumed to be used outside. 1115 */ 1116 struct rmap_iterator { 1117 /* private fields */ 1118 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1119 int pos; /* index of the sptep */ 1120 }; 1121 1122 /* 1123 * Iteration must be started by this function. This should also be used after 1124 * removing/dropping sptes from the rmap link because in such cases the 1125 * information in the iterator may not be valid. 1126 * 1127 * Returns sptep if found, NULL otherwise. 1128 */ 1129 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1130 struct rmap_iterator *iter) 1131 { 1132 u64 *sptep; 1133 1134 if (!rmap_head->val) 1135 return NULL; 1136 1137 if (!(rmap_head->val & 1)) { 1138 iter->desc = NULL; 1139 sptep = (u64 *)rmap_head->val; 1140 goto out; 1141 } 1142 1143 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1144 iter->pos = 0; 1145 sptep = iter->desc->sptes[iter->pos]; 1146 out: 1147 BUG_ON(!is_shadow_present_pte(*sptep)); 1148 return sptep; 1149 } 1150 1151 /* 1152 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1153 * 1154 * Returns sptep if found, NULL otherwise. 1155 */ 1156 static u64 *rmap_get_next(struct rmap_iterator *iter) 1157 { 1158 u64 *sptep; 1159 1160 if (iter->desc) { 1161 if (iter->pos < PTE_LIST_EXT - 1) { 1162 ++iter->pos; 1163 sptep = iter->desc->sptes[iter->pos]; 1164 if (sptep) 1165 goto out; 1166 } 1167 1168 iter->desc = iter->desc->more; 1169 1170 if (iter->desc) { 1171 iter->pos = 0; 1172 /* desc->sptes[0] cannot be NULL */ 1173 sptep = iter->desc->sptes[iter->pos]; 1174 goto out; 1175 } 1176 } 1177 1178 return NULL; 1179 out: 1180 BUG_ON(!is_shadow_present_pte(*sptep)); 1181 return sptep; 1182 } 1183 1184 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1185 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1186 _spte_; _spte_ = rmap_get_next(_iter_)) 1187 1188 static void drop_spte(struct kvm *kvm, u64 *sptep) 1189 { 1190 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1191 1192 if (is_shadow_present_pte(old_spte)) 1193 rmap_remove(kvm, sptep); 1194 } 1195 1196 1197 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1198 { 1199 if (is_large_pte(*sptep)) { 1200 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1201 drop_spte(kvm, sptep); 1202 return true; 1203 } 1204 1205 return false; 1206 } 1207 1208 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1209 { 1210 if (__drop_large_spte(vcpu->kvm, sptep)) { 1211 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1212 1213 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1214 KVM_PAGES_PER_HPAGE(sp->role.level)); 1215 } 1216 } 1217 1218 /* 1219 * Write-protect on the specified @sptep, @pt_protect indicates whether 1220 * spte write-protection is caused by protecting shadow page table. 1221 * 1222 * Note: write protection is difference between dirty logging and spte 1223 * protection: 1224 * - for dirty logging, the spte can be set to writable at anytime if 1225 * its dirty bitmap is properly set. 1226 * - for spte protection, the spte can be writable only after unsync-ing 1227 * shadow page. 1228 * 1229 * Return true if tlb need be flushed. 1230 */ 1231 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1232 { 1233 u64 spte = *sptep; 1234 1235 if (!is_writable_pte(spte) && 1236 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1237 return false; 1238 1239 rmap_printk("spte %p %llx\n", sptep, *sptep); 1240 1241 if (pt_protect) 1242 spte &= ~shadow_mmu_writable_mask; 1243 spte = spte & ~PT_WRITABLE_MASK; 1244 1245 return mmu_spte_update(sptep, spte); 1246 } 1247 1248 static bool __rmap_write_protect(struct kvm *kvm, 1249 struct kvm_rmap_head *rmap_head, 1250 bool pt_protect) 1251 { 1252 u64 *sptep; 1253 struct rmap_iterator iter; 1254 bool flush = false; 1255 1256 for_each_rmap_spte(rmap_head, &iter, sptep) 1257 flush |= spte_write_protect(sptep, pt_protect); 1258 1259 return flush; 1260 } 1261 1262 static bool spte_clear_dirty(u64 *sptep) 1263 { 1264 u64 spte = *sptep; 1265 1266 rmap_printk("spte %p %llx\n", sptep, *sptep); 1267 1268 MMU_WARN_ON(!spte_ad_enabled(spte)); 1269 spte &= ~shadow_dirty_mask; 1270 return mmu_spte_update(sptep, spte); 1271 } 1272 1273 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1274 { 1275 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1276 (unsigned long *)sptep); 1277 if (was_writable && !spte_ad_enabled(*sptep)) 1278 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1279 1280 return was_writable; 1281 } 1282 1283 /* 1284 * Gets the GFN ready for another round of dirty logging by clearing the 1285 * - D bit on ad-enabled SPTEs, and 1286 * - W bit on ad-disabled SPTEs. 1287 * Returns true iff any D or W bits were cleared. 1288 */ 1289 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1290 const struct kvm_memory_slot *slot) 1291 { 1292 u64 *sptep; 1293 struct rmap_iterator iter; 1294 bool flush = false; 1295 1296 for_each_rmap_spte(rmap_head, &iter, sptep) 1297 if (spte_ad_need_write_protect(*sptep)) 1298 flush |= spte_wrprot_for_clear_dirty(sptep); 1299 else 1300 flush |= spte_clear_dirty(sptep); 1301 1302 return flush; 1303 } 1304 1305 /** 1306 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1307 * @kvm: kvm instance 1308 * @slot: slot to protect 1309 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1310 * @mask: indicates which pages we should protect 1311 * 1312 * Used when we do not need to care about huge page mappings. 1313 */ 1314 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1315 struct kvm_memory_slot *slot, 1316 gfn_t gfn_offset, unsigned long mask) 1317 { 1318 struct kvm_rmap_head *rmap_head; 1319 1320 if (is_tdp_mmu_enabled(kvm)) 1321 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1322 slot->base_gfn + gfn_offset, mask, true); 1323 1324 if (!kvm_memslots_have_rmaps(kvm)) 1325 return; 1326 1327 while (mask) { 1328 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1329 PG_LEVEL_4K, slot); 1330 __rmap_write_protect(kvm, rmap_head, false); 1331 1332 /* clear the first set bit */ 1333 mask &= mask - 1; 1334 } 1335 } 1336 1337 /** 1338 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1339 * protect the page if the D-bit isn't supported. 1340 * @kvm: kvm instance 1341 * @slot: slot to clear D-bit 1342 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1343 * @mask: indicates which pages we should clear D-bit 1344 * 1345 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1346 */ 1347 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1348 struct kvm_memory_slot *slot, 1349 gfn_t gfn_offset, unsigned long mask) 1350 { 1351 struct kvm_rmap_head *rmap_head; 1352 1353 if (is_tdp_mmu_enabled(kvm)) 1354 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1355 slot->base_gfn + gfn_offset, mask, false); 1356 1357 if (!kvm_memslots_have_rmaps(kvm)) 1358 return; 1359 1360 while (mask) { 1361 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1362 PG_LEVEL_4K, slot); 1363 __rmap_clear_dirty(kvm, rmap_head, slot); 1364 1365 /* clear the first set bit */ 1366 mask &= mask - 1; 1367 } 1368 } 1369 1370 /** 1371 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1372 * PT level pages. 1373 * 1374 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1375 * enable dirty logging for them. 1376 * 1377 * We need to care about huge page mappings: e.g. during dirty logging we may 1378 * have such mappings. 1379 */ 1380 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1381 struct kvm_memory_slot *slot, 1382 gfn_t gfn_offset, unsigned long mask) 1383 { 1384 /* 1385 * Huge pages are NOT write protected when we start dirty logging in 1386 * initially-all-set mode; must write protect them here so that they 1387 * are split to 4K on the first write. 1388 * 1389 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1390 * of memslot has no such restriction, so the range can cross two large 1391 * pages. 1392 */ 1393 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1394 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1395 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1396 1397 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1398 1399 /* Cross two large pages? */ 1400 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1401 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1402 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1403 PG_LEVEL_2M); 1404 } 1405 1406 /* Now handle 4K PTEs. */ 1407 if (kvm_x86_ops.cpu_dirty_log_size) 1408 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1409 else 1410 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1411 } 1412 1413 int kvm_cpu_dirty_log_size(void) 1414 { 1415 return kvm_x86_ops.cpu_dirty_log_size; 1416 } 1417 1418 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1419 struct kvm_memory_slot *slot, u64 gfn, 1420 int min_level) 1421 { 1422 struct kvm_rmap_head *rmap_head; 1423 int i; 1424 bool write_protected = false; 1425 1426 if (kvm_memslots_have_rmaps(kvm)) { 1427 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1428 rmap_head = gfn_to_rmap(gfn, i, slot); 1429 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1430 } 1431 } 1432 1433 if (is_tdp_mmu_enabled(kvm)) 1434 write_protected |= 1435 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1436 1437 return write_protected; 1438 } 1439 1440 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1441 { 1442 struct kvm_memory_slot *slot; 1443 1444 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1445 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1446 } 1447 1448 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1449 const struct kvm_memory_slot *slot) 1450 { 1451 return pte_list_destroy(kvm, rmap_head); 1452 } 1453 1454 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1455 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1456 pte_t unused) 1457 { 1458 return kvm_zap_rmapp(kvm, rmap_head, slot); 1459 } 1460 1461 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1462 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1463 pte_t pte) 1464 { 1465 u64 *sptep; 1466 struct rmap_iterator iter; 1467 int need_flush = 0; 1468 u64 new_spte; 1469 kvm_pfn_t new_pfn; 1470 1471 WARN_ON(pte_huge(pte)); 1472 new_pfn = pte_pfn(pte); 1473 1474 restart: 1475 for_each_rmap_spte(rmap_head, &iter, sptep) { 1476 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1477 sptep, *sptep, gfn, level); 1478 1479 need_flush = 1; 1480 1481 if (pte_write(pte)) { 1482 pte_list_remove(kvm, rmap_head, sptep); 1483 goto restart; 1484 } else { 1485 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1486 *sptep, new_pfn); 1487 1488 mmu_spte_clear_track_bits(kvm, sptep); 1489 mmu_spte_set(sptep, new_spte); 1490 } 1491 } 1492 1493 if (need_flush && kvm_available_flush_tlb_with_range()) { 1494 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1495 return 0; 1496 } 1497 1498 return need_flush; 1499 } 1500 1501 struct slot_rmap_walk_iterator { 1502 /* input fields. */ 1503 const struct kvm_memory_slot *slot; 1504 gfn_t start_gfn; 1505 gfn_t end_gfn; 1506 int start_level; 1507 int end_level; 1508 1509 /* output fields. */ 1510 gfn_t gfn; 1511 struct kvm_rmap_head *rmap; 1512 int level; 1513 1514 /* private field. */ 1515 struct kvm_rmap_head *end_rmap; 1516 }; 1517 1518 static void 1519 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1520 { 1521 iterator->level = level; 1522 iterator->gfn = iterator->start_gfn; 1523 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1524 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1525 } 1526 1527 static void 1528 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1529 const struct kvm_memory_slot *slot, int start_level, 1530 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1531 { 1532 iterator->slot = slot; 1533 iterator->start_level = start_level; 1534 iterator->end_level = end_level; 1535 iterator->start_gfn = start_gfn; 1536 iterator->end_gfn = end_gfn; 1537 1538 rmap_walk_init_level(iterator, iterator->start_level); 1539 } 1540 1541 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1542 { 1543 return !!iterator->rmap; 1544 } 1545 1546 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1547 { 1548 if (++iterator->rmap <= iterator->end_rmap) { 1549 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1550 return; 1551 } 1552 1553 if (++iterator->level > iterator->end_level) { 1554 iterator->rmap = NULL; 1555 return; 1556 } 1557 1558 rmap_walk_init_level(iterator, iterator->level); 1559 } 1560 1561 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1562 _start_gfn, _end_gfn, _iter_) \ 1563 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1564 _end_level_, _start_gfn, _end_gfn); \ 1565 slot_rmap_walk_okay(_iter_); \ 1566 slot_rmap_walk_next(_iter_)) 1567 1568 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1569 struct kvm_memory_slot *slot, gfn_t gfn, 1570 int level, pte_t pte); 1571 1572 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1573 struct kvm_gfn_range *range, 1574 rmap_handler_t handler) 1575 { 1576 struct slot_rmap_walk_iterator iterator; 1577 bool ret = false; 1578 1579 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1580 range->start, range->end - 1, &iterator) 1581 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1582 iterator.level, range->pte); 1583 1584 return ret; 1585 } 1586 1587 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1588 { 1589 bool flush = false; 1590 1591 if (kvm_memslots_have_rmaps(kvm)) 1592 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1593 1594 if (is_tdp_mmu_enabled(kvm)) 1595 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1596 1597 return flush; 1598 } 1599 1600 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1601 { 1602 bool flush = false; 1603 1604 if (kvm_memslots_have_rmaps(kvm)) 1605 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1606 1607 if (is_tdp_mmu_enabled(kvm)) 1608 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1609 1610 return flush; 1611 } 1612 1613 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1614 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1615 pte_t unused) 1616 { 1617 u64 *sptep; 1618 struct rmap_iterator iter; 1619 int young = 0; 1620 1621 for_each_rmap_spte(rmap_head, &iter, sptep) 1622 young |= mmu_spte_age(sptep); 1623 1624 return young; 1625 } 1626 1627 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1628 struct kvm_memory_slot *slot, gfn_t gfn, 1629 int level, pte_t unused) 1630 { 1631 u64 *sptep; 1632 struct rmap_iterator iter; 1633 1634 for_each_rmap_spte(rmap_head, &iter, sptep) 1635 if (is_accessed_spte(*sptep)) 1636 return 1; 1637 return 0; 1638 } 1639 1640 #define RMAP_RECYCLE_THRESHOLD 1000 1641 1642 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1643 { 1644 struct kvm_memory_slot *slot; 1645 struct kvm_rmap_head *rmap_head; 1646 struct kvm_mmu_page *sp; 1647 1648 sp = sptep_to_sp(spte); 1649 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1650 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1651 1652 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1653 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1654 KVM_PAGES_PER_HPAGE(sp->role.level)); 1655 } 1656 1657 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1658 { 1659 bool young = false; 1660 1661 if (kvm_memslots_have_rmaps(kvm)) 1662 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1663 1664 if (is_tdp_mmu_enabled(kvm)) 1665 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1666 1667 return young; 1668 } 1669 1670 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1671 { 1672 bool young = false; 1673 1674 if (kvm_memslots_have_rmaps(kvm)) 1675 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1676 1677 if (is_tdp_mmu_enabled(kvm)) 1678 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1679 1680 return young; 1681 } 1682 1683 #ifdef MMU_DEBUG 1684 static int is_empty_shadow_page(u64 *spt) 1685 { 1686 u64 *pos; 1687 u64 *end; 1688 1689 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1690 if (is_shadow_present_pte(*pos)) { 1691 printk(KERN_ERR "%s: %p %llx\n", __func__, 1692 pos, *pos); 1693 return 0; 1694 } 1695 return 1; 1696 } 1697 #endif 1698 1699 /* 1700 * This value is the sum of all of the kvm instances's 1701 * kvm->arch.n_used_mmu_pages values. We need a global, 1702 * aggregate version in order to make the slab shrinker 1703 * faster 1704 */ 1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1706 { 1707 kvm->arch.n_used_mmu_pages += nr; 1708 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1709 } 1710 1711 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1712 { 1713 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1714 hlist_del(&sp->hash_link); 1715 list_del(&sp->link); 1716 free_page((unsigned long)sp->spt); 1717 if (!sp->role.direct) 1718 free_page((unsigned long)sp->gfns); 1719 kmem_cache_free(mmu_page_header_cache, sp); 1720 } 1721 1722 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1723 { 1724 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1725 } 1726 1727 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1728 struct kvm_mmu_page *sp, u64 *parent_pte) 1729 { 1730 if (!parent_pte) 1731 return; 1732 1733 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1734 } 1735 1736 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1737 u64 *parent_pte) 1738 { 1739 __pte_list_remove(parent_pte, &sp->parent_ptes); 1740 } 1741 1742 static void drop_parent_pte(struct kvm_mmu_page *sp, 1743 u64 *parent_pte) 1744 { 1745 mmu_page_remove_parent_pte(sp, parent_pte); 1746 mmu_spte_clear_no_track(parent_pte); 1747 } 1748 1749 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1750 { 1751 struct kvm_mmu_page *sp; 1752 1753 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1754 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1755 if (!direct) 1756 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1757 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1758 1759 /* 1760 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1761 * depends on valid pages being added to the head of the list. See 1762 * comments in kvm_zap_obsolete_pages(). 1763 */ 1764 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1765 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1766 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1767 return sp; 1768 } 1769 1770 static void mark_unsync(u64 *spte); 1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1772 { 1773 u64 *sptep; 1774 struct rmap_iterator iter; 1775 1776 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1777 mark_unsync(sptep); 1778 } 1779 } 1780 1781 static void mark_unsync(u64 *spte) 1782 { 1783 struct kvm_mmu_page *sp; 1784 unsigned int index; 1785 1786 sp = sptep_to_sp(spte); 1787 index = spte - sp->spt; 1788 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1789 return; 1790 if (sp->unsync_children++) 1791 return; 1792 kvm_mmu_mark_parents_unsync(sp); 1793 } 1794 1795 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1796 struct kvm_mmu_page *sp) 1797 { 1798 return 0; 1799 } 1800 1801 #define KVM_PAGE_ARRAY_NR 16 1802 1803 struct kvm_mmu_pages { 1804 struct mmu_page_and_offset { 1805 struct kvm_mmu_page *sp; 1806 unsigned int idx; 1807 } page[KVM_PAGE_ARRAY_NR]; 1808 unsigned int nr; 1809 }; 1810 1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1812 int idx) 1813 { 1814 int i; 1815 1816 if (sp->unsync) 1817 for (i=0; i < pvec->nr; i++) 1818 if (pvec->page[i].sp == sp) 1819 return 0; 1820 1821 pvec->page[pvec->nr].sp = sp; 1822 pvec->page[pvec->nr].idx = idx; 1823 pvec->nr++; 1824 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1825 } 1826 1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1828 { 1829 --sp->unsync_children; 1830 WARN_ON((int)sp->unsync_children < 0); 1831 __clear_bit(idx, sp->unsync_child_bitmap); 1832 } 1833 1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1835 struct kvm_mmu_pages *pvec) 1836 { 1837 int i, ret, nr_unsync_leaf = 0; 1838 1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1840 struct kvm_mmu_page *child; 1841 u64 ent = sp->spt[i]; 1842 1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1844 clear_unsync_child_bit(sp, i); 1845 continue; 1846 } 1847 1848 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1849 1850 if (child->unsync_children) { 1851 if (mmu_pages_add(pvec, child, i)) 1852 return -ENOSPC; 1853 1854 ret = __mmu_unsync_walk(child, pvec); 1855 if (!ret) { 1856 clear_unsync_child_bit(sp, i); 1857 continue; 1858 } else if (ret > 0) { 1859 nr_unsync_leaf += ret; 1860 } else 1861 return ret; 1862 } else if (child->unsync) { 1863 nr_unsync_leaf++; 1864 if (mmu_pages_add(pvec, child, i)) 1865 return -ENOSPC; 1866 } else 1867 clear_unsync_child_bit(sp, i); 1868 } 1869 1870 return nr_unsync_leaf; 1871 } 1872 1873 #define INVALID_INDEX (-1) 1874 1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1876 struct kvm_mmu_pages *pvec) 1877 { 1878 pvec->nr = 0; 1879 if (!sp->unsync_children) 1880 return 0; 1881 1882 mmu_pages_add(pvec, sp, INVALID_INDEX); 1883 return __mmu_unsync_walk(sp, pvec); 1884 } 1885 1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1887 { 1888 WARN_ON(!sp->unsync); 1889 trace_kvm_mmu_sync_page(sp); 1890 sp->unsync = 0; 1891 --kvm->stat.mmu_unsync; 1892 } 1893 1894 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1895 struct list_head *invalid_list); 1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1897 struct list_head *invalid_list); 1898 1899 #define for_each_valid_sp(_kvm, _sp, _list) \ 1900 hlist_for_each_entry(_sp, _list, hash_link) \ 1901 if (is_obsolete_sp((_kvm), (_sp))) { \ 1902 } else 1903 1904 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1905 for_each_valid_sp(_kvm, _sp, \ 1906 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1907 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1908 1909 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1910 struct list_head *invalid_list) 1911 { 1912 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1913 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1921 struct list_head *invalid_list, 1922 bool remote_flush) 1923 { 1924 if (!remote_flush && list_empty(invalid_list)) 1925 return false; 1926 1927 if (!list_empty(invalid_list)) 1928 kvm_mmu_commit_zap_page(kvm, invalid_list); 1929 else 1930 kvm_flush_remote_tlbs(kvm); 1931 return true; 1932 } 1933 1934 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1935 struct list_head *invalid_list, 1936 bool remote_flush, bool local_flush) 1937 { 1938 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1939 return; 1940 1941 if (local_flush) 1942 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1943 } 1944 1945 #ifdef CONFIG_KVM_MMU_AUDIT 1946 #include "mmu_audit.c" 1947 #else 1948 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1949 static void mmu_audit_disable(void) { } 1950 #endif 1951 1952 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1953 { 1954 return sp->role.invalid || 1955 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1956 } 1957 1958 struct mmu_page_path { 1959 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1960 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1961 }; 1962 1963 #define for_each_sp(pvec, sp, parents, i) \ 1964 for (i = mmu_pages_first(&pvec, &parents); \ 1965 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1966 i = mmu_pages_next(&pvec, &parents, i)) 1967 1968 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1969 struct mmu_page_path *parents, 1970 int i) 1971 { 1972 int n; 1973 1974 for (n = i+1; n < pvec->nr; n++) { 1975 struct kvm_mmu_page *sp = pvec->page[n].sp; 1976 unsigned idx = pvec->page[n].idx; 1977 int level = sp->role.level; 1978 1979 parents->idx[level-1] = idx; 1980 if (level == PG_LEVEL_4K) 1981 break; 1982 1983 parents->parent[level-2] = sp; 1984 } 1985 1986 return n; 1987 } 1988 1989 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1990 struct mmu_page_path *parents) 1991 { 1992 struct kvm_mmu_page *sp; 1993 int level; 1994 1995 if (pvec->nr == 0) 1996 return 0; 1997 1998 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1999 2000 sp = pvec->page[0].sp; 2001 level = sp->role.level; 2002 WARN_ON(level == PG_LEVEL_4K); 2003 2004 parents->parent[level-2] = sp; 2005 2006 /* Also set up a sentinel. Further entries in pvec are all 2007 * children of sp, so this element is never overwritten. 2008 */ 2009 parents->parent[level-1] = NULL; 2010 return mmu_pages_next(pvec, parents, 0); 2011 } 2012 2013 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2014 { 2015 struct kvm_mmu_page *sp; 2016 unsigned int level = 0; 2017 2018 do { 2019 unsigned int idx = parents->idx[level]; 2020 sp = parents->parent[level]; 2021 if (!sp) 2022 return; 2023 2024 WARN_ON(idx == INVALID_INDEX); 2025 clear_unsync_child_bit(sp, idx); 2026 level++; 2027 } while (!sp->unsync_children); 2028 } 2029 2030 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2031 struct kvm_mmu_page *parent, bool can_yield) 2032 { 2033 int i; 2034 struct kvm_mmu_page *sp; 2035 struct mmu_page_path parents; 2036 struct kvm_mmu_pages pages; 2037 LIST_HEAD(invalid_list); 2038 bool flush = false; 2039 2040 while (mmu_unsync_walk(parent, &pages)) { 2041 bool protected = false; 2042 2043 for_each_sp(pages, sp, parents, i) 2044 protected |= rmap_write_protect(vcpu, sp->gfn); 2045 2046 if (protected) { 2047 kvm_flush_remote_tlbs(vcpu->kvm); 2048 flush = false; 2049 } 2050 2051 for_each_sp(pages, sp, parents, i) { 2052 kvm_unlink_unsync_page(vcpu->kvm, sp); 2053 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2054 mmu_pages_clear_parents(&parents); 2055 } 2056 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2057 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2058 if (!can_yield) { 2059 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2060 return -EINTR; 2061 } 2062 2063 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2064 flush = false; 2065 } 2066 } 2067 2068 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2069 return 0; 2070 } 2071 2072 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2073 { 2074 atomic_set(&sp->write_flooding_count, 0); 2075 } 2076 2077 static void clear_sp_write_flooding_count(u64 *spte) 2078 { 2079 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2080 } 2081 2082 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2083 gfn_t gfn, 2084 gva_t gaddr, 2085 unsigned level, 2086 int direct, 2087 unsigned int access) 2088 { 2089 bool direct_mmu = vcpu->arch.mmu->direct_map; 2090 union kvm_mmu_page_role role; 2091 struct hlist_head *sp_list; 2092 unsigned quadrant; 2093 struct kvm_mmu_page *sp; 2094 int collisions = 0; 2095 LIST_HEAD(invalid_list); 2096 2097 role = vcpu->arch.mmu->mmu_role.base; 2098 role.level = level; 2099 role.direct = direct; 2100 if (role.direct) 2101 role.gpte_is_8_bytes = true; 2102 role.access = access; 2103 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2104 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2105 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2106 role.quadrant = quadrant; 2107 } 2108 2109 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2110 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2111 if (sp->gfn != gfn) { 2112 collisions++; 2113 continue; 2114 } 2115 2116 if (sp->role.word != role.word) { 2117 /* 2118 * If the guest is creating an upper-level page, zap 2119 * unsync pages for the same gfn. While it's possible 2120 * the guest is using recursive page tables, in all 2121 * likelihood the guest has stopped using the unsync 2122 * page and is installing a completely unrelated page. 2123 * Unsync pages must not be left as is, because the new 2124 * upper-level page will be write-protected. 2125 */ 2126 if (level > PG_LEVEL_4K && sp->unsync) 2127 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2128 &invalid_list); 2129 continue; 2130 } 2131 2132 if (direct_mmu) 2133 goto trace_get_page; 2134 2135 if (sp->unsync) { 2136 /* 2137 * The page is good, but is stale. kvm_sync_page does 2138 * get the latest guest state, but (unlike mmu_unsync_children) 2139 * it doesn't write-protect the page or mark it synchronized! 2140 * This way the validity of the mapping is ensured, but the 2141 * overhead of write protection is not incurred until the 2142 * guest invalidates the TLB mapping. This allows multiple 2143 * SPs for a single gfn to be unsync. 2144 * 2145 * If the sync fails, the page is zapped. If so, break 2146 * in order to rebuild it. 2147 */ 2148 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2149 break; 2150 2151 WARN_ON(!list_empty(&invalid_list)); 2152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2153 } 2154 2155 __clear_sp_write_flooding_count(sp); 2156 2157 trace_get_page: 2158 trace_kvm_mmu_get_page(sp, false); 2159 goto out; 2160 } 2161 2162 ++vcpu->kvm->stat.mmu_cache_miss; 2163 2164 sp = kvm_mmu_alloc_page(vcpu, direct); 2165 2166 sp->gfn = gfn; 2167 sp->role = role; 2168 hlist_add_head(&sp->hash_link, sp_list); 2169 if (!direct) { 2170 account_shadowed(vcpu->kvm, sp); 2171 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2172 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2173 } 2174 trace_kvm_mmu_get_page(sp, true); 2175 out: 2176 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2177 2178 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2179 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2180 return sp; 2181 } 2182 2183 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2184 struct kvm_vcpu *vcpu, hpa_t root, 2185 u64 addr) 2186 { 2187 iterator->addr = addr; 2188 iterator->shadow_addr = root; 2189 iterator->level = vcpu->arch.mmu->shadow_root_level; 2190 2191 if (iterator->level == PT64_ROOT_4LEVEL && 2192 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2193 !vcpu->arch.mmu->direct_map) 2194 --iterator->level; 2195 2196 if (iterator->level == PT32E_ROOT_LEVEL) { 2197 /* 2198 * prev_root is currently only used for 64-bit hosts. So only 2199 * the active root_hpa is valid here. 2200 */ 2201 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2202 2203 iterator->shadow_addr 2204 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2205 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2206 --iterator->level; 2207 if (!iterator->shadow_addr) 2208 iterator->level = 0; 2209 } 2210 } 2211 2212 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2213 struct kvm_vcpu *vcpu, u64 addr) 2214 { 2215 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2216 addr); 2217 } 2218 2219 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2220 { 2221 if (iterator->level < PG_LEVEL_4K) 2222 return false; 2223 2224 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2225 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2226 return true; 2227 } 2228 2229 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2230 u64 spte) 2231 { 2232 if (is_last_spte(spte, iterator->level)) { 2233 iterator->level = 0; 2234 return; 2235 } 2236 2237 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2238 --iterator->level; 2239 } 2240 2241 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2242 { 2243 __shadow_walk_next(iterator, *iterator->sptep); 2244 } 2245 2246 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2247 struct kvm_mmu_page *sp) 2248 { 2249 u64 spte; 2250 2251 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2252 2253 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2254 2255 mmu_spte_set(sptep, spte); 2256 2257 mmu_page_add_parent_pte(vcpu, sp, sptep); 2258 2259 if (sp->unsync_children || sp->unsync) 2260 mark_unsync(sptep); 2261 } 2262 2263 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2264 unsigned direct_access) 2265 { 2266 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2267 struct kvm_mmu_page *child; 2268 2269 /* 2270 * For the direct sp, if the guest pte's dirty bit 2271 * changed form clean to dirty, it will corrupt the 2272 * sp's access: allow writable in the read-only sp, 2273 * so we should update the spte at this point to get 2274 * a new sp with the correct access. 2275 */ 2276 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2277 if (child->role.access == direct_access) 2278 return; 2279 2280 drop_parent_pte(child, sptep); 2281 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2282 } 2283 } 2284 2285 /* Returns the number of zapped non-leaf child shadow pages. */ 2286 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2287 u64 *spte, struct list_head *invalid_list) 2288 { 2289 u64 pte; 2290 struct kvm_mmu_page *child; 2291 2292 pte = *spte; 2293 if (is_shadow_present_pte(pte)) { 2294 if (is_last_spte(pte, sp->role.level)) { 2295 drop_spte(kvm, spte); 2296 } else { 2297 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2298 drop_parent_pte(child, spte); 2299 2300 /* 2301 * Recursively zap nested TDP SPs, parentless SPs are 2302 * unlikely to be used again in the near future. This 2303 * avoids retaining a large number of stale nested SPs. 2304 */ 2305 if (tdp_enabled && invalid_list && 2306 child->role.guest_mode && !child->parent_ptes.val) 2307 return kvm_mmu_prepare_zap_page(kvm, child, 2308 invalid_list); 2309 } 2310 } else if (is_mmio_spte(pte)) { 2311 mmu_spte_clear_no_track(spte); 2312 } 2313 return 0; 2314 } 2315 2316 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2317 struct kvm_mmu_page *sp, 2318 struct list_head *invalid_list) 2319 { 2320 int zapped = 0; 2321 unsigned i; 2322 2323 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2324 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2325 2326 return zapped; 2327 } 2328 2329 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2330 { 2331 u64 *sptep; 2332 struct rmap_iterator iter; 2333 2334 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2335 drop_parent_pte(sp, sptep); 2336 } 2337 2338 static int mmu_zap_unsync_children(struct kvm *kvm, 2339 struct kvm_mmu_page *parent, 2340 struct list_head *invalid_list) 2341 { 2342 int i, zapped = 0; 2343 struct mmu_page_path parents; 2344 struct kvm_mmu_pages pages; 2345 2346 if (parent->role.level == PG_LEVEL_4K) 2347 return 0; 2348 2349 while (mmu_unsync_walk(parent, &pages)) { 2350 struct kvm_mmu_page *sp; 2351 2352 for_each_sp(pages, sp, parents, i) { 2353 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2354 mmu_pages_clear_parents(&parents); 2355 zapped++; 2356 } 2357 } 2358 2359 return zapped; 2360 } 2361 2362 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2363 struct kvm_mmu_page *sp, 2364 struct list_head *invalid_list, 2365 int *nr_zapped) 2366 { 2367 bool list_unstable; 2368 2369 trace_kvm_mmu_prepare_zap_page(sp); 2370 ++kvm->stat.mmu_shadow_zapped; 2371 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2372 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2373 kvm_mmu_unlink_parents(kvm, sp); 2374 2375 /* Zapping children means active_mmu_pages has become unstable. */ 2376 list_unstable = *nr_zapped; 2377 2378 if (!sp->role.invalid && !sp->role.direct) 2379 unaccount_shadowed(kvm, sp); 2380 2381 if (sp->unsync) 2382 kvm_unlink_unsync_page(kvm, sp); 2383 if (!sp->root_count) { 2384 /* Count self */ 2385 (*nr_zapped)++; 2386 2387 /* 2388 * Already invalid pages (previously active roots) are not on 2389 * the active page list. See list_del() in the "else" case of 2390 * !sp->root_count. 2391 */ 2392 if (sp->role.invalid) 2393 list_add(&sp->link, invalid_list); 2394 else 2395 list_move(&sp->link, invalid_list); 2396 kvm_mod_used_mmu_pages(kvm, -1); 2397 } else { 2398 /* 2399 * Remove the active root from the active page list, the root 2400 * will be explicitly freed when the root_count hits zero. 2401 */ 2402 list_del(&sp->link); 2403 2404 /* 2405 * Obsolete pages cannot be used on any vCPUs, see the comment 2406 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2407 * treats invalid shadow pages as being obsolete. 2408 */ 2409 if (!is_obsolete_sp(kvm, sp)) 2410 kvm_reload_remote_mmus(kvm); 2411 } 2412 2413 if (sp->lpage_disallowed) 2414 unaccount_huge_nx_page(kvm, sp); 2415 2416 sp->role.invalid = 1; 2417 return list_unstable; 2418 } 2419 2420 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2421 struct list_head *invalid_list) 2422 { 2423 int nr_zapped; 2424 2425 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2426 return nr_zapped; 2427 } 2428 2429 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2430 struct list_head *invalid_list) 2431 { 2432 struct kvm_mmu_page *sp, *nsp; 2433 2434 if (list_empty(invalid_list)) 2435 return; 2436 2437 /* 2438 * We need to make sure everyone sees our modifications to 2439 * the page tables and see changes to vcpu->mode here. The barrier 2440 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2441 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2442 * 2443 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2444 * guest mode and/or lockless shadow page table walks. 2445 */ 2446 kvm_flush_remote_tlbs(kvm); 2447 2448 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2449 WARN_ON(!sp->role.invalid || sp->root_count); 2450 kvm_mmu_free_page(sp); 2451 } 2452 } 2453 2454 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2455 unsigned long nr_to_zap) 2456 { 2457 unsigned long total_zapped = 0; 2458 struct kvm_mmu_page *sp, *tmp; 2459 LIST_HEAD(invalid_list); 2460 bool unstable; 2461 int nr_zapped; 2462 2463 if (list_empty(&kvm->arch.active_mmu_pages)) 2464 return 0; 2465 2466 restart: 2467 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2468 /* 2469 * Don't zap active root pages, the page itself can't be freed 2470 * and zapping it will just force vCPUs to realloc and reload. 2471 */ 2472 if (sp->root_count) 2473 continue; 2474 2475 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2476 &nr_zapped); 2477 total_zapped += nr_zapped; 2478 if (total_zapped >= nr_to_zap) 2479 break; 2480 2481 if (unstable) 2482 goto restart; 2483 } 2484 2485 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2486 2487 kvm->stat.mmu_recycled += total_zapped; 2488 return total_zapped; 2489 } 2490 2491 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2492 { 2493 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2494 return kvm->arch.n_max_mmu_pages - 2495 kvm->arch.n_used_mmu_pages; 2496 2497 return 0; 2498 } 2499 2500 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2501 { 2502 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2503 2504 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2505 return 0; 2506 2507 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2508 2509 /* 2510 * Note, this check is intentionally soft, it only guarantees that one 2511 * page is available, while the caller may end up allocating as many as 2512 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2513 * exceeding the (arbitrary by default) limit will not harm the host, 2514 * being too aggressive may unnecessarily kill the guest, and getting an 2515 * exact count is far more trouble than it's worth, especially in the 2516 * page fault paths. 2517 */ 2518 if (!kvm_mmu_available_pages(vcpu->kvm)) 2519 return -ENOSPC; 2520 return 0; 2521 } 2522 2523 /* 2524 * Changing the number of mmu pages allocated to the vm 2525 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2526 */ 2527 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2528 { 2529 write_lock(&kvm->mmu_lock); 2530 2531 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2532 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2533 goal_nr_mmu_pages); 2534 2535 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2536 } 2537 2538 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2539 2540 write_unlock(&kvm->mmu_lock); 2541 } 2542 2543 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2544 { 2545 struct kvm_mmu_page *sp; 2546 LIST_HEAD(invalid_list); 2547 int r; 2548 2549 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2550 r = 0; 2551 write_lock(&kvm->mmu_lock); 2552 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2553 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2554 sp->role.word); 2555 r = 1; 2556 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2557 } 2558 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2559 write_unlock(&kvm->mmu_lock); 2560 2561 return r; 2562 } 2563 2564 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2565 { 2566 gpa_t gpa; 2567 int r; 2568 2569 if (vcpu->arch.mmu->direct_map) 2570 return 0; 2571 2572 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2573 2574 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2575 2576 return r; 2577 } 2578 2579 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2580 { 2581 trace_kvm_mmu_unsync_page(sp); 2582 ++vcpu->kvm->stat.mmu_unsync; 2583 sp->unsync = 1; 2584 2585 kvm_mmu_mark_parents_unsync(sp); 2586 } 2587 2588 /* 2589 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2590 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2591 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2592 * be write-protected. 2593 */ 2594 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync) 2595 { 2596 struct kvm_mmu_page *sp; 2597 bool locked = false; 2598 2599 /* 2600 * Force write-protection if the page is being tracked. Note, the page 2601 * track machinery is used to write-protect upper-level shadow pages, 2602 * i.e. this guards the role.level == 4K assertion below! 2603 */ 2604 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2605 return -EPERM; 2606 2607 /* 2608 * The page is not write-tracked, mark existing shadow pages unsync 2609 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2610 * that case, KVM must complete emulation of the guest TLB flush before 2611 * allowing shadow pages to become unsync (writable by the guest). 2612 */ 2613 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2614 if (!can_unsync) 2615 return -EPERM; 2616 2617 if (sp->unsync) 2618 continue; 2619 2620 /* 2621 * TDP MMU page faults require an additional spinlock as they 2622 * run with mmu_lock held for read, not write, and the unsync 2623 * logic is not thread safe. Take the spinklock regardless of 2624 * the MMU type to avoid extra conditionals/parameters, there's 2625 * no meaningful penalty if mmu_lock is held for write. 2626 */ 2627 if (!locked) { 2628 locked = true; 2629 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2630 2631 /* 2632 * Recheck after taking the spinlock, a different vCPU 2633 * may have since marked the page unsync. A false 2634 * positive on the unprotected check above is not 2635 * possible as clearing sp->unsync _must_ hold mmu_lock 2636 * for write, i.e. unsync cannot transition from 0->1 2637 * while this CPU holds mmu_lock for read (or write). 2638 */ 2639 if (READ_ONCE(sp->unsync)) 2640 continue; 2641 } 2642 2643 WARN_ON(sp->role.level != PG_LEVEL_4K); 2644 kvm_unsync_page(vcpu, sp); 2645 } 2646 if (locked) 2647 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2648 2649 /* 2650 * We need to ensure that the marking of unsync pages is visible 2651 * before the SPTE is updated to allow writes because 2652 * kvm_mmu_sync_roots() checks the unsync flags without holding 2653 * the MMU lock and so can race with this. If the SPTE was updated 2654 * before the page had been marked as unsync-ed, something like the 2655 * following could happen: 2656 * 2657 * CPU 1 CPU 2 2658 * --------------------------------------------------------------------- 2659 * 1.2 Host updates SPTE 2660 * to be writable 2661 * 2.1 Guest writes a GPTE for GVA X. 2662 * (GPTE being in the guest page table shadowed 2663 * by the SP from CPU 1.) 2664 * This reads SPTE during the page table walk. 2665 * Since SPTE.W is read as 1, there is no 2666 * fault. 2667 * 2668 * 2.2 Guest issues TLB flush. 2669 * That causes a VM Exit. 2670 * 2671 * 2.3 Walking of unsync pages sees sp->unsync is 2672 * false and skips the page. 2673 * 2674 * 2.4 Guest accesses GVA X. 2675 * Since the mapping in the SP was not updated, 2676 * so the old mapping for GVA X incorrectly 2677 * gets used. 2678 * 1.1 Host marks SP 2679 * as unsync 2680 * (sp->unsync = true) 2681 * 2682 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2683 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2684 * pairs with this write barrier. 2685 */ 2686 smp_wmb(); 2687 2688 return 0; 2689 } 2690 2691 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2692 unsigned int pte_access, int level, 2693 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2694 bool can_unsync, bool host_writable) 2695 { 2696 u64 spte; 2697 struct kvm_mmu_page *sp; 2698 int ret; 2699 2700 sp = sptep_to_sp(sptep); 2701 2702 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2703 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2704 2705 if (spte & PT_WRITABLE_MASK) 2706 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2707 2708 if (*sptep == spte) 2709 ret |= SET_SPTE_SPURIOUS; 2710 else if (mmu_spte_update(sptep, spte)) 2711 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2712 return ret; 2713 } 2714 2715 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2716 unsigned int pte_access, bool write_fault, int level, 2717 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2718 bool host_writable) 2719 { 2720 int was_rmapped = 0; 2721 int rmap_count; 2722 int set_spte_ret; 2723 int ret = RET_PF_FIXED; 2724 bool flush = false; 2725 2726 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2727 *sptep, write_fault, gfn); 2728 2729 if (unlikely(is_noslot_pfn(pfn))) { 2730 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2731 return RET_PF_EMULATE; 2732 } 2733 2734 if (is_shadow_present_pte(*sptep)) { 2735 /* 2736 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2737 * the parent of the now unreachable PTE. 2738 */ 2739 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2740 struct kvm_mmu_page *child; 2741 u64 pte = *sptep; 2742 2743 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2744 drop_parent_pte(child, sptep); 2745 flush = true; 2746 } else if (pfn != spte_to_pfn(*sptep)) { 2747 pgprintk("hfn old %llx new %llx\n", 2748 spte_to_pfn(*sptep), pfn); 2749 drop_spte(vcpu->kvm, sptep); 2750 flush = true; 2751 } else 2752 was_rmapped = 1; 2753 } 2754 2755 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2756 speculative, true, host_writable); 2757 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2758 if (write_fault) 2759 ret = RET_PF_EMULATE; 2760 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2761 } 2762 2763 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2764 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2765 KVM_PAGES_PER_HPAGE(level)); 2766 2767 /* 2768 * The fault is fully spurious if and only if the new SPTE and old SPTE 2769 * are identical, and emulation is not required. 2770 */ 2771 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2772 WARN_ON_ONCE(!was_rmapped); 2773 return RET_PF_SPURIOUS; 2774 } 2775 2776 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2777 trace_kvm_mmu_set_spte(level, gfn, sptep); 2778 2779 if (!was_rmapped) { 2780 kvm_update_page_stats(vcpu->kvm, level, 1); 2781 rmap_count = rmap_add(vcpu, sptep, gfn); 2782 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2783 rmap_recycle(vcpu, sptep, gfn); 2784 } 2785 2786 return ret; 2787 } 2788 2789 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2790 bool no_dirty_log) 2791 { 2792 struct kvm_memory_slot *slot; 2793 2794 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2795 if (!slot) 2796 return KVM_PFN_ERR_FAULT; 2797 2798 return gfn_to_pfn_memslot_atomic(slot, gfn); 2799 } 2800 2801 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2802 struct kvm_mmu_page *sp, 2803 u64 *start, u64 *end) 2804 { 2805 struct page *pages[PTE_PREFETCH_NUM]; 2806 struct kvm_memory_slot *slot; 2807 unsigned int access = sp->role.access; 2808 int i, ret; 2809 gfn_t gfn; 2810 2811 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2812 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2813 if (!slot) 2814 return -1; 2815 2816 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2817 if (ret <= 0) 2818 return -1; 2819 2820 for (i = 0; i < ret; i++, gfn++, start++) { 2821 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2822 page_to_pfn(pages[i]), true, true); 2823 put_page(pages[i]); 2824 } 2825 2826 return 0; 2827 } 2828 2829 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2830 struct kvm_mmu_page *sp, u64 *sptep) 2831 { 2832 u64 *spte, *start = NULL; 2833 int i; 2834 2835 WARN_ON(!sp->role.direct); 2836 2837 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2838 spte = sp->spt + i; 2839 2840 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2841 if (is_shadow_present_pte(*spte) || spte == sptep) { 2842 if (!start) 2843 continue; 2844 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2845 break; 2846 start = NULL; 2847 } else if (!start) 2848 start = spte; 2849 } 2850 } 2851 2852 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2853 { 2854 struct kvm_mmu_page *sp; 2855 2856 sp = sptep_to_sp(sptep); 2857 2858 /* 2859 * Without accessed bits, there's no way to distinguish between 2860 * actually accessed translations and prefetched, so disable pte 2861 * prefetch if accessed bits aren't available. 2862 */ 2863 if (sp_ad_disabled(sp)) 2864 return; 2865 2866 if (sp->role.level > PG_LEVEL_4K) 2867 return; 2868 2869 /* 2870 * If addresses are being invalidated, skip prefetching to avoid 2871 * accidentally prefetching those addresses. 2872 */ 2873 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2874 return; 2875 2876 __direct_pte_prefetch(vcpu, sp, sptep); 2877 } 2878 2879 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2880 const struct kvm_memory_slot *slot) 2881 { 2882 unsigned long hva; 2883 pte_t *pte; 2884 int level; 2885 2886 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2887 return PG_LEVEL_4K; 2888 2889 /* 2890 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2891 * is not solely for performance, it's also necessary to avoid the 2892 * "writable" check in __gfn_to_hva_many(), which will always fail on 2893 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2894 * page fault steps have already verified the guest isn't writing a 2895 * read-only memslot. 2896 */ 2897 hva = __gfn_to_hva_memslot(slot, gfn); 2898 2899 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2900 if (unlikely(!pte)) 2901 return PG_LEVEL_4K; 2902 2903 return level; 2904 } 2905 2906 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2907 const struct kvm_memory_slot *slot, gfn_t gfn, 2908 kvm_pfn_t pfn, int max_level) 2909 { 2910 struct kvm_lpage_info *linfo; 2911 int host_level; 2912 2913 max_level = min(max_level, max_huge_page_level); 2914 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2915 linfo = lpage_info_slot(gfn, slot, max_level); 2916 if (!linfo->disallow_lpage) 2917 break; 2918 } 2919 2920 if (max_level == PG_LEVEL_4K) 2921 return PG_LEVEL_4K; 2922 2923 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2924 return min(host_level, max_level); 2925 } 2926 2927 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2928 int max_level, kvm_pfn_t *pfnp, 2929 bool huge_page_disallowed, int *req_level) 2930 { 2931 struct kvm_memory_slot *slot; 2932 kvm_pfn_t pfn = *pfnp; 2933 kvm_pfn_t mask; 2934 int level; 2935 2936 *req_level = PG_LEVEL_4K; 2937 2938 if (unlikely(max_level == PG_LEVEL_4K)) 2939 return PG_LEVEL_4K; 2940 2941 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2942 return PG_LEVEL_4K; 2943 2944 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2945 if (!slot) 2946 return PG_LEVEL_4K; 2947 2948 /* 2949 * Enforce the iTLB multihit workaround after capturing the requested 2950 * level, which will be used to do precise, accurate accounting. 2951 */ 2952 *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level); 2953 if (level == PG_LEVEL_4K || huge_page_disallowed) 2954 return PG_LEVEL_4K; 2955 2956 /* 2957 * mmu_notifier_retry() was successful and mmu_lock is held, so 2958 * the pmd can't be split from under us. 2959 */ 2960 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2961 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2962 *pfnp = pfn & ~mask; 2963 2964 return level; 2965 } 2966 2967 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2968 kvm_pfn_t *pfnp, int *goal_levelp) 2969 { 2970 int level = *goal_levelp; 2971 2972 if (cur_level == level && level > PG_LEVEL_4K && 2973 is_shadow_present_pte(spte) && 2974 !is_large_pte(spte)) { 2975 /* 2976 * A small SPTE exists for this pfn, but FNAME(fetch) 2977 * and __direct_map would like to create a large PTE 2978 * instead: just force them to go down another level, 2979 * patching back for them into pfn the next 9 bits of 2980 * the address. 2981 */ 2982 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2983 KVM_PAGES_PER_HPAGE(level - 1); 2984 *pfnp |= gfn & page_mask; 2985 (*goal_levelp)--; 2986 } 2987 } 2988 2989 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2990 int map_writable, int max_level, kvm_pfn_t pfn, 2991 bool prefault, bool is_tdp) 2992 { 2993 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2994 bool write = error_code & PFERR_WRITE_MASK; 2995 bool exec = error_code & PFERR_FETCH_MASK; 2996 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2997 struct kvm_shadow_walk_iterator it; 2998 struct kvm_mmu_page *sp; 2999 int level, req_level, ret; 3000 gfn_t gfn = gpa >> PAGE_SHIFT; 3001 gfn_t base_gfn = gfn; 3002 3003 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 3004 huge_page_disallowed, &req_level); 3005 3006 trace_kvm_mmu_spte_requested(gpa, level, pfn); 3007 for_each_shadow_entry(vcpu, gpa, it) { 3008 /* 3009 * We cannot overwrite existing page tables with an NX 3010 * large page, as the leaf could be executable. 3011 */ 3012 if (nx_huge_page_workaround_enabled) 3013 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 3014 &pfn, &level); 3015 3016 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3017 if (it.level == level) 3018 break; 3019 3020 drop_large_spte(vcpu, it.sptep); 3021 if (is_shadow_present_pte(*it.sptep)) 3022 continue; 3023 3024 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 3025 it.level - 1, true, ACC_ALL); 3026 3027 link_shadow_page(vcpu, it.sptep, sp); 3028 if (is_tdp && huge_page_disallowed && 3029 req_level >= it.level) 3030 account_huge_nx_page(vcpu->kvm, sp); 3031 } 3032 3033 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 3034 write, level, base_gfn, pfn, prefault, 3035 map_writable); 3036 if (ret == RET_PF_SPURIOUS) 3037 return ret; 3038 3039 direct_pte_prefetch(vcpu, it.sptep); 3040 ++vcpu->stat.pf_fixed; 3041 return ret; 3042 } 3043 3044 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3045 { 3046 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3047 } 3048 3049 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3050 { 3051 /* 3052 * Do not cache the mmio info caused by writing the readonly gfn 3053 * into the spte otherwise read access on readonly gfn also can 3054 * caused mmio page fault and treat it as mmio access. 3055 */ 3056 if (pfn == KVM_PFN_ERR_RO_FAULT) 3057 return RET_PF_EMULATE; 3058 3059 if (pfn == KVM_PFN_ERR_HWPOISON) { 3060 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3061 return RET_PF_RETRY; 3062 } 3063 3064 return -EFAULT; 3065 } 3066 3067 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 3068 kvm_pfn_t pfn, unsigned int access, 3069 int *ret_val) 3070 { 3071 /* The pfn is invalid, report the error! */ 3072 if (unlikely(is_error_pfn(pfn))) { 3073 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 3074 return true; 3075 } 3076 3077 if (unlikely(is_noslot_pfn(pfn))) { 3078 vcpu_cache_mmio_info(vcpu, gva, gfn, 3079 access & shadow_mmio_access_mask); 3080 /* 3081 * If MMIO caching is disabled, emulate immediately without 3082 * touching the shadow page tables as attempting to install an 3083 * MMIO SPTE will just be an expensive nop. 3084 */ 3085 if (unlikely(!shadow_mmio_value)) { 3086 *ret_val = RET_PF_EMULATE; 3087 return true; 3088 } 3089 } 3090 3091 return false; 3092 } 3093 3094 static bool page_fault_can_be_fast(u32 error_code) 3095 { 3096 /* 3097 * Do not fix the mmio spte with invalid generation number which 3098 * need to be updated by slow page fault path. 3099 */ 3100 if (unlikely(error_code & PFERR_RSVD_MASK)) 3101 return false; 3102 3103 /* See if the page fault is due to an NX violation */ 3104 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3105 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3106 return false; 3107 3108 /* 3109 * #PF can be fast if: 3110 * 1. The shadow page table entry is not present, which could mean that 3111 * the fault is potentially caused by access tracking (if enabled). 3112 * 2. The shadow page table entry is present and the fault 3113 * is caused by write-protect, that means we just need change the W 3114 * bit of the spte which can be done out of mmu-lock. 3115 * 3116 * However, if access tracking is disabled we know that a non-present 3117 * page must be a genuine page fault where we have to create a new SPTE. 3118 * So, if access tracking is disabled, we return true only for write 3119 * accesses to a present page. 3120 */ 3121 3122 return shadow_acc_track_mask != 0 || 3123 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3124 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3125 } 3126 3127 /* 3128 * Returns true if the SPTE was fixed successfully. Otherwise, 3129 * someone else modified the SPTE from its original value. 3130 */ 3131 static bool 3132 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3133 u64 *sptep, u64 old_spte, u64 new_spte) 3134 { 3135 gfn_t gfn; 3136 3137 WARN_ON(!sp->role.direct); 3138 3139 /* 3140 * Theoretically we could also set dirty bit (and flush TLB) here in 3141 * order to eliminate unnecessary PML logging. See comments in 3142 * set_spte. But fast_page_fault is very unlikely to happen with PML 3143 * enabled, so we do not do this. This might result in the same GPA 3144 * to be logged in PML buffer again when the write really happens, and 3145 * eventually to be called by mark_page_dirty twice. But it's also no 3146 * harm. This also avoids the TLB flush needed after setting dirty bit 3147 * so non-PML cases won't be impacted. 3148 * 3149 * Compare with set_spte where instead shadow_dirty_mask is set. 3150 */ 3151 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3152 return false; 3153 3154 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3155 /* 3156 * The gfn of direct spte is stable since it is 3157 * calculated by sp->gfn. 3158 */ 3159 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3160 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3161 } 3162 3163 return true; 3164 } 3165 3166 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3167 { 3168 if (fault_err_code & PFERR_FETCH_MASK) 3169 return is_executable_pte(spte); 3170 3171 if (fault_err_code & PFERR_WRITE_MASK) 3172 return is_writable_pte(spte); 3173 3174 /* Fault was on Read access */ 3175 return spte & PT_PRESENT_MASK; 3176 } 3177 3178 /* 3179 * Returns the last level spte pointer of the shadow page walk for the given 3180 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3181 * walk could be performed, returns NULL and *spte does not contain valid data. 3182 * 3183 * Contract: 3184 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3185 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3186 */ 3187 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3188 { 3189 struct kvm_shadow_walk_iterator iterator; 3190 u64 old_spte; 3191 u64 *sptep = NULL; 3192 3193 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3194 sptep = iterator.sptep; 3195 *spte = old_spte; 3196 3197 if (!is_shadow_present_pte(old_spte)) 3198 break; 3199 } 3200 3201 return sptep; 3202 } 3203 3204 /* 3205 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3206 */ 3207 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code) 3208 { 3209 struct kvm_mmu_page *sp; 3210 int ret = RET_PF_INVALID; 3211 u64 spte = 0ull; 3212 u64 *sptep = NULL; 3213 uint retry_count = 0; 3214 3215 if (!page_fault_can_be_fast(error_code)) 3216 return ret; 3217 3218 walk_shadow_page_lockless_begin(vcpu); 3219 3220 do { 3221 u64 new_spte; 3222 3223 if (is_tdp_mmu(vcpu->arch.mmu)) 3224 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte); 3225 else 3226 sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte); 3227 3228 if (!is_shadow_present_pte(spte)) 3229 break; 3230 3231 sp = sptep_to_sp(sptep); 3232 if (!is_last_spte(spte, sp->role.level)) 3233 break; 3234 3235 /* 3236 * Check whether the memory access that caused the fault would 3237 * still cause it if it were to be performed right now. If not, 3238 * then this is a spurious fault caused by TLB lazily flushed, 3239 * or some other CPU has already fixed the PTE after the 3240 * current CPU took the fault. 3241 * 3242 * Need not check the access of upper level table entries since 3243 * they are always ACC_ALL. 3244 */ 3245 if (is_access_allowed(error_code, spte)) { 3246 ret = RET_PF_SPURIOUS; 3247 break; 3248 } 3249 3250 new_spte = spte; 3251 3252 if (is_access_track_spte(spte)) 3253 new_spte = restore_acc_track_spte(new_spte); 3254 3255 /* 3256 * Currently, to simplify the code, write-protection can 3257 * be removed in the fast path only if the SPTE was 3258 * write-protected for dirty-logging or access tracking. 3259 */ 3260 if ((error_code & PFERR_WRITE_MASK) && 3261 spte_can_locklessly_be_made_writable(spte)) { 3262 new_spte |= PT_WRITABLE_MASK; 3263 3264 /* 3265 * Do not fix write-permission on the large spte. Since 3266 * we only dirty the first page into the dirty-bitmap in 3267 * fast_pf_fix_direct_spte(), other pages are missed 3268 * if its slot has dirty logging enabled. 3269 * 3270 * Instead, we let the slow page fault path create a 3271 * normal spte to fix the access. 3272 * 3273 * See the comments in kvm_arch_commit_memory_region(). 3274 */ 3275 if (sp->role.level > PG_LEVEL_4K) 3276 break; 3277 } 3278 3279 /* Verify that the fault can be handled in the fast path */ 3280 if (new_spte == spte || 3281 !is_access_allowed(error_code, new_spte)) 3282 break; 3283 3284 /* 3285 * Currently, fast page fault only works for direct mapping 3286 * since the gfn is not stable for indirect shadow page. See 3287 * Documentation/virt/kvm/locking.rst to get more detail. 3288 */ 3289 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) { 3290 ret = RET_PF_FIXED; 3291 break; 3292 } 3293 3294 if (++retry_count > 4) { 3295 printk_once(KERN_WARNING 3296 "kvm: Fast #PF retrying more than 4 times.\n"); 3297 break; 3298 } 3299 3300 } while (true); 3301 3302 trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret); 3303 walk_shadow_page_lockless_end(vcpu); 3304 3305 return ret; 3306 } 3307 3308 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3309 struct list_head *invalid_list) 3310 { 3311 struct kvm_mmu_page *sp; 3312 3313 if (!VALID_PAGE(*root_hpa)) 3314 return; 3315 3316 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3317 3318 if (is_tdp_mmu_page(sp)) 3319 kvm_tdp_mmu_put_root(kvm, sp, false); 3320 else if (!--sp->root_count && sp->role.invalid) 3321 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3322 3323 *root_hpa = INVALID_PAGE; 3324 } 3325 3326 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3327 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3328 ulong roots_to_free) 3329 { 3330 struct kvm *kvm = vcpu->kvm; 3331 int i; 3332 LIST_HEAD(invalid_list); 3333 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3334 3335 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3336 3337 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3338 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3339 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3340 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3341 VALID_PAGE(mmu->prev_roots[i].hpa)) 3342 break; 3343 3344 if (i == KVM_MMU_NUM_PREV_ROOTS) 3345 return; 3346 } 3347 3348 write_lock(&kvm->mmu_lock); 3349 3350 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3351 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3352 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3353 &invalid_list); 3354 3355 if (free_active_root) { 3356 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3357 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3358 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3359 } else if (mmu->pae_root) { 3360 for (i = 0; i < 4; ++i) { 3361 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3362 continue; 3363 3364 mmu_free_root_page(kvm, &mmu->pae_root[i], 3365 &invalid_list); 3366 mmu->pae_root[i] = INVALID_PAE_ROOT; 3367 } 3368 } 3369 mmu->root_hpa = INVALID_PAGE; 3370 mmu->root_pgd = 0; 3371 } 3372 3373 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3374 write_unlock(&kvm->mmu_lock); 3375 } 3376 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3377 3378 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 3379 { 3380 unsigned long roots_to_free = 0; 3381 hpa_t root_hpa; 3382 int i; 3383 3384 /* 3385 * This should not be called while L2 is active, L2 can't invalidate 3386 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3387 */ 3388 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3389 3390 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3391 root_hpa = mmu->prev_roots[i].hpa; 3392 if (!VALID_PAGE(root_hpa)) 3393 continue; 3394 3395 if (!to_shadow_page(root_hpa) || 3396 to_shadow_page(root_hpa)->role.guest_mode) 3397 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3398 } 3399 3400 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 3401 } 3402 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3403 3404 3405 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3406 { 3407 int ret = 0; 3408 3409 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3411 ret = 1; 3412 } 3413 3414 return ret; 3415 } 3416 3417 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3418 u8 level, bool direct) 3419 { 3420 struct kvm_mmu_page *sp; 3421 3422 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3423 ++sp->root_count; 3424 3425 return __pa(sp->spt); 3426 } 3427 3428 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3429 { 3430 struct kvm_mmu *mmu = vcpu->arch.mmu; 3431 u8 shadow_root_level = mmu->shadow_root_level; 3432 hpa_t root; 3433 unsigned i; 3434 int r; 3435 3436 write_lock(&vcpu->kvm->mmu_lock); 3437 r = make_mmu_pages_available(vcpu); 3438 if (r < 0) 3439 goto out_unlock; 3440 3441 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3442 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3443 mmu->root_hpa = root; 3444 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3445 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3446 mmu->root_hpa = root; 3447 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3448 if (WARN_ON_ONCE(!mmu->pae_root)) { 3449 r = -EIO; 3450 goto out_unlock; 3451 } 3452 3453 for (i = 0; i < 4; ++i) { 3454 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3455 3456 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3457 i << 30, PT32_ROOT_LEVEL, true); 3458 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3459 shadow_me_mask; 3460 } 3461 mmu->root_hpa = __pa(mmu->pae_root); 3462 } else { 3463 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3464 r = -EIO; 3465 goto out_unlock; 3466 } 3467 3468 /* root_pgd is ignored for direct MMUs. */ 3469 mmu->root_pgd = 0; 3470 out_unlock: 3471 write_unlock(&vcpu->kvm->mmu_lock); 3472 return r; 3473 } 3474 3475 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3476 { 3477 struct kvm_mmu *mmu = vcpu->arch.mmu; 3478 u64 pdptrs[4], pm_mask; 3479 gfn_t root_gfn, root_pgd; 3480 hpa_t root; 3481 unsigned i; 3482 int r; 3483 3484 root_pgd = mmu->get_guest_pgd(vcpu); 3485 root_gfn = root_pgd >> PAGE_SHIFT; 3486 3487 if (mmu_check_root(vcpu, root_gfn)) 3488 return 1; 3489 3490 /* 3491 * On SVM, reading PDPTRs might access guest memory, which might fault 3492 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3493 */ 3494 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3495 for (i = 0; i < 4; ++i) { 3496 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3497 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3498 continue; 3499 3500 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3501 return 1; 3502 } 3503 } 3504 3505 r = alloc_all_memslots_rmaps(vcpu->kvm); 3506 if (r) 3507 return r; 3508 3509 write_lock(&vcpu->kvm->mmu_lock); 3510 r = make_mmu_pages_available(vcpu); 3511 if (r < 0) 3512 goto out_unlock; 3513 3514 /* 3515 * Do we shadow a long mode page table? If so we need to 3516 * write-protect the guests page table root. 3517 */ 3518 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3519 root = mmu_alloc_root(vcpu, root_gfn, 0, 3520 mmu->shadow_root_level, false); 3521 mmu->root_hpa = root; 3522 goto set_root_pgd; 3523 } 3524 3525 if (WARN_ON_ONCE(!mmu->pae_root)) { 3526 r = -EIO; 3527 goto out_unlock; 3528 } 3529 3530 /* 3531 * We shadow a 32 bit page table. This may be a legacy 2-level 3532 * or a PAE 3-level page table. In either case we need to be aware that 3533 * the shadow page table may be a PAE or a long mode page table. 3534 */ 3535 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3536 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3537 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3538 3539 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3540 r = -EIO; 3541 goto out_unlock; 3542 } 3543 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3544 3545 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3546 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3547 r = -EIO; 3548 goto out_unlock; 3549 } 3550 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3551 } 3552 } 3553 3554 for (i = 0; i < 4; ++i) { 3555 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3556 3557 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3558 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3559 mmu->pae_root[i] = INVALID_PAE_ROOT; 3560 continue; 3561 } 3562 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3563 } 3564 3565 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3566 PT32_ROOT_LEVEL, false); 3567 mmu->pae_root[i] = root | pm_mask; 3568 } 3569 3570 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3571 mmu->root_hpa = __pa(mmu->pml5_root); 3572 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3573 mmu->root_hpa = __pa(mmu->pml4_root); 3574 else 3575 mmu->root_hpa = __pa(mmu->pae_root); 3576 3577 set_root_pgd: 3578 mmu->root_pgd = root_pgd; 3579 out_unlock: 3580 write_unlock(&vcpu->kvm->mmu_lock); 3581 3582 return 0; 3583 } 3584 3585 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3586 { 3587 struct kvm_mmu *mmu = vcpu->arch.mmu; 3588 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3589 u64 *pml5_root = NULL; 3590 u64 *pml4_root = NULL; 3591 u64 *pae_root; 3592 3593 /* 3594 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3595 * tables are allocated and initialized at root creation as there is no 3596 * equivalent level in the guest's NPT to shadow. Allocate the tables 3597 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3598 */ 3599 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3600 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3601 return 0; 3602 3603 /* 3604 * NPT, the only paging mode that uses this horror, uses a fixed number 3605 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3606 * all MMus are 5-level. Thus, this can safely require that pml5_root 3607 * is allocated if the other roots are valid and pml5 is needed, as any 3608 * prior MMU would also have required pml5. 3609 */ 3610 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3611 return 0; 3612 3613 /* 3614 * The special roots should always be allocated in concert. Yell and 3615 * bail if KVM ends up in a state where only one of the roots is valid. 3616 */ 3617 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3618 (need_pml5 && mmu->pml5_root))) 3619 return -EIO; 3620 3621 /* 3622 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3623 * doesn't need to be decrypted. 3624 */ 3625 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3626 if (!pae_root) 3627 return -ENOMEM; 3628 3629 #ifdef CONFIG_X86_64 3630 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3631 if (!pml4_root) 3632 goto err_pml4; 3633 3634 if (need_pml5) { 3635 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3636 if (!pml5_root) 3637 goto err_pml5; 3638 } 3639 #endif 3640 3641 mmu->pae_root = pae_root; 3642 mmu->pml4_root = pml4_root; 3643 mmu->pml5_root = pml5_root; 3644 3645 return 0; 3646 3647 #ifdef CONFIG_X86_64 3648 err_pml5: 3649 free_page((unsigned long)pml4_root); 3650 err_pml4: 3651 free_page((unsigned long)pae_root); 3652 return -ENOMEM; 3653 #endif 3654 } 3655 3656 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3657 { 3658 int i; 3659 struct kvm_mmu_page *sp; 3660 3661 if (vcpu->arch.mmu->direct_map) 3662 return; 3663 3664 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3665 return; 3666 3667 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3668 3669 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3670 hpa_t root = vcpu->arch.mmu->root_hpa; 3671 sp = to_shadow_page(root); 3672 3673 /* 3674 * Even if another CPU was marking the SP as unsync-ed 3675 * simultaneously, any guest page table changes are not 3676 * guaranteed to be visible anyway until this VCPU issues a TLB 3677 * flush strictly after those changes are made. We only need to 3678 * ensure that the other CPU sets these flags before any actual 3679 * changes to the page tables are made. The comments in 3680 * mmu_try_to_unsync_pages() describe what could go wrong if 3681 * this requirement isn't satisfied. 3682 */ 3683 if (!smp_load_acquire(&sp->unsync) && 3684 !smp_load_acquire(&sp->unsync_children)) 3685 return; 3686 3687 write_lock(&vcpu->kvm->mmu_lock); 3688 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3689 3690 mmu_sync_children(vcpu, sp, true); 3691 3692 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3693 write_unlock(&vcpu->kvm->mmu_lock); 3694 return; 3695 } 3696 3697 write_lock(&vcpu->kvm->mmu_lock); 3698 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3699 3700 for (i = 0; i < 4; ++i) { 3701 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3702 3703 if (IS_VALID_PAE_ROOT(root)) { 3704 root &= PT64_BASE_ADDR_MASK; 3705 sp = to_shadow_page(root); 3706 mmu_sync_children(vcpu, sp, true); 3707 } 3708 } 3709 3710 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3711 write_unlock(&vcpu->kvm->mmu_lock); 3712 } 3713 3714 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3715 u32 access, struct x86_exception *exception) 3716 { 3717 if (exception) 3718 exception->error_code = 0; 3719 return vaddr; 3720 } 3721 3722 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3723 u32 access, 3724 struct x86_exception *exception) 3725 { 3726 if (exception) 3727 exception->error_code = 0; 3728 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3729 } 3730 3731 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3732 { 3733 /* 3734 * A nested guest cannot use the MMIO cache if it is using nested 3735 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3736 */ 3737 if (mmu_is_nested(vcpu)) 3738 return false; 3739 3740 if (direct) 3741 return vcpu_match_mmio_gpa(vcpu, addr); 3742 3743 return vcpu_match_mmio_gva(vcpu, addr); 3744 } 3745 3746 /* 3747 * Return the level of the lowest level SPTE added to sptes. 3748 * That SPTE may be non-present. 3749 * 3750 * Must be called between walk_shadow_page_lockless_{begin,end}. 3751 */ 3752 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3753 { 3754 struct kvm_shadow_walk_iterator iterator; 3755 int leaf = -1; 3756 u64 spte; 3757 3758 for (shadow_walk_init(&iterator, vcpu, addr), 3759 *root_level = iterator.level; 3760 shadow_walk_okay(&iterator); 3761 __shadow_walk_next(&iterator, spte)) { 3762 leaf = iterator.level; 3763 spte = mmu_spte_get_lockless(iterator.sptep); 3764 3765 sptes[leaf] = spte; 3766 3767 if (!is_shadow_present_pte(spte)) 3768 break; 3769 } 3770 3771 return leaf; 3772 } 3773 3774 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3775 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3776 { 3777 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3778 struct rsvd_bits_validate *rsvd_check; 3779 int root, leaf, level; 3780 bool reserved = false; 3781 3782 walk_shadow_page_lockless_begin(vcpu); 3783 3784 if (is_tdp_mmu(vcpu->arch.mmu)) 3785 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3786 else 3787 leaf = get_walk(vcpu, addr, sptes, &root); 3788 3789 walk_shadow_page_lockless_end(vcpu); 3790 3791 if (unlikely(leaf < 0)) { 3792 *sptep = 0ull; 3793 return reserved; 3794 } 3795 3796 *sptep = sptes[leaf]; 3797 3798 /* 3799 * Skip reserved bits checks on the terminal leaf if it's not a valid 3800 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3801 * design, always have reserved bits set. The purpose of the checks is 3802 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3803 */ 3804 if (!is_shadow_present_pte(sptes[leaf])) 3805 leaf++; 3806 3807 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3808 3809 for (level = root; level >= leaf; level--) 3810 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3811 3812 if (reserved) { 3813 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3814 __func__, addr); 3815 for (level = root; level >= leaf; level--) 3816 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3817 sptes[level], level, 3818 get_rsvd_bits(rsvd_check, sptes[level], level)); 3819 } 3820 3821 return reserved; 3822 } 3823 3824 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3825 { 3826 u64 spte; 3827 bool reserved; 3828 3829 if (mmio_info_in_cache(vcpu, addr, direct)) 3830 return RET_PF_EMULATE; 3831 3832 reserved = get_mmio_spte(vcpu, addr, &spte); 3833 if (WARN_ON(reserved)) 3834 return -EINVAL; 3835 3836 if (is_mmio_spte(spte)) { 3837 gfn_t gfn = get_mmio_spte_gfn(spte); 3838 unsigned int access = get_mmio_spte_access(spte); 3839 3840 if (!check_mmio_spte(vcpu, spte)) 3841 return RET_PF_INVALID; 3842 3843 if (direct) 3844 addr = 0; 3845 3846 trace_handle_mmio_page_fault(addr, gfn, access); 3847 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3848 return RET_PF_EMULATE; 3849 } 3850 3851 /* 3852 * If the page table is zapped by other cpus, let CPU fault again on 3853 * the address. 3854 */ 3855 return RET_PF_RETRY; 3856 } 3857 3858 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3859 u32 error_code, gfn_t gfn) 3860 { 3861 if (unlikely(error_code & PFERR_RSVD_MASK)) 3862 return false; 3863 3864 if (!(error_code & PFERR_PRESENT_MASK) || 3865 !(error_code & PFERR_WRITE_MASK)) 3866 return false; 3867 3868 /* 3869 * guest is writing the page which is write tracked which can 3870 * not be fixed by page fault handler. 3871 */ 3872 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3873 return true; 3874 3875 return false; 3876 } 3877 3878 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3879 { 3880 struct kvm_shadow_walk_iterator iterator; 3881 u64 spte; 3882 3883 walk_shadow_page_lockless_begin(vcpu); 3884 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3885 clear_sp_write_flooding_count(iterator.sptep); 3886 if (!is_shadow_present_pte(spte)) 3887 break; 3888 } 3889 walk_shadow_page_lockless_end(vcpu); 3890 } 3891 3892 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3893 gfn_t gfn) 3894 { 3895 struct kvm_arch_async_pf arch; 3896 3897 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3898 arch.gfn = gfn; 3899 arch.direct_map = vcpu->arch.mmu->direct_map; 3900 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3901 3902 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3903 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3904 } 3905 3906 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3907 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva, 3908 bool write, bool *writable, int *r) 3909 { 3910 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3911 bool async; 3912 3913 /* 3914 * Retry the page fault if the gfn hit a memslot that is being deleted 3915 * or moved. This ensures any existing SPTEs for the old memslot will 3916 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3917 */ 3918 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3919 goto out_retry; 3920 3921 if (!kvm_is_visible_memslot(slot)) { 3922 /* Don't expose private memslots to L2. */ 3923 if (is_guest_mode(vcpu)) { 3924 *pfn = KVM_PFN_NOSLOT; 3925 *writable = false; 3926 return false; 3927 } 3928 /* 3929 * If the APIC access page exists but is disabled, go directly 3930 * to emulation without caching the MMIO access or creating a 3931 * MMIO SPTE. That way the cache doesn't need to be purged 3932 * when the AVIC is re-enabled. 3933 */ 3934 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3935 !kvm_apicv_activated(vcpu->kvm)) { 3936 *r = RET_PF_EMULATE; 3937 return true; 3938 } 3939 } 3940 3941 async = false; 3942 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, 3943 write, writable, hva); 3944 if (!async) 3945 return false; /* *pfn has correct page already */ 3946 3947 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3948 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3949 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3950 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3951 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3952 goto out_retry; 3953 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3954 goto out_retry; 3955 } 3956 3957 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, 3958 write, writable, hva); 3959 3960 out_retry: 3961 *r = RET_PF_RETRY; 3962 return true; 3963 } 3964 3965 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3966 bool prefault, int max_level, bool is_tdp) 3967 { 3968 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 3969 bool write = error_code & PFERR_WRITE_MASK; 3970 bool map_writable; 3971 3972 gfn_t gfn = gpa >> PAGE_SHIFT; 3973 unsigned long mmu_seq; 3974 kvm_pfn_t pfn; 3975 hva_t hva; 3976 int r; 3977 3978 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3979 return RET_PF_EMULATE; 3980 3981 r = fast_page_fault(vcpu, gpa, error_code); 3982 if (r != RET_PF_INVALID) 3983 return r; 3984 3985 r = mmu_topup_memory_caches(vcpu, false); 3986 if (r) 3987 return r; 3988 3989 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3990 smp_rmb(); 3991 3992 if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva, 3993 write, &map_writable, &r)) 3994 return r; 3995 3996 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3997 return r; 3998 3999 r = RET_PF_RETRY; 4000 4001 if (is_tdp_mmu_fault) 4002 read_lock(&vcpu->kvm->mmu_lock); 4003 else 4004 write_lock(&vcpu->kvm->mmu_lock); 4005 4006 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva)) 4007 goto out_unlock; 4008 r = make_mmu_pages_available(vcpu); 4009 if (r) 4010 goto out_unlock; 4011 4012 if (is_tdp_mmu_fault) 4013 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 4014 pfn, prefault); 4015 else 4016 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 4017 prefault, is_tdp); 4018 4019 out_unlock: 4020 if (is_tdp_mmu_fault) 4021 read_unlock(&vcpu->kvm->mmu_lock); 4022 else 4023 write_unlock(&vcpu->kvm->mmu_lock); 4024 kvm_release_pfn_clean(pfn); 4025 return r; 4026 } 4027 4028 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 4029 u32 error_code, bool prefault) 4030 { 4031 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 4032 4033 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4034 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 4035 PG_LEVEL_2M, false); 4036 } 4037 4038 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4039 u64 fault_address, char *insn, int insn_len) 4040 { 4041 int r = 1; 4042 u32 flags = vcpu->arch.apf.host_apf_flags; 4043 4044 #ifndef CONFIG_X86_64 4045 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4046 if (WARN_ON_ONCE(fault_address >> 32)) 4047 return -EFAULT; 4048 #endif 4049 4050 vcpu->arch.l1tf_flush_l1d = true; 4051 if (!flags) { 4052 trace_kvm_page_fault(fault_address, error_code); 4053 4054 if (kvm_event_needs_reinjection(vcpu)) 4055 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4056 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4057 insn_len); 4058 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4059 vcpu->arch.apf.host_apf_flags = 0; 4060 local_irq_disable(); 4061 kvm_async_pf_task_wait_schedule(fault_address); 4062 local_irq_enable(); 4063 } else { 4064 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4065 } 4066 4067 return r; 4068 } 4069 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4070 4071 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4072 bool prefault) 4073 { 4074 int max_level; 4075 4076 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 4077 max_level > PG_LEVEL_4K; 4078 max_level--) { 4079 int page_num = KVM_PAGES_PER_HPAGE(max_level); 4080 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 4081 4082 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4083 break; 4084 } 4085 4086 return direct_page_fault(vcpu, gpa, error_code, prefault, 4087 max_level, true); 4088 } 4089 4090 static void nonpaging_init_context(struct kvm_mmu *context) 4091 { 4092 context->page_fault = nonpaging_page_fault; 4093 context->gva_to_gpa = nonpaging_gva_to_gpa; 4094 context->sync_page = nonpaging_sync_page; 4095 context->invlpg = NULL; 4096 context->direct_map = true; 4097 } 4098 4099 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4100 union kvm_mmu_page_role role) 4101 { 4102 return (role.direct || pgd == root->pgd) && 4103 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 4104 role.word == to_shadow_page(root->hpa)->role.word; 4105 } 4106 4107 /* 4108 * Find out if a previously cached root matching the new pgd/role is available. 4109 * The current root is also inserted into the cache. 4110 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4111 * returned. 4112 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4113 * false is returned. This root should now be freed by the caller. 4114 */ 4115 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4116 union kvm_mmu_page_role new_role) 4117 { 4118 uint i; 4119 struct kvm_mmu_root_info root; 4120 struct kvm_mmu *mmu = vcpu->arch.mmu; 4121 4122 root.pgd = mmu->root_pgd; 4123 root.hpa = mmu->root_hpa; 4124 4125 if (is_root_usable(&root, new_pgd, new_role)) 4126 return true; 4127 4128 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4129 swap(root, mmu->prev_roots[i]); 4130 4131 if (is_root_usable(&root, new_pgd, new_role)) 4132 break; 4133 } 4134 4135 mmu->root_hpa = root.hpa; 4136 mmu->root_pgd = root.pgd; 4137 4138 return i < KVM_MMU_NUM_PREV_ROOTS; 4139 } 4140 4141 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4142 union kvm_mmu_page_role new_role) 4143 { 4144 struct kvm_mmu *mmu = vcpu->arch.mmu; 4145 4146 /* 4147 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4148 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4149 * later if necessary. 4150 */ 4151 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4152 mmu->root_level >= PT64_ROOT_4LEVEL) 4153 return cached_root_available(vcpu, new_pgd, new_role); 4154 4155 return false; 4156 } 4157 4158 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4159 union kvm_mmu_page_role new_role) 4160 { 4161 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4162 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4163 return; 4164 } 4165 4166 /* 4167 * It's possible that the cached previous root page is obsolete because 4168 * of a change in the MMU generation number. However, changing the 4169 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4170 * free the root set here and allocate a new one. 4171 */ 4172 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4173 4174 if (force_flush_and_sync_on_reuse) { 4175 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4176 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4177 } 4178 4179 /* 4180 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4181 * switching to a new CR3, that GVA->GPA mapping may no longer be 4182 * valid. So clear any cached MMIO info even when we don't need to sync 4183 * the shadow page tables. 4184 */ 4185 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4186 4187 /* 4188 * If this is a direct root page, it doesn't have a write flooding 4189 * count. Otherwise, clear the write flooding count. 4190 */ 4191 if (!new_role.direct) 4192 __clear_sp_write_flooding_count( 4193 to_shadow_page(vcpu->arch.mmu->root_hpa)); 4194 } 4195 4196 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4197 { 4198 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu)); 4199 } 4200 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4201 4202 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4203 { 4204 return kvm_read_cr3(vcpu); 4205 } 4206 4207 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4208 unsigned int access, int *nr_present) 4209 { 4210 if (unlikely(is_mmio_spte(*sptep))) { 4211 if (gfn != get_mmio_spte_gfn(*sptep)) { 4212 mmu_spte_clear_no_track(sptep); 4213 return true; 4214 } 4215 4216 (*nr_present)++; 4217 mark_mmio_spte(vcpu, sptep, gfn, access); 4218 return true; 4219 } 4220 4221 return false; 4222 } 4223 4224 #define PTTYPE_EPT 18 /* arbitrary */ 4225 #define PTTYPE PTTYPE_EPT 4226 #include "paging_tmpl.h" 4227 #undef PTTYPE 4228 4229 #define PTTYPE 64 4230 #include "paging_tmpl.h" 4231 #undef PTTYPE 4232 4233 #define PTTYPE 32 4234 #include "paging_tmpl.h" 4235 #undef PTTYPE 4236 4237 static void 4238 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4239 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4240 bool pse, bool amd) 4241 { 4242 u64 gbpages_bit_rsvd = 0; 4243 u64 nonleaf_bit8_rsvd = 0; 4244 u64 high_bits_rsvd; 4245 4246 rsvd_check->bad_mt_xwr = 0; 4247 4248 if (!gbpages) 4249 gbpages_bit_rsvd = rsvd_bits(7, 7); 4250 4251 if (level == PT32E_ROOT_LEVEL) 4252 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4253 else 4254 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4255 4256 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4257 if (!nx) 4258 high_bits_rsvd |= rsvd_bits(63, 63); 4259 4260 /* 4261 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4262 * leaf entries) on AMD CPUs only. 4263 */ 4264 if (amd) 4265 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4266 4267 switch (level) { 4268 case PT32_ROOT_LEVEL: 4269 /* no rsvd bits for 2 level 4K page table entries */ 4270 rsvd_check->rsvd_bits_mask[0][1] = 0; 4271 rsvd_check->rsvd_bits_mask[0][0] = 0; 4272 rsvd_check->rsvd_bits_mask[1][0] = 4273 rsvd_check->rsvd_bits_mask[0][0]; 4274 4275 if (!pse) { 4276 rsvd_check->rsvd_bits_mask[1][1] = 0; 4277 break; 4278 } 4279 4280 if (is_cpuid_PSE36()) 4281 /* 36bits PSE 4MB page */ 4282 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4283 else 4284 /* 32 bits PSE 4MB page */ 4285 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4286 break; 4287 case PT32E_ROOT_LEVEL: 4288 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4289 high_bits_rsvd | 4290 rsvd_bits(5, 8) | 4291 rsvd_bits(1, 2); /* PDPTE */ 4292 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4293 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4294 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4295 rsvd_bits(13, 20); /* large page */ 4296 rsvd_check->rsvd_bits_mask[1][0] = 4297 rsvd_check->rsvd_bits_mask[0][0]; 4298 break; 4299 case PT64_ROOT_5LEVEL: 4300 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4301 nonleaf_bit8_rsvd | 4302 rsvd_bits(7, 7); 4303 rsvd_check->rsvd_bits_mask[1][4] = 4304 rsvd_check->rsvd_bits_mask[0][4]; 4305 fallthrough; 4306 case PT64_ROOT_4LEVEL: 4307 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4308 nonleaf_bit8_rsvd | 4309 rsvd_bits(7, 7); 4310 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4311 gbpages_bit_rsvd; 4312 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4313 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4314 rsvd_check->rsvd_bits_mask[1][3] = 4315 rsvd_check->rsvd_bits_mask[0][3]; 4316 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4317 gbpages_bit_rsvd | 4318 rsvd_bits(13, 29); 4319 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4320 rsvd_bits(13, 20); /* large page */ 4321 rsvd_check->rsvd_bits_mask[1][0] = 4322 rsvd_check->rsvd_bits_mask[0][0]; 4323 break; 4324 } 4325 } 4326 4327 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4328 { 4329 /* 4330 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4331 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4332 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4333 * walk for performance and complexity reasons. Not to mention KVM 4334 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4335 * KVM once a TDP translation is installed. Mimic hardware behavior so 4336 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4337 */ 4338 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4339 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4340 } 4341 4342 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4343 struct kvm_mmu *context) 4344 { 4345 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4346 vcpu->arch.reserved_gpa_bits, 4347 context->root_level, is_efer_nx(context), 4348 guest_can_use_gbpages(vcpu), 4349 is_cr4_pse(context), 4350 guest_cpuid_is_amd_or_hygon(vcpu)); 4351 } 4352 4353 static void 4354 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4355 u64 pa_bits_rsvd, bool execonly) 4356 { 4357 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4358 u64 bad_mt_xwr; 4359 4360 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4361 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4362 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4363 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4364 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4365 4366 /* large page */ 4367 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4368 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4369 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4370 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4371 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4372 4373 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4374 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4375 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4376 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4377 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4378 if (!execonly) { 4379 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4380 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4381 } 4382 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4383 } 4384 4385 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4386 struct kvm_mmu *context, bool execonly) 4387 { 4388 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4389 vcpu->arch.reserved_gpa_bits, execonly); 4390 } 4391 4392 static inline u64 reserved_hpa_bits(void) 4393 { 4394 return rsvd_bits(shadow_phys_bits, 63); 4395 } 4396 4397 /* 4398 * the page table on host is the shadow page table for the page 4399 * table in guest or amd nested guest, its mmu features completely 4400 * follow the features in guest. 4401 */ 4402 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4403 struct kvm_mmu *context) 4404 { 4405 /* 4406 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4407 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4408 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4409 * The iTLB multi-hit workaround can be toggled at any time, so assume 4410 * NX can be used by any non-nested shadow MMU to avoid having to reset 4411 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4412 */ 4413 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4414 4415 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4416 bool is_amd = true; 4417 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4418 bool is_pse = false; 4419 struct rsvd_bits_validate *shadow_zero_check; 4420 int i; 4421 4422 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4423 4424 shadow_zero_check = &context->shadow_zero_check; 4425 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4426 context->shadow_root_level, uses_nx, 4427 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4428 4429 if (!shadow_me_mask) 4430 return; 4431 4432 for (i = context->shadow_root_level; --i >= 0;) { 4433 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4434 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4435 } 4436 4437 } 4438 4439 static inline bool boot_cpu_is_amd(void) 4440 { 4441 WARN_ON_ONCE(!tdp_enabled); 4442 return shadow_x_mask == 0; 4443 } 4444 4445 /* 4446 * the direct page table on host, use as much mmu features as 4447 * possible, however, kvm currently does not do execution-protection. 4448 */ 4449 static void 4450 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4451 struct kvm_mmu *context) 4452 { 4453 struct rsvd_bits_validate *shadow_zero_check; 4454 int i; 4455 4456 shadow_zero_check = &context->shadow_zero_check; 4457 4458 if (boot_cpu_is_amd()) 4459 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4460 context->shadow_root_level, false, 4461 boot_cpu_has(X86_FEATURE_GBPAGES), 4462 false, true); 4463 else 4464 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4465 reserved_hpa_bits(), false); 4466 4467 if (!shadow_me_mask) 4468 return; 4469 4470 for (i = context->shadow_root_level; --i >= 0;) { 4471 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4472 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4473 } 4474 } 4475 4476 /* 4477 * as the comments in reset_shadow_zero_bits_mask() except it 4478 * is the shadow page table for intel nested guest. 4479 */ 4480 static void 4481 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4482 struct kvm_mmu *context, bool execonly) 4483 { 4484 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4485 reserved_hpa_bits(), execonly); 4486 } 4487 4488 #define BYTE_MASK(access) \ 4489 ((1 & (access) ? 2 : 0) | \ 4490 (2 & (access) ? 4 : 0) | \ 4491 (3 & (access) ? 8 : 0) | \ 4492 (4 & (access) ? 16 : 0) | \ 4493 (5 & (access) ? 32 : 0) | \ 4494 (6 & (access) ? 64 : 0) | \ 4495 (7 & (access) ? 128 : 0)) 4496 4497 4498 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4499 { 4500 unsigned byte; 4501 4502 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4503 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4504 const u8 u = BYTE_MASK(ACC_USER_MASK); 4505 4506 bool cr4_smep = is_cr4_smep(mmu); 4507 bool cr4_smap = is_cr4_smap(mmu); 4508 bool cr0_wp = is_cr0_wp(mmu); 4509 bool efer_nx = is_efer_nx(mmu); 4510 4511 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4512 unsigned pfec = byte << 1; 4513 4514 /* 4515 * Each "*f" variable has a 1 bit for each UWX value 4516 * that causes a fault with the given PFEC. 4517 */ 4518 4519 /* Faults from writes to non-writable pages */ 4520 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4521 /* Faults from user mode accesses to supervisor pages */ 4522 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4523 /* Faults from fetches of non-executable pages*/ 4524 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4525 /* Faults from kernel mode fetches of user pages */ 4526 u8 smepf = 0; 4527 /* Faults from kernel mode accesses of user pages */ 4528 u8 smapf = 0; 4529 4530 if (!ept) { 4531 /* Faults from kernel mode accesses to user pages */ 4532 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4533 4534 /* Not really needed: !nx will cause pte.nx to fault */ 4535 if (!efer_nx) 4536 ff = 0; 4537 4538 /* Allow supervisor writes if !cr0.wp */ 4539 if (!cr0_wp) 4540 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4541 4542 /* Disallow supervisor fetches of user code if cr4.smep */ 4543 if (cr4_smep) 4544 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4545 4546 /* 4547 * SMAP:kernel-mode data accesses from user-mode 4548 * mappings should fault. A fault is considered 4549 * as a SMAP violation if all of the following 4550 * conditions are true: 4551 * - X86_CR4_SMAP is set in CR4 4552 * - A user page is accessed 4553 * - The access is not a fetch 4554 * - Page fault in kernel mode 4555 * - if CPL = 3 or X86_EFLAGS_AC is clear 4556 * 4557 * Here, we cover the first three conditions. 4558 * The fourth is computed dynamically in permission_fault(); 4559 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4560 * *not* subject to SMAP restrictions. 4561 */ 4562 if (cr4_smap) 4563 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4564 } 4565 4566 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4567 } 4568 } 4569 4570 /* 4571 * PKU is an additional mechanism by which the paging controls access to 4572 * user-mode addresses based on the value in the PKRU register. Protection 4573 * key violations are reported through a bit in the page fault error code. 4574 * Unlike other bits of the error code, the PK bit is not known at the 4575 * call site of e.g. gva_to_gpa; it must be computed directly in 4576 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4577 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4578 * 4579 * In particular the following conditions come from the error code, the 4580 * page tables and the machine state: 4581 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4582 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4583 * - PK is always zero if U=0 in the page tables 4584 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4585 * 4586 * The PKRU bitmask caches the result of these four conditions. The error 4587 * code (minus the P bit) and the page table's U bit form an index into the 4588 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4589 * with the two bits of the PKRU register corresponding to the protection key. 4590 * For the first three conditions above the bits will be 00, thus masking 4591 * away both AD and WD. For all reads or if the last condition holds, WD 4592 * only will be masked away. 4593 */ 4594 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4595 { 4596 unsigned bit; 4597 bool wp; 4598 4599 if (!is_cr4_pke(mmu)) { 4600 mmu->pkru_mask = 0; 4601 return; 4602 } 4603 4604 wp = is_cr0_wp(mmu); 4605 4606 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4607 unsigned pfec, pkey_bits; 4608 bool check_pkey, check_write, ff, uf, wf, pte_user; 4609 4610 pfec = bit << 1; 4611 ff = pfec & PFERR_FETCH_MASK; 4612 uf = pfec & PFERR_USER_MASK; 4613 wf = pfec & PFERR_WRITE_MASK; 4614 4615 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4616 pte_user = pfec & PFERR_RSVD_MASK; 4617 4618 /* 4619 * Only need to check the access which is not an 4620 * instruction fetch and is to a user page. 4621 */ 4622 check_pkey = (!ff && pte_user); 4623 /* 4624 * write access is controlled by PKRU if it is a 4625 * user access or CR0.WP = 1. 4626 */ 4627 check_write = check_pkey && wf && (uf || wp); 4628 4629 /* PKRU.AD stops both read and write access. */ 4630 pkey_bits = !!check_pkey; 4631 /* PKRU.WD stops write access. */ 4632 pkey_bits |= (!!check_write) << 1; 4633 4634 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4635 } 4636 } 4637 4638 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4639 struct kvm_mmu *mmu) 4640 { 4641 if (!is_cr0_pg(mmu)) 4642 return; 4643 4644 reset_rsvds_bits_mask(vcpu, mmu); 4645 update_permission_bitmask(mmu, false); 4646 update_pkru_bitmask(mmu); 4647 } 4648 4649 static void paging64_init_context(struct kvm_mmu *context) 4650 { 4651 context->page_fault = paging64_page_fault; 4652 context->gva_to_gpa = paging64_gva_to_gpa; 4653 context->sync_page = paging64_sync_page; 4654 context->invlpg = paging64_invlpg; 4655 context->direct_map = false; 4656 } 4657 4658 static void paging32_init_context(struct kvm_mmu *context) 4659 { 4660 context->page_fault = paging32_page_fault; 4661 context->gva_to_gpa = paging32_gva_to_gpa; 4662 context->sync_page = paging32_sync_page; 4663 context->invlpg = paging32_invlpg; 4664 context->direct_map = false; 4665 } 4666 4667 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4668 struct kvm_mmu_role_regs *regs) 4669 { 4670 union kvm_mmu_extended_role ext = {0}; 4671 4672 if (____is_cr0_pg(regs)) { 4673 ext.cr0_pg = 1; 4674 ext.cr4_pae = ____is_cr4_pae(regs); 4675 ext.cr4_smep = ____is_cr4_smep(regs); 4676 ext.cr4_smap = ____is_cr4_smap(regs); 4677 ext.cr4_pse = ____is_cr4_pse(regs); 4678 4679 /* PKEY and LA57 are active iff long mode is active. */ 4680 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4681 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4682 } 4683 4684 ext.valid = 1; 4685 4686 return ext; 4687 } 4688 4689 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4690 struct kvm_mmu_role_regs *regs, 4691 bool base_only) 4692 { 4693 union kvm_mmu_role role = {0}; 4694 4695 role.base.access = ACC_ALL; 4696 if (____is_cr0_pg(regs)) { 4697 role.base.efer_nx = ____is_efer_nx(regs); 4698 role.base.cr0_wp = ____is_cr0_wp(regs); 4699 } 4700 role.base.smm = is_smm(vcpu); 4701 role.base.guest_mode = is_guest_mode(vcpu); 4702 4703 if (base_only) 4704 return role; 4705 4706 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4707 4708 return role; 4709 } 4710 4711 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4712 { 4713 /* tdp_root_level is architecture forced level, use it if nonzero */ 4714 if (tdp_root_level) 4715 return tdp_root_level; 4716 4717 /* Use 5-level TDP if and only if it's useful/necessary. */ 4718 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4719 return 4; 4720 4721 return max_tdp_level; 4722 } 4723 4724 static union kvm_mmu_role 4725 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4726 struct kvm_mmu_role_regs *regs, bool base_only) 4727 { 4728 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4729 4730 role.base.ad_disabled = (shadow_accessed_mask == 0); 4731 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4732 role.base.direct = true; 4733 role.base.gpte_is_8_bytes = true; 4734 4735 return role; 4736 } 4737 4738 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4739 { 4740 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4741 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4742 union kvm_mmu_role new_role = 4743 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4744 4745 if (new_role.as_u64 == context->mmu_role.as_u64) 4746 return; 4747 4748 context->mmu_role.as_u64 = new_role.as_u64; 4749 context->page_fault = kvm_tdp_page_fault; 4750 context->sync_page = nonpaging_sync_page; 4751 context->invlpg = NULL; 4752 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4753 context->direct_map = true; 4754 context->get_guest_pgd = get_cr3; 4755 context->get_pdptr = kvm_pdptr_read; 4756 context->inject_page_fault = kvm_inject_page_fault; 4757 context->root_level = role_regs_to_root_level(®s); 4758 4759 if (!is_cr0_pg(context)) 4760 context->gva_to_gpa = nonpaging_gva_to_gpa; 4761 else if (is_cr4_pae(context)) 4762 context->gva_to_gpa = paging64_gva_to_gpa; 4763 else 4764 context->gva_to_gpa = paging32_gva_to_gpa; 4765 4766 reset_guest_paging_metadata(vcpu, context); 4767 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4768 } 4769 4770 static union kvm_mmu_role 4771 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4772 struct kvm_mmu_role_regs *regs, bool base_only) 4773 { 4774 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4775 4776 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4777 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4778 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs); 4779 4780 return role; 4781 } 4782 4783 static union kvm_mmu_role 4784 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4785 struct kvm_mmu_role_regs *regs, bool base_only) 4786 { 4787 union kvm_mmu_role role = 4788 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4789 4790 role.base.direct = !____is_cr0_pg(regs); 4791 4792 if (!____is_efer_lma(regs)) 4793 role.base.level = PT32E_ROOT_LEVEL; 4794 else if (____is_cr4_la57(regs)) 4795 role.base.level = PT64_ROOT_5LEVEL; 4796 else 4797 role.base.level = PT64_ROOT_4LEVEL; 4798 4799 return role; 4800 } 4801 4802 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4803 struct kvm_mmu_role_regs *regs, 4804 union kvm_mmu_role new_role) 4805 { 4806 if (new_role.as_u64 == context->mmu_role.as_u64) 4807 return; 4808 4809 context->mmu_role.as_u64 = new_role.as_u64; 4810 4811 if (!is_cr0_pg(context)) 4812 nonpaging_init_context(context); 4813 else if (is_cr4_pae(context)) 4814 paging64_init_context(context); 4815 else 4816 paging32_init_context(context); 4817 context->root_level = role_regs_to_root_level(regs); 4818 4819 reset_guest_paging_metadata(vcpu, context); 4820 context->shadow_root_level = new_role.base.level; 4821 4822 reset_shadow_zero_bits_mask(vcpu, context); 4823 } 4824 4825 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4826 struct kvm_mmu_role_regs *regs) 4827 { 4828 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4829 union kvm_mmu_role new_role = 4830 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4831 4832 shadow_mmu_init_context(vcpu, context, regs, new_role); 4833 } 4834 4835 static union kvm_mmu_role 4836 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4837 struct kvm_mmu_role_regs *regs) 4838 { 4839 union kvm_mmu_role role = 4840 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4841 4842 role.base.direct = false; 4843 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4844 4845 return role; 4846 } 4847 4848 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4849 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4850 { 4851 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4852 struct kvm_mmu_role_regs regs = { 4853 .cr0 = cr0, 4854 .cr4 = cr4, 4855 .efer = efer, 4856 }; 4857 union kvm_mmu_role new_role; 4858 4859 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4860 4861 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base); 4862 4863 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4864 } 4865 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4866 4867 static union kvm_mmu_role 4868 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4869 bool execonly, u8 level) 4870 { 4871 union kvm_mmu_role role = {0}; 4872 4873 /* SMM flag is inherited from root_mmu */ 4874 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4875 4876 role.base.level = level; 4877 role.base.gpte_is_8_bytes = true; 4878 role.base.direct = false; 4879 role.base.ad_disabled = !accessed_dirty; 4880 role.base.guest_mode = true; 4881 role.base.access = ACC_ALL; 4882 4883 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4884 role.ext.word = 0; 4885 role.ext.execonly = execonly; 4886 role.ext.valid = 1; 4887 4888 return role; 4889 } 4890 4891 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4892 bool accessed_dirty, gpa_t new_eptp) 4893 { 4894 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4895 u8 level = vmx_eptp_page_walk_level(new_eptp); 4896 union kvm_mmu_role new_role = 4897 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4898 execonly, level); 4899 4900 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base); 4901 4902 if (new_role.as_u64 == context->mmu_role.as_u64) 4903 return; 4904 4905 context->mmu_role.as_u64 = new_role.as_u64; 4906 4907 context->shadow_root_level = level; 4908 4909 context->ept_ad = accessed_dirty; 4910 context->page_fault = ept_page_fault; 4911 context->gva_to_gpa = ept_gva_to_gpa; 4912 context->sync_page = ept_sync_page; 4913 context->invlpg = ept_invlpg; 4914 context->root_level = level; 4915 context->direct_map = false; 4916 4917 update_permission_bitmask(context, true); 4918 update_pkru_bitmask(context); 4919 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4920 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4921 } 4922 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4923 4924 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4925 { 4926 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4927 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4928 4929 kvm_init_shadow_mmu(vcpu, ®s); 4930 4931 context->get_guest_pgd = get_cr3; 4932 context->get_pdptr = kvm_pdptr_read; 4933 context->inject_page_fault = kvm_inject_page_fault; 4934 } 4935 4936 static union kvm_mmu_role 4937 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4938 { 4939 union kvm_mmu_role role; 4940 4941 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4942 4943 /* 4944 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4945 * shadow pages of their own and so "direct" has no meaning. Set it 4946 * to "true" to try to detect bogus usage of the nested MMU. 4947 */ 4948 role.base.direct = true; 4949 role.base.level = role_regs_to_root_level(regs); 4950 return role; 4951 } 4952 4953 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4954 { 4955 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4956 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 4957 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4958 4959 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4960 return; 4961 4962 g_context->mmu_role.as_u64 = new_role.as_u64; 4963 g_context->get_guest_pgd = get_cr3; 4964 g_context->get_pdptr = kvm_pdptr_read; 4965 g_context->inject_page_fault = kvm_inject_page_fault; 4966 g_context->root_level = new_role.base.level; 4967 4968 /* 4969 * L2 page tables are never shadowed, so there is no need to sync 4970 * SPTEs. 4971 */ 4972 g_context->invlpg = NULL; 4973 4974 /* 4975 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4976 * L1's nested page tables (e.g. EPT12). The nested translation 4977 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4978 * L2's page tables as the first level of translation and L1's 4979 * nested page tables as the second level of translation. Basically 4980 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4981 */ 4982 if (!is_paging(vcpu)) 4983 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4984 else if (is_long_mode(vcpu)) 4985 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4986 else if (is_pae(vcpu)) 4987 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4988 else 4989 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4990 4991 reset_guest_paging_metadata(vcpu, g_context); 4992 } 4993 4994 void kvm_init_mmu(struct kvm_vcpu *vcpu) 4995 { 4996 if (mmu_is_nested(vcpu)) 4997 init_kvm_nested_mmu(vcpu); 4998 else if (tdp_enabled) 4999 init_kvm_tdp_mmu(vcpu); 5000 else 5001 init_kvm_softmmu(vcpu); 5002 } 5003 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5004 5005 static union kvm_mmu_page_role 5006 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5007 { 5008 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5009 union kvm_mmu_role role; 5010 5011 if (tdp_enabled) 5012 role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true); 5013 else 5014 role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true); 5015 5016 return role.base; 5017 } 5018 5019 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5020 { 5021 /* 5022 * Invalidate all MMU roles to force them to reinitialize as CPUID 5023 * information is factored into reserved bit calculations. 5024 */ 5025 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5026 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5027 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5028 kvm_mmu_reset_context(vcpu); 5029 5030 /* 5031 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as 5032 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't 5033 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page 5034 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise 5035 * sweep the problem under the rug. 5036 * 5037 * KVM's horrific CPUID ABI makes the problem all but impossible to 5038 * solve, as correctly handling multiple vCPU models (with respect to 5039 * paging and physical address properties) in a single VM would require 5040 * tracking all relevant CPUID information in kvm_mmu_page_role. That 5041 * is very undesirable as it would double the memory requirements for 5042 * gfn_track (see struct kvm_mmu_page_role comments), and in practice 5043 * no sane VMM mucks with the core vCPU model on the fly. 5044 */ 5045 if (vcpu->arch.last_vmentry_cpu != -1) { 5046 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n"); 5047 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n"); 5048 } 5049 } 5050 5051 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5052 { 5053 kvm_mmu_unload(vcpu); 5054 kvm_init_mmu(vcpu); 5055 } 5056 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5057 5058 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5059 { 5060 int r; 5061 5062 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5063 if (r) 5064 goto out; 5065 r = mmu_alloc_special_roots(vcpu); 5066 if (r) 5067 goto out; 5068 if (vcpu->arch.mmu->direct_map) 5069 r = mmu_alloc_direct_roots(vcpu); 5070 else 5071 r = mmu_alloc_shadow_roots(vcpu); 5072 if (r) 5073 goto out; 5074 5075 kvm_mmu_sync_roots(vcpu); 5076 5077 kvm_mmu_load_pgd(vcpu); 5078 static_call(kvm_x86_tlb_flush_current)(vcpu); 5079 out: 5080 return r; 5081 } 5082 5083 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5084 { 5085 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5086 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5087 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5088 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5089 } 5090 5091 static bool need_remote_flush(u64 old, u64 new) 5092 { 5093 if (!is_shadow_present_pte(old)) 5094 return false; 5095 if (!is_shadow_present_pte(new)) 5096 return true; 5097 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5098 return true; 5099 old ^= shadow_nx_mask; 5100 new ^= shadow_nx_mask; 5101 return (old & ~new & PT64_PERM_MASK) != 0; 5102 } 5103 5104 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5105 int *bytes) 5106 { 5107 u64 gentry = 0; 5108 int r; 5109 5110 /* 5111 * Assume that the pte write on a page table of the same type 5112 * as the current vcpu paging mode since we update the sptes only 5113 * when they have the same mode. 5114 */ 5115 if (is_pae(vcpu) && *bytes == 4) { 5116 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5117 *gpa &= ~(gpa_t)7; 5118 *bytes = 8; 5119 } 5120 5121 if (*bytes == 4 || *bytes == 8) { 5122 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5123 if (r) 5124 gentry = 0; 5125 } 5126 5127 return gentry; 5128 } 5129 5130 /* 5131 * If we're seeing too many writes to a page, it may no longer be a page table, 5132 * or we may be forking, in which case it is better to unmap the page. 5133 */ 5134 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5135 { 5136 /* 5137 * Skip write-flooding detected for the sp whose level is 1, because 5138 * it can become unsync, then the guest page is not write-protected. 5139 */ 5140 if (sp->role.level == PG_LEVEL_4K) 5141 return false; 5142 5143 atomic_inc(&sp->write_flooding_count); 5144 return atomic_read(&sp->write_flooding_count) >= 3; 5145 } 5146 5147 /* 5148 * Misaligned accesses are too much trouble to fix up; also, they usually 5149 * indicate a page is not used as a page table. 5150 */ 5151 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5152 int bytes) 5153 { 5154 unsigned offset, pte_size, misaligned; 5155 5156 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5157 gpa, bytes, sp->role.word); 5158 5159 offset = offset_in_page(gpa); 5160 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5161 5162 /* 5163 * Sometimes, the OS only writes the last one bytes to update status 5164 * bits, for example, in linux, andb instruction is used in clear_bit(). 5165 */ 5166 if (!(offset & (pte_size - 1)) && bytes == 1) 5167 return false; 5168 5169 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5170 misaligned |= bytes < 4; 5171 5172 return misaligned; 5173 } 5174 5175 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5176 { 5177 unsigned page_offset, quadrant; 5178 u64 *spte; 5179 int level; 5180 5181 page_offset = offset_in_page(gpa); 5182 level = sp->role.level; 5183 *nspte = 1; 5184 if (!sp->role.gpte_is_8_bytes) { 5185 page_offset <<= 1; /* 32->64 */ 5186 /* 5187 * A 32-bit pde maps 4MB while the shadow pdes map 5188 * only 2MB. So we need to double the offset again 5189 * and zap two pdes instead of one. 5190 */ 5191 if (level == PT32_ROOT_LEVEL) { 5192 page_offset &= ~7; /* kill rounding error */ 5193 page_offset <<= 1; 5194 *nspte = 2; 5195 } 5196 quadrant = page_offset >> PAGE_SHIFT; 5197 page_offset &= ~PAGE_MASK; 5198 if (quadrant != sp->role.quadrant) 5199 return NULL; 5200 } 5201 5202 spte = &sp->spt[page_offset / sizeof(*spte)]; 5203 return spte; 5204 } 5205 5206 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5207 const u8 *new, int bytes, 5208 struct kvm_page_track_notifier_node *node) 5209 { 5210 gfn_t gfn = gpa >> PAGE_SHIFT; 5211 struct kvm_mmu_page *sp; 5212 LIST_HEAD(invalid_list); 5213 u64 entry, gentry, *spte; 5214 int npte; 5215 bool remote_flush, local_flush; 5216 5217 /* 5218 * If we don't have indirect shadow pages, it means no page is 5219 * write-protected, so we can exit simply. 5220 */ 5221 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5222 return; 5223 5224 remote_flush = local_flush = false; 5225 5226 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5227 5228 /* 5229 * No need to care whether allocation memory is successful 5230 * or not since pte prefetch is skipped if it does not have 5231 * enough objects in the cache. 5232 */ 5233 mmu_topup_memory_caches(vcpu, true); 5234 5235 write_lock(&vcpu->kvm->mmu_lock); 5236 5237 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5238 5239 ++vcpu->kvm->stat.mmu_pte_write; 5240 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5241 5242 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5243 if (detect_write_misaligned(sp, gpa, bytes) || 5244 detect_write_flooding(sp)) { 5245 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5246 ++vcpu->kvm->stat.mmu_flooded; 5247 continue; 5248 } 5249 5250 spte = get_written_sptes(sp, gpa, &npte); 5251 if (!spte) 5252 continue; 5253 5254 local_flush = true; 5255 while (npte--) { 5256 entry = *spte; 5257 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5258 if (gentry && sp->role.level != PG_LEVEL_4K) 5259 ++vcpu->kvm->stat.mmu_pde_zapped; 5260 if (need_remote_flush(entry, *spte)) 5261 remote_flush = true; 5262 ++spte; 5263 } 5264 } 5265 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5266 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5267 write_unlock(&vcpu->kvm->mmu_lock); 5268 } 5269 5270 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5271 void *insn, int insn_len) 5272 { 5273 int r, emulation_type = EMULTYPE_PF; 5274 bool direct = vcpu->arch.mmu->direct_map; 5275 5276 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5277 return RET_PF_RETRY; 5278 5279 r = RET_PF_INVALID; 5280 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5281 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5282 if (r == RET_PF_EMULATE) 5283 goto emulate; 5284 } 5285 5286 if (r == RET_PF_INVALID) { 5287 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5288 lower_32_bits(error_code), false); 5289 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5290 return -EIO; 5291 } 5292 5293 if (r < 0) 5294 return r; 5295 if (r != RET_PF_EMULATE) 5296 return 1; 5297 5298 /* 5299 * Before emulating the instruction, check if the error code 5300 * was due to a RO violation while translating the guest page. 5301 * This can occur when using nested virtualization with nested 5302 * paging in both guests. If true, we simply unprotect the page 5303 * and resume the guest. 5304 */ 5305 if (vcpu->arch.mmu->direct_map && 5306 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5307 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5308 return 1; 5309 } 5310 5311 /* 5312 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5313 * optimistically try to just unprotect the page and let the processor 5314 * re-execute the instruction that caused the page fault. Do not allow 5315 * retrying MMIO emulation, as it's not only pointless but could also 5316 * cause us to enter an infinite loop because the processor will keep 5317 * faulting on the non-existent MMIO address. Retrying an instruction 5318 * from a nested guest is also pointless and dangerous as we are only 5319 * explicitly shadowing L1's page tables, i.e. unprotecting something 5320 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5321 */ 5322 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5323 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5324 emulate: 5325 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5326 insn_len); 5327 } 5328 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5329 5330 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5331 gva_t gva, hpa_t root_hpa) 5332 { 5333 int i; 5334 5335 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5336 if (mmu != &vcpu->arch.guest_mmu) { 5337 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5338 if (is_noncanonical_address(gva, vcpu)) 5339 return; 5340 5341 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5342 } 5343 5344 if (!mmu->invlpg) 5345 return; 5346 5347 if (root_hpa == INVALID_PAGE) { 5348 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5349 5350 /* 5351 * INVLPG is required to invalidate any global mappings for the VA, 5352 * irrespective of PCID. Since it would take us roughly similar amount 5353 * of work to determine whether any of the prev_root mappings of the VA 5354 * is marked global, or to just sync it blindly, so we might as well 5355 * just always sync it. 5356 * 5357 * Mappings not reachable via the current cr3 or the prev_roots will be 5358 * synced when switching to that cr3, so nothing needs to be done here 5359 * for them. 5360 */ 5361 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5362 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5363 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5364 } else { 5365 mmu->invlpg(vcpu, gva, root_hpa); 5366 } 5367 } 5368 5369 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5370 { 5371 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5372 ++vcpu->stat.invlpg; 5373 } 5374 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5375 5376 5377 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5378 { 5379 struct kvm_mmu *mmu = vcpu->arch.mmu; 5380 bool tlb_flush = false; 5381 uint i; 5382 5383 if (pcid == kvm_get_active_pcid(vcpu)) { 5384 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5385 tlb_flush = true; 5386 } 5387 5388 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5389 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5390 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5391 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5392 tlb_flush = true; 5393 } 5394 } 5395 5396 if (tlb_flush) 5397 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5398 5399 ++vcpu->stat.invlpg; 5400 5401 /* 5402 * Mappings not reachable via the current cr3 or the prev_roots will be 5403 * synced when switching to that cr3, so nothing needs to be done here 5404 * for them. 5405 */ 5406 } 5407 5408 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5409 int tdp_max_root_level, int tdp_huge_page_level) 5410 { 5411 tdp_enabled = enable_tdp; 5412 tdp_root_level = tdp_forced_root_level; 5413 max_tdp_level = tdp_max_root_level; 5414 5415 /* 5416 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5417 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5418 * the kernel is not. But, KVM never creates a page size greater than 5419 * what is used by the kernel for any given HVA, i.e. the kernel's 5420 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5421 */ 5422 if (tdp_enabled) 5423 max_huge_page_level = tdp_huge_page_level; 5424 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5425 max_huge_page_level = PG_LEVEL_1G; 5426 else 5427 max_huge_page_level = PG_LEVEL_2M; 5428 } 5429 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5430 5431 /* The return value indicates if tlb flush on all vcpus is needed. */ 5432 typedef bool (*slot_level_handler) (struct kvm *kvm, 5433 struct kvm_rmap_head *rmap_head, 5434 const struct kvm_memory_slot *slot); 5435 5436 /* The caller should hold mmu-lock before calling this function. */ 5437 static __always_inline bool 5438 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5439 slot_level_handler fn, int start_level, int end_level, 5440 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5441 bool flush) 5442 { 5443 struct slot_rmap_walk_iterator iterator; 5444 5445 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5446 end_gfn, &iterator) { 5447 if (iterator.rmap) 5448 flush |= fn(kvm, iterator.rmap, memslot); 5449 5450 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5451 if (flush && flush_on_yield) { 5452 kvm_flush_remote_tlbs_with_address(kvm, 5453 start_gfn, 5454 iterator.gfn - start_gfn + 1); 5455 flush = false; 5456 } 5457 cond_resched_rwlock_write(&kvm->mmu_lock); 5458 } 5459 } 5460 5461 return flush; 5462 } 5463 5464 static __always_inline bool 5465 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5466 slot_level_handler fn, int start_level, int end_level, 5467 bool flush_on_yield) 5468 { 5469 return slot_handle_level_range(kvm, memslot, fn, start_level, 5470 end_level, memslot->base_gfn, 5471 memslot->base_gfn + memslot->npages - 1, 5472 flush_on_yield, false); 5473 } 5474 5475 static __always_inline bool 5476 slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5477 slot_level_handler fn, bool flush_on_yield) 5478 { 5479 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5480 PG_LEVEL_4K, flush_on_yield); 5481 } 5482 5483 static void free_mmu_pages(struct kvm_mmu *mmu) 5484 { 5485 if (!tdp_enabled && mmu->pae_root) 5486 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5487 free_page((unsigned long)mmu->pae_root); 5488 free_page((unsigned long)mmu->pml4_root); 5489 free_page((unsigned long)mmu->pml5_root); 5490 } 5491 5492 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5493 { 5494 struct page *page; 5495 int i; 5496 5497 mmu->root_hpa = INVALID_PAGE; 5498 mmu->root_pgd = 0; 5499 mmu->translate_gpa = translate_gpa; 5500 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5501 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5502 5503 /* 5504 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5505 * while the PDP table is a per-vCPU construct that's allocated at MMU 5506 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5507 * x86_64. Therefore we need to allocate the PDP table in the first 5508 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5509 * generally doesn't use PAE paging and can skip allocating the PDP 5510 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5511 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5512 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5513 */ 5514 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5515 return 0; 5516 5517 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5518 if (!page) 5519 return -ENOMEM; 5520 5521 mmu->pae_root = page_address(page); 5522 5523 /* 5524 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5525 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5526 * that KVM's writes and the CPU's reads get along. Note, this is 5527 * only necessary when using shadow paging, as 64-bit NPT can get at 5528 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5529 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5530 */ 5531 if (!tdp_enabled) 5532 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5533 else 5534 WARN_ON_ONCE(shadow_me_mask); 5535 5536 for (i = 0; i < 4; ++i) 5537 mmu->pae_root[i] = INVALID_PAE_ROOT; 5538 5539 return 0; 5540 } 5541 5542 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5543 { 5544 int ret; 5545 5546 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5547 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5548 5549 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5550 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5551 5552 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5553 5554 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5555 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5556 5557 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5558 5559 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5560 if (ret) 5561 return ret; 5562 5563 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5564 if (ret) 5565 goto fail_allocate_root; 5566 5567 return ret; 5568 fail_allocate_root: 5569 free_mmu_pages(&vcpu->arch.guest_mmu); 5570 return ret; 5571 } 5572 5573 #define BATCH_ZAP_PAGES 10 5574 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5575 { 5576 struct kvm_mmu_page *sp, *node; 5577 int nr_zapped, batch = 0; 5578 5579 restart: 5580 list_for_each_entry_safe_reverse(sp, node, 5581 &kvm->arch.active_mmu_pages, link) { 5582 /* 5583 * No obsolete valid page exists before a newly created page 5584 * since active_mmu_pages is a FIFO list. 5585 */ 5586 if (!is_obsolete_sp(kvm, sp)) 5587 break; 5588 5589 /* 5590 * Invalid pages should never land back on the list of active 5591 * pages. Skip the bogus page, otherwise we'll get stuck in an 5592 * infinite loop if the page gets put back on the list (again). 5593 */ 5594 if (WARN_ON(sp->role.invalid)) 5595 continue; 5596 5597 /* 5598 * No need to flush the TLB since we're only zapping shadow 5599 * pages with an obsolete generation number and all vCPUS have 5600 * loaded a new root, i.e. the shadow pages being zapped cannot 5601 * be in active use by the guest. 5602 */ 5603 if (batch >= BATCH_ZAP_PAGES && 5604 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5605 batch = 0; 5606 goto restart; 5607 } 5608 5609 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5610 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5611 batch += nr_zapped; 5612 goto restart; 5613 } 5614 } 5615 5616 /* 5617 * Trigger a remote TLB flush before freeing the page tables to ensure 5618 * KVM is not in the middle of a lockless shadow page table walk, which 5619 * may reference the pages. 5620 */ 5621 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5622 } 5623 5624 /* 5625 * Fast invalidate all shadow pages and use lock-break technique 5626 * to zap obsolete pages. 5627 * 5628 * It's required when memslot is being deleted or VM is being 5629 * destroyed, in these cases, we should ensure that KVM MMU does 5630 * not use any resource of the being-deleted slot or all slots 5631 * after calling the function. 5632 */ 5633 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5634 { 5635 lockdep_assert_held(&kvm->slots_lock); 5636 5637 write_lock(&kvm->mmu_lock); 5638 trace_kvm_mmu_zap_all_fast(kvm); 5639 5640 /* 5641 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5642 * held for the entire duration of zapping obsolete pages, it's 5643 * impossible for there to be multiple invalid generations associated 5644 * with *valid* shadow pages at any given time, i.e. there is exactly 5645 * one valid generation and (at most) one invalid generation. 5646 */ 5647 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5648 5649 /* In order to ensure all threads see this change when 5650 * handling the MMU reload signal, this must happen in the 5651 * same critical section as kvm_reload_remote_mmus, and 5652 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages 5653 * could drop the MMU lock and yield. 5654 */ 5655 if (is_tdp_mmu_enabled(kvm)) 5656 kvm_tdp_mmu_invalidate_all_roots(kvm); 5657 5658 /* 5659 * Notify all vcpus to reload its shadow page table and flush TLB. 5660 * Then all vcpus will switch to new shadow page table with the new 5661 * mmu_valid_gen. 5662 * 5663 * Note: we need to do this under the protection of mmu_lock, 5664 * otherwise, vcpu would purge shadow page but miss tlb flush. 5665 */ 5666 kvm_reload_remote_mmus(kvm); 5667 5668 kvm_zap_obsolete_pages(kvm); 5669 5670 write_unlock(&kvm->mmu_lock); 5671 5672 if (is_tdp_mmu_enabled(kvm)) { 5673 read_lock(&kvm->mmu_lock); 5674 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5675 read_unlock(&kvm->mmu_lock); 5676 } 5677 } 5678 5679 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5680 { 5681 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5682 } 5683 5684 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5685 struct kvm_memory_slot *slot, 5686 struct kvm_page_track_notifier_node *node) 5687 { 5688 kvm_mmu_zap_all_fast(kvm); 5689 } 5690 5691 void kvm_mmu_init_vm(struct kvm *kvm) 5692 { 5693 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5694 5695 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5696 5697 if (!kvm_mmu_init_tdp_mmu(kvm)) 5698 /* 5699 * No smp_load/store wrappers needed here as we are in 5700 * VM init and there cannot be any memslots / other threads 5701 * accessing this struct kvm yet. 5702 */ 5703 kvm->arch.memslots_have_rmaps = true; 5704 5705 node->track_write = kvm_mmu_pte_write; 5706 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5707 kvm_page_track_register_notifier(kvm, node); 5708 } 5709 5710 void kvm_mmu_uninit_vm(struct kvm *kvm) 5711 { 5712 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5713 5714 kvm_page_track_unregister_notifier(kvm, node); 5715 5716 kvm_mmu_uninit_tdp_mmu(kvm); 5717 } 5718 5719 /* 5720 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5721 * (not including it) 5722 */ 5723 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5724 { 5725 struct kvm_memslots *slots; 5726 struct kvm_memory_slot *memslot; 5727 int i; 5728 bool flush = false; 5729 5730 write_lock(&kvm->mmu_lock); 5731 5732 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5733 5734 if (kvm_memslots_have_rmaps(kvm)) { 5735 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5736 slots = __kvm_memslots(kvm, i); 5737 kvm_for_each_memslot(memslot, slots) { 5738 gfn_t start, end; 5739 5740 start = max(gfn_start, memslot->base_gfn); 5741 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5742 if (start >= end) 5743 continue; 5744 5745 flush = slot_handle_level_range(kvm, 5746 (const struct kvm_memory_slot *) memslot, 5747 kvm_zap_rmapp, PG_LEVEL_4K, 5748 KVM_MAX_HUGEPAGE_LEVEL, start, 5749 end - 1, true, flush); 5750 } 5751 } 5752 if (flush) 5753 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5754 gfn_end - gfn_start); 5755 } 5756 5757 if (is_tdp_mmu_enabled(kvm)) { 5758 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5759 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, 5760 gfn_end, flush); 5761 if (flush) 5762 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5763 gfn_end - gfn_start); 5764 } 5765 5766 if (flush) 5767 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end); 5768 5769 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5770 5771 write_unlock(&kvm->mmu_lock); 5772 } 5773 5774 static bool slot_rmap_write_protect(struct kvm *kvm, 5775 struct kvm_rmap_head *rmap_head, 5776 const struct kvm_memory_slot *slot) 5777 { 5778 return __rmap_write_protect(kvm, rmap_head, false); 5779 } 5780 5781 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5782 const struct kvm_memory_slot *memslot, 5783 int start_level) 5784 { 5785 bool flush = false; 5786 5787 if (kvm_memslots_have_rmaps(kvm)) { 5788 write_lock(&kvm->mmu_lock); 5789 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5790 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5791 false); 5792 write_unlock(&kvm->mmu_lock); 5793 } 5794 5795 if (is_tdp_mmu_enabled(kvm)) { 5796 read_lock(&kvm->mmu_lock); 5797 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5798 read_unlock(&kvm->mmu_lock); 5799 } 5800 5801 /* 5802 * We can flush all the TLBs out of the mmu lock without TLB 5803 * corruption since we just change the spte from writable to 5804 * readonly so that we only need to care the case of changing 5805 * spte from present to present (changing the spte from present 5806 * to nonpresent will flush all the TLBs immediately), in other 5807 * words, the only case we care is mmu_spte_update() where we 5808 * have checked Host-writable | MMU-writable instead of 5809 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK 5810 * anymore. 5811 */ 5812 if (flush) 5813 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5814 } 5815 5816 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5817 struct kvm_rmap_head *rmap_head, 5818 const struct kvm_memory_slot *slot) 5819 { 5820 u64 *sptep; 5821 struct rmap_iterator iter; 5822 int need_tlb_flush = 0; 5823 kvm_pfn_t pfn; 5824 struct kvm_mmu_page *sp; 5825 5826 restart: 5827 for_each_rmap_spte(rmap_head, &iter, sptep) { 5828 sp = sptep_to_sp(sptep); 5829 pfn = spte_to_pfn(*sptep); 5830 5831 /* 5832 * We cannot do huge page mapping for indirect shadow pages, 5833 * which are found on the last rmap (level = 1) when not using 5834 * tdp; such shadow pages are synced with the page table in 5835 * the guest, and the guest page table is using 4K page size 5836 * mapping if the indirect sp has level = 1. 5837 */ 5838 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5839 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5840 pfn, PG_LEVEL_NUM)) { 5841 pte_list_remove(kvm, rmap_head, sptep); 5842 5843 if (kvm_available_flush_tlb_with_range()) 5844 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5845 KVM_PAGES_PER_HPAGE(sp->role.level)); 5846 else 5847 need_tlb_flush = 1; 5848 5849 goto restart; 5850 } 5851 } 5852 5853 return need_tlb_flush; 5854 } 5855 5856 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5857 const struct kvm_memory_slot *slot) 5858 { 5859 bool flush = false; 5860 5861 if (kvm_memslots_have_rmaps(kvm)) { 5862 write_lock(&kvm->mmu_lock); 5863 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true); 5864 if (flush) 5865 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5866 write_unlock(&kvm->mmu_lock); 5867 } 5868 5869 if (is_tdp_mmu_enabled(kvm)) { 5870 read_lock(&kvm->mmu_lock); 5871 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush); 5872 if (flush) 5873 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5874 read_unlock(&kvm->mmu_lock); 5875 } 5876 } 5877 5878 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5879 const struct kvm_memory_slot *memslot) 5880 { 5881 /* 5882 * All current use cases for flushing the TLBs for a specific memslot 5883 * related to dirty logging, and many do the TLB flush out of mmu_lock. 5884 * The interaction between the various operations on memslot must be 5885 * serialized by slots_locks to ensure the TLB flush from one operation 5886 * is observed by any other operation on the same memslot. 5887 */ 5888 lockdep_assert_held(&kvm->slots_lock); 5889 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5890 memslot->npages); 5891 } 5892 5893 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5894 const struct kvm_memory_slot *memslot) 5895 { 5896 bool flush = false; 5897 5898 if (kvm_memslots_have_rmaps(kvm)) { 5899 write_lock(&kvm->mmu_lock); 5900 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, 5901 false); 5902 write_unlock(&kvm->mmu_lock); 5903 } 5904 5905 if (is_tdp_mmu_enabled(kvm)) { 5906 read_lock(&kvm->mmu_lock); 5907 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5908 read_unlock(&kvm->mmu_lock); 5909 } 5910 5911 /* 5912 * It's also safe to flush TLBs out of mmu lock here as currently this 5913 * function is only used for dirty logging, in which case flushing TLB 5914 * out of mmu lock also guarantees no dirty pages will be lost in 5915 * dirty_bitmap. 5916 */ 5917 if (flush) 5918 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5919 } 5920 5921 void kvm_mmu_zap_all(struct kvm *kvm) 5922 { 5923 struct kvm_mmu_page *sp, *node; 5924 LIST_HEAD(invalid_list); 5925 int ign; 5926 5927 write_lock(&kvm->mmu_lock); 5928 restart: 5929 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5930 if (WARN_ON(sp->role.invalid)) 5931 continue; 5932 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5933 goto restart; 5934 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5935 goto restart; 5936 } 5937 5938 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5939 5940 if (is_tdp_mmu_enabled(kvm)) 5941 kvm_tdp_mmu_zap_all(kvm); 5942 5943 write_unlock(&kvm->mmu_lock); 5944 } 5945 5946 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5947 { 5948 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5949 5950 gen &= MMIO_SPTE_GEN_MASK; 5951 5952 /* 5953 * Generation numbers are incremented in multiples of the number of 5954 * address spaces in order to provide unique generations across all 5955 * address spaces. Strip what is effectively the address space 5956 * modifier prior to checking for a wrap of the MMIO generation so 5957 * that a wrap in any address space is detected. 5958 */ 5959 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5960 5961 /* 5962 * The very rare case: if the MMIO generation number has wrapped, 5963 * zap all shadow pages. 5964 */ 5965 if (unlikely(gen == 0)) { 5966 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5967 kvm_mmu_zap_all_fast(kvm); 5968 } 5969 } 5970 5971 static unsigned long 5972 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5973 { 5974 struct kvm *kvm; 5975 int nr_to_scan = sc->nr_to_scan; 5976 unsigned long freed = 0; 5977 5978 mutex_lock(&kvm_lock); 5979 5980 list_for_each_entry(kvm, &vm_list, vm_list) { 5981 int idx; 5982 LIST_HEAD(invalid_list); 5983 5984 /* 5985 * Never scan more than sc->nr_to_scan VM instances. 5986 * Will not hit this condition practically since we do not try 5987 * to shrink more than one VM and it is very unlikely to see 5988 * !n_used_mmu_pages so many times. 5989 */ 5990 if (!nr_to_scan--) 5991 break; 5992 /* 5993 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5994 * here. We may skip a VM instance errorneosly, but we do not 5995 * want to shrink a VM that only started to populate its MMU 5996 * anyway. 5997 */ 5998 if (!kvm->arch.n_used_mmu_pages && 5999 !kvm_has_zapped_obsolete_pages(kvm)) 6000 continue; 6001 6002 idx = srcu_read_lock(&kvm->srcu); 6003 write_lock(&kvm->mmu_lock); 6004 6005 if (kvm_has_zapped_obsolete_pages(kvm)) { 6006 kvm_mmu_commit_zap_page(kvm, 6007 &kvm->arch.zapped_obsolete_pages); 6008 goto unlock; 6009 } 6010 6011 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6012 6013 unlock: 6014 write_unlock(&kvm->mmu_lock); 6015 srcu_read_unlock(&kvm->srcu, idx); 6016 6017 /* 6018 * unfair on small ones 6019 * per-vm shrinkers cry out 6020 * sadness comes quickly 6021 */ 6022 list_move_tail(&kvm->vm_list, &vm_list); 6023 break; 6024 } 6025 6026 mutex_unlock(&kvm_lock); 6027 return freed; 6028 } 6029 6030 static unsigned long 6031 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6032 { 6033 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6034 } 6035 6036 static struct shrinker mmu_shrinker = { 6037 .count_objects = mmu_shrink_count, 6038 .scan_objects = mmu_shrink_scan, 6039 .seeks = DEFAULT_SEEKS * 10, 6040 }; 6041 6042 static void mmu_destroy_caches(void) 6043 { 6044 kmem_cache_destroy(pte_list_desc_cache); 6045 kmem_cache_destroy(mmu_page_header_cache); 6046 } 6047 6048 static bool get_nx_auto_mode(void) 6049 { 6050 /* Return true when CPU has the bug, and mitigations are ON */ 6051 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6052 } 6053 6054 static void __set_nx_huge_pages(bool val) 6055 { 6056 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6057 } 6058 6059 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6060 { 6061 bool old_val = nx_huge_pages; 6062 bool new_val; 6063 6064 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6065 if (sysfs_streq(val, "off")) 6066 new_val = 0; 6067 else if (sysfs_streq(val, "force")) 6068 new_val = 1; 6069 else if (sysfs_streq(val, "auto")) 6070 new_val = get_nx_auto_mode(); 6071 else if (strtobool(val, &new_val) < 0) 6072 return -EINVAL; 6073 6074 __set_nx_huge_pages(new_val); 6075 6076 if (new_val != old_val) { 6077 struct kvm *kvm; 6078 6079 mutex_lock(&kvm_lock); 6080 6081 list_for_each_entry(kvm, &vm_list, vm_list) { 6082 mutex_lock(&kvm->slots_lock); 6083 kvm_mmu_zap_all_fast(kvm); 6084 mutex_unlock(&kvm->slots_lock); 6085 6086 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6087 } 6088 mutex_unlock(&kvm_lock); 6089 } 6090 6091 return 0; 6092 } 6093 6094 int kvm_mmu_module_init(void) 6095 { 6096 int ret = -ENOMEM; 6097 6098 if (nx_huge_pages == -1) 6099 __set_nx_huge_pages(get_nx_auto_mode()); 6100 6101 /* 6102 * MMU roles use union aliasing which is, generally speaking, an 6103 * undefined behavior. However, we supposedly know how compilers behave 6104 * and the current status quo is unlikely to change. Guardians below are 6105 * supposed to let us know if the assumption becomes false. 6106 */ 6107 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6108 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6109 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6110 6111 kvm_mmu_reset_all_pte_masks(); 6112 6113 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6114 sizeof(struct pte_list_desc), 6115 0, SLAB_ACCOUNT, NULL); 6116 if (!pte_list_desc_cache) 6117 goto out; 6118 6119 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6120 sizeof(struct kvm_mmu_page), 6121 0, SLAB_ACCOUNT, NULL); 6122 if (!mmu_page_header_cache) 6123 goto out; 6124 6125 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6126 goto out; 6127 6128 ret = register_shrinker(&mmu_shrinker); 6129 if (ret) 6130 goto out; 6131 6132 return 0; 6133 6134 out: 6135 mmu_destroy_caches(); 6136 return ret; 6137 } 6138 6139 /* 6140 * Calculate mmu pages needed for kvm. 6141 */ 6142 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6143 { 6144 unsigned long nr_mmu_pages; 6145 unsigned long nr_pages = 0; 6146 struct kvm_memslots *slots; 6147 struct kvm_memory_slot *memslot; 6148 int i; 6149 6150 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6151 slots = __kvm_memslots(kvm, i); 6152 6153 kvm_for_each_memslot(memslot, slots) 6154 nr_pages += memslot->npages; 6155 } 6156 6157 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6158 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6159 6160 return nr_mmu_pages; 6161 } 6162 6163 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6164 { 6165 kvm_mmu_unload(vcpu); 6166 free_mmu_pages(&vcpu->arch.root_mmu); 6167 free_mmu_pages(&vcpu->arch.guest_mmu); 6168 mmu_free_memory_caches(vcpu); 6169 } 6170 6171 void kvm_mmu_module_exit(void) 6172 { 6173 mmu_destroy_caches(); 6174 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6175 unregister_shrinker(&mmu_shrinker); 6176 mmu_audit_disable(); 6177 } 6178 6179 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6180 { 6181 unsigned int old_val; 6182 int err; 6183 6184 old_val = nx_huge_pages_recovery_ratio; 6185 err = param_set_uint(val, kp); 6186 if (err) 6187 return err; 6188 6189 if (READ_ONCE(nx_huge_pages) && 6190 !old_val && nx_huge_pages_recovery_ratio) { 6191 struct kvm *kvm; 6192 6193 mutex_lock(&kvm_lock); 6194 6195 list_for_each_entry(kvm, &vm_list, vm_list) 6196 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6197 6198 mutex_unlock(&kvm_lock); 6199 } 6200 6201 return err; 6202 } 6203 6204 static void kvm_recover_nx_lpages(struct kvm *kvm) 6205 { 6206 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6207 int rcu_idx; 6208 struct kvm_mmu_page *sp; 6209 unsigned int ratio; 6210 LIST_HEAD(invalid_list); 6211 bool flush = false; 6212 ulong to_zap; 6213 6214 rcu_idx = srcu_read_lock(&kvm->srcu); 6215 write_lock(&kvm->mmu_lock); 6216 6217 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6218 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6219 for ( ; to_zap; --to_zap) { 6220 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6221 break; 6222 6223 /* 6224 * We use a separate list instead of just using active_mmu_pages 6225 * because the number of lpage_disallowed pages is expected to 6226 * be relatively small compared to the total. 6227 */ 6228 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6229 struct kvm_mmu_page, 6230 lpage_disallowed_link); 6231 WARN_ON_ONCE(!sp->lpage_disallowed); 6232 if (is_tdp_mmu_page(sp)) { 6233 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6234 } else { 6235 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6236 WARN_ON_ONCE(sp->lpage_disallowed); 6237 } 6238 6239 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6240 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6241 cond_resched_rwlock_write(&kvm->mmu_lock); 6242 flush = false; 6243 } 6244 } 6245 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6246 6247 write_unlock(&kvm->mmu_lock); 6248 srcu_read_unlock(&kvm->srcu, rcu_idx); 6249 } 6250 6251 static long get_nx_lpage_recovery_timeout(u64 start_time) 6252 { 6253 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6254 ? start_time + 60 * HZ - get_jiffies_64() 6255 : MAX_SCHEDULE_TIMEOUT; 6256 } 6257 6258 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6259 { 6260 u64 start_time; 6261 long remaining_time; 6262 6263 while (true) { 6264 start_time = get_jiffies_64(); 6265 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6266 6267 set_current_state(TASK_INTERRUPTIBLE); 6268 while (!kthread_should_stop() && remaining_time > 0) { 6269 schedule_timeout(remaining_time); 6270 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6271 set_current_state(TASK_INTERRUPTIBLE); 6272 } 6273 6274 set_current_state(TASK_RUNNING); 6275 6276 if (kthread_should_stop()) 6277 return 0; 6278 6279 kvm_recover_nx_lpages(kvm); 6280 } 6281 } 6282 6283 int kvm_mmu_post_init_vm(struct kvm *kvm) 6284 { 6285 int err; 6286 6287 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6288 "kvm-nx-lpage-recovery", 6289 &kvm->arch.nx_lpage_recovery_thread); 6290 if (!err) 6291 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6292 6293 return err; 6294 } 6295 6296 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6297 { 6298 if (kvm->arch.nx_lpage_recovery_thread) 6299 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6300 } 6301