1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 extern bool itlb_multihit_kvm_mitigation; 57 58 int __read_mostly nx_huge_pages = -1; 59 static uint __read_mostly nx_huge_pages_recovery_period_ms; 60 #ifdef CONFIG_PREEMPT_RT 61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 63 #else 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 65 #endif 66 67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 68 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 69 70 static const struct kernel_param_ops nx_huge_pages_ops = { 71 .set = set_nx_huge_pages, 72 .get = param_get_bool, 73 }; 74 75 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 76 .set = set_nx_huge_pages_recovery_param, 77 .get = param_get_uint, 78 }; 79 80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 81 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 83 &nx_huge_pages_recovery_ratio, 0644); 84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 85 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 86 &nx_huge_pages_recovery_period_ms, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 88 89 static bool __read_mostly force_flush_and_sync_on_reuse; 90 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 91 92 /* 93 * When setting this variable to true it enables Two-Dimensional-Paging 94 * where the hardware walks 2 page tables: 95 * 1. the guest-virtual to guest-physical 96 * 2. while doing 1. it walks guest-physical to host-physical 97 * If the hardware supports that we don't need to do shadow paging. 98 */ 99 bool tdp_enabled = false; 100 101 static int max_huge_page_level __read_mostly; 102 static int tdp_root_level __read_mostly; 103 static int max_tdp_level __read_mostly; 104 105 #ifdef MMU_DEBUG 106 bool dbg = 0; 107 module_param(dbg, bool, 0644); 108 #endif 109 110 #define PTE_PREFETCH_NUM 8 111 112 #include <trace/events/kvm.h> 113 114 /* make pte_list_desc fit well in cache lines */ 115 #define PTE_LIST_EXT 14 116 117 /* 118 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 119 * at the start; then accessing it will only use one single cacheline for 120 * either full (entries==PTE_LIST_EXT) case or entries<=6. 121 */ 122 struct pte_list_desc { 123 struct pte_list_desc *more; 124 /* 125 * Stores number of entries stored in the pte_list_desc. No need to be 126 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 127 */ 128 u64 spte_count; 129 u64 *sptes[PTE_LIST_EXT]; 130 }; 131 132 struct kvm_shadow_walk_iterator { 133 u64 addr; 134 hpa_t shadow_addr; 135 u64 *sptep; 136 int level; 137 unsigned index; 138 }; 139 140 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 141 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 142 (_root), (_addr)); \ 143 shadow_walk_okay(&(_walker)); \ 144 shadow_walk_next(&(_walker))) 145 146 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 147 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 148 shadow_walk_okay(&(_walker)); \ 149 shadow_walk_next(&(_walker))) 150 151 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 152 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 153 shadow_walk_okay(&(_walker)) && \ 154 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 155 __shadow_walk_next(&(_walker), spte)) 156 157 static struct kmem_cache *pte_list_desc_cache; 158 struct kmem_cache *mmu_page_header_cache; 159 static struct percpu_counter kvm_total_used_mmu_pages; 160 161 static void mmu_spte_set(u64 *sptep, u64 spte); 162 163 struct kvm_mmu_role_regs { 164 const unsigned long cr0; 165 const unsigned long cr4; 166 const u64 efer; 167 }; 168 169 #define CREATE_TRACE_POINTS 170 #include "mmutrace.h" 171 172 /* 173 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 174 * reading from the role_regs. Once the root_role is constructed, it becomes 175 * the single source of truth for the MMU's state. 176 */ 177 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 178 static inline bool __maybe_unused \ 179 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 180 { \ 181 return !!(regs->reg & flag); \ 182 } 183 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 191 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 193 194 /* 195 * The MMU itself (with a valid role) is the single source of truth for the 196 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 197 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 198 * and the vCPU may be incorrect/irrelevant. 199 */ 200 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 201 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 202 { \ 203 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 204 } 205 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 206 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 207 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 208 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 209 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 210 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 211 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 212 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 213 214 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 215 { 216 return mmu->cpu_role.base.level > 0; 217 } 218 219 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 220 { 221 return !mmu->cpu_role.base.has_4_byte_gpte; 222 } 223 224 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 225 { 226 struct kvm_mmu_role_regs regs = { 227 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 228 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 229 .efer = vcpu->arch.efer, 230 }; 231 232 return regs; 233 } 234 235 static inline bool kvm_available_flush_tlb_with_range(void) 236 { 237 return kvm_x86_ops.tlb_remote_flush_with_range; 238 } 239 240 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 241 struct kvm_tlb_range *range) 242 { 243 int ret = -ENOTSUPP; 244 245 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 246 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 247 248 if (ret) 249 kvm_flush_remote_tlbs(kvm); 250 } 251 252 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 253 u64 start_gfn, u64 pages) 254 { 255 struct kvm_tlb_range range; 256 257 range.start_gfn = start_gfn; 258 range.pages = pages; 259 260 kvm_flush_remote_tlbs_with_range(kvm, &range); 261 } 262 263 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 264 unsigned int access) 265 { 266 u64 spte = make_mmio_spte(vcpu, gfn, access); 267 268 trace_mark_mmio_spte(sptep, gfn, spte); 269 mmu_spte_set(sptep, spte); 270 } 271 272 static gfn_t get_mmio_spte_gfn(u64 spte) 273 { 274 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 275 276 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 277 & shadow_nonpresent_or_rsvd_mask; 278 279 return gpa >> PAGE_SHIFT; 280 } 281 282 static unsigned get_mmio_spte_access(u64 spte) 283 { 284 return spte & shadow_mmio_access_mask; 285 } 286 287 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 288 { 289 u64 kvm_gen, spte_gen, gen; 290 291 gen = kvm_vcpu_memslots(vcpu)->generation; 292 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 293 return false; 294 295 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 296 spte_gen = get_mmio_spte_generation(spte); 297 298 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 299 return likely(kvm_gen == spte_gen); 300 } 301 302 static int is_cpuid_PSE36(void) 303 { 304 return 1; 305 } 306 307 #ifdef CONFIG_X86_64 308 static void __set_spte(u64 *sptep, u64 spte) 309 { 310 WRITE_ONCE(*sptep, spte); 311 } 312 313 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 314 { 315 WRITE_ONCE(*sptep, spte); 316 } 317 318 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 319 { 320 return xchg(sptep, spte); 321 } 322 323 static u64 __get_spte_lockless(u64 *sptep) 324 { 325 return READ_ONCE(*sptep); 326 } 327 #else 328 union split_spte { 329 struct { 330 u32 spte_low; 331 u32 spte_high; 332 }; 333 u64 spte; 334 }; 335 336 static void count_spte_clear(u64 *sptep, u64 spte) 337 { 338 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 339 340 if (is_shadow_present_pte(spte)) 341 return; 342 343 /* Ensure the spte is completely set before we increase the count */ 344 smp_wmb(); 345 sp->clear_spte_count++; 346 } 347 348 static void __set_spte(u64 *sptep, u64 spte) 349 { 350 union split_spte *ssptep, sspte; 351 352 ssptep = (union split_spte *)sptep; 353 sspte = (union split_spte)spte; 354 355 ssptep->spte_high = sspte.spte_high; 356 357 /* 358 * If we map the spte from nonpresent to present, We should store 359 * the high bits firstly, then set present bit, so cpu can not 360 * fetch this spte while we are setting the spte. 361 */ 362 smp_wmb(); 363 364 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 365 } 366 367 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 368 { 369 union split_spte *ssptep, sspte; 370 371 ssptep = (union split_spte *)sptep; 372 sspte = (union split_spte)spte; 373 374 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 375 376 /* 377 * If we map the spte from present to nonpresent, we should clear 378 * present bit firstly to avoid vcpu fetch the old high bits. 379 */ 380 smp_wmb(); 381 382 ssptep->spte_high = sspte.spte_high; 383 count_spte_clear(sptep, spte); 384 } 385 386 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 387 { 388 union split_spte *ssptep, sspte, orig; 389 390 ssptep = (union split_spte *)sptep; 391 sspte = (union split_spte)spte; 392 393 /* xchg acts as a barrier before the setting of the high bits */ 394 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 395 orig.spte_high = ssptep->spte_high; 396 ssptep->spte_high = sspte.spte_high; 397 count_spte_clear(sptep, spte); 398 399 return orig.spte; 400 } 401 402 /* 403 * The idea using the light way get the spte on x86_32 guest is from 404 * gup_get_pte (mm/gup.c). 405 * 406 * An spte tlb flush may be pending, because kvm_set_pte_rmap 407 * coalesces them and we are running out of the MMU lock. Therefore 408 * we need to protect against in-progress updates of the spte. 409 * 410 * Reading the spte while an update is in progress may get the old value 411 * for the high part of the spte. The race is fine for a present->non-present 412 * change (because the high part of the spte is ignored for non-present spte), 413 * but for a present->present change we must reread the spte. 414 * 415 * All such changes are done in two steps (present->non-present and 416 * non-present->present), hence it is enough to count the number of 417 * present->non-present updates: if it changed while reading the spte, 418 * we might have hit the race. This is done using clear_spte_count. 419 */ 420 static u64 __get_spte_lockless(u64 *sptep) 421 { 422 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 423 union split_spte spte, *orig = (union split_spte *)sptep; 424 int count; 425 426 retry: 427 count = sp->clear_spte_count; 428 smp_rmb(); 429 430 spte.spte_low = orig->spte_low; 431 smp_rmb(); 432 433 spte.spte_high = orig->spte_high; 434 smp_rmb(); 435 436 if (unlikely(spte.spte_low != orig->spte_low || 437 count != sp->clear_spte_count)) 438 goto retry; 439 440 return spte.spte; 441 } 442 #endif 443 444 /* Rules for using mmu_spte_set: 445 * Set the sptep from nonpresent to present. 446 * Note: the sptep being assigned *must* be either not present 447 * or in a state where the hardware will not attempt to update 448 * the spte. 449 */ 450 static void mmu_spte_set(u64 *sptep, u64 new_spte) 451 { 452 WARN_ON(is_shadow_present_pte(*sptep)); 453 __set_spte(sptep, new_spte); 454 } 455 456 /* 457 * Update the SPTE (excluding the PFN), but do not track changes in its 458 * accessed/dirty status. 459 */ 460 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 461 { 462 u64 old_spte = *sptep; 463 464 WARN_ON(!is_shadow_present_pte(new_spte)); 465 check_spte_writable_invariants(new_spte); 466 467 if (!is_shadow_present_pte(old_spte)) { 468 mmu_spte_set(sptep, new_spte); 469 return old_spte; 470 } 471 472 if (!spte_has_volatile_bits(old_spte)) 473 __update_clear_spte_fast(sptep, new_spte); 474 else 475 old_spte = __update_clear_spte_slow(sptep, new_spte); 476 477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 478 479 return old_spte; 480 } 481 482 /* Rules for using mmu_spte_update: 483 * Update the state bits, it means the mapped pfn is not changed. 484 * 485 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 486 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 487 * spte, even though the writable spte might be cached on a CPU's TLB. 488 * 489 * Returns true if the TLB needs to be flushed 490 */ 491 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 492 { 493 bool flush = false; 494 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) 497 return false; 498 499 /* 500 * For the spte updated out of mmu-lock is safe, since 501 * we always atomically update it, see the comments in 502 * spte_has_volatile_bits(). 503 */ 504 if (is_mmu_writable_spte(old_spte) && 505 !is_writable_pte(new_spte)) 506 flush = true; 507 508 /* 509 * Flush TLB when accessed/dirty states are changed in the page tables, 510 * to guarantee consistency between TLB and page tables. 511 */ 512 513 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 514 flush = true; 515 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 516 } 517 518 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 519 flush = true; 520 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 521 } 522 523 return flush; 524 } 525 526 /* 527 * Rules for using mmu_spte_clear_track_bits: 528 * It sets the sptep from present to nonpresent, and track the 529 * state bits, it is used to clear the last level sptep. 530 * Returns the old PTE. 531 */ 532 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 533 { 534 kvm_pfn_t pfn; 535 u64 old_spte = *sptep; 536 int level = sptep_to_sp(sptep)->role.level; 537 struct page *page; 538 539 if (!is_shadow_present_pte(old_spte) || 540 !spte_has_volatile_bits(old_spte)) 541 __update_clear_spte_fast(sptep, 0ull); 542 else 543 old_spte = __update_clear_spte_slow(sptep, 0ull); 544 545 if (!is_shadow_present_pte(old_spte)) 546 return old_spte; 547 548 kvm_update_page_stats(kvm, level, -1); 549 550 pfn = spte_to_pfn(old_spte); 551 552 /* 553 * KVM doesn't hold a reference to any pages mapped into the guest, and 554 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 555 * before they are reclaimed. Sanity check that, if the pfn is backed 556 * by a refcounted page, the refcount is elevated. 557 */ 558 page = kvm_pfn_to_refcounted_page(pfn); 559 WARN_ON(page && !page_count(page)); 560 561 if (is_accessed_spte(old_spte)) 562 kvm_set_pfn_accessed(pfn); 563 564 if (is_dirty_spte(old_spte)) 565 kvm_set_pfn_dirty(pfn); 566 567 return old_spte; 568 } 569 570 /* 571 * Rules for using mmu_spte_clear_no_track: 572 * Directly clear spte without caring the state bits of sptep, 573 * it is used to set the upper level spte. 574 */ 575 static void mmu_spte_clear_no_track(u64 *sptep) 576 { 577 __update_clear_spte_fast(sptep, 0ull); 578 } 579 580 static u64 mmu_spte_get_lockless(u64 *sptep) 581 { 582 return __get_spte_lockless(sptep); 583 } 584 585 /* Returns the Accessed status of the PTE and resets it at the same time. */ 586 static bool mmu_spte_age(u64 *sptep) 587 { 588 u64 spte = mmu_spte_get_lockless(sptep); 589 590 if (!is_accessed_spte(spte)) 591 return false; 592 593 if (spte_ad_enabled(spte)) { 594 clear_bit((ffs(shadow_accessed_mask) - 1), 595 (unsigned long *)sptep); 596 } else { 597 /* 598 * Capture the dirty status of the page, so that it doesn't get 599 * lost when the SPTE is marked for access tracking. 600 */ 601 if (is_writable_pte(spte)) 602 kvm_set_pfn_dirty(spte_to_pfn(spte)); 603 604 spte = mark_spte_for_access_track(spte); 605 mmu_spte_update_no_track(sptep, spte); 606 } 607 608 return true; 609 } 610 611 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 612 { 613 if (is_tdp_mmu(vcpu->arch.mmu)) { 614 kvm_tdp_mmu_walk_lockless_begin(); 615 } else { 616 /* 617 * Prevent page table teardown by making any free-er wait during 618 * kvm_flush_remote_tlbs() IPI to all active vcpus. 619 */ 620 local_irq_disable(); 621 622 /* 623 * Make sure a following spte read is not reordered ahead of the write 624 * to vcpu->mode. 625 */ 626 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 627 } 628 } 629 630 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 631 { 632 if (is_tdp_mmu(vcpu->arch.mmu)) { 633 kvm_tdp_mmu_walk_lockless_end(); 634 } else { 635 /* 636 * Make sure the write to vcpu->mode is not reordered in front of 637 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 638 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 639 */ 640 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 641 local_irq_enable(); 642 } 643 } 644 645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 646 { 647 int r; 648 649 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 650 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 651 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 652 if (r) 653 return r; 654 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 655 PT64_ROOT_MAX_LEVEL); 656 if (r) 657 return r; 658 if (maybe_indirect) { 659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 660 PT64_ROOT_MAX_LEVEL); 661 if (r) 662 return r; 663 } 664 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 665 PT64_ROOT_MAX_LEVEL); 666 } 667 668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 669 { 670 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 674 } 675 676 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 677 { 678 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 679 } 680 681 static bool sp_has_gptes(struct kvm_mmu_page *sp); 682 683 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 684 { 685 if (sp->role.passthrough) 686 return sp->gfn; 687 688 if (!sp->role.direct) 689 return sp->shadowed_translation[index] >> PAGE_SHIFT; 690 691 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 692 } 693 694 /* 695 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 696 * that the SPTE itself may have a more constrained access permissions that 697 * what the guest enforces. For example, a guest may create an executable 698 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 699 */ 700 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 701 { 702 if (sp_has_gptes(sp)) 703 return sp->shadowed_translation[index] & ACC_ALL; 704 705 /* 706 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 707 * KVM is not shadowing any guest page tables, so the "guest access 708 * permissions" are just ACC_ALL. 709 * 710 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 711 * is shadowing a guest huge page with small pages, the guest access 712 * permissions being shadowed are the access permissions of the huge 713 * page. 714 * 715 * In both cases, sp->role.access contains the correct access bits. 716 */ 717 return sp->role.access; 718 } 719 720 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 721 gfn_t gfn, unsigned int access) 722 { 723 if (sp_has_gptes(sp)) { 724 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 725 return; 726 } 727 728 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 729 "access mismatch under %s page %llx (expected %u, got %u)\n", 730 sp->role.passthrough ? "passthrough" : "direct", 731 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 732 733 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 734 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 735 sp->role.passthrough ? "passthrough" : "direct", 736 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 737 } 738 739 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 740 unsigned int access) 741 { 742 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 743 744 kvm_mmu_page_set_translation(sp, index, gfn, access); 745 } 746 747 /* 748 * Return the pointer to the large page information for a given gfn, 749 * handling slots that are not large page aligned. 750 */ 751 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 752 const struct kvm_memory_slot *slot, int level) 753 { 754 unsigned long idx; 755 756 idx = gfn_to_index(gfn, slot->base_gfn, level); 757 return &slot->arch.lpage_info[level - 2][idx]; 758 } 759 760 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 761 gfn_t gfn, int count) 762 { 763 struct kvm_lpage_info *linfo; 764 int i; 765 766 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 767 linfo = lpage_info_slot(gfn, slot, i); 768 linfo->disallow_lpage += count; 769 WARN_ON(linfo->disallow_lpage < 0); 770 } 771 } 772 773 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 774 { 775 update_gfn_disallow_lpage_count(slot, gfn, 1); 776 } 777 778 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 779 { 780 update_gfn_disallow_lpage_count(slot, gfn, -1); 781 } 782 783 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 784 { 785 struct kvm_memslots *slots; 786 struct kvm_memory_slot *slot; 787 gfn_t gfn; 788 789 kvm->arch.indirect_shadow_pages++; 790 gfn = sp->gfn; 791 slots = kvm_memslots_for_spte_role(kvm, sp->role); 792 slot = __gfn_to_memslot(slots, gfn); 793 794 /* the non-leaf shadow pages are keeping readonly. */ 795 if (sp->role.level > PG_LEVEL_4K) 796 return kvm_slot_page_track_add_page(kvm, slot, gfn, 797 KVM_PAGE_TRACK_WRITE); 798 799 kvm_mmu_gfn_disallow_lpage(slot, gfn); 800 801 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 802 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 803 } 804 805 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 806 { 807 if (sp->lpage_disallowed) 808 return; 809 810 ++kvm->stat.nx_lpage_splits; 811 list_add_tail(&sp->lpage_disallowed_link, 812 &kvm->arch.lpage_disallowed_mmu_pages); 813 sp->lpage_disallowed = true; 814 } 815 816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 817 { 818 struct kvm_memslots *slots; 819 struct kvm_memory_slot *slot; 820 gfn_t gfn; 821 822 kvm->arch.indirect_shadow_pages--; 823 gfn = sp->gfn; 824 slots = kvm_memslots_for_spte_role(kvm, sp->role); 825 slot = __gfn_to_memslot(slots, gfn); 826 if (sp->role.level > PG_LEVEL_4K) 827 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 828 KVM_PAGE_TRACK_WRITE); 829 830 kvm_mmu_gfn_allow_lpage(slot, gfn); 831 } 832 833 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 834 { 835 --kvm->stat.nx_lpage_splits; 836 sp->lpage_disallowed = false; 837 list_del(&sp->lpage_disallowed_link); 838 } 839 840 static struct kvm_memory_slot * 841 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 842 bool no_dirty_log) 843 { 844 struct kvm_memory_slot *slot; 845 846 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 847 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 848 return NULL; 849 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 850 return NULL; 851 852 return slot; 853 } 854 855 /* 856 * About rmap_head encoding: 857 * 858 * If the bit zero of rmap_head->val is clear, then it points to the only spte 859 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 860 * pte_list_desc containing more mappings. 861 */ 862 863 /* 864 * Returns the number of pointers in the rmap chain, not counting the new one. 865 */ 866 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 867 struct kvm_rmap_head *rmap_head) 868 { 869 struct pte_list_desc *desc; 870 int count = 0; 871 872 if (!rmap_head->val) { 873 rmap_printk("%p %llx 0->1\n", spte, *spte); 874 rmap_head->val = (unsigned long)spte; 875 } else if (!(rmap_head->val & 1)) { 876 rmap_printk("%p %llx 1->many\n", spte, *spte); 877 desc = kvm_mmu_memory_cache_alloc(cache); 878 desc->sptes[0] = (u64 *)rmap_head->val; 879 desc->sptes[1] = spte; 880 desc->spte_count = 2; 881 rmap_head->val = (unsigned long)desc | 1; 882 ++count; 883 } else { 884 rmap_printk("%p %llx many->many\n", spte, *spte); 885 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 886 while (desc->spte_count == PTE_LIST_EXT) { 887 count += PTE_LIST_EXT; 888 if (!desc->more) { 889 desc->more = kvm_mmu_memory_cache_alloc(cache); 890 desc = desc->more; 891 desc->spte_count = 0; 892 break; 893 } 894 desc = desc->more; 895 } 896 count += desc->spte_count; 897 desc->sptes[desc->spte_count++] = spte; 898 } 899 return count; 900 } 901 902 static void 903 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 904 struct pte_list_desc *desc, int i, 905 struct pte_list_desc *prev_desc) 906 { 907 int j = desc->spte_count - 1; 908 909 desc->sptes[i] = desc->sptes[j]; 910 desc->sptes[j] = NULL; 911 desc->spte_count--; 912 if (desc->spte_count) 913 return; 914 if (!prev_desc && !desc->more) 915 rmap_head->val = 0; 916 else 917 if (prev_desc) 918 prev_desc->more = desc->more; 919 else 920 rmap_head->val = (unsigned long)desc->more | 1; 921 mmu_free_pte_list_desc(desc); 922 } 923 924 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 925 { 926 struct pte_list_desc *desc; 927 struct pte_list_desc *prev_desc; 928 int i; 929 930 if (!rmap_head->val) { 931 pr_err("%s: %p 0->BUG\n", __func__, spte); 932 BUG(); 933 } else if (!(rmap_head->val & 1)) { 934 rmap_printk("%p 1->0\n", spte); 935 if ((u64 *)rmap_head->val != spte) { 936 pr_err("%s: %p 1->BUG\n", __func__, spte); 937 BUG(); 938 } 939 rmap_head->val = 0; 940 } else { 941 rmap_printk("%p many->many\n", spte); 942 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 943 prev_desc = NULL; 944 while (desc) { 945 for (i = 0; i < desc->spte_count; ++i) { 946 if (desc->sptes[i] == spte) { 947 pte_list_desc_remove_entry(rmap_head, 948 desc, i, prev_desc); 949 return; 950 } 951 } 952 prev_desc = desc; 953 desc = desc->more; 954 } 955 pr_err("%s: %p many->many\n", __func__, spte); 956 BUG(); 957 } 958 } 959 960 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 961 struct kvm_rmap_head *rmap_head, u64 *sptep) 962 { 963 mmu_spte_clear_track_bits(kvm, sptep); 964 pte_list_remove(sptep, rmap_head); 965 } 966 967 /* Return true if at least one SPTE was zapped, false otherwise */ 968 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 969 struct kvm_rmap_head *rmap_head) 970 { 971 struct pte_list_desc *desc, *next; 972 int i; 973 974 if (!rmap_head->val) 975 return false; 976 977 if (!(rmap_head->val & 1)) { 978 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 979 goto out; 980 } 981 982 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 983 984 for (; desc; desc = next) { 985 for (i = 0; i < desc->spte_count; i++) 986 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 987 next = desc->more; 988 mmu_free_pte_list_desc(desc); 989 } 990 out: 991 /* rmap_head is meaningless now, remember to reset it */ 992 rmap_head->val = 0; 993 return true; 994 } 995 996 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 997 { 998 struct pte_list_desc *desc; 999 unsigned int count = 0; 1000 1001 if (!rmap_head->val) 1002 return 0; 1003 else if (!(rmap_head->val & 1)) 1004 return 1; 1005 1006 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1007 1008 while (desc) { 1009 count += desc->spte_count; 1010 desc = desc->more; 1011 } 1012 1013 return count; 1014 } 1015 1016 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1017 const struct kvm_memory_slot *slot) 1018 { 1019 unsigned long idx; 1020 1021 idx = gfn_to_index(gfn, slot->base_gfn, level); 1022 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1023 } 1024 1025 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1026 { 1027 struct kvm_mmu_memory_cache *mc; 1028 1029 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1030 return kvm_mmu_memory_cache_nr_free_objects(mc); 1031 } 1032 1033 static void rmap_remove(struct kvm *kvm, u64 *spte) 1034 { 1035 struct kvm_memslots *slots; 1036 struct kvm_memory_slot *slot; 1037 struct kvm_mmu_page *sp; 1038 gfn_t gfn; 1039 struct kvm_rmap_head *rmap_head; 1040 1041 sp = sptep_to_sp(spte); 1042 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1043 1044 /* 1045 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1046 * so we have to determine which memslots to use based on context 1047 * information in sp->role. 1048 */ 1049 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1050 1051 slot = __gfn_to_memslot(slots, gfn); 1052 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1053 1054 pte_list_remove(spte, rmap_head); 1055 } 1056 1057 /* 1058 * Used by the following functions to iterate through the sptes linked by a 1059 * rmap. All fields are private and not assumed to be used outside. 1060 */ 1061 struct rmap_iterator { 1062 /* private fields */ 1063 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1064 int pos; /* index of the sptep */ 1065 }; 1066 1067 /* 1068 * Iteration must be started by this function. This should also be used after 1069 * removing/dropping sptes from the rmap link because in such cases the 1070 * information in the iterator may not be valid. 1071 * 1072 * Returns sptep if found, NULL otherwise. 1073 */ 1074 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1075 struct rmap_iterator *iter) 1076 { 1077 u64 *sptep; 1078 1079 if (!rmap_head->val) 1080 return NULL; 1081 1082 if (!(rmap_head->val & 1)) { 1083 iter->desc = NULL; 1084 sptep = (u64 *)rmap_head->val; 1085 goto out; 1086 } 1087 1088 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1089 iter->pos = 0; 1090 sptep = iter->desc->sptes[iter->pos]; 1091 out: 1092 BUG_ON(!is_shadow_present_pte(*sptep)); 1093 return sptep; 1094 } 1095 1096 /* 1097 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1098 * 1099 * Returns sptep if found, NULL otherwise. 1100 */ 1101 static u64 *rmap_get_next(struct rmap_iterator *iter) 1102 { 1103 u64 *sptep; 1104 1105 if (iter->desc) { 1106 if (iter->pos < PTE_LIST_EXT - 1) { 1107 ++iter->pos; 1108 sptep = iter->desc->sptes[iter->pos]; 1109 if (sptep) 1110 goto out; 1111 } 1112 1113 iter->desc = iter->desc->more; 1114 1115 if (iter->desc) { 1116 iter->pos = 0; 1117 /* desc->sptes[0] cannot be NULL */ 1118 sptep = iter->desc->sptes[iter->pos]; 1119 goto out; 1120 } 1121 } 1122 1123 return NULL; 1124 out: 1125 BUG_ON(!is_shadow_present_pte(*sptep)); 1126 return sptep; 1127 } 1128 1129 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1130 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1131 _spte_; _spte_ = rmap_get_next(_iter_)) 1132 1133 static void drop_spte(struct kvm *kvm, u64 *sptep) 1134 { 1135 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1136 1137 if (is_shadow_present_pte(old_spte)) 1138 rmap_remove(kvm, sptep); 1139 } 1140 1141 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1142 { 1143 struct kvm_mmu_page *sp; 1144 1145 sp = sptep_to_sp(sptep); 1146 WARN_ON(sp->role.level == PG_LEVEL_4K); 1147 1148 drop_spte(kvm, sptep); 1149 1150 if (flush) 1151 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 1152 KVM_PAGES_PER_HPAGE(sp->role.level)); 1153 } 1154 1155 /* 1156 * Write-protect on the specified @sptep, @pt_protect indicates whether 1157 * spte write-protection is caused by protecting shadow page table. 1158 * 1159 * Note: write protection is difference between dirty logging and spte 1160 * protection: 1161 * - for dirty logging, the spte can be set to writable at anytime if 1162 * its dirty bitmap is properly set. 1163 * - for spte protection, the spte can be writable only after unsync-ing 1164 * shadow page. 1165 * 1166 * Return true if tlb need be flushed. 1167 */ 1168 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1169 { 1170 u64 spte = *sptep; 1171 1172 if (!is_writable_pte(spte) && 1173 !(pt_protect && is_mmu_writable_spte(spte))) 1174 return false; 1175 1176 rmap_printk("spte %p %llx\n", sptep, *sptep); 1177 1178 if (pt_protect) 1179 spte &= ~shadow_mmu_writable_mask; 1180 spte = spte & ~PT_WRITABLE_MASK; 1181 1182 return mmu_spte_update(sptep, spte); 1183 } 1184 1185 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1186 bool pt_protect) 1187 { 1188 u64 *sptep; 1189 struct rmap_iterator iter; 1190 bool flush = false; 1191 1192 for_each_rmap_spte(rmap_head, &iter, sptep) 1193 flush |= spte_write_protect(sptep, pt_protect); 1194 1195 return flush; 1196 } 1197 1198 static bool spte_clear_dirty(u64 *sptep) 1199 { 1200 u64 spte = *sptep; 1201 1202 rmap_printk("spte %p %llx\n", sptep, *sptep); 1203 1204 MMU_WARN_ON(!spte_ad_enabled(spte)); 1205 spte &= ~shadow_dirty_mask; 1206 return mmu_spte_update(sptep, spte); 1207 } 1208 1209 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1210 { 1211 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1212 (unsigned long *)sptep); 1213 if (was_writable && !spte_ad_enabled(*sptep)) 1214 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1215 1216 return was_writable; 1217 } 1218 1219 /* 1220 * Gets the GFN ready for another round of dirty logging by clearing the 1221 * - D bit on ad-enabled SPTEs, and 1222 * - W bit on ad-disabled SPTEs. 1223 * Returns true iff any D or W bits were cleared. 1224 */ 1225 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1226 const struct kvm_memory_slot *slot) 1227 { 1228 u64 *sptep; 1229 struct rmap_iterator iter; 1230 bool flush = false; 1231 1232 for_each_rmap_spte(rmap_head, &iter, sptep) 1233 if (spte_ad_need_write_protect(*sptep)) 1234 flush |= spte_wrprot_for_clear_dirty(sptep); 1235 else 1236 flush |= spte_clear_dirty(sptep); 1237 1238 return flush; 1239 } 1240 1241 /** 1242 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1243 * @kvm: kvm instance 1244 * @slot: slot to protect 1245 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1246 * @mask: indicates which pages we should protect 1247 * 1248 * Used when we do not need to care about huge page mappings. 1249 */ 1250 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1251 struct kvm_memory_slot *slot, 1252 gfn_t gfn_offset, unsigned long mask) 1253 { 1254 struct kvm_rmap_head *rmap_head; 1255 1256 if (is_tdp_mmu_enabled(kvm)) 1257 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1258 slot->base_gfn + gfn_offset, mask, true); 1259 1260 if (!kvm_memslots_have_rmaps(kvm)) 1261 return; 1262 1263 while (mask) { 1264 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1265 PG_LEVEL_4K, slot); 1266 rmap_write_protect(rmap_head, false); 1267 1268 /* clear the first set bit */ 1269 mask &= mask - 1; 1270 } 1271 } 1272 1273 /** 1274 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1275 * protect the page if the D-bit isn't supported. 1276 * @kvm: kvm instance 1277 * @slot: slot to clear D-bit 1278 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1279 * @mask: indicates which pages we should clear D-bit 1280 * 1281 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1282 */ 1283 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1284 struct kvm_memory_slot *slot, 1285 gfn_t gfn_offset, unsigned long mask) 1286 { 1287 struct kvm_rmap_head *rmap_head; 1288 1289 if (is_tdp_mmu_enabled(kvm)) 1290 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1291 slot->base_gfn + gfn_offset, mask, false); 1292 1293 if (!kvm_memslots_have_rmaps(kvm)) 1294 return; 1295 1296 while (mask) { 1297 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1298 PG_LEVEL_4K, slot); 1299 __rmap_clear_dirty(kvm, rmap_head, slot); 1300 1301 /* clear the first set bit */ 1302 mask &= mask - 1; 1303 } 1304 } 1305 1306 /** 1307 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1308 * PT level pages. 1309 * 1310 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1311 * enable dirty logging for them. 1312 * 1313 * We need to care about huge page mappings: e.g. during dirty logging we may 1314 * have such mappings. 1315 */ 1316 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1317 struct kvm_memory_slot *slot, 1318 gfn_t gfn_offset, unsigned long mask) 1319 { 1320 /* 1321 * Huge pages are NOT write protected when we start dirty logging in 1322 * initially-all-set mode; must write protect them here so that they 1323 * are split to 4K on the first write. 1324 * 1325 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1326 * of memslot has no such restriction, so the range can cross two large 1327 * pages. 1328 */ 1329 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1330 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1331 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1332 1333 if (READ_ONCE(eager_page_split)) 1334 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1335 1336 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1337 1338 /* Cross two large pages? */ 1339 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1340 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1341 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1342 PG_LEVEL_2M); 1343 } 1344 1345 /* Now handle 4K PTEs. */ 1346 if (kvm_x86_ops.cpu_dirty_log_size) 1347 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1348 else 1349 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1350 } 1351 1352 int kvm_cpu_dirty_log_size(void) 1353 { 1354 return kvm_x86_ops.cpu_dirty_log_size; 1355 } 1356 1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1358 struct kvm_memory_slot *slot, u64 gfn, 1359 int min_level) 1360 { 1361 struct kvm_rmap_head *rmap_head; 1362 int i; 1363 bool write_protected = false; 1364 1365 if (kvm_memslots_have_rmaps(kvm)) { 1366 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1367 rmap_head = gfn_to_rmap(gfn, i, slot); 1368 write_protected |= rmap_write_protect(rmap_head, true); 1369 } 1370 } 1371 1372 if (is_tdp_mmu_enabled(kvm)) 1373 write_protected |= 1374 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1375 1376 return write_protected; 1377 } 1378 1379 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1380 { 1381 struct kvm_memory_slot *slot; 1382 1383 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1384 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1385 } 1386 1387 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1388 const struct kvm_memory_slot *slot) 1389 { 1390 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1391 } 1392 1393 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1394 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1395 pte_t unused) 1396 { 1397 return __kvm_zap_rmap(kvm, rmap_head, slot); 1398 } 1399 1400 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1401 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1402 pte_t pte) 1403 { 1404 u64 *sptep; 1405 struct rmap_iterator iter; 1406 bool need_flush = false; 1407 u64 new_spte; 1408 kvm_pfn_t new_pfn; 1409 1410 WARN_ON(pte_huge(pte)); 1411 new_pfn = pte_pfn(pte); 1412 1413 restart: 1414 for_each_rmap_spte(rmap_head, &iter, sptep) { 1415 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1416 sptep, *sptep, gfn, level); 1417 1418 need_flush = true; 1419 1420 if (pte_write(pte)) { 1421 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1422 goto restart; 1423 } else { 1424 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1425 *sptep, new_pfn); 1426 1427 mmu_spte_clear_track_bits(kvm, sptep); 1428 mmu_spte_set(sptep, new_spte); 1429 } 1430 } 1431 1432 if (need_flush && kvm_available_flush_tlb_with_range()) { 1433 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1434 return false; 1435 } 1436 1437 return need_flush; 1438 } 1439 1440 struct slot_rmap_walk_iterator { 1441 /* input fields. */ 1442 const struct kvm_memory_slot *slot; 1443 gfn_t start_gfn; 1444 gfn_t end_gfn; 1445 int start_level; 1446 int end_level; 1447 1448 /* output fields. */ 1449 gfn_t gfn; 1450 struct kvm_rmap_head *rmap; 1451 int level; 1452 1453 /* private field. */ 1454 struct kvm_rmap_head *end_rmap; 1455 }; 1456 1457 static void 1458 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1459 { 1460 iterator->level = level; 1461 iterator->gfn = iterator->start_gfn; 1462 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1463 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1464 } 1465 1466 static void 1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1468 const struct kvm_memory_slot *slot, int start_level, 1469 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1470 { 1471 iterator->slot = slot; 1472 iterator->start_level = start_level; 1473 iterator->end_level = end_level; 1474 iterator->start_gfn = start_gfn; 1475 iterator->end_gfn = end_gfn; 1476 1477 rmap_walk_init_level(iterator, iterator->start_level); 1478 } 1479 1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1481 { 1482 return !!iterator->rmap; 1483 } 1484 1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1486 { 1487 while (++iterator->rmap <= iterator->end_rmap) { 1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1489 1490 if (iterator->rmap->val) 1491 return; 1492 } 1493 1494 if (++iterator->level > iterator->end_level) { 1495 iterator->rmap = NULL; 1496 return; 1497 } 1498 1499 rmap_walk_init_level(iterator, iterator->level); 1500 } 1501 1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1503 _start_gfn, _end_gfn, _iter_) \ 1504 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1505 _end_level_, _start_gfn, _end_gfn); \ 1506 slot_rmap_walk_okay(_iter_); \ 1507 slot_rmap_walk_next(_iter_)) 1508 1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1510 struct kvm_memory_slot *slot, gfn_t gfn, 1511 int level, pte_t pte); 1512 1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1514 struct kvm_gfn_range *range, 1515 rmap_handler_t handler) 1516 { 1517 struct slot_rmap_walk_iterator iterator; 1518 bool ret = false; 1519 1520 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1521 range->start, range->end - 1, &iterator) 1522 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1523 iterator.level, range->pte); 1524 1525 return ret; 1526 } 1527 1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1529 { 1530 bool flush = false; 1531 1532 if (kvm_memslots_have_rmaps(kvm)) 1533 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1534 1535 if (is_tdp_mmu_enabled(kvm)) 1536 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1537 1538 return flush; 1539 } 1540 1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1542 { 1543 bool flush = false; 1544 1545 if (kvm_memslots_have_rmaps(kvm)) 1546 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1547 1548 if (is_tdp_mmu_enabled(kvm)) 1549 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1550 1551 return flush; 1552 } 1553 1554 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1555 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1556 pte_t unused) 1557 { 1558 u64 *sptep; 1559 struct rmap_iterator iter; 1560 int young = 0; 1561 1562 for_each_rmap_spte(rmap_head, &iter, sptep) 1563 young |= mmu_spte_age(sptep); 1564 1565 return young; 1566 } 1567 1568 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1569 struct kvm_memory_slot *slot, gfn_t gfn, 1570 int level, pte_t unused) 1571 { 1572 u64 *sptep; 1573 struct rmap_iterator iter; 1574 1575 for_each_rmap_spte(rmap_head, &iter, sptep) 1576 if (is_accessed_spte(*sptep)) 1577 return true; 1578 return false; 1579 } 1580 1581 #define RMAP_RECYCLE_THRESHOLD 1000 1582 1583 static void __rmap_add(struct kvm *kvm, 1584 struct kvm_mmu_memory_cache *cache, 1585 const struct kvm_memory_slot *slot, 1586 u64 *spte, gfn_t gfn, unsigned int access) 1587 { 1588 struct kvm_mmu_page *sp; 1589 struct kvm_rmap_head *rmap_head; 1590 int rmap_count; 1591 1592 sp = sptep_to_sp(spte); 1593 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1594 kvm_update_page_stats(kvm, sp->role.level, 1); 1595 1596 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1597 rmap_count = pte_list_add(cache, spte, rmap_head); 1598 1599 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1600 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1601 kvm_flush_remote_tlbs_with_address( 1602 kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1603 } 1604 } 1605 1606 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1607 u64 *spte, gfn_t gfn, unsigned int access) 1608 { 1609 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1610 1611 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1612 } 1613 1614 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1615 { 1616 bool young = false; 1617 1618 if (kvm_memslots_have_rmaps(kvm)) 1619 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1620 1621 if (is_tdp_mmu_enabled(kvm)) 1622 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1623 1624 return young; 1625 } 1626 1627 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1628 { 1629 bool young = false; 1630 1631 if (kvm_memslots_have_rmaps(kvm)) 1632 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1633 1634 if (is_tdp_mmu_enabled(kvm)) 1635 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1636 1637 return young; 1638 } 1639 1640 #ifdef MMU_DEBUG 1641 static int is_empty_shadow_page(u64 *spt) 1642 { 1643 u64 *pos; 1644 u64 *end; 1645 1646 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1647 if (is_shadow_present_pte(*pos)) { 1648 printk(KERN_ERR "%s: %p %llx\n", __func__, 1649 pos, *pos); 1650 return 0; 1651 } 1652 return 1; 1653 } 1654 #endif 1655 1656 /* 1657 * This value is the sum of all of the kvm instances's 1658 * kvm->arch.n_used_mmu_pages values. We need a global, 1659 * aggregate version in order to make the slab shrinker 1660 * faster 1661 */ 1662 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1663 { 1664 kvm->arch.n_used_mmu_pages += nr; 1665 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1666 } 1667 1668 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1669 { 1670 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1671 hlist_del(&sp->hash_link); 1672 list_del(&sp->link); 1673 free_page((unsigned long)sp->spt); 1674 if (!sp->role.direct) 1675 free_page((unsigned long)sp->shadowed_translation); 1676 kmem_cache_free(mmu_page_header_cache, sp); 1677 } 1678 1679 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1680 { 1681 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1682 } 1683 1684 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1685 struct kvm_mmu_page *sp, u64 *parent_pte) 1686 { 1687 if (!parent_pte) 1688 return; 1689 1690 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1691 } 1692 1693 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1694 u64 *parent_pte) 1695 { 1696 pte_list_remove(parent_pte, &sp->parent_ptes); 1697 } 1698 1699 static void drop_parent_pte(struct kvm_mmu_page *sp, 1700 u64 *parent_pte) 1701 { 1702 mmu_page_remove_parent_pte(sp, parent_pte); 1703 mmu_spte_clear_no_track(parent_pte); 1704 } 1705 1706 static void mark_unsync(u64 *spte); 1707 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1708 { 1709 u64 *sptep; 1710 struct rmap_iterator iter; 1711 1712 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1713 mark_unsync(sptep); 1714 } 1715 } 1716 1717 static void mark_unsync(u64 *spte) 1718 { 1719 struct kvm_mmu_page *sp; 1720 1721 sp = sptep_to_sp(spte); 1722 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1723 return; 1724 if (sp->unsync_children++) 1725 return; 1726 kvm_mmu_mark_parents_unsync(sp); 1727 } 1728 1729 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1730 struct kvm_mmu_page *sp) 1731 { 1732 return -1; 1733 } 1734 1735 #define KVM_PAGE_ARRAY_NR 16 1736 1737 struct kvm_mmu_pages { 1738 struct mmu_page_and_offset { 1739 struct kvm_mmu_page *sp; 1740 unsigned int idx; 1741 } page[KVM_PAGE_ARRAY_NR]; 1742 unsigned int nr; 1743 }; 1744 1745 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1746 int idx) 1747 { 1748 int i; 1749 1750 if (sp->unsync) 1751 for (i=0; i < pvec->nr; i++) 1752 if (pvec->page[i].sp == sp) 1753 return 0; 1754 1755 pvec->page[pvec->nr].sp = sp; 1756 pvec->page[pvec->nr].idx = idx; 1757 pvec->nr++; 1758 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1759 } 1760 1761 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1762 { 1763 --sp->unsync_children; 1764 WARN_ON((int)sp->unsync_children < 0); 1765 __clear_bit(idx, sp->unsync_child_bitmap); 1766 } 1767 1768 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1769 struct kvm_mmu_pages *pvec) 1770 { 1771 int i, ret, nr_unsync_leaf = 0; 1772 1773 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1774 struct kvm_mmu_page *child; 1775 u64 ent = sp->spt[i]; 1776 1777 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1778 clear_unsync_child_bit(sp, i); 1779 continue; 1780 } 1781 1782 child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK); 1783 1784 if (child->unsync_children) { 1785 if (mmu_pages_add(pvec, child, i)) 1786 return -ENOSPC; 1787 1788 ret = __mmu_unsync_walk(child, pvec); 1789 if (!ret) { 1790 clear_unsync_child_bit(sp, i); 1791 continue; 1792 } else if (ret > 0) { 1793 nr_unsync_leaf += ret; 1794 } else 1795 return ret; 1796 } else if (child->unsync) { 1797 nr_unsync_leaf++; 1798 if (mmu_pages_add(pvec, child, i)) 1799 return -ENOSPC; 1800 } else 1801 clear_unsync_child_bit(sp, i); 1802 } 1803 1804 return nr_unsync_leaf; 1805 } 1806 1807 #define INVALID_INDEX (-1) 1808 1809 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1810 struct kvm_mmu_pages *pvec) 1811 { 1812 pvec->nr = 0; 1813 if (!sp->unsync_children) 1814 return 0; 1815 1816 mmu_pages_add(pvec, sp, INVALID_INDEX); 1817 return __mmu_unsync_walk(sp, pvec); 1818 } 1819 1820 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1821 { 1822 WARN_ON(!sp->unsync); 1823 trace_kvm_mmu_sync_page(sp); 1824 sp->unsync = 0; 1825 --kvm->stat.mmu_unsync; 1826 } 1827 1828 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1829 struct list_head *invalid_list); 1830 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1831 struct list_head *invalid_list); 1832 1833 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1834 { 1835 if (sp->role.direct) 1836 return false; 1837 1838 if (sp->role.passthrough) 1839 return false; 1840 1841 return true; 1842 } 1843 1844 #define for_each_valid_sp(_kvm, _sp, _list) \ 1845 hlist_for_each_entry(_sp, _list, hash_link) \ 1846 if (is_obsolete_sp((_kvm), (_sp))) { \ 1847 } else 1848 1849 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1850 for_each_valid_sp(_kvm, _sp, \ 1851 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1852 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1853 1854 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1855 struct list_head *invalid_list) 1856 { 1857 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1858 1859 if (ret < 0) 1860 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1861 return ret; 1862 } 1863 1864 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1865 struct list_head *invalid_list, 1866 bool remote_flush) 1867 { 1868 if (!remote_flush && list_empty(invalid_list)) 1869 return false; 1870 1871 if (!list_empty(invalid_list)) 1872 kvm_mmu_commit_zap_page(kvm, invalid_list); 1873 else 1874 kvm_flush_remote_tlbs(kvm); 1875 return true; 1876 } 1877 1878 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1879 { 1880 if (sp->role.invalid) 1881 return true; 1882 1883 /* TDP MMU pages due not use the MMU generation. */ 1884 return !sp->tdp_mmu_page && 1885 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1886 } 1887 1888 struct mmu_page_path { 1889 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1890 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1891 }; 1892 1893 #define for_each_sp(pvec, sp, parents, i) \ 1894 for (i = mmu_pages_first(&pvec, &parents); \ 1895 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1896 i = mmu_pages_next(&pvec, &parents, i)) 1897 1898 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1899 struct mmu_page_path *parents, 1900 int i) 1901 { 1902 int n; 1903 1904 for (n = i+1; n < pvec->nr; n++) { 1905 struct kvm_mmu_page *sp = pvec->page[n].sp; 1906 unsigned idx = pvec->page[n].idx; 1907 int level = sp->role.level; 1908 1909 parents->idx[level-1] = idx; 1910 if (level == PG_LEVEL_4K) 1911 break; 1912 1913 parents->parent[level-2] = sp; 1914 } 1915 1916 return n; 1917 } 1918 1919 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1920 struct mmu_page_path *parents) 1921 { 1922 struct kvm_mmu_page *sp; 1923 int level; 1924 1925 if (pvec->nr == 0) 1926 return 0; 1927 1928 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1929 1930 sp = pvec->page[0].sp; 1931 level = sp->role.level; 1932 WARN_ON(level == PG_LEVEL_4K); 1933 1934 parents->parent[level-2] = sp; 1935 1936 /* Also set up a sentinel. Further entries in pvec are all 1937 * children of sp, so this element is never overwritten. 1938 */ 1939 parents->parent[level-1] = NULL; 1940 return mmu_pages_next(pvec, parents, 0); 1941 } 1942 1943 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1944 { 1945 struct kvm_mmu_page *sp; 1946 unsigned int level = 0; 1947 1948 do { 1949 unsigned int idx = parents->idx[level]; 1950 sp = parents->parent[level]; 1951 if (!sp) 1952 return; 1953 1954 WARN_ON(idx == INVALID_INDEX); 1955 clear_unsync_child_bit(sp, idx); 1956 level++; 1957 } while (!sp->unsync_children); 1958 } 1959 1960 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1961 struct kvm_mmu_page *parent, bool can_yield) 1962 { 1963 int i; 1964 struct kvm_mmu_page *sp; 1965 struct mmu_page_path parents; 1966 struct kvm_mmu_pages pages; 1967 LIST_HEAD(invalid_list); 1968 bool flush = false; 1969 1970 while (mmu_unsync_walk(parent, &pages)) { 1971 bool protected = false; 1972 1973 for_each_sp(pages, sp, parents, i) 1974 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1975 1976 if (protected) { 1977 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1978 flush = false; 1979 } 1980 1981 for_each_sp(pages, sp, parents, i) { 1982 kvm_unlink_unsync_page(vcpu->kvm, sp); 1983 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 1984 mmu_pages_clear_parents(&parents); 1985 } 1986 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1987 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 1988 if (!can_yield) { 1989 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1990 return -EINTR; 1991 } 1992 1993 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 1994 flush = false; 1995 } 1996 } 1997 1998 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 1999 return 0; 2000 } 2001 2002 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2003 { 2004 atomic_set(&sp->write_flooding_count, 0); 2005 } 2006 2007 static void clear_sp_write_flooding_count(u64 *spte) 2008 { 2009 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2010 } 2011 2012 /* 2013 * The vCPU is required when finding indirect shadow pages; the shadow 2014 * page may already exist and syncing it needs the vCPU pointer in 2015 * order to read guest page tables. Direct shadow pages are never 2016 * unsync, thus @vcpu can be NULL if @role.direct is true. 2017 */ 2018 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2019 struct kvm_vcpu *vcpu, 2020 gfn_t gfn, 2021 struct hlist_head *sp_list, 2022 union kvm_mmu_page_role role) 2023 { 2024 struct kvm_mmu_page *sp; 2025 int ret; 2026 int collisions = 0; 2027 LIST_HEAD(invalid_list); 2028 2029 for_each_valid_sp(kvm, sp, sp_list) { 2030 if (sp->gfn != gfn) { 2031 collisions++; 2032 continue; 2033 } 2034 2035 if (sp->role.word != role.word) { 2036 /* 2037 * If the guest is creating an upper-level page, zap 2038 * unsync pages for the same gfn. While it's possible 2039 * the guest is using recursive page tables, in all 2040 * likelihood the guest has stopped using the unsync 2041 * page and is installing a completely unrelated page. 2042 * Unsync pages must not be left as is, because the new 2043 * upper-level page will be write-protected. 2044 */ 2045 if (role.level > PG_LEVEL_4K && sp->unsync) 2046 kvm_mmu_prepare_zap_page(kvm, sp, 2047 &invalid_list); 2048 continue; 2049 } 2050 2051 /* unsync and write-flooding only apply to indirect SPs. */ 2052 if (sp->role.direct) 2053 goto out; 2054 2055 if (sp->unsync) { 2056 if (KVM_BUG_ON(!vcpu, kvm)) 2057 break; 2058 2059 /* 2060 * The page is good, but is stale. kvm_sync_page does 2061 * get the latest guest state, but (unlike mmu_unsync_children) 2062 * it doesn't write-protect the page or mark it synchronized! 2063 * This way the validity of the mapping is ensured, but the 2064 * overhead of write protection is not incurred until the 2065 * guest invalidates the TLB mapping. This allows multiple 2066 * SPs for a single gfn to be unsync. 2067 * 2068 * If the sync fails, the page is zapped. If so, break 2069 * in order to rebuild it. 2070 */ 2071 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2072 if (ret < 0) 2073 break; 2074 2075 WARN_ON(!list_empty(&invalid_list)); 2076 if (ret > 0) 2077 kvm_flush_remote_tlbs(kvm); 2078 } 2079 2080 __clear_sp_write_flooding_count(sp); 2081 2082 goto out; 2083 } 2084 2085 sp = NULL; 2086 ++kvm->stat.mmu_cache_miss; 2087 2088 out: 2089 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2090 2091 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2092 kvm->stat.max_mmu_page_hash_collisions = collisions; 2093 return sp; 2094 } 2095 2096 /* Caches used when allocating a new shadow page. */ 2097 struct shadow_page_caches { 2098 struct kvm_mmu_memory_cache *page_header_cache; 2099 struct kvm_mmu_memory_cache *shadow_page_cache; 2100 struct kvm_mmu_memory_cache *shadowed_info_cache; 2101 }; 2102 2103 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2104 struct shadow_page_caches *caches, 2105 gfn_t gfn, 2106 struct hlist_head *sp_list, 2107 union kvm_mmu_page_role role) 2108 { 2109 struct kvm_mmu_page *sp; 2110 2111 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2112 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2113 if (!role.direct) 2114 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2115 2116 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2117 2118 /* 2119 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2120 * depends on valid pages being added to the head of the list. See 2121 * comments in kvm_zap_obsolete_pages(). 2122 */ 2123 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2124 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2125 kvm_mod_used_mmu_pages(kvm, +1); 2126 2127 sp->gfn = gfn; 2128 sp->role = role; 2129 hlist_add_head(&sp->hash_link, sp_list); 2130 if (sp_has_gptes(sp)) 2131 account_shadowed(kvm, sp); 2132 2133 return sp; 2134 } 2135 2136 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2137 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2138 struct kvm_vcpu *vcpu, 2139 struct shadow_page_caches *caches, 2140 gfn_t gfn, 2141 union kvm_mmu_page_role role) 2142 { 2143 struct hlist_head *sp_list; 2144 struct kvm_mmu_page *sp; 2145 bool created = false; 2146 2147 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2148 2149 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2150 if (!sp) { 2151 created = true; 2152 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2153 } 2154 2155 trace_kvm_mmu_get_page(sp, created); 2156 return sp; 2157 } 2158 2159 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2160 gfn_t gfn, 2161 union kvm_mmu_page_role role) 2162 { 2163 struct shadow_page_caches caches = { 2164 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2165 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2166 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2167 }; 2168 2169 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2170 } 2171 2172 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2173 unsigned int access) 2174 { 2175 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2176 union kvm_mmu_page_role role; 2177 2178 role = parent_sp->role; 2179 role.level--; 2180 role.access = access; 2181 role.direct = direct; 2182 role.passthrough = 0; 2183 2184 /* 2185 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2186 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2187 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2188 * shadow each guest page table with multiple shadow page tables, which 2189 * requires extra bookkeeping in the role. 2190 * 2191 * Specifically, to shadow the guest's page directory (which covers a 2192 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2193 * 1GiB of the address space. @role.quadrant encodes which quarter of 2194 * the address space each maps. 2195 * 2196 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2197 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2198 * @role.quadrant encodes which half of the region they map. 2199 * 2200 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2201 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2202 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2203 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2204 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2205 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2206 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2207 * covers bit 21 (see above), thus the quadrant is calculated from the 2208 * _least_ significant bit of the PDE index. 2209 */ 2210 if (role.has_4_byte_gpte) { 2211 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2212 role.quadrant = spte_index(sptep) & 1; 2213 } 2214 2215 return role; 2216 } 2217 2218 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2219 u64 *sptep, gfn_t gfn, 2220 bool direct, unsigned int access) 2221 { 2222 union kvm_mmu_page_role role; 2223 2224 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2225 return ERR_PTR(-EEXIST); 2226 2227 role = kvm_mmu_child_role(sptep, direct, access); 2228 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2229 } 2230 2231 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2232 struct kvm_vcpu *vcpu, hpa_t root, 2233 u64 addr) 2234 { 2235 iterator->addr = addr; 2236 iterator->shadow_addr = root; 2237 iterator->level = vcpu->arch.mmu->root_role.level; 2238 2239 if (iterator->level >= PT64_ROOT_4LEVEL && 2240 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2241 !vcpu->arch.mmu->root_role.direct) 2242 iterator->level = PT32E_ROOT_LEVEL; 2243 2244 if (iterator->level == PT32E_ROOT_LEVEL) { 2245 /* 2246 * prev_root is currently only used for 64-bit hosts. So only 2247 * the active root_hpa is valid here. 2248 */ 2249 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2250 2251 iterator->shadow_addr 2252 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2253 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2254 --iterator->level; 2255 if (!iterator->shadow_addr) 2256 iterator->level = 0; 2257 } 2258 } 2259 2260 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2261 struct kvm_vcpu *vcpu, u64 addr) 2262 { 2263 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2264 addr); 2265 } 2266 2267 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2268 { 2269 if (iterator->level < PG_LEVEL_4K) 2270 return false; 2271 2272 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2273 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2274 return true; 2275 } 2276 2277 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2278 u64 spte) 2279 { 2280 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2281 iterator->level = 0; 2282 return; 2283 } 2284 2285 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2286 --iterator->level; 2287 } 2288 2289 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2290 { 2291 __shadow_walk_next(iterator, *iterator->sptep); 2292 } 2293 2294 static void __link_shadow_page(struct kvm *kvm, 2295 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2296 struct kvm_mmu_page *sp, bool flush) 2297 { 2298 u64 spte; 2299 2300 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2301 2302 /* 2303 * If an SPTE is present already, it must be a leaf and therefore 2304 * a large one. Drop it, and flush the TLB if needed, before 2305 * installing sp. 2306 */ 2307 if (is_shadow_present_pte(*sptep)) 2308 drop_large_spte(kvm, sptep, flush); 2309 2310 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2311 2312 mmu_spte_set(sptep, spte); 2313 2314 mmu_page_add_parent_pte(cache, sp, sptep); 2315 2316 if (sp->unsync_children || sp->unsync) 2317 mark_unsync(sptep); 2318 } 2319 2320 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2321 struct kvm_mmu_page *sp) 2322 { 2323 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2324 } 2325 2326 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2327 unsigned direct_access) 2328 { 2329 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2330 struct kvm_mmu_page *child; 2331 2332 /* 2333 * For the direct sp, if the guest pte's dirty bit 2334 * changed form clean to dirty, it will corrupt the 2335 * sp's access: allow writable in the read-only sp, 2336 * so we should update the spte at this point to get 2337 * a new sp with the correct access. 2338 */ 2339 child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK); 2340 if (child->role.access == direct_access) 2341 return; 2342 2343 drop_parent_pte(child, sptep); 2344 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2345 } 2346 } 2347 2348 /* Returns the number of zapped non-leaf child shadow pages. */ 2349 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2350 u64 *spte, struct list_head *invalid_list) 2351 { 2352 u64 pte; 2353 struct kvm_mmu_page *child; 2354 2355 pte = *spte; 2356 if (is_shadow_present_pte(pte)) { 2357 if (is_last_spte(pte, sp->role.level)) { 2358 drop_spte(kvm, spte); 2359 } else { 2360 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2361 drop_parent_pte(child, spte); 2362 2363 /* 2364 * Recursively zap nested TDP SPs, parentless SPs are 2365 * unlikely to be used again in the near future. This 2366 * avoids retaining a large number of stale nested SPs. 2367 */ 2368 if (tdp_enabled && invalid_list && 2369 child->role.guest_mode && !child->parent_ptes.val) 2370 return kvm_mmu_prepare_zap_page(kvm, child, 2371 invalid_list); 2372 } 2373 } else if (is_mmio_spte(pte)) { 2374 mmu_spte_clear_no_track(spte); 2375 } 2376 return 0; 2377 } 2378 2379 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2380 struct kvm_mmu_page *sp, 2381 struct list_head *invalid_list) 2382 { 2383 int zapped = 0; 2384 unsigned i; 2385 2386 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2387 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2388 2389 return zapped; 2390 } 2391 2392 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2393 { 2394 u64 *sptep; 2395 struct rmap_iterator iter; 2396 2397 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2398 drop_parent_pte(sp, sptep); 2399 } 2400 2401 static int mmu_zap_unsync_children(struct kvm *kvm, 2402 struct kvm_mmu_page *parent, 2403 struct list_head *invalid_list) 2404 { 2405 int i, zapped = 0; 2406 struct mmu_page_path parents; 2407 struct kvm_mmu_pages pages; 2408 2409 if (parent->role.level == PG_LEVEL_4K) 2410 return 0; 2411 2412 while (mmu_unsync_walk(parent, &pages)) { 2413 struct kvm_mmu_page *sp; 2414 2415 for_each_sp(pages, sp, parents, i) { 2416 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2417 mmu_pages_clear_parents(&parents); 2418 zapped++; 2419 } 2420 } 2421 2422 return zapped; 2423 } 2424 2425 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2426 struct kvm_mmu_page *sp, 2427 struct list_head *invalid_list, 2428 int *nr_zapped) 2429 { 2430 bool list_unstable, zapped_root = false; 2431 2432 trace_kvm_mmu_prepare_zap_page(sp); 2433 ++kvm->stat.mmu_shadow_zapped; 2434 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2435 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2436 kvm_mmu_unlink_parents(sp); 2437 2438 /* Zapping children means active_mmu_pages has become unstable. */ 2439 list_unstable = *nr_zapped; 2440 2441 if (!sp->role.invalid && sp_has_gptes(sp)) 2442 unaccount_shadowed(kvm, sp); 2443 2444 if (sp->unsync) 2445 kvm_unlink_unsync_page(kvm, sp); 2446 if (!sp->root_count) { 2447 /* Count self */ 2448 (*nr_zapped)++; 2449 2450 /* 2451 * Already invalid pages (previously active roots) are not on 2452 * the active page list. See list_del() in the "else" case of 2453 * !sp->root_count. 2454 */ 2455 if (sp->role.invalid) 2456 list_add(&sp->link, invalid_list); 2457 else 2458 list_move(&sp->link, invalid_list); 2459 kvm_mod_used_mmu_pages(kvm, -1); 2460 } else { 2461 /* 2462 * Remove the active root from the active page list, the root 2463 * will be explicitly freed when the root_count hits zero. 2464 */ 2465 list_del(&sp->link); 2466 2467 /* 2468 * Obsolete pages cannot be used on any vCPUs, see the comment 2469 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2470 * treats invalid shadow pages as being obsolete. 2471 */ 2472 zapped_root = !is_obsolete_sp(kvm, sp); 2473 } 2474 2475 if (sp->lpage_disallowed) 2476 unaccount_huge_nx_page(kvm, sp); 2477 2478 sp->role.invalid = 1; 2479 2480 /* 2481 * Make the request to free obsolete roots after marking the root 2482 * invalid, otherwise other vCPUs may not see it as invalid. 2483 */ 2484 if (zapped_root) 2485 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2486 return list_unstable; 2487 } 2488 2489 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2490 struct list_head *invalid_list) 2491 { 2492 int nr_zapped; 2493 2494 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2495 return nr_zapped; 2496 } 2497 2498 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2499 struct list_head *invalid_list) 2500 { 2501 struct kvm_mmu_page *sp, *nsp; 2502 2503 if (list_empty(invalid_list)) 2504 return; 2505 2506 /* 2507 * We need to make sure everyone sees our modifications to 2508 * the page tables and see changes to vcpu->mode here. The barrier 2509 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2510 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2511 * 2512 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2513 * guest mode and/or lockless shadow page table walks. 2514 */ 2515 kvm_flush_remote_tlbs(kvm); 2516 2517 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2518 WARN_ON(!sp->role.invalid || sp->root_count); 2519 kvm_mmu_free_shadow_page(sp); 2520 } 2521 } 2522 2523 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2524 unsigned long nr_to_zap) 2525 { 2526 unsigned long total_zapped = 0; 2527 struct kvm_mmu_page *sp, *tmp; 2528 LIST_HEAD(invalid_list); 2529 bool unstable; 2530 int nr_zapped; 2531 2532 if (list_empty(&kvm->arch.active_mmu_pages)) 2533 return 0; 2534 2535 restart: 2536 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2537 /* 2538 * Don't zap active root pages, the page itself can't be freed 2539 * and zapping it will just force vCPUs to realloc and reload. 2540 */ 2541 if (sp->root_count) 2542 continue; 2543 2544 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2545 &nr_zapped); 2546 total_zapped += nr_zapped; 2547 if (total_zapped >= nr_to_zap) 2548 break; 2549 2550 if (unstable) 2551 goto restart; 2552 } 2553 2554 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2555 2556 kvm->stat.mmu_recycled += total_zapped; 2557 return total_zapped; 2558 } 2559 2560 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2561 { 2562 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2563 return kvm->arch.n_max_mmu_pages - 2564 kvm->arch.n_used_mmu_pages; 2565 2566 return 0; 2567 } 2568 2569 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2570 { 2571 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2572 2573 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2574 return 0; 2575 2576 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2577 2578 /* 2579 * Note, this check is intentionally soft, it only guarantees that one 2580 * page is available, while the caller may end up allocating as many as 2581 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2582 * exceeding the (arbitrary by default) limit will not harm the host, 2583 * being too aggressive may unnecessarily kill the guest, and getting an 2584 * exact count is far more trouble than it's worth, especially in the 2585 * page fault paths. 2586 */ 2587 if (!kvm_mmu_available_pages(vcpu->kvm)) 2588 return -ENOSPC; 2589 return 0; 2590 } 2591 2592 /* 2593 * Changing the number of mmu pages allocated to the vm 2594 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2595 */ 2596 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2597 { 2598 write_lock(&kvm->mmu_lock); 2599 2600 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2601 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2602 goal_nr_mmu_pages); 2603 2604 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2605 } 2606 2607 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2608 2609 write_unlock(&kvm->mmu_lock); 2610 } 2611 2612 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2613 { 2614 struct kvm_mmu_page *sp; 2615 LIST_HEAD(invalid_list); 2616 int r; 2617 2618 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2619 r = 0; 2620 write_lock(&kvm->mmu_lock); 2621 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2622 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2623 sp->role.word); 2624 r = 1; 2625 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2626 } 2627 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2628 write_unlock(&kvm->mmu_lock); 2629 2630 return r; 2631 } 2632 2633 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2634 { 2635 gpa_t gpa; 2636 int r; 2637 2638 if (vcpu->arch.mmu->root_role.direct) 2639 return 0; 2640 2641 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2642 2643 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2644 2645 return r; 2646 } 2647 2648 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2649 { 2650 trace_kvm_mmu_unsync_page(sp); 2651 ++kvm->stat.mmu_unsync; 2652 sp->unsync = 1; 2653 2654 kvm_mmu_mark_parents_unsync(sp); 2655 } 2656 2657 /* 2658 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2659 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2660 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2661 * be write-protected. 2662 */ 2663 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2664 gfn_t gfn, bool can_unsync, bool prefetch) 2665 { 2666 struct kvm_mmu_page *sp; 2667 bool locked = false; 2668 2669 /* 2670 * Force write-protection if the page is being tracked. Note, the page 2671 * track machinery is used to write-protect upper-level shadow pages, 2672 * i.e. this guards the role.level == 4K assertion below! 2673 */ 2674 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2675 return -EPERM; 2676 2677 /* 2678 * The page is not write-tracked, mark existing shadow pages unsync 2679 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2680 * that case, KVM must complete emulation of the guest TLB flush before 2681 * allowing shadow pages to become unsync (writable by the guest). 2682 */ 2683 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2684 if (!can_unsync) 2685 return -EPERM; 2686 2687 if (sp->unsync) 2688 continue; 2689 2690 if (prefetch) 2691 return -EEXIST; 2692 2693 /* 2694 * TDP MMU page faults require an additional spinlock as they 2695 * run with mmu_lock held for read, not write, and the unsync 2696 * logic is not thread safe. Take the spinklock regardless of 2697 * the MMU type to avoid extra conditionals/parameters, there's 2698 * no meaningful penalty if mmu_lock is held for write. 2699 */ 2700 if (!locked) { 2701 locked = true; 2702 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2703 2704 /* 2705 * Recheck after taking the spinlock, a different vCPU 2706 * may have since marked the page unsync. A false 2707 * positive on the unprotected check above is not 2708 * possible as clearing sp->unsync _must_ hold mmu_lock 2709 * for write, i.e. unsync cannot transition from 0->1 2710 * while this CPU holds mmu_lock for read (or write). 2711 */ 2712 if (READ_ONCE(sp->unsync)) 2713 continue; 2714 } 2715 2716 WARN_ON(sp->role.level != PG_LEVEL_4K); 2717 kvm_unsync_page(kvm, sp); 2718 } 2719 if (locked) 2720 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2721 2722 /* 2723 * We need to ensure that the marking of unsync pages is visible 2724 * before the SPTE is updated to allow writes because 2725 * kvm_mmu_sync_roots() checks the unsync flags without holding 2726 * the MMU lock and so can race with this. If the SPTE was updated 2727 * before the page had been marked as unsync-ed, something like the 2728 * following could happen: 2729 * 2730 * CPU 1 CPU 2 2731 * --------------------------------------------------------------------- 2732 * 1.2 Host updates SPTE 2733 * to be writable 2734 * 2.1 Guest writes a GPTE for GVA X. 2735 * (GPTE being in the guest page table shadowed 2736 * by the SP from CPU 1.) 2737 * This reads SPTE during the page table walk. 2738 * Since SPTE.W is read as 1, there is no 2739 * fault. 2740 * 2741 * 2.2 Guest issues TLB flush. 2742 * That causes a VM Exit. 2743 * 2744 * 2.3 Walking of unsync pages sees sp->unsync is 2745 * false and skips the page. 2746 * 2747 * 2.4 Guest accesses GVA X. 2748 * Since the mapping in the SP was not updated, 2749 * so the old mapping for GVA X incorrectly 2750 * gets used. 2751 * 1.1 Host marks SP 2752 * as unsync 2753 * (sp->unsync = true) 2754 * 2755 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2756 * the situation in 2.4 does not arise. It pairs with the read barrier 2757 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2758 */ 2759 smp_wmb(); 2760 2761 return 0; 2762 } 2763 2764 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2765 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2766 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2767 { 2768 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2769 int level = sp->role.level; 2770 int was_rmapped = 0; 2771 int ret = RET_PF_FIXED; 2772 bool flush = false; 2773 bool wrprot; 2774 u64 spte; 2775 2776 /* Prefetching always gets a writable pfn. */ 2777 bool host_writable = !fault || fault->map_writable; 2778 bool prefetch = !fault || fault->prefetch; 2779 bool write_fault = fault && fault->write; 2780 2781 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2782 *sptep, write_fault, gfn); 2783 2784 if (unlikely(is_noslot_pfn(pfn))) { 2785 vcpu->stat.pf_mmio_spte_created++; 2786 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2787 return RET_PF_EMULATE; 2788 } 2789 2790 if (is_shadow_present_pte(*sptep)) { 2791 /* 2792 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2793 * the parent of the now unreachable PTE. 2794 */ 2795 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2796 struct kvm_mmu_page *child; 2797 u64 pte = *sptep; 2798 2799 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2800 drop_parent_pte(child, sptep); 2801 flush = true; 2802 } else if (pfn != spte_to_pfn(*sptep)) { 2803 pgprintk("hfn old %llx new %llx\n", 2804 spte_to_pfn(*sptep), pfn); 2805 drop_spte(vcpu->kvm, sptep); 2806 flush = true; 2807 } else 2808 was_rmapped = 1; 2809 } 2810 2811 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2812 true, host_writable, &spte); 2813 2814 if (*sptep == spte) { 2815 ret = RET_PF_SPURIOUS; 2816 } else { 2817 flush |= mmu_spte_update(sptep, spte); 2818 trace_kvm_mmu_set_spte(level, gfn, sptep); 2819 } 2820 2821 if (wrprot) { 2822 if (write_fault) 2823 ret = RET_PF_EMULATE; 2824 } 2825 2826 if (flush) 2827 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2828 KVM_PAGES_PER_HPAGE(level)); 2829 2830 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2831 2832 if (!was_rmapped) { 2833 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2834 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2835 } else { 2836 /* Already rmapped but the pte_access bits may have changed. */ 2837 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2838 } 2839 2840 return ret; 2841 } 2842 2843 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2844 struct kvm_mmu_page *sp, 2845 u64 *start, u64 *end) 2846 { 2847 struct page *pages[PTE_PREFETCH_NUM]; 2848 struct kvm_memory_slot *slot; 2849 unsigned int access = sp->role.access; 2850 int i, ret; 2851 gfn_t gfn; 2852 2853 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2854 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2855 if (!slot) 2856 return -1; 2857 2858 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2859 if (ret <= 0) 2860 return -1; 2861 2862 for (i = 0; i < ret; i++, gfn++, start++) { 2863 mmu_set_spte(vcpu, slot, start, access, gfn, 2864 page_to_pfn(pages[i]), NULL); 2865 put_page(pages[i]); 2866 } 2867 2868 return 0; 2869 } 2870 2871 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2872 struct kvm_mmu_page *sp, u64 *sptep) 2873 { 2874 u64 *spte, *start = NULL; 2875 int i; 2876 2877 WARN_ON(!sp->role.direct); 2878 2879 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2880 spte = sp->spt + i; 2881 2882 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2883 if (is_shadow_present_pte(*spte) || spte == sptep) { 2884 if (!start) 2885 continue; 2886 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2887 return; 2888 start = NULL; 2889 } else if (!start) 2890 start = spte; 2891 } 2892 if (start) 2893 direct_pte_prefetch_many(vcpu, sp, start, spte); 2894 } 2895 2896 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2897 { 2898 struct kvm_mmu_page *sp; 2899 2900 sp = sptep_to_sp(sptep); 2901 2902 /* 2903 * Without accessed bits, there's no way to distinguish between 2904 * actually accessed translations and prefetched, so disable pte 2905 * prefetch if accessed bits aren't available. 2906 */ 2907 if (sp_ad_disabled(sp)) 2908 return; 2909 2910 if (sp->role.level > PG_LEVEL_4K) 2911 return; 2912 2913 /* 2914 * If addresses are being invalidated, skip prefetching to avoid 2915 * accidentally prefetching those addresses. 2916 */ 2917 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2918 return; 2919 2920 __direct_pte_prefetch(vcpu, sp, sptep); 2921 } 2922 2923 /* 2924 * Lookup the mapping level for @gfn in the current mm. 2925 * 2926 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 2927 * consumer to be tied into KVM's handlers for MMU notifier events! 2928 * 2929 * There are several ways to safely use this helper: 2930 * 2931 * - Check mmu_notifier_retry_hva() after grabbing the mapping level, before 2932 * consuming it. In this case, mmu_lock doesn't need to be held during the 2933 * lookup, but it does need to be held while checking the MMU notifier. 2934 * 2935 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 2936 * event for the hva. This can be done by explicit checking the MMU notifier 2937 * or by ensuring that KVM already has a valid mapping that covers the hva. 2938 * 2939 * - Do not use the result to install new mappings, e.g. use the host mapping 2940 * level only to decide whether or not to zap an entry. In this case, it's 2941 * not required to hold mmu_lock (though it's highly likely the caller will 2942 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 2943 * 2944 * Note! The lookup can still race with modifications to host page tables, but 2945 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 2946 * race with the primary MMU occurs. 2947 */ 2948 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 2949 const struct kvm_memory_slot *slot) 2950 { 2951 int level = PG_LEVEL_4K; 2952 unsigned long hva; 2953 unsigned long flags; 2954 pgd_t pgd; 2955 p4d_t p4d; 2956 pud_t pud; 2957 pmd_t pmd; 2958 2959 /* 2960 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2961 * is not solely for performance, it's also necessary to avoid the 2962 * "writable" check in __gfn_to_hva_many(), which will always fail on 2963 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2964 * page fault steps have already verified the guest isn't writing a 2965 * read-only memslot. 2966 */ 2967 hva = __gfn_to_hva_memslot(slot, gfn); 2968 2969 /* 2970 * Disable IRQs to prevent concurrent tear down of host page tables, 2971 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 2972 * the original page table. 2973 */ 2974 local_irq_save(flags); 2975 2976 /* 2977 * Read each entry once. As above, a non-leaf entry can be promoted to 2978 * a huge page _during_ this walk. Re-reading the entry could send the 2979 * walk into the weeks, e.g. p*d_large() returns false (sees the old 2980 * value) and then p*d_offset() walks into the target huge page instead 2981 * of the old page table (sees the new value). 2982 */ 2983 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2984 if (pgd_none(pgd)) 2985 goto out; 2986 2987 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 2988 if (p4d_none(p4d) || !p4d_present(p4d)) 2989 goto out; 2990 2991 pud = READ_ONCE(*pud_offset(&p4d, hva)); 2992 if (pud_none(pud) || !pud_present(pud)) 2993 goto out; 2994 2995 if (pud_large(pud)) { 2996 level = PG_LEVEL_1G; 2997 goto out; 2998 } 2999 3000 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3001 if (pmd_none(pmd) || !pmd_present(pmd)) 3002 goto out; 3003 3004 if (pmd_large(pmd)) 3005 level = PG_LEVEL_2M; 3006 3007 out: 3008 local_irq_restore(flags); 3009 return level; 3010 } 3011 3012 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3013 const struct kvm_memory_slot *slot, gfn_t gfn, 3014 int max_level) 3015 { 3016 struct kvm_lpage_info *linfo; 3017 int host_level; 3018 3019 max_level = min(max_level, max_huge_page_level); 3020 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3021 linfo = lpage_info_slot(gfn, slot, max_level); 3022 if (!linfo->disallow_lpage) 3023 break; 3024 } 3025 3026 if (max_level == PG_LEVEL_4K) 3027 return PG_LEVEL_4K; 3028 3029 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3030 return min(host_level, max_level); 3031 } 3032 3033 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3034 { 3035 struct kvm_memory_slot *slot = fault->slot; 3036 kvm_pfn_t mask; 3037 3038 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3039 3040 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3041 return; 3042 3043 if (is_error_noslot_pfn(fault->pfn)) 3044 return; 3045 3046 if (kvm_slot_dirty_track_enabled(slot)) 3047 return; 3048 3049 /* 3050 * Enforce the iTLB multihit workaround after capturing the requested 3051 * level, which will be used to do precise, accurate accounting. 3052 */ 3053 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3054 fault->gfn, fault->max_level); 3055 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3056 return; 3057 3058 /* 3059 * mmu_notifier_retry() was successful and mmu_lock is held, so 3060 * the pmd can't be split from under us. 3061 */ 3062 fault->goal_level = fault->req_level; 3063 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3064 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3065 fault->pfn &= ~mask; 3066 } 3067 3068 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3069 { 3070 if (cur_level > PG_LEVEL_4K && 3071 cur_level == fault->goal_level && 3072 is_shadow_present_pte(spte) && 3073 !is_large_pte(spte)) { 3074 /* 3075 * A small SPTE exists for this pfn, but FNAME(fetch) 3076 * and __direct_map would like to create a large PTE 3077 * instead: just force them to go down another level, 3078 * patching back for them into pfn the next 9 bits of 3079 * the address. 3080 */ 3081 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3082 KVM_PAGES_PER_HPAGE(cur_level - 1); 3083 fault->pfn |= fault->gfn & page_mask; 3084 fault->goal_level--; 3085 } 3086 } 3087 3088 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3089 { 3090 struct kvm_shadow_walk_iterator it; 3091 struct kvm_mmu_page *sp; 3092 int ret; 3093 gfn_t base_gfn = fault->gfn; 3094 3095 kvm_mmu_hugepage_adjust(vcpu, fault); 3096 3097 trace_kvm_mmu_spte_requested(fault); 3098 for_each_shadow_entry(vcpu, fault->addr, it) { 3099 /* 3100 * We cannot overwrite existing page tables with an NX 3101 * large page, as the leaf could be executable. 3102 */ 3103 if (fault->nx_huge_page_workaround_enabled) 3104 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3105 3106 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3107 if (it.level == fault->goal_level) 3108 break; 3109 3110 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3111 if (sp == ERR_PTR(-EEXIST)) 3112 continue; 3113 3114 link_shadow_page(vcpu, it.sptep, sp); 3115 if (fault->is_tdp && fault->huge_page_disallowed && 3116 fault->req_level >= it.level) 3117 account_huge_nx_page(vcpu->kvm, sp); 3118 } 3119 3120 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3121 return -EFAULT; 3122 3123 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3124 base_gfn, fault->pfn, fault); 3125 if (ret == RET_PF_SPURIOUS) 3126 return ret; 3127 3128 direct_pte_prefetch(vcpu, it.sptep); 3129 return ret; 3130 } 3131 3132 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3133 { 3134 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3135 } 3136 3137 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3138 { 3139 /* 3140 * Do not cache the mmio info caused by writing the readonly gfn 3141 * into the spte otherwise read access on readonly gfn also can 3142 * caused mmio page fault and treat it as mmio access. 3143 */ 3144 if (pfn == KVM_PFN_ERR_RO_FAULT) 3145 return RET_PF_EMULATE; 3146 3147 if (pfn == KVM_PFN_ERR_HWPOISON) { 3148 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3149 return RET_PF_RETRY; 3150 } 3151 3152 return -EFAULT; 3153 } 3154 3155 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3156 unsigned int access) 3157 { 3158 /* The pfn is invalid, report the error! */ 3159 if (unlikely(is_error_pfn(fault->pfn))) 3160 return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3161 3162 if (unlikely(!fault->slot)) { 3163 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3164 3165 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3166 access & shadow_mmio_access_mask); 3167 /* 3168 * If MMIO caching is disabled, emulate immediately without 3169 * touching the shadow page tables as attempting to install an 3170 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3171 * whose gfn is greater than host.MAXPHYADDR, any guest that 3172 * generates such gfns is running nested and is being tricked 3173 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3174 * and only if L1's MAXPHYADDR is inaccurate with respect to 3175 * the hardware's). 3176 */ 3177 if (unlikely(!enable_mmio_caching) || 3178 unlikely(fault->gfn > kvm_mmu_max_gfn())) 3179 return RET_PF_EMULATE; 3180 } 3181 3182 return RET_PF_CONTINUE; 3183 } 3184 3185 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3186 { 3187 /* 3188 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3189 * reach the common page fault handler if the SPTE has an invalid MMIO 3190 * generation number. Refreshing the MMIO generation needs to go down 3191 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3192 */ 3193 if (fault->rsvd) 3194 return false; 3195 3196 /* 3197 * #PF can be fast if: 3198 * 3199 * 1. The shadow page table entry is not present and A/D bits are 3200 * disabled _by KVM_, which could mean that the fault is potentially 3201 * caused by access tracking (if enabled). If A/D bits are enabled 3202 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3203 * bits for L2 and employ access tracking, but the fast page fault 3204 * mechanism only supports direct MMUs. 3205 * 2. The shadow page table entry is present, the access is a write, 3206 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3207 * the fault was caused by a write-protection violation. If the 3208 * SPTE is MMU-writable (determined later), the fault can be fixed 3209 * by setting the Writable bit, which can be done out of mmu_lock. 3210 */ 3211 if (!fault->present) 3212 return !kvm_ad_enabled(); 3213 3214 /* 3215 * Note, instruction fetches and writes are mutually exclusive, ignore 3216 * the "exec" flag. 3217 */ 3218 return fault->write; 3219 } 3220 3221 /* 3222 * Returns true if the SPTE was fixed successfully. Otherwise, 3223 * someone else modified the SPTE from its original value. 3224 */ 3225 static bool 3226 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3227 u64 *sptep, u64 old_spte, u64 new_spte) 3228 { 3229 /* 3230 * Theoretically we could also set dirty bit (and flush TLB) here in 3231 * order to eliminate unnecessary PML logging. See comments in 3232 * set_spte. But fast_page_fault is very unlikely to happen with PML 3233 * enabled, so we do not do this. This might result in the same GPA 3234 * to be logged in PML buffer again when the write really happens, and 3235 * eventually to be called by mark_page_dirty twice. But it's also no 3236 * harm. This also avoids the TLB flush needed after setting dirty bit 3237 * so non-PML cases won't be impacted. 3238 * 3239 * Compare with set_spte where instead shadow_dirty_mask is set. 3240 */ 3241 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3242 return false; 3243 3244 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3245 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3246 3247 return true; 3248 } 3249 3250 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3251 { 3252 if (fault->exec) 3253 return is_executable_pte(spte); 3254 3255 if (fault->write) 3256 return is_writable_pte(spte); 3257 3258 /* Fault was on Read access */ 3259 return spte & PT_PRESENT_MASK; 3260 } 3261 3262 /* 3263 * Returns the last level spte pointer of the shadow page walk for the given 3264 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3265 * walk could be performed, returns NULL and *spte does not contain valid data. 3266 * 3267 * Contract: 3268 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3269 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3270 */ 3271 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3272 { 3273 struct kvm_shadow_walk_iterator iterator; 3274 u64 old_spte; 3275 u64 *sptep = NULL; 3276 3277 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3278 sptep = iterator.sptep; 3279 *spte = old_spte; 3280 } 3281 3282 return sptep; 3283 } 3284 3285 /* 3286 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3287 */ 3288 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3289 { 3290 struct kvm_mmu_page *sp; 3291 int ret = RET_PF_INVALID; 3292 u64 spte = 0ull; 3293 u64 *sptep = NULL; 3294 uint retry_count = 0; 3295 3296 if (!page_fault_can_be_fast(fault)) 3297 return ret; 3298 3299 walk_shadow_page_lockless_begin(vcpu); 3300 3301 do { 3302 u64 new_spte; 3303 3304 if (is_tdp_mmu(vcpu->arch.mmu)) 3305 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3306 else 3307 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3308 3309 if (!is_shadow_present_pte(spte)) 3310 break; 3311 3312 sp = sptep_to_sp(sptep); 3313 if (!is_last_spte(spte, sp->role.level)) 3314 break; 3315 3316 /* 3317 * Check whether the memory access that caused the fault would 3318 * still cause it if it were to be performed right now. If not, 3319 * then this is a spurious fault caused by TLB lazily flushed, 3320 * or some other CPU has already fixed the PTE after the 3321 * current CPU took the fault. 3322 * 3323 * Need not check the access of upper level table entries since 3324 * they are always ACC_ALL. 3325 */ 3326 if (is_access_allowed(fault, spte)) { 3327 ret = RET_PF_SPURIOUS; 3328 break; 3329 } 3330 3331 new_spte = spte; 3332 3333 /* 3334 * KVM only supports fixing page faults outside of MMU lock for 3335 * direct MMUs, nested MMUs are always indirect, and KVM always 3336 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3337 * enabled, the SPTE can't be an access-tracked SPTE. 3338 */ 3339 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3340 new_spte = restore_acc_track_spte(new_spte); 3341 3342 /* 3343 * To keep things simple, only SPTEs that are MMU-writable can 3344 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3345 * that were write-protected for dirty-logging or access 3346 * tracking are handled here. Don't bother checking if the 3347 * SPTE is writable to prioritize running with A/D bits enabled. 3348 * The is_access_allowed() check above handles the common case 3349 * of the fault being spurious, and the SPTE is known to be 3350 * shadow-present, i.e. except for access tracking restoration 3351 * making the new SPTE writable, the check is wasteful. 3352 */ 3353 if (fault->write && is_mmu_writable_spte(spte)) { 3354 new_spte |= PT_WRITABLE_MASK; 3355 3356 /* 3357 * Do not fix write-permission on the large spte when 3358 * dirty logging is enabled. Since we only dirty the 3359 * first page into the dirty-bitmap in 3360 * fast_pf_fix_direct_spte(), other pages are missed 3361 * if its slot has dirty logging enabled. 3362 * 3363 * Instead, we let the slow page fault path create a 3364 * normal spte to fix the access. 3365 */ 3366 if (sp->role.level > PG_LEVEL_4K && 3367 kvm_slot_dirty_track_enabled(fault->slot)) 3368 break; 3369 } 3370 3371 /* Verify that the fault can be handled in the fast path */ 3372 if (new_spte == spte || 3373 !is_access_allowed(fault, new_spte)) 3374 break; 3375 3376 /* 3377 * Currently, fast page fault only works for direct mapping 3378 * since the gfn is not stable for indirect shadow page. See 3379 * Documentation/virt/kvm/locking.rst to get more detail. 3380 */ 3381 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3382 ret = RET_PF_FIXED; 3383 break; 3384 } 3385 3386 if (++retry_count > 4) { 3387 printk_once(KERN_WARNING 3388 "kvm: Fast #PF retrying more than 4 times.\n"); 3389 break; 3390 } 3391 3392 } while (true); 3393 3394 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3395 walk_shadow_page_lockless_end(vcpu); 3396 3397 if (ret != RET_PF_INVALID) 3398 vcpu->stat.pf_fast++; 3399 3400 return ret; 3401 } 3402 3403 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3404 struct list_head *invalid_list) 3405 { 3406 struct kvm_mmu_page *sp; 3407 3408 if (!VALID_PAGE(*root_hpa)) 3409 return; 3410 3411 sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK); 3412 if (WARN_ON(!sp)) 3413 return; 3414 3415 if (is_tdp_mmu_page(sp)) 3416 kvm_tdp_mmu_put_root(kvm, sp, false); 3417 else if (!--sp->root_count && sp->role.invalid) 3418 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3419 3420 *root_hpa = INVALID_PAGE; 3421 } 3422 3423 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3424 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3425 ulong roots_to_free) 3426 { 3427 int i; 3428 LIST_HEAD(invalid_list); 3429 bool free_active_root; 3430 3431 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3432 3433 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3434 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3435 && VALID_PAGE(mmu->root.hpa); 3436 3437 if (!free_active_root) { 3438 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3439 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3440 VALID_PAGE(mmu->prev_roots[i].hpa)) 3441 break; 3442 3443 if (i == KVM_MMU_NUM_PREV_ROOTS) 3444 return; 3445 } 3446 3447 write_lock(&kvm->mmu_lock); 3448 3449 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3450 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3451 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3452 &invalid_list); 3453 3454 if (free_active_root) { 3455 if (to_shadow_page(mmu->root.hpa)) { 3456 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3457 } else if (mmu->pae_root) { 3458 for (i = 0; i < 4; ++i) { 3459 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3460 continue; 3461 3462 mmu_free_root_page(kvm, &mmu->pae_root[i], 3463 &invalid_list); 3464 mmu->pae_root[i] = INVALID_PAE_ROOT; 3465 } 3466 } 3467 mmu->root.hpa = INVALID_PAGE; 3468 mmu->root.pgd = 0; 3469 } 3470 3471 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3472 write_unlock(&kvm->mmu_lock); 3473 } 3474 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3475 3476 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3477 { 3478 unsigned long roots_to_free = 0; 3479 hpa_t root_hpa; 3480 int i; 3481 3482 /* 3483 * This should not be called while L2 is active, L2 can't invalidate 3484 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3485 */ 3486 WARN_ON_ONCE(mmu->root_role.guest_mode); 3487 3488 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3489 root_hpa = mmu->prev_roots[i].hpa; 3490 if (!VALID_PAGE(root_hpa)) 3491 continue; 3492 3493 if (!to_shadow_page(root_hpa) || 3494 to_shadow_page(root_hpa)->role.guest_mode) 3495 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3496 } 3497 3498 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3499 } 3500 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3501 3502 3503 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3504 { 3505 int ret = 0; 3506 3507 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3508 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3509 ret = 1; 3510 } 3511 3512 return ret; 3513 } 3514 3515 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3516 u8 level) 3517 { 3518 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3519 struct kvm_mmu_page *sp; 3520 3521 role.level = level; 3522 role.quadrant = quadrant; 3523 3524 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3525 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3526 3527 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3528 ++sp->root_count; 3529 3530 return __pa(sp->spt); 3531 } 3532 3533 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3534 { 3535 struct kvm_mmu *mmu = vcpu->arch.mmu; 3536 u8 shadow_root_level = mmu->root_role.level; 3537 hpa_t root; 3538 unsigned i; 3539 int r; 3540 3541 write_lock(&vcpu->kvm->mmu_lock); 3542 r = make_mmu_pages_available(vcpu); 3543 if (r < 0) 3544 goto out_unlock; 3545 3546 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3547 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3548 mmu->root.hpa = root; 3549 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3550 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3551 mmu->root.hpa = root; 3552 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3553 if (WARN_ON_ONCE(!mmu->pae_root)) { 3554 r = -EIO; 3555 goto out_unlock; 3556 } 3557 3558 for (i = 0; i < 4; ++i) { 3559 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3560 3561 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3562 PT32_ROOT_LEVEL); 3563 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3564 shadow_me_value; 3565 } 3566 mmu->root.hpa = __pa(mmu->pae_root); 3567 } else { 3568 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3569 r = -EIO; 3570 goto out_unlock; 3571 } 3572 3573 /* root.pgd is ignored for direct MMUs. */ 3574 mmu->root.pgd = 0; 3575 out_unlock: 3576 write_unlock(&vcpu->kvm->mmu_lock); 3577 return r; 3578 } 3579 3580 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3581 { 3582 struct kvm_memslots *slots; 3583 struct kvm_memory_slot *slot; 3584 int r = 0, i, bkt; 3585 3586 /* 3587 * Check if this is the first shadow root being allocated before 3588 * taking the lock. 3589 */ 3590 if (kvm_shadow_root_allocated(kvm)) 3591 return 0; 3592 3593 mutex_lock(&kvm->slots_arch_lock); 3594 3595 /* Recheck, under the lock, whether this is the first shadow root. */ 3596 if (kvm_shadow_root_allocated(kvm)) 3597 goto out_unlock; 3598 3599 /* 3600 * Check if anything actually needs to be allocated, e.g. all metadata 3601 * will be allocated upfront if TDP is disabled. 3602 */ 3603 if (kvm_memslots_have_rmaps(kvm) && 3604 kvm_page_track_write_tracking_enabled(kvm)) 3605 goto out_success; 3606 3607 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3608 slots = __kvm_memslots(kvm, i); 3609 kvm_for_each_memslot(slot, bkt, slots) { 3610 /* 3611 * Both of these functions are no-ops if the target is 3612 * already allocated, so unconditionally calling both 3613 * is safe. Intentionally do NOT free allocations on 3614 * failure to avoid having to track which allocations 3615 * were made now versus when the memslot was created. 3616 * The metadata is guaranteed to be freed when the slot 3617 * is freed, and will be kept/used if userspace retries 3618 * KVM_RUN instead of killing the VM. 3619 */ 3620 r = memslot_rmap_alloc(slot, slot->npages); 3621 if (r) 3622 goto out_unlock; 3623 r = kvm_page_track_write_tracking_alloc(slot); 3624 if (r) 3625 goto out_unlock; 3626 } 3627 } 3628 3629 /* 3630 * Ensure that shadow_root_allocated becomes true strictly after 3631 * all the related pointers are set. 3632 */ 3633 out_success: 3634 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3635 3636 out_unlock: 3637 mutex_unlock(&kvm->slots_arch_lock); 3638 return r; 3639 } 3640 3641 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3642 { 3643 struct kvm_mmu *mmu = vcpu->arch.mmu; 3644 u64 pdptrs[4], pm_mask; 3645 gfn_t root_gfn, root_pgd; 3646 int quadrant, i, r; 3647 hpa_t root; 3648 3649 root_pgd = mmu->get_guest_pgd(vcpu); 3650 root_gfn = root_pgd >> PAGE_SHIFT; 3651 3652 if (mmu_check_root(vcpu, root_gfn)) 3653 return 1; 3654 3655 /* 3656 * On SVM, reading PDPTRs might access guest memory, which might fault 3657 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3658 */ 3659 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3660 for (i = 0; i < 4; ++i) { 3661 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3662 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3663 continue; 3664 3665 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3666 return 1; 3667 } 3668 } 3669 3670 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3671 if (r) 3672 return r; 3673 3674 write_lock(&vcpu->kvm->mmu_lock); 3675 r = make_mmu_pages_available(vcpu); 3676 if (r < 0) 3677 goto out_unlock; 3678 3679 /* 3680 * Do we shadow a long mode page table? If so we need to 3681 * write-protect the guests page table root. 3682 */ 3683 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3684 root = mmu_alloc_root(vcpu, root_gfn, 0, 3685 mmu->root_role.level); 3686 mmu->root.hpa = root; 3687 goto set_root_pgd; 3688 } 3689 3690 if (WARN_ON_ONCE(!mmu->pae_root)) { 3691 r = -EIO; 3692 goto out_unlock; 3693 } 3694 3695 /* 3696 * We shadow a 32 bit page table. This may be a legacy 2-level 3697 * or a PAE 3-level page table. In either case we need to be aware that 3698 * the shadow page table may be a PAE or a long mode page table. 3699 */ 3700 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3701 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3702 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3703 3704 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3705 r = -EIO; 3706 goto out_unlock; 3707 } 3708 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3709 3710 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3711 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3712 r = -EIO; 3713 goto out_unlock; 3714 } 3715 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3716 } 3717 } 3718 3719 for (i = 0; i < 4; ++i) { 3720 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3721 3722 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3723 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3724 mmu->pae_root[i] = INVALID_PAE_ROOT; 3725 continue; 3726 } 3727 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3728 } 3729 3730 /* 3731 * If shadowing 32-bit non-PAE page tables, each PAE page 3732 * directory maps one quarter of the guest's non-PAE page 3733 * directory. Othwerise each PAE page direct shadows one guest 3734 * PAE page directory so that quadrant should be 0. 3735 */ 3736 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3737 3738 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3739 mmu->pae_root[i] = root | pm_mask; 3740 } 3741 3742 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3743 mmu->root.hpa = __pa(mmu->pml5_root); 3744 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3745 mmu->root.hpa = __pa(mmu->pml4_root); 3746 else 3747 mmu->root.hpa = __pa(mmu->pae_root); 3748 3749 set_root_pgd: 3750 mmu->root.pgd = root_pgd; 3751 out_unlock: 3752 write_unlock(&vcpu->kvm->mmu_lock); 3753 3754 return r; 3755 } 3756 3757 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3758 { 3759 struct kvm_mmu *mmu = vcpu->arch.mmu; 3760 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3761 u64 *pml5_root = NULL; 3762 u64 *pml4_root = NULL; 3763 u64 *pae_root; 3764 3765 /* 3766 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3767 * tables are allocated and initialized at root creation as there is no 3768 * equivalent level in the guest's NPT to shadow. Allocate the tables 3769 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3770 */ 3771 if (mmu->root_role.direct || 3772 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3773 mmu->root_role.level < PT64_ROOT_4LEVEL) 3774 return 0; 3775 3776 /* 3777 * NPT, the only paging mode that uses this horror, uses a fixed number 3778 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3779 * all MMus are 5-level. Thus, this can safely require that pml5_root 3780 * is allocated if the other roots are valid and pml5 is needed, as any 3781 * prior MMU would also have required pml5. 3782 */ 3783 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3784 return 0; 3785 3786 /* 3787 * The special roots should always be allocated in concert. Yell and 3788 * bail if KVM ends up in a state where only one of the roots is valid. 3789 */ 3790 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3791 (need_pml5 && mmu->pml5_root))) 3792 return -EIO; 3793 3794 /* 3795 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3796 * doesn't need to be decrypted. 3797 */ 3798 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3799 if (!pae_root) 3800 return -ENOMEM; 3801 3802 #ifdef CONFIG_X86_64 3803 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3804 if (!pml4_root) 3805 goto err_pml4; 3806 3807 if (need_pml5) { 3808 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3809 if (!pml5_root) 3810 goto err_pml5; 3811 } 3812 #endif 3813 3814 mmu->pae_root = pae_root; 3815 mmu->pml4_root = pml4_root; 3816 mmu->pml5_root = pml5_root; 3817 3818 return 0; 3819 3820 #ifdef CONFIG_X86_64 3821 err_pml5: 3822 free_page((unsigned long)pml4_root); 3823 err_pml4: 3824 free_page((unsigned long)pae_root); 3825 return -ENOMEM; 3826 #endif 3827 } 3828 3829 static bool is_unsync_root(hpa_t root) 3830 { 3831 struct kvm_mmu_page *sp; 3832 3833 if (!VALID_PAGE(root)) 3834 return false; 3835 3836 /* 3837 * The read barrier orders the CPU's read of SPTE.W during the page table 3838 * walk before the reads of sp->unsync/sp->unsync_children here. 3839 * 3840 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3841 * any guest page table changes are not guaranteed to be visible anyway 3842 * until this VCPU issues a TLB flush strictly after those changes are 3843 * made. We only need to ensure that the other CPU sets these flags 3844 * before any actual changes to the page tables are made. The comments 3845 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3846 * requirement isn't satisfied. 3847 */ 3848 smp_rmb(); 3849 sp = to_shadow_page(root); 3850 3851 /* 3852 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3853 * PDPTEs for a given PAE root need to be synchronized individually. 3854 */ 3855 if (WARN_ON_ONCE(!sp)) 3856 return false; 3857 3858 if (sp->unsync || sp->unsync_children) 3859 return true; 3860 3861 return false; 3862 } 3863 3864 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3865 { 3866 int i; 3867 struct kvm_mmu_page *sp; 3868 3869 if (vcpu->arch.mmu->root_role.direct) 3870 return; 3871 3872 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3873 return; 3874 3875 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3876 3877 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3878 hpa_t root = vcpu->arch.mmu->root.hpa; 3879 sp = to_shadow_page(root); 3880 3881 if (!is_unsync_root(root)) 3882 return; 3883 3884 write_lock(&vcpu->kvm->mmu_lock); 3885 mmu_sync_children(vcpu, sp, true); 3886 write_unlock(&vcpu->kvm->mmu_lock); 3887 return; 3888 } 3889 3890 write_lock(&vcpu->kvm->mmu_lock); 3891 3892 for (i = 0; i < 4; ++i) { 3893 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3894 3895 if (IS_VALID_PAE_ROOT(root)) { 3896 root &= SPTE_BASE_ADDR_MASK; 3897 sp = to_shadow_page(root); 3898 mmu_sync_children(vcpu, sp, true); 3899 } 3900 } 3901 3902 write_unlock(&vcpu->kvm->mmu_lock); 3903 } 3904 3905 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3906 { 3907 unsigned long roots_to_free = 0; 3908 int i; 3909 3910 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3911 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3912 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3913 3914 /* sync prev_roots by simply freeing them */ 3915 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3916 } 3917 3918 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3919 gpa_t vaddr, u64 access, 3920 struct x86_exception *exception) 3921 { 3922 if (exception) 3923 exception->error_code = 0; 3924 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3925 } 3926 3927 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3928 { 3929 /* 3930 * A nested guest cannot use the MMIO cache if it is using nested 3931 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3932 */ 3933 if (mmu_is_nested(vcpu)) 3934 return false; 3935 3936 if (direct) 3937 return vcpu_match_mmio_gpa(vcpu, addr); 3938 3939 return vcpu_match_mmio_gva(vcpu, addr); 3940 } 3941 3942 /* 3943 * Return the level of the lowest level SPTE added to sptes. 3944 * That SPTE may be non-present. 3945 * 3946 * Must be called between walk_shadow_page_lockless_{begin,end}. 3947 */ 3948 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3949 { 3950 struct kvm_shadow_walk_iterator iterator; 3951 int leaf = -1; 3952 u64 spte; 3953 3954 for (shadow_walk_init(&iterator, vcpu, addr), 3955 *root_level = iterator.level; 3956 shadow_walk_okay(&iterator); 3957 __shadow_walk_next(&iterator, spte)) { 3958 leaf = iterator.level; 3959 spte = mmu_spte_get_lockless(iterator.sptep); 3960 3961 sptes[leaf] = spte; 3962 } 3963 3964 return leaf; 3965 } 3966 3967 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3968 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3969 { 3970 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3971 struct rsvd_bits_validate *rsvd_check; 3972 int root, leaf, level; 3973 bool reserved = false; 3974 3975 walk_shadow_page_lockless_begin(vcpu); 3976 3977 if (is_tdp_mmu(vcpu->arch.mmu)) 3978 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3979 else 3980 leaf = get_walk(vcpu, addr, sptes, &root); 3981 3982 walk_shadow_page_lockless_end(vcpu); 3983 3984 if (unlikely(leaf < 0)) { 3985 *sptep = 0ull; 3986 return reserved; 3987 } 3988 3989 *sptep = sptes[leaf]; 3990 3991 /* 3992 * Skip reserved bits checks on the terminal leaf if it's not a valid 3993 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3994 * design, always have reserved bits set. The purpose of the checks is 3995 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3996 */ 3997 if (!is_shadow_present_pte(sptes[leaf])) 3998 leaf++; 3999 4000 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4001 4002 for (level = root; level >= leaf; level--) 4003 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4004 4005 if (reserved) { 4006 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4007 __func__, addr); 4008 for (level = root; level >= leaf; level--) 4009 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4010 sptes[level], level, 4011 get_rsvd_bits(rsvd_check, sptes[level], level)); 4012 } 4013 4014 return reserved; 4015 } 4016 4017 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4018 { 4019 u64 spte; 4020 bool reserved; 4021 4022 if (mmio_info_in_cache(vcpu, addr, direct)) 4023 return RET_PF_EMULATE; 4024 4025 reserved = get_mmio_spte(vcpu, addr, &spte); 4026 if (WARN_ON(reserved)) 4027 return -EINVAL; 4028 4029 if (is_mmio_spte(spte)) { 4030 gfn_t gfn = get_mmio_spte_gfn(spte); 4031 unsigned int access = get_mmio_spte_access(spte); 4032 4033 if (!check_mmio_spte(vcpu, spte)) 4034 return RET_PF_INVALID; 4035 4036 if (direct) 4037 addr = 0; 4038 4039 trace_handle_mmio_page_fault(addr, gfn, access); 4040 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4041 return RET_PF_EMULATE; 4042 } 4043 4044 /* 4045 * If the page table is zapped by other cpus, let CPU fault again on 4046 * the address. 4047 */ 4048 return RET_PF_RETRY; 4049 } 4050 4051 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4052 struct kvm_page_fault *fault) 4053 { 4054 if (unlikely(fault->rsvd)) 4055 return false; 4056 4057 if (!fault->present || !fault->write) 4058 return false; 4059 4060 /* 4061 * guest is writing the page which is write tracked which can 4062 * not be fixed by page fault handler. 4063 */ 4064 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4065 return true; 4066 4067 return false; 4068 } 4069 4070 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4071 { 4072 struct kvm_shadow_walk_iterator iterator; 4073 u64 spte; 4074 4075 walk_shadow_page_lockless_begin(vcpu); 4076 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4077 clear_sp_write_flooding_count(iterator.sptep); 4078 walk_shadow_page_lockless_end(vcpu); 4079 } 4080 4081 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4082 { 4083 /* make sure the token value is not 0 */ 4084 u32 id = vcpu->arch.apf.id; 4085 4086 if (id << 12 == 0) 4087 vcpu->arch.apf.id = 1; 4088 4089 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4090 } 4091 4092 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4093 gfn_t gfn) 4094 { 4095 struct kvm_arch_async_pf arch; 4096 4097 arch.token = alloc_apf_token(vcpu); 4098 arch.gfn = gfn; 4099 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4100 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4101 4102 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4103 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4104 } 4105 4106 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4107 { 4108 int r; 4109 4110 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4111 work->wakeup_all) 4112 return; 4113 4114 r = kvm_mmu_reload(vcpu); 4115 if (unlikely(r)) 4116 return; 4117 4118 if (!vcpu->arch.mmu->root_role.direct && 4119 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 4120 return; 4121 4122 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 4123 } 4124 4125 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4126 { 4127 struct kvm_memory_slot *slot = fault->slot; 4128 bool async; 4129 4130 /* 4131 * Retry the page fault if the gfn hit a memslot that is being deleted 4132 * or moved. This ensures any existing SPTEs for the old memslot will 4133 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4134 */ 4135 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4136 return RET_PF_RETRY; 4137 4138 if (!kvm_is_visible_memslot(slot)) { 4139 /* Don't expose private memslots to L2. */ 4140 if (is_guest_mode(vcpu)) { 4141 fault->slot = NULL; 4142 fault->pfn = KVM_PFN_NOSLOT; 4143 fault->map_writable = false; 4144 return RET_PF_CONTINUE; 4145 } 4146 /* 4147 * If the APIC access page exists but is disabled, go directly 4148 * to emulation without caching the MMIO access or creating a 4149 * MMIO SPTE. That way the cache doesn't need to be purged 4150 * when the AVIC is re-enabled. 4151 */ 4152 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4153 !kvm_apicv_activated(vcpu->kvm)) 4154 return RET_PF_EMULATE; 4155 } 4156 4157 async = false; 4158 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 4159 fault->write, &fault->map_writable, 4160 &fault->hva); 4161 if (!async) 4162 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4163 4164 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4165 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4166 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4167 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 4168 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4169 return RET_PF_RETRY; 4170 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4171 return RET_PF_RETRY; 4172 } 4173 } 4174 4175 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 4176 fault->write, &fault->map_writable, 4177 &fault->hva); 4178 return RET_PF_CONTINUE; 4179 } 4180 4181 /* 4182 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4183 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4184 */ 4185 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4186 struct kvm_page_fault *fault, int mmu_seq) 4187 { 4188 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4189 4190 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4191 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4192 return true; 4193 4194 /* 4195 * Roots without an associated shadow page are considered invalid if 4196 * there is a pending request to free obsolete roots. The request is 4197 * only a hint that the current root _may_ be obsolete and needs to be 4198 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4199 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4200 * to reload even if no vCPU is actively using the root. 4201 */ 4202 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4203 return true; 4204 4205 return fault->slot && 4206 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4207 } 4208 4209 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4210 { 4211 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4212 4213 unsigned long mmu_seq; 4214 int r; 4215 4216 fault->gfn = fault->addr >> PAGE_SHIFT; 4217 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4218 4219 if (page_fault_handle_page_track(vcpu, fault)) 4220 return RET_PF_EMULATE; 4221 4222 r = fast_page_fault(vcpu, fault); 4223 if (r != RET_PF_INVALID) 4224 return r; 4225 4226 r = mmu_topup_memory_caches(vcpu, false); 4227 if (r) 4228 return r; 4229 4230 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4231 smp_rmb(); 4232 4233 r = kvm_faultin_pfn(vcpu, fault); 4234 if (r != RET_PF_CONTINUE) 4235 return r; 4236 4237 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); 4238 if (r != RET_PF_CONTINUE) 4239 return r; 4240 4241 r = RET_PF_RETRY; 4242 4243 if (is_tdp_mmu_fault) 4244 read_lock(&vcpu->kvm->mmu_lock); 4245 else 4246 write_lock(&vcpu->kvm->mmu_lock); 4247 4248 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4249 goto out_unlock; 4250 4251 r = make_mmu_pages_available(vcpu); 4252 if (r) 4253 goto out_unlock; 4254 4255 if (is_tdp_mmu_fault) 4256 r = kvm_tdp_mmu_map(vcpu, fault); 4257 else 4258 r = __direct_map(vcpu, fault); 4259 4260 out_unlock: 4261 if (is_tdp_mmu_fault) 4262 read_unlock(&vcpu->kvm->mmu_lock); 4263 else 4264 write_unlock(&vcpu->kvm->mmu_lock); 4265 kvm_release_pfn_clean(fault->pfn); 4266 return r; 4267 } 4268 4269 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4270 struct kvm_page_fault *fault) 4271 { 4272 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4273 4274 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4275 fault->max_level = PG_LEVEL_2M; 4276 return direct_page_fault(vcpu, fault); 4277 } 4278 4279 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4280 u64 fault_address, char *insn, int insn_len) 4281 { 4282 int r = 1; 4283 u32 flags = vcpu->arch.apf.host_apf_flags; 4284 4285 #ifndef CONFIG_X86_64 4286 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4287 if (WARN_ON_ONCE(fault_address >> 32)) 4288 return -EFAULT; 4289 #endif 4290 4291 vcpu->arch.l1tf_flush_l1d = true; 4292 if (!flags) { 4293 trace_kvm_page_fault(fault_address, error_code); 4294 4295 if (kvm_event_needs_reinjection(vcpu)) 4296 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4297 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4298 insn_len); 4299 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4300 vcpu->arch.apf.host_apf_flags = 0; 4301 local_irq_disable(); 4302 kvm_async_pf_task_wait_schedule(fault_address); 4303 local_irq_enable(); 4304 } else { 4305 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4306 } 4307 4308 return r; 4309 } 4310 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4311 4312 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4313 { 4314 /* 4315 * If the guest's MTRRs may be used to compute the "real" memtype, 4316 * restrict the mapping level to ensure KVM uses a consistent memtype 4317 * across the entire mapping. If the host MTRRs are ignored by TDP 4318 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4319 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4320 * from the guest's MTRRs so that guest accesses to memory that is 4321 * DMA'd aren't cached against the guest's wishes. 4322 * 4323 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4324 * e.g. KVM will force UC memtype for host MMIO. 4325 */ 4326 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4327 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4328 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4329 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4330 4331 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4332 break; 4333 } 4334 } 4335 4336 return direct_page_fault(vcpu, fault); 4337 } 4338 4339 static void nonpaging_init_context(struct kvm_mmu *context) 4340 { 4341 context->page_fault = nonpaging_page_fault; 4342 context->gva_to_gpa = nonpaging_gva_to_gpa; 4343 context->sync_page = nonpaging_sync_page; 4344 context->invlpg = NULL; 4345 } 4346 4347 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4348 union kvm_mmu_page_role role) 4349 { 4350 return (role.direct || pgd == root->pgd) && 4351 VALID_PAGE(root->hpa) && 4352 role.word == to_shadow_page(root->hpa)->role.word; 4353 } 4354 4355 /* 4356 * Find out if a previously cached root matching the new pgd/role is available, 4357 * and insert the current root as the MRU in the cache. 4358 * If a matching root is found, it is assigned to kvm_mmu->root and 4359 * true is returned. 4360 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4361 * evicted to make room for the current root, and false is returned. 4362 */ 4363 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4364 gpa_t new_pgd, 4365 union kvm_mmu_page_role new_role) 4366 { 4367 uint i; 4368 4369 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4370 return true; 4371 4372 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4373 /* 4374 * The swaps end up rotating the cache like this: 4375 * C 0 1 2 3 (on entry to the function) 4376 * 0 C 1 2 3 4377 * 1 C 0 2 3 4378 * 2 C 0 1 3 4379 * 3 C 0 1 2 (on exit from the loop) 4380 */ 4381 swap(mmu->root, mmu->prev_roots[i]); 4382 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4383 return true; 4384 } 4385 4386 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4387 return false; 4388 } 4389 4390 /* 4391 * Find out if a previously cached root matching the new pgd/role is available. 4392 * On entry, mmu->root is invalid. 4393 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4394 * of the cache becomes invalid, and true is returned. 4395 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4396 */ 4397 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4398 gpa_t new_pgd, 4399 union kvm_mmu_page_role new_role) 4400 { 4401 uint i; 4402 4403 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4404 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4405 goto hit; 4406 4407 return false; 4408 4409 hit: 4410 swap(mmu->root, mmu->prev_roots[i]); 4411 /* Bubble up the remaining roots. */ 4412 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4413 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4414 mmu->prev_roots[i].hpa = INVALID_PAGE; 4415 return true; 4416 } 4417 4418 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4419 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4420 { 4421 /* 4422 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4423 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4424 * later if necessary. 4425 */ 4426 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4427 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4428 4429 if (VALID_PAGE(mmu->root.hpa)) 4430 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4431 else 4432 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4433 } 4434 4435 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4436 { 4437 struct kvm_mmu *mmu = vcpu->arch.mmu; 4438 union kvm_mmu_page_role new_role = mmu->root_role; 4439 4440 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4441 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4442 return; 4443 } 4444 4445 /* 4446 * It's possible that the cached previous root page is obsolete because 4447 * of a change in the MMU generation number. However, changing the 4448 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4449 * which will free the root set here and allocate a new one. 4450 */ 4451 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4452 4453 if (force_flush_and_sync_on_reuse) { 4454 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4455 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4456 } 4457 4458 /* 4459 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4460 * switching to a new CR3, that GVA->GPA mapping may no longer be 4461 * valid. So clear any cached MMIO info even when we don't need to sync 4462 * the shadow page tables. 4463 */ 4464 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4465 4466 /* 4467 * If this is a direct root page, it doesn't have a write flooding 4468 * count. Otherwise, clear the write flooding count. 4469 */ 4470 if (!new_role.direct) 4471 __clear_sp_write_flooding_count( 4472 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4473 } 4474 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4475 4476 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4477 { 4478 return kvm_read_cr3(vcpu); 4479 } 4480 4481 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4482 unsigned int access) 4483 { 4484 if (unlikely(is_mmio_spte(*sptep))) { 4485 if (gfn != get_mmio_spte_gfn(*sptep)) { 4486 mmu_spte_clear_no_track(sptep); 4487 return true; 4488 } 4489 4490 mark_mmio_spte(vcpu, sptep, gfn, access); 4491 return true; 4492 } 4493 4494 return false; 4495 } 4496 4497 #define PTTYPE_EPT 18 /* arbitrary */ 4498 #define PTTYPE PTTYPE_EPT 4499 #include "paging_tmpl.h" 4500 #undef PTTYPE 4501 4502 #define PTTYPE 64 4503 #include "paging_tmpl.h" 4504 #undef PTTYPE 4505 4506 #define PTTYPE 32 4507 #include "paging_tmpl.h" 4508 #undef PTTYPE 4509 4510 static void 4511 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4512 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4513 bool pse, bool amd) 4514 { 4515 u64 gbpages_bit_rsvd = 0; 4516 u64 nonleaf_bit8_rsvd = 0; 4517 u64 high_bits_rsvd; 4518 4519 rsvd_check->bad_mt_xwr = 0; 4520 4521 if (!gbpages) 4522 gbpages_bit_rsvd = rsvd_bits(7, 7); 4523 4524 if (level == PT32E_ROOT_LEVEL) 4525 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4526 else 4527 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4528 4529 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4530 if (!nx) 4531 high_bits_rsvd |= rsvd_bits(63, 63); 4532 4533 /* 4534 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4535 * leaf entries) on AMD CPUs only. 4536 */ 4537 if (amd) 4538 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4539 4540 switch (level) { 4541 case PT32_ROOT_LEVEL: 4542 /* no rsvd bits for 2 level 4K page table entries */ 4543 rsvd_check->rsvd_bits_mask[0][1] = 0; 4544 rsvd_check->rsvd_bits_mask[0][0] = 0; 4545 rsvd_check->rsvd_bits_mask[1][0] = 4546 rsvd_check->rsvd_bits_mask[0][0]; 4547 4548 if (!pse) { 4549 rsvd_check->rsvd_bits_mask[1][1] = 0; 4550 break; 4551 } 4552 4553 if (is_cpuid_PSE36()) 4554 /* 36bits PSE 4MB page */ 4555 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4556 else 4557 /* 32 bits PSE 4MB page */ 4558 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4559 break; 4560 case PT32E_ROOT_LEVEL: 4561 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4562 high_bits_rsvd | 4563 rsvd_bits(5, 8) | 4564 rsvd_bits(1, 2); /* PDPTE */ 4565 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4566 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4567 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4568 rsvd_bits(13, 20); /* large page */ 4569 rsvd_check->rsvd_bits_mask[1][0] = 4570 rsvd_check->rsvd_bits_mask[0][0]; 4571 break; 4572 case PT64_ROOT_5LEVEL: 4573 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4574 nonleaf_bit8_rsvd | 4575 rsvd_bits(7, 7); 4576 rsvd_check->rsvd_bits_mask[1][4] = 4577 rsvd_check->rsvd_bits_mask[0][4]; 4578 fallthrough; 4579 case PT64_ROOT_4LEVEL: 4580 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4581 nonleaf_bit8_rsvd | 4582 rsvd_bits(7, 7); 4583 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4584 gbpages_bit_rsvd; 4585 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4586 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4587 rsvd_check->rsvd_bits_mask[1][3] = 4588 rsvd_check->rsvd_bits_mask[0][3]; 4589 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4590 gbpages_bit_rsvd | 4591 rsvd_bits(13, 29); 4592 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4593 rsvd_bits(13, 20); /* large page */ 4594 rsvd_check->rsvd_bits_mask[1][0] = 4595 rsvd_check->rsvd_bits_mask[0][0]; 4596 break; 4597 } 4598 } 4599 4600 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4601 { 4602 /* 4603 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4604 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4605 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4606 * walk for performance and complexity reasons. Not to mention KVM 4607 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4608 * KVM once a TDP translation is installed. Mimic hardware behavior so 4609 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4610 */ 4611 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4612 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4613 } 4614 4615 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4616 struct kvm_mmu *context) 4617 { 4618 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4619 vcpu->arch.reserved_gpa_bits, 4620 context->cpu_role.base.level, is_efer_nx(context), 4621 guest_can_use_gbpages(vcpu), 4622 is_cr4_pse(context), 4623 guest_cpuid_is_amd_or_hygon(vcpu)); 4624 } 4625 4626 static void 4627 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4628 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4629 { 4630 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4631 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4632 u64 bad_mt_xwr; 4633 4634 if (huge_page_level < PG_LEVEL_1G) 4635 large_1g_rsvd = rsvd_bits(7, 7); 4636 if (huge_page_level < PG_LEVEL_2M) 4637 large_2m_rsvd = rsvd_bits(7, 7); 4638 4639 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4640 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4641 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4642 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4643 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4644 4645 /* large page */ 4646 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4647 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4648 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4649 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4650 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4651 4652 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4653 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4654 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4655 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4656 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4657 if (!execonly) { 4658 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4659 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4660 } 4661 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4662 } 4663 4664 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4665 struct kvm_mmu *context, bool execonly, int huge_page_level) 4666 { 4667 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4668 vcpu->arch.reserved_gpa_bits, execonly, 4669 huge_page_level); 4670 } 4671 4672 static inline u64 reserved_hpa_bits(void) 4673 { 4674 return rsvd_bits(shadow_phys_bits, 63); 4675 } 4676 4677 /* 4678 * the page table on host is the shadow page table for the page 4679 * table in guest or amd nested guest, its mmu features completely 4680 * follow the features in guest. 4681 */ 4682 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4683 struct kvm_mmu *context) 4684 { 4685 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4686 bool is_amd = true; 4687 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4688 bool is_pse = false; 4689 struct rsvd_bits_validate *shadow_zero_check; 4690 int i; 4691 4692 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4693 4694 shadow_zero_check = &context->shadow_zero_check; 4695 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4696 context->root_role.level, 4697 context->root_role.efer_nx, 4698 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4699 4700 if (!shadow_me_mask) 4701 return; 4702 4703 for (i = context->root_role.level; --i >= 0;) { 4704 /* 4705 * So far shadow_me_value is a constant during KVM's life 4706 * time. Bits in shadow_me_value are allowed to be set. 4707 * Bits in shadow_me_mask but not in shadow_me_value are 4708 * not allowed to be set. 4709 */ 4710 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4711 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4712 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4713 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4714 } 4715 4716 } 4717 4718 static inline bool boot_cpu_is_amd(void) 4719 { 4720 WARN_ON_ONCE(!tdp_enabled); 4721 return shadow_x_mask == 0; 4722 } 4723 4724 /* 4725 * the direct page table on host, use as much mmu features as 4726 * possible, however, kvm currently does not do execution-protection. 4727 */ 4728 static void 4729 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4730 { 4731 struct rsvd_bits_validate *shadow_zero_check; 4732 int i; 4733 4734 shadow_zero_check = &context->shadow_zero_check; 4735 4736 if (boot_cpu_is_amd()) 4737 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4738 context->root_role.level, true, 4739 boot_cpu_has(X86_FEATURE_GBPAGES), 4740 false, true); 4741 else 4742 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4743 reserved_hpa_bits(), false, 4744 max_huge_page_level); 4745 4746 if (!shadow_me_mask) 4747 return; 4748 4749 for (i = context->root_role.level; --i >= 0;) { 4750 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4751 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4752 } 4753 } 4754 4755 /* 4756 * as the comments in reset_shadow_zero_bits_mask() except it 4757 * is the shadow page table for intel nested guest. 4758 */ 4759 static void 4760 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4761 { 4762 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4763 reserved_hpa_bits(), execonly, 4764 max_huge_page_level); 4765 } 4766 4767 #define BYTE_MASK(access) \ 4768 ((1 & (access) ? 2 : 0) | \ 4769 (2 & (access) ? 4 : 0) | \ 4770 (3 & (access) ? 8 : 0) | \ 4771 (4 & (access) ? 16 : 0) | \ 4772 (5 & (access) ? 32 : 0) | \ 4773 (6 & (access) ? 64 : 0) | \ 4774 (7 & (access) ? 128 : 0)) 4775 4776 4777 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4778 { 4779 unsigned byte; 4780 4781 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4782 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4783 const u8 u = BYTE_MASK(ACC_USER_MASK); 4784 4785 bool cr4_smep = is_cr4_smep(mmu); 4786 bool cr4_smap = is_cr4_smap(mmu); 4787 bool cr0_wp = is_cr0_wp(mmu); 4788 bool efer_nx = is_efer_nx(mmu); 4789 4790 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4791 unsigned pfec = byte << 1; 4792 4793 /* 4794 * Each "*f" variable has a 1 bit for each UWX value 4795 * that causes a fault with the given PFEC. 4796 */ 4797 4798 /* Faults from writes to non-writable pages */ 4799 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4800 /* Faults from user mode accesses to supervisor pages */ 4801 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4802 /* Faults from fetches of non-executable pages*/ 4803 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4804 /* Faults from kernel mode fetches of user pages */ 4805 u8 smepf = 0; 4806 /* Faults from kernel mode accesses of user pages */ 4807 u8 smapf = 0; 4808 4809 if (!ept) { 4810 /* Faults from kernel mode accesses to user pages */ 4811 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4812 4813 /* Not really needed: !nx will cause pte.nx to fault */ 4814 if (!efer_nx) 4815 ff = 0; 4816 4817 /* Allow supervisor writes if !cr0.wp */ 4818 if (!cr0_wp) 4819 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4820 4821 /* Disallow supervisor fetches of user code if cr4.smep */ 4822 if (cr4_smep) 4823 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4824 4825 /* 4826 * SMAP:kernel-mode data accesses from user-mode 4827 * mappings should fault. A fault is considered 4828 * as a SMAP violation if all of the following 4829 * conditions are true: 4830 * - X86_CR4_SMAP is set in CR4 4831 * - A user page is accessed 4832 * - The access is not a fetch 4833 * - The access is supervisor mode 4834 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4835 * 4836 * Here, we cover the first four conditions. 4837 * The fifth is computed dynamically in permission_fault(); 4838 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4839 * *not* subject to SMAP restrictions. 4840 */ 4841 if (cr4_smap) 4842 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4843 } 4844 4845 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4846 } 4847 } 4848 4849 /* 4850 * PKU is an additional mechanism by which the paging controls access to 4851 * user-mode addresses based on the value in the PKRU register. Protection 4852 * key violations are reported through a bit in the page fault error code. 4853 * Unlike other bits of the error code, the PK bit is not known at the 4854 * call site of e.g. gva_to_gpa; it must be computed directly in 4855 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4856 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4857 * 4858 * In particular the following conditions come from the error code, the 4859 * page tables and the machine state: 4860 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4861 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4862 * - PK is always zero if U=0 in the page tables 4863 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4864 * 4865 * The PKRU bitmask caches the result of these four conditions. The error 4866 * code (minus the P bit) and the page table's U bit form an index into the 4867 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4868 * with the two bits of the PKRU register corresponding to the protection key. 4869 * For the first three conditions above the bits will be 00, thus masking 4870 * away both AD and WD. For all reads or if the last condition holds, WD 4871 * only will be masked away. 4872 */ 4873 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4874 { 4875 unsigned bit; 4876 bool wp; 4877 4878 mmu->pkru_mask = 0; 4879 4880 if (!is_cr4_pke(mmu)) 4881 return; 4882 4883 wp = is_cr0_wp(mmu); 4884 4885 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4886 unsigned pfec, pkey_bits; 4887 bool check_pkey, check_write, ff, uf, wf, pte_user; 4888 4889 pfec = bit << 1; 4890 ff = pfec & PFERR_FETCH_MASK; 4891 uf = pfec & PFERR_USER_MASK; 4892 wf = pfec & PFERR_WRITE_MASK; 4893 4894 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4895 pte_user = pfec & PFERR_RSVD_MASK; 4896 4897 /* 4898 * Only need to check the access which is not an 4899 * instruction fetch and is to a user page. 4900 */ 4901 check_pkey = (!ff && pte_user); 4902 /* 4903 * write access is controlled by PKRU if it is a 4904 * user access or CR0.WP = 1. 4905 */ 4906 check_write = check_pkey && wf && (uf || wp); 4907 4908 /* PKRU.AD stops both read and write access. */ 4909 pkey_bits = !!check_pkey; 4910 /* PKRU.WD stops write access. */ 4911 pkey_bits |= (!!check_write) << 1; 4912 4913 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4914 } 4915 } 4916 4917 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4918 struct kvm_mmu *mmu) 4919 { 4920 if (!is_cr0_pg(mmu)) 4921 return; 4922 4923 reset_guest_rsvds_bits_mask(vcpu, mmu); 4924 update_permission_bitmask(mmu, false); 4925 update_pkru_bitmask(mmu); 4926 } 4927 4928 static void paging64_init_context(struct kvm_mmu *context) 4929 { 4930 context->page_fault = paging64_page_fault; 4931 context->gva_to_gpa = paging64_gva_to_gpa; 4932 context->sync_page = paging64_sync_page; 4933 context->invlpg = paging64_invlpg; 4934 } 4935 4936 static void paging32_init_context(struct kvm_mmu *context) 4937 { 4938 context->page_fault = paging32_page_fault; 4939 context->gva_to_gpa = paging32_gva_to_gpa; 4940 context->sync_page = paging32_sync_page; 4941 context->invlpg = paging32_invlpg; 4942 } 4943 4944 static union kvm_cpu_role 4945 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 4946 { 4947 union kvm_cpu_role role = {0}; 4948 4949 role.base.access = ACC_ALL; 4950 role.base.smm = is_smm(vcpu); 4951 role.base.guest_mode = is_guest_mode(vcpu); 4952 role.ext.valid = 1; 4953 4954 if (!____is_cr0_pg(regs)) { 4955 role.base.direct = 1; 4956 return role; 4957 } 4958 4959 role.base.efer_nx = ____is_efer_nx(regs); 4960 role.base.cr0_wp = ____is_cr0_wp(regs); 4961 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 4962 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 4963 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 4964 4965 if (____is_efer_lma(regs)) 4966 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 4967 : PT64_ROOT_4LEVEL; 4968 else if (____is_cr4_pae(regs)) 4969 role.base.level = PT32E_ROOT_LEVEL; 4970 else 4971 role.base.level = PT32_ROOT_LEVEL; 4972 4973 role.ext.cr4_smep = ____is_cr4_smep(regs); 4974 role.ext.cr4_smap = ____is_cr4_smap(regs); 4975 role.ext.cr4_pse = ____is_cr4_pse(regs); 4976 4977 /* PKEY and LA57 are active iff long mode is active. */ 4978 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4979 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4980 role.ext.efer_lma = ____is_efer_lma(regs); 4981 return role; 4982 } 4983 4984 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4985 { 4986 /* tdp_root_level is architecture forced level, use it if nonzero */ 4987 if (tdp_root_level) 4988 return tdp_root_level; 4989 4990 /* Use 5-level TDP if and only if it's useful/necessary. */ 4991 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4992 return 4; 4993 4994 return max_tdp_level; 4995 } 4996 4997 static union kvm_mmu_page_role 4998 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4999 union kvm_cpu_role cpu_role) 5000 { 5001 union kvm_mmu_page_role role = {0}; 5002 5003 role.access = ACC_ALL; 5004 role.cr0_wp = true; 5005 role.efer_nx = true; 5006 role.smm = cpu_role.base.smm; 5007 role.guest_mode = cpu_role.base.guest_mode; 5008 role.ad_disabled = !kvm_ad_enabled(); 5009 role.level = kvm_mmu_get_tdp_level(vcpu); 5010 role.direct = true; 5011 role.has_4_byte_gpte = false; 5012 5013 return role; 5014 } 5015 5016 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5017 union kvm_cpu_role cpu_role) 5018 { 5019 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5020 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5021 5022 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5023 root_role.word == context->root_role.word) 5024 return; 5025 5026 context->cpu_role.as_u64 = cpu_role.as_u64; 5027 context->root_role.word = root_role.word; 5028 context->page_fault = kvm_tdp_page_fault; 5029 context->sync_page = nonpaging_sync_page; 5030 context->invlpg = NULL; 5031 context->get_guest_pgd = get_cr3; 5032 context->get_pdptr = kvm_pdptr_read; 5033 context->inject_page_fault = kvm_inject_page_fault; 5034 5035 if (!is_cr0_pg(context)) 5036 context->gva_to_gpa = nonpaging_gva_to_gpa; 5037 else if (is_cr4_pae(context)) 5038 context->gva_to_gpa = paging64_gva_to_gpa; 5039 else 5040 context->gva_to_gpa = paging32_gva_to_gpa; 5041 5042 reset_guest_paging_metadata(vcpu, context); 5043 reset_tdp_shadow_zero_bits_mask(context); 5044 } 5045 5046 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5047 union kvm_cpu_role cpu_role, 5048 union kvm_mmu_page_role root_role) 5049 { 5050 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5051 root_role.word == context->root_role.word) 5052 return; 5053 5054 context->cpu_role.as_u64 = cpu_role.as_u64; 5055 context->root_role.word = root_role.word; 5056 5057 if (!is_cr0_pg(context)) 5058 nonpaging_init_context(context); 5059 else if (is_cr4_pae(context)) 5060 paging64_init_context(context); 5061 else 5062 paging32_init_context(context); 5063 5064 reset_guest_paging_metadata(vcpu, context); 5065 reset_shadow_zero_bits_mask(vcpu, context); 5066 } 5067 5068 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5069 union kvm_cpu_role cpu_role) 5070 { 5071 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5072 union kvm_mmu_page_role root_role; 5073 5074 root_role = cpu_role.base; 5075 5076 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5077 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5078 5079 /* 5080 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5081 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5082 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5083 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5084 * The iTLB multi-hit workaround can be toggled at any time, so assume 5085 * NX can be used by any non-nested shadow MMU to avoid having to reset 5086 * MMU contexts. 5087 */ 5088 root_role.efer_nx = true; 5089 5090 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5091 } 5092 5093 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5094 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5095 { 5096 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5097 struct kvm_mmu_role_regs regs = { 5098 .cr0 = cr0, 5099 .cr4 = cr4 & ~X86_CR4_PKE, 5100 .efer = efer, 5101 }; 5102 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5103 union kvm_mmu_page_role root_role; 5104 5105 /* NPT requires CR0.PG=1. */ 5106 WARN_ON_ONCE(cpu_role.base.direct); 5107 5108 root_role = cpu_role.base; 5109 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5110 if (root_role.level == PT64_ROOT_5LEVEL && 5111 cpu_role.base.level == PT64_ROOT_4LEVEL) 5112 root_role.passthrough = 1; 5113 5114 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5115 kvm_mmu_new_pgd(vcpu, nested_cr3); 5116 } 5117 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5118 5119 static union kvm_cpu_role 5120 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5121 bool execonly, u8 level) 5122 { 5123 union kvm_cpu_role role = {0}; 5124 5125 /* 5126 * KVM does not support SMM transfer monitors, and consequently does not 5127 * support the "entry to SMM" control either. role.base.smm is always 0. 5128 */ 5129 WARN_ON_ONCE(is_smm(vcpu)); 5130 role.base.level = level; 5131 role.base.has_4_byte_gpte = false; 5132 role.base.direct = false; 5133 role.base.ad_disabled = !accessed_dirty; 5134 role.base.guest_mode = true; 5135 role.base.access = ACC_ALL; 5136 5137 role.ext.word = 0; 5138 role.ext.execonly = execonly; 5139 role.ext.valid = 1; 5140 5141 return role; 5142 } 5143 5144 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5145 int huge_page_level, bool accessed_dirty, 5146 gpa_t new_eptp) 5147 { 5148 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5149 u8 level = vmx_eptp_page_walk_level(new_eptp); 5150 union kvm_cpu_role new_mode = 5151 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5152 execonly, level); 5153 5154 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5155 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5156 context->cpu_role.as_u64 = new_mode.as_u64; 5157 context->root_role.word = new_mode.base.word; 5158 5159 context->page_fault = ept_page_fault; 5160 context->gva_to_gpa = ept_gva_to_gpa; 5161 context->sync_page = ept_sync_page; 5162 context->invlpg = ept_invlpg; 5163 5164 update_permission_bitmask(context, true); 5165 context->pkru_mask = 0; 5166 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5167 reset_ept_shadow_zero_bits_mask(context, execonly); 5168 } 5169 5170 kvm_mmu_new_pgd(vcpu, new_eptp); 5171 } 5172 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5173 5174 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5175 union kvm_cpu_role cpu_role) 5176 { 5177 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5178 5179 kvm_init_shadow_mmu(vcpu, cpu_role); 5180 5181 context->get_guest_pgd = get_cr3; 5182 context->get_pdptr = kvm_pdptr_read; 5183 context->inject_page_fault = kvm_inject_page_fault; 5184 } 5185 5186 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5187 union kvm_cpu_role new_mode) 5188 { 5189 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5190 5191 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5192 return; 5193 5194 g_context->cpu_role.as_u64 = new_mode.as_u64; 5195 g_context->get_guest_pgd = get_cr3; 5196 g_context->get_pdptr = kvm_pdptr_read; 5197 g_context->inject_page_fault = kvm_inject_page_fault; 5198 5199 /* 5200 * L2 page tables are never shadowed, so there is no need to sync 5201 * SPTEs. 5202 */ 5203 g_context->invlpg = NULL; 5204 5205 /* 5206 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5207 * L1's nested page tables (e.g. EPT12). The nested translation 5208 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5209 * L2's page tables as the first level of translation and L1's 5210 * nested page tables as the second level of translation. Basically 5211 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5212 */ 5213 if (!is_paging(vcpu)) 5214 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5215 else if (is_long_mode(vcpu)) 5216 g_context->gva_to_gpa = paging64_gva_to_gpa; 5217 else if (is_pae(vcpu)) 5218 g_context->gva_to_gpa = paging64_gva_to_gpa; 5219 else 5220 g_context->gva_to_gpa = paging32_gva_to_gpa; 5221 5222 reset_guest_paging_metadata(vcpu, g_context); 5223 } 5224 5225 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5226 { 5227 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5228 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5229 5230 if (mmu_is_nested(vcpu)) 5231 init_kvm_nested_mmu(vcpu, cpu_role); 5232 else if (tdp_enabled) 5233 init_kvm_tdp_mmu(vcpu, cpu_role); 5234 else 5235 init_kvm_softmmu(vcpu, cpu_role); 5236 } 5237 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5238 5239 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5240 { 5241 /* 5242 * Invalidate all MMU roles to force them to reinitialize as CPUID 5243 * information is factored into reserved bit calculations. 5244 * 5245 * Correctly handling multiple vCPU models with respect to paging and 5246 * physical address properties) in a single VM would require tracking 5247 * all relevant CPUID information in kvm_mmu_page_role. That is very 5248 * undesirable as it would increase the memory requirements for 5249 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5250 * problem is swept under the rug; KVM's CPUID API is horrific and 5251 * it's all but impossible to solve it without introducing a new API. 5252 */ 5253 vcpu->arch.root_mmu.root_role.word = 0; 5254 vcpu->arch.guest_mmu.root_role.word = 0; 5255 vcpu->arch.nested_mmu.root_role.word = 0; 5256 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5257 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5258 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5259 kvm_mmu_reset_context(vcpu); 5260 5261 /* 5262 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5263 * kvm_arch_vcpu_ioctl(). 5264 */ 5265 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5266 } 5267 5268 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5269 { 5270 kvm_mmu_unload(vcpu); 5271 kvm_init_mmu(vcpu); 5272 } 5273 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5274 5275 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5276 { 5277 int r; 5278 5279 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5280 if (r) 5281 goto out; 5282 r = mmu_alloc_special_roots(vcpu); 5283 if (r) 5284 goto out; 5285 if (vcpu->arch.mmu->root_role.direct) 5286 r = mmu_alloc_direct_roots(vcpu); 5287 else 5288 r = mmu_alloc_shadow_roots(vcpu); 5289 if (r) 5290 goto out; 5291 5292 kvm_mmu_sync_roots(vcpu); 5293 5294 kvm_mmu_load_pgd(vcpu); 5295 5296 /* 5297 * Flush any TLB entries for the new root, the provenance of the root 5298 * is unknown. Even if KVM ensures there are no stale TLB entries 5299 * for a freed root, in theory another hypervisor could have left 5300 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5301 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5302 */ 5303 static_call(kvm_x86_flush_tlb_current)(vcpu); 5304 out: 5305 return r; 5306 } 5307 5308 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5309 { 5310 struct kvm *kvm = vcpu->kvm; 5311 5312 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5313 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5314 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5315 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5316 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5317 } 5318 5319 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5320 { 5321 struct kvm_mmu_page *sp; 5322 5323 if (!VALID_PAGE(root_hpa)) 5324 return false; 5325 5326 /* 5327 * When freeing obsolete roots, treat roots as obsolete if they don't 5328 * have an associated shadow page. This does mean KVM will get false 5329 * positives and free roots that don't strictly need to be freed, but 5330 * such false positives are relatively rare: 5331 * 5332 * (a) only PAE paging and nested NPT has roots without shadow pages 5333 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5334 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5335 * is unlikely to zap an in-use PGD. 5336 */ 5337 sp = to_shadow_page(root_hpa); 5338 return !sp || is_obsolete_sp(kvm, sp); 5339 } 5340 5341 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5342 { 5343 unsigned long roots_to_free = 0; 5344 int i; 5345 5346 if (is_obsolete_root(kvm, mmu->root.hpa)) 5347 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5348 5349 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5350 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5351 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5352 } 5353 5354 if (roots_to_free) 5355 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5356 } 5357 5358 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5359 { 5360 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5361 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5362 } 5363 5364 static bool need_remote_flush(u64 old, u64 new) 5365 { 5366 if (!is_shadow_present_pte(old)) 5367 return false; 5368 if (!is_shadow_present_pte(new)) 5369 return true; 5370 if ((old ^ new) & SPTE_BASE_ADDR_MASK) 5371 return true; 5372 old ^= shadow_nx_mask; 5373 new ^= shadow_nx_mask; 5374 return (old & ~new & SPTE_PERM_MASK) != 0; 5375 } 5376 5377 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5378 int *bytes) 5379 { 5380 u64 gentry = 0; 5381 int r; 5382 5383 /* 5384 * Assume that the pte write on a page table of the same type 5385 * as the current vcpu paging mode since we update the sptes only 5386 * when they have the same mode. 5387 */ 5388 if (is_pae(vcpu) && *bytes == 4) { 5389 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5390 *gpa &= ~(gpa_t)7; 5391 *bytes = 8; 5392 } 5393 5394 if (*bytes == 4 || *bytes == 8) { 5395 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5396 if (r) 5397 gentry = 0; 5398 } 5399 5400 return gentry; 5401 } 5402 5403 /* 5404 * If we're seeing too many writes to a page, it may no longer be a page table, 5405 * or we may be forking, in which case it is better to unmap the page. 5406 */ 5407 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5408 { 5409 /* 5410 * Skip write-flooding detected for the sp whose level is 1, because 5411 * it can become unsync, then the guest page is not write-protected. 5412 */ 5413 if (sp->role.level == PG_LEVEL_4K) 5414 return false; 5415 5416 atomic_inc(&sp->write_flooding_count); 5417 return atomic_read(&sp->write_flooding_count) >= 3; 5418 } 5419 5420 /* 5421 * Misaligned accesses are too much trouble to fix up; also, they usually 5422 * indicate a page is not used as a page table. 5423 */ 5424 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5425 int bytes) 5426 { 5427 unsigned offset, pte_size, misaligned; 5428 5429 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5430 gpa, bytes, sp->role.word); 5431 5432 offset = offset_in_page(gpa); 5433 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5434 5435 /* 5436 * Sometimes, the OS only writes the last one bytes to update status 5437 * bits, for example, in linux, andb instruction is used in clear_bit(). 5438 */ 5439 if (!(offset & (pte_size - 1)) && bytes == 1) 5440 return false; 5441 5442 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5443 misaligned |= bytes < 4; 5444 5445 return misaligned; 5446 } 5447 5448 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5449 { 5450 unsigned page_offset, quadrant; 5451 u64 *spte; 5452 int level; 5453 5454 page_offset = offset_in_page(gpa); 5455 level = sp->role.level; 5456 *nspte = 1; 5457 if (sp->role.has_4_byte_gpte) { 5458 page_offset <<= 1; /* 32->64 */ 5459 /* 5460 * A 32-bit pde maps 4MB while the shadow pdes map 5461 * only 2MB. So we need to double the offset again 5462 * and zap two pdes instead of one. 5463 */ 5464 if (level == PT32_ROOT_LEVEL) { 5465 page_offset &= ~7; /* kill rounding error */ 5466 page_offset <<= 1; 5467 *nspte = 2; 5468 } 5469 quadrant = page_offset >> PAGE_SHIFT; 5470 page_offset &= ~PAGE_MASK; 5471 if (quadrant != sp->role.quadrant) 5472 return NULL; 5473 } 5474 5475 spte = &sp->spt[page_offset / sizeof(*spte)]; 5476 return spte; 5477 } 5478 5479 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5480 const u8 *new, int bytes, 5481 struct kvm_page_track_notifier_node *node) 5482 { 5483 gfn_t gfn = gpa >> PAGE_SHIFT; 5484 struct kvm_mmu_page *sp; 5485 LIST_HEAD(invalid_list); 5486 u64 entry, gentry, *spte; 5487 int npte; 5488 bool flush = false; 5489 5490 /* 5491 * If we don't have indirect shadow pages, it means no page is 5492 * write-protected, so we can exit simply. 5493 */ 5494 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5495 return; 5496 5497 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5498 5499 write_lock(&vcpu->kvm->mmu_lock); 5500 5501 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5502 5503 ++vcpu->kvm->stat.mmu_pte_write; 5504 5505 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5506 if (detect_write_misaligned(sp, gpa, bytes) || 5507 detect_write_flooding(sp)) { 5508 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5509 ++vcpu->kvm->stat.mmu_flooded; 5510 continue; 5511 } 5512 5513 spte = get_written_sptes(sp, gpa, &npte); 5514 if (!spte) 5515 continue; 5516 5517 while (npte--) { 5518 entry = *spte; 5519 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5520 if (gentry && sp->role.level != PG_LEVEL_4K) 5521 ++vcpu->kvm->stat.mmu_pde_zapped; 5522 if (need_remote_flush(entry, *spte)) 5523 flush = true; 5524 ++spte; 5525 } 5526 } 5527 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5528 write_unlock(&vcpu->kvm->mmu_lock); 5529 } 5530 5531 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5532 void *insn, int insn_len) 5533 { 5534 int r, emulation_type = EMULTYPE_PF; 5535 bool direct = vcpu->arch.mmu->root_role.direct; 5536 5537 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5538 return RET_PF_RETRY; 5539 5540 r = RET_PF_INVALID; 5541 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5542 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5543 if (r == RET_PF_EMULATE) 5544 goto emulate; 5545 } 5546 5547 if (r == RET_PF_INVALID) { 5548 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5549 lower_32_bits(error_code), false); 5550 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5551 return -EIO; 5552 } 5553 5554 if (r < 0) 5555 return r; 5556 if (r != RET_PF_EMULATE) 5557 return 1; 5558 5559 /* 5560 * Before emulating the instruction, check if the error code 5561 * was due to a RO violation while translating the guest page. 5562 * This can occur when using nested virtualization with nested 5563 * paging in both guests. If true, we simply unprotect the page 5564 * and resume the guest. 5565 */ 5566 if (vcpu->arch.mmu->root_role.direct && 5567 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5568 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5569 return 1; 5570 } 5571 5572 /* 5573 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5574 * optimistically try to just unprotect the page and let the processor 5575 * re-execute the instruction that caused the page fault. Do not allow 5576 * retrying MMIO emulation, as it's not only pointless but could also 5577 * cause us to enter an infinite loop because the processor will keep 5578 * faulting on the non-existent MMIO address. Retrying an instruction 5579 * from a nested guest is also pointless and dangerous as we are only 5580 * explicitly shadowing L1's page tables, i.e. unprotecting something 5581 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5582 */ 5583 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5584 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5585 emulate: 5586 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5587 insn_len); 5588 } 5589 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5590 5591 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5592 gva_t gva, hpa_t root_hpa) 5593 { 5594 int i; 5595 5596 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5597 if (mmu != &vcpu->arch.guest_mmu) { 5598 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5599 if (is_noncanonical_address(gva, vcpu)) 5600 return; 5601 5602 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5603 } 5604 5605 if (!mmu->invlpg) 5606 return; 5607 5608 if (root_hpa == INVALID_PAGE) { 5609 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5610 5611 /* 5612 * INVLPG is required to invalidate any global mappings for the VA, 5613 * irrespective of PCID. Since it would take us roughly similar amount 5614 * of work to determine whether any of the prev_root mappings of the VA 5615 * is marked global, or to just sync it blindly, so we might as well 5616 * just always sync it. 5617 * 5618 * Mappings not reachable via the current cr3 or the prev_roots will be 5619 * synced when switching to that cr3, so nothing needs to be done here 5620 * for them. 5621 */ 5622 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5623 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5624 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5625 } else { 5626 mmu->invlpg(vcpu, gva, root_hpa); 5627 } 5628 } 5629 5630 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5631 { 5632 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5633 ++vcpu->stat.invlpg; 5634 } 5635 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5636 5637 5638 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5639 { 5640 struct kvm_mmu *mmu = vcpu->arch.mmu; 5641 bool tlb_flush = false; 5642 uint i; 5643 5644 if (pcid == kvm_get_active_pcid(vcpu)) { 5645 if (mmu->invlpg) 5646 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5647 tlb_flush = true; 5648 } 5649 5650 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5651 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5652 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5653 if (mmu->invlpg) 5654 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5655 tlb_flush = true; 5656 } 5657 } 5658 5659 if (tlb_flush) 5660 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5661 5662 ++vcpu->stat.invlpg; 5663 5664 /* 5665 * Mappings not reachable via the current cr3 or the prev_roots will be 5666 * synced when switching to that cr3, so nothing needs to be done here 5667 * for them. 5668 */ 5669 } 5670 5671 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5672 int tdp_max_root_level, int tdp_huge_page_level) 5673 { 5674 tdp_enabled = enable_tdp; 5675 tdp_root_level = tdp_forced_root_level; 5676 max_tdp_level = tdp_max_root_level; 5677 5678 /* 5679 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5680 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5681 * the kernel is not. But, KVM never creates a page size greater than 5682 * what is used by the kernel for any given HVA, i.e. the kernel's 5683 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5684 */ 5685 if (tdp_enabled) 5686 max_huge_page_level = tdp_huge_page_level; 5687 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5688 max_huge_page_level = PG_LEVEL_1G; 5689 else 5690 max_huge_page_level = PG_LEVEL_2M; 5691 } 5692 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5693 5694 /* The return value indicates if tlb flush on all vcpus is needed. */ 5695 typedef bool (*slot_level_handler) (struct kvm *kvm, 5696 struct kvm_rmap_head *rmap_head, 5697 const struct kvm_memory_slot *slot); 5698 5699 /* The caller should hold mmu-lock before calling this function. */ 5700 static __always_inline bool 5701 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5702 slot_level_handler fn, int start_level, int end_level, 5703 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5704 bool flush) 5705 { 5706 struct slot_rmap_walk_iterator iterator; 5707 5708 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5709 end_gfn, &iterator) { 5710 if (iterator.rmap) 5711 flush |= fn(kvm, iterator.rmap, memslot); 5712 5713 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5714 if (flush && flush_on_yield) { 5715 kvm_flush_remote_tlbs_with_address(kvm, 5716 start_gfn, 5717 iterator.gfn - start_gfn + 1); 5718 flush = false; 5719 } 5720 cond_resched_rwlock_write(&kvm->mmu_lock); 5721 } 5722 } 5723 5724 return flush; 5725 } 5726 5727 static __always_inline bool 5728 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5729 slot_level_handler fn, int start_level, int end_level, 5730 bool flush_on_yield) 5731 { 5732 return slot_handle_level_range(kvm, memslot, fn, start_level, 5733 end_level, memslot->base_gfn, 5734 memslot->base_gfn + memslot->npages - 1, 5735 flush_on_yield, false); 5736 } 5737 5738 static __always_inline bool 5739 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5740 slot_level_handler fn, bool flush_on_yield) 5741 { 5742 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5743 PG_LEVEL_4K, flush_on_yield); 5744 } 5745 5746 static void free_mmu_pages(struct kvm_mmu *mmu) 5747 { 5748 if (!tdp_enabled && mmu->pae_root) 5749 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5750 free_page((unsigned long)mmu->pae_root); 5751 free_page((unsigned long)mmu->pml4_root); 5752 free_page((unsigned long)mmu->pml5_root); 5753 } 5754 5755 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5756 { 5757 struct page *page; 5758 int i; 5759 5760 mmu->root.hpa = INVALID_PAGE; 5761 mmu->root.pgd = 0; 5762 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5763 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5764 5765 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5766 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5767 return 0; 5768 5769 /* 5770 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5771 * while the PDP table is a per-vCPU construct that's allocated at MMU 5772 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5773 * x86_64. Therefore we need to allocate the PDP table in the first 5774 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5775 * generally doesn't use PAE paging and can skip allocating the PDP 5776 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5777 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5778 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5779 */ 5780 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5781 return 0; 5782 5783 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5784 if (!page) 5785 return -ENOMEM; 5786 5787 mmu->pae_root = page_address(page); 5788 5789 /* 5790 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5791 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5792 * that KVM's writes and the CPU's reads get along. Note, this is 5793 * only necessary when using shadow paging, as 64-bit NPT can get at 5794 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5795 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5796 */ 5797 if (!tdp_enabled) 5798 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5799 else 5800 WARN_ON_ONCE(shadow_me_value); 5801 5802 for (i = 0; i < 4; ++i) 5803 mmu->pae_root[i] = INVALID_PAE_ROOT; 5804 5805 return 0; 5806 } 5807 5808 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5809 { 5810 int ret; 5811 5812 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5813 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5814 5815 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5816 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5817 5818 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5819 5820 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5821 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5822 5823 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5824 if (ret) 5825 return ret; 5826 5827 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5828 if (ret) 5829 goto fail_allocate_root; 5830 5831 return ret; 5832 fail_allocate_root: 5833 free_mmu_pages(&vcpu->arch.guest_mmu); 5834 return ret; 5835 } 5836 5837 #define BATCH_ZAP_PAGES 10 5838 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5839 { 5840 struct kvm_mmu_page *sp, *node; 5841 int nr_zapped, batch = 0; 5842 bool unstable; 5843 5844 restart: 5845 list_for_each_entry_safe_reverse(sp, node, 5846 &kvm->arch.active_mmu_pages, link) { 5847 /* 5848 * No obsolete valid page exists before a newly created page 5849 * since active_mmu_pages is a FIFO list. 5850 */ 5851 if (!is_obsolete_sp(kvm, sp)) 5852 break; 5853 5854 /* 5855 * Invalid pages should never land back on the list of active 5856 * pages. Skip the bogus page, otherwise we'll get stuck in an 5857 * infinite loop if the page gets put back on the list (again). 5858 */ 5859 if (WARN_ON(sp->role.invalid)) 5860 continue; 5861 5862 /* 5863 * No need to flush the TLB since we're only zapping shadow 5864 * pages with an obsolete generation number and all vCPUS have 5865 * loaded a new root, i.e. the shadow pages being zapped cannot 5866 * be in active use by the guest. 5867 */ 5868 if (batch >= BATCH_ZAP_PAGES && 5869 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5870 batch = 0; 5871 goto restart; 5872 } 5873 5874 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5875 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5876 batch += nr_zapped; 5877 5878 if (unstable) 5879 goto restart; 5880 } 5881 5882 /* 5883 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5884 * to ensure KVM is not in the middle of a lockless shadow page table 5885 * walk, which may reference the pages. The remote TLB flush itself is 5886 * not required and is simply a convenient way to kick vCPUs as needed. 5887 * KVM performs a local TLB flush when allocating a new root (see 5888 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5889 * running with an obsolete MMU. 5890 */ 5891 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5892 } 5893 5894 /* 5895 * Fast invalidate all shadow pages and use lock-break technique 5896 * to zap obsolete pages. 5897 * 5898 * It's required when memslot is being deleted or VM is being 5899 * destroyed, in these cases, we should ensure that KVM MMU does 5900 * not use any resource of the being-deleted slot or all slots 5901 * after calling the function. 5902 */ 5903 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5904 { 5905 lockdep_assert_held(&kvm->slots_lock); 5906 5907 write_lock(&kvm->mmu_lock); 5908 trace_kvm_mmu_zap_all_fast(kvm); 5909 5910 /* 5911 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5912 * held for the entire duration of zapping obsolete pages, it's 5913 * impossible for there to be multiple invalid generations associated 5914 * with *valid* shadow pages at any given time, i.e. there is exactly 5915 * one valid generation and (at most) one invalid generation. 5916 */ 5917 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5918 5919 /* 5920 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5921 * invalidating TDP MMU roots must be done while holding mmu_lock for 5922 * write and in the same critical section as making the reload request, 5923 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5924 */ 5925 if (is_tdp_mmu_enabled(kvm)) 5926 kvm_tdp_mmu_invalidate_all_roots(kvm); 5927 5928 /* 5929 * Notify all vcpus to reload its shadow page table and flush TLB. 5930 * Then all vcpus will switch to new shadow page table with the new 5931 * mmu_valid_gen. 5932 * 5933 * Note: we need to do this under the protection of mmu_lock, 5934 * otherwise, vcpu would purge shadow page but miss tlb flush. 5935 */ 5936 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5937 5938 kvm_zap_obsolete_pages(kvm); 5939 5940 write_unlock(&kvm->mmu_lock); 5941 5942 /* 5943 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5944 * returning to the caller, e.g. if the zap is in response to a memslot 5945 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5946 * associated with the deleted memslot once the update completes, and 5947 * Deferring the zap until the final reference to the root is put would 5948 * lead to use-after-free. 5949 */ 5950 if (is_tdp_mmu_enabled(kvm)) 5951 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5952 } 5953 5954 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5955 { 5956 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5957 } 5958 5959 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5960 struct kvm_memory_slot *slot, 5961 struct kvm_page_track_notifier_node *node) 5962 { 5963 kvm_mmu_zap_all_fast(kvm); 5964 } 5965 5966 int kvm_mmu_init_vm(struct kvm *kvm) 5967 { 5968 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5969 int r; 5970 5971 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5972 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5973 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5974 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5975 5976 r = kvm_mmu_init_tdp_mmu(kvm); 5977 if (r < 0) 5978 return r; 5979 5980 node->track_write = kvm_mmu_pte_write; 5981 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5982 kvm_page_track_register_notifier(kvm, node); 5983 5984 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 5985 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 5986 5987 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 5988 5989 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 5990 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 5991 5992 return 0; 5993 } 5994 5995 static void mmu_free_vm_memory_caches(struct kvm *kvm) 5996 { 5997 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 5998 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 5999 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6000 } 6001 6002 void kvm_mmu_uninit_vm(struct kvm *kvm) 6003 { 6004 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6005 6006 kvm_page_track_unregister_notifier(kvm, node); 6007 6008 kvm_mmu_uninit_tdp_mmu(kvm); 6009 6010 mmu_free_vm_memory_caches(kvm); 6011 } 6012 6013 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6014 { 6015 const struct kvm_memory_slot *memslot; 6016 struct kvm_memslots *slots; 6017 struct kvm_memslot_iter iter; 6018 bool flush = false; 6019 gfn_t start, end; 6020 int i; 6021 6022 if (!kvm_memslots_have_rmaps(kvm)) 6023 return flush; 6024 6025 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6026 slots = __kvm_memslots(kvm, i); 6027 6028 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6029 memslot = iter.slot; 6030 start = max(gfn_start, memslot->base_gfn); 6031 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6032 if (WARN_ON_ONCE(start >= end)) 6033 continue; 6034 6035 flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, 6036 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6037 start, end - 1, true, flush); 6038 } 6039 } 6040 6041 return flush; 6042 } 6043 6044 /* 6045 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6046 * (not including it) 6047 */ 6048 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6049 { 6050 bool flush; 6051 int i; 6052 6053 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6054 return; 6055 6056 write_lock(&kvm->mmu_lock); 6057 6058 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 6059 6060 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6061 6062 if (is_tdp_mmu_enabled(kvm)) { 6063 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6064 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6065 gfn_end, true, flush); 6066 } 6067 6068 if (flush) 6069 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 6070 gfn_end - gfn_start); 6071 6072 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 6073 6074 write_unlock(&kvm->mmu_lock); 6075 } 6076 6077 static bool slot_rmap_write_protect(struct kvm *kvm, 6078 struct kvm_rmap_head *rmap_head, 6079 const struct kvm_memory_slot *slot) 6080 { 6081 return rmap_write_protect(rmap_head, false); 6082 } 6083 6084 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6085 const struct kvm_memory_slot *memslot, 6086 int start_level) 6087 { 6088 bool flush = false; 6089 6090 if (kvm_memslots_have_rmaps(kvm)) { 6091 write_lock(&kvm->mmu_lock); 6092 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 6093 start_level, KVM_MAX_HUGEPAGE_LEVEL, 6094 false); 6095 write_unlock(&kvm->mmu_lock); 6096 } 6097 6098 if (is_tdp_mmu_enabled(kvm)) { 6099 read_lock(&kvm->mmu_lock); 6100 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6101 read_unlock(&kvm->mmu_lock); 6102 } 6103 6104 /* 6105 * Flush TLBs if any SPTEs had to be write-protected to ensure that 6106 * guest writes are reflected in the dirty bitmap before the memslot 6107 * update completes, i.e. before enabling dirty logging is visible to 6108 * userspace. 6109 * 6110 * Perform the TLB flush outside the mmu_lock to reduce the amount of 6111 * time the lock is held. However, this does mean that another CPU can 6112 * now grab mmu_lock and encounter a write-protected SPTE while CPUs 6113 * still have a writable mapping for the associated GFN in their TLB. 6114 * 6115 * This is safe but requires KVM to be careful when making decisions 6116 * based on the write-protection status of an SPTE. Specifically, KVM 6117 * also write-protects SPTEs to monitor changes to guest page tables 6118 * during shadow paging, and must guarantee no CPUs can write to those 6119 * page before the lock is dropped. As mentioned in the previous 6120 * paragraph, a write-protected SPTE is no guarantee that CPU cannot 6121 * perform writes. So to determine if a TLB flush is truly required, KVM 6122 * will clear a separate software-only bit (MMU-writable) and skip the 6123 * flush if-and-only-if this bit was already clear. 6124 * 6125 * See is_writable_pte() for more details. 6126 */ 6127 if (flush) 6128 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6129 } 6130 6131 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6132 { 6133 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6134 } 6135 6136 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6137 { 6138 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6139 return true; 6140 6141 /* 6142 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6143 * to split a single huge page. Calculating how many are actually needed 6144 * is possible but not worth the complexity. 6145 */ 6146 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6147 need_topup(&kvm->arch.split_page_header_cache, 1) || 6148 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6149 } 6150 6151 static int topup_split_caches(struct kvm *kvm) 6152 { 6153 /* 6154 * Allocating rmap list entries when splitting huge pages for nested 6155 * MMUs is uncommon as KVM needs to use a list if and only if there is 6156 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6157 * aliased by multiple L2 gfns and/or from multiple nested roots with 6158 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6159 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6160 * but aliasing rarely occurs post-boot or for many gfns. If there is 6161 * only one rmap entry, rmap->val points directly at that one entry and 6162 * doesn't need to allocate a list. Buffer the cache by the default 6163 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6164 * encounters an aliased gfn or two. 6165 */ 6166 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6167 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6168 int r; 6169 6170 lockdep_assert_held(&kvm->slots_lock); 6171 6172 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6173 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6174 if (r) 6175 return r; 6176 6177 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6178 if (r) 6179 return r; 6180 6181 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6182 } 6183 6184 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6185 { 6186 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6187 struct shadow_page_caches caches = {}; 6188 union kvm_mmu_page_role role; 6189 unsigned int access; 6190 gfn_t gfn; 6191 6192 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6193 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6194 6195 /* 6196 * Note, huge page splitting always uses direct shadow pages, regardless 6197 * of whether the huge page itself is mapped by a direct or indirect 6198 * shadow page, since the huge page region itself is being directly 6199 * mapped with smaller pages. 6200 */ 6201 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6202 6203 /* Direct SPs do not require a shadowed_info_cache. */ 6204 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6205 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6206 6207 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6208 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6209 } 6210 6211 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6212 const struct kvm_memory_slot *slot, 6213 u64 *huge_sptep) 6214 6215 { 6216 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6217 u64 huge_spte = READ_ONCE(*huge_sptep); 6218 struct kvm_mmu_page *sp; 6219 bool flush = false; 6220 u64 *sptep, spte; 6221 gfn_t gfn; 6222 int index; 6223 6224 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6225 6226 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6227 sptep = &sp->spt[index]; 6228 gfn = kvm_mmu_page_get_gfn(sp, index); 6229 6230 /* 6231 * The SP may already have populated SPTEs, e.g. if this huge 6232 * page is aliased by multiple sptes with the same access 6233 * permissions. These entries are guaranteed to map the same 6234 * gfn-to-pfn translation since the SP is direct, so no need to 6235 * modify them. 6236 * 6237 * However, if a given SPTE points to a lower level page table, 6238 * that lower level page table may only be partially populated. 6239 * Installing such SPTEs would effectively unmap a potion of the 6240 * huge page. Unmapping guest memory always requires a TLB flush 6241 * since a subsequent operation on the unmapped regions would 6242 * fail to detect the need to flush. 6243 */ 6244 if (is_shadow_present_pte(*sptep)) { 6245 flush |= !is_last_spte(*sptep, sp->role.level); 6246 continue; 6247 } 6248 6249 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6250 mmu_spte_set(sptep, spte); 6251 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6252 } 6253 6254 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6255 } 6256 6257 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6258 const struct kvm_memory_slot *slot, 6259 u64 *huge_sptep) 6260 { 6261 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6262 int level, r = 0; 6263 gfn_t gfn; 6264 u64 spte; 6265 6266 /* Grab information for the tracepoint before dropping the MMU lock. */ 6267 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6268 level = huge_sp->role.level; 6269 spte = *huge_sptep; 6270 6271 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6272 r = -ENOSPC; 6273 goto out; 6274 } 6275 6276 if (need_topup_split_caches_or_resched(kvm)) { 6277 write_unlock(&kvm->mmu_lock); 6278 cond_resched(); 6279 /* 6280 * If the topup succeeds, return -EAGAIN to indicate that the 6281 * rmap iterator should be restarted because the MMU lock was 6282 * dropped. 6283 */ 6284 r = topup_split_caches(kvm) ?: -EAGAIN; 6285 write_lock(&kvm->mmu_lock); 6286 goto out; 6287 } 6288 6289 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6290 6291 out: 6292 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6293 return r; 6294 } 6295 6296 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6297 struct kvm_rmap_head *rmap_head, 6298 const struct kvm_memory_slot *slot) 6299 { 6300 struct rmap_iterator iter; 6301 struct kvm_mmu_page *sp; 6302 u64 *huge_sptep; 6303 int r; 6304 6305 restart: 6306 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6307 sp = sptep_to_sp(huge_sptep); 6308 6309 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6310 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6311 continue; 6312 6313 /* The rmaps should never contain non-leaf SPTEs. */ 6314 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6315 continue; 6316 6317 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6318 if (WARN_ON_ONCE(sp->unsync)) 6319 continue; 6320 6321 /* Don't bother splitting huge pages on invalid SPs. */ 6322 if (sp->role.invalid) 6323 continue; 6324 6325 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6326 6327 /* 6328 * The split succeeded or needs to be retried because the MMU 6329 * lock was dropped. Either way, restart the iterator to get it 6330 * back into a consistent state. 6331 */ 6332 if (!r || r == -EAGAIN) 6333 goto restart; 6334 6335 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6336 break; 6337 } 6338 6339 return false; 6340 } 6341 6342 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6343 const struct kvm_memory_slot *slot, 6344 gfn_t start, gfn_t end, 6345 int target_level) 6346 { 6347 int level; 6348 6349 /* 6350 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6351 * down to the target level. This ensures pages are recursively split 6352 * all the way to the target level. There's no need to split pages 6353 * already at the target level. 6354 */ 6355 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { 6356 slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, 6357 level, level, start, end - 1, true, false); 6358 } 6359 } 6360 6361 /* Must be called with the mmu_lock held in write-mode. */ 6362 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6363 const struct kvm_memory_slot *memslot, 6364 u64 start, u64 end, 6365 int target_level) 6366 { 6367 if (!is_tdp_mmu_enabled(kvm)) 6368 return; 6369 6370 if (kvm_memslots_have_rmaps(kvm)) 6371 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6372 6373 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6374 6375 /* 6376 * A TLB flush is unnecessary at this point for the same resons as in 6377 * kvm_mmu_slot_try_split_huge_pages(). 6378 */ 6379 } 6380 6381 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6382 const struct kvm_memory_slot *memslot, 6383 int target_level) 6384 { 6385 u64 start = memslot->base_gfn; 6386 u64 end = start + memslot->npages; 6387 6388 if (!is_tdp_mmu_enabled(kvm)) 6389 return; 6390 6391 if (kvm_memslots_have_rmaps(kvm)) { 6392 write_lock(&kvm->mmu_lock); 6393 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6394 write_unlock(&kvm->mmu_lock); 6395 } 6396 6397 read_lock(&kvm->mmu_lock); 6398 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6399 read_unlock(&kvm->mmu_lock); 6400 6401 /* 6402 * No TLB flush is necessary here. KVM will flush TLBs after 6403 * write-protecting and/or clearing dirty on the newly split SPTEs to 6404 * ensure that guest writes are reflected in the dirty log before the 6405 * ioctl to enable dirty logging on this memslot completes. Since the 6406 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6407 * safe for KVM to decide if a TLB flush is necessary based on the split 6408 * SPTEs. 6409 */ 6410 } 6411 6412 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6413 struct kvm_rmap_head *rmap_head, 6414 const struct kvm_memory_slot *slot) 6415 { 6416 u64 *sptep; 6417 struct rmap_iterator iter; 6418 int need_tlb_flush = 0; 6419 struct kvm_mmu_page *sp; 6420 6421 restart: 6422 for_each_rmap_spte(rmap_head, &iter, sptep) { 6423 sp = sptep_to_sp(sptep); 6424 6425 /* 6426 * We cannot do huge page mapping for indirect shadow pages, 6427 * which are found on the last rmap (level = 1) when not using 6428 * tdp; such shadow pages are synced with the page table in 6429 * the guest, and the guest page table is using 4K page size 6430 * mapping if the indirect sp has level = 1. 6431 */ 6432 if (sp->role.direct && 6433 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6434 PG_LEVEL_NUM)) { 6435 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6436 6437 if (kvm_available_flush_tlb_with_range()) 6438 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6439 KVM_PAGES_PER_HPAGE(sp->role.level)); 6440 else 6441 need_tlb_flush = 1; 6442 6443 goto restart; 6444 } 6445 } 6446 6447 return need_tlb_flush; 6448 } 6449 6450 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6451 const struct kvm_memory_slot *slot) 6452 { 6453 /* 6454 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6455 * pages that are already mapped at the maximum hugepage level. 6456 */ 6457 if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, 6458 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6459 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6460 } 6461 6462 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6463 const struct kvm_memory_slot *slot) 6464 { 6465 if (kvm_memslots_have_rmaps(kvm)) { 6466 write_lock(&kvm->mmu_lock); 6467 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6468 write_unlock(&kvm->mmu_lock); 6469 } 6470 6471 if (is_tdp_mmu_enabled(kvm)) { 6472 read_lock(&kvm->mmu_lock); 6473 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6474 read_unlock(&kvm->mmu_lock); 6475 } 6476 } 6477 6478 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6479 const struct kvm_memory_slot *memslot) 6480 { 6481 /* 6482 * All current use cases for flushing the TLBs for a specific memslot 6483 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6484 * The interaction between the various operations on memslot must be 6485 * serialized by slots_locks to ensure the TLB flush from one operation 6486 * is observed by any other operation on the same memslot. 6487 */ 6488 lockdep_assert_held(&kvm->slots_lock); 6489 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6490 memslot->npages); 6491 } 6492 6493 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6494 const struct kvm_memory_slot *memslot) 6495 { 6496 bool flush = false; 6497 6498 if (kvm_memslots_have_rmaps(kvm)) { 6499 write_lock(&kvm->mmu_lock); 6500 /* 6501 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6502 * support dirty logging at a 4k granularity. 6503 */ 6504 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6505 write_unlock(&kvm->mmu_lock); 6506 } 6507 6508 if (is_tdp_mmu_enabled(kvm)) { 6509 read_lock(&kvm->mmu_lock); 6510 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6511 read_unlock(&kvm->mmu_lock); 6512 } 6513 6514 /* 6515 * It's also safe to flush TLBs out of mmu lock here as currently this 6516 * function is only used for dirty logging, in which case flushing TLB 6517 * out of mmu lock also guarantees no dirty pages will be lost in 6518 * dirty_bitmap. 6519 */ 6520 if (flush) 6521 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6522 } 6523 6524 void kvm_mmu_zap_all(struct kvm *kvm) 6525 { 6526 struct kvm_mmu_page *sp, *node; 6527 LIST_HEAD(invalid_list); 6528 int ign; 6529 6530 write_lock(&kvm->mmu_lock); 6531 restart: 6532 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6533 if (WARN_ON(sp->role.invalid)) 6534 continue; 6535 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6536 goto restart; 6537 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6538 goto restart; 6539 } 6540 6541 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6542 6543 if (is_tdp_mmu_enabled(kvm)) 6544 kvm_tdp_mmu_zap_all(kvm); 6545 6546 write_unlock(&kvm->mmu_lock); 6547 } 6548 6549 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6550 { 6551 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6552 6553 gen &= MMIO_SPTE_GEN_MASK; 6554 6555 /* 6556 * Generation numbers are incremented in multiples of the number of 6557 * address spaces in order to provide unique generations across all 6558 * address spaces. Strip what is effectively the address space 6559 * modifier prior to checking for a wrap of the MMIO generation so 6560 * that a wrap in any address space is detected. 6561 */ 6562 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6563 6564 /* 6565 * The very rare case: if the MMIO generation number has wrapped, 6566 * zap all shadow pages. 6567 */ 6568 if (unlikely(gen == 0)) { 6569 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6570 kvm_mmu_zap_all_fast(kvm); 6571 } 6572 } 6573 6574 static unsigned long 6575 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6576 { 6577 struct kvm *kvm; 6578 int nr_to_scan = sc->nr_to_scan; 6579 unsigned long freed = 0; 6580 6581 mutex_lock(&kvm_lock); 6582 6583 list_for_each_entry(kvm, &vm_list, vm_list) { 6584 int idx; 6585 LIST_HEAD(invalid_list); 6586 6587 /* 6588 * Never scan more than sc->nr_to_scan VM instances. 6589 * Will not hit this condition practically since we do not try 6590 * to shrink more than one VM and it is very unlikely to see 6591 * !n_used_mmu_pages so many times. 6592 */ 6593 if (!nr_to_scan--) 6594 break; 6595 /* 6596 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6597 * here. We may skip a VM instance errorneosly, but we do not 6598 * want to shrink a VM that only started to populate its MMU 6599 * anyway. 6600 */ 6601 if (!kvm->arch.n_used_mmu_pages && 6602 !kvm_has_zapped_obsolete_pages(kvm)) 6603 continue; 6604 6605 idx = srcu_read_lock(&kvm->srcu); 6606 write_lock(&kvm->mmu_lock); 6607 6608 if (kvm_has_zapped_obsolete_pages(kvm)) { 6609 kvm_mmu_commit_zap_page(kvm, 6610 &kvm->arch.zapped_obsolete_pages); 6611 goto unlock; 6612 } 6613 6614 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6615 6616 unlock: 6617 write_unlock(&kvm->mmu_lock); 6618 srcu_read_unlock(&kvm->srcu, idx); 6619 6620 /* 6621 * unfair on small ones 6622 * per-vm shrinkers cry out 6623 * sadness comes quickly 6624 */ 6625 list_move_tail(&kvm->vm_list, &vm_list); 6626 break; 6627 } 6628 6629 mutex_unlock(&kvm_lock); 6630 return freed; 6631 } 6632 6633 static unsigned long 6634 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6635 { 6636 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6637 } 6638 6639 static struct shrinker mmu_shrinker = { 6640 .count_objects = mmu_shrink_count, 6641 .scan_objects = mmu_shrink_scan, 6642 .seeks = DEFAULT_SEEKS * 10, 6643 }; 6644 6645 static void mmu_destroy_caches(void) 6646 { 6647 kmem_cache_destroy(pte_list_desc_cache); 6648 kmem_cache_destroy(mmu_page_header_cache); 6649 } 6650 6651 static bool get_nx_auto_mode(void) 6652 { 6653 /* Return true when CPU has the bug, and mitigations are ON */ 6654 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6655 } 6656 6657 static void __set_nx_huge_pages(bool val) 6658 { 6659 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6660 } 6661 6662 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6663 { 6664 bool old_val = nx_huge_pages; 6665 bool new_val; 6666 6667 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6668 if (sysfs_streq(val, "off")) 6669 new_val = 0; 6670 else if (sysfs_streq(val, "force")) 6671 new_val = 1; 6672 else if (sysfs_streq(val, "auto")) 6673 new_val = get_nx_auto_mode(); 6674 else if (strtobool(val, &new_val) < 0) 6675 return -EINVAL; 6676 6677 __set_nx_huge_pages(new_val); 6678 6679 if (new_val != old_val) { 6680 struct kvm *kvm; 6681 6682 mutex_lock(&kvm_lock); 6683 6684 list_for_each_entry(kvm, &vm_list, vm_list) { 6685 mutex_lock(&kvm->slots_lock); 6686 kvm_mmu_zap_all_fast(kvm); 6687 mutex_unlock(&kvm->slots_lock); 6688 6689 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6690 } 6691 mutex_unlock(&kvm_lock); 6692 } 6693 6694 return 0; 6695 } 6696 6697 /* 6698 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6699 * its default value of -1 is technically undefined behavior for a boolean. 6700 */ 6701 void kvm_mmu_x86_module_init(void) 6702 { 6703 if (nx_huge_pages == -1) 6704 __set_nx_huge_pages(get_nx_auto_mode()); 6705 } 6706 6707 /* 6708 * The bulk of the MMU initialization is deferred until the vendor module is 6709 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6710 * to be reset when a potentially different vendor module is loaded. 6711 */ 6712 int kvm_mmu_vendor_module_init(void) 6713 { 6714 int ret = -ENOMEM; 6715 6716 /* 6717 * MMU roles use union aliasing which is, generally speaking, an 6718 * undefined behavior. However, we supposedly know how compilers behave 6719 * and the current status quo is unlikely to change. Guardians below are 6720 * supposed to let us know if the assumption becomes false. 6721 */ 6722 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6723 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6724 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6725 6726 kvm_mmu_reset_all_pte_masks(); 6727 6728 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6729 sizeof(struct pte_list_desc), 6730 0, SLAB_ACCOUNT, NULL); 6731 if (!pte_list_desc_cache) 6732 goto out; 6733 6734 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6735 sizeof(struct kvm_mmu_page), 6736 0, SLAB_ACCOUNT, NULL); 6737 if (!mmu_page_header_cache) 6738 goto out; 6739 6740 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6741 goto out; 6742 6743 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6744 if (ret) 6745 goto out; 6746 6747 return 0; 6748 6749 out: 6750 mmu_destroy_caches(); 6751 return ret; 6752 } 6753 6754 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6755 { 6756 kvm_mmu_unload(vcpu); 6757 free_mmu_pages(&vcpu->arch.root_mmu); 6758 free_mmu_pages(&vcpu->arch.guest_mmu); 6759 mmu_free_memory_caches(vcpu); 6760 } 6761 6762 void kvm_mmu_vendor_module_exit(void) 6763 { 6764 mmu_destroy_caches(); 6765 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6766 unregister_shrinker(&mmu_shrinker); 6767 } 6768 6769 /* 6770 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6771 * select a halving time of 1 hour". Returns true if recovery is enabled. 6772 */ 6773 static bool calc_nx_huge_pages_recovery_period(uint *period) 6774 { 6775 /* 6776 * Use READ_ONCE to get the params, this may be called outside of the 6777 * param setters, e.g. by the kthread to compute its next timeout. 6778 */ 6779 bool enabled = READ_ONCE(nx_huge_pages); 6780 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6781 6782 if (!enabled || !ratio) 6783 return false; 6784 6785 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6786 if (!*period) { 6787 /* Make sure the period is not less than one second. */ 6788 ratio = min(ratio, 3600u); 6789 *period = 60 * 60 * 1000 / ratio; 6790 } 6791 return true; 6792 } 6793 6794 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6795 { 6796 bool was_recovery_enabled, is_recovery_enabled; 6797 uint old_period, new_period; 6798 int err; 6799 6800 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6801 6802 err = param_set_uint(val, kp); 6803 if (err) 6804 return err; 6805 6806 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6807 6808 if (is_recovery_enabled && 6809 (!was_recovery_enabled || old_period > new_period)) { 6810 struct kvm *kvm; 6811 6812 mutex_lock(&kvm_lock); 6813 6814 list_for_each_entry(kvm, &vm_list, vm_list) 6815 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6816 6817 mutex_unlock(&kvm_lock); 6818 } 6819 6820 return err; 6821 } 6822 6823 static void kvm_recover_nx_lpages(struct kvm *kvm) 6824 { 6825 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6826 int rcu_idx; 6827 struct kvm_mmu_page *sp; 6828 unsigned int ratio; 6829 LIST_HEAD(invalid_list); 6830 bool flush = false; 6831 ulong to_zap; 6832 6833 rcu_idx = srcu_read_lock(&kvm->srcu); 6834 write_lock(&kvm->mmu_lock); 6835 6836 /* 6837 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6838 * be done under RCU protection, because the pages are freed via RCU 6839 * callback. 6840 */ 6841 rcu_read_lock(); 6842 6843 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6844 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6845 for ( ; to_zap; --to_zap) { 6846 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6847 break; 6848 6849 /* 6850 * We use a separate list instead of just using active_mmu_pages 6851 * because the number of lpage_disallowed pages is expected to 6852 * be relatively small compared to the total. 6853 */ 6854 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6855 struct kvm_mmu_page, 6856 lpage_disallowed_link); 6857 WARN_ON_ONCE(!sp->lpage_disallowed); 6858 if (is_tdp_mmu_page(sp)) { 6859 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6860 } else { 6861 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6862 WARN_ON_ONCE(sp->lpage_disallowed); 6863 } 6864 6865 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6866 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6867 rcu_read_unlock(); 6868 6869 cond_resched_rwlock_write(&kvm->mmu_lock); 6870 flush = false; 6871 6872 rcu_read_lock(); 6873 } 6874 } 6875 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6876 6877 rcu_read_unlock(); 6878 6879 write_unlock(&kvm->mmu_lock); 6880 srcu_read_unlock(&kvm->srcu, rcu_idx); 6881 } 6882 6883 static long get_nx_lpage_recovery_timeout(u64 start_time) 6884 { 6885 bool enabled; 6886 uint period; 6887 6888 enabled = calc_nx_huge_pages_recovery_period(&period); 6889 6890 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6891 : MAX_SCHEDULE_TIMEOUT; 6892 } 6893 6894 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6895 { 6896 u64 start_time; 6897 long remaining_time; 6898 6899 while (true) { 6900 start_time = get_jiffies_64(); 6901 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6902 6903 set_current_state(TASK_INTERRUPTIBLE); 6904 while (!kthread_should_stop() && remaining_time > 0) { 6905 schedule_timeout(remaining_time); 6906 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6907 set_current_state(TASK_INTERRUPTIBLE); 6908 } 6909 6910 set_current_state(TASK_RUNNING); 6911 6912 if (kthread_should_stop()) 6913 return 0; 6914 6915 kvm_recover_nx_lpages(kvm); 6916 } 6917 } 6918 6919 int kvm_mmu_post_init_vm(struct kvm *kvm) 6920 { 6921 int err; 6922 6923 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6924 "kvm-nx-lpage-recovery", 6925 &kvm->arch.nx_lpage_recovery_thread); 6926 if (!err) 6927 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6928 6929 return err; 6930 } 6931 6932 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6933 { 6934 if (kvm->arch.nx_lpage_recovery_thread) 6935 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6936 } 6937