1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/vmx.h> 52 #include <asm/kvm_page_track.h> 53 #include "trace.h" 54 55 extern bool itlb_multihit_kvm_mitigation; 56 57 static int __read_mostly nx_huge_pages = -1; 58 #ifdef CONFIG_PREEMPT_RT 59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 61 #else 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 63 #endif 64 65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 67 68 static const struct kernel_param_ops nx_huge_pages_ops = { 69 .set = set_nx_huge_pages, 70 .get = param_get_bool, 71 }; 72 73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 74 .set = set_nx_huge_pages_recovery_ratio, 75 .get = param_get_uint, 76 }; 77 78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 79 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 81 &nx_huge_pages_recovery_ratio, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 83 84 static bool __read_mostly force_flush_and_sync_on_reuse; 85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 86 87 /* 88 * When setting this variable to true it enables Two-Dimensional-Paging 89 * where the hardware walks 2 page tables: 90 * 1. the guest-virtual to guest-physical 91 * 2. while doing 1. it walks guest-physical to host-physical 92 * If the hardware supports that we don't need to do shadow paging. 93 */ 94 bool tdp_enabled = false; 95 96 static int max_huge_page_level __read_mostly; 97 static int max_tdp_level __read_mostly; 98 99 enum { 100 AUDIT_PRE_PAGE_FAULT, 101 AUDIT_POST_PAGE_FAULT, 102 AUDIT_PRE_PTE_WRITE, 103 AUDIT_POST_PTE_WRITE, 104 AUDIT_PRE_SYNC, 105 AUDIT_POST_SYNC 106 }; 107 108 #ifdef MMU_DEBUG 109 bool dbg = 0; 110 module_param(dbg, bool, 0644); 111 #endif 112 113 #define PTE_PREFETCH_NUM 8 114 115 #define PT32_LEVEL_BITS 10 116 117 #define PT32_LEVEL_SHIFT(level) \ 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 119 120 #define PT32_LVL_OFFSET_MASK(level) \ 121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 122 * PT32_LEVEL_BITS))) - 1)) 123 124 #define PT32_INDEX(address, level)\ 125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 126 127 128 #define PT32_BASE_ADDR_MASK PAGE_MASK 129 #define PT32_DIR_BASE_ADDR_MASK \ 130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 131 #define PT32_LVL_ADDR_MASK(level) \ 132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 133 * PT32_LEVEL_BITS))) - 1)) 134 135 #include <trace/events/kvm.h> 136 137 /* make pte_list_desc fit well in cache line */ 138 #define PTE_LIST_EXT 3 139 140 struct pte_list_desc { 141 u64 *sptes[PTE_LIST_EXT]; 142 struct pte_list_desc *more; 143 }; 144 145 struct kvm_shadow_walk_iterator { 146 u64 addr; 147 hpa_t shadow_addr; 148 u64 *sptep; 149 int level; 150 unsigned index; 151 }; 152 153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 155 (_root), (_addr)); \ 156 shadow_walk_okay(&(_walker)); \ 157 shadow_walk_next(&(_walker))) 158 159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 161 shadow_walk_okay(&(_walker)); \ 162 shadow_walk_next(&(_walker))) 163 164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 166 shadow_walk_okay(&(_walker)) && \ 167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 168 __shadow_walk_next(&(_walker), spte)) 169 170 static struct kmem_cache *pte_list_desc_cache; 171 struct kmem_cache *mmu_page_header_cache; 172 static struct percpu_counter kvm_total_used_mmu_pages; 173 174 static void mmu_spte_set(u64 *sptep, u64 spte); 175 static union kvm_mmu_page_role 176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 177 178 #define CREATE_TRACE_POINTS 179 #include "mmutrace.h" 180 181 182 static inline bool kvm_available_flush_tlb_with_range(void) 183 { 184 return kvm_x86_ops.tlb_remote_flush_with_range; 185 } 186 187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 188 struct kvm_tlb_range *range) 189 { 190 int ret = -ENOTSUPP; 191 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 194 195 if (ret) 196 kvm_flush_remote_tlbs(kvm); 197 } 198 199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 200 u64 start_gfn, u64 pages) 201 { 202 struct kvm_tlb_range range; 203 204 range.start_gfn = start_gfn; 205 range.pages = pages; 206 207 kvm_flush_remote_tlbs_with_range(kvm, &range); 208 } 209 210 bool is_nx_huge_page_enabled(void) 211 { 212 return READ_ONCE(nx_huge_pages); 213 } 214 215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 216 unsigned int access) 217 { 218 u64 mask = make_mmio_spte(vcpu, gfn, access); 219 220 trace_mark_mmio_spte(sptep, gfn, mask); 221 mmu_spte_set(sptep, mask); 222 } 223 224 static gfn_t get_mmio_spte_gfn(u64 spte) 225 { 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 227 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 229 & shadow_nonpresent_or_rsvd_mask; 230 231 return gpa >> PAGE_SHIFT; 232 } 233 234 static unsigned get_mmio_spte_access(u64 spte) 235 { 236 return spte & shadow_mmio_access_mask; 237 } 238 239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 240 kvm_pfn_t pfn, unsigned int access) 241 { 242 if (unlikely(is_noslot_pfn(pfn))) { 243 mark_mmio_spte(vcpu, sptep, gfn, access); 244 return true; 245 } 246 247 return false; 248 } 249 250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 251 { 252 u64 kvm_gen, spte_gen, gen; 253 254 gen = kvm_vcpu_memslots(vcpu)->generation; 255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 256 return false; 257 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 259 spte_gen = get_mmio_spte_generation(spte); 260 261 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 262 return likely(kvm_gen == spte_gen); 263 } 264 265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 266 struct x86_exception *exception) 267 { 268 /* Check if guest physical address doesn't exceed guest maximum */ 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) { 270 exception->error_code |= PFERR_RSVD_MASK; 271 return UNMAPPED_GVA; 272 } 273 274 return gpa; 275 } 276 277 static int is_cpuid_PSE36(void) 278 { 279 return 1; 280 } 281 282 static int is_nx(struct kvm_vcpu *vcpu) 283 { 284 return vcpu->arch.efer & EFER_NX; 285 } 286 287 static gfn_t pse36_gfn_delta(u32 gpte) 288 { 289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 290 291 return (gpte & PT32_DIR_PSE36_MASK) << shift; 292 } 293 294 #ifdef CONFIG_X86_64 295 static void __set_spte(u64 *sptep, u64 spte) 296 { 297 WRITE_ONCE(*sptep, spte); 298 } 299 300 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 301 { 302 WRITE_ONCE(*sptep, spte); 303 } 304 305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 306 { 307 return xchg(sptep, spte); 308 } 309 310 static u64 __get_spte_lockless(u64 *sptep) 311 { 312 return READ_ONCE(*sptep); 313 } 314 #else 315 union split_spte { 316 struct { 317 u32 spte_low; 318 u32 spte_high; 319 }; 320 u64 spte; 321 }; 322 323 static void count_spte_clear(u64 *sptep, u64 spte) 324 { 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 326 327 if (is_shadow_present_pte(spte)) 328 return; 329 330 /* Ensure the spte is completely set before we increase the count */ 331 smp_wmb(); 332 sp->clear_spte_count++; 333 } 334 335 static void __set_spte(u64 *sptep, u64 spte) 336 { 337 union split_spte *ssptep, sspte; 338 339 ssptep = (union split_spte *)sptep; 340 sspte = (union split_spte)spte; 341 342 ssptep->spte_high = sspte.spte_high; 343 344 /* 345 * If we map the spte from nonpresent to present, We should store 346 * the high bits firstly, then set present bit, so cpu can not 347 * fetch this spte while we are setting the spte. 348 */ 349 smp_wmb(); 350 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 352 } 353 354 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 355 { 356 union split_spte *ssptep, sspte; 357 358 ssptep = (union split_spte *)sptep; 359 sspte = (union split_spte)spte; 360 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 362 363 /* 364 * If we map the spte from present to nonpresent, we should clear 365 * present bit firstly to avoid vcpu fetch the old high bits. 366 */ 367 smp_wmb(); 368 369 ssptep->spte_high = sspte.spte_high; 370 count_spte_clear(sptep, spte); 371 } 372 373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 374 { 375 union split_spte *ssptep, sspte, orig; 376 377 ssptep = (union split_spte *)sptep; 378 sspte = (union split_spte)spte; 379 380 /* xchg acts as a barrier before the setting of the high bits */ 381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 382 orig.spte_high = ssptep->spte_high; 383 ssptep->spte_high = sspte.spte_high; 384 count_spte_clear(sptep, spte); 385 386 return orig.spte; 387 } 388 389 /* 390 * The idea using the light way get the spte on x86_32 guest is from 391 * gup_get_pte (mm/gup.c). 392 * 393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 394 * coalesces them and we are running out of the MMU lock. Therefore 395 * we need to protect against in-progress updates of the spte. 396 * 397 * Reading the spte while an update is in progress may get the old value 398 * for the high part of the spte. The race is fine for a present->non-present 399 * change (because the high part of the spte is ignored for non-present spte), 400 * but for a present->present change we must reread the spte. 401 * 402 * All such changes are done in two steps (present->non-present and 403 * non-present->present), hence it is enough to count the number of 404 * present->non-present updates: if it changed while reading the spte, 405 * we might have hit the race. This is done using clear_spte_count. 406 */ 407 static u64 __get_spte_lockless(u64 *sptep) 408 { 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 410 union split_spte spte, *orig = (union split_spte *)sptep; 411 int count; 412 413 retry: 414 count = sp->clear_spte_count; 415 smp_rmb(); 416 417 spte.spte_low = orig->spte_low; 418 smp_rmb(); 419 420 spte.spte_high = orig->spte_high; 421 smp_rmb(); 422 423 if (unlikely(spte.spte_low != orig->spte_low || 424 count != sp->clear_spte_count)) 425 goto retry; 426 427 return spte.spte; 428 } 429 #endif 430 431 static bool spte_has_volatile_bits(u64 spte) 432 { 433 if (!is_shadow_present_pte(spte)) 434 return false; 435 436 /* 437 * Always atomically update spte if it can be updated 438 * out of mmu-lock, it can ensure dirty bit is not lost, 439 * also, it can help us to get a stable is_writable_pte() 440 * to ensure tlb flush is not missed. 441 */ 442 if (spte_can_locklessly_be_made_writable(spte) || 443 is_access_track_spte(spte)) 444 return true; 445 446 if (spte_ad_enabled(spte)) { 447 if ((spte & shadow_accessed_mask) == 0 || 448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 449 return true; 450 } 451 452 return false; 453 } 454 455 /* Rules for using mmu_spte_set: 456 * Set the sptep from nonpresent to present. 457 * Note: the sptep being assigned *must* be either not present 458 * or in a state where the hardware will not attempt to update 459 * the spte. 460 */ 461 static void mmu_spte_set(u64 *sptep, u64 new_spte) 462 { 463 WARN_ON(is_shadow_present_pte(*sptep)); 464 __set_spte(sptep, new_spte); 465 } 466 467 /* 468 * Update the SPTE (excluding the PFN), but do not track changes in its 469 * accessed/dirty status. 470 */ 471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 472 { 473 u64 old_spte = *sptep; 474 475 WARN_ON(!is_shadow_present_pte(new_spte)); 476 477 if (!is_shadow_present_pte(old_spte)) { 478 mmu_spte_set(sptep, new_spte); 479 return old_spte; 480 } 481 482 if (!spte_has_volatile_bits(old_spte)) 483 __update_clear_spte_fast(sptep, new_spte); 484 else 485 old_spte = __update_clear_spte_slow(sptep, new_spte); 486 487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 488 489 return old_spte; 490 } 491 492 /* Rules for using mmu_spte_update: 493 * Update the state bits, it means the mapped pfn is not changed. 494 * 495 * Whenever we overwrite a writable spte with a read-only one we 496 * should flush remote TLBs. Otherwise rmap_write_protect 497 * will find a read-only spte, even though the writable spte 498 * might be cached on a CPU's TLB, the return value indicates this 499 * case. 500 * 501 * Returns true if the TLB needs to be flushed 502 */ 503 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 504 { 505 bool flush = false; 506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 507 508 if (!is_shadow_present_pte(old_spte)) 509 return false; 510 511 /* 512 * For the spte updated out of mmu-lock is safe, since 513 * we always atomically update it, see the comments in 514 * spte_has_volatile_bits(). 515 */ 516 if (spte_can_locklessly_be_made_writable(old_spte) && 517 !is_writable_pte(new_spte)) 518 flush = true; 519 520 /* 521 * Flush TLB when accessed/dirty states are changed in the page tables, 522 * to guarantee consistency between TLB and page tables. 523 */ 524 525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 526 flush = true; 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 528 } 529 530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 531 flush = true; 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 533 } 534 535 return flush; 536 } 537 538 /* 539 * Rules for using mmu_spte_clear_track_bits: 540 * It sets the sptep from present to nonpresent, and track the 541 * state bits, it is used to clear the last level sptep. 542 * Returns non-zero if the PTE was previously valid. 543 */ 544 static int mmu_spte_clear_track_bits(u64 *sptep) 545 { 546 kvm_pfn_t pfn; 547 u64 old_spte = *sptep; 548 549 if (!spte_has_volatile_bits(old_spte)) 550 __update_clear_spte_fast(sptep, 0ull); 551 else 552 old_spte = __update_clear_spte_slow(sptep, 0ull); 553 554 if (!is_shadow_present_pte(old_spte)) 555 return 0; 556 557 pfn = spte_to_pfn(old_spte); 558 559 /* 560 * KVM does not hold the refcount of the page used by 561 * kvm mmu, before reclaiming the page, we should 562 * unmap it from mmu first. 563 */ 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 565 566 if (is_accessed_spte(old_spte)) 567 kvm_set_pfn_accessed(pfn); 568 569 if (is_dirty_spte(old_spte)) 570 kvm_set_pfn_dirty(pfn); 571 572 return 1; 573 } 574 575 /* 576 * Rules for using mmu_spte_clear_no_track: 577 * Directly clear spte without caring the state bits of sptep, 578 * it is used to set the upper level spte. 579 */ 580 static void mmu_spte_clear_no_track(u64 *sptep) 581 { 582 __update_clear_spte_fast(sptep, 0ull); 583 } 584 585 static u64 mmu_spte_get_lockless(u64 *sptep) 586 { 587 return __get_spte_lockless(sptep); 588 } 589 590 /* Restore an acc-track PTE back to a regular PTE */ 591 static u64 restore_acc_track_spte(u64 spte) 592 { 593 u64 new_spte = spte; 594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 596 597 WARN_ON_ONCE(spte_ad_enabled(spte)); 598 WARN_ON_ONCE(!is_access_track_spte(spte)); 599 600 new_spte &= ~shadow_acc_track_mask; 601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 603 new_spte |= saved_bits; 604 605 return new_spte; 606 } 607 608 /* Returns the Accessed status of the PTE and resets it at the same time. */ 609 static bool mmu_spte_age(u64 *sptep) 610 { 611 u64 spte = mmu_spte_get_lockless(sptep); 612 613 if (!is_accessed_spte(spte)) 614 return false; 615 616 if (spte_ad_enabled(spte)) { 617 clear_bit((ffs(shadow_accessed_mask) - 1), 618 (unsigned long *)sptep); 619 } else { 620 /* 621 * Capture the dirty status of the page, so that it doesn't get 622 * lost when the SPTE is marked for access tracking. 623 */ 624 if (is_writable_pte(spte)) 625 kvm_set_pfn_dirty(spte_to_pfn(spte)); 626 627 spte = mark_spte_for_access_track(spte); 628 mmu_spte_update_no_track(sptep, spte); 629 } 630 631 return true; 632 } 633 634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 635 { 636 /* 637 * Prevent page table teardown by making any free-er wait during 638 * kvm_flush_remote_tlbs() IPI to all active vcpus. 639 */ 640 local_irq_disable(); 641 642 /* 643 * Make sure a following spte read is not reordered ahead of the write 644 * to vcpu->mode. 645 */ 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 647 } 648 649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 650 { 651 /* 652 * Make sure the write to vcpu->mode is not reordered in front of 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 655 */ 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 657 local_irq_enable(); 658 } 659 660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 661 { 662 int r; 663 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 667 if (r) 668 return r; 669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 670 PT64_ROOT_MAX_LEVEL); 671 if (r) 672 return r; 673 if (maybe_indirect) { 674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 675 PT64_ROOT_MAX_LEVEL); 676 if (r) 677 return r; 678 } 679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 680 PT64_ROOT_MAX_LEVEL); 681 } 682 683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 684 { 685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 689 } 690 691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 692 { 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 694 } 695 696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 697 { 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 699 } 700 701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 702 { 703 if (!sp->role.direct) 704 return sp->gfns[index]; 705 706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 707 } 708 709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 710 { 711 if (!sp->role.direct) { 712 sp->gfns[index] = gfn; 713 return; 714 } 715 716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 717 pr_err_ratelimited("gfn mismatch under direct page %llx " 718 "(expected %llx, got %llx)\n", 719 sp->gfn, 720 kvm_mmu_page_get_gfn(sp, index), gfn); 721 } 722 723 /* 724 * Return the pointer to the large page information for a given gfn, 725 * handling slots that are not large page aligned. 726 */ 727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 728 struct kvm_memory_slot *slot, 729 int level) 730 { 731 unsigned long idx; 732 733 idx = gfn_to_index(gfn, slot->base_gfn, level); 734 return &slot->arch.lpage_info[level - 2][idx]; 735 } 736 737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 738 gfn_t gfn, int count) 739 { 740 struct kvm_lpage_info *linfo; 741 int i; 742 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 744 linfo = lpage_info_slot(gfn, slot, i); 745 linfo->disallow_lpage += count; 746 WARN_ON(linfo->disallow_lpage < 0); 747 } 748 } 749 750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 751 { 752 update_gfn_disallow_lpage_count(slot, gfn, 1); 753 } 754 755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 756 { 757 update_gfn_disallow_lpage_count(slot, gfn, -1); 758 } 759 760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 761 { 762 struct kvm_memslots *slots; 763 struct kvm_memory_slot *slot; 764 gfn_t gfn; 765 766 kvm->arch.indirect_shadow_pages++; 767 gfn = sp->gfn; 768 slots = kvm_memslots_for_spte_role(kvm, sp->role); 769 slot = __gfn_to_memslot(slots, gfn); 770 771 /* the non-leaf shadow pages are keeping readonly. */ 772 if (sp->role.level > PG_LEVEL_4K) 773 return kvm_slot_page_track_add_page(kvm, slot, gfn, 774 KVM_PAGE_TRACK_WRITE); 775 776 kvm_mmu_gfn_disallow_lpage(slot, gfn); 777 } 778 779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 if (sp->lpage_disallowed) 782 return; 783 784 ++kvm->stat.nx_lpage_splits; 785 list_add_tail(&sp->lpage_disallowed_link, 786 &kvm->arch.lpage_disallowed_mmu_pages); 787 sp->lpage_disallowed = true; 788 } 789 790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 791 { 792 struct kvm_memslots *slots; 793 struct kvm_memory_slot *slot; 794 gfn_t gfn; 795 796 kvm->arch.indirect_shadow_pages--; 797 gfn = sp->gfn; 798 slots = kvm_memslots_for_spte_role(kvm, sp->role); 799 slot = __gfn_to_memslot(slots, gfn); 800 if (sp->role.level > PG_LEVEL_4K) 801 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 802 KVM_PAGE_TRACK_WRITE); 803 804 kvm_mmu_gfn_allow_lpage(slot, gfn); 805 } 806 807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 808 { 809 --kvm->stat.nx_lpage_splits; 810 sp->lpage_disallowed = false; 811 list_del(&sp->lpage_disallowed_link); 812 } 813 814 static struct kvm_memory_slot * 815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 816 bool no_dirty_log) 817 { 818 struct kvm_memory_slot *slot; 819 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 822 return NULL; 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 824 return NULL; 825 826 return slot; 827 } 828 829 /* 830 * About rmap_head encoding: 831 * 832 * If the bit zero of rmap_head->val is clear, then it points to the only spte 833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 834 * pte_list_desc containing more mappings. 835 */ 836 837 /* 838 * Returns the number of pointers in the rmap chain, not counting the new one. 839 */ 840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 841 struct kvm_rmap_head *rmap_head) 842 { 843 struct pte_list_desc *desc; 844 int i, count = 0; 845 846 if (!rmap_head->val) { 847 rmap_printk("%p %llx 0->1\n", spte, *spte); 848 rmap_head->val = (unsigned long)spte; 849 } else if (!(rmap_head->val & 1)) { 850 rmap_printk("%p %llx 1->many\n", spte, *spte); 851 desc = mmu_alloc_pte_list_desc(vcpu); 852 desc->sptes[0] = (u64 *)rmap_head->val; 853 desc->sptes[1] = spte; 854 rmap_head->val = (unsigned long)desc | 1; 855 ++count; 856 } else { 857 rmap_printk("%p %llx many->many\n", spte, *spte); 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 859 while (desc->sptes[PTE_LIST_EXT-1]) { 860 count += PTE_LIST_EXT; 861 862 if (!desc->more) { 863 desc->more = mmu_alloc_pte_list_desc(vcpu); 864 desc = desc->more; 865 break; 866 } 867 desc = desc->more; 868 } 869 for (i = 0; desc->sptes[i]; ++i) 870 ++count; 871 desc->sptes[i] = spte; 872 } 873 return count; 874 } 875 876 static void 877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 878 struct pte_list_desc *desc, int i, 879 struct pte_list_desc *prev_desc) 880 { 881 int j; 882 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 884 ; 885 desc->sptes[i] = desc->sptes[j]; 886 desc->sptes[j] = NULL; 887 if (j != 0) 888 return; 889 if (!prev_desc && !desc->more) 890 rmap_head->val = 0; 891 else 892 if (prev_desc) 893 prev_desc->more = desc->more; 894 else 895 rmap_head->val = (unsigned long)desc->more | 1; 896 mmu_free_pte_list_desc(desc); 897 } 898 899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 900 { 901 struct pte_list_desc *desc; 902 struct pte_list_desc *prev_desc; 903 int i; 904 905 if (!rmap_head->val) { 906 pr_err("%s: %p 0->BUG\n", __func__, spte); 907 BUG(); 908 } else if (!(rmap_head->val & 1)) { 909 rmap_printk("%p 1->0\n", spte); 910 if ((u64 *)rmap_head->val != spte) { 911 pr_err("%s: %p 1->BUG\n", __func__, spte); 912 BUG(); 913 } 914 rmap_head->val = 0; 915 } else { 916 rmap_printk("%p many->many\n", spte); 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 918 prev_desc = NULL; 919 while (desc) { 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 921 if (desc->sptes[i] == spte) { 922 pte_list_desc_remove_entry(rmap_head, 923 desc, i, prev_desc); 924 return; 925 } 926 } 927 prev_desc = desc; 928 desc = desc->more; 929 } 930 pr_err("%s: %p many->many\n", __func__, spte); 931 BUG(); 932 } 933 } 934 935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 936 { 937 mmu_spte_clear_track_bits(sptep); 938 __pte_list_remove(sptep, rmap_head); 939 } 940 941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 942 struct kvm_memory_slot *slot) 943 { 944 unsigned long idx; 945 946 idx = gfn_to_index(gfn, slot->base_gfn, level); 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 948 } 949 950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 951 struct kvm_mmu_page *sp) 952 { 953 struct kvm_memslots *slots; 954 struct kvm_memory_slot *slot; 955 956 slots = kvm_memslots_for_spte_role(kvm, sp->role); 957 slot = __gfn_to_memslot(slots, gfn); 958 return __gfn_to_rmap(gfn, sp->role.level, slot); 959 } 960 961 static bool rmap_can_add(struct kvm_vcpu *vcpu) 962 { 963 struct kvm_mmu_memory_cache *mc; 964 965 mc = &vcpu->arch.mmu_pte_list_desc_cache; 966 return kvm_mmu_memory_cache_nr_free_objects(mc); 967 } 968 969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 970 { 971 struct kvm_mmu_page *sp; 972 struct kvm_rmap_head *rmap_head; 973 974 sp = sptep_to_sp(spte); 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 977 return pte_list_add(vcpu, spte, rmap_head); 978 } 979 980 static void rmap_remove(struct kvm *kvm, u64 *spte) 981 { 982 struct kvm_mmu_page *sp; 983 gfn_t gfn; 984 struct kvm_rmap_head *rmap_head; 985 986 sp = sptep_to_sp(spte); 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 988 rmap_head = gfn_to_rmap(kvm, gfn, sp); 989 __pte_list_remove(spte, rmap_head); 990 } 991 992 /* 993 * Used by the following functions to iterate through the sptes linked by a 994 * rmap. All fields are private and not assumed to be used outside. 995 */ 996 struct rmap_iterator { 997 /* private fields */ 998 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 999 int pos; /* index of the sptep */ 1000 }; 1001 1002 /* 1003 * Iteration must be started by this function. This should also be used after 1004 * removing/dropping sptes from the rmap link because in such cases the 1005 * information in the iterator may not be valid. 1006 * 1007 * Returns sptep if found, NULL otherwise. 1008 */ 1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1010 struct rmap_iterator *iter) 1011 { 1012 u64 *sptep; 1013 1014 if (!rmap_head->val) 1015 return NULL; 1016 1017 if (!(rmap_head->val & 1)) { 1018 iter->desc = NULL; 1019 sptep = (u64 *)rmap_head->val; 1020 goto out; 1021 } 1022 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1024 iter->pos = 0; 1025 sptep = iter->desc->sptes[iter->pos]; 1026 out: 1027 BUG_ON(!is_shadow_present_pte(*sptep)); 1028 return sptep; 1029 } 1030 1031 /* 1032 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1033 * 1034 * Returns sptep if found, NULL otherwise. 1035 */ 1036 static u64 *rmap_get_next(struct rmap_iterator *iter) 1037 { 1038 u64 *sptep; 1039 1040 if (iter->desc) { 1041 if (iter->pos < PTE_LIST_EXT - 1) { 1042 ++iter->pos; 1043 sptep = iter->desc->sptes[iter->pos]; 1044 if (sptep) 1045 goto out; 1046 } 1047 1048 iter->desc = iter->desc->more; 1049 1050 if (iter->desc) { 1051 iter->pos = 0; 1052 /* desc->sptes[0] cannot be NULL */ 1053 sptep = iter->desc->sptes[iter->pos]; 1054 goto out; 1055 } 1056 } 1057 1058 return NULL; 1059 out: 1060 BUG_ON(!is_shadow_present_pte(*sptep)); 1061 return sptep; 1062 } 1063 1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1066 _spte_; _spte_ = rmap_get_next(_iter_)) 1067 1068 static void drop_spte(struct kvm *kvm, u64 *sptep) 1069 { 1070 if (mmu_spte_clear_track_bits(sptep)) 1071 rmap_remove(kvm, sptep); 1072 } 1073 1074 1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1076 { 1077 if (is_large_pte(*sptep)) { 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1079 drop_spte(kvm, sptep); 1080 --kvm->stat.lpages; 1081 return true; 1082 } 1083 1084 return false; 1085 } 1086 1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1088 { 1089 if (__drop_large_spte(vcpu->kvm, sptep)) { 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1091 1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1093 KVM_PAGES_PER_HPAGE(sp->role.level)); 1094 } 1095 } 1096 1097 /* 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether 1099 * spte write-protection is caused by protecting shadow page table. 1100 * 1101 * Note: write protection is difference between dirty logging and spte 1102 * protection: 1103 * - for dirty logging, the spte can be set to writable at anytime if 1104 * its dirty bitmap is properly set. 1105 * - for spte protection, the spte can be writable only after unsync-ing 1106 * shadow page. 1107 * 1108 * Return true if tlb need be flushed. 1109 */ 1110 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1111 { 1112 u64 spte = *sptep; 1113 1114 if (!is_writable_pte(spte) && 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1116 return false; 1117 1118 rmap_printk("spte %p %llx\n", sptep, *sptep); 1119 1120 if (pt_protect) 1121 spte &= ~SPTE_MMU_WRITEABLE; 1122 spte = spte & ~PT_WRITABLE_MASK; 1123 1124 return mmu_spte_update(sptep, spte); 1125 } 1126 1127 static bool __rmap_write_protect(struct kvm *kvm, 1128 struct kvm_rmap_head *rmap_head, 1129 bool pt_protect) 1130 { 1131 u64 *sptep; 1132 struct rmap_iterator iter; 1133 bool flush = false; 1134 1135 for_each_rmap_spte(rmap_head, &iter, sptep) 1136 flush |= spte_write_protect(sptep, pt_protect); 1137 1138 return flush; 1139 } 1140 1141 static bool spte_clear_dirty(u64 *sptep) 1142 { 1143 u64 spte = *sptep; 1144 1145 rmap_printk("spte %p %llx\n", sptep, *sptep); 1146 1147 MMU_WARN_ON(!spte_ad_enabled(spte)); 1148 spte &= ~shadow_dirty_mask; 1149 return mmu_spte_update(sptep, spte); 1150 } 1151 1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1153 { 1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1155 (unsigned long *)sptep); 1156 if (was_writable && !spte_ad_enabled(*sptep)) 1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1158 1159 return was_writable; 1160 } 1161 1162 /* 1163 * Gets the GFN ready for another round of dirty logging by clearing the 1164 * - D bit on ad-enabled SPTEs, and 1165 * - W bit on ad-disabled SPTEs. 1166 * Returns true iff any D or W bits were cleared. 1167 */ 1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1169 { 1170 u64 *sptep; 1171 struct rmap_iterator iter; 1172 bool flush = false; 1173 1174 for_each_rmap_spte(rmap_head, &iter, sptep) 1175 if (spte_ad_need_write_protect(*sptep)) 1176 flush |= spte_wrprot_for_clear_dirty(sptep); 1177 else 1178 flush |= spte_clear_dirty(sptep); 1179 1180 return flush; 1181 } 1182 1183 static bool spte_set_dirty(u64 *sptep) 1184 { 1185 u64 spte = *sptep; 1186 1187 rmap_printk("spte %p %llx\n", sptep, *sptep); 1188 1189 /* 1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, 1191 * do not bother adding back write access to pages marked 1192 * SPTE_AD_WRPROT_ONLY_MASK. 1193 */ 1194 spte |= shadow_dirty_mask; 1195 1196 return mmu_spte_update(sptep, spte); 1197 } 1198 1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1200 { 1201 u64 *sptep; 1202 struct rmap_iterator iter; 1203 bool flush = false; 1204 1205 for_each_rmap_spte(rmap_head, &iter, sptep) 1206 if (spte_ad_enabled(*sptep)) 1207 flush |= spte_set_dirty(sptep); 1208 1209 return flush; 1210 } 1211 1212 /** 1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1214 * @kvm: kvm instance 1215 * @slot: slot to protect 1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1217 * @mask: indicates which pages we should protect 1218 * 1219 * Used when we do not need to care about huge page mappings: e.g. during dirty 1220 * logging we do not have any such mappings. 1221 */ 1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1223 struct kvm_memory_slot *slot, 1224 gfn_t gfn_offset, unsigned long mask) 1225 { 1226 struct kvm_rmap_head *rmap_head; 1227 1228 if (is_tdp_mmu_enabled(kvm)) 1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1230 slot->base_gfn + gfn_offset, mask, true); 1231 while (mask) { 1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1233 PG_LEVEL_4K, slot); 1234 __rmap_write_protect(kvm, rmap_head, false); 1235 1236 /* clear the first set bit */ 1237 mask &= mask - 1; 1238 } 1239 } 1240 1241 /** 1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1243 * protect the page if the D-bit isn't supported. 1244 * @kvm: kvm instance 1245 * @slot: slot to clear D-bit 1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1247 * @mask: indicates which pages we should clear D-bit 1248 * 1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1250 */ 1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1252 struct kvm_memory_slot *slot, 1253 gfn_t gfn_offset, unsigned long mask) 1254 { 1255 struct kvm_rmap_head *rmap_head; 1256 1257 if (is_tdp_mmu_enabled(kvm)) 1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1259 slot->base_gfn + gfn_offset, mask, false); 1260 while (mask) { 1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1262 PG_LEVEL_4K, slot); 1263 __rmap_clear_dirty(kvm, rmap_head); 1264 1265 /* clear the first set bit */ 1266 mask &= mask - 1; 1267 } 1268 } 1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1270 1271 /** 1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1273 * PT level pages. 1274 * 1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1276 * enable dirty logging for them. 1277 * 1278 * Used when we do not need to care about huge page mappings: e.g. during dirty 1279 * logging we do not have any such mappings. 1280 */ 1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1282 struct kvm_memory_slot *slot, 1283 gfn_t gfn_offset, unsigned long mask) 1284 { 1285 if (kvm_x86_ops.enable_log_dirty_pt_masked) 1286 static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot, 1287 gfn_offset, 1288 mask); 1289 else 1290 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1291 } 1292 1293 int kvm_cpu_dirty_log_size(void) 1294 { 1295 if (kvm_x86_ops.cpu_dirty_log_size) 1296 return static_call(kvm_x86_cpu_dirty_log_size)(); 1297 1298 return 0; 1299 } 1300 1301 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1302 struct kvm_memory_slot *slot, u64 gfn) 1303 { 1304 struct kvm_rmap_head *rmap_head; 1305 int i; 1306 bool write_protected = false; 1307 1308 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1309 rmap_head = __gfn_to_rmap(gfn, i, slot); 1310 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1311 } 1312 1313 if (is_tdp_mmu_enabled(kvm)) 1314 write_protected |= 1315 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); 1316 1317 return write_protected; 1318 } 1319 1320 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1321 { 1322 struct kvm_memory_slot *slot; 1323 1324 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1325 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1326 } 1327 1328 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1329 { 1330 u64 *sptep; 1331 struct rmap_iterator iter; 1332 bool flush = false; 1333 1334 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1335 rmap_printk("spte %p %llx.\n", sptep, *sptep); 1336 1337 pte_list_remove(rmap_head, sptep); 1338 flush = true; 1339 } 1340 1341 return flush; 1342 } 1343 1344 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1345 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1346 unsigned long data) 1347 { 1348 return kvm_zap_rmapp(kvm, rmap_head); 1349 } 1350 1351 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1352 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1353 unsigned long data) 1354 { 1355 u64 *sptep; 1356 struct rmap_iterator iter; 1357 int need_flush = 0; 1358 u64 new_spte; 1359 pte_t *ptep = (pte_t *)data; 1360 kvm_pfn_t new_pfn; 1361 1362 WARN_ON(pte_huge(*ptep)); 1363 new_pfn = pte_pfn(*ptep); 1364 1365 restart: 1366 for_each_rmap_spte(rmap_head, &iter, sptep) { 1367 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1368 sptep, *sptep, gfn, level); 1369 1370 need_flush = 1; 1371 1372 if (pte_write(*ptep)) { 1373 pte_list_remove(rmap_head, sptep); 1374 goto restart; 1375 } else { 1376 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1377 *sptep, new_pfn); 1378 1379 mmu_spte_clear_track_bits(sptep); 1380 mmu_spte_set(sptep, new_spte); 1381 } 1382 } 1383 1384 if (need_flush && kvm_available_flush_tlb_with_range()) { 1385 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1386 return 0; 1387 } 1388 1389 return need_flush; 1390 } 1391 1392 struct slot_rmap_walk_iterator { 1393 /* input fields. */ 1394 struct kvm_memory_slot *slot; 1395 gfn_t start_gfn; 1396 gfn_t end_gfn; 1397 int start_level; 1398 int end_level; 1399 1400 /* output fields. */ 1401 gfn_t gfn; 1402 struct kvm_rmap_head *rmap; 1403 int level; 1404 1405 /* private field. */ 1406 struct kvm_rmap_head *end_rmap; 1407 }; 1408 1409 static void 1410 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1411 { 1412 iterator->level = level; 1413 iterator->gfn = iterator->start_gfn; 1414 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1415 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1416 iterator->slot); 1417 } 1418 1419 static void 1420 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1421 struct kvm_memory_slot *slot, int start_level, 1422 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1423 { 1424 iterator->slot = slot; 1425 iterator->start_level = start_level; 1426 iterator->end_level = end_level; 1427 iterator->start_gfn = start_gfn; 1428 iterator->end_gfn = end_gfn; 1429 1430 rmap_walk_init_level(iterator, iterator->start_level); 1431 } 1432 1433 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1434 { 1435 return !!iterator->rmap; 1436 } 1437 1438 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1439 { 1440 if (++iterator->rmap <= iterator->end_rmap) { 1441 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1442 return; 1443 } 1444 1445 if (++iterator->level > iterator->end_level) { 1446 iterator->rmap = NULL; 1447 return; 1448 } 1449 1450 rmap_walk_init_level(iterator, iterator->level); 1451 } 1452 1453 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1454 _start_gfn, _end_gfn, _iter_) \ 1455 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1456 _end_level_, _start_gfn, _end_gfn); \ 1457 slot_rmap_walk_okay(_iter_); \ 1458 slot_rmap_walk_next(_iter_)) 1459 1460 static __always_inline int 1461 kvm_handle_hva_range(struct kvm *kvm, 1462 unsigned long start, 1463 unsigned long end, 1464 unsigned long data, 1465 int (*handler)(struct kvm *kvm, 1466 struct kvm_rmap_head *rmap_head, 1467 struct kvm_memory_slot *slot, 1468 gfn_t gfn, 1469 int level, 1470 unsigned long data)) 1471 { 1472 struct kvm_memslots *slots; 1473 struct kvm_memory_slot *memslot; 1474 struct slot_rmap_walk_iterator iterator; 1475 int ret = 0; 1476 int i; 1477 1478 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1479 slots = __kvm_memslots(kvm, i); 1480 kvm_for_each_memslot(memslot, slots) { 1481 unsigned long hva_start, hva_end; 1482 gfn_t gfn_start, gfn_end; 1483 1484 hva_start = max(start, memslot->userspace_addr); 1485 hva_end = min(end, memslot->userspace_addr + 1486 (memslot->npages << PAGE_SHIFT)); 1487 if (hva_start >= hva_end) 1488 continue; 1489 /* 1490 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1491 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1492 */ 1493 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1494 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1495 1496 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1497 KVM_MAX_HUGEPAGE_LEVEL, 1498 gfn_start, gfn_end - 1, 1499 &iterator) 1500 ret |= handler(kvm, iterator.rmap, memslot, 1501 iterator.gfn, iterator.level, data); 1502 } 1503 } 1504 1505 return ret; 1506 } 1507 1508 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1509 unsigned long data, 1510 int (*handler)(struct kvm *kvm, 1511 struct kvm_rmap_head *rmap_head, 1512 struct kvm_memory_slot *slot, 1513 gfn_t gfn, int level, 1514 unsigned long data)) 1515 { 1516 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1517 } 1518 1519 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, 1520 unsigned flags) 1521 { 1522 int r; 1523 1524 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1525 1526 if (is_tdp_mmu_enabled(kvm)) 1527 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end); 1528 1529 return r; 1530 } 1531 1532 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1533 { 1534 int r; 1535 1536 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1537 1538 if (is_tdp_mmu_enabled(kvm)) 1539 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte); 1540 1541 return r; 1542 } 1543 1544 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1545 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1546 unsigned long data) 1547 { 1548 u64 *sptep; 1549 struct rmap_iterator iter; 1550 int young = 0; 1551 1552 for_each_rmap_spte(rmap_head, &iter, sptep) 1553 young |= mmu_spte_age(sptep); 1554 1555 trace_kvm_age_page(gfn, level, slot, young); 1556 return young; 1557 } 1558 1559 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1560 struct kvm_memory_slot *slot, gfn_t gfn, 1561 int level, unsigned long data) 1562 { 1563 u64 *sptep; 1564 struct rmap_iterator iter; 1565 1566 for_each_rmap_spte(rmap_head, &iter, sptep) 1567 if (is_accessed_spte(*sptep)) 1568 return 1; 1569 return 0; 1570 } 1571 1572 #define RMAP_RECYCLE_THRESHOLD 1000 1573 1574 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1575 { 1576 struct kvm_rmap_head *rmap_head; 1577 struct kvm_mmu_page *sp; 1578 1579 sp = sptep_to_sp(spte); 1580 1581 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1582 1583 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1584 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1585 KVM_PAGES_PER_HPAGE(sp->role.level)); 1586 } 1587 1588 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1589 { 1590 int young = false; 1591 1592 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1593 if (is_tdp_mmu_enabled(kvm)) 1594 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end); 1595 1596 return young; 1597 } 1598 1599 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1600 { 1601 int young = false; 1602 1603 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1604 if (is_tdp_mmu_enabled(kvm)) 1605 young |= kvm_tdp_mmu_test_age_hva(kvm, hva); 1606 1607 return young; 1608 } 1609 1610 #ifdef MMU_DEBUG 1611 static int is_empty_shadow_page(u64 *spt) 1612 { 1613 u64 *pos; 1614 u64 *end; 1615 1616 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1617 if (is_shadow_present_pte(*pos)) { 1618 printk(KERN_ERR "%s: %p %llx\n", __func__, 1619 pos, *pos); 1620 return 0; 1621 } 1622 return 1; 1623 } 1624 #endif 1625 1626 /* 1627 * This value is the sum of all of the kvm instances's 1628 * kvm->arch.n_used_mmu_pages values. We need a global, 1629 * aggregate version in order to make the slab shrinker 1630 * faster 1631 */ 1632 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 1633 { 1634 kvm->arch.n_used_mmu_pages += nr; 1635 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1636 } 1637 1638 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1639 { 1640 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1641 hlist_del(&sp->hash_link); 1642 list_del(&sp->link); 1643 free_page((unsigned long)sp->spt); 1644 if (!sp->role.direct) 1645 free_page((unsigned long)sp->gfns); 1646 kmem_cache_free(mmu_page_header_cache, sp); 1647 } 1648 1649 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1650 { 1651 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1652 } 1653 1654 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1655 struct kvm_mmu_page *sp, u64 *parent_pte) 1656 { 1657 if (!parent_pte) 1658 return; 1659 1660 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1661 } 1662 1663 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1664 u64 *parent_pte) 1665 { 1666 __pte_list_remove(parent_pte, &sp->parent_ptes); 1667 } 1668 1669 static void drop_parent_pte(struct kvm_mmu_page *sp, 1670 u64 *parent_pte) 1671 { 1672 mmu_page_remove_parent_pte(sp, parent_pte); 1673 mmu_spte_clear_no_track(parent_pte); 1674 } 1675 1676 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1677 { 1678 struct kvm_mmu_page *sp; 1679 1680 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1681 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1682 if (!direct) 1683 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1684 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1685 1686 /* 1687 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1688 * depends on valid pages being added to the head of the list. See 1689 * comments in kvm_zap_obsolete_pages(). 1690 */ 1691 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1692 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1693 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1694 return sp; 1695 } 1696 1697 static void mark_unsync(u64 *spte); 1698 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1699 { 1700 u64 *sptep; 1701 struct rmap_iterator iter; 1702 1703 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1704 mark_unsync(sptep); 1705 } 1706 } 1707 1708 static void mark_unsync(u64 *spte) 1709 { 1710 struct kvm_mmu_page *sp; 1711 unsigned int index; 1712 1713 sp = sptep_to_sp(spte); 1714 index = spte - sp->spt; 1715 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1716 return; 1717 if (sp->unsync_children++) 1718 return; 1719 kvm_mmu_mark_parents_unsync(sp); 1720 } 1721 1722 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1723 struct kvm_mmu_page *sp) 1724 { 1725 return 0; 1726 } 1727 1728 #define KVM_PAGE_ARRAY_NR 16 1729 1730 struct kvm_mmu_pages { 1731 struct mmu_page_and_offset { 1732 struct kvm_mmu_page *sp; 1733 unsigned int idx; 1734 } page[KVM_PAGE_ARRAY_NR]; 1735 unsigned int nr; 1736 }; 1737 1738 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1739 int idx) 1740 { 1741 int i; 1742 1743 if (sp->unsync) 1744 for (i=0; i < pvec->nr; i++) 1745 if (pvec->page[i].sp == sp) 1746 return 0; 1747 1748 pvec->page[pvec->nr].sp = sp; 1749 pvec->page[pvec->nr].idx = idx; 1750 pvec->nr++; 1751 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1752 } 1753 1754 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1755 { 1756 --sp->unsync_children; 1757 WARN_ON((int)sp->unsync_children < 0); 1758 __clear_bit(idx, sp->unsync_child_bitmap); 1759 } 1760 1761 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1762 struct kvm_mmu_pages *pvec) 1763 { 1764 int i, ret, nr_unsync_leaf = 0; 1765 1766 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1767 struct kvm_mmu_page *child; 1768 u64 ent = sp->spt[i]; 1769 1770 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1771 clear_unsync_child_bit(sp, i); 1772 continue; 1773 } 1774 1775 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1776 1777 if (child->unsync_children) { 1778 if (mmu_pages_add(pvec, child, i)) 1779 return -ENOSPC; 1780 1781 ret = __mmu_unsync_walk(child, pvec); 1782 if (!ret) { 1783 clear_unsync_child_bit(sp, i); 1784 continue; 1785 } else if (ret > 0) { 1786 nr_unsync_leaf += ret; 1787 } else 1788 return ret; 1789 } else if (child->unsync) { 1790 nr_unsync_leaf++; 1791 if (mmu_pages_add(pvec, child, i)) 1792 return -ENOSPC; 1793 } else 1794 clear_unsync_child_bit(sp, i); 1795 } 1796 1797 return nr_unsync_leaf; 1798 } 1799 1800 #define INVALID_INDEX (-1) 1801 1802 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1803 struct kvm_mmu_pages *pvec) 1804 { 1805 pvec->nr = 0; 1806 if (!sp->unsync_children) 1807 return 0; 1808 1809 mmu_pages_add(pvec, sp, INVALID_INDEX); 1810 return __mmu_unsync_walk(sp, pvec); 1811 } 1812 1813 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1814 { 1815 WARN_ON(!sp->unsync); 1816 trace_kvm_mmu_sync_page(sp); 1817 sp->unsync = 0; 1818 --kvm->stat.mmu_unsync; 1819 } 1820 1821 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1822 struct list_head *invalid_list); 1823 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1824 struct list_head *invalid_list); 1825 1826 #define for_each_valid_sp(_kvm, _sp, _list) \ 1827 hlist_for_each_entry(_sp, _list, hash_link) \ 1828 if (is_obsolete_sp((_kvm), (_sp))) { \ 1829 } else 1830 1831 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1832 for_each_valid_sp(_kvm, _sp, \ 1833 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1834 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1835 1836 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 1837 { 1838 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 1839 } 1840 1841 /* @sp->gfn should be write-protected at the call site */ 1842 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1843 struct list_head *invalid_list) 1844 { 1845 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 1846 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1847 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1848 return false; 1849 } 1850 1851 return true; 1852 } 1853 1854 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1855 struct list_head *invalid_list, 1856 bool remote_flush) 1857 { 1858 if (!remote_flush && list_empty(invalid_list)) 1859 return false; 1860 1861 if (!list_empty(invalid_list)) 1862 kvm_mmu_commit_zap_page(kvm, invalid_list); 1863 else 1864 kvm_flush_remote_tlbs(kvm); 1865 return true; 1866 } 1867 1868 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1869 struct list_head *invalid_list, 1870 bool remote_flush, bool local_flush) 1871 { 1872 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1873 return; 1874 1875 if (local_flush) 1876 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1877 } 1878 1879 #ifdef CONFIG_KVM_MMU_AUDIT 1880 #include "mmu_audit.c" 1881 #else 1882 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1883 static void mmu_audit_disable(void) { } 1884 #endif 1885 1886 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1887 { 1888 return sp->role.invalid || 1889 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1890 } 1891 1892 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1893 struct list_head *invalid_list) 1894 { 1895 kvm_unlink_unsync_page(vcpu->kvm, sp); 1896 return __kvm_sync_page(vcpu, sp, invalid_list); 1897 } 1898 1899 /* @gfn should be write-protected at the call site */ 1900 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 1901 struct list_head *invalid_list) 1902 { 1903 struct kvm_mmu_page *s; 1904 bool ret = false; 1905 1906 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 1907 if (!s->unsync) 1908 continue; 1909 1910 WARN_ON(s->role.level != PG_LEVEL_4K); 1911 ret |= kvm_sync_page(vcpu, s, invalid_list); 1912 } 1913 1914 return ret; 1915 } 1916 1917 struct mmu_page_path { 1918 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1919 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1920 }; 1921 1922 #define for_each_sp(pvec, sp, parents, i) \ 1923 for (i = mmu_pages_first(&pvec, &parents); \ 1924 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1925 i = mmu_pages_next(&pvec, &parents, i)) 1926 1927 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1928 struct mmu_page_path *parents, 1929 int i) 1930 { 1931 int n; 1932 1933 for (n = i+1; n < pvec->nr; n++) { 1934 struct kvm_mmu_page *sp = pvec->page[n].sp; 1935 unsigned idx = pvec->page[n].idx; 1936 int level = sp->role.level; 1937 1938 parents->idx[level-1] = idx; 1939 if (level == PG_LEVEL_4K) 1940 break; 1941 1942 parents->parent[level-2] = sp; 1943 } 1944 1945 return n; 1946 } 1947 1948 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1949 struct mmu_page_path *parents) 1950 { 1951 struct kvm_mmu_page *sp; 1952 int level; 1953 1954 if (pvec->nr == 0) 1955 return 0; 1956 1957 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1958 1959 sp = pvec->page[0].sp; 1960 level = sp->role.level; 1961 WARN_ON(level == PG_LEVEL_4K); 1962 1963 parents->parent[level-2] = sp; 1964 1965 /* Also set up a sentinel. Further entries in pvec are all 1966 * children of sp, so this element is never overwritten. 1967 */ 1968 parents->parent[level-1] = NULL; 1969 return mmu_pages_next(pvec, parents, 0); 1970 } 1971 1972 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1973 { 1974 struct kvm_mmu_page *sp; 1975 unsigned int level = 0; 1976 1977 do { 1978 unsigned int idx = parents->idx[level]; 1979 sp = parents->parent[level]; 1980 if (!sp) 1981 return; 1982 1983 WARN_ON(idx == INVALID_INDEX); 1984 clear_unsync_child_bit(sp, idx); 1985 level++; 1986 } while (!sp->unsync_children); 1987 } 1988 1989 static void mmu_sync_children(struct kvm_vcpu *vcpu, 1990 struct kvm_mmu_page *parent) 1991 { 1992 int i; 1993 struct kvm_mmu_page *sp; 1994 struct mmu_page_path parents; 1995 struct kvm_mmu_pages pages; 1996 LIST_HEAD(invalid_list); 1997 bool flush = false; 1998 1999 while (mmu_unsync_walk(parent, &pages)) { 2000 bool protected = false; 2001 2002 for_each_sp(pages, sp, parents, i) 2003 protected |= rmap_write_protect(vcpu, sp->gfn); 2004 2005 if (protected) { 2006 kvm_flush_remote_tlbs(vcpu->kvm); 2007 flush = false; 2008 } 2009 2010 for_each_sp(pages, sp, parents, i) { 2011 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2012 mmu_pages_clear_parents(&parents); 2013 } 2014 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2015 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2016 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2017 flush = false; 2018 } 2019 } 2020 2021 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2022 } 2023 2024 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2025 { 2026 atomic_set(&sp->write_flooding_count, 0); 2027 } 2028 2029 static void clear_sp_write_flooding_count(u64 *spte) 2030 { 2031 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2032 } 2033 2034 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2035 gfn_t gfn, 2036 gva_t gaddr, 2037 unsigned level, 2038 int direct, 2039 unsigned int access) 2040 { 2041 bool direct_mmu = vcpu->arch.mmu->direct_map; 2042 union kvm_mmu_page_role role; 2043 struct hlist_head *sp_list; 2044 unsigned quadrant; 2045 struct kvm_mmu_page *sp; 2046 bool need_sync = false; 2047 bool flush = false; 2048 int collisions = 0; 2049 LIST_HEAD(invalid_list); 2050 2051 role = vcpu->arch.mmu->mmu_role.base; 2052 role.level = level; 2053 role.direct = direct; 2054 if (role.direct) 2055 role.gpte_is_8_bytes = true; 2056 role.access = access; 2057 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2058 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2059 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2060 role.quadrant = quadrant; 2061 } 2062 2063 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2064 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2065 if (sp->gfn != gfn) { 2066 collisions++; 2067 continue; 2068 } 2069 2070 if (!need_sync && sp->unsync) 2071 need_sync = true; 2072 2073 if (sp->role.word != role.word) 2074 continue; 2075 2076 if (direct_mmu) 2077 goto trace_get_page; 2078 2079 if (sp->unsync) { 2080 /* The page is good, but __kvm_sync_page might still end 2081 * up zapping it. If so, break in order to rebuild it. 2082 */ 2083 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2084 break; 2085 2086 WARN_ON(!list_empty(&invalid_list)); 2087 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2088 } 2089 2090 if (sp->unsync_children) 2091 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2092 2093 __clear_sp_write_flooding_count(sp); 2094 2095 trace_get_page: 2096 trace_kvm_mmu_get_page(sp, false); 2097 goto out; 2098 } 2099 2100 ++vcpu->kvm->stat.mmu_cache_miss; 2101 2102 sp = kvm_mmu_alloc_page(vcpu, direct); 2103 2104 sp->gfn = gfn; 2105 sp->role = role; 2106 hlist_add_head(&sp->hash_link, sp_list); 2107 if (!direct) { 2108 /* 2109 * we should do write protection before syncing pages 2110 * otherwise the content of the synced shadow page may 2111 * be inconsistent with guest page table. 2112 */ 2113 account_shadowed(vcpu->kvm, sp); 2114 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2115 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2116 2117 if (level > PG_LEVEL_4K && need_sync) 2118 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2119 } 2120 trace_kvm_mmu_get_page(sp, true); 2121 2122 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2123 out: 2124 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2125 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2126 return sp; 2127 } 2128 2129 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2130 struct kvm_vcpu *vcpu, hpa_t root, 2131 u64 addr) 2132 { 2133 iterator->addr = addr; 2134 iterator->shadow_addr = root; 2135 iterator->level = vcpu->arch.mmu->shadow_root_level; 2136 2137 if (iterator->level == PT64_ROOT_4LEVEL && 2138 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2139 !vcpu->arch.mmu->direct_map) 2140 --iterator->level; 2141 2142 if (iterator->level == PT32E_ROOT_LEVEL) { 2143 /* 2144 * prev_root is currently only used for 64-bit hosts. So only 2145 * the active root_hpa is valid here. 2146 */ 2147 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2148 2149 iterator->shadow_addr 2150 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2151 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2152 --iterator->level; 2153 if (!iterator->shadow_addr) 2154 iterator->level = 0; 2155 } 2156 } 2157 2158 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2159 struct kvm_vcpu *vcpu, u64 addr) 2160 { 2161 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2162 addr); 2163 } 2164 2165 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2166 { 2167 if (iterator->level < PG_LEVEL_4K) 2168 return false; 2169 2170 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2171 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2172 return true; 2173 } 2174 2175 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2176 u64 spte) 2177 { 2178 if (is_last_spte(spte, iterator->level)) { 2179 iterator->level = 0; 2180 return; 2181 } 2182 2183 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2184 --iterator->level; 2185 } 2186 2187 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2188 { 2189 __shadow_walk_next(iterator, *iterator->sptep); 2190 } 2191 2192 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2193 struct kvm_mmu_page *sp) 2194 { 2195 u64 spte; 2196 2197 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2198 2199 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2200 2201 mmu_spte_set(sptep, spte); 2202 2203 mmu_page_add_parent_pte(vcpu, sp, sptep); 2204 2205 if (sp->unsync_children || sp->unsync) 2206 mark_unsync(sptep); 2207 } 2208 2209 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2210 unsigned direct_access) 2211 { 2212 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2213 struct kvm_mmu_page *child; 2214 2215 /* 2216 * For the direct sp, if the guest pte's dirty bit 2217 * changed form clean to dirty, it will corrupt the 2218 * sp's access: allow writable in the read-only sp, 2219 * so we should update the spte at this point to get 2220 * a new sp with the correct access. 2221 */ 2222 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2223 if (child->role.access == direct_access) 2224 return; 2225 2226 drop_parent_pte(child, sptep); 2227 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2228 } 2229 } 2230 2231 /* Returns the number of zapped non-leaf child shadow pages. */ 2232 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2233 u64 *spte, struct list_head *invalid_list) 2234 { 2235 u64 pte; 2236 struct kvm_mmu_page *child; 2237 2238 pte = *spte; 2239 if (is_shadow_present_pte(pte)) { 2240 if (is_last_spte(pte, sp->role.level)) { 2241 drop_spte(kvm, spte); 2242 if (is_large_pte(pte)) 2243 --kvm->stat.lpages; 2244 } else { 2245 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2246 drop_parent_pte(child, spte); 2247 2248 /* 2249 * Recursively zap nested TDP SPs, parentless SPs are 2250 * unlikely to be used again in the near future. This 2251 * avoids retaining a large number of stale nested SPs. 2252 */ 2253 if (tdp_enabled && invalid_list && 2254 child->role.guest_mode && !child->parent_ptes.val) 2255 return kvm_mmu_prepare_zap_page(kvm, child, 2256 invalid_list); 2257 } 2258 } else if (is_mmio_spte(pte)) { 2259 mmu_spte_clear_no_track(spte); 2260 } 2261 return 0; 2262 } 2263 2264 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2265 struct kvm_mmu_page *sp, 2266 struct list_head *invalid_list) 2267 { 2268 int zapped = 0; 2269 unsigned i; 2270 2271 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2272 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2273 2274 return zapped; 2275 } 2276 2277 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2278 { 2279 u64 *sptep; 2280 struct rmap_iterator iter; 2281 2282 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2283 drop_parent_pte(sp, sptep); 2284 } 2285 2286 static int mmu_zap_unsync_children(struct kvm *kvm, 2287 struct kvm_mmu_page *parent, 2288 struct list_head *invalid_list) 2289 { 2290 int i, zapped = 0; 2291 struct mmu_page_path parents; 2292 struct kvm_mmu_pages pages; 2293 2294 if (parent->role.level == PG_LEVEL_4K) 2295 return 0; 2296 2297 while (mmu_unsync_walk(parent, &pages)) { 2298 struct kvm_mmu_page *sp; 2299 2300 for_each_sp(pages, sp, parents, i) { 2301 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2302 mmu_pages_clear_parents(&parents); 2303 zapped++; 2304 } 2305 } 2306 2307 return zapped; 2308 } 2309 2310 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2311 struct kvm_mmu_page *sp, 2312 struct list_head *invalid_list, 2313 int *nr_zapped) 2314 { 2315 bool list_unstable; 2316 2317 trace_kvm_mmu_prepare_zap_page(sp); 2318 ++kvm->stat.mmu_shadow_zapped; 2319 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2320 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2321 kvm_mmu_unlink_parents(kvm, sp); 2322 2323 /* Zapping children means active_mmu_pages has become unstable. */ 2324 list_unstable = *nr_zapped; 2325 2326 if (!sp->role.invalid && !sp->role.direct) 2327 unaccount_shadowed(kvm, sp); 2328 2329 if (sp->unsync) 2330 kvm_unlink_unsync_page(kvm, sp); 2331 if (!sp->root_count) { 2332 /* Count self */ 2333 (*nr_zapped)++; 2334 2335 /* 2336 * Already invalid pages (previously active roots) are not on 2337 * the active page list. See list_del() in the "else" case of 2338 * !sp->root_count. 2339 */ 2340 if (sp->role.invalid) 2341 list_add(&sp->link, invalid_list); 2342 else 2343 list_move(&sp->link, invalid_list); 2344 kvm_mod_used_mmu_pages(kvm, -1); 2345 } else { 2346 /* 2347 * Remove the active root from the active page list, the root 2348 * will be explicitly freed when the root_count hits zero. 2349 */ 2350 list_del(&sp->link); 2351 2352 /* 2353 * Obsolete pages cannot be used on any vCPUs, see the comment 2354 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2355 * treats invalid shadow pages as being obsolete. 2356 */ 2357 if (!is_obsolete_sp(kvm, sp)) 2358 kvm_reload_remote_mmus(kvm); 2359 } 2360 2361 if (sp->lpage_disallowed) 2362 unaccount_huge_nx_page(kvm, sp); 2363 2364 sp->role.invalid = 1; 2365 return list_unstable; 2366 } 2367 2368 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2369 struct list_head *invalid_list) 2370 { 2371 int nr_zapped; 2372 2373 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2374 return nr_zapped; 2375 } 2376 2377 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2378 struct list_head *invalid_list) 2379 { 2380 struct kvm_mmu_page *sp, *nsp; 2381 2382 if (list_empty(invalid_list)) 2383 return; 2384 2385 /* 2386 * We need to make sure everyone sees our modifications to 2387 * the page tables and see changes to vcpu->mode here. The barrier 2388 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2389 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2390 * 2391 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2392 * guest mode and/or lockless shadow page table walks. 2393 */ 2394 kvm_flush_remote_tlbs(kvm); 2395 2396 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2397 WARN_ON(!sp->role.invalid || sp->root_count); 2398 kvm_mmu_free_page(sp); 2399 } 2400 } 2401 2402 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2403 unsigned long nr_to_zap) 2404 { 2405 unsigned long total_zapped = 0; 2406 struct kvm_mmu_page *sp, *tmp; 2407 LIST_HEAD(invalid_list); 2408 bool unstable; 2409 int nr_zapped; 2410 2411 if (list_empty(&kvm->arch.active_mmu_pages)) 2412 return 0; 2413 2414 restart: 2415 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2416 /* 2417 * Don't zap active root pages, the page itself can't be freed 2418 * and zapping it will just force vCPUs to realloc and reload. 2419 */ 2420 if (sp->root_count) 2421 continue; 2422 2423 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2424 &nr_zapped); 2425 total_zapped += nr_zapped; 2426 if (total_zapped >= nr_to_zap) 2427 break; 2428 2429 if (unstable) 2430 goto restart; 2431 } 2432 2433 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2434 2435 kvm->stat.mmu_recycled += total_zapped; 2436 return total_zapped; 2437 } 2438 2439 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2440 { 2441 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2442 return kvm->arch.n_max_mmu_pages - 2443 kvm->arch.n_used_mmu_pages; 2444 2445 return 0; 2446 } 2447 2448 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2449 { 2450 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2451 2452 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2453 return 0; 2454 2455 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2456 2457 if (!kvm_mmu_available_pages(vcpu->kvm)) 2458 return -ENOSPC; 2459 return 0; 2460 } 2461 2462 /* 2463 * Changing the number of mmu pages allocated to the vm 2464 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2465 */ 2466 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2467 { 2468 write_lock(&kvm->mmu_lock); 2469 2470 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2471 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2472 goal_nr_mmu_pages); 2473 2474 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2475 } 2476 2477 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2478 2479 write_unlock(&kvm->mmu_lock); 2480 } 2481 2482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2483 { 2484 struct kvm_mmu_page *sp; 2485 LIST_HEAD(invalid_list); 2486 int r; 2487 2488 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2489 r = 0; 2490 write_lock(&kvm->mmu_lock); 2491 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2492 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2493 sp->role.word); 2494 r = 1; 2495 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2496 } 2497 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2498 write_unlock(&kvm->mmu_lock); 2499 2500 return r; 2501 } 2502 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2503 2504 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2505 { 2506 trace_kvm_mmu_unsync_page(sp); 2507 ++vcpu->kvm->stat.mmu_unsync; 2508 sp->unsync = 1; 2509 2510 kvm_mmu_mark_parents_unsync(sp); 2511 } 2512 2513 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2514 bool can_unsync) 2515 { 2516 struct kvm_mmu_page *sp; 2517 2518 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2519 return true; 2520 2521 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2522 if (!can_unsync) 2523 return true; 2524 2525 if (sp->unsync) 2526 continue; 2527 2528 WARN_ON(sp->role.level != PG_LEVEL_4K); 2529 kvm_unsync_page(vcpu, sp); 2530 } 2531 2532 /* 2533 * We need to ensure that the marking of unsync pages is visible 2534 * before the SPTE is updated to allow writes because 2535 * kvm_mmu_sync_roots() checks the unsync flags without holding 2536 * the MMU lock and so can race with this. If the SPTE was updated 2537 * before the page had been marked as unsync-ed, something like the 2538 * following could happen: 2539 * 2540 * CPU 1 CPU 2 2541 * --------------------------------------------------------------------- 2542 * 1.2 Host updates SPTE 2543 * to be writable 2544 * 2.1 Guest writes a GPTE for GVA X. 2545 * (GPTE being in the guest page table shadowed 2546 * by the SP from CPU 1.) 2547 * This reads SPTE during the page table walk. 2548 * Since SPTE.W is read as 1, there is no 2549 * fault. 2550 * 2551 * 2.2 Guest issues TLB flush. 2552 * That causes a VM Exit. 2553 * 2554 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2555 * Since it is false, so it just returns. 2556 * 2557 * 2.4 Guest accesses GVA X. 2558 * Since the mapping in the SP was not updated, 2559 * so the old mapping for GVA X incorrectly 2560 * gets used. 2561 * 1.1 Host marks SP 2562 * as unsync 2563 * (sp->unsync = true) 2564 * 2565 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2566 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2567 * pairs with this write barrier. 2568 */ 2569 smp_wmb(); 2570 2571 return false; 2572 } 2573 2574 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2575 unsigned int pte_access, int level, 2576 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2577 bool can_unsync, bool host_writable) 2578 { 2579 u64 spte; 2580 struct kvm_mmu_page *sp; 2581 int ret; 2582 2583 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2584 return 0; 2585 2586 sp = sptep_to_sp(sptep); 2587 2588 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2589 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2590 2591 if (spte & PT_WRITABLE_MASK) 2592 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2593 2594 if (*sptep == spte) 2595 ret |= SET_SPTE_SPURIOUS; 2596 else if (mmu_spte_update(sptep, spte)) 2597 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2598 return ret; 2599 } 2600 2601 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2602 unsigned int pte_access, bool write_fault, int level, 2603 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2604 bool host_writable) 2605 { 2606 int was_rmapped = 0; 2607 int rmap_count; 2608 int set_spte_ret; 2609 int ret = RET_PF_FIXED; 2610 bool flush = false; 2611 2612 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2613 *sptep, write_fault, gfn); 2614 2615 if (is_shadow_present_pte(*sptep)) { 2616 /* 2617 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2618 * the parent of the now unreachable PTE. 2619 */ 2620 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2621 struct kvm_mmu_page *child; 2622 u64 pte = *sptep; 2623 2624 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2625 drop_parent_pte(child, sptep); 2626 flush = true; 2627 } else if (pfn != spte_to_pfn(*sptep)) { 2628 pgprintk("hfn old %llx new %llx\n", 2629 spte_to_pfn(*sptep), pfn); 2630 drop_spte(vcpu->kvm, sptep); 2631 flush = true; 2632 } else 2633 was_rmapped = 1; 2634 } 2635 2636 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2637 speculative, true, host_writable); 2638 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2639 if (write_fault) 2640 ret = RET_PF_EMULATE; 2641 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2642 } 2643 2644 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2645 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2646 KVM_PAGES_PER_HPAGE(level)); 2647 2648 if (unlikely(is_mmio_spte(*sptep))) 2649 ret = RET_PF_EMULATE; 2650 2651 /* 2652 * The fault is fully spurious if and only if the new SPTE and old SPTE 2653 * are identical, and emulation is not required. 2654 */ 2655 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2656 WARN_ON_ONCE(!was_rmapped); 2657 return RET_PF_SPURIOUS; 2658 } 2659 2660 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2661 trace_kvm_mmu_set_spte(level, gfn, sptep); 2662 if (!was_rmapped && is_large_pte(*sptep)) 2663 ++vcpu->kvm->stat.lpages; 2664 2665 if (is_shadow_present_pte(*sptep)) { 2666 if (!was_rmapped) { 2667 rmap_count = rmap_add(vcpu, sptep, gfn); 2668 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2669 rmap_recycle(vcpu, sptep, gfn); 2670 } 2671 } 2672 2673 return ret; 2674 } 2675 2676 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2677 bool no_dirty_log) 2678 { 2679 struct kvm_memory_slot *slot; 2680 2681 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2682 if (!slot) 2683 return KVM_PFN_ERR_FAULT; 2684 2685 return gfn_to_pfn_memslot_atomic(slot, gfn); 2686 } 2687 2688 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2689 struct kvm_mmu_page *sp, 2690 u64 *start, u64 *end) 2691 { 2692 struct page *pages[PTE_PREFETCH_NUM]; 2693 struct kvm_memory_slot *slot; 2694 unsigned int access = sp->role.access; 2695 int i, ret; 2696 gfn_t gfn; 2697 2698 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2699 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2700 if (!slot) 2701 return -1; 2702 2703 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2704 if (ret <= 0) 2705 return -1; 2706 2707 for (i = 0; i < ret; i++, gfn++, start++) { 2708 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2709 page_to_pfn(pages[i]), true, true); 2710 put_page(pages[i]); 2711 } 2712 2713 return 0; 2714 } 2715 2716 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2717 struct kvm_mmu_page *sp, u64 *sptep) 2718 { 2719 u64 *spte, *start = NULL; 2720 int i; 2721 2722 WARN_ON(!sp->role.direct); 2723 2724 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2725 spte = sp->spt + i; 2726 2727 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2728 if (is_shadow_present_pte(*spte) || spte == sptep) { 2729 if (!start) 2730 continue; 2731 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2732 break; 2733 start = NULL; 2734 } else if (!start) 2735 start = spte; 2736 } 2737 } 2738 2739 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2740 { 2741 struct kvm_mmu_page *sp; 2742 2743 sp = sptep_to_sp(sptep); 2744 2745 /* 2746 * Without accessed bits, there's no way to distinguish between 2747 * actually accessed translations and prefetched, so disable pte 2748 * prefetch if accessed bits aren't available. 2749 */ 2750 if (sp_ad_disabled(sp)) 2751 return; 2752 2753 if (sp->role.level > PG_LEVEL_4K) 2754 return; 2755 2756 __direct_pte_prefetch(vcpu, sp, sptep); 2757 } 2758 2759 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 2760 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 2761 { 2762 unsigned long hva; 2763 pte_t *pte; 2764 int level; 2765 2766 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2767 return PG_LEVEL_4K; 2768 2769 /* 2770 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2771 * is not solely for performance, it's also necessary to avoid the 2772 * "writable" check in __gfn_to_hva_many(), which will always fail on 2773 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2774 * page fault steps have already verified the guest isn't writing a 2775 * read-only memslot. 2776 */ 2777 hva = __gfn_to_hva_memslot(slot, gfn); 2778 2779 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 2780 if (unlikely(!pte)) 2781 return PG_LEVEL_4K; 2782 2783 return level; 2784 } 2785 2786 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2787 int max_level, kvm_pfn_t *pfnp, 2788 bool huge_page_disallowed, int *req_level) 2789 { 2790 struct kvm_memory_slot *slot; 2791 struct kvm_lpage_info *linfo; 2792 kvm_pfn_t pfn = *pfnp; 2793 kvm_pfn_t mask; 2794 int level; 2795 2796 *req_level = PG_LEVEL_4K; 2797 2798 if (unlikely(max_level == PG_LEVEL_4K)) 2799 return PG_LEVEL_4K; 2800 2801 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2802 return PG_LEVEL_4K; 2803 2804 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2805 if (!slot) 2806 return PG_LEVEL_4K; 2807 2808 max_level = min(max_level, max_huge_page_level); 2809 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2810 linfo = lpage_info_slot(gfn, slot, max_level); 2811 if (!linfo->disallow_lpage) 2812 break; 2813 } 2814 2815 if (max_level == PG_LEVEL_4K) 2816 return PG_LEVEL_4K; 2817 2818 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 2819 if (level == PG_LEVEL_4K) 2820 return level; 2821 2822 *req_level = level = min(level, max_level); 2823 2824 /* 2825 * Enforce the iTLB multihit workaround after capturing the requested 2826 * level, which will be used to do precise, accurate accounting. 2827 */ 2828 if (huge_page_disallowed) 2829 return PG_LEVEL_4K; 2830 2831 /* 2832 * mmu_notifier_retry() was successful and mmu_lock is held, so 2833 * the pmd can't be split from under us. 2834 */ 2835 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2836 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2837 *pfnp = pfn & ~mask; 2838 2839 return level; 2840 } 2841 2842 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2843 kvm_pfn_t *pfnp, int *goal_levelp) 2844 { 2845 int level = *goal_levelp; 2846 2847 if (cur_level == level && level > PG_LEVEL_4K && 2848 is_shadow_present_pte(spte) && 2849 !is_large_pte(spte)) { 2850 /* 2851 * A small SPTE exists for this pfn, but FNAME(fetch) 2852 * and __direct_map would like to create a large PTE 2853 * instead: just force them to go down another level, 2854 * patching back for them into pfn the next 9 bits of 2855 * the address. 2856 */ 2857 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2858 KVM_PAGES_PER_HPAGE(level - 1); 2859 *pfnp |= gfn & page_mask; 2860 (*goal_levelp)--; 2861 } 2862 } 2863 2864 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2865 int map_writable, int max_level, kvm_pfn_t pfn, 2866 bool prefault, bool is_tdp) 2867 { 2868 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2869 bool write = error_code & PFERR_WRITE_MASK; 2870 bool exec = error_code & PFERR_FETCH_MASK; 2871 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2872 struct kvm_shadow_walk_iterator it; 2873 struct kvm_mmu_page *sp; 2874 int level, req_level, ret; 2875 gfn_t gfn = gpa >> PAGE_SHIFT; 2876 gfn_t base_gfn = gfn; 2877 2878 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 2879 return RET_PF_RETRY; 2880 2881 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2882 huge_page_disallowed, &req_level); 2883 2884 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2885 for_each_shadow_entry(vcpu, gpa, it) { 2886 /* 2887 * We cannot overwrite existing page tables with an NX 2888 * large page, as the leaf could be executable. 2889 */ 2890 if (nx_huge_page_workaround_enabled) 2891 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2892 &pfn, &level); 2893 2894 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2895 if (it.level == level) 2896 break; 2897 2898 drop_large_spte(vcpu, it.sptep); 2899 if (!is_shadow_present_pte(*it.sptep)) { 2900 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2901 it.level - 1, true, ACC_ALL); 2902 2903 link_shadow_page(vcpu, it.sptep, sp); 2904 if (is_tdp && huge_page_disallowed && 2905 req_level >= it.level) 2906 account_huge_nx_page(vcpu->kvm, sp); 2907 } 2908 } 2909 2910 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2911 write, level, base_gfn, pfn, prefault, 2912 map_writable); 2913 if (ret == RET_PF_SPURIOUS) 2914 return ret; 2915 2916 direct_pte_prefetch(vcpu, it.sptep); 2917 ++vcpu->stat.pf_fixed; 2918 return ret; 2919 } 2920 2921 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2922 { 2923 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2924 } 2925 2926 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2927 { 2928 /* 2929 * Do not cache the mmio info caused by writing the readonly gfn 2930 * into the spte otherwise read access on readonly gfn also can 2931 * caused mmio page fault and treat it as mmio access. 2932 */ 2933 if (pfn == KVM_PFN_ERR_RO_FAULT) 2934 return RET_PF_EMULATE; 2935 2936 if (pfn == KVM_PFN_ERR_HWPOISON) { 2937 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2938 return RET_PF_RETRY; 2939 } 2940 2941 return -EFAULT; 2942 } 2943 2944 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2945 kvm_pfn_t pfn, unsigned int access, 2946 int *ret_val) 2947 { 2948 /* The pfn is invalid, report the error! */ 2949 if (unlikely(is_error_pfn(pfn))) { 2950 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2951 return true; 2952 } 2953 2954 if (unlikely(is_noslot_pfn(pfn))) 2955 vcpu_cache_mmio_info(vcpu, gva, gfn, 2956 access & shadow_mmio_access_mask); 2957 2958 return false; 2959 } 2960 2961 static bool page_fault_can_be_fast(u32 error_code) 2962 { 2963 /* 2964 * Do not fix the mmio spte with invalid generation number which 2965 * need to be updated by slow page fault path. 2966 */ 2967 if (unlikely(error_code & PFERR_RSVD_MASK)) 2968 return false; 2969 2970 /* See if the page fault is due to an NX violation */ 2971 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 2972 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 2973 return false; 2974 2975 /* 2976 * #PF can be fast if: 2977 * 1. The shadow page table entry is not present, which could mean that 2978 * the fault is potentially caused by access tracking (if enabled). 2979 * 2. The shadow page table entry is present and the fault 2980 * is caused by write-protect, that means we just need change the W 2981 * bit of the spte which can be done out of mmu-lock. 2982 * 2983 * However, if access tracking is disabled we know that a non-present 2984 * page must be a genuine page fault where we have to create a new SPTE. 2985 * So, if access tracking is disabled, we return true only for write 2986 * accesses to a present page. 2987 */ 2988 2989 return shadow_acc_track_mask != 0 || 2990 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 2991 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 2992 } 2993 2994 /* 2995 * Returns true if the SPTE was fixed successfully. Otherwise, 2996 * someone else modified the SPTE from its original value. 2997 */ 2998 static bool 2999 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3000 u64 *sptep, u64 old_spte, u64 new_spte) 3001 { 3002 gfn_t gfn; 3003 3004 WARN_ON(!sp->role.direct); 3005 3006 /* 3007 * Theoretically we could also set dirty bit (and flush TLB) here in 3008 * order to eliminate unnecessary PML logging. See comments in 3009 * set_spte. But fast_page_fault is very unlikely to happen with PML 3010 * enabled, so we do not do this. This might result in the same GPA 3011 * to be logged in PML buffer again when the write really happens, and 3012 * eventually to be called by mark_page_dirty twice. But it's also no 3013 * harm. This also avoids the TLB flush needed after setting dirty bit 3014 * so non-PML cases won't be impacted. 3015 * 3016 * Compare with set_spte where instead shadow_dirty_mask is set. 3017 */ 3018 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3019 return false; 3020 3021 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3022 /* 3023 * The gfn of direct spte is stable since it is 3024 * calculated by sp->gfn. 3025 */ 3026 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3027 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3028 } 3029 3030 return true; 3031 } 3032 3033 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3034 { 3035 if (fault_err_code & PFERR_FETCH_MASK) 3036 return is_executable_pte(spte); 3037 3038 if (fault_err_code & PFERR_WRITE_MASK) 3039 return is_writable_pte(spte); 3040 3041 /* Fault was on Read access */ 3042 return spte & PT_PRESENT_MASK; 3043 } 3044 3045 /* 3046 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3047 */ 3048 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3049 u32 error_code) 3050 { 3051 struct kvm_shadow_walk_iterator iterator; 3052 struct kvm_mmu_page *sp; 3053 int ret = RET_PF_INVALID; 3054 u64 spte = 0ull; 3055 uint retry_count = 0; 3056 3057 if (!page_fault_can_be_fast(error_code)) 3058 return ret; 3059 3060 walk_shadow_page_lockless_begin(vcpu); 3061 3062 do { 3063 u64 new_spte; 3064 3065 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3066 if (!is_shadow_present_pte(spte)) 3067 break; 3068 3069 sp = sptep_to_sp(iterator.sptep); 3070 if (!is_last_spte(spte, sp->role.level)) 3071 break; 3072 3073 /* 3074 * Check whether the memory access that caused the fault would 3075 * still cause it if it were to be performed right now. If not, 3076 * then this is a spurious fault caused by TLB lazily flushed, 3077 * or some other CPU has already fixed the PTE after the 3078 * current CPU took the fault. 3079 * 3080 * Need not check the access of upper level table entries since 3081 * they are always ACC_ALL. 3082 */ 3083 if (is_access_allowed(error_code, spte)) { 3084 ret = RET_PF_SPURIOUS; 3085 break; 3086 } 3087 3088 new_spte = spte; 3089 3090 if (is_access_track_spte(spte)) 3091 new_spte = restore_acc_track_spte(new_spte); 3092 3093 /* 3094 * Currently, to simplify the code, write-protection can 3095 * be removed in the fast path only if the SPTE was 3096 * write-protected for dirty-logging or access tracking. 3097 */ 3098 if ((error_code & PFERR_WRITE_MASK) && 3099 spte_can_locklessly_be_made_writable(spte)) { 3100 new_spte |= PT_WRITABLE_MASK; 3101 3102 /* 3103 * Do not fix write-permission on the large spte. Since 3104 * we only dirty the first page into the dirty-bitmap in 3105 * fast_pf_fix_direct_spte(), other pages are missed 3106 * if its slot has dirty logging enabled. 3107 * 3108 * Instead, we let the slow page fault path create a 3109 * normal spte to fix the access. 3110 * 3111 * See the comments in kvm_arch_commit_memory_region(). 3112 */ 3113 if (sp->role.level > PG_LEVEL_4K) 3114 break; 3115 } 3116 3117 /* Verify that the fault can be handled in the fast path */ 3118 if (new_spte == spte || 3119 !is_access_allowed(error_code, new_spte)) 3120 break; 3121 3122 /* 3123 * Currently, fast page fault only works for direct mapping 3124 * since the gfn is not stable for indirect shadow page. See 3125 * Documentation/virt/kvm/locking.rst to get more detail. 3126 */ 3127 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3128 new_spte)) { 3129 ret = RET_PF_FIXED; 3130 break; 3131 } 3132 3133 if (++retry_count > 4) { 3134 printk_once(KERN_WARNING 3135 "kvm: Fast #PF retrying more than 4 times.\n"); 3136 break; 3137 } 3138 3139 } while (true); 3140 3141 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3142 spte, ret); 3143 walk_shadow_page_lockless_end(vcpu); 3144 3145 return ret; 3146 } 3147 3148 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3149 struct list_head *invalid_list) 3150 { 3151 struct kvm_mmu_page *sp; 3152 3153 if (!VALID_PAGE(*root_hpa)) 3154 return; 3155 3156 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3157 3158 if (kvm_mmu_put_root(kvm, sp)) { 3159 if (is_tdp_mmu_page(sp)) 3160 kvm_tdp_mmu_free_root(kvm, sp); 3161 else if (sp->role.invalid) 3162 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3163 } 3164 3165 *root_hpa = INVALID_PAGE; 3166 } 3167 3168 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3169 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3170 ulong roots_to_free) 3171 { 3172 struct kvm *kvm = vcpu->kvm; 3173 int i; 3174 LIST_HEAD(invalid_list); 3175 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3176 3177 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3178 3179 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3180 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3181 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3182 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3183 VALID_PAGE(mmu->prev_roots[i].hpa)) 3184 break; 3185 3186 if (i == KVM_MMU_NUM_PREV_ROOTS) 3187 return; 3188 } 3189 3190 write_lock(&kvm->mmu_lock); 3191 3192 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3193 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3194 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3195 &invalid_list); 3196 3197 if (free_active_root) { 3198 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3199 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3200 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3201 } else { 3202 for (i = 0; i < 4; ++i) 3203 if (mmu->pae_root[i] != 0) 3204 mmu_free_root_page(kvm, 3205 &mmu->pae_root[i], 3206 &invalid_list); 3207 mmu->root_hpa = INVALID_PAGE; 3208 } 3209 mmu->root_pgd = 0; 3210 } 3211 3212 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3213 write_unlock(&kvm->mmu_lock); 3214 } 3215 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3216 3217 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3218 { 3219 int ret = 0; 3220 3221 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3222 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3223 ret = 1; 3224 } 3225 3226 return ret; 3227 } 3228 3229 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3230 u8 level, bool direct) 3231 { 3232 struct kvm_mmu_page *sp; 3233 3234 write_lock(&vcpu->kvm->mmu_lock); 3235 3236 if (make_mmu_pages_available(vcpu)) { 3237 write_unlock(&vcpu->kvm->mmu_lock); 3238 return INVALID_PAGE; 3239 } 3240 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3241 ++sp->root_count; 3242 3243 write_unlock(&vcpu->kvm->mmu_lock); 3244 return __pa(sp->spt); 3245 } 3246 3247 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3248 { 3249 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3250 hpa_t root; 3251 unsigned i; 3252 3253 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3254 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3255 3256 if (!VALID_PAGE(root)) 3257 return -ENOSPC; 3258 vcpu->arch.mmu->root_hpa = root; 3259 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3260 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, 3261 true); 3262 3263 if (!VALID_PAGE(root)) 3264 return -ENOSPC; 3265 vcpu->arch.mmu->root_hpa = root; 3266 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3267 for (i = 0; i < 4; ++i) { 3268 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3269 3270 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3271 i << 30, PT32_ROOT_LEVEL, true); 3272 if (!VALID_PAGE(root)) 3273 return -ENOSPC; 3274 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3275 } 3276 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3277 } else 3278 BUG(); 3279 3280 /* root_pgd is ignored for direct MMUs. */ 3281 vcpu->arch.mmu->root_pgd = 0; 3282 3283 return 0; 3284 } 3285 3286 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3287 { 3288 u64 pdptr, pm_mask; 3289 gfn_t root_gfn, root_pgd; 3290 hpa_t root; 3291 int i; 3292 3293 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3294 root_gfn = root_pgd >> PAGE_SHIFT; 3295 3296 if (mmu_check_root(vcpu, root_gfn)) 3297 return 1; 3298 3299 /* 3300 * Do we shadow a long mode page table? If so we need to 3301 * write-protect the guests page table root. 3302 */ 3303 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3304 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3305 3306 root = mmu_alloc_root(vcpu, root_gfn, 0, 3307 vcpu->arch.mmu->shadow_root_level, false); 3308 if (!VALID_PAGE(root)) 3309 return -ENOSPC; 3310 vcpu->arch.mmu->root_hpa = root; 3311 goto set_root_pgd; 3312 } 3313 3314 /* 3315 * We shadow a 32 bit page table. This may be a legacy 2-level 3316 * or a PAE 3-level page table. In either case we need to be aware that 3317 * the shadow page table may be a PAE or a long mode page table. 3318 */ 3319 pm_mask = PT_PRESENT_MASK; 3320 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3321 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3322 3323 for (i = 0; i < 4; ++i) { 3324 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3325 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3326 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3327 if (!(pdptr & PT_PRESENT_MASK)) { 3328 vcpu->arch.mmu->pae_root[i] = 0; 3329 continue; 3330 } 3331 root_gfn = pdptr >> PAGE_SHIFT; 3332 if (mmu_check_root(vcpu, root_gfn)) 3333 return 1; 3334 } 3335 3336 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3337 PT32_ROOT_LEVEL, false); 3338 if (!VALID_PAGE(root)) 3339 return -ENOSPC; 3340 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3341 } 3342 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3343 3344 /* 3345 * If we shadow a 32 bit page table with a long mode page 3346 * table we enter this path. 3347 */ 3348 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3349 if (vcpu->arch.mmu->lm_root == NULL) { 3350 /* 3351 * The additional page necessary for this is only 3352 * allocated on demand. 3353 */ 3354 3355 u64 *lm_root; 3356 3357 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3358 if (lm_root == NULL) 3359 return 1; 3360 3361 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3362 3363 vcpu->arch.mmu->lm_root = lm_root; 3364 } 3365 3366 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3367 } 3368 3369 set_root_pgd: 3370 vcpu->arch.mmu->root_pgd = root_pgd; 3371 3372 return 0; 3373 } 3374 3375 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3376 { 3377 if (vcpu->arch.mmu->direct_map) 3378 return mmu_alloc_direct_roots(vcpu); 3379 else 3380 return mmu_alloc_shadow_roots(vcpu); 3381 } 3382 3383 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3384 { 3385 int i; 3386 struct kvm_mmu_page *sp; 3387 3388 if (vcpu->arch.mmu->direct_map) 3389 return; 3390 3391 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3392 return; 3393 3394 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3395 3396 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3397 hpa_t root = vcpu->arch.mmu->root_hpa; 3398 sp = to_shadow_page(root); 3399 3400 /* 3401 * Even if another CPU was marking the SP as unsync-ed 3402 * simultaneously, any guest page table changes are not 3403 * guaranteed to be visible anyway until this VCPU issues a TLB 3404 * flush strictly after those changes are made. We only need to 3405 * ensure that the other CPU sets these flags before any actual 3406 * changes to the page tables are made. The comments in 3407 * mmu_need_write_protect() describe what could go wrong if this 3408 * requirement isn't satisfied. 3409 */ 3410 if (!smp_load_acquire(&sp->unsync) && 3411 !smp_load_acquire(&sp->unsync_children)) 3412 return; 3413 3414 write_lock(&vcpu->kvm->mmu_lock); 3415 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3416 3417 mmu_sync_children(vcpu, sp); 3418 3419 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3420 write_unlock(&vcpu->kvm->mmu_lock); 3421 return; 3422 } 3423 3424 write_lock(&vcpu->kvm->mmu_lock); 3425 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3426 3427 for (i = 0; i < 4; ++i) { 3428 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3429 3430 if (root && VALID_PAGE(root)) { 3431 root &= PT64_BASE_ADDR_MASK; 3432 sp = to_shadow_page(root); 3433 mmu_sync_children(vcpu, sp); 3434 } 3435 } 3436 3437 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3438 write_unlock(&vcpu->kvm->mmu_lock); 3439 } 3440 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3441 3442 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3443 u32 access, struct x86_exception *exception) 3444 { 3445 if (exception) 3446 exception->error_code = 0; 3447 return vaddr; 3448 } 3449 3450 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3451 u32 access, 3452 struct x86_exception *exception) 3453 { 3454 if (exception) 3455 exception->error_code = 0; 3456 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3457 } 3458 3459 static bool 3460 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3461 { 3462 int bit7 = (pte >> 7) & 1; 3463 3464 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3465 } 3466 3467 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3468 { 3469 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3470 } 3471 3472 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3473 { 3474 /* 3475 * A nested guest cannot use the MMIO cache if it is using nested 3476 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3477 */ 3478 if (mmu_is_nested(vcpu)) 3479 return false; 3480 3481 if (direct) 3482 return vcpu_match_mmio_gpa(vcpu, addr); 3483 3484 return vcpu_match_mmio_gva(vcpu, addr); 3485 } 3486 3487 /* 3488 * Return the level of the lowest level SPTE added to sptes. 3489 * That SPTE may be non-present. 3490 */ 3491 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3492 { 3493 struct kvm_shadow_walk_iterator iterator; 3494 int leaf = -1; 3495 u64 spte; 3496 3497 walk_shadow_page_lockless_begin(vcpu); 3498 3499 for (shadow_walk_init(&iterator, vcpu, addr), 3500 *root_level = iterator.level; 3501 shadow_walk_okay(&iterator); 3502 __shadow_walk_next(&iterator, spte)) { 3503 leaf = iterator.level; 3504 spte = mmu_spte_get_lockless(iterator.sptep); 3505 3506 sptes[leaf] = spte; 3507 3508 if (!is_shadow_present_pte(spte)) 3509 break; 3510 } 3511 3512 walk_shadow_page_lockless_end(vcpu); 3513 3514 return leaf; 3515 } 3516 3517 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3518 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3519 { 3520 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3521 struct rsvd_bits_validate *rsvd_check; 3522 int root, leaf, level; 3523 bool reserved = false; 3524 3525 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { 3526 *sptep = 0ull; 3527 return reserved; 3528 } 3529 3530 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3531 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3532 else 3533 leaf = get_walk(vcpu, addr, sptes, &root); 3534 3535 if (unlikely(leaf < 0)) { 3536 *sptep = 0ull; 3537 return reserved; 3538 } 3539 3540 *sptep = sptes[leaf]; 3541 3542 /* 3543 * Skip reserved bits checks on the terminal leaf if it's not a valid 3544 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3545 * design, always have reserved bits set. The purpose of the checks is 3546 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3547 */ 3548 if (!is_shadow_present_pte(sptes[leaf])) 3549 leaf++; 3550 3551 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3552 3553 for (level = root; level >= leaf; level--) 3554 /* 3555 * Use a bitwise-OR instead of a logical-OR to aggregate the 3556 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3557 * adding a Jcc in the loop. 3558 */ 3559 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) | 3560 __is_rsvd_bits_set(rsvd_check, sptes[level], level); 3561 3562 if (reserved) { 3563 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3564 __func__, addr); 3565 for (level = root; level >= leaf; level--) 3566 pr_err("------ spte 0x%llx level %d.\n", 3567 sptes[level], level); 3568 } 3569 3570 return reserved; 3571 } 3572 3573 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3574 { 3575 u64 spte; 3576 bool reserved; 3577 3578 if (mmio_info_in_cache(vcpu, addr, direct)) 3579 return RET_PF_EMULATE; 3580 3581 reserved = get_mmio_spte(vcpu, addr, &spte); 3582 if (WARN_ON(reserved)) 3583 return -EINVAL; 3584 3585 if (is_mmio_spte(spte)) { 3586 gfn_t gfn = get_mmio_spte_gfn(spte); 3587 unsigned int access = get_mmio_spte_access(spte); 3588 3589 if (!check_mmio_spte(vcpu, spte)) 3590 return RET_PF_INVALID; 3591 3592 if (direct) 3593 addr = 0; 3594 3595 trace_handle_mmio_page_fault(addr, gfn, access); 3596 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3597 return RET_PF_EMULATE; 3598 } 3599 3600 /* 3601 * If the page table is zapped by other cpus, let CPU fault again on 3602 * the address. 3603 */ 3604 return RET_PF_RETRY; 3605 } 3606 3607 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3608 u32 error_code, gfn_t gfn) 3609 { 3610 if (unlikely(error_code & PFERR_RSVD_MASK)) 3611 return false; 3612 3613 if (!(error_code & PFERR_PRESENT_MASK) || 3614 !(error_code & PFERR_WRITE_MASK)) 3615 return false; 3616 3617 /* 3618 * guest is writing the page which is write tracked which can 3619 * not be fixed by page fault handler. 3620 */ 3621 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3622 return true; 3623 3624 return false; 3625 } 3626 3627 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3628 { 3629 struct kvm_shadow_walk_iterator iterator; 3630 u64 spte; 3631 3632 walk_shadow_page_lockless_begin(vcpu); 3633 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3634 clear_sp_write_flooding_count(iterator.sptep); 3635 if (!is_shadow_present_pte(spte)) 3636 break; 3637 } 3638 walk_shadow_page_lockless_end(vcpu); 3639 } 3640 3641 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3642 gfn_t gfn) 3643 { 3644 struct kvm_arch_async_pf arch; 3645 3646 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3647 arch.gfn = gfn; 3648 arch.direct_map = vcpu->arch.mmu->direct_map; 3649 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3650 3651 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3652 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3653 } 3654 3655 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3656 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 3657 bool *writable) 3658 { 3659 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3660 bool async; 3661 3662 /* Don't expose private memslots to L2. */ 3663 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3664 *pfn = KVM_PFN_NOSLOT; 3665 *writable = false; 3666 return false; 3667 } 3668 3669 async = false; 3670 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 3671 if (!async) 3672 return false; /* *pfn has correct page already */ 3673 3674 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3675 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3676 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3677 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3678 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3679 return true; 3680 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3681 return true; 3682 } 3683 3684 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 3685 return false; 3686 } 3687 3688 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3689 bool prefault, int max_level, bool is_tdp) 3690 { 3691 bool write = error_code & PFERR_WRITE_MASK; 3692 bool map_writable; 3693 3694 gfn_t gfn = gpa >> PAGE_SHIFT; 3695 unsigned long mmu_seq; 3696 kvm_pfn_t pfn; 3697 int r; 3698 3699 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3700 return RET_PF_EMULATE; 3701 3702 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { 3703 r = fast_page_fault(vcpu, gpa, error_code); 3704 if (r != RET_PF_INVALID) 3705 return r; 3706 } 3707 3708 r = mmu_topup_memory_caches(vcpu, false); 3709 if (r) 3710 return r; 3711 3712 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3713 smp_rmb(); 3714 3715 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 3716 return RET_PF_RETRY; 3717 3718 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3719 return r; 3720 3721 r = RET_PF_RETRY; 3722 3723 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3724 read_lock(&vcpu->kvm->mmu_lock); 3725 else 3726 write_lock(&vcpu->kvm->mmu_lock); 3727 3728 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 3729 goto out_unlock; 3730 r = make_mmu_pages_available(vcpu); 3731 if (r) 3732 goto out_unlock; 3733 3734 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3735 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3736 pfn, prefault); 3737 else 3738 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3739 prefault, is_tdp); 3740 3741 out_unlock: 3742 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3743 read_unlock(&vcpu->kvm->mmu_lock); 3744 else 3745 write_unlock(&vcpu->kvm->mmu_lock); 3746 kvm_release_pfn_clean(pfn); 3747 return r; 3748 } 3749 3750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3751 u32 error_code, bool prefault) 3752 { 3753 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3754 3755 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3756 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3757 PG_LEVEL_2M, false); 3758 } 3759 3760 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3761 u64 fault_address, char *insn, int insn_len) 3762 { 3763 int r = 1; 3764 u32 flags = vcpu->arch.apf.host_apf_flags; 3765 3766 #ifndef CONFIG_X86_64 3767 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3768 if (WARN_ON_ONCE(fault_address >> 32)) 3769 return -EFAULT; 3770 #endif 3771 3772 vcpu->arch.l1tf_flush_l1d = true; 3773 if (!flags) { 3774 trace_kvm_page_fault(fault_address, error_code); 3775 3776 if (kvm_event_needs_reinjection(vcpu)) 3777 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3778 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3779 insn_len); 3780 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3781 vcpu->arch.apf.host_apf_flags = 0; 3782 local_irq_disable(); 3783 kvm_async_pf_task_wait_schedule(fault_address); 3784 local_irq_enable(); 3785 } else { 3786 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3787 } 3788 3789 return r; 3790 } 3791 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3792 3793 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3794 bool prefault) 3795 { 3796 int max_level; 3797 3798 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3799 max_level > PG_LEVEL_4K; 3800 max_level--) { 3801 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3802 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3803 3804 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3805 break; 3806 } 3807 3808 return direct_page_fault(vcpu, gpa, error_code, prefault, 3809 max_level, true); 3810 } 3811 3812 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 3813 struct kvm_mmu *context) 3814 { 3815 context->page_fault = nonpaging_page_fault; 3816 context->gva_to_gpa = nonpaging_gva_to_gpa; 3817 context->sync_page = nonpaging_sync_page; 3818 context->invlpg = NULL; 3819 context->root_level = 0; 3820 context->shadow_root_level = PT32E_ROOT_LEVEL; 3821 context->direct_map = true; 3822 context->nx = false; 3823 } 3824 3825 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3826 union kvm_mmu_page_role role) 3827 { 3828 return (role.direct || pgd == root->pgd) && 3829 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3830 role.word == to_shadow_page(root->hpa)->role.word; 3831 } 3832 3833 /* 3834 * Find out if a previously cached root matching the new pgd/role is available. 3835 * The current root is also inserted into the cache. 3836 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3837 * returned. 3838 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3839 * false is returned. This root should now be freed by the caller. 3840 */ 3841 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3842 union kvm_mmu_page_role new_role) 3843 { 3844 uint i; 3845 struct kvm_mmu_root_info root; 3846 struct kvm_mmu *mmu = vcpu->arch.mmu; 3847 3848 root.pgd = mmu->root_pgd; 3849 root.hpa = mmu->root_hpa; 3850 3851 if (is_root_usable(&root, new_pgd, new_role)) 3852 return true; 3853 3854 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3855 swap(root, mmu->prev_roots[i]); 3856 3857 if (is_root_usable(&root, new_pgd, new_role)) 3858 break; 3859 } 3860 3861 mmu->root_hpa = root.hpa; 3862 mmu->root_pgd = root.pgd; 3863 3864 return i < KVM_MMU_NUM_PREV_ROOTS; 3865 } 3866 3867 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3868 union kvm_mmu_page_role new_role) 3869 { 3870 struct kvm_mmu *mmu = vcpu->arch.mmu; 3871 3872 /* 3873 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 3874 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 3875 * later if necessary. 3876 */ 3877 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3878 mmu->root_level >= PT64_ROOT_4LEVEL) 3879 return cached_root_available(vcpu, new_pgd, new_role); 3880 3881 return false; 3882 } 3883 3884 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3885 union kvm_mmu_page_role new_role, 3886 bool skip_tlb_flush, bool skip_mmu_sync) 3887 { 3888 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 3889 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 3890 return; 3891 } 3892 3893 /* 3894 * It's possible that the cached previous root page is obsolete because 3895 * of a change in the MMU generation number. However, changing the 3896 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 3897 * free the root set here and allocate a new one. 3898 */ 3899 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 3900 3901 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 3902 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 3903 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 3904 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3905 3906 /* 3907 * The last MMIO access's GVA and GPA are cached in the VCPU. When 3908 * switching to a new CR3, that GVA->GPA mapping may no longer be 3909 * valid. So clear any cached MMIO info even when we don't need to sync 3910 * the shadow page tables. 3911 */ 3912 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3913 3914 /* 3915 * If this is a direct root page, it doesn't have a write flooding 3916 * count. Otherwise, clear the write flooding count. 3917 */ 3918 if (!new_role.direct) 3919 __clear_sp_write_flooding_count( 3920 to_shadow_page(vcpu->arch.mmu->root_hpa)); 3921 } 3922 3923 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 3924 bool skip_mmu_sync) 3925 { 3926 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 3927 skip_tlb_flush, skip_mmu_sync); 3928 } 3929 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 3930 3931 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 3932 { 3933 return kvm_read_cr3(vcpu); 3934 } 3935 3936 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 3937 unsigned int access, int *nr_present) 3938 { 3939 if (unlikely(is_mmio_spte(*sptep))) { 3940 if (gfn != get_mmio_spte_gfn(*sptep)) { 3941 mmu_spte_clear_no_track(sptep); 3942 return true; 3943 } 3944 3945 (*nr_present)++; 3946 mark_mmio_spte(vcpu, sptep, gfn, access); 3947 return true; 3948 } 3949 3950 return false; 3951 } 3952 3953 static inline bool is_last_gpte(struct kvm_mmu *mmu, 3954 unsigned level, unsigned gpte) 3955 { 3956 /* 3957 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 3958 * If it is clear, there are no large pages at this level, so clear 3959 * PT_PAGE_SIZE_MASK in gpte if that is the case. 3960 */ 3961 gpte &= level - mmu->last_nonleaf_level; 3962 3963 /* 3964 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 3965 * iff level <= PG_LEVEL_4K, which for our purpose means 3966 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 3967 */ 3968 gpte |= level - PG_LEVEL_4K - 1; 3969 3970 return gpte & PT_PAGE_SIZE_MASK; 3971 } 3972 3973 #define PTTYPE_EPT 18 /* arbitrary */ 3974 #define PTTYPE PTTYPE_EPT 3975 #include "paging_tmpl.h" 3976 #undef PTTYPE 3977 3978 #define PTTYPE 64 3979 #include "paging_tmpl.h" 3980 #undef PTTYPE 3981 3982 #define PTTYPE 32 3983 #include "paging_tmpl.h" 3984 #undef PTTYPE 3985 3986 static void 3987 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 3988 struct rsvd_bits_validate *rsvd_check, 3989 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 3990 bool pse, bool amd) 3991 { 3992 u64 gbpages_bit_rsvd = 0; 3993 u64 nonleaf_bit8_rsvd = 0; 3994 u64 high_bits_rsvd; 3995 3996 rsvd_check->bad_mt_xwr = 0; 3997 3998 if (!gbpages) 3999 gbpages_bit_rsvd = rsvd_bits(7, 7); 4000 4001 if (level == PT32E_ROOT_LEVEL) 4002 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4003 else 4004 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4005 4006 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4007 if (!nx) 4008 high_bits_rsvd |= rsvd_bits(63, 63); 4009 4010 /* 4011 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4012 * leaf entries) on AMD CPUs only. 4013 */ 4014 if (amd) 4015 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4016 4017 switch (level) { 4018 case PT32_ROOT_LEVEL: 4019 /* no rsvd bits for 2 level 4K page table entries */ 4020 rsvd_check->rsvd_bits_mask[0][1] = 0; 4021 rsvd_check->rsvd_bits_mask[0][0] = 0; 4022 rsvd_check->rsvd_bits_mask[1][0] = 4023 rsvd_check->rsvd_bits_mask[0][0]; 4024 4025 if (!pse) { 4026 rsvd_check->rsvd_bits_mask[1][1] = 0; 4027 break; 4028 } 4029 4030 if (is_cpuid_PSE36()) 4031 /* 36bits PSE 4MB page */ 4032 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4033 else 4034 /* 32 bits PSE 4MB page */ 4035 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4036 break; 4037 case PT32E_ROOT_LEVEL: 4038 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4039 high_bits_rsvd | 4040 rsvd_bits(5, 8) | 4041 rsvd_bits(1, 2); /* PDPTE */ 4042 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4043 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4044 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4045 rsvd_bits(13, 20); /* large page */ 4046 rsvd_check->rsvd_bits_mask[1][0] = 4047 rsvd_check->rsvd_bits_mask[0][0]; 4048 break; 4049 case PT64_ROOT_5LEVEL: 4050 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4051 nonleaf_bit8_rsvd | 4052 rsvd_bits(7, 7); 4053 rsvd_check->rsvd_bits_mask[1][4] = 4054 rsvd_check->rsvd_bits_mask[0][4]; 4055 fallthrough; 4056 case PT64_ROOT_4LEVEL: 4057 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4058 nonleaf_bit8_rsvd | 4059 rsvd_bits(7, 7); 4060 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4061 gbpages_bit_rsvd; 4062 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4063 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4064 rsvd_check->rsvd_bits_mask[1][3] = 4065 rsvd_check->rsvd_bits_mask[0][3]; 4066 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4067 gbpages_bit_rsvd | 4068 rsvd_bits(13, 29); 4069 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4070 rsvd_bits(13, 20); /* large page */ 4071 rsvd_check->rsvd_bits_mask[1][0] = 4072 rsvd_check->rsvd_bits_mask[0][0]; 4073 break; 4074 } 4075 } 4076 4077 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4078 struct kvm_mmu *context) 4079 { 4080 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4081 vcpu->arch.reserved_gpa_bits, 4082 context->root_level, context->nx, 4083 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4084 is_pse(vcpu), 4085 guest_cpuid_is_amd_or_hygon(vcpu)); 4086 } 4087 4088 static void 4089 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4090 u64 pa_bits_rsvd, bool execonly) 4091 { 4092 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4093 u64 bad_mt_xwr; 4094 4095 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4096 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4097 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4098 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4099 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4100 4101 /* large page */ 4102 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4103 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4104 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4105 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4106 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4107 4108 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4109 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4110 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4111 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4112 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4113 if (!execonly) { 4114 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4115 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4116 } 4117 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4118 } 4119 4120 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4121 struct kvm_mmu *context, bool execonly) 4122 { 4123 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4124 vcpu->arch.reserved_gpa_bits, execonly); 4125 } 4126 4127 static inline u64 reserved_hpa_bits(void) 4128 { 4129 return rsvd_bits(shadow_phys_bits, 63); 4130 } 4131 4132 /* 4133 * the page table on host is the shadow page table for the page 4134 * table in guest or amd nested guest, its mmu features completely 4135 * follow the features in guest. 4136 */ 4137 void 4138 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4139 { 4140 bool uses_nx = context->nx || 4141 context->mmu_role.base.smep_andnot_wp; 4142 struct rsvd_bits_validate *shadow_zero_check; 4143 int i; 4144 4145 /* 4146 * Passing "true" to the last argument is okay; it adds a check 4147 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4148 */ 4149 shadow_zero_check = &context->shadow_zero_check; 4150 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4151 reserved_hpa_bits(), 4152 context->shadow_root_level, uses_nx, 4153 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4154 is_pse(vcpu), true); 4155 4156 if (!shadow_me_mask) 4157 return; 4158 4159 for (i = context->shadow_root_level; --i >= 0;) { 4160 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4161 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4162 } 4163 4164 } 4165 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4166 4167 static inline bool boot_cpu_is_amd(void) 4168 { 4169 WARN_ON_ONCE(!tdp_enabled); 4170 return shadow_x_mask == 0; 4171 } 4172 4173 /* 4174 * the direct page table on host, use as much mmu features as 4175 * possible, however, kvm currently does not do execution-protection. 4176 */ 4177 static void 4178 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4179 struct kvm_mmu *context) 4180 { 4181 struct rsvd_bits_validate *shadow_zero_check; 4182 int i; 4183 4184 shadow_zero_check = &context->shadow_zero_check; 4185 4186 if (boot_cpu_is_amd()) 4187 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4188 reserved_hpa_bits(), 4189 context->shadow_root_level, false, 4190 boot_cpu_has(X86_FEATURE_GBPAGES), 4191 true, true); 4192 else 4193 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4194 reserved_hpa_bits(), false); 4195 4196 if (!shadow_me_mask) 4197 return; 4198 4199 for (i = context->shadow_root_level; --i >= 0;) { 4200 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4201 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4202 } 4203 } 4204 4205 /* 4206 * as the comments in reset_shadow_zero_bits_mask() except it 4207 * is the shadow page table for intel nested guest. 4208 */ 4209 static void 4210 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4211 struct kvm_mmu *context, bool execonly) 4212 { 4213 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4214 reserved_hpa_bits(), execonly); 4215 } 4216 4217 #define BYTE_MASK(access) \ 4218 ((1 & (access) ? 2 : 0) | \ 4219 (2 & (access) ? 4 : 0) | \ 4220 (3 & (access) ? 8 : 0) | \ 4221 (4 & (access) ? 16 : 0) | \ 4222 (5 & (access) ? 32 : 0) | \ 4223 (6 & (access) ? 64 : 0) | \ 4224 (7 & (access) ? 128 : 0)) 4225 4226 4227 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4228 struct kvm_mmu *mmu, bool ept) 4229 { 4230 unsigned byte; 4231 4232 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4233 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4234 const u8 u = BYTE_MASK(ACC_USER_MASK); 4235 4236 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4237 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4238 bool cr0_wp = is_write_protection(vcpu); 4239 4240 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4241 unsigned pfec = byte << 1; 4242 4243 /* 4244 * Each "*f" variable has a 1 bit for each UWX value 4245 * that causes a fault with the given PFEC. 4246 */ 4247 4248 /* Faults from writes to non-writable pages */ 4249 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4250 /* Faults from user mode accesses to supervisor pages */ 4251 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4252 /* Faults from fetches of non-executable pages*/ 4253 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4254 /* Faults from kernel mode fetches of user pages */ 4255 u8 smepf = 0; 4256 /* Faults from kernel mode accesses of user pages */ 4257 u8 smapf = 0; 4258 4259 if (!ept) { 4260 /* Faults from kernel mode accesses to user pages */ 4261 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4262 4263 /* Not really needed: !nx will cause pte.nx to fault */ 4264 if (!mmu->nx) 4265 ff = 0; 4266 4267 /* Allow supervisor writes if !cr0.wp */ 4268 if (!cr0_wp) 4269 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4270 4271 /* Disallow supervisor fetches of user code if cr4.smep */ 4272 if (cr4_smep) 4273 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4274 4275 /* 4276 * SMAP:kernel-mode data accesses from user-mode 4277 * mappings should fault. A fault is considered 4278 * as a SMAP violation if all of the following 4279 * conditions are true: 4280 * - X86_CR4_SMAP is set in CR4 4281 * - A user page is accessed 4282 * - The access is not a fetch 4283 * - Page fault in kernel mode 4284 * - if CPL = 3 or X86_EFLAGS_AC is clear 4285 * 4286 * Here, we cover the first three conditions. 4287 * The fourth is computed dynamically in permission_fault(); 4288 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4289 * *not* subject to SMAP restrictions. 4290 */ 4291 if (cr4_smap) 4292 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4293 } 4294 4295 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4296 } 4297 } 4298 4299 /* 4300 * PKU is an additional mechanism by which the paging controls access to 4301 * user-mode addresses based on the value in the PKRU register. Protection 4302 * key violations are reported through a bit in the page fault error code. 4303 * Unlike other bits of the error code, the PK bit is not known at the 4304 * call site of e.g. gva_to_gpa; it must be computed directly in 4305 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4306 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4307 * 4308 * In particular the following conditions come from the error code, the 4309 * page tables and the machine state: 4310 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4311 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4312 * - PK is always zero if U=0 in the page tables 4313 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4314 * 4315 * The PKRU bitmask caches the result of these four conditions. The error 4316 * code (minus the P bit) and the page table's U bit form an index into the 4317 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4318 * with the two bits of the PKRU register corresponding to the protection key. 4319 * For the first three conditions above the bits will be 00, thus masking 4320 * away both AD and WD. For all reads or if the last condition holds, WD 4321 * only will be masked away. 4322 */ 4323 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4324 bool ept) 4325 { 4326 unsigned bit; 4327 bool wp; 4328 4329 if (ept) { 4330 mmu->pkru_mask = 0; 4331 return; 4332 } 4333 4334 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4335 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4336 mmu->pkru_mask = 0; 4337 return; 4338 } 4339 4340 wp = is_write_protection(vcpu); 4341 4342 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4343 unsigned pfec, pkey_bits; 4344 bool check_pkey, check_write, ff, uf, wf, pte_user; 4345 4346 pfec = bit << 1; 4347 ff = pfec & PFERR_FETCH_MASK; 4348 uf = pfec & PFERR_USER_MASK; 4349 wf = pfec & PFERR_WRITE_MASK; 4350 4351 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4352 pte_user = pfec & PFERR_RSVD_MASK; 4353 4354 /* 4355 * Only need to check the access which is not an 4356 * instruction fetch and is to a user page. 4357 */ 4358 check_pkey = (!ff && pte_user); 4359 /* 4360 * write access is controlled by PKRU if it is a 4361 * user access or CR0.WP = 1. 4362 */ 4363 check_write = check_pkey && wf && (uf || wp); 4364 4365 /* PKRU.AD stops both read and write access. */ 4366 pkey_bits = !!check_pkey; 4367 /* PKRU.WD stops write access. */ 4368 pkey_bits |= (!!check_write) << 1; 4369 4370 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4371 } 4372 } 4373 4374 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4375 { 4376 unsigned root_level = mmu->root_level; 4377 4378 mmu->last_nonleaf_level = root_level; 4379 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4380 mmu->last_nonleaf_level++; 4381 } 4382 4383 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4384 struct kvm_mmu *context, 4385 int level) 4386 { 4387 context->nx = is_nx(vcpu); 4388 context->root_level = level; 4389 4390 reset_rsvds_bits_mask(vcpu, context); 4391 update_permission_bitmask(vcpu, context, false); 4392 update_pkru_bitmask(vcpu, context, false); 4393 update_last_nonleaf_level(vcpu, context); 4394 4395 MMU_WARN_ON(!is_pae(vcpu)); 4396 context->page_fault = paging64_page_fault; 4397 context->gva_to_gpa = paging64_gva_to_gpa; 4398 context->sync_page = paging64_sync_page; 4399 context->invlpg = paging64_invlpg; 4400 context->shadow_root_level = level; 4401 context->direct_map = false; 4402 } 4403 4404 static void paging64_init_context(struct kvm_vcpu *vcpu, 4405 struct kvm_mmu *context) 4406 { 4407 int root_level = is_la57_mode(vcpu) ? 4408 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4409 4410 paging64_init_context_common(vcpu, context, root_level); 4411 } 4412 4413 static void paging32_init_context(struct kvm_vcpu *vcpu, 4414 struct kvm_mmu *context) 4415 { 4416 context->nx = false; 4417 context->root_level = PT32_ROOT_LEVEL; 4418 4419 reset_rsvds_bits_mask(vcpu, context); 4420 update_permission_bitmask(vcpu, context, false); 4421 update_pkru_bitmask(vcpu, context, false); 4422 update_last_nonleaf_level(vcpu, context); 4423 4424 context->page_fault = paging32_page_fault; 4425 context->gva_to_gpa = paging32_gva_to_gpa; 4426 context->sync_page = paging32_sync_page; 4427 context->invlpg = paging32_invlpg; 4428 context->shadow_root_level = PT32E_ROOT_LEVEL; 4429 context->direct_map = false; 4430 } 4431 4432 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4433 struct kvm_mmu *context) 4434 { 4435 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4436 } 4437 4438 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4439 { 4440 union kvm_mmu_extended_role ext = {0}; 4441 4442 ext.cr0_pg = !!is_paging(vcpu); 4443 ext.cr4_pae = !!is_pae(vcpu); 4444 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4445 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4446 ext.cr4_pse = !!is_pse(vcpu); 4447 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4448 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4449 4450 ext.valid = 1; 4451 4452 return ext; 4453 } 4454 4455 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4456 bool base_only) 4457 { 4458 union kvm_mmu_role role = {0}; 4459 4460 role.base.access = ACC_ALL; 4461 role.base.nxe = !!is_nx(vcpu); 4462 role.base.cr0_wp = is_write_protection(vcpu); 4463 role.base.smm = is_smm(vcpu); 4464 role.base.guest_mode = is_guest_mode(vcpu); 4465 4466 if (base_only) 4467 return role; 4468 4469 role.ext = kvm_calc_mmu_role_ext(vcpu); 4470 4471 return role; 4472 } 4473 4474 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4475 { 4476 /* Use 5-level TDP if and only if it's useful/necessary. */ 4477 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4478 return 4; 4479 4480 return max_tdp_level; 4481 } 4482 4483 static union kvm_mmu_role 4484 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4485 { 4486 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4487 4488 role.base.ad_disabled = (shadow_accessed_mask == 0); 4489 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4490 role.base.direct = true; 4491 role.base.gpte_is_8_bytes = true; 4492 4493 return role; 4494 } 4495 4496 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4497 { 4498 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4499 union kvm_mmu_role new_role = 4500 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4501 4502 if (new_role.as_u64 == context->mmu_role.as_u64) 4503 return; 4504 4505 context->mmu_role.as_u64 = new_role.as_u64; 4506 context->page_fault = kvm_tdp_page_fault; 4507 context->sync_page = nonpaging_sync_page; 4508 context->invlpg = NULL; 4509 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4510 context->direct_map = true; 4511 context->get_guest_pgd = get_cr3; 4512 context->get_pdptr = kvm_pdptr_read; 4513 context->inject_page_fault = kvm_inject_page_fault; 4514 4515 if (!is_paging(vcpu)) { 4516 context->nx = false; 4517 context->gva_to_gpa = nonpaging_gva_to_gpa; 4518 context->root_level = 0; 4519 } else if (is_long_mode(vcpu)) { 4520 context->nx = is_nx(vcpu); 4521 context->root_level = is_la57_mode(vcpu) ? 4522 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4523 reset_rsvds_bits_mask(vcpu, context); 4524 context->gva_to_gpa = paging64_gva_to_gpa; 4525 } else if (is_pae(vcpu)) { 4526 context->nx = is_nx(vcpu); 4527 context->root_level = PT32E_ROOT_LEVEL; 4528 reset_rsvds_bits_mask(vcpu, context); 4529 context->gva_to_gpa = paging64_gva_to_gpa; 4530 } else { 4531 context->nx = false; 4532 context->root_level = PT32_ROOT_LEVEL; 4533 reset_rsvds_bits_mask(vcpu, context); 4534 context->gva_to_gpa = paging32_gva_to_gpa; 4535 } 4536 4537 update_permission_bitmask(vcpu, context, false); 4538 update_pkru_bitmask(vcpu, context, false); 4539 update_last_nonleaf_level(vcpu, context); 4540 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4541 } 4542 4543 static union kvm_mmu_role 4544 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4545 { 4546 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4547 4548 role.base.smep_andnot_wp = role.ext.cr4_smep && 4549 !is_write_protection(vcpu); 4550 role.base.smap_andnot_wp = role.ext.cr4_smap && 4551 !is_write_protection(vcpu); 4552 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4553 4554 return role; 4555 } 4556 4557 static union kvm_mmu_role 4558 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4559 { 4560 union kvm_mmu_role role = 4561 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4562 4563 role.base.direct = !is_paging(vcpu); 4564 4565 if (!is_long_mode(vcpu)) 4566 role.base.level = PT32E_ROOT_LEVEL; 4567 else if (is_la57_mode(vcpu)) 4568 role.base.level = PT64_ROOT_5LEVEL; 4569 else 4570 role.base.level = PT64_ROOT_4LEVEL; 4571 4572 return role; 4573 } 4574 4575 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4576 u32 cr0, u32 cr4, u32 efer, 4577 union kvm_mmu_role new_role) 4578 { 4579 if (!(cr0 & X86_CR0_PG)) 4580 nonpaging_init_context(vcpu, context); 4581 else if (efer & EFER_LMA) 4582 paging64_init_context(vcpu, context); 4583 else if (cr4 & X86_CR4_PAE) 4584 paging32E_init_context(vcpu, context); 4585 else 4586 paging32_init_context(vcpu, context); 4587 4588 context->mmu_role.as_u64 = new_role.as_u64; 4589 reset_shadow_zero_bits_mask(vcpu, context); 4590 } 4591 4592 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4593 { 4594 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4595 union kvm_mmu_role new_role = 4596 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4597 4598 if (new_role.as_u64 != context->mmu_role.as_u64) 4599 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4600 } 4601 4602 static union kvm_mmu_role 4603 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4604 { 4605 union kvm_mmu_role role = 4606 kvm_calc_shadow_root_page_role_common(vcpu, false); 4607 4608 role.base.direct = false; 4609 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4610 4611 return role; 4612 } 4613 4614 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4615 gpa_t nested_cr3) 4616 { 4617 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4618 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4619 4620 context->shadow_root_level = new_role.base.level; 4621 4622 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 4623 4624 if (new_role.as_u64 != context->mmu_role.as_u64) 4625 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4626 } 4627 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4628 4629 static union kvm_mmu_role 4630 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4631 bool execonly, u8 level) 4632 { 4633 union kvm_mmu_role role = {0}; 4634 4635 /* SMM flag is inherited from root_mmu */ 4636 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4637 4638 role.base.level = level; 4639 role.base.gpte_is_8_bytes = true; 4640 role.base.direct = false; 4641 role.base.ad_disabled = !accessed_dirty; 4642 role.base.guest_mode = true; 4643 role.base.access = ACC_ALL; 4644 4645 /* 4646 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 4647 * SMAP variation to denote shadow EPT entries. 4648 */ 4649 role.base.cr0_wp = true; 4650 role.base.smap_andnot_wp = true; 4651 4652 role.ext = kvm_calc_mmu_role_ext(vcpu); 4653 role.ext.execonly = execonly; 4654 4655 return role; 4656 } 4657 4658 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4659 bool accessed_dirty, gpa_t new_eptp) 4660 { 4661 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4662 u8 level = vmx_eptp_page_walk_level(new_eptp); 4663 union kvm_mmu_role new_role = 4664 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4665 execonly, level); 4666 4667 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 4668 4669 if (new_role.as_u64 == context->mmu_role.as_u64) 4670 return; 4671 4672 context->shadow_root_level = level; 4673 4674 context->nx = true; 4675 context->ept_ad = accessed_dirty; 4676 context->page_fault = ept_page_fault; 4677 context->gva_to_gpa = ept_gva_to_gpa; 4678 context->sync_page = ept_sync_page; 4679 context->invlpg = ept_invlpg; 4680 context->root_level = level; 4681 context->direct_map = false; 4682 context->mmu_role.as_u64 = new_role.as_u64; 4683 4684 update_permission_bitmask(vcpu, context, true); 4685 update_pkru_bitmask(vcpu, context, true); 4686 update_last_nonleaf_level(vcpu, context); 4687 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4688 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4689 } 4690 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4691 4692 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4693 { 4694 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4695 4696 kvm_init_shadow_mmu(vcpu, 4697 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 4698 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 4699 vcpu->arch.efer); 4700 4701 context->get_guest_pgd = get_cr3; 4702 context->get_pdptr = kvm_pdptr_read; 4703 context->inject_page_fault = kvm_inject_page_fault; 4704 } 4705 4706 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4707 { 4708 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 4709 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4710 4711 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4712 return; 4713 4714 g_context->mmu_role.as_u64 = new_role.as_u64; 4715 g_context->get_guest_pgd = get_cr3; 4716 g_context->get_pdptr = kvm_pdptr_read; 4717 g_context->inject_page_fault = kvm_inject_page_fault; 4718 4719 /* 4720 * L2 page tables are never shadowed, so there is no need to sync 4721 * SPTEs. 4722 */ 4723 g_context->invlpg = NULL; 4724 4725 /* 4726 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4727 * L1's nested page tables (e.g. EPT12). The nested translation 4728 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4729 * L2's page tables as the first level of translation and L1's 4730 * nested page tables as the second level of translation. Basically 4731 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4732 */ 4733 if (!is_paging(vcpu)) { 4734 g_context->nx = false; 4735 g_context->root_level = 0; 4736 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4737 } else if (is_long_mode(vcpu)) { 4738 g_context->nx = is_nx(vcpu); 4739 g_context->root_level = is_la57_mode(vcpu) ? 4740 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4741 reset_rsvds_bits_mask(vcpu, g_context); 4742 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4743 } else if (is_pae(vcpu)) { 4744 g_context->nx = is_nx(vcpu); 4745 g_context->root_level = PT32E_ROOT_LEVEL; 4746 reset_rsvds_bits_mask(vcpu, g_context); 4747 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4748 } else { 4749 g_context->nx = false; 4750 g_context->root_level = PT32_ROOT_LEVEL; 4751 reset_rsvds_bits_mask(vcpu, g_context); 4752 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4753 } 4754 4755 update_permission_bitmask(vcpu, g_context, false); 4756 update_pkru_bitmask(vcpu, g_context, false); 4757 update_last_nonleaf_level(vcpu, g_context); 4758 } 4759 4760 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 4761 { 4762 if (reset_roots) { 4763 uint i; 4764 4765 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 4766 4767 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4768 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 4769 } 4770 4771 if (mmu_is_nested(vcpu)) 4772 init_kvm_nested_mmu(vcpu); 4773 else if (tdp_enabled) 4774 init_kvm_tdp_mmu(vcpu); 4775 else 4776 init_kvm_softmmu(vcpu); 4777 } 4778 EXPORT_SYMBOL_GPL(kvm_init_mmu); 4779 4780 static union kvm_mmu_page_role 4781 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4782 { 4783 union kvm_mmu_role role; 4784 4785 if (tdp_enabled) 4786 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 4787 else 4788 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 4789 4790 return role.base; 4791 } 4792 4793 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4794 { 4795 kvm_mmu_unload(vcpu); 4796 kvm_init_mmu(vcpu, true); 4797 } 4798 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4799 4800 int kvm_mmu_load(struct kvm_vcpu *vcpu) 4801 { 4802 int r; 4803 4804 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4805 if (r) 4806 goto out; 4807 r = mmu_alloc_roots(vcpu); 4808 kvm_mmu_sync_roots(vcpu); 4809 if (r) 4810 goto out; 4811 kvm_mmu_load_pgd(vcpu); 4812 static_call(kvm_x86_tlb_flush_current)(vcpu); 4813 out: 4814 return r; 4815 } 4816 EXPORT_SYMBOL_GPL(kvm_mmu_load); 4817 4818 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4819 { 4820 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4821 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4822 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4823 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4824 } 4825 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 4826 4827 static bool need_remote_flush(u64 old, u64 new) 4828 { 4829 if (!is_shadow_present_pte(old)) 4830 return false; 4831 if (!is_shadow_present_pte(new)) 4832 return true; 4833 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4834 return true; 4835 old ^= shadow_nx_mask; 4836 new ^= shadow_nx_mask; 4837 return (old & ~new & PT64_PERM_MASK) != 0; 4838 } 4839 4840 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4841 int *bytes) 4842 { 4843 u64 gentry = 0; 4844 int r; 4845 4846 /* 4847 * Assume that the pte write on a page table of the same type 4848 * as the current vcpu paging mode since we update the sptes only 4849 * when they have the same mode. 4850 */ 4851 if (is_pae(vcpu) && *bytes == 4) { 4852 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4853 *gpa &= ~(gpa_t)7; 4854 *bytes = 8; 4855 } 4856 4857 if (*bytes == 4 || *bytes == 8) { 4858 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4859 if (r) 4860 gentry = 0; 4861 } 4862 4863 return gentry; 4864 } 4865 4866 /* 4867 * If we're seeing too many writes to a page, it may no longer be a page table, 4868 * or we may be forking, in which case it is better to unmap the page. 4869 */ 4870 static bool detect_write_flooding(struct kvm_mmu_page *sp) 4871 { 4872 /* 4873 * Skip write-flooding detected for the sp whose level is 1, because 4874 * it can become unsync, then the guest page is not write-protected. 4875 */ 4876 if (sp->role.level == PG_LEVEL_4K) 4877 return false; 4878 4879 atomic_inc(&sp->write_flooding_count); 4880 return atomic_read(&sp->write_flooding_count) >= 3; 4881 } 4882 4883 /* 4884 * Misaligned accesses are too much trouble to fix up; also, they usually 4885 * indicate a page is not used as a page table. 4886 */ 4887 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 4888 int bytes) 4889 { 4890 unsigned offset, pte_size, misaligned; 4891 4892 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 4893 gpa, bytes, sp->role.word); 4894 4895 offset = offset_in_page(gpa); 4896 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 4897 4898 /* 4899 * Sometimes, the OS only writes the last one bytes to update status 4900 * bits, for example, in linux, andb instruction is used in clear_bit(). 4901 */ 4902 if (!(offset & (pte_size - 1)) && bytes == 1) 4903 return false; 4904 4905 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 4906 misaligned |= bytes < 4; 4907 4908 return misaligned; 4909 } 4910 4911 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 4912 { 4913 unsigned page_offset, quadrant; 4914 u64 *spte; 4915 int level; 4916 4917 page_offset = offset_in_page(gpa); 4918 level = sp->role.level; 4919 *nspte = 1; 4920 if (!sp->role.gpte_is_8_bytes) { 4921 page_offset <<= 1; /* 32->64 */ 4922 /* 4923 * A 32-bit pde maps 4MB while the shadow pdes map 4924 * only 2MB. So we need to double the offset again 4925 * and zap two pdes instead of one. 4926 */ 4927 if (level == PT32_ROOT_LEVEL) { 4928 page_offset &= ~7; /* kill rounding error */ 4929 page_offset <<= 1; 4930 *nspte = 2; 4931 } 4932 quadrant = page_offset >> PAGE_SHIFT; 4933 page_offset &= ~PAGE_MASK; 4934 if (quadrant != sp->role.quadrant) 4935 return NULL; 4936 } 4937 4938 spte = &sp->spt[page_offset / sizeof(*spte)]; 4939 return spte; 4940 } 4941 4942 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 4943 const u8 *new, int bytes, 4944 struct kvm_page_track_notifier_node *node) 4945 { 4946 gfn_t gfn = gpa >> PAGE_SHIFT; 4947 struct kvm_mmu_page *sp; 4948 LIST_HEAD(invalid_list); 4949 u64 entry, gentry, *spte; 4950 int npte; 4951 bool remote_flush, local_flush; 4952 4953 /* 4954 * If we don't have indirect shadow pages, it means no page is 4955 * write-protected, so we can exit simply. 4956 */ 4957 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 4958 return; 4959 4960 remote_flush = local_flush = false; 4961 4962 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 4963 4964 /* 4965 * No need to care whether allocation memory is successful 4966 * or not since pte prefetch is skiped if it does not have 4967 * enough objects in the cache. 4968 */ 4969 mmu_topup_memory_caches(vcpu, true); 4970 4971 write_lock(&vcpu->kvm->mmu_lock); 4972 4973 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 4974 4975 ++vcpu->kvm->stat.mmu_pte_write; 4976 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 4977 4978 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 4979 if (detect_write_misaligned(sp, gpa, bytes) || 4980 detect_write_flooding(sp)) { 4981 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 4982 ++vcpu->kvm->stat.mmu_flooded; 4983 continue; 4984 } 4985 4986 spte = get_written_sptes(sp, gpa, &npte); 4987 if (!spte) 4988 continue; 4989 4990 local_flush = true; 4991 while (npte--) { 4992 entry = *spte; 4993 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 4994 if (gentry && sp->role.level != PG_LEVEL_4K) 4995 ++vcpu->kvm->stat.mmu_pde_zapped; 4996 if (need_remote_flush(entry, *spte)) 4997 remote_flush = true; 4998 ++spte; 4999 } 5000 } 5001 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5002 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5003 write_unlock(&vcpu->kvm->mmu_lock); 5004 } 5005 5006 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5007 { 5008 gpa_t gpa; 5009 int r; 5010 5011 if (vcpu->arch.mmu->direct_map) 5012 return 0; 5013 5014 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5015 5016 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5017 5018 return r; 5019 } 5020 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5021 5022 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5023 void *insn, int insn_len) 5024 { 5025 int r, emulation_type = EMULTYPE_PF; 5026 bool direct = vcpu->arch.mmu->direct_map; 5027 5028 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5029 return RET_PF_RETRY; 5030 5031 r = RET_PF_INVALID; 5032 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5033 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5034 if (r == RET_PF_EMULATE) 5035 goto emulate; 5036 } 5037 5038 if (r == RET_PF_INVALID) { 5039 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5040 lower_32_bits(error_code), false); 5041 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5042 return -EIO; 5043 } 5044 5045 if (r < 0) 5046 return r; 5047 if (r != RET_PF_EMULATE) 5048 return 1; 5049 5050 /* 5051 * Before emulating the instruction, check if the error code 5052 * was due to a RO violation while translating the guest page. 5053 * This can occur when using nested virtualization with nested 5054 * paging in both guests. If true, we simply unprotect the page 5055 * and resume the guest. 5056 */ 5057 if (vcpu->arch.mmu->direct_map && 5058 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5059 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5060 return 1; 5061 } 5062 5063 /* 5064 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5065 * optimistically try to just unprotect the page and let the processor 5066 * re-execute the instruction that caused the page fault. Do not allow 5067 * retrying MMIO emulation, as it's not only pointless but could also 5068 * cause us to enter an infinite loop because the processor will keep 5069 * faulting on the non-existent MMIO address. Retrying an instruction 5070 * from a nested guest is also pointless and dangerous as we are only 5071 * explicitly shadowing L1's page tables, i.e. unprotecting something 5072 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5073 */ 5074 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5075 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5076 emulate: 5077 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5078 insn_len); 5079 } 5080 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5081 5082 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5083 gva_t gva, hpa_t root_hpa) 5084 { 5085 int i; 5086 5087 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5088 if (mmu != &vcpu->arch.guest_mmu) { 5089 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5090 if (is_noncanonical_address(gva, vcpu)) 5091 return; 5092 5093 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5094 } 5095 5096 if (!mmu->invlpg) 5097 return; 5098 5099 if (root_hpa == INVALID_PAGE) { 5100 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5101 5102 /* 5103 * INVLPG is required to invalidate any global mappings for the VA, 5104 * irrespective of PCID. Since it would take us roughly similar amount 5105 * of work to determine whether any of the prev_root mappings of the VA 5106 * is marked global, or to just sync it blindly, so we might as well 5107 * just always sync it. 5108 * 5109 * Mappings not reachable via the current cr3 or the prev_roots will be 5110 * synced when switching to that cr3, so nothing needs to be done here 5111 * for them. 5112 */ 5113 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5114 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5115 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5116 } else { 5117 mmu->invlpg(vcpu, gva, root_hpa); 5118 } 5119 } 5120 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); 5121 5122 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5123 { 5124 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5125 ++vcpu->stat.invlpg; 5126 } 5127 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5128 5129 5130 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5131 { 5132 struct kvm_mmu *mmu = vcpu->arch.mmu; 5133 bool tlb_flush = false; 5134 uint i; 5135 5136 if (pcid == kvm_get_active_pcid(vcpu)) { 5137 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5138 tlb_flush = true; 5139 } 5140 5141 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5142 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5143 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5144 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5145 tlb_flush = true; 5146 } 5147 } 5148 5149 if (tlb_flush) 5150 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5151 5152 ++vcpu->stat.invlpg; 5153 5154 /* 5155 * Mappings not reachable via the current cr3 or the prev_roots will be 5156 * synced when switching to that cr3, so nothing needs to be done here 5157 * for them. 5158 */ 5159 } 5160 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5161 5162 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5163 int tdp_huge_page_level) 5164 { 5165 tdp_enabled = enable_tdp; 5166 max_tdp_level = tdp_max_root_level; 5167 5168 /* 5169 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5170 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5171 * the kernel is not. But, KVM never creates a page size greater than 5172 * what is used by the kernel for any given HVA, i.e. the kernel's 5173 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5174 */ 5175 if (tdp_enabled) 5176 max_huge_page_level = tdp_huge_page_level; 5177 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5178 max_huge_page_level = PG_LEVEL_1G; 5179 else 5180 max_huge_page_level = PG_LEVEL_2M; 5181 } 5182 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5183 5184 /* The return value indicates if tlb flush on all vcpus is needed. */ 5185 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5186 5187 /* The caller should hold mmu-lock before calling this function. */ 5188 static __always_inline bool 5189 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5190 slot_level_handler fn, int start_level, int end_level, 5191 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5192 { 5193 struct slot_rmap_walk_iterator iterator; 5194 bool flush = false; 5195 5196 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5197 end_gfn, &iterator) { 5198 if (iterator.rmap) 5199 flush |= fn(kvm, iterator.rmap); 5200 5201 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5202 if (flush && lock_flush_tlb) { 5203 kvm_flush_remote_tlbs_with_address(kvm, 5204 start_gfn, 5205 iterator.gfn - start_gfn + 1); 5206 flush = false; 5207 } 5208 cond_resched_rwlock_write(&kvm->mmu_lock); 5209 } 5210 } 5211 5212 if (flush && lock_flush_tlb) { 5213 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5214 end_gfn - start_gfn + 1); 5215 flush = false; 5216 } 5217 5218 return flush; 5219 } 5220 5221 static __always_inline bool 5222 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5223 slot_level_handler fn, int start_level, int end_level, 5224 bool lock_flush_tlb) 5225 { 5226 return slot_handle_level_range(kvm, memslot, fn, start_level, 5227 end_level, memslot->base_gfn, 5228 memslot->base_gfn + memslot->npages - 1, 5229 lock_flush_tlb); 5230 } 5231 5232 static __always_inline bool 5233 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5234 slot_level_handler fn, bool lock_flush_tlb) 5235 { 5236 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5237 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5238 } 5239 5240 static __always_inline bool 5241 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5242 slot_level_handler fn, bool lock_flush_tlb) 5243 { 5244 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, 5245 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5246 } 5247 5248 static __always_inline bool 5249 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5250 slot_level_handler fn, bool lock_flush_tlb) 5251 { 5252 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5253 PG_LEVEL_4K, lock_flush_tlb); 5254 } 5255 5256 static void free_mmu_pages(struct kvm_mmu *mmu) 5257 { 5258 free_page((unsigned long)mmu->pae_root); 5259 free_page((unsigned long)mmu->lm_root); 5260 } 5261 5262 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5263 { 5264 struct page *page; 5265 int i; 5266 5267 mmu->root_hpa = INVALID_PAGE; 5268 mmu->root_pgd = 0; 5269 mmu->translate_gpa = translate_gpa; 5270 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5271 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5272 5273 /* 5274 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5275 * while the PDP table is a per-vCPU construct that's allocated at MMU 5276 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5277 * x86_64. Therefore we need to allocate the PDP table in the first 5278 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5279 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5280 * skip allocating the PDP table. 5281 */ 5282 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5283 return 0; 5284 5285 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5286 if (!page) 5287 return -ENOMEM; 5288 5289 mmu->pae_root = page_address(page); 5290 for (i = 0; i < 4; ++i) 5291 mmu->pae_root[i] = INVALID_PAGE; 5292 5293 return 0; 5294 } 5295 5296 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5297 { 5298 int ret; 5299 5300 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5301 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5302 5303 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5304 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5305 5306 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5307 5308 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5309 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5310 5311 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5312 5313 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5314 if (ret) 5315 return ret; 5316 5317 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5318 if (ret) 5319 goto fail_allocate_root; 5320 5321 return ret; 5322 fail_allocate_root: 5323 free_mmu_pages(&vcpu->arch.guest_mmu); 5324 return ret; 5325 } 5326 5327 #define BATCH_ZAP_PAGES 10 5328 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5329 { 5330 struct kvm_mmu_page *sp, *node; 5331 int nr_zapped, batch = 0; 5332 5333 restart: 5334 list_for_each_entry_safe_reverse(sp, node, 5335 &kvm->arch.active_mmu_pages, link) { 5336 /* 5337 * No obsolete valid page exists before a newly created page 5338 * since active_mmu_pages is a FIFO list. 5339 */ 5340 if (!is_obsolete_sp(kvm, sp)) 5341 break; 5342 5343 /* 5344 * Invalid pages should never land back on the list of active 5345 * pages. Skip the bogus page, otherwise we'll get stuck in an 5346 * infinite loop if the page gets put back on the list (again). 5347 */ 5348 if (WARN_ON(sp->role.invalid)) 5349 continue; 5350 5351 /* 5352 * No need to flush the TLB since we're only zapping shadow 5353 * pages with an obsolete generation number and all vCPUS have 5354 * loaded a new root, i.e. the shadow pages being zapped cannot 5355 * be in active use by the guest. 5356 */ 5357 if (batch >= BATCH_ZAP_PAGES && 5358 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5359 batch = 0; 5360 goto restart; 5361 } 5362 5363 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5364 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5365 batch += nr_zapped; 5366 goto restart; 5367 } 5368 } 5369 5370 /* 5371 * Trigger a remote TLB flush before freeing the page tables to ensure 5372 * KVM is not in the middle of a lockless shadow page table walk, which 5373 * may reference the pages. 5374 */ 5375 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5376 } 5377 5378 /* 5379 * Fast invalidate all shadow pages and use lock-break technique 5380 * to zap obsolete pages. 5381 * 5382 * It's required when memslot is being deleted or VM is being 5383 * destroyed, in these cases, we should ensure that KVM MMU does 5384 * not use any resource of the being-deleted slot or all slots 5385 * after calling the function. 5386 */ 5387 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5388 { 5389 lockdep_assert_held(&kvm->slots_lock); 5390 5391 write_lock(&kvm->mmu_lock); 5392 trace_kvm_mmu_zap_all_fast(kvm); 5393 5394 /* 5395 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5396 * held for the entire duration of zapping obsolete pages, it's 5397 * impossible for there to be multiple invalid generations associated 5398 * with *valid* shadow pages at any given time, i.e. there is exactly 5399 * one valid generation and (at most) one invalid generation. 5400 */ 5401 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5402 5403 /* 5404 * Notify all vcpus to reload its shadow page table and flush TLB. 5405 * Then all vcpus will switch to new shadow page table with the new 5406 * mmu_valid_gen. 5407 * 5408 * Note: we need to do this under the protection of mmu_lock, 5409 * otherwise, vcpu would purge shadow page but miss tlb flush. 5410 */ 5411 kvm_reload_remote_mmus(kvm); 5412 5413 kvm_zap_obsolete_pages(kvm); 5414 5415 if (is_tdp_mmu_enabled(kvm)) 5416 kvm_tdp_mmu_zap_all(kvm); 5417 5418 write_unlock(&kvm->mmu_lock); 5419 } 5420 5421 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5422 { 5423 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5424 } 5425 5426 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5427 struct kvm_memory_slot *slot, 5428 struct kvm_page_track_notifier_node *node) 5429 { 5430 kvm_mmu_zap_all_fast(kvm); 5431 } 5432 5433 void kvm_mmu_init_vm(struct kvm *kvm) 5434 { 5435 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5436 5437 kvm_mmu_init_tdp_mmu(kvm); 5438 5439 node->track_write = kvm_mmu_pte_write; 5440 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5441 kvm_page_track_register_notifier(kvm, node); 5442 } 5443 5444 void kvm_mmu_uninit_vm(struct kvm *kvm) 5445 { 5446 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5447 5448 kvm_page_track_unregister_notifier(kvm, node); 5449 5450 kvm_mmu_uninit_tdp_mmu(kvm); 5451 } 5452 5453 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5454 { 5455 struct kvm_memslots *slots; 5456 struct kvm_memory_slot *memslot; 5457 int i; 5458 bool flush; 5459 5460 write_lock(&kvm->mmu_lock); 5461 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5462 slots = __kvm_memslots(kvm, i); 5463 kvm_for_each_memslot(memslot, slots) { 5464 gfn_t start, end; 5465 5466 start = max(gfn_start, memslot->base_gfn); 5467 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5468 if (start >= end) 5469 continue; 5470 5471 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5472 PG_LEVEL_4K, 5473 KVM_MAX_HUGEPAGE_LEVEL, 5474 start, end - 1, true); 5475 } 5476 } 5477 5478 if (is_tdp_mmu_enabled(kvm)) { 5479 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end); 5480 if (flush) 5481 kvm_flush_remote_tlbs(kvm); 5482 } 5483 5484 write_unlock(&kvm->mmu_lock); 5485 } 5486 5487 static bool slot_rmap_write_protect(struct kvm *kvm, 5488 struct kvm_rmap_head *rmap_head) 5489 { 5490 return __rmap_write_protect(kvm, rmap_head, false); 5491 } 5492 5493 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5494 struct kvm_memory_slot *memslot, 5495 int start_level) 5496 { 5497 bool flush; 5498 5499 write_lock(&kvm->mmu_lock); 5500 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5501 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5502 if (is_tdp_mmu_enabled(kvm)) 5503 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K); 5504 write_unlock(&kvm->mmu_lock); 5505 5506 /* 5507 * We can flush all the TLBs out of the mmu lock without TLB 5508 * corruption since we just change the spte from writable to 5509 * readonly so that we only need to care the case of changing 5510 * spte from present to present (changing the spte from present 5511 * to nonpresent will flush all the TLBs immediately), in other 5512 * words, the only case we care is mmu_spte_update() where we 5513 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5514 * instead of PT_WRITABLE_MASK, that means it does not depend 5515 * on PT_WRITABLE_MASK anymore. 5516 */ 5517 if (flush) 5518 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5519 } 5520 5521 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5522 struct kvm_rmap_head *rmap_head) 5523 { 5524 u64 *sptep; 5525 struct rmap_iterator iter; 5526 int need_tlb_flush = 0; 5527 kvm_pfn_t pfn; 5528 struct kvm_mmu_page *sp; 5529 5530 restart: 5531 for_each_rmap_spte(rmap_head, &iter, sptep) { 5532 sp = sptep_to_sp(sptep); 5533 pfn = spte_to_pfn(*sptep); 5534 5535 /* 5536 * We cannot do huge page mapping for indirect shadow pages, 5537 * which are found on the last rmap (level = 1) when not using 5538 * tdp; such shadow pages are synced with the page table in 5539 * the guest, and the guest page table is using 4K page size 5540 * mapping if the indirect sp has level = 1. 5541 */ 5542 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5543 (kvm_is_zone_device_pfn(pfn) || 5544 PageCompound(pfn_to_page(pfn)))) { 5545 pte_list_remove(rmap_head, sptep); 5546 5547 if (kvm_available_flush_tlb_with_range()) 5548 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5549 KVM_PAGES_PER_HPAGE(sp->role.level)); 5550 else 5551 need_tlb_flush = 1; 5552 5553 goto restart; 5554 } 5555 } 5556 5557 return need_tlb_flush; 5558 } 5559 5560 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5561 const struct kvm_memory_slot *memslot) 5562 { 5563 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5564 write_lock(&kvm->mmu_lock); 5565 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5566 kvm_mmu_zap_collapsible_spte, true); 5567 5568 if (is_tdp_mmu_enabled(kvm)) 5569 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot); 5570 write_unlock(&kvm->mmu_lock); 5571 } 5572 5573 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5574 struct kvm_memory_slot *memslot) 5575 { 5576 /* 5577 * All current use cases for flushing the TLBs for a specific memslot 5578 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5579 * The interaction between the various operations on memslot must be 5580 * serialized by slots_locks to ensure the TLB flush from one operation 5581 * is observed by any other operation on the same memslot. 5582 */ 5583 lockdep_assert_held(&kvm->slots_lock); 5584 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5585 memslot->npages); 5586 } 5587 5588 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5589 struct kvm_memory_slot *memslot) 5590 { 5591 bool flush; 5592 5593 write_lock(&kvm->mmu_lock); 5594 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 5595 if (is_tdp_mmu_enabled(kvm)) 5596 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5597 write_unlock(&kvm->mmu_lock); 5598 5599 /* 5600 * It's also safe to flush TLBs out of mmu lock here as currently this 5601 * function is only used for dirty logging, in which case flushing TLB 5602 * out of mmu lock also guarantees no dirty pages will be lost in 5603 * dirty_bitmap. 5604 */ 5605 if (flush) 5606 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5607 } 5608 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 5609 5610 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 5611 struct kvm_memory_slot *memslot) 5612 { 5613 bool flush; 5614 5615 write_lock(&kvm->mmu_lock); 5616 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 5617 false); 5618 if (is_tdp_mmu_enabled(kvm)) 5619 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M); 5620 write_unlock(&kvm->mmu_lock); 5621 5622 if (flush) 5623 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5624 } 5625 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 5626 5627 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 5628 struct kvm_memory_slot *memslot) 5629 { 5630 bool flush; 5631 5632 write_lock(&kvm->mmu_lock); 5633 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 5634 if (is_tdp_mmu_enabled(kvm)) 5635 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot); 5636 write_unlock(&kvm->mmu_lock); 5637 5638 if (flush) 5639 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5640 } 5641 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 5642 5643 void kvm_mmu_zap_all(struct kvm *kvm) 5644 { 5645 struct kvm_mmu_page *sp, *node; 5646 LIST_HEAD(invalid_list); 5647 int ign; 5648 5649 write_lock(&kvm->mmu_lock); 5650 restart: 5651 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5652 if (WARN_ON(sp->role.invalid)) 5653 continue; 5654 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5655 goto restart; 5656 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5657 goto restart; 5658 } 5659 5660 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5661 5662 if (is_tdp_mmu_enabled(kvm)) 5663 kvm_tdp_mmu_zap_all(kvm); 5664 5665 write_unlock(&kvm->mmu_lock); 5666 } 5667 5668 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5669 { 5670 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5671 5672 gen &= MMIO_SPTE_GEN_MASK; 5673 5674 /* 5675 * Generation numbers are incremented in multiples of the number of 5676 * address spaces in order to provide unique generations across all 5677 * address spaces. Strip what is effectively the address space 5678 * modifier prior to checking for a wrap of the MMIO generation so 5679 * that a wrap in any address space is detected. 5680 */ 5681 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5682 5683 /* 5684 * The very rare case: if the MMIO generation number has wrapped, 5685 * zap all shadow pages. 5686 */ 5687 if (unlikely(gen == 0)) { 5688 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5689 kvm_mmu_zap_all_fast(kvm); 5690 } 5691 } 5692 5693 static unsigned long 5694 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5695 { 5696 struct kvm *kvm; 5697 int nr_to_scan = sc->nr_to_scan; 5698 unsigned long freed = 0; 5699 5700 mutex_lock(&kvm_lock); 5701 5702 list_for_each_entry(kvm, &vm_list, vm_list) { 5703 int idx; 5704 LIST_HEAD(invalid_list); 5705 5706 /* 5707 * Never scan more than sc->nr_to_scan VM instances. 5708 * Will not hit this condition practically since we do not try 5709 * to shrink more than one VM and it is very unlikely to see 5710 * !n_used_mmu_pages so many times. 5711 */ 5712 if (!nr_to_scan--) 5713 break; 5714 /* 5715 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5716 * here. We may skip a VM instance errorneosly, but we do not 5717 * want to shrink a VM that only started to populate its MMU 5718 * anyway. 5719 */ 5720 if (!kvm->arch.n_used_mmu_pages && 5721 !kvm_has_zapped_obsolete_pages(kvm)) 5722 continue; 5723 5724 idx = srcu_read_lock(&kvm->srcu); 5725 write_lock(&kvm->mmu_lock); 5726 5727 if (kvm_has_zapped_obsolete_pages(kvm)) { 5728 kvm_mmu_commit_zap_page(kvm, 5729 &kvm->arch.zapped_obsolete_pages); 5730 goto unlock; 5731 } 5732 5733 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 5734 5735 unlock: 5736 write_unlock(&kvm->mmu_lock); 5737 srcu_read_unlock(&kvm->srcu, idx); 5738 5739 /* 5740 * unfair on small ones 5741 * per-vm shrinkers cry out 5742 * sadness comes quickly 5743 */ 5744 list_move_tail(&kvm->vm_list, &vm_list); 5745 break; 5746 } 5747 5748 mutex_unlock(&kvm_lock); 5749 return freed; 5750 } 5751 5752 static unsigned long 5753 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5754 { 5755 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 5756 } 5757 5758 static struct shrinker mmu_shrinker = { 5759 .count_objects = mmu_shrink_count, 5760 .scan_objects = mmu_shrink_scan, 5761 .seeks = DEFAULT_SEEKS * 10, 5762 }; 5763 5764 static void mmu_destroy_caches(void) 5765 { 5766 kmem_cache_destroy(pte_list_desc_cache); 5767 kmem_cache_destroy(mmu_page_header_cache); 5768 } 5769 5770 static void kvm_set_mmio_spte_mask(void) 5771 { 5772 u64 mask; 5773 5774 /* 5775 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 5776 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 5777 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 5778 * 52-bit physical addresses then there are no reserved PA bits in the 5779 * PTEs and so the reserved PA approach must be disabled. 5780 */ 5781 if (shadow_phys_bits < 52) 5782 mask = BIT_ULL(51) | PT_PRESENT_MASK; 5783 else 5784 mask = 0; 5785 5786 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 5787 } 5788 5789 static bool get_nx_auto_mode(void) 5790 { 5791 /* Return true when CPU has the bug, and mitigations are ON */ 5792 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 5793 } 5794 5795 static void __set_nx_huge_pages(bool val) 5796 { 5797 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 5798 } 5799 5800 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 5801 { 5802 bool old_val = nx_huge_pages; 5803 bool new_val; 5804 5805 /* In "auto" mode deploy workaround only if CPU has the bug. */ 5806 if (sysfs_streq(val, "off")) 5807 new_val = 0; 5808 else if (sysfs_streq(val, "force")) 5809 new_val = 1; 5810 else if (sysfs_streq(val, "auto")) 5811 new_val = get_nx_auto_mode(); 5812 else if (strtobool(val, &new_val) < 0) 5813 return -EINVAL; 5814 5815 __set_nx_huge_pages(new_val); 5816 5817 if (new_val != old_val) { 5818 struct kvm *kvm; 5819 5820 mutex_lock(&kvm_lock); 5821 5822 list_for_each_entry(kvm, &vm_list, vm_list) { 5823 mutex_lock(&kvm->slots_lock); 5824 kvm_mmu_zap_all_fast(kvm); 5825 mutex_unlock(&kvm->slots_lock); 5826 5827 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5828 } 5829 mutex_unlock(&kvm_lock); 5830 } 5831 5832 return 0; 5833 } 5834 5835 int kvm_mmu_module_init(void) 5836 { 5837 int ret = -ENOMEM; 5838 5839 if (nx_huge_pages == -1) 5840 __set_nx_huge_pages(get_nx_auto_mode()); 5841 5842 /* 5843 * MMU roles use union aliasing which is, generally speaking, an 5844 * undefined behavior. However, we supposedly know how compilers behave 5845 * and the current status quo is unlikely to change. Guardians below are 5846 * supposed to let us know if the assumption becomes false. 5847 */ 5848 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 5849 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 5850 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 5851 5852 kvm_mmu_reset_all_pte_masks(); 5853 5854 kvm_set_mmio_spte_mask(); 5855 5856 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 5857 sizeof(struct pte_list_desc), 5858 0, SLAB_ACCOUNT, NULL); 5859 if (!pte_list_desc_cache) 5860 goto out; 5861 5862 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 5863 sizeof(struct kvm_mmu_page), 5864 0, SLAB_ACCOUNT, NULL); 5865 if (!mmu_page_header_cache) 5866 goto out; 5867 5868 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 5869 goto out; 5870 5871 ret = register_shrinker(&mmu_shrinker); 5872 if (ret) 5873 goto out; 5874 5875 return 0; 5876 5877 out: 5878 mmu_destroy_caches(); 5879 return ret; 5880 } 5881 5882 /* 5883 * Calculate mmu pages needed for kvm. 5884 */ 5885 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 5886 { 5887 unsigned long nr_mmu_pages; 5888 unsigned long nr_pages = 0; 5889 struct kvm_memslots *slots; 5890 struct kvm_memory_slot *memslot; 5891 int i; 5892 5893 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5894 slots = __kvm_memslots(kvm, i); 5895 5896 kvm_for_each_memslot(memslot, slots) 5897 nr_pages += memslot->npages; 5898 } 5899 5900 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 5901 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 5902 5903 return nr_mmu_pages; 5904 } 5905 5906 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 5907 { 5908 kvm_mmu_unload(vcpu); 5909 free_mmu_pages(&vcpu->arch.root_mmu); 5910 free_mmu_pages(&vcpu->arch.guest_mmu); 5911 mmu_free_memory_caches(vcpu); 5912 } 5913 5914 void kvm_mmu_module_exit(void) 5915 { 5916 mmu_destroy_caches(); 5917 percpu_counter_destroy(&kvm_total_used_mmu_pages); 5918 unregister_shrinker(&mmu_shrinker); 5919 mmu_audit_disable(); 5920 } 5921 5922 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 5923 { 5924 unsigned int old_val; 5925 int err; 5926 5927 old_val = nx_huge_pages_recovery_ratio; 5928 err = param_set_uint(val, kp); 5929 if (err) 5930 return err; 5931 5932 if (READ_ONCE(nx_huge_pages) && 5933 !old_val && nx_huge_pages_recovery_ratio) { 5934 struct kvm *kvm; 5935 5936 mutex_lock(&kvm_lock); 5937 5938 list_for_each_entry(kvm, &vm_list, vm_list) 5939 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5940 5941 mutex_unlock(&kvm_lock); 5942 } 5943 5944 return err; 5945 } 5946 5947 static void kvm_recover_nx_lpages(struct kvm *kvm) 5948 { 5949 int rcu_idx; 5950 struct kvm_mmu_page *sp; 5951 unsigned int ratio; 5952 LIST_HEAD(invalid_list); 5953 ulong to_zap; 5954 5955 rcu_idx = srcu_read_lock(&kvm->srcu); 5956 write_lock(&kvm->mmu_lock); 5957 5958 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 5959 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 5960 for ( ; to_zap; --to_zap) { 5961 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 5962 break; 5963 5964 /* 5965 * We use a separate list instead of just using active_mmu_pages 5966 * because the number of lpage_disallowed pages is expected to 5967 * be relatively small compared to the total. 5968 */ 5969 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 5970 struct kvm_mmu_page, 5971 lpage_disallowed_link); 5972 WARN_ON_ONCE(!sp->lpage_disallowed); 5973 if (is_tdp_mmu_page(sp)) { 5974 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn, 5975 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level)); 5976 } else { 5977 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 5978 WARN_ON_ONCE(sp->lpage_disallowed); 5979 } 5980 5981 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5982 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5983 cond_resched_rwlock_write(&kvm->mmu_lock); 5984 } 5985 } 5986 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5987 5988 write_unlock(&kvm->mmu_lock); 5989 srcu_read_unlock(&kvm->srcu, rcu_idx); 5990 } 5991 5992 static long get_nx_lpage_recovery_timeout(u64 start_time) 5993 { 5994 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 5995 ? start_time + 60 * HZ - get_jiffies_64() 5996 : MAX_SCHEDULE_TIMEOUT; 5997 } 5998 5999 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6000 { 6001 u64 start_time; 6002 long remaining_time; 6003 6004 while (true) { 6005 start_time = get_jiffies_64(); 6006 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6007 6008 set_current_state(TASK_INTERRUPTIBLE); 6009 while (!kthread_should_stop() && remaining_time > 0) { 6010 schedule_timeout(remaining_time); 6011 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6012 set_current_state(TASK_INTERRUPTIBLE); 6013 } 6014 6015 set_current_state(TASK_RUNNING); 6016 6017 if (kthread_should_stop()) 6018 return 0; 6019 6020 kvm_recover_nx_lpages(kvm); 6021 } 6022 } 6023 6024 int kvm_mmu_post_init_vm(struct kvm *kvm) 6025 { 6026 int err; 6027 6028 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6029 "kvm-nx-lpage-recovery", 6030 &kvm->arch.nx_lpage_recovery_thread); 6031 if (!err) 6032 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6033 6034 return err; 6035 } 6036 6037 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6038 { 6039 if (kvm->arch.nx_lpage_recovery_thread) 6040 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6041 } 6042