xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54 
55 extern bool itlb_multihit_kvm_mitigation;
56 
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64 
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67 
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 	.set = set_nx_huge_pages,
70 	.get = param_get_bool,
71 };
72 
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 	.set = set_nx_huge_pages_recovery_ratio,
75 	.get = param_get_uint,
76 };
77 
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 		&nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83 
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86 
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95 
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98 
99 enum {
100 	AUDIT_PRE_PAGE_FAULT,
101 	AUDIT_POST_PAGE_FAULT,
102 	AUDIT_PRE_PTE_WRITE,
103 	AUDIT_POST_PTE_WRITE,
104 	AUDIT_PRE_SYNC,
105 	AUDIT_POST_SYNC
106 };
107 
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112 
113 #define PTE_PREFETCH_NUM		8
114 
115 #define PT32_LEVEL_BITS 10
116 
117 #define PT32_LEVEL_SHIFT(level) \
118 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119 
120 #define PT32_LVL_OFFSET_MASK(level) \
121 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 						* PT32_LEVEL_BITS))) - 1))
123 
124 #define PT32_INDEX(address, level)\
125 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126 
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #include <trace/events/kvm.h>
136 
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139 
140 struct pte_list_desc {
141 	u64 *sptes[PTE_LIST_EXT];
142 	struct pte_list_desc *more;
143 };
144 
145 struct kvm_shadow_walk_iterator {
146 	u64 addr;
147 	hpa_t shadow_addr;
148 	u64 *sptep;
149 	int level;
150 	unsigned index;
151 };
152 
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155 					 (_root), (_addr));                \
156 	     shadow_walk_okay(&(_walker));			           \
157 	     shadow_walk_next(&(_walker)))
158 
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
161 	     shadow_walk_okay(&(_walker));			\
162 	     shadow_walk_next(&(_walker)))
163 
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
165 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
166 	     shadow_walk_okay(&(_walker)) &&				\
167 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
168 	     __shadow_walk_next(&(_walker), spte))
169 
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173 
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177 
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180 
181 
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 	return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186 
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 		struct kvm_tlb_range *range)
189 {
190 	int ret = -ENOTSUPP;
191 
192 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194 
195 	if (ret)
196 		kvm_flush_remote_tlbs(kvm);
197 }
198 
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 		u64 start_gfn, u64 pages)
201 {
202 	struct kvm_tlb_range range;
203 
204 	range.start_gfn = start_gfn;
205 	range.pages = pages;
206 
207 	kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209 
210 bool is_nx_huge_page_enabled(void)
211 {
212 	return READ_ONCE(nx_huge_pages);
213 }
214 
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 			   unsigned int access)
217 {
218 	u64 mask = make_mmio_spte(vcpu, gfn, access);
219 
220 	trace_mark_mmio_spte(sptep, gfn, mask);
221 	mmu_spte_set(sptep, mask);
222 }
223 
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227 
228 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 	       & shadow_nonpresent_or_rsvd_mask;
230 
231 	return gpa >> PAGE_SHIFT;
232 }
233 
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 	return spte & shadow_mmio_access_mask;
237 }
238 
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 			  kvm_pfn_t pfn, unsigned int access)
241 {
242 	if (unlikely(is_noslot_pfn(pfn))) {
243 		mark_mmio_spte(vcpu, sptep, gfn, access);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 	u64 kvm_gen, spte_gen, gen;
253 
254 	gen = kvm_vcpu_memslots(vcpu)->generation;
255 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 		return false;
257 
258 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 	spte_gen = get_mmio_spte_generation(spte);
260 
261 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 	return likely(kvm_gen == spte_gen);
263 }
264 
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268 	/* Check if guest physical address doesn't exceed guest maximum */
269 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 		exception->error_code |= PFERR_RSVD_MASK;
271 		return UNMAPPED_GVA;
272 	}
273 
274         return gpa;
275 }
276 
277 static int is_cpuid_PSE36(void)
278 {
279 	return 1;
280 }
281 
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.efer & EFER_NX;
285 }
286 
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290 
291 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293 
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 	WRITE_ONCE(*sptep, spte);
298 }
299 
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 	WRITE_ONCE(*sptep, spte);
303 }
304 
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 	return xchg(sptep, spte);
308 }
309 
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 	return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 	struct {
317 		u32 spte_low;
318 		u32 spte_high;
319 	};
320 	u64 spte;
321 };
322 
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 
327 	if (is_shadow_present_pte(spte))
328 		return;
329 
330 	/* Ensure the spte is completely set before we increase the count */
331 	smp_wmb();
332 	sp->clear_spte_count++;
333 }
334 
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 	union split_spte *ssptep, sspte;
338 
339 	ssptep = (union split_spte *)sptep;
340 	sspte = (union split_spte)spte;
341 
342 	ssptep->spte_high = sspte.spte_high;
343 
344 	/*
345 	 * If we map the spte from nonpresent to present, We should store
346 	 * the high bits firstly, then set present bit, so cpu can not
347 	 * fetch this spte while we are setting the spte.
348 	 */
349 	smp_wmb();
350 
351 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353 
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 	union split_spte *ssptep, sspte;
357 
358 	ssptep = (union split_spte *)sptep;
359 	sspte = (union split_spte)spte;
360 
361 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 
363 	/*
364 	 * If we map the spte from present to nonpresent, we should clear
365 	 * present bit firstly to avoid vcpu fetch the old high bits.
366 	 */
367 	smp_wmb();
368 
369 	ssptep->spte_high = sspte.spte_high;
370 	count_spte_clear(sptep, spte);
371 }
372 
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 	union split_spte *ssptep, sspte, orig;
376 
377 	ssptep = (union split_spte *)sptep;
378 	sspte = (union split_spte)spte;
379 
380 	/* xchg acts as a barrier before the setting of the high bits */
381 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 	orig.spte_high = ssptep->spte_high;
383 	ssptep->spte_high = sspte.spte_high;
384 	count_spte_clear(sptep, spte);
385 
386 	return orig.spte;
387 }
388 
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 	union split_spte spte, *orig = (union split_spte *)sptep;
411 	int count;
412 
413 retry:
414 	count = sp->clear_spte_count;
415 	smp_rmb();
416 
417 	spte.spte_low = orig->spte_low;
418 	smp_rmb();
419 
420 	spte.spte_high = orig->spte_high;
421 	smp_rmb();
422 
423 	if (unlikely(spte.spte_low != orig->spte_low ||
424 	      count != sp->clear_spte_count))
425 		goto retry;
426 
427 	return spte.spte;
428 }
429 #endif
430 
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 	if (!is_shadow_present_pte(spte))
434 		return false;
435 
436 	/*
437 	 * Always atomically update spte if it can be updated
438 	 * out of mmu-lock, it can ensure dirty bit is not lost,
439 	 * also, it can help us to get a stable is_writable_pte()
440 	 * to ensure tlb flush is not missed.
441 	 */
442 	if (spte_can_locklessly_be_made_writable(spte) ||
443 	    is_access_track_spte(spte))
444 		return true;
445 
446 	if (spte_ad_enabled(spte)) {
447 		if ((spte & shadow_accessed_mask) == 0 ||
448 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 			return true;
450 	}
451 
452 	return false;
453 }
454 
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 	WARN_ON(is_shadow_present_pte(*sptep));
464 	__set_spte(sptep, new_spte);
465 }
466 
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 	u64 old_spte = *sptep;
474 
475 	WARN_ON(!is_shadow_present_pte(new_spte));
476 
477 	if (!is_shadow_present_pte(old_spte)) {
478 		mmu_spte_set(sptep, new_spte);
479 		return old_spte;
480 	}
481 
482 	if (!spte_has_volatile_bits(old_spte))
483 		__update_clear_spte_fast(sptep, new_spte);
484 	else
485 		old_spte = __update_clear_spte_slow(sptep, new_spte);
486 
487 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488 
489 	return old_spte;
490 }
491 
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 	bool flush = false;
506 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507 
508 	if (!is_shadow_present_pte(old_spte))
509 		return false;
510 
511 	/*
512 	 * For the spte updated out of mmu-lock is safe, since
513 	 * we always atomically update it, see the comments in
514 	 * spte_has_volatile_bits().
515 	 */
516 	if (spte_can_locklessly_be_made_writable(old_spte) &&
517 	      !is_writable_pte(new_spte))
518 		flush = true;
519 
520 	/*
521 	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 	 * to guarantee consistency between TLB and page tables.
523 	 */
524 
525 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 		flush = true;
527 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 	}
529 
530 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 		flush = true;
532 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 	}
534 
535 	return flush;
536 }
537 
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 	kvm_pfn_t pfn;
547 	u64 old_spte = *sptep;
548 
549 	if (!spte_has_volatile_bits(old_spte))
550 		__update_clear_spte_fast(sptep, 0ull);
551 	else
552 		old_spte = __update_clear_spte_slow(sptep, 0ull);
553 
554 	if (!is_shadow_present_pte(old_spte))
555 		return 0;
556 
557 	pfn = spte_to_pfn(old_spte);
558 
559 	/*
560 	 * KVM does not hold the refcount of the page used by
561 	 * kvm mmu, before reclaiming the page, we should
562 	 * unmap it from mmu first.
563 	 */
564 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565 
566 	if (is_accessed_spte(old_spte))
567 		kvm_set_pfn_accessed(pfn);
568 
569 	if (is_dirty_spte(old_spte))
570 		kvm_set_pfn_dirty(pfn);
571 
572 	return 1;
573 }
574 
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 	__update_clear_spte_fast(sptep, 0ull);
583 }
584 
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 	return __get_spte_lockless(sptep);
588 }
589 
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 	u64 new_spte = spte;
594 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596 
597 	WARN_ON_ONCE(spte_ad_enabled(spte));
598 	WARN_ON_ONCE(!is_access_track_spte(spte));
599 
600 	new_spte &= ~shadow_acc_track_mask;
601 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 	new_spte |= saved_bits;
604 
605 	return new_spte;
606 }
607 
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611 	u64 spte = mmu_spte_get_lockless(sptep);
612 
613 	if (!is_accessed_spte(spte))
614 		return false;
615 
616 	if (spte_ad_enabled(spte)) {
617 		clear_bit((ffs(shadow_accessed_mask) - 1),
618 			  (unsigned long *)sptep);
619 	} else {
620 		/*
621 		 * Capture the dirty status of the page, so that it doesn't get
622 		 * lost when the SPTE is marked for access tracking.
623 		 */
624 		if (is_writable_pte(spte))
625 			kvm_set_pfn_dirty(spte_to_pfn(spte));
626 
627 		spte = mark_spte_for_access_track(spte);
628 		mmu_spte_update_no_track(sptep, spte);
629 	}
630 
631 	return true;
632 }
633 
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 	/*
637 	 * Prevent page table teardown by making any free-er wait during
638 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 	 */
640 	local_irq_disable();
641 
642 	/*
643 	 * Make sure a following spte read is not reordered ahead of the write
644 	 * to vcpu->mode.
645 	 */
646 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648 
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 	/*
652 	 * Make sure the write to vcpu->mode is not reordered in front of
653 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 	 */
656 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 	local_irq_enable();
658 }
659 
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 	int r;
663 
664 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 	if (r)
668 		return r;
669 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 				       PT64_ROOT_MAX_LEVEL);
671 	if (r)
672 		return r;
673 	if (maybe_indirect) {
674 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 					       PT64_ROOT_MAX_LEVEL);
676 		if (r)
677 			return r;
678 	}
679 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 					  PT64_ROOT_MAX_LEVEL);
681 }
682 
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690 
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695 
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700 
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 	if (!sp->role.direct)
704 		return sp->gfns[index];
705 
706 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708 
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 	if (!sp->role.direct) {
712 		sp->gfns[index] = gfn;
713 		return;
714 	}
715 
716 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 		pr_err_ratelimited("gfn mismatch under direct page %llx "
718 				   "(expected %llx, got %llx)\n",
719 				   sp->gfn,
720 				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722 
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 					      struct kvm_memory_slot *slot,
729 					      int level)
730 {
731 	unsigned long idx;
732 
733 	idx = gfn_to_index(gfn, slot->base_gfn, level);
734 	return &slot->arch.lpage_info[level - 2][idx];
735 }
736 
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 					    gfn_t gfn, int count)
739 {
740 	struct kvm_lpage_info *linfo;
741 	int i;
742 
743 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 		linfo = lpage_info_slot(gfn, slot, i);
745 		linfo->disallow_lpage += count;
746 		WARN_ON(linfo->disallow_lpage < 0);
747 	}
748 }
749 
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 	update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754 
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 	update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759 
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 	struct kvm_memslots *slots;
763 	struct kvm_memory_slot *slot;
764 	gfn_t gfn;
765 
766 	kvm->arch.indirect_shadow_pages++;
767 	gfn = sp->gfn;
768 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 	slot = __gfn_to_memslot(slots, gfn);
770 
771 	/* the non-leaf shadow pages are keeping readonly. */
772 	if (sp->role.level > PG_LEVEL_4K)
773 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 						    KVM_PAGE_TRACK_WRITE);
775 
776 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778 
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 	if (sp->lpage_disallowed)
782 		return;
783 
784 	++kvm->stat.nx_lpage_splits;
785 	list_add_tail(&sp->lpage_disallowed_link,
786 		      &kvm->arch.lpage_disallowed_mmu_pages);
787 	sp->lpage_disallowed = true;
788 }
789 
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 	struct kvm_memslots *slots;
793 	struct kvm_memory_slot *slot;
794 	gfn_t gfn;
795 
796 	kvm->arch.indirect_shadow_pages--;
797 	gfn = sp->gfn;
798 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 	slot = __gfn_to_memslot(slots, gfn);
800 	if (sp->role.level > PG_LEVEL_4K)
801 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 						       KVM_PAGE_TRACK_WRITE);
803 
804 	kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806 
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 	--kvm->stat.nx_lpage_splits;
810 	sp->lpage_disallowed = false;
811 	list_del(&sp->lpage_disallowed_link);
812 }
813 
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 			    bool no_dirty_log)
817 {
818 	struct kvm_memory_slot *slot;
819 
820 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 		return NULL;
823 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824 		return NULL;
825 
826 	return slot;
827 }
828 
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836 
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 			struct kvm_rmap_head *rmap_head)
842 {
843 	struct pte_list_desc *desc;
844 	int i, count = 0;
845 
846 	if (!rmap_head->val) {
847 		rmap_printk("%p %llx 0->1\n", spte, *spte);
848 		rmap_head->val = (unsigned long)spte;
849 	} else if (!(rmap_head->val & 1)) {
850 		rmap_printk("%p %llx 1->many\n", spte, *spte);
851 		desc = mmu_alloc_pte_list_desc(vcpu);
852 		desc->sptes[0] = (u64 *)rmap_head->val;
853 		desc->sptes[1] = spte;
854 		rmap_head->val = (unsigned long)desc | 1;
855 		++count;
856 	} else {
857 		rmap_printk("%p %llx many->many\n", spte, *spte);
858 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 		while (desc->sptes[PTE_LIST_EXT-1]) {
860 			count += PTE_LIST_EXT;
861 
862 			if (!desc->more) {
863 				desc->more = mmu_alloc_pte_list_desc(vcpu);
864 				desc = desc->more;
865 				break;
866 			}
867 			desc = desc->more;
868 		}
869 		for (i = 0; desc->sptes[i]; ++i)
870 			++count;
871 		desc->sptes[i] = spte;
872 	}
873 	return count;
874 }
875 
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 			   struct pte_list_desc *desc, int i,
879 			   struct pte_list_desc *prev_desc)
880 {
881 	int j;
882 
883 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 		;
885 	desc->sptes[i] = desc->sptes[j];
886 	desc->sptes[j] = NULL;
887 	if (j != 0)
888 		return;
889 	if (!prev_desc && !desc->more)
890 		rmap_head->val = 0;
891 	else
892 		if (prev_desc)
893 			prev_desc->more = desc->more;
894 		else
895 			rmap_head->val = (unsigned long)desc->more | 1;
896 	mmu_free_pte_list_desc(desc);
897 }
898 
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901 	struct pte_list_desc *desc;
902 	struct pte_list_desc *prev_desc;
903 	int i;
904 
905 	if (!rmap_head->val) {
906 		pr_err("%s: %p 0->BUG\n", __func__, spte);
907 		BUG();
908 	} else if (!(rmap_head->val & 1)) {
909 		rmap_printk("%p 1->0\n", spte);
910 		if ((u64 *)rmap_head->val != spte) {
911 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 			BUG();
913 		}
914 		rmap_head->val = 0;
915 	} else {
916 		rmap_printk("%p many->many\n", spte);
917 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 		prev_desc = NULL;
919 		while (desc) {
920 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 				if (desc->sptes[i] == spte) {
922 					pte_list_desc_remove_entry(rmap_head,
923 							desc, i, prev_desc);
924 					return;
925 				}
926 			}
927 			prev_desc = desc;
928 			desc = desc->more;
929 		}
930 		pr_err("%s: %p many->many\n", __func__, spte);
931 		BUG();
932 	}
933 }
934 
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937 	mmu_spte_clear_track_bits(sptep);
938 	__pte_list_remove(sptep, rmap_head);
939 }
940 
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 					   struct kvm_memory_slot *slot)
943 {
944 	unsigned long idx;
945 
946 	idx = gfn_to_index(gfn, slot->base_gfn, level);
947 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949 
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 					 struct kvm_mmu_page *sp)
952 {
953 	struct kvm_memslots *slots;
954 	struct kvm_memory_slot *slot;
955 
956 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 	slot = __gfn_to_memslot(slots, gfn);
958 	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960 
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963 	struct kvm_mmu_memory_cache *mc;
964 
965 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968 
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971 	struct kvm_mmu_page *sp;
972 	struct kvm_rmap_head *rmap_head;
973 
974 	sp = sptep_to_sp(spte);
975 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 	return pte_list_add(vcpu, spte, rmap_head);
978 }
979 
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982 	struct kvm_mmu_page *sp;
983 	gfn_t gfn;
984 	struct kvm_rmap_head *rmap_head;
985 
986 	sp = sptep_to_sp(spte);
987 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 	__pte_list_remove(spte, rmap_head);
990 }
991 
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997 	/* private fields */
998 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
999 	int pos;			/* index of the sptep */
1000 };
1001 
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 			   struct rmap_iterator *iter)
1011 {
1012 	u64 *sptep;
1013 
1014 	if (!rmap_head->val)
1015 		return NULL;
1016 
1017 	if (!(rmap_head->val & 1)) {
1018 		iter->desc = NULL;
1019 		sptep = (u64 *)rmap_head->val;
1020 		goto out;
1021 	}
1022 
1023 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 	iter->pos = 0;
1025 	sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 	BUG_ON(!is_shadow_present_pte(*sptep));
1028 	return sptep;
1029 }
1030 
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038 	u64 *sptep;
1039 
1040 	if (iter->desc) {
1041 		if (iter->pos < PTE_LIST_EXT - 1) {
1042 			++iter->pos;
1043 			sptep = iter->desc->sptes[iter->pos];
1044 			if (sptep)
1045 				goto out;
1046 		}
1047 
1048 		iter->desc = iter->desc->more;
1049 
1050 		if (iter->desc) {
1051 			iter->pos = 0;
1052 			/* desc->sptes[0] cannot be NULL */
1053 			sptep = iter->desc->sptes[iter->pos];
1054 			goto out;
1055 		}
1056 	}
1057 
1058 	return NULL;
1059 out:
1060 	BUG_ON(!is_shadow_present_pte(*sptep));
1061 	return sptep;
1062 }
1063 
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1065 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066 	     _spte_; _spte_ = rmap_get_next(_iter_))
1067 
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070 	if (mmu_spte_clear_track_bits(sptep))
1071 		rmap_remove(kvm, sptep);
1072 }
1073 
1074 
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 	if (is_large_pte(*sptep)) {
1078 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 		drop_spte(kvm, sptep);
1080 		--kvm->stat.lpages;
1081 		return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 
1092 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 			KVM_PAGES_PER_HPAGE(sp->role.level));
1094 	}
1095 }
1096 
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112 	u64 spte = *sptep;
1113 
1114 	if (!is_writable_pte(spte) &&
1115 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 		return false;
1117 
1118 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1119 
1120 	if (pt_protect)
1121 		spte &= ~SPTE_MMU_WRITEABLE;
1122 	spte = spte & ~PT_WRITABLE_MASK;
1123 
1124 	return mmu_spte_update(sptep, spte);
1125 }
1126 
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 				 struct kvm_rmap_head *rmap_head,
1129 				 bool pt_protect)
1130 {
1131 	u64 *sptep;
1132 	struct rmap_iterator iter;
1133 	bool flush = false;
1134 
1135 	for_each_rmap_spte(rmap_head, &iter, sptep)
1136 		flush |= spte_write_protect(sptep, pt_protect);
1137 
1138 	return flush;
1139 }
1140 
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143 	u64 spte = *sptep;
1144 
1145 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1146 
1147 	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 	spte &= ~shadow_dirty_mask;
1149 	return mmu_spte_update(sptep, spte);
1150 }
1151 
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 					       (unsigned long *)sptep);
1156 	if (was_writable && !spte_ad_enabled(*sptep))
1157 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158 
1159 	return was_writable;
1160 }
1161 
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *	- D bit on ad-enabled SPTEs, and
1165  *	- W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170 	u64 *sptep;
1171 	struct rmap_iterator iter;
1172 	bool flush = false;
1173 
1174 	for_each_rmap_spte(rmap_head, &iter, sptep)
1175 		if (spte_ad_need_write_protect(*sptep))
1176 			flush |= spte_wrprot_for_clear_dirty(sptep);
1177 		else
1178 			flush |= spte_clear_dirty(sptep);
1179 
1180 	return flush;
1181 }
1182 
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185 	u64 spte = *sptep;
1186 
1187 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1188 
1189 	/*
1190 	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 	 * do not bother adding back write access to pages marked
1192 	 * SPTE_AD_WRPROT_ONLY_MASK.
1193 	 */
1194 	spte |= shadow_dirty_mask;
1195 
1196 	return mmu_spte_update(sptep, spte);
1197 }
1198 
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201 	u64 *sptep;
1202 	struct rmap_iterator iter;
1203 	bool flush = false;
1204 
1205 	for_each_rmap_spte(rmap_head, &iter, sptep)
1206 		if (spte_ad_enabled(*sptep))
1207 			flush |= spte_set_dirty(sptep);
1208 
1209 	return flush;
1210 }
1211 
1212 /**
1213  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214  * @kvm: kvm instance
1215  * @slot: slot to protect
1216  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217  * @mask: indicates which pages we should protect
1218  *
1219  * Used when we do not need to care about huge page mappings: e.g. during dirty
1220  * logging we do not have any such mappings.
1221  */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 				     struct kvm_memory_slot *slot,
1224 				     gfn_t gfn_offset, unsigned long mask)
1225 {
1226 	struct kvm_rmap_head *rmap_head;
1227 
1228 	if (is_tdp_mmu_enabled(kvm))
1229 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 				slot->base_gfn + gfn_offset, mask, true);
1231 	while (mask) {
1232 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233 					  PG_LEVEL_4K, slot);
1234 		__rmap_write_protect(kvm, rmap_head, false);
1235 
1236 		/* clear the first set bit */
1237 		mask &= mask - 1;
1238 	}
1239 }
1240 
1241 /**
1242  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243  * protect the page if the D-bit isn't supported.
1244  * @kvm: kvm instance
1245  * @slot: slot to clear D-bit
1246  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247  * @mask: indicates which pages we should clear D-bit
1248  *
1249  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250  */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 				     struct kvm_memory_slot *slot,
1253 				     gfn_t gfn_offset, unsigned long mask)
1254 {
1255 	struct kvm_rmap_head *rmap_head;
1256 
1257 	if (is_tdp_mmu_enabled(kvm))
1258 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 				slot->base_gfn + gfn_offset, mask, false);
1260 	while (mask) {
1261 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262 					  PG_LEVEL_4K, slot);
1263 		__rmap_clear_dirty(kvm, rmap_head);
1264 
1265 		/* clear the first set bit */
1266 		mask &= mask - 1;
1267 	}
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270 
1271 /**
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * PT level pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  *
1278  * Used when we do not need to care about huge page mappings: e.g. during dirty
1279  * logging we do not have any such mappings.
1280  */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 				struct kvm_memory_slot *slot,
1283 				gfn_t gfn_offset, unsigned long mask)
1284 {
1285 	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 		static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
1287 								gfn_offset,
1288 								mask);
1289 	else
1290 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1291 }
1292 
1293 int kvm_cpu_dirty_log_size(void)
1294 {
1295 	if (kvm_x86_ops.cpu_dirty_log_size)
1296 		return static_call(kvm_x86_cpu_dirty_log_size)();
1297 
1298 	return 0;
1299 }
1300 
1301 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1302 				    struct kvm_memory_slot *slot, u64 gfn)
1303 {
1304 	struct kvm_rmap_head *rmap_head;
1305 	int i;
1306 	bool write_protected = false;
1307 
1308 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1309 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1310 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1311 	}
1312 
1313 	if (is_tdp_mmu_enabled(kvm))
1314 		write_protected |=
1315 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1316 
1317 	return write_protected;
1318 }
1319 
1320 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1321 {
1322 	struct kvm_memory_slot *slot;
1323 
1324 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1325 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1326 }
1327 
1328 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1329 {
1330 	u64 *sptep;
1331 	struct rmap_iterator iter;
1332 	bool flush = false;
1333 
1334 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1335 		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1336 
1337 		pte_list_remove(rmap_head, sptep);
1338 		flush = true;
1339 	}
1340 
1341 	return flush;
1342 }
1343 
1344 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1345 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1346 			   unsigned long data)
1347 {
1348 	return kvm_zap_rmapp(kvm, rmap_head);
1349 }
1350 
1351 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1352 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1353 			     unsigned long data)
1354 {
1355 	u64 *sptep;
1356 	struct rmap_iterator iter;
1357 	int need_flush = 0;
1358 	u64 new_spte;
1359 	pte_t *ptep = (pte_t *)data;
1360 	kvm_pfn_t new_pfn;
1361 
1362 	WARN_ON(pte_huge(*ptep));
1363 	new_pfn = pte_pfn(*ptep);
1364 
1365 restart:
1366 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1367 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1368 			    sptep, *sptep, gfn, level);
1369 
1370 		need_flush = 1;
1371 
1372 		if (pte_write(*ptep)) {
1373 			pte_list_remove(rmap_head, sptep);
1374 			goto restart;
1375 		} else {
1376 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1377 					*sptep, new_pfn);
1378 
1379 			mmu_spte_clear_track_bits(sptep);
1380 			mmu_spte_set(sptep, new_spte);
1381 		}
1382 	}
1383 
1384 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1385 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1386 		return 0;
1387 	}
1388 
1389 	return need_flush;
1390 }
1391 
1392 struct slot_rmap_walk_iterator {
1393 	/* input fields. */
1394 	struct kvm_memory_slot *slot;
1395 	gfn_t start_gfn;
1396 	gfn_t end_gfn;
1397 	int start_level;
1398 	int end_level;
1399 
1400 	/* output fields. */
1401 	gfn_t gfn;
1402 	struct kvm_rmap_head *rmap;
1403 	int level;
1404 
1405 	/* private field. */
1406 	struct kvm_rmap_head *end_rmap;
1407 };
1408 
1409 static void
1410 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1411 {
1412 	iterator->level = level;
1413 	iterator->gfn = iterator->start_gfn;
1414 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1415 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1416 					   iterator->slot);
1417 }
1418 
1419 static void
1420 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1421 		    struct kvm_memory_slot *slot, int start_level,
1422 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1423 {
1424 	iterator->slot = slot;
1425 	iterator->start_level = start_level;
1426 	iterator->end_level = end_level;
1427 	iterator->start_gfn = start_gfn;
1428 	iterator->end_gfn = end_gfn;
1429 
1430 	rmap_walk_init_level(iterator, iterator->start_level);
1431 }
1432 
1433 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1434 {
1435 	return !!iterator->rmap;
1436 }
1437 
1438 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1439 {
1440 	if (++iterator->rmap <= iterator->end_rmap) {
1441 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1442 		return;
1443 	}
1444 
1445 	if (++iterator->level > iterator->end_level) {
1446 		iterator->rmap = NULL;
1447 		return;
1448 	}
1449 
1450 	rmap_walk_init_level(iterator, iterator->level);
1451 }
1452 
1453 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1454 	   _start_gfn, _end_gfn, _iter_)				\
1455 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1456 				 _end_level_, _start_gfn, _end_gfn);	\
1457 	     slot_rmap_walk_okay(_iter_);				\
1458 	     slot_rmap_walk_next(_iter_))
1459 
1460 static __always_inline int
1461 kvm_handle_hva_range(struct kvm *kvm,
1462 		     unsigned long start,
1463 		     unsigned long end,
1464 		     unsigned long data,
1465 		     int (*handler)(struct kvm *kvm,
1466 				    struct kvm_rmap_head *rmap_head,
1467 				    struct kvm_memory_slot *slot,
1468 				    gfn_t gfn,
1469 				    int level,
1470 				    unsigned long data))
1471 {
1472 	struct kvm_memslots *slots;
1473 	struct kvm_memory_slot *memslot;
1474 	struct slot_rmap_walk_iterator iterator;
1475 	int ret = 0;
1476 	int i;
1477 
1478 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1479 		slots = __kvm_memslots(kvm, i);
1480 		kvm_for_each_memslot(memslot, slots) {
1481 			unsigned long hva_start, hva_end;
1482 			gfn_t gfn_start, gfn_end;
1483 
1484 			hva_start = max(start, memslot->userspace_addr);
1485 			hva_end = min(end, memslot->userspace_addr +
1486 				      (memslot->npages << PAGE_SHIFT));
1487 			if (hva_start >= hva_end)
1488 				continue;
1489 			/*
1490 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1491 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1492 			 */
1493 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1494 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1495 
1496 			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1497 						 KVM_MAX_HUGEPAGE_LEVEL,
1498 						 gfn_start, gfn_end - 1,
1499 						 &iterator)
1500 				ret |= handler(kvm, iterator.rmap, memslot,
1501 					       iterator.gfn, iterator.level, data);
1502 		}
1503 	}
1504 
1505 	return ret;
1506 }
1507 
1508 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1509 			  unsigned long data,
1510 			  int (*handler)(struct kvm *kvm,
1511 					 struct kvm_rmap_head *rmap_head,
1512 					 struct kvm_memory_slot *slot,
1513 					 gfn_t gfn, int level,
1514 					 unsigned long data))
1515 {
1516 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1517 }
1518 
1519 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1520 			unsigned flags)
1521 {
1522 	int r;
1523 
1524 	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1525 
1526 	if (is_tdp_mmu_enabled(kvm))
1527 		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1528 
1529 	return r;
1530 }
1531 
1532 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1533 {
1534 	int r;
1535 
1536 	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1537 
1538 	if (is_tdp_mmu_enabled(kvm))
1539 		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1540 
1541 	return r;
1542 }
1543 
1544 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1545 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1546 			 unsigned long data)
1547 {
1548 	u64 *sptep;
1549 	struct rmap_iterator iter;
1550 	int young = 0;
1551 
1552 	for_each_rmap_spte(rmap_head, &iter, sptep)
1553 		young |= mmu_spte_age(sptep);
1554 
1555 	trace_kvm_age_page(gfn, level, slot, young);
1556 	return young;
1557 }
1558 
1559 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1560 			      struct kvm_memory_slot *slot, gfn_t gfn,
1561 			      int level, unsigned long data)
1562 {
1563 	u64 *sptep;
1564 	struct rmap_iterator iter;
1565 
1566 	for_each_rmap_spte(rmap_head, &iter, sptep)
1567 		if (is_accessed_spte(*sptep))
1568 			return 1;
1569 	return 0;
1570 }
1571 
1572 #define RMAP_RECYCLE_THRESHOLD 1000
1573 
1574 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1575 {
1576 	struct kvm_rmap_head *rmap_head;
1577 	struct kvm_mmu_page *sp;
1578 
1579 	sp = sptep_to_sp(spte);
1580 
1581 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1582 
1583 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1584 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1585 			KVM_PAGES_PER_HPAGE(sp->role.level));
1586 }
1587 
1588 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1589 {
1590 	int young = false;
1591 
1592 	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1593 	if (is_tdp_mmu_enabled(kvm))
1594 		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1595 
1596 	return young;
1597 }
1598 
1599 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1600 {
1601 	int young = false;
1602 
1603 	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1604 	if (is_tdp_mmu_enabled(kvm))
1605 		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1606 
1607 	return young;
1608 }
1609 
1610 #ifdef MMU_DEBUG
1611 static int is_empty_shadow_page(u64 *spt)
1612 {
1613 	u64 *pos;
1614 	u64 *end;
1615 
1616 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1617 		if (is_shadow_present_pte(*pos)) {
1618 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1619 			       pos, *pos);
1620 			return 0;
1621 		}
1622 	return 1;
1623 }
1624 #endif
1625 
1626 /*
1627  * This value is the sum of all of the kvm instances's
1628  * kvm->arch.n_used_mmu_pages values.  We need a global,
1629  * aggregate version in order to make the slab shrinker
1630  * faster
1631  */
1632 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1633 {
1634 	kvm->arch.n_used_mmu_pages += nr;
1635 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1636 }
1637 
1638 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1639 {
1640 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1641 	hlist_del(&sp->hash_link);
1642 	list_del(&sp->link);
1643 	free_page((unsigned long)sp->spt);
1644 	if (!sp->role.direct)
1645 		free_page((unsigned long)sp->gfns);
1646 	kmem_cache_free(mmu_page_header_cache, sp);
1647 }
1648 
1649 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1650 {
1651 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1652 }
1653 
1654 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1655 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1656 {
1657 	if (!parent_pte)
1658 		return;
1659 
1660 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1661 }
1662 
1663 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1664 				       u64 *parent_pte)
1665 {
1666 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1667 }
1668 
1669 static void drop_parent_pte(struct kvm_mmu_page *sp,
1670 			    u64 *parent_pte)
1671 {
1672 	mmu_page_remove_parent_pte(sp, parent_pte);
1673 	mmu_spte_clear_no_track(parent_pte);
1674 }
1675 
1676 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1677 {
1678 	struct kvm_mmu_page *sp;
1679 
1680 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1681 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1682 	if (!direct)
1683 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1684 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1685 
1686 	/*
1687 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1688 	 * depends on valid pages being added to the head of the list.  See
1689 	 * comments in kvm_zap_obsolete_pages().
1690 	 */
1691 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1692 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1693 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1694 	return sp;
1695 }
1696 
1697 static void mark_unsync(u64 *spte);
1698 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1699 {
1700 	u64 *sptep;
1701 	struct rmap_iterator iter;
1702 
1703 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1704 		mark_unsync(sptep);
1705 	}
1706 }
1707 
1708 static void mark_unsync(u64 *spte)
1709 {
1710 	struct kvm_mmu_page *sp;
1711 	unsigned int index;
1712 
1713 	sp = sptep_to_sp(spte);
1714 	index = spte - sp->spt;
1715 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1716 		return;
1717 	if (sp->unsync_children++)
1718 		return;
1719 	kvm_mmu_mark_parents_unsync(sp);
1720 }
1721 
1722 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1723 			       struct kvm_mmu_page *sp)
1724 {
1725 	return 0;
1726 }
1727 
1728 #define KVM_PAGE_ARRAY_NR 16
1729 
1730 struct kvm_mmu_pages {
1731 	struct mmu_page_and_offset {
1732 		struct kvm_mmu_page *sp;
1733 		unsigned int idx;
1734 	} page[KVM_PAGE_ARRAY_NR];
1735 	unsigned int nr;
1736 };
1737 
1738 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1739 			 int idx)
1740 {
1741 	int i;
1742 
1743 	if (sp->unsync)
1744 		for (i=0; i < pvec->nr; i++)
1745 			if (pvec->page[i].sp == sp)
1746 				return 0;
1747 
1748 	pvec->page[pvec->nr].sp = sp;
1749 	pvec->page[pvec->nr].idx = idx;
1750 	pvec->nr++;
1751 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1752 }
1753 
1754 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1755 {
1756 	--sp->unsync_children;
1757 	WARN_ON((int)sp->unsync_children < 0);
1758 	__clear_bit(idx, sp->unsync_child_bitmap);
1759 }
1760 
1761 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1762 			   struct kvm_mmu_pages *pvec)
1763 {
1764 	int i, ret, nr_unsync_leaf = 0;
1765 
1766 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1767 		struct kvm_mmu_page *child;
1768 		u64 ent = sp->spt[i];
1769 
1770 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1771 			clear_unsync_child_bit(sp, i);
1772 			continue;
1773 		}
1774 
1775 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1776 
1777 		if (child->unsync_children) {
1778 			if (mmu_pages_add(pvec, child, i))
1779 				return -ENOSPC;
1780 
1781 			ret = __mmu_unsync_walk(child, pvec);
1782 			if (!ret) {
1783 				clear_unsync_child_bit(sp, i);
1784 				continue;
1785 			} else if (ret > 0) {
1786 				nr_unsync_leaf += ret;
1787 			} else
1788 				return ret;
1789 		} else if (child->unsync) {
1790 			nr_unsync_leaf++;
1791 			if (mmu_pages_add(pvec, child, i))
1792 				return -ENOSPC;
1793 		} else
1794 			clear_unsync_child_bit(sp, i);
1795 	}
1796 
1797 	return nr_unsync_leaf;
1798 }
1799 
1800 #define INVALID_INDEX (-1)
1801 
1802 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1803 			   struct kvm_mmu_pages *pvec)
1804 {
1805 	pvec->nr = 0;
1806 	if (!sp->unsync_children)
1807 		return 0;
1808 
1809 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1810 	return __mmu_unsync_walk(sp, pvec);
1811 }
1812 
1813 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1814 {
1815 	WARN_ON(!sp->unsync);
1816 	trace_kvm_mmu_sync_page(sp);
1817 	sp->unsync = 0;
1818 	--kvm->stat.mmu_unsync;
1819 }
1820 
1821 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1822 				     struct list_head *invalid_list);
1823 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1824 				    struct list_head *invalid_list);
1825 
1826 #define for_each_valid_sp(_kvm, _sp, _list)				\
1827 	hlist_for_each_entry(_sp, _list, hash_link)			\
1828 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1829 		} else
1830 
1831 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1832 	for_each_valid_sp(_kvm, _sp,					\
1833 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1834 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1835 
1836 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1837 {
1838 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1839 }
1840 
1841 /* @sp->gfn should be write-protected at the call site */
1842 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1843 			    struct list_head *invalid_list)
1844 {
1845 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1846 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1847 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1848 		return false;
1849 	}
1850 
1851 	return true;
1852 }
1853 
1854 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1855 					struct list_head *invalid_list,
1856 					bool remote_flush)
1857 {
1858 	if (!remote_flush && list_empty(invalid_list))
1859 		return false;
1860 
1861 	if (!list_empty(invalid_list))
1862 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1863 	else
1864 		kvm_flush_remote_tlbs(kvm);
1865 	return true;
1866 }
1867 
1868 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1869 				 struct list_head *invalid_list,
1870 				 bool remote_flush, bool local_flush)
1871 {
1872 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1873 		return;
1874 
1875 	if (local_flush)
1876 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1877 }
1878 
1879 #ifdef CONFIG_KVM_MMU_AUDIT
1880 #include "mmu_audit.c"
1881 #else
1882 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1883 static void mmu_audit_disable(void) { }
1884 #endif
1885 
1886 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888 	return sp->role.invalid ||
1889 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1890 }
1891 
1892 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1893 			 struct list_head *invalid_list)
1894 {
1895 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1896 	return __kvm_sync_page(vcpu, sp, invalid_list);
1897 }
1898 
1899 /* @gfn should be write-protected at the call site */
1900 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1901 			   struct list_head *invalid_list)
1902 {
1903 	struct kvm_mmu_page *s;
1904 	bool ret = false;
1905 
1906 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1907 		if (!s->unsync)
1908 			continue;
1909 
1910 		WARN_ON(s->role.level != PG_LEVEL_4K);
1911 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1912 	}
1913 
1914 	return ret;
1915 }
1916 
1917 struct mmu_page_path {
1918 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1919 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1920 };
1921 
1922 #define for_each_sp(pvec, sp, parents, i)			\
1923 		for (i = mmu_pages_first(&pvec, &parents);	\
1924 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1925 			i = mmu_pages_next(&pvec, &parents, i))
1926 
1927 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1928 			  struct mmu_page_path *parents,
1929 			  int i)
1930 {
1931 	int n;
1932 
1933 	for (n = i+1; n < pvec->nr; n++) {
1934 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1935 		unsigned idx = pvec->page[n].idx;
1936 		int level = sp->role.level;
1937 
1938 		parents->idx[level-1] = idx;
1939 		if (level == PG_LEVEL_4K)
1940 			break;
1941 
1942 		parents->parent[level-2] = sp;
1943 	}
1944 
1945 	return n;
1946 }
1947 
1948 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1949 			   struct mmu_page_path *parents)
1950 {
1951 	struct kvm_mmu_page *sp;
1952 	int level;
1953 
1954 	if (pvec->nr == 0)
1955 		return 0;
1956 
1957 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1958 
1959 	sp = pvec->page[0].sp;
1960 	level = sp->role.level;
1961 	WARN_ON(level == PG_LEVEL_4K);
1962 
1963 	parents->parent[level-2] = sp;
1964 
1965 	/* Also set up a sentinel.  Further entries in pvec are all
1966 	 * children of sp, so this element is never overwritten.
1967 	 */
1968 	parents->parent[level-1] = NULL;
1969 	return mmu_pages_next(pvec, parents, 0);
1970 }
1971 
1972 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1973 {
1974 	struct kvm_mmu_page *sp;
1975 	unsigned int level = 0;
1976 
1977 	do {
1978 		unsigned int idx = parents->idx[level];
1979 		sp = parents->parent[level];
1980 		if (!sp)
1981 			return;
1982 
1983 		WARN_ON(idx == INVALID_INDEX);
1984 		clear_unsync_child_bit(sp, idx);
1985 		level++;
1986 	} while (!sp->unsync_children);
1987 }
1988 
1989 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1990 			      struct kvm_mmu_page *parent)
1991 {
1992 	int i;
1993 	struct kvm_mmu_page *sp;
1994 	struct mmu_page_path parents;
1995 	struct kvm_mmu_pages pages;
1996 	LIST_HEAD(invalid_list);
1997 	bool flush = false;
1998 
1999 	while (mmu_unsync_walk(parent, &pages)) {
2000 		bool protected = false;
2001 
2002 		for_each_sp(pages, sp, parents, i)
2003 			protected |= rmap_write_protect(vcpu, sp->gfn);
2004 
2005 		if (protected) {
2006 			kvm_flush_remote_tlbs(vcpu->kvm);
2007 			flush = false;
2008 		}
2009 
2010 		for_each_sp(pages, sp, parents, i) {
2011 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2012 			mmu_pages_clear_parents(&parents);
2013 		}
2014 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2015 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2016 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2017 			flush = false;
2018 		}
2019 	}
2020 
2021 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2022 }
2023 
2024 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2025 {
2026 	atomic_set(&sp->write_flooding_count,  0);
2027 }
2028 
2029 static void clear_sp_write_flooding_count(u64 *spte)
2030 {
2031 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2032 }
2033 
2034 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2035 					     gfn_t gfn,
2036 					     gva_t gaddr,
2037 					     unsigned level,
2038 					     int direct,
2039 					     unsigned int access)
2040 {
2041 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2042 	union kvm_mmu_page_role role;
2043 	struct hlist_head *sp_list;
2044 	unsigned quadrant;
2045 	struct kvm_mmu_page *sp;
2046 	bool need_sync = false;
2047 	bool flush = false;
2048 	int collisions = 0;
2049 	LIST_HEAD(invalid_list);
2050 
2051 	role = vcpu->arch.mmu->mmu_role.base;
2052 	role.level = level;
2053 	role.direct = direct;
2054 	if (role.direct)
2055 		role.gpte_is_8_bytes = true;
2056 	role.access = access;
2057 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2058 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2059 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2060 		role.quadrant = quadrant;
2061 	}
2062 
2063 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2064 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2065 		if (sp->gfn != gfn) {
2066 			collisions++;
2067 			continue;
2068 		}
2069 
2070 		if (!need_sync && sp->unsync)
2071 			need_sync = true;
2072 
2073 		if (sp->role.word != role.word)
2074 			continue;
2075 
2076 		if (direct_mmu)
2077 			goto trace_get_page;
2078 
2079 		if (sp->unsync) {
2080 			/* The page is good, but __kvm_sync_page might still end
2081 			 * up zapping it.  If so, break in order to rebuild it.
2082 			 */
2083 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2084 				break;
2085 
2086 			WARN_ON(!list_empty(&invalid_list));
2087 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2088 		}
2089 
2090 		if (sp->unsync_children)
2091 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2092 
2093 		__clear_sp_write_flooding_count(sp);
2094 
2095 trace_get_page:
2096 		trace_kvm_mmu_get_page(sp, false);
2097 		goto out;
2098 	}
2099 
2100 	++vcpu->kvm->stat.mmu_cache_miss;
2101 
2102 	sp = kvm_mmu_alloc_page(vcpu, direct);
2103 
2104 	sp->gfn = gfn;
2105 	sp->role = role;
2106 	hlist_add_head(&sp->hash_link, sp_list);
2107 	if (!direct) {
2108 		/*
2109 		 * we should do write protection before syncing pages
2110 		 * otherwise the content of the synced shadow page may
2111 		 * be inconsistent with guest page table.
2112 		 */
2113 		account_shadowed(vcpu->kvm, sp);
2114 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2115 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2116 
2117 		if (level > PG_LEVEL_4K && need_sync)
2118 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2119 	}
2120 	trace_kvm_mmu_get_page(sp, true);
2121 
2122 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2123 out:
2124 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2125 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2126 	return sp;
2127 }
2128 
2129 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2130 					struct kvm_vcpu *vcpu, hpa_t root,
2131 					u64 addr)
2132 {
2133 	iterator->addr = addr;
2134 	iterator->shadow_addr = root;
2135 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2136 
2137 	if (iterator->level == PT64_ROOT_4LEVEL &&
2138 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2139 	    !vcpu->arch.mmu->direct_map)
2140 		--iterator->level;
2141 
2142 	if (iterator->level == PT32E_ROOT_LEVEL) {
2143 		/*
2144 		 * prev_root is currently only used for 64-bit hosts. So only
2145 		 * the active root_hpa is valid here.
2146 		 */
2147 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2148 
2149 		iterator->shadow_addr
2150 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2151 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2152 		--iterator->level;
2153 		if (!iterator->shadow_addr)
2154 			iterator->level = 0;
2155 	}
2156 }
2157 
2158 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2159 			     struct kvm_vcpu *vcpu, u64 addr)
2160 {
2161 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2162 				    addr);
2163 }
2164 
2165 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2166 {
2167 	if (iterator->level < PG_LEVEL_4K)
2168 		return false;
2169 
2170 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2171 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2172 	return true;
2173 }
2174 
2175 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2176 			       u64 spte)
2177 {
2178 	if (is_last_spte(spte, iterator->level)) {
2179 		iterator->level = 0;
2180 		return;
2181 	}
2182 
2183 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2184 	--iterator->level;
2185 }
2186 
2187 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2188 {
2189 	__shadow_walk_next(iterator, *iterator->sptep);
2190 }
2191 
2192 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2193 			     struct kvm_mmu_page *sp)
2194 {
2195 	u64 spte;
2196 
2197 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2198 
2199 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2200 
2201 	mmu_spte_set(sptep, spte);
2202 
2203 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2204 
2205 	if (sp->unsync_children || sp->unsync)
2206 		mark_unsync(sptep);
2207 }
2208 
2209 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2210 				   unsigned direct_access)
2211 {
2212 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2213 		struct kvm_mmu_page *child;
2214 
2215 		/*
2216 		 * For the direct sp, if the guest pte's dirty bit
2217 		 * changed form clean to dirty, it will corrupt the
2218 		 * sp's access: allow writable in the read-only sp,
2219 		 * so we should update the spte at this point to get
2220 		 * a new sp with the correct access.
2221 		 */
2222 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2223 		if (child->role.access == direct_access)
2224 			return;
2225 
2226 		drop_parent_pte(child, sptep);
2227 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2228 	}
2229 }
2230 
2231 /* Returns the number of zapped non-leaf child shadow pages. */
2232 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2233 			    u64 *spte, struct list_head *invalid_list)
2234 {
2235 	u64 pte;
2236 	struct kvm_mmu_page *child;
2237 
2238 	pte = *spte;
2239 	if (is_shadow_present_pte(pte)) {
2240 		if (is_last_spte(pte, sp->role.level)) {
2241 			drop_spte(kvm, spte);
2242 			if (is_large_pte(pte))
2243 				--kvm->stat.lpages;
2244 		} else {
2245 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2246 			drop_parent_pte(child, spte);
2247 
2248 			/*
2249 			 * Recursively zap nested TDP SPs, parentless SPs are
2250 			 * unlikely to be used again in the near future.  This
2251 			 * avoids retaining a large number of stale nested SPs.
2252 			 */
2253 			if (tdp_enabled && invalid_list &&
2254 			    child->role.guest_mode && !child->parent_ptes.val)
2255 				return kvm_mmu_prepare_zap_page(kvm, child,
2256 								invalid_list);
2257 		}
2258 	} else if (is_mmio_spte(pte)) {
2259 		mmu_spte_clear_no_track(spte);
2260 	}
2261 	return 0;
2262 }
2263 
2264 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2265 					struct kvm_mmu_page *sp,
2266 					struct list_head *invalid_list)
2267 {
2268 	int zapped = 0;
2269 	unsigned i;
2270 
2271 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2272 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2273 
2274 	return zapped;
2275 }
2276 
2277 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2278 {
2279 	u64 *sptep;
2280 	struct rmap_iterator iter;
2281 
2282 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2283 		drop_parent_pte(sp, sptep);
2284 }
2285 
2286 static int mmu_zap_unsync_children(struct kvm *kvm,
2287 				   struct kvm_mmu_page *parent,
2288 				   struct list_head *invalid_list)
2289 {
2290 	int i, zapped = 0;
2291 	struct mmu_page_path parents;
2292 	struct kvm_mmu_pages pages;
2293 
2294 	if (parent->role.level == PG_LEVEL_4K)
2295 		return 0;
2296 
2297 	while (mmu_unsync_walk(parent, &pages)) {
2298 		struct kvm_mmu_page *sp;
2299 
2300 		for_each_sp(pages, sp, parents, i) {
2301 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2302 			mmu_pages_clear_parents(&parents);
2303 			zapped++;
2304 		}
2305 	}
2306 
2307 	return zapped;
2308 }
2309 
2310 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2311 				       struct kvm_mmu_page *sp,
2312 				       struct list_head *invalid_list,
2313 				       int *nr_zapped)
2314 {
2315 	bool list_unstable;
2316 
2317 	trace_kvm_mmu_prepare_zap_page(sp);
2318 	++kvm->stat.mmu_shadow_zapped;
2319 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2320 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2321 	kvm_mmu_unlink_parents(kvm, sp);
2322 
2323 	/* Zapping children means active_mmu_pages has become unstable. */
2324 	list_unstable = *nr_zapped;
2325 
2326 	if (!sp->role.invalid && !sp->role.direct)
2327 		unaccount_shadowed(kvm, sp);
2328 
2329 	if (sp->unsync)
2330 		kvm_unlink_unsync_page(kvm, sp);
2331 	if (!sp->root_count) {
2332 		/* Count self */
2333 		(*nr_zapped)++;
2334 
2335 		/*
2336 		 * Already invalid pages (previously active roots) are not on
2337 		 * the active page list.  See list_del() in the "else" case of
2338 		 * !sp->root_count.
2339 		 */
2340 		if (sp->role.invalid)
2341 			list_add(&sp->link, invalid_list);
2342 		else
2343 			list_move(&sp->link, invalid_list);
2344 		kvm_mod_used_mmu_pages(kvm, -1);
2345 	} else {
2346 		/*
2347 		 * Remove the active root from the active page list, the root
2348 		 * will be explicitly freed when the root_count hits zero.
2349 		 */
2350 		list_del(&sp->link);
2351 
2352 		/*
2353 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2354 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2355 		 * treats invalid shadow pages as being obsolete.
2356 		 */
2357 		if (!is_obsolete_sp(kvm, sp))
2358 			kvm_reload_remote_mmus(kvm);
2359 	}
2360 
2361 	if (sp->lpage_disallowed)
2362 		unaccount_huge_nx_page(kvm, sp);
2363 
2364 	sp->role.invalid = 1;
2365 	return list_unstable;
2366 }
2367 
2368 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2369 				     struct list_head *invalid_list)
2370 {
2371 	int nr_zapped;
2372 
2373 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2374 	return nr_zapped;
2375 }
2376 
2377 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2378 				    struct list_head *invalid_list)
2379 {
2380 	struct kvm_mmu_page *sp, *nsp;
2381 
2382 	if (list_empty(invalid_list))
2383 		return;
2384 
2385 	/*
2386 	 * We need to make sure everyone sees our modifications to
2387 	 * the page tables and see changes to vcpu->mode here. The barrier
2388 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2389 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2390 	 *
2391 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2392 	 * guest mode and/or lockless shadow page table walks.
2393 	 */
2394 	kvm_flush_remote_tlbs(kvm);
2395 
2396 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2397 		WARN_ON(!sp->role.invalid || sp->root_count);
2398 		kvm_mmu_free_page(sp);
2399 	}
2400 }
2401 
2402 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2403 						  unsigned long nr_to_zap)
2404 {
2405 	unsigned long total_zapped = 0;
2406 	struct kvm_mmu_page *sp, *tmp;
2407 	LIST_HEAD(invalid_list);
2408 	bool unstable;
2409 	int nr_zapped;
2410 
2411 	if (list_empty(&kvm->arch.active_mmu_pages))
2412 		return 0;
2413 
2414 restart:
2415 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2416 		/*
2417 		 * Don't zap active root pages, the page itself can't be freed
2418 		 * and zapping it will just force vCPUs to realloc and reload.
2419 		 */
2420 		if (sp->root_count)
2421 			continue;
2422 
2423 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2424 						      &nr_zapped);
2425 		total_zapped += nr_zapped;
2426 		if (total_zapped >= nr_to_zap)
2427 			break;
2428 
2429 		if (unstable)
2430 			goto restart;
2431 	}
2432 
2433 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434 
2435 	kvm->stat.mmu_recycled += total_zapped;
2436 	return total_zapped;
2437 }
2438 
2439 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2440 {
2441 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2442 		return kvm->arch.n_max_mmu_pages -
2443 			kvm->arch.n_used_mmu_pages;
2444 
2445 	return 0;
2446 }
2447 
2448 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2449 {
2450 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2451 
2452 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2453 		return 0;
2454 
2455 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2456 
2457 	if (!kvm_mmu_available_pages(vcpu->kvm))
2458 		return -ENOSPC;
2459 	return 0;
2460 }
2461 
2462 /*
2463  * Changing the number of mmu pages allocated to the vm
2464  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465  */
2466 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467 {
2468 	write_lock(&kvm->mmu_lock);
2469 
2470 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472 						  goal_nr_mmu_pages);
2473 
2474 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475 	}
2476 
2477 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478 
2479 	write_unlock(&kvm->mmu_lock);
2480 }
2481 
2482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483 {
2484 	struct kvm_mmu_page *sp;
2485 	LIST_HEAD(invalid_list);
2486 	int r;
2487 
2488 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489 	r = 0;
2490 	write_lock(&kvm->mmu_lock);
2491 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493 			 sp->role.word);
2494 		r = 1;
2495 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496 	}
2497 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498 	write_unlock(&kvm->mmu_lock);
2499 
2500 	return r;
2501 }
2502 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2503 
2504 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2505 {
2506 	trace_kvm_mmu_unsync_page(sp);
2507 	++vcpu->kvm->stat.mmu_unsync;
2508 	sp->unsync = 1;
2509 
2510 	kvm_mmu_mark_parents_unsync(sp);
2511 }
2512 
2513 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2514 			    bool can_unsync)
2515 {
2516 	struct kvm_mmu_page *sp;
2517 
2518 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2519 		return true;
2520 
2521 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2522 		if (!can_unsync)
2523 			return true;
2524 
2525 		if (sp->unsync)
2526 			continue;
2527 
2528 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2529 		kvm_unsync_page(vcpu, sp);
2530 	}
2531 
2532 	/*
2533 	 * We need to ensure that the marking of unsync pages is visible
2534 	 * before the SPTE is updated to allow writes because
2535 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2536 	 * the MMU lock and so can race with this. If the SPTE was updated
2537 	 * before the page had been marked as unsync-ed, something like the
2538 	 * following could happen:
2539 	 *
2540 	 * CPU 1                    CPU 2
2541 	 * ---------------------------------------------------------------------
2542 	 * 1.2 Host updates SPTE
2543 	 *     to be writable
2544 	 *                      2.1 Guest writes a GPTE for GVA X.
2545 	 *                          (GPTE being in the guest page table shadowed
2546 	 *                           by the SP from CPU 1.)
2547 	 *                          This reads SPTE during the page table walk.
2548 	 *                          Since SPTE.W is read as 1, there is no
2549 	 *                          fault.
2550 	 *
2551 	 *                      2.2 Guest issues TLB flush.
2552 	 *                          That causes a VM Exit.
2553 	 *
2554 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2555 	 *                          Since it is false, so it just returns.
2556 	 *
2557 	 *                      2.4 Guest accesses GVA X.
2558 	 *                          Since the mapping in the SP was not updated,
2559 	 *                          so the old mapping for GVA X incorrectly
2560 	 *                          gets used.
2561 	 * 1.1 Host marks SP
2562 	 *     as unsync
2563 	 *     (sp->unsync = true)
2564 	 *
2565 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2566 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2567 	 * pairs with this write barrier.
2568 	 */
2569 	smp_wmb();
2570 
2571 	return false;
2572 }
2573 
2574 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2575 		    unsigned int pte_access, int level,
2576 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2577 		    bool can_unsync, bool host_writable)
2578 {
2579 	u64 spte;
2580 	struct kvm_mmu_page *sp;
2581 	int ret;
2582 
2583 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2584 		return 0;
2585 
2586 	sp = sptep_to_sp(sptep);
2587 
2588 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2589 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2590 
2591 	if (spte & PT_WRITABLE_MASK)
2592 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2593 
2594 	if (*sptep == spte)
2595 		ret |= SET_SPTE_SPURIOUS;
2596 	else if (mmu_spte_update(sptep, spte))
2597 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2598 	return ret;
2599 }
2600 
2601 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2602 			unsigned int pte_access, bool write_fault, int level,
2603 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2604 			bool host_writable)
2605 {
2606 	int was_rmapped = 0;
2607 	int rmap_count;
2608 	int set_spte_ret;
2609 	int ret = RET_PF_FIXED;
2610 	bool flush = false;
2611 
2612 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2613 		 *sptep, write_fault, gfn);
2614 
2615 	if (is_shadow_present_pte(*sptep)) {
2616 		/*
2617 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2618 		 * the parent of the now unreachable PTE.
2619 		 */
2620 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2621 			struct kvm_mmu_page *child;
2622 			u64 pte = *sptep;
2623 
2624 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2625 			drop_parent_pte(child, sptep);
2626 			flush = true;
2627 		} else if (pfn != spte_to_pfn(*sptep)) {
2628 			pgprintk("hfn old %llx new %llx\n",
2629 				 spte_to_pfn(*sptep), pfn);
2630 			drop_spte(vcpu->kvm, sptep);
2631 			flush = true;
2632 		} else
2633 			was_rmapped = 1;
2634 	}
2635 
2636 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2637 				speculative, true, host_writable);
2638 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2639 		if (write_fault)
2640 			ret = RET_PF_EMULATE;
2641 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2642 	}
2643 
2644 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2645 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2646 				KVM_PAGES_PER_HPAGE(level));
2647 
2648 	if (unlikely(is_mmio_spte(*sptep)))
2649 		ret = RET_PF_EMULATE;
2650 
2651 	/*
2652 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2653 	 * are identical, and emulation is not required.
2654 	 */
2655 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2656 		WARN_ON_ONCE(!was_rmapped);
2657 		return RET_PF_SPURIOUS;
2658 	}
2659 
2660 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2661 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2662 	if (!was_rmapped && is_large_pte(*sptep))
2663 		++vcpu->kvm->stat.lpages;
2664 
2665 	if (is_shadow_present_pte(*sptep)) {
2666 		if (!was_rmapped) {
2667 			rmap_count = rmap_add(vcpu, sptep, gfn);
2668 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2669 				rmap_recycle(vcpu, sptep, gfn);
2670 		}
2671 	}
2672 
2673 	return ret;
2674 }
2675 
2676 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2677 				     bool no_dirty_log)
2678 {
2679 	struct kvm_memory_slot *slot;
2680 
2681 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2682 	if (!slot)
2683 		return KVM_PFN_ERR_FAULT;
2684 
2685 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2686 }
2687 
2688 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2689 				    struct kvm_mmu_page *sp,
2690 				    u64 *start, u64 *end)
2691 {
2692 	struct page *pages[PTE_PREFETCH_NUM];
2693 	struct kvm_memory_slot *slot;
2694 	unsigned int access = sp->role.access;
2695 	int i, ret;
2696 	gfn_t gfn;
2697 
2698 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2699 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2700 	if (!slot)
2701 		return -1;
2702 
2703 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2704 	if (ret <= 0)
2705 		return -1;
2706 
2707 	for (i = 0; i < ret; i++, gfn++, start++) {
2708 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2709 			     page_to_pfn(pages[i]), true, true);
2710 		put_page(pages[i]);
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2717 				  struct kvm_mmu_page *sp, u64 *sptep)
2718 {
2719 	u64 *spte, *start = NULL;
2720 	int i;
2721 
2722 	WARN_ON(!sp->role.direct);
2723 
2724 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2725 	spte = sp->spt + i;
2726 
2727 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2728 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2729 			if (!start)
2730 				continue;
2731 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2732 				break;
2733 			start = NULL;
2734 		} else if (!start)
2735 			start = spte;
2736 	}
2737 }
2738 
2739 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2740 {
2741 	struct kvm_mmu_page *sp;
2742 
2743 	sp = sptep_to_sp(sptep);
2744 
2745 	/*
2746 	 * Without accessed bits, there's no way to distinguish between
2747 	 * actually accessed translations and prefetched, so disable pte
2748 	 * prefetch if accessed bits aren't available.
2749 	 */
2750 	if (sp_ad_disabled(sp))
2751 		return;
2752 
2753 	if (sp->role.level > PG_LEVEL_4K)
2754 		return;
2755 
2756 	__direct_pte_prefetch(vcpu, sp, sptep);
2757 }
2758 
2759 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2760 				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2761 {
2762 	unsigned long hva;
2763 	pte_t *pte;
2764 	int level;
2765 
2766 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2767 		return PG_LEVEL_4K;
2768 
2769 	/*
2770 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2771 	 * is not solely for performance, it's also necessary to avoid the
2772 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2773 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2774 	 * page fault steps have already verified the guest isn't writing a
2775 	 * read-only memslot.
2776 	 */
2777 	hva = __gfn_to_hva_memslot(slot, gfn);
2778 
2779 	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2780 	if (unlikely(!pte))
2781 		return PG_LEVEL_4K;
2782 
2783 	return level;
2784 }
2785 
2786 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2787 			    int max_level, kvm_pfn_t *pfnp,
2788 			    bool huge_page_disallowed, int *req_level)
2789 {
2790 	struct kvm_memory_slot *slot;
2791 	struct kvm_lpage_info *linfo;
2792 	kvm_pfn_t pfn = *pfnp;
2793 	kvm_pfn_t mask;
2794 	int level;
2795 
2796 	*req_level = PG_LEVEL_4K;
2797 
2798 	if (unlikely(max_level == PG_LEVEL_4K))
2799 		return PG_LEVEL_4K;
2800 
2801 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2802 		return PG_LEVEL_4K;
2803 
2804 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2805 	if (!slot)
2806 		return PG_LEVEL_4K;
2807 
2808 	max_level = min(max_level, max_huge_page_level);
2809 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2810 		linfo = lpage_info_slot(gfn, slot, max_level);
2811 		if (!linfo->disallow_lpage)
2812 			break;
2813 	}
2814 
2815 	if (max_level == PG_LEVEL_4K)
2816 		return PG_LEVEL_4K;
2817 
2818 	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2819 	if (level == PG_LEVEL_4K)
2820 		return level;
2821 
2822 	*req_level = level = min(level, max_level);
2823 
2824 	/*
2825 	 * Enforce the iTLB multihit workaround after capturing the requested
2826 	 * level, which will be used to do precise, accurate accounting.
2827 	 */
2828 	if (huge_page_disallowed)
2829 		return PG_LEVEL_4K;
2830 
2831 	/*
2832 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2833 	 * the pmd can't be split from under us.
2834 	 */
2835 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2837 	*pfnp = pfn & ~mask;
2838 
2839 	return level;
2840 }
2841 
2842 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2843 				kvm_pfn_t *pfnp, int *goal_levelp)
2844 {
2845 	int level = *goal_levelp;
2846 
2847 	if (cur_level == level && level > PG_LEVEL_4K &&
2848 	    is_shadow_present_pte(spte) &&
2849 	    !is_large_pte(spte)) {
2850 		/*
2851 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2852 		 * and __direct_map would like to create a large PTE
2853 		 * instead: just force them to go down another level,
2854 		 * patching back for them into pfn the next 9 bits of
2855 		 * the address.
2856 		 */
2857 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2858 				KVM_PAGES_PER_HPAGE(level - 1);
2859 		*pfnp |= gfn & page_mask;
2860 		(*goal_levelp)--;
2861 	}
2862 }
2863 
2864 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2865 			int map_writable, int max_level, kvm_pfn_t pfn,
2866 			bool prefault, bool is_tdp)
2867 {
2868 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2869 	bool write = error_code & PFERR_WRITE_MASK;
2870 	bool exec = error_code & PFERR_FETCH_MASK;
2871 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2872 	struct kvm_shadow_walk_iterator it;
2873 	struct kvm_mmu_page *sp;
2874 	int level, req_level, ret;
2875 	gfn_t gfn = gpa >> PAGE_SHIFT;
2876 	gfn_t base_gfn = gfn;
2877 
2878 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2879 		return RET_PF_RETRY;
2880 
2881 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2882 					huge_page_disallowed, &req_level);
2883 
2884 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2885 	for_each_shadow_entry(vcpu, gpa, it) {
2886 		/*
2887 		 * We cannot overwrite existing page tables with an NX
2888 		 * large page, as the leaf could be executable.
2889 		 */
2890 		if (nx_huge_page_workaround_enabled)
2891 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2892 						   &pfn, &level);
2893 
2894 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2895 		if (it.level == level)
2896 			break;
2897 
2898 		drop_large_spte(vcpu, it.sptep);
2899 		if (!is_shadow_present_pte(*it.sptep)) {
2900 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2901 					      it.level - 1, true, ACC_ALL);
2902 
2903 			link_shadow_page(vcpu, it.sptep, sp);
2904 			if (is_tdp && huge_page_disallowed &&
2905 			    req_level >= it.level)
2906 				account_huge_nx_page(vcpu->kvm, sp);
2907 		}
2908 	}
2909 
2910 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2911 			   write, level, base_gfn, pfn, prefault,
2912 			   map_writable);
2913 	if (ret == RET_PF_SPURIOUS)
2914 		return ret;
2915 
2916 	direct_pte_prefetch(vcpu, it.sptep);
2917 	++vcpu->stat.pf_fixed;
2918 	return ret;
2919 }
2920 
2921 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2922 {
2923 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2924 }
2925 
2926 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2927 {
2928 	/*
2929 	 * Do not cache the mmio info caused by writing the readonly gfn
2930 	 * into the spte otherwise read access on readonly gfn also can
2931 	 * caused mmio page fault and treat it as mmio access.
2932 	 */
2933 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2934 		return RET_PF_EMULATE;
2935 
2936 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2937 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2938 		return RET_PF_RETRY;
2939 	}
2940 
2941 	return -EFAULT;
2942 }
2943 
2944 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2945 				kvm_pfn_t pfn, unsigned int access,
2946 				int *ret_val)
2947 {
2948 	/* The pfn is invalid, report the error! */
2949 	if (unlikely(is_error_pfn(pfn))) {
2950 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2951 		return true;
2952 	}
2953 
2954 	if (unlikely(is_noslot_pfn(pfn)))
2955 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2956 				     access & shadow_mmio_access_mask);
2957 
2958 	return false;
2959 }
2960 
2961 static bool page_fault_can_be_fast(u32 error_code)
2962 {
2963 	/*
2964 	 * Do not fix the mmio spte with invalid generation number which
2965 	 * need to be updated by slow page fault path.
2966 	 */
2967 	if (unlikely(error_code & PFERR_RSVD_MASK))
2968 		return false;
2969 
2970 	/* See if the page fault is due to an NX violation */
2971 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2972 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2973 		return false;
2974 
2975 	/*
2976 	 * #PF can be fast if:
2977 	 * 1. The shadow page table entry is not present, which could mean that
2978 	 *    the fault is potentially caused by access tracking (if enabled).
2979 	 * 2. The shadow page table entry is present and the fault
2980 	 *    is caused by write-protect, that means we just need change the W
2981 	 *    bit of the spte which can be done out of mmu-lock.
2982 	 *
2983 	 * However, if access tracking is disabled we know that a non-present
2984 	 * page must be a genuine page fault where we have to create a new SPTE.
2985 	 * So, if access tracking is disabled, we return true only for write
2986 	 * accesses to a present page.
2987 	 */
2988 
2989 	return shadow_acc_track_mask != 0 ||
2990 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2991 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2992 }
2993 
2994 /*
2995  * Returns true if the SPTE was fixed successfully. Otherwise,
2996  * someone else modified the SPTE from its original value.
2997  */
2998 static bool
2999 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3000 			u64 *sptep, u64 old_spte, u64 new_spte)
3001 {
3002 	gfn_t gfn;
3003 
3004 	WARN_ON(!sp->role.direct);
3005 
3006 	/*
3007 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3008 	 * order to eliminate unnecessary PML logging. See comments in
3009 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3010 	 * enabled, so we do not do this. This might result in the same GPA
3011 	 * to be logged in PML buffer again when the write really happens, and
3012 	 * eventually to be called by mark_page_dirty twice. But it's also no
3013 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3014 	 * so non-PML cases won't be impacted.
3015 	 *
3016 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3017 	 */
3018 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3019 		return false;
3020 
3021 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3022 		/*
3023 		 * The gfn of direct spte is stable since it is
3024 		 * calculated by sp->gfn.
3025 		 */
3026 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3027 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3028 	}
3029 
3030 	return true;
3031 }
3032 
3033 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3034 {
3035 	if (fault_err_code & PFERR_FETCH_MASK)
3036 		return is_executable_pte(spte);
3037 
3038 	if (fault_err_code & PFERR_WRITE_MASK)
3039 		return is_writable_pte(spte);
3040 
3041 	/* Fault was on Read access */
3042 	return spte & PT_PRESENT_MASK;
3043 }
3044 
3045 /*
3046  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3047  */
3048 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3049 			   u32 error_code)
3050 {
3051 	struct kvm_shadow_walk_iterator iterator;
3052 	struct kvm_mmu_page *sp;
3053 	int ret = RET_PF_INVALID;
3054 	u64 spte = 0ull;
3055 	uint retry_count = 0;
3056 
3057 	if (!page_fault_can_be_fast(error_code))
3058 		return ret;
3059 
3060 	walk_shadow_page_lockless_begin(vcpu);
3061 
3062 	do {
3063 		u64 new_spte;
3064 
3065 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3066 			if (!is_shadow_present_pte(spte))
3067 				break;
3068 
3069 		sp = sptep_to_sp(iterator.sptep);
3070 		if (!is_last_spte(spte, sp->role.level))
3071 			break;
3072 
3073 		/*
3074 		 * Check whether the memory access that caused the fault would
3075 		 * still cause it if it were to be performed right now. If not,
3076 		 * then this is a spurious fault caused by TLB lazily flushed,
3077 		 * or some other CPU has already fixed the PTE after the
3078 		 * current CPU took the fault.
3079 		 *
3080 		 * Need not check the access of upper level table entries since
3081 		 * they are always ACC_ALL.
3082 		 */
3083 		if (is_access_allowed(error_code, spte)) {
3084 			ret = RET_PF_SPURIOUS;
3085 			break;
3086 		}
3087 
3088 		new_spte = spte;
3089 
3090 		if (is_access_track_spte(spte))
3091 			new_spte = restore_acc_track_spte(new_spte);
3092 
3093 		/*
3094 		 * Currently, to simplify the code, write-protection can
3095 		 * be removed in the fast path only if the SPTE was
3096 		 * write-protected for dirty-logging or access tracking.
3097 		 */
3098 		if ((error_code & PFERR_WRITE_MASK) &&
3099 		    spte_can_locklessly_be_made_writable(spte)) {
3100 			new_spte |= PT_WRITABLE_MASK;
3101 
3102 			/*
3103 			 * Do not fix write-permission on the large spte.  Since
3104 			 * we only dirty the first page into the dirty-bitmap in
3105 			 * fast_pf_fix_direct_spte(), other pages are missed
3106 			 * if its slot has dirty logging enabled.
3107 			 *
3108 			 * Instead, we let the slow page fault path create a
3109 			 * normal spte to fix the access.
3110 			 *
3111 			 * See the comments in kvm_arch_commit_memory_region().
3112 			 */
3113 			if (sp->role.level > PG_LEVEL_4K)
3114 				break;
3115 		}
3116 
3117 		/* Verify that the fault can be handled in the fast path */
3118 		if (new_spte == spte ||
3119 		    !is_access_allowed(error_code, new_spte))
3120 			break;
3121 
3122 		/*
3123 		 * Currently, fast page fault only works for direct mapping
3124 		 * since the gfn is not stable for indirect shadow page. See
3125 		 * Documentation/virt/kvm/locking.rst to get more detail.
3126 		 */
3127 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3128 					    new_spte)) {
3129 			ret = RET_PF_FIXED;
3130 			break;
3131 		}
3132 
3133 		if (++retry_count > 4) {
3134 			printk_once(KERN_WARNING
3135 				"kvm: Fast #PF retrying more than 4 times.\n");
3136 			break;
3137 		}
3138 
3139 	} while (true);
3140 
3141 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3142 			      spte, ret);
3143 	walk_shadow_page_lockless_end(vcpu);
3144 
3145 	return ret;
3146 }
3147 
3148 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3149 			       struct list_head *invalid_list)
3150 {
3151 	struct kvm_mmu_page *sp;
3152 
3153 	if (!VALID_PAGE(*root_hpa))
3154 		return;
3155 
3156 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3157 
3158 	if (kvm_mmu_put_root(kvm, sp)) {
3159 		if (is_tdp_mmu_page(sp))
3160 			kvm_tdp_mmu_free_root(kvm, sp);
3161 		else if (sp->role.invalid)
3162 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3163 	}
3164 
3165 	*root_hpa = INVALID_PAGE;
3166 }
3167 
3168 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3169 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3170 			ulong roots_to_free)
3171 {
3172 	struct kvm *kvm = vcpu->kvm;
3173 	int i;
3174 	LIST_HEAD(invalid_list);
3175 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3176 
3177 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3178 
3179 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3180 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3181 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3182 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3183 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3184 				break;
3185 
3186 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3187 			return;
3188 	}
3189 
3190 	write_lock(&kvm->mmu_lock);
3191 
3192 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3193 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3194 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3195 					   &invalid_list);
3196 
3197 	if (free_active_root) {
3198 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3199 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3200 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3201 		} else {
3202 			for (i = 0; i < 4; ++i)
3203 				if (mmu->pae_root[i] != 0)
3204 					mmu_free_root_page(kvm,
3205 							   &mmu->pae_root[i],
3206 							   &invalid_list);
3207 			mmu->root_hpa = INVALID_PAGE;
3208 		}
3209 		mmu->root_pgd = 0;
3210 	}
3211 
3212 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3213 	write_unlock(&kvm->mmu_lock);
3214 }
3215 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3216 
3217 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3218 {
3219 	int ret = 0;
3220 
3221 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3222 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3223 		ret = 1;
3224 	}
3225 
3226 	return ret;
3227 }
3228 
3229 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3230 			    u8 level, bool direct)
3231 {
3232 	struct kvm_mmu_page *sp;
3233 
3234 	write_lock(&vcpu->kvm->mmu_lock);
3235 
3236 	if (make_mmu_pages_available(vcpu)) {
3237 		write_unlock(&vcpu->kvm->mmu_lock);
3238 		return INVALID_PAGE;
3239 	}
3240 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3241 	++sp->root_count;
3242 
3243 	write_unlock(&vcpu->kvm->mmu_lock);
3244 	return __pa(sp->spt);
3245 }
3246 
3247 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3248 {
3249 	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3250 	hpa_t root;
3251 	unsigned i;
3252 
3253 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3254 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3255 
3256 		if (!VALID_PAGE(root))
3257 			return -ENOSPC;
3258 		vcpu->arch.mmu->root_hpa = root;
3259 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3260 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3261 				      true);
3262 
3263 		if (!VALID_PAGE(root))
3264 			return -ENOSPC;
3265 		vcpu->arch.mmu->root_hpa = root;
3266 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3267 		for (i = 0; i < 4; ++i) {
3268 			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3269 
3270 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3271 					      i << 30, PT32_ROOT_LEVEL, true);
3272 			if (!VALID_PAGE(root))
3273 				return -ENOSPC;
3274 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3275 		}
3276 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3277 	} else
3278 		BUG();
3279 
3280 	/* root_pgd is ignored for direct MMUs. */
3281 	vcpu->arch.mmu->root_pgd = 0;
3282 
3283 	return 0;
3284 }
3285 
3286 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3287 {
3288 	u64 pdptr, pm_mask;
3289 	gfn_t root_gfn, root_pgd;
3290 	hpa_t root;
3291 	int i;
3292 
3293 	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3294 	root_gfn = root_pgd >> PAGE_SHIFT;
3295 
3296 	if (mmu_check_root(vcpu, root_gfn))
3297 		return 1;
3298 
3299 	/*
3300 	 * Do we shadow a long mode page table? If so we need to
3301 	 * write-protect the guests page table root.
3302 	 */
3303 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3304 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3305 
3306 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3307 				      vcpu->arch.mmu->shadow_root_level, false);
3308 		if (!VALID_PAGE(root))
3309 			return -ENOSPC;
3310 		vcpu->arch.mmu->root_hpa = root;
3311 		goto set_root_pgd;
3312 	}
3313 
3314 	/*
3315 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3316 	 * or a PAE 3-level page table. In either case we need to be aware that
3317 	 * the shadow page table may be a PAE or a long mode page table.
3318 	 */
3319 	pm_mask = PT_PRESENT_MASK;
3320 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3321 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3322 
3323 	for (i = 0; i < 4; ++i) {
3324 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3325 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3326 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3327 			if (!(pdptr & PT_PRESENT_MASK)) {
3328 				vcpu->arch.mmu->pae_root[i] = 0;
3329 				continue;
3330 			}
3331 			root_gfn = pdptr >> PAGE_SHIFT;
3332 			if (mmu_check_root(vcpu, root_gfn))
3333 				return 1;
3334 		}
3335 
3336 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3337 				      PT32_ROOT_LEVEL, false);
3338 		if (!VALID_PAGE(root))
3339 			return -ENOSPC;
3340 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3341 	}
3342 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3343 
3344 	/*
3345 	 * If we shadow a 32 bit page table with a long mode page
3346 	 * table we enter this path.
3347 	 */
3348 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3349 		if (vcpu->arch.mmu->lm_root == NULL) {
3350 			/*
3351 			 * The additional page necessary for this is only
3352 			 * allocated on demand.
3353 			 */
3354 
3355 			u64 *lm_root;
3356 
3357 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3358 			if (lm_root == NULL)
3359 				return 1;
3360 
3361 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3362 
3363 			vcpu->arch.mmu->lm_root = lm_root;
3364 		}
3365 
3366 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3367 	}
3368 
3369 set_root_pgd:
3370 	vcpu->arch.mmu->root_pgd = root_pgd;
3371 
3372 	return 0;
3373 }
3374 
3375 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3376 {
3377 	if (vcpu->arch.mmu->direct_map)
3378 		return mmu_alloc_direct_roots(vcpu);
3379 	else
3380 		return mmu_alloc_shadow_roots(vcpu);
3381 }
3382 
3383 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3384 {
3385 	int i;
3386 	struct kvm_mmu_page *sp;
3387 
3388 	if (vcpu->arch.mmu->direct_map)
3389 		return;
3390 
3391 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3392 		return;
3393 
3394 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3395 
3396 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3397 		hpa_t root = vcpu->arch.mmu->root_hpa;
3398 		sp = to_shadow_page(root);
3399 
3400 		/*
3401 		 * Even if another CPU was marking the SP as unsync-ed
3402 		 * simultaneously, any guest page table changes are not
3403 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3404 		 * flush strictly after those changes are made. We only need to
3405 		 * ensure that the other CPU sets these flags before any actual
3406 		 * changes to the page tables are made. The comments in
3407 		 * mmu_need_write_protect() describe what could go wrong if this
3408 		 * requirement isn't satisfied.
3409 		 */
3410 		if (!smp_load_acquire(&sp->unsync) &&
3411 		    !smp_load_acquire(&sp->unsync_children))
3412 			return;
3413 
3414 		write_lock(&vcpu->kvm->mmu_lock);
3415 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3416 
3417 		mmu_sync_children(vcpu, sp);
3418 
3419 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3420 		write_unlock(&vcpu->kvm->mmu_lock);
3421 		return;
3422 	}
3423 
3424 	write_lock(&vcpu->kvm->mmu_lock);
3425 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3426 
3427 	for (i = 0; i < 4; ++i) {
3428 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3429 
3430 		if (root && VALID_PAGE(root)) {
3431 			root &= PT64_BASE_ADDR_MASK;
3432 			sp = to_shadow_page(root);
3433 			mmu_sync_children(vcpu, sp);
3434 		}
3435 	}
3436 
3437 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3438 	write_unlock(&vcpu->kvm->mmu_lock);
3439 }
3440 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3441 
3442 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3443 				  u32 access, struct x86_exception *exception)
3444 {
3445 	if (exception)
3446 		exception->error_code = 0;
3447 	return vaddr;
3448 }
3449 
3450 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3451 					 u32 access,
3452 					 struct x86_exception *exception)
3453 {
3454 	if (exception)
3455 		exception->error_code = 0;
3456 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3457 }
3458 
3459 static bool
3460 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3461 {
3462 	int bit7 = (pte >> 7) & 1;
3463 
3464 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3465 }
3466 
3467 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3468 {
3469 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3470 }
3471 
3472 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3473 {
3474 	/*
3475 	 * A nested guest cannot use the MMIO cache if it is using nested
3476 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3477 	 */
3478 	if (mmu_is_nested(vcpu))
3479 		return false;
3480 
3481 	if (direct)
3482 		return vcpu_match_mmio_gpa(vcpu, addr);
3483 
3484 	return vcpu_match_mmio_gva(vcpu, addr);
3485 }
3486 
3487 /*
3488  * Return the level of the lowest level SPTE added to sptes.
3489  * That SPTE may be non-present.
3490  */
3491 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3492 {
3493 	struct kvm_shadow_walk_iterator iterator;
3494 	int leaf = -1;
3495 	u64 spte;
3496 
3497 	walk_shadow_page_lockless_begin(vcpu);
3498 
3499 	for (shadow_walk_init(&iterator, vcpu, addr),
3500 	     *root_level = iterator.level;
3501 	     shadow_walk_okay(&iterator);
3502 	     __shadow_walk_next(&iterator, spte)) {
3503 		leaf = iterator.level;
3504 		spte = mmu_spte_get_lockless(iterator.sptep);
3505 
3506 		sptes[leaf] = spte;
3507 
3508 		if (!is_shadow_present_pte(spte))
3509 			break;
3510 	}
3511 
3512 	walk_shadow_page_lockless_end(vcpu);
3513 
3514 	return leaf;
3515 }
3516 
3517 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3518 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3519 {
3520 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3521 	struct rsvd_bits_validate *rsvd_check;
3522 	int root, leaf, level;
3523 	bool reserved = false;
3524 
3525 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526 		*sptep = 0ull;
3527 		return reserved;
3528 	}
3529 
3530 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3532 	else
3533 		leaf = get_walk(vcpu, addr, sptes, &root);
3534 
3535 	if (unlikely(leaf < 0)) {
3536 		*sptep = 0ull;
3537 		return reserved;
3538 	}
3539 
3540 	*sptep = sptes[leaf];
3541 
3542 	/*
3543 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3544 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3545 	 * design, always have reserved bits set.  The purpose of the checks is
3546 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3547 	 */
3548 	if (!is_shadow_present_pte(sptes[leaf]))
3549 		leaf++;
3550 
3551 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3552 
3553 	for (level = root; level >= leaf; level--)
3554 		/*
3555 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3556 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3557 		 * adding a Jcc in the loop.
3558 		 */
3559 		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3560 			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3561 
3562 	if (reserved) {
3563 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3564 		       __func__, addr);
3565 		for (level = root; level >= leaf; level--)
3566 			pr_err("------ spte 0x%llx level %d.\n",
3567 			       sptes[level], level);
3568 	}
3569 
3570 	return reserved;
3571 }
3572 
3573 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3574 {
3575 	u64 spte;
3576 	bool reserved;
3577 
3578 	if (mmio_info_in_cache(vcpu, addr, direct))
3579 		return RET_PF_EMULATE;
3580 
3581 	reserved = get_mmio_spte(vcpu, addr, &spte);
3582 	if (WARN_ON(reserved))
3583 		return -EINVAL;
3584 
3585 	if (is_mmio_spte(spte)) {
3586 		gfn_t gfn = get_mmio_spte_gfn(spte);
3587 		unsigned int access = get_mmio_spte_access(spte);
3588 
3589 		if (!check_mmio_spte(vcpu, spte))
3590 			return RET_PF_INVALID;
3591 
3592 		if (direct)
3593 			addr = 0;
3594 
3595 		trace_handle_mmio_page_fault(addr, gfn, access);
3596 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3597 		return RET_PF_EMULATE;
3598 	}
3599 
3600 	/*
3601 	 * If the page table is zapped by other cpus, let CPU fault again on
3602 	 * the address.
3603 	 */
3604 	return RET_PF_RETRY;
3605 }
3606 
3607 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3608 					 u32 error_code, gfn_t gfn)
3609 {
3610 	if (unlikely(error_code & PFERR_RSVD_MASK))
3611 		return false;
3612 
3613 	if (!(error_code & PFERR_PRESENT_MASK) ||
3614 	      !(error_code & PFERR_WRITE_MASK))
3615 		return false;
3616 
3617 	/*
3618 	 * guest is writing the page which is write tracked which can
3619 	 * not be fixed by page fault handler.
3620 	 */
3621 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3622 		return true;
3623 
3624 	return false;
3625 }
3626 
3627 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3628 {
3629 	struct kvm_shadow_walk_iterator iterator;
3630 	u64 spte;
3631 
3632 	walk_shadow_page_lockless_begin(vcpu);
3633 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3634 		clear_sp_write_flooding_count(iterator.sptep);
3635 		if (!is_shadow_present_pte(spte))
3636 			break;
3637 	}
3638 	walk_shadow_page_lockless_end(vcpu);
3639 }
3640 
3641 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3642 				    gfn_t gfn)
3643 {
3644 	struct kvm_arch_async_pf arch;
3645 
3646 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3647 	arch.gfn = gfn;
3648 	arch.direct_map = vcpu->arch.mmu->direct_map;
3649 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3650 
3651 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3652 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3653 }
3654 
3655 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3656 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3657 			 bool *writable)
3658 {
3659 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3660 	bool async;
3661 
3662 	/* Don't expose private memslots to L2. */
3663 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3664 		*pfn = KVM_PFN_NOSLOT;
3665 		*writable = false;
3666 		return false;
3667 	}
3668 
3669 	async = false;
3670 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3671 	if (!async)
3672 		return false; /* *pfn has correct page already */
3673 
3674 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3675 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3676 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3677 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3678 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3679 			return true;
3680 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3681 			return true;
3682 	}
3683 
3684 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3685 	return false;
3686 }
3687 
3688 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3689 			     bool prefault, int max_level, bool is_tdp)
3690 {
3691 	bool write = error_code & PFERR_WRITE_MASK;
3692 	bool map_writable;
3693 
3694 	gfn_t gfn = gpa >> PAGE_SHIFT;
3695 	unsigned long mmu_seq;
3696 	kvm_pfn_t pfn;
3697 	int r;
3698 
3699 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3700 		return RET_PF_EMULATE;
3701 
3702 	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3703 		r = fast_page_fault(vcpu, gpa, error_code);
3704 		if (r != RET_PF_INVALID)
3705 			return r;
3706 	}
3707 
3708 	r = mmu_topup_memory_caches(vcpu, false);
3709 	if (r)
3710 		return r;
3711 
3712 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3713 	smp_rmb();
3714 
3715 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3716 		return RET_PF_RETRY;
3717 
3718 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3719 		return r;
3720 
3721 	r = RET_PF_RETRY;
3722 
3723 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3724 		read_lock(&vcpu->kvm->mmu_lock);
3725 	else
3726 		write_lock(&vcpu->kvm->mmu_lock);
3727 
3728 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3729 		goto out_unlock;
3730 	r = make_mmu_pages_available(vcpu);
3731 	if (r)
3732 		goto out_unlock;
3733 
3734 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3735 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3736 				    pfn, prefault);
3737 	else
3738 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3739 				 prefault, is_tdp);
3740 
3741 out_unlock:
3742 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3743 		read_unlock(&vcpu->kvm->mmu_lock);
3744 	else
3745 		write_unlock(&vcpu->kvm->mmu_lock);
3746 	kvm_release_pfn_clean(pfn);
3747 	return r;
3748 }
3749 
3750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3751 				u32 error_code, bool prefault)
3752 {
3753 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3754 
3755 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3756 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3757 				 PG_LEVEL_2M, false);
3758 }
3759 
3760 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3761 				u64 fault_address, char *insn, int insn_len)
3762 {
3763 	int r = 1;
3764 	u32 flags = vcpu->arch.apf.host_apf_flags;
3765 
3766 #ifndef CONFIG_X86_64
3767 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3768 	if (WARN_ON_ONCE(fault_address >> 32))
3769 		return -EFAULT;
3770 #endif
3771 
3772 	vcpu->arch.l1tf_flush_l1d = true;
3773 	if (!flags) {
3774 		trace_kvm_page_fault(fault_address, error_code);
3775 
3776 		if (kvm_event_needs_reinjection(vcpu))
3777 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3778 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3779 				insn_len);
3780 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3781 		vcpu->arch.apf.host_apf_flags = 0;
3782 		local_irq_disable();
3783 		kvm_async_pf_task_wait_schedule(fault_address);
3784 		local_irq_enable();
3785 	} else {
3786 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3787 	}
3788 
3789 	return r;
3790 }
3791 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3792 
3793 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3794 		       bool prefault)
3795 {
3796 	int max_level;
3797 
3798 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3799 	     max_level > PG_LEVEL_4K;
3800 	     max_level--) {
3801 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3802 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3803 
3804 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3805 			break;
3806 	}
3807 
3808 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3809 				 max_level, true);
3810 }
3811 
3812 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3813 				   struct kvm_mmu *context)
3814 {
3815 	context->page_fault = nonpaging_page_fault;
3816 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3817 	context->sync_page = nonpaging_sync_page;
3818 	context->invlpg = NULL;
3819 	context->root_level = 0;
3820 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3821 	context->direct_map = true;
3822 	context->nx = false;
3823 }
3824 
3825 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3826 				  union kvm_mmu_page_role role)
3827 {
3828 	return (role.direct || pgd == root->pgd) &&
3829 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3830 	       role.word == to_shadow_page(root->hpa)->role.word;
3831 }
3832 
3833 /*
3834  * Find out if a previously cached root matching the new pgd/role is available.
3835  * The current root is also inserted into the cache.
3836  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3837  * returned.
3838  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3839  * false is returned. This root should now be freed by the caller.
3840  */
3841 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3842 				  union kvm_mmu_page_role new_role)
3843 {
3844 	uint i;
3845 	struct kvm_mmu_root_info root;
3846 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3847 
3848 	root.pgd = mmu->root_pgd;
3849 	root.hpa = mmu->root_hpa;
3850 
3851 	if (is_root_usable(&root, new_pgd, new_role))
3852 		return true;
3853 
3854 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3855 		swap(root, mmu->prev_roots[i]);
3856 
3857 		if (is_root_usable(&root, new_pgd, new_role))
3858 			break;
3859 	}
3860 
3861 	mmu->root_hpa = root.hpa;
3862 	mmu->root_pgd = root.pgd;
3863 
3864 	return i < KVM_MMU_NUM_PREV_ROOTS;
3865 }
3866 
3867 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868 			    union kvm_mmu_page_role new_role)
3869 {
3870 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3871 
3872 	/*
3873 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3874 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3875 	 * later if necessary.
3876 	 */
3877 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3878 	    mmu->root_level >= PT64_ROOT_4LEVEL)
3879 		return cached_root_available(vcpu, new_pgd, new_role);
3880 
3881 	return false;
3882 }
3883 
3884 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3885 			      union kvm_mmu_page_role new_role,
3886 			      bool skip_tlb_flush, bool skip_mmu_sync)
3887 {
3888 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3889 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3890 		return;
3891 	}
3892 
3893 	/*
3894 	 * It's possible that the cached previous root page is obsolete because
3895 	 * of a change in the MMU generation number. However, changing the
3896 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3897 	 * free the root set here and allocate a new one.
3898 	 */
3899 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3900 
3901 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3902 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3903 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3904 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3905 
3906 	/*
3907 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3908 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3909 	 * valid. So clear any cached MMIO info even when we don't need to sync
3910 	 * the shadow page tables.
3911 	 */
3912 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3913 
3914 	/*
3915 	 * If this is a direct root page, it doesn't have a write flooding
3916 	 * count. Otherwise, clear the write flooding count.
3917 	 */
3918 	if (!new_role.direct)
3919 		__clear_sp_write_flooding_count(
3920 				to_shadow_page(vcpu->arch.mmu->root_hpa));
3921 }
3922 
3923 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3924 		     bool skip_mmu_sync)
3925 {
3926 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3927 			  skip_tlb_flush, skip_mmu_sync);
3928 }
3929 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3930 
3931 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3932 {
3933 	return kvm_read_cr3(vcpu);
3934 }
3935 
3936 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3937 			   unsigned int access, int *nr_present)
3938 {
3939 	if (unlikely(is_mmio_spte(*sptep))) {
3940 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3941 			mmu_spte_clear_no_track(sptep);
3942 			return true;
3943 		}
3944 
3945 		(*nr_present)++;
3946 		mark_mmio_spte(vcpu, sptep, gfn, access);
3947 		return true;
3948 	}
3949 
3950 	return false;
3951 }
3952 
3953 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3954 				unsigned level, unsigned gpte)
3955 {
3956 	/*
3957 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3958 	 * If it is clear, there are no large pages at this level, so clear
3959 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3960 	 */
3961 	gpte &= level - mmu->last_nonleaf_level;
3962 
3963 	/*
3964 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3965 	 * iff level <= PG_LEVEL_4K, which for our purpose means
3966 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3967 	 */
3968 	gpte |= level - PG_LEVEL_4K - 1;
3969 
3970 	return gpte & PT_PAGE_SIZE_MASK;
3971 }
3972 
3973 #define PTTYPE_EPT 18 /* arbitrary */
3974 #define PTTYPE PTTYPE_EPT
3975 #include "paging_tmpl.h"
3976 #undef PTTYPE
3977 
3978 #define PTTYPE 64
3979 #include "paging_tmpl.h"
3980 #undef PTTYPE
3981 
3982 #define PTTYPE 32
3983 #include "paging_tmpl.h"
3984 #undef PTTYPE
3985 
3986 static void
3987 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3988 			struct rsvd_bits_validate *rsvd_check,
3989 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
3990 			bool pse, bool amd)
3991 {
3992 	u64 gbpages_bit_rsvd = 0;
3993 	u64 nonleaf_bit8_rsvd = 0;
3994 	u64 high_bits_rsvd;
3995 
3996 	rsvd_check->bad_mt_xwr = 0;
3997 
3998 	if (!gbpages)
3999 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4000 
4001 	if (level == PT32E_ROOT_LEVEL)
4002 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4003 	else
4004 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4005 
4006 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4007 	if (!nx)
4008 		high_bits_rsvd |= rsvd_bits(63, 63);
4009 
4010 	/*
4011 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4012 	 * leaf entries) on AMD CPUs only.
4013 	 */
4014 	if (amd)
4015 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4016 
4017 	switch (level) {
4018 	case PT32_ROOT_LEVEL:
4019 		/* no rsvd bits for 2 level 4K page table entries */
4020 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4021 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4022 		rsvd_check->rsvd_bits_mask[1][0] =
4023 			rsvd_check->rsvd_bits_mask[0][0];
4024 
4025 		if (!pse) {
4026 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4027 			break;
4028 		}
4029 
4030 		if (is_cpuid_PSE36())
4031 			/* 36bits PSE 4MB page */
4032 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4033 		else
4034 			/* 32 bits PSE 4MB page */
4035 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4036 		break;
4037 	case PT32E_ROOT_LEVEL:
4038 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4039 						   high_bits_rsvd |
4040 						   rsvd_bits(5, 8) |
4041 						   rsvd_bits(1, 2);	/* PDPTE */
4042 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4043 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4044 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4045 						   rsvd_bits(13, 20);	/* large page */
4046 		rsvd_check->rsvd_bits_mask[1][0] =
4047 			rsvd_check->rsvd_bits_mask[0][0];
4048 		break;
4049 	case PT64_ROOT_5LEVEL:
4050 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4051 						   nonleaf_bit8_rsvd |
4052 						   rsvd_bits(7, 7);
4053 		rsvd_check->rsvd_bits_mask[1][4] =
4054 			rsvd_check->rsvd_bits_mask[0][4];
4055 		fallthrough;
4056 	case PT64_ROOT_4LEVEL:
4057 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4058 						   nonleaf_bit8_rsvd |
4059 						   rsvd_bits(7, 7);
4060 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4061 						   gbpages_bit_rsvd;
4062 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4063 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4064 		rsvd_check->rsvd_bits_mask[1][3] =
4065 			rsvd_check->rsvd_bits_mask[0][3];
4066 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4067 						   gbpages_bit_rsvd |
4068 						   rsvd_bits(13, 29);
4069 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4070 						   rsvd_bits(13, 20); /* large page */
4071 		rsvd_check->rsvd_bits_mask[1][0] =
4072 			rsvd_check->rsvd_bits_mask[0][0];
4073 		break;
4074 	}
4075 }
4076 
4077 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4078 				  struct kvm_mmu *context)
4079 {
4080 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4081 				vcpu->arch.reserved_gpa_bits,
4082 				context->root_level, context->nx,
4083 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4084 				is_pse(vcpu),
4085 				guest_cpuid_is_amd_or_hygon(vcpu));
4086 }
4087 
4088 static void
4089 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4090 			    u64 pa_bits_rsvd, bool execonly)
4091 {
4092 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4093 	u64 bad_mt_xwr;
4094 
4095 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4096 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4097 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4098 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4099 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4100 
4101 	/* large page */
4102 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4103 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4104 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4105 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4106 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4107 
4108 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4109 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4110 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4111 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4112 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4113 	if (!execonly) {
4114 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4115 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4116 	}
4117 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4118 }
4119 
4120 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4121 		struct kvm_mmu *context, bool execonly)
4122 {
4123 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4124 				    vcpu->arch.reserved_gpa_bits, execonly);
4125 }
4126 
4127 static inline u64 reserved_hpa_bits(void)
4128 {
4129 	return rsvd_bits(shadow_phys_bits, 63);
4130 }
4131 
4132 /*
4133  * the page table on host is the shadow page table for the page
4134  * table in guest or amd nested guest, its mmu features completely
4135  * follow the features in guest.
4136  */
4137 void
4138 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4139 {
4140 	bool uses_nx = context->nx ||
4141 		context->mmu_role.base.smep_andnot_wp;
4142 	struct rsvd_bits_validate *shadow_zero_check;
4143 	int i;
4144 
4145 	/*
4146 	 * Passing "true" to the last argument is okay; it adds a check
4147 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4148 	 */
4149 	shadow_zero_check = &context->shadow_zero_check;
4150 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4151 				reserved_hpa_bits(),
4152 				context->shadow_root_level, uses_nx,
4153 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4154 				is_pse(vcpu), true);
4155 
4156 	if (!shadow_me_mask)
4157 		return;
4158 
4159 	for (i = context->shadow_root_level; --i >= 0;) {
4160 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4161 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4162 	}
4163 
4164 }
4165 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4166 
4167 static inline bool boot_cpu_is_amd(void)
4168 {
4169 	WARN_ON_ONCE(!tdp_enabled);
4170 	return shadow_x_mask == 0;
4171 }
4172 
4173 /*
4174  * the direct page table on host, use as much mmu features as
4175  * possible, however, kvm currently does not do execution-protection.
4176  */
4177 static void
4178 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4179 				struct kvm_mmu *context)
4180 {
4181 	struct rsvd_bits_validate *shadow_zero_check;
4182 	int i;
4183 
4184 	shadow_zero_check = &context->shadow_zero_check;
4185 
4186 	if (boot_cpu_is_amd())
4187 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4188 					reserved_hpa_bits(),
4189 					context->shadow_root_level, false,
4190 					boot_cpu_has(X86_FEATURE_GBPAGES),
4191 					true, true);
4192 	else
4193 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4194 					    reserved_hpa_bits(), false);
4195 
4196 	if (!shadow_me_mask)
4197 		return;
4198 
4199 	for (i = context->shadow_root_level; --i >= 0;) {
4200 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4201 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4202 	}
4203 }
4204 
4205 /*
4206  * as the comments in reset_shadow_zero_bits_mask() except it
4207  * is the shadow page table for intel nested guest.
4208  */
4209 static void
4210 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4211 				struct kvm_mmu *context, bool execonly)
4212 {
4213 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4214 				    reserved_hpa_bits(), execonly);
4215 }
4216 
4217 #define BYTE_MASK(access) \
4218 	((1 & (access) ? 2 : 0) | \
4219 	 (2 & (access) ? 4 : 0) | \
4220 	 (3 & (access) ? 8 : 0) | \
4221 	 (4 & (access) ? 16 : 0) | \
4222 	 (5 & (access) ? 32 : 0) | \
4223 	 (6 & (access) ? 64 : 0) | \
4224 	 (7 & (access) ? 128 : 0))
4225 
4226 
4227 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4228 				      struct kvm_mmu *mmu, bool ept)
4229 {
4230 	unsigned byte;
4231 
4232 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4233 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4234 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4235 
4236 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4237 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4238 	bool cr0_wp = is_write_protection(vcpu);
4239 
4240 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4241 		unsigned pfec = byte << 1;
4242 
4243 		/*
4244 		 * Each "*f" variable has a 1 bit for each UWX value
4245 		 * that causes a fault with the given PFEC.
4246 		 */
4247 
4248 		/* Faults from writes to non-writable pages */
4249 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4250 		/* Faults from user mode accesses to supervisor pages */
4251 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4252 		/* Faults from fetches of non-executable pages*/
4253 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4254 		/* Faults from kernel mode fetches of user pages */
4255 		u8 smepf = 0;
4256 		/* Faults from kernel mode accesses of user pages */
4257 		u8 smapf = 0;
4258 
4259 		if (!ept) {
4260 			/* Faults from kernel mode accesses to user pages */
4261 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4262 
4263 			/* Not really needed: !nx will cause pte.nx to fault */
4264 			if (!mmu->nx)
4265 				ff = 0;
4266 
4267 			/* Allow supervisor writes if !cr0.wp */
4268 			if (!cr0_wp)
4269 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4270 
4271 			/* Disallow supervisor fetches of user code if cr4.smep */
4272 			if (cr4_smep)
4273 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4274 
4275 			/*
4276 			 * SMAP:kernel-mode data accesses from user-mode
4277 			 * mappings should fault. A fault is considered
4278 			 * as a SMAP violation if all of the following
4279 			 * conditions are true:
4280 			 *   - X86_CR4_SMAP is set in CR4
4281 			 *   - A user page is accessed
4282 			 *   - The access is not a fetch
4283 			 *   - Page fault in kernel mode
4284 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4285 			 *
4286 			 * Here, we cover the first three conditions.
4287 			 * The fourth is computed dynamically in permission_fault();
4288 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4289 			 * *not* subject to SMAP restrictions.
4290 			 */
4291 			if (cr4_smap)
4292 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4293 		}
4294 
4295 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4296 	}
4297 }
4298 
4299 /*
4300 * PKU is an additional mechanism by which the paging controls access to
4301 * user-mode addresses based on the value in the PKRU register.  Protection
4302 * key violations are reported through a bit in the page fault error code.
4303 * Unlike other bits of the error code, the PK bit is not known at the
4304 * call site of e.g. gva_to_gpa; it must be computed directly in
4305 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4306 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4307 *
4308 * In particular the following conditions come from the error code, the
4309 * page tables and the machine state:
4310 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4311 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4312 * - PK is always zero if U=0 in the page tables
4313 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4314 *
4315 * The PKRU bitmask caches the result of these four conditions.  The error
4316 * code (minus the P bit) and the page table's U bit form an index into the
4317 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4318 * with the two bits of the PKRU register corresponding to the protection key.
4319 * For the first three conditions above the bits will be 00, thus masking
4320 * away both AD and WD.  For all reads or if the last condition holds, WD
4321 * only will be masked away.
4322 */
4323 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4324 				bool ept)
4325 {
4326 	unsigned bit;
4327 	bool wp;
4328 
4329 	if (ept) {
4330 		mmu->pkru_mask = 0;
4331 		return;
4332 	}
4333 
4334 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4335 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4336 		mmu->pkru_mask = 0;
4337 		return;
4338 	}
4339 
4340 	wp = is_write_protection(vcpu);
4341 
4342 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4343 		unsigned pfec, pkey_bits;
4344 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4345 
4346 		pfec = bit << 1;
4347 		ff = pfec & PFERR_FETCH_MASK;
4348 		uf = pfec & PFERR_USER_MASK;
4349 		wf = pfec & PFERR_WRITE_MASK;
4350 
4351 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4352 		pte_user = pfec & PFERR_RSVD_MASK;
4353 
4354 		/*
4355 		 * Only need to check the access which is not an
4356 		 * instruction fetch and is to a user page.
4357 		 */
4358 		check_pkey = (!ff && pte_user);
4359 		/*
4360 		 * write access is controlled by PKRU if it is a
4361 		 * user access or CR0.WP = 1.
4362 		 */
4363 		check_write = check_pkey && wf && (uf || wp);
4364 
4365 		/* PKRU.AD stops both read and write access. */
4366 		pkey_bits = !!check_pkey;
4367 		/* PKRU.WD stops write access. */
4368 		pkey_bits |= (!!check_write) << 1;
4369 
4370 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4371 	}
4372 }
4373 
4374 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4375 {
4376 	unsigned root_level = mmu->root_level;
4377 
4378 	mmu->last_nonleaf_level = root_level;
4379 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4380 		mmu->last_nonleaf_level++;
4381 }
4382 
4383 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4384 					 struct kvm_mmu *context,
4385 					 int level)
4386 {
4387 	context->nx = is_nx(vcpu);
4388 	context->root_level = level;
4389 
4390 	reset_rsvds_bits_mask(vcpu, context);
4391 	update_permission_bitmask(vcpu, context, false);
4392 	update_pkru_bitmask(vcpu, context, false);
4393 	update_last_nonleaf_level(vcpu, context);
4394 
4395 	MMU_WARN_ON(!is_pae(vcpu));
4396 	context->page_fault = paging64_page_fault;
4397 	context->gva_to_gpa = paging64_gva_to_gpa;
4398 	context->sync_page = paging64_sync_page;
4399 	context->invlpg = paging64_invlpg;
4400 	context->shadow_root_level = level;
4401 	context->direct_map = false;
4402 }
4403 
4404 static void paging64_init_context(struct kvm_vcpu *vcpu,
4405 				  struct kvm_mmu *context)
4406 {
4407 	int root_level = is_la57_mode(vcpu) ?
4408 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4409 
4410 	paging64_init_context_common(vcpu, context, root_level);
4411 }
4412 
4413 static void paging32_init_context(struct kvm_vcpu *vcpu,
4414 				  struct kvm_mmu *context)
4415 {
4416 	context->nx = false;
4417 	context->root_level = PT32_ROOT_LEVEL;
4418 
4419 	reset_rsvds_bits_mask(vcpu, context);
4420 	update_permission_bitmask(vcpu, context, false);
4421 	update_pkru_bitmask(vcpu, context, false);
4422 	update_last_nonleaf_level(vcpu, context);
4423 
4424 	context->page_fault = paging32_page_fault;
4425 	context->gva_to_gpa = paging32_gva_to_gpa;
4426 	context->sync_page = paging32_sync_page;
4427 	context->invlpg = paging32_invlpg;
4428 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4429 	context->direct_map = false;
4430 }
4431 
4432 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4433 				   struct kvm_mmu *context)
4434 {
4435 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4436 }
4437 
4438 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4439 {
4440 	union kvm_mmu_extended_role ext = {0};
4441 
4442 	ext.cr0_pg = !!is_paging(vcpu);
4443 	ext.cr4_pae = !!is_pae(vcpu);
4444 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4445 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4446 	ext.cr4_pse = !!is_pse(vcpu);
4447 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4448 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4449 
4450 	ext.valid = 1;
4451 
4452 	return ext;
4453 }
4454 
4455 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4456 						   bool base_only)
4457 {
4458 	union kvm_mmu_role role = {0};
4459 
4460 	role.base.access = ACC_ALL;
4461 	role.base.nxe = !!is_nx(vcpu);
4462 	role.base.cr0_wp = is_write_protection(vcpu);
4463 	role.base.smm = is_smm(vcpu);
4464 	role.base.guest_mode = is_guest_mode(vcpu);
4465 
4466 	if (base_only)
4467 		return role;
4468 
4469 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4470 
4471 	return role;
4472 }
4473 
4474 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4475 {
4476 	/* Use 5-level TDP if and only if it's useful/necessary. */
4477 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4478 		return 4;
4479 
4480 	return max_tdp_level;
4481 }
4482 
4483 static union kvm_mmu_role
4484 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4485 {
4486 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4487 
4488 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4489 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4490 	role.base.direct = true;
4491 	role.base.gpte_is_8_bytes = true;
4492 
4493 	return role;
4494 }
4495 
4496 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4497 {
4498 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4499 	union kvm_mmu_role new_role =
4500 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4501 
4502 	if (new_role.as_u64 == context->mmu_role.as_u64)
4503 		return;
4504 
4505 	context->mmu_role.as_u64 = new_role.as_u64;
4506 	context->page_fault = kvm_tdp_page_fault;
4507 	context->sync_page = nonpaging_sync_page;
4508 	context->invlpg = NULL;
4509 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4510 	context->direct_map = true;
4511 	context->get_guest_pgd = get_cr3;
4512 	context->get_pdptr = kvm_pdptr_read;
4513 	context->inject_page_fault = kvm_inject_page_fault;
4514 
4515 	if (!is_paging(vcpu)) {
4516 		context->nx = false;
4517 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4518 		context->root_level = 0;
4519 	} else if (is_long_mode(vcpu)) {
4520 		context->nx = is_nx(vcpu);
4521 		context->root_level = is_la57_mode(vcpu) ?
4522 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4523 		reset_rsvds_bits_mask(vcpu, context);
4524 		context->gva_to_gpa = paging64_gva_to_gpa;
4525 	} else if (is_pae(vcpu)) {
4526 		context->nx = is_nx(vcpu);
4527 		context->root_level = PT32E_ROOT_LEVEL;
4528 		reset_rsvds_bits_mask(vcpu, context);
4529 		context->gva_to_gpa = paging64_gva_to_gpa;
4530 	} else {
4531 		context->nx = false;
4532 		context->root_level = PT32_ROOT_LEVEL;
4533 		reset_rsvds_bits_mask(vcpu, context);
4534 		context->gva_to_gpa = paging32_gva_to_gpa;
4535 	}
4536 
4537 	update_permission_bitmask(vcpu, context, false);
4538 	update_pkru_bitmask(vcpu, context, false);
4539 	update_last_nonleaf_level(vcpu, context);
4540 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4541 }
4542 
4543 static union kvm_mmu_role
4544 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4545 {
4546 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4547 
4548 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4549 		!is_write_protection(vcpu);
4550 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4551 		!is_write_protection(vcpu);
4552 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4553 
4554 	return role;
4555 }
4556 
4557 static union kvm_mmu_role
4558 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4559 {
4560 	union kvm_mmu_role role =
4561 		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4562 
4563 	role.base.direct = !is_paging(vcpu);
4564 
4565 	if (!is_long_mode(vcpu))
4566 		role.base.level = PT32E_ROOT_LEVEL;
4567 	else if (is_la57_mode(vcpu))
4568 		role.base.level = PT64_ROOT_5LEVEL;
4569 	else
4570 		role.base.level = PT64_ROOT_4LEVEL;
4571 
4572 	return role;
4573 }
4574 
4575 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4576 				    u32 cr0, u32 cr4, u32 efer,
4577 				    union kvm_mmu_role new_role)
4578 {
4579 	if (!(cr0 & X86_CR0_PG))
4580 		nonpaging_init_context(vcpu, context);
4581 	else if (efer & EFER_LMA)
4582 		paging64_init_context(vcpu, context);
4583 	else if (cr4 & X86_CR4_PAE)
4584 		paging32E_init_context(vcpu, context);
4585 	else
4586 		paging32_init_context(vcpu, context);
4587 
4588 	context->mmu_role.as_u64 = new_role.as_u64;
4589 	reset_shadow_zero_bits_mask(vcpu, context);
4590 }
4591 
4592 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4593 {
4594 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4595 	union kvm_mmu_role new_role =
4596 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4597 
4598 	if (new_role.as_u64 != context->mmu_role.as_u64)
4599 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4600 }
4601 
4602 static union kvm_mmu_role
4603 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4604 {
4605 	union kvm_mmu_role role =
4606 		kvm_calc_shadow_root_page_role_common(vcpu, false);
4607 
4608 	role.base.direct = false;
4609 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4610 
4611 	return role;
4612 }
4613 
4614 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4615 			     gpa_t nested_cr3)
4616 {
4617 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4618 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4619 
4620 	context->shadow_root_level = new_role.base.level;
4621 
4622 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4623 
4624 	if (new_role.as_u64 != context->mmu_role.as_u64)
4625 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4626 }
4627 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4628 
4629 static union kvm_mmu_role
4630 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4631 				   bool execonly, u8 level)
4632 {
4633 	union kvm_mmu_role role = {0};
4634 
4635 	/* SMM flag is inherited from root_mmu */
4636 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4637 
4638 	role.base.level = level;
4639 	role.base.gpte_is_8_bytes = true;
4640 	role.base.direct = false;
4641 	role.base.ad_disabled = !accessed_dirty;
4642 	role.base.guest_mode = true;
4643 	role.base.access = ACC_ALL;
4644 
4645 	/*
4646 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4647 	 * SMAP variation to denote shadow EPT entries.
4648 	 */
4649 	role.base.cr0_wp = true;
4650 	role.base.smap_andnot_wp = true;
4651 
4652 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4653 	role.ext.execonly = execonly;
4654 
4655 	return role;
4656 }
4657 
4658 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4659 			     bool accessed_dirty, gpa_t new_eptp)
4660 {
4661 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4662 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4663 	union kvm_mmu_role new_role =
4664 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4665 						   execonly, level);
4666 
4667 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4668 
4669 	if (new_role.as_u64 == context->mmu_role.as_u64)
4670 		return;
4671 
4672 	context->shadow_root_level = level;
4673 
4674 	context->nx = true;
4675 	context->ept_ad = accessed_dirty;
4676 	context->page_fault = ept_page_fault;
4677 	context->gva_to_gpa = ept_gva_to_gpa;
4678 	context->sync_page = ept_sync_page;
4679 	context->invlpg = ept_invlpg;
4680 	context->root_level = level;
4681 	context->direct_map = false;
4682 	context->mmu_role.as_u64 = new_role.as_u64;
4683 
4684 	update_permission_bitmask(vcpu, context, true);
4685 	update_pkru_bitmask(vcpu, context, true);
4686 	update_last_nonleaf_level(vcpu, context);
4687 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4688 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4689 }
4690 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4691 
4692 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4693 {
4694 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4695 
4696 	kvm_init_shadow_mmu(vcpu,
4697 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4698 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4699 			    vcpu->arch.efer);
4700 
4701 	context->get_guest_pgd     = get_cr3;
4702 	context->get_pdptr         = kvm_pdptr_read;
4703 	context->inject_page_fault = kvm_inject_page_fault;
4704 }
4705 
4706 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4707 {
4708 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4709 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4710 
4711 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4712 		return;
4713 
4714 	g_context->mmu_role.as_u64 = new_role.as_u64;
4715 	g_context->get_guest_pgd     = get_cr3;
4716 	g_context->get_pdptr         = kvm_pdptr_read;
4717 	g_context->inject_page_fault = kvm_inject_page_fault;
4718 
4719 	/*
4720 	 * L2 page tables are never shadowed, so there is no need to sync
4721 	 * SPTEs.
4722 	 */
4723 	g_context->invlpg            = NULL;
4724 
4725 	/*
4726 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4727 	 * L1's nested page tables (e.g. EPT12). The nested translation
4728 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4729 	 * L2's page tables as the first level of translation and L1's
4730 	 * nested page tables as the second level of translation. Basically
4731 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4732 	 */
4733 	if (!is_paging(vcpu)) {
4734 		g_context->nx = false;
4735 		g_context->root_level = 0;
4736 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4737 	} else if (is_long_mode(vcpu)) {
4738 		g_context->nx = is_nx(vcpu);
4739 		g_context->root_level = is_la57_mode(vcpu) ?
4740 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4741 		reset_rsvds_bits_mask(vcpu, g_context);
4742 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4743 	} else if (is_pae(vcpu)) {
4744 		g_context->nx = is_nx(vcpu);
4745 		g_context->root_level = PT32E_ROOT_LEVEL;
4746 		reset_rsvds_bits_mask(vcpu, g_context);
4747 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4748 	} else {
4749 		g_context->nx = false;
4750 		g_context->root_level = PT32_ROOT_LEVEL;
4751 		reset_rsvds_bits_mask(vcpu, g_context);
4752 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4753 	}
4754 
4755 	update_permission_bitmask(vcpu, g_context, false);
4756 	update_pkru_bitmask(vcpu, g_context, false);
4757 	update_last_nonleaf_level(vcpu, g_context);
4758 }
4759 
4760 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4761 {
4762 	if (reset_roots) {
4763 		uint i;
4764 
4765 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4766 
4767 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4768 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4769 	}
4770 
4771 	if (mmu_is_nested(vcpu))
4772 		init_kvm_nested_mmu(vcpu);
4773 	else if (tdp_enabled)
4774 		init_kvm_tdp_mmu(vcpu);
4775 	else
4776 		init_kvm_softmmu(vcpu);
4777 }
4778 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4779 
4780 static union kvm_mmu_page_role
4781 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4782 {
4783 	union kvm_mmu_role role;
4784 
4785 	if (tdp_enabled)
4786 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4787 	else
4788 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4789 
4790 	return role.base;
4791 }
4792 
4793 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4794 {
4795 	kvm_mmu_unload(vcpu);
4796 	kvm_init_mmu(vcpu, true);
4797 }
4798 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4799 
4800 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4801 {
4802 	int r;
4803 
4804 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4805 	if (r)
4806 		goto out;
4807 	r = mmu_alloc_roots(vcpu);
4808 	kvm_mmu_sync_roots(vcpu);
4809 	if (r)
4810 		goto out;
4811 	kvm_mmu_load_pgd(vcpu);
4812 	static_call(kvm_x86_tlb_flush_current)(vcpu);
4813 out:
4814 	return r;
4815 }
4816 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4817 
4818 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4819 {
4820 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4821 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4822 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4823 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4824 }
4825 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4826 
4827 static bool need_remote_flush(u64 old, u64 new)
4828 {
4829 	if (!is_shadow_present_pte(old))
4830 		return false;
4831 	if (!is_shadow_present_pte(new))
4832 		return true;
4833 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4834 		return true;
4835 	old ^= shadow_nx_mask;
4836 	new ^= shadow_nx_mask;
4837 	return (old & ~new & PT64_PERM_MASK) != 0;
4838 }
4839 
4840 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841 				    int *bytes)
4842 {
4843 	u64 gentry = 0;
4844 	int r;
4845 
4846 	/*
4847 	 * Assume that the pte write on a page table of the same type
4848 	 * as the current vcpu paging mode since we update the sptes only
4849 	 * when they have the same mode.
4850 	 */
4851 	if (is_pae(vcpu) && *bytes == 4) {
4852 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853 		*gpa &= ~(gpa_t)7;
4854 		*bytes = 8;
4855 	}
4856 
4857 	if (*bytes == 4 || *bytes == 8) {
4858 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4859 		if (r)
4860 			gentry = 0;
4861 	}
4862 
4863 	return gentry;
4864 }
4865 
4866 /*
4867  * If we're seeing too many writes to a page, it may no longer be a page table,
4868  * or we may be forking, in which case it is better to unmap the page.
4869  */
4870 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871 {
4872 	/*
4873 	 * Skip write-flooding detected for the sp whose level is 1, because
4874 	 * it can become unsync, then the guest page is not write-protected.
4875 	 */
4876 	if (sp->role.level == PG_LEVEL_4K)
4877 		return false;
4878 
4879 	atomic_inc(&sp->write_flooding_count);
4880 	return atomic_read(&sp->write_flooding_count) >= 3;
4881 }
4882 
4883 /*
4884  * Misaligned accesses are too much trouble to fix up; also, they usually
4885  * indicate a page is not used as a page table.
4886  */
4887 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4888 				    int bytes)
4889 {
4890 	unsigned offset, pte_size, misaligned;
4891 
4892 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4893 		 gpa, bytes, sp->role.word);
4894 
4895 	offset = offset_in_page(gpa);
4896 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897 
4898 	/*
4899 	 * Sometimes, the OS only writes the last one bytes to update status
4900 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4901 	 */
4902 	if (!(offset & (pte_size - 1)) && bytes == 1)
4903 		return false;
4904 
4905 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4906 	misaligned |= bytes < 4;
4907 
4908 	return misaligned;
4909 }
4910 
4911 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4912 {
4913 	unsigned page_offset, quadrant;
4914 	u64 *spte;
4915 	int level;
4916 
4917 	page_offset = offset_in_page(gpa);
4918 	level = sp->role.level;
4919 	*nspte = 1;
4920 	if (!sp->role.gpte_is_8_bytes) {
4921 		page_offset <<= 1;	/* 32->64 */
4922 		/*
4923 		 * A 32-bit pde maps 4MB while the shadow pdes map
4924 		 * only 2MB.  So we need to double the offset again
4925 		 * and zap two pdes instead of one.
4926 		 */
4927 		if (level == PT32_ROOT_LEVEL) {
4928 			page_offset &= ~7; /* kill rounding error */
4929 			page_offset <<= 1;
4930 			*nspte = 2;
4931 		}
4932 		quadrant = page_offset >> PAGE_SHIFT;
4933 		page_offset &= ~PAGE_MASK;
4934 		if (quadrant != sp->role.quadrant)
4935 			return NULL;
4936 	}
4937 
4938 	spte = &sp->spt[page_offset / sizeof(*spte)];
4939 	return spte;
4940 }
4941 
4942 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4943 			      const u8 *new, int bytes,
4944 			      struct kvm_page_track_notifier_node *node)
4945 {
4946 	gfn_t gfn = gpa >> PAGE_SHIFT;
4947 	struct kvm_mmu_page *sp;
4948 	LIST_HEAD(invalid_list);
4949 	u64 entry, gentry, *spte;
4950 	int npte;
4951 	bool remote_flush, local_flush;
4952 
4953 	/*
4954 	 * If we don't have indirect shadow pages, it means no page is
4955 	 * write-protected, so we can exit simply.
4956 	 */
4957 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4958 		return;
4959 
4960 	remote_flush = local_flush = false;
4961 
4962 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4963 
4964 	/*
4965 	 * No need to care whether allocation memory is successful
4966 	 * or not since pte prefetch is skiped if it does not have
4967 	 * enough objects in the cache.
4968 	 */
4969 	mmu_topup_memory_caches(vcpu, true);
4970 
4971 	write_lock(&vcpu->kvm->mmu_lock);
4972 
4973 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4974 
4975 	++vcpu->kvm->stat.mmu_pte_write;
4976 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4977 
4978 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4979 		if (detect_write_misaligned(sp, gpa, bytes) ||
4980 		      detect_write_flooding(sp)) {
4981 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4982 			++vcpu->kvm->stat.mmu_flooded;
4983 			continue;
4984 		}
4985 
4986 		spte = get_written_sptes(sp, gpa, &npte);
4987 		if (!spte)
4988 			continue;
4989 
4990 		local_flush = true;
4991 		while (npte--) {
4992 			entry = *spte;
4993 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4994 			if (gentry && sp->role.level != PG_LEVEL_4K)
4995 				++vcpu->kvm->stat.mmu_pde_zapped;
4996 			if (need_remote_flush(entry, *spte))
4997 				remote_flush = true;
4998 			++spte;
4999 		}
5000 	}
5001 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5002 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5003 	write_unlock(&vcpu->kvm->mmu_lock);
5004 }
5005 
5006 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5007 {
5008 	gpa_t gpa;
5009 	int r;
5010 
5011 	if (vcpu->arch.mmu->direct_map)
5012 		return 0;
5013 
5014 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5015 
5016 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5017 
5018 	return r;
5019 }
5020 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5021 
5022 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5023 		       void *insn, int insn_len)
5024 {
5025 	int r, emulation_type = EMULTYPE_PF;
5026 	bool direct = vcpu->arch.mmu->direct_map;
5027 
5028 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5029 		return RET_PF_RETRY;
5030 
5031 	r = RET_PF_INVALID;
5032 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5033 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5034 		if (r == RET_PF_EMULATE)
5035 			goto emulate;
5036 	}
5037 
5038 	if (r == RET_PF_INVALID) {
5039 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5040 					  lower_32_bits(error_code), false);
5041 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5042 			return -EIO;
5043 	}
5044 
5045 	if (r < 0)
5046 		return r;
5047 	if (r != RET_PF_EMULATE)
5048 		return 1;
5049 
5050 	/*
5051 	 * Before emulating the instruction, check if the error code
5052 	 * was due to a RO violation while translating the guest page.
5053 	 * This can occur when using nested virtualization with nested
5054 	 * paging in both guests. If true, we simply unprotect the page
5055 	 * and resume the guest.
5056 	 */
5057 	if (vcpu->arch.mmu->direct_map &&
5058 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5059 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5060 		return 1;
5061 	}
5062 
5063 	/*
5064 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5065 	 * optimistically try to just unprotect the page and let the processor
5066 	 * re-execute the instruction that caused the page fault.  Do not allow
5067 	 * retrying MMIO emulation, as it's not only pointless but could also
5068 	 * cause us to enter an infinite loop because the processor will keep
5069 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5070 	 * from a nested guest is also pointless and dangerous as we are only
5071 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5072 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5073 	 */
5074 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5075 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5076 emulate:
5077 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5078 				       insn_len);
5079 }
5080 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5081 
5082 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5083 			    gva_t gva, hpa_t root_hpa)
5084 {
5085 	int i;
5086 
5087 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5088 	if (mmu != &vcpu->arch.guest_mmu) {
5089 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5090 		if (is_noncanonical_address(gva, vcpu))
5091 			return;
5092 
5093 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5094 	}
5095 
5096 	if (!mmu->invlpg)
5097 		return;
5098 
5099 	if (root_hpa == INVALID_PAGE) {
5100 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5101 
5102 		/*
5103 		 * INVLPG is required to invalidate any global mappings for the VA,
5104 		 * irrespective of PCID. Since it would take us roughly similar amount
5105 		 * of work to determine whether any of the prev_root mappings of the VA
5106 		 * is marked global, or to just sync it blindly, so we might as well
5107 		 * just always sync it.
5108 		 *
5109 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5110 		 * synced when switching to that cr3, so nothing needs to be done here
5111 		 * for them.
5112 		 */
5113 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5114 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5115 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5116 	} else {
5117 		mmu->invlpg(vcpu, gva, root_hpa);
5118 	}
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5121 
5122 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5123 {
5124 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5125 	++vcpu->stat.invlpg;
5126 }
5127 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5128 
5129 
5130 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5131 {
5132 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5133 	bool tlb_flush = false;
5134 	uint i;
5135 
5136 	if (pcid == kvm_get_active_pcid(vcpu)) {
5137 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5138 		tlb_flush = true;
5139 	}
5140 
5141 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5142 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5143 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5144 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5145 			tlb_flush = true;
5146 		}
5147 	}
5148 
5149 	if (tlb_flush)
5150 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5151 
5152 	++vcpu->stat.invlpg;
5153 
5154 	/*
5155 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5156 	 * synced when switching to that cr3, so nothing needs to be done here
5157 	 * for them.
5158 	 */
5159 }
5160 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5161 
5162 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5163 		       int tdp_huge_page_level)
5164 {
5165 	tdp_enabled = enable_tdp;
5166 	max_tdp_level = tdp_max_root_level;
5167 
5168 	/*
5169 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5170 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5171 	 * the kernel is not.  But, KVM never creates a page size greater than
5172 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5173 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5174 	 */
5175 	if (tdp_enabled)
5176 		max_huge_page_level = tdp_huge_page_level;
5177 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5178 		max_huge_page_level = PG_LEVEL_1G;
5179 	else
5180 		max_huge_page_level = PG_LEVEL_2M;
5181 }
5182 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5183 
5184 /* The return value indicates if tlb flush on all vcpus is needed. */
5185 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5186 
5187 /* The caller should hold mmu-lock before calling this function. */
5188 static __always_inline bool
5189 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5190 			slot_level_handler fn, int start_level, int end_level,
5191 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5192 {
5193 	struct slot_rmap_walk_iterator iterator;
5194 	bool flush = false;
5195 
5196 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5197 			end_gfn, &iterator) {
5198 		if (iterator.rmap)
5199 			flush |= fn(kvm, iterator.rmap);
5200 
5201 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5202 			if (flush && lock_flush_tlb) {
5203 				kvm_flush_remote_tlbs_with_address(kvm,
5204 						start_gfn,
5205 						iterator.gfn - start_gfn + 1);
5206 				flush = false;
5207 			}
5208 			cond_resched_rwlock_write(&kvm->mmu_lock);
5209 		}
5210 	}
5211 
5212 	if (flush && lock_flush_tlb) {
5213 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5214 						   end_gfn - start_gfn + 1);
5215 		flush = false;
5216 	}
5217 
5218 	return flush;
5219 }
5220 
5221 static __always_inline bool
5222 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5223 		  slot_level_handler fn, int start_level, int end_level,
5224 		  bool lock_flush_tlb)
5225 {
5226 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5227 			end_level, memslot->base_gfn,
5228 			memslot->base_gfn + memslot->npages - 1,
5229 			lock_flush_tlb);
5230 }
5231 
5232 static __always_inline bool
5233 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5234 		      slot_level_handler fn, bool lock_flush_tlb)
5235 {
5236 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5237 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5238 }
5239 
5240 static __always_inline bool
5241 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242 			slot_level_handler fn, bool lock_flush_tlb)
5243 {
5244 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5245 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5246 }
5247 
5248 static __always_inline bool
5249 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5250 		 slot_level_handler fn, bool lock_flush_tlb)
5251 {
5252 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5253 				 PG_LEVEL_4K, lock_flush_tlb);
5254 }
5255 
5256 static void free_mmu_pages(struct kvm_mmu *mmu)
5257 {
5258 	free_page((unsigned long)mmu->pae_root);
5259 	free_page((unsigned long)mmu->lm_root);
5260 }
5261 
5262 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5263 {
5264 	struct page *page;
5265 	int i;
5266 
5267 	mmu->root_hpa = INVALID_PAGE;
5268 	mmu->root_pgd = 0;
5269 	mmu->translate_gpa = translate_gpa;
5270 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5271 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5272 
5273 	/*
5274 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5275 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5276 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5277 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5278 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5279 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5280 	 * skip allocating the PDP table.
5281 	 */
5282 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5283 		return 0;
5284 
5285 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5286 	if (!page)
5287 		return -ENOMEM;
5288 
5289 	mmu->pae_root = page_address(page);
5290 	for (i = 0; i < 4; ++i)
5291 		mmu->pae_root[i] = INVALID_PAGE;
5292 
5293 	return 0;
5294 }
5295 
5296 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5297 {
5298 	int ret;
5299 
5300 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5301 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5302 
5303 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5304 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5305 
5306 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5307 
5308 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5309 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5310 
5311 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5312 
5313 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5314 	if (ret)
5315 		return ret;
5316 
5317 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5318 	if (ret)
5319 		goto fail_allocate_root;
5320 
5321 	return ret;
5322  fail_allocate_root:
5323 	free_mmu_pages(&vcpu->arch.guest_mmu);
5324 	return ret;
5325 }
5326 
5327 #define BATCH_ZAP_PAGES	10
5328 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5329 {
5330 	struct kvm_mmu_page *sp, *node;
5331 	int nr_zapped, batch = 0;
5332 
5333 restart:
5334 	list_for_each_entry_safe_reverse(sp, node,
5335 	      &kvm->arch.active_mmu_pages, link) {
5336 		/*
5337 		 * No obsolete valid page exists before a newly created page
5338 		 * since active_mmu_pages is a FIFO list.
5339 		 */
5340 		if (!is_obsolete_sp(kvm, sp))
5341 			break;
5342 
5343 		/*
5344 		 * Invalid pages should never land back on the list of active
5345 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5346 		 * infinite loop if the page gets put back on the list (again).
5347 		 */
5348 		if (WARN_ON(sp->role.invalid))
5349 			continue;
5350 
5351 		/*
5352 		 * No need to flush the TLB since we're only zapping shadow
5353 		 * pages with an obsolete generation number and all vCPUS have
5354 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5355 		 * be in active use by the guest.
5356 		 */
5357 		if (batch >= BATCH_ZAP_PAGES &&
5358 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5359 			batch = 0;
5360 			goto restart;
5361 		}
5362 
5363 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5364 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5365 			batch += nr_zapped;
5366 			goto restart;
5367 		}
5368 	}
5369 
5370 	/*
5371 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5372 	 * KVM is not in the middle of a lockless shadow page table walk, which
5373 	 * may reference the pages.
5374 	 */
5375 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5376 }
5377 
5378 /*
5379  * Fast invalidate all shadow pages and use lock-break technique
5380  * to zap obsolete pages.
5381  *
5382  * It's required when memslot is being deleted or VM is being
5383  * destroyed, in these cases, we should ensure that KVM MMU does
5384  * not use any resource of the being-deleted slot or all slots
5385  * after calling the function.
5386  */
5387 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5388 {
5389 	lockdep_assert_held(&kvm->slots_lock);
5390 
5391 	write_lock(&kvm->mmu_lock);
5392 	trace_kvm_mmu_zap_all_fast(kvm);
5393 
5394 	/*
5395 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5396 	 * held for the entire duration of zapping obsolete pages, it's
5397 	 * impossible for there to be multiple invalid generations associated
5398 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5399 	 * one valid generation and (at most) one invalid generation.
5400 	 */
5401 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5402 
5403 	/*
5404 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5405 	 * Then all vcpus will switch to new shadow page table with the new
5406 	 * mmu_valid_gen.
5407 	 *
5408 	 * Note: we need to do this under the protection of mmu_lock,
5409 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5410 	 */
5411 	kvm_reload_remote_mmus(kvm);
5412 
5413 	kvm_zap_obsolete_pages(kvm);
5414 
5415 	if (is_tdp_mmu_enabled(kvm))
5416 		kvm_tdp_mmu_zap_all(kvm);
5417 
5418 	write_unlock(&kvm->mmu_lock);
5419 }
5420 
5421 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5422 {
5423 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5424 }
5425 
5426 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5427 			struct kvm_memory_slot *slot,
5428 			struct kvm_page_track_notifier_node *node)
5429 {
5430 	kvm_mmu_zap_all_fast(kvm);
5431 }
5432 
5433 void kvm_mmu_init_vm(struct kvm *kvm)
5434 {
5435 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5436 
5437 	kvm_mmu_init_tdp_mmu(kvm);
5438 
5439 	node->track_write = kvm_mmu_pte_write;
5440 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5441 	kvm_page_track_register_notifier(kvm, node);
5442 }
5443 
5444 void kvm_mmu_uninit_vm(struct kvm *kvm)
5445 {
5446 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5447 
5448 	kvm_page_track_unregister_notifier(kvm, node);
5449 
5450 	kvm_mmu_uninit_tdp_mmu(kvm);
5451 }
5452 
5453 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5454 {
5455 	struct kvm_memslots *slots;
5456 	struct kvm_memory_slot *memslot;
5457 	int i;
5458 	bool flush;
5459 
5460 	write_lock(&kvm->mmu_lock);
5461 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5462 		slots = __kvm_memslots(kvm, i);
5463 		kvm_for_each_memslot(memslot, slots) {
5464 			gfn_t start, end;
5465 
5466 			start = max(gfn_start, memslot->base_gfn);
5467 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5468 			if (start >= end)
5469 				continue;
5470 
5471 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5472 						PG_LEVEL_4K,
5473 						KVM_MAX_HUGEPAGE_LEVEL,
5474 						start, end - 1, true);
5475 		}
5476 	}
5477 
5478 	if (is_tdp_mmu_enabled(kvm)) {
5479 		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5480 		if (flush)
5481 			kvm_flush_remote_tlbs(kvm);
5482 	}
5483 
5484 	write_unlock(&kvm->mmu_lock);
5485 }
5486 
5487 static bool slot_rmap_write_protect(struct kvm *kvm,
5488 				    struct kvm_rmap_head *rmap_head)
5489 {
5490 	return __rmap_write_protect(kvm, rmap_head, false);
5491 }
5492 
5493 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5494 				      struct kvm_memory_slot *memslot,
5495 				      int start_level)
5496 {
5497 	bool flush;
5498 
5499 	write_lock(&kvm->mmu_lock);
5500 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5501 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5502 	if (is_tdp_mmu_enabled(kvm))
5503 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5504 	write_unlock(&kvm->mmu_lock);
5505 
5506 	/*
5507 	 * We can flush all the TLBs out of the mmu lock without TLB
5508 	 * corruption since we just change the spte from writable to
5509 	 * readonly so that we only need to care the case of changing
5510 	 * spte from present to present (changing the spte from present
5511 	 * to nonpresent will flush all the TLBs immediately), in other
5512 	 * words, the only case we care is mmu_spte_update() where we
5513 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5514 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5515 	 * on PT_WRITABLE_MASK anymore.
5516 	 */
5517 	if (flush)
5518 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5519 }
5520 
5521 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5522 					 struct kvm_rmap_head *rmap_head)
5523 {
5524 	u64 *sptep;
5525 	struct rmap_iterator iter;
5526 	int need_tlb_flush = 0;
5527 	kvm_pfn_t pfn;
5528 	struct kvm_mmu_page *sp;
5529 
5530 restart:
5531 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5532 		sp = sptep_to_sp(sptep);
5533 		pfn = spte_to_pfn(*sptep);
5534 
5535 		/*
5536 		 * We cannot do huge page mapping for indirect shadow pages,
5537 		 * which are found on the last rmap (level = 1) when not using
5538 		 * tdp; such shadow pages are synced with the page table in
5539 		 * the guest, and the guest page table is using 4K page size
5540 		 * mapping if the indirect sp has level = 1.
5541 		 */
5542 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5543 		    (kvm_is_zone_device_pfn(pfn) ||
5544 		     PageCompound(pfn_to_page(pfn)))) {
5545 			pte_list_remove(rmap_head, sptep);
5546 
5547 			if (kvm_available_flush_tlb_with_range())
5548 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5549 					KVM_PAGES_PER_HPAGE(sp->role.level));
5550 			else
5551 				need_tlb_flush = 1;
5552 
5553 			goto restart;
5554 		}
5555 	}
5556 
5557 	return need_tlb_flush;
5558 }
5559 
5560 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5561 				   const struct kvm_memory_slot *memslot)
5562 {
5563 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5564 	write_lock(&kvm->mmu_lock);
5565 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5566 			 kvm_mmu_zap_collapsible_spte, true);
5567 
5568 	if (is_tdp_mmu_enabled(kvm))
5569 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5570 	write_unlock(&kvm->mmu_lock);
5571 }
5572 
5573 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5574 					struct kvm_memory_slot *memslot)
5575 {
5576 	/*
5577 	 * All current use cases for flushing the TLBs for a specific memslot
5578 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5579 	 * The interaction between the various operations on memslot must be
5580 	 * serialized by slots_locks to ensure the TLB flush from one operation
5581 	 * is observed by any other operation on the same memslot.
5582 	 */
5583 	lockdep_assert_held(&kvm->slots_lock);
5584 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5585 					   memslot->npages);
5586 }
5587 
5588 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5589 				   struct kvm_memory_slot *memslot)
5590 {
5591 	bool flush;
5592 
5593 	write_lock(&kvm->mmu_lock);
5594 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5595 	if (is_tdp_mmu_enabled(kvm))
5596 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5597 	write_unlock(&kvm->mmu_lock);
5598 
5599 	/*
5600 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5601 	 * function is only used for dirty logging, in which case flushing TLB
5602 	 * out of mmu lock also guarantees no dirty pages will be lost in
5603 	 * dirty_bitmap.
5604 	 */
5605 	if (flush)
5606 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5607 }
5608 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5609 
5610 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5611 					struct kvm_memory_slot *memslot)
5612 {
5613 	bool flush;
5614 
5615 	write_lock(&kvm->mmu_lock);
5616 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5617 					false);
5618 	if (is_tdp_mmu_enabled(kvm))
5619 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5620 	write_unlock(&kvm->mmu_lock);
5621 
5622 	if (flush)
5623 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5624 }
5625 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5626 
5627 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5628 			    struct kvm_memory_slot *memslot)
5629 {
5630 	bool flush;
5631 
5632 	write_lock(&kvm->mmu_lock);
5633 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5634 	if (is_tdp_mmu_enabled(kvm))
5635 		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5636 	write_unlock(&kvm->mmu_lock);
5637 
5638 	if (flush)
5639 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5640 }
5641 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5642 
5643 void kvm_mmu_zap_all(struct kvm *kvm)
5644 {
5645 	struct kvm_mmu_page *sp, *node;
5646 	LIST_HEAD(invalid_list);
5647 	int ign;
5648 
5649 	write_lock(&kvm->mmu_lock);
5650 restart:
5651 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5652 		if (WARN_ON(sp->role.invalid))
5653 			continue;
5654 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5655 			goto restart;
5656 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5657 			goto restart;
5658 	}
5659 
5660 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5661 
5662 	if (is_tdp_mmu_enabled(kvm))
5663 		kvm_tdp_mmu_zap_all(kvm);
5664 
5665 	write_unlock(&kvm->mmu_lock);
5666 }
5667 
5668 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5669 {
5670 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5671 
5672 	gen &= MMIO_SPTE_GEN_MASK;
5673 
5674 	/*
5675 	 * Generation numbers are incremented in multiples of the number of
5676 	 * address spaces in order to provide unique generations across all
5677 	 * address spaces.  Strip what is effectively the address space
5678 	 * modifier prior to checking for a wrap of the MMIO generation so
5679 	 * that a wrap in any address space is detected.
5680 	 */
5681 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5682 
5683 	/*
5684 	 * The very rare case: if the MMIO generation number has wrapped,
5685 	 * zap all shadow pages.
5686 	 */
5687 	if (unlikely(gen == 0)) {
5688 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5689 		kvm_mmu_zap_all_fast(kvm);
5690 	}
5691 }
5692 
5693 static unsigned long
5694 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5695 {
5696 	struct kvm *kvm;
5697 	int nr_to_scan = sc->nr_to_scan;
5698 	unsigned long freed = 0;
5699 
5700 	mutex_lock(&kvm_lock);
5701 
5702 	list_for_each_entry(kvm, &vm_list, vm_list) {
5703 		int idx;
5704 		LIST_HEAD(invalid_list);
5705 
5706 		/*
5707 		 * Never scan more than sc->nr_to_scan VM instances.
5708 		 * Will not hit this condition practically since we do not try
5709 		 * to shrink more than one VM and it is very unlikely to see
5710 		 * !n_used_mmu_pages so many times.
5711 		 */
5712 		if (!nr_to_scan--)
5713 			break;
5714 		/*
5715 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5716 		 * here. We may skip a VM instance errorneosly, but we do not
5717 		 * want to shrink a VM that only started to populate its MMU
5718 		 * anyway.
5719 		 */
5720 		if (!kvm->arch.n_used_mmu_pages &&
5721 		    !kvm_has_zapped_obsolete_pages(kvm))
5722 			continue;
5723 
5724 		idx = srcu_read_lock(&kvm->srcu);
5725 		write_lock(&kvm->mmu_lock);
5726 
5727 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5728 			kvm_mmu_commit_zap_page(kvm,
5729 			      &kvm->arch.zapped_obsolete_pages);
5730 			goto unlock;
5731 		}
5732 
5733 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5734 
5735 unlock:
5736 		write_unlock(&kvm->mmu_lock);
5737 		srcu_read_unlock(&kvm->srcu, idx);
5738 
5739 		/*
5740 		 * unfair on small ones
5741 		 * per-vm shrinkers cry out
5742 		 * sadness comes quickly
5743 		 */
5744 		list_move_tail(&kvm->vm_list, &vm_list);
5745 		break;
5746 	}
5747 
5748 	mutex_unlock(&kvm_lock);
5749 	return freed;
5750 }
5751 
5752 static unsigned long
5753 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5754 {
5755 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5756 }
5757 
5758 static struct shrinker mmu_shrinker = {
5759 	.count_objects = mmu_shrink_count,
5760 	.scan_objects = mmu_shrink_scan,
5761 	.seeks = DEFAULT_SEEKS * 10,
5762 };
5763 
5764 static void mmu_destroy_caches(void)
5765 {
5766 	kmem_cache_destroy(pte_list_desc_cache);
5767 	kmem_cache_destroy(mmu_page_header_cache);
5768 }
5769 
5770 static void kvm_set_mmio_spte_mask(void)
5771 {
5772 	u64 mask;
5773 
5774 	/*
5775 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5776 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5777 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5778 	 * 52-bit physical addresses then there are no reserved PA bits in the
5779 	 * PTEs and so the reserved PA approach must be disabled.
5780 	 */
5781 	if (shadow_phys_bits < 52)
5782 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5783 	else
5784 		mask = 0;
5785 
5786 	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5787 }
5788 
5789 static bool get_nx_auto_mode(void)
5790 {
5791 	/* Return true when CPU has the bug, and mitigations are ON */
5792 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5793 }
5794 
5795 static void __set_nx_huge_pages(bool val)
5796 {
5797 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5798 }
5799 
5800 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5801 {
5802 	bool old_val = nx_huge_pages;
5803 	bool new_val;
5804 
5805 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5806 	if (sysfs_streq(val, "off"))
5807 		new_val = 0;
5808 	else if (sysfs_streq(val, "force"))
5809 		new_val = 1;
5810 	else if (sysfs_streq(val, "auto"))
5811 		new_val = get_nx_auto_mode();
5812 	else if (strtobool(val, &new_val) < 0)
5813 		return -EINVAL;
5814 
5815 	__set_nx_huge_pages(new_val);
5816 
5817 	if (new_val != old_val) {
5818 		struct kvm *kvm;
5819 
5820 		mutex_lock(&kvm_lock);
5821 
5822 		list_for_each_entry(kvm, &vm_list, vm_list) {
5823 			mutex_lock(&kvm->slots_lock);
5824 			kvm_mmu_zap_all_fast(kvm);
5825 			mutex_unlock(&kvm->slots_lock);
5826 
5827 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5828 		}
5829 		mutex_unlock(&kvm_lock);
5830 	}
5831 
5832 	return 0;
5833 }
5834 
5835 int kvm_mmu_module_init(void)
5836 {
5837 	int ret = -ENOMEM;
5838 
5839 	if (nx_huge_pages == -1)
5840 		__set_nx_huge_pages(get_nx_auto_mode());
5841 
5842 	/*
5843 	 * MMU roles use union aliasing which is, generally speaking, an
5844 	 * undefined behavior. However, we supposedly know how compilers behave
5845 	 * and the current status quo is unlikely to change. Guardians below are
5846 	 * supposed to let us know if the assumption becomes false.
5847 	 */
5848 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5849 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5850 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5851 
5852 	kvm_mmu_reset_all_pte_masks();
5853 
5854 	kvm_set_mmio_spte_mask();
5855 
5856 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5857 					    sizeof(struct pte_list_desc),
5858 					    0, SLAB_ACCOUNT, NULL);
5859 	if (!pte_list_desc_cache)
5860 		goto out;
5861 
5862 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5863 						  sizeof(struct kvm_mmu_page),
5864 						  0, SLAB_ACCOUNT, NULL);
5865 	if (!mmu_page_header_cache)
5866 		goto out;
5867 
5868 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5869 		goto out;
5870 
5871 	ret = register_shrinker(&mmu_shrinker);
5872 	if (ret)
5873 		goto out;
5874 
5875 	return 0;
5876 
5877 out:
5878 	mmu_destroy_caches();
5879 	return ret;
5880 }
5881 
5882 /*
5883  * Calculate mmu pages needed for kvm.
5884  */
5885 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5886 {
5887 	unsigned long nr_mmu_pages;
5888 	unsigned long nr_pages = 0;
5889 	struct kvm_memslots *slots;
5890 	struct kvm_memory_slot *memslot;
5891 	int i;
5892 
5893 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5894 		slots = __kvm_memslots(kvm, i);
5895 
5896 		kvm_for_each_memslot(memslot, slots)
5897 			nr_pages += memslot->npages;
5898 	}
5899 
5900 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5901 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5902 
5903 	return nr_mmu_pages;
5904 }
5905 
5906 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5907 {
5908 	kvm_mmu_unload(vcpu);
5909 	free_mmu_pages(&vcpu->arch.root_mmu);
5910 	free_mmu_pages(&vcpu->arch.guest_mmu);
5911 	mmu_free_memory_caches(vcpu);
5912 }
5913 
5914 void kvm_mmu_module_exit(void)
5915 {
5916 	mmu_destroy_caches();
5917 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5918 	unregister_shrinker(&mmu_shrinker);
5919 	mmu_audit_disable();
5920 }
5921 
5922 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5923 {
5924 	unsigned int old_val;
5925 	int err;
5926 
5927 	old_val = nx_huge_pages_recovery_ratio;
5928 	err = param_set_uint(val, kp);
5929 	if (err)
5930 		return err;
5931 
5932 	if (READ_ONCE(nx_huge_pages) &&
5933 	    !old_val && nx_huge_pages_recovery_ratio) {
5934 		struct kvm *kvm;
5935 
5936 		mutex_lock(&kvm_lock);
5937 
5938 		list_for_each_entry(kvm, &vm_list, vm_list)
5939 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5940 
5941 		mutex_unlock(&kvm_lock);
5942 	}
5943 
5944 	return err;
5945 }
5946 
5947 static void kvm_recover_nx_lpages(struct kvm *kvm)
5948 {
5949 	int rcu_idx;
5950 	struct kvm_mmu_page *sp;
5951 	unsigned int ratio;
5952 	LIST_HEAD(invalid_list);
5953 	ulong to_zap;
5954 
5955 	rcu_idx = srcu_read_lock(&kvm->srcu);
5956 	write_lock(&kvm->mmu_lock);
5957 
5958 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5959 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5960 	for ( ; to_zap; --to_zap) {
5961 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5962 			break;
5963 
5964 		/*
5965 		 * We use a separate list instead of just using active_mmu_pages
5966 		 * because the number of lpage_disallowed pages is expected to
5967 		 * be relatively small compared to the total.
5968 		 */
5969 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5970 				      struct kvm_mmu_page,
5971 				      lpage_disallowed_link);
5972 		WARN_ON_ONCE(!sp->lpage_disallowed);
5973 		if (is_tdp_mmu_page(sp)) {
5974 			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5975 				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5976 		} else {
5977 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5978 			WARN_ON_ONCE(sp->lpage_disallowed);
5979 		}
5980 
5981 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5982 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5983 			cond_resched_rwlock_write(&kvm->mmu_lock);
5984 		}
5985 	}
5986 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5987 
5988 	write_unlock(&kvm->mmu_lock);
5989 	srcu_read_unlock(&kvm->srcu, rcu_idx);
5990 }
5991 
5992 static long get_nx_lpage_recovery_timeout(u64 start_time)
5993 {
5994 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5995 		? start_time + 60 * HZ - get_jiffies_64()
5996 		: MAX_SCHEDULE_TIMEOUT;
5997 }
5998 
5999 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6000 {
6001 	u64 start_time;
6002 	long remaining_time;
6003 
6004 	while (true) {
6005 		start_time = get_jiffies_64();
6006 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6007 
6008 		set_current_state(TASK_INTERRUPTIBLE);
6009 		while (!kthread_should_stop() && remaining_time > 0) {
6010 			schedule_timeout(remaining_time);
6011 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6012 			set_current_state(TASK_INTERRUPTIBLE);
6013 		}
6014 
6015 		set_current_state(TASK_RUNNING);
6016 
6017 		if (kthread_should_stop())
6018 			return 0;
6019 
6020 		kvm_recover_nx_lpages(kvm);
6021 	}
6022 }
6023 
6024 int kvm_mmu_post_init_vm(struct kvm *kvm)
6025 {
6026 	int err;
6027 
6028 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6029 					  "kvm-nx-lpage-recovery",
6030 					  &kvm->arch.nx_lpage_recovery_thread);
6031 	if (!err)
6032 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6033 
6034 	return err;
6035 }
6036 
6037 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6038 {
6039 	if (kvm->arch.nx_lpage_recovery_thread)
6040 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6041 }
6042