xref: /openbmc/linux/arch/x86/kvm/mmu.h (revision 4139b1972af281e0293c2414a0f1cd59fa5b2980)
1b2441318SGreg Kroah-Hartman /* SPDX-License-Identifier: GPL-2.0 */
2edf88417SAvi Kivity #ifndef __KVM_X86_MMU_H
3edf88417SAvi Kivity #define __KVM_X86_MMU_H
4edf88417SAvi Kivity 
5edf88417SAvi Kivity #include <linux/kvm_host.h>
6fc78f519SAvi Kivity #include "kvm_cache_regs.h"
789786147SMohammed Gamal #include "cpuid.h"
8edf88417SAvi Kivity 
98c6d6adcSSheng Yang #define PT64_PT_BITS 9
108c6d6adcSSheng Yang #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
118c6d6adcSSheng Yang #define PT32_PT_BITS 10
128c6d6adcSSheng Yang #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
138c6d6adcSSheng Yang 
148c6d6adcSSheng Yang #define PT_WRITABLE_SHIFT 1
15be94f6b7SHuaitong Han #define PT_USER_SHIFT 2
168c6d6adcSSheng Yang 
178c6d6adcSSheng Yang #define PT_PRESENT_MASK (1ULL << 0)
188c6d6adcSSheng Yang #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19be94f6b7SHuaitong Han #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
208c6d6adcSSheng Yang #define PT_PWT_MASK (1ULL << 3)
218c6d6adcSSheng Yang #define PT_PCD_MASK (1ULL << 4)
221b7fcd32SAvi Kivity #define PT_ACCESSED_SHIFT 5
231b7fcd32SAvi Kivity #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
248ea667f2SAvi Kivity #define PT_DIRTY_SHIFT 6
258ea667f2SAvi Kivity #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
266fd01b71SAvi Kivity #define PT_PAGE_SIZE_SHIFT 7
276fd01b71SAvi Kivity #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
288c6d6adcSSheng Yang #define PT_PAT_MASK (1ULL << 7)
298c6d6adcSSheng Yang #define PT_GLOBAL_MASK (1ULL << 8)
308c6d6adcSSheng Yang #define PT64_NX_SHIFT 63
318c6d6adcSSheng Yang #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
328c6d6adcSSheng Yang 
338c6d6adcSSheng Yang #define PT_PAT_SHIFT 7
348c6d6adcSSheng Yang #define PT_DIR_PAT_SHIFT 12
358c6d6adcSSheng Yang #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
368c6d6adcSSheng Yang 
378c6d6adcSSheng Yang #define PT32_DIR_PSE36_SIZE 4
388c6d6adcSSheng Yang #define PT32_DIR_PSE36_SHIFT 13
398c6d6adcSSheng Yang #define PT32_DIR_PSE36_MASK \
408c6d6adcSSheng Yang 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
418c6d6adcSSheng Yang 
42855feb67SYu Zhang #define PT64_ROOT_5LEVEL 5
432a7266a8SYu Zhang #define PT64_ROOT_4LEVEL 4
448c6d6adcSSheng Yang #define PT32_ROOT_LEVEL 2
458c6d6adcSSheng Yang #define PT32E_ROOT_LEVEL 3
468c6d6adcSSheng Yang 
4720f632bdSSean Christopherson #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
4820f632bdSSean Christopherson 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
4920f632bdSSean Christopherson 			       X86_CR4_LA57)
5020f632bdSSean Christopherson 
5120f632bdSSean Christopherson #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
5220f632bdSSean Christopherson 
53eb79cd00SSean Christopherson static __always_inline u64 rsvd_bits(int s, int e)
54d1431483STiejun Chen {
55eb79cd00SSean Christopherson 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
56eb79cd00SSean Christopherson 
57eb79cd00SSean Christopherson 	if (__builtin_constant_p(e))
58eb79cd00SSean Christopherson 		BUILD_BUG_ON(e > 63);
59eb79cd00SSean Christopherson 	else
60eb79cd00SSean Christopherson 		e &= 63;
61eb79cd00SSean Christopherson 
62d1cd3ce9SYu Zhang 	if (e < s)
63d1cd3ce9SYu Zhang 		return 0;
64d1cd3ce9SYu Zhang 
652f80d502SPaolo Bonzini 	return ((2ULL << (e - s)) - 1) << s;
66d1431483STiejun Chen }
67d1431483STiejun Chen 
688120337aSSean Christopherson void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
69e7b7bdeaSSean Christopherson void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
70b37fbea6SXiao Guangrong 
71c9060662SSean Christopherson void kvm_init_mmu(struct kvm_vcpu *vcpu);
72dbc4739bSSean Christopherson void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
73dbc4739bSSean Christopherson 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
74ae1e2d10SPaolo Bonzini void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
7550c28f21SJunaid Shahid 			     bool accessed_dirty, gpa_t new_eptp);
769bc1f09fSWanpeng Li bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
771261bfa3SWanpeng Li int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
78d0006530SPaolo Bonzini 				u64 fault_address, char *insn, int insn_len);
7994d8b056SMarcelo Tosatti 
8061a1773eSSean Christopherson int kvm_mmu_load(struct kvm_vcpu *vcpu);
8161a1773eSSean Christopherson void kvm_mmu_unload(struct kvm_vcpu *vcpu);
8261a1773eSSean Christopherson void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
8361a1773eSSean Christopherson 
84edf88417SAvi Kivity static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
85edf88417SAvi Kivity {
8644dd3ffaSVitaly Kuznetsov 	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
87edf88417SAvi Kivity 		return 0;
88edf88417SAvi Kivity 
89edf88417SAvi Kivity 	return kvm_mmu_load(vcpu);
90edf88417SAvi Kivity }
91edf88417SAvi Kivity 
92c9470a2eSJunaid Shahid static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
93c9470a2eSJunaid Shahid {
94c9470a2eSJunaid Shahid 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
95c9470a2eSJunaid Shahid 
96c9470a2eSJunaid Shahid 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
97c9470a2eSJunaid Shahid 	       ? cr3 & X86_CR3_PCID_MASK
98c9470a2eSJunaid Shahid 	       : 0;
99c9470a2eSJunaid Shahid }
100c9470a2eSJunaid Shahid 
101c9470a2eSJunaid Shahid static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
102c9470a2eSJunaid Shahid {
103c9470a2eSJunaid Shahid 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
104c9470a2eSJunaid Shahid }
105c9470a2eSJunaid Shahid 
106689f3bf2SPaolo Bonzini static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
1076e42782fSJunaid Shahid {
1082a40b900SSean Christopherson 	u64 root_hpa = vcpu->arch.mmu->root_hpa;
1092a40b900SSean Christopherson 
1102a40b900SSean Christopherson 	if (!VALID_PAGE(root_hpa))
1112a40b900SSean Christopherson 		return;
1122a40b900SSean Christopherson 
113e83bc09cSSean Christopherson 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
1142a40b900SSean Christopherson 					  vcpu->arch.mmu->shadow_root_level);
1156e42782fSJunaid Shahid }
1166e42782fSJunaid Shahid 
1177a02674dSSean Christopherson int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
1187a02674dSSean Christopherson 		       bool prefault);
1197a02674dSSean Christopherson 
1207a02674dSSean Christopherson static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
1217a02674dSSean Christopherson 					u32 err, bool prefault)
1227a02674dSSean Christopherson {
1237a02674dSSean Christopherson #ifdef CONFIG_RETPOLINE
1247a02674dSSean Christopherson 	if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
1257a02674dSSean Christopherson 		return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
1267a02674dSSean Christopherson #endif
1277a02674dSSean Christopherson 	return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
1287a02674dSSean Christopherson }
1297a02674dSSean Christopherson 
130198c74f4SXiao Guangrong /*
131198c74f4SXiao Guangrong  * Currently, we have two sorts of write-protection, a) the first one
132198c74f4SXiao Guangrong  * write-protects guest page to sync the guest modification, b) another one is
133198c74f4SXiao Guangrong  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
134198c74f4SXiao Guangrong  * between these two sorts are:
1355fc3424fSSean Christopherson  * 1) the first case clears MMU-writable bit.
136198c74f4SXiao Guangrong  * 2) the first case requires flushing tlb immediately avoiding corrupting
137198c74f4SXiao Guangrong  *    shadow page table between all vcpus so it should be in the protection of
138198c74f4SXiao Guangrong  *    mmu-lock. And the another case does not need to flush tlb until returning
139198c74f4SXiao Guangrong  *    the dirty bitmap to userspace since it only write-protects the page
140198c74f4SXiao Guangrong  *    logged in the bitmap, that means the page in the dirty bitmap is not
141198c74f4SXiao Guangrong  *    missed, so it can flush tlb out of mmu-lock.
142198c74f4SXiao Guangrong  *
143198c74f4SXiao Guangrong  * So, there is the problem: the first case can meet the corrupted tlb caused
144198c74f4SXiao Guangrong  * by another case which write-protects pages but without flush tlb
145198c74f4SXiao Guangrong  * immediately. In order to making the first case be aware this problem we let
1465fc3424fSSean Christopherson  * it flush tlb if we try to write-protect a spte whose MMU-writable bit
1475fc3424fSSean Christopherson  * is set, it works since another case never touches MMU-writable bit.
148198c74f4SXiao Guangrong  *
149198c74f4SXiao Guangrong  * Anyway, whenever a spte is updated (only permission and status bits are
1505fc3424fSSean Christopherson  * changed) we need to check whether the spte with MMU-writable becomes
151198c74f4SXiao Guangrong  * readonly, if that happens, we need to flush tlb. Fortunately,
152198c74f4SXiao Guangrong  * mmu_spte_update() has already handled it perfectly.
153198c74f4SXiao Guangrong  *
1545fc3424fSSean Christopherson  * The rules to use MMU-writable and PT_WRITABLE_MASK:
155198c74f4SXiao Guangrong  * - if we want to see if it has writable tlb entry or if the spte can be
1565fc3424fSSean Christopherson  *   writable on the mmu mapping, check MMU-writable, this is the most
157198c74f4SXiao Guangrong  *   case, otherwise
158198c74f4SXiao Guangrong  * - if we fix page fault on the spte or do write-protection by dirty logging,
159198c74f4SXiao Guangrong  *   check PT_WRITABLE_MASK.
160198c74f4SXiao Guangrong  *
161198c74f4SXiao Guangrong  * TODO: introduce APIs to split these two cases.
162198c74f4SXiao Guangrong  */
16315e6a7e5SSean Christopherson static inline bool is_writable_pte(unsigned long pte)
164bebb106aSXiao Guangrong {
165bebb106aSXiao Guangrong 	return pte & PT_WRITABLE_MASK;
166bebb106aSXiao Guangrong }
167bebb106aSXiao Guangrong 
16897d64b78SAvi Kivity /*
169f13577e8SPaolo Bonzini  * Check if a given access (described through the I/D, W/R and U/S bits of a
170f13577e8SPaolo Bonzini  * page fault error code pfec) causes a permission fault with the given PTE
171f13577e8SPaolo Bonzini  * access rights (in ACC_* format).
172f13577e8SPaolo Bonzini  *
173f13577e8SPaolo Bonzini  * Return zero if the access does not fault; return the page fault error code
174f13577e8SPaolo Bonzini  * if the access faults.
17597d64b78SAvi Kivity  */
176f13577e8SPaolo Bonzini static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
177be94f6b7SHuaitong Han 				  unsigned pte_access, unsigned pte_pkey,
178be94f6b7SHuaitong Han 				  unsigned pfec)
179bebb106aSXiao Guangrong {
180b3646477SJason Baron 	int cpl = static_call(kvm_x86_get_cpl)(vcpu);
181b3646477SJason Baron 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
18297ec8c06SFeng Wu 
18397ec8c06SFeng Wu 	/*
18497ec8c06SFeng Wu 	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
18597ec8c06SFeng Wu 	 *
18697ec8c06SFeng Wu 	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
18797ec8c06SFeng Wu 	 * (these are implicit supervisor accesses) regardless of the value
18897ec8c06SFeng Wu 	 * of EFLAGS.AC.
18997ec8c06SFeng Wu 	 *
19097ec8c06SFeng Wu 	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
19197ec8c06SFeng Wu 	 * the result in X86_EFLAGS_AC. We then insert it in place of
19297ec8c06SFeng Wu 	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
19397ec8c06SFeng Wu 	 * but it will be one in index if SMAP checks are being overridden.
19497ec8c06SFeng Wu 	 * It is important to keep this branchless.
19597ec8c06SFeng Wu 	 */
19697ec8c06SFeng Wu 	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
19797ec8c06SFeng Wu 	int index = (pfec >> 1) +
19897ec8c06SFeng Wu 		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
199be94f6b7SHuaitong Han 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
2007a98205dSXiao Guangrong 	u32 errcode = PFERR_PRESENT_MASK;
20197ec8c06SFeng Wu 
202be94f6b7SHuaitong Han 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203be94f6b7SHuaitong Han 	if (unlikely(mmu->pkru_mask)) {
204be94f6b7SHuaitong Han 		u32 pkru_bits, offset;
205be94f6b7SHuaitong Han 
206be94f6b7SHuaitong Han 		/*
207be94f6b7SHuaitong Han 		* PKRU defines 32 bits, there are 16 domains and 2
208be94f6b7SHuaitong Han 		* attribute bits per domain in pkru.  pte_pkey is the
209be94f6b7SHuaitong Han 		* index of the protection domain, so pte_pkey * 2 is
210be94f6b7SHuaitong Han 		* is the index of the first bit for the domain.
211be94f6b7SHuaitong Han 		*/
212b9dd21e1SPaolo Bonzini 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213be94f6b7SHuaitong Han 
214be94f6b7SHuaitong Han 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
2157a98205dSXiao Guangrong 		offset = (pfec & ~1) +
216be94f6b7SHuaitong Han 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
217be94f6b7SHuaitong Han 
218be94f6b7SHuaitong Han 		pkru_bits &= mmu->pkru_mask >> offset;
2197a98205dSXiao Guangrong 		errcode |= -pkru_bits & PFERR_PK_MASK;
220be94f6b7SHuaitong Han 		fault |= (pkru_bits != 0);
221be94f6b7SHuaitong Han 	}
222be94f6b7SHuaitong Han 
2237a98205dSXiao Guangrong 	return -(u32)fault & errcode;
224bebb106aSXiao Guangrong }
22597d64b78SAvi Kivity 
226efdfe536SXiao Guangrong void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
227547ffaedSXiao Guangrong 
2286ca9a6f3SSean Christopherson int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
2291aa9b957SJunaid Shahid 
2301aa9b957SJunaid Shahid int kvm_mmu_post_init_vm(struct kvm *kvm);
2311aa9b957SJunaid Shahid void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
2321aa9b957SJunaid Shahid 
233e2209710SBen Gardon static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
234e2209710SBen Gardon {
235d501f747SBen Gardon 	/*
236d501f747SBen Gardon 	 * Read memslot_have_rmaps before rmap pointers.  Hence, threads reading
237d501f747SBen Gardon 	 * memslots_have_rmaps in any lock context are guaranteed to see the
238d501f747SBen Gardon 	 * pointers.  Pairs with smp_store_release in alloc_all_memslots_rmaps.
239d501f747SBen Gardon 	 */
240d501f747SBen Gardon 	return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
241e2209710SBen Gardon }
242e2209710SBen Gardon 
243*4139b197SPeter Xu static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
244*4139b197SPeter Xu {
245*4139b197SPeter Xu 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
246*4139b197SPeter Xu 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
247*4139b197SPeter Xu 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
248*4139b197SPeter Xu }
249*4139b197SPeter Xu 
250*4139b197SPeter Xu static inline unsigned long
251*4139b197SPeter Xu __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
252*4139b197SPeter Xu 		      int level)
253*4139b197SPeter Xu {
254*4139b197SPeter Xu 	return gfn_to_index(slot->base_gfn + npages - 1,
255*4139b197SPeter Xu 			    slot->base_gfn, level) + 1;
256*4139b197SPeter Xu }
257*4139b197SPeter Xu 
258*4139b197SPeter Xu static inline unsigned long
259*4139b197SPeter Xu kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
260*4139b197SPeter Xu {
261*4139b197SPeter Xu 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
262*4139b197SPeter Xu }
263*4139b197SPeter Xu 
264edf88417SAvi Kivity #endif
265