1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/kmemcheck.h> 46 #include <asm/stacktrace.h> 47 #include <asm/processor.h> 48 #include <asm/debugreg.h> 49 #include <linux/atomic.h> 50 #include <asm/text-patching.h> 51 #include <asm/ftrace.h> 52 #include <asm/traps.h> 53 #include <asm/desc.h> 54 #include <asm/fpu/internal.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/mpx.h> 62 #include <asm/vm86.h> 63 64 #ifdef CONFIG_X86_64 65 #include <asm/x86_init.h> 66 #include <asm/pgalloc.h> 67 #include <asm/proto.h> 68 #else 69 #include <asm/processor-flags.h> 70 #include <asm/setup.h> 71 #include <asm/proto.h> 72 #endif 73 74 DECLARE_BITMAP(used_vectors, NR_VECTORS); 75 76 static inline void cond_local_irq_enable(struct pt_regs *regs) 77 { 78 if (regs->flags & X86_EFLAGS_IF) 79 local_irq_enable(); 80 } 81 82 static inline void cond_local_irq_disable(struct pt_regs *regs) 83 { 84 if (regs->flags & X86_EFLAGS_IF) 85 local_irq_disable(); 86 } 87 88 /* 89 * In IST context, we explicitly disable preemption. This serves two 90 * purposes: it makes it much less likely that we would accidentally 91 * schedule in IST context and it will force a warning if we somehow 92 * manage to schedule by accident. 93 */ 94 void ist_enter(struct pt_regs *regs) 95 { 96 if (user_mode(regs)) { 97 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 98 } else { 99 /* 100 * We might have interrupted pretty much anything. In 101 * fact, if we're a machine check, we can even interrupt 102 * NMI processing. We don't want in_nmi() to return true, 103 * but we need to notify RCU. 104 */ 105 rcu_nmi_enter(); 106 } 107 108 preempt_disable(); 109 110 /* This code is a bit fragile. Test it. */ 111 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 112 } 113 114 void ist_exit(struct pt_regs *regs) 115 { 116 preempt_enable_no_resched(); 117 118 if (!user_mode(regs)) 119 rcu_nmi_exit(); 120 } 121 122 /** 123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 124 * @regs: regs passed to the IST exception handler 125 * 126 * IST exception handlers normally cannot schedule. As a special 127 * exception, if the exception interrupted userspace code (i.e. 128 * user_mode(regs) would return true) and the exception was not 129 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 130 * begins a non-atomic section within an ist_enter()/ist_exit() region. 131 * Callers are responsible for enabling interrupts themselves inside 132 * the non-atomic section, and callers must call ist_end_non_atomic() 133 * before ist_exit(). 134 */ 135 void ist_begin_non_atomic(struct pt_regs *regs) 136 { 137 BUG_ON(!user_mode(regs)); 138 139 /* 140 * Sanity check: we need to be on the normal thread stack. This 141 * will catch asm bugs and any attempt to use ist_preempt_enable 142 * from double_fault. 143 */ 144 BUG_ON(!on_thread_stack()); 145 146 preempt_enable_no_resched(); 147 } 148 149 /** 150 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 151 * 152 * Ends a non-atomic section started with ist_begin_non_atomic(). 153 */ 154 void ist_end_non_atomic(void) 155 { 156 preempt_disable(); 157 } 158 159 int is_valid_bugaddr(unsigned long addr) 160 { 161 unsigned short ud; 162 163 if (addr < TASK_SIZE_MAX) 164 return 0; 165 166 if (probe_kernel_address((unsigned short *)addr, ud)) 167 return 0; 168 169 return ud == INSN_UD0 || ud == INSN_UD2; 170 } 171 172 int fixup_bug(struct pt_regs *regs, int trapnr) 173 { 174 if (trapnr != X86_TRAP_UD) 175 return 0; 176 177 switch (report_bug(regs->ip, regs)) { 178 case BUG_TRAP_TYPE_NONE: 179 case BUG_TRAP_TYPE_BUG: 180 break; 181 182 case BUG_TRAP_TYPE_WARN: 183 regs->ip += LEN_UD0; 184 return 1; 185 } 186 187 return 0; 188 } 189 190 static nokprobe_inline int 191 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, 192 struct pt_regs *regs, long error_code) 193 { 194 if (v8086_mode(regs)) { 195 /* 196 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 197 * On nmi (interrupt 2), do_trap should not be called. 198 */ 199 if (trapnr < X86_TRAP_UD) { 200 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 201 error_code, trapnr)) 202 return 0; 203 } 204 return -1; 205 } 206 207 if (!user_mode(regs)) { 208 if (fixup_exception(regs, trapnr)) 209 return 0; 210 211 tsk->thread.error_code = error_code; 212 tsk->thread.trap_nr = trapnr; 213 die(str, regs, error_code); 214 } 215 216 return -1; 217 } 218 219 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, 220 siginfo_t *info) 221 { 222 unsigned long siaddr; 223 int sicode; 224 225 switch (trapnr) { 226 default: 227 return SEND_SIG_PRIV; 228 229 case X86_TRAP_DE: 230 sicode = FPE_INTDIV; 231 siaddr = uprobe_get_trap_addr(regs); 232 break; 233 case X86_TRAP_UD: 234 sicode = ILL_ILLOPN; 235 siaddr = uprobe_get_trap_addr(regs); 236 break; 237 case X86_TRAP_AC: 238 sicode = BUS_ADRALN; 239 siaddr = 0; 240 break; 241 } 242 243 info->si_signo = signr; 244 info->si_errno = 0; 245 info->si_code = sicode; 246 info->si_addr = (void __user *)siaddr; 247 return info; 248 } 249 250 static void 251 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 252 long error_code, siginfo_t *info) 253 { 254 struct task_struct *tsk = current; 255 256 257 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 258 return; 259 /* 260 * We want error_code and trap_nr set for userspace faults and 261 * kernelspace faults which result in die(), but not 262 * kernelspace faults which are fixed up. die() gives the 263 * process no chance to handle the signal and notice the 264 * kernel fault information, so that won't result in polluting 265 * the information about previously queued, but not yet 266 * delivered, faults. See also do_general_protection below. 267 */ 268 tsk->thread.error_code = error_code; 269 tsk->thread.trap_nr = trapnr; 270 271 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 272 printk_ratelimit()) { 273 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", 274 tsk->comm, tsk->pid, str, 275 regs->ip, regs->sp, error_code); 276 print_vma_addr(KERN_CONT " in ", regs->ip); 277 pr_cont("\n"); 278 } 279 280 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); 281 } 282 NOKPROBE_SYMBOL(do_trap); 283 284 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 285 unsigned long trapnr, int signr) 286 { 287 siginfo_t info; 288 289 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 290 291 /* 292 * WARN*()s end up here; fix them up before we call the 293 * notifier chain. 294 */ 295 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 296 return; 297 298 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 299 NOTIFY_STOP) { 300 cond_local_irq_enable(regs); 301 do_trap(trapnr, signr, str, regs, error_code, 302 fill_trap_info(regs, signr, trapnr, &info)); 303 } 304 } 305 306 #define DO_ERROR(trapnr, signr, str, name) \ 307 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 308 { \ 309 do_error_trap(regs, error_code, str, trapnr, signr); \ 310 } 311 312 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) 313 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) 314 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) 315 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) 316 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) 317 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) 318 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) 319 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) 320 321 #ifdef CONFIG_VMAP_STACK 322 __visible void __noreturn handle_stack_overflow(const char *message, 323 struct pt_regs *regs, 324 unsigned long fault_address) 325 { 326 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 327 (void *)fault_address, current->stack, 328 (char *)current->stack + THREAD_SIZE - 1); 329 die(message, regs, 0); 330 331 /* Be absolutely certain we don't return. */ 332 panic(message); 333 } 334 #endif 335 336 #ifdef CONFIG_X86_64 337 /* Runs on IST stack */ 338 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 339 { 340 static const char str[] = "double fault"; 341 struct task_struct *tsk = current; 342 #ifdef CONFIG_VMAP_STACK 343 unsigned long cr2; 344 #endif 345 346 #ifdef CONFIG_X86_ESPFIX64 347 extern unsigned char native_irq_return_iret[]; 348 349 /* 350 * If IRET takes a non-IST fault on the espfix64 stack, then we 351 * end up promoting it to a doublefault. In that case, take 352 * advantage of the fact that we're not using the normal (TSS.sp0) 353 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 354 * and then modify our own IRET frame so that, when we return, 355 * we land directly at the #GP(0) vector with the stack already 356 * set up according to its expectations. 357 * 358 * The net result is that our #GP handler will think that we 359 * entered from usermode with the bad user context. 360 * 361 * No need for ist_enter here because we don't use RCU. 362 */ 363 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY && 364 regs->cs == __KERNEL_CS && 365 regs->ip == (unsigned long)native_irq_return_iret) 366 { 367 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss.x86_tss.sp0) - 1; 368 369 /* 370 * regs->sp points to the failing IRET frame on the 371 * ESPFIX64 stack. Copy it to the entry stack. This fills 372 * in gpregs->ss through gpregs->ip. 373 * 374 */ 375 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 376 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 377 378 /* 379 * Adjust our frame so that we return straight to the #GP 380 * vector with the expected RSP value. This is safe because 381 * we won't enable interupts or schedule before we invoke 382 * general_protection, so nothing will clobber the stack 383 * frame we just set up. 384 */ 385 regs->ip = (unsigned long)general_protection; 386 regs->sp = (unsigned long)&gpregs->orig_ax; 387 388 return; 389 } 390 #endif 391 392 ist_enter(regs); 393 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 394 395 tsk->thread.error_code = error_code; 396 tsk->thread.trap_nr = X86_TRAP_DF; 397 398 #ifdef CONFIG_VMAP_STACK 399 /* 400 * If we overflow the stack into a guard page, the CPU will fail 401 * to deliver #PF and will send #DF instead. Similarly, if we 402 * take any non-IST exception while too close to the bottom of 403 * the stack, the processor will get a page fault while 404 * delivering the exception and will generate a double fault. 405 * 406 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 407 * Page-Fault Exception (#PF): 408 * 409 * Processors update CR2 whenever a page fault is detected. If a 410 * second page fault occurs while an earlier page fault is being 411 * delivered, the faulting linear address of the second fault will 412 * overwrite the contents of CR2 (replacing the previous 413 * address). These updates to CR2 occur even if the page fault 414 * results in a double fault or occurs during the delivery of a 415 * double fault. 416 * 417 * The logic below has a small possibility of incorrectly diagnosing 418 * some errors as stack overflows. For example, if the IDT or GDT 419 * gets corrupted such that #GP delivery fails due to a bad descriptor 420 * causing #GP and we hit this condition while CR2 coincidentally 421 * points to the stack guard page, we'll think we overflowed the 422 * stack. Given that we're going to panic one way or another 423 * if this happens, this isn't necessarily worth fixing. 424 * 425 * If necessary, we could improve the test by only diagnosing 426 * a stack overflow if the saved RSP points within 47 bytes of 427 * the bottom of the stack: if RSP == tsk_stack + 48 and we 428 * take an exception, the stack is already aligned and there 429 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 430 * possible error code, so a stack overflow would *not* double 431 * fault. With any less space left, exception delivery could 432 * fail, and, as a practical matter, we've overflowed the 433 * stack even if the actual trigger for the double fault was 434 * something else. 435 */ 436 cr2 = read_cr2(); 437 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 438 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 439 #endif 440 441 #ifdef CONFIG_DOUBLEFAULT 442 df_debug(regs, error_code); 443 #endif 444 /* 445 * This is always a kernel trap and never fixable (and thus must 446 * never return). 447 */ 448 for (;;) 449 die(str, regs, error_code); 450 } 451 #endif 452 453 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 454 { 455 const struct mpx_bndcsr *bndcsr; 456 siginfo_t *info; 457 458 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 459 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 460 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 461 return; 462 cond_local_irq_enable(regs); 463 464 if (!user_mode(regs)) 465 die("bounds", regs, error_code); 466 467 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 468 /* The exception is not from Intel MPX */ 469 goto exit_trap; 470 } 471 472 /* 473 * We need to look at BNDSTATUS to resolve this exception. 474 * A NULL here might mean that it is in its 'init state', 475 * which is all zeros which indicates MPX was not 476 * responsible for the exception. 477 */ 478 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 479 if (!bndcsr) 480 goto exit_trap; 481 482 trace_bounds_exception_mpx(bndcsr); 483 /* 484 * The error code field of the BNDSTATUS register communicates status 485 * information of a bound range exception #BR or operation involving 486 * bound directory. 487 */ 488 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 489 case 2: /* Bound directory has invalid entry. */ 490 if (mpx_handle_bd_fault()) 491 goto exit_trap; 492 break; /* Success, it was handled */ 493 case 1: /* Bound violation. */ 494 info = mpx_generate_siginfo(regs); 495 if (IS_ERR(info)) { 496 /* 497 * We failed to decode the MPX instruction. Act as if 498 * the exception was not caused by MPX. 499 */ 500 goto exit_trap; 501 } 502 /* 503 * Success, we decoded the instruction and retrieved 504 * an 'info' containing the address being accessed 505 * which caused the exception. This information 506 * allows and application to possibly handle the 507 * #BR exception itself. 508 */ 509 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); 510 kfree(info); 511 break; 512 case 0: /* No exception caused by Intel MPX operations. */ 513 goto exit_trap; 514 default: 515 die("bounds", regs, error_code); 516 } 517 518 return; 519 520 exit_trap: 521 /* 522 * This path out is for all the cases where we could not 523 * handle the exception in some way (like allocating a 524 * table or telling userspace about it. We will also end 525 * up here if the kernel has MPX turned off at compile 526 * time.. 527 */ 528 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); 529 } 530 531 dotraplinkage void 532 do_general_protection(struct pt_regs *regs, long error_code) 533 { 534 struct task_struct *tsk; 535 536 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 537 cond_local_irq_enable(regs); 538 539 if (v8086_mode(regs)) { 540 local_irq_enable(); 541 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 542 return; 543 } 544 545 tsk = current; 546 if (!user_mode(regs)) { 547 if (fixup_exception(regs, X86_TRAP_GP)) 548 return; 549 550 tsk->thread.error_code = error_code; 551 tsk->thread.trap_nr = X86_TRAP_GP; 552 if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 553 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 554 die("general protection fault", regs, error_code); 555 return; 556 } 557 558 tsk->thread.error_code = error_code; 559 tsk->thread.trap_nr = X86_TRAP_GP; 560 561 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 562 printk_ratelimit()) { 563 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", 564 tsk->comm, task_pid_nr(tsk), 565 regs->ip, regs->sp, error_code); 566 print_vma_addr(KERN_CONT " in ", regs->ip); 567 pr_cont("\n"); 568 } 569 570 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); 571 } 572 NOKPROBE_SYMBOL(do_general_protection); 573 574 /* May run on IST stack. */ 575 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 576 { 577 #ifdef CONFIG_DYNAMIC_FTRACE 578 /* 579 * ftrace must be first, everything else may cause a recursive crash. 580 * See note by declaration of modifying_ftrace_code in ftrace.c 581 */ 582 if (unlikely(atomic_read(&modifying_ftrace_code)) && 583 ftrace_int3_handler(regs)) 584 return; 585 #endif 586 if (poke_int3_handler(regs)) 587 return; 588 589 ist_enter(regs); 590 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 591 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 592 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 593 SIGTRAP) == NOTIFY_STOP) 594 goto exit; 595 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 596 597 #ifdef CONFIG_KPROBES 598 if (kprobe_int3_handler(regs)) 599 goto exit; 600 #endif 601 602 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 603 SIGTRAP) == NOTIFY_STOP) 604 goto exit; 605 606 /* 607 * Let others (NMI) know that the debug stack is in use 608 * as we may switch to the interrupt stack. 609 */ 610 debug_stack_usage_inc(); 611 cond_local_irq_enable(regs); 612 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); 613 cond_local_irq_disable(regs); 614 debug_stack_usage_dec(); 615 exit: 616 ist_exit(regs); 617 } 618 NOKPROBE_SYMBOL(do_int3); 619 620 #ifdef CONFIG_X86_64 621 /* 622 * Help handler running on IST stack to switch off the IST stack if the 623 * interrupted code was in user mode. The actual stack switch is done in 624 * entry_64.S 625 */ 626 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 627 { 628 struct pt_regs *regs = task_pt_regs(current); 629 *regs = *eregs; 630 return regs; 631 } 632 NOKPROBE_SYMBOL(sync_regs); 633 634 struct bad_iret_stack { 635 void *error_entry_ret; 636 struct pt_regs regs; 637 }; 638 639 asmlinkage __visible notrace 640 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 641 { 642 /* 643 * This is called from entry_64.S early in handling a fault 644 * caused by a bad iret to user mode. To handle the fault 645 * correctly, we want move our stack frame to task_pt_regs 646 * and we want to pretend that the exception came from the 647 * iret target. 648 */ 649 struct bad_iret_stack *new_stack = 650 container_of(task_pt_regs(current), 651 struct bad_iret_stack, regs); 652 653 /* Copy the IRET target to the new stack. */ 654 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 655 656 /* Copy the remainder of the stack from the current stack. */ 657 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 658 659 BUG_ON(!user_mode(&new_stack->regs)); 660 return new_stack; 661 } 662 NOKPROBE_SYMBOL(fixup_bad_iret); 663 #endif 664 665 static bool is_sysenter_singlestep(struct pt_regs *regs) 666 { 667 /* 668 * We don't try for precision here. If we're anywhere in the region of 669 * code that can be single-stepped in the SYSENTER entry path, then 670 * assume that this is a useless single-step trap due to SYSENTER 671 * being invoked with TF set. (We don't know in advance exactly 672 * which instructions will be hit because BTF could plausibly 673 * be set.) 674 */ 675 #ifdef CONFIG_X86_32 676 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 677 (unsigned long)__end_SYSENTER_singlestep_region - 678 (unsigned long)__begin_SYSENTER_singlestep_region; 679 #elif defined(CONFIG_IA32_EMULATION) 680 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 681 (unsigned long)__end_entry_SYSENTER_compat - 682 (unsigned long)entry_SYSENTER_compat; 683 #else 684 return false; 685 #endif 686 } 687 688 /* 689 * Our handling of the processor debug registers is non-trivial. 690 * We do not clear them on entry and exit from the kernel. Therefore 691 * it is possible to get a watchpoint trap here from inside the kernel. 692 * However, the code in ./ptrace.c has ensured that the user can 693 * only set watchpoints on userspace addresses. Therefore the in-kernel 694 * watchpoint trap can only occur in code which is reading/writing 695 * from user space. Such code must not hold kernel locks (since it 696 * can equally take a page fault), therefore it is safe to call 697 * force_sig_info even though that claims and releases locks. 698 * 699 * Code in ./signal.c ensures that the debug control register 700 * is restored before we deliver any signal, and therefore that 701 * user code runs with the correct debug control register even though 702 * we clear it here. 703 * 704 * Being careful here means that we don't have to be as careful in a 705 * lot of more complicated places (task switching can be a bit lazy 706 * about restoring all the debug state, and ptrace doesn't have to 707 * find every occurrence of the TF bit that could be saved away even 708 * by user code) 709 * 710 * May run on IST stack. 711 */ 712 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 713 { 714 struct task_struct *tsk = current; 715 int user_icebp = 0; 716 unsigned long dr6; 717 int si_code; 718 719 ist_enter(regs); 720 721 get_debugreg(dr6, 6); 722 /* 723 * The Intel SDM says: 724 * 725 * Certain debug exceptions may clear bits 0-3. The remaining 726 * contents of the DR6 register are never cleared by the 727 * processor. To avoid confusion in identifying debug 728 * exceptions, debug handlers should clear the register before 729 * returning to the interrupted task. 730 * 731 * Keep it simple: clear DR6 immediately. 732 */ 733 set_debugreg(0, 6); 734 735 /* Filter out all the reserved bits which are preset to 1 */ 736 dr6 &= ~DR6_RESERVED; 737 738 /* 739 * The SDM says "The processor clears the BTF flag when it 740 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 741 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 742 */ 743 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 744 745 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 746 is_sysenter_singlestep(regs))) { 747 dr6 &= ~DR_STEP; 748 if (!dr6) 749 goto exit; 750 /* 751 * else we might have gotten a single-step trap and hit a 752 * watchpoint at the same time, in which case we should fall 753 * through and handle the watchpoint. 754 */ 755 } 756 757 /* 758 * If dr6 has no reason to give us about the origin of this trap, 759 * then it's very likely the result of an icebp/int01 trap. 760 * User wants a sigtrap for that. 761 */ 762 if (!dr6 && user_mode(regs)) 763 user_icebp = 1; 764 765 /* Catch kmemcheck conditions! */ 766 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 767 goto exit; 768 769 /* Store the virtualized DR6 value */ 770 tsk->thread.debugreg6 = dr6; 771 772 #ifdef CONFIG_KPROBES 773 if (kprobe_debug_handler(regs)) 774 goto exit; 775 #endif 776 777 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 778 SIGTRAP) == NOTIFY_STOP) 779 goto exit; 780 781 /* 782 * Let others (NMI) know that the debug stack is in use 783 * as we may switch to the interrupt stack. 784 */ 785 debug_stack_usage_inc(); 786 787 /* It's safe to allow irq's after DR6 has been saved */ 788 cond_local_irq_enable(regs); 789 790 if (v8086_mode(regs)) { 791 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 792 X86_TRAP_DB); 793 cond_local_irq_disable(regs); 794 debug_stack_usage_dec(); 795 goto exit; 796 } 797 798 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 799 /* 800 * Historical junk that used to handle SYSENTER single-stepping. 801 * This should be unreachable now. If we survive for a while 802 * without anyone hitting this warning, we'll turn this into 803 * an oops. 804 */ 805 tsk->thread.debugreg6 &= ~DR_STEP; 806 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 807 regs->flags &= ~X86_EFLAGS_TF; 808 } 809 si_code = get_si_code(tsk->thread.debugreg6); 810 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 811 send_sigtrap(tsk, regs, error_code, si_code); 812 cond_local_irq_disable(regs); 813 debug_stack_usage_dec(); 814 815 exit: 816 /* 817 * This is the most likely code path that involves non-trivial use 818 * of the SYSENTER stack. Check that we haven't overrun it. 819 */ 820 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC, 821 "Overran or corrupted SYSENTER stack\n"); 822 823 ist_exit(regs); 824 } 825 NOKPROBE_SYMBOL(do_debug); 826 827 /* 828 * Note that we play around with the 'TS' bit in an attempt to get 829 * the correct behaviour even in the presence of the asynchronous 830 * IRQ13 behaviour 831 */ 832 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 833 { 834 struct task_struct *task = current; 835 struct fpu *fpu = &task->thread.fpu; 836 siginfo_t info; 837 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 838 "simd exception"; 839 840 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 841 return; 842 cond_local_irq_enable(regs); 843 844 if (!user_mode(regs)) { 845 if (!fixup_exception(regs, trapnr)) { 846 task->thread.error_code = error_code; 847 task->thread.trap_nr = trapnr; 848 die(str, regs, error_code); 849 } 850 return; 851 } 852 853 /* 854 * Save the info for the exception handler and clear the error. 855 */ 856 fpu__save(fpu); 857 858 task->thread.trap_nr = trapnr; 859 task->thread.error_code = error_code; 860 info.si_signo = SIGFPE; 861 info.si_errno = 0; 862 info.si_addr = (void __user *)uprobe_get_trap_addr(regs); 863 864 info.si_code = fpu__exception_code(fpu, trapnr); 865 866 /* Retry when we get spurious exceptions: */ 867 if (!info.si_code) 868 return; 869 870 force_sig_info(SIGFPE, &info, task); 871 } 872 873 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 874 { 875 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 876 math_error(regs, error_code, X86_TRAP_MF); 877 } 878 879 dotraplinkage void 880 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 881 { 882 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 883 math_error(regs, error_code, X86_TRAP_XF); 884 } 885 886 dotraplinkage void 887 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 888 { 889 cond_local_irq_enable(regs); 890 } 891 892 dotraplinkage void 893 do_device_not_available(struct pt_regs *regs, long error_code) 894 { 895 unsigned long cr0; 896 897 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 898 899 #ifdef CONFIG_MATH_EMULATION 900 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 901 struct math_emu_info info = { }; 902 903 cond_local_irq_enable(regs); 904 905 info.regs = regs; 906 math_emulate(&info); 907 return; 908 } 909 #endif 910 911 /* This should not happen. */ 912 cr0 = read_cr0(); 913 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 914 /* Try to fix it up and carry on. */ 915 write_cr0(cr0 & ~X86_CR0_TS); 916 } else { 917 /* 918 * Something terrible happened, and we're better off trying 919 * to kill the task than getting stuck in a never-ending 920 * loop of #NM faults. 921 */ 922 die("unexpected #NM exception", regs, error_code); 923 } 924 } 925 NOKPROBE_SYMBOL(do_device_not_available); 926 927 #ifdef CONFIG_X86_32 928 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 929 { 930 siginfo_t info; 931 932 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 933 local_irq_enable(); 934 935 info.si_signo = SIGILL; 936 info.si_errno = 0; 937 info.si_code = ILL_BADSTK; 938 info.si_addr = NULL; 939 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 940 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 941 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 942 &info); 943 } 944 } 945 #endif 946 947 void __init trap_init(void) 948 { 949 idt_setup_traps(); 950 951 /* 952 * Set the IDT descriptor to a fixed read-only location, so that the 953 * "sidt" instruction will not leak the location of the kernel, and 954 * to defend the IDT against arbitrary memory write vulnerabilities. 955 * It will be reloaded in cpu_init() */ 956 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO); 957 idt_descr.address = fix_to_virt(FIX_RO_IDT); 958 959 /* 960 * Should be a barrier for any external CPU state: 961 */ 962 cpu_init(); 963 964 idt_setup_ist_traps(); 965 966 x86_init.irqs.trap_init(); 967 968 idt_setup_debugidt_traps(); 969 } 970