xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/internal.h>
52 #include <asm/cpu.h>
53 #include <asm/cpu_entry_area.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/vm86.h>
60 #include <asm/umip.h>
61 #include <asm/insn.h>
62 #include <asm/insn-eval.h>
63 #include <asm/vdso.h>
64 
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
73 
74 DECLARE_BITMAP(system_vectors, NR_VECTORS);
75 
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 {
78 	if (regs->flags & X86_EFLAGS_IF)
79 		local_irq_enable();
80 }
81 
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 {
84 	if (regs->flags & X86_EFLAGS_IF)
85 		local_irq_disable();
86 }
87 
88 __always_inline int is_valid_bugaddr(unsigned long addr)
89 {
90 	if (addr < TASK_SIZE_MAX)
91 		return 0;
92 
93 	/*
94 	 * We got #UD, if the text isn't readable we'd have gotten
95 	 * a different exception.
96 	 */
97 	return *(unsigned short *)addr == INSN_UD2;
98 }
99 
100 static nokprobe_inline int
101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 		  struct pt_regs *regs,	long error_code)
103 {
104 	if (v8086_mode(regs)) {
105 		/*
106 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 		 * On nmi (interrupt 2), do_trap should not be called.
108 		 */
109 		if (trapnr < X86_TRAP_UD) {
110 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 						error_code, trapnr))
112 				return 0;
113 		}
114 	} else if (!user_mode(regs)) {
115 		if (fixup_exception(regs, trapnr, error_code, 0))
116 			return 0;
117 
118 		tsk->thread.error_code = error_code;
119 		tsk->thread.trap_nr = trapnr;
120 		die(str, regs, error_code);
121 	} else {
122 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
123 			return 0;
124 	}
125 
126 	/*
127 	 * We want error_code and trap_nr set for userspace faults and
128 	 * kernelspace faults which result in die(), but not
129 	 * kernelspace faults which are fixed up.  die() gives the
130 	 * process no chance to handle the signal and notice the
131 	 * kernel fault information, so that won't result in polluting
132 	 * the information about previously queued, but not yet
133 	 * delivered, faults.  See also exc_general_protection below.
134 	 */
135 	tsk->thread.error_code = error_code;
136 	tsk->thread.trap_nr = trapnr;
137 
138 	return -1;
139 }
140 
141 static void show_signal(struct task_struct *tsk, int signr,
142 			const char *type, const char *desc,
143 			struct pt_regs *regs, long error_code)
144 {
145 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
146 	    printk_ratelimit()) {
147 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
148 			tsk->comm, task_pid_nr(tsk), type, desc,
149 			regs->ip, regs->sp, error_code);
150 		print_vma_addr(KERN_CONT " in ", regs->ip);
151 		pr_cont("\n");
152 	}
153 }
154 
155 static void
156 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
157 	long error_code, int sicode, void __user *addr)
158 {
159 	struct task_struct *tsk = current;
160 
161 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
162 		return;
163 
164 	show_signal(tsk, signr, "trap ", str, regs, error_code);
165 
166 	if (!sicode)
167 		force_sig(signr);
168 	else
169 		force_sig_fault(signr, sicode, addr);
170 }
171 NOKPROBE_SYMBOL(do_trap);
172 
173 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
174 	unsigned long trapnr, int signr, int sicode, void __user *addr)
175 {
176 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
177 
178 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
179 			NOTIFY_STOP) {
180 		cond_local_irq_enable(regs);
181 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
182 		cond_local_irq_disable(regs);
183 	}
184 }
185 
186 /*
187  * Posix requires to provide the address of the faulting instruction for
188  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
189  *
190  * This address is usually regs->ip, but when an uprobe moved the code out
191  * of line then regs->ip points to the XOL code which would confuse
192  * anything which analyzes the fault address vs. the unmodified binary. If
193  * a trap happened in XOL code then uprobe maps regs->ip back to the
194  * original instruction address.
195  */
196 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
197 {
198 	return (void __user *)uprobe_get_trap_addr(regs);
199 }
200 
201 DEFINE_IDTENTRY(exc_divide_error)
202 {
203 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
204 		      FPE_INTDIV, error_get_trap_addr(regs));
205 }
206 
207 DEFINE_IDTENTRY(exc_overflow)
208 {
209 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
210 }
211 
212 #ifdef CONFIG_X86_F00F_BUG
213 void handle_invalid_op(struct pt_regs *regs)
214 #else
215 static inline void handle_invalid_op(struct pt_regs *regs)
216 #endif
217 {
218 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
219 		      ILL_ILLOPN, error_get_trap_addr(regs));
220 }
221 
222 static noinstr bool handle_bug(struct pt_regs *regs)
223 {
224 	bool handled = false;
225 
226 	if (!is_valid_bugaddr(regs->ip))
227 		return handled;
228 
229 	/*
230 	 * All lies, just get the WARN/BUG out.
231 	 */
232 	instrumentation_begin();
233 	/*
234 	 * Since we're emulating a CALL with exceptions, restore the interrupt
235 	 * state to what it was at the exception site.
236 	 */
237 	if (regs->flags & X86_EFLAGS_IF)
238 		raw_local_irq_enable();
239 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
240 		regs->ip += LEN_UD2;
241 		handled = true;
242 	}
243 	if (regs->flags & X86_EFLAGS_IF)
244 		raw_local_irq_disable();
245 	instrumentation_end();
246 
247 	return handled;
248 }
249 
250 DEFINE_IDTENTRY_RAW(exc_invalid_op)
251 {
252 	irqentry_state_t state;
253 
254 	/*
255 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
256 	 * handle it before exception entry to avoid recursive WARN
257 	 * in case exception entry is the one triggering WARNs.
258 	 */
259 	if (!user_mode(regs) && handle_bug(regs))
260 		return;
261 
262 	state = irqentry_enter(regs);
263 	instrumentation_begin();
264 	handle_invalid_op(regs);
265 	instrumentation_end();
266 	irqentry_exit(regs, state);
267 }
268 
269 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
270 {
271 	do_error_trap(regs, 0, "coprocessor segment overrun",
272 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
273 }
274 
275 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
276 {
277 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
278 		      0, NULL);
279 }
280 
281 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
282 {
283 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
284 		      SIGBUS, 0, NULL);
285 }
286 
287 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
288 {
289 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
290 		      0, NULL);
291 }
292 
293 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
294 {
295 	char *str = "alignment check";
296 
297 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
298 		return;
299 
300 	if (!user_mode(regs))
301 		die("Split lock detected\n", regs, error_code);
302 
303 	local_irq_enable();
304 
305 	if (handle_user_split_lock(regs, error_code))
306 		goto out;
307 
308 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
309 		error_code, BUS_ADRALN, NULL);
310 
311 out:
312 	local_irq_disable();
313 }
314 
315 #ifdef CONFIG_VMAP_STACK
316 __visible void __noreturn handle_stack_overflow(const char *message,
317 						struct pt_regs *regs,
318 						unsigned long fault_address)
319 {
320 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
321 		 (void *)fault_address, current->stack,
322 		 (char *)current->stack + THREAD_SIZE - 1);
323 	die(message, regs, 0);
324 
325 	/* Be absolutely certain we don't return. */
326 	panic("%s", message);
327 }
328 #endif
329 
330 /*
331  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
332  *
333  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
334  * SDM's warnings about double faults being unrecoverable, returning works as
335  * expected.  Presumably what the SDM actually means is that the CPU may get
336  * the register state wrong on entry, so returning could be a bad idea.
337  *
338  * Various CPU engineers have promised that double faults due to an IRET fault
339  * while the stack is read-only are, in fact, recoverable.
340  *
341  * On x86_32, this is entered through a task gate, and regs are synthesized
342  * from the TSS.  Returning is, in principle, okay, but changes to regs will
343  * be lost.  If, for some reason, we need to return to a context with modified
344  * regs, the shim code could be adjusted to synchronize the registers.
345  *
346  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
347  * to be read before doing anything else.
348  */
349 DEFINE_IDTENTRY_DF(exc_double_fault)
350 {
351 	static const char str[] = "double fault";
352 	struct task_struct *tsk = current;
353 
354 #ifdef CONFIG_VMAP_STACK
355 	unsigned long address = read_cr2();
356 #endif
357 
358 #ifdef CONFIG_X86_ESPFIX64
359 	extern unsigned char native_irq_return_iret[];
360 
361 	/*
362 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
363 	 * end up promoting it to a doublefault.  In that case, take
364 	 * advantage of the fact that we're not using the normal (TSS.sp0)
365 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
366 	 * and then modify our own IRET frame so that, when we return,
367 	 * we land directly at the #GP(0) vector with the stack already
368 	 * set up according to its expectations.
369 	 *
370 	 * The net result is that our #GP handler will think that we
371 	 * entered from usermode with the bad user context.
372 	 *
373 	 * No need for nmi_enter() here because we don't use RCU.
374 	 */
375 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
376 		regs->cs == __KERNEL_CS &&
377 		regs->ip == (unsigned long)native_irq_return_iret)
378 	{
379 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
380 		unsigned long *p = (unsigned long *)regs->sp;
381 
382 		/*
383 		 * regs->sp points to the failing IRET frame on the
384 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
385 		 * in gpregs->ss through gpregs->ip.
386 		 *
387 		 */
388 		gpregs->ip	= p[0];
389 		gpregs->cs	= p[1];
390 		gpregs->flags	= p[2];
391 		gpregs->sp	= p[3];
392 		gpregs->ss	= p[4];
393 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
394 
395 		/*
396 		 * Adjust our frame so that we return straight to the #GP
397 		 * vector with the expected RSP value.  This is safe because
398 		 * we won't enable interrupts or schedule before we invoke
399 		 * general_protection, so nothing will clobber the stack
400 		 * frame we just set up.
401 		 *
402 		 * We will enter general_protection with kernel GSBASE,
403 		 * which is what the stub expects, given that the faulting
404 		 * RIP will be the IRET instruction.
405 		 */
406 		regs->ip = (unsigned long)asm_exc_general_protection;
407 		regs->sp = (unsigned long)&gpregs->orig_ax;
408 
409 		return;
410 	}
411 #endif
412 
413 	irqentry_nmi_enter(regs);
414 	instrumentation_begin();
415 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
416 
417 	tsk->thread.error_code = error_code;
418 	tsk->thread.trap_nr = X86_TRAP_DF;
419 
420 #ifdef CONFIG_VMAP_STACK
421 	/*
422 	 * If we overflow the stack into a guard page, the CPU will fail
423 	 * to deliver #PF and will send #DF instead.  Similarly, if we
424 	 * take any non-IST exception while too close to the bottom of
425 	 * the stack, the processor will get a page fault while
426 	 * delivering the exception and will generate a double fault.
427 	 *
428 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
429 	 * Page-Fault Exception (#PF):
430 	 *
431 	 *   Processors update CR2 whenever a page fault is detected. If a
432 	 *   second page fault occurs while an earlier page fault is being
433 	 *   delivered, the faulting linear address of the second fault will
434 	 *   overwrite the contents of CR2 (replacing the previous
435 	 *   address). These updates to CR2 occur even if the page fault
436 	 *   results in a double fault or occurs during the delivery of a
437 	 *   double fault.
438 	 *
439 	 * The logic below has a small possibility of incorrectly diagnosing
440 	 * some errors as stack overflows.  For example, if the IDT or GDT
441 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
442 	 * causing #GP and we hit this condition while CR2 coincidentally
443 	 * points to the stack guard page, we'll think we overflowed the
444 	 * stack.  Given that we're going to panic one way or another
445 	 * if this happens, this isn't necessarily worth fixing.
446 	 *
447 	 * If necessary, we could improve the test by only diagnosing
448 	 * a stack overflow if the saved RSP points within 47 bytes of
449 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
450 	 * take an exception, the stack is already aligned and there
451 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
452 	 * possible error code, so a stack overflow would *not* double
453 	 * fault.  With any less space left, exception delivery could
454 	 * fail, and, as a practical matter, we've overflowed the
455 	 * stack even if the actual trigger for the double fault was
456 	 * something else.
457 	 */
458 	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
459 		handle_stack_overflow("kernel stack overflow (double-fault)",
460 				      regs, address);
461 	}
462 #endif
463 
464 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
465 	die("double fault", regs, error_code);
466 	panic("Machine halted.");
467 	instrumentation_end();
468 }
469 
470 DEFINE_IDTENTRY(exc_bounds)
471 {
472 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
473 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
474 		return;
475 	cond_local_irq_enable(regs);
476 
477 	if (!user_mode(regs))
478 		die("bounds", regs, 0);
479 
480 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
481 
482 	cond_local_irq_disable(regs);
483 }
484 
485 enum kernel_gp_hint {
486 	GP_NO_HINT,
487 	GP_NON_CANONICAL,
488 	GP_CANONICAL
489 };
490 
491 /*
492  * When an uncaught #GP occurs, try to determine the memory address accessed by
493  * the instruction and return that address to the caller. Also, try to figure
494  * out whether any part of the access to that address was non-canonical.
495  */
496 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
497 						 unsigned long *addr)
498 {
499 	u8 insn_buf[MAX_INSN_SIZE];
500 	struct insn insn;
501 	int ret;
502 
503 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
504 			MAX_INSN_SIZE))
505 		return GP_NO_HINT;
506 
507 	ret = insn_decode_kernel(&insn, insn_buf);
508 	if (ret < 0)
509 		return GP_NO_HINT;
510 
511 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
512 	if (*addr == -1UL)
513 		return GP_NO_HINT;
514 
515 #ifdef CONFIG_X86_64
516 	/*
517 	 * Check that:
518 	 *  - the operand is not in the kernel half
519 	 *  - the last byte of the operand is not in the user canonical half
520 	 */
521 	if (*addr < ~__VIRTUAL_MASK &&
522 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
523 		return GP_NON_CANONICAL;
524 #endif
525 
526 	return GP_CANONICAL;
527 }
528 
529 #define GPFSTR "general protection fault"
530 
531 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
532 {
533 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
534 	enum kernel_gp_hint hint = GP_NO_HINT;
535 	struct task_struct *tsk;
536 	unsigned long gp_addr;
537 	int ret;
538 
539 	cond_local_irq_enable(regs);
540 
541 	if (static_cpu_has(X86_FEATURE_UMIP)) {
542 		if (user_mode(regs) && fixup_umip_exception(regs))
543 			goto exit;
544 	}
545 
546 	if (v8086_mode(regs)) {
547 		local_irq_enable();
548 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
549 		local_irq_disable();
550 		return;
551 	}
552 
553 	tsk = current;
554 
555 	if (user_mode(regs)) {
556 		tsk->thread.error_code = error_code;
557 		tsk->thread.trap_nr = X86_TRAP_GP;
558 
559 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
560 			goto exit;
561 
562 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
563 		force_sig(SIGSEGV);
564 		goto exit;
565 	}
566 
567 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
568 		goto exit;
569 
570 	tsk->thread.error_code = error_code;
571 	tsk->thread.trap_nr = X86_TRAP_GP;
572 
573 	/*
574 	 * To be potentially processing a kprobe fault and to trust the result
575 	 * from kprobe_running(), we have to be non-preemptible.
576 	 */
577 	if (!preemptible() &&
578 	    kprobe_running() &&
579 	    kprobe_fault_handler(regs, X86_TRAP_GP))
580 		goto exit;
581 
582 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
583 	if (ret == NOTIFY_STOP)
584 		goto exit;
585 
586 	if (error_code)
587 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
588 	else
589 		hint = get_kernel_gp_address(regs, &gp_addr);
590 
591 	if (hint != GP_NO_HINT)
592 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
593 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
594 						    : "maybe for address",
595 			 gp_addr);
596 
597 	/*
598 	 * KASAN is interested only in the non-canonical case, clear it
599 	 * otherwise.
600 	 */
601 	if (hint != GP_NON_CANONICAL)
602 		gp_addr = 0;
603 
604 	die_addr(desc, regs, error_code, gp_addr);
605 
606 exit:
607 	cond_local_irq_disable(regs);
608 }
609 
610 static bool do_int3(struct pt_regs *regs)
611 {
612 	int res;
613 
614 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
615 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
616 			 SIGTRAP) == NOTIFY_STOP)
617 		return true;
618 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
619 
620 #ifdef CONFIG_KPROBES
621 	if (kprobe_int3_handler(regs))
622 		return true;
623 #endif
624 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
625 
626 	return res == NOTIFY_STOP;
627 }
628 
629 static void do_int3_user(struct pt_regs *regs)
630 {
631 	if (do_int3(regs))
632 		return;
633 
634 	cond_local_irq_enable(regs);
635 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
636 	cond_local_irq_disable(regs);
637 }
638 
639 DEFINE_IDTENTRY_RAW(exc_int3)
640 {
641 	/*
642 	 * poke_int3_handler() is completely self contained code; it does (and
643 	 * must) *NOT* call out to anything, lest it hits upon yet another
644 	 * INT3.
645 	 */
646 	if (poke_int3_handler(regs))
647 		return;
648 
649 	/*
650 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
651 	 * and therefore can trigger INT3, hence poke_int3_handler() must
652 	 * be done before. If the entry came from kernel mode, then use
653 	 * nmi_enter() because the INT3 could have been hit in any context
654 	 * including NMI.
655 	 */
656 	if (user_mode(regs)) {
657 		irqentry_enter_from_user_mode(regs);
658 		instrumentation_begin();
659 		do_int3_user(regs);
660 		instrumentation_end();
661 		irqentry_exit_to_user_mode(regs);
662 	} else {
663 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
664 
665 		instrumentation_begin();
666 		if (!do_int3(regs))
667 			die("int3", regs, 0);
668 		instrumentation_end();
669 		irqentry_nmi_exit(regs, irq_state);
670 	}
671 }
672 
673 #ifdef CONFIG_X86_64
674 /*
675  * Help handler running on a per-cpu (IST or entry trampoline) stack
676  * to switch to the normal thread stack if the interrupted code was in
677  * user mode. The actual stack switch is done in entry_64.S
678  */
679 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
680 {
681 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
682 	if (regs != eregs)
683 		*regs = *eregs;
684 	return regs;
685 }
686 
687 #ifdef CONFIG_AMD_MEM_ENCRYPT
688 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
689 {
690 	unsigned long sp, *stack;
691 	struct stack_info info;
692 	struct pt_regs *regs_ret;
693 
694 	/*
695 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
696 	 * trust it and switch to the current kernel stack
697 	 */
698 	if (ip_within_syscall_gap(regs)) {
699 		sp = this_cpu_read(cpu_current_top_of_stack);
700 		goto sync;
701 	}
702 
703 	/*
704 	 * From here on the RSP value is trusted. Now check whether entry
705 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
706 	 * use the fall-back stack instead in this case.
707 	 */
708 	sp    = regs->sp;
709 	stack = (unsigned long *)sp;
710 
711 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
712 	    info.type >= STACK_TYPE_EXCEPTION_LAST)
713 		sp = __this_cpu_ist_top_va(VC2);
714 
715 sync:
716 	/*
717 	 * Found a safe stack - switch to it as if the entry didn't happen via
718 	 * IST stack. The code below only copies pt_regs, the real switch happens
719 	 * in assembly code.
720 	 */
721 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
722 
723 	regs_ret = (struct pt_regs *)sp;
724 	*regs_ret = *regs;
725 
726 	return regs_ret;
727 }
728 #endif
729 
730 struct bad_iret_stack {
731 	void *error_entry_ret;
732 	struct pt_regs regs;
733 };
734 
735 asmlinkage __visible noinstr
736 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
737 {
738 	/*
739 	 * This is called from entry_64.S early in handling a fault
740 	 * caused by a bad iret to user mode.  To handle the fault
741 	 * correctly, we want to move our stack frame to where it would
742 	 * be had we entered directly on the entry stack (rather than
743 	 * just below the IRET frame) and we want to pretend that the
744 	 * exception came from the IRET target.
745 	 */
746 	struct bad_iret_stack tmp, *new_stack =
747 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
748 
749 	/* Copy the IRET target to the temporary storage. */
750 	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
751 
752 	/* Copy the remainder of the stack from the current stack. */
753 	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
754 
755 	/* Update the entry stack */
756 	__memcpy(new_stack, &tmp, sizeof(tmp));
757 
758 	BUG_ON(!user_mode(&new_stack->regs));
759 	return new_stack;
760 }
761 #endif
762 
763 static bool is_sysenter_singlestep(struct pt_regs *regs)
764 {
765 	/*
766 	 * We don't try for precision here.  If we're anywhere in the region of
767 	 * code that can be single-stepped in the SYSENTER entry path, then
768 	 * assume that this is a useless single-step trap due to SYSENTER
769 	 * being invoked with TF set.  (We don't know in advance exactly
770 	 * which instructions will be hit because BTF could plausibly
771 	 * be set.)
772 	 */
773 #ifdef CONFIG_X86_32
774 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
775 		(unsigned long)__end_SYSENTER_singlestep_region -
776 		(unsigned long)__begin_SYSENTER_singlestep_region;
777 #elif defined(CONFIG_IA32_EMULATION)
778 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
779 		(unsigned long)__end_entry_SYSENTER_compat -
780 		(unsigned long)entry_SYSENTER_compat;
781 #else
782 	return false;
783 #endif
784 }
785 
786 static __always_inline unsigned long debug_read_clear_dr6(void)
787 {
788 	unsigned long dr6;
789 
790 	/*
791 	 * The Intel SDM says:
792 	 *
793 	 *   Certain debug exceptions may clear bits 0-3. The remaining
794 	 *   contents of the DR6 register are never cleared by the
795 	 *   processor. To avoid confusion in identifying debug
796 	 *   exceptions, debug handlers should clear the register before
797 	 *   returning to the interrupted task.
798 	 *
799 	 * Keep it simple: clear DR6 immediately.
800 	 */
801 	get_debugreg(dr6, 6);
802 	set_debugreg(DR6_RESERVED, 6);
803 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
804 
805 	return dr6;
806 }
807 
808 /*
809  * Our handling of the processor debug registers is non-trivial.
810  * We do not clear them on entry and exit from the kernel. Therefore
811  * it is possible to get a watchpoint trap here from inside the kernel.
812  * However, the code in ./ptrace.c has ensured that the user can
813  * only set watchpoints on userspace addresses. Therefore the in-kernel
814  * watchpoint trap can only occur in code which is reading/writing
815  * from user space. Such code must not hold kernel locks (since it
816  * can equally take a page fault), therefore it is safe to call
817  * force_sig_info even though that claims and releases locks.
818  *
819  * Code in ./signal.c ensures that the debug control register
820  * is restored before we deliver any signal, and therefore that
821  * user code runs with the correct debug control register even though
822  * we clear it here.
823  *
824  * Being careful here means that we don't have to be as careful in a
825  * lot of more complicated places (task switching can be a bit lazy
826  * about restoring all the debug state, and ptrace doesn't have to
827  * find every occurrence of the TF bit that could be saved away even
828  * by user code)
829  *
830  * May run on IST stack.
831  */
832 
833 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
834 {
835 	/*
836 	 * Notifiers will clear bits in @dr6 to indicate the event has been
837 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
838 	 *
839 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
840 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
841 	 */
842 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
843 		return true;
844 
845 	return false;
846 }
847 
848 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
849 					     unsigned long dr6)
850 {
851 	/*
852 	 * Disable breakpoints during exception handling; recursive exceptions
853 	 * are exceedingly 'fun'.
854 	 *
855 	 * Since this function is NOKPROBE, and that also applies to
856 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
857 	 * HW_BREAKPOINT_W on our stack)
858 	 *
859 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
860 	 * includes the entry stack is excluded for everything.
861 	 */
862 	unsigned long dr7 = local_db_save();
863 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
864 	instrumentation_begin();
865 
866 	/*
867 	 * If something gets miswired and we end up here for a user mode
868 	 * #DB, we will malfunction.
869 	 */
870 	WARN_ON_ONCE(user_mode(regs));
871 
872 	if (test_thread_flag(TIF_BLOCKSTEP)) {
873 		/*
874 		 * The SDM says "The processor clears the BTF flag when it
875 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
876 		 * it for userspace, but we just took a kernel #DB, so re-set
877 		 * BTF.
878 		 */
879 		unsigned long debugctl;
880 
881 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
882 		debugctl |= DEBUGCTLMSR_BTF;
883 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
884 	}
885 
886 	/*
887 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
888 	 * watchpoint at the same time then that will still be handled.
889 	 */
890 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
891 		dr6 &= ~DR_STEP;
892 
893 	/*
894 	 * The kernel doesn't use INT1
895 	 */
896 	if (!dr6)
897 		goto out;
898 
899 	if (notify_debug(regs, &dr6))
900 		goto out;
901 
902 	/*
903 	 * The kernel doesn't use TF single-step outside of:
904 	 *
905 	 *  - Kprobes, consumed through kprobe_debug_handler()
906 	 *  - KGDB, consumed through notify_debug()
907 	 *
908 	 * So if we get here with DR_STEP set, something is wonky.
909 	 *
910 	 * A known way to trigger this is through QEMU's GDB stub,
911 	 * which leaks #DB into the guest and causes IST recursion.
912 	 */
913 	if (WARN_ON_ONCE(dr6 & DR_STEP))
914 		regs->flags &= ~X86_EFLAGS_TF;
915 out:
916 	instrumentation_end();
917 	irqentry_nmi_exit(regs, irq_state);
918 
919 	local_db_restore(dr7);
920 }
921 
922 static __always_inline void exc_debug_user(struct pt_regs *regs,
923 					   unsigned long dr6)
924 {
925 	bool icebp;
926 
927 	/*
928 	 * If something gets miswired and we end up here for a kernel mode
929 	 * #DB, we will malfunction.
930 	 */
931 	WARN_ON_ONCE(!user_mode(regs));
932 
933 	/*
934 	 * NB: We can't easily clear DR7 here because
935 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
936 	 * user memory, etc.  This means that a recursive #DB is possible.  If
937 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
938 	 * Since we're not on the IST stack right now, everything will be
939 	 * fine.
940 	 */
941 
942 	irqentry_enter_from_user_mode(regs);
943 	instrumentation_begin();
944 
945 	/*
946 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
947 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
948 	 *
949 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
950 	 * even if it is not the result of PTRACE_SINGLESTEP.
951 	 */
952 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
953 
954 	/*
955 	 * The SDM says "The processor clears the BTF flag when it
956 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
957 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
958 	 */
959 	clear_thread_flag(TIF_BLOCKSTEP);
960 
961 	/*
962 	 * If dr6 has no reason to give us about the origin of this trap,
963 	 * then it's very likely the result of an icebp/int01 trap.
964 	 * User wants a sigtrap for that.
965 	 */
966 	icebp = !dr6;
967 
968 	if (notify_debug(regs, &dr6))
969 		goto out;
970 
971 	/* It's safe to allow irq's after DR6 has been saved */
972 	local_irq_enable();
973 
974 	if (v8086_mode(regs)) {
975 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
976 		goto out_irq;
977 	}
978 
979 	/* #DB for bus lock can only be triggered from userspace. */
980 	if (dr6 & DR_BUS_LOCK)
981 		handle_bus_lock(regs);
982 
983 	/* Add the virtual_dr6 bits for signals. */
984 	dr6 |= current->thread.virtual_dr6;
985 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
986 		send_sigtrap(regs, 0, get_si_code(dr6));
987 
988 out_irq:
989 	local_irq_disable();
990 out:
991 	instrumentation_end();
992 	irqentry_exit_to_user_mode(regs);
993 }
994 
995 #ifdef CONFIG_X86_64
996 /* IST stack entry */
997 DEFINE_IDTENTRY_DEBUG(exc_debug)
998 {
999 	exc_debug_kernel(regs, debug_read_clear_dr6());
1000 }
1001 
1002 /* User entry, runs on regular task stack */
1003 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1004 {
1005 	exc_debug_user(regs, debug_read_clear_dr6());
1006 }
1007 #else
1008 /* 32 bit does not have separate entry points. */
1009 DEFINE_IDTENTRY_RAW(exc_debug)
1010 {
1011 	unsigned long dr6 = debug_read_clear_dr6();
1012 
1013 	if (user_mode(regs))
1014 		exc_debug_user(regs, dr6);
1015 	else
1016 		exc_debug_kernel(regs, dr6);
1017 }
1018 #endif
1019 
1020 /*
1021  * Note that we play around with the 'TS' bit in an attempt to get
1022  * the correct behaviour even in the presence of the asynchronous
1023  * IRQ13 behaviour
1024  */
1025 static void math_error(struct pt_regs *regs, int trapnr)
1026 {
1027 	struct task_struct *task = current;
1028 	struct fpu *fpu = &task->thread.fpu;
1029 	int si_code;
1030 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1031 						"simd exception";
1032 
1033 	cond_local_irq_enable(regs);
1034 
1035 	if (!user_mode(regs)) {
1036 		if (fixup_exception(regs, trapnr, 0, 0))
1037 			goto exit;
1038 
1039 		task->thread.error_code = 0;
1040 		task->thread.trap_nr = trapnr;
1041 
1042 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1043 			       SIGFPE) != NOTIFY_STOP)
1044 			die(str, regs, 0);
1045 		goto exit;
1046 	}
1047 
1048 	/*
1049 	 * Synchronize the FPU register state to the memory register state
1050 	 * if necessary. This allows the exception handler to inspect it.
1051 	 */
1052 	fpu_sync_fpstate(fpu);
1053 
1054 	task->thread.trap_nr	= trapnr;
1055 	task->thread.error_code = 0;
1056 
1057 	si_code = fpu__exception_code(fpu, trapnr);
1058 	/* Retry when we get spurious exceptions: */
1059 	if (!si_code)
1060 		goto exit;
1061 
1062 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1063 		goto exit;
1064 
1065 	force_sig_fault(SIGFPE, si_code,
1066 			(void __user *)uprobe_get_trap_addr(regs));
1067 exit:
1068 	cond_local_irq_disable(regs);
1069 }
1070 
1071 DEFINE_IDTENTRY(exc_coprocessor_error)
1072 {
1073 	math_error(regs, X86_TRAP_MF);
1074 }
1075 
1076 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1077 {
1078 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1079 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1080 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1081 			__exc_general_protection(regs, 0);
1082 			return;
1083 		}
1084 	}
1085 	math_error(regs, X86_TRAP_XF);
1086 }
1087 
1088 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1089 {
1090 	/*
1091 	 * This addresses a Pentium Pro Erratum:
1092 	 *
1093 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1094 	 * Virtual Wire mode implemented through the local APIC, an
1095 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1096 	 * generated by the local APIC (Int 15).  This vector may be
1097 	 * generated upon receipt of a spurious interrupt (an interrupt
1098 	 * which is removed before the system receives the INTA sequence)
1099 	 * instead of the programmed 8259 spurious interrupt vector.
1100 	 *
1101 	 * IMPLICATION: The spurious interrupt vector programmed in the
1102 	 * 8259 is normally handled by an operating system's spurious
1103 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1104 	 * operating systems, which would crash if this erratum occurred.
1105 	 *
1106 	 * In theory this could be limited to 32bit, but the handler is not
1107 	 * hurting and who knows which other CPUs suffer from this.
1108 	 */
1109 }
1110 
1111 DEFINE_IDTENTRY(exc_device_not_available)
1112 {
1113 	unsigned long cr0 = read_cr0();
1114 
1115 #ifdef CONFIG_MATH_EMULATION
1116 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1117 		struct math_emu_info info = { };
1118 
1119 		cond_local_irq_enable(regs);
1120 
1121 		info.regs = regs;
1122 		math_emulate(&info);
1123 
1124 		cond_local_irq_disable(regs);
1125 		return;
1126 	}
1127 #endif
1128 
1129 	/* This should not happen. */
1130 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1131 		/* Try to fix it up and carry on. */
1132 		write_cr0(cr0 & ~X86_CR0_TS);
1133 	} else {
1134 		/*
1135 		 * Something terrible happened, and we're better off trying
1136 		 * to kill the task than getting stuck in a never-ending
1137 		 * loop of #NM faults.
1138 		 */
1139 		die("unexpected #NM exception", regs, 0);
1140 	}
1141 }
1142 
1143 #ifdef CONFIG_X86_32
1144 DEFINE_IDTENTRY_SW(iret_error)
1145 {
1146 	local_irq_enable();
1147 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1148 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1149 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1150 			ILL_BADSTK, (void __user *)NULL);
1151 	}
1152 	local_irq_disable();
1153 }
1154 #endif
1155 
1156 void __init trap_init(void)
1157 {
1158 	/* Init cpu_entry_area before IST entries are set up */
1159 	setup_cpu_entry_areas();
1160 
1161 	/* Init GHCB memory pages when running as an SEV-ES guest */
1162 	sev_es_init_vc_handling();
1163 
1164 	/* Initialize TSS before setting up traps so ISTs work */
1165 	cpu_init_exception_handling();
1166 	/* Setup traps as cpu_init() might #GP */
1167 	idt_setup_traps();
1168 	cpu_init();
1169 }
1170