1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 #include <linux/interrupt.h> 13 #include <linux/kallsyms.h> 14 #include <linux/spinlock.h> 15 #include <linux/kprobes.h> 16 #include <linux/uaccess.h> 17 #include <linux/kdebug.h> 18 #include <linux/kgdb.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/ptrace.h> 22 #include <linux/string.h> 23 #include <linux/delay.h> 24 #include <linux/errno.h> 25 #include <linux/kexec.h> 26 #include <linux/sched.h> 27 #include <linux/timer.h> 28 #include <linux/init.h> 29 #include <linux/bug.h> 30 #include <linux/nmi.h> 31 #include <linux/mm.h> 32 #include <linux/smp.h> 33 #include <linux/io.h> 34 35 #ifdef CONFIG_EISA 36 #include <linux/ioport.h> 37 #include <linux/eisa.h> 38 #endif 39 40 #ifdef CONFIG_MCA 41 #include <linux/mca.h> 42 #endif 43 44 #if defined(CONFIG_EDAC) 45 #include <linux/edac.h> 46 #endif 47 48 #include <asm/kmemcheck.h> 49 #include <asm/stacktrace.h> 50 #include <asm/processor.h> 51 #include <asm/debugreg.h> 52 #include <asm/atomic.h> 53 #include <asm/system.h> 54 #include <asm/traps.h> 55 #include <asm/desc.h> 56 #include <asm/i387.h> 57 #include <asm/mce.h> 58 59 #include <asm/mach_traps.h> 60 61 #ifdef CONFIG_X86_64 62 #include <asm/x86_init.h> 63 #include <asm/pgalloc.h> 64 #include <asm/proto.h> 65 #else 66 #include <asm/processor-flags.h> 67 #include <asm/setup.h> 68 69 asmlinkage int system_call(void); 70 71 /* Do we ignore FPU interrupts ? */ 72 char ignore_fpu_irq; 73 74 /* 75 * The IDT has to be page-aligned to simplify the Pentium 76 * F0 0F bug workaround. 77 */ 78 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, }; 79 #endif 80 81 DECLARE_BITMAP(used_vectors, NR_VECTORS); 82 EXPORT_SYMBOL_GPL(used_vectors); 83 84 static int ignore_nmis; 85 86 int unknown_nmi_panic; 87 88 static inline void conditional_sti(struct pt_regs *regs) 89 { 90 if (regs->flags & X86_EFLAGS_IF) 91 local_irq_enable(); 92 } 93 94 static inline void preempt_conditional_sti(struct pt_regs *regs) 95 { 96 inc_preempt_count(); 97 if (regs->flags & X86_EFLAGS_IF) 98 local_irq_enable(); 99 } 100 101 static inline void conditional_cli(struct pt_regs *regs) 102 { 103 if (regs->flags & X86_EFLAGS_IF) 104 local_irq_disable(); 105 } 106 107 static inline void preempt_conditional_cli(struct pt_regs *regs) 108 { 109 if (regs->flags & X86_EFLAGS_IF) 110 local_irq_disable(); 111 dec_preempt_count(); 112 } 113 114 static void __kprobes 115 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 116 long error_code, siginfo_t *info) 117 { 118 struct task_struct *tsk = current; 119 120 #ifdef CONFIG_X86_32 121 if (regs->flags & X86_VM_MASK) { 122 /* 123 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 124 * On nmi (interrupt 2), do_trap should not be called. 125 */ 126 if (trapnr < 6) 127 goto vm86_trap; 128 goto trap_signal; 129 } 130 #endif 131 132 if (!user_mode(regs)) 133 goto kernel_trap; 134 135 #ifdef CONFIG_X86_32 136 trap_signal: 137 #endif 138 /* 139 * We want error_code and trap_no set for userspace faults and 140 * kernelspace faults which result in die(), but not 141 * kernelspace faults which are fixed up. die() gives the 142 * process no chance to handle the signal and notice the 143 * kernel fault information, so that won't result in polluting 144 * the information about previously queued, but not yet 145 * delivered, faults. See also do_general_protection below. 146 */ 147 tsk->thread.error_code = error_code; 148 tsk->thread.trap_no = trapnr; 149 150 #ifdef CONFIG_X86_64 151 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 152 printk_ratelimit()) { 153 printk(KERN_INFO 154 "%s[%d] trap %s ip:%lx sp:%lx error:%lx", 155 tsk->comm, tsk->pid, str, 156 regs->ip, regs->sp, error_code); 157 print_vma_addr(" in ", regs->ip); 158 printk("\n"); 159 } 160 #endif 161 162 if (info) 163 force_sig_info(signr, info, tsk); 164 else 165 force_sig(signr, tsk); 166 return; 167 168 kernel_trap: 169 if (!fixup_exception(regs)) { 170 tsk->thread.error_code = error_code; 171 tsk->thread.trap_no = trapnr; 172 die(str, regs, error_code); 173 } 174 return; 175 176 #ifdef CONFIG_X86_32 177 vm86_trap: 178 if (handle_vm86_trap((struct kernel_vm86_regs *) regs, 179 error_code, trapnr)) 180 goto trap_signal; 181 return; 182 #endif 183 } 184 185 #define DO_ERROR(trapnr, signr, str, name) \ 186 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 187 { \ 188 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 189 == NOTIFY_STOP) \ 190 return; \ 191 conditional_sti(regs); \ 192 do_trap(trapnr, signr, str, regs, error_code, NULL); \ 193 } 194 195 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ 196 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 197 { \ 198 siginfo_t info; \ 199 info.si_signo = signr; \ 200 info.si_errno = 0; \ 201 info.si_code = sicode; \ 202 info.si_addr = (void __user *)siaddr; \ 203 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 204 == NOTIFY_STOP) \ 205 return; \ 206 conditional_sti(regs); \ 207 do_trap(trapnr, signr, str, regs, error_code, &info); \ 208 } 209 210 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) 211 DO_ERROR(4, SIGSEGV, "overflow", overflow) 212 DO_ERROR(5, SIGSEGV, "bounds", bounds) 213 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) 214 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) 215 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) 216 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) 217 #ifdef CONFIG_X86_32 218 DO_ERROR(12, SIGBUS, "stack segment", stack_segment) 219 #endif 220 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) 221 222 #ifdef CONFIG_X86_64 223 /* Runs on IST stack */ 224 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) 225 { 226 if (notify_die(DIE_TRAP, "stack segment", regs, error_code, 227 12, SIGBUS) == NOTIFY_STOP) 228 return; 229 preempt_conditional_sti(regs); 230 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); 231 preempt_conditional_cli(regs); 232 } 233 234 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 235 { 236 static const char str[] = "double fault"; 237 struct task_struct *tsk = current; 238 239 /* Return not checked because double check cannot be ignored */ 240 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); 241 242 tsk->thread.error_code = error_code; 243 tsk->thread.trap_no = 8; 244 245 /* 246 * This is always a kernel trap and never fixable (and thus must 247 * never return). 248 */ 249 for (;;) 250 die(str, regs, error_code); 251 } 252 #endif 253 254 dotraplinkage void __kprobes 255 do_general_protection(struct pt_regs *regs, long error_code) 256 { 257 struct task_struct *tsk; 258 259 conditional_sti(regs); 260 261 #ifdef CONFIG_X86_32 262 if (regs->flags & X86_VM_MASK) 263 goto gp_in_vm86; 264 #endif 265 266 tsk = current; 267 if (!user_mode(regs)) 268 goto gp_in_kernel; 269 270 tsk->thread.error_code = error_code; 271 tsk->thread.trap_no = 13; 272 273 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 274 printk_ratelimit()) { 275 printk(KERN_INFO 276 "%s[%d] general protection ip:%lx sp:%lx error:%lx", 277 tsk->comm, task_pid_nr(tsk), 278 regs->ip, regs->sp, error_code); 279 print_vma_addr(" in ", regs->ip); 280 printk("\n"); 281 } 282 283 force_sig(SIGSEGV, tsk); 284 return; 285 286 #ifdef CONFIG_X86_32 287 gp_in_vm86: 288 local_irq_enable(); 289 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 290 return; 291 #endif 292 293 gp_in_kernel: 294 if (fixup_exception(regs)) 295 return; 296 297 tsk->thread.error_code = error_code; 298 tsk->thread.trap_no = 13; 299 if (notify_die(DIE_GPF, "general protection fault", regs, 300 error_code, 13, SIGSEGV) == NOTIFY_STOP) 301 return; 302 die("general protection fault", regs, error_code); 303 } 304 305 static int __init setup_unknown_nmi_panic(char *str) 306 { 307 unknown_nmi_panic = 1; 308 return 1; 309 } 310 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 311 312 static notrace __kprobes void 313 mem_parity_error(unsigned char reason, struct pt_regs *regs) 314 { 315 printk(KERN_EMERG 316 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 317 reason, smp_processor_id()); 318 319 printk(KERN_EMERG 320 "You have some hardware problem, likely on the PCI bus.\n"); 321 322 #if defined(CONFIG_EDAC) 323 if (edac_handler_set()) { 324 edac_atomic_assert_error(); 325 return; 326 } 327 #endif 328 329 if (panic_on_unrecovered_nmi) 330 panic("NMI: Not continuing"); 331 332 printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); 333 334 /* Clear and disable the memory parity error line. */ 335 reason = (reason & 0xf) | 4; 336 outb(reason, 0x61); 337 } 338 339 static notrace __kprobes void 340 io_check_error(unsigned char reason, struct pt_regs *regs) 341 { 342 unsigned long i; 343 344 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n"); 345 show_registers(regs); 346 347 if (panic_on_io_nmi) 348 panic("NMI IOCK error: Not continuing"); 349 350 /* Re-enable the IOCK line, wait for a few seconds */ 351 reason = (reason & 0xf) | 8; 352 outb(reason, 0x61); 353 354 i = 2000; 355 while (--i) 356 udelay(1000); 357 358 reason &= ~8; 359 outb(reason, 0x61); 360 } 361 362 static notrace __kprobes void 363 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 364 { 365 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == 366 NOTIFY_STOP) 367 return; 368 #ifdef CONFIG_MCA 369 /* 370 * Might actually be able to figure out what the guilty party 371 * is: 372 */ 373 if (MCA_bus) { 374 mca_handle_nmi(); 375 return; 376 } 377 #endif 378 printk(KERN_EMERG 379 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 380 reason, smp_processor_id()); 381 382 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); 383 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 384 panic("NMI: Not continuing"); 385 386 printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); 387 } 388 389 static notrace __kprobes void default_do_nmi(struct pt_regs *regs) 390 { 391 unsigned char reason = 0; 392 int cpu; 393 394 cpu = smp_processor_id(); 395 396 /* Only the BSP gets external NMIs from the system. */ 397 if (!cpu) 398 reason = get_nmi_reason(); 399 400 if (!(reason & 0xc0)) { 401 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) 402 == NOTIFY_STOP) 403 return; 404 405 #ifdef CONFIG_X86_LOCAL_APIC 406 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) 407 == NOTIFY_STOP) 408 return; 409 #endif 410 unknown_nmi_error(reason, regs); 411 412 return; 413 } 414 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) 415 return; 416 417 /* AK: following checks seem to be broken on modern chipsets. FIXME */ 418 if (reason & 0x80) 419 mem_parity_error(reason, regs); 420 if (reason & 0x40) 421 io_check_error(reason, regs); 422 #ifdef CONFIG_X86_32 423 /* 424 * Reassert NMI in case it became active meanwhile 425 * as it's edge-triggered: 426 */ 427 reassert_nmi(); 428 #endif 429 } 430 431 dotraplinkage notrace __kprobes void 432 do_nmi(struct pt_regs *regs, long error_code) 433 { 434 nmi_enter(); 435 436 inc_irq_stat(__nmi_count); 437 438 if (!ignore_nmis) 439 default_do_nmi(regs); 440 441 nmi_exit(); 442 } 443 444 void stop_nmi(void) 445 { 446 ignore_nmis++; 447 } 448 449 void restart_nmi(void) 450 { 451 ignore_nmis--; 452 } 453 454 /* May run on IST stack. */ 455 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) 456 { 457 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 458 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) 459 == NOTIFY_STOP) 460 return; 461 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 462 #ifdef CONFIG_KPROBES 463 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) 464 == NOTIFY_STOP) 465 return; 466 #else 467 if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP) 468 == NOTIFY_STOP) 469 return; 470 #endif 471 472 preempt_conditional_sti(regs); 473 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); 474 preempt_conditional_cli(regs); 475 } 476 477 #ifdef CONFIG_X86_64 478 /* 479 * Help handler running on IST stack to switch back to user stack 480 * for scheduling or signal handling. The actual stack switch is done in 481 * entry.S 482 */ 483 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) 484 { 485 struct pt_regs *regs = eregs; 486 /* Did already sync */ 487 if (eregs == (struct pt_regs *)eregs->sp) 488 ; 489 /* Exception from user space */ 490 else if (user_mode(eregs)) 491 regs = task_pt_regs(current); 492 /* 493 * Exception from kernel and interrupts are enabled. Move to 494 * kernel process stack. 495 */ 496 else if (eregs->flags & X86_EFLAGS_IF) 497 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); 498 if (eregs != regs) 499 *regs = *eregs; 500 return regs; 501 } 502 #endif 503 504 /* 505 * Our handling of the processor debug registers is non-trivial. 506 * We do not clear them on entry and exit from the kernel. Therefore 507 * it is possible to get a watchpoint trap here from inside the kernel. 508 * However, the code in ./ptrace.c has ensured that the user can 509 * only set watchpoints on userspace addresses. Therefore the in-kernel 510 * watchpoint trap can only occur in code which is reading/writing 511 * from user space. Such code must not hold kernel locks (since it 512 * can equally take a page fault), therefore it is safe to call 513 * force_sig_info even though that claims and releases locks. 514 * 515 * Code in ./signal.c ensures that the debug control register 516 * is restored before we deliver any signal, and therefore that 517 * user code runs with the correct debug control register even though 518 * we clear it here. 519 * 520 * Being careful here means that we don't have to be as careful in a 521 * lot of more complicated places (task switching can be a bit lazy 522 * about restoring all the debug state, and ptrace doesn't have to 523 * find every occurrence of the TF bit that could be saved away even 524 * by user code) 525 * 526 * May run on IST stack. 527 */ 528 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) 529 { 530 struct task_struct *tsk = current; 531 int user_icebp = 0; 532 unsigned long dr6; 533 int si_code; 534 535 get_debugreg(dr6, 6); 536 537 /* Filter out all the reserved bits which are preset to 1 */ 538 dr6 &= ~DR6_RESERVED; 539 540 /* 541 * If dr6 has no reason to give us about the origin of this trap, 542 * then it's very likely the result of an icebp/int01 trap. 543 * User wants a sigtrap for that. 544 */ 545 if (!dr6 && user_mode(regs)) 546 user_icebp = 1; 547 548 /* Catch kmemcheck conditions first of all! */ 549 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 550 return; 551 552 /* DR6 may or may not be cleared by the CPU */ 553 set_debugreg(0, 6); 554 555 /* 556 * The processor cleared BTF, so don't mark that we need it set. 557 */ 558 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 559 560 /* Store the virtualized DR6 value */ 561 tsk->thread.debugreg6 = dr6; 562 563 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code, 564 SIGTRAP) == NOTIFY_STOP) 565 return; 566 567 /* It's safe to allow irq's after DR6 has been saved */ 568 preempt_conditional_sti(regs); 569 570 if (regs->flags & X86_VM_MASK) { 571 handle_vm86_trap((struct kernel_vm86_regs *) regs, 572 error_code, 1); 573 preempt_conditional_cli(regs); 574 return; 575 } 576 577 /* 578 * Single-stepping through system calls: ignore any exceptions in 579 * kernel space, but re-enable TF when returning to user mode. 580 * 581 * We already checked v86 mode above, so we can check for kernel mode 582 * by just checking the CPL of CS. 583 */ 584 if ((dr6 & DR_STEP) && !user_mode(regs)) { 585 tsk->thread.debugreg6 &= ~DR_STEP; 586 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 587 regs->flags &= ~X86_EFLAGS_TF; 588 } 589 si_code = get_si_code(tsk->thread.debugreg6); 590 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 591 send_sigtrap(tsk, regs, error_code, si_code); 592 preempt_conditional_cli(regs); 593 594 return; 595 } 596 597 /* 598 * Note that we play around with the 'TS' bit in an attempt to get 599 * the correct behaviour even in the presence of the asynchronous 600 * IRQ13 behaviour 601 */ 602 void math_error(struct pt_regs *regs, int error_code, int trapnr) 603 { 604 struct task_struct *task = current; 605 siginfo_t info; 606 unsigned short err; 607 char *str = (trapnr == 16) ? "fpu exception" : "simd exception"; 608 609 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 610 return; 611 conditional_sti(regs); 612 613 if (!user_mode_vm(regs)) 614 { 615 if (!fixup_exception(regs)) { 616 task->thread.error_code = error_code; 617 task->thread.trap_no = trapnr; 618 die(str, regs, error_code); 619 } 620 return; 621 } 622 623 /* 624 * Save the info for the exception handler and clear the error. 625 */ 626 save_init_fpu(task); 627 task->thread.trap_no = trapnr; 628 task->thread.error_code = error_code; 629 info.si_signo = SIGFPE; 630 info.si_errno = 0; 631 info.si_addr = (void __user *)regs->ip; 632 if (trapnr == 16) { 633 unsigned short cwd, swd; 634 /* 635 * (~cwd & swd) will mask out exceptions that are not set to unmasked 636 * status. 0x3f is the exception bits in these regs, 0x200 is the 637 * C1 reg you need in case of a stack fault, 0x040 is the stack 638 * fault bit. We should only be taking one exception at a time, 639 * so if this combination doesn't produce any single exception, 640 * then we have a bad program that isn't synchronizing its FPU usage 641 * and it will suffer the consequences since we won't be able to 642 * fully reproduce the context of the exception 643 */ 644 cwd = get_fpu_cwd(task); 645 swd = get_fpu_swd(task); 646 647 err = swd & ~cwd; 648 } else { 649 /* 650 * The SIMD FPU exceptions are handled a little differently, as there 651 * is only a single status/control register. Thus, to determine which 652 * unmasked exception was caught we must mask the exception mask bits 653 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 654 */ 655 unsigned short mxcsr = get_fpu_mxcsr(task); 656 err = ~(mxcsr >> 7) & mxcsr; 657 } 658 659 if (err & 0x001) { /* Invalid op */ 660 /* 661 * swd & 0x240 == 0x040: Stack Underflow 662 * swd & 0x240 == 0x240: Stack Overflow 663 * User must clear the SF bit (0x40) if set 664 */ 665 info.si_code = FPE_FLTINV; 666 } else if (err & 0x004) { /* Divide by Zero */ 667 info.si_code = FPE_FLTDIV; 668 } else if (err & 0x008) { /* Overflow */ 669 info.si_code = FPE_FLTOVF; 670 } else if (err & 0x012) { /* Denormal, Underflow */ 671 info.si_code = FPE_FLTUND; 672 } else if (err & 0x020) { /* Precision */ 673 info.si_code = FPE_FLTRES; 674 } else { 675 /* 676 * If we're using IRQ 13, or supposedly even some trap 16 677 * implementations, it's possible we get a spurious trap... 678 */ 679 return; /* Spurious trap, no error */ 680 } 681 force_sig_info(SIGFPE, &info, task); 682 } 683 684 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 685 { 686 #ifdef CONFIG_X86_32 687 ignore_fpu_irq = 1; 688 #endif 689 690 math_error(regs, error_code, 16); 691 } 692 693 dotraplinkage void 694 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 695 { 696 math_error(regs, error_code, 19); 697 } 698 699 dotraplinkage void 700 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 701 { 702 conditional_sti(regs); 703 #if 0 704 /* No need to warn about this any longer. */ 705 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); 706 #endif 707 } 708 709 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) 710 { 711 } 712 713 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void) 714 { 715 } 716 717 /* 718 * __math_state_restore assumes that cr0.TS is already clear and the 719 * fpu state is all ready for use. Used during context switch. 720 */ 721 void __math_state_restore(void) 722 { 723 struct thread_info *thread = current_thread_info(); 724 struct task_struct *tsk = thread->task; 725 726 /* 727 * Paranoid restore. send a SIGSEGV if we fail to restore the state. 728 */ 729 if (unlikely(restore_fpu_checking(tsk))) { 730 stts(); 731 force_sig(SIGSEGV, tsk); 732 return; 733 } 734 735 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ 736 tsk->fpu_counter++; 737 } 738 739 /* 740 * 'math_state_restore()' saves the current math information in the 741 * old math state array, and gets the new ones from the current task 742 * 743 * Careful.. There are problems with IBM-designed IRQ13 behaviour. 744 * Don't touch unless you *really* know how it works. 745 * 746 * Must be called with kernel preemption disabled (in this case, 747 * local interrupts are disabled at the call-site in entry.S). 748 */ 749 asmlinkage void math_state_restore(void) 750 { 751 struct thread_info *thread = current_thread_info(); 752 struct task_struct *tsk = thread->task; 753 754 if (!tsk_used_math(tsk)) { 755 local_irq_enable(); 756 /* 757 * does a slab alloc which can sleep 758 */ 759 if (init_fpu(tsk)) { 760 /* 761 * ran out of memory! 762 */ 763 do_group_exit(SIGKILL); 764 return; 765 } 766 local_irq_disable(); 767 } 768 769 clts(); /* Allow maths ops (or we recurse) */ 770 771 __math_state_restore(); 772 } 773 EXPORT_SYMBOL_GPL(math_state_restore); 774 775 dotraplinkage void __kprobes 776 do_device_not_available(struct pt_regs *regs, long error_code) 777 { 778 #ifdef CONFIG_MATH_EMULATION 779 if (read_cr0() & X86_CR0_EM) { 780 struct math_emu_info info = { }; 781 782 conditional_sti(regs); 783 784 info.regs = regs; 785 math_emulate(&info); 786 return; 787 } 788 #endif 789 math_state_restore(); /* interrupts still off */ 790 #ifdef CONFIG_X86_32 791 conditional_sti(regs); 792 #endif 793 } 794 795 #ifdef CONFIG_X86_32 796 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 797 { 798 siginfo_t info; 799 local_irq_enable(); 800 801 info.si_signo = SIGILL; 802 info.si_errno = 0; 803 info.si_code = ILL_BADSTK; 804 info.si_addr = NULL; 805 if (notify_die(DIE_TRAP, "iret exception", 806 regs, error_code, 32, SIGILL) == NOTIFY_STOP) 807 return; 808 do_trap(32, SIGILL, "iret exception", regs, error_code, &info); 809 } 810 #endif 811 812 /* Set of traps needed for early debugging. */ 813 void __init early_trap_init(void) 814 { 815 set_intr_gate_ist(1, &debug, DEBUG_STACK); 816 /* int3 can be called from all */ 817 set_system_intr_gate_ist(3, &int3, DEBUG_STACK); 818 set_intr_gate(14, &page_fault); 819 load_idt(&idt_descr); 820 } 821 822 void __init trap_init(void) 823 { 824 int i; 825 826 #ifdef CONFIG_EISA 827 void __iomem *p = early_ioremap(0x0FFFD9, 4); 828 829 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) 830 EISA_bus = 1; 831 early_iounmap(p, 4); 832 #endif 833 834 set_intr_gate(0, ÷_error); 835 set_intr_gate_ist(2, &nmi, NMI_STACK); 836 /* int4 can be called from all */ 837 set_system_intr_gate(4, &overflow); 838 set_intr_gate(5, &bounds); 839 set_intr_gate(6, &invalid_op); 840 set_intr_gate(7, &device_not_available); 841 #ifdef CONFIG_X86_32 842 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); 843 #else 844 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); 845 #endif 846 set_intr_gate(9, &coprocessor_segment_overrun); 847 set_intr_gate(10, &invalid_TSS); 848 set_intr_gate(11, &segment_not_present); 849 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); 850 set_intr_gate(13, &general_protection); 851 set_intr_gate(15, &spurious_interrupt_bug); 852 set_intr_gate(16, &coprocessor_error); 853 set_intr_gate(17, &alignment_check); 854 #ifdef CONFIG_X86_MCE 855 set_intr_gate_ist(18, &machine_check, MCE_STACK); 856 #endif 857 set_intr_gate(19, &simd_coprocessor_error); 858 859 /* Reserve all the builtin and the syscall vector: */ 860 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) 861 set_bit(i, used_vectors); 862 863 #ifdef CONFIG_IA32_EMULATION 864 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); 865 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 866 #endif 867 868 #ifdef CONFIG_X86_32 869 set_system_trap_gate(SYSCALL_VECTOR, &system_call); 870 set_bit(SYSCALL_VECTOR, used_vectors); 871 #endif 872 873 /* 874 * Should be a barrier for any external CPU state: 875 */ 876 cpu_init(); 877 878 x86_init.irqs.trap_init(); 879 } 880