xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision e57d04e5fa00f7649d4c00796f8d12054799be4a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84 
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88 
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92 
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96 
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98 
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102 
103 /* Logical package management. We might want to allocate that dynamically */
104 unsigned int __max_logical_packages __read_mostly;
105 EXPORT_SYMBOL(__max_logical_packages);
106 static unsigned int logical_packages __read_mostly;
107 static unsigned int logical_die __read_mostly;
108 
109 /* Maximum number of SMT threads on any online core */
110 int __read_mostly __max_smt_threads = 1;
111 
112 /* Flag to indicate if a complete sched domain rebuild is required */
113 bool x86_topology_update;
114 
115 int arch_update_cpu_topology(void)
116 {
117 	int retval = x86_topology_update;
118 
119 	x86_topology_update = false;
120 	return retval;
121 }
122 
123 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&rtc_lock, flags);
128 	CMOS_WRITE(0xa, 0xf);
129 	spin_unlock_irqrestore(&rtc_lock, flags);
130 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131 							start_eip >> 4;
132 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133 							start_eip & 0xf;
134 }
135 
136 static inline void smpboot_restore_warm_reset_vector(void)
137 {
138 	unsigned long flags;
139 
140 	/*
141 	 * Paranoid:  Set warm reset code and vector here back
142 	 * to default values.
143 	 */
144 	spin_lock_irqsave(&rtc_lock, flags);
145 	CMOS_WRITE(0, 0xf);
146 	spin_unlock_irqrestore(&rtc_lock, flags);
147 
148 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149 }
150 
151 static void init_freq_invariance(bool secondary);
152 
153 /*
154  * Report back to the Boot Processor during boot time or to the caller processor
155  * during CPU online.
156  */
157 static void smp_callin(void)
158 {
159 	int cpuid;
160 
161 	/*
162 	 * If waken up by an INIT in an 82489DX configuration
163 	 * cpu_callout_mask guarantees we don't get here before
164 	 * an INIT_deassert IPI reaches our local APIC, so it is
165 	 * now safe to touch our local APIC.
166 	 */
167 	cpuid = smp_processor_id();
168 
169 	/*
170 	 * the boot CPU has finished the init stage and is spinning
171 	 * on callin_map until we finish. We are free to set up this
172 	 * CPU, first the APIC. (this is probably redundant on most
173 	 * boards)
174 	 */
175 	apic_ap_setup();
176 
177 	/*
178 	 * Save our processor parameters. Note: this information
179 	 * is needed for clock calibration.
180 	 */
181 	smp_store_cpu_info(cpuid);
182 
183 	/*
184 	 * The topology information must be up to date before
185 	 * calibrate_delay() and notify_cpu_starting().
186 	 */
187 	set_cpu_sibling_map(raw_smp_processor_id());
188 
189 	init_freq_invariance(true);
190 
191 	/*
192 	 * Get our bogomips.
193 	 * Update loops_per_jiffy in cpu_data. Previous call to
194 	 * smp_store_cpu_info() stored a value that is close but not as
195 	 * accurate as the value just calculated.
196 	 */
197 	calibrate_delay();
198 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
199 	pr_debug("Stack at about %p\n", &cpuid);
200 
201 	wmb();
202 
203 	notify_cpu_starting(cpuid);
204 
205 	/*
206 	 * Allow the master to continue.
207 	 */
208 	cpumask_set_cpu(cpuid, cpu_callin_mask);
209 }
210 
211 static int cpu0_logical_apicid;
212 static int enable_start_cpu0;
213 /*
214  * Activate a secondary processor.
215  */
216 static void notrace start_secondary(void *unused)
217 {
218 	/*
219 	 * Don't put *anything* except direct CPU state initialization
220 	 * before cpu_init(), SMP booting is too fragile that we want to
221 	 * limit the things done here to the most necessary things.
222 	 */
223 	cr4_init();
224 
225 #ifdef CONFIG_X86_32
226 	/* switch away from the initial page table */
227 	load_cr3(swapper_pg_dir);
228 	__flush_tlb_all();
229 #endif
230 	cpu_init_exception_handling();
231 	cpu_init();
232 	x86_cpuinit.early_percpu_clock_init();
233 	preempt_disable();
234 	smp_callin();
235 
236 	enable_start_cpu0 = 0;
237 
238 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
239 	barrier();
240 	/*
241 	 * Check TSC synchronization with the boot CPU:
242 	 */
243 	check_tsc_sync_target();
244 
245 	speculative_store_bypass_ht_init();
246 
247 	/*
248 	 * Lock vector_lock, set CPU online and bring the vector
249 	 * allocator online. Online must be set with vector_lock held
250 	 * to prevent a concurrent irq setup/teardown from seeing a
251 	 * half valid vector space.
252 	 */
253 	lock_vector_lock();
254 	set_cpu_online(smp_processor_id(), true);
255 	lapic_online();
256 	unlock_vector_lock();
257 	cpu_set_state_online(smp_processor_id());
258 	x86_platform.nmi_init();
259 
260 	/* enable local interrupts */
261 	local_irq_enable();
262 
263 	x86_cpuinit.setup_percpu_clockev();
264 
265 	wmb();
266 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267 }
268 
269 /**
270  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271  * @cpu:	CPU to check
272  */
273 bool topology_is_primary_thread(unsigned int cpu)
274 {
275 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276 }
277 
278 /**
279  * topology_smt_supported - Check whether SMT is supported by the CPUs
280  */
281 bool topology_smt_supported(void)
282 {
283 	return smp_num_siblings > 1;
284 }
285 
286 /**
287  * topology_phys_to_logical_pkg - Map a physical package id to a logical
288  *
289  * Returns logical package id or -1 if not found
290  */
291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292 {
293 	int cpu;
294 
295 	for_each_possible_cpu(cpu) {
296 		struct cpuinfo_x86 *c = &cpu_data(cpu);
297 
298 		if (c->initialized && c->phys_proc_id == phys_pkg)
299 			return c->logical_proc_id;
300 	}
301 	return -1;
302 }
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304 /**
305  * topology_phys_to_logical_die - Map a physical die id to logical
306  *
307  * Returns logical die id or -1 if not found
308  */
309 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310 {
311 	int cpu;
312 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
313 
314 	for_each_possible_cpu(cpu) {
315 		struct cpuinfo_x86 *c = &cpu_data(cpu);
316 
317 		if (c->initialized && c->cpu_die_id == die_id &&
318 		    c->phys_proc_id == proc_id)
319 			return c->logical_die_id;
320 	}
321 	return -1;
322 }
323 EXPORT_SYMBOL(topology_phys_to_logical_die);
324 
325 /**
326  * topology_update_package_map - Update the physical to logical package map
327  * @pkg:	The physical package id as retrieved via CPUID
328  * @cpu:	The cpu for which this is updated
329  */
330 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331 {
332 	int new;
333 
334 	/* Already available somewhere? */
335 	new = topology_phys_to_logical_pkg(pkg);
336 	if (new >= 0)
337 		goto found;
338 
339 	new = logical_packages++;
340 	if (new != pkg) {
341 		pr_info("CPU %u Converting physical %u to logical package %u\n",
342 			cpu, pkg, new);
343 	}
344 found:
345 	cpu_data(cpu).logical_proc_id = new;
346 	return 0;
347 }
348 /**
349  * topology_update_die_map - Update the physical to logical die map
350  * @die:	The die id as retrieved via CPUID
351  * @cpu:	The cpu for which this is updated
352  */
353 int topology_update_die_map(unsigned int die, unsigned int cpu)
354 {
355 	int new;
356 
357 	/* Already available somewhere? */
358 	new = topology_phys_to_logical_die(die, cpu);
359 	if (new >= 0)
360 		goto found;
361 
362 	new = logical_die++;
363 	if (new != die) {
364 		pr_info("CPU %u Converting physical %u to logical die %u\n",
365 			cpu, die, new);
366 	}
367 found:
368 	cpu_data(cpu).logical_die_id = new;
369 	return 0;
370 }
371 
372 void __init smp_store_boot_cpu_info(void)
373 {
374 	int id = 0; /* CPU 0 */
375 	struct cpuinfo_x86 *c = &cpu_data(id);
376 
377 	*c = boot_cpu_data;
378 	c->cpu_index = id;
379 	topology_update_package_map(c->phys_proc_id, id);
380 	topology_update_die_map(c->cpu_die_id, id);
381 	c->initialized = true;
382 }
383 
384 /*
385  * The bootstrap kernel entry code has set these up. Save them for
386  * a given CPU
387  */
388 void smp_store_cpu_info(int id)
389 {
390 	struct cpuinfo_x86 *c = &cpu_data(id);
391 
392 	/* Copy boot_cpu_data only on the first bringup */
393 	if (!c->initialized)
394 		*c = boot_cpu_data;
395 	c->cpu_index = id;
396 	/*
397 	 * During boot time, CPU0 has this setup already. Save the info when
398 	 * bringing up AP or offlined CPU0.
399 	 */
400 	identify_secondary_cpu(c);
401 	c->initialized = true;
402 }
403 
404 static bool
405 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408 
409 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410 }
411 
412 static bool
413 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414 {
415 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416 
417 	return !WARN_ONCE(!topology_same_node(c, o),
418 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419 		"[node: %d != %d]. Ignoring dependency.\n",
420 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421 }
422 
423 #define link_mask(mfunc, c1, c2)					\
424 do {									\
425 	cpumask_set_cpu((c1), mfunc(c2));				\
426 	cpumask_set_cpu((c2), mfunc(c1));				\
427 } while (0)
428 
429 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430 {
431 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433 
434 		if (c->phys_proc_id == o->phys_proc_id &&
435 		    c->cpu_die_id == o->cpu_die_id &&
436 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437 			if (c->cpu_core_id == o->cpu_core_id)
438 				return topology_sane(c, o, "smt");
439 
440 			if ((c->cu_id != 0xff) &&
441 			    (o->cu_id != 0xff) &&
442 			    (c->cu_id == o->cu_id))
443 				return topology_sane(c, o, "smt");
444 		}
445 
446 	} else if (c->phys_proc_id == o->phys_proc_id &&
447 		   c->cpu_die_id == o->cpu_die_id &&
448 		   c->cpu_core_id == o->cpu_core_id) {
449 		return topology_sane(c, o, "smt");
450 	}
451 
452 	return false;
453 }
454 
455 /*
456  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
457  *
458  * These are Intel CPUs that enumerate an LLC that is shared by
459  * multiple NUMA nodes. The LLC on these systems is shared for
460  * off-package data access but private to the NUMA node (half
461  * of the package) for on-package access.
462  *
463  * CPUID (the source of the information about the LLC) can only
464  * enumerate the cache as being shared *or* unshared, but not
465  * this particular configuration. The CPU in this case enumerates
466  * the cache to be shared across the entire package (spanning both
467  * NUMA nodes).
468  */
469 
470 static const struct x86_cpu_id snc_cpu[] = {
471 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
472 	{}
473 };
474 
475 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
476 {
477 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478 
479 	/* Do not match if we do not have a valid APICID for cpu: */
480 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
481 		return false;
482 
483 	/* Do not match if LLC id does not match: */
484 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
485 		return false;
486 
487 	/*
488 	 * Allow the SNC topology without warning. Return of false
489 	 * means 'c' does not share the LLC of 'o'. This will be
490 	 * reflected to userspace.
491 	 */
492 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
493 		return false;
494 
495 	return topology_sane(c, o, "llc");
496 }
497 
498 /*
499  * Unlike the other levels, we do not enforce keeping a
500  * multicore group inside a NUMA node.  If this happens, we will
501  * discard the MC level of the topology later.
502  */
503 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
504 {
505 	if (c->phys_proc_id == o->phys_proc_id)
506 		return true;
507 	return false;
508 }
509 
510 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
511 {
512 	if ((c->phys_proc_id == o->phys_proc_id) &&
513 		(c->cpu_die_id == o->cpu_die_id))
514 		return true;
515 	return false;
516 }
517 
518 
519 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
520 static inline int x86_sched_itmt_flags(void)
521 {
522 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
523 }
524 
525 #ifdef CONFIG_SCHED_MC
526 static int x86_core_flags(void)
527 {
528 	return cpu_core_flags() | x86_sched_itmt_flags();
529 }
530 #endif
531 #ifdef CONFIG_SCHED_SMT
532 static int x86_smt_flags(void)
533 {
534 	return cpu_smt_flags() | x86_sched_itmt_flags();
535 }
536 #endif
537 #endif
538 
539 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
540 #ifdef CONFIG_SCHED_SMT
541 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
542 #endif
543 #ifdef CONFIG_SCHED_MC
544 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
545 #endif
546 	{ NULL, },
547 };
548 
549 static struct sched_domain_topology_level x86_topology[] = {
550 #ifdef CONFIG_SCHED_SMT
551 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552 #endif
553 #ifdef CONFIG_SCHED_MC
554 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555 #endif
556 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
557 	{ NULL, },
558 };
559 
560 /*
561  * Set if a package/die has multiple NUMA nodes inside.
562  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
563  * Sub-NUMA Clustering have this.
564  */
565 static bool x86_has_numa_in_package;
566 
567 void set_cpu_sibling_map(int cpu)
568 {
569 	bool has_smt = smp_num_siblings > 1;
570 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
571 	struct cpuinfo_x86 *c = &cpu_data(cpu);
572 	struct cpuinfo_x86 *o;
573 	int i, threads;
574 
575 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
576 
577 	if (!has_mp) {
578 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
579 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
580 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
581 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
582 		c->booted_cores = 1;
583 		return;
584 	}
585 
586 	for_each_cpu(i, cpu_sibling_setup_mask) {
587 		o = &cpu_data(i);
588 
589 		if ((i == cpu) || (has_smt && match_smt(c, o)))
590 			link_mask(topology_sibling_cpumask, cpu, i);
591 
592 		if ((i == cpu) || (has_mp && match_llc(c, o)))
593 			link_mask(cpu_llc_shared_mask, cpu, i);
594 
595 	}
596 
597 	/*
598 	 * This needs a separate iteration over the cpus because we rely on all
599 	 * topology_sibling_cpumask links to be set-up.
600 	 */
601 	for_each_cpu(i, cpu_sibling_setup_mask) {
602 		o = &cpu_data(i);
603 
604 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
605 			link_mask(topology_core_cpumask, cpu, i);
606 
607 			/*
608 			 *  Does this new cpu bringup a new core?
609 			 */
610 			if (cpumask_weight(
611 			    topology_sibling_cpumask(cpu)) == 1) {
612 				/*
613 				 * for each core in package, increment
614 				 * the booted_cores for this new cpu
615 				 */
616 				if (cpumask_first(
617 				    topology_sibling_cpumask(i)) == i)
618 					c->booted_cores++;
619 				/*
620 				 * increment the core count for all
621 				 * the other cpus in this package
622 				 */
623 				if (i != cpu)
624 					cpu_data(i).booted_cores++;
625 			} else if (i != cpu && !c->booted_cores)
626 				c->booted_cores = cpu_data(i).booted_cores;
627 		}
628 		if (match_pkg(c, o) && !topology_same_node(c, o))
629 			x86_has_numa_in_package = true;
630 
631 		if ((i == cpu) || (has_mp && match_die(c, o)))
632 			link_mask(topology_die_cpumask, cpu, i);
633 	}
634 
635 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
636 	if (threads > __max_smt_threads)
637 		__max_smt_threads = threads;
638 }
639 
640 /* maps the cpu to the sched domain representing multi-core */
641 const struct cpumask *cpu_coregroup_mask(int cpu)
642 {
643 	return cpu_llc_shared_mask(cpu);
644 }
645 
646 static void impress_friends(void)
647 {
648 	int cpu;
649 	unsigned long bogosum = 0;
650 	/*
651 	 * Allow the user to impress friends.
652 	 */
653 	pr_debug("Before bogomips\n");
654 	for_each_possible_cpu(cpu)
655 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
656 			bogosum += cpu_data(cpu).loops_per_jiffy;
657 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
658 		num_online_cpus(),
659 		bogosum/(500000/HZ),
660 		(bogosum/(5000/HZ))%100);
661 
662 	pr_debug("Before bogocount - setting activated=1\n");
663 }
664 
665 void __inquire_remote_apic(int apicid)
666 {
667 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
668 	const char * const names[] = { "ID", "VERSION", "SPIV" };
669 	int timeout;
670 	u32 status;
671 
672 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
673 
674 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
675 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
676 
677 		/*
678 		 * Wait for idle.
679 		 */
680 		status = safe_apic_wait_icr_idle();
681 		if (status)
682 			pr_cont("a previous APIC delivery may have failed\n");
683 
684 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
685 
686 		timeout = 0;
687 		do {
688 			udelay(100);
689 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
690 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
691 
692 		switch (status) {
693 		case APIC_ICR_RR_VALID:
694 			status = apic_read(APIC_RRR);
695 			pr_cont("%08x\n", status);
696 			break;
697 		default:
698 			pr_cont("failed\n");
699 		}
700 	}
701 }
702 
703 /*
704  * The Multiprocessor Specification 1.4 (1997) example code suggests
705  * that there should be a 10ms delay between the BSP asserting INIT
706  * and de-asserting INIT, when starting a remote processor.
707  * But that slows boot and resume on modern processors, which include
708  * many cores and don't require that delay.
709  *
710  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
711  * Modern processor families are quirked to remove the delay entirely.
712  */
713 #define UDELAY_10MS_DEFAULT 10000
714 
715 static unsigned int init_udelay = UINT_MAX;
716 
717 static int __init cpu_init_udelay(char *str)
718 {
719 	get_option(&str, &init_udelay);
720 
721 	return 0;
722 }
723 early_param("cpu_init_udelay", cpu_init_udelay);
724 
725 static void __init smp_quirk_init_udelay(void)
726 {
727 	/* if cmdline changed it from default, leave it alone */
728 	if (init_udelay != UINT_MAX)
729 		return;
730 
731 	/* if modern processor, use no delay */
732 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
733 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
734 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
735 		init_udelay = 0;
736 		return;
737 	}
738 	/* else, use legacy delay */
739 	init_udelay = UDELAY_10MS_DEFAULT;
740 }
741 
742 /*
743  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
744  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
745  * won't ... remember to clear down the APIC, etc later.
746  */
747 int
748 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
749 {
750 	u32 dm = apic->irq_dest_mode ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
751 	unsigned long send_status, accept_status = 0;
752 	int maxlvt;
753 
754 	/* Target chip */
755 	/* Boot on the stack */
756 	/* Kick the second */
757 	apic_icr_write(APIC_DM_NMI | dm, apicid);
758 
759 	pr_debug("Waiting for send to finish...\n");
760 	send_status = safe_apic_wait_icr_idle();
761 
762 	/*
763 	 * Give the other CPU some time to accept the IPI.
764 	 */
765 	udelay(200);
766 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
767 		maxlvt = lapic_get_maxlvt();
768 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
769 			apic_write(APIC_ESR, 0);
770 		accept_status = (apic_read(APIC_ESR) & 0xEF);
771 	}
772 	pr_debug("NMI sent\n");
773 
774 	if (send_status)
775 		pr_err("APIC never delivered???\n");
776 	if (accept_status)
777 		pr_err("APIC delivery error (%lx)\n", accept_status);
778 
779 	return (send_status | accept_status);
780 }
781 
782 static int
783 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
784 {
785 	unsigned long send_status = 0, accept_status = 0;
786 	int maxlvt, num_starts, j;
787 
788 	maxlvt = lapic_get_maxlvt();
789 
790 	/*
791 	 * Be paranoid about clearing APIC errors.
792 	 */
793 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
794 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
795 			apic_write(APIC_ESR, 0);
796 		apic_read(APIC_ESR);
797 	}
798 
799 	pr_debug("Asserting INIT\n");
800 
801 	/*
802 	 * Turn INIT on target chip
803 	 */
804 	/*
805 	 * Send IPI
806 	 */
807 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
808 		       phys_apicid);
809 
810 	pr_debug("Waiting for send to finish...\n");
811 	send_status = safe_apic_wait_icr_idle();
812 
813 	udelay(init_udelay);
814 
815 	pr_debug("Deasserting INIT\n");
816 
817 	/* Target chip */
818 	/* Send IPI */
819 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
820 
821 	pr_debug("Waiting for send to finish...\n");
822 	send_status = safe_apic_wait_icr_idle();
823 
824 	mb();
825 
826 	/*
827 	 * Should we send STARTUP IPIs ?
828 	 *
829 	 * Determine this based on the APIC version.
830 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
831 	 */
832 	if (APIC_INTEGRATED(boot_cpu_apic_version))
833 		num_starts = 2;
834 	else
835 		num_starts = 0;
836 
837 	/*
838 	 * Run STARTUP IPI loop.
839 	 */
840 	pr_debug("#startup loops: %d\n", num_starts);
841 
842 	for (j = 1; j <= num_starts; j++) {
843 		pr_debug("Sending STARTUP #%d\n", j);
844 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
845 			apic_write(APIC_ESR, 0);
846 		apic_read(APIC_ESR);
847 		pr_debug("After apic_write\n");
848 
849 		/*
850 		 * STARTUP IPI
851 		 */
852 
853 		/* Target chip */
854 		/* Boot on the stack */
855 		/* Kick the second */
856 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
857 			       phys_apicid);
858 
859 		/*
860 		 * Give the other CPU some time to accept the IPI.
861 		 */
862 		if (init_udelay == 0)
863 			udelay(10);
864 		else
865 			udelay(300);
866 
867 		pr_debug("Startup point 1\n");
868 
869 		pr_debug("Waiting for send to finish...\n");
870 		send_status = safe_apic_wait_icr_idle();
871 
872 		/*
873 		 * Give the other CPU some time to accept the IPI.
874 		 */
875 		if (init_udelay == 0)
876 			udelay(10);
877 		else
878 			udelay(200);
879 
880 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
881 			apic_write(APIC_ESR, 0);
882 		accept_status = (apic_read(APIC_ESR) & 0xEF);
883 		if (send_status || accept_status)
884 			break;
885 	}
886 	pr_debug("After Startup\n");
887 
888 	if (send_status)
889 		pr_err("APIC never delivered???\n");
890 	if (accept_status)
891 		pr_err("APIC delivery error (%lx)\n", accept_status);
892 
893 	return (send_status | accept_status);
894 }
895 
896 /* reduce the number of lines printed when booting a large cpu count system */
897 static void announce_cpu(int cpu, int apicid)
898 {
899 	static int current_node = NUMA_NO_NODE;
900 	int node = early_cpu_to_node(cpu);
901 	static int width, node_width;
902 
903 	if (!width)
904 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
905 
906 	if (!node_width)
907 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
908 
909 	if (cpu == 1)
910 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
911 
912 	if (system_state < SYSTEM_RUNNING) {
913 		if (node != current_node) {
914 			if (current_node > (-1))
915 				pr_cont("\n");
916 			current_node = node;
917 
918 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
919 			       node_width - num_digits(node), " ", node);
920 		}
921 
922 		/* Add padding for the BSP */
923 		if (cpu == 1)
924 			pr_cont("%*s", width + 1, " ");
925 
926 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
927 
928 	} else
929 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
930 			node, cpu, apicid);
931 }
932 
933 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
934 {
935 	int cpu;
936 
937 	cpu = smp_processor_id();
938 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
939 		return NMI_HANDLED;
940 
941 	return NMI_DONE;
942 }
943 
944 /*
945  * Wake up AP by INIT, INIT, STARTUP sequence.
946  *
947  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
948  * boot-strap code which is not a desired behavior for waking up BSP. To
949  * void the boot-strap code, wake up CPU0 by NMI instead.
950  *
951  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
952  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
953  * We'll change this code in the future to wake up hard offlined CPU0 if
954  * real platform and request are available.
955  */
956 static int
957 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
958 	       int *cpu0_nmi_registered)
959 {
960 	int id;
961 	int boot_error;
962 
963 	preempt_disable();
964 
965 	/*
966 	 * Wake up AP by INIT, INIT, STARTUP sequence.
967 	 */
968 	if (cpu) {
969 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
970 		goto out;
971 	}
972 
973 	/*
974 	 * Wake up BSP by nmi.
975 	 *
976 	 * Register a NMI handler to help wake up CPU0.
977 	 */
978 	boot_error = register_nmi_handler(NMI_LOCAL,
979 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
980 
981 	if (!boot_error) {
982 		enable_start_cpu0 = 1;
983 		*cpu0_nmi_registered = 1;
984 		if (apic->irq_dest_mode)
985 			id = cpu0_logical_apicid;
986 		else
987 			id = apicid;
988 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
989 	}
990 
991 out:
992 	preempt_enable();
993 
994 	return boot_error;
995 }
996 
997 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
998 {
999 	int ret;
1000 
1001 	/* Just in case we booted with a single CPU. */
1002 	alternatives_enable_smp();
1003 
1004 	per_cpu(current_task, cpu) = idle;
1005 	cpu_init_stack_canary(cpu, idle);
1006 
1007 	/* Initialize the interrupt stack(s) */
1008 	ret = irq_init_percpu_irqstack(cpu);
1009 	if (ret)
1010 		return ret;
1011 
1012 #ifdef CONFIG_X86_32
1013 	/* Stack for startup_32 can be just as for start_secondary onwards */
1014 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1015 #else
1016 	initial_gs = per_cpu_offset(cpu);
1017 #endif
1018 	return 0;
1019 }
1020 
1021 /*
1022  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1023  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1024  * Returns zero if CPU booted OK, else error code from
1025  * ->wakeup_secondary_cpu.
1026  */
1027 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1028 		       int *cpu0_nmi_registered)
1029 {
1030 	/* start_ip had better be page-aligned! */
1031 	unsigned long start_ip = real_mode_header->trampoline_start;
1032 
1033 	unsigned long boot_error = 0;
1034 	unsigned long timeout;
1035 
1036 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1037 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1038 	initial_code = (unsigned long)start_secondary;
1039 	initial_stack  = idle->thread.sp;
1040 
1041 	/* Enable the espfix hack for this CPU */
1042 	init_espfix_ap(cpu);
1043 
1044 	/* So we see what's up */
1045 	announce_cpu(cpu, apicid);
1046 
1047 	/*
1048 	 * This grunge runs the startup process for
1049 	 * the targeted processor.
1050 	 */
1051 
1052 	if (x86_platform.legacy.warm_reset) {
1053 
1054 		pr_debug("Setting warm reset code and vector.\n");
1055 
1056 		smpboot_setup_warm_reset_vector(start_ip);
1057 		/*
1058 		 * Be paranoid about clearing APIC errors.
1059 		*/
1060 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1061 			apic_write(APIC_ESR, 0);
1062 			apic_read(APIC_ESR);
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * AP might wait on cpu_callout_mask in cpu_init() with
1068 	 * cpu_initialized_mask set if previous attempt to online
1069 	 * it timed-out. Clear cpu_initialized_mask so that after
1070 	 * INIT/SIPI it could start with a clean state.
1071 	 */
1072 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1073 	smp_mb();
1074 
1075 	/*
1076 	 * Wake up a CPU in difference cases:
1077 	 * - Use the method in the APIC driver if it's defined
1078 	 * Otherwise,
1079 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1080 	 */
1081 	if (apic->wakeup_secondary_cpu)
1082 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1083 	else
1084 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1085 						     cpu0_nmi_registered);
1086 
1087 	if (!boot_error) {
1088 		/*
1089 		 * Wait 10s total for first sign of life from AP
1090 		 */
1091 		boot_error = -1;
1092 		timeout = jiffies + 10*HZ;
1093 		while (time_before(jiffies, timeout)) {
1094 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1095 				/*
1096 				 * Tell AP to proceed with initialization
1097 				 */
1098 				cpumask_set_cpu(cpu, cpu_callout_mask);
1099 				boot_error = 0;
1100 				break;
1101 			}
1102 			schedule();
1103 		}
1104 	}
1105 
1106 	if (!boot_error) {
1107 		/*
1108 		 * Wait till AP completes initial initialization
1109 		 */
1110 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1111 			/*
1112 			 * Allow other tasks to run while we wait for the
1113 			 * AP to come online. This also gives a chance
1114 			 * for the MTRR work(triggered by the AP coming online)
1115 			 * to be completed in the stop machine context.
1116 			 */
1117 			schedule();
1118 		}
1119 	}
1120 
1121 	if (x86_platform.legacy.warm_reset) {
1122 		/*
1123 		 * Cleanup possible dangling ends...
1124 		 */
1125 		smpboot_restore_warm_reset_vector();
1126 	}
1127 
1128 	return boot_error;
1129 }
1130 
1131 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1132 {
1133 	int apicid = apic->cpu_present_to_apicid(cpu);
1134 	int cpu0_nmi_registered = 0;
1135 	unsigned long flags;
1136 	int err, ret = 0;
1137 
1138 	lockdep_assert_irqs_enabled();
1139 
1140 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1141 
1142 	if (apicid == BAD_APICID ||
1143 	    !physid_isset(apicid, phys_cpu_present_map) ||
1144 	    !apic->apic_id_valid(apicid)) {
1145 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1146 		return -EINVAL;
1147 	}
1148 
1149 	/*
1150 	 * Already booted CPU?
1151 	 */
1152 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1153 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1154 		return -ENOSYS;
1155 	}
1156 
1157 	/*
1158 	 * Save current MTRR state in case it was changed since early boot
1159 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1160 	 */
1161 	mtrr_save_state();
1162 
1163 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1164 	err = cpu_check_up_prepare(cpu);
1165 	if (err && err != -EBUSY)
1166 		return err;
1167 
1168 	/* the FPU context is blank, nobody can own it */
1169 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1170 
1171 	err = common_cpu_up(cpu, tidle);
1172 	if (err)
1173 		return err;
1174 
1175 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1176 	if (err) {
1177 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1178 		ret = -EIO;
1179 		goto unreg_nmi;
1180 	}
1181 
1182 	/*
1183 	 * Check TSC synchronization with the AP (keep irqs disabled
1184 	 * while doing so):
1185 	 */
1186 	local_irq_save(flags);
1187 	check_tsc_sync_source(cpu);
1188 	local_irq_restore(flags);
1189 
1190 	while (!cpu_online(cpu)) {
1191 		cpu_relax();
1192 		touch_nmi_watchdog();
1193 	}
1194 
1195 unreg_nmi:
1196 	/*
1197 	 * Clean up the nmi handler. Do this after the callin and callout sync
1198 	 * to avoid impact of possible long unregister time.
1199 	 */
1200 	if (cpu0_nmi_registered)
1201 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1202 
1203 	return ret;
1204 }
1205 
1206 /**
1207  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1208  */
1209 void arch_disable_smp_support(void)
1210 {
1211 	disable_ioapic_support();
1212 }
1213 
1214 /*
1215  * Fall back to non SMP mode after errors.
1216  *
1217  * RED-PEN audit/test this more. I bet there is more state messed up here.
1218  */
1219 static __init void disable_smp(void)
1220 {
1221 	pr_info("SMP disabled\n");
1222 
1223 	disable_ioapic_support();
1224 
1225 	init_cpu_present(cpumask_of(0));
1226 	init_cpu_possible(cpumask_of(0));
1227 
1228 	if (smp_found_config)
1229 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1230 	else
1231 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1232 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1233 	cpumask_set_cpu(0, topology_core_cpumask(0));
1234 	cpumask_set_cpu(0, topology_die_cpumask(0));
1235 }
1236 
1237 /*
1238  * Various sanity checks.
1239  */
1240 static void __init smp_sanity_check(void)
1241 {
1242 	preempt_disable();
1243 
1244 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1245 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1246 		unsigned int cpu;
1247 		unsigned nr;
1248 
1249 		pr_warn("More than 8 CPUs detected - skipping them\n"
1250 			"Use CONFIG_X86_BIGSMP\n");
1251 
1252 		nr = 0;
1253 		for_each_present_cpu(cpu) {
1254 			if (nr >= 8)
1255 				set_cpu_present(cpu, false);
1256 			nr++;
1257 		}
1258 
1259 		nr = 0;
1260 		for_each_possible_cpu(cpu) {
1261 			if (nr >= 8)
1262 				set_cpu_possible(cpu, false);
1263 			nr++;
1264 		}
1265 
1266 		nr_cpu_ids = 8;
1267 	}
1268 #endif
1269 
1270 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1271 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1272 			hard_smp_processor_id());
1273 
1274 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1275 	}
1276 
1277 	/*
1278 	 * Should not be necessary because the MP table should list the boot
1279 	 * CPU too, but we do it for the sake of robustness anyway.
1280 	 */
1281 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1282 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1283 			  boot_cpu_physical_apicid);
1284 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1285 	}
1286 	preempt_enable();
1287 }
1288 
1289 static void __init smp_cpu_index_default(void)
1290 {
1291 	int i;
1292 	struct cpuinfo_x86 *c;
1293 
1294 	for_each_possible_cpu(i) {
1295 		c = &cpu_data(i);
1296 		/* mark all to hotplug */
1297 		c->cpu_index = nr_cpu_ids;
1298 	}
1299 }
1300 
1301 static void __init smp_get_logical_apicid(void)
1302 {
1303 	if (x2apic_mode)
1304 		cpu0_logical_apicid = apic_read(APIC_LDR);
1305 	else
1306 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1307 }
1308 
1309 /*
1310  * Prepare for SMP bootup.
1311  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1312  *            for common interface support.
1313  */
1314 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1315 {
1316 	unsigned int i;
1317 
1318 	smp_cpu_index_default();
1319 
1320 	/*
1321 	 * Setup boot CPU information
1322 	 */
1323 	smp_store_boot_cpu_info(); /* Final full version of the data */
1324 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1325 	mb();
1326 
1327 	for_each_possible_cpu(i) {
1328 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1329 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1330 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1331 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1332 	}
1333 
1334 	/*
1335 	 * Set 'default' x86 topology, this matches default_topology() in that
1336 	 * it has NUMA nodes as a topology level. See also
1337 	 * native_smp_cpus_done().
1338 	 *
1339 	 * Must be done before set_cpus_sibling_map() is ran.
1340 	 */
1341 	set_sched_topology(x86_topology);
1342 
1343 	set_cpu_sibling_map(0);
1344 	init_freq_invariance(false);
1345 	smp_sanity_check();
1346 
1347 	switch (apic_intr_mode) {
1348 	case APIC_PIC:
1349 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1350 		disable_smp();
1351 		return;
1352 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1353 		disable_smp();
1354 		/* Setup local timer */
1355 		x86_init.timers.setup_percpu_clockev();
1356 		return;
1357 	case APIC_VIRTUAL_WIRE:
1358 	case APIC_SYMMETRIC_IO:
1359 		break;
1360 	}
1361 
1362 	/* Setup local timer */
1363 	x86_init.timers.setup_percpu_clockev();
1364 
1365 	smp_get_logical_apicid();
1366 
1367 	pr_info("CPU0: ");
1368 	print_cpu_info(&cpu_data(0));
1369 
1370 	uv_system_init();
1371 
1372 	set_mtrr_aps_delayed_init();
1373 
1374 	smp_quirk_init_udelay();
1375 
1376 	speculative_store_bypass_ht_init();
1377 }
1378 
1379 void arch_thaw_secondary_cpus_begin(void)
1380 {
1381 	set_mtrr_aps_delayed_init();
1382 }
1383 
1384 void arch_thaw_secondary_cpus_end(void)
1385 {
1386 	mtrr_aps_init();
1387 }
1388 
1389 /*
1390  * Early setup to make printk work.
1391  */
1392 void __init native_smp_prepare_boot_cpu(void)
1393 {
1394 	int me = smp_processor_id();
1395 	switch_to_new_gdt(me);
1396 	/* already set me in cpu_online_mask in boot_cpu_init() */
1397 	cpumask_set_cpu(me, cpu_callout_mask);
1398 	cpu_set_state_online(me);
1399 	native_pv_lock_init();
1400 }
1401 
1402 void __init calculate_max_logical_packages(void)
1403 {
1404 	int ncpus;
1405 
1406 	/*
1407 	 * Today neither Intel nor AMD support heterogenous systems so
1408 	 * extrapolate the boot cpu's data to all packages.
1409 	 */
1410 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1411 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1412 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1413 }
1414 
1415 void __init native_smp_cpus_done(unsigned int max_cpus)
1416 {
1417 	pr_debug("Boot done\n");
1418 
1419 	calculate_max_logical_packages();
1420 
1421 	if (x86_has_numa_in_package)
1422 		set_sched_topology(x86_numa_in_package_topology);
1423 
1424 	nmi_selftest();
1425 	impress_friends();
1426 	mtrr_aps_init();
1427 }
1428 
1429 static int __initdata setup_possible_cpus = -1;
1430 static int __init _setup_possible_cpus(char *str)
1431 {
1432 	get_option(&str, &setup_possible_cpus);
1433 	return 0;
1434 }
1435 early_param("possible_cpus", _setup_possible_cpus);
1436 
1437 
1438 /*
1439  * cpu_possible_mask should be static, it cannot change as cpu's
1440  * are onlined, or offlined. The reason is per-cpu data-structures
1441  * are allocated by some modules at init time, and don't expect to
1442  * do this dynamically on cpu arrival/departure.
1443  * cpu_present_mask on the other hand can change dynamically.
1444  * In case when cpu_hotplug is not compiled, then we resort to current
1445  * behaviour, which is cpu_possible == cpu_present.
1446  * - Ashok Raj
1447  *
1448  * Three ways to find out the number of additional hotplug CPUs:
1449  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1450  * - The user can overwrite it with possible_cpus=NUM
1451  * - Otherwise don't reserve additional CPUs.
1452  * We do this because additional CPUs waste a lot of memory.
1453  * -AK
1454  */
1455 __init void prefill_possible_map(void)
1456 {
1457 	int i, possible;
1458 
1459 	/* No boot processor was found in mptable or ACPI MADT */
1460 	if (!num_processors) {
1461 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1462 			int apicid = boot_cpu_physical_apicid;
1463 			int cpu = hard_smp_processor_id();
1464 
1465 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1466 
1467 			/* Make sure boot cpu is enumerated */
1468 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1469 			    apic->apic_id_valid(apicid))
1470 				generic_processor_info(apicid, boot_cpu_apic_version);
1471 		}
1472 
1473 		if (!num_processors)
1474 			num_processors = 1;
1475 	}
1476 
1477 	i = setup_max_cpus ?: 1;
1478 	if (setup_possible_cpus == -1) {
1479 		possible = num_processors;
1480 #ifdef CONFIG_HOTPLUG_CPU
1481 		if (setup_max_cpus)
1482 			possible += disabled_cpus;
1483 #else
1484 		if (possible > i)
1485 			possible = i;
1486 #endif
1487 	} else
1488 		possible = setup_possible_cpus;
1489 
1490 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1491 
1492 	/* nr_cpu_ids could be reduced via nr_cpus= */
1493 	if (possible > nr_cpu_ids) {
1494 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1495 			possible, nr_cpu_ids);
1496 		possible = nr_cpu_ids;
1497 	}
1498 
1499 #ifdef CONFIG_HOTPLUG_CPU
1500 	if (!setup_max_cpus)
1501 #endif
1502 	if (possible > i) {
1503 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1504 			possible, setup_max_cpus);
1505 		possible = i;
1506 	}
1507 
1508 	nr_cpu_ids = possible;
1509 
1510 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1511 		possible, max_t(int, possible - num_processors, 0));
1512 
1513 	reset_cpu_possible_mask();
1514 
1515 	for (i = 0; i < possible; i++)
1516 		set_cpu_possible(i, true);
1517 }
1518 
1519 #ifdef CONFIG_HOTPLUG_CPU
1520 
1521 /* Recompute SMT state for all CPUs on offline */
1522 static void recompute_smt_state(void)
1523 {
1524 	int max_threads, cpu;
1525 
1526 	max_threads = 0;
1527 	for_each_online_cpu (cpu) {
1528 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1529 
1530 		if (threads > max_threads)
1531 			max_threads = threads;
1532 	}
1533 	__max_smt_threads = max_threads;
1534 }
1535 
1536 static void remove_siblinginfo(int cpu)
1537 {
1538 	int sibling;
1539 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1540 
1541 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1542 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1543 		/*/
1544 		 * last thread sibling in this cpu core going down
1545 		 */
1546 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1547 			cpu_data(sibling).booted_cores--;
1548 	}
1549 
1550 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1551 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1552 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1553 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1554 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1555 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1556 	cpumask_clear(cpu_llc_shared_mask(cpu));
1557 	cpumask_clear(topology_sibling_cpumask(cpu));
1558 	cpumask_clear(topology_core_cpumask(cpu));
1559 	cpumask_clear(topology_die_cpumask(cpu));
1560 	c->cpu_core_id = 0;
1561 	c->booted_cores = 0;
1562 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1563 	recompute_smt_state();
1564 }
1565 
1566 static void remove_cpu_from_maps(int cpu)
1567 {
1568 	set_cpu_online(cpu, false);
1569 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1570 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1571 	/* was set by cpu_init() */
1572 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1573 	numa_remove_cpu(cpu);
1574 }
1575 
1576 void cpu_disable_common(void)
1577 {
1578 	int cpu = smp_processor_id();
1579 
1580 	remove_siblinginfo(cpu);
1581 
1582 	/* It's now safe to remove this processor from the online map */
1583 	lock_vector_lock();
1584 	remove_cpu_from_maps(cpu);
1585 	unlock_vector_lock();
1586 	fixup_irqs();
1587 	lapic_offline();
1588 }
1589 
1590 int native_cpu_disable(void)
1591 {
1592 	int ret;
1593 
1594 	ret = lapic_can_unplug_cpu();
1595 	if (ret)
1596 		return ret;
1597 
1598 	cpu_disable_common();
1599 
1600         /*
1601          * Disable the local APIC. Otherwise IPI broadcasts will reach
1602          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1603          * messages.
1604          *
1605          * Disabling the APIC must happen after cpu_disable_common()
1606          * which invokes fixup_irqs().
1607          *
1608          * Disabling the APIC preserves already set bits in IRR, but
1609          * an interrupt arriving after disabling the local APIC does not
1610          * set the corresponding IRR bit.
1611          *
1612          * fixup_irqs() scans IRR for set bits so it can raise a not
1613          * yet handled interrupt on the new destination CPU via an IPI
1614          * but obviously it can't do so for IRR bits which are not set.
1615          * IOW, interrupts arriving after disabling the local APIC will
1616          * be lost.
1617          */
1618 	apic_soft_disable();
1619 
1620 	return 0;
1621 }
1622 
1623 int common_cpu_die(unsigned int cpu)
1624 {
1625 	int ret = 0;
1626 
1627 	/* We don't do anything here: idle task is faking death itself. */
1628 
1629 	/* They ack this in play_dead() by setting CPU_DEAD */
1630 	if (cpu_wait_death(cpu, 5)) {
1631 		if (system_state == SYSTEM_RUNNING)
1632 			pr_info("CPU %u is now offline\n", cpu);
1633 	} else {
1634 		pr_err("CPU %u didn't die...\n", cpu);
1635 		ret = -1;
1636 	}
1637 
1638 	return ret;
1639 }
1640 
1641 void native_cpu_die(unsigned int cpu)
1642 {
1643 	common_cpu_die(cpu);
1644 }
1645 
1646 void play_dead_common(void)
1647 {
1648 	idle_task_exit();
1649 
1650 	/* Ack it */
1651 	(void)cpu_report_death();
1652 
1653 	/*
1654 	 * With physical CPU hotplug, we should halt the cpu
1655 	 */
1656 	local_irq_disable();
1657 }
1658 
1659 static bool wakeup_cpu0(void)
1660 {
1661 	if (smp_processor_id() == 0 && enable_start_cpu0)
1662 		return true;
1663 
1664 	return false;
1665 }
1666 
1667 /*
1668  * We need to flush the caches before going to sleep, lest we have
1669  * dirty data in our caches when we come back up.
1670  */
1671 static inline void mwait_play_dead(void)
1672 {
1673 	unsigned int eax, ebx, ecx, edx;
1674 	unsigned int highest_cstate = 0;
1675 	unsigned int highest_subcstate = 0;
1676 	void *mwait_ptr;
1677 	int i;
1678 
1679 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1680 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1681 		return;
1682 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1683 		return;
1684 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1685 		return;
1686 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1687 		return;
1688 
1689 	eax = CPUID_MWAIT_LEAF;
1690 	ecx = 0;
1691 	native_cpuid(&eax, &ebx, &ecx, &edx);
1692 
1693 	/*
1694 	 * eax will be 0 if EDX enumeration is not valid.
1695 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1696 	 */
1697 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1698 		eax = 0;
1699 	} else {
1700 		edx >>= MWAIT_SUBSTATE_SIZE;
1701 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1702 			if (edx & MWAIT_SUBSTATE_MASK) {
1703 				highest_cstate = i;
1704 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1705 			}
1706 		}
1707 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1708 			(highest_subcstate - 1);
1709 	}
1710 
1711 	/*
1712 	 * This should be a memory location in a cache line which is
1713 	 * unlikely to be touched by other processors.  The actual
1714 	 * content is immaterial as it is not actually modified in any way.
1715 	 */
1716 	mwait_ptr = &current_thread_info()->flags;
1717 
1718 	wbinvd();
1719 
1720 	while (1) {
1721 		/*
1722 		 * The CLFLUSH is a workaround for erratum AAI65 for
1723 		 * the Xeon 7400 series.  It's not clear it is actually
1724 		 * needed, but it should be harmless in either case.
1725 		 * The WBINVD is insufficient due to the spurious-wakeup
1726 		 * case where we return around the loop.
1727 		 */
1728 		mb();
1729 		clflush(mwait_ptr);
1730 		mb();
1731 		__monitor(mwait_ptr, 0, 0);
1732 		mb();
1733 		__mwait(eax, 0);
1734 		/*
1735 		 * If NMI wants to wake up CPU0, start CPU0.
1736 		 */
1737 		if (wakeup_cpu0())
1738 			start_cpu0();
1739 	}
1740 }
1741 
1742 void hlt_play_dead(void)
1743 {
1744 	if (__this_cpu_read(cpu_info.x86) >= 4)
1745 		wbinvd();
1746 
1747 	while (1) {
1748 		native_halt();
1749 		/*
1750 		 * If NMI wants to wake up CPU0, start CPU0.
1751 		 */
1752 		if (wakeup_cpu0())
1753 			start_cpu0();
1754 	}
1755 }
1756 
1757 void native_play_dead(void)
1758 {
1759 	play_dead_common();
1760 	tboot_shutdown(TB_SHUTDOWN_WFS);
1761 
1762 	mwait_play_dead();	/* Only returns on failure */
1763 	if (cpuidle_play_dead())
1764 		hlt_play_dead();
1765 }
1766 
1767 #else /* ... !CONFIG_HOTPLUG_CPU */
1768 int native_cpu_disable(void)
1769 {
1770 	return -ENOSYS;
1771 }
1772 
1773 void native_cpu_die(unsigned int cpu)
1774 {
1775 	/* We said "no" in __cpu_disable */
1776 	BUG();
1777 }
1778 
1779 void native_play_dead(void)
1780 {
1781 	BUG();
1782 }
1783 
1784 #endif
1785 
1786 #ifdef CONFIG_X86_64
1787 /*
1788  * APERF/MPERF frequency ratio computation.
1789  *
1790  * The scheduler wants to do frequency invariant accounting and needs a <1
1791  * ratio to account for the 'current' frequency, corresponding to
1792  * freq_curr / freq_max.
1793  *
1794  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1795  * our P-state setting is little more than a request/hint, we need to observe
1796  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1797  * interval after discarding idle time. This is given by:
1798  *
1799  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1800  *
1801  * where freq_base is the max non-turbo P-state.
1802  *
1803  * The freq_max term has to be set to a somewhat arbitrary value, because we
1804  * can't know which turbo states will be available at a given point in time:
1805  * it all depends on the thermal headroom of the entire package. We set it to
1806  * the turbo level with 4 cores active.
1807  *
1808  * Benchmarks show that's a good compromise between the 1C turbo ratio
1809  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1810  * which would ignore the entire turbo range (a conspicuous part, making
1811  * freq_curr/freq_max always maxed out).
1812  *
1813  * An exception to the heuristic above is the Atom uarch, where we choose the
1814  * highest turbo level for freq_max since Atom's are generally oriented towards
1815  * power efficiency.
1816  *
1817  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1818  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1819  */
1820 
1821 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1822 
1823 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1824 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1825 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1826 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1827 
1828 void arch_set_max_freq_ratio(bool turbo_disabled)
1829 {
1830 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1831 					arch_turbo_freq_ratio;
1832 }
1833 
1834 static bool turbo_disabled(void)
1835 {
1836 	u64 misc_en;
1837 	int err;
1838 
1839 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1840 	if (err)
1841 		return false;
1842 
1843 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1844 }
1845 
1846 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1847 {
1848 	int err;
1849 
1850 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1851 	if (err)
1852 		return false;
1853 
1854 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1855 	if (err)
1856 		return false;
1857 
1858 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1859 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1860 
1861 	return true;
1862 }
1863 
1864 #include <asm/cpu_device_id.h>
1865 #include <asm/intel-family.h>
1866 
1867 #define X86_MATCH(model)					\
1868 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1869 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1870 
1871 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1872 	X86_MATCH(XEON_PHI_KNL),
1873 	X86_MATCH(XEON_PHI_KNM),
1874 	{}
1875 };
1876 
1877 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1878 	X86_MATCH(SKYLAKE_X),
1879 	{}
1880 };
1881 
1882 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1883 	X86_MATCH(ATOM_GOLDMONT),
1884 	X86_MATCH(ATOM_GOLDMONT_D),
1885 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1886 	{}
1887 };
1888 
1889 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1890 				int num_delta_fratio)
1891 {
1892 	int fratio, delta_fratio, found;
1893 	int err, i;
1894 	u64 msr;
1895 
1896 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1897 	if (err)
1898 		return false;
1899 
1900 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1901 
1902 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1903 	if (err)
1904 		return false;
1905 
1906 	fratio = (msr >> 8) & 0xFF;
1907 	i = 16;
1908 	found = 0;
1909 	do {
1910 		if (found >= num_delta_fratio) {
1911 			*turbo_freq = fratio;
1912 			return true;
1913 		}
1914 
1915 		delta_fratio = (msr >> (i + 5)) & 0x7;
1916 
1917 		if (delta_fratio) {
1918 			found += 1;
1919 			fratio -= delta_fratio;
1920 		}
1921 
1922 		i += 8;
1923 	} while (i < 64);
1924 
1925 	return true;
1926 }
1927 
1928 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1929 {
1930 	u64 ratios, counts;
1931 	u32 group_size;
1932 	int err, i;
1933 
1934 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1935 	if (err)
1936 		return false;
1937 
1938 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1939 
1940 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1941 	if (err)
1942 		return false;
1943 
1944 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1945 	if (err)
1946 		return false;
1947 
1948 	for (i = 0; i < 64; i += 8) {
1949 		group_size = (counts >> i) & 0xFF;
1950 		if (group_size >= size) {
1951 			*turbo_freq = (ratios >> i) & 0xFF;
1952 			return true;
1953 		}
1954 	}
1955 
1956 	return false;
1957 }
1958 
1959 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1960 {
1961 	u64 msr;
1962 	int err;
1963 
1964 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1965 	if (err)
1966 		return false;
1967 
1968 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1969 	if (err)
1970 		return false;
1971 
1972 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1973 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1974 
1975 	/* The CPU may have less than 4 cores */
1976 	if (!*turbo_freq)
1977 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1978 
1979 	return true;
1980 }
1981 
1982 static bool intel_set_max_freq_ratio(void)
1983 {
1984 	u64 base_freq, turbo_freq;
1985 	u64 turbo_ratio;
1986 
1987 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1988 		goto out;
1989 
1990 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1991 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1992 		goto out;
1993 
1994 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1995 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1996 		goto out;
1997 
1998 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1999 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2000 		goto out;
2001 
2002 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2003 		goto out;
2004 
2005 	return false;
2006 
2007 out:
2008 	/*
2009 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2010 	 * but then fill all MSR's with zeroes.
2011 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2012 	 * in MSR_TURBO_RATIO_LIMIT.
2013 	 */
2014 	if (!base_freq || !turbo_freq) {
2015 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2016 		return false;
2017 	}
2018 
2019 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2020 	if (!turbo_ratio) {
2021 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2022 		return false;
2023 	}
2024 
2025 	arch_turbo_freq_ratio = turbo_ratio;
2026 	arch_set_max_freq_ratio(turbo_disabled());
2027 
2028 	return true;
2029 }
2030 
2031 static void init_counter_refs(void)
2032 {
2033 	u64 aperf, mperf;
2034 
2035 	rdmsrl(MSR_IA32_APERF, aperf);
2036 	rdmsrl(MSR_IA32_MPERF, mperf);
2037 
2038 	this_cpu_write(arch_prev_aperf, aperf);
2039 	this_cpu_write(arch_prev_mperf, mperf);
2040 }
2041 
2042 static void init_freq_invariance(bool secondary)
2043 {
2044 	bool ret = false;
2045 
2046 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2047 		return;
2048 
2049 	if (secondary) {
2050 		if (static_branch_likely(&arch_scale_freq_key)) {
2051 			init_counter_refs();
2052 		}
2053 		return;
2054 	}
2055 
2056 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2057 		ret = intel_set_max_freq_ratio();
2058 
2059 	if (ret) {
2060 		init_counter_refs();
2061 		static_branch_enable(&arch_scale_freq_key);
2062 	} else {
2063 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2064 	}
2065 }
2066 
2067 static void disable_freq_invariance_workfn(struct work_struct *work)
2068 {
2069 	static_branch_disable(&arch_scale_freq_key);
2070 }
2071 
2072 static DECLARE_WORK(disable_freq_invariance_work,
2073 		    disable_freq_invariance_workfn);
2074 
2075 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2076 
2077 void arch_scale_freq_tick(void)
2078 {
2079 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2080 	u64 aperf, mperf;
2081 	u64 acnt, mcnt;
2082 
2083 	if (!arch_scale_freq_invariant())
2084 		return;
2085 
2086 	rdmsrl(MSR_IA32_APERF, aperf);
2087 	rdmsrl(MSR_IA32_MPERF, mperf);
2088 
2089 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2090 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2091 
2092 	this_cpu_write(arch_prev_aperf, aperf);
2093 	this_cpu_write(arch_prev_mperf, mperf);
2094 
2095 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2096 		goto error;
2097 
2098 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2099 		goto error;
2100 
2101 	freq_scale = div64_u64(acnt, mcnt);
2102 	if (!freq_scale)
2103 		goto error;
2104 
2105 	if (freq_scale > SCHED_CAPACITY_SCALE)
2106 		freq_scale = SCHED_CAPACITY_SCALE;
2107 
2108 	this_cpu_write(arch_freq_scale, freq_scale);
2109 	return;
2110 
2111 error:
2112 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2113 	schedule_work(&disable_freq_invariance_work);
2114 }
2115 #else
2116 static inline void init_freq_invariance(bool secondary)
2117 {
2118 }
2119 #endif /* CONFIG_X86_64 */
2120