xref: /openbmc/linux/arch/x86/kernel/process_32.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53 
54 #include <linux/err.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60 
61 static int hlt_counter;
62 
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
65 
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68 
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71 
72 /*
73  * Return saved PC of a blocked thread.
74  */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 	return ((unsigned long *)tsk->thread.esp)[3];
78 }
79 
80 /*
81  * Powermanagement idle function, if any..
82  */
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
85 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
86 
87 void disable_hlt(void)
88 {
89 	hlt_counter++;
90 }
91 
92 EXPORT_SYMBOL(disable_hlt);
93 
94 void enable_hlt(void)
95 {
96 	hlt_counter--;
97 }
98 
99 EXPORT_SYMBOL(enable_hlt);
100 
101 /*
102  * We use this if we don't have any better
103  * idle routine..
104  */
105 void default_idle(void)
106 {
107 	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
108 		current_thread_info()->status &= ~TS_POLLING;
109 		/*
110 		 * TS_POLLING-cleared state must be visible before we
111 		 * test NEED_RESCHED:
112 		 */
113 		smp_mb();
114 
115 		local_irq_disable();
116 		if (!need_resched())
117 			safe_halt();	/* enables interrupts racelessly */
118 		else
119 			local_irq_enable();
120 		current_thread_info()->status |= TS_POLLING;
121 	} else {
122 		/* loop is done by the caller */
123 		cpu_relax();
124 	}
125 }
126 #ifdef CONFIG_APM_MODULE
127 EXPORT_SYMBOL(default_idle);
128 #endif
129 
130 /*
131  * On SMP it's slightly faster (but much more power-consuming!)
132  * to poll the ->work.need_resched flag instead of waiting for the
133  * cross-CPU IPI to arrive. Use this option with caution.
134  */
135 static void poll_idle (void)
136 {
137 	cpu_relax();
138 }
139 
140 #ifdef CONFIG_HOTPLUG_CPU
141 #include <asm/nmi.h>
142 /* We don't actually take CPU down, just spin without interrupts. */
143 static inline void play_dead(void)
144 {
145 	/* This must be done before dead CPU ack */
146 	cpu_exit_clear();
147 	wbinvd();
148 	mb();
149 	/* Ack it */
150 	__get_cpu_var(cpu_state) = CPU_DEAD;
151 
152 	/*
153 	 * With physical CPU hotplug, we should halt the cpu
154 	 */
155 	local_irq_disable();
156 	while (1)
157 		halt();
158 }
159 #else
160 static inline void play_dead(void)
161 {
162 	BUG();
163 }
164 #endif /* CONFIG_HOTPLUG_CPU */
165 
166 /*
167  * The idle thread. There's no useful work to be
168  * done, so just try to conserve power and have a
169  * low exit latency (ie sit in a loop waiting for
170  * somebody to say that they'd like to reschedule)
171  */
172 void cpu_idle(void)
173 {
174 	int cpu = smp_processor_id();
175 
176 	current_thread_info()->status |= TS_POLLING;
177 
178 	/* endless idle loop with no priority at all */
179 	while (1) {
180 		tick_nohz_stop_sched_tick();
181 		while (!need_resched()) {
182 			void (*idle)(void);
183 
184 			if (__get_cpu_var(cpu_idle_state))
185 				__get_cpu_var(cpu_idle_state) = 0;
186 
187 			check_pgt_cache();
188 			rmb();
189 			idle = pm_idle;
190 
191 			if (!idle)
192 				idle = default_idle;
193 
194 			if (cpu_is_offline(cpu))
195 				play_dead();
196 
197 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
198 			idle();
199 		}
200 		tick_nohz_restart_sched_tick();
201 		preempt_enable_no_resched();
202 		schedule();
203 		preempt_disable();
204 	}
205 }
206 
207 void cpu_idle_wait(void)
208 {
209 	unsigned int cpu, this_cpu = get_cpu();
210 	cpumask_t map, tmp = current->cpus_allowed;
211 
212 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
213 	put_cpu();
214 
215 	cpus_clear(map);
216 	for_each_online_cpu(cpu) {
217 		per_cpu(cpu_idle_state, cpu) = 1;
218 		cpu_set(cpu, map);
219 	}
220 
221 	__get_cpu_var(cpu_idle_state) = 0;
222 
223 	wmb();
224 	do {
225 		ssleep(1);
226 		for_each_online_cpu(cpu) {
227 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
228 				cpu_clear(cpu, map);
229 		}
230 		cpus_and(map, map, cpu_online_map);
231 	} while (!cpus_empty(map));
232 
233 	set_cpus_allowed(current, tmp);
234 }
235 EXPORT_SYMBOL_GPL(cpu_idle_wait);
236 
237 /*
238  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
239  * which can obviate IPI to trigger checking of need_resched.
240  * We execute MONITOR against need_resched and enter optimized wait state
241  * through MWAIT. Whenever someone changes need_resched, we would be woken
242  * up from MWAIT (without an IPI).
243  *
244  * New with Core Duo processors, MWAIT can take some hints based on CPU
245  * capability.
246  */
247 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
248 {
249 	if (!need_resched()) {
250 		__monitor((void *)&current_thread_info()->flags, 0, 0);
251 		smp_mb();
252 		if (!need_resched())
253 			__mwait(eax, ecx);
254 	}
255 }
256 
257 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
258 static void mwait_idle(void)
259 {
260 	local_irq_enable();
261 	mwait_idle_with_hints(0, 0);
262 }
263 
264 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
265 {
266 	if (cpu_has(c, X86_FEATURE_MWAIT)) {
267 		printk("monitor/mwait feature present.\n");
268 		/*
269 		 * Skip, if setup has overridden idle.
270 		 * One CPU supports mwait => All CPUs supports mwait
271 		 */
272 		if (!pm_idle) {
273 			printk("using mwait in idle threads.\n");
274 			pm_idle = mwait_idle;
275 		}
276 	}
277 }
278 
279 static int __init idle_setup(char *str)
280 {
281 	if (!strcmp(str, "poll")) {
282 		printk("using polling idle threads.\n");
283 		pm_idle = poll_idle;
284 #ifdef CONFIG_X86_SMP
285 		if (smp_num_siblings > 1)
286 			printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
287 #endif
288 	} else if (!strcmp(str, "mwait"))
289 		force_mwait = 1;
290 	else
291 		return -1;
292 
293 	boot_option_idle_override = 1;
294 	return 0;
295 }
296 early_param("idle", idle_setup);
297 
298 void show_regs(struct pt_regs * regs)
299 {
300 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
301 	unsigned long d0, d1, d2, d3, d6, d7;
302 
303 	printk("\n");
304 	printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
305 	printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
306 	print_symbol("EIP is at %s\n", regs->eip);
307 
308 	if (user_mode_vm(regs))
309 		printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
310 	printk(" EFLAGS: %08lx    %s  (%s %.*s)\n",
311 	       regs->eflags, print_tainted(), init_utsname()->release,
312 	       (int)strcspn(init_utsname()->version, " "),
313 	       init_utsname()->version);
314 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
315 		regs->eax,regs->ebx,regs->ecx,regs->edx);
316 	printk("ESI: %08lx EDI: %08lx EBP: %08lx",
317 		regs->esi, regs->edi, regs->ebp);
318 	printk(" DS: %04x ES: %04x FS: %04x\n",
319 	       0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
320 
321 	cr0 = read_cr0();
322 	cr2 = read_cr2();
323 	cr3 = read_cr3();
324 	cr4 = read_cr4_safe();
325 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
326 
327 	get_debugreg(d0, 0);
328 	get_debugreg(d1, 1);
329 	get_debugreg(d2, 2);
330 	get_debugreg(d3, 3);
331 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
332 			d0, d1, d2, d3);
333 	get_debugreg(d6, 6);
334 	get_debugreg(d7, 7);
335 	printk("DR6: %08lx DR7: %08lx\n", d6, d7);
336 
337 	show_trace(NULL, regs, &regs->esp);
338 }
339 
340 /*
341  * This gets run with %ebx containing the
342  * function to call, and %edx containing
343  * the "args".
344  */
345 extern void kernel_thread_helper(void);
346 
347 /*
348  * Create a kernel thread
349  */
350 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
351 {
352 	struct pt_regs regs;
353 
354 	memset(&regs, 0, sizeof(regs));
355 
356 	regs.ebx = (unsigned long) fn;
357 	regs.edx = (unsigned long) arg;
358 
359 	regs.xds = __USER_DS;
360 	regs.xes = __USER_DS;
361 	regs.xfs = __KERNEL_PERCPU;
362 	regs.orig_eax = -1;
363 	regs.eip = (unsigned long) kernel_thread_helper;
364 	regs.xcs = __KERNEL_CS | get_kernel_rpl();
365 	regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
366 
367 	/* Ok, create the new process.. */
368 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
369 }
370 EXPORT_SYMBOL(kernel_thread);
371 
372 /*
373  * Free current thread data structures etc..
374  */
375 void exit_thread(void)
376 {
377 	/* The process may have allocated an io port bitmap... nuke it. */
378 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
379 		struct task_struct *tsk = current;
380 		struct thread_struct *t = &tsk->thread;
381 		int cpu = get_cpu();
382 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
383 
384 		kfree(t->io_bitmap_ptr);
385 		t->io_bitmap_ptr = NULL;
386 		clear_thread_flag(TIF_IO_BITMAP);
387 		/*
388 		 * Careful, clear this in the TSS too:
389 		 */
390 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
391 		t->io_bitmap_max = 0;
392 		tss->io_bitmap_owner = NULL;
393 		tss->io_bitmap_max = 0;
394 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
395 		put_cpu();
396 	}
397 }
398 
399 void flush_thread(void)
400 {
401 	struct task_struct *tsk = current;
402 
403 	memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
404 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
405 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
406 	/*
407 	 * Forget coprocessor state..
408 	 */
409 	clear_fpu(tsk);
410 	clear_used_math();
411 }
412 
413 void release_thread(struct task_struct *dead_task)
414 {
415 	BUG_ON(dead_task->mm);
416 	release_vm86_irqs(dead_task);
417 }
418 
419 /*
420  * This gets called before we allocate a new thread and copy
421  * the current task into it.
422  */
423 void prepare_to_copy(struct task_struct *tsk)
424 {
425 	unlazy_fpu(tsk);
426 }
427 
428 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
429 	unsigned long unused,
430 	struct task_struct * p, struct pt_regs * regs)
431 {
432 	struct pt_regs * childregs;
433 	struct task_struct *tsk;
434 	int err;
435 
436 	childregs = task_pt_regs(p);
437 	*childregs = *regs;
438 	childregs->eax = 0;
439 	childregs->esp = esp;
440 
441 	p->thread.esp = (unsigned long) childregs;
442 	p->thread.esp0 = (unsigned long) (childregs+1);
443 
444 	p->thread.eip = (unsigned long) ret_from_fork;
445 
446 	savesegment(gs,p->thread.gs);
447 
448 	tsk = current;
449 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
450 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
451 						IO_BITMAP_BYTES, GFP_KERNEL);
452 		if (!p->thread.io_bitmap_ptr) {
453 			p->thread.io_bitmap_max = 0;
454 			return -ENOMEM;
455 		}
456 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
457 	}
458 
459 	/*
460 	 * Set a new TLS for the child thread?
461 	 */
462 	if (clone_flags & CLONE_SETTLS) {
463 		struct desc_struct *desc;
464 		struct user_desc info;
465 		int idx;
466 
467 		err = -EFAULT;
468 		if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
469 			goto out;
470 		err = -EINVAL;
471 		if (LDT_empty(&info))
472 			goto out;
473 
474 		idx = info.entry_number;
475 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
476 			goto out;
477 
478 		desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
479 		desc->a = LDT_entry_a(&info);
480 		desc->b = LDT_entry_b(&info);
481 	}
482 
483 	err = 0;
484  out:
485 	if (err && p->thread.io_bitmap_ptr) {
486 		kfree(p->thread.io_bitmap_ptr);
487 		p->thread.io_bitmap_max = 0;
488 	}
489 	return err;
490 }
491 
492 /*
493  * fill in the user structure for a core dump..
494  */
495 void dump_thread(struct pt_regs * regs, struct user * dump)
496 {
497 	int i;
498 
499 /* changed the size calculations - should hopefully work better. lbt */
500 	dump->magic = CMAGIC;
501 	dump->start_code = 0;
502 	dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
503 	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
504 	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
505 	dump->u_dsize -= dump->u_tsize;
506 	dump->u_ssize = 0;
507 	for (i = 0; i < 8; i++)
508 		dump->u_debugreg[i] = current->thread.debugreg[i];
509 
510 	if (dump->start_stack < TASK_SIZE)
511 		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
512 
513 	dump->regs.ebx = regs->ebx;
514 	dump->regs.ecx = regs->ecx;
515 	dump->regs.edx = regs->edx;
516 	dump->regs.esi = regs->esi;
517 	dump->regs.edi = regs->edi;
518 	dump->regs.ebp = regs->ebp;
519 	dump->regs.eax = regs->eax;
520 	dump->regs.ds = regs->xds;
521 	dump->regs.es = regs->xes;
522 	dump->regs.fs = regs->xfs;
523 	savesegment(gs,dump->regs.gs);
524 	dump->regs.orig_eax = regs->orig_eax;
525 	dump->regs.eip = regs->eip;
526 	dump->regs.cs = regs->xcs;
527 	dump->regs.eflags = regs->eflags;
528 	dump->regs.esp = regs->esp;
529 	dump->regs.ss = regs->xss;
530 
531 	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
532 }
533 EXPORT_SYMBOL(dump_thread);
534 
535 /*
536  * Capture the user space registers if the task is not running (in user space)
537  */
538 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
539 {
540 	struct pt_regs ptregs = *task_pt_regs(tsk);
541 	ptregs.xcs &= 0xffff;
542 	ptregs.xds &= 0xffff;
543 	ptregs.xes &= 0xffff;
544 	ptregs.xss &= 0xffff;
545 
546 	elf_core_copy_regs(regs, &ptregs);
547 
548 	return 1;
549 }
550 
551 #ifdef CONFIG_SECCOMP
552 void hard_disable_TSC(void)
553 {
554 	write_cr4(read_cr4() | X86_CR4_TSD);
555 }
556 void disable_TSC(void)
557 {
558 	preempt_disable();
559 	if (!test_and_set_thread_flag(TIF_NOTSC))
560 		/*
561 		 * Must flip the CPU state synchronously with
562 		 * TIF_NOTSC in the current running context.
563 		 */
564 		hard_disable_TSC();
565 	preempt_enable();
566 }
567 void hard_enable_TSC(void)
568 {
569 	write_cr4(read_cr4() & ~X86_CR4_TSD);
570 }
571 #endif /* CONFIG_SECCOMP */
572 
573 static noinline void
574 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
575 		 struct tss_struct *tss)
576 {
577 	struct thread_struct *next;
578 
579 	next = &next_p->thread;
580 
581 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
582 		set_debugreg(next->debugreg[0], 0);
583 		set_debugreg(next->debugreg[1], 1);
584 		set_debugreg(next->debugreg[2], 2);
585 		set_debugreg(next->debugreg[3], 3);
586 		/* no 4 and 5 */
587 		set_debugreg(next->debugreg[6], 6);
588 		set_debugreg(next->debugreg[7], 7);
589 	}
590 
591 #ifdef CONFIG_SECCOMP
592 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
593 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
594 		/* prev and next are different */
595 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
596 			hard_disable_TSC();
597 		else
598 			hard_enable_TSC();
599 	}
600 #endif
601 
602 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
603 		/*
604 		 * Disable the bitmap via an invalid offset. We still cache
605 		 * the previous bitmap owner and the IO bitmap contents:
606 		 */
607 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
608 		return;
609 	}
610 
611 	if (likely(next == tss->io_bitmap_owner)) {
612 		/*
613 		 * Previous owner of the bitmap (hence the bitmap content)
614 		 * matches the next task, we dont have to do anything but
615 		 * to set a valid offset in the TSS:
616 		 */
617 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
618 		return;
619 	}
620 	/*
621 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
622 	 * and we let the task to get a GPF in case an I/O instruction
623 	 * is performed.  The handler of the GPF will verify that the
624 	 * faulting task has a valid I/O bitmap and, it true, does the
625 	 * real copy and restart the instruction.  This will save us
626 	 * redundant copies when the currently switched task does not
627 	 * perform any I/O during its timeslice.
628 	 */
629 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
630 }
631 
632 /*
633  *	switch_to(x,yn) should switch tasks from x to y.
634  *
635  * We fsave/fwait so that an exception goes off at the right time
636  * (as a call from the fsave or fwait in effect) rather than to
637  * the wrong process. Lazy FP saving no longer makes any sense
638  * with modern CPU's, and this simplifies a lot of things (SMP
639  * and UP become the same).
640  *
641  * NOTE! We used to use the x86 hardware context switching. The
642  * reason for not using it any more becomes apparent when you
643  * try to recover gracefully from saved state that is no longer
644  * valid (stale segment register values in particular). With the
645  * hardware task-switch, there is no way to fix up bad state in
646  * a reasonable manner.
647  *
648  * The fact that Intel documents the hardware task-switching to
649  * be slow is a fairly red herring - this code is not noticeably
650  * faster. However, there _is_ some room for improvement here,
651  * so the performance issues may eventually be a valid point.
652  * More important, however, is the fact that this allows us much
653  * more flexibility.
654  *
655  * The return value (in %eax) will be the "prev" task after
656  * the task-switch, and shows up in ret_from_fork in entry.S,
657  * for example.
658  */
659 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
660 {
661 	struct thread_struct *prev = &prev_p->thread,
662 				 *next = &next_p->thread;
663 	int cpu = smp_processor_id();
664 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
665 
666 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
667 
668 	__unlazy_fpu(prev_p);
669 
670 
671 	/* we're going to use this soon, after a few expensive things */
672 	if (next_p->fpu_counter > 5)
673 		prefetch(&next->i387.fxsave);
674 
675 	/*
676 	 * Reload esp0.
677 	 */
678 	load_esp0(tss, next);
679 
680 	/*
681 	 * Save away %gs. No need to save %fs, as it was saved on the
682 	 * stack on entry.  No need to save %es and %ds, as those are
683 	 * always kernel segments while inside the kernel.  Doing this
684 	 * before setting the new TLS descriptors avoids the situation
685 	 * where we temporarily have non-reloadable segments in %fs
686 	 * and %gs.  This could be an issue if the NMI handler ever
687 	 * used %fs or %gs (it does not today), or if the kernel is
688 	 * running inside of a hypervisor layer.
689 	 */
690 	savesegment(gs, prev->gs);
691 
692 	/*
693 	 * Load the per-thread Thread-Local Storage descriptor.
694 	 */
695 	load_TLS(next, cpu);
696 
697 	/*
698 	 * Restore IOPL if needed.  In normal use, the flags restore
699 	 * in the switch assembly will handle this.  But if the kernel
700 	 * is running virtualized at a non-zero CPL, the popf will
701 	 * not restore flags, so it must be done in a separate step.
702 	 */
703 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
704 		set_iopl_mask(next->iopl);
705 
706 	/*
707 	 * Now maybe handle debug registers and/or IO bitmaps
708 	 */
709 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
710 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
711 		__switch_to_xtra(prev_p, next_p, tss);
712 
713 	/*
714 	 * Leave lazy mode, flushing any hypercalls made here.
715 	 * This must be done before restoring TLS segments so
716 	 * the GDT and LDT are properly updated, and must be
717 	 * done before math_state_restore, so the TS bit is up
718 	 * to date.
719 	 */
720 	arch_leave_lazy_cpu_mode();
721 
722 	/* If the task has used fpu the last 5 timeslices, just do a full
723 	 * restore of the math state immediately to avoid the trap; the
724 	 * chances of needing FPU soon are obviously high now
725 	 */
726 	if (next_p->fpu_counter > 5)
727 		math_state_restore();
728 
729 	/*
730 	 * Restore %gs if needed (which is common)
731 	 */
732 	if (prev->gs | next->gs)
733 		loadsegment(gs, next->gs);
734 
735 	x86_write_percpu(current_task, next_p);
736 
737 	return prev_p;
738 }
739 
740 asmlinkage int sys_fork(struct pt_regs regs)
741 {
742 	return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
743 }
744 
745 asmlinkage int sys_clone(struct pt_regs regs)
746 {
747 	unsigned long clone_flags;
748 	unsigned long newsp;
749 	int __user *parent_tidptr, *child_tidptr;
750 
751 	clone_flags = regs.ebx;
752 	newsp = regs.ecx;
753 	parent_tidptr = (int __user *)regs.edx;
754 	child_tidptr = (int __user *)regs.edi;
755 	if (!newsp)
756 		newsp = regs.esp;
757 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
758 }
759 
760 /*
761  * This is trivial, and on the face of it looks like it
762  * could equally well be done in user mode.
763  *
764  * Not so, for quite unobvious reasons - register pressure.
765  * In user mode vfork() cannot have a stack frame, and if
766  * done by calling the "clone()" system call directly, you
767  * do not have enough call-clobbered registers to hold all
768  * the information you need.
769  */
770 asmlinkage int sys_vfork(struct pt_regs regs)
771 {
772 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
773 }
774 
775 /*
776  * sys_execve() executes a new program.
777  */
778 asmlinkage int sys_execve(struct pt_regs regs)
779 {
780 	int error;
781 	char * filename;
782 
783 	filename = getname((char __user *) regs.ebx);
784 	error = PTR_ERR(filename);
785 	if (IS_ERR(filename))
786 		goto out;
787 	error = do_execve(filename,
788 			(char __user * __user *) regs.ecx,
789 			(char __user * __user *) regs.edx,
790 			&regs);
791 	if (error == 0) {
792 		task_lock(current);
793 		current->ptrace &= ~PT_DTRACE;
794 		task_unlock(current);
795 		/* Make sure we don't return using sysenter.. */
796 		set_thread_flag(TIF_IRET);
797 	}
798 	putname(filename);
799 out:
800 	return error;
801 }
802 
803 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
804 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
805 
806 unsigned long get_wchan(struct task_struct *p)
807 {
808 	unsigned long ebp, esp, eip;
809 	unsigned long stack_page;
810 	int count = 0;
811 	if (!p || p == current || p->state == TASK_RUNNING)
812 		return 0;
813 	stack_page = (unsigned long)task_stack_page(p);
814 	esp = p->thread.esp;
815 	if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
816 		return 0;
817 	/* include/asm-i386/system.h:switch_to() pushes ebp last. */
818 	ebp = *(unsigned long *) esp;
819 	do {
820 		if (ebp < stack_page || ebp > top_ebp+stack_page)
821 			return 0;
822 		eip = *(unsigned long *) (ebp+4);
823 		if (!in_sched_functions(eip))
824 			return eip;
825 		ebp = *(unsigned long *) ebp;
826 	} while (count++ < 16);
827 	return 0;
828 }
829 
830 /*
831  * sys_alloc_thread_area: get a yet unused TLS descriptor index.
832  */
833 static int get_free_idx(void)
834 {
835 	struct thread_struct *t = &current->thread;
836 	int idx;
837 
838 	for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
839 		if (desc_empty(t->tls_array + idx))
840 			return idx + GDT_ENTRY_TLS_MIN;
841 	return -ESRCH;
842 }
843 
844 /*
845  * Set a given TLS descriptor:
846  */
847 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
848 {
849 	struct thread_struct *t = &current->thread;
850 	struct user_desc info;
851 	struct desc_struct *desc;
852 	int cpu, idx;
853 
854 	if (copy_from_user(&info, u_info, sizeof(info)))
855 		return -EFAULT;
856 	idx = info.entry_number;
857 
858 	/*
859 	 * index -1 means the kernel should try to find and
860 	 * allocate an empty descriptor:
861 	 */
862 	if (idx == -1) {
863 		idx = get_free_idx();
864 		if (idx < 0)
865 			return idx;
866 		if (put_user(idx, &u_info->entry_number))
867 			return -EFAULT;
868 	}
869 
870 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
871 		return -EINVAL;
872 
873 	desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
874 
875 	/*
876 	 * We must not get preempted while modifying the TLS.
877 	 */
878 	cpu = get_cpu();
879 
880 	if (LDT_empty(&info)) {
881 		desc->a = 0;
882 		desc->b = 0;
883 	} else {
884 		desc->a = LDT_entry_a(&info);
885 		desc->b = LDT_entry_b(&info);
886 	}
887 	load_TLS(t, cpu);
888 
889 	put_cpu();
890 
891 	return 0;
892 }
893 
894 /*
895  * Get the current Thread-Local Storage area:
896  */
897 
898 #define GET_BASE(desc) ( \
899 	(((desc)->a >> 16) & 0x0000ffff) | \
900 	(((desc)->b << 16) & 0x00ff0000) | \
901 	( (desc)->b        & 0xff000000)   )
902 
903 #define GET_LIMIT(desc) ( \
904 	((desc)->a & 0x0ffff) | \
905 	 ((desc)->b & 0xf0000) )
906 
907 #define GET_32BIT(desc)		(((desc)->b >> 22) & 1)
908 #define GET_CONTENTS(desc)	(((desc)->b >> 10) & 3)
909 #define GET_WRITABLE(desc)	(((desc)->b >>  9) & 1)
910 #define GET_LIMIT_PAGES(desc)	(((desc)->b >> 23) & 1)
911 #define GET_PRESENT(desc)	(((desc)->b >> 15) & 1)
912 #define GET_USEABLE(desc)	(((desc)->b >> 20) & 1)
913 
914 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
915 {
916 	struct user_desc info;
917 	struct desc_struct *desc;
918 	int idx;
919 
920 	if (get_user(idx, &u_info->entry_number))
921 		return -EFAULT;
922 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
923 		return -EINVAL;
924 
925 	memset(&info, 0, sizeof(info));
926 
927 	desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
928 
929 	info.entry_number = idx;
930 	info.base_addr = GET_BASE(desc);
931 	info.limit = GET_LIMIT(desc);
932 	info.seg_32bit = GET_32BIT(desc);
933 	info.contents = GET_CONTENTS(desc);
934 	info.read_exec_only = !GET_WRITABLE(desc);
935 	info.limit_in_pages = GET_LIMIT_PAGES(desc);
936 	info.seg_not_present = !GET_PRESENT(desc);
937 	info.useable = GET_USEABLE(desc);
938 
939 	if (copy_to_user(u_info, &info, sizeof(info)))
940 		return -EFAULT;
941 	return 0;
942 }
943 
944 unsigned long arch_align_stack(unsigned long sp)
945 {
946 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
947 		sp -= get_random_int() % 8192;
948 	return sp & ~0xf;
949 }
950