xref: /openbmc/linux/arch/x86/kernel/process.c (revision f46a6804135795f77d096ab0128f27531c7d051c)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/debugreg.h>
24 
25 unsigned long idle_halt;
26 EXPORT_SYMBOL(idle_halt);
27 unsigned long idle_nomwait;
28 EXPORT_SYMBOL(idle_nomwait);
29 
30 struct kmem_cache *task_xstate_cachep;
31 EXPORT_SYMBOL_GPL(task_xstate_cachep);
32 
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 	int ret;
36 
37 	*dst = *src;
38 	if (fpu_allocated(&src->thread.fpu)) {
39 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
40 		ret = fpu_alloc(&dst->thread.fpu);
41 		if (ret)
42 			return ret;
43 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
44 	}
45 	return 0;
46 }
47 
48 void free_thread_xstate(struct task_struct *tsk)
49 {
50 	fpu_free(&tsk->thread.fpu);
51 }
52 
53 void free_thread_info(struct thread_info *ti)
54 {
55 	free_thread_xstate(ti->task);
56 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
57 }
58 
59 void arch_task_cache_init(void)
60 {
61         task_xstate_cachep =
62         	kmem_cache_create("task_xstate", xstate_size,
63 				  __alignof__(union thread_xstate),
64 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
65 }
66 
67 /*
68  * Free current thread data structures etc..
69  */
70 void exit_thread(void)
71 {
72 	struct task_struct *me = current;
73 	struct thread_struct *t = &me->thread;
74 	unsigned long *bp = t->io_bitmap_ptr;
75 
76 	if (bp) {
77 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
78 
79 		t->io_bitmap_ptr = NULL;
80 		clear_thread_flag(TIF_IO_BITMAP);
81 		/*
82 		 * Careful, clear this in the TSS too:
83 		 */
84 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
85 		t->io_bitmap_max = 0;
86 		put_cpu();
87 		kfree(bp);
88 	}
89 }
90 
91 void show_regs(struct pt_regs *regs)
92 {
93 	show_registers(regs);
94 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
95 		   regs->bp);
96 }
97 
98 void show_regs_common(void)
99 {
100 	const char *board, *product;
101 
102 	board = dmi_get_system_info(DMI_BOARD_NAME);
103 	if (!board)
104 		board = "";
105 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
106 	if (!product)
107 		product = "";
108 
109 	printk(KERN_CONT "\n");
110 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
111 		current->pid, current->comm, print_tainted(),
112 		init_utsname()->release,
113 		(int)strcspn(init_utsname()->version, " "),
114 		init_utsname()->version, board, product);
115 }
116 
117 void flush_thread(void)
118 {
119 	struct task_struct *tsk = current;
120 
121 	flush_ptrace_hw_breakpoint(tsk);
122 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123 	/*
124 	 * Forget coprocessor state..
125 	 */
126 	tsk->fpu_counter = 0;
127 	clear_fpu(tsk);
128 	clear_used_math();
129 }
130 
131 static void hard_disable_TSC(void)
132 {
133 	write_cr4(read_cr4() | X86_CR4_TSD);
134 }
135 
136 void disable_TSC(void)
137 {
138 	preempt_disable();
139 	if (!test_and_set_thread_flag(TIF_NOTSC))
140 		/*
141 		 * Must flip the CPU state synchronously with
142 		 * TIF_NOTSC in the current running context.
143 		 */
144 		hard_disable_TSC();
145 	preempt_enable();
146 }
147 
148 static void hard_enable_TSC(void)
149 {
150 	write_cr4(read_cr4() & ~X86_CR4_TSD);
151 }
152 
153 static void enable_TSC(void)
154 {
155 	preempt_disable();
156 	if (test_and_clear_thread_flag(TIF_NOTSC))
157 		/*
158 		 * Must flip the CPU state synchronously with
159 		 * TIF_NOTSC in the current running context.
160 		 */
161 		hard_enable_TSC();
162 	preempt_enable();
163 }
164 
165 int get_tsc_mode(unsigned long adr)
166 {
167 	unsigned int val;
168 
169 	if (test_thread_flag(TIF_NOTSC))
170 		val = PR_TSC_SIGSEGV;
171 	else
172 		val = PR_TSC_ENABLE;
173 
174 	return put_user(val, (unsigned int __user *)adr);
175 }
176 
177 int set_tsc_mode(unsigned int val)
178 {
179 	if (val == PR_TSC_SIGSEGV)
180 		disable_TSC();
181 	else if (val == PR_TSC_ENABLE)
182 		enable_TSC();
183 	else
184 		return -EINVAL;
185 
186 	return 0;
187 }
188 
189 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
190 		      struct tss_struct *tss)
191 {
192 	struct thread_struct *prev, *next;
193 
194 	prev = &prev_p->thread;
195 	next = &next_p->thread;
196 
197 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
198 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
199 		unsigned long debugctl = get_debugctlmsr();
200 
201 		debugctl &= ~DEBUGCTLMSR_BTF;
202 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
203 			debugctl |= DEBUGCTLMSR_BTF;
204 
205 		update_debugctlmsr(debugctl);
206 	}
207 
208 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
209 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
210 		/* prev and next are different */
211 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
212 			hard_disable_TSC();
213 		else
214 			hard_enable_TSC();
215 	}
216 
217 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
218 		/*
219 		 * Copy the relevant range of the IO bitmap.
220 		 * Normally this is 128 bytes or less:
221 		 */
222 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
223 		       max(prev->io_bitmap_max, next->io_bitmap_max));
224 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
225 		/*
226 		 * Clear any possible leftover bits:
227 		 */
228 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
229 	}
230 	propagate_user_return_notify(prev_p, next_p);
231 }
232 
233 int sys_fork(struct pt_regs *regs)
234 {
235 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
236 }
237 
238 /*
239  * This is trivial, and on the face of it looks like it
240  * could equally well be done in user mode.
241  *
242  * Not so, for quite unobvious reasons - register pressure.
243  * In user mode vfork() cannot have a stack frame, and if
244  * done by calling the "clone()" system call directly, you
245  * do not have enough call-clobbered registers to hold all
246  * the information you need.
247  */
248 int sys_vfork(struct pt_regs *regs)
249 {
250 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
251 		       NULL, NULL);
252 }
253 
254 long
255 sys_clone(unsigned long clone_flags, unsigned long newsp,
256 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
257 {
258 	if (!newsp)
259 		newsp = regs->sp;
260 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
261 }
262 
263 /*
264  * This gets run with %si containing the
265  * function to call, and %di containing
266  * the "args".
267  */
268 extern void kernel_thread_helper(void);
269 
270 /*
271  * Create a kernel thread
272  */
273 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
274 {
275 	struct pt_regs regs;
276 
277 	memset(&regs, 0, sizeof(regs));
278 
279 	regs.si = (unsigned long) fn;
280 	regs.di = (unsigned long) arg;
281 
282 #ifdef CONFIG_X86_32
283 	regs.ds = __USER_DS;
284 	regs.es = __USER_DS;
285 	regs.fs = __KERNEL_PERCPU;
286 	regs.gs = __KERNEL_STACK_CANARY;
287 #else
288 	regs.ss = __KERNEL_DS;
289 #endif
290 
291 	regs.orig_ax = -1;
292 	regs.ip = (unsigned long) kernel_thread_helper;
293 	regs.cs = __KERNEL_CS | get_kernel_rpl();
294 	regs.flags = X86_EFLAGS_IF | 0x2;
295 
296 	/* Ok, create the new process.. */
297 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
298 }
299 EXPORT_SYMBOL(kernel_thread);
300 
301 /*
302  * sys_execve() executes a new program.
303  */
304 long sys_execve(char __user *name, char __user * __user *argv,
305 		char __user * __user *envp, struct pt_regs *regs)
306 {
307 	long error;
308 	char *filename;
309 
310 	filename = getname(name);
311 	error = PTR_ERR(filename);
312 	if (IS_ERR(filename))
313 		return error;
314 	error = do_execve(filename, argv, envp, regs);
315 
316 #ifdef CONFIG_X86_32
317 	if (error == 0) {
318 		/* Make sure we don't return using sysenter.. */
319                 set_thread_flag(TIF_IRET);
320         }
321 #endif
322 
323 	putname(filename);
324 	return error;
325 }
326 
327 /*
328  * Idle related variables and functions
329  */
330 unsigned long boot_option_idle_override = 0;
331 EXPORT_SYMBOL(boot_option_idle_override);
332 
333 /*
334  * Powermanagement idle function, if any..
335  */
336 void (*pm_idle)(void);
337 EXPORT_SYMBOL(pm_idle);
338 
339 #ifdef CONFIG_X86_32
340 /*
341  * This halt magic was a workaround for ancient floppy DMA
342  * wreckage. It should be safe to remove.
343  */
344 static int hlt_counter;
345 void disable_hlt(void)
346 {
347 	hlt_counter++;
348 }
349 EXPORT_SYMBOL(disable_hlt);
350 
351 void enable_hlt(void)
352 {
353 	hlt_counter--;
354 }
355 EXPORT_SYMBOL(enable_hlt);
356 
357 static inline int hlt_use_halt(void)
358 {
359 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
360 }
361 #else
362 static inline int hlt_use_halt(void)
363 {
364 	return 1;
365 }
366 #endif
367 
368 /*
369  * We use this if we don't have any better
370  * idle routine..
371  */
372 void default_idle(void)
373 {
374 	if (hlt_use_halt()) {
375 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
376 		current_thread_info()->status &= ~TS_POLLING;
377 		/*
378 		 * TS_POLLING-cleared state must be visible before we
379 		 * test NEED_RESCHED:
380 		 */
381 		smp_mb();
382 
383 		if (!need_resched())
384 			safe_halt();	/* enables interrupts racelessly */
385 		else
386 			local_irq_enable();
387 		current_thread_info()->status |= TS_POLLING;
388 	} else {
389 		local_irq_enable();
390 		/* loop is done by the caller */
391 		cpu_relax();
392 	}
393 }
394 #ifdef CONFIG_APM_MODULE
395 EXPORT_SYMBOL(default_idle);
396 #endif
397 
398 void stop_this_cpu(void *dummy)
399 {
400 	local_irq_disable();
401 	/*
402 	 * Remove this CPU:
403 	 */
404 	set_cpu_online(smp_processor_id(), false);
405 	disable_local_APIC();
406 
407 	for (;;) {
408 		if (hlt_works(smp_processor_id()))
409 			halt();
410 	}
411 }
412 
413 static void do_nothing(void *unused)
414 {
415 }
416 
417 /*
418  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
419  * pm_idle and update to new pm_idle value. Required while changing pm_idle
420  * handler on SMP systems.
421  *
422  * Caller must have changed pm_idle to the new value before the call. Old
423  * pm_idle value will not be used by any CPU after the return of this function.
424  */
425 void cpu_idle_wait(void)
426 {
427 	smp_mb();
428 	/* kick all the CPUs so that they exit out of pm_idle */
429 	smp_call_function(do_nothing, NULL, 1);
430 }
431 EXPORT_SYMBOL_GPL(cpu_idle_wait);
432 
433 /*
434  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
435  * which can obviate IPI to trigger checking of need_resched.
436  * We execute MONITOR against need_resched and enter optimized wait state
437  * through MWAIT. Whenever someone changes need_resched, we would be woken
438  * up from MWAIT (without an IPI).
439  *
440  * New with Core Duo processors, MWAIT can take some hints based on CPU
441  * capability.
442  */
443 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
444 {
445 	trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id());
446 	if (!need_resched()) {
447 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
448 			clflush((void *)&current_thread_info()->flags);
449 
450 		__monitor((void *)&current_thread_info()->flags, 0, 0);
451 		smp_mb();
452 		if (!need_resched())
453 			__mwait(ax, cx);
454 	}
455 }
456 
457 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
458 static void mwait_idle(void)
459 {
460 	if (!need_resched()) {
461 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
462 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
463 			clflush((void *)&current_thread_info()->flags);
464 
465 		__monitor((void *)&current_thread_info()->flags, 0, 0);
466 		smp_mb();
467 		if (!need_resched())
468 			__sti_mwait(0, 0);
469 		else
470 			local_irq_enable();
471 	} else
472 		local_irq_enable();
473 }
474 
475 /*
476  * On SMP it's slightly faster (but much more power-consuming!)
477  * to poll the ->work.need_resched flag instead of waiting for the
478  * cross-CPU IPI to arrive. Use this option with caution.
479  */
480 static void poll_idle(void)
481 {
482 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
483 	local_irq_enable();
484 	while (!need_resched())
485 		cpu_relax();
486 	trace_power_end(0);
487 }
488 
489 /*
490  * mwait selection logic:
491  *
492  * It depends on the CPU. For AMD CPUs that support MWAIT this is
493  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
494  * then depend on a clock divisor and current Pstate of the core. If
495  * all cores of a processor are in halt state (C1) the processor can
496  * enter the C1E (C1 enhanced) state. If mwait is used this will never
497  * happen.
498  *
499  * idle=mwait overrides this decision and forces the usage of mwait.
500  */
501 static int __cpuinitdata force_mwait;
502 
503 #define MWAIT_INFO			0x05
504 #define MWAIT_ECX_EXTENDED_INFO		0x01
505 #define MWAIT_EDX_C1			0xf0
506 
507 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
508 {
509 	u32 eax, ebx, ecx, edx;
510 
511 	if (force_mwait)
512 		return 1;
513 
514 	if (c->cpuid_level < MWAIT_INFO)
515 		return 0;
516 
517 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
518 	/* Check, whether EDX has extended info about MWAIT */
519 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
520 		return 1;
521 
522 	/*
523 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
524 	 * C1  supports MWAIT
525 	 */
526 	return (edx & MWAIT_EDX_C1);
527 }
528 
529 bool c1e_detected;
530 EXPORT_SYMBOL(c1e_detected);
531 
532 static cpumask_var_t c1e_mask;
533 
534 void c1e_remove_cpu(int cpu)
535 {
536 	if (c1e_mask != NULL)
537 		cpumask_clear_cpu(cpu, c1e_mask);
538 }
539 
540 /*
541  * C1E aware idle routine. We check for C1E active in the interrupt
542  * pending message MSR. If we detect C1E, then we handle it the same
543  * way as C3 power states (local apic timer and TSC stop)
544  */
545 static void c1e_idle(void)
546 {
547 	if (need_resched())
548 		return;
549 
550 	if (!c1e_detected) {
551 		u32 lo, hi;
552 
553 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
554 
555 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
556 			c1e_detected = true;
557 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
558 				mark_tsc_unstable("TSC halt in AMD C1E");
559 			printk(KERN_INFO "System has AMD C1E enabled\n");
560 		}
561 	}
562 
563 	if (c1e_detected) {
564 		int cpu = smp_processor_id();
565 
566 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
567 			cpumask_set_cpu(cpu, c1e_mask);
568 			/*
569 			 * Force broadcast so ACPI can not interfere.
570 			 */
571 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
572 					   &cpu);
573 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
574 			       cpu);
575 		}
576 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
577 
578 		default_idle();
579 
580 		/*
581 		 * The switch back from broadcast mode needs to be
582 		 * called with interrupts disabled.
583 		 */
584 		 local_irq_disable();
585 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
586 		 local_irq_enable();
587 	} else
588 		default_idle();
589 }
590 
591 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
592 {
593 #ifdef CONFIG_SMP
594 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
595 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
596 			" performance may degrade.\n");
597 	}
598 #endif
599 	if (pm_idle)
600 		return;
601 
602 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
603 		/*
604 		 * One CPU supports mwait => All CPUs supports mwait
605 		 */
606 		printk(KERN_INFO "using mwait in idle threads.\n");
607 		pm_idle = mwait_idle;
608 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
609 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
610 		printk(KERN_INFO "using C1E aware idle routine\n");
611 		pm_idle = c1e_idle;
612 	} else
613 		pm_idle = default_idle;
614 }
615 
616 void __init init_c1e_mask(void)
617 {
618 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
619 	if (pm_idle == c1e_idle)
620 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
621 }
622 
623 static int __init idle_setup(char *str)
624 {
625 	if (!str)
626 		return -EINVAL;
627 
628 	if (!strcmp(str, "poll")) {
629 		printk("using polling idle threads.\n");
630 		pm_idle = poll_idle;
631 	} else if (!strcmp(str, "mwait"))
632 		force_mwait = 1;
633 	else if (!strcmp(str, "halt")) {
634 		/*
635 		 * When the boot option of idle=halt is added, halt is
636 		 * forced to be used for CPU idle. In such case CPU C2/C3
637 		 * won't be used again.
638 		 * To continue to load the CPU idle driver, don't touch
639 		 * the boot_option_idle_override.
640 		 */
641 		pm_idle = default_idle;
642 		idle_halt = 1;
643 		return 0;
644 	} else if (!strcmp(str, "nomwait")) {
645 		/*
646 		 * If the boot option of "idle=nomwait" is added,
647 		 * it means that mwait will be disabled for CPU C2/C3
648 		 * states. In such case it won't touch the variable
649 		 * of boot_option_idle_override.
650 		 */
651 		idle_nomwait = 1;
652 		return 0;
653 	} else
654 		return -1;
655 
656 	boot_option_idle_override = 1;
657 	return 0;
658 }
659 early_param("idle", idle_setup);
660 
661 unsigned long arch_align_stack(unsigned long sp)
662 {
663 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
664 		sp -= get_random_int() % 8192;
665 	return sp & ~0xf;
666 }
667 
668 unsigned long arch_randomize_brk(struct mm_struct *mm)
669 {
670 	unsigned long range_end = mm->brk + 0x02000000;
671 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
672 }
673 
674