1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/debugreg.h> 24 25 unsigned long idle_halt; 26 EXPORT_SYMBOL(idle_halt); 27 unsigned long idle_nomwait; 28 EXPORT_SYMBOL(idle_nomwait); 29 30 struct kmem_cache *task_xstate_cachep; 31 EXPORT_SYMBOL_GPL(task_xstate_cachep); 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 int ret; 36 37 *dst = *src; 38 if (fpu_allocated(&src->thread.fpu)) { 39 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 40 ret = fpu_alloc(&dst->thread.fpu); 41 if (ret) 42 return ret; 43 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 44 } 45 return 0; 46 } 47 48 void free_thread_xstate(struct task_struct *tsk) 49 { 50 fpu_free(&tsk->thread.fpu); 51 } 52 53 void free_thread_info(struct thread_info *ti) 54 { 55 free_thread_xstate(ti->task); 56 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 57 } 58 59 void arch_task_cache_init(void) 60 { 61 task_xstate_cachep = 62 kmem_cache_create("task_xstate", xstate_size, 63 __alignof__(union thread_xstate), 64 SLAB_PANIC | SLAB_NOTRACK, NULL); 65 } 66 67 /* 68 * Free current thread data structures etc.. 69 */ 70 void exit_thread(void) 71 { 72 struct task_struct *me = current; 73 struct thread_struct *t = &me->thread; 74 unsigned long *bp = t->io_bitmap_ptr; 75 76 if (bp) { 77 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 78 79 t->io_bitmap_ptr = NULL; 80 clear_thread_flag(TIF_IO_BITMAP); 81 /* 82 * Careful, clear this in the TSS too: 83 */ 84 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 85 t->io_bitmap_max = 0; 86 put_cpu(); 87 kfree(bp); 88 } 89 } 90 91 void show_regs(struct pt_regs *regs) 92 { 93 show_registers(regs); 94 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 95 regs->bp); 96 } 97 98 void show_regs_common(void) 99 { 100 const char *board, *product; 101 102 board = dmi_get_system_info(DMI_BOARD_NAME); 103 if (!board) 104 board = ""; 105 product = dmi_get_system_info(DMI_PRODUCT_NAME); 106 if (!product) 107 product = ""; 108 109 printk(KERN_CONT "\n"); 110 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 111 current->pid, current->comm, print_tainted(), 112 init_utsname()->release, 113 (int)strcspn(init_utsname()->version, " "), 114 init_utsname()->version, board, product); 115 } 116 117 void flush_thread(void) 118 { 119 struct task_struct *tsk = current; 120 121 flush_ptrace_hw_breakpoint(tsk); 122 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 123 /* 124 * Forget coprocessor state.. 125 */ 126 tsk->fpu_counter = 0; 127 clear_fpu(tsk); 128 clear_used_math(); 129 } 130 131 static void hard_disable_TSC(void) 132 { 133 write_cr4(read_cr4() | X86_CR4_TSD); 134 } 135 136 void disable_TSC(void) 137 { 138 preempt_disable(); 139 if (!test_and_set_thread_flag(TIF_NOTSC)) 140 /* 141 * Must flip the CPU state synchronously with 142 * TIF_NOTSC in the current running context. 143 */ 144 hard_disable_TSC(); 145 preempt_enable(); 146 } 147 148 static void hard_enable_TSC(void) 149 { 150 write_cr4(read_cr4() & ~X86_CR4_TSD); 151 } 152 153 static void enable_TSC(void) 154 { 155 preempt_disable(); 156 if (test_and_clear_thread_flag(TIF_NOTSC)) 157 /* 158 * Must flip the CPU state synchronously with 159 * TIF_NOTSC in the current running context. 160 */ 161 hard_enable_TSC(); 162 preempt_enable(); 163 } 164 165 int get_tsc_mode(unsigned long adr) 166 { 167 unsigned int val; 168 169 if (test_thread_flag(TIF_NOTSC)) 170 val = PR_TSC_SIGSEGV; 171 else 172 val = PR_TSC_ENABLE; 173 174 return put_user(val, (unsigned int __user *)adr); 175 } 176 177 int set_tsc_mode(unsigned int val) 178 { 179 if (val == PR_TSC_SIGSEGV) 180 disable_TSC(); 181 else if (val == PR_TSC_ENABLE) 182 enable_TSC(); 183 else 184 return -EINVAL; 185 186 return 0; 187 } 188 189 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 190 struct tss_struct *tss) 191 { 192 struct thread_struct *prev, *next; 193 194 prev = &prev_p->thread; 195 next = &next_p->thread; 196 197 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 198 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 199 unsigned long debugctl = get_debugctlmsr(); 200 201 debugctl &= ~DEBUGCTLMSR_BTF; 202 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 203 debugctl |= DEBUGCTLMSR_BTF; 204 205 update_debugctlmsr(debugctl); 206 } 207 208 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 209 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 210 /* prev and next are different */ 211 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 212 hard_disable_TSC(); 213 else 214 hard_enable_TSC(); 215 } 216 217 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 218 /* 219 * Copy the relevant range of the IO bitmap. 220 * Normally this is 128 bytes or less: 221 */ 222 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 223 max(prev->io_bitmap_max, next->io_bitmap_max)); 224 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 225 /* 226 * Clear any possible leftover bits: 227 */ 228 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 229 } 230 propagate_user_return_notify(prev_p, next_p); 231 } 232 233 int sys_fork(struct pt_regs *regs) 234 { 235 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 236 } 237 238 /* 239 * This is trivial, and on the face of it looks like it 240 * could equally well be done in user mode. 241 * 242 * Not so, for quite unobvious reasons - register pressure. 243 * In user mode vfork() cannot have a stack frame, and if 244 * done by calling the "clone()" system call directly, you 245 * do not have enough call-clobbered registers to hold all 246 * the information you need. 247 */ 248 int sys_vfork(struct pt_regs *regs) 249 { 250 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 251 NULL, NULL); 252 } 253 254 long 255 sys_clone(unsigned long clone_flags, unsigned long newsp, 256 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 257 { 258 if (!newsp) 259 newsp = regs->sp; 260 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 261 } 262 263 /* 264 * This gets run with %si containing the 265 * function to call, and %di containing 266 * the "args". 267 */ 268 extern void kernel_thread_helper(void); 269 270 /* 271 * Create a kernel thread 272 */ 273 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 274 { 275 struct pt_regs regs; 276 277 memset(®s, 0, sizeof(regs)); 278 279 regs.si = (unsigned long) fn; 280 regs.di = (unsigned long) arg; 281 282 #ifdef CONFIG_X86_32 283 regs.ds = __USER_DS; 284 regs.es = __USER_DS; 285 regs.fs = __KERNEL_PERCPU; 286 regs.gs = __KERNEL_STACK_CANARY; 287 #else 288 regs.ss = __KERNEL_DS; 289 #endif 290 291 regs.orig_ax = -1; 292 regs.ip = (unsigned long) kernel_thread_helper; 293 regs.cs = __KERNEL_CS | get_kernel_rpl(); 294 regs.flags = X86_EFLAGS_IF | 0x2; 295 296 /* Ok, create the new process.. */ 297 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 298 } 299 EXPORT_SYMBOL(kernel_thread); 300 301 /* 302 * sys_execve() executes a new program. 303 */ 304 long sys_execve(char __user *name, char __user * __user *argv, 305 char __user * __user *envp, struct pt_regs *regs) 306 { 307 long error; 308 char *filename; 309 310 filename = getname(name); 311 error = PTR_ERR(filename); 312 if (IS_ERR(filename)) 313 return error; 314 error = do_execve(filename, argv, envp, regs); 315 316 #ifdef CONFIG_X86_32 317 if (error == 0) { 318 /* Make sure we don't return using sysenter.. */ 319 set_thread_flag(TIF_IRET); 320 } 321 #endif 322 323 putname(filename); 324 return error; 325 } 326 327 /* 328 * Idle related variables and functions 329 */ 330 unsigned long boot_option_idle_override = 0; 331 EXPORT_SYMBOL(boot_option_idle_override); 332 333 /* 334 * Powermanagement idle function, if any.. 335 */ 336 void (*pm_idle)(void); 337 EXPORT_SYMBOL(pm_idle); 338 339 #ifdef CONFIG_X86_32 340 /* 341 * This halt magic was a workaround for ancient floppy DMA 342 * wreckage. It should be safe to remove. 343 */ 344 static int hlt_counter; 345 void disable_hlt(void) 346 { 347 hlt_counter++; 348 } 349 EXPORT_SYMBOL(disable_hlt); 350 351 void enable_hlt(void) 352 { 353 hlt_counter--; 354 } 355 EXPORT_SYMBOL(enable_hlt); 356 357 static inline int hlt_use_halt(void) 358 { 359 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 360 } 361 #else 362 static inline int hlt_use_halt(void) 363 { 364 return 1; 365 } 366 #endif 367 368 /* 369 * We use this if we don't have any better 370 * idle routine.. 371 */ 372 void default_idle(void) 373 { 374 if (hlt_use_halt()) { 375 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 376 current_thread_info()->status &= ~TS_POLLING; 377 /* 378 * TS_POLLING-cleared state must be visible before we 379 * test NEED_RESCHED: 380 */ 381 smp_mb(); 382 383 if (!need_resched()) 384 safe_halt(); /* enables interrupts racelessly */ 385 else 386 local_irq_enable(); 387 current_thread_info()->status |= TS_POLLING; 388 } else { 389 local_irq_enable(); 390 /* loop is done by the caller */ 391 cpu_relax(); 392 } 393 } 394 #ifdef CONFIG_APM_MODULE 395 EXPORT_SYMBOL(default_idle); 396 #endif 397 398 void stop_this_cpu(void *dummy) 399 { 400 local_irq_disable(); 401 /* 402 * Remove this CPU: 403 */ 404 set_cpu_online(smp_processor_id(), false); 405 disable_local_APIC(); 406 407 for (;;) { 408 if (hlt_works(smp_processor_id())) 409 halt(); 410 } 411 } 412 413 static void do_nothing(void *unused) 414 { 415 } 416 417 /* 418 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 419 * pm_idle and update to new pm_idle value. Required while changing pm_idle 420 * handler on SMP systems. 421 * 422 * Caller must have changed pm_idle to the new value before the call. Old 423 * pm_idle value will not be used by any CPU after the return of this function. 424 */ 425 void cpu_idle_wait(void) 426 { 427 smp_mb(); 428 /* kick all the CPUs so that they exit out of pm_idle */ 429 smp_call_function(do_nothing, NULL, 1); 430 } 431 EXPORT_SYMBOL_GPL(cpu_idle_wait); 432 433 /* 434 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 435 * which can obviate IPI to trigger checking of need_resched. 436 * We execute MONITOR against need_resched and enter optimized wait state 437 * through MWAIT. Whenever someone changes need_resched, we would be woken 438 * up from MWAIT (without an IPI). 439 * 440 * New with Core Duo processors, MWAIT can take some hints based on CPU 441 * capability. 442 */ 443 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 444 { 445 trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id()); 446 if (!need_resched()) { 447 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 448 clflush((void *)¤t_thread_info()->flags); 449 450 __monitor((void *)¤t_thread_info()->flags, 0, 0); 451 smp_mb(); 452 if (!need_resched()) 453 __mwait(ax, cx); 454 } 455 } 456 457 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 458 static void mwait_idle(void) 459 { 460 if (!need_resched()) { 461 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 462 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 463 clflush((void *)¤t_thread_info()->flags); 464 465 __monitor((void *)¤t_thread_info()->flags, 0, 0); 466 smp_mb(); 467 if (!need_resched()) 468 __sti_mwait(0, 0); 469 else 470 local_irq_enable(); 471 } else 472 local_irq_enable(); 473 } 474 475 /* 476 * On SMP it's slightly faster (but much more power-consuming!) 477 * to poll the ->work.need_resched flag instead of waiting for the 478 * cross-CPU IPI to arrive. Use this option with caution. 479 */ 480 static void poll_idle(void) 481 { 482 trace_power_start(POWER_CSTATE, 0, smp_processor_id()); 483 local_irq_enable(); 484 while (!need_resched()) 485 cpu_relax(); 486 trace_power_end(0); 487 } 488 489 /* 490 * mwait selection logic: 491 * 492 * It depends on the CPU. For AMD CPUs that support MWAIT this is 493 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 494 * then depend on a clock divisor and current Pstate of the core. If 495 * all cores of a processor are in halt state (C1) the processor can 496 * enter the C1E (C1 enhanced) state. If mwait is used this will never 497 * happen. 498 * 499 * idle=mwait overrides this decision and forces the usage of mwait. 500 */ 501 static int __cpuinitdata force_mwait; 502 503 #define MWAIT_INFO 0x05 504 #define MWAIT_ECX_EXTENDED_INFO 0x01 505 #define MWAIT_EDX_C1 0xf0 506 507 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 508 { 509 u32 eax, ebx, ecx, edx; 510 511 if (force_mwait) 512 return 1; 513 514 if (c->cpuid_level < MWAIT_INFO) 515 return 0; 516 517 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 518 /* Check, whether EDX has extended info about MWAIT */ 519 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 520 return 1; 521 522 /* 523 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 524 * C1 supports MWAIT 525 */ 526 return (edx & MWAIT_EDX_C1); 527 } 528 529 bool c1e_detected; 530 EXPORT_SYMBOL(c1e_detected); 531 532 static cpumask_var_t c1e_mask; 533 534 void c1e_remove_cpu(int cpu) 535 { 536 if (c1e_mask != NULL) 537 cpumask_clear_cpu(cpu, c1e_mask); 538 } 539 540 /* 541 * C1E aware idle routine. We check for C1E active in the interrupt 542 * pending message MSR. If we detect C1E, then we handle it the same 543 * way as C3 power states (local apic timer and TSC stop) 544 */ 545 static void c1e_idle(void) 546 { 547 if (need_resched()) 548 return; 549 550 if (!c1e_detected) { 551 u32 lo, hi; 552 553 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 554 555 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 556 c1e_detected = true; 557 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 558 mark_tsc_unstable("TSC halt in AMD C1E"); 559 printk(KERN_INFO "System has AMD C1E enabled\n"); 560 } 561 } 562 563 if (c1e_detected) { 564 int cpu = smp_processor_id(); 565 566 if (!cpumask_test_cpu(cpu, c1e_mask)) { 567 cpumask_set_cpu(cpu, c1e_mask); 568 /* 569 * Force broadcast so ACPI can not interfere. 570 */ 571 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 572 &cpu); 573 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 574 cpu); 575 } 576 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 577 578 default_idle(); 579 580 /* 581 * The switch back from broadcast mode needs to be 582 * called with interrupts disabled. 583 */ 584 local_irq_disable(); 585 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 586 local_irq_enable(); 587 } else 588 default_idle(); 589 } 590 591 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 592 { 593 #ifdef CONFIG_SMP 594 if (pm_idle == poll_idle && smp_num_siblings > 1) { 595 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 596 " performance may degrade.\n"); 597 } 598 #endif 599 if (pm_idle) 600 return; 601 602 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 603 /* 604 * One CPU supports mwait => All CPUs supports mwait 605 */ 606 printk(KERN_INFO "using mwait in idle threads.\n"); 607 pm_idle = mwait_idle; 608 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 609 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 610 printk(KERN_INFO "using C1E aware idle routine\n"); 611 pm_idle = c1e_idle; 612 } else 613 pm_idle = default_idle; 614 } 615 616 void __init init_c1e_mask(void) 617 { 618 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 619 if (pm_idle == c1e_idle) 620 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 621 } 622 623 static int __init idle_setup(char *str) 624 { 625 if (!str) 626 return -EINVAL; 627 628 if (!strcmp(str, "poll")) { 629 printk("using polling idle threads.\n"); 630 pm_idle = poll_idle; 631 } else if (!strcmp(str, "mwait")) 632 force_mwait = 1; 633 else if (!strcmp(str, "halt")) { 634 /* 635 * When the boot option of idle=halt is added, halt is 636 * forced to be used for CPU idle. In such case CPU C2/C3 637 * won't be used again. 638 * To continue to load the CPU idle driver, don't touch 639 * the boot_option_idle_override. 640 */ 641 pm_idle = default_idle; 642 idle_halt = 1; 643 return 0; 644 } else if (!strcmp(str, "nomwait")) { 645 /* 646 * If the boot option of "idle=nomwait" is added, 647 * it means that mwait will be disabled for CPU C2/C3 648 * states. In such case it won't touch the variable 649 * of boot_option_idle_override. 650 */ 651 idle_nomwait = 1; 652 return 0; 653 } else 654 return -1; 655 656 boot_option_idle_override = 1; 657 return 0; 658 } 659 early_param("idle", idle_setup); 660 661 unsigned long arch_align_stack(unsigned long sp) 662 { 663 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 664 sp -= get_random_int() % 8192; 665 return sp & ~0xf; 666 } 667 668 unsigned long arch_randomize_brk(struct mm_struct *mm) 669 { 670 unsigned long range_end = mm->brk + 0x02000000; 671 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 672 } 673 674