xref: /openbmc/linux/arch/x86/kernel/process.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 
32 /*
33  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34  * no more per-task TSS's. The TSS size is kept cacheline-aligned
35  * so they are allowed to end up in the .data..cacheline_aligned
36  * section. Since TSS's are completely CPU-local, we want them
37  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38  */
39 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44 
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 	atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50 
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 	atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57 
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60 
61 /*
62  * this gets called so that we can store lazy state into memory and copy the
63  * current task into the new thread.
64  */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 	*dst = *src;
68 
69 	dst->thread.fpu_counter = 0;
70 	dst->thread.fpu.has_fpu = 0;
71 	dst->thread.fpu.last_cpu = ~0;
72 	dst->thread.fpu.state = NULL;
73 	if (tsk_used_math(src)) {
74 		int err = fpu_alloc(&dst->thread.fpu);
75 		if (err)
76 			return err;
77 		fpu_copy(dst, src);
78 	}
79 	return 0;
80 }
81 
82 void free_thread_xstate(struct task_struct *tsk)
83 {
84 	fpu_free(&tsk->thread.fpu);
85 }
86 
87 void arch_release_task_struct(struct task_struct *tsk)
88 {
89 	free_thread_xstate(tsk);
90 }
91 
92 void arch_task_cache_init(void)
93 {
94         task_xstate_cachep =
95         	kmem_cache_create("task_xstate", xstate_size,
96 				  __alignof__(union thread_xstate),
97 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
98 	setup_xstate_comp();
99 }
100 
101 /*
102  * Free current thread data structures etc..
103  */
104 void exit_thread(void)
105 {
106 	struct task_struct *me = current;
107 	struct thread_struct *t = &me->thread;
108 	unsigned long *bp = t->io_bitmap_ptr;
109 
110 	if (bp) {
111 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
112 
113 		t->io_bitmap_ptr = NULL;
114 		clear_thread_flag(TIF_IO_BITMAP);
115 		/*
116 		 * Careful, clear this in the TSS too:
117 		 */
118 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
119 		t->io_bitmap_max = 0;
120 		put_cpu();
121 		kfree(bp);
122 	}
123 
124 	drop_fpu(me);
125 }
126 
127 void flush_thread(void)
128 {
129 	struct task_struct *tsk = current;
130 
131 	flush_ptrace_hw_breakpoint(tsk);
132 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133 	drop_init_fpu(tsk);
134 	/*
135 	 * Free the FPU state for non xsave platforms. They get reallocated
136 	 * lazily at the first use.
137 	 */
138 	if (!use_eager_fpu())
139 		free_thread_xstate(tsk);
140 }
141 
142 static void hard_disable_TSC(void)
143 {
144 	write_cr4(read_cr4() | X86_CR4_TSD);
145 }
146 
147 void disable_TSC(void)
148 {
149 	preempt_disable();
150 	if (!test_and_set_thread_flag(TIF_NOTSC))
151 		/*
152 		 * Must flip the CPU state synchronously with
153 		 * TIF_NOTSC in the current running context.
154 		 */
155 		hard_disable_TSC();
156 	preempt_enable();
157 }
158 
159 static void hard_enable_TSC(void)
160 {
161 	write_cr4(read_cr4() & ~X86_CR4_TSD);
162 }
163 
164 static void enable_TSC(void)
165 {
166 	preempt_disable();
167 	if (test_and_clear_thread_flag(TIF_NOTSC))
168 		/*
169 		 * Must flip the CPU state synchronously with
170 		 * TIF_NOTSC in the current running context.
171 		 */
172 		hard_enable_TSC();
173 	preempt_enable();
174 }
175 
176 int get_tsc_mode(unsigned long adr)
177 {
178 	unsigned int val;
179 
180 	if (test_thread_flag(TIF_NOTSC))
181 		val = PR_TSC_SIGSEGV;
182 	else
183 		val = PR_TSC_ENABLE;
184 
185 	return put_user(val, (unsigned int __user *)adr);
186 }
187 
188 int set_tsc_mode(unsigned int val)
189 {
190 	if (val == PR_TSC_SIGSEGV)
191 		disable_TSC();
192 	else if (val == PR_TSC_ENABLE)
193 		enable_TSC();
194 	else
195 		return -EINVAL;
196 
197 	return 0;
198 }
199 
200 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
201 		      struct tss_struct *tss)
202 {
203 	struct thread_struct *prev, *next;
204 
205 	prev = &prev_p->thread;
206 	next = &next_p->thread;
207 
208 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
209 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
210 		unsigned long debugctl = get_debugctlmsr();
211 
212 		debugctl &= ~DEBUGCTLMSR_BTF;
213 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
214 			debugctl |= DEBUGCTLMSR_BTF;
215 
216 		update_debugctlmsr(debugctl);
217 	}
218 
219 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
220 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
221 		/* prev and next are different */
222 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
223 			hard_disable_TSC();
224 		else
225 			hard_enable_TSC();
226 	}
227 
228 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
229 		/*
230 		 * Copy the relevant range of the IO bitmap.
231 		 * Normally this is 128 bytes or less:
232 		 */
233 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
234 		       max(prev->io_bitmap_max, next->io_bitmap_max));
235 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
236 		/*
237 		 * Clear any possible leftover bits:
238 		 */
239 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
240 	}
241 	propagate_user_return_notify(prev_p, next_p);
242 }
243 
244 /*
245  * Idle related variables and functions
246  */
247 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
248 EXPORT_SYMBOL(boot_option_idle_override);
249 
250 static void (*x86_idle)(void);
251 
252 #ifndef CONFIG_SMP
253 static inline void play_dead(void)
254 {
255 	BUG();
256 }
257 #endif
258 
259 #ifdef CONFIG_X86_64
260 void enter_idle(void)
261 {
262 	this_cpu_write(is_idle, 1);
263 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
264 }
265 
266 static void __exit_idle(void)
267 {
268 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
269 		return;
270 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
271 }
272 
273 /* Called from interrupts to signify idle end */
274 void exit_idle(void)
275 {
276 	/* idle loop has pid 0 */
277 	if (current->pid)
278 		return;
279 	__exit_idle();
280 }
281 #endif
282 
283 void arch_cpu_idle_enter(void)
284 {
285 	local_touch_nmi();
286 	enter_idle();
287 }
288 
289 void arch_cpu_idle_exit(void)
290 {
291 	__exit_idle();
292 }
293 
294 void arch_cpu_idle_dead(void)
295 {
296 	play_dead();
297 }
298 
299 /*
300  * Called from the generic idle code.
301  */
302 void arch_cpu_idle(void)
303 {
304 	x86_idle();
305 }
306 
307 /*
308  * We use this if we don't have any better idle routine..
309  */
310 void default_idle(void)
311 {
312 	trace_cpu_idle_rcuidle(1, smp_processor_id());
313 	safe_halt();
314 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
315 }
316 #ifdef CONFIG_APM_MODULE
317 EXPORT_SYMBOL(default_idle);
318 #endif
319 
320 #ifdef CONFIG_XEN
321 bool xen_set_default_idle(void)
322 {
323 	bool ret = !!x86_idle;
324 
325 	x86_idle = default_idle;
326 
327 	return ret;
328 }
329 #endif
330 void stop_this_cpu(void *dummy)
331 {
332 	local_irq_disable();
333 	/*
334 	 * Remove this CPU:
335 	 */
336 	set_cpu_online(smp_processor_id(), false);
337 	disable_local_APIC();
338 
339 	for (;;)
340 		halt();
341 }
342 
343 bool amd_e400_c1e_detected;
344 EXPORT_SYMBOL(amd_e400_c1e_detected);
345 
346 static cpumask_var_t amd_e400_c1e_mask;
347 
348 void amd_e400_remove_cpu(int cpu)
349 {
350 	if (amd_e400_c1e_mask != NULL)
351 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
352 }
353 
354 /*
355  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
356  * pending message MSR. If we detect C1E, then we handle it the same
357  * way as C3 power states (local apic timer and TSC stop)
358  */
359 static void amd_e400_idle(void)
360 {
361 	if (!amd_e400_c1e_detected) {
362 		u32 lo, hi;
363 
364 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
365 
366 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
367 			amd_e400_c1e_detected = true;
368 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
369 				mark_tsc_unstable("TSC halt in AMD C1E");
370 			pr_info("System has AMD C1E enabled\n");
371 		}
372 	}
373 
374 	if (amd_e400_c1e_detected) {
375 		int cpu = smp_processor_id();
376 
377 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
378 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
379 			/*
380 			 * Force broadcast so ACPI can not interfere.
381 			 */
382 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
383 					   &cpu);
384 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
385 		}
386 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
387 
388 		default_idle();
389 
390 		/*
391 		 * The switch back from broadcast mode needs to be
392 		 * called with interrupts disabled.
393 		 */
394 		local_irq_disable();
395 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
396 		local_irq_enable();
397 	} else
398 		default_idle();
399 }
400 
401 void select_idle_routine(const struct cpuinfo_x86 *c)
402 {
403 #ifdef CONFIG_SMP
404 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
405 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
406 #endif
407 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
408 		return;
409 
410 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
411 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
412 		pr_info("using AMD E400 aware idle routine\n");
413 		x86_idle = amd_e400_idle;
414 	} else
415 		x86_idle = default_idle;
416 }
417 
418 void __init init_amd_e400_c1e_mask(void)
419 {
420 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
421 	if (x86_idle == amd_e400_idle)
422 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
423 }
424 
425 static int __init idle_setup(char *str)
426 {
427 	if (!str)
428 		return -EINVAL;
429 
430 	if (!strcmp(str, "poll")) {
431 		pr_info("using polling idle threads\n");
432 		boot_option_idle_override = IDLE_POLL;
433 		cpu_idle_poll_ctrl(true);
434 	} else if (!strcmp(str, "halt")) {
435 		/*
436 		 * When the boot option of idle=halt is added, halt is
437 		 * forced to be used for CPU idle. In such case CPU C2/C3
438 		 * won't be used again.
439 		 * To continue to load the CPU idle driver, don't touch
440 		 * the boot_option_idle_override.
441 		 */
442 		x86_idle = default_idle;
443 		boot_option_idle_override = IDLE_HALT;
444 	} else if (!strcmp(str, "nomwait")) {
445 		/*
446 		 * If the boot option of "idle=nomwait" is added,
447 		 * it means that mwait will be disabled for CPU C2/C3
448 		 * states. In such case it won't touch the variable
449 		 * of boot_option_idle_override.
450 		 */
451 		boot_option_idle_override = IDLE_NOMWAIT;
452 	} else
453 		return -1;
454 
455 	return 0;
456 }
457 early_param("idle", idle_setup);
458 
459 unsigned long arch_align_stack(unsigned long sp)
460 {
461 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
462 		sp -= get_random_int() % 8192;
463 	return sp & ~0xf;
464 }
465 
466 unsigned long arch_randomize_brk(struct mm_struct *mm)
467 {
468 	unsigned long range_end = mm->brk + 0x02000000;
469 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
470 }
471 
472