xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 #include <linux/delay.h>
10 
11 #include <asm/fixmap.h>
12 #include <asm/hpet.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 
16 #define HPET_MASK	CLOCKSOURCE_MASK(32)
17 #define HPET_SHIFT	22
18 
19 /* FSEC = 10^-15 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC	1000000
21 
22 /*
23  * HPET address is set in acpi/boot.c, when an ACPI entry exists
24  */
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
27 
28 unsigned long hpet_readl(unsigned long a)
29 {
30 	return readl(hpet_virt_address + a);
31 }
32 
33 static inline void hpet_writel(unsigned long d, unsigned long a)
34 {
35 	writel(d, hpet_virt_address + a);
36 }
37 
38 #ifdef CONFIG_X86_64
39 
40 #include <asm/pgtable.h>
41 
42 static inline void hpet_set_mapping(void)
43 {
44 	set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 	hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
47 }
48 
49 static inline void hpet_clear_mapping(void)
50 {
51 	hpet_virt_address = NULL;
52 }
53 
54 #else
55 
56 static inline void hpet_set_mapping(void)
57 {
58 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
59 }
60 
61 static inline void hpet_clear_mapping(void)
62 {
63 	iounmap(hpet_virt_address);
64 	hpet_virt_address = NULL;
65 }
66 #endif
67 
68 /*
69  * HPET command line enable / disable
70  */
71 static int boot_hpet_disable;
72 
73 static int __init hpet_setup(char* str)
74 {
75 	if (str) {
76 		if (!strncmp("disable", str, 7))
77 			boot_hpet_disable = 1;
78 	}
79 	return 1;
80 }
81 __setup("hpet=", hpet_setup);
82 
83 static int __init disable_hpet(char *str)
84 {
85 	boot_hpet_disable = 1;
86 	return 1;
87 }
88 __setup("nohpet", disable_hpet);
89 
90 static inline int is_hpet_capable(void)
91 {
92 	return (!boot_hpet_disable && hpet_address);
93 }
94 
95 /*
96  * HPET timer interrupt enable / disable
97  */
98 static int hpet_legacy_int_enabled;
99 
100 /**
101  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
102  */
103 int is_hpet_enabled(void)
104 {
105 	return is_hpet_capable() && hpet_legacy_int_enabled;
106 }
107 
108 /*
109  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
110  * timer 0 and timer 1 in case of RTC emulation.
111  */
112 #ifdef CONFIG_HPET
113 static void hpet_reserve_platform_timers(unsigned long id)
114 {
115 	struct hpet __iomem *hpet = hpet_virt_address;
116 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
117 	unsigned int nrtimers, i;
118 	struct hpet_data hd;
119 
120 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
121 
122 	memset(&hd, 0, sizeof (hd));
123 	hd.hd_phys_address = hpet_address;
124 	hd.hd_address = hpet;
125 	hd.hd_nirqs = nrtimers;
126 	hd.hd_flags = HPET_DATA_PLATFORM;
127 	hpet_reserve_timer(&hd, 0);
128 
129 #ifdef CONFIG_HPET_EMULATE_RTC
130 	hpet_reserve_timer(&hd, 1);
131 #endif
132 
133 	hd.hd_irq[0] = HPET_LEGACY_8254;
134 	hd.hd_irq[1] = HPET_LEGACY_RTC;
135 
136 	for (i = 2; i < nrtimers; timer++, i++)
137 		hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
138 			Tn_INT_ROUTE_CNF_SHIFT;
139 
140 	hpet_alloc(&hd);
141 
142 }
143 #else
144 static void hpet_reserve_platform_timers(unsigned long id) { }
145 #endif
146 
147 /*
148  * Common hpet info
149  */
150 static unsigned long hpet_period;
151 
152 static void hpet_legacy_set_mode(enum clock_event_mode mode,
153 			  struct clock_event_device *evt);
154 static int hpet_legacy_next_event(unsigned long delta,
155 			   struct clock_event_device *evt);
156 
157 /*
158  * The hpet clock event device
159  */
160 static struct clock_event_device hpet_clockevent = {
161 	.name		= "hpet",
162 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
163 	.set_mode	= hpet_legacy_set_mode,
164 	.set_next_event = hpet_legacy_next_event,
165 	.shift		= 32,
166 	.irq		= 0,
167 	.rating		= 50,
168 };
169 
170 static void hpet_start_counter(void)
171 {
172 	unsigned long cfg = hpet_readl(HPET_CFG);
173 
174 	cfg &= ~HPET_CFG_ENABLE;
175 	hpet_writel(cfg, HPET_CFG);
176 	hpet_writel(0, HPET_COUNTER);
177 	hpet_writel(0, HPET_COUNTER + 4);
178 	cfg |= HPET_CFG_ENABLE;
179 	hpet_writel(cfg, HPET_CFG);
180 }
181 
182 static void hpet_resume_device(void)
183 {
184 	force_hpet_resume();
185 }
186 
187 static void hpet_restart_counter(void)
188 {
189 	hpet_resume_device();
190 	hpet_start_counter();
191 }
192 
193 static void hpet_enable_legacy_int(void)
194 {
195 	unsigned long cfg = hpet_readl(HPET_CFG);
196 
197 	cfg |= HPET_CFG_LEGACY;
198 	hpet_writel(cfg, HPET_CFG);
199 	hpet_legacy_int_enabled = 1;
200 }
201 
202 static void hpet_legacy_clockevent_register(void)
203 {
204 	uint64_t hpet_freq;
205 
206 	/* Start HPET legacy interrupts */
207 	hpet_enable_legacy_int();
208 
209 	/*
210 	 * The period is a femto seconds value. We need to calculate the
211 	 * scaled math multiplication factor for nanosecond to hpet tick
212 	 * conversion.
213 	 */
214 	hpet_freq = 1000000000000000ULL;
215 	do_div(hpet_freq, hpet_period);
216 	hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
217 				      NSEC_PER_SEC, 32);
218 	/* Calculate the min / max delta */
219 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
220 							   &hpet_clockevent);
221 	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
222 							   &hpet_clockevent);
223 
224 	/*
225 	 * Start hpet with the boot cpu mask and make it
226 	 * global after the IO_APIC has been initialized.
227 	 */
228 	hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
229 	clockevents_register_device(&hpet_clockevent);
230 	global_clock_event = &hpet_clockevent;
231 	printk(KERN_DEBUG "hpet clockevent registered\n");
232 }
233 
234 static void hpet_legacy_set_mode(enum clock_event_mode mode,
235 			  struct clock_event_device *evt)
236 {
237 	unsigned long cfg, cmp, now;
238 	uint64_t delta;
239 
240 	switch(mode) {
241 	case CLOCK_EVT_MODE_PERIODIC:
242 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
243 		delta >>= hpet_clockevent.shift;
244 		now = hpet_readl(HPET_COUNTER);
245 		cmp = now + (unsigned long) delta;
246 		cfg = hpet_readl(HPET_T0_CFG);
247 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
248 		       HPET_TN_SETVAL | HPET_TN_32BIT;
249 		hpet_writel(cfg, HPET_T0_CFG);
250 		/*
251 		 * The first write after writing TN_SETVAL to the
252 		 * config register sets the counter value, the second
253 		 * write sets the period.
254 		 */
255 		hpet_writel(cmp, HPET_T0_CMP);
256 		udelay(1);
257 		hpet_writel((unsigned long) delta, HPET_T0_CMP);
258 		break;
259 
260 	case CLOCK_EVT_MODE_ONESHOT:
261 		cfg = hpet_readl(HPET_T0_CFG);
262 		cfg &= ~HPET_TN_PERIODIC;
263 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
264 		hpet_writel(cfg, HPET_T0_CFG);
265 		break;
266 
267 	case CLOCK_EVT_MODE_UNUSED:
268 	case CLOCK_EVT_MODE_SHUTDOWN:
269 		cfg = hpet_readl(HPET_T0_CFG);
270 		cfg &= ~HPET_TN_ENABLE;
271 		hpet_writel(cfg, HPET_T0_CFG);
272 		break;
273 
274 	case CLOCK_EVT_MODE_RESUME:
275 		hpet_enable_legacy_int();
276 		break;
277 	}
278 }
279 
280 static int hpet_legacy_next_event(unsigned long delta,
281 			   struct clock_event_device *evt)
282 {
283 	unsigned long cnt;
284 
285 	cnt = hpet_readl(HPET_COUNTER);
286 	cnt += delta;
287 	hpet_writel(cnt, HPET_T0_CMP);
288 
289 	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
290 }
291 
292 /*
293  * Clock source related code
294  */
295 static cycle_t read_hpet(void)
296 {
297 	return (cycle_t)hpet_readl(HPET_COUNTER);
298 }
299 
300 #ifdef CONFIG_X86_64
301 static cycle_t __vsyscall_fn vread_hpet(void)
302 {
303 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
304 }
305 #endif
306 
307 static struct clocksource clocksource_hpet = {
308 	.name		= "hpet",
309 	.rating		= 250,
310 	.read		= read_hpet,
311 	.mask		= HPET_MASK,
312 	.shift		= HPET_SHIFT,
313 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
314 	.resume		= hpet_restart_counter,
315 #ifdef CONFIG_X86_64
316 	.vread		= vread_hpet,
317 #endif
318 };
319 
320 static int hpet_clocksource_register(void)
321 {
322 	u64 tmp, start, now;
323 	cycle_t t1;
324 
325 	/* Start the counter */
326 	hpet_start_counter();
327 
328 	/* Verify whether hpet counter works */
329 	t1 = read_hpet();
330 	rdtscll(start);
331 
332 	/*
333 	 * We don't know the TSC frequency yet, but waiting for
334 	 * 200000 TSC cycles is safe:
335 	 * 4 GHz == 50us
336 	 * 1 GHz == 200us
337 	 */
338 	do {
339 		rep_nop();
340 		rdtscll(now);
341 	} while ((now - start) < 200000UL);
342 
343 	if (t1 == read_hpet()) {
344 		printk(KERN_WARNING
345 		       "HPET counter not counting. HPET disabled\n");
346 		return -ENODEV;
347 	}
348 
349 	/* Initialize and register HPET clocksource
350 	 *
351 	 * hpet period is in femto seconds per cycle
352 	 * so we need to convert this to ns/cyc units
353 	 * aproximated by mult/2^shift
354 	 *
355 	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
356 	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
357 	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
358 	 *  (fsec/cyc << shift)/1000000 = mult
359 	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
360 	 */
361 	tmp = (u64)hpet_period << HPET_SHIFT;
362 	do_div(tmp, FSEC_PER_NSEC);
363 	clocksource_hpet.mult = (u32)tmp;
364 
365 	clocksource_register(&clocksource_hpet);
366 
367 	return 0;
368 }
369 
370 /*
371  * Try to setup the HPET timer
372  */
373 int __init hpet_enable(void)
374 {
375 	unsigned long id;
376 
377 	if (!is_hpet_capable())
378 		return 0;
379 
380 	hpet_set_mapping();
381 
382 	/*
383 	 * Read the period and check for a sane value:
384 	 */
385 	hpet_period = hpet_readl(HPET_PERIOD);
386 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
387 		goto out_nohpet;
388 
389 	/*
390 	 * Read the HPET ID register to retrieve the IRQ routing
391 	 * information and the number of channels
392 	 */
393 	id = hpet_readl(HPET_ID);
394 
395 #ifdef CONFIG_HPET_EMULATE_RTC
396 	/*
397 	 * The legacy routing mode needs at least two channels, tick timer
398 	 * and the rtc emulation channel.
399 	 */
400 	if (!(id & HPET_ID_NUMBER))
401 		goto out_nohpet;
402 #endif
403 
404 	if (hpet_clocksource_register())
405 		goto out_nohpet;
406 
407 	if (id & HPET_ID_LEGSUP) {
408 		hpet_legacy_clockevent_register();
409 		return 1;
410 	}
411 	return 0;
412 
413 out_nohpet:
414 	hpet_clear_mapping();
415 	boot_hpet_disable = 1;
416 	return 0;
417 }
418 
419 /*
420  * Needs to be late, as the reserve_timer code calls kalloc !
421  *
422  * Not a problem on i386 as hpet_enable is called from late_time_init,
423  * but on x86_64 it is necessary !
424  */
425 static __init int hpet_late_init(void)
426 {
427 	if (boot_hpet_disable)
428 		return -ENODEV;
429 
430 	if (!hpet_address) {
431 		if (!force_hpet_address)
432 			return -ENODEV;
433 
434 		hpet_address = force_hpet_address;
435 		hpet_enable();
436 		if (!hpet_virt_address)
437 			return -ENODEV;
438 	}
439 
440 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
441 
442 	return 0;
443 }
444 fs_initcall(hpet_late_init);
445 
446 #ifdef CONFIG_HPET_EMULATE_RTC
447 
448 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
449  * is enabled, we support RTC interrupt functionality in software.
450  * RTC has 3 kinds of interrupts:
451  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
452  *    is updated
453  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
454  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
455  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
456  * (1) and (2) above are implemented using polling at a frequency of
457  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
458  * overhead. (DEFAULT_RTC_INT_FREQ)
459  * For (3), we use interrupts at 64Hz or user specified periodic
460  * frequency, whichever is higher.
461  */
462 #include <linux/mc146818rtc.h>
463 #include <linux/rtc.h>
464 
465 #define DEFAULT_RTC_INT_FREQ	64
466 #define DEFAULT_RTC_SHIFT	6
467 #define RTC_NUM_INTS		1
468 
469 static unsigned long hpet_rtc_flags;
470 static unsigned long hpet_prev_update_sec;
471 static struct rtc_time hpet_alarm_time;
472 static unsigned long hpet_pie_count;
473 static unsigned long hpet_t1_cmp;
474 static unsigned long hpet_default_delta;
475 static unsigned long hpet_pie_delta;
476 static unsigned long hpet_pie_limit;
477 
478 /*
479  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
480  * is not supported by all HPET implementations for timer 1.
481  *
482  * hpet_rtc_timer_init() is called when the rtc is initialized.
483  */
484 int hpet_rtc_timer_init(void)
485 {
486 	unsigned long cfg, cnt, delta, flags;
487 
488 	if (!is_hpet_enabled())
489 		return 0;
490 
491 	if (!hpet_default_delta) {
492 		uint64_t clc;
493 
494 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
495 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
496 		hpet_default_delta = (unsigned long) clc;
497 	}
498 
499 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
500 		delta = hpet_default_delta;
501 	else
502 		delta = hpet_pie_delta;
503 
504 	local_irq_save(flags);
505 
506 	cnt = delta + hpet_readl(HPET_COUNTER);
507 	hpet_writel(cnt, HPET_T1_CMP);
508 	hpet_t1_cmp = cnt;
509 
510 	cfg = hpet_readl(HPET_T1_CFG);
511 	cfg &= ~HPET_TN_PERIODIC;
512 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
513 	hpet_writel(cfg, HPET_T1_CFG);
514 
515 	local_irq_restore(flags);
516 
517 	return 1;
518 }
519 
520 /*
521  * The functions below are called from rtc driver.
522  * Return 0 if HPET is not being used.
523  * Otherwise do the necessary changes and return 1.
524  */
525 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
526 {
527 	if (!is_hpet_enabled())
528 		return 0;
529 
530 	hpet_rtc_flags &= ~bit_mask;
531 	return 1;
532 }
533 
534 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
535 {
536 	unsigned long oldbits = hpet_rtc_flags;
537 
538 	if (!is_hpet_enabled())
539 		return 0;
540 
541 	hpet_rtc_flags |= bit_mask;
542 
543 	if (!oldbits)
544 		hpet_rtc_timer_init();
545 
546 	return 1;
547 }
548 
549 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
550 			unsigned char sec)
551 {
552 	if (!is_hpet_enabled())
553 		return 0;
554 
555 	hpet_alarm_time.tm_hour = hrs;
556 	hpet_alarm_time.tm_min = min;
557 	hpet_alarm_time.tm_sec = sec;
558 
559 	return 1;
560 }
561 
562 int hpet_set_periodic_freq(unsigned long freq)
563 {
564 	uint64_t clc;
565 
566 	if (!is_hpet_enabled())
567 		return 0;
568 
569 	if (freq <= DEFAULT_RTC_INT_FREQ)
570 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
571 	else {
572 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
573 		do_div(clc, freq);
574 		clc >>= hpet_clockevent.shift;
575 		hpet_pie_delta = (unsigned long) clc;
576 	}
577 	return 1;
578 }
579 
580 int hpet_rtc_dropped_irq(void)
581 {
582 	return is_hpet_enabled();
583 }
584 
585 static void hpet_rtc_timer_reinit(void)
586 {
587 	unsigned long cfg, delta;
588 	int lost_ints = -1;
589 
590 	if (unlikely(!hpet_rtc_flags)) {
591 		cfg = hpet_readl(HPET_T1_CFG);
592 		cfg &= ~HPET_TN_ENABLE;
593 		hpet_writel(cfg, HPET_T1_CFG);
594 		return;
595 	}
596 
597 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
598 		delta = hpet_default_delta;
599 	else
600 		delta = hpet_pie_delta;
601 
602 	/*
603 	 * Increment the comparator value until we are ahead of the
604 	 * current count.
605 	 */
606 	do {
607 		hpet_t1_cmp += delta;
608 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
609 		lost_ints++;
610 	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
611 
612 	if (lost_ints) {
613 		if (hpet_rtc_flags & RTC_PIE)
614 			hpet_pie_count += lost_ints;
615 		if (printk_ratelimit())
616 			printk(KERN_WARNING "rtc: lost %d interrupts\n",
617 				lost_ints);
618 	}
619 }
620 
621 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
622 {
623 	struct rtc_time curr_time;
624 	unsigned long rtc_int_flag = 0;
625 
626 	hpet_rtc_timer_reinit();
627 
628 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
629 		rtc_get_rtc_time(&curr_time);
630 
631 	if (hpet_rtc_flags & RTC_UIE &&
632 	    curr_time.tm_sec != hpet_prev_update_sec) {
633 		rtc_int_flag = RTC_UF;
634 		hpet_prev_update_sec = curr_time.tm_sec;
635 	}
636 
637 	if (hpet_rtc_flags & RTC_PIE &&
638 	    ++hpet_pie_count >= hpet_pie_limit) {
639 		rtc_int_flag |= RTC_PF;
640 		hpet_pie_count = 0;
641 	}
642 
643 	if (hpet_rtc_flags & RTC_PIE &&
644 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
645 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
646 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
647 			rtc_int_flag |= RTC_AF;
648 
649 	if (rtc_int_flag) {
650 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
651 		rtc_interrupt(rtc_int_flag, dev_id);
652 	}
653 	return IRQ_HANDLED;
654 }
655 #endif
656