xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/encl.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/lockdep.h>
5 #include <linux/mm.h>
6 #include <linux/mman.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/suspend.h>
9 #include <linux/sched/mm.h>
10 #include <asm/sgx.h>
11 #include "encl.h"
12 #include "encls.h"
13 #include "sgx.h"
14 
15 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
16 /*
17  * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
18  * determine the page index associated with the first PCMD entry
19  * within a PCMD page.
20  */
21 #define PCMD_FIRST_MASK GENMASK(4, 0)
22 
23 /**
24  * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
25  *                               a PCMD page is in process of being reclaimed.
26  * @encl:        Enclave to which PCMD page belongs
27  * @start_addr:  Address of enclave page using first entry within the PCMD page
28  *
29  * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
30  * stored. The PCMD data of a reclaimed enclave page contains enough
31  * information for the processor to verify the page at the time
32  * it is loaded back into the Enclave Page Cache (EPC).
33  *
34  * The backing storage to which enclave pages are reclaimed is laid out as
35  * follows:
36  * Encrypted enclave pages:SECS page:PCMD pages
37  *
38  * Each PCMD page contains the PCMD metadata of
39  * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
40  *
41  * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
42  * process of getting data (and thus soon being non-empty). (b) is tested with
43  * a check if an enclave page sharing the PCMD page is in the process of being
44  * reclaimed.
45  *
46  * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
47  * intends to reclaim that enclave page - it means that the PCMD page
48  * associated with that enclave page is about to get some data and thus
49  * even if the PCMD page is empty, it should not be truncated.
50  *
51  * Context: Enclave mutex (&sgx_encl->lock) must be held.
52  * Return: 1 if the reclaimer is about to write to the PCMD page
53  *         0 if the reclaimer has no intention to write to the PCMD page
54  */
55 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
56 				     unsigned long start_addr)
57 {
58 	int reclaimed = 0;
59 	int i;
60 
61 	/*
62 	 * PCMD_FIRST_MASK is based on number of PCMD entries within
63 	 * PCMD page being 32.
64 	 */
65 	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
66 
67 	for (i = 0; i < PCMDS_PER_PAGE; i++) {
68 		struct sgx_encl_page *entry;
69 		unsigned long addr;
70 
71 		addr = start_addr + i * PAGE_SIZE;
72 
73 		/*
74 		 * Stop when reaching the SECS page - it does not
75 		 * have a page_array entry and its reclaim is
76 		 * started and completed with enclave mutex held so
77 		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
78 		 * flag.
79 		 */
80 		if (addr == encl->base + encl->size)
81 			break;
82 
83 		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
84 		if (!entry)
85 			continue;
86 
87 		/*
88 		 * VA page slot ID uses same bit as the flag so it is important
89 		 * to ensure that the page is not already in backing store.
90 		 */
91 		if (entry->epc_page &&
92 		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
93 			reclaimed = 1;
94 			break;
95 		}
96 	}
97 
98 	return reclaimed;
99 }
100 
101 /*
102  * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
103  * follow right after the EPC data in the backing storage. In addition to the
104  * visible enclave pages, there's one extra page slot for SECS, before PCMD
105  * structs.
106  */
107 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
108 							    unsigned long page_index)
109 {
110 	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
111 
112 	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
113 }
114 
115 /*
116  * Free a page from the backing storage in the given page index.
117  */
118 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
119 {
120 	struct inode *inode = file_inode(encl->backing);
121 
122 	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
123 }
124 
125 /*
126  * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
127  * Pages" in the SDM.
128  */
129 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
130 			   struct sgx_epc_page *epc_page,
131 			   struct sgx_epc_page *secs_page)
132 {
133 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
134 	struct sgx_encl *encl = encl_page->encl;
135 	pgoff_t page_index, page_pcmd_off;
136 	unsigned long pcmd_first_page;
137 	struct sgx_pageinfo pginfo;
138 	struct sgx_backing b;
139 	bool pcmd_page_empty;
140 	u8 *pcmd_page;
141 	int ret;
142 
143 	if (secs_page)
144 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
145 	else
146 		page_index = PFN_DOWN(encl->size);
147 
148 	/*
149 	 * Address of enclave page using the first entry within the PCMD page.
150 	 */
151 	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
152 
153 	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
154 
155 	ret = sgx_encl_lookup_backing(encl, page_index, &b);
156 	if (ret)
157 		return ret;
158 
159 	pginfo.addr = encl_page->desc & PAGE_MASK;
160 	pginfo.contents = (unsigned long)kmap_atomic(b.contents);
161 	pcmd_page = kmap_atomic(b.pcmd);
162 	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
163 
164 	if (secs_page)
165 		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
166 	else
167 		pginfo.secs = 0;
168 
169 	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
170 		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
171 	if (ret) {
172 		if (encls_failed(ret))
173 			ENCLS_WARN(ret, "ELDU");
174 
175 		ret = -EFAULT;
176 	}
177 
178 	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
179 	set_page_dirty(b.pcmd);
180 
181 	/*
182 	 * The area for the PCMD in the page was zeroed above.  Check if the
183 	 * whole page is now empty meaning that all PCMD's have been zeroed:
184 	 */
185 	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
186 
187 	kunmap_atomic(pcmd_page);
188 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
189 
190 	get_page(b.pcmd);
191 	sgx_encl_put_backing(&b);
192 
193 	sgx_encl_truncate_backing_page(encl, page_index);
194 
195 	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
196 		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
197 		pcmd_page = kmap_atomic(b.pcmd);
198 		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
199 			pr_warn("PCMD page not empty after truncate.\n");
200 		kunmap_atomic(pcmd_page);
201 	}
202 
203 	put_page(b.pcmd);
204 
205 	return ret;
206 }
207 
208 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
209 					  struct sgx_epc_page *secs_page)
210 {
211 
212 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
213 	struct sgx_encl *encl = encl_page->encl;
214 	struct sgx_epc_page *epc_page;
215 	int ret;
216 
217 	epc_page = sgx_alloc_epc_page(encl_page, false);
218 	if (IS_ERR(epc_page))
219 		return epc_page;
220 
221 	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
222 	if (ret) {
223 		sgx_encl_free_epc_page(epc_page);
224 		return ERR_PTR(ret);
225 	}
226 
227 	sgx_free_va_slot(encl_page->va_page, va_offset);
228 	list_move(&encl_page->va_page->list, &encl->va_pages);
229 	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
230 	encl_page->epc_page = epc_page;
231 
232 	return epc_page;
233 }
234 
235 static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
236 						  struct sgx_encl_page *entry)
237 {
238 	struct sgx_epc_page *epc_page;
239 
240 	/* Entry successfully located. */
241 	if (entry->epc_page) {
242 		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
243 			return ERR_PTR(-EBUSY);
244 
245 		return entry;
246 	}
247 
248 	if (!(encl->secs.epc_page)) {
249 		epc_page = sgx_encl_eldu(&encl->secs, NULL);
250 		if (IS_ERR(epc_page))
251 			return ERR_CAST(epc_page);
252 	}
253 
254 	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
255 	if (IS_ERR(epc_page))
256 		return ERR_CAST(epc_page);
257 
258 	encl->secs_child_cnt++;
259 	sgx_mark_page_reclaimable(entry->epc_page);
260 
261 	return entry;
262 }
263 
264 static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
265 						       unsigned long addr,
266 						       unsigned long vm_flags)
267 {
268 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
269 	struct sgx_encl_page *entry;
270 
271 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
272 	if (!entry)
273 		return ERR_PTR(-EFAULT);
274 
275 	/*
276 	 * Verify that the page has equal or higher build time
277 	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
278 	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
279 	 */
280 	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
281 		return ERR_PTR(-EFAULT);
282 
283 	return __sgx_encl_load_page(encl, entry);
284 }
285 
286 struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
287 					 unsigned long addr)
288 {
289 	struct sgx_encl_page *entry;
290 
291 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
292 	if (!entry)
293 		return ERR_PTR(-EFAULT);
294 
295 	return __sgx_encl_load_page(encl, entry);
296 }
297 
298 /**
299  * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
300  * @vma:	VMA obtained from fault info from where page is accessed
301  * @encl:	enclave accessing the page
302  * @addr:	address that triggered the page fault
303  *
304  * When an initialized enclave accesses a page with no backing EPC page
305  * on a SGX2 system then the EPC can be added dynamically via the SGX2
306  * ENCLS[EAUG] instruction.
307  *
308  * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
309  * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
310  */
311 static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
312 				     struct sgx_encl *encl, unsigned long addr)
313 {
314 	vm_fault_t vmret = VM_FAULT_SIGBUS;
315 	struct sgx_pageinfo pginfo = {0};
316 	struct sgx_encl_page *encl_page;
317 	struct sgx_epc_page *epc_page;
318 	struct sgx_va_page *va_page;
319 	unsigned long phys_addr;
320 	u64 secinfo_flags;
321 	int ret;
322 
323 	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
324 		return VM_FAULT_SIGBUS;
325 
326 	/*
327 	 * Ignore internal permission checking for dynamically added pages.
328 	 * They matter only for data added during the pre-initialization
329 	 * phase. The enclave decides the permissions by the means of
330 	 * EACCEPT, EACCEPTCOPY and EMODPE.
331 	 */
332 	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
333 	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
334 	if (IS_ERR(encl_page))
335 		return VM_FAULT_OOM;
336 
337 	mutex_lock(&encl->lock);
338 
339 	epc_page = sgx_alloc_epc_page(encl_page, false);
340 	if (IS_ERR(epc_page)) {
341 		if (PTR_ERR(epc_page) == -EBUSY)
342 			vmret =  VM_FAULT_NOPAGE;
343 		goto err_out_unlock;
344 	}
345 
346 	va_page = sgx_encl_grow(encl, false);
347 	if (IS_ERR(va_page)) {
348 		if (PTR_ERR(va_page) == -EBUSY)
349 			vmret = VM_FAULT_NOPAGE;
350 		goto err_out_epc;
351 	}
352 
353 	if (va_page)
354 		list_add(&va_page->list, &encl->va_pages);
355 
356 	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
357 			encl_page, GFP_KERNEL);
358 	/*
359 	 * If ret == -EBUSY then page was created in another flow while
360 	 * running without encl->lock
361 	 */
362 	if (ret)
363 		goto err_out_shrink;
364 
365 	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
366 	pginfo.addr = encl_page->desc & PAGE_MASK;
367 	pginfo.metadata = 0;
368 
369 	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
370 	if (ret)
371 		goto err_out;
372 
373 	encl_page->encl = encl;
374 	encl_page->epc_page = epc_page;
375 	encl_page->type = SGX_PAGE_TYPE_REG;
376 	encl->secs_child_cnt++;
377 
378 	sgx_mark_page_reclaimable(encl_page->epc_page);
379 
380 	phys_addr = sgx_get_epc_phys_addr(epc_page);
381 	/*
382 	 * Do not undo everything when creating PTE entry fails - next #PF
383 	 * would find page ready for a PTE.
384 	 */
385 	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
386 	if (vmret != VM_FAULT_NOPAGE) {
387 		mutex_unlock(&encl->lock);
388 		return VM_FAULT_SIGBUS;
389 	}
390 	mutex_unlock(&encl->lock);
391 	return VM_FAULT_NOPAGE;
392 
393 err_out:
394 	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
395 
396 err_out_shrink:
397 	sgx_encl_shrink(encl, va_page);
398 err_out_epc:
399 	sgx_encl_free_epc_page(epc_page);
400 err_out_unlock:
401 	mutex_unlock(&encl->lock);
402 	kfree(encl_page);
403 
404 	return vmret;
405 }
406 
407 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
408 {
409 	unsigned long addr = (unsigned long)vmf->address;
410 	struct vm_area_struct *vma = vmf->vma;
411 	struct sgx_encl_page *entry;
412 	unsigned long phys_addr;
413 	struct sgx_encl *encl;
414 	vm_fault_t ret;
415 
416 	encl = vma->vm_private_data;
417 
418 	/*
419 	 * It's very unlikely but possible that allocating memory for the
420 	 * mm_list entry of a forked process failed in sgx_vma_open(). When
421 	 * this happens, vm_private_data is set to NULL.
422 	 */
423 	if (unlikely(!encl))
424 		return VM_FAULT_SIGBUS;
425 
426 	/*
427 	 * The page_array keeps track of all enclave pages, whether they
428 	 * are swapped out or not. If there is no entry for this page and
429 	 * the system supports SGX2 then it is possible to dynamically add
430 	 * a new enclave page. This is only possible for an initialized
431 	 * enclave that will be checked for right away.
432 	 */
433 	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
434 	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
435 		return sgx_encl_eaug_page(vma, encl, addr);
436 
437 	mutex_lock(&encl->lock);
438 
439 	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
440 	if (IS_ERR(entry)) {
441 		mutex_unlock(&encl->lock);
442 
443 		if (PTR_ERR(entry) == -EBUSY)
444 			return VM_FAULT_NOPAGE;
445 
446 		return VM_FAULT_SIGBUS;
447 	}
448 
449 	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
450 
451 	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
452 	if (ret != VM_FAULT_NOPAGE) {
453 		mutex_unlock(&encl->lock);
454 
455 		return VM_FAULT_SIGBUS;
456 	}
457 
458 	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
459 	mutex_unlock(&encl->lock);
460 
461 	return VM_FAULT_NOPAGE;
462 }
463 
464 static void sgx_vma_open(struct vm_area_struct *vma)
465 {
466 	struct sgx_encl *encl = vma->vm_private_data;
467 
468 	/*
469 	 * It's possible but unlikely that vm_private_data is NULL. This can
470 	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
471 	 * failed to allocate memory in this callback.
472 	 */
473 	if (unlikely(!encl))
474 		return;
475 
476 	if (sgx_encl_mm_add(encl, vma->vm_mm))
477 		vma->vm_private_data = NULL;
478 }
479 
480 
481 /**
482  * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
483  * @encl:		an enclave pointer
484  * @start:		lower bound of the address range, inclusive
485  * @end:		upper bound of the address range, exclusive
486  * @vm_flags:		VMA flags
487  *
488  * Iterate through the enclave pages contained within [@start, @end) to verify
489  * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
490  * do not contain any permissions that are not contained in the build time
491  * permissions of any of the enclave pages within the given address range.
492  *
493  * An enclave creator must declare the strongest permissions that will be
494  * needed for each enclave page. This ensures that mappings have the identical
495  * or weaker permissions than the earlier declared permissions.
496  *
497  * Return: 0 on success, -EACCES otherwise
498  */
499 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
500 		     unsigned long end, unsigned long vm_flags)
501 {
502 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
503 	struct sgx_encl_page *page;
504 	unsigned long count = 0;
505 	int ret = 0;
506 
507 	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
508 
509 	/* Disallow mapping outside enclave's address range. */
510 	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
511 	    (start < encl->base || end > encl->base + encl->size))
512 		return -EACCES;
513 
514 	/*
515 	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
516 	 * conflict with the enclave page permissions.
517 	 */
518 	if (current->personality & READ_IMPLIES_EXEC)
519 		return -EACCES;
520 
521 	mutex_lock(&encl->lock);
522 	xas_lock(&xas);
523 	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
524 		if (~page->vm_max_prot_bits & vm_prot_bits) {
525 			ret = -EACCES;
526 			break;
527 		}
528 
529 		/* Reschedule on every XA_CHECK_SCHED iteration. */
530 		if (!(++count % XA_CHECK_SCHED)) {
531 			xas_pause(&xas);
532 			xas_unlock(&xas);
533 			mutex_unlock(&encl->lock);
534 
535 			cond_resched();
536 
537 			mutex_lock(&encl->lock);
538 			xas_lock(&xas);
539 		}
540 	}
541 	xas_unlock(&xas);
542 	mutex_unlock(&encl->lock);
543 
544 	return ret;
545 }
546 
547 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
548 			    unsigned long end, unsigned long newflags)
549 {
550 	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
551 }
552 
553 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
554 			       unsigned long addr, void *data)
555 {
556 	unsigned long offset = addr & ~PAGE_MASK;
557 	int ret;
558 
559 
560 	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
561 	if (ret)
562 		return -EIO;
563 
564 	return 0;
565 }
566 
567 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
568 				unsigned long addr, void *data)
569 {
570 	unsigned long offset = addr & ~PAGE_MASK;
571 	int ret;
572 
573 	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
574 	if (ret)
575 		return -EIO;
576 
577 	return 0;
578 }
579 
580 /*
581  * Load an enclave page to EPC if required, and take encl->lock.
582  */
583 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
584 						   unsigned long addr,
585 						   unsigned long vm_flags)
586 {
587 	struct sgx_encl_page *entry;
588 
589 	for ( ; ; ) {
590 		mutex_lock(&encl->lock);
591 
592 		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
593 		if (PTR_ERR(entry) != -EBUSY)
594 			break;
595 
596 		mutex_unlock(&encl->lock);
597 	}
598 
599 	if (IS_ERR(entry))
600 		mutex_unlock(&encl->lock);
601 
602 	return entry;
603 }
604 
605 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
606 			  void *buf, int len, int write)
607 {
608 	struct sgx_encl *encl = vma->vm_private_data;
609 	struct sgx_encl_page *entry = NULL;
610 	char data[sizeof(unsigned long)];
611 	unsigned long align;
612 	int offset;
613 	int cnt;
614 	int ret = 0;
615 	int i;
616 
617 	/*
618 	 * If process was forked, VMA is still there but vm_private_data is set
619 	 * to NULL.
620 	 */
621 	if (!encl)
622 		return -EFAULT;
623 
624 	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
625 		return -EFAULT;
626 
627 	for (i = 0; i < len; i += cnt) {
628 		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
629 					      vma->vm_flags);
630 		if (IS_ERR(entry)) {
631 			ret = PTR_ERR(entry);
632 			break;
633 		}
634 
635 		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
636 		offset = (addr + i) & (sizeof(unsigned long) - 1);
637 		cnt = sizeof(unsigned long) - offset;
638 		cnt = min(cnt, len - i);
639 
640 		ret = sgx_encl_debug_read(encl, entry, align, data);
641 		if (ret)
642 			goto out;
643 
644 		if (write) {
645 			memcpy(data + offset, buf + i, cnt);
646 			ret = sgx_encl_debug_write(encl, entry, align, data);
647 			if (ret)
648 				goto out;
649 		} else {
650 			memcpy(buf + i, data + offset, cnt);
651 		}
652 
653 out:
654 		mutex_unlock(&encl->lock);
655 
656 		if (ret)
657 			break;
658 	}
659 
660 	return ret < 0 ? ret : i;
661 }
662 
663 const struct vm_operations_struct sgx_vm_ops = {
664 	.fault = sgx_vma_fault,
665 	.mprotect = sgx_vma_mprotect,
666 	.open = sgx_vma_open,
667 	.access = sgx_vma_access,
668 };
669 
670 /**
671  * sgx_encl_release - Destroy an enclave instance
672  * @ref:	address of a kref inside &sgx_encl
673  *
674  * Used together with kref_put(). Frees all the resources associated with the
675  * enclave and the instance itself.
676  */
677 void sgx_encl_release(struct kref *ref)
678 {
679 	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
680 	struct sgx_va_page *va_page;
681 	struct sgx_encl_page *entry;
682 	unsigned long index;
683 
684 	xa_for_each(&encl->page_array, index, entry) {
685 		if (entry->epc_page) {
686 			/*
687 			 * The page and its radix tree entry cannot be freed
688 			 * if the page is being held by the reclaimer.
689 			 */
690 			if (sgx_unmark_page_reclaimable(entry->epc_page))
691 				continue;
692 
693 			sgx_encl_free_epc_page(entry->epc_page);
694 			encl->secs_child_cnt--;
695 			entry->epc_page = NULL;
696 		}
697 
698 		kfree(entry);
699 		/* Invoke scheduler to prevent soft lockups. */
700 		cond_resched();
701 	}
702 
703 	xa_destroy(&encl->page_array);
704 
705 	if (!encl->secs_child_cnt && encl->secs.epc_page) {
706 		sgx_encl_free_epc_page(encl->secs.epc_page);
707 		encl->secs.epc_page = NULL;
708 	}
709 
710 	while (!list_empty(&encl->va_pages)) {
711 		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
712 					   list);
713 		list_del(&va_page->list);
714 		sgx_encl_free_epc_page(va_page->epc_page);
715 		kfree(va_page);
716 	}
717 
718 	if (encl->backing)
719 		fput(encl->backing);
720 
721 	cleanup_srcu_struct(&encl->srcu);
722 
723 	WARN_ON_ONCE(!list_empty(&encl->mm_list));
724 
725 	/* Detect EPC page leak's. */
726 	WARN_ON_ONCE(encl->secs_child_cnt);
727 	WARN_ON_ONCE(encl->secs.epc_page);
728 
729 	kfree(encl);
730 }
731 
732 /*
733  * 'mm' is exiting and no longer needs mmu notifications.
734  */
735 static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
736 				     struct mm_struct *mm)
737 {
738 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
739 	struct sgx_encl_mm *tmp = NULL;
740 
741 	/*
742 	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
743 	 * off an RCU protected list, but deletion is ok.
744 	 */
745 	spin_lock(&encl_mm->encl->mm_lock);
746 	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
747 		if (tmp == encl_mm) {
748 			list_del_rcu(&encl_mm->list);
749 			break;
750 		}
751 	}
752 	spin_unlock(&encl_mm->encl->mm_lock);
753 
754 	if (tmp == encl_mm) {
755 		synchronize_srcu(&encl_mm->encl->srcu);
756 		mmu_notifier_put(mn);
757 	}
758 }
759 
760 static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
761 {
762 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
763 
764 	/* 'encl_mm' is going away, put encl_mm->encl reference: */
765 	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
766 
767 	kfree(encl_mm);
768 }
769 
770 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
771 	.release		= sgx_mmu_notifier_release,
772 	.free_notifier		= sgx_mmu_notifier_free,
773 };
774 
775 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
776 					    struct mm_struct *mm)
777 {
778 	struct sgx_encl_mm *encl_mm = NULL;
779 	struct sgx_encl_mm *tmp;
780 	int idx;
781 
782 	idx = srcu_read_lock(&encl->srcu);
783 
784 	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
785 		if (tmp->mm == mm) {
786 			encl_mm = tmp;
787 			break;
788 		}
789 	}
790 
791 	srcu_read_unlock(&encl->srcu, idx);
792 
793 	return encl_mm;
794 }
795 
796 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
797 {
798 	struct sgx_encl_mm *encl_mm;
799 	int ret;
800 
801 	/*
802 	 * Even though a single enclave may be mapped into an mm more than once,
803 	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
804 	 * holding the mm's mmap lock for write before an mm can be added or
805 	 * remove to an encl->mm_list.
806 	 */
807 	mmap_assert_write_locked(mm);
808 
809 	/*
810 	 * It's possible that an entry already exists in the mm_list, because it
811 	 * is removed only on VFS release or process exit.
812 	 */
813 	if (sgx_encl_find_mm(encl, mm))
814 		return 0;
815 
816 	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
817 	if (!encl_mm)
818 		return -ENOMEM;
819 
820 	/* Grab a refcount for the encl_mm->encl reference: */
821 	kref_get(&encl->refcount);
822 	encl_mm->encl = encl;
823 	encl_mm->mm = mm;
824 	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
825 
826 	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
827 	if (ret) {
828 		kfree(encl_mm);
829 		return ret;
830 	}
831 
832 	spin_lock(&encl->mm_lock);
833 	list_add_rcu(&encl_mm->list, &encl->mm_list);
834 	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
835 	smp_wmb();
836 	encl->mm_list_version++;
837 	spin_unlock(&encl->mm_lock);
838 
839 	return 0;
840 }
841 
842 /**
843  * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
844  * @encl: the enclave
845  *
846  * Some SGX functions require that no cached linear-to-physical address
847  * mappings are present before they can succeed. For example, ENCLS[EWB]
848  * copies a page from the enclave page cache to regular main memory but
849  * it fails if it cannot ensure that there are no cached
850  * linear-to-physical address mappings referring to the page.
851  *
852  * SGX hardware flushes all cached linear-to-physical mappings on a CPU
853  * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
854  * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
855  * address mappings are cleared but coordination with the tracking done within
856  * the SGX hardware is needed to support the SGX functions that depend on this
857  * cache clearing.
858  *
859  * When the ENCLS[ETRACK] function is issued on an enclave the hardware
860  * tracks threads operating inside the enclave at that time. The SGX
861  * hardware tracking require that all the identified threads must have
862  * exited the enclave in order to flush the mappings before a function such
863  * as ENCLS[EWB] will be permitted
864  *
865  * The following flow is used to support SGX functions that require that
866  * no cached linear-to-physical address mappings are present:
867  * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
868  * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
869  *    accessing the enclave.
870  * 3) Send IPI to identified CPUs, kicking them out of the enclave and
871  *    thus flushing all locally cached linear-to-physical address mappings.
872  * 4) Execute SGX function.
873  *
874  * Context: It is required to call this function after ENCLS[ETRACK].
875  *          This will ensure that if any new mm appears (racing with
876  *          sgx_encl_mm_add()) then the new mm will enter into the
877  *          enclave with fresh linear-to-physical address mappings.
878  *
879  *          It is required that all IPIs are completed before a new
880  *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
881  *          of the above flow with the enclave's mutex.
882  *
883  * Return: cpumask of CPUs that might be accessing @encl
884  */
885 const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
886 {
887 	cpumask_t *cpumask = &encl->cpumask;
888 	struct sgx_encl_mm *encl_mm;
889 	int idx;
890 
891 	cpumask_clear(cpumask);
892 
893 	idx = srcu_read_lock(&encl->srcu);
894 
895 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
896 		if (!mmget_not_zero(encl_mm->mm))
897 			continue;
898 
899 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
900 
901 		mmput_async(encl_mm->mm);
902 	}
903 
904 	srcu_read_unlock(&encl->srcu, idx);
905 
906 	return cpumask;
907 }
908 
909 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
910 					      pgoff_t index)
911 {
912 	struct inode *inode = encl->backing->f_path.dentry->d_inode;
913 	struct address_space *mapping = inode->i_mapping;
914 	gfp_t gfpmask = mapping_gfp_mask(mapping);
915 
916 	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
917 }
918 
919 /**
920  * sgx_encl_get_backing() - Pin the backing storage
921  * @encl:	an enclave pointer
922  * @page_index:	enclave page index
923  * @backing:	data for accessing backing storage for the page
924  *
925  * Pin the backing storage pages for storing the encrypted contents and Paging
926  * Crypto MetaData (PCMD) of an enclave page.
927  *
928  * Return:
929  *   0 on success,
930  *   -errno otherwise.
931  */
932 static int sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
933 			 struct sgx_backing *backing)
934 {
935 	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
936 	struct page *contents;
937 	struct page *pcmd;
938 
939 	contents = sgx_encl_get_backing_page(encl, page_index);
940 	if (IS_ERR(contents))
941 		return PTR_ERR(contents);
942 
943 	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
944 	if (IS_ERR(pcmd)) {
945 		put_page(contents);
946 		return PTR_ERR(pcmd);
947 	}
948 
949 	backing->contents = contents;
950 	backing->pcmd = pcmd;
951 	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
952 
953 	return 0;
954 }
955 
956 /*
957  * When called from ksgxd, returns the mem_cgroup of a struct mm stored
958  * in the enclave's mm_list. When not called from ksgxd, just returns
959  * the mem_cgroup of the current task.
960  */
961 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
962 {
963 	struct mem_cgroup *memcg = NULL;
964 	struct sgx_encl_mm *encl_mm;
965 	int idx;
966 
967 	/*
968 	 * If called from normal task context, return the mem_cgroup
969 	 * of the current task's mm. The remainder of the handling is for
970 	 * ksgxd.
971 	 */
972 	if (!current_is_ksgxd())
973 		return get_mem_cgroup_from_mm(current->mm);
974 
975 	/*
976 	 * Search the enclave's mm_list to find an mm associated with
977 	 * this enclave to charge the allocation to.
978 	 */
979 	idx = srcu_read_lock(&encl->srcu);
980 
981 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
982 		if (!mmget_not_zero(encl_mm->mm))
983 			continue;
984 
985 		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
986 
987 		mmput_async(encl_mm->mm);
988 
989 		break;
990 	}
991 
992 	srcu_read_unlock(&encl->srcu, idx);
993 
994 	/*
995 	 * In the rare case that there isn't an mm associated with
996 	 * the enclave, set memcg to the current active mem_cgroup.
997 	 * This will be the root mem_cgroup if there is no active
998 	 * mem_cgroup.
999 	 */
1000 	if (!memcg)
1001 		return get_mem_cgroup_from_mm(NULL);
1002 
1003 	return memcg;
1004 }
1005 
1006 /**
1007  * sgx_encl_alloc_backing() - allocate a new backing storage page
1008  * @encl:	an enclave pointer
1009  * @page_index:	enclave page index
1010  * @backing:	data for accessing backing storage for the page
1011  *
1012  * When called from ksgxd, sets the active memcg from one of the
1013  * mms in the enclave's mm_list prior to any backing page allocation,
1014  * in order to ensure that shmem page allocations are charged to the
1015  * enclave.
1016  *
1017  * Return:
1018  *   0 on success,
1019  *   -errno otherwise.
1020  */
1021 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1022 			   struct sgx_backing *backing)
1023 {
1024 	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1025 	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1026 	int ret;
1027 
1028 	ret = sgx_encl_get_backing(encl, page_index, backing);
1029 
1030 	set_active_memcg(memcg);
1031 	mem_cgroup_put(encl_memcg);
1032 
1033 	return ret;
1034 }
1035 
1036 /**
1037  * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1038  * @encl:	an enclave pointer
1039  * @page_index:	enclave page index
1040  * @backing:	data for accessing backing storage for the page
1041  *
1042  * Retrieve a backing page for loading data back into an EPC page with ELDU.
1043  * It is the caller's responsibility to ensure that it is appropriate to use
1044  * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1045  * not used correctly, this will cause an allocation which is not accounted for.
1046  *
1047  * Return:
1048  *   0 on success,
1049  *   -errno otherwise.
1050  */
1051 int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1052 			   struct sgx_backing *backing)
1053 {
1054 	return sgx_encl_get_backing(encl, page_index, backing);
1055 }
1056 
1057 /**
1058  * sgx_encl_put_backing() - Unpin the backing storage
1059  * @backing:	data for accessing backing storage for the page
1060  */
1061 void sgx_encl_put_backing(struct sgx_backing *backing)
1062 {
1063 	put_page(backing->pcmd);
1064 	put_page(backing->contents);
1065 }
1066 
1067 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1068 					    void *data)
1069 {
1070 	pte_t pte;
1071 	int ret;
1072 
1073 	ret = pte_young(*ptep);
1074 	if (ret) {
1075 		pte = pte_mkold(*ptep);
1076 		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1077 	}
1078 
1079 	return ret;
1080 }
1081 
1082 /**
1083  * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1084  * @mm:		mm_struct that is checked
1085  * @page:	enclave page to be tested for recent access
1086  *
1087  * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1088  * clears it.
1089  *
1090  * Return: 1 if the page has been recently accessed and 0 if not.
1091  */
1092 int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1093 				  struct sgx_encl_page *page)
1094 {
1095 	unsigned long addr = page->desc & PAGE_MASK;
1096 	struct sgx_encl *encl = page->encl;
1097 	struct vm_area_struct *vma;
1098 	int ret;
1099 
1100 	ret = sgx_encl_find(mm, addr, &vma);
1101 	if (ret)
1102 		return 0;
1103 
1104 	if (encl != vma->vm_private_data)
1105 		return 0;
1106 
1107 	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1108 				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1109 	if (ret < 0)
1110 		return 0;
1111 
1112 	return ret;
1113 }
1114 
1115 struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1116 					  unsigned long offset,
1117 					  u64 secinfo_flags)
1118 {
1119 	struct sgx_encl_page *encl_page;
1120 	unsigned long prot;
1121 
1122 	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1123 	if (!encl_page)
1124 		return ERR_PTR(-ENOMEM);
1125 
1126 	encl_page->desc = encl->base + offset;
1127 	encl_page->encl = encl;
1128 
1129 	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1130 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1131 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1132 
1133 	/*
1134 	 * TCS pages must always RW set for CPU access while the SECINFO
1135 	 * permissions are *always* zero - the CPU ignores the user provided
1136 	 * values and silently overwrites them with zero permissions.
1137 	 */
1138 	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1139 		prot |= PROT_READ | PROT_WRITE;
1140 
1141 	/* Calculate maximum of the VM flags for the page. */
1142 	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1143 
1144 	return encl_page;
1145 }
1146 
1147 /**
1148  * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1149  * @encl: the enclave
1150  * @addr: page aligned pointer to single page for which PTEs will be removed
1151  *
1152  * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1153  * @addr from each VMA. Ensure that page fault handler is ready to handle
1154  * new mappings of @addr before calling this function.
1155  */
1156 void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1157 {
1158 	unsigned long mm_list_version;
1159 	struct sgx_encl_mm *encl_mm;
1160 	struct vm_area_struct *vma;
1161 	int idx, ret;
1162 
1163 	do {
1164 		mm_list_version = encl->mm_list_version;
1165 
1166 		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1167 		smp_rmb();
1168 
1169 		idx = srcu_read_lock(&encl->srcu);
1170 
1171 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1172 			if (!mmget_not_zero(encl_mm->mm))
1173 				continue;
1174 
1175 			mmap_read_lock(encl_mm->mm);
1176 
1177 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1178 			if (!ret && encl == vma->vm_private_data)
1179 				zap_vma_ptes(vma, addr, PAGE_SIZE);
1180 
1181 			mmap_read_unlock(encl_mm->mm);
1182 
1183 			mmput_async(encl_mm->mm);
1184 		}
1185 
1186 		srcu_read_unlock(&encl->srcu, idx);
1187 	} while (unlikely(encl->mm_list_version != mm_list_version));
1188 }
1189 
1190 /**
1191  * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1192  * @reclaim: Reclaim EPC pages directly if none available. Enclave
1193  *           mutex should not be held if this is set.
1194  *
1195  * Allocate a free EPC page and convert it to a Version Array (VA) page.
1196  *
1197  * Return:
1198  *   a VA page,
1199  *   -errno otherwise
1200  */
1201 struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1202 {
1203 	struct sgx_epc_page *epc_page;
1204 	int ret;
1205 
1206 	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1207 	if (IS_ERR(epc_page))
1208 		return ERR_CAST(epc_page);
1209 
1210 	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1211 	if (ret) {
1212 		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1213 		sgx_encl_free_epc_page(epc_page);
1214 		return ERR_PTR(-EFAULT);
1215 	}
1216 
1217 	return epc_page;
1218 }
1219 
1220 /**
1221  * sgx_alloc_va_slot - allocate a VA slot
1222  * @va_page:	a &struct sgx_va_page instance
1223  *
1224  * Allocates a slot from a &struct sgx_va_page instance.
1225  *
1226  * Return: offset of the slot inside the VA page
1227  */
1228 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1229 {
1230 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1231 
1232 	if (slot < SGX_VA_SLOT_COUNT)
1233 		set_bit(slot, va_page->slots);
1234 
1235 	return slot << 3;
1236 }
1237 
1238 /**
1239  * sgx_free_va_slot - free a VA slot
1240  * @va_page:	a &struct sgx_va_page instance
1241  * @offset:	offset of the slot inside the VA page
1242  *
1243  * Frees a slot from a &struct sgx_va_page instance.
1244  */
1245 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1246 {
1247 	clear_bit(offset >> 3, va_page->slots);
1248 }
1249 
1250 /**
1251  * sgx_va_page_full - is the VA page full?
1252  * @va_page:	a &struct sgx_va_page instance
1253  *
1254  * Return: true if all slots have been taken
1255  */
1256 bool sgx_va_page_full(struct sgx_va_page *va_page)
1257 {
1258 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1259 
1260 	return slot == SGX_VA_SLOT_COUNT;
1261 }
1262 
1263 /**
1264  * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1265  * @page:	EPC page to be freed
1266  *
1267  * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1268  * only upon success, it puts the page back to free page list.  Otherwise, it
1269  * gives a WARNING to indicate page is leaked.
1270  */
1271 void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1272 {
1273 	int ret;
1274 
1275 	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1276 
1277 	ret = __eremove(sgx_get_epc_virt_addr(page));
1278 	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1279 		return;
1280 
1281 	sgx_free_epc_page(page);
1282 }
1283