1 #include <linux/bootmem.h> 2 #include <linux/linkage.h> 3 #include <linux/bitops.h> 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/percpu.h> 7 #include <linux/string.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/init.h> 12 #include <linux/kprobes.h> 13 #include <linux/kgdb.h> 14 #include <linux/smp.h> 15 #include <linux/io.h> 16 #include <linux/syscore_ops.h> 17 18 #include <asm/stackprotector.h> 19 #include <asm/perf_event.h> 20 #include <asm/mmu_context.h> 21 #include <asm/archrandom.h> 22 #include <asm/hypervisor.h> 23 #include <asm/processor.h> 24 #include <asm/tlbflush.h> 25 #include <asm/debugreg.h> 26 #include <asm/sections.h> 27 #include <asm/vsyscall.h> 28 #include <linux/topology.h> 29 #include <linux/cpumask.h> 30 #include <asm/pgtable.h> 31 #include <linux/atomic.h> 32 #include <asm/proto.h> 33 #include <asm/setup.h> 34 #include <asm/apic.h> 35 #include <asm/desc.h> 36 #include <asm/fpu/internal.h> 37 #include <asm/mtrr.h> 38 #include <linux/numa.h> 39 #include <asm/asm.h> 40 #include <asm/cpu.h> 41 #include <asm/mce.h> 42 #include <asm/msr.h> 43 #include <asm/pat.h> 44 #include <asm/microcode.h> 45 #include <asm/microcode_intel.h> 46 47 #ifdef CONFIG_X86_LOCAL_APIC 48 #include <asm/uv/uv.h> 49 #endif 50 51 #include "cpu.h" 52 53 /* all of these masks are initialized in setup_cpu_local_masks() */ 54 cpumask_var_t cpu_initialized_mask; 55 cpumask_var_t cpu_callout_mask; 56 cpumask_var_t cpu_callin_mask; 57 58 /* representing cpus for which sibling maps can be computed */ 59 cpumask_var_t cpu_sibling_setup_mask; 60 61 /* correctly size the local cpu masks */ 62 void __init setup_cpu_local_masks(void) 63 { 64 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 65 alloc_bootmem_cpumask_var(&cpu_callin_mask); 66 alloc_bootmem_cpumask_var(&cpu_callout_mask); 67 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 68 } 69 70 static void default_init(struct cpuinfo_x86 *c) 71 { 72 #ifdef CONFIG_X86_64 73 cpu_detect_cache_sizes(c); 74 #else 75 /* Not much we can do here... */ 76 /* Check if at least it has cpuid */ 77 if (c->cpuid_level == -1) { 78 /* No cpuid. It must be an ancient CPU */ 79 if (c->x86 == 4) 80 strcpy(c->x86_model_id, "486"); 81 else if (c->x86 == 3) 82 strcpy(c->x86_model_id, "386"); 83 } 84 #endif 85 } 86 87 static const struct cpu_dev default_cpu = { 88 .c_init = default_init, 89 .c_vendor = "Unknown", 90 .c_x86_vendor = X86_VENDOR_UNKNOWN, 91 }; 92 93 static const struct cpu_dev *this_cpu = &default_cpu; 94 95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 96 #ifdef CONFIG_X86_64 97 /* 98 * We need valid kernel segments for data and code in long mode too 99 * IRET will check the segment types kkeil 2000/10/28 100 * Also sysret mandates a special GDT layout 101 * 102 * TLS descriptors are currently at a different place compared to i386. 103 * Hopefully nobody expects them at a fixed place (Wine?) 104 */ 105 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 108 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 111 #else 112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 114 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 116 /* 117 * Segments used for calling PnP BIOS have byte granularity. 118 * They code segments and data segments have fixed 64k limits, 119 * the transfer segment sizes are set at run time. 120 */ 121 /* 32-bit code */ 122 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 123 /* 16-bit code */ 124 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 125 /* 16-bit data */ 126 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 127 /* 16-bit data */ 128 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 129 /* 16-bit data */ 130 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 131 /* 132 * The APM segments have byte granularity and their bases 133 * are set at run time. All have 64k limits. 134 */ 135 /* 32-bit code */ 136 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 137 /* 16-bit code */ 138 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 139 /* data */ 140 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 141 142 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 143 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 144 GDT_STACK_CANARY_INIT 145 #endif 146 } }; 147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 148 149 static int __init x86_mpx_setup(char *s) 150 { 151 /* require an exact match without trailing characters */ 152 if (strlen(s)) 153 return 0; 154 155 /* do not emit a message if the feature is not present */ 156 if (!boot_cpu_has(X86_FEATURE_MPX)) 157 return 1; 158 159 setup_clear_cpu_cap(X86_FEATURE_MPX); 160 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 161 return 1; 162 } 163 __setup("nompx", x86_mpx_setup); 164 165 #ifdef CONFIG_X86_32 166 static int cachesize_override = -1; 167 static int disable_x86_serial_nr = 1; 168 169 static int __init cachesize_setup(char *str) 170 { 171 get_option(&str, &cachesize_override); 172 return 1; 173 } 174 __setup("cachesize=", cachesize_setup); 175 176 static int __init x86_sep_setup(char *s) 177 { 178 setup_clear_cpu_cap(X86_FEATURE_SEP); 179 return 1; 180 } 181 __setup("nosep", x86_sep_setup); 182 183 /* Standard macro to see if a specific flag is changeable */ 184 static inline int flag_is_changeable_p(u32 flag) 185 { 186 u32 f1, f2; 187 188 /* 189 * Cyrix and IDT cpus allow disabling of CPUID 190 * so the code below may return different results 191 * when it is executed before and after enabling 192 * the CPUID. Add "volatile" to not allow gcc to 193 * optimize the subsequent calls to this function. 194 */ 195 asm volatile ("pushfl \n\t" 196 "pushfl \n\t" 197 "popl %0 \n\t" 198 "movl %0, %1 \n\t" 199 "xorl %2, %0 \n\t" 200 "pushl %0 \n\t" 201 "popfl \n\t" 202 "pushfl \n\t" 203 "popl %0 \n\t" 204 "popfl \n\t" 205 206 : "=&r" (f1), "=&r" (f2) 207 : "ir" (flag)); 208 209 return ((f1^f2) & flag) != 0; 210 } 211 212 /* Probe for the CPUID instruction */ 213 int have_cpuid_p(void) 214 { 215 return flag_is_changeable_p(X86_EFLAGS_ID); 216 } 217 218 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 219 { 220 unsigned long lo, hi; 221 222 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 223 return; 224 225 /* Disable processor serial number: */ 226 227 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 228 lo |= 0x200000; 229 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 230 231 printk(KERN_NOTICE "CPU serial number disabled.\n"); 232 clear_cpu_cap(c, X86_FEATURE_PN); 233 234 /* Disabling the serial number may affect the cpuid level */ 235 c->cpuid_level = cpuid_eax(0); 236 } 237 238 static int __init x86_serial_nr_setup(char *s) 239 { 240 disable_x86_serial_nr = 0; 241 return 1; 242 } 243 __setup("serialnumber", x86_serial_nr_setup); 244 #else 245 static inline int flag_is_changeable_p(u32 flag) 246 { 247 return 1; 248 } 249 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 250 { 251 } 252 #endif 253 254 static __init int setup_disable_smep(char *arg) 255 { 256 setup_clear_cpu_cap(X86_FEATURE_SMEP); 257 return 1; 258 } 259 __setup("nosmep", setup_disable_smep); 260 261 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 262 { 263 if (cpu_has(c, X86_FEATURE_SMEP)) 264 cr4_set_bits(X86_CR4_SMEP); 265 } 266 267 static __init int setup_disable_smap(char *arg) 268 { 269 setup_clear_cpu_cap(X86_FEATURE_SMAP); 270 return 1; 271 } 272 __setup("nosmap", setup_disable_smap); 273 274 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 275 { 276 unsigned long eflags; 277 278 /* This should have been cleared long ago */ 279 raw_local_save_flags(eflags); 280 BUG_ON(eflags & X86_EFLAGS_AC); 281 282 if (cpu_has(c, X86_FEATURE_SMAP)) { 283 #ifdef CONFIG_X86_SMAP 284 cr4_set_bits(X86_CR4_SMAP); 285 #else 286 cr4_clear_bits(X86_CR4_SMAP); 287 #endif 288 } 289 } 290 291 /* 292 * Some CPU features depend on higher CPUID levels, which may not always 293 * be available due to CPUID level capping or broken virtualization 294 * software. Add those features to this table to auto-disable them. 295 */ 296 struct cpuid_dependent_feature { 297 u32 feature; 298 u32 level; 299 }; 300 301 static const struct cpuid_dependent_feature 302 cpuid_dependent_features[] = { 303 { X86_FEATURE_MWAIT, 0x00000005 }, 304 { X86_FEATURE_DCA, 0x00000009 }, 305 { X86_FEATURE_XSAVE, 0x0000000d }, 306 { 0, 0 } 307 }; 308 309 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 310 { 311 const struct cpuid_dependent_feature *df; 312 313 for (df = cpuid_dependent_features; df->feature; df++) { 314 315 if (!cpu_has(c, df->feature)) 316 continue; 317 /* 318 * Note: cpuid_level is set to -1 if unavailable, but 319 * extended_extended_level is set to 0 if unavailable 320 * and the legitimate extended levels are all negative 321 * when signed; hence the weird messing around with 322 * signs here... 323 */ 324 if (!((s32)df->level < 0 ? 325 (u32)df->level > (u32)c->extended_cpuid_level : 326 (s32)df->level > (s32)c->cpuid_level)) 327 continue; 328 329 clear_cpu_cap(c, df->feature); 330 if (!warn) 331 continue; 332 333 printk(KERN_WARNING 334 "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 335 x86_cap_flag(df->feature), df->level); 336 } 337 } 338 339 /* 340 * Naming convention should be: <Name> [(<Codename>)] 341 * This table only is used unless init_<vendor>() below doesn't set it; 342 * in particular, if CPUID levels 0x80000002..4 are supported, this 343 * isn't used 344 */ 345 346 /* Look up CPU names by table lookup. */ 347 static const char *table_lookup_model(struct cpuinfo_x86 *c) 348 { 349 #ifdef CONFIG_X86_32 350 const struct legacy_cpu_model_info *info; 351 352 if (c->x86_model >= 16) 353 return NULL; /* Range check */ 354 355 if (!this_cpu) 356 return NULL; 357 358 info = this_cpu->legacy_models; 359 360 while (info->family) { 361 if (info->family == c->x86) 362 return info->model_names[c->x86_model]; 363 info++; 364 } 365 #endif 366 return NULL; /* Not found */ 367 } 368 369 __u32 cpu_caps_cleared[NCAPINTS]; 370 __u32 cpu_caps_set[NCAPINTS]; 371 372 void load_percpu_segment(int cpu) 373 { 374 #ifdef CONFIG_X86_32 375 loadsegment(fs, __KERNEL_PERCPU); 376 #else 377 loadsegment(gs, 0); 378 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); 379 #endif 380 load_stack_canary_segment(); 381 } 382 383 /* 384 * Current gdt points %fs at the "master" per-cpu area: after this, 385 * it's on the real one. 386 */ 387 void switch_to_new_gdt(int cpu) 388 { 389 struct desc_ptr gdt_descr; 390 391 gdt_descr.address = (long)get_cpu_gdt_table(cpu); 392 gdt_descr.size = GDT_SIZE - 1; 393 load_gdt(&gdt_descr); 394 /* Reload the per-cpu base */ 395 396 load_percpu_segment(cpu); 397 } 398 399 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 400 401 static void get_model_name(struct cpuinfo_x86 *c) 402 { 403 unsigned int *v; 404 char *p, *q, *s; 405 406 if (c->extended_cpuid_level < 0x80000004) 407 return; 408 409 v = (unsigned int *)c->x86_model_id; 410 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 411 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 412 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 413 c->x86_model_id[48] = 0; 414 415 /* Trim whitespace */ 416 p = q = s = &c->x86_model_id[0]; 417 418 while (*p == ' ') 419 p++; 420 421 while (*p) { 422 /* Note the last non-whitespace index */ 423 if (!isspace(*p)) 424 s = q; 425 426 *q++ = *p++; 427 } 428 429 *(s + 1) = '\0'; 430 } 431 432 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 433 { 434 unsigned int n, dummy, ebx, ecx, edx, l2size; 435 436 n = c->extended_cpuid_level; 437 438 if (n >= 0x80000005) { 439 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 440 c->x86_cache_size = (ecx>>24) + (edx>>24); 441 #ifdef CONFIG_X86_64 442 /* On K8 L1 TLB is inclusive, so don't count it */ 443 c->x86_tlbsize = 0; 444 #endif 445 } 446 447 if (n < 0x80000006) /* Some chips just has a large L1. */ 448 return; 449 450 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 451 l2size = ecx >> 16; 452 453 #ifdef CONFIG_X86_64 454 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 455 #else 456 /* do processor-specific cache resizing */ 457 if (this_cpu->legacy_cache_size) 458 l2size = this_cpu->legacy_cache_size(c, l2size); 459 460 /* Allow user to override all this if necessary. */ 461 if (cachesize_override != -1) 462 l2size = cachesize_override; 463 464 if (l2size == 0) 465 return; /* Again, no L2 cache is possible */ 466 #endif 467 468 c->x86_cache_size = l2size; 469 } 470 471 u16 __read_mostly tlb_lli_4k[NR_INFO]; 472 u16 __read_mostly tlb_lli_2m[NR_INFO]; 473 u16 __read_mostly tlb_lli_4m[NR_INFO]; 474 u16 __read_mostly tlb_lld_4k[NR_INFO]; 475 u16 __read_mostly tlb_lld_2m[NR_INFO]; 476 u16 __read_mostly tlb_lld_4m[NR_INFO]; 477 u16 __read_mostly tlb_lld_1g[NR_INFO]; 478 479 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 480 { 481 if (this_cpu->c_detect_tlb) 482 this_cpu->c_detect_tlb(c); 483 484 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 485 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 486 tlb_lli_4m[ENTRIES]); 487 488 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 489 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 490 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 491 } 492 493 void detect_ht(struct cpuinfo_x86 *c) 494 { 495 #ifdef CONFIG_SMP 496 u32 eax, ebx, ecx, edx; 497 int index_msb, core_bits; 498 static bool printed; 499 500 if (!cpu_has(c, X86_FEATURE_HT)) 501 return; 502 503 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 504 goto out; 505 506 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 507 return; 508 509 cpuid(1, &eax, &ebx, &ecx, &edx); 510 511 smp_num_siblings = (ebx & 0xff0000) >> 16; 512 513 if (smp_num_siblings == 1) { 514 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n"); 515 goto out; 516 } 517 518 if (smp_num_siblings <= 1) 519 goto out; 520 521 index_msb = get_count_order(smp_num_siblings); 522 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 523 524 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 525 526 index_msb = get_count_order(smp_num_siblings); 527 528 core_bits = get_count_order(c->x86_max_cores); 529 530 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 531 ((1 << core_bits) - 1); 532 533 out: 534 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { 535 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", 536 c->phys_proc_id); 537 printk(KERN_INFO "CPU: Processor Core ID: %d\n", 538 c->cpu_core_id); 539 printed = 1; 540 } 541 #endif 542 } 543 544 static void get_cpu_vendor(struct cpuinfo_x86 *c) 545 { 546 char *v = c->x86_vendor_id; 547 int i; 548 549 for (i = 0; i < X86_VENDOR_NUM; i++) { 550 if (!cpu_devs[i]) 551 break; 552 553 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 554 (cpu_devs[i]->c_ident[1] && 555 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 556 557 this_cpu = cpu_devs[i]; 558 c->x86_vendor = this_cpu->c_x86_vendor; 559 return; 560 } 561 } 562 563 printk_once(KERN_ERR 564 "CPU: vendor_id '%s' unknown, using generic init.\n" \ 565 "CPU: Your system may be unstable.\n", v); 566 567 c->x86_vendor = X86_VENDOR_UNKNOWN; 568 this_cpu = &default_cpu; 569 } 570 571 void cpu_detect(struct cpuinfo_x86 *c) 572 { 573 /* Get vendor name */ 574 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 575 (unsigned int *)&c->x86_vendor_id[0], 576 (unsigned int *)&c->x86_vendor_id[8], 577 (unsigned int *)&c->x86_vendor_id[4]); 578 579 c->x86 = 4; 580 /* Intel-defined flags: level 0x00000001 */ 581 if (c->cpuid_level >= 0x00000001) { 582 u32 junk, tfms, cap0, misc; 583 584 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 585 c->x86 = (tfms >> 8) & 0xf; 586 c->x86_model = (tfms >> 4) & 0xf; 587 c->x86_mask = tfms & 0xf; 588 589 if (c->x86 == 0xf) 590 c->x86 += (tfms >> 20) & 0xff; 591 if (c->x86 >= 0x6) 592 c->x86_model += ((tfms >> 16) & 0xf) << 4; 593 594 if (cap0 & (1<<19)) { 595 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 596 c->x86_cache_alignment = c->x86_clflush_size; 597 } 598 } 599 } 600 601 void get_cpu_cap(struct cpuinfo_x86 *c) 602 { 603 u32 tfms, xlvl; 604 u32 ebx; 605 606 /* Intel-defined flags: level 0x00000001 */ 607 if (c->cpuid_level >= 0x00000001) { 608 u32 capability, excap; 609 610 cpuid(0x00000001, &tfms, &ebx, &excap, &capability); 611 c->x86_capability[0] = capability; 612 c->x86_capability[4] = excap; 613 } 614 615 /* Additional Intel-defined flags: level 0x00000007 */ 616 if (c->cpuid_level >= 0x00000007) { 617 u32 eax, ebx, ecx, edx; 618 619 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 620 621 c->x86_capability[9] = ebx; 622 } 623 624 /* Extended state features: level 0x0000000d */ 625 if (c->cpuid_level >= 0x0000000d) { 626 u32 eax, ebx, ecx, edx; 627 628 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 629 630 c->x86_capability[10] = eax; 631 } 632 633 /* Additional Intel-defined flags: level 0x0000000F */ 634 if (c->cpuid_level >= 0x0000000F) { 635 u32 eax, ebx, ecx, edx; 636 637 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 638 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 639 c->x86_capability[11] = edx; 640 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 641 /* will be overridden if occupancy monitoring exists */ 642 c->x86_cache_max_rmid = ebx; 643 644 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 645 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 646 c->x86_capability[12] = edx; 647 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) { 648 c->x86_cache_max_rmid = ecx; 649 c->x86_cache_occ_scale = ebx; 650 } 651 } else { 652 c->x86_cache_max_rmid = -1; 653 c->x86_cache_occ_scale = -1; 654 } 655 } 656 657 /* AMD-defined flags: level 0x80000001 */ 658 xlvl = cpuid_eax(0x80000000); 659 c->extended_cpuid_level = xlvl; 660 661 if ((xlvl & 0xffff0000) == 0x80000000) { 662 if (xlvl >= 0x80000001) { 663 c->x86_capability[1] = cpuid_edx(0x80000001); 664 c->x86_capability[6] = cpuid_ecx(0x80000001); 665 } 666 } 667 668 if (c->extended_cpuid_level >= 0x80000008) { 669 u32 eax = cpuid_eax(0x80000008); 670 671 c->x86_virt_bits = (eax >> 8) & 0xff; 672 c->x86_phys_bits = eax & 0xff; 673 } 674 #ifdef CONFIG_X86_32 675 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 676 c->x86_phys_bits = 36; 677 #endif 678 679 if (c->extended_cpuid_level >= 0x80000007) 680 c->x86_power = cpuid_edx(0x80000007); 681 682 init_scattered_cpuid_features(c); 683 } 684 685 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 686 { 687 #ifdef CONFIG_X86_32 688 int i; 689 690 /* 691 * First of all, decide if this is a 486 or higher 692 * It's a 486 if we can modify the AC flag 693 */ 694 if (flag_is_changeable_p(X86_EFLAGS_AC)) 695 c->x86 = 4; 696 else 697 c->x86 = 3; 698 699 for (i = 0; i < X86_VENDOR_NUM; i++) 700 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 701 c->x86_vendor_id[0] = 0; 702 cpu_devs[i]->c_identify(c); 703 if (c->x86_vendor_id[0]) { 704 get_cpu_vendor(c); 705 break; 706 } 707 } 708 #endif 709 } 710 711 /* 712 * Do minimum CPU detection early. 713 * Fields really needed: vendor, cpuid_level, family, model, mask, 714 * cache alignment. 715 * The others are not touched to avoid unwanted side effects. 716 * 717 * WARNING: this function is only called on the BP. Don't add code here 718 * that is supposed to run on all CPUs. 719 */ 720 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 721 { 722 #ifdef CONFIG_X86_64 723 c->x86_clflush_size = 64; 724 c->x86_phys_bits = 36; 725 c->x86_virt_bits = 48; 726 #else 727 c->x86_clflush_size = 32; 728 c->x86_phys_bits = 32; 729 c->x86_virt_bits = 32; 730 #endif 731 c->x86_cache_alignment = c->x86_clflush_size; 732 733 memset(&c->x86_capability, 0, sizeof c->x86_capability); 734 c->extended_cpuid_level = 0; 735 736 if (!have_cpuid_p()) 737 identify_cpu_without_cpuid(c); 738 739 /* cyrix could have cpuid enabled via c_identify()*/ 740 if (!have_cpuid_p()) 741 return; 742 743 cpu_detect(c); 744 get_cpu_vendor(c); 745 get_cpu_cap(c); 746 747 if (this_cpu->c_early_init) 748 this_cpu->c_early_init(c); 749 750 c->cpu_index = 0; 751 filter_cpuid_features(c, false); 752 753 if (this_cpu->c_bsp_init) 754 this_cpu->c_bsp_init(c); 755 756 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 757 fpu__init_system(c); 758 } 759 760 void __init early_cpu_init(void) 761 { 762 const struct cpu_dev *const *cdev; 763 int count = 0; 764 765 #ifdef CONFIG_PROCESSOR_SELECT 766 printk(KERN_INFO "KERNEL supported cpus:\n"); 767 #endif 768 769 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 770 const struct cpu_dev *cpudev = *cdev; 771 772 if (count >= X86_VENDOR_NUM) 773 break; 774 cpu_devs[count] = cpudev; 775 count++; 776 777 #ifdef CONFIG_PROCESSOR_SELECT 778 { 779 unsigned int j; 780 781 for (j = 0; j < 2; j++) { 782 if (!cpudev->c_ident[j]) 783 continue; 784 printk(KERN_INFO " %s %s\n", cpudev->c_vendor, 785 cpudev->c_ident[j]); 786 } 787 } 788 #endif 789 } 790 early_identify_cpu(&boot_cpu_data); 791 } 792 793 /* 794 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 795 * unfortunately, that's not true in practice because of early VIA 796 * chips and (more importantly) broken virtualizers that are not easy 797 * to detect. In the latter case it doesn't even *fail* reliably, so 798 * probing for it doesn't even work. Disable it completely on 32-bit 799 * unless we can find a reliable way to detect all the broken cases. 800 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 801 */ 802 static void detect_nopl(struct cpuinfo_x86 *c) 803 { 804 #ifdef CONFIG_X86_32 805 clear_cpu_cap(c, X86_FEATURE_NOPL); 806 #else 807 set_cpu_cap(c, X86_FEATURE_NOPL); 808 #endif 809 } 810 811 static void generic_identify(struct cpuinfo_x86 *c) 812 { 813 c->extended_cpuid_level = 0; 814 815 if (!have_cpuid_p()) 816 identify_cpu_without_cpuid(c); 817 818 /* cyrix could have cpuid enabled via c_identify()*/ 819 if (!have_cpuid_p()) 820 return; 821 822 cpu_detect(c); 823 824 get_cpu_vendor(c); 825 826 get_cpu_cap(c); 827 828 if (c->cpuid_level >= 0x00000001) { 829 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 830 #ifdef CONFIG_X86_32 831 # ifdef CONFIG_SMP 832 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 833 # else 834 c->apicid = c->initial_apicid; 835 # endif 836 #endif 837 c->phys_proc_id = c->initial_apicid; 838 } 839 840 get_model_name(c); /* Default name */ 841 842 detect_nopl(c); 843 } 844 845 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 846 { 847 /* 848 * The heavy lifting of max_rmid and cache_occ_scale are handled 849 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 850 * in case CQM bits really aren't there in this CPU. 851 */ 852 if (c != &boot_cpu_data) { 853 boot_cpu_data.x86_cache_max_rmid = 854 min(boot_cpu_data.x86_cache_max_rmid, 855 c->x86_cache_max_rmid); 856 } 857 } 858 859 /* 860 * This does the hard work of actually picking apart the CPU stuff... 861 */ 862 static void identify_cpu(struct cpuinfo_x86 *c) 863 { 864 int i; 865 866 c->loops_per_jiffy = loops_per_jiffy; 867 c->x86_cache_size = -1; 868 c->x86_vendor = X86_VENDOR_UNKNOWN; 869 c->x86_model = c->x86_mask = 0; /* So far unknown... */ 870 c->x86_vendor_id[0] = '\0'; /* Unset */ 871 c->x86_model_id[0] = '\0'; /* Unset */ 872 c->x86_max_cores = 1; 873 c->x86_coreid_bits = 0; 874 #ifdef CONFIG_X86_64 875 c->x86_clflush_size = 64; 876 c->x86_phys_bits = 36; 877 c->x86_virt_bits = 48; 878 #else 879 c->cpuid_level = -1; /* CPUID not detected */ 880 c->x86_clflush_size = 32; 881 c->x86_phys_bits = 32; 882 c->x86_virt_bits = 32; 883 #endif 884 c->x86_cache_alignment = c->x86_clflush_size; 885 memset(&c->x86_capability, 0, sizeof c->x86_capability); 886 887 generic_identify(c); 888 889 if (this_cpu->c_identify) 890 this_cpu->c_identify(c); 891 892 /* Clear/Set all flags overriden by options, after probe */ 893 for (i = 0; i < NCAPINTS; i++) { 894 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 895 c->x86_capability[i] |= cpu_caps_set[i]; 896 } 897 898 #ifdef CONFIG_X86_64 899 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 900 #endif 901 902 /* 903 * Vendor-specific initialization. In this section we 904 * canonicalize the feature flags, meaning if there are 905 * features a certain CPU supports which CPUID doesn't 906 * tell us, CPUID claiming incorrect flags, or other bugs, 907 * we handle them here. 908 * 909 * At the end of this section, c->x86_capability better 910 * indicate the features this CPU genuinely supports! 911 */ 912 if (this_cpu->c_init) 913 this_cpu->c_init(c); 914 915 /* Disable the PN if appropriate */ 916 squash_the_stupid_serial_number(c); 917 918 /* Set up SMEP/SMAP */ 919 setup_smep(c); 920 setup_smap(c); 921 922 /* 923 * The vendor-specific functions might have changed features. 924 * Now we do "generic changes." 925 */ 926 927 /* Filter out anything that depends on CPUID levels we don't have */ 928 filter_cpuid_features(c, true); 929 930 /* If the model name is still unset, do table lookup. */ 931 if (!c->x86_model_id[0]) { 932 const char *p; 933 p = table_lookup_model(c); 934 if (p) 935 strcpy(c->x86_model_id, p); 936 else 937 /* Last resort... */ 938 sprintf(c->x86_model_id, "%02x/%02x", 939 c->x86, c->x86_model); 940 } 941 942 #ifdef CONFIG_X86_64 943 detect_ht(c); 944 #endif 945 946 init_hypervisor(c); 947 x86_init_rdrand(c); 948 x86_init_cache_qos(c); 949 950 /* 951 * Clear/Set all flags overriden by options, need do it 952 * before following smp all cpus cap AND. 953 */ 954 for (i = 0; i < NCAPINTS; i++) { 955 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 956 c->x86_capability[i] |= cpu_caps_set[i]; 957 } 958 959 /* 960 * On SMP, boot_cpu_data holds the common feature set between 961 * all CPUs; so make sure that we indicate which features are 962 * common between the CPUs. The first time this routine gets 963 * executed, c == &boot_cpu_data. 964 */ 965 if (c != &boot_cpu_data) { 966 /* AND the already accumulated flags with these */ 967 for (i = 0; i < NCAPINTS; i++) 968 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 969 970 /* OR, i.e. replicate the bug flags */ 971 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 972 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 973 } 974 975 /* Init Machine Check Exception if available. */ 976 mcheck_cpu_init(c); 977 978 select_idle_routine(c); 979 980 #ifdef CONFIG_NUMA 981 numa_add_cpu(smp_processor_id()); 982 #endif 983 } 984 985 /* 986 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 987 * on 32-bit kernels: 988 */ 989 #ifdef CONFIG_X86_32 990 void enable_sep_cpu(void) 991 { 992 struct tss_struct *tss; 993 int cpu; 994 995 cpu = get_cpu(); 996 tss = &per_cpu(cpu_tss, cpu); 997 998 if (!boot_cpu_has(X86_FEATURE_SEP)) 999 goto out; 1000 1001 /* 1002 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1003 * see the big comment in struct x86_hw_tss's definition. 1004 */ 1005 1006 tss->x86_tss.ss1 = __KERNEL_CS; 1007 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1008 1009 wrmsr(MSR_IA32_SYSENTER_ESP, 1010 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack), 1011 0); 1012 1013 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1014 1015 out: 1016 put_cpu(); 1017 } 1018 #endif 1019 1020 void __init identify_boot_cpu(void) 1021 { 1022 identify_cpu(&boot_cpu_data); 1023 init_amd_e400_c1e_mask(); 1024 #ifdef CONFIG_X86_32 1025 sysenter_setup(); 1026 enable_sep_cpu(); 1027 #endif 1028 cpu_detect_tlb(&boot_cpu_data); 1029 } 1030 1031 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1032 { 1033 BUG_ON(c == &boot_cpu_data); 1034 identify_cpu(c); 1035 #ifdef CONFIG_X86_32 1036 enable_sep_cpu(); 1037 #endif 1038 mtrr_ap_init(); 1039 } 1040 1041 struct msr_range { 1042 unsigned min; 1043 unsigned max; 1044 }; 1045 1046 static const struct msr_range msr_range_array[] = { 1047 { 0x00000000, 0x00000418}, 1048 { 0xc0000000, 0xc000040b}, 1049 { 0xc0010000, 0xc0010142}, 1050 { 0xc0011000, 0xc001103b}, 1051 }; 1052 1053 static void __print_cpu_msr(void) 1054 { 1055 unsigned index_min, index_max; 1056 unsigned index; 1057 u64 val; 1058 int i; 1059 1060 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { 1061 index_min = msr_range_array[i].min; 1062 index_max = msr_range_array[i].max; 1063 1064 for (index = index_min; index < index_max; index++) { 1065 if (rdmsrl_safe(index, &val)) 1066 continue; 1067 printk(KERN_INFO " MSR%08x: %016llx\n", index, val); 1068 } 1069 } 1070 } 1071 1072 static int show_msr; 1073 1074 static __init int setup_show_msr(char *arg) 1075 { 1076 int num; 1077 1078 get_option(&arg, &num); 1079 1080 if (num > 0) 1081 show_msr = num; 1082 return 1; 1083 } 1084 __setup("show_msr=", setup_show_msr); 1085 1086 static __init int setup_noclflush(char *arg) 1087 { 1088 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1089 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1090 return 1; 1091 } 1092 __setup("noclflush", setup_noclflush); 1093 1094 void print_cpu_info(struct cpuinfo_x86 *c) 1095 { 1096 const char *vendor = NULL; 1097 1098 if (c->x86_vendor < X86_VENDOR_NUM) { 1099 vendor = this_cpu->c_vendor; 1100 } else { 1101 if (c->cpuid_level >= 0) 1102 vendor = c->x86_vendor_id; 1103 } 1104 1105 if (vendor && !strstr(c->x86_model_id, vendor)) 1106 printk(KERN_CONT "%s ", vendor); 1107 1108 if (c->x86_model_id[0]) 1109 printk(KERN_CONT "%s", c->x86_model_id); 1110 else 1111 printk(KERN_CONT "%d86", c->x86); 1112 1113 printk(KERN_CONT " (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1114 1115 if (c->x86_mask || c->cpuid_level >= 0) 1116 printk(KERN_CONT ", stepping: 0x%x)\n", c->x86_mask); 1117 else 1118 printk(KERN_CONT ")\n"); 1119 1120 print_cpu_msr(c); 1121 } 1122 1123 void print_cpu_msr(struct cpuinfo_x86 *c) 1124 { 1125 if (c->cpu_index < show_msr) 1126 __print_cpu_msr(); 1127 } 1128 1129 static __init int setup_disablecpuid(char *arg) 1130 { 1131 int bit; 1132 1133 if (get_option(&arg, &bit) && bit < NCAPINTS*32) 1134 setup_clear_cpu_cap(bit); 1135 else 1136 return 0; 1137 1138 return 1; 1139 } 1140 __setup("clearcpuid=", setup_disablecpuid); 1141 1142 #ifdef CONFIG_X86_64 1143 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table }; 1144 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1, 1145 (unsigned long) debug_idt_table }; 1146 1147 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1148 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1149 1150 /* 1151 * The following percpu variables are hot. Align current_task to 1152 * cacheline size such that they fall in the same cacheline. 1153 */ 1154 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1155 &init_task; 1156 EXPORT_PER_CPU_SYMBOL(current_task); 1157 1158 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1159 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64; 1160 1161 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1162 1163 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1164 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1165 1166 /* 1167 * Special IST stacks which the CPU switches to when it calls 1168 * an IST-marked descriptor entry. Up to 7 stacks (hardware 1169 * limit), all of them are 4K, except the debug stack which 1170 * is 8K. 1171 */ 1172 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 1173 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 1174 [DEBUG_STACK - 1] = DEBUG_STKSZ 1175 }; 1176 1177 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks 1178 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); 1179 1180 /* May not be marked __init: used by software suspend */ 1181 void syscall_init(void) 1182 { 1183 /* 1184 * LSTAR and STAR live in a bit strange symbiosis. 1185 * They both write to the same internal register. STAR allows to 1186 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. 1187 */ 1188 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); 1189 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 1190 1191 #ifdef CONFIG_IA32_EMULATION 1192 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); 1193 /* 1194 * This only works on Intel CPUs. 1195 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1196 * This does not cause SYSENTER to jump to the wrong location, because 1197 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1198 */ 1199 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1200 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1201 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1202 #else 1203 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); 1204 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1205 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1206 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1207 #endif 1208 1209 /* Flags to clear on syscall */ 1210 wrmsrl(MSR_SYSCALL_MASK, 1211 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1212 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1213 } 1214 1215 /* 1216 * Copies of the original ist values from the tss are only accessed during 1217 * debugging, no special alignment required. 1218 */ 1219 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1220 1221 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1222 DEFINE_PER_CPU(int, debug_stack_usage); 1223 1224 int is_debug_stack(unsigned long addr) 1225 { 1226 return __this_cpu_read(debug_stack_usage) || 1227 (addr <= __this_cpu_read(debug_stack_addr) && 1228 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1229 } 1230 NOKPROBE_SYMBOL(is_debug_stack); 1231 1232 DEFINE_PER_CPU(u32, debug_idt_ctr); 1233 1234 void debug_stack_set_zero(void) 1235 { 1236 this_cpu_inc(debug_idt_ctr); 1237 load_current_idt(); 1238 } 1239 NOKPROBE_SYMBOL(debug_stack_set_zero); 1240 1241 void debug_stack_reset(void) 1242 { 1243 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1244 return; 1245 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1246 load_current_idt(); 1247 } 1248 NOKPROBE_SYMBOL(debug_stack_reset); 1249 1250 #else /* CONFIG_X86_64 */ 1251 1252 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1253 EXPORT_PER_CPU_SYMBOL(current_task); 1254 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1255 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1256 1257 /* 1258 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1259 * the top of the kernel stack. Use an extra percpu variable to track the 1260 * top of the kernel stack directly. 1261 */ 1262 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1263 (unsigned long)&init_thread_union + THREAD_SIZE; 1264 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1265 1266 #ifdef CONFIG_CC_STACKPROTECTOR 1267 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1268 #endif 1269 1270 #endif /* CONFIG_X86_64 */ 1271 1272 /* 1273 * Clear all 6 debug registers: 1274 */ 1275 static void clear_all_debug_regs(void) 1276 { 1277 int i; 1278 1279 for (i = 0; i < 8; i++) { 1280 /* Ignore db4, db5 */ 1281 if ((i == 4) || (i == 5)) 1282 continue; 1283 1284 set_debugreg(0, i); 1285 } 1286 } 1287 1288 #ifdef CONFIG_KGDB 1289 /* 1290 * Restore debug regs if using kgdbwait and you have a kernel debugger 1291 * connection established. 1292 */ 1293 static void dbg_restore_debug_regs(void) 1294 { 1295 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1296 arch_kgdb_ops.correct_hw_break(); 1297 } 1298 #else /* ! CONFIG_KGDB */ 1299 #define dbg_restore_debug_regs() 1300 #endif /* ! CONFIG_KGDB */ 1301 1302 static void wait_for_master_cpu(int cpu) 1303 { 1304 #ifdef CONFIG_SMP 1305 /* 1306 * wait for ACK from master CPU before continuing 1307 * with AP initialization 1308 */ 1309 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1310 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1311 cpu_relax(); 1312 #endif 1313 } 1314 1315 /* 1316 * cpu_init() initializes state that is per-CPU. Some data is already 1317 * initialized (naturally) in the bootstrap process, such as the GDT 1318 * and IDT. We reload them nevertheless, this function acts as a 1319 * 'CPU state barrier', nothing should get across. 1320 * A lot of state is already set up in PDA init for 64 bit 1321 */ 1322 #ifdef CONFIG_X86_64 1323 1324 void cpu_init(void) 1325 { 1326 struct orig_ist *oist; 1327 struct task_struct *me; 1328 struct tss_struct *t; 1329 unsigned long v; 1330 int cpu = stack_smp_processor_id(); 1331 int i; 1332 1333 wait_for_master_cpu(cpu); 1334 1335 /* 1336 * Initialize the CR4 shadow before doing anything that could 1337 * try to read it. 1338 */ 1339 cr4_init_shadow(); 1340 1341 /* 1342 * Load microcode on this cpu if a valid microcode is available. 1343 * This is early microcode loading procedure. 1344 */ 1345 load_ucode_ap(); 1346 1347 t = &per_cpu(cpu_tss, cpu); 1348 oist = &per_cpu(orig_ist, cpu); 1349 1350 #ifdef CONFIG_NUMA 1351 if (this_cpu_read(numa_node) == 0 && 1352 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1353 set_numa_node(early_cpu_to_node(cpu)); 1354 #endif 1355 1356 me = current; 1357 1358 pr_debug("Initializing CPU#%d\n", cpu); 1359 1360 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1361 1362 /* 1363 * Initialize the per-CPU GDT with the boot GDT, 1364 * and set up the GDT descriptor: 1365 */ 1366 1367 switch_to_new_gdt(cpu); 1368 loadsegment(fs, 0); 1369 1370 load_current_idt(); 1371 1372 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1373 syscall_init(); 1374 1375 wrmsrl(MSR_FS_BASE, 0); 1376 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1377 barrier(); 1378 1379 x86_configure_nx(); 1380 x2apic_setup(); 1381 1382 /* 1383 * set up and load the per-CPU TSS 1384 */ 1385 if (!oist->ist[0]) { 1386 char *estacks = per_cpu(exception_stacks, cpu); 1387 1388 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1389 estacks += exception_stack_sizes[v]; 1390 oist->ist[v] = t->x86_tss.ist[v] = 1391 (unsigned long)estacks; 1392 if (v == DEBUG_STACK-1) 1393 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1394 } 1395 } 1396 1397 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1398 1399 /* 1400 * <= is required because the CPU will access up to 1401 * 8 bits beyond the end of the IO permission bitmap. 1402 */ 1403 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1404 t->io_bitmap[i] = ~0UL; 1405 1406 atomic_inc(&init_mm.mm_count); 1407 me->active_mm = &init_mm; 1408 BUG_ON(me->mm); 1409 enter_lazy_tlb(&init_mm, me); 1410 1411 load_sp0(t, ¤t->thread); 1412 set_tss_desc(cpu, t); 1413 load_TR_desc(); 1414 load_mm_ldt(&init_mm); 1415 1416 clear_all_debug_regs(); 1417 dbg_restore_debug_regs(); 1418 1419 fpu__init_cpu(); 1420 1421 if (is_uv_system()) 1422 uv_cpu_init(); 1423 } 1424 1425 #else 1426 1427 void cpu_init(void) 1428 { 1429 int cpu = smp_processor_id(); 1430 struct task_struct *curr = current; 1431 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 1432 struct thread_struct *thread = &curr->thread; 1433 1434 wait_for_master_cpu(cpu); 1435 1436 /* 1437 * Initialize the CR4 shadow before doing anything that could 1438 * try to read it. 1439 */ 1440 cr4_init_shadow(); 1441 1442 show_ucode_info_early(); 1443 1444 printk(KERN_INFO "Initializing CPU#%d\n", cpu); 1445 1446 if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de) 1447 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1448 1449 load_current_idt(); 1450 switch_to_new_gdt(cpu); 1451 1452 /* 1453 * Set up and load the per-CPU TSS and LDT 1454 */ 1455 atomic_inc(&init_mm.mm_count); 1456 curr->active_mm = &init_mm; 1457 BUG_ON(curr->mm); 1458 enter_lazy_tlb(&init_mm, curr); 1459 1460 load_sp0(t, thread); 1461 set_tss_desc(cpu, t); 1462 load_TR_desc(); 1463 load_mm_ldt(&init_mm); 1464 1465 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1466 1467 #ifdef CONFIG_DOUBLEFAULT 1468 /* Set up doublefault TSS pointer in the GDT */ 1469 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1470 #endif 1471 1472 clear_all_debug_regs(); 1473 dbg_restore_debug_regs(); 1474 1475 fpu__init_cpu(); 1476 } 1477 #endif 1478 1479 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS 1480 void warn_pre_alternatives(void) 1481 { 1482 WARN(1, "You're using static_cpu_has before alternatives have run!\n"); 1483 } 1484 EXPORT_SYMBOL_GPL(warn_pre_alternatives); 1485 #endif 1486 1487 inline bool __static_cpu_has_safe(u16 bit) 1488 { 1489 return boot_cpu_has(bit); 1490 } 1491 EXPORT_SYMBOL_GPL(__static_cpu_has_safe); 1492 1493 static void bsp_resume(void) 1494 { 1495 if (this_cpu->c_bsp_resume) 1496 this_cpu->c_bsp_resume(&boot_cpu_data); 1497 } 1498 1499 static struct syscore_ops cpu_syscore_ops = { 1500 .resume = bsp_resume, 1501 }; 1502 1503 static int __init init_cpu_syscore(void) 1504 { 1505 register_syscore_ops(&cpu_syscore_ops); 1506 return 0; 1507 } 1508 core_initcall(init_cpu_syscore); 1509