xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
10 #include <asm/i387.h>
11 #include <asm/msr.h>
12 #include <asm/io.h>
13 #include <asm/mmu_context.h>
14 #include <asm/mtrr.h>
15 #include <asm/mce.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
18 #include <asm/apic.h>
19 #include <mach_apic.h>
20 #endif
21 
22 #include "cpu.h"
23 
24 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
25 	[GDT_ENTRY_KERNEL_CS] = { 0x0000ffff, 0x00cf9a00 },
26 	[GDT_ENTRY_KERNEL_DS] = { 0x0000ffff, 0x00cf9200 },
27 	[GDT_ENTRY_DEFAULT_USER_CS] = { 0x0000ffff, 0x00cffa00 },
28 	[GDT_ENTRY_DEFAULT_USER_DS] = { 0x0000ffff, 0x00cff200 },
29 	/*
30 	 * Segments used for calling PnP BIOS have byte granularity.
31 	 * They code segments and data segments have fixed 64k limits,
32 	 * the transfer segment sizes are set at run time.
33 	 */
34 	[GDT_ENTRY_PNPBIOS_CS32] = { 0x0000ffff, 0x00409a00 },/* 32-bit code */
35 	[GDT_ENTRY_PNPBIOS_CS16] = { 0x0000ffff, 0x00009a00 },/* 16-bit code */
36 	[GDT_ENTRY_PNPBIOS_DS] = { 0x0000ffff, 0x00009200 }, /* 16-bit data */
37 	[GDT_ENTRY_PNPBIOS_TS1] = { 0x00000000, 0x00009200 },/* 16-bit data */
38 	[GDT_ENTRY_PNPBIOS_TS2] = { 0x00000000, 0x00009200 },/* 16-bit data */
39 	/*
40 	 * The APM segments have byte granularity and their bases
41 	 * are set at run time.  All have 64k limits.
42 	 */
43 	[GDT_ENTRY_APMBIOS_BASE] = { 0x0000ffff, 0x00409a00 },/* 32-bit code */
44 	/* 16-bit code */
45 	[GDT_ENTRY_APMBIOS_BASE+1] = { 0x0000ffff, 0x00009a00 },
46 	[GDT_ENTRY_APMBIOS_BASE+2] = { 0x0000ffff, 0x00409200 }, /* data */
47 
48 	[GDT_ENTRY_ESPFIX_SS] = { 0x00000000, 0x00c09200 },
49 	[GDT_ENTRY_PERCPU] = { 0x00000000, 0x00000000 },
50 } };
51 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
52 
53 static int cachesize_override __cpuinitdata = -1;
54 static int disable_x86_fxsr __cpuinitdata;
55 static int disable_x86_serial_nr __cpuinitdata = 1;
56 static int disable_x86_sep __cpuinitdata;
57 
58 struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
59 
60 extern int disable_pse;
61 
62 static void __cpuinit default_init(struct cpuinfo_x86 * c)
63 {
64 	/* Not much we can do here... */
65 	/* Check if at least it has cpuid */
66 	if (c->cpuid_level == -1) {
67 		/* No cpuid. It must be an ancient CPU */
68 		if (c->x86 == 4)
69 			strcpy(c->x86_model_id, "486");
70 		else if (c->x86 == 3)
71 			strcpy(c->x86_model_id, "386");
72 	}
73 }
74 
75 static struct cpu_dev __cpuinitdata default_cpu = {
76 	.c_init	= default_init,
77 	.c_vendor = "Unknown",
78 };
79 static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu;
80 
81 static int __init cachesize_setup(char *str)
82 {
83 	get_option (&str, &cachesize_override);
84 	return 1;
85 }
86 __setup("cachesize=", cachesize_setup);
87 
88 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
89 {
90 	unsigned int *v;
91 	char *p, *q;
92 
93 	if (cpuid_eax(0x80000000) < 0x80000004)
94 		return 0;
95 
96 	v = (unsigned int *) c->x86_model_id;
97 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
98 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
99 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
100 	c->x86_model_id[48] = 0;
101 
102 	/* Intel chips right-justify this string for some dumb reason;
103 	   undo that brain damage */
104 	p = q = &c->x86_model_id[0];
105 	while ( *p == ' ' )
106 	     p++;
107 	if ( p != q ) {
108 	     while ( *p )
109 		  *q++ = *p++;
110 	     while ( q <= &c->x86_model_id[48] )
111 		  *q++ = '\0';	/* Zero-pad the rest */
112 	}
113 
114 	return 1;
115 }
116 
117 
118 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
119 {
120 	unsigned int n, dummy, ecx, edx, l2size;
121 
122 	n = cpuid_eax(0x80000000);
123 
124 	if (n >= 0x80000005) {
125 		cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
126 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
127 			edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
128 		c->x86_cache_size=(ecx>>24)+(edx>>24);
129 	}
130 
131 	if (n < 0x80000006)	/* Some chips just has a large L1. */
132 		return;
133 
134 	ecx = cpuid_ecx(0x80000006);
135 	l2size = ecx >> 16;
136 
137 	/* do processor-specific cache resizing */
138 	if (this_cpu->c_size_cache)
139 		l2size = this_cpu->c_size_cache(c,l2size);
140 
141 	/* Allow user to override all this if necessary. */
142 	if (cachesize_override != -1)
143 		l2size = cachesize_override;
144 
145 	if ( l2size == 0 )
146 		return;		/* Again, no L2 cache is possible */
147 
148 	c->x86_cache_size = l2size;
149 
150 	printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
151 	       l2size, ecx & 0xFF);
152 }
153 
154 /* Naming convention should be: <Name> [(<Codename>)] */
155 /* This table only is used unless init_<vendor>() below doesn't set it; */
156 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
157 
158 /* Look up CPU names by table lookup. */
159 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
160 {
161 	struct cpu_model_info *info;
162 
163 	if ( c->x86_model >= 16 )
164 		return NULL;	/* Range check */
165 
166 	if (!this_cpu)
167 		return NULL;
168 
169 	info = this_cpu->c_models;
170 
171 	while (info && info->family) {
172 		if (info->family == c->x86)
173 			return info->model_names[c->x86_model];
174 		info++;
175 	}
176 	return NULL;		/* Not found */
177 }
178 
179 
180 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
181 {
182 	char *v = c->x86_vendor_id;
183 	int i;
184 	static int printed;
185 
186 	for (i = 0; i < X86_VENDOR_NUM; i++) {
187 		if (cpu_devs[i]) {
188 			if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
189 			    (cpu_devs[i]->c_ident[1] &&
190 			     !strcmp(v,cpu_devs[i]->c_ident[1]))) {
191 				c->x86_vendor = i;
192 				if (!early)
193 					this_cpu = cpu_devs[i];
194 				return;
195 			}
196 		}
197 	}
198 	if (!printed) {
199 		printed++;
200 		printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
201 		printk(KERN_ERR "CPU: Your system may be unstable.\n");
202 	}
203 	c->x86_vendor = X86_VENDOR_UNKNOWN;
204 	this_cpu = &default_cpu;
205 }
206 
207 
208 static int __init x86_fxsr_setup(char * s)
209 {
210 	/* Tell all the other CPU's to not use it... */
211 	disable_x86_fxsr = 1;
212 
213 	/*
214 	 * ... and clear the bits early in the boot_cpu_data
215 	 * so that the bootup process doesn't try to do this
216 	 * either.
217 	 */
218 	clear_bit(X86_FEATURE_FXSR, boot_cpu_data.x86_capability);
219 	clear_bit(X86_FEATURE_XMM, boot_cpu_data.x86_capability);
220 	return 1;
221 }
222 __setup("nofxsr", x86_fxsr_setup);
223 
224 
225 static int __init x86_sep_setup(char * s)
226 {
227 	disable_x86_sep = 1;
228 	return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231 
232 
233 /* Standard macro to see if a specific flag is changeable */
234 static inline int flag_is_changeable_p(u32 flag)
235 {
236 	u32 f1, f2;
237 
238 	asm("pushfl\n\t"
239 	    "pushfl\n\t"
240 	    "popl %0\n\t"
241 	    "movl %0,%1\n\t"
242 	    "xorl %2,%0\n\t"
243 	    "pushl %0\n\t"
244 	    "popfl\n\t"
245 	    "pushfl\n\t"
246 	    "popl %0\n\t"
247 	    "popfl\n\t"
248 	    : "=&r" (f1), "=&r" (f2)
249 	    : "ir" (flag));
250 
251 	return ((f1^f2) & flag) != 0;
252 }
253 
254 
255 /* Probe for the CPUID instruction */
256 static int __cpuinit have_cpuid_p(void)
257 {
258 	return flag_is_changeable_p(X86_EFLAGS_ID);
259 }
260 
261 void __init cpu_detect(struct cpuinfo_x86 *c)
262 {
263 	/* Get vendor name */
264 	cpuid(0x00000000, &c->cpuid_level,
265 	      (int *)&c->x86_vendor_id[0],
266 	      (int *)&c->x86_vendor_id[8],
267 	      (int *)&c->x86_vendor_id[4]);
268 
269 	c->x86 = 4;
270 	if (c->cpuid_level >= 0x00000001) {
271 		u32 junk, tfms, cap0, misc;
272 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
273 		c->x86 = (tfms >> 8) & 15;
274 		c->x86_model = (tfms >> 4) & 15;
275 		if (c->x86 == 0xf)
276 			c->x86 += (tfms >> 20) & 0xff;
277 		if (c->x86 >= 0x6)
278 			c->x86_model += ((tfms >> 16) & 0xF) << 4;
279 		c->x86_mask = tfms & 15;
280 		if (cap0 & (1<<19))
281 			c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
282 	}
283 }
284 
285 /* Do minimum CPU detection early.
286    Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
287    The others are not touched to avoid unwanted side effects.
288 
289    WARNING: this function is only called on the BP.  Don't add code here
290    that is supposed to run on all CPUs. */
291 static void __init early_cpu_detect(void)
292 {
293 	struct cpuinfo_x86 *c = &boot_cpu_data;
294 
295 	c->x86_cache_alignment = 32;
296 
297 	if (!have_cpuid_p())
298 		return;
299 
300 	cpu_detect(c);
301 
302 	get_cpu_vendor(c, 1);
303 }
304 
305 static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
306 {
307 	u32 tfms, xlvl;
308 	int ebx;
309 
310 	if (have_cpuid_p()) {
311 		/* Get vendor name */
312 		cpuid(0x00000000, &c->cpuid_level,
313 		      (int *)&c->x86_vendor_id[0],
314 		      (int *)&c->x86_vendor_id[8],
315 		      (int *)&c->x86_vendor_id[4]);
316 
317 		get_cpu_vendor(c, 0);
318 		/* Initialize the standard set of capabilities */
319 		/* Note that the vendor-specific code below might override */
320 
321 		/* Intel-defined flags: level 0x00000001 */
322 		if ( c->cpuid_level >= 0x00000001 ) {
323 			u32 capability, excap;
324 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
325 			c->x86_capability[0] = capability;
326 			c->x86_capability[4] = excap;
327 			c->x86 = (tfms >> 8) & 15;
328 			c->x86_model = (tfms >> 4) & 15;
329 			if (c->x86 == 0xf)
330 				c->x86 += (tfms >> 20) & 0xff;
331 			if (c->x86 >= 0x6)
332 				c->x86_model += ((tfms >> 16) & 0xF) << 4;
333 			c->x86_mask = tfms & 15;
334 #ifdef CONFIG_X86_HT
335 			c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
336 #else
337 			c->apicid = (ebx >> 24) & 0xFF;
338 #endif
339 			if (c->x86_capability[0] & (1<<19))
340 				c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
341 		} else {
342 			/* Have CPUID level 0 only - unheard of */
343 			c->x86 = 4;
344 		}
345 
346 		/* AMD-defined flags: level 0x80000001 */
347 		xlvl = cpuid_eax(0x80000000);
348 		if ( (xlvl & 0xffff0000) == 0x80000000 ) {
349 			if ( xlvl >= 0x80000001 ) {
350 				c->x86_capability[1] = cpuid_edx(0x80000001);
351 				c->x86_capability[6] = cpuid_ecx(0x80000001);
352 			}
353 			if ( xlvl >= 0x80000004 )
354 				get_model_name(c); /* Default name */
355 		}
356 
357 		init_scattered_cpuid_features(c);
358 	}
359 
360 	early_intel_workaround(c);
361 
362 #ifdef CONFIG_X86_HT
363 	c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
364 #endif
365 }
366 
367 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
368 {
369 	if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
370 		/* Disable processor serial number */
371 		unsigned long lo,hi;
372 		rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
373 		lo |= 0x200000;
374 		wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
375 		printk(KERN_NOTICE "CPU serial number disabled.\n");
376 		clear_bit(X86_FEATURE_PN, c->x86_capability);
377 
378 		/* Disabling the serial number may affect the cpuid level */
379 		c->cpuid_level = cpuid_eax(0);
380 	}
381 }
382 
383 static int __init x86_serial_nr_setup(char *s)
384 {
385 	disable_x86_serial_nr = 0;
386 	return 1;
387 }
388 __setup("serialnumber", x86_serial_nr_setup);
389 
390 
391 
392 /*
393  * This does the hard work of actually picking apart the CPU stuff...
394  */
395 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
396 {
397 	int i;
398 
399 	c->loops_per_jiffy = loops_per_jiffy;
400 	c->x86_cache_size = -1;
401 	c->x86_vendor = X86_VENDOR_UNKNOWN;
402 	c->cpuid_level = -1;	/* CPUID not detected */
403 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
404 	c->x86_vendor_id[0] = '\0'; /* Unset */
405 	c->x86_model_id[0] = '\0';  /* Unset */
406 	c->x86_max_cores = 1;
407 	c->x86_clflush_size = 32;
408 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
409 
410 	if (!have_cpuid_p()) {
411 		/* First of all, decide if this is a 486 or higher */
412 		/* It's a 486 if we can modify the AC flag */
413 		if ( flag_is_changeable_p(X86_EFLAGS_AC) )
414 			c->x86 = 4;
415 		else
416 			c->x86 = 3;
417 	}
418 
419 	generic_identify(c);
420 
421 	printk(KERN_DEBUG "CPU: After generic identify, caps:");
422 	for (i = 0; i < NCAPINTS; i++)
423 		printk(" %08lx", c->x86_capability[i]);
424 	printk("\n");
425 
426 	if (this_cpu->c_identify) {
427 		this_cpu->c_identify(c);
428 
429 		printk(KERN_DEBUG "CPU: After vendor identify, caps:");
430 		for (i = 0; i < NCAPINTS; i++)
431 			printk(" %08lx", c->x86_capability[i]);
432 		printk("\n");
433 	}
434 
435 	/*
436 	 * Vendor-specific initialization.  In this section we
437 	 * canonicalize the feature flags, meaning if there are
438 	 * features a certain CPU supports which CPUID doesn't
439 	 * tell us, CPUID claiming incorrect flags, or other bugs,
440 	 * we handle them here.
441 	 *
442 	 * At the end of this section, c->x86_capability better
443 	 * indicate the features this CPU genuinely supports!
444 	 */
445 	if (this_cpu->c_init)
446 		this_cpu->c_init(c);
447 
448 	/* Disable the PN if appropriate */
449 	squash_the_stupid_serial_number(c);
450 
451 	/*
452 	 * The vendor-specific functions might have changed features.  Now
453 	 * we do "generic changes."
454 	 */
455 
456 	/* TSC disabled? */
457 	if ( tsc_disable )
458 		clear_bit(X86_FEATURE_TSC, c->x86_capability);
459 
460 	/* FXSR disabled? */
461 	if (disable_x86_fxsr) {
462 		clear_bit(X86_FEATURE_FXSR, c->x86_capability);
463 		clear_bit(X86_FEATURE_XMM, c->x86_capability);
464 	}
465 
466 	/* SEP disabled? */
467 	if (disable_x86_sep)
468 		clear_bit(X86_FEATURE_SEP, c->x86_capability);
469 
470 	if (disable_pse)
471 		clear_bit(X86_FEATURE_PSE, c->x86_capability);
472 
473 	/* If the model name is still unset, do table lookup. */
474 	if ( !c->x86_model_id[0] ) {
475 		char *p;
476 		p = table_lookup_model(c);
477 		if ( p )
478 			strcpy(c->x86_model_id, p);
479 		else
480 			/* Last resort... */
481 			sprintf(c->x86_model_id, "%02x/%02x",
482 				c->x86, c->x86_model);
483 	}
484 
485 	/* Now the feature flags better reflect actual CPU features! */
486 
487 	printk(KERN_DEBUG "CPU: After all inits, caps:");
488 	for (i = 0; i < NCAPINTS; i++)
489 		printk(" %08lx", c->x86_capability[i]);
490 	printk("\n");
491 
492 	/*
493 	 * On SMP, boot_cpu_data holds the common feature set between
494 	 * all CPUs; so make sure that we indicate which features are
495 	 * common between the CPUs.  The first time this routine gets
496 	 * executed, c == &boot_cpu_data.
497 	 */
498 	if ( c != &boot_cpu_data ) {
499 		/* AND the already accumulated flags with these */
500 		for ( i = 0 ; i < NCAPINTS ; i++ )
501 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
502 	}
503 
504 	/* Init Machine Check Exception if available. */
505 	mcheck_init(c);
506 }
507 
508 void __init identify_boot_cpu(void)
509 {
510 	identify_cpu(&boot_cpu_data);
511 	sysenter_setup();
512 	enable_sep_cpu();
513 	mtrr_bp_init();
514 }
515 
516 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
517 {
518 	BUG_ON(c == &boot_cpu_data);
519 	identify_cpu(c);
520 	enable_sep_cpu();
521 	mtrr_ap_init();
522 }
523 
524 #ifdef CONFIG_X86_HT
525 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
526 {
527 	u32 	eax, ebx, ecx, edx;
528 	int 	index_msb, core_bits;
529 
530 	cpuid(1, &eax, &ebx, &ecx, &edx);
531 
532 	if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
533 		return;
534 
535 	smp_num_siblings = (ebx & 0xff0000) >> 16;
536 
537 	if (smp_num_siblings == 1) {
538 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
539 	} else if (smp_num_siblings > 1 ) {
540 
541 		if (smp_num_siblings > NR_CPUS) {
542 			printk(KERN_WARNING "CPU: Unsupported number of the "
543 					"siblings %d", smp_num_siblings);
544 			smp_num_siblings = 1;
545 			return;
546 		}
547 
548 		index_msb = get_count_order(smp_num_siblings);
549 		c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
550 
551 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
552 		       c->phys_proc_id);
553 
554 		smp_num_siblings = smp_num_siblings / c->x86_max_cores;
555 
556 		index_msb = get_count_order(smp_num_siblings) ;
557 
558 		core_bits = get_count_order(c->x86_max_cores);
559 
560 		c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
561 					       ((1 << core_bits) - 1);
562 
563 		if (c->x86_max_cores > 1)
564 			printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
565 			       c->cpu_core_id);
566 	}
567 }
568 #endif
569 
570 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
571 {
572 	char *vendor = NULL;
573 
574 	if (c->x86_vendor < X86_VENDOR_NUM)
575 		vendor = this_cpu->c_vendor;
576 	else if (c->cpuid_level >= 0)
577 		vendor = c->x86_vendor_id;
578 
579 	if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
580 		printk("%s ", vendor);
581 
582 	if (!c->x86_model_id[0])
583 		printk("%d86", c->x86);
584 	else
585 		printk("%s", c->x86_model_id);
586 
587 	if (c->x86_mask || c->cpuid_level >= 0)
588 		printk(" stepping %02x\n", c->x86_mask);
589 	else
590 		printk("\n");
591 }
592 
593 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
594 
595 /* This is hacky. :)
596  * We're emulating future behavior.
597  * In the future, the cpu-specific init functions will be called implicitly
598  * via the magic of initcalls.
599  * They will insert themselves into the cpu_devs structure.
600  * Then, when cpu_init() is called, we can just iterate over that array.
601  */
602 
603 extern int intel_cpu_init(void);
604 extern int cyrix_init_cpu(void);
605 extern int nsc_init_cpu(void);
606 extern int amd_init_cpu(void);
607 extern int centaur_init_cpu(void);
608 extern int transmeta_init_cpu(void);
609 extern int nexgen_init_cpu(void);
610 extern int umc_init_cpu(void);
611 
612 void __init early_cpu_init(void)
613 {
614 	intel_cpu_init();
615 	cyrix_init_cpu();
616 	nsc_init_cpu();
617 	amd_init_cpu();
618 	centaur_init_cpu();
619 	transmeta_init_cpu();
620 	nexgen_init_cpu();
621 	umc_init_cpu();
622 	early_cpu_detect();
623 
624 #ifdef CONFIG_DEBUG_PAGEALLOC
625 	/* pse is not compatible with on-the-fly unmapping,
626 	 * disable it even if the cpus claim to support it.
627 	 */
628 	clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
629 	disable_pse = 1;
630 #endif
631 }
632 
633 /* Make sure %fs is initialized properly in idle threads */
634 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
635 {
636 	memset(regs, 0, sizeof(struct pt_regs));
637 	regs->xfs = __KERNEL_PERCPU;
638 	return regs;
639 }
640 
641 /* Current gdt points %fs at the "master" per-cpu area: after this,
642  * it's on the real one. */
643 void switch_to_new_gdt(void)
644 {
645 	struct Xgt_desc_struct gdt_descr;
646 
647 	gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
648 	gdt_descr.size = GDT_SIZE - 1;
649 	load_gdt(&gdt_descr);
650 	asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
651 }
652 
653 /*
654  * cpu_init() initializes state that is per-CPU. Some data is already
655  * initialized (naturally) in the bootstrap process, such as the GDT
656  * and IDT. We reload them nevertheless, this function acts as a
657  * 'CPU state barrier', nothing should get across.
658  */
659 void __cpuinit cpu_init(void)
660 {
661 	int cpu = smp_processor_id();
662 	struct task_struct *curr = current;
663 	struct tss_struct * t = &per_cpu(init_tss, cpu);
664 	struct thread_struct *thread = &curr->thread;
665 
666 	if (cpu_test_and_set(cpu, cpu_initialized)) {
667 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
668 		for (;;) local_irq_enable();
669 	}
670 
671 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
672 
673 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
674 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
675 	if (tsc_disable && cpu_has_tsc) {
676 		printk(KERN_NOTICE "Disabling TSC...\n");
677 		/**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
678 		clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
679 		set_in_cr4(X86_CR4_TSD);
680 	}
681 
682 	load_idt(&idt_descr);
683 	switch_to_new_gdt();
684 
685 	/*
686 	 * Set up and load the per-CPU TSS and LDT
687 	 */
688 	atomic_inc(&init_mm.mm_count);
689 	curr->active_mm = &init_mm;
690 	if (curr->mm)
691 		BUG();
692 	enter_lazy_tlb(&init_mm, curr);
693 
694 	load_esp0(t, thread);
695 	set_tss_desc(cpu,t);
696 	load_TR_desc();
697 	load_LDT(&init_mm.context);
698 
699 #ifdef CONFIG_DOUBLEFAULT
700 	/* Set up doublefault TSS pointer in the GDT */
701 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
702 #endif
703 
704 	/* Clear %gs. */
705 	asm volatile ("mov %0, %%gs" : : "r" (0));
706 
707 	/* Clear all 6 debug registers: */
708 	set_debugreg(0, 0);
709 	set_debugreg(0, 1);
710 	set_debugreg(0, 2);
711 	set_debugreg(0, 3);
712 	set_debugreg(0, 6);
713 	set_debugreg(0, 7);
714 
715 	/*
716 	 * Force FPU initialization:
717 	 */
718 	current_thread_info()->status = 0;
719 	clear_used_math();
720 	mxcsr_feature_mask_init();
721 }
722 
723 #ifdef CONFIG_HOTPLUG_CPU
724 void __cpuinit cpu_uninit(void)
725 {
726 	int cpu = raw_smp_processor_id();
727 	cpu_clear(cpu, cpu_initialized);
728 
729 	/* lazy TLB state */
730 	per_cpu(cpu_tlbstate, cpu).state = 0;
731 	per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
732 }
733 #endif
734