xref: /openbmc/linux/arch/x86/kernel/cpu/common.c (revision 7f2590a110b837af5679d08fc25c6227c5a8c497)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54 
55 #include "cpu.h"
56 
57 u32 elf_hwcap2 __read_mostly;
58 
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63 
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66 
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75 
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 	cpu_detect_cache_sizes(c);
80 #else
81 	/* Not much we can do here... */
82 	/* Check if at least it has cpuid */
83 	if (c->cpuid_level == -1) {
84 		/* No cpuid. It must be an ancient CPU */
85 		if (c->x86 == 4)
86 			strcpy(c->x86_model_id, "486");
87 		else if (c->x86 == 3)
88 			strcpy(c->x86_model_id, "386");
89 	}
90 #endif
91 }
92 
93 static const struct cpu_dev default_cpu = {
94 	.c_init		= default_init,
95 	.c_vendor	= "Unknown",
96 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
97 };
98 
99 static const struct cpu_dev *this_cpu = &default_cpu;
100 
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 	/*
104 	 * We need valid kernel segments for data and code in long mode too
105 	 * IRET will check the segment types  kkeil 2000/10/28
106 	 * Also sysret mandates a special GDT layout
107 	 *
108 	 * TLS descriptors are currently at a different place compared to i386.
109 	 * Hopefully nobody expects them at a fixed place (Wine?)
110 	 */
111 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 	/*
123 	 * Segments used for calling PnP BIOS have byte granularity.
124 	 * They code segments and data segments have fixed 64k limits,
125 	 * the transfer segment sizes are set at run time.
126 	 */
127 	/* 32-bit code */
128 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 	/* 16-bit code */
130 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 	/* 16-bit data */
132 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 	/* 16-bit data */
134 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
135 	/* 16-bit data */
136 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
137 	/*
138 	 * The APM segments have byte granularity and their bases
139 	 * are set at run time.  All have 64k limits.
140 	 */
141 	/* 32-bit code */
142 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 	/* 16-bit code */
144 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 	/* data */
146 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147 
148 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 	GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154 
155 static int __init x86_mpx_setup(char *s)
156 {
157 	/* require an exact match without trailing characters */
158 	if (strlen(s))
159 		return 0;
160 
161 	/* do not emit a message if the feature is not present */
162 	if (!boot_cpu_has(X86_FEATURE_MPX))
163 		return 1;
164 
165 	setup_clear_cpu_cap(X86_FEATURE_MPX);
166 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 	return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170 
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 	/* nopcid doesn't accept parameters */
175 	if (s)
176 		return -EINVAL;
177 
178 	/* do not emit a message if the feature is not present */
179 	if (!boot_cpu_has(X86_FEATURE_PCID))
180 		return 0;
181 
182 	setup_clear_cpu_cap(X86_FEATURE_PCID);
183 	pr_info("nopcid: PCID feature disabled\n");
184 	return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188 
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 	/* noinvpcid doesn't accept parameters */
192 	if (s)
193 		return -EINVAL;
194 
195 	/* do not emit a message if the feature is not present */
196 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 		return 0;
198 
199 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 	pr_info("noinvpcid: INVPCID feature disabled\n");
201 	return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204 
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208 
209 static int __init cachesize_setup(char *str)
210 {
211 	get_option(&str, &cachesize_override);
212 	return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215 
216 static int __init x86_sep_setup(char *s)
217 {
218 	setup_clear_cpu_cap(X86_FEATURE_SEP);
219 	return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222 
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 	u32 f1, f2;
227 
228 	/*
229 	 * Cyrix and IDT cpus allow disabling of CPUID
230 	 * so the code below may return different results
231 	 * when it is executed before and after enabling
232 	 * the CPUID. Add "volatile" to not allow gcc to
233 	 * optimize the subsequent calls to this function.
234 	 */
235 	asm volatile ("pushfl		\n\t"
236 		      "pushfl		\n\t"
237 		      "popl %0		\n\t"
238 		      "movl %0, %1	\n\t"
239 		      "xorl %2, %0	\n\t"
240 		      "pushl %0		\n\t"
241 		      "popfl		\n\t"
242 		      "pushfl		\n\t"
243 		      "popl %0		\n\t"
244 		      "popfl		\n\t"
245 
246 		      : "=&r" (f1), "=&r" (f2)
247 		      : "ir" (flag));
248 
249 	return ((f1^f2) & flag) != 0;
250 }
251 
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 	return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257 
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 	unsigned long lo, hi;
261 
262 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 		return;
264 
265 	/* Disable processor serial number: */
266 
267 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 	lo |= 0x200000;
269 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 
271 	pr_notice("CPU serial number disabled.\n");
272 	clear_cpu_cap(c, X86_FEATURE_PN);
273 
274 	/* Disabling the serial number may affect the cpuid level */
275 	c->cpuid_level = cpuid_eax(0);
276 }
277 
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 	disable_x86_serial_nr = 0;
281 	return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 	return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293 
294 static __init int setup_disable_smep(char *arg)
295 {
296 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 	/* Check for things that depend on SMEP being enabled: */
298 	check_mpx_erratum(&boot_cpu_data);
299 	return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302 
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 	if (cpu_has(c, X86_FEATURE_SMEP))
306 		cr4_set_bits(X86_CR4_SMEP);
307 }
308 
309 static __init int setup_disable_smap(char *arg)
310 {
311 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 	return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315 
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 	unsigned long eflags = native_save_fl();
319 
320 	/* This should have been cleared long ago */
321 	BUG_ON(eflags & X86_EFLAGS_AC);
322 
323 	if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 		cr4_set_bits(X86_CR4_SMAP);
326 #else
327 		cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 	}
330 }
331 
332 /*
333  * Protection Keys are not available in 32-bit mode.
334  */
335 static bool pku_disabled;
336 
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 	/* check the boot processor, plus compile options for PKU: */
340 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 		return;
342 	/* checks the actual processor's cpuid bits: */
343 	if (!cpu_has(c, X86_FEATURE_PKU))
344 		return;
345 	if (pku_disabled)
346 		return;
347 
348 	cr4_set_bits(X86_CR4_PKE);
349 	/*
350 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 	 * cpuid bit to be set.  We need to ensure that we
352 	 * update that bit in this CPU's "cpu_info".
353 	 */
354 	get_cpu_cap(c);
355 }
356 
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 	/*
361 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
362 	 * runtime checks are against OSPKE so clearing the
363 	 * bit does nothing.
364 	 *
365 	 * This way, we will see "pku" in cpuinfo, but not
366 	 * "ospke", which is exactly what we want.  It shows
367 	 * that the CPU has PKU, but the OS has not enabled it.
368 	 * This happens to be exactly how a system would look
369 	 * if we disabled the config option.
370 	 */
371 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 	pku_disabled = true;
373 	return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377 
378 /*
379  * Some CPU features depend on higher CPUID levels, which may not always
380  * be available due to CPUID level capping or broken virtualization
381  * software.  Add those features to this table to auto-disable them.
382  */
383 struct cpuid_dependent_feature {
384 	u32 feature;
385 	u32 level;
386 };
387 
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 	{ X86_FEATURE_MWAIT,		0x00000005 },
391 	{ X86_FEATURE_DCA,		0x00000009 },
392 	{ X86_FEATURE_XSAVE,		0x0000000d },
393 	{ 0, 0 }
394 };
395 
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 	const struct cpuid_dependent_feature *df;
399 
400 	for (df = cpuid_dependent_features; df->feature; df++) {
401 
402 		if (!cpu_has(c, df->feature))
403 			continue;
404 		/*
405 		 * Note: cpuid_level is set to -1 if unavailable, but
406 		 * extended_extended_level is set to 0 if unavailable
407 		 * and the legitimate extended levels are all negative
408 		 * when signed; hence the weird messing around with
409 		 * signs here...
410 		 */
411 		if (!((s32)df->level < 0 ?
412 		     (u32)df->level > (u32)c->extended_cpuid_level :
413 		     (s32)df->level > (s32)c->cpuid_level))
414 			continue;
415 
416 		clear_cpu_cap(c, df->feature);
417 		if (!warn)
418 			continue;
419 
420 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 			x86_cap_flag(df->feature), df->level);
422 	}
423 }
424 
425 /*
426  * Naming convention should be: <Name> [(<Codename>)]
427  * This table only is used unless init_<vendor>() below doesn't set it;
428  * in particular, if CPUID levels 0x80000002..4 are supported, this
429  * isn't used
430  */
431 
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 	const struct legacy_cpu_model_info *info;
437 
438 	if (c->x86_model >= 16)
439 		return NULL;	/* Range check */
440 
441 	if (!this_cpu)
442 		return NULL;
443 
444 	info = this_cpu->legacy_models;
445 
446 	while (info->family) {
447 		if (info->family == c->x86)
448 			return info->model_names[c->x86_model];
449 		info++;
450 	}
451 #endif
452 	return NULL;		/* Not found */
453 }
454 
455 __u32 cpu_caps_cleared[NCAPINTS];
456 __u32 cpu_caps_set[NCAPINTS];
457 
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 	loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 	__loadsegment_simple(gs, 0);
464 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 	load_stack_canary_segment();
467 }
468 
469 static void set_percpu_fixmap_pages(int fixmap_index, void *ptr,
470 				    int pages, pgprot_t prot)
471 {
472 	int i;
473 
474 	for (i = 0; i < pages; i++) {
475 		__set_fixmap(fixmap_index - i,
476 			     per_cpu_ptr_to_phys(ptr + i * PAGE_SIZE), prot);
477 	}
478 }
479 
480 #ifdef CONFIG_X86_32
481 /* The 32-bit entry code needs to find cpu_entry_area. */
482 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
483 #endif
484 
485 /* Setup the fixmap mappings only once per-processor */
486 static inline void setup_cpu_entry_area(int cpu)
487 {
488 #ifdef CONFIG_X86_64
489 	/* On 64-bit systems, we use a read-only fixmap GDT. */
490 	pgprot_t gdt_prot = PAGE_KERNEL_RO;
491 #else
492 	/*
493 	 * On native 32-bit systems, the GDT cannot be read-only because
494 	 * our double fault handler uses a task gate, and entering through
495 	 * a task gate needs to change an available TSS to busy.  If the GDT
496 	 * is read-only, that will triple fault.
497 	 *
498 	 * On Xen PV, the GDT must be read-only because the hypervisor requires
499 	 * it.
500 	 */
501 	pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
502 		PAGE_KERNEL_RO : PAGE_KERNEL;
503 #endif
504 
505 	__set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
506 
507 	/*
508 	 * The Intel SDM says (Volume 3, 7.2.1):
509 	 *
510 	 *  Avoid placing a page boundary in the part of the TSS that the
511 	 *  processor reads during a task switch (the first 104 bytes). The
512 	 *  processor may not correctly perform address translations if a
513 	 *  boundary occurs in this area. During a task switch, the processor
514 	 *  reads and writes into the first 104 bytes of each TSS (using
515 	 *  contiguous physical addresses beginning with the physical address
516 	 *  of the first byte of the TSS). So, after TSS access begins, if
517 	 *  part of the 104 bytes is not physically contiguous, the processor
518 	 *  will access incorrect information without generating a page-fault
519 	 *  exception.
520 	 *
521 	 * There are also a lot of errata involving the TSS spanning a page
522 	 * boundary.  Assert that we're not doing that.
523 	 */
524 	BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
525 		      offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
526 	BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
527 	set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
528 				&per_cpu(cpu_tss, cpu),
529 				sizeof(struct tss_struct) / PAGE_SIZE,
530 				PAGE_KERNEL);
531 
532 #ifdef CONFIG_X86_32
533 	this_cpu_write(cpu_entry_area, get_cpu_entry_area(cpu));
534 #endif
535 }
536 
537 /* Load the original GDT from the per-cpu structure */
538 void load_direct_gdt(int cpu)
539 {
540 	struct desc_ptr gdt_descr;
541 
542 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
543 	gdt_descr.size = GDT_SIZE - 1;
544 	load_gdt(&gdt_descr);
545 }
546 EXPORT_SYMBOL_GPL(load_direct_gdt);
547 
548 /* Load a fixmap remapping of the per-cpu GDT */
549 void load_fixmap_gdt(int cpu)
550 {
551 	struct desc_ptr gdt_descr;
552 
553 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
554 	gdt_descr.size = GDT_SIZE - 1;
555 	load_gdt(&gdt_descr);
556 }
557 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
558 
559 /*
560  * Current gdt points %fs at the "master" per-cpu area: after this,
561  * it's on the real one.
562  */
563 void switch_to_new_gdt(int cpu)
564 {
565 	/* Load the original GDT */
566 	load_direct_gdt(cpu);
567 	/* Reload the per-cpu base */
568 	load_percpu_segment(cpu);
569 }
570 
571 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
572 
573 static void get_model_name(struct cpuinfo_x86 *c)
574 {
575 	unsigned int *v;
576 	char *p, *q, *s;
577 
578 	if (c->extended_cpuid_level < 0x80000004)
579 		return;
580 
581 	v = (unsigned int *)c->x86_model_id;
582 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
583 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
584 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
585 	c->x86_model_id[48] = 0;
586 
587 	/* Trim whitespace */
588 	p = q = s = &c->x86_model_id[0];
589 
590 	while (*p == ' ')
591 		p++;
592 
593 	while (*p) {
594 		/* Note the last non-whitespace index */
595 		if (!isspace(*p))
596 			s = q;
597 
598 		*q++ = *p++;
599 	}
600 
601 	*(s + 1) = '\0';
602 }
603 
604 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
605 {
606 	unsigned int n, dummy, ebx, ecx, edx, l2size;
607 
608 	n = c->extended_cpuid_level;
609 
610 	if (n >= 0x80000005) {
611 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
612 		c->x86_cache_size = (ecx>>24) + (edx>>24);
613 #ifdef CONFIG_X86_64
614 		/* On K8 L1 TLB is inclusive, so don't count it */
615 		c->x86_tlbsize = 0;
616 #endif
617 	}
618 
619 	if (n < 0x80000006)	/* Some chips just has a large L1. */
620 		return;
621 
622 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
623 	l2size = ecx >> 16;
624 
625 #ifdef CONFIG_X86_64
626 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
627 #else
628 	/* do processor-specific cache resizing */
629 	if (this_cpu->legacy_cache_size)
630 		l2size = this_cpu->legacy_cache_size(c, l2size);
631 
632 	/* Allow user to override all this if necessary. */
633 	if (cachesize_override != -1)
634 		l2size = cachesize_override;
635 
636 	if (l2size == 0)
637 		return;		/* Again, no L2 cache is possible */
638 #endif
639 
640 	c->x86_cache_size = l2size;
641 }
642 
643 u16 __read_mostly tlb_lli_4k[NR_INFO];
644 u16 __read_mostly tlb_lli_2m[NR_INFO];
645 u16 __read_mostly tlb_lli_4m[NR_INFO];
646 u16 __read_mostly tlb_lld_4k[NR_INFO];
647 u16 __read_mostly tlb_lld_2m[NR_INFO];
648 u16 __read_mostly tlb_lld_4m[NR_INFO];
649 u16 __read_mostly tlb_lld_1g[NR_INFO];
650 
651 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
652 {
653 	if (this_cpu->c_detect_tlb)
654 		this_cpu->c_detect_tlb(c);
655 
656 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
657 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
658 		tlb_lli_4m[ENTRIES]);
659 
660 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
661 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
662 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
663 }
664 
665 void detect_ht(struct cpuinfo_x86 *c)
666 {
667 #ifdef CONFIG_SMP
668 	u32 eax, ebx, ecx, edx;
669 	int index_msb, core_bits;
670 	static bool printed;
671 
672 	if (!cpu_has(c, X86_FEATURE_HT))
673 		return;
674 
675 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
676 		goto out;
677 
678 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
679 		return;
680 
681 	cpuid(1, &eax, &ebx, &ecx, &edx);
682 
683 	smp_num_siblings = (ebx & 0xff0000) >> 16;
684 
685 	if (smp_num_siblings == 1) {
686 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
687 		goto out;
688 	}
689 
690 	if (smp_num_siblings <= 1)
691 		goto out;
692 
693 	index_msb = get_count_order(smp_num_siblings);
694 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
695 
696 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
697 
698 	index_msb = get_count_order(smp_num_siblings);
699 
700 	core_bits = get_count_order(c->x86_max_cores);
701 
702 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
703 				       ((1 << core_bits) - 1);
704 
705 out:
706 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
707 		pr_info("CPU: Physical Processor ID: %d\n",
708 			c->phys_proc_id);
709 		pr_info("CPU: Processor Core ID: %d\n",
710 			c->cpu_core_id);
711 		printed = 1;
712 	}
713 #endif
714 }
715 
716 static void get_cpu_vendor(struct cpuinfo_x86 *c)
717 {
718 	char *v = c->x86_vendor_id;
719 	int i;
720 
721 	for (i = 0; i < X86_VENDOR_NUM; i++) {
722 		if (!cpu_devs[i])
723 			break;
724 
725 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
726 		    (cpu_devs[i]->c_ident[1] &&
727 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
728 
729 			this_cpu = cpu_devs[i];
730 			c->x86_vendor = this_cpu->c_x86_vendor;
731 			return;
732 		}
733 	}
734 
735 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
736 		    "CPU: Your system may be unstable.\n", v);
737 
738 	c->x86_vendor = X86_VENDOR_UNKNOWN;
739 	this_cpu = &default_cpu;
740 }
741 
742 void cpu_detect(struct cpuinfo_x86 *c)
743 {
744 	/* Get vendor name */
745 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
746 	      (unsigned int *)&c->x86_vendor_id[0],
747 	      (unsigned int *)&c->x86_vendor_id[8],
748 	      (unsigned int *)&c->x86_vendor_id[4]);
749 
750 	c->x86 = 4;
751 	/* Intel-defined flags: level 0x00000001 */
752 	if (c->cpuid_level >= 0x00000001) {
753 		u32 junk, tfms, cap0, misc;
754 
755 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
756 		c->x86		= x86_family(tfms);
757 		c->x86_model	= x86_model(tfms);
758 		c->x86_mask	= x86_stepping(tfms);
759 
760 		if (cap0 & (1<<19)) {
761 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
762 			c->x86_cache_alignment = c->x86_clflush_size;
763 		}
764 	}
765 }
766 
767 static void apply_forced_caps(struct cpuinfo_x86 *c)
768 {
769 	int i;
770 
771 	for (i = 0; i < NCAPINTS; i++) {
772 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
773 		c->x86_capability[i] |= cpu_caps_set[i];
774 	}
775 }
776 
777 void get_cpu_cap(struct cpuinfo_x86 *c)
778 {
779 	u32 eax, ebx, ecx, edx;
780 
781 	/* Intel-defined flags: level 0x00000001 */
782 	if (c->cpuid_level >= 0x00000001) {
783 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
784 
785 		c->x86_capability[CPUID_1_ECX] = ecx;
786 		c->x86_capability[CPUID_1_EDX] = edx;
787 	}
788 
789 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
790 	if (c->cpuid_level >= 0x00000006)
791 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
792 
793 	/* Additional Intel-defined flags: level 0x00000007 */
794 	if (c->cpuid_level >= 0x00000007) {
795 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
796 		c->x86_capability[CPUID_7_0_EBX] = ebx;
797 		c->x86_capability[CPUID_7_ECX] = ecx;
798 	}
799 
800 	/* Extended state features: level 0x0000000d */
801 	if (c->cpuid_level >= 0x0000000d) {
802 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
803 
804 		c->x86_capability[CPUID_D_1_EAX] = eax;
805 	}
806 
807 	/* Additional Intel-defined flags: level 0x0000000F */
808 	if (c->cpuid_level >= 0x0000000F) {
809 
810 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
811 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
812 		c->x86_capability[CPUID_F_0_EDX] = edx;
813 
814 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
815 			/* will be overridden if occupancy monitoring exists */
816 			c->x86_cache_max_rmid = ebx;
817 
818 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
819 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
820 			c->x86_capability[CPUID_F_1_EDX] = edx;
821 
822 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
823 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
824 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
825 				c->x86_cache_max_rmid = ecx;
826 				c->x86_cache_occ_scale = ebx;
827 			}
828 		} else {
829 			c->x86_cache_max_rmid = -1;
830 			c->x86_cache_occ_scale = -1;
831 		}
832 	}
833 
834 	/* AMD-defined flags: level 0x80000001 */
835 	eax = cpuid_eax(0x80000000);
836 	c->extended_cpuid_level = eax;
837 
838 	if ((eax & 0xffff0000) == 0x80000000) {
839 		if (eax >= 0x80000001) {
840 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
841 
842 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
843 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
844 		}
845 	}
846 
847 	if (c->extended_cpuid_level >= 0x80000007) {
848 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
849 
850 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
851 		c->x86_power = edx;
852 	}
853 
854 	if (c->extended_cpuid_level >= 0x80000008) {
855 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
856 
857 		c->x86_virt_bits = (eax >> 8) & 0xff;
858 		c->x86_phys_bits = eax & 0xff;
859 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
860 	}
861 #ifdef CONFIG_X86_32
862 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
863 		c->x86_phys_bits = 36;
864 #endif
865 
866 	if (c->extended_cpuid_level >= 0x8000000a)
867 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
868 
869 	init_scattered_cpuid_features(c);
870 
871 	/*
872 	 * Clear/Set all flags overridden by options, after probe.
873 	 * This needs to happen each time we re-probe, which may happen
874 	 * several times during CPU initialization.
875 	 */
876 	apply_forced_caps(c);
877 }
878 
879 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
880 {
881 #ifdef CONFIG_X86_32
882 	int i;
883 
884 	/*
885 	 * First of all, decide if this is a 486 or higher
886 	 * It's a 486 if we can modify the AC flag
887 	 */
888 	if (flag_is_changeable_p(X86_EFLAGS_AC))
889 		c->x86 = 4;
890 	else
891 		c->x86 = 3;
892 
893 	for (i = 0; i < X86_VENDOR_NUM; i++)
894 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
895 			c->x86_vendor_id[0] = 0;
896 			cpu_devs[i]->c_identify(c);
897 			if (c->x86_vendor_id[0]) {
898 				get_cpu_vendor(c);
899 				break;
900 			}
901 		}
902 #endif
903 }
904 
905 /*
906  * Do minimum CPU detection early.
907  * Fields really needed: vendor, cpuid_level, family, model, mask,
908  * cache alignment.
909  * The others are not touched to avoid unwanted side effects.
910  *
911  * WARNING: this function is only called on the BP.  Don't add code here
912  * that is supposed to run on all CPUs.
913  */
914 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
915 {
916 #ifdef CONFIG_X86_64
917 	c->x86_clflush_size = 64;
918 	c->x86_phys_bits = 36;
919 	c->x86_virt_bits = 48;
920 #else
921 	c->x86_clflush_size = 32;
922 	c->x86_phys_bits = 32;
923 	c->x86_virt_bits = 32;
924 #endif
925 	c->x86_cache_alignment = c->x86_clflush_size;
926 
927 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
928 	c->extended_cpuid_level = 0;
929 
930 	/* cyrix could have cpuid enabled via c_identify()*/
931 	if (have_cpuid_p()) {
932 		cpu_detect(c);
933 		get_cpu_vendor(c);
934 		get_cpu_cap(c);
935 		setup_force_cpu_cap(X86_FEATURE_CPUID);
936 
937 		if (this_cpu->c_early_init)
938 			this_cpu->c_early_init(c);
939 
940 		c->cpu_index = 0;
941 		filter_cpuid_features(c, false);
942 
943 		if (this_cpu->c_bsp_init)
944 			this_cpu->c_bsp_init(c);
945 	} else {
946 		identify_cpu_without_cpuid(c);
947 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
948 	}
949 
950 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
951 	fpu__init_system(c);
952 
953 #ifdef CONFIG_X86_32
954 	/*
955 	 * Regardless of whether PCID is enumerated, the SDM says
956 	 * that it can't be enabled in 32-bit mode.
957 	 */
958 	setup_clear_cpu_cap(X86_FEATURE_PCID);
959 #endif
960 }
961 
962 void __init early_cpu_init(void)
963 {
964 	const struct cpu_dev *const *cdev;
965 	int count = 0;
966 
967 #ifdef CONFIG_PROCESSOR_SELECT
968 	pr_info("KERNEL supported cpus:\n");
969 #endif
970 
971 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
972 		const struct cpu_dev *cpudev = *cdev;
973 
974 		if (count >= X86_VENDOR_NUM)
975 			break;
976 		cpu_devs[count] = cpudev;
977 		count++;
978 
979 #ifdef CONFIG_PROCESSOR_SELECT
980 		{
981 			unsigned int j;
982 
983 			for (j = 0; j < 2; j++) {
984 				if (!cpudev->c_ident[j])
985 					continue;
986 				pr_info("  %s %s\n", cpudev->c_vendor,
987 					cpudev->c_ident[j]);
988 			}
989 		}
990 #endif
991 	}
992 	early_identify_cpu(&boot_cpu_data);
993 }
994 
995 /*
996  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
997  * unfortunately, that's not true in practice because of early VIA
998  * chips and (more importantly) broken virtualizers that are not easy
999  * to detect. In the latter case it doesn't even *fail* reliably, so
1000  * probing for it doesn't even work. Disable it completely on 32-bit
1001  * unless we can find a reliable way to detect all the broken cases.
1002  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1003  */
1004 static void detect_nopl(struct cpuinfo_x86 *c)
1005 {
1006 #ifdef CONFIG_X86_32
1007 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1008 #else
1009 	set_cpu_cap(c, X86_FEATURE_NOPL);
1010 #endif
1011 }
1012 
1013 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1014 {
1015 #ifdef CONFIG_X86_64
1016 	/*
1017 	 * Empirically, writing zero to a segment selector on AMD does
1018 	 * not clear the base, whereas writing zero to a segment
1019 	 * selector on Intel does clear the base.  Intel's behavior
1020 	 * allows slightly faster context switches in the common case
1021 	 * where GS is unused by the prev and next threads.
1022 	 *
1023 	 * Since neither vendor documents this anywhere that I can see,
1024 	 * detect it directly instead of hardcoding the choice by
1025 	 * vendor.
1026 	 *
1027 	 * I've designated AMD's behavior as the "bug" because it's
1028 	 * counterintuitive and less friendly.
1029 	 */
1030 
1031 	unsigned long old_base, tmp;
1032 	rdmsrl(MSR_FS_BASE, old_base);
1033 	wrmsrl(MSR_FS_BASE, 1);
1034 	loadsegment(fs, 0);
1035 	rdmsrl(MSR_FS_BASE, tmp);
1036 	if (tmp != 0)
1037 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1038 	wrmsrl(MSR_FS_BASE, old_base);
1039 #endif
1040 }
1041 
1042 static void generic_identify(struct cpuinfo_x86 *c)
1043 {
1044 	c->extended_cpuid_level = 0;
1045 
1046 	if (!have_cpuid_p())
1047 		identify_cpu_without_cpuid(c);
1048 
1049 	/* cyrix could have cpuid enabled via c_identify()*/
1050 	if (!have_cpuid_p())
1051 		return;
1052 
1053 	cpu_detect(c);
1054 
1055 	get_cpu_vendor(c);
1056 
1057 	get_cpu_cap(c);
1058 
1059 	if (c->cpuid_level >= 0x00000001) {
1060 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1061 #ifdef CONFIG_X86_32
1062 # ifdef CONFIG_SMP
1063 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1064 # else
1065 		c->apicid = c->initial_apicid;
1066 # endif
1067 #endif
1068 		c->phys_proc_id = c->initial_apicid;
1069 	}
1070 
1071 	get_model_name(c); /* Default name */
1072 
1073 	detect_nopl(c);
1074 
1075 	detect_null_seg_behavior(c);
1076 
1077 	/*
1078 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1079 	 * systems that run Linux at CPL > 0 may or may not have the
1080 	 * issue, but, even if they have the issue, there's absolutely
1081 	 * nothing we can do about it because we can't use the real IRET
1082 	 * instruction.
1083 	 *
1084 	 * NB: For the time being, only 32-bit kernels support
1085 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1086 	 * whether to apply espfix using paravirt hooks.  If any
1087 	 * non-paravirt system ever shows up that does *not* have the
1088 	 * ESPFIX issue, we can change this.
1089 	 */
1090 #ifdef CONFIG_X86_32
1091 # ifdef CONFIG_PARAVIRT
1092 	do {
1093 		extern void native_iret(void);
1094 		if (pv_cpu_ops.iret == native_iret)
1095 			set_cpu_bug(c, X86_BUG_ESPFIX);
1096 	} while (0);
1097 # else
1098 	set_cpu_bug(c, X86_BUG_ESPFIX);
1099 # endif
1100 #endif
1101 }
1102 
1103 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1104 {
1105 	/*
1106 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1107 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1108 	 * in case CQM bits really aren't there in this CPU.
1109 	 */
1110 	if (c != &boot_cpu_data) {
1111 		boot_cpu_data.x86_cache_max_rmid =
1112 			min(boot_cpu_data.x86_cache_max_rmid,
1113 			    c->x86_cache_max_rmid);
1114 	}
1115 }
1116 
1117 /*
1118  * Validate that ACPI/mptables have the same information about the
1119  * effective APIC id and update the package map.
1120  */
1121 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1122 {
1123 #ifdef CONFIG_SMP
1124 	unsigned int apicid, cpu = smp_processor_id();
1125 
1126 	apicid = apic->cpu_present_to_apicid(cpu);
1127 
1128 	if (apicid != c->apicid) {
1129 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1130 		       cpu, apicid, c->initial_apicid);
1131 	}
1132 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1133 #else
1134 	c->logical_proc_id = 0;
1135 #endif
1136 }
1137 
1138 /*
1139  * This does the hard work of actually picking apart the CPU stuff...
1140  */
1141 static void identify_cpu(struct cpuinfo_x86 *c)
1142 {
1143 	int i;
1144 
1145 	c->loops_per_jiffy = loops_per_jiffy;
1146 	c->x86_cache_size = -1;
1147 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1148 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1149 	c->x86_vendor_id[0] = '\0'; /* Unset */
1150 	c->x86_model_id[0] = '\0';  /* Unset */
1151 	c->x86_max_cores = 1;
1152 	c->x86_coreid_bits = 0;
1153 	c->cu_id = 0xff;
1154 #ifdef CONFIG_X86_64
1155 	c->x86_clflush_size = 64;
1156 	c->x86_phys_bits = 36;
1157 	c->x86_virt_bits = 48;
1158 #else
1159 	c->cpuid_level = -1;	/* CPUID not detected */
1160 	c->x86_clflush_size = 32;
1161 	c->x86_phys_bits = 32;
1162 	c->x86_virt_bits = 32;
1163 #endif
1164 	c->x86_cache_alignment = c->x86_clflush_size;
1165 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1166 
1167 	generic_identify(c);
1168 
1169 	if (this_cpu->c_identify)
1170 		this_cpu->c_identify(c);
1171 
1172 	/* Clear/Set all flags overridden by options, after probe */
1173 	apply_forced_caps(c);
1174 
1175 #ifdef CONFIG_X86_64
1176 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1177 #endif
1178 
1179 	/*
1180 	 * Vendor-specific initialization.  In this section we
1181 	 * canonicalize the feature flags, meaning if there are
1182 	 * features a certain CPU supports which CPUID doesn't
1183 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1184 	 * we handle them here.
1185 	 *
1186 	 * At the end of this section, c->x86_capability better
1187 	 * indicate the features this CPU genuinely supports!
1188 	 */
1189 	if (this_cpu->c_init)
1190 		this_cpu->c_init(c);
1191 
1192 	/* Disable the PN if appropriate */
1193 	squash_the_stupid_serial_number(c);
1194 
1195 	/* Set up SMEP/SMAP */
1196 	setup_smep(c);
1197 	setup_smap(c);
1198 
1199 	/*
1200 	 * The vendor-specific functions might have changed features.
1201 	 * Now we do "generic changes."
1202 	 */
1203 
1204 	/* Filter out anything that depends on CPUID levels we don't have */
1205 	filter_cpuid_features(c, true);
1206 
1207 	/* If the model name is still unset, do table lookup. */
1208 	if (!c->x86_model_id[0]) {
1209 		const char *p;
1210 		p = table_lookup_model(c);
1211 		if (p)
1212 			strcpy(c->x86_model_id, p);
1213 		else
1214 			/* Last resort... */
1215 			sprintf(c->x86_model_id, "%02x/%02x",
1216 				c->x86, c->x86_model);
1217 	}
1218 
1219 #ifdef CONFIG_X86_64
1220 	detect_ht(c);
1221 #endif
1222 
1223 	x86_init_rdrand(c);
1224 	x86_init_cache_qos(c);
1225 	setup_pku(c);
1226 
1227 	/*
1228 	 * Clear/Set all flags overridden by options, need do it
1229 	 * before following smp all cpus cap AND.
1230 	 */
1231 	apply_forced_caps(c);
1232 
1233 	/*
1234 	 * On SMP, boot_cpu_data holds the common feature set between
1235 	 * all CPUs; so make sure that we indicate which features are
1236 	 * common between the CPUs.  The first time this routine gets
1237 	 * executed, c == &boot_cpu_data.
1238 	 */
1239 	if (c != &boot_cpu_data) {
1240 		/* AND the already accumulated flags with these */
1241 		for (i = 0; i < NCAPINTS; i++)
1242 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1243 
1244 		/* OR, i.e. replicate the bug flags */
1245 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1246 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1247 	}
1248 
1249 	/* Init Machine Check Exception if available. */
1250 	mcheck_cpu_init(c);
1251 
1252 	select_idle_routine(c);
1253 
1254 #ifdef CONFIG_NUMA
1255 	numa_add_cpu(smp_processor_id());
1256 #endif
1257 }
1258 
1259 /*
1260  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1261  * on 32-bit kernels:
1262  */
1263 #ifdef CONFIG_X86_32
1264 void enable_sep_cpu(void)
1265 {
1266 	struct tss_struct *tss;
1267 	int cpu;
1268 
1269 	if (!boot_cpu_has(X86_FEATURE_SEP))
1270 		return;
1271 
1272 	cpu = get_cpu();
1273 	tss = &per_cpu(cpu_tss, cpu);
1274 
1275 	/*
1276 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1277 	 * see the big comment in struct x86_hw_tss's definition.
1278 	 */
1279 
1280 	tss->x86_tss.ss1 = __KERNEL_CS;
1281 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1282 
1283 	wrmsr(MSR_IA32_SYSENTER_ESP,
1284 	      (unsigned long)&get_cpu_entry_area(cpu)->tss +
1285 	      offsetofend(struct tss_struct, SYSENTER_stack),
1286 	      0);
1287 
1288 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1289 
1290 	put_cpu();
1291 }
1292 #endif
1293 
1294 void __init identify_boot_cpu(void)
1295 {
1296 	identify_cpu(&boot_cpu_data);
1297 #ifdef CONFIG_X86_32
1298 	sysenter_setup();
1299 	enable_sep_cpu();
1300 #endif
1301 	cpu_detect_tlb(&boot_cpu_data);
1302 }
1303 
1304 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1305 {
1306 	BUG_ON(c == &boot_cpu_data);
1307 	identify_cpu(c);
1308 #ifdef CONFIG_X86_32
1309 	enable_sep_cpu();
1310 #endif
1311 	mtrr_ap_init();
1312 	validate_apic_and_package_id(c);
1313 }
1314 
1315 static __init int setup_noclflush(char *arg)
1316 {
1317 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1318 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1319 	return 1;
1320 }
1321 __setup("noclflush", setup_noclflush);
1322 
1323 void print_cpu_info(struct cpuinfo_x86 *c)
1324 {
1325 	const char *vendor = NULL;
1326 
1327 	if (c->x86_vendor < X86_VENDOR_NUM) {
1328 		vendor = this_cpu->c_vendor;
1329 	} else {
1330 		if (c->cpuid_level >= 0)
1331 			vendor = c->x86_vendor_id;
1332 	}
1333 
1334 	if (vendor && !strstr(c->x86_model_id, vendor))
1335 		pr_cont("%s ", vendor);
1336 
1337 	if (c->x86_model_id[0])
1338 		pr_cont("%s", c->x86_model_id);
1339 	else
1340 		pr_cont("%d86", c->x86);
1341 
1342 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1343 
1344 	if (c->x86_mask || c->cpuid_level >= 0)
1345 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1346 	else
1347 		pr_cont(")\n");
1348 }
1349 
1350 /*
1351  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1352  * But we need to keep a dummy __setup around otherwise it would
1353  * show up as an environment variable for init.
1354  */
1355 static __init int setup_clearcpuid(char *arg)
1356 {
1357 	return 1;
1358 }
1359 __setup("clearcpuid=", setup_clearcpuid);
1360 
1361 #ifdef CONFIG_X86_64
1362 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1363 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1364 
1365 /*
1366  * The following percpu variables are hot.  Align current_task to
1367  * cacheline size such that they fall in the same cacheline.
1368  */
1369 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1370 	&init_task;
1371 EXPORT_PER_CPU_SYMBOL(current_task);
1372 
1373 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1374 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1375 
1376 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1377 
1378 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1379 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1380 
1381 /*
1382  * Special IST stacks which the CPU switches to when it calls
1383  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1384  * limit), all of them are 4K, except the debug stack which
1385  * is 8K.
1386  */
1387 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1388 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1389 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1390 };
1391 
1392 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1393 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1394 
1395 /* May not be marked __init: used by software suspend */
1396 void syscall_init(void)
1397 {
1398 	int cpu = smp_processor_id();
1399 
1400 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1401 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1402 
1403 #ifdef CONFIG_IA32_EMULATION
1404 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1405 	/*
1406 	 * This only works on Intel CPUs.
1407 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1408 	 * This does not cause SYSENTER to jump to the wrong location, because
1409 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1410 	 */
1411 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1412 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1413 		    (unsigned long)&get_cpu_entry_area(cpu)->tss +
1414 		    offsetofend(struct tss_struct, SYSENTER_stack));
1415 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1416 #else
1417 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1418 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1419 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1420 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1421 #endif
1422 
1423 	/* Flags to clear on syscall */
1424 	wrmsrl(MSR_SYSCALL_MASK,
1425 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1426 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1427 }
1428 
1429 /*
1430  * Copies of the original ist values from the tss are only accessed during
1431  * debugging, no special alignment required.
1432  */
1433 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1434 
1435 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1436 DEFINE_PER_CPU(int, debug_stack_usage);
1437 
1438 int is_debug_stack(unsigned long addr)
1439 {
1440 	return __this_cpu_read(debug_stack_usage) ||
1441 		(addr <= __this_cpu_read(debug_stack_addr) &&
1442 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1443 }
1444 NOKPROBE_SYMBOL(is_debug_stack);
1445 
1446 DEFINE_PER_CPU(u32, debug_idt_ctr);
1447 
1448 void debug_stack_set_zero(void)
1449 {
1450 	this_cpu_inc(debug_idt_ctr);
1451 	load_current_idt();
1452 }
1453 NOKPROBE_SYMBOL(debug_stack_set_zero);
1454 
1455 void debug_stack_reset(void)
1456 {
1457 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1458 		return;
1459 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1460 		load_current_idt();
1461 }
1462 NOKPROBE_SYMBOL(debug_stack_reset);
1463 
1464 #else	/* CONFIG_X86_64 */
1465 
1466 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1467 EXPORT_PER_CPU_SYMBOL(current_task);
1468 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1469 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1470 
1471 /*
1472  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1473  * the top of the kernel stack.  Use an extra percpu variable to track the
1474  * top of the kernel stack directly.
1475  */
1476 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1477 	(unsigned long)&init_thread_union + THREAD_SIZE;
1478 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1479 
1480 #ifdef CONFIG_CC_STACKPROTECTOR
1481 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1482 #endif
1483 
1484 #endif	/* CONFIG_X86_64 */
1485 
1486 /*
1487  * Clear all 6 debug registers:
1488  */
1489 static void clear_all_debug_regs(void)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < 8; i++) {
1494 		/* Ignore db4, db5 */
1495 		if ((i == 4) || (i == 5))
1496 			continue;
1497 
1498 		set_debugreg(0, i);
1499 	}
1500 }
1501 
1502 #ifdef CONFIG_KGDB
1503 /*
1504  * Restore debug regs if using kgdbwait and you have a kernel debugger
1505  * connection established.
1506  */
1507 static void dbg_restore_debug_regs(void)
1508 {
1509 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1510 		arch_kgdb_ops.correct_hw_break();
1511 }
1512 #else /* ! CONFIG_KGDB */
1513 #define dbg_restore_debug_regs()
1514 #endif /* ! CONFIG_KGDB */
1515 
1516 static void wait_for_master_cpu(int cpu)
1517 {
1518 #ifdef CONFIG_SMP
1519 	/*
1520 	 * wait for ACK from master CPU before continuing
1521 	 * with AP initialization
1522 	 */
1523 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1524 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1525 		cpu_relax();
1526 #endif
1527 }
1528 
1529 /*
1530  * cpu_init() initializes state that is per-CPU. Some data is already
1531  * initialized (naturally) in the bootstrap process, such as the GDT
1532  * and IDT. We reload them nevertheless, this function acts as a
1533  * 'CPU state barrier', nothing should get across.
1534  * A lot of state is already set up in PDA init for 64 bit
1535  */
1536 #ifdef CONFIG_X86_64
1537 
1538 void cpu_init(void)
1539 {
1540 	struct orig_ist *oist;
1541 	struct task_struct *me;
1542 	struct tss_struct *t;
1543 	unsigned long v;
1544 	int cpu = raw_smp_processor_id();
1545 	int i;
1546 
1547 	wait_for_master_cpu(cpu);
1548 
1549 	/*
1550 	 * Initialize the CR4 shadow before doing anything that could
1551 	 * try to read it.
1552 	 */
1553 	cr4_init_shadow();
1554 
1555 	if (cpu)
1556 		load_ucode_ap();
1557 
1558 	t = &per_cpu(cpu_tss, cpu);
1559 	oist = &per_cpu(orig_ist, cpu);
1560 
1561 #ifdef CONFIG_NUMA
1562 	if (this_cpu_read(numa_node) == 0 &&
1563 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1564 		set_numa_node(early_cpu_to_node(cpu));
1565 #endif
1566 
1567 	me = current;
1568 
1569 	pr_debug("Initializing CPU#%d\n", cpu);
1570 
1571 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1572 
1573 	/*
1574 	 * Initialize the per-CPU GDT with the boot GDT,
1575 	 * and set up the GDT descriptor:
1576 	 */
1577 
1578 	switch_to_new_gdt(cpu);
1579 	loadsegment(fs, 0);
1580 
1581 	load_current_idt();
1582 
1583 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1584 	syscall_init();
1585 
1586 	wrmsrl(MSR_FS_BASE, 0);
1587 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1588 	barrier();
1589 
1590 	x86_configure_nx();
1591 	x2apic_setup();
1592 
1593 	/*
1594 	 * set up and load the per-CPU TSS
1595 	 */
1596 	if (!oist->ist[0]) {
1597 		char *estacks = per_cpu(exception_stacks, cpu);
1598 
1599 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1600 			estacks += exception_stack_sizes[v];
1601 			oist->ist[v] = t->x86_tss.ist[v] =
1602 					(unsigned long)estacks;
1603 			if (v == DEBUG_STACK-1)
1604 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1605 		}
1606 	}
1607 
1608 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1609 
1610 	/*
1611 	 * <= is required because the CPU will access up to
1612 	 * 8 bits beyond the end of the IO permission bitmap.
1613 	 */
1614 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1615 		t->io_bitmap[i] = ~0UL;
1616 
1617 	mmgrab(&init_mm);
1618 	me->active_mm = &init_mm;
1619 	BUG_ON(me->mm);
1620 	initialize_tlbstate_and_flush();
1621 	enter_lazy_tlb(&init_mm, me);
1622 
1623 	setup_cpu_entry_area(cpu);
1624 
1625 	/*
1626 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1627 	 * regardless of what task is running.
1628 	 */
1629 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1630 	load_TR_desc();
1631 	load_sp0((unsigned long)&get_cpu_entry_area(cpu)->tss +
1632 		 offsetofend(struct tss_struct, SYSENTER_stack));
1633 
1634 	load_mm_ldt(&init_mm);
1635 
1636 	clear_all_debug_regs();
1637 	dbg_restore_debug_regs();
1638 
1639 	fpu__init_cpu();
1640 
1641 	if (is_uv_system())
1642 		uv_cpu_init();
1643 
1644 	load_fixmap_gdt(cpu);
1645 }
1646 
1647 #else
1648 
1649 void cpu_init(void)
1650 {
1651 	int cpu = smp_processor_id();
1652 	struct task_struct *curr = current;
1653 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1654 
1655 	wait_for_master_cpu(cpu);
1656 
1657 	/*
1658 	 * Initialize the CR4 shadow before doing anything that could
1659 	 * try to read it.
1660 	 */
1661 	cr4_init_shadow();
1662 
1663 	show_ucode_info_early();
1664 
1665 	pr_info("Initializing CPU#%d\n", cpu);
1666 
1667 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1668 	    boot_cpu_has(X86_FEATURE_TSC) ||
1669 	    boot_cpu_has(X86_FEATURE_DE))
1670 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1671 
1672 	load_current_idt();
1673 	switch_to_new_gdt(cpu);
1674 
1675 	/*
1676 	 * Set up and load the per-CPU TSS and LDT
1677 	 */
1678 	mmgrab(&init_mm);
1679 	curr->active_mm = &init_mm;
1680 	BUG_ON(curr->mm);
1681 	initialize_tlbstate_and_flush();
1682 	enter_lazy_tlb(&init_mm, curr);
1683 
1684 	setup_cpu_entry_area(cpu);
1685 
1686 	/*
1687 	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1688 	 * task never enters user mode.
1689 	 */
1690 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1691 	load_TR_desc();
1692 
1693 	load_mm_ldt(&init_mm);
1694 
1695 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1696 
1697 #ifdef CONFIG_DOUBLEFAULT
1698 	/* Set up doublefault TSS pointer in the GDT */
1699 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1700 #endif
1701 
1702 	clear_all_debug_regs();
1703 	dbg_restore_debug_regs();
1704 
1705 	fpu__init_cpu();
1706 
1707 	load_fixmap_gdt(cpu);
1708 }
1709 #endif
1710 
1711 static void bsp_resume(void)
1712 {
1713 	if (this_cpu->c_bsp_resume)
1714 		this_cpu->c_bsp_resume(&boot_cpu_data);
1715 }
1716 
1717 static struct syscore_ops cpu_syscore_ops = {
1718 	.resume		= bsp_resume,
1719 };
1720 
1721 static int __init init_cpu_syscore(void)
1722 {
1723 	register_syscore_ops(&cpu_syscore_ops);
1724 	return 0;
1725 }
1726 core_initcall(init_cpu_syscore);
1727