xref: /openbmc/linux/arch/x86/include/asm/nospec-branch.h (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #ifndef _ASM_X86_NOSPEC_BRANCH_H_
4 #define _ASM_X86_NOSPEC_BRANCH_H_
5 
6 #include <linux/static_key.h>
7 
8 #include <asm/alternative.h>
9 #include <asm/alternative-asm.h>
10 #include <asm/cpufeatures.h>
11 #include <asm/msr-index.h>
12 
13 /*
14  * This should be used immediately before a retpoline alternative. It tells
15  * objtool where the retpolines are so that it can make sense of the control
16  * flow by just reading the original instruction(s) and ignoring the
17  * alternatives.
18  */
19 #define ANNOTATE_NOSPEC_ALTERNATIVE \
20 	ANNOTATE_IGNORE_ALTERNATIVE
21 
22 /*
23  * Fill the CPU return stack buffer.
24  *
25  * Each entry in the RSB, if used for a speculative 'ret', contains an
26  * infinite 'pause; lfence; jmp' loop to capture speculative execution.
27  *
28  * This is required in various cases for retpoline and IBRS-based
29  * mitigations for the Spectre variant 2 vulnerability. Sometimes to
30  * eliminate potentially bogus entries from the RSB, and sometimes
31  * purely to ensure that it doesn't get empty, which on some CPUs would
32  * allow predictions from other (unwanted!) sources to be used.
33  *
34  * We define a CPP macro such that it can be used from both .S files and
35  * inline assembly. It's possible to do a .macro and then include that
36  * from C via asm(".include <asm/nospec-branch.h>") but let's not go there.
37  */
38 
39 #define RSB_CLEAR_LOOPS		32	/* To forcibly overwrite all entries */
40 #define RSB_FILL_LOOPS		16	/* To avoid underflow */
41 
42 /*
43  * Google experimented with loop-unrolling and this turned out to be
44  * the optimal version — two calls, each with their own speculation
45  * trap should their return address end up getting used, in a loop.
46  */
47 #define __FILL_RETURN_BUFFER(reg, nr, sp)	\
48 	mov	$(nr/2), reg;			\
49 771:						\
50 	call	772f;				\
51 773:	/* speculation trap */			\
52 	pause;					\
53 	lfence;					\
54 	jmp	773b;				\
55 772:						\
56 	call	774f;				\
57 775:	/* speculation trap */			\
58 	pause;					\
59 	lfence;					\
60 	jmp	775b;				\
61 774:						\
62 	dec	reg;				\
63 	jnz	771b;				\
64 	add	$(BITS_PER_LONG/8) * nr, sp;
65 
66 #ifdef __ASSEMBLY__
67 
68 /*
69  * This should be used immediately before an indirect jump/call. It tells
70  * objtool the subsequent indirect jump/call is vouched safe for retpoline
71  * builds.
72  */
73 .macro ANNOTATE_RETPOLINE_SAFE
74 	.Lannotate_\@:
75 	.pushsection .discard.retpoline_safe
76 	_ASM_PTR .Lannotate_\@
77 	.popsection
78 .endm
79 
80 /*
81  * These are the bare retpoline primitives for indirect jmp and call.
82  * Do not use these directly; they only exist to make the ALTERNATIVE
83  * invocation below less ugly.
84  */
85 .macro RETPOLINE_JMP reg:req
86 	call	.Ldo_rop_\@
87 .Lspec_trap_\@:
88 	pause
89 	lfence
90 	jmp	.Lspec_trap_\@
91 .Ldo_rop_\@:
92 	mov	\reg, (%_ASM_SP)
93 	ret
94 .endm
95 
96 /*
97  * This is a wrapper around RETPOLINE_JMP so the called function in reg
98  * returns to the instruction after the macro.
99  */
100 .macro RETPOLINE_CALL reg:req
101 	jmp	.Ldo_call_\@
102 .Ldo_retpoline_jmp_\@:
103 	RETPOLINE_JMP \reg
104 .Ldo_call_\@:
105 	call	.Ldo_retpoline_jmp_\@
106 .endm
107 
108 /*
109  * JMP_NOSPEC and CALL_NOSPEC macros can be used instead of a simple
110  * indirect jmp/call which may be susceptible to the Spectre variant 2
111  * attack.
112  */
113 .macro JMP_NOSPEC reg:req
114 #ifdef CONFIG_RETPOLINE
115 	ANNOTATE_NOSPEC_ALTERNATIVE
116 	ALTERNATIVE_2 __stringify(ANNOTATE_RETPOLINE_SAFE; jmp *\reg),	\
117 		__stringify(RETPOLINE_JMP \reg), X86_FEATURE_RETPOLINE,	\
118 		__stringify(lfence; ANNOTATE_RETPOLINE_SAFE; jmp *\reg), X86_FEATURE_RETPOLINE_AMD
119 #else
120 	jmp	*\reg
121 #endif
122 .endm
123 
124 .macro CALL_NOSPEC reg:req
125 #ifdef CONFIG_RETPOLINE
126 	ANNOTATE_NOSPEC_ALTERNATIVE
127 	ALTERNATIVE_2 __stringify(ANNOTATE_RETPOLINE_SAFE; call *\reg),	\
128 		__stringify(RETPOLINE_CALL \reg), X86_FEATURE_RETPOLINE,\
129 		__stringify(lfence; ANNOTATE_RETPOLINE_SAFE; call *\reg), X86_FEATURE_RETPOLINE_AMD
130 #else
131 	call	*\reg
132 #endif
133 .endm
134 
135  /*
136   * A simpler FILL_RETURN_BUFFER macro. Don't make people use the CPP
137   * monstrosity above, manually.
138   */
139 .macro FILL_RETURN_BUFFER reg:req nr:req ftr:req
140 #ifdef CONFIG_RETPOLINE
141 	ANNOTATE_NOSPEC_ALTERNATIVE
142 	ALTERNATIVE "jmp .Lskip_rsb_\@",				\
143 		__stringify(__FILL_RETURN_BUFFER(\reg,\nr,%_ASM_SP))	\
144 		\ftr
145 .Lskip_rsb_\@:
146 #endif
147 .endm
148 
149 #else /* __ASSEMBLY__ */
150 
151 #define ANNOTATE_RETPOLINE_SAFE					\
152 	"999:\n\t"						\
153 	".pushsection .discard.retpoline_safe\n\t"		\
154 	_ASM_PTR " 999b\n\t"					\
155 	".popsection\n\t"
156 
157 #ifdef CONFIG_RETPOLINE
158 #ifdef CONFIG_X86_64
159 
160 /*
161  * Inline asm uses the %V modifier which is only in newer GCC
162  * which is ensured when CONFIG_RETPOLINE is defined.
163  */
164 # define CALL_NOSPEC						\
165 	ANNOTATE_NOSPEC_ALTERNATIVE				\
166 	ALTERNATIVE_2(						\
167 	ANNOTATE_RETPOLINE_SAFE					\
168 	"call *%[thunk_target]\n",				\
169 	"call __x86_indirect_thunk_%V[thunk_target]\n",		\
170 	X86_FEATURE_RETPOLINE,					\
171 	"lfence;\n"						\
172 	ANNOTATE_RETPOLINE_SAFE					\
173 	"call *%[thunk_target]\n",				\
174 	X86_FEATURE_RETPOLINE_AMD)
175 # define THUNK_TARGET(addr) [thunk_target] "r" (addr)
176 
177 #else /* CONFIG_X86_32 */
178 /*
179  * For i386 we use the original ret-equivalent retpoline, because
180  * otherwise we'll run out of registers. We don't care about CET
181  * here, anyway.
182  */
183 # define CALL_NOSPEC						\
184 	ANNOTATE_NOSPEC_ALTERNATIVE				\
185 	ALTERNATIVE_2(						\
186 	ANNOTATE_RETPOLINE_SAFE					\
187 	"call *%[thunk_target]\n",				\
188 	"       jmp    904f;\n"					\
189 	"       .align 16\n"					\
190 	"901:	call   903f;\n"					\
191 	"902:	pause;\n"					\
192 	"    	lfence;\n"					\
193 	"       jmp    902b;\n"					\
194 	"       .align 16\n"					\
195 	"903:	lea    4(%%esp), %%esp;\n"			\
196 	"       pushl  %[thunk_target];\n"			\
197 	"       ret;\n"						\
198 	"       .align 16\n"					\
199 	"904:	call   901b;\n",				\
200 	X86_FEATURE_RETPOLINE,					\
201 	"lfence;\n"						\
202 	ANNOTATE_RETPOLINE_SAFE					\
203 	"call *%[thunk_target]\n",				\
204 	X86_FEATURE_RETPOLINE_AMD)
205 
206 # define THUNK_TARGET(addr) [thunk_target] "rm" (addr)
207 #endif
208 #else /* No retpoline for C / inline asm */
209 # define CALL_NOSPEC "call *%[thunk_target]\n"
210 # define THUNK_TARGET(addr) [thunk_target] "rm" (addr)
211 #endif
212 
213 /* The Spectre V2 mitigation variants */
214 enum spectre_v2_mitigation {
215 	SPECTRE_V2_NONE,
216 	SPECTRE_V2_RETPOLINE_GENERIC,
217 	SPECTRE_V2_RETPOLINE_AMD,
218 	SPECTRE_V2_IBRS_ENHANCED,
219 };
220 
221 /* The indirect branch speculation control variants */
222 enum spectre_v2_user_mitigation {
223 	SPECTRE_V2_USER_NONE,
224 	SPECTRE_V2_USER_STRICT,
225 	SPECTRE_V2_USER_STRICT_PREFERRED,
226 	SPECTRE_V2_USER_PRCTL,
227 	SPECTRE_V2_USER_SECCOMP,
228 };
229 
230 /* The Speculative Store Bypass disable variants */
231 enum ssb_mitigation {
232 	SPEC_STORE_BYPASS_NONE,
233 	SPEC_STORE_BYPASS_DISABLE,
234 	SPEC_STORE_BYPASS_PRCTL,
235 	SPEC_STORE_BYPASS_SECCOMP,
236 };
237 
238 extern char __indirect_thunk_start[];
239 extern char __indirect_thunk_end[];
240 
241 /*
242  * On VMEXIT we must ensure that no RSB predictions learned in the guest
243  * can be followed in the host, by overwriting the RSB completely. Both
244  * retpoline and IBRS mitigations for Spectre v2 need this; only on future
245  * CPUs with IBRS_ALL *might* it be avoided.
246  */
247 static inline void vmexit_fill_RSB(void)
248 {
249 #ifdef CONFIG_RETPOLINE
250 	unsigned long loops;
251 
252 	asm volatile (ANNOTATE_NOSPEC_ALTERNATIVE
253 		      ALTERNATIVE("jmp 910f",
254 				  __stringify(__FILL_RETURN_BUFFER(%0, RSB_CLEAR_LOOPS, %1)),
255 				  X86_FEATURE_RETPOLINE)
256 		      "910:"
257 		      : "=r" (loops), ASM_CALL_CONSTRAINT
258 		      : : "memory" );
259 #endif
260 }
261 
262 static __always_inline
263 void alternative_msr_write(unsigned int msr, u64 val, unsigned int feature)
264 {
265 	asm volatile(ALTERNATIVE("", "wrmsr", %c[feature])
266 		: : "c" (msr),
267 		    "a" ((u32)val),
268 		    "d" ((u32)(val >> 32)),
269 		    [feature] "i" (feature)
270 		: "memory");
271 }
272 
273 static inline void indirect_branch_prediction_barrier(void)
274 {
275 	u64 val = PRED_CMD_IBPB;
276 
277 	alternative_msr_write(MSR_IA32_PRED_CMD, val, X86_FEATURE_USE_IBPB);
278 }
279 
280 /* The Intel SPEC CTRL MSR base value cache */
281 extern u64 x86_spec_ctrl_base;
282 
283 /*
284  * With retpoline, we must use IBRS to restrict branch prediction
285  * before calling into firmware.
286  *
287  * (Implemented as CPP macros due to header hell.)
288  */
289 #define firmware_restrict_branch_speculation_start()			\
290 do {									\
291 	u64 val = x86_spec_ctrl_base | SPEC_CTRL_IBRS;			\
292 									\
293 	preempt_disable();						\
294 	alternative_msr_write(MSR_IA32_SPEC_CTRL, val,			\
295 			      X86_FEATURE_USE_IBRS_FW);			\
296 } while (0)
297 
298 #define firmware_restrict_branch_speculation_end()			\
299 do {									\
300 	u64 val = x86_spec_ctrl_base;					\
301 									\
302 	alternative_msr_write(MSR_IA32_SPEC_CTRL, val,			\
303 			      X86_FEATURE_USE_IBRS_FW);			\
304 	preempt_enable();						\
305 } while (0)
306 
307 DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp);
308 DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
309 DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
310 
311 DECLARE_STATIC_KEY_FALSE(mds_user_clear);
312 DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
313 
314 #include <asm/segment.h>
315 
316 /**
317  * mds_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
318  *
319  * This uses the otherwise unused and obsolete VERW instruction in
320  * combination with microcode which triggers a CPU buffer flush when the
321  * instruction is executed.
322  */
323 static inline void mds_clear_cpu_buffers(void)
324 {
325 	static const u16 ds = __KERNEL_DS;
326 
327 	/*
328 	 * Has to be the memory-operand variant because only that
329 	 * guarantees the CPU buffer flush functionality according to
330 	 * documentation. The register-operand variant does not.
331 	 * Works with any segment selector, but a valid writable
332 	 * data segment is the fastest variant.
333 	 *
334 	 * "cc" clobber is required because VERW modifies ZF.
335 	 */
336 	asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc");
337 }
338 
339 /**
340  * mds_user_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
341  *
342  * Clear CPU buffers if the corresponding static key is enabled
343  */
344 static inline void mds_user_clear_cpu_buffers(void)
345 {
346 	if (static_branch_likely(&mds_user_clear))
347 		mds_clear_cpu_buffers();
348 }
349 
350 /**
351  * mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability
352  *
353  * Clear CPU buffers if the corresponding static key is enabled
354  */
355 static inline void mds_idle_clear_cpu_buffers(void)
356 {
357 	if (static_branch_likely(&mds_idle_clear))
358 		mds_clear_cpu_buffers();
359 }
360 
361 #endif /* __ASSEMBLY__ */
362 
363 /*
364  * Below is used in the eBPF JIT compiler and emits the byte sequence
365  * for the following assembly:
366  *
367  * With retpolines configured:
368  *
369  *    callq do_rop
370  *  spec_trap:
371  *    pause
372  *    lfence
373  *    jmp spec_trap
374  *  do_rop:
375  *    mov %rax,(%rsp) for x86_64
376  *    mov %edx,(%esp) for x86_32
377  *    retq
378  *
379  * Without retpolines configured:
380  *
381  *    jmp *%rax for x86_64
382  *    jmp *%edx for x86_32
383  */
384 #ifdef CONFIG_RETPOLINE
385 # ifdef CONFIG_X86_64
386 #  define RETPOLINE_RAX_BPF_JIT_SIZE	17
387 #  define RETPOLINE_RAX_BPF_JIT()				\
388 do {								\
389 	EMIT1_off32(0xE8, 7);	 /* callq do_rop */		\
390 	/* spec_trap: */					\
391 	EMIT2(0xF3, 0x90);       /* pause */			\
392 	EMIT3(0x0F, 0xAE, 0xE8); /* lfence */			\
393 	EMIT2(0xEB, 0xF9);       /* jmp spec_trap */		\
394 	/* do_rop: */						\
395 	EMIT4(0x48, 0x89, 0x04, 0x24); /* mov %rax,(%rsp) */	\
396 	EMIT1(0xC3);             /* retq */			\
397 } while (0)
398 # else /* !CONFIG_X86_64 */
399 #  define RETPOLINE_EDX_BPF_JIT()				\
400 do {								\
401 	EMIT1_off32(0xE8, 7);	 /* call do_rop */		\
402 	/* spec_trap: */					\
403 	EMIT2(0xF3, 0x90);       /* pause */			\
404 	EMIT3(0x0F, 0xAE, 0xE8); /* lfence */			\
405 	EMIT2(0xEB, 0xF9);       /* jmp spec_trap */		\
406 	/* do_rop: */						\
407 	EMIT3(0x89, 0x14, 0x24); /* mov %edx,(%esp) */		\
408 	EMIT1(0xC3);             /* ret */			\
409 } while (0)
410 # endif
411 #else /* !CONFIG_RETPOLINE */
412 # ifdef CONFIG_X86_64
413 #  define RETPOLINE_RAX_BPF_JIT_SIZE	2
414 #  define RETPOLINE_RAX_BPF_JIT()				\
415 	EMIT2(0xFF, 0xE0);       /* jmp *%rax */
416 # else /* !CONFIG_X86_64 */
417 #  define RETPOLINE_EDX_BPF_JIT()				\
418 	EMIT2(0xFF, 0xE2)        /* jmp *%edx */
419 # endif
420 #endif
421 
422 #endif /* _ASM_X86_NOSPEC_BRANCH_H_ */
423