xref: /openbmc/linux/arch/x86/include/asm/efi.h (revision abd268685a21cb5d0c991bb21a88ea0c1d2e15d8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/pgtable.h>
7 #include <asm/processor-flags.h>
8 #include <asm/tlb.h>
9 #include <asm/nospec-branch.h>
10 #include <asm/mmu_context.h>
11 #include <linux/build_bug.h>
12 
13 /*
14  * We map the EFI regions needed for runtime services non-contiguously,
15  * with preserved alignment on virtual addresses starting from -4G down
16  * for a total max space of 64G. This way, we provide for stable runtime
17  * services addresses across kernels so that a kexec'd kernel can still
18  * use them.
19  *
20  * This is the main reason why we're doing stable VA mappings for RT
21  * services.
22  *
23  * SGI UV1 machines are known to be incompatible with this scheme, so we
24  * provide an opt-out for these machines via a DMI quirk that sets the
25  * attribute below.
26  */
27 #define EFI_UV1_MEMMAP         EFI_ARCH_1
28 
29 static inline bool efi_have_uv1_memmap(void)
30 {
31 	return IS_ENABLED(CONFIG_X86_UV) && efi_enabled(EFI_UV1_MEMMAP);
32 }
33 
34 #define EFI32_LOADER_SIGNATURE	"EL32"
35 #define EFI64_LOADER_SIGNATURE	"EL64"
36 
37 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
38 
39 /*
40  * The EFI services are called through variadic functions in many cases. These
41  * functions are implemented in assembler and support only a fixed number of
42  * arguments. The macros below allows us to check at build time that we don't
43  * try to call them with too many arguments.
44  *
45  * __efi_nargs() will return the number of arguments if it is 7 or less, and
46  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
47  * impossible to calculate the exact number of arguments beyond some
48  * pre-defined limit. The maximum number of arguments currently supported by
49  * any of the thunks is 7, so this is good enough for now and can be extended
50  * in the obvious way if we ever need more.
51  */
52 
53 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
54 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
55 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
56 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
57 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
58 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
59 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...)	\
60 	__take_second_arg(n,					\
61 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
62 #define __efi_arg_sentinel(n) , n
63 
64 /*
65  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
66  * represents more than n arguments.
67  */
68 
69 #define __efi_nargs_check(f, n, ...)					\
70 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
71 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
72 #define __efi_nargs_check__(f, p, n) ({					\
73 	BUILD_BUG_ON_MSG(						\
74 		(p) > (n),						\
75 		#f " called with too many arguments (" #p ">" #n ")");	\
76 })
77 
78 #ifdef CONFIG_X86_32
79 #define arch_efi_call_virt_setup()					\
80 ({									\
81 	kernel_fpu_begin();						\
82 	firmware_restrict_branch_speculation_start();			\
83 })
84 
85 #define arch_efi_call_virt_teardown()					\
86 ({									\
87 	firmware_restrict_branch_speculation_end();			\
88 	kernel_fpu_end();						\
89 })
90 
91 
92 #define arch_efi_call_virt(p, f, args...)	p->f(args)
93 
94 #define efi_ioremap(addr, size, type, attr)	ioremap_cache(addr, size)
95 
96 #else /* !CONFIG_X86_32 */
97 
98 #define EFI_LOADER_SIGNATURE	"EL64"
99 
100 extern asmlinkage u64 __efi_call(void *fp, ...);
101 
102 #define efi_call(...) ({						\
103 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
104 	__efi_call(__VA_ARGS__);					\
105 })
106 
107 /*
108  * struct efi_scratch - Scratch space used while switching to/from efi_mm
109  * @phys_stack: stack used during EFI Mixed Mode
110  * @prev_mm:    store/restore stolen mm_struct while switching to/from efi_mm
111  */
112 struct efi_scratch {
113 	u64			phys_stack;
114 	struct mm_struct	*prev_mm;
115 } __packed;
116 
117 #define arch_efi_call_virt_setup()					\
118 ({									\
119 	efi_sync_low_kernel_mappings();					\
120 	kernel_fpu_begin();						\
121 	firmware_restrict_branch_speculation_start();			\
122 									\
123 	if (!efi_have_uv1_memmap())					\
124 		efi_switch_mm(&efi_mm);					\
125 })
126 
127 #define arch_efi_call_virt(p, f, args...)				\
128 	efi_call((void *)p->f, args)					\
129 
130 #define arch_efi_call_virt_teardown()					\
131 ({									\
132 	if (!efi_have_uv1_memmap())					\
133 		efi_switch_mm(efi_scratch.prev_mm);			\
134 									\
135 	firmware_restrict_branch_speculation_end();			\
136 	kernel_fpu_end();						\
137 })
138 
139 extern void __iomem *__init efi_ioremap(unsigned long addr, unsigned long size,
140 					u32 type, u64 attribute);
141 
142 #ifdef CONFIG_KASAN
143 /*
144  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
145  * only in kernel binary.  Since the EFI stub linked into a separate binary it
146  * doesn't have __memset().  So we should use standard memset from
147  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
148  */
149 #undef memcpy
150 #undef memset
151 #undef memmove
152 #endif
153 
154 #endif /* CONFIG_X86_32 */
155 
156 extern struct efi_scratch efi_scratch;
157 extern void __init efi_set_executable(efi_memory_desc_t *md, bool executable);
158 extern int __init efi_memblock_x86_reserve_range(void);
159 extern void __init efi_print_memmap(void);
160 extern void __init efi_memory_uc(u64 addr, unsigned long size);
161 extern void __init efi_map_region(efi_memory_desc_t *md);
162 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
163 extern void efi_sync_low_kernel_mappings(void);
164 extern int __init efi_alloc_page_tables(void);
165 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
166 extern void __init old_map_region(efi_memory_desc_t *md);
167 extern void __init runtime_code_page_mkexec(void);
168 extern void __init efi_runtime_update_mappings(void);
169 extern void __init efi_dump_pagetable(void);
170 extern void __init efi_apply_memmap_quirks(void);
171 extern int __init efi_reuse_config(u64 tables, int nr_tables);
172 extern void efi_delete_dummy_variable(void);
173 extern void efi_switch_mm(struct mm_struct *mm);
174 extern void efi_recover_from_page_fault(unsigned long phys_addr);
175 extern void efi_free_boot_services(void);
176 extern pgd_t * __init efi_uv1_memmap_phys_prolog(void);
177 extern void __init efi_uv1_memmap_phys_epilog(pgd_t *save_pgd);
178 
179 struct efi_setup_data {
180 	u64 fw_vendor;
181 	u64 runtime;
182 	u64 tables;
183 	u64 smbios;
184 	u64 reserved[8];
185 };
186 
187 extern u64 efi_setup;
188 
189 #ifdef CONFIG_EFI
190 extern efi_status_t __efi64_thunk(u32, ...);
191 
192 #define efi64_thunk(...) ({						\
193 	__efi_nargs_check(efi64_thunk, 6, __VA_ARGS__);			\
194 	__efi64_thunk(__VA_ARGS__);					\
195 })
196 
197 static inline bool efi_is_mixed(void)
198 {
199 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
200 		return false;
201 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
202 }
203 
204 static inline bool efi_runtime_supported(void)
205 {
206 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
207 		return true;
208 
209 	return IS_ENABLED(CONFIG_EFI_MIXED);
210 }
211 
212 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
213 
214 extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
215 
216 extern void efi_thunk_runtime_setup(void);
217 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
218 					 unsigned long descriptor_size,
219 					 u32 descriptor_version,
220 					 efi_memory_desc_t *virtual_map);
221 
222 /* arch specific definitions used by the stub code */
223 
224 __attribute_const__ bool efi_is_64bit(void);
225 
226 static inline bool efi_is_native(void)
227 {
228 	if (!IS_ENABLED(CONFIG_X86_64))
229 		return true;
230 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
231 		return true;
232 	return efi_is_64bit();
233 }
234 
235 #define efi_mixed_mode_cast(attr)					\
236 	__builtin_choose_expr(						\
237 		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
238 			(unsigned long)(attr), (attr))
239 
240 #define efi_table_attr(inst, attr)					\
241 	(efi_is_native()						\
242 		? inst->attr						\
243 		: (__typeof__(inst->attr))				\
244 			efi_mixed_mode_cast(inst->mixed_mode.attr))
245 
246 /*
247  * The following macros allow translating arguments if necessary from native to
248  * mixed mode. The use case for this is to initialize the upper 32 bits of
249  * output parameters, and where the 32-bit method requires a 64-bit argument,
250  * which must be split up into two arguments to be thunked properly.
251  *
252  * As examples, the AllocatePool boot service returns the address of the
253  * allocation, but it will not set the high 32 bits of the address. To ensure
254  * that the full 64-bit address is initialized, we zero-init the address before
255  * calling the thunk.
256  *
257  * The FreePages boot service takes a 64-bit physical address even in 32-bit
258  * mode. For the thunk to work correctly, a native 64-bit call of
259  * 	free_pages(addr, size)
260  * must be translated to
261  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
262  * so that the two 32-bit halves of addr get pushed onto the stack separately.
263  */
264 
265 static inline void *efi64_zero_upper(void *p)
266 {
267 	((u32 *)p)[1] = 0;
268 	return p;
269 }
270 
271 #define __efi64_argmap_free_pages(addr, size)				\
272 	((addr), 0, (size))
273 
274 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
275 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
276 
277 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
278 	((type), (size), efi64_zero_upper(buffer))
279 
280 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
281 	((handle), (protocol), efi64_zero_upper(interface))
282 
283 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
284 	((protocol), (reg), efi64_zero_upper(interface))
285 
286 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
287 	((protocol), (path), efi64_zero_upper(handle))
288 
289 /* PCI I/O */
290 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
291 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
292 	 efi64_zero_upper(dev), efi64_zero_upper(func))
293 
294 /*
295  * The macros below handle the plumbing for the argument mapping. To add a
296  * mapping for a specific EFI method, simply define a macro
297  * __efi64_argmap_<method name>, following the examples above.
298  */
299 
300 #define __efi64_thunk_map(inst, func, ...)				\
301 	efi64_thunk(inst->mixed_mode.func,				\
302 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
303 			       (__VA_ARGS__)))
304 
305 #define __efi64_argmap(mapped, args)					\
306 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
307 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
308 #define __efi64_argmap__1(mapped, args) __efi_eval args
309 
310 #define __efi_eat(...)
311 #define __efi_eval(...) __VA_ARGS__
312 
313 /* The three macros below handle dispatching via the thunk if needed */
314 
315 #define efi_call_proto(inst, func, ...)					\
316 	(efi_is_native()						\
317 		? inst->func(inst, ##__VA_ARGS__)			\
318 		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
319 
320 #define efi_bs_call(func, ...)						\
321 	(efi_is_native()						\
322 		? efi_system_table()->boottime->func(__VA_ARGS__)	\
323 		: __efi64_thunk_map(efi_table_attr(efi_system_table(),	\
324 				boottime), func, __VA_ARGS__))
325 
326 #define efi_rt_call(func, ...)						\
327 	(efi_is_native()						\
328 		? efi_system_table()->runtime->func(__VA_ARGS__)	\
329 		: __efi64_thunk_map(efi_table_attr(efi_system_table(),	\
330 				runtime), func, __VA_ARGS__))
331 
332 extern bool efi_reboot_required(void);
333 extern bool efi_is_table_address(unsigned long phys_addr);
334 
335 extern void efi_find_mirror(void);
336 extern void efi_reserve_boot_services(void);
337 #else
338 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
339 static inline bool efi_reboot_required(void)
340 {
341 	return false;
342 }
343 static inline  bool efi_is_table_address(unsigned long phys_addr)
344 {
345 	return false;
346 }
347 static inline void efi_find_mirror(void)
348 {
349 }
350 static inline void efi_reserve_boot_services(void)
351 {
352 }
353 #endif /* CONFIG_EFI */
354 
355 #ifdef CONFIG_EFI_FAKE_MEMMAP
356 extern void __init efi_fake_memmap_early(void);
357 #else
358 static inline void efi_fake_memmap_early(void)
359 {
360 }
361 #endif
362 
363 #endif /* _ASM_X86_EFI_H */
364