xref: /openbmc/linux/arch/um/kernel/process.c (revision 77bf4400319db9d2a8af6b00c2be6faa0f3d07cb)
1 /*
2  * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include "linux/kernel.h"
8 #include "linux/sched.h"
9 #include "linux/interrupt.h"
10 #include "linux/string.h"
11 #include "linux/mm.h"
12 #include "linux/slab.h"
13 #include "linux/utsname.h"
14 #include "linux/fs.h"
15 #include "linux/utime.h"
16 #include "linux/smp_lock.h"
17 #include "linux/module.h"
18 #include "linux/init.h"
19 #include "linux/capability.h"
20 #include "linux/vmalloc.h"
21 #include "linux/spinlock.h"
22 #include "linux/proc_fs.h"
23 #include "linux/ptrace.h"
24 #include "linux/random.h"
25 #include "linux/personality.h"
26 #include "asm/unistd.h"
27 #include "asm/mman.h"
28 #include "asm/segment.h"
29 #include "asm/stat.h"
30 #include "asm/pgtable.h"
31 #include "asm/processor.h"
32 #include "asm/tlbflush.h"
33 #include "asm/uaccess.h"
34 #include "asm/user.h"
35 #include "kern_util.h"
36 #include "as-layout.h"
37 #include "kern.h"
38 #include "signal_kern.h"
39 #include "init.h"
40 #include "irq_user.h"
41 #include "mem_user.h"
42 #include "tlb.h"
43 #include "frame_kern.h"
44 #include "sigcontext.h"
45 #include "os.h"
46 #include "skas.h"
47 
48 /* This is a per-cpu array.  A processor only modifies its entry and it only
49  * cares about its entry, so it's OK if another processor is modifying its
50  * entry.
51  */
52 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
53 
54 static inline int external_pid(struct task_struct *task)
55 {
56 	/* FIXME: Need to look up userspace_pid by cpu */
57 	return(userspace_pid[0]);
58 }
59 
60 int pid_to_processor_id(int pid)
61 {
62 	int i;
63 
64 	for(i = 0; i < ncpus; i++){
65 		if(cpu_tasks[i].pid == pid)
66 			return i;
67 	}
68 	return -1;
69 }
70 
71 void free_stack(unsigned long stack, int order)
72 {
73 	free_pages(stack, order);
74 }
75 
76 unsigned long alloc_stack(int order, int atomic)
77 {
78 	unsigned long page;
79 	gfp_t flags = GFP_KERNEL;
80 
81 	if (atomic)
82 		flags = GFP_ATOMIC;
83 	page = __get_free_pages(flags, order);
84 	if (page == 0)
85 		return 0;
86 
87 	return page;
88 }
89 
90 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
91 {
92 	int pid;
93 
94 	current->thread.request.u.thread.proc = fn;
95 	current->thread.request.u.thread.arg = arg;
96 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
97 		      &current->thread.regs, 0, NULL, NULL);
98 	return pid;
99 }
100 
101 static inline void set_current(struct task_struct *task)
102 {
103 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
104 		{ external_pid(task), task });
105 }
106 
107 extern void arch_switch_to(struct task_struct *from, struct task_struct *to);
108 
109 void *_switch_to(void *prev, void *next, void *last)
110 {
111 	struct task_struct *from = prev;
112 	struct task_struct *to= next;
113 
114 	to->thread.prev_sched = from;
115 	set_current(to);
116 
117 	do {
118 		current->thread.saved_task = NULL;
119 
120 		/* XXX need to check runqueues[cpu].idle */
121 		if(current->pid == 0)
122 			switch_timers(0);
123 
124 		switch_threads(&from->thread.switch_buf,
125 			       &to->thread.switch_buf);
126 
127 		arch_switch_to(current->thread.prev_sched, current);
128 
129 		if(current->pid == 0)
130 			switch_timers(1);
131 
132 		if(current->thread.saved_task)
133 			show_regs(&(current->thread.regs));
134 		next= current->thread.saved_task;
135 		prev= current;
136 	} while(current->thread.saved_task);
137 
138 	return current->thread.prev_sched;
139 
140 }
141 
142 void interrupt_end(void)
143 {
144 	if(need_resched())
145 		schedule();
146 	if(test_tsk_thread_flag(current, TIF_SIGPENDING))
147 		do_signal();
148 }
149 
150 void exit_thread(void)
151 {
152 }
153 
154 void *get_current(void)
155 {
156 	return current;
157 }
158 
159 extern void schedule_tail(struct task_struct *prev);
160 
161 /* This is called magically, by its address being stuffed in a jmp_buf
162  * and being longjmp-d to.
163  */
164 void new_thread_handler(void)
165 {
166 	int (*fn)(void *), n;
167 	void *arg;
168 
169 	if(current->thread.prev_sched != NULL)
170 		schedule_tail(current->thread.prev_sched);
171 	current->thread.prev_sched = NULL;
172 
173 	fn = current->thread.request.u.thread.proc;
174 	arg = current->thread.request.u.thread.arg;
175 
176 	/* The return value is 1 if the kernel thread execs a process,
177 	 * 0 if it just exits
178 	 */
179 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
180 	if(n == 1){
181 		/* Handle any immediate reschedules or signals */
182 		interrupt_end();
183 		userspace(&current->thread.regs.regs);
184 	}
185 	else do_exit(0);
186 }
187 
188 /* Called magically, see new_thread_handler above */
189 void fork_handler(void)
190 {
191 	force_flush_all();
192 	if(current->thread.prev_sched == NULL)
193 		panic("blech");
194 
195 	schedule_tail(current->thread.prev_sched);
196 
197 	/* XXX: if interrupt_end() calls schedule, this call to
198 	 * arch_switch_to isn't needed. We could want to apply this to
199 	 * improve performance. -bb */
200 	arch_switch_to(current->thread.prev_sched, current);
201 
202 	current->thread.prev_sched = NULL;
203 
204 	/* Handle any immediate reschedules or signals */
205 	interrupt_end();
206 
207 	userspace(&current->thread.regs.regs);
208 }
209 
210 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
211 		unsigned long stack_top, struct task_struct * p,
212 		struct pt_regs *regs)
213 {
214 	void (*handler)(void);
215 	int ret = 0;
216 
217 	p->thread = (struct thread_struct) INIT_THREAD;
218 
219 	if(current->thread.forking){
220 	  	memcpy(&p->thread.regs.regs, &regs->regs,
221 		       sizeof(p->thread.regs.regs));
222 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.regs, 0);
223 		if(sp != 0)
224 			REGS_SP(p->thread.regs.regs.regs) = sp;
225 
226 		handler = fork_handler;
227 
228 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
229 	}
230 	else {
231 		init_thread_registers(&p->thread.regs.regs);
232 		p->thread.request.u.thread = current->thread.request.u.thread;
233 		handler = new_thread_handler;
234 	}
235 
236 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
237 
238 	if (current->thread.forking) {
239 		clear_flushed_tls(p);
240 
241 		/*
242 		 * Set a new TLS for the child thread?
243 		 */
244 		if (clone_flags & CLONE_SETTLS)
245 			ret = arch_copy_tls(p);
246 	}
247 
248 	return ret;
249 }
250 
251 void initial_thread_cb(void (*proc)(void *), void *arg)
252 {
253 	int save_kmalloc_ok = kmalloc_ok;
254 
255 	kmalloc_ok = 0;
256 	initial_thread_cb_skas(proc, arg);
257 	kmalloc_ok = save_kmalloc_ok;
258 }
259 
260 void default_idle(void)
261 {
262 	while(1){
263 		/* endless idle loop with no priority at all */
264 
265 		/*
266 		 * although we are an idle CPU, we do not want to
267 		 * get into the scheduler unnecessarily.
268 		 */
269 		if(need_resched())
270 			schedule();
271 
272 		idle_sleep(10);
273 	}
274 }
275 
276 void cpu_idle(void)
277 {
278 	cpu_tasks[current_thread->cpu].pid = os_getpid();
279 	default_idle();
280 }
281 
282 void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
283 		      pte_t *pte_out)
284 {
285 	pgd_t *pgd;
286 	pud_t *pud;
287 	pmd_t *pmd;
288 	pte_t *pte;
289 	pte_t ptent;
290 
291 	if(task->mm == NULL)
292 		return ERR_PTR(-EINVAL);
293 	pgd = pgd_offset(task->mm, addr);
294 	if(!pgd_present(*pgd))
295 		return ERR_PTR(-EINVAL);
296 
297 	pud = pud_offset(pgd, addr);
298 	if(!pud_present(*pud))
299 		return ERR_PTR(-EINVAL);
300 
301 	pmd = pmd_offset(pud, addr);
302 	if(!pmd_present(*pmd))
303 		return ERR_PTR(-EINVAL);
304 
305 	pte = pte_offset_kernel(pmd, addr);
306 	ptent = *pte;
307 	if(!pte_present(ptent))
308 		return ERR_PTR(-EINVAL);
309 
310 	if(pte_out != NULL)
311 		*pte_out = ptent;
312 	return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
313 }
314 
315 char *current_cmd(void)
316 {
317 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
318 	return "(Unknown)";
319 #else
320 	void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
321 	return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
322 #endif
323 }
324 
325 void dump_thread(struct pt_regs *regs, struct user *u)
326 {
327 }
328 
329 int __cant_sleep(void) {
330 	return in_atomic() || irqs_disabled() || in_interrupt();
331 	/* Is in_interrupt() really needed? */
332 }
333 
334 int user_context(unsigned long sp)
335 {
336 	unsigned long stack;
337 
338 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
339 	return stack != (unsigned long) current_thread;
340 }
341 
342 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
343 
344 void do_uml_exitcalls(void)
345 {
346 	exitcall_t *call;
347 
348 	call = &__uml_exitcall_end;
349 	while (--call >= &__uml_exitcall_begin)
350 		(*call)();
351 }
352 
353 char *uml_strdup(char *string)
354 {
355 	return kstrdup(string, GFP_KERNEL);
356 }
357 
358 int copy_to_user_proc(void __user *to, void *from, int size)
359 {
360 	return copy_to_user(to, from, size);
361 }
362 
363 int copy_from_user_proc(void *to, void __user *from, int size)
364 {
365 	return copy_from_user(to, from, size);
366 }
367 
368 int clear_user_proc(void __user *buf, int size)
369 {
370 	return clear_user(buf, size);
371 }
372 
373 int strlen_user_proc(char __user *str)
374 {
375 	return strlen_user(str);
376 }
377 
378 int smp_sigio_handler(void)
379 {
380 #ifdef CONFIG_SMP
381 	int cpu = current_thread->cpu;
382 	IPI_handler(cpu);
383 	if(cpu != 0)
384 		return 1;
385 #endif
386 	return 0;
387 }
388 
389 int cpu(void)
390 {
391 	return current_thread->cpu;
392 }
393 
394 static atomic_t using_sysemu = ATOMIC_INIT(0);
395 int sysemu_supported;
396 
397 void set_using_sysemu(int value)
398 {
399 	if (value > sysemu_supported)
400 		return;
401 	atomic_set(&using_sysemu, value);
402 }
403 
404 int get_using_sysemu(void)
405 {
406 	return atomic_read(&using_sysemu);
407 }
408 
409 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
410 {
411 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
412 		*eof = 1;
413 
414 	return strlen(buf);
415 }
416 
417 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
418 {
419 	char tmp[2];
420 
421 	if (copy_from_user(tmp, buf, 1))
422 		return -EFAULT;
423 
424 	if (tmp[0] >= '0' && tmp[0] <= '2')
425 		set_using_sysemu(tmp[0] - '0');
426 	return count; /*We use the first char, but pretend to write everything*/
427 }
428 
429 int __init make_proc_sysemu(void)
430 {
431 	struct proc_dir_entry *ent;
432 	if (!sysemu_supported)
433 		return 0;
434 
435 	ent = create_proc_entry("sysemu", 0600, &proc_root);
436 
437 	if (ent == NULL)
438 	{
439 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
440 		return 0;
441 	}
442 
443 	ent->read_proc  = proc_read_sysemu;
444 	ent->write_proc = proc_write_sysemu;
445 
446 	return 0;
447 }
448 
449 late_initcall(make_proc_sysemu);
450 
451 int singlestepping(void * t)
452 {
453 	struct task_struct *task = t ? t : current;
454 
455 	if ( ! (task->ptrace & PT_DTRACE) )
456 		return(0);
457 
458 	if (task->thread.singlestep_syscall)
459 		return(1);
460 
461 	return 2;
462 }
463 
464 /*
465  * Only x86 and x86_64 have an arch_align_stack().
466  * All other arches have "#define arch_align_stack(x) (x)"
467  * in their asm/system.h
468  * As this is included in UML from asm-um/system-generic.h,
469  * we can use it to behave as the subarch does.
470  */
471 #ifndef arch_align_stack
472 unsigned long arch_align_stack(unsigned long sp)
473 {
474 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
475 		sp -= get_random_int() % 8192;
476 	return sp & ~0xf;
477 }
478 #endif
479