xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/config.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/bootmem.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/kdebug.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/sbus.h>
36 #include <asm/asi.h>
37 #include <asm/msi.h>
38 #include <asm/a.out.h>
39 #include <asm/mmu_context.h>
40 #include <asm/io-unit.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlbflush.h>
43 
44 /* Now the cpu specific definitions. */
45 #include <asm/viking.h>
46 #include <asm/mxcc.h>
47 #include <asm/ross.h>
48 #include <asm/tsunami.h>
49 #include <asm/swift.h>
50 #include <asm/turbosparc.h>
51 
52 #include <asm/btfixup.h>
53 
54 enum mbus_module srmmu_modtype;
55 unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58 
59 extern struct resource sparc_iomap;
60 
61 extern unsigned long last_valid_pfn;
62 
63 extern unsigned long page_kernel;
64 
65 pgd_t *srmmu_swapper_pg_dir;
66 
67 #ifdef CONFIG_SMP
68 #define FLUSH_BEGIN(mm)
69 #define FLUSH_END
70 #else
71 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
72 #define FLUSH_END	}
73 #endif
74 
75 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
76 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77 
78 int flush_page_for_dma_global = 1;
79 
80 #ifdef CONFIG_SMP
81 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
82 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
83 #endif
84 
85 char *srmmu_name;
86 
87 ctxd_t *srmmu_ctx_table_phys;
88 ctxd_t *srmmu_context_table;
89 
90 int viking_mxcc_present;
91 static DEFINE_SPINLOCK(srmmu_context_spinlock);
92 
93 int is_hypersparc;
94 
95 /*
96  * In general all page table modifications should use the V8 atomic
97  * swap instruction.  This insures the mmu and the cpu are in sync
98  * with respect to ref/mod bits in the page tables.
99  */
100 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
101 {
102 	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
103 	return value;
104 }
105 
106 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
107 {
108 	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
109 }
110 
111 /* The very generic SRMMU page table operations. */
112 static inline int srmmu_device_memory(unsigned long x)
113 {
114 	return ((x & 0xF0000000) != 0);
115 }
116 
117 int srmmu_cache_pagetables;
118 
119 /* these will be initialized in srmmu_nocache_calcsize() */
120 unsigned long srmmu_nocache_size;
121 unsigned long srmmu_nocache_end;
122 
123 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
124 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125 
126 /* The context table is a nocache user with the biggest alignment needs. */
127 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128 
129 void *srmmu_nocache_pool;
130 void *srmmu_nocache_bitmap;
131 static struct bit_map srmmu_nocache_map;
132 
133 static unsigned long srmmu_pte_pfn(pte_t pte)
134 {
135 	if (srmmu_device_memory(pte_val(pte))) {
136 		/* Just return something that will cause
137 		 * pfn_valid() to return false.  This makes
138 		 * copy_one_pte() to just directly copy to
139 		 * PTE over.
140 		 */
141 		return ~0UL;
142 	}
143 	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
144 }
145 
146 static struct page *srmmu_pmd_page(pmd_t pmd)
147 {
148 
149 	if (srmmu_device_memory(pmd_val(pmd)))
150 		BUG();
151 	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
152 }
153 
154 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
155 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
156 
157 
158 static inline int srmmu_pte_none(pte_t pte)
159 { return !(pte_val(pte) & 0xFFFFFFF); }
160 
161 static inline int srmmu_pte_present(pte_t pte)
162 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
163 
164 static inline int srmmu_pte_read(pte_t pte)
165 { return !(pte_val(pte) & SRMMU_NOREAD); }
166 
167 static inline void srmmu_pte_clear(pte_t *ptep)
168 { srmmu_set_pte(ptep, __pte(0)); }
169 
170 static inline int srmmu_pmd_none(pmd_t pmd)
171 { return !(pmd_val(pmd) & 0xFFFFFFF); }
172 
173 static inline int srmmu_pmd_bad(pmd_t pmd)
174 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
175 
176 static inline int srmmu_pmd_present(pmd_t pmd)
177 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
178 
179 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
180 	int i;
181 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
182 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
183 }
184 
185 static inline int srmmu_pgd_none(pgd_t pgd)
186 { return !(pgd_val(pgd) & 0xFFFFFFF); }
187 
188 static inline int srmmu_pgd_bad(pgd_t pgd)
189 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
190 
191 static inline int srmmu_pgd_present(pgd_t pgd)
192 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
193 
194 static inline void srmmu_pgd_clear(pgd_t * pgdp)
195 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
196 
197 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
198 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
199 
200 static inline pte_t srmmu_pte_mkclean(pte_t pte)
201 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
202 
203 static inline pte_t srmmu_pte_mkold(pte_t pte)
204 { return __pte(pte_val(pte) & ~SRMMU_REF);}
205 
206 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
207 { return __pte(pte_val(pte) | SRMMU_WRITE);}
208 
209 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
210 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
211 
212 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
213 { return __pte(pte_val(pte) | SRMMU_REF);}
214 
215 /*
216  * Conversion functions: convert a page and protection to a page entry,
217  * and a page entry and page directory to the page they refer to.
218  */
219 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
220 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
221 
222 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
223 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
224 
225 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
226 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
227 
228 /* XXX should we hyper_flush_whole_icache here - Anton */
229 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
230 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
231 
232 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
233 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
234 
235 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
236 {
237 	unsigned long ptp;	/* Physical address, shifted right by 4 */
238 	int i;
239 
240 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
241 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
242 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
243 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
244 	}
245 }
246 
247 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
248 {
249 	unsigned long ptp;	/* Physical address, shifted right by 4 */
250 	int i;
251 
252 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
253 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
254 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
255 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
256 	}
257 }
258 
259 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
260 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
261 
262 /* to find an entry in a top-level page table... */
263 extern inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
264 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
265 
266 /* Find an entry in the second-level page table.. */
267 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
268 {
269 	return (pmd_t *) srmmu_pgd_page(*dir) +
270 	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
271 }
272 
273 /* Find an entry in the third-level page table.. */
274 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
275 {
276 	void *pte;
277 
278 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
279 	return (pte_t *) pte +
280 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
281 }
282 
283 static unsigned long srmmu_swp_type(swp_entry_t entry)
284 {
285 	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
286 }
287 
288 static unsigned long srmmu_swp_offset(swp_entry_t entry)
289 {
290 	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
291 }
292 
293 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
294 {
295 	return (swp_entry_t) {
296 		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
297 		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
298 }
299 
300 /*
301  * size: bytes to allocate in the nocache area.
302  * align: bytes, number to align at.
303  * Returns the virtual address of the allocated area.
304  */
305 static unsigned long __srmmu_get_nocache(int size, int align)
306 {
307 	int offset;
308 
309 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
310 		printk("Size 0x%x too small for nocache request\n", size);
311 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
312 	}
313 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
314 		printk("Size 0x%x unaligned int nocache request\n", size);
315 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
316 	}
317 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
318 
319 	offset = bit_map_string_get(&srmmu_nocache_map,
320 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
321 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
322 	if (offset == -1) {
323 		printk("srmmu: out of nocache %d: %d/%d\n",
324 		    size, (int) srmmu_nocache_size,
325 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
326 		return 0;
327 	}
328 
329 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
330 }
331 
332 unsigned inline long srmmu_get_nocache(int size, int align)
333 {
334 	unsigned long tmp;
335 
336 	tmp = __srmmu_get_nocache(size, align);
337 
338 	if (tmp)
339 		memset((void *)tmp, 0, size);
340 
341 	return tmp;
342 }
343 
344 void srmmu_free_nocache(unsigned long vaddr, int size)
345 {
346 	int offset;
347 
348 	if (vaddr < SRMMU_NOCACHE_VADDR) {
349 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
350 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
351 		BUG();
352 	}
353 	if (vaddr+size > srmmu_nocache_end) {
354 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
355 		    vaddr, srmmu_nocache_end);
356 		BUG();
357 	}
358 	if (size & (size-1)) {
359 		printk("Size 0x%x is not a power of 2\n", size);
360 		BUG();
361 	}
362 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
363 		printk("Size 0x%x is too small\n", size);
364 		BUG();
365 	}
366 	if (vaddr & (size-1)) {
367 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
368 		BUG();
369 	}
370 
371 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
372 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
373 
374 	bit_map_clear(&srmmu_nocache_map, offset, size);
375 }
376 
377 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
378 
379 extern unsigned long probe_memory(void);	/* in fault.c */
380 
381 /*
382  * Reserve nocache dynamically proportionally to the amount of
383  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
384  */
385 void srmmu_nocache_calcsize(void)
386 {
387 	unsigned long sysmemavail = probe_memory() / 1024;
388 	int srmmu_nocache_npages;
389 
390 	srmmu_nocache_npages =
391 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
392 
393  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
394 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
395 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
396 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
397 
398 	/* anything above 1280 blows up */
399 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
400 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
401 
402 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
403 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
404 }
405 
406 void srmmu_nocache_init(void)
407 {
408 	unsigned int bitmap_bits;
409 	pgd_t *pgd;
410 	pmd_t *pmd;
411 	pte_t *pte;
412 	unsigned long paddr, vaddr;
413 	unsigned long pteval;
414 
415 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
416 
417 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
418 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
419 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
420 
421 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
422 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
423 
424 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
425 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
426 	init_mm.pgd = srmmu_swapper_pg_dir;
427 
428 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
429 
430 	paddr = __pa((unsigned long)srmmu_nocache_pool);
431 	vaddr = SRMMU_NOCACHE_VADDR;
432 
433 	while (vaddr < srmmu_nocache_end) {
434 		pgd = pgd_offset_k(vaddr);
435 		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
436 		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
437 
438 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
439 
440 		if (srmmu_cache_pagetables)
441 			pteval |= SRMMU_CACHE;
442 
443 		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
444 
445 		vaddr += PAGE_SIZE;
446 		paddr += PAGE_SIZE;
447 	}
448 
449 	flush_cache_all();
450 	flush_tlb_all();
451 }
452 
453 static inline pgd_t *srmmu_get_pgd_fast(void)
454 {
455 	pgd_t *pgd = NULL;
456 
457 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
458 	if (pgd) {
459 		pgd_t *init = pgd_offset_k(0);
460 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
461 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
462 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
463 	}
464 
465 	return pgd;
466 }
467 
468 static void srmmu_free_pgd_fast(pgd_t *pgd)
469 {
470 	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
471 }
472 
473 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
474 {
475 	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
476 }
477 
478 static void srmmu_pmd_free(pmd_t * pmd)
479 {
480 	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
481 }
482 
483 /*
484  * Hardware needs alignment to 256 only, but we align to whole page size
485  * to reduce fragmentation problems due to the buddy principle.
486  * XXX Provide actual fragmentation statistics in /proc.
487  *
488  * Alignments up to the page size are the same for physical and virtual
489  * addresses of the nocache area.
490  */
491 static pte_t *
492 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
493 {
494 	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
495 }
496 
497 static struct page *
498 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
499 {
500 	unsigned long pte;
501 
502 	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
503 		return NULL;
504 	return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
505 }
506 
507 static void srmmu_free_pte_fast(pte_t *pte)
508 {
509 	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
510 }
511 
512 static void srmmu_pte_free(struct page *pte)
513 {
514 	unsigned long p;
515 
516 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
517 	if (p == 0)
518 		BUG();
519 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
520 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
521 	srmmu_free_nocache(p, PTE_SIZE);
522 }
523 
524 /*
525  */
526 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527 {
528 	struct ctx_list *ctxp;
529 
530 	ctxp = ctx_free.next;
531 	if(ctxp != &ctx_free) {
532 		remove_from_ctx_list(ctxp);
533 		add_to_used_ctxlist(ctxp);
534 		mm->context = ctxp->ctx_number;
535 		ctxp->ctx_mm = mm;
536 		return;
537 	}
538 	ctxp = ctx_used.next;
539 	if(ctxp->ctx_mm == old_mm)
540 		ctxp = ctxp->next;
541 	if(ctxp == &ctx_used)
542 		panic("out of mmu contexts");
543 	flush_cache_mm(ctxp->ctx_mm);
544 	flush_tlb_mm(ctxp->ctx_mm);
545 	remove_from_ctx_list(ctxp);
546 	add_to_used_ctxlist(ctxp);
547 	ctxp->ctx_mm->context = NO_CONTEXT;
548 	ctxp->ctx_mm = mm;
549 	mm->context = ctxp->ctx_number;
550 }
551 
552 static inline void free_context(int context)
553 {
554 	struct ctx_list *ctx_old;
555 
556 	ctx_old = ctx_list_pool + context;
557 	remove_from_ctx_list(ctx_old);
558 	add_to_free_ctxlist(ctx_old);
559 }
560 
561 
562 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
563     struct task_struct *tsk, int cpu)
564 {
565 	if(mm->context == NO_CONTEXT) {
566 		spin_lock(&srmmu_context_spinlock);
567 		alloc_context(old_mm, mm);
568 		spin_unlock(&srmmu_context_spinlock);
569 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
570 	}
571 
572 	if (is_hypersparc)
573 		hyper_flush_whole_icache();
574 
575 	srmmu_set_context(mm->context);
576 }
577 
578 /* Low level IO area allocation on the SRMMU. */
579 static inline void srmmu_mapioaddr(unsigned long physaddr,
580     unsigned long virt_addr, int bus_type)
581 {
582 	pgd_t *pgdp;
583 	pmd_t *pmdp;
584 	pte_t *ptep;
585 	unsigned long tmp;
586 
587 	physaddr &= PAGE_MASK;
588 	pgdp = pgd_offset_k(virt_addr);
589 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
590 	ptep = srmmu_pte_offset(pmdp, virt_addr);
591 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
592 
593 	/*
594 	 * I need to test whether this is consistent over all
595 	 * sun4m's.  The bus_type represents the upper 4 bits of
596 	 * 36-bit physical address on the I/O space lines...
597 	 */
598 	tmp |= (bus_type << 28);
599 	tmp |= SRMMU_PRIV;
600 	__flush_page_to_ram(virt_addr);
601 	srmmu_set_pte(ptep, __pte(tmp));
602 }
603 
604 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
605     unsigned long xva, unsigned int len)
606 {
607 	while (len != 0) {
608 		len -= PAGE_SIZE;
609 		srmmu_mapioaddr(xpa, xva, bus);
610 		xva += PAGE_SIZE;
611 		xpa += PAGE_SIZE;
612 	}
613 	flush_tlb_all();
614 }
615 
616 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
617 {
618 	pgd_t *pgdp;
619 	pmd_t *pmdp;
620 	pte_t *ptep;
621 
622 	pgdp = pgd_offset_k(virt_addr);
623 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
624 	ptep = srmmu_pte_offset(pmdp, virt_addr);
625 
626 	/* No need to flush uncacheable page. */
627 	srmmu_pte_clear(ptep);
628 }
629 
630 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
631 {
632 	while (len != 0) {
633 		len -= PAGE_SIZE;
634 		srmmu_unmapioaddr(virt_addr);
635 		virt_addr += PAGE_SIZE;
636 	}
637 	flush_tlb_all();
638 }
639 
640 /*
641  * On the SRMMU we do not have the problems with limited tlb entries
642  * for mapping kernel pages, so we just take things from the free page
643  * pool.  As a side effect we are putting a little too much pressure
644  * on the gfp() subsystem.  This setup also makes the logic of the
645  * iommu mapping code a lot easier as we can transparently handle
646  * mappings on the kernel stack without any special code as we did
647  * need on the sun4c.
648  */
649 struct thread_info *srmmu_alloc_thread_info(void)
650 {
651 	struct thread_info *ret;
652 
653 	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654 						     THREAD_INFO_ORDER);
655 #ifdef CONFIG_DEBUG_STACK_USAGE
656 	if (ret)
657 		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
658 #endif /* DEBUG_STACK_USAGE */
659 
660 	return ret;
661 }
662 
663 static void srmmu_free_thread_info(struct thread_info *ti)
664 {
665 	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
666 }
667 
668 /* tsunami.S */
669 extern void tsunami_flush_cache_all(void);
670 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
671 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
672 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
673 extern void tsunami_flush_page_to_ram(unsigned long page);
674 extern void tsunami_flush_page_for_dma(unsigned long page);
675 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
676 extern void tsunami_flush_tlb_all(void);
677 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
678 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
679 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
680 extern void tsunami_setup_blockops(void);
681 
682 /*
683  * Workaround, until we find what's going on with Swift. When low on memory,
684  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685  * out it is already in page tables/ fault again on the same instruction.
686  * I really don't understand it, have checked it and contexts
687  * are right, flush_tlb_all is done as well, and it faults again...
688  * Strange. -jj
689  *
690  * The following code is a deadwood that may be necessary when
691  * we start to make precise page flushes again. --zaitcev
692  */
693 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
694 {
695 #if 0
696 	static unsigned long last;
697 	unsigned int val;
698 	/* unsigned int n; */
699 
700 	if (address == last) {
701 		val = srmmu_hwprobe(address);
702 		if (val != 0 && pte_val(pte) != val) {
703 			printk("swift_update_mmu_cache: "
704 			    "addr %lx put %08x probed %08x from %p\n",
705 			    address, pte_val(pte), val,
706 			    __builtin_return_address(0));
707 			srmmu_flush_whole_tlb();
708 		}
709 	}
710 	last = address;
711 #endif
712 }
713 
714 /* swift.S */
715 extern void swift_flush_cache_all(void);
716 extern void swift_flush_cache_mm(struct mm_struct *mm);
717 extern void swift_flush_cache_range(struct vm_area_struct *vma,
718 				    unsigned long start, unsigned long end);
719 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
720 extern void swift_flush_page_to_ram(unsigned long page);
721 extern void swift_flush_page_for_dma(unsigned long page);
722 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
723 extern void swift_flush_tlb_all(void);
724 extern void swift_flush_tlb_mm(struct mm_struct *mm);
725 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
726 				  unsigned long start, unsigned long end);
727 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728 
729 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
730 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
731 {
732 	int cctx, ctx1;
733 
734 	page &= PAGE_MASK;
735 	if ((ctx1 = vma->vm_mm->context) != -1) {
736 		cctx = srmmu_get_context();
737 /* Is context # ever different from current context? P3 */
738 		if (cctx != ctx1) {
739 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
740 			srmmu_set_context(ctx1);
741 			swift_flush_page(page);
742 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
743 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
744 			srmmu_set_context(cctx);
745 		} else {
746 			 /* Rm. prot. bits from virt. c. */
747 			/* swift_flush_cache_all(); */
748 			/* swift_flush_cache_page(vma, page); */
749 			swift_flush_page(page);
750 
751 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
752 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
753 			/* same as above: srmmu_flush_tlb_page() */
754 		}
755 	}
756 }
757 #endif
758 
759 /*
760  * The following are all MBUS based SRMMU modules, and therefore could
761  * be found in a multiprocessor configuration.  On the whole, these
762  * chips seems to be much more touchy about DVMA and page tables
763  * with respect to cache coherency.
764  */
765 
766 /* Cypress flushes. */
767 static void cypress_flush_cache_all(void)
768 {
769 	volatile unsigned long cypress_sucks;
770 	unsigned long faddr, tagval;
771 
772 	flush_user_windows();
773 	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
774 		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775 				     "=r" (tagval) :
776 				     "r" (faddr), "r" (0x40000),
777 				     "i" (ASI_M_DATAC_TAG));
778 
779 		/* If modified and valid, kick it. */
780 		if((tagval & 0x60) == 0x60)
781 			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
782 	}
783 }
784 
785 static void cypress_flush_cache_mm(struct mm_struct *mm)
786 {
787 	register unsigned long a, b, c, d, e, f, g;
788 	unsigned long flags, faddr;
789 	int octx;
790 
791 	FLUSH_BEGIN(mm)
792 	flush_user_windows();
793 	local_irq_save(flags);
794 	octx = srmmu_get_context();
795 	srmmu_set_context(mm->context);
796 	a = 0x20; b = 0x40; c = 0x60;
797 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798 
799 	faddr = (0x10000 - 0x100);
800 	goto inside;
801 	do {
802 		faddr -= 0x100;
803 	inside:
804 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
805 				     "sta %%g0, [%0 + %2] %1\n\t"
806 				     "sta %%g0, [%0 + %3] %1\n\t"
807 				     "sta %%g0, [%0 + %4] %1\n\t"
808 				     "sta %%g0, [%0 + %5] %1\n\t"
809 				     "sta %%g0, [%0 + %6] %1\n\t"
810 				     "sta %%g0, [%0 + %7] %1\n\t"
811 				     "sta %%g0, [%0 + %8] %1\n\t" : :
812 				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
813 				     "r" (a), "r" (b), "r" (c), "r" (d),
814 				     "r" (e), "r" (f), "r" (g));
815 	} while(faddr);
816 	srmmu_set_context(octx);
817 	local_irq_restore(flags);
818 	FLUSH_END
819 }
820 
821 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822 {
823 	struct mm_struct *mm = vma->vm_mm;
824 	register unsigned long a, b, c, d, e, f, g;
825 	unsigned long flags, faddr;
826 	int octx;
827 
828 	FLUSH_BEGIN(mm)
829 	flush_user_windows();
830 	local_irq_save(flags);
831 	octx = srmmu_get_context();
832 	srmmu_set_context(mm->context);
833 	a = 0x20; b = 0x40; c = 0x60;
834 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835 
836 	start &= SRMMU_REAL_PMD_MASK;
837 	while(start < end) {
838 		faddr = (start + (0x10000 - 0x100));
839 		goto inside;
840 		do {
841 			faddr -= 0x100;
842 		inside:
843 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
844 					     "sta %%g0, [%0 + %2] %1\n\t"
845 					     "sta %%g0, [%0 + %3] %1\n\t"
846 					     "sta %%g0, [%0 + %4] %1\n\t"
847 					     "sta %%g0, [%0 + %5] %1\n\t"
848 					     "sta %%g0, [%0 + %6] %1\n\t"
849 					     "sta %%g0, [%0 + %7] %1\n\t"
850 					     "sta %%g0, [%0 + %8] %1\n\t" : :
851 					     "r" (faddr),
852 					     "i" (ASI_M_FLUSH_SEG),
853 					     "r" (a), "r" (b), "r" (c), "r" (d),
854 					     "r" (e), "r" (f), "r" (g));
855 		} while (faddr != start);
856 		start += SRMMU_REAL_PMD_SIZE;
857 	}
858 	srmmu_set_context(octx);
859 	local_irq_restore(flags);
860 	FLUSH_END
861 }
862 
863 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864 {
865 	register unsigned long a, b, c, d, e, f, g;
866 	struct mm_struct *mm = vma->vm_mm;
867 	unsigned long flags, line;
868 	int octx;
869 
870 	FLUSH_BEGIN(mm)
871 	flush_user_windows();
872 	local_irq_save(flags);
873 	octx = srmmu_get_context();
874 	srmmu_set_context(mm->context);
875 	a = 0x20; b = 0x40; c = 0x60;
876 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
877 
878 	page &= PAGE_MASK;
879 	line = (page + PAGE_SIZE) - 0x100;
880 	goto inside;
881 	do {
882 		line -= 0x100;
883 	inside:
884 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
885 					     "sta %%g0, [%0 + %2] %1\n\t"
886 					     "sta %%g0, [%0 + %3] %1\n\t"
887 					     "sta %%g0, [%0 + %4] %1\n\t"
888 					     "sta %%g0, [%0 + %5] %1\n\t"
889 					     "sta %%g0, [%0 + %6] %1\n\t"
890 					     "sta %%g0, [%0 + %7] %1\n\t"
891 					     "sta %%g0, [%0 + %8] %1\n\t" : :
892 					     "r" (line),
893 					     "i" (ASI_M_FLUSH_PAGE),
894 					     "r" (a), "r" (b), "r" (c), "r" (d),
895 					     "r" (e), "r" (f), "r" (g));
896 	} while(line != page);
897 	srmmu_set_context(octx);
898 	local_irq_restore(flags);
899 	FLUSH_END
900 }
901 
902 /* Cypress is copy-back, at least that is how we configure it. */
903 static void cypress_flush_page_to_ram(unsigned long page)
904 {
905 	register unsigned long a, b, c, d, e, f, g;
906 	unsigned long line;
907 
908 	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909 	page &= PAGE_MASK;
910 	line = (page + PAGE_SIZE) - 0x100;
911 	goto inside;
912 	do {
913 		line -= 0x100;
914 	inside:
915 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
916 				     "sta %%g0, [%0 + %2] %1\n\t"
917 				     "sta %%g0, [%0 + %3] %1\n\t"
918 				     "sta %%g0, [%0 + %4] %1\n\t"
919 				     "sta %%g0, [%0 + %5] %1\n\t"
920 				     "sta %%g0, [%0 + %6] %1\n\t"
921 				     "sta %%g0, [%0 + %7] %1\n\t"
922 				     "sta %%g0, [%0 + %8] %1\n\t" : :
923 				     "r" (line),
924 				     "i" (ASI_M_FLUSH_PAGE),
925 				     "r" (a), "r" (b), "r" (c), "r" (d),
926 				     "r" (e), "r" (f), "r" (g));
927 	} while(line != page);
928 }
929 
930 /* Cypress is also IO cache coherent. */
931 static void cypress_flush_page_for_dma(unsigned long page)
932 {
933 }
934 
935 /* Cypress has unified L2 VIPT, from which both instructions and data
936  * are stored.  It does not have an onboard icache of any sort, therefore
937  * no flush is necessary.
938  */
939 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
940 {
941 }
942 
943 static void cypress_flush_tlb_all(void)
944 {
945 	srmmu_flush_whole_tlb();
946 }
947 
948 static void cypress_flush_tlb_mm(struct mm_struct *mm)
949 {
950 	FLUSH_BEGIN(mm)
951 	__asm__ __volatile__(
952 	"lda	[%0] %3, %%g5\n\t"
953 	"sta	%2, [%0] %3\n\t"
954 	"sta	%%g0, [%1] %4\n\t"
955 	"sta	%%g5, [%0] %3\n"
956 	: /* no outputs */
957 	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
958 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
959 	: "g5");
960 	FLUSH_END
961 }
962 
963 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964 {
965 	struct mm_struct *mm = vma->vm_mm;
966 	unsigned long size;
967 
968 	FLUSH_BEGIN(mm)
969 	start &= SRMMU_PGDIR_MASK;
970 	size = SRMMU_PGDIR_ALIGN(end) - start;
971 	__asm__ __volatile__(
972 		"lda	[%0] %5, %%g5\n\t"
973 		"sta	%1, [%0] %5\n"
974 		"1:\n\t"
975 		"subcc	%3, %4, %3\n\t"
976 		"bne	1b\n\t"
977 		" sta	%%g0, [%2 + %3] %6\n\t"
978 		"sta	%%g5, [%0] %5\n"
979 	: /* no outputs */
980 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
981 	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
982 	  "i" (ASI_M_FLUSH_PROBE)
983 	: "g5", "cc");
984 	FLUSH_END
985 }
986 
987 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988 {
989 	struct mm_struct *mm = vma->vm_mm;
990 
991 	FLUSH_BEGIN(mm)
992 	__asm__ __volatile__(
993 	"lda	[%0] %3, %%g5\n\t"
994 	"sta	%1, [%0] %3\n\t"
995 	"sta	%%g0, [%2] %4\n\t"
996 	"sta	%%g5, [%0] %3\n"
997 	: /* no outputs */
998 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
999 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1000 	: "g5");
1001 	FLUSH_END
1002 }
1003 
1004 /* viking.S */
1005 extern void viking_flush_cache_all(void);
1006 extern void viking_flush_cache_mm(struct mm_struct *mm);
1007 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008 				     unsigned long end);
1009 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1010 extern void viking_flush_page_to_ram(unsigned long page);
1011 extern void viking_flush_page_for_dma(unsigned long page);
1012 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1013 extern void viking_flush_page(unsigned long page);
1014 extern void viking_mxcc_flush_page(unsigned long page);
1015 extern void viking_flush_tlb_all(void);
1016 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1017 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018 				   unsigned long end);
1019 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1020 				  unsigned long page);
1021 extern void sun4dsmp_flush_tlb_all(void);
1022 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1023 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024 				   unsigned long end);
1025 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1026 				  unsigned long page);
1027 
1028 /* hypersparc.S */
1029 extern void hypersparc_flush_cache_all(void);
1030 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1031 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1032 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1033 extern void hypersparc_flush_page_to_ram(unsigned long page);
1034 extern void hypersparc_flush_page_for_dma(unsigned long page);
1035 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1036 extern void hypersparc_flush_tlb_all(void);
1037 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1038 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1039 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1040 extern void hypersparc_setup_blockops(void);
1041 
1042 /*
1043  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044  *       kernel mappings are done with one single contiguous chunk of
1045  *       ram.  On small ram machines (classics mainly) we only get
1046  *       around 8mb mapped for us.
1047  */
1048 
1049 void __init early_pgtable_allocfail(char *type)
1050 {
1051 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1052 	prom_halt();
1053 }
1054 
1055 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1056 {
1057 	pgd_t *pgdp;
1058 	pmd_t *pmdp;
1059 	pte_t *ptep;
1060 
1061 	while(start < end) {
1062 		pgdp = pgd_offset_k(start);
1063 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1064 			pmdp = (pmd_t *) __srmmu_get_nocache(
1065 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1066 			if (pmdp == NULL)
1067 				early_pgtable_allocfail("pmd");
1068 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1069 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1070 		}
1071 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1072 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1073 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1074 			if (ptep == NULL)
1075 				early_pgtable_allocfail("pte");
1076 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1077 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1078 		}
1079 		if (start > (0xffffffffUL - PMD_SIZE))
1080 			break;
1081 		start = (start + PMD_SIZE) & PMD_MASK;
1082 	}
1083 }
1084 
1085 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1086 {
1087 	pgd_t *pgdp;
1088 	pmd_t *pmdp;
1089 	pte_t *ptep;
1090 
1091 	while(start < end) {
1092 		pgdp = pgd_offset_k(start);
1093 		if(srmmu_pgd_none(*pgdp)) {
1094 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1095 			if (pmdp == NULL)
1096 				early_pgtable_allocfail("pmd");
1097 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1098 			srmmu_pgd_set(pgdp, pmdp);
1099 		}
1100 		pmdp = srmmu_pmd_offset(pgdp, start);
1101 		if(srmmu_pmd_none(*pmdp)) {
1102 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1103 							     PTE_SIZE);
1104 			if (ptep == NULL)
1105 				early_pgtable_allocfail("pte");
1106 			memset(ptep, 0, PTE_SIZE);
1107 			srmmu_pmd_set(pmdp, ptep);
1108 		}
1109 		if (start > (0xffffffffUL - PMD_SIZE))
1110 			break;
1111 		start = (start + PMD_SIZE) & PMD_MASK;
1112 	}
1113 }
1114 
1115 /*
1116  * This is much cleaner than poking around physical address space
1117  * looking at the prom's page table directly which is what most
1118  * other OS's do.  Yuck... this is much better.
1119  */
1120 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1121 {
1122 	pgd_t *pgdp;
1123 	pmd_t *pmdp;
1124 	pte_t *ptep;
1125 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1126 	unsigned long prompte;
1127 
1128 	while(start <= end) {
1129 		if (start == 0)
1130 			break; /* probably wrap around */
1131 		if(start == 0xfef00000)
1132 			start = KADB_DEBUGGER_BEGVM;
1133 		if(!(prompte = srmmu_hwprobe(start))) {
1134 			start += PAGE_SIZE;
1135 			continue;
1136 		}
1137 
1138 		/* A red snapper, see what it really is. */
1139 		what = 0;
1140 
1141 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1142 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1143 				what = 1;
1144 		}
1145 
1146 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1147 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1148 			   prompte)
1149 				what = 2;
1150 		}
1151 
1152 		pgdp = pgd_offset_k(start);
1153 		if(what == 2) {
1154 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1155 			start += SRMMU_PGDIR_SIZE;
1156 			continue;
1157 		}
1158 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1159 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1160 			if (pmdp == NULL)
1161 				early_pgtable_allocfail("pmd");
1162 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1163 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1164 		}
1165 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1166 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1167 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1168 							     PTE_SIZE);
1169 			if (ptep == NULL)
1170 				early_pgtable_allocfail("pte");
1171 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1172 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1173 		}
1174 		if(what == 1) {
1175 			/*
1176 			 * We bend the rule where all 16 PTPs in a pmd_t point
1177 			 * inside the same PTE page, and we leak a perfectly
1178 			 * good hardware PTE piece. Alternatives seem worse.
1179 			 */
1180 			unsigned int x;	/* Index of HW PMD in soft cluster */
1181 			x = (start >> PMD_SHIFT) & 15;
1182 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1183 			start += SRMMU_REAL_PMD_SIZE;
1184 			continue;
1185 		}
1186 		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1187 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1188 		start += PAGE_SIZE;
1189 	}
1190 }
1191 
1192 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1193 
1194 /* Create a third-level SRMMU 16MB page mapping. */
1195 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1196 {
1197 	pgd_t *pgdp = pgd_offset_k(vaddr);
1198 	unsigned long big_pte;
1199 
1200 	big_pte = KERNEL_PTE(phys_base >> 4);
1201 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1202 }
1203 
1204 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1205 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1206 {
1207 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1208 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1209 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1210 	/* Map "low" memory only */
1211 	const unsigned long min_vaddr = PAGE_OFFSET;
1212 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1213 
1214 	if (vstart < min_vaddr || vstart >= max_vaddr)
1215 		return vstart;
1216 
1217 	if (vend > max_vaddr || vend < min_vaddr)
1218 		vend = max_vaddr;
1219 
1220 	while(vstart < vend) {
1221 		do_large_mapping(vstart, pstart);
1222 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1223 	}
1224 	return vstart;
1225 }
1226 
1227 static inline void memprobe_error(char *msg)
1228 {
1229 	prom_printf(msg);
1230 	prom_printf("Halting now...\n");
1231 	prom_halt();
1232 }
1233 
1234 static inline void map_kernel(void)
1235 {
1236 	int i;
1237 
1238 	if (phys_base > 0) {
1239 		do_large_mapping(PAGE_OFFSET, phys_base);
1240 	}
1241 
1242 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1243 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1244 	}
1245 
1246 	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1247 }
1248 
1249 /* Paging initialization on the Sparc Reference MMU. */
1250 extern void sparc_context_init(int);
1251 
1252 void (*poke_srmmu)(void) __initdata = NULL;
1253 
1254 extern unsigned long bootmem_init(unsigned long *pages_avail);
1255 
1256 void __init srmmu_paging_init(void)
1257 {
1258 	int i, cpunode;
1259 	char node_str[128];
1260 	pgd_t *pgd;
1261 	pmd_t *pmd;
1262 	pte_t *pte;
1263 	unsigned long pages_avail;
1264 
1265 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1266 
1267 	if (sparc_cpu_model == sun4d)
1268 		num_contexts = 65536; /* We know it is Viking */
1269 	else {
1270 		/* Find the number of contexts on the srmmu. */
1271 		cpunode = prom_getchild(prom_root_node);
1272 		num_contexts = 0;
1273 		while(cpunode != 0) {
1274 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1275 			if(!strcmp(node_str, "cpu")) {
1276 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1277 				break;
1278 			}
1279 			cpunode = prom_getsibling(cpunode);
1280 		}
1281 	}
1282 
1283 	if(!num_contexts) {
1284 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1285 		prom_halt();
1286 	}
1287 
1288 	pages_avail = 0;
1289 	last_valid_pfn = bootmem_init(&pages_avail);
1290 
1291 	srmmu_nocache_calcsize();
1292 	srmmu_nocache_init();
1293         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1294 	map_kernel();
1295 
1296 	/* ctx table has to be physically aligned to its size */
1297 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1298 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1299 
1300 	for(i = 0; i < num_contexts; i++)
1301 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1302 
1303 	flush_cache_all();
1304 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1305 	flush_tlb_all();
1306 	poke_srmmu();
1307 
1308 #ifdef CONFIG_SUN_IO
1309 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1310 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1311 #endif
1312 
1313 	srmmu_allocate_ptable_skeleton(
1314 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1315 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1316 
1317 	pgd = pgd_offset_k(PKMAP_BASE);
1318 	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1319 	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1320 	pkmap_page_table = pte;
1321 
1322 	flush_cache_all();
1323 	flush_tlb_all();
1324 
1325 	sparc_context_init(num_contexts);
1326 
1327 	kmap_init();
1328 
1329 	{
1330 		unsigned long zones_size[MAX_NR_ZONES];
1331 		unsigned long zholes_size[MAX_NR_ZONES];
1332 		unsigned long npages;
1333 		int znum;
1334 
1335 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1336 			zones_size[znum] = zholes_size[znum] = 0;
1337 
1338 		npages = max_low_pfn - pfn_base;
1339 
1340 		zones_size[ZONE_DMA] = npages;
1341 		zholes_size[ZONE_DMA] = npages - pages_avail;
1342 
1343 		npages = highend_pfn - max_low_pfn;
1344 		zones_size[ZONE_HIGHMEM] = npages;
1345 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1346 
1347 		free_area_init_node(0, &contig_page_data, zones_size,
1348 				    pfn_base, zholes_size);
1349 	}
1350 }
1351 
1352 static void srmmu_mmu_info(struct seq_file *m)
1353 {
1354 	seq_printf(m,
1355 		   "MMU type\t: %s\n"
1356 		   "contexts\t: %d\n"
1357 		   "nocache total\t: %ld\n"
1358 		   "nocache used\t: %d\n",
1359 		   srmmu_name,
1360 		   num_contexts,
1361 		   srmmu_nocache_size,
1362 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1363 }
1364 
1365 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1366 {
1367 }
1368 
1369 static void srmmu_destroy_context(struct mm_struct *mm)
1370 {
1371 
1372 	if(mm->context != NO_CONTEXT) {
1373 		flush_cache_mm(mm);
1374 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1375 		flush_tlb_mm(mm);
1376 		spin_lock(&srmmu_context_spinlock);
1377 		free_context(mm->context);
1378 		spin_unlock(&srmmu_context_spinlock);
1379 		mm->context = NO_CONTEXT;
1380 	}
1381 }
1382 
1383 /* Init various srmmu chip types. */
1384 static void __init srmmu_is_bad(void)
1385 {
1386 	prom_printf("Could not determine SRMMU chip type.\n");
1387 	prom_halt();
1388 }
1389 
1390 static void __init init_vac_layout(void)
1391 {
1392 	int nd, cache_lines;
1393 	char node_str[128];
1394 #ifdef CONFIG_SMP
1395 	int cpu = 0;
1396 	unsigned long max_size = 0;
1397 	unsigned long min_line_size = 0x10000000;
1398 #endif
1399 
1400 	nd = prom_getchild(prom_root_node);
1401 	while((nd = prom_getsibling(nd)) != 0) {
1402 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1403 		if(!strcmp(node_str, "cpu")) {
1404 			vac_line_size = prom_getint(nd, "cache-line-size");
1405 			if (vac_line_size == -1) {
1406 				prom_printf("can't determine cache-line-size, "
1407 					    "halting.\n");
1408 				prom_halt();
1409 			}
1410 			cache_lines = prom_getint(nd, "cache-nlines");
1411 			if (cache_lines == -1) {
1412 				prom_printf("can't determine cache-nlines, halting.\n");
1413 				prom_halt();
1414 			}
1415 
1416 			vac_cache_size = cache_lines * vac_line_size;
1417 #ifdef CONFIG_SMP
1418 			if(vac_cache_size > max_size)
1419 				max_size = vac_cache_size;
1420 			if(vac_line_size < min_line_size)
1421 				min_line_size = vac_line_size;
1422 			cpu++;
1423 			if (cpu >= NR_CPUS || !cpu_online(cpu))
1424 				break;
1425 #else
1426 			break;
1427 #endif
1428 		}
1429 	}
1430 	if(nd == 0) {
1431 		prom_printf("No CPU nodes found, halting.\n");
1432 		prom_halt();
1433 	}
1434 #ifdef CONFIG_SMP
1435 	vac_cache_size = max_size;
1436 	vac_line_size = min_line_size;
1437 #endif
1438 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1439 	       (int)vac_cache_size, (int)vac_line_size);
1440 }
1441 
1442 static void __init poke_hypersparc(void)
1443 {
1444 	volatile unsigned long clear;
1445 	unsigned long mreg = srmmu_get_mmureg();
1446 
1447 	hyper_flush_unconditional_combined();
1448 
1449 	mreg &= ~(HYPERSPARC_CWENABLE);
1450 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1451 	mreg |= (HYPERSPARC_CMODE);
1452 
1453 	srmmu_set_mmureg(mreg);
1454 
1455 #if 0 /* XXX I think this is bad news... -DaveM */
1456 	hyper_clear_all_tags();
1457 #endif
1458 
1459 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1460 	hyper_flush_whole_icache();
1461 	clear = srmmu_get_faddr();
1462 	clear = srmmu_get_fstatus();
1463 }
1464 
1465 static void __init init_hypersparc(void)
1466 {
1467 	srmmu_name = "ROSS HyperSparc";
1468 	srmmu_modtype = HyperSparc;
1469 
1470 	init_vac_layout();
1471 
1472 	is_hypersparc = 1;
1473 
1474 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1475 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1476 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1477 	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1478 	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1479 	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1480 	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1481 
1482 	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1483 	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1484 	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1485 	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1486 
1487 	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1488 	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1489 	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1490 
1491 
1492 	poke_srmmu = poke_hypersparc;
1493 
1494 	hypersparc_setup_blockops();
1495 }
1496 
1497 static void __init poke_cypress(void)
1498 {
1499 	unsigned long mreg = srmmu_get_mmureg();
1500 	unsigned long faddr, tagval;
1501 	volatile unsigned long cypress_sucks;
1502 	volatile unsigned long clear;
1503 
1504 	clear = srmmu_get_faddr();
1505 	clear = srmmu_get_fstatus();
1506 
1507 	if (!(mreg & CYPRESS_CENABLE)) {
1508 		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1509 			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1510 					     "sta %%g0, [%0] %2\n\t" : :
1511 					     "r" (faddr), "r" (0x40000),
1512 					     "i" (ASI_M_DATAC_TAG));
1513 		}
1514 	} else {
1515 		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1516 			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1517 					     "=r" (tagval) :
1518 					     "r" (faddr), "r" (0x40000),
1519 					     "i" (ASI_M_DATAC_TAG));
1520 
1521 			/* If modified and valid, kick it. */
1522 			if((tagval & 0x60) == 0x60)
1523 				cypress_sucks = *(unsigned long *)
1524 							(0xf0020000 + faddr);
1525 		}
1526 	}
1527 
1528 	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1529 	clear = srmmu_get_faddr();
1530 	clear = srmmu_get_fstatus();
1531 
1532 	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1533 	srmmu_set_mmureg(mreg);
1534 }
1535 
1536 static void __init init_cypress_common(void)
1537 {
1538 	init_vac_layout();
1539 
1540 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1541 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1542 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1543 	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1544 	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1545 	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1546 	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1547 
1548 	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1549 	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1550 	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1551 	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1552 
1553 
1554 	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1555 	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1556 	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1557 
1558 	poke_srmmu = poke_cypress;
1559 }
1560 
1561 static void __init init_cypress_604(void)
1562 {
1563 	srmmu_name = "ROSS Cypress-604(UP)";
1564 	srmmu_modtype = Cypress;
1565 	init_cypress_common();
1566 }
1567 
1568 static void __init init_cypress_605(unsigned long mrev)
1569 {
1570 	srmmu_name = "ROSS Cypress-605(MP)";
1571 	if(mrev == 0xe) {
1572 		srmmu_modtype = Cypress_vE;
1573 		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1574 	} else {
1575 		if(mrev == 0xd) {
1576 			srmmu_modtype = Cypress_vD;
1577 			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1578 		} else {
1579 			srmmu_modtype = Cypress;
1580 		}
1581 	}
1582 	init_cypress_common();
1583 }
1584 
1585 static void __init poke_swift(void)
1586 {
1587 	unsigned long mreg;
1588 
1589 	/* Clear any crap from the cache or else... */
1590 	swift_flush_cache_all();
1591 
1592 	/* Enable I & D caches */
1593 	mreg = srmmu_get_mmureg();
1594 	mreg |= (SWIFT_IE | SWIFT_DE);
1595 	/*
1596 	 * The Swift branch folding logic is completely broken.  At
1597 	 * trap time, if things are just right, if can mistakenly
1598 	 * think that a trap is coming from kernel mode when in fact
1599 	 * it is coming from user mode (it mis-executes the branch in
1600 	 * the trap code).  So you see things like crashme completely
1601 	 * hosing your machine which is completely unacceptable.  Turn
1602 	 * this shit off... nice job Fujitsu.
1603 	 */
1604 	mreg &= ~(SWIFT_BF);
1605 	srmmu_set_mmureg(mreg);
1606 }
1607 
1608 #define SWIFT_MASKID_ADDR  0x10003018
1609 static void __init init_swift(void)
1610 {
1611 	unsigned long swift_rev;
1612 
1613 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1614 			     "srl %0, 0x18, %0\n\t" :
1615 			     "=r" (swift_rev) :
1616 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1617 	srmmu_name = "Fujitsu Swift";
1618 	switch(swift_rev) {
1619 	case 0x11:
1620 	case 0x20:
1621 	case 0x23:
1622 	case 0x30:
1623 		srmmu_modtype = Swift_lots_o_bugs;
1624 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1625 		/*
1626 		 * Gee george, I wonder why Sun is so hush hush about
1627 		 * this hardware bug... really braindamage stuff going
1628 		 * on here.  However I think we can find a way to avoid
1629 		 * all of the workaround overhead under Linux.  Basically,
1630 		 * any page fault can cause kernel pages to become user
1631 		 * accessible (the mmu gets confused and clears some of
1632 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1633 		 * horrible eh?  But wait, after extensive testing it appears
1634 		 * that if you use pgd_t level large kernel pte's (like the
1635 		 * 4MB pages on the Pentium) the bug does not get tripped
1636 		 * at all.  This avoids almost all of the major overhead.
1637 		 * Welcome to a world where your vendor tells you to,
1638 		 * "apply this kernel patch" instead of "sorry for the
1639 		 * broken hardware, send it back and we'll give you
1640 		 * properly functioning parts"
1641 		 */
1642 		break;
1643 	case 0x25:
1644 	case 0x31:
1645 		srmmu_modtype = Swift_bad_c;
1646 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1647 		/*
1648 		 * You see Sun allude to this hardware bug but never
1649 		 * admit things directly, they'll say things like,
1650 		 * "the Swift chip cache problems" or similar.
1651 		 */
1652 		break;
1653 	default:
1654 		srmmu_modtype = Swift_ok;
1655 		break;
1656 	};
1657 
1658 	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1659 	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1660 	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1661 	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1662 
1663 
1664 	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1665 	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1666 	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1667 	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1668 
1669 	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1670 	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1671 	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1672 
1673 	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1674 
1675 	flush_page_for_dma_global = 0;
1676 
1677 	/*
1678 	 * Are you now convinced that the Swift is one of the
1679 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1680 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1681 	 * you examined the microcode of the Swift you'd find
1682 	 * XXX's all over the place.
1683 	 */
1684 	poke_srmmu = poke_swift;
1685 }
1686 
1687 static void turbosparc_flush_cache_all(void)
1688 {
1689 	flush_user_windows();
1690 	turbosparc_idflash_clear();
1691 }
1692 
1693 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1694 {
1695 	FLUSH_BEGIN(mm)
1696 	flush_user_windows();
1697 	turbosparc_idflash_clear();
1698 	FLUSH_END
1699 }
1700 
1701 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1702 {
1703 	FLUSH_BEGIN(vma->vm_mm)
1704 	flush_user_windows();
1705 	turbosparc_idflash_clear();
1706 	FLUSH_END
1707 }
1708 
1709 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710 {
1711 	FLUSH_BEGIN(vma->vm_mm)
1712 	flush_user_windows();
1713 	if (vma->vm_flags & VM_EXEC)
1714 		turbosparc_flush_icache();
1715 	turbosparc_flush_dcache();
1716 	FLUSH_END
1717 }
1718 
1719 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1720 static void turbosparc_flush_page_to_ram(unsigned long page)
1721 {
1722 #ifdef TURBOSPARC_WRITEBACK
1723 	volatile unsigned long clear;
1724 
1725 	if (srmmu_hwprobe(page))
1726 		turbosparc_flush_page_cache(page);
1727 	clear = srmmu_get_fstatus();
1728 #endif
1729 }
1730 
1731 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1732 {
1733 }
1734 
1735 static void turbosparc_flush_page_for_dma(unsigned long page)
1736 {
1737 	turbosparc_flush_dcache();
1738 }
1739 
1740 static void turbosparc_flush_tlb_all(void)
1741 {
1742 	srmmu_flush_whole_tlb();
1743 }
1744 
1745 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1746 {
1747 	FLUSH_BEGIN(mm)
1748 	srmmu_flush_whole_tlb();
1749 	FLUSH_END
1750 }
1751 
1752 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1753 {
1754 	FLUSH_BEGIN(vma->vm_mm)
1755 	srmmu_flush_whole_tlb();
1756 	FLUSH_END
1757 }
1758 
1759 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1760 {
1761 	FLUSH_BEGIN(vma->vm_mm)
1762 	srmmu_flush_whole_tlb();
1763 	FLUSH_END
1764 }
1765 
1766 
1767 static void __init poke_turbosparc(void)
1768 {
1769 	unsigned long mreg = srmmu_get_mmureg();
1770 	unsigned long ccreg;
1771 
1772 	/* Clear any crap from the cache or else... */
1773 	turbosparc_flush_cache_all();
1774 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1775 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1776 	srmmu_set_mmureg(mreg);
1777 
1778 	ccreg = turbosparc_get_ccreg();
1779 
1780 #ifdef TURBOSPARC_WRITEBACK
1781 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1782 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1783 			/* Write-back D-cache, emulate VLSI
1784 			 * abortion number three, not number one */
1785 #else
1786 	/* For now let's play safe, optimize later */
1787 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1788 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1789 	ccreg &= ~(TURBOSPARC_uS2);
1790 			/* Emulate VLSI abortion number three, not number one */
1791 #endif
1792 
1793 	switch (ccreg & 7) {
1794 	case 0: /* No SE cache */
1795 	case 7: /* Test mode */
1796 		break;
1797 	default:
1798 		ccreg |= (TURBOSPARC_SCENABLE);
1799 	}
1800 	turbosparc_set_ccreg (ccreg);
1801 
1802 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1803 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1804 	srmmu_set_mmureg(mreg);
1805 }
1806 
1807 static void __init init_turbosparc(void)
1808 {
1809 	srmmu_name = "Fujitsu TurboSparc";
1810 	srmmu_modtype = TurboSparc;
1811 
1812 	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1813 	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1814 	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1815 	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1816 
1817 	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1818 	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1819 	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1820 	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1821 
1822 	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1823 
1824 	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1825 	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1826 
1827 	poke_srmmu = poke_turbosparc;
1828 }
1829 
1830 static void __init poke_tsunami(void)
1831 {
1832 	unsigned long mreg = srmmu_get_mmureg();
1833 
1834 	tsunami_flush_icache();
1835 	tsunami_flush_dcache();
1836 	mreg &= ~TSUNAMI_ITD;
1837 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1838 	srmmu_set_mmureg(mreg);
1839 }
1840 
1841 static void __init init_tsunami(void)
1842 {
1843 	/*
1844 	 * Tsunami's pretty sane, Sun and TI actually got it
1845 	 * somewhat right this time.  Fujitsu should have
1846 	 * taken some lessons from them.
1847 	 */
1848 
1849 	srmmu_name = "TI Tsunami";
1850 	srmmu_modtype = Tsunami;
1851 
1852 	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1853 	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1854 	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1855 	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1856 
1857 
1858 	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1859 	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1860 	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1861 	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1862 
1863 	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1864 	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1865 	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1866 
1867 	poke_srmmu = poke_tsunami;
1868 
1869 	tsunami_setup_blockops();
1870 }
1871 
1872 static void __init poke_viking(void)
1873 {
1874 	unsigned long mreg = srmmu_get_mmureg();
1875 	static int smp_catch;
1876 
1877 	if(viking_mxcc_present) {
1878 		unsigned long mxcc_control = mxcc_get_creg();
1879 
1880 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1881 		mxcc_control &= ~(MXCC_CTL_RRC);
1882 		mxcc_set_creg(mxcc_control);
1883 
1884 		/*
1885 		 * We don't need memory parity checks.
1886 		 * XXX This is a mess, have to dig out later. ecd.
1887 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1888 		 */
1889 
1890 		/* We do cache ptables on MXCC. */
1891 		mreg |= VIKING_TCENABLE;
1892 	} else {
1893 		unsigned long bpreg;
1894 
1895 		mreg &= ~(VIKING_TCENABLE);
1896 		if(smp_catch++) {
1897 			/* Must disable mixed-cmd mode here for other cpu's. */
1898 			bpreg = viking_get_bpreg();
1899 			bpreg &= ~(VIKING_ACTION_MIX);
1900 			viking_set_bpreg(bpreg);
1901 
1902 			/* Just in case PROM does something funny. */
1903 			msi_set_sync();
1904 		}
1905 	}
1906 
1907 	mreg |= VIKING_SPENABLE;
1908 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1909 	mreg |= VIKING_SBENABLE;
1910 	mreg &= ~(VIKING_ACENABLE);
1911 	srmmu_set_mmureg(mreg);
1912 
1913 #ifdef CONFIG_SMP
1914 	/* Avoid unnecessary cross calls. */
1915 	BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1916 	BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1917 	BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1918 	BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1919 	BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1920 	BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1921 	BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1922 	btfixup();
1923 #endif
1924 }
1925 
1926 static void __init init_viking(void)
1927 {
1928 	unsigned long mreg = srmmu_get_mmureg();
1929 
1930 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1931 	if(mreg & VIKING_MMODE) {
1932 		srmmu_name = "TI Viking";
1933 		viking_mxcc_present = 0;
1934 		msi_set_sync();
1935 
1936 		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937 		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938 		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1939 
1940 		/*
1941 		 * We need this to make sure old viking takes no hits
1942 		 * on it's cache for dma snoops to workaround the
1943 		 * "load from non-cacheable memory" interrupt bug.
1944 		 * This is only necessary because of the new way in
1945 		 * which we use the IOMMU.
1946 		 */
1947 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1948 
1949 		flush_page_for_dma_global = 0;
1950 	} else {
1951 		srmmu_name = "TI Viking/MXCC";
1952 		viking_mxcc_present = 1;
1953 
1954 		srmmu_cache_pagetables = 1;
1955 
1956 		/* MXCC vikings lack the DMA snooping bug. */
1957 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1958 	}
1959 
1960 	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961 	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962 	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963 	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1964 
1965 #ifdef CONFIG_SMP
1966 	if (sparc_cpu_model == sun4d) {
1967 		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968 		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970 		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971 	} else
1972 #endif
1973 	{
1974 		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975 		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977 		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1978 	}
1979 
1980 	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981 	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1982 
1983 	poke_srmmu = poke_viking;
1984 }
1985 
1986 /* Probe for the srmmu chip version. */
1987 static void __init get_srmmu_type(void)
1988 {
1989 	unsigned long mreg, psr;
1990 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1991 
1992 	srmmu_modtype = SRMMU_INVAL_MOD;
1993 	hwbug_bitmask = 0;
1994 
1995 	mreg = srmmu_get_mmureg(); psr = get_psr();
1996 	mod_typ = (mreg & 0xf0000000) >> 28;
1997 	mod_rev = (mreg & 0x0f000000) >> 24;
1998 	psr_typ = (psr >> 28) & 0xf;
1999 	psr_vers = (psr >> 24) & 0xf;
2000 
2001 	/* First, check for HyperSparc or Cypress. */
2002 	if(mod_typ == 1) {
2003 		switch(mod_rev) {
2004 		case 7:
2005 			/* UP or MP Hypersparc */
2006 			init_hypersparc();
2007 			break;
2008 		case 0:
2009 		case 2:
2010 			/* Uniprocessor Cypress */
2011 			init_cypress_604();
2012 			break;
2013 		case 10:
2014 		case 11:
2015 		case 12:
2016 			/* _REALLY OLD_ Cypress MP chips... */
2017 		case 13:
2018 		case 14:
2019 		case 15:
2020 			/* MP Cypress mmu/cache-controller */
2021 			init_cypress_605(mod_rev);
2022 			break;
2023 		default:
2024 			/* Some other Cypress revision, assume a 605. */
2025 			init_cypress_605(mod_rev);
2026 			break;
2027 		};
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * Now Fujitsu TurboSparc. It might happen that it is
2033 	 * in Swift emulation mode, so we will check later...
2034 	 */
2035 	if (psr_typ == 0 && psr_vers == 5) {
2036 		init_turbosparc();
2037 		return;
2038 	}
2039 
2040 	/* Next check for Fujitsu Swift. */
2041 	if(psr_typ == 0 && psr_vers == 4) {
2042 		int cpunode;
2043 		char node_str[128];
2044 
2045 		/* Look if it is not a TurboSparc emulating Swift... */
2046 		cpunode = prom_getchild(prom_root_node);
2047 		while((cpunode = prom_getsibling(cpunode)) != 0) {
2048 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2049 			if(!strcmp(node_str, "cpu")) {
2050 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2051 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2052 					init_turbosparc();
2053 					return;
2054 				}
2055 				break;
2056 			}
2057 		}
2058 
2059 		init_swift();
2060 		return;
2061 	}
2062 
2063 	/* Now the Viking family of srmmu. */
2064 	if(psr_typ == 4 &&
2065 	   ((psr_vers == 0) ||
2066 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2067 		init_viking();
2068 		return;
2069 	}
2070 
2071 	/* Finally the Tsunami. */
2072 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2073 		init_tsunami();
2074 		return;
2075 	}
2076 
2077 	/* Oh well */
2078 	srmmu_is_bad();
2079 }
2080 
2081 /* don't laugh, static pagetables */
2082 static void srmmu_check_pgt_cache(int low, int high)
2083 {
2084 }
2085 
2086 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2087 	tsetup_mmu_patchme, rtrap_mmu_patchme;
2088 
2089 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2090 	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2091 
2092 extern unsigned long srmmu_fault;
2093 
2094 #define PATCH_BRANCH(insn, dest) do { \
2095 		iaddr = &(insn); \
2096 		daddr = &(dest); \
2097 		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2098 	} while(0)
2099 
2100 static void __init patch_window_trap_handlers(void)
2101 {
2102 	unsigned long *iaddr, *daddr;
2103 
2104 	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2105 	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2106 	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2107 	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2108 	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2109 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2110 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2111 }
2112 
2113 #ifdef CONFIG_SMP
2114 /* Local cross-calls. */
2115 static void smp_flush_page_for_dma(unsigned long page)
2116 {
2117 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2118 	local_flush_page_for_dma(page);
2119 }
2120 
2121 #endif
2122 
2123 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2124 {
2125 	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2126 }
2127 
2128 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2129 {
2130 	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2131 }
2132 
2133 /* Load up routines and constants for sun4m and sun4d mmu */
2134 void __init ld_mmu_srmmu(void)
2135 {
2136 	extern void ld_mmu_iommu(void);
2137 	extern void ld_mmu_iounit(void);
2138 	extern void ___xchg32_sun4md(void);
2139 
2140 	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2141 	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2142 	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2143 
2144 	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2145 	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2146 
2147 	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2148 	BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2149 	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2150 	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2151 	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2152 	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2153 	pg_iobits = SRMMU_VALID | SRMMU_WRITE | SRMMU_REF;
2154 
2155 	/* Functions */
2156 #ifndef CONFIG_SMP
2157 	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2158 #endif
2159 	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2160 
2161 	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2162 	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2163 
2164 	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2165 	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2166 	BTFIXUPSET_CALL(pgd_page, srmmu_pgd_page, BTFIXUPCALL_NORM);
2167 
2168 	BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2169 
2170 	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2171 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2172 	BTFIXUPSET_CALL(pte_read, srmmu_pte_read, BTFIXUPCALL_NORM);
2173 
2174 	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2175 	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2176 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2177 
2178 	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2179 	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2180 	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2181 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2182 
2183 	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2184 	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2185 	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2186 	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2187 	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2188 	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2189 
2190 	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2191 	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2192 	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2193 
2194 	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2195 	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2196 	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2197 	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2198 	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2199 	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2200 	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2201 	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2202 
2203 	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2204 	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2205 	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2206 	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2207 	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2208 	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2209 	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2210 	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2211 	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2212 	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2213 	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2214 	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2215 
2216 	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2217 	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2218 
2219 	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2220 	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2221 	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2222 
2223 	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2224 
2225 	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2226 	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2227 
2228 	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2229 	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2230 
2231 	get_srmmu_type();
2232 	patch_window_trap_handlers();
2233 
2234 #ifdef CONFIG_SMP
2235 	/* El switcheroo... */
2236 
2237 	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2238 	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2239 	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2240 	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2241 	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2242 	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2243 	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2244 	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2245 	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2246 	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2247 	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2248 
2249 	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2250 	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2251 	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2252 	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2253 	if (sparc_cpu_model != sun4d) {
2254 		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2255 		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2256 		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2257 		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2258 	}
2259 	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2260 	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2261 	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2262 #endif
2263 
2264 	if (sparc_cpu_model == sun4d)
2265 		ld_mmu_iounit();
2266 	else
2267 		ld_mmu_iommu();
2268 #ifdef CONFIG_SMP
2269 	if (sparc_cpu_model == sun4d)
2270 		sun4d_init_smp();
2271 	else
2272 		sun4m_init_smp();
2273 #endif
2274 }
2275