1 /* 2 * srmmu.c: SRMMU specific routines for memory management. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 9 */ 10 11 #include <linux/config.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/bootmem.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 23 #include <asm/bitext.h> 24 #include <asm/page.h> 25 #include <asm/pgalloc.h> 26 #include <asm/pgtable.h> 27 #include <asm/io.h> 28 #include <asm/kdebug.h> 29 #include <asm/vaddrs.h> 30 #include <asm/traps.h> 31 #include <asm/smp.h> 32 #include <asm/mbus.h> 33 #include <asm/cache.h> 34 #include <asm/oplib.h> 35 #include <asm/sbus.h> 36 #include <asm/asi.h> 37 #include <asm/msi.h> 38 #include <asm/a.out.h> 39 #include <asm/mmu_context.h> 40 #include <asm/io-unit.h> 41 #include <asm/cacheflush.h> 42 #include <asm/tlbflush.h> 43 44 /* Now the cpu specific definitions. */ 45 #include <asm/viking.h> 46 #include <asm/mxcc.h> 47 #include <asm/ross.h> 48 #include <asm/tsunami.h> 49 #include <asm/swift.h> 50 #include <asm/turbosparc.h> 51 52 #include <asm/btfixup.h> 53 54 enum mbus_module srmmu_modtype; 55 unsigned int hwbug_bitmask; 56 int vac_cache_size; 57 int vac_line_size; 58 59 extern struct resource sparc_iomap; 60 61 extern unsigned long last_valid_pfn; 62 63 extern unsigned long page_kernel; 64 65 pgd_t *srmmu_swapper_pg_dir; 66 67 #ifdef CONFIG_SMP 68 #define FLUSH_BEGIN(mm) 69 #define FLUSH_END 70 #else 71 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) { 72 #define FLUSH_END } 73 #endif 74 75 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long) 76 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page) 77 78 int flush_page_for_dma_global = 1; 79 80 #ifdef CONFIG_SMP 81 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long) 82 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page) 83 #endif 84 85 char *srmmu_name; 86 87 ctxd_t *srmmu_ctx_table_phys; 88 ctxd_t *srmmu_context_table; 89 90 int viking_mxcc_present; 91 static DEFINE_SPINLOCK(srmmu_context_spinlock); 92 93 int is_hypersparc; 94 95 /* 96 * In general all page table modifications should use the V8 atomic 97 * swap instruction. This insures the mmu and the cpu are in sync 98 * with respect to ref/mod bits in the page tables. 99 */ 100 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value) 101 { 102 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr)); 103 return value; 104 } 105 106 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval) 107 { 108 srmmu_swap((unsigned long *)ptep, pte_val(pteval)); 109 } 110 111 /* The very generic SRMMU page table operations. */ 112 static inline int srmmu_device_memory(unsigned long x) 113 { 114 return ((x & 0xF0000000) != 0); 115 } 116 117 int srmmu_cache_pagetables; 118 119 /* these will be initialized in srmmu_nocache_calcsize() */ 120 unsigned long srmmu_nocache_size; 121 unsigned long srmmu_nocache_end; 122 123 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 124 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 125 126 /* The context table is a nocache user with the biggest alignment needs. */ 127 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 128 129 void *srmmu_nocache_pool; 130 void *srmmu_nocache_bitmap; 131 static struct bit_map srmmu_nocache_map; 132 133 static unsigned long srmmu_pte_pfn(pte_t pte) 134 { 135 if (srmmu_device_memory(pte_val(pte))) { 136 /* Just return something that will cause 137 * pfn_valid() to return false. This makes 138 * copy_one_pte() to just directly copy to 139 * PTE over. 140 */ 141 return ~0UL; 142 } 143 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4); 144 } 145 146 static struct page *srmmu_pmd_page(pmd_t pmd) 147 { 148 149 if (srmmu_device_memory(pmd_val(pmd))) 150 BUG(); 151 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4)); 152 } 153 154 static inline unsigned long srmmu_pgd_page(pgd_t pgd) 155 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); } 156 157 158 static inline int srmmu_pte_none(pte_t pte) 159 { return !(pte_val(pte) & 0xFFFFFFF); } 160 161 static inline int srmmu_pte_present(pte_t pte) 162 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); } 163 164 static inline int srmmu_pte_read(pte_t pte) 165 { return !(pte_val(pte) & SRMMU_NOREAD); } 166 167 static inline void srmmu_pte_clear(pte_t *ptep) 168 { srmmu_set_pte(ptep, __pte(0)); } 169 170 static inline int srmmu_pmd_none(pmd_t pmd) 171 { return !(pmd_val(pmd) & 0xFFFFFFF); } 172 173 static inline int srmmu_pmd_bad(pmd_t pmd) 174 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } 175 176 static inline int srmmu_pmd_present(pmd_t pmd) 177 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } 178 179 static inline void srmmu_pmd_clear(pmd_t *pmdp) { 180 int i; 181 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) 182 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0)); 183 } 184 185 static inline int srmmu_pgd_none(pgd_t pgd) 186 { return !(pgd_val(pgd) & 0xFFFFFFF); } 187 188 static inline int srmmu_pgd_bad(pgd_t pgd) 189 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } 190 191 static inline int srmmu_pgd_present(pgd_t pgd) 192 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } 193 194 static inline void srmmu_pgd_clear(pgd_t * pgdp) 195 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); } 196 197 static inline pte_t srmmu_pte_wrprotect(pte_t pte) 198 { return __pte(pte_val(pte) & ~SRMMU_WRITE);} 199 200 static inline pte_t srmmu_pte_mkclean(pte_t pte) 201 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);} 202 203 static inline pte_t srmmu_pte_mkold(pte_t pte) 204 { return __pte(pte_val(pte) & ~SRMMU_REF);} 205 206 static inline pte_t srmmu_pte_mkwrite(pte_t pte) 207 { return __pte(pte_val(pte) | SRMMU_WRITE);} 208 209 static inline pte_t srmmu_pte_mkdirty(pte_t pte) 210 { return __pte(pte_val(pte) | SRMMU_DIRTY);} 211 212 static inline pte_t srmmu_pte_mkyoung(pte_t pte) 213 { return __pte(pte_val(pte) | SRMMU_REF);} 214 215 /* 216 * Conversion functions: convert a page and protection to a page entry, 217 * and a page entry and page directory to the page they refer to. 218 */ 219 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot) 220 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); } 221 222 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot) 223 { return __pte(((page) >> 4) | pgprot_val(pgprot)); } 224 225 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) 226 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); } 227 228 /* XXX should we hyper_flush_whole_icache here - Anton */ 229 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 230 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); } 231 232 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp) 233 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); } 234 235 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep) 236 { 237 unsigned long ptp; /* Physical address, shifted right by 4 */ 238 int i; 239 240 ptp = __nocache_pa((unsigned long) ptep) >> 4; 241 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 242 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 243 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 244 } 245 } 246 247 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep) 248 { 249 unsigned long ptp; /* Physical address, shifted right by 4 */ 250 int i; 251 252 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 253 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 254 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 255 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 256 } 257 } 258 259 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot) 260 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); } 261 262 /* to find an entry in a top-level page table... */ 263 extern inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address) 264 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); } 265 266 /* Find an entry in the second-level page table.. */ 267 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address) 268 { 269 return (pmd_t *) srmmu_pgd_page(*dir) + 270 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 271 } 272 273 /* Find an entry in the third-level page table.. */ 274 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address) 275 { 276 void *pte; 277 278 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 279 return (pte_t *) pte + 280 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 281 } 282 283 static unsigned long srmmu_swp_type(swp_entry_t entry) 284 { 285 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK; 286 } 287 288 static unsigned long srmmu_swp_offset(swp_entry_t entry) 289 { 290 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK; 291 } 292 293 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset) 294 { 295 return (swp_entry_t) { 296 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT 297 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT }; 298 } 299 300 /* 301 * size: bytes to allocate in the nocache area. 302 * align: bytes, number to align at. 303 * Returns the virtual address of the allocated area. 304 */ 305 static unsigned long __srmmu_get_nocache(int size, int align) 306 { 307 int offset; 308 309 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 310 printk("Size 0x%x too small for nocache request\n", size); 311 size = SRMMU_NOCACHE_BITMAP_SHIFT; 312 } 313 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) { 314 printk("Size 0x%x unaligned int nocache request\n", size); 315 size += SRMMU_NOCACHE_BITMAP_SHIFT-1; 316 } 317 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 318 319 offset = bit_map_string_get(&srmmu_nocache_map, 320 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 321 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 322 if (offset == -1) { 323 printk("srmmu: out of nocache %d: %d/%d\n", 324 size, (int) srmmu_nocache_size, 325 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 326 return 0; 327 } 328 329 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT)); 330 } 331 332 unsigned inline long srmmu_get_nocache(int size, int align) 333 { 334 unsigned long tmp; 335 336 tmp = __srmmu_get_nocache(size, align); 337 338 if (tmp) 339 memset((void *)tmp, 0, size); 340 341 return tmp; 342 } 343 344 void srmmu_free_nocache(unsigned long vaddr, int size) 345 { 346 int offset; 347 348 if (vaddr < SRMMU_NOCACHE_VADDR) { 349 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 350 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 351 BUG(); 352 } 353 if (vaddr+size > srmmu_nocache_end) { 354 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 355 vaddr, srmmu_nocache_end); 356 BUG(); 357 } 358 if (size & (size-1)) { 359 printk("Size 0x%x is not a power of 2\n", size); 360 BUG(); 361 } 362 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 363 printk("Size 0x%x is too small\n", size); 364 BUG(); 365 } 366 if (vaddr & (size-1)) { 367 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 368 BUG(); 369 } 370 371 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 372 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 373 374 bit_map_clear(&srmmu_nocache_map, offset, size); 375 } 376 377 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end); 378 379 extern unsigned long probe_memory(void); /* in fault.c */ 380 381 /* 382 * Reserve nocache dynamically proportionally to the amount of 383 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 384 */ 385 void srmmu_nocache_calcsize(void) 386 { 387 unsigned long sysmemavail = probe_memory() / 1024; 388 int srmmu_nocache_npages; 389 390 srmmu_nocache_npages = 391 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 392 393 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 394 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 395 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 396 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 397 398 /* anything above 1280 blows up */ 399 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 400 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 401 402 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 403 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 404 } 405 406 void srmmu_nocache_init(void) 407 { 408 unsigned int bitmap_bits; 409 pgd_t *pgd; 410 pmd_t *pmd; 411 pte_t *pte; 412 unsigned long paddr, vaddr; 413 unsigned long pteval; 414 415 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 416 417 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, 418 SRMMU_NOCACHE_ALIGN_MAX, 0UL); 419 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 420 421 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL); 422 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 423 424 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 425 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 426 init_mm.pgd = srmmu_swapper_pg_dir; 427 428 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 429 430 paddr = __pa((unsigned long)srmmu_nocache_pool); 431 vaddr = SRMMU_NOCACHE_VADDR; 432 433 while (vaddr < srmmu_nocache_end) { 434 pgd = pgd_offset_k(vaddr); 435 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr); 436 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr); 437 438 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 439 440 if (srmmu_cache_pagetables) 441 pteval |= SRMMU_CACHE; 442 443 srmmu_set_pte(__nocache_fix(pte), __pte(pteval)); 444 445 vaddr += PAGE_SIZE; 446 paddr += PAGE_SIZE; 447 } 448 449 flush_cache_all(); 450 flush_tlb_all(); 451 } 452 453 static inline pgd_t *srmmu_get_pgd_fast(void) 454 { 455 pgd_t *pgd = NULL; 456 457 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 458 if (pgd) { 459 pgd_t *init = pgd_offset_k(0); 460 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 461 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 462 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 463 } 464 465 return pgd; 466 } 467 468 static void srmmu_free_pgd_fast(pgd_t *pgd) 469 { 470 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE); 471 } 472 473 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address) 474 { 475 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 476 } 477 478 static void srmmu_pmd_free(pmd_t * pmd) 479 { 480 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE); 481 } 482 483 /* 484 * Hardware needs alignment to 256 only, but we align to whole page size 485 * to reduce fragmentation problems due to the buddy principle. 486 * XXX Provide actual fragmentation statistics in /proc. 487 * 488 * Alignments up to the page size are the same for physical and virtual 489 * addresses of the nocache area. 490 */ 491 static pte_t * 492 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 493 { 494 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 495 } 496 497 static struct page * 498 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address) 499 { 500 unsigned long pte; 501 502 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0) 503 return NULL; 504 return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT ); 505 } 506 507 static void srmmu_free_pte_fast(pte_t *pte) 508 { 509 srmmu_free_nocache((unsigned long)pte, PTE_SIZE); 510 } 511 512 static void srmmu_pte_free(struct page *pte) 513 { 514 unsigned long p; 515 516 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 517 if (p == 0) 518 BUG(); 519 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 520 p = (unsigned long) __nocache_va(p); /* Nocached virtual */ 521 srmmu_free_nocache(p, PTE_SIZE); 522 } 523 524 /* 525 */ 526 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 527 { 528 struct ctx_list *ctxp; 529 530 ctxp = ctx_free.next; 531 if(ctxp != &ctx_free) { 532 remove_from_ctx_list(ctxp); 533 add_to_used_ctxlist(ctxp); 534 mm->context = ctxp->ctx_number; 535 ctxp->ctx_mm = mm; 536 return; 537 } 538 ctxp = ctx_used.next; 539 if(ctxp->ctx_mm == old_mm) 540 ctxp = ctxp->next; 541 if(ctxp == &ctx_used) 542 panic("out of mmu contexts"); 543 flush_cache_mm(ctxp->ctx_mm); 544 flush_tlb_mm(ctxp->ctx_mm); 545 remove_from_ctx_list(ctxp); 546 add_to_used_ctxlist(ctxp); 547 ctxp->ctx_mm->context = NO_CONTEXT; 548 ctxp->ctx_mm = mm; 549 mm->context = ctxp->ctx_number; 550 } 551 552 static inline void free_context(int context) 553 { 554 struct ctx_list *ctx_old; 555 556 ctx_old = ctx_list_pool + context; 557 remove_from_ctx_list(ctx_old); 558 add_to_free_ctxlist(ctx_old); 559 } 560 561 562 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 563 struct task_struct *tsk, int cpu) 564 { 565 if(mm->context == NO_CONTEXT) { 566 spin_lock(&srmmu_context_spinlock); 567 alloc_context(old_mm, mm); 568 spin_unlock(&srmmu_context_spinlock); 569 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 570 } 571 572 if (is_hypersparc) 573 hyper_flush_whole_icache(); 574 575 srmmu_set_context(mm->context); 576 } 577 578 /* Low level IO area allocation on the SRMMU. */ 579 static inline void srmmu_mapioaddr(unsigned long physaddr, 580 unsigned long virt_addr, int bus_type) 581 { 582 pgd_t *pgdp; 583 pmd_t *pmdp; 584 pte_t *ptep; 585 unsigned long tmp; 586 587 physaddr &= PAGE_MASK; 588 pgdp = pgd_offset_k(virt_addr); 589 pmdp = srmmu_pmd_offset(pgdp, virt_addr); 590 ptep = srmmu_pte_offset(pmdp, virt_addr); 591 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 592 593 /* 594 * I need to test whether this is consistent over all 595 * sun4m's. The bus_type represents the upper 4 bits of 596 * 36-bit physical address on the I/O space lines... 597 */ 598 tmp |= (bus_type << 28); 599 tmp |= SRMMU_PRIV; 600 __flush_page_to_ram(virt_addr); 601 srmmu_set_pte(ptep, __pte(tmp)); 602 } 603 604 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 605 unsigned long xva, unsigned int len) 606 { 607 while (len != 0) { 608 len -= PAGE_SIZE; 609 srmmu_mapioaddr(xpa, xva, bus); 610 xva += PAGE_SIZE; 611 xpa += PAGE_SIZE; 612 } 613 flush_tlb_all(); 614 } 615 616 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 617 { 618 pgd_t *pgdp; 619 pmd_t *pmdp; 620 pte_t *ptep; 621 622 pgdp = pgd_offset_k(virt_addr); 623 pmdp = srmmu_pmd_offset(pgdp, virt_addr); 624 ptep = srmmu_pte_offset(pmdp, virt_addr); 625 626 /* No need to flush uncacheable page. */ 627 srmmu_pte_clear(ptep); 628 } 629 630 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 631 { 632 while (len != 0) { 633 len -= PAGE_SIZE; 634 srmmu_unmapioaddr(virt_addr); 635 virt_addr += PAGE_SIZE; 636 } 637 flush_tlb_all(); 638 } 639 640 /* 641 * On the SRMMU we do not have the problems with limited tlb entries 642 * for mapping kernel pages, so we just take things from the free page 643 * pool. As a side effect we are putting a little too much pressure 644 * on the gfp() subsystem. This setup also makes the logic of the 645 * iommu mapping code a lot easier as we can transparently handle 646 * mappings on the kernel stack without any special code as we did 647 * need on the sun4c. 648 */ 649 struct thread_info *srmmu_alloc_thread_info(void) 650 { 651 struct thread_info *ret; 652 653 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL, 654 THREAD_INFO_ORDER); 655 #ifdef CONFIG_DEBUG_STACK_USAGE 656 if (ret) 657 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER); 658 #endif /* DEBUG_STACK_USAGE */ 659 660 return ret; 661 } 662 663 static void srmmu_free_thread_info(struct thread_info *ti) 664 { 665 free_pages((unsigned long)ti, THREAD_INFO_ORDER); 666 } 667 668 /* tsunami.S */ 669 extern void tsunami_flush_cache_all(void); 670 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 671 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 672 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 673 extern void tsunami_flush_page_to_ram(unsigned long page); 674 extern void tsunami_flush_page_for_dma(unsigned long page); 675 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 676 extern void tsunami_flush_tlb_all(void); 677 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 678 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 679 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 680 extern void tsunami_setup_blockops(void); 681 682 /* 683 * Workaround, until we find what's going on with Swift. When low on memory, 684 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find 685 * out it is already in page tables/ fault again on the same instruction. 686 * I really don't understand it, have checked it and contexts 687 * are right, flush_tlb_all is done as well, and it faults again... 688 * Strange. -jj 689 * 690 * The following code is a deadwood that may be necessary when 691 * we start to make precise page flushes again. --zaitcev 692 */ 693 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) 694 { 695 #if 0 696 static unsigned long last; 697 unsigned int val; 698 /* unsigned int n; */ 699 700 if (address == last) { 701 val = srmmu_hwprobe(address); 702 if (val != 0 && pte_val(pte) != val) { 703 printk("swift_update_mmu_cache: " 704 "addr %lx put %08x probed %08x from %p\n", 705 address, pte_val(pte), val, 706 __builtin_return_address(0)); 707 srmmu_flush_whole_tlb(); 708 } 709 } 710 last = address; 711 #endif 712 } 713 714 /* swift.S */ 715 extern void swift_flush_cache_all(void); 716 extern void swift_flush_cache_mm(struct mm_struct *mm); 717 extern void swift_flush_cache_range(struct vm_area_struct *vma, 718 unsigned long start, unsigned long end); 719 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 720 extern void swift_flush_page_to_ram(unsigned long page); 721 extern void swift_flush_page_for_dma(unsigned long page); 722 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 723 extern void swift_flush_tlb_all(void); 724 extern void swift_flush_tlb_mm(struct mm_struct *mm); 725 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 726 unsigned long start, unsigned long end); 727 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 728 729 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 730 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 731 { 732 int cctx, ctx1; 733 734 page &= PAGE_MASK; 735 if ((ctx1 = vma->vm_mm->context) != -1) { 736 cctx = srmmu_get_context(); 737 /* Is context # ever different from current context? P3 */ 738 if (cctx != ctx1) { 739 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 740 srmmu_set_context(ctx1); 741 swift_flush_page(page); 742 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 743 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 744 srmmu_set_context(cctx); 745 } else { 746 /* Rm. prot. bits from virt. c. */ 747 /* swift_flush_cache_all(); */ 748 /* swift_flush_cache_page(vma, page); */ 749 swift_flush_page(page); 750 751 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 752 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 753 /* same as above: srmmu_flush_tlb_page() */ 754 } 755 } 756 } 757 #endif 758 759 /* 760 * The following are all MBUS based SRMMU modules, and therefore could 761 * be found in a multiprocessor configuration. On the whole, these 762 * chips seems to be much more touchy about DVMA and page tables 763 * with respect to cache coherency. 764 */ 765 766 /* Cypress flushes. */ 767 static void cypress_flush_cache_all(void) 768 { 769 volatile unsigned long cypress_sucks; 770 unsigned long faddr, tagval; 771 772 flush_user_windows(); 773 for(faddr = 0; faddr < 0x10000; faddr += 0x20) { 774 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : 775 "=r" (tagval) : 776 "r" (faddr), "r" (0x40000), 777 "i" (ASI_M_DATAC_TAG)); 778 779 /* If modified and valid, kick it. */ 780 if((tagval & 0x60) == 0x60) 781 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr); 782 } 783 } 784 785 static void cypress_flush_cache_mm(struct mm_struct *mm) 786 { 787 register unsigned long a, b, c, d, e, f, g; 788 unsigned long flags, faddr; 789 int octx; 790 791 FLUSH_BEGIN(mm) 792 flush_user_windows(); 793 local_irq_save(flags); 794 octx = srmmu_get_context(); 795 srmmu_set_context(mm->context); 796 a = 0x20; b = 0x40; c = 0x60; 797 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 798 799 faddr = (0x10000 - 0x100); 800 goto inside; 801 do { 802 faddr -= 0x100; 803 inside: 804 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 805 "sta %%g0, [%0 + %2] %1\n\t" 806 "sta %%g0, [%0 + %3] %1\n\t" 807 "sta %%g0, [%0 + %4] %1\n\t" 808 "sta %%g0, [%0 + %5] %1\n\t" 809 "sta %%g0, [%0 + %6] %1\n\t" 810 "sta %%g0, [%0 + %7] %1\n\t" 811 "sta %%g0, [%0 + %8] %1\n\t" : : 812 "r" (faddr), "i" (ASI_M_FLUSH_CTX), 813 "r" (a), "r" (b), "r" (c), "r" (d), 814 "r" (e), "r" (f), "r" (g)); 815 } while(faddr); 816 srmmu_set_context(octx); 817 local_irq_restore(flags); 818 FLUSH_END 819 } 820 821 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 822 { 823 struct mm_struct *mm = vma->vm_mm; 824 register unsigned long a, b, c, d, e, f, g; 825 unsigned long flags, faddr; 826 int octx; 827 828 FLUSH_BEGIN(mm) 829 flush_user_windows(); 830 local_irq_save(flags); 831 octx = srmmu_get_context(); 832 srmmu_set_context(mm->context); 833 a = 0x20; b = 0x40; c = 0x60; 834 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 835 836 start &= SRMMU_REAL_PMD_MASK; 837 while(start < end) { 838 faddr = (start + (0x10000 - 0x100)); 839 goto inside; 840 do { 841 faddr -= 0x100; 842 inside: 843 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 844 "sta %%g0, [%0 + %2] %1\n\t" 845 "sta %%g0, [%0 + %3] %1\n\t" 846 "sta %%g0, [%0 + %4] %1\n\t" 847 "sta %%g0, [%0 + %5] %1\n\t" 848 "sta %%g0, [%0 + %6] %1\n\t" 849 "sta %%g0, [%0 + %7] %1\n\t" 850 "sta %%g0, [%0 + %8] %1\n\t" : : 851 "r" (faddr), 852 "i" (ASI_M_FLUSH_SEG), 853 "r" (a), "r" (b), "r" (c), "r" (d), 854 "r" (e), "r" (f), "r" (g)); 855 } while (faddr != start); 856 start += SRMMU_REAL_PMD_SIZE; 857 } 858 srmmu_set_context(octx); 859 local_irq_restore(flags); 860 FLUSH_END 861 } 862 863 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 864 { 865 register unsigned long a, b, c, d, e, f, g; 866 struct mm_struct *mm = vma->vm_mm; 867 unsigned long flags, line; 868 int octx; 869 870 FLUSH_BEGIN(mm) 871 flush_user_windows(); 872 local_irq_save(flags); 873 octx = srmmu_get_context(); 874 srmmu_set_context(mm->context); 875 a = 0x20; b = 0x40; c = 0x60; 876 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 877 878 page &= PAGE_MASK; 879 line = (page + PAGE_SIZE) - 0x100; 880 goto inside; 881 do { 882 line -= 0x100; 883 inside: 884 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 885 "sta %%g0, [%0 + %2] %1\n\t" 886 "sta %%g0, [%0 + %3] %1\n\t" 887 "sta %%g0, [%0 + %4] %1\n\t" 888 "sta %%g0, [%0 + %5] %1\n\t" 889 "sta %%g0, [%0 + %6] %1\n\t" 890 "sta %%g0, [%0 + %7] %1\n\t" 891 "sta %%g0, [%0 + %8] %1\n\t" : : 892 "r" (line), 893 "i" (ASI_M_FLUSH_PAGE), 894 "r" (a), "r" (b), "r" (c), "r" (d), 895 "r" (e), "r" (f), "r" (g)); 896 } while(line != page); 897 srmmu_set_context(octx); 898 local_irq_restore(flags); 899 FLUSH_END 900 } 901 902 /* Cypress is copy-back, at least that is how we configure it. */ 903 static void cypress_flush_page_to_ram(unsigned long page) 904 { 905 register unsigned long a, b, c, d, e, f, g; 906 unsigned long line; 907 908 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 909 page &= PAGE_MASK; 910 line = (page + PAGE_SIZE) - 0x100; 911 goto inside; 912 do { 913 line -= 0x100; 914 inside: 915 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 916 "sta %%g0, [%0 + %2] %1\n\t" 917 "sta %%g0, [%0 + %3] %1\n\t" 918 "sta %%g0, [%0 + %4] %1\n\t" 919 "sta %%g0, [%0 + %5] %1\n\t" 920 "sta %%g0, [%0 + %6] %1\n\t" 921 "sta %%g0, [%0 + %7] %1\n\t" 922 "sta %%g0, [%0 + %8] %1\n\t" : : 923 "r" (line), 924 "i" (ASI_M_FLUSH_PAGE), 925 "r" (a), "r" (b), "r" (c), "r" (d), 926 "r" (e), "r" (f), "r" (g)); 927 } while(line != page); 928 } 929 930 /* Cypress is also IO cache coherent. */ 931 static void cypress_flush_page_for_dma(unsigned long page) 932 { 933 } 934 935 /* Cypress has unified L2 VIPT, from which both instructions and data 936 * are stored. It does not have an onboard icache of any sort, therefore 937 * no flush is necessary. 938 */ 939 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 940 { 941 } 942 943 static void cypress_flush_tlb_all(void) 944 { 945 srmmu_flush_whole_tlb(); 946 } 947 948 static void cypress_flush_tlb_mm(struct mm_struct *mm) 949 { 950 FLUSH_BEGIN(mm) 951 __asm__ __volatile__( 952 "lda [%0] %3, %%g5\n\t" 953 "sta %2, [%0] %3\n\t" 954 "sta %%g0, [%1] %4\n\t" 955 "sta %%g5, [%0] %3\n" 956 : /* no outputs */ 957 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context), 958 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) 959 : "g5"); 960 FLUSH_END 961 } 962 963 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 964 { 965 struct mm_struct *mm = vma->vm_mm; 966 unsigned long size; 967 968 FLUSH_BEGIN(mm) 969 start &= SRMMU_PGDIR_MASK; 970 size = SRMMU_PGDIR_ALIGN(end) - start; 971 __asm__ __volatile__( 972 "lda [%0] %5, %%g5\n\t" 973 "sta %1, [%0] %5\n" 974 "1:\n\t" 975 "subcc %3, %4, %3\n\t" 976 "bne 1b\n\t" 977 " sta %%g0, [%2 + %3] %6\n\t" 978 "sta %%g5, [%0] %5\n" 979 : /* no outputs */ 980 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200), 981 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS), 982 "i" (ASI_M_FLUSH_PROBE) 983 : "g5", "cc"); 984 FLUSH_END 985 } 986 987 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 988 { 989 struct mm_struct *mm = vma->vm_mm; 990 991 FLUSH_BEGIN(mm) 992 __asm__ __volatile__( 993 "lda [%0] %3, %%g5\n\t" 994 "sta %1, [%0] %3\n\t" 995 "sta %%g0, [%2] %4\n\t" 996 "sta %%g5, [%0] %3\n" 997 : /* no outputs */ 998 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK), 999 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) 1000 : "g5"); 1001 FLUSH_END 1002 } 1003 1004 /* viking.S */ 1005 extern void viking_flush_cache_all(void); 1006 extern void viking_flush_cache_mm(struct mm_struct *mm); 1007 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 1008 unsigned long end); 1009 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 1010 extern void viking_flush_page_to_ram(unsigned long page); 1011 extern void viking_flush_page_for_dma(unsigned long page); 1012 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 1013 extern void viking_flush_page(unsigned long page); 1014 extern void viking_mxcc_flush_page(unsigned long page); 1015 extern void viking_flush_tlb_all(void); 1016 extern void viking_flush_tlb_mm(struct mm_struct *mm); 1017 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 1018 unsigned long end); 1019 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 1020 unsigned long page); 1021 extern void sun4dsmp_flush_tlb_all(void); 1022 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 1023 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 1024 unsigned long end); 1025 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 1026 unsigned long page); 1027 1028 /* hypersparc.S */ 1029 extern void hypersparc_flush_cache_all(void); 1030 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 1031 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 1032 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 1033 extern void hypersparc_flush_page_to_ram(unsigned long page); 1034 extern void hypersparc_flush_page_for_dma(unsigned long page); 1035 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 1036 extern void hypersparc_flush_tlb_all(void); 1037 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 1038 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 1039 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 1040 extern void hypersparc_setup_blockops(void); 1041 1042 /* 1043 * NOTE: All of this startup code assumes the low 16mb (approx.) of 1044 * kernel mappings are done with one single contiguous chunk of 1045 * ram. On small ram machines (classics mainly) we only get 1046 * around 8mb mapped for us. 1047 */ 1048 1049 void __init early_pgtable_allocfail(char *type) 1050 { 1051 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 1052 prom_halt(); 1053 } 1054 1055 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end) 1056 { 1057 pgd_t *pgdp; 1058 pmd_t *pmdp; 1059 pte_t *ptep; 1060 1061 while(start < end) { 1062 pgdp = pgd_offset_k(start); 1063 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 1064 pmdp = (pmd_t *) __srmmu_get_nocache( 1065 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1066 if (pmdp == NULL) 1067 early_pgtable_allocfail("pmd"); 1068 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 1069 srmmu_pgd_set(__nocache_fix(pgdp), pmdp); 1070 } 1071 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); 1072 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 1073 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 1074 if (ptep == NULL) 1075 early_pgtable_allocfail("pte"); 1076 memset(__nocache_fix(ptep), 0, PTE_SIZE); 1077 srmmu_pmd_set(__nocache_fix(pmdp), ptep); 1078 } 1079 if (start > (0xffffffffUL - PMD_SIZE)) 1080 break; 1081 start = (start + PMD_SIZE) & PMD_MASK; 1082 } 1083 } 1084 1085 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end) 1086 { 1087 pgd_t *pgdp; 1088 pmd_t *pmdp; 1089 pte_t *ptep; 1090 1091 while(start < end) { 1092 pgdp = pgd_offset_k(start); 1093 if(srmmu_pgd_none(*pgdp)) { 1094 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1095 if (pmdp == NULL) 1096 early_pgtable_allocfail("pmd"); 1097 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 1098 srmmu_pgd_set(pgdp, pmdp); 1099 } 1100 pmdp = srmmu_pmd_offset(pgdp, start); 1101 if(srmmu_pmd_none(*pmdp)) { 1102 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, 1103 PTE_SIZE); 1104 if (ptep == NULL) 1105 early_pgtable_allocfail("pte"); 1106 memset(ptep, 0, PTE_SIZE); 1107 srmmu_pmd_set(pmdp, ptep); 1108 } 1109 if (start > (0xffffffffUL - PMD_SIZE)) 1110 break; 1111 start = (start + PMD_SIZE) & PMD_MASK; 1112 } 1113 } 1114 1115 /* 1116 * This is much cleaner than poking around physical address space 1117 * looking at the prom's page table directly which is what most 1118 * other OS's do. Yuck... this is much better. 1119 */ 1120 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end) 1121 { 1122 pgd_t *pgdp; 1123 pmd_t *pmdp; 1124 pte_t *ptep; 1125 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 1126 unsigned long prompte; 1127 1128 while(start <= end) { 1129 if (start == 0) 1130 break; /* probably wrap around */ 1131 if(start == 0xfef00000) 1132 start = KADB_DEBUGGER_BEGVM; 1133 if(!(prompte = srmmu_hwprobe(start))) { 1134 start += PAGE_SIZE; 1135 continue; 1136 } 1137 1138 /* A red snapper, see what it really is. */ 1139 what = 0; 1140 1141 if(!(start & ~(SRMMU_REAL_PMD_MASK))) { 1142 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte) 1143 what = 1; 1144 } 1145 1146 if(!(start & ~(SRMMU_PGDIR_MASK))) { 1147 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) == 1148 prompte) 1149 what = 2; 1150 } 1151 1152 pgdp = pgd_offset_k(start); 1153 if(what == 2) { 1154 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte); 1155 start += SRMMU_PGDIR_SIZE; 1156 continue; 1157 } 1158 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 1159 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1160 if (pmdp == NULL) 1161 early_pgtable_allocfail("pmd"); 1162 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 1163 srmmu_pgd_set(__nocache_fix(pgdp), pmdp); 1164 } 1165 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); 1166 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 1167 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, 1168 PTE_SIZE); 1169 if (ptep == NULL) 1170 early_pgtable_allocfail("pte"); 1171 memset(__nocache_fix(ptep), 0, PTE_SIZE); 1172 srmmu_pmd_set(__nocache_fix(pmdp), ptep); 1173 } 1174 if(what == 1) { 1175 /* 1176 * We bend the rule where all 16 PTPs in a pmd_t point 1177 * inside the same PTE page, and we leak a perfectly 1178 * good hardware PTE piece. Alternatives seem worse. 1179 */ 1180 unsigned int x; /* Index of HW PMD in soft cluster */ 1181 x = (start >> PMD_SHIFT) & 15; 1182 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte; 1183 start += SRMMU_REAL_PMD_SIZE; 1184 continue; 1185 } 1186 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start); 1187 *(pte_t *)__nocache_fix(ptep) = __pte(prompte); 1188 start += PAGE_SIZE; 1189 } 1190 } 1191 1192 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 1193 1194 /* Create a third-level SRMMU 16MB page mapping. */ 1195 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 1196 { 1197 pgd_t *pgdp = pgd_offset_k(vaddr); 1198 unsigned long big_pte; 1199 1200 big_pte = KERNEL_PTE(phys_base >> 4); 1201 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 1202 } 1203 1204 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 1205 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 1206 { 1207 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 1208 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 1209 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 1210 /* Map "low" memory only */ 1211 const unsigned long min_vaddr = PAGE_OFFSET; 1212 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 1213 1214 if (vstart < min_vaddr || vstart >= max_vaddr) 1215 return vstart; 1216 1217 if (vend > max_vaddr || vend < min_vaddr) 1218 vend = max_vaddr; 1219 1220 while(vstart < vend) { 1221 do_large_mapping(vstart, pstart); 1222 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 1223 } 1224 return vstart; 1225 } 1226 1227 static inline void memprobe_error(char *msg) 1228 { 1229 prom_printf(msg); 1230 prom_printf("Halting now...\n"); 1231 prom_halt(); 1232 } 1233 1234 static inline void map_kernel(void) 1235 { 1236 int i; 1237 1238 if (phys_base > 0) { 1239 do_large_mapping(PAGE_OFFSET, phys_base); 1240 } 1241 1242 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 1243 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 1244 } 1245 1246 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE); 1247 } 1248 1249 /* Paging initialization on the Sparc Reference MMU. */ 1250 extern void sparc_context_init(int); 1251 1252 void (*poke_srmmu)(void) __initdata = NULL; 1253 1254 extern unsigned long bootmem_init(unsigned long *pages_avail); 1255 1256 void __init srmmu_paging_init(void) 1257 { 1258 int i, cpunode; 1259 char node_str[128]; 1260 pgd_t *pgd; 1261 pmd_t *pmd; 1262 pte_t *pte; 1263 unsigned long pages_avail; 1264 1265 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 1266 1267 if (sparc_cpu_model == sun4d) 1268 num_contexts = 65536; /* We know it is Viking */ 1269 else { 1270 /* Find the number of contexts on the srmmu. */ 1271 cpunode = prom_getchild(prom_root_node); 1272 num_contexts = 0; 1273 while(cpunode != 0) { 1274 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1275 if(!strcmp(node_str, "cpu")) { 1276 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 1277 break; 1278 } 1279 cpunode = prom_getsibling(cpunode); 1280 } 1281 } 1282 1283 if(!num_contexts) { 1284 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 1285 prom_halt(); 1286 } 1287 1288 pages_avail = 0; 1289 last_valid_pfn = bootmem_init(&pages_avail); 1290 1291 srmmu_nocache_calcsize(); 1292 srmmu_nocache_init(); 1293 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE)); 1294 map_kernel(); 1295 1296 /* ctx table has to be physically aligned to its size */ 1297 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t)); 1298 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table); 1299 1300 for(i = 0; i < num_contexts; i++) 1301 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 1302 1303 flush_cache_all(); 1304 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 1305 flush_tlb_all(); 1306 poke_srmmu(); 1307 1308 #ifdef CONFIG_SUN_IO 1309 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 1310 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 1311 #endif 1312 1313 srmmu_allocate_ptable_skeleton( 1314 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 1315 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 1316 1317 pgd = pgd_offset_k(PKMAP_BASE); 1318 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE); 1319 pte = srmmu_pte_offset(pmd, PKMAP_BASE); 1320 pkmap_page_table = pte; 1321 1322 flush_cache_all(); 1323 flush_tlb_all(); 1324 1325 sparc_context_init(num_contexts); 1326 1327 kmap_init(); 1328 1329 { 1330 unsigned long zones_size[MAX_NR_ZONES]; 1331 unsigned long zholes_size[MAX_NR_ZONES]; 1332 unsigned long npages; 1333 int znum; 1334 1335 for (znum = 0; znum < MAX_NR_ZONES; znum++) 1336 zones_size[znum] = zholes_size[znum] = 0; 1337 1338 npages = max_low_pfn - pfn_base; 1339 1340 zones_size[ZONE_DMA] = npages; 1341 zholes_size[ZONE_DMA] = npages - pages_avail; 1342 1343 npages = highend_pfn - max_low_pfn; 1344 zones_size[ZONE_HIGHMEM] = npages; 1345 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); 1346 1347 free_area_init_node(0, &contig_page_data, zones_size, 1348 pfn_base, zholes_size); 1349 } 1350 } 1351 1352 static void srmmu_mmu_info(struct seq_file *m) 1353 { 1354 seq_printf(m, 1355 "MMU type\t: %s\n" 1356 "contexts\t: %d\n" 1357 "nocache total\t: %ld\n" 1358 "nocache used\t: %d\n", 1359 srmmu_name, 1360 num_contexts, 1361 srmmu_nocache_size, 1362 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 1363 } 1364 1365 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) 1366 { 1367 } 1368 1369 static void srmmu_destroy_context(struct mm_struct *mm) 1370 { 1371 1372 if(mm->context != NO_CONTEXT) { 1373 flush_cache_mm(mm); 1374 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1375 flush_tlb_mm(mm); 1376 spin_lock(&srmmu_context_spinlock); 1377 free_context(mm->context); 1378 spin_unlock(&srmmu_context_spinlock); 1379 mm->context = NO_CONTEXT; 1380 } 1381 } 1382 1383 /* Init various srmmu chip types. */ 1384 static void __init srmmu_is_bad(void) 1385 { 1386 prom_printf("Could not determine SRMMU chip type.\n"); 1387 prom_halt(); 1388 } 1389 1390 static void __init init_vac_layout(void) 1391 { 1392 int nd, cache_lines; 1393 char node_str[128]; 1394 #ifdef CONFIG_SMP 1395 int cpu = 0; 1396 unsigned long max_size = 0; 1397 unsigned long min_line_size = 0x10000000; 1398 #endif 1399 1400 nd = prom_getchild(prom_root_node); 1401 while((nd = prom_getsibling(nd)) != 0) { 1402 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1403 if(!strcmp(node_str, "cpu")) { 1404 vac_line_size = prom_getint(nd, "cache-line-size"); 1405 if (vac_line_size == -1) { 1406 prom_printf("can't determine cache-line-size, " 1407 "halting.\n"); 1408 prom_halt(); 1409 } 1410 cache_lines = prom_getint(nd, "cache-nlines"); 1411 if (cache_lines == -1) { 1412 prom_printf("can't determine cache-nlines, halting.\n"); 1413 prom_halt(); 1414 } 1415 1416 vac_cache_size = cache_lines * vac_line_size; 1417 #ifdef CONFIG_SMP 1418 if(vac_cache_size > max_size) 1419 max_size = vac_cache_size; 1420 if(vac_line_size < min_line_size) 1421 min_line_size = vac_line_size; 1422 cpu++; 1423 if (cpu >= NR_CPUS || !cpu_online(cpu)) 1424 break; 1425 #else 1426 break; 1427 #endif 1428 } 1429 } 1430 if(nd == 0) { 1431 prom_printf("No CPU nodes found, halting.\n"); 1432 prom_halt(); 1433 } 1434 #ifdef CONFIG_SMP 1435 vac_cache_size = max_size; 1436 vac_line_size = min_line_size; 1437 #endif 1438 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1439 (int)vac_cache_size, (int)vac_line_size); 1440 } 1441 1442 static void __init poke_hypersparc(void) 1443 { 1444 volatile unsigned long clear; 1445 unsigned long mreg = srmmu_get_mmureg(); 1446 1447 hyper_flush_unconditional_combined(); 1448 1449 mreg &= ~(HYPERSPARC_CWENABLE); 1450 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1451 mreg |= (HYPERSPARC_CMODE); 1452 1453 srmmu_set_mmureg(mreg); 1454 1455 #if 0 /* XXX I think this is bad news... -DaveM */ 1456 hyper_clear_all_tags(); 1457 #endif 1458 1459 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1460 hyper_flush_whole_icache(); 1461 clear = srmmu_get_faddr(); 1462 clear = srmmu_get_fstatus(); 1463 } 1464 1465 static void __init init_hypersparc(void) 1466 { 1467 srmmu_name = "ROSS HyperSparc"; 1468 srmmu_modtype = HyperSparc; 1469 1470 init_vac_layout(); 1471 1472 is_hypersparc = 1; 1473 1474 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1475 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1476 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1477 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM); 1478 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM); 1479 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM); 1480 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM); 1481 1482 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM); 1483 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM); 1484 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM); 1485 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM); 1486 1487 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM); 1488 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM); 1489 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP); 1490 1491 1492 poke_srmmu = poke_hypersparc; 1493 1494 hypersparc_setup_blockops(); 1495 } 1496 1497 static void __init poke_cypress(void) 1498 { 1499 unsigned long mreg = srmmu_get_mmureg(); 1500 unsigned long faddr, tagval; 1501 volatile unsigned long cypress_sucks; 1502 volatile unsigned long clear; 1503 1504 clear = srmmu_get_faddr(); 1505 clear = srmmu_get_fstatus(); 1506 1507 if (!(mreg & CYPRESS_CENABLE)) { 1508 for(faddr = 0x0; faddr < 0x10000; faddr += 20) { 1509 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t" 1510 "sta %%g0, [%0] %2\n\t" : : 1511 "r" (faddr), "r" (0x40000), 1512 "i" (ASI_M_DATAC_TAG)); 1513 } 1514 } else { 1515 for(faddr = 0; faddr < 0x10000; faddr += 0x20) { 1516 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : 1517 "=r" (tagval) : 1518 "r" (faddr), "r" (0x40000), 1519 "i" (ASI_M_DATAC_TAG)); 1520 1521 /* If modified and valid, kick it. */ 1522 if((tagval & 0x60) == 0x60) 1523 cypress_sucks = *(unsigned long *) 1524 (0xf0020000 + faddr); 1525 } 1526 } 1527 1528 /* And one more, for our good neighbor, Mr. Broken Cypress. */ 1529 clear = srmmu_get_faddr(); 1530 clear = srmmu_get_fstatus(); 1531 1532 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE); 1533 srmmu_set_mmureg(mreg); 1534 } 1535 1536 static void __init init_cypress_common(void) 1537 { 1538 init_vac_layout(); 1539 1540 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1541 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1542 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1543 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM); 1544 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM); 1545 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM); 1546 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM); 1547 1548 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM); 1549 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM); 1550 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM); 1551 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM); 1552 1553 1554 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM); 1555 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP); 1556 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP); 1557 1558 poke_srmmu = poke_cypress; 1559 } 1560 1561 static void __init init_cypress_604(void) 1562 { 1563 srmmu_name = "ROSS Cypress-604(UP)"; 1564 srmmu_modtype = Cypress; 1565 init_cypress_common(); 1566 } 1567 1568 static void __init init_cypress_605(unsigned long mrev) 1569 { 1570 srmmu_name = "ROSS Cypress-605(MP)"; 1571 if(mrev == 0xe) { 1572 srmmu_modtype = Cypress_vE; 1573 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN; 1574 } else { 1575 if(mrev == 0xd) { 1576 srmmu_modtype = Cypress_vD; 1577 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN; 1578 } else { 1579 srmmu_modtype = Cypress; 1580 } 1581 } 1582 init_cypress_common(); 1583 } 1584 1585 static void __init poke_swift(void) 1586 { 1587 unsigned long mreg; 1588 1589 /* Clear any crap from the cache or else... */ 1590 swift_flush_cache_all(); 1591 1592 /* Enable I & D caches */ 1593 mreg = srmmu_get_mmureg(); 1594 mreg |= (SWIFT_IE | SWIFT_DE); 1595 /* 1596 * The Swift branch folding logic is completely broken. At 1597 * trap time, if things are just right, if can mistakenly 1598 * think that a trap is coming from kernel mode when in fact 1599 * it is coming from user mode (it mis-executes the branch in 1600 * the trap code). So you see things like crashme completely 1601 * hosing your machine which is completely unacceptable. Turn 1602 * this shit off... nice job Fujitsu. 1603 */ 1604 mreg &= ~(SWIFT_BF); 1605 srmmu_set_mmureg(mreg); 1606 } 1607 1608 #define SWIFT_MASKID_ADDR 0x10003018 1609 static void __init init_swift(void) 1610 { 1611 unsigned long swift_rev; 1612 1613 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1614 "srl %0, 0x18, %0\n\t" : 1615 "=r" (swift_rev) : 1616 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1617 srmmu_name = "Fujitsu Swift"; 1618 switch(swift_rev) { 1619 case 0x11: 1620 case 0x20: 1621 case 0x23: 1622 case 0x30: 1623 srmmu_modtype = Swift_lots_o_bugs; 1624 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1625 /* 1626 * Gee george, I wonder why Sun is so hush hush about 1627 * this hardware bug... really braindamage stuff going 1628 * on here. However I think we can find a way to avoid 1629 * all of the workaround overhead under Linux. Basically, 1630 * any page fault can cause kernel pages to become user 1631 * accessible (the mmu gets confused and clears some of 1632 * the ACC bits in kernel ptes). Aha, sounds pretty 1633 * horrible eh? But wait, after extensive testing it appears 1634 * that if you use pgd_t level large kernel pte's (like the 1635 * 4MB pages on the Pentium) the bug does not get tripped 1636 * at all. This avoids almost all of the major overhead. 1637 * Welcome to a world where your vendor tells you to, 1638 * "apply this kernel patch" instead of "sorry for the 1639 * broken hardware, send it back and we'll give you 1640 * properly functioning parts" 1641 */ 1642 break; 1643 case 0x25: 1644 case 0x31: 1645 srmmu_modtype = Swift_bad_c; 1646 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1647 /* 1648 * You see Sun allude to this hardware bug but never 1649 * admit things directly, they'll say things like, 1650 * "the Swift chip cache problems" or similar. 1651 */ 1652 break; 1653 default: 1654 srmmu_modtype = Swift_ok; 1655 break; 1656 }; 1657 1658 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM); 1659 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM); 1660 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM); 1661 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM); 1662 1663 1664 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM); 1665 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM); 1666 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM); 1667 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM); 1668 1669 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM); 1670 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM); 1671 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM); 1672 1673 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM); 1674 1675 flush_page_for_dma_global = 0; 1676 1677 /* 1678 * Are you now convinced that the Swift is one of the 1679 * biggest VLSI abortions of all time? Bravo Fujitsu! 1680 * Fujitsu, the !#?!%$'d up processor people. I bet if 1681 * you examined the microcode of the Swift you'd find 1682 * XXX's all over the place. 1683 */ 1684 poke_srmmu = poke_swift; 1685 } 1686 1687 static void turbosparc_flush_cache_all(void) 1688 { 1689 flush_user_windows(); 1690 turbosparc_idflash_clear(); 1691 } 1692 1693 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1694 { 1695 FLUSH_BEGIN(mm) 1696 flush_user_windows(); 1697 turbosparc_idflash_clear(); 1698 FLUSH_END 1699 } 1700 1701 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1702 { 1703 FLUSH_BEGIN(vma->vm_mm) 1704 flush_user_windows(); 1705 turbosparc_idflash_clear(); 1706 FLUSH_END 1707 } 1708 1709 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1710 { 1711 FLUSH_BEGIN(vma->vm_mm) 1712 flush_user_windows(); 1713 if (vma->vm_flags & VM_EXEC) 1714 turbosparc_flush_icache(); 1715 turbosparc_flush_dcache(); 1716 FLUSH_END 1717 } 1718 1719 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1720 static void turbosparc_flush_page_to_ram(unsigned long page) 1721 { 1722 #ifdef TURBOSPARC_WRITEBACK 1723 volatile unsigned long clear; 1724 1725 if (srmmu_hwprobe(page)) 1726 turbosparc_flush_page_cache(page); 1727 clear = srmmu_get_fstatus(); 1728 #endif 1729 } 1730 1731 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1732 { 1733 } 1734 1735 static void turbosparc_flush_page_for_dma(unsigned long page) 1736 { 1737 turbosparc_flush_dcache(); 1738 } 1739 1740 static void turbosparc_flush_tlb_all(void) 1741 { 1742 srmmu_flush_whole_tlb(); 1743 } 1744 1745 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1746 { 1747 FLUSH_BEGIN(mm) 1748 srmmu_flush_whole_tlb(); 1749 FLUSH_END 1750 } 1751 1752 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1753 { 1754 FLUSH_BEGIN(vma->vm_mm) 1755 srmmu_flush_whole_tlb(); 1756 FLUSH_END 1757 } 1758 1759 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1760 { 1761 FLUSH_BEGIN(vma->vm_mm) 1762 srmmu_flush_whole_tlb(); 1763 FLUSH_END 1764 } 1765 1766 1767 static void __init poke_turbosparc(void) 1768 { 1769 unsigned long mreg = srmmu_get_mmureg(); 1770 unsigned long ccreg; 1771 1772 /* Clear any crap from the cache or else... */ 1773 turbosparc_flush_cache_all(); 1774 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */ 1775 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1776 srmmu_set_mmureg(mreg); 1777 1778 ccreg = turbosparc_get_ccreg(); 1779 1780 #ifdef TURBOSPARC_WRITEBACK 1781 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1782 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1783 /* Write-back D-cache, emulate VLSI 1784 * abortion number three, not number one */ 1785 #else 1786 /* For now let's play safe, optimize later */ 1787 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1788 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1789 ccreg &= ~(TURBOSPARC_uS2); 1790 /* Emulate VLSI abortion number three, not number one */ 1791 #endif 1792 1793 switch (ccreg & 7) { 1794 case 0: /* No SE cache */ 1795 case 7: /* Test mode */ 1796 break; 1797 default: 1798 ccreg |= (TURBOSPARC_SCENABLE); 1799 } 1800 turbosparc_set_ccreg (ccreg); 1801 1802 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1803 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1804 srmmu_set_mmureg(mreg); 1805 } 1806 1807 static void __init init_turbosparc(void) 1808 { 1809 srmmu_name = "Fujitsu TurboSparc"; 1810 srmmu_modtype = TurboSparc; 1811 1812 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM); 1813 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM); 1814 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM); 1815 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM); 1816 1817 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM); 1818 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM); 1819 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM); 1820 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM); 1821 1822 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM); 1823 1824 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP); 1825 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM); 1826 1827 poke_srmmu = poke_turbosparc; 1828 } 1829 1830 static void __init poke_tsunami(void) 1831 { 1832 unsigned long mreg = srmmu_get_mmureg(); 1833 1834 tsunami_flush_icache(); 1835 tsunami_flush_dcache(); 1836 mreg &= ~TSUNAMI_ITD; 1837 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1838 srmmu_set_mmureg(mreg); 1839 } 1840 1841 static void __init init_tsunami(void) 1842 { 1843 /* 1844 * Tsunami's pretty sane, Sun and TI actually got it 1845 * somewhat right this time. Fujitsu should have 1846 * taken some lessons from them. 1847 */ 1848 1849 srmmu_name = "TI Tsunami"; 1850 srmmu_modtype = Tsunami; 1851 1852 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM); 1853 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM); 1854 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM); 1855 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM); 1856 1857 1858 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM); 1859 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM); 1860 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM); 1861 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM); 1862 1863 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP); 1864 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM); 1865 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM); 1866 1867 poke_srmmu = poke_tsunami; 1868 1869 tsunami_setup_blockops(); 1870 } 1871 1872 static void __init poke_viking(void) 1873 { 1874 unsigned long mreg = srmmu_get_mmureg(); 1875 static int smp_catch; 1876 1877 if(viking_mxcc_present) { 1878 unsigned long mxcc_control = mxcc_get_creg(); 1879 1880 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1881 mxcc_control &= ~(MXCC_CTL_RRC); 1882 mxcc_set_creg(mxcc_control); 1883 1884 /* 1885 * We don't need memory parity checks. 1886 * XXX This is a mess, have to dig out later. ecd. 1887 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1888 */ 1889 1890 /* We do cache ptables on MXCC. */ 1891 mreg |= VIKING_TCENABLE; 1892 } else { 1893 unsigned long bpreg; 1894 1895 mreg &= ~(VIKING_TCENABLE); 1896 if(smp_catch++) { 1897 /* Must disable mixed-cmd mode here for other cpu's. */ 1898 bpreg = viking_get_bpreg(); 1899 bpreg &= ~(VIKING_ACTION_MIX); 1900 viking_set_bpreg(bpreg); 1901 1902 /* Just in case PROM does something funny. */ 1903 msi_set_sync(); 1904 } 1905 } 1906 1907 mreg |= VIKING_SPENABLE; 1908 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1909 mreg |= VIKING_SBENABLE; 1910 mreg &= ~(VIKING_ACENABLE); 1911 srmmu_set_mmureg(mreg); 1912 1913 #ifdef CONFIG_SMP 1914 /* Avoid unnecessary cross calls. */ 1915 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all); 1916 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm); 1917 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range); 1918 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page); 1919 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram); 1920 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns); 1921 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma); 1922 btfixup(); 1923 #endif 1924 } 1925 1926 static void __init init_viking(void) 1927 { 1928 unsigned long mreg = srmmu_get_mmureg(); 1929 1930 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1931 if(mreg & VIKING_MMODE) { 1932 srmmu_name = "TI Viking"; 1933 viking_mxcc_present = 0; 1934 msi_set_sync(); 1935 1936 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1937 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1938 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1939 1940 /* 1941 * We need this to make sure old viking takes no hits 1942 * on it's cache for dma snoops to workaround the 1943 * "load from non-cacheable memory" interrupt bug. 1944 * This is only necessary because of the new way in 1945 * which we use the IOMMU. 1946 */ 1947 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM); 1948 1949 flush_page_for_dma_global = 0; 1950 } else { 1951 srmmu_name = "TI Viking/MXCC"; 1952 viking_mxcc_present = 1; 1953 1954 srmmu_cache_pagetables = 1; 1955 1956 /* MXCC vikings lack the DMA snooping bug. */ 1957 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP); 1958 } 1959 1960 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM); 1961 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM); 1962 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM); 1963 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM); 1964 1965 #ifdef CONFIG_SMP 1966 if (sparc_cpu_model == sun4d) { 1967 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM); 1968 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM); 1969 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM); 1970 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM); 1971 } else 1972 #endif 1973 { 1974 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM); 1975 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM); 1976 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM); 1977 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM); 1978 } 1979 1980 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP); 1981 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP); 1982 1983 poke_srmmu = poke_viking; 1984 } 1985 1986 /* Probe for the srmmu chip version. */ 1987 static void __init get_srmmu_type(void) 1988 { 1989 unsigned long mreg, psr; 1990 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1991 1992 srmmu_modtype = SRMMU_INVAL_MOD; 1993 hwbug_bitmask = 0; 1994 1995 mreg = srmmu_get_mmureg(); psr = get_psr(); 1996 mod_typ = (mreg & 0xf0000000) >> 28; 1997 mod_rev = (mreg & 0x0f000000) >> 24; 1998 psr_typ = (psr >> 28) & 0xf; 1999 psr_vers = (psr >> 24) & 0xf; 2000 2001 /* First, check for HyperSparc or Cypress. */ 2002 if(mod_typ == 1) { 2003 switch(mod_rev) { 2004 case 7: 2005 /* UP or MP Hypersparc */ 2006 init_hypersparc(); 2007 break; 2008 case 0: 2009 case 2: 2010 /* Uniprocessor Cypress */ 2011 init_cypress_604(); 2012 break; 2013 case 10: 2014 case 11: 2015 case 12: 2016 /* _REALLY OLD_ Cypress MP chips... */ 2017 case 13: 2018 case 14: 2019 case 15: 2020 /* MP Cypress mmu/cache-controller */ 2021 init_cypress_605(mod_rev); 2022 break; 2023 default: 2024 /* Some other Cypress revision, assume a 605. */ 2025 init_cypress_605(mod_rev); 2026 break; 2027 }; 2028 return; 2029 } 2030 2031 /* 2032 * Now Fujitsu TurboSparc. It might happen that it is 2033 * in Swift emulation mode, so we will check later... 2034 */ 2035 if (psr_typ == 0 && psr_vers == 5) { 2036 init_turbosparc(); 2037 return; 2038 } 2039 2040 /* Next check for Fujitsu Swift. */ 2041 if(psr_typ == 0 && psr_vers == 4) { 2042 int cpunode; 2043 char node_str[128]; 2044 2045 /* Look if it is not a TurboSparc emulating Swift... */ 2046 cpunode = prom_getchild(prom_root_node); 2047 while((cpunode = prom_getsibling(cpunode)) != 0) { 2048 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 2049 if(!strcmp(node_str, "cpu")) { 2050 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 2051 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 2052 init_turbosparc(); 2053 return; 2054 } 2055 break; 2056 } 2057 } 2058 2059 init_swift(); 2060 return; 2061 } 2062 2063 /* Now the Viking family of srmmu. */ 2064 if(psr_typ == 4 && 2065 ((psr_vers == 0) || 2066 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 2067 init_viking(); 2068 return; 2069 } 2070 2071 /* Finally the Tsunami. */ 2072 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 2073 init_tsunami(); 2074 return; 2075 } 2076 2077 /* Oh well */ 2078 srmmu_is_bad(); 2079 } 2080 2081 /* don't laugh, static pagetables */ 2082 static void srmmu_check_pgt_cache(int low, int high) 2083 { 2084 } 2085 2086 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme, 2087 tsetup_mmu_patchme, rtrap_mmu_patchme; 2088 2089 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk, 2090 tsetup_srmmu_stackchk, srmmu_rett_stackchk; 2091 2092 extern unsigned long srmmu_fault; 2093 2094 #define PATCH_BRANCH(insn, dest) do { \ 2095 iaddr = &(insn); \ 2096 daddr = &(dest); \ 2097 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \ 2098 } while(0) 2099 2100 static void __init patch_window_trap_handlers(void) 2101 { 2102 unsigned long *iaddr, *daddr; 2103 2104 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk); 2105 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk); 2106 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk); 2107 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk); 2108 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault); 2109 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault); 2110 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault); 2111 } 2112 2113 #ifdef CONFIG_SMP 2114 /* Local cross-calls. */ 2115 static void smp_flush_page_for_dma(unsigned long page) 2116 { 2117 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page); 2118 local_flush_page_for_dma(page); 2119 } 2120 2121 #endif 2122 2123 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff) 2124 { 2125 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE); 2126 } 2127 2128 static unsigned long srmmu_pte_to_pgoff(pte_t pte) 2129 { 2130 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT; 2131 } 2132 2133 /* Load up routines and constants for sun4m and sun4d mmu */ 2134 void __init ld_mmu_srmmu(void) 2135 { 2136 extern void ld_mmu_iommu(void); 2137 extern void ld_mmu_iounit(void); 2138 extern void ___xchg32_sun4md(void); 2139 2140 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT); 2141 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE); 2142 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK); 2143 2144 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD); 2145 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD); 2146 2147 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE)); 2148 BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED)); 2149 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY)); 2150 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY)); 2151 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL)); 2152 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL); 2153 pg_iobits = SRMMU_VALID | SRMMU_WRITE | SRMMU_REF; 2154 2155 /* Functions */ 2156 #ifndef CONFIG_SMP 2157 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2); 2158 #endif 2159 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP); 2160 2161 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1); 2162 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM); 2163 2164 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM); 2165 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM); 2166 BTFIXUPSET_CALL(pgd_page, srmmu_pgd_page, BTFIXUPCALL_NORM); 2167 2168 BTFIXUPSET_SETHI(none_mask, 0xF0000000); 2169 2170 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM); 2171 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0); 2172 BTFIXUPSET_CALL(pte_read, srmmu_pte_read, BTFIXUPCALL_NORM); 2173 2174 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM); 2175 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM); 2176 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0); 2177 2178 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM); 2179 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM); 2180 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM); 2181 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0); 2182 2183 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM); 2184 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM); 2185 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM); 2186 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM); 2187 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM); 2188 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM); 2189 2190 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK); 2191 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM); 2192 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM); 2193 2194 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM); 2195 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM); 2196 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM); 2197 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM); 2198 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM); 2199 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM); 2200 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM); 2201 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM); 2202 2203 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE); 2204 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY); 2205 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF); 2206 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE); 2207 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE); 2208 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY); 2209 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF); 2210 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE)); 2211 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY)); 2212 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF)); 2213 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP); 2214 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM); 2215 2216 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM); 2217 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM); 2218 2219 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM); 2220 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM); 2221 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM); 2222 2223 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM); 2224 2225 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM); 2226 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM); 2227 2228 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM); 2229 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM); 2230 2231 get_srmmu_type(); 2232 patch_window_trap_handlers(); 2233 2234 #ifdef CONFIG_SMP 2235 /* El switcheroo... */ 2236 2237 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all); 2238 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm); 2239 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range); 2240 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page); 2241 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all); 2242 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm); 2243 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range); 2244 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page); 2245 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram); 2246 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns); 2247 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma); 2248 2249 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM); 2250 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM); 2251 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM); 2252 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM); 2253 if (sparc_cpu_model != sun4d) { 2254 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM); 2255 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM); 2256 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM); 2257 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM); 2258 } 2259 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM); 2260 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM); 2261 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM); 2262 #endif 2263 2264 if (sparc_cpu_model == sun4d) 2265 ld_mmu_iounit(); 2266 else 2267 ld_mmu_iommu(); 2268 #ifdef CONFIG_SMP 2269 if (sparc_cpu_model == sun4d) 2270 sun4d_init_smp(); 2271 else 2272 sun4m_init_smp(); 2273 #endif 2274 } 2275