1 /* 2 * arch/sh/kernel/cpu/sq.c 3 * 4 * General management API for SH-4 integrated Store Queues 5 * 6 * Copyright (C) 2001, 2002, 2003, 2004 Paul Mundt 7 * Copyright (C) 2001, 2002 M. R. Brown 8 * 9 * Some of this code has been adopted directly from the old arch/sh/mm/sq.c 10 * hack that was part of the LinuxDC project. For all intents and purposes, 11 * this is a completely new interface that really doesn't have much in common 12 * with the old zone-based approach at all. In fact, it's only listed here for 13 * general completeness. 14 * 15 * This file is subject to the terms and conditions of the GNU General Public 16 * License. See the file "COPYING" in the main directory of this archive 17 * for more details. 18 */ 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/config.h> 23 #include <linux/slab.h> 24 #include <linux/list.h> 25 #include <linux/proc_fs.h> 26 #include <linux/miscdevice.h> 27 #include <linux/vmalloc.h> 28 29 #include <asm/io.h> 30 #include <asm/page.h> 31 #include <asm/mmu_context.h> 32 #include <asm/cpu/sq.h> 33 34 static LIST_HEAD(sq_mapping_list); 35 static DEFINE_SPINLOCK(sq_mapping_lock); 36 37 /** 38 * sq_flush - Flush (prefetch) the store queue cache 39 * @addr: the store queue address to flush 40 * 41 * Executes a prefetch instruction on the specified store queue cache, 42 * so that the cached data is written to physical memory. 43 */ 44 inline void sq_flush(void *addr) 45 { 46 __asm__ __volatile__ ("pref @%0" : : "r" (addr) : "memory"); 47 } 48 49 /** 50 * sq_flush_range - Flush (prefetch) a specific SQ range 51 * @start: the store queue address to start flushing from 52 * @len: the length to flush 53 * 54 * Flushes the store queue cache from @start to @start + @len in a 55 * linear fashion. 56 */ 57 void sq_flush_range(unsigned long start, unsigned int len) 58 { 59 volatile unsigned long *sq = (unsigned long *)start; 60 unsigned long dummy; 61 62 /* Flush the queues */ 63 for (len >>= 5; len--; sq += 8) 64 sq_flush((void *)sq); 65 66 /* Wait for completion */ 67 dummy = ctrl_inl(P4SEG_STORE_QUE); 68 69 ctrl_outl(0, P4SEG_STORE_QUE + 0); 70 ctrl_outl(0, P4SEG_STORE_QUE + 8); 71 } 72 73 static struct sq_mapping *__sq_alloc_mapping(unsigned long virt, unsigned long phys, unsigned long size, const char *name) 74 { 75 struct sq_mapping *map; 76 77 if (virt + size > SQ_ADDRMAX) 78 return ERR_PTR(-ENOSPC); 79 80 map = kmalloc(sizeof(struct sq_mapping), GFP_KERNEL); 81 if (!map) 82 return ERR_PTR(-ENOMEM); 83 84 INIT_LIST_HEAD(&map->list); 85 86 map->sq_addr = virt; 87 map->addr = phys; 88 map->size = size + 1; 89 map->name = name; 90 91 list_add(&map->list, &sq_mapping_list); 92 93 return map; 94 } 95 96 static unsigned long __sq_get_next_addr(void) 97 { 98 if (!list_empty(&sq_mapping_list)) { 99 struct list_head *pos, *tmp; 100 101 /* 102 * Read one off the list head, as it will have the highest 103 * mapped allocation. Set the next one up right above it. 104 * 105 * This is somewhat sub-optimal, as we don't look at 106 * gaps between allocations or anything lower then the 107 * highest-level allocation. 108 * 109 * However, in the interest of performance and the general 110 * lack of desire to do constant list rebalancing, we don't 111 * worry about it. 112 */ 113 list_for_each_safe(pos, tmp, &sq_mapping_list) { 114 struct sq_mapping *entry; 115 116 entry = list_entry(pos, typeof(*entry), list); 117 118 return entry->sq_addr + entry->size; 119 } 120 } 121 122 return P4SEG_STORE_QUE; 123 } 124 125 /** 126 * __sq_remap - Perform a translation from the SQ to a phys addr 127 * @map: sq mapping containing phys and store queue addresses. 128 * 129 * Maps the store queue address specified in the mapping to the physical 130 * address specified in the mapping. 131 */ 132 static struct sq_mapping *__sq_remap(struct sq_mapping *map) 133 { 134 unsigned long flags, pteh, ptel; 135 struct vm_struct *vma; 136 pgprot_t pgprot; 137 138 /* 139 * Without an MMU (or with it turned off), this is much more 140 * straightforward, as we can just load up each queue's QACR with 141 * the physical address appropriately masked. 142 */ 143 144 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR0); 145 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR1); 146 147 #ifdef CONFIG_MMU 148 /* 149 * With an MMU on the other hand, things are slightly more involved. 150 * Namely, we have to have a direct mapping between the SQ addr and 151 * the associated physical address in the UTLB by way of setting up 152 * a virt<->phys translation by hand. We do this by simply specifying 153 * the SQ addr in UTLB.VPN and the associated physical address in 154 * UTLB.PPN. 155 * 156 * Notably, even though this is a special case translation, and some 157 * of the configuration bits are meaningless, we're still required 158 * to have a valid ASID context in PTEH. 159 * 160 * We could also probably get by without explicitly setting PTEA, but 161 * we do it here just for good measure. 162 */ 163 spin_lock_irqsave(&sq_mapping_lock, flags); 164 165 pteh = map->sq_addr; 166 ctrl_outl((pteh & MMU_VPN_MASK) | get_asid(), MMU_PTEH); 167 168 ptel = map->addr & PAGE_MASK; 169 ctrl_outl(((ptel >> 28) & 0xe) | (ptel & 0x1), MMU_PTEA); 170 171 pgprot = pgprot_noncached(PAGE_KERNEL); 172 173 ptel &= _PAGE_FLAGS_HARDWARE_MASK; 174 ptel |= pgprot_val(pgprot); 175 ctrl_outl(ptel, MMU_PTEL); 176 177 __asm__ __volatile__ ("ldtlb" : : : "memory"); 178 179 spin_unlock_irqrestore(&sq_mapping_lock, flags); 180 181 /* 182 * Next, we need to map ourselves in the kernel page table, so that 183 * future accesses after a TLB flush will be handled when we take a 184 * page fault. 185 * 186 * Theoretically we could just do this directly and not worry about 187 * setting up the translation by hand ahead of time, but for the 188 * cases where we want a one-shot SQ mapping followed by a quick 189 * writeout before we hit the TLB flush, we do it anyways. This way 190 * we at least save ourselves the initial page fault overhead. 191 */ 192 vma = __get_vm_area(map->size, VM_ALLOC, map->sq_addr, SQ_ADDRMAX); 193 if (!vma) 194 return ERR_PTR(-ENOMEM); 195 196 vma->phys_addr = map->addr; 197 198 if (remap_area_pages((unsigned long)vma->addr, vma->phys_addr, 199 map->size, pgprot_val(pgprot))) { 200 vunmap(vma->addr); 201 return NULL; 202 } 203 #endif /* CONFIG_MMU */ 204 205 return map; 206 } 207 208 /** 209 * sq_remap - Map a physical address through the Store Queues 210 * @phys: Physical address of mapping. 211 * @size: Length of mapping. 212 * @name: User invoking mapping. 213 * 214 * Remaps the physical address @phys through the next available store queue 215 * address of @size length. @name is logged at boot time as well as through 216 * the procfs interface. 217 * 218 * A pre-allocated and filled sq_mapping pointer is returned, and must be 219 * cleaned up with a call to sq_unmap() when the user is done with the 220 * mapping. 221 */ 222 struct sq_mapping *sq_remap(unsigned long phys, unsigned int size, const char *name) 223 { 224 struct sq_mapping *map; 225 unsigned long virt, end; 226 unsigned int psz; 227 228 /* Don't allow wraparound or zero size */ 229 end = phys + size - 1; 230 if (!size || end < phys) 231 return NULL; 232 /* Don't allow anyone to remap normal memory.. */ 233 if (phys < virt_to_phys(high_memory)) 234 return NULL; 235 236 phys &= PAGE_MASK; 237 238 size = PAGE_ALIGN(end + 1) - phys; 239 virt = __sq_get_next_addr(); 240 psz = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; 241 map = __sq_alloc_mapping(virt, phys, size, name); 242 243 printk("sqremap: %15s [%4d page%s] va 0x%08lx pa 0x%08lx\n", 244 map->name ? map->name : "???", 245 psz, psz == 1 ? " " : "s", 246 map->sq_addr, map->addr); 247 248 return __sq_remap(map); 249 } 250 251 /** 252 * sq_unmap - Unmap a Store Queue allocation 253 * @map: Pre-allocated Store Queue mapping. 254 * 255 * Unmaps the store queue allocation @map that was previously created by 256 * sq_remap(). Also frees up the pte that was previously inserted into 257 * the kernel page table and discards the UTLB translation. 258 */ 259 void sq_unmap(struct sq_mapping *map) 260 { 261 if (map->sq_addr > (unsigned long)high_memory) 262 vfree((void *)(map->sq_addr & PAGE_MASK)); 263 264 list_del(&map->list); 265 kfree(map); 266 } 267 268 /** 269 * sq_clear - Clear a store queue range 270 * @addr: Address to start clearing from. 271 * @len: Length to clear. 272 * 273 * A quick zero-fill implementation for clearing out memory that has been 274 * remapped through the store queues. 275 */ 276 void sq_clear(unsigned long addr, unsigned int len) 277 { 278 int i; 279 280 /* Clear out both queues linearly */ 281 for (i = 0; i < 8; i++) { 282 ctrl_outl(0, addr + i + 0); 283 ctrl_outl(0, addr + i + 8); 284 } 285 286 sq_flush_range(addr, len); 287 } 288 289 /** 290 * sq_vma_unmap - Unmap a VMA range 291 * @area: VMA containing range. 292 * @addr: Start of range. 293 * @len: Length of range. 294 * 295 * Searches the sq_mapping_list for a mapping matching the sq addr @addr, 296 * and subsequently frees up the entry. Further cleanup is done by generic 297 * code. 298 */ 299 static void sq_vma_unmap(struct vm_area_struct *area, 300 unsigned long addr, size_t len) 301 { 302 struct list_head *pos, *tmp; 303 304 list_for_each_safe(pos, tmp, &sq_mapping_list) { 305 struct sq_mapping *entry; 306 307 entry = list_entry(pos, typeof(*entry), list); 308 309 if (entry->sq_addr == addr) { 310 /* 311 * We could probably get away without doing the tlb flush 312 * here, as generic code should take care of most of this 313 * when unmapping the rest of the VMA range for us. Leave 314 * it in for added sanity for the time being.. 315 */ 316 __flush_tlb_page(get_asid(), entry->sq_addr & PAGE_MASK); 317 318 list_del(&entry->list); 319 kfree(entry); 320 321 return; 322 } 323 } 324 } 325 326 /** 327 * sq_vma_sync - Sync a VMA range 328 * @area: VMA containing range. 329 * @start: Start of range. 330 * @len: Length of range. 331 * @flags: Additional flags. 332 * 333 * Synchronizes an sq mapped range by flushing the store queue cache for 334 * the duration of the mapping. 335 * 336 * Used internally for user mappings, which must use msync() to prefetch 337 * the store queue cache. 338 */ 339 static int sq_vma_sync(struct vm_area_struct *area, 340 unsigned long start, size_t len, unsigned int flags) 341 { 342 sq_flush_range(start, len); 343 344 return 0; 345 } 346 347 static struct vm_operations_struct sq_vma_ops = { 348 .unmap = sq_vma_unmap, 349 .sync = sq_vma_sync, 350 }; 351 352 /** 353 * sq_mmap - mmap() for /dev/cpu/sq 354 * @file: unused. 355 * @vma: VMA to remap. 356 * 357 * Remap the specified vma @vma through the store queues, and setup associated 358 * information for the new mapping. Also build up the page tables for the new 359 * area. 360 */ 361 static int sq_mmap(struct file *file, struct vm_area_struct *vma) 362 { 363 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 364 unsigned long size = vma->vm_end - vma->vm_start; 365 struct sq_mapping *map; 366 367 /* 368 * We're not interested in any arbitrary virtual address that has 369 * been stuck in the VMA, as we already know what addresses we 370 * want. Save off the size, and reposition the VMA to begin at 371 * the next available sq address. 372 */ 373 vma->vm_start = __sq_get_next_addr(); 374 vma->vm_end = vma->vm_start + size; 375 376 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 377 378 vma->vm_flags |= VM_IO | VM_RESERVED; 379 380 map = __sq_alloc_mapping(vma->vm_start, offset, size, "Userspace"); 381 382 if (io_remap_pfn_range(vma, map->sq_addr, map->addr >> PAGE_SHIFT, 383 size, vma->vm_page_prot)) 384 return -EAGAIN; 385 386 vma->vm_ops = &sq_vma_ops; 387 388 return 0; 389 } 390 391 #ifdef CONFIG_PROC_FS 392 static int sq_mapping_read_proc(char *buf, char **start, off_t off, 393 int len, int *eof, void *data) 394 { 395 struct list_head *pos; 396 char *p = buf; 397 398 list_for_each_prev(pos, &sq_mapping_list) { 399 struct sq_mapping *entry; 400 401 entry = list_entry(pos, typeof(*entry), list); 402 403 p += sprintf(p, "%08lx-%08lx [%08lx]: %s\n", entry->sq_addr, 404 entry->sq_addr + entry->size - 1, entry->addr, 405 entry->name); 406 } 407 408 return p - buf; 409 } 410 #endif 411 412 static struct file_operations sq_fops = { 413 .owner = THIS_MODULE, 414 .mmap = sq_mmap, 415 }; 416 417 static struct miscdevice sq_dev = { 418 .minor = STORE_QUEUE_MINOR, 419 .name = "sq", 420 .devfs_name = "cpu/sq", 421 .fops = &sq_fops, 422 }; 423 424 static int __init sq_api_init(void) 425 { 426 printk(KERN_NOTICE "sq: Registering store queue API.\n"); 427 428 #ifdef CONFIG_PROC_FS 429 create_proc_read_entry("sq_mapping", 0, 0, sq_mapping_read_proc, 0); 430 #endif 431 432 return misc_register(&sq_dev); 433 } 434 435 static void __exit sq_api_exit(void) 436 { 437 misc_deregister(&sq_dev); 438 } 439 440 module_init(sq_api_init); 441 module_exit(sq_api_exit); 442 443 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, M. R. Brown <mrbrown@0xd6.org>"); 444 MODULE_DESCRIPTION("Simple API for SH-4 integrated Store Queues"); 445 MODULE_LICENSE("GPL"); 446 MODULE_ALIAS_MISCDEV(STORE_QUEUE_MINOR); 447 448 EXPORT_SYMBOL(sq_remap); 449 EXPORT_SYMBOL(sq_unmap); 450 EXPORT_SYMBOL(sq_clear); 451 EXPORT_SYMBOL(sq_flush); 452 EXPORT_SYMBOL(sq_flush_range); 453 454