xref: /openbmc/linux/arch/sh/kernel/cpu/sh4/sq.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * arch/sh/kernel/cpu/sq.c
3  *
4  * General management API for SH-4 integrated Store Queues
5  *
6  * Copyright (C) 2001, 2002, 2003, 2004  Paul Mundt
7  * Copyright (C) 2001, 2002  M. R. Brown
8  *
9  * Some of this code has been adopted directly from the old arch/sh/mm/sq.c
10  * hack that was part of the LinuxDC project. For all intents and purposes,
11  * this is a completely new interface that really doesn't have much in common
12  * with the old zone-based approach at all. In fact, it's only listed here for
13  * general completeness.
14  *
15  * This file is subject to the terms and conditions of the GNU General Public
16  * License.  See the file "COPYING" in the main directory of this archive
17  * for more details.
18  */
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/config.h>
23 #include <linux/slab.h>
24 #include <linux/list.h>
25 #include <linux/proc_fs.h>
26 #include <linux/miscdevice.h>
27 #include <linux/vmalloc.h>
28 
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/mmu_context.h>
32 #include <asm/cpu/sq.h>
33 
34 static LIST_HEAD(sq_mapping_list);
35 static DEFINE_SPINLOCK(sq_mapping_lock);
36 
37 /**
38  * sq_flush - Flush (prefetch) the store queue cache
39  * @addr: the store queue address to flush
40  *
41  * Executes a prefetch instruction on the specified store queue cache,
42  * so that the cached data is written to physical memory.
43  */
44 inline void sq_flush(void *addr)
45 {
46 	__asm__ __volatile__ ("pref @%0" : : "r" (addr) : "memory");
47 }
48 
49 /**
50  * sq_flush_range - Flush (prefetch) a specific SQ range
51  * @start: the store queue address to start flushing from
52  * @len: the length to flush
53  *
54  * Flushes the store queue cache from @start to @start + @len in a
55  * linear fashion.
56  */
57 void sq_flush_range(unsigned long start, unsigned int len)
58 {
59 	volatile unsigned long *sq = (unsigned long *)start;
60 	unsigned long dummy;
61 
62 	/* Flush the queues */
63 	for (len >>= 5; len--; sq += 8)
64 		sq_flush((void *)sq);
65 
66 	/* Wait for completion */
67 	dummy = ctrl_inl(P4SEG_STORE_QUE);
68 
69 	ctrl_outl(0, P4SEG_STORE_QUE + 0);
70 	ctrl_outl(0, P4SEG_STORE_QUE + 8);
71 }
72 
73 static struct sq_mapping *__sq_alloc_mapping(unsigned long virt, unsigned long phys, unsigned long size, const char *name)
74 {
75 	struct sq_mapping *map;
76 
77 	if (virt + size > SQ_ADDRMAX)
78 		return ERR_PTR(-ENOSPC);
79 
80 	map = kmalloc(sizeof(struct sq_mapping), GFP_KERNEL);
81 	if (!map)
82 		return ERR_PTR(-ENOMEM);
83 
84 	INIT_LIST_HEAD(&map->list);
85 
86 	map->sq_addr	= virt;
87 	map->addr	= phys;
88 	map->size	= size + 1;
89 	map->name	= name;
90 
91 	list_add(&map->list, &sq_mapping_list);
92 
93 	return map;
94 }
95 
96 static unsigned long __sq_get_next_addr(void)
97 {
98 	if (!list_empty(&sq_mapping_list)) {
99 		struct list_head *pos, *tmp;
100 
101 		/*
102 		 * Read one off the list head, as it will have the highest
103 		 * mapped allocation. Set the next one up right above it.
104 		 *
105 		 * This is somewhat sub-optimal, as we don't look at
106 		 * gaps between allocations or anything lower then the
107 		 * highest-level allocation.
108 		 *
109 		 * However, in the interest of performance and the general
110 		 * lack of desire to do constant list rebalancing, we don't
111 		 * worry about it.
112 		 */
113 		list_for_each_safe(pos, tmp, &sq_mapping_list) {
114 			struct sq_mapping *entry;
115 
116 			entry = list_entry(pos, typeof(*entry), list);
117 
118 			return entry->sq_addr + entry->size;
119 		}
120 	}
121 
122 	return P4SEG_STORE_QUE;
123 }
124 
125 /**
126  * __sq_remap - Perform a translation from the SQ to a phys addr
127  * @map: sq mapping containing phys and store queue addresses.
128  *
129  * Maps the store queue address specified in the mapping to the physical
130  * address specified in the mapping.
131  */
132 static struct sq_mapping *__sq_remap(struct sq_mapping *map)
133 {
134 	unsigned long flags, pteh, ptel;
135 	struct vm_struct *vma;
136 	pgprot_t pgprot;
137 
138 	/*
139 	 * Without an MMU (or with it turned off), this is much more
140 	 * straightforward, as we can just load up each queue's QACR with
141 	 * the physical address appropriately masked.
142 	 */
143 
144 	ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR0);
145 	ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR1);
146 
147 #ifdef CONFIG_MMU
148 	/*
149 	 * With an MMU on the other hand, things are slightly more involved.
150 	 * Namely, we have to have a direct mapping between the SQ addr and
151 	 * the associated physical address in the UTLB by way of setting up
152 	 * a virt<->phys translation by hand. We do this by simply specifying
153 	 * the SQ addr in UTLB.VPN and the associated physical address in
154 	 * UTLB.PPN.
155 	 *
156 	 * Notably, even though this is a special case translation, and some
157 	 * of the configuration bits are meaningless, we're still required
158 	 * to have a valid ASID context in PTEH.
159 	 *
160 	 * We could also probably get by without explicitly setting PTEA, but
161 	 * we do it here just for good measure.
162 	 */
163 	spin_lock_irqsave(&sq_mapping_lock, flags);
164 
165 	pteh = map->sq_addr;
166 	ctrl_outl((pteh & MMU_VPN_MASK) | get_asid(), MMU_PTEH);
167 
168 	ptel = map->addr & PAGE_MASK;
169 	ctrl_outl(((ptel >> 28) & 0xe) | (ptel & 0x1), MMU_PTEA);
170 
171 	pgprot = pgprot_noncached(PAGE_KERNEL);
172 
173 	ptel &= _PAGE_FLAGS_HARDWARE_MASK;
174 	ptel |= pgprot_val(pgprot);
175 	ctrl_outl(ptel, MMU_PTEL);
176 
177 	__asm__ __volatile__ ("ldtlb" : : : "memory");
178 
179 	spin_unlock_irqrestore(&sq_mapping_lock, flags);
180 
181 	/*
182 	 * Next, we need to map ourselves in the kernel page table, so that
183 	 * future accesses after a TLB flush will be handled when we take a
184 	 * page fault.
185 	 *
186 	 * Theoretically we could just do this directly and not worry about
187 	 * setting up the translation by hand ahead of time, but for the
188 	 * cases where we want a one-shot SQ mapping followed by a quick
189 	 * writeout before we hit the TLB flush, we do it anyways. This way
190 	 * we at least save ourselves the initial page fault overhead.
191 	 */
192 	vma = __get_vm_area(map->size, VM_ALLOC, map->sq_addr, SQ_ADDRMAX);
193 	if (!vma)
194 		return ERR_PTR(-ENOMEM);
195 
196 	vma->phys_addr = map->addr;
197 
198 	if (remap_area_pages((unsigned long)vma->addr, vma->phys_addr,
199 			     map->size, pgprot_val(pgprot))) {
200 		vunmap(vma->addr);
201 		return NULL;
202 	}
203 #endif /* CONFIG_MMU */
204 
205 	return map;
206 }
207 
208 /**
209  * sq_remap - Map a physical address through the Store Queues
210  * @phys: Physical address of mapping.
211  * @size: Length of mapping.
212  * @name: User invoking mapping.
213  *
214  * Remaps the physical address @phys through the next available store queue
215  * address of @size length. @name is logged at boot time as well as through
216  * the procfs interface.
217  *
218  * A pre-allocated and filled sq_mapping pointer is returned, and must be
219  * cleaned up with a call to sq_unmap() when the user is done with the
220  * mapping.
221  */
222 struct sq_mapping *sq_remap(unsigned long phys, unsigned int size, const char *name)
223 {
224 	struct sq_mapping *map;
225 	unsigned long virt, end;
226 	unsigned int psz;
227 
228 	/* Don't allow wraparound or zero size */
229 	end = phys + size - 1;
230 	if (!size || end < phys)
231 		return NULL;
232 	/* Don't allow anyone to remap normal memory.. */
233 	if (phys < virt_to_phys(high_memory))
234 		return NULL;
235 
236 	phys &= PAGE_MASK;
237 
238 	size  = PAGE_ALIGN(end + 1) - phys;
239 	virt  = __sq_get_next_addr();
240 	psz   = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
241 	map   = __sq_alloc_mapping(virt, phys, size, name);
242 
243 	printk("sqremap: %15s  [%4d page%s]  va 0x%08lx   pa 0x%08lx\n",
244 	       map->name ? map->name : "???",
245 	       psz, psz == 1 ? " " : "s",
246 	       map->sq_addr, map->addr);
247 
248 	return __sq_remap(map);
249 }
250 
251 /**
252  * sq_unmap - Unmap a Store Queue allocation
253  * @map: Pre-allocated Store Queue mapping.
254  *
255  * Unmaps the store queue allocation @map that was previously created by
256  * sq_remap(). Also frees up the pte that was previously inserted into
257  * the kernel page table and discards the UTLB translation.
258  */
259 void sq_unmap(struct sq_mapping *map)
260 {
261 	if (map->sq_addr > (unsigned long)high_memory)
262 		vfree((void *)(map->sq_addr & PAGE_MASK));
263 
264 	list_del(&map->list);
265 	kfree(map);
266 }
267 
268 /**
269  * sq_clear - Clear a store queue range
270  * @addr: Address to start clearing from.
271  * @len: Length to clear.
272  *
273  * A quick zero-fill implementation for clearing out memory that has been
274  * remapped through the store queues.
275  */
276 void sq_clear(unsigned long addr, unsigned int len)
277 {
278 	int i;
279 
280 	/* Clear out both queues linearly */
281 	for (i = 0; i < 8; i++) {
282 		ctrl_outl(0, addr + i + 0);
283 		ctrl_outl(0, addr + i + 8);
284 	}
285 
286 	sq_flush_range(addr, len);
287 }
288 
289 /**
290  * sq_vma_unmap - Unmap a VMA range
291  * @area: VMA containing range.
292  * @addr: Start of range.
293  * @len: Length of range.
294  *
295  * Searches the sq_mapping_list for a mapping matching the sq addr @addr,
296  * and subsequently frees up the entry. Further cleanup is done by generic
297  * code.
298  */
299 static void sq_vma_unmap(struct vm_area_struct *area,
300 			 unsigned long addr, size_t len)
301 {
302 	struct list_head *pos, *tmp;
303 
304 	list_for_each_safe(pos, tmp, &sq_mapping_list) {
305 		struct sq_mapping *entry;
306 
307 		entry = list_entry(pos, typeof(*entry), list);
308 
309 		if (entry->sq_addr == addr) {
310 			/*
311 			 * We could probably get away without doing the tlb flush
312 			 * here, as generic code should take care of most of this
313 			 * when unmapping the rest of the VMA range for us. Leave
314 			 * it in for added sanity for the time being..
315 			 */
316 			__flush_tlb_page(get_asid(), entry->sq_addr & PAGE_MASK);
317 
318 			list_del(&entry->list);
319 			kfree(entry);
320 
321 			return;
322 		}
323 	}
324 }
325 
326 /**
327  * sq_vma_sync - Sync a VMA range
328  * @area: VMA containing range.
329  * @start: Start of range.
330  * @len: Length of range.
331  * @flags: Additional flags.
332  *
333  * Synchronizes an sq mapped range by flushing the store queue cache for
334  * the duration of the mapping.
335  *
336  * Used internally for user mappings, which must use msync() to prefetch
337  * the store queue cache.
338  */
339 static int sq_vma_sync(struct vm_area_struct *area,
340 		       unsigned long start, size_t len, unsigned int flags)
341 {
342 	sq_flush_range(start, len);
343 
344 	return 0;
345 }
346 
347 static struct vm_operations_struct sq_vma_ops = {
348 	.unmap	= sq_vma_unmap,
349 	.sync	= sq_vma_sync,
350 };
351 
352 /**
353  * sq_mmap - mmap() for /dev/cpu/sq
354  * @file: unused.
355  * @vma: VMA to remap.
356  *
357  * Remap the specified vma @vma through the store queues, and setup associated
358  * information for the new mapping. Also build up the page tables for the new
359  * area.
360  */
361 static int sq_mmap(struct file *file, struct vm_area_struct *vma)
362 {
363 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
364 	unsigned long size = vma->vm_end - vma->vm_start;
365 	struct sq_mapping *map;
366 
367 	/*
368 	 * We're not interested in any arbitrary virtual address that has
369 	 * been stuck in the VMA, as we already know what addresses we
370 	 * want. Save off the size, and reposition the VMA to begin at
371 	 * the next available sq address.
372 	 */
373 	vma->vm_start = __sq_get_next_addr();
374 	vma->vm_end   = vma->vm_start + size;
375 
376 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
377 
378 	vma->vm_flags |= VM_IO | VM_RESERVED;
379 
380 	map = __sq_alloc_mapping(vma->vm_start, offset, size, "Userspace");
381 
382 	if (io_remap_pfn_range(vma, map->sq_addr, map->addr >> PAGE_SHIFT,
383 				size, vma->vm_page_prot))
384 		return -EAGAIN;
385 
386 	vma->vm_ops = &sq_vma_ops;
387 
388 	return 0;
389 }
390 
391 #ifdef CONFIG_PROC_FS
392 static int sq_mapping_read_proc(char *buf, char **start, off_t off,
393 				int len, int *eof, void *data)
394 {
395 	struct list_head *pos;
396 	char *p = buf;
397 
398 	list_for_each_prev(pos, &sq_mapping_list) {
399 		struct sq_mapping *entry;
400 
401 		entry = list_entry(pos, typeof(*entry), list);
402 
403 		p += sprintf(p, "%08lx-%08lx [%08lx]: %s\n", entry->sq_addr,
404 			     entry->sq_addr + entry->size - 1, entry->addr,
405 			     entry->name);
406 	}
407 
408 	return p - buf;
409 }
410 #endif
411 
412 static struct file_operations sq_fops = {
413 	.owner		= THIS_MODULE,
414 	.mmap		= sq_mmap,
415 };
416 
417 static struct miscdevice sq_dev = {
418 	.minor		= STORE_QUEUE_MINOR,
419 	.name		= "sq",
420 	.devfs_name	= "cpu/sq",
421 	.fops		= &sq_fops,
422 };
423 
424 static int __init sq_api_init(void)
425 {
426 	printk(KERN_NOTICE "sq: Registering store queue API.\n");
427 
428 #ifdef CONFIG_PROC_FS
429 	create_proc_read_entry("sq_mapping", 0, 0, sq_mapping_read_proc, 0);
430 #endif
431 
432 	return misc_register(&sq_dev);
433 }
434 
435 static void __exit sq_api_exit(void)
436 {
437 	misc_deregister(&sq_dev);
438 }
439 
440 module_init(sq_api_init);
441 module_exit(sq_api_exit);
442 
443 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, M. R. Brown <mrbrown@0xd6.org>");
444 MODULE_DESCRIPTION("Simple API for SH-4 integrated Store Queues");
445 MODULE_LICENSE("GPL");
446 MODULE_ALIAS_MISCDEV(STORE_QUEUE_MINOR);
447 
448 EXPORT_SYMBOL(sq_remap);
449 EXPORT_SYMBOL(sq_unmap);
450 EXPORT_SYMBOL(sq_clear);
451 EXPORT_SYMBOL(sq_flush);
452 EXPORT_SYMBOL(sq_flush_range);
453 
454