xref: /openbmc/linux/arch/sh/kernel/cpu/init.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * arch/sh/kernel/cpu/init.c
3  *
4  * CPU init code
5  *
6  * Copyright (C) 2002 - 2007  Paul Mundt
7  * Copyright (C) 2003  Richard Curnow
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <asm/mmu_context.h>
17 #include <asm/processor.h>
18 #include <asm/uaccess.h>
19 #include <asm/page.h>
20 #include <asm/system.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cache.h>
23 #include <asm/io.h>
24 #include <asm/ubc.h>
25 #include <asm/smp.h>
26 
27 /*
28  * Generic wrapper for command line arguments to disable on-chip
29  * peripherals (nofpu, nodsp, and so forth).
30  */
31 #define onchip_setup(x)				\
32 static int x##_disabled __initdata = 0;		\
33 						\
34 static int __init x##_setup(char *opts)		\
35 {						\
36 	x##_disabled = 1;			\
37 	return 1;				\
38 }						\
39 __setup("no" __stringify(x), x##_setup);
40 
41 onchip_setup(fpu);
42 onchip_setup(dsp);
43 
44 #ifdef CONFIG_SPECULATIVE_EXECUTION
45 #define CPUOPM		0xff2f0000
46 #define CPUOPM_RABD	(1 << 5)
47 
48 static void __init speculative_execution_init(void)
49 {
50 	/* Clear RABD */
51 	ctrl_outl(ctrl_inl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
52 
53 	/* Flush the update */
54 	(void)ctrl_inl(CPUOPM);
55 	ctrl_barrier();
56 }
57 #else
58 #define speculative_execution_init()	do { } while (0)
59 #endif
60 
61 /*
62  * Generic first-level cache init
63  */
64 static void __init cache_init(void)
65 {
66 	unsigned long ccr, flags;
67 
68 	/* First setup the rest of the I-cache info */
69 	current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
70 				      current_cpu_data.icache.linesz;
71 
72 	current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
73 				    current_cpu_data.icache.linesz;
74 
75 	/* And the D-cache too */
76 	current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
77 				      current_cpu_data.dcache.linesz;
78 
79 	current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
80 				    current_cpu_data.dcache.linesz;
81 
82 	jump_to_P2();
83 	ccr = ctrl_inl(CCR);
84 
85 	/*
86 	 * At this point we don't know whether the cache is enabled or not - a
87 	 * bootloader may have enabled it.  There are at least 2 things that
88 	 * could be dirty in the cache at this point:
89 	 * 1. kernel command line set up by boot loader
90 	 * 2. spilled registers from the prolog of this function
91 	 * => before re-initialising the cache, we must do a purge of the whole
92 	 * cache out to memory for safety.  As long as nothing is spilled
93 	 * during the loop to lines that have already been done, this is safe.
94 	 * - RPC
95 	 */
96 	if (ccr & CCR_CACHE_ENABLE) {
97 		unsigned long ways, waysize, addrstart;
98 
99 		waysize = current_cpu_data.dcache.sets;
100 
101 #ifdef CCR_CACHE_ORA
102 		/*
103 		 * If the OC is already in RAM mode, we only have
104 		 * half of the entries to flush..
105 		 */
106 		if (ccr & CCR_CACHE_ORA)
107 			waysize >>= 1;
108 #endif
109 
110 		waysize <<= current_cpu_data.dcache.entry_shift;
111 
112 #ifdef CCR_CACHE_EMODE
113 		/* If EMODE is not set, we only have 1 way to flush. */
114 		if (!(ccr & CCR_CACHE_EMODE))
115 			ways = 1;
116 		else
117 #endif
118 			ways = current_cpu_data.dcache.ways;
119 
120 		addrstart = CACHE_OC_ADDRESS_ARRAY;
121 		do {
122 			unsigned long addr;
123 
124 			for (addr = addrstart;
125 			     addr < addrstart + waysize;
126 			     addr += current_cpu_data.dcache.linesz)
127 				ctrl_outl(0, addr);
128 
129 			addrstart += current_cpu_data.dcache.way_incr;
130 		} while (--ways);
131 	}
132 
133 	/*
134 	 * Default CCR values .. enable the caches
135 	 * and invalidate them immediately..
136 	 */
137 	flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
138 
139 #ifdef CCR_CACHE_EMODE
140 	/* Force EMODE if possible */
141 	if (current_cpu_data.dcache.ways > 1)
142 		flags |= CCR_CACHE_EMODE;
143 	else
144 		flags &= ~CCR_CACHE_EMODE;
145 #endif
146 
147 #if defined(CONFIG_CACHE_WRITETHROUGH)
148 	/* Write-through */
149 	flags |= CCR_CACHE_WT;
150 #elif defined(CONFIG_CACHE_WRITEBACK)
151 	/* Write-back */
152 	flags |= CCR_CACHE_CB;
153 #else
154 	/* Off */
155 	flags &= ~CCR_CACHE_ENABLE;
156 #endif
157 
158 	ctrl_outl(flags, CCR);
159 	back_to_P1();
160 }
161 
162 #ifdef CONFIG_SH_DSP
163 static void __init release_dsp(void)
164 {
165 	unsigned long sr;
166 
167 	/* Clear SR.DSP bit */
168 	__asm__ __volatile__ (
169 		"stc\tsr, %0\n\t"
170 		"and\t%1, %0\n\t"
171 		"ldc\t%0, sr\n\t"
172 		: "=&r" (sr)
173 		: "r" (~SR_DSP)
174 	);
175 }
176 
177 static void __init dsp_init(void)
178 {
179 	unsigned long sr;
180 
181 	/*
182 	 * Set the SR.DSP bit, wait for one instruction, and then read
183 	 * back the SR value.
184 	 */
185 	__asm__ __volatile__ (
186 		"stc\tsr, %0\n\t"
187 		"or\t%1, %0\n\t"
188 		"ldc\t%0, sr\n\t"
189 		"nop\n\t"
190 		"stc\tsr, %0\n\t"
191 		: "=&r" (sr)
192 		: "r" (SR_DSP)
193 	);
194 
195 	/* If the DSP bit is still set, this CPU has a DSP */
196 	if (sr & SR_DSP)
197 		current_cpu_data.flags |= CPU_HAS_DSP;
198 
199 	/* Now that we've determined the DSP status, clear the DSP bit. */
200 	release_dsp();
201 }
202 #endif /* CONFIG_SH_DSP */
203 
204 /**
205  * sh_cpu_init
206  *
207  * This is our initial entry point for each CPU, and is invoked on the boot
208  * CPU prior to calling start_kernel(). For SMP, a combination of this and
209  * start_secondary() will bring up each processor to a ready state prior
210  * to hand forking the idle loop.
211  *
212  * We do all of the basic processor init here, including setting up the
213  * caches, FPU, DSP, kicking the UBC, etc. By the time start_kernel() is
214  * hit (and subsequently platform_setup()) things like determining the
215  * CPU subtype and initial configuration will all be done.
216  *
217  * Each processor family is still responsible for doing its own probing
218  * and cache configuration in detect_cpu_and_cache_system().
219  */
220 
221 asmlinkage void __cpuinit sh_cpu_init(void)
222 {
223 	current_thread_info()->cpu = hard_smp_processor_id();
224 
225 	/* First, probe the CPU */
226 	detect_cpu_and_cache_system();
227 
228 	if (current_cpu_data.type == CPU_SH_NONE)
229 		panic("Unknown CPU");
230 
231 	/* Init the cache */
232 	cache_init();
233 
234 	if (raw_smp_processor_id() == 0)
235 		shm_align_mask = max_t(unsigned long,
236 				       current_cpu_data.dcache.way_size - 1,
237 				       PAGE_SIZE - 1);
238 
239 	/* Disable the FPU */
240 	if (fpu_disabled) {
241 		printk("FPU Disabled\n");
242 		current_cpu_data.flags &= ~CPU_HAS_FPU;
243 		disable_fpu();
244 	}
245 
246 	/* FPU initialization */
247 	if ((current_cpu_data.flags & CPU_HAS_FPU)) {
248 		clear_thread_flag(TIF_USEDFPU);
249 		clear_used_math();
250 	}
251 
252 	/*
253 	 * Initialize the per-CPU ASID cache very early, since the
254 	 * TLB flushing routines depend on this being setup.
255 	 */
256 	current_cpu_data.asid_cache = NO_CONTEXT;
257 
258 #ifdef CONFIG_SH_DSP
259 	/* Probe for DSP */
260 	dsp_init();
261 
262 	/* Disable the DSP */
263 	if (dsp_disabled) {
264 		printk("DSP Disabled\n");
265 		current_cpu_data.flags &= ~CPU_HAS_DSP;
266 		release_dsp();
267 	}
268 #endif
269 
270 	/*
271 	 * Some brain-damaged loaders decided it would be a good idea to put
272 	 * the UBC to sleep. This causes some issues when it comes to things
273 	 * like PTRACE_SINGLESTEP or doing hardware watchpoints in GDB.  So ..
274 	 * we wake it up and hope that all is well.
275 	 */
276 	if (raw_smp_processor_id() == 0)
277 		ubc_wakeup();
278 	speculative_execution_init();
279 }
280