xref: /openbmc/linux/arch/sh/include/asm/io.h (revision b65b34895437915f411882dd40d704eb0863ffb0)
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
3 /*
4  * Convention:
5  *    read{b,w,l,q}/write{b,w,l,q} are for PCI,
6  *    while in{b,w,l}/out{b,w,l} are for ISA
7  *
8  * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
9  * and 'string' versions: ins{b,w,l}/outs{b,w,l}
10  *
11  * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
12  * automatically, there are also __raw versions, which do not.
13  *
14  * Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for
15  * SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice
16  * these have the same semantics as the __raw variants, and as such, all
17  * new code should be using the __raw versions.
18  *
19  * All ISA I/O routines are wrapped through the machine vector. If a
20  * board does not provide overrides, a generic set that are copied in
21  * from the default machine vector are used instead. These are largely
22  * for old compat code for I/O offseting to SuperIOs, all of which are
23  * better handled through the machvec ioport mapping routines these days.
24  */
25 #include <linux/errno.h>
26 #include <asm/cache.h>
27 #include <asm/system.h>
28 #include <asm/addrspace.h>
29 #include <asm/machvec.h>
30 #include <asm/pgtable.h>
31 #include <asm-generic/iomap.h>
32 
33 #ifdef __KERNEL__
34 /*
35  * Depending on which platform we are running on, we need different
36  * I/O functions.
37  */
38 #define __IO_PREFIX	generic
39 #include <asm/io_generic.h>
40 #include <asm/io_trapped.h>
41 
42 #define inb(p)			sh_mv.mv_inb((p))
43 #define inw(p)			sh_mv.mv_inw((p))
44 #define inl(p)			sh_mv.mv_inl((p))
45 #define outb(x,p)		sh_mv.mv_outb((x),(p))
46 #define outw(x,p)		sh_mv.mv_outw((x),(p))
47 #define outl(x,p)		sh_mv.mv_outl((x),(p))
48 
49 #define inb_p(p)		sh_mv.mv_inb_p((p))
50 #define inw_p(p)		sh_mv.mv_inw_p((p))
51 #define inl_p(p)		sh_mv.mv_inl_p((p))
52 #define outb_p(x,p)		sh_mv.mv_outb_p((x),(p))
53 #define outw_p(x,p)		sh_mv.mv_outw_p((x),(p))
54 #define outl_p(x,p)		sh_mv.mv_outl_p((x),(p))
55 
56 #define insb(p,b,c)		sh_mv.mv_insb((p), (b), (c))
57 #define insw(p,b,c)		sh_mv.mv_insw((p), (b), (c))
58 #define insl(p,b,c)		sh_mv.mv_insl((p), (b), (c))
59 #define outsb(p,b,c)		sh_mv.mv_outsb((p), (b), (c))
60 #define outsw(p,b,c)		sh_mv.mv_outsw((p), (b), (c))
61 #define outsl(p,b,c)		sh_mv.mv_outsl((p), (b), (c))
62 
63 #define __raw_writeb(v,a)	(__chk_io_ptr(a), *(volatile u8  __force *)(a) = (v))
64 #define __raw_writew(v,a)	(__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
65 #define __raw_writel(v,a)	(__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
66 #define __raw_writeq(v,a)	(__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
67 
68 #define __raw_readb(a)		(__chk_io_ptr(a), *(volatile u8  __force *)(a))
69 #define __raw_readw(a)		(__chk_io_ptr(a), *(volatile u16 __force *)(a))
70 #define __raw_readl(a)		(__chk_io_ptr(a), *(volatile u32 __force *)(a))
71 #define __raw_readq(a)		(__chk_io_ptr(a), *(volatile u64 __force *)(a))
72 
73 #define readb(a)		({ u8  r_ = __raw_readb(a); mb(); r_; })
74 #define readw(a)		({ u16 r_ = __raw_readw(a); mb(); r_; })
75 #define readl(a)		({ u32 r_ = __raw_readl(a); mb(); r_; })
76 #define readq(a)		({ u64 r_ = __raw_readq(a); mb(); r_; })
77 
78 #define writeb(v,a)		({ __raw_writeb((v),(a)); mb(); })
79 #define writew(v,a)		({ __raw_writew((v),(a)); mb(); })
80 #define writel(v,a)		({ __raw_writel((v),(a)); mb(); })
81 #define writeq(v,a)		({ __raw_writeq((v),(a)); mb(); })
82 
83 /*
84  * Legacy SuperH on-chip I/O functions
85  *
86  * These are all deprecated, all new (and especially cross-platform) code
87  * should be using the __raw_xxx() routines directly.
88  */
89 static inline u8 __deprecated ctrl_inb(unsigned long addr)
90 {
91 	return __raw_readb(addr);
92 }
93 
94 static inline u16 __deprecated ctrl_inw(unsigned long addr)
95 {
96 	return __raw_readw(addr);
97 }
98 
99 static inline u32 __deprecated ctrl_inl(unsigned long addr)
100 {
101 	return __raw_readl(addr);
102 }
103 
104 static inline u64 __deprecated ctrl_inq(unsigned long addr)
105 {
106 	return __raw_readq(addr);
107 }
108 
109 static inline void __deprecated ctrl_outb(u8 v, unsigned long addr)
110 {
111 	__raw_writeb(v, addr);
112 }
113 
114 static inline void __deprecated ctrl_outw(u16 v, unsigned long addr)
115 {
116 	__raw_writew(v, addr);
117 }
118 
119 static inline void __deprecated ctrl_outl(u32 v, unsigned long addr)
120 {
121 	__raw_writel(v, addr);
122 }
123 
124 static inline void __deprecated ctrl_outq(u64 v, unsigned long addr)
125 {
126 	__raw_writeq(v, addr);
127 }
128 
129 extern unsigned long generic_io_base;
130 
131 static inline void ctrl_delay(void)
132 {
133 	__raw_readw(generic_io_base);
134 }
135 
136 #define __BUILD_UNCACHED_IO(bwlq, type)					\
137 static inline type read##bwlq##_uncached(unsigned long addr)		\
138 {									\
139 	type ret;							\
140 	jump_to_uncached();						\
141 	ret = __raw_read##bwlq(addr);					\
142 	back_to_cached();						\
143 	return ret;							\
144 }									\
145 									\
146 static inline void write##bwlq##_uncached(type v, unsigned long addr)	\
147 {									\
148 	jump_to_uncached();						\
149 	__raw_write##bwlq(v, addr);					\
150 	back_to_cached();						\
151 }
152 
153 __BUILD_UNCACHED_IO(b, u8)
154 __BUILD_UNCACHED_IO(w, u16)
155 __BUILD_UNCACHED_IO(l, u32)
156 __BUILD_UNCACHED_IO(q, u64)
157 
158 #define __BUILD_MEMORY_STRING(bwlq, type)				\
159 									\
160 static inline void __raw_writes##bwlq(volatile void __iomem *mem,	\
161 				const void *addr, unsigned int count)	\
162 {									\
163 	const volatile type *__addr = addr;				\
164 									\
165 	while (count--) {						\
166 		__raw_write##bwlq(*__addr, mem);			\
167 		__addr++;						\
168 	}								\
169 }									\
170 									\
171 static inline void __raw_reads##bwlq(volatile void __iomem *mem,	\
172 			       void *addr, unsigned int count)		\
173 {									\
174 	volatile type *__addr = addr;					\
175 									\
176 	while (count--) {						\
177 		*__addr = __raw_read##bwlq(mem);			\
178 		__addr++;						\
179 	}								\
180 }
181 
182 __BUILD_MEMORY_STRING(b, u8)
183 __BUILD_MEMORY_STRING(w, u16)
184 
185 #ifdef CONFIG_SUPERH32
186 void __raw_writesl(void __iomem *addr, const void *data, int longlen);
187 void __raw_readsl(const void __iomem *addr, void *data, int longlen);
188 #else
189 __BUILD_MEMORY_STRING(l, u32)
190 #endif
191 
192 __BUILD_MEMORY_STRING(q, u64)
193 
194 #define writesb			__raw_writesb
195 #define writesw			__raw_writesw
196 #define writesl			__raw_writesl
197 
198 #define readsb			__raw_readsb
199 #define readsw			__raw_readsw
200 #define readsl			__raw_readsl
201 
202 #define readb_relaxed(a)	readb(a)
203 #define readw_relaxed(a)	readw(a)
204 #define readl_relaxed(a)	readl(a)
205 #define readq_relaxed(a)	readq(a)
206 
207 #ifndef CONFIG_GENERIC_IOMAP
208 /* Simple MMIO */
209 #define ioread8(a)		__raw_readb(a)
210 #define ioread16(a)		__raw_readw(a)
211 #define ioread16be(a)		be16_to_cpu(__raw_readw((a)))
212 #define ioread32(a)		__raw_readl(a)
213 #define ioread32be(a)		be32_to_cpu(__raw_readl((a)))
214 
215 #define iowrite8(v,a)		__raw_writeb((v),(a))
216 #define iowrite16(v,a)		__raw_writew((v),(a))
217 #define iowrite16be(v,a)	__raw_writew(cpu_to_be16((v)),(a))
218 #define iowrite32(v,a)		__raw_writel((v),(a))
219 #define iowrite32be(v,a)	__raw_writel(cpu_to_be32((v)),(a))
220 
221 #define ioread8_rep(a, d, c)	__raw_readsb((a), (d), (c))
222 #define ioread16_rep(a, d, c)	__raw_readsw((a), (d), (c))
223 #define ioread32_rep(a, d, c)	__raw_readsl((a), (d), (c))
224 
225 #define iowrite8_rep(a, s, c)	__raw_writesb((a), (s), (c))
226 #define iowrite16_rep(a, s, c)	__raw_writesw((a), (s), (c))
227 #define iowrite32_rep(a, s, c)	__raw_writesl((a), (s), (c))
228 #endif
229 
230 #define mmio_insb(p,d,c)	__raw_readsb(p,d,c)
231 #define mmio_insw(p,d,c)	__raw_readsw(p,d,c)
232 #define mmio_insl(p,d,c)	__raw_readsl(p,d,c)
233 
234 #define mmio_outsb(p,s,c)	__raw_writesb(p,s,c)
235 #define mmio_outsw(p,s,c)	__raw_writesw(p,s,c)
236 #define mmio_outsl(p,s,c)	__raw_writesl(p,s,c)
237 
238 /* synco on SH-4A, otherwise a nop */
239 #define mmiowb()		wmb()
240 
241 #define IO_SPACE_LIMIT 0xffffffff
242 
243 /*
244  * This function provides a method for the generic case where a
245  * board-specific ioport_map simply needs to return the port + some
246  * arbitrary port base.
247  *
248  * We use this at board setup time to implicitly set the port base, and
249  * as a result, we can use the generic ioport_map.
250  */
251 static inline void __set_io_port_base(unsigned long pbase)
252 {
253 	generic_io_base = pbase;
254 }
255 
256 #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n))
257 
258 /* We really want to try and get these to memcpy etc */
259 void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
260 void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
261 void memset_io(volatile void __iomem *, int, unsigned long);
262 
263 /* Quad-word real-mode I/O, don't ask.. */
264 unsigned long long peek_real_address_q(unsigned long long addr);
265 unsigned long long poke_real_address_q(unsigned long long addr,
266 				       unsigned long long val);
267 
268 #if !defined(CONFIG_MMU)
269 #define virt_to_phys(address)	((unsigned long)(address))
270 #define phys_to_virt(address)	((void *)(address))
271 #else
272 #define virt_to_phys(address)	(__pa(address))
273 #define phys_to_virt(address)	(__va(address))
274 #endif
275 
276 /*
277  * On 32-bit SH, we traditionally have the whole physical address space
278  * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
279  * not need to do anything but place the address in the proper segment.
280  * This is true for P1 and P2 addresses, as well as some P3 ones.
281  * However, most of the P3 addresses and newer cores using extended
282  * addressing need to map through page tables, so the ioremap()
283  * implementation becomes a bit more complicated.
284  *
285  * See arch/sh/mm/ioremap.c for additional notes on this.
286  *
287  * We cheat a bit and always return uncachable areas until we've fixed
288  * the drivers to handle caching properly.
289  *
290  * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
291  * doesn't exist, so everything must go through page tables.
292  */
293 #ifdef CONFIG_MMU
294 void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
295 			       pgprot_t prot, void *caller);
296 void __iounmap(void __iomem *addr);
297 
298 static inline void __iomem *
299 __ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
300 {
301 	return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
302 }
303 
304 static inline void __iomem *
305 __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
306 {
307 #ifdef CONFIG_29BIT
308 	phys_addr_t last_addr = offset + size - 1;
309 
310 	/*
311 	 * For P1 and P2 space this is trivial, as everything is already
312 	 * mapped. Uncached access for P1 addresses are done through P2.
313 	 * In the P3 case or for addresses outside of the 29-bit space,
314 	 * mapping must be done by the PMB or by using page tables.
315 	 */
316 	if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
317 		if (unlikely(pgprot_val(prot) & _PAGE_CACHABLE))
318 			return (void __iomem *)P1SEGADDR(offset);
319 
320 		return (void __iomem *)P2SEGADDR(offset);
321 	}
322 
323 	/* P4 above the store queues are always mapped. */
324 	if (unlikely(offset >= P3_ADDR_MAX))
325 		return (void __iomem *)P4SEGADDR(offset);
326 #endif
327 
328 	return NULL;
329 }
330 
331 static inline void __iomem *
332 __ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
333 {
334 	void __iomem *ret;
335 
336 	ret = __ioremap_trapped(offset, size);
337 	if (ret)
338 		return ret;
339 
340 	ret = __ioremap_29bit(offset, size, prot);
341 	if (ret)
342 		return ret;
343 
344 	return __ioremap(offset, size, prot);
345 }
346 #else
347 #define __ioremap(offset, size, prot)		((void __iomem *)(offset))
348 #define __ioremap_mode(offset, size, prot)	((void __iomem *)(offset))
349 #define __iounmap(addr)				do { } while (0)
350 #endif /* CONFIG_MMU */
351 
352 static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
353 {
354 	return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
355 }
356 
357 static inline void __iomem *
358 ioremap_cache(phys_addr_t offset, unsigned long size)
359 {
360 	return __ioremap_mode(offset, size, PAGE_KERNEL);
361 }
362 
363 #ifdef CONFIG_HAVE_IOREMAP_PROT
364 static inline void __iomem *
365 ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
366 {
367 	return __ioremap_mode(offset, size, __pgprot(flags));
368 }
369 #endif
370 
371 #ifdef CONFIG_IOREMAP_FIXED
372 extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
373 extern int iounmap_fixed(void __iomem *);
374 extern void ioremap_fixed_init(void);
375 #else
376 static inline void __iomem *
377 ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
378 {
379 	BUG();
380 	return NULL;
381 }
382 
383 static inline void ioremap_fixed_init(void) { }
384 static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
385 #endif
386 
387 #define ioremap_nocache	ioremap
388 #define iounmap		__iounmap
389 
390 #define maybebadio(port) \
391 	printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
392 	       __func__, __LINE__, (port), (u32)__builtin_return_address(0))
393 
394 /*
395  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
396  * access
397  */
398 #define xlate_dev_mem_ptr(p)	__va(p)
399 
400 /*
401  * Convert a virtual cached pointer to an uncached pointer
402  */
403 #define xlate_dev_kmem_ptr(p)	p
404 
405 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
406 int valid_phys_addr_range(unsigned long addr, size_t size);
407 int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
408 
409 #endif /* __KERNEL__ */
410 
411 #endif /* __ASM_SH_IO_H */
412