xref: /openbmc/linux/arch/s390/pci/pci_irq.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11 
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 
15 static enum {FLOATING, DIRECTED} irq_delivery;
16 
17 #define	SIC_IRQ_MODE_ALL		0
18 #define	SIC_IRQ_MODE_SINGLE		1
19 #define	SIC_IRQ_MODE_DIRECT		4
20 #define	SIC_IRQ_MODE_D_ALL		16
21 #define	SIC_IRQ_MODE_D_SINGLE		17
22 #define	SIC_IRQ_MODE_SET_CPU		18
23 
24 /*
25  * summary bit vector
26  * FLOATING - summary bit per function
27  * DIRECTED - summary bit per cpu (only used in fallback path)
28  */
29 static struct airq_iv *zpci_sbv;
30 
31 /*
32  * interrupt bit vectors
33  * FLOATING - interrupt bit vector per function
34  * DIRECTED - interrupt bit vector per cpu
35  */
36 static struct airq_iv **zpci_ibv;
37 
38 /* Modify PCI: Register floating adapter interruptions */
39 static int zpci_set_airq(struct zpci_dev *zdev)
40 {
41 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
42 	struct zpci_fib fib = {0};
43 	u8 status;
44 
45 	fib.fmt0.isc = PCI_ISC;
46 	fib.fmt0.sum = 1;	/* enable summary notifications */
47 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
48 	fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
49 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
50 	fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
51 	fib.fmt0.aisbo = zdev->aisb & 63;
52 
53 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
54 }
55 
56 /* Modify PCI: Unregister floating adapter interruptions */
57 static int zpci_clear_airq(struct zpci_dev *zdev)
58 {
59 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
60 	struct zpci_fib fib = {0};
61 	u8 cc, status;
62 
63 	cc = zpci_mod_fc(req, &fib, &status);
64 	if (cc == 3 || (cc == 1 && status == 24))
65 		/* Function already gone or IRQs already deregistered. */
66 		cc = 0;
67 
68 	return cc ? -EIO : 0;
69 }
70 
71 /* Modify PCI: Register CPU directed interruptions */
72 static int zpci_set_directed_irq(struct zpci_dev *zdev)
73 {
74 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
75 	struct zpci_fib fib = {0};
76 	u8 status;
77 
78 	fib.fmt = 1;
79 	fib.fmt1.noi = zdev->msi_nr_irqs;
80 	fib.fmt1.dibvo = zdev->msi_first_bit;
81 
82 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
83 }
84 
85 /* Modify PCI: Unregister CPU directed interruptions */
86 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
87 {
88 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
89 	struct zpci_fib fib = {0};
90 	u8 cc, status;
91 
92 	fib.fmt = 1;
93 	cc = zpci_mod_fc(req, &fib, &status);
94 	if (cc == 3 || (cc == 1 && status == 24))
95 		/* Function already gone or IRQs already deregistered. */
96 		cc = 0;
97 
98 	return cc ? -EIO : 0;
99 }
100 
101 /* Register adapter interruptions */
102 int zpci_set_irq(struct zpci_dev *zdev)
103 {
104 	int rc;
105 
106 	if (irq_delivery == DIRECTED)
107 		rc = zpci_set_directed_irq(zdev);
108 	else
109 		rc = zpci_set_airq(zdev);
110 
111 	if (!rc)
112 		zdev->irqs_registered = 1;
113 
114 	return rc;
115 }
116 
117 /* Clear adapter interruptions */
118 int zpci_clear_irq(struct zpci_dev *zdev)
119 {
120 	int rc;
121 
122 	if (irq_delivery == DIRECTED)
123 		rc = zpci_clear_directed_irq(zdev);
124 	else
125 		rc = zpci_clear_airq(zdev);
126 
127 	if (!rc)
128 		zdev->irqs_registered = 0;
129 
130 	return rc;
131 }
132 
133 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
134 				 bool force)
135 {
136 	struct msi_desc *entry = irq_get_msi_desc(data->irq);
137 	struct msi_msg msg = entry->msg;
138 	int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
139 
140 	msg.address_lo &= 0xff0000ff;
141 	msg.address_lo |= (cpu_addr << 8);
142 	pci_write_msi_msg(data->irq, &msg);
143 
144 	return IRQ_SET_MASK_OK;
145 }
146 
147 static struct irq_chip zpci_irq_chip = {
148 	.name = "PCI-MSI",
149 	.irq_unmask = pci_msi_unmask_irq,
150 	.irq_mask = pci_msi_mask_irq,
151 };
152 
153 static void zpci_handle_cpu_local_irq(bool rescan)
154 {
155 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
156 	unsigned long bit;
157 	int irqs_on = 0;
158 
159 	for (bit = 0;;) {
160 		/* Scan the directed IRQ bit vector */
161 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
162 		if (bit == -1UL) {
163 			if (!rescan || irqs_on++)
164 				/* End of second scan with interrupts on. */
165 				break;
166 			/* First scan complete, reenable interrupts. */
167 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
168 				break;
169 			bit = 0;
170 			continue;
171 		}
172 		inc_irq_stat(IRQIO_MSI);
173 		generic_handle_irq(airq_iv_get_data(dibv, bit));
174 	}
175 }
176 
177 struct cpu_irq_data {
178 	call_single_data_t csd;
179 	atomic_t scheduled;
180 };
181 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
182 
183 static void zpci_handle_remote_irq(void *data)
184 {
185 	atomic_t *scheduled = data;
186 
187 	do {
188 		zpci_handle_cpu_local_irq(false);
189 	} while (atomic_dec_return(scheduled));
190 }
191 
192 static void zpci_handle_fallback_irq(void)
193 {
194 	struct cpu_irq_data *cpu_data;
195 	unsigned long cpu;
196 	int irqs_on = 0;
197 
198 	for (cpu = 0;;) {
199 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
200 		if (cpu == -1UL) {
201 			if (irqs_on++)
202 				/* End of second scan with interrupts on. */
203 				break;
204 			/* First scan complete, reenable interrupts. */
205 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
206 				break;
207 			cpu = 0;
208 			continue;
209 		}
210 		cpu_data = &per_cpu(irq_data, cpu);
211 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
212 			continue;
213 
214 		INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
215 		smp_call_function_single_async(cpu, &cpu_data->csd);
216 	}
217 }
218 
219 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
220 {
221 	if (floating) {
222 		inc_irq_stat(IRQIO_PCF);
223 		zpci_handle_fallback_irq();
224 	} else {
225 		inc_irq_stat(IRQIO_PCD);
226 		zpci_handle_cpu_local_irq(true);
227 	}
228 }
229 
230 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
231 {
232 	unsigned long si, ai;
233 	struct airq_iv *aibv;
234 	int irqs_on = 0;
235 
236 	inc_irq_stat(IRQIO_PCF);
237 	for (si = 0;;) {
238 		/* Scan adapter summary indicator bit vector */
239 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
240 		if (si == -1UL) {
241 			if (irqs_on++)
242 				/* End of second scan with interrupts on. */
243 				break;
244 			/* First scan complete, reenable interrupts. */
245 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
246 				break;
247 			si = 0;
248 			continue;
249 		}
250 
251 		/* Scan the adapter interrupt vector for this device. */
252 		aibv = zpci_ibv[si];
253 		for (ai = 0;;) {
254 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
255 			if (ai == -1UL)
256 				break;
257 			inc_irq_stat(IRQIO_MSI);
258 			airq_iv_lock(aibv, ai);
259 			generic_handle_irq(airq_iv_get_data(aibv, ai));
260 			airq_iv_unlock(aibv, ai);
261 		}
262 	}
263 }
264 
265 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
266 {
267 	struct zpci_dev *zdev = to_zpci(pdev);
268 	unsigned int hwirq, msi_vecs, cpu;
269 	unsigned long bit;
270 	struct msi_desc *msi;
271 	struct msi_msg msg;
272 	int cpu_addr;
273 	int rc, irq;
274 
275 	zdev->aisb = -1UL;
276 	zdev->msi_first_bit = -1U;
277 	if (type == PCI_CAP_ID_MSI && nvec > 1)
278 		return 1;
279 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
280 
281 	if (irq_delivery == DIRECTED) {
282 		/* Allocate cpu vector bits */
283 		bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
284 		if (bit == -1UL)
285 			return -EIO;
286 	} else {
287 		/* Allocate adapter summary indicator bit */
288 		bit = airq_iv_alloc_bit(zpci_sbv);
289 		if (bit == -1UL)
290 			return -EIO;
291 		zdev->aisb = bit;
292 
293 		/* Create adapter interrupt vector */
294 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
295 		if (!zdev->aibv)
296 			return -ENOMEM;
297 
298 		/* Wire up shortcut pointer */
299 		zpci_ibv[bit] = zdev->aibv;
300 		/* Each function has its own interrupt vector */
301 		bit = 0;
302 	}
303 
304 	/* Request MSI interrupts */
305 	hwirq = bit;
306 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
307 		rc = -EIO;
308 		if (hwirq - bit >= msi_vecs)
309 			break;
310 		irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
311 				(irq_delivery == DIRECTED) ?
312 				msi->affinity : NULL);
313 		if (irq < 0)
314 			return -ENOMEM;
315 		rc = irq_set_msi_desc(irq, msi);
316 		if (rc)
317 			return rc;
318 		irq_set_chip_and_handler(irq, &zpci_irq_chip,
319 					 handle_percpu_irq);
320 		msg.data = hwirq - bit;
321 		if (irq_delivery == DIRECTED) {
322 			if (msi->affinity)
323 				cpu = cpumask_first(&msi->affinity->mask);
324 			else
325 				cpu = 0;
326 			cpu_addr = smp_cpu_get_cpu_address(cpu);
327 
328 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
329 			msg.address_lo |= (cpu_addr << 8);
330 
331 			for_each_possible_cpu(cpu) {
332 				airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
333 			}
334 		} else {
335 			msg.address_lo = zdev->msi_addr & 0xffffffff;
336 			airq_iv_set_data(zdev->aibv, hwirq, irq);
337 		}
338 		msg.address_hi = zdev->msi_addr >> 32;
339 		pci_write_msi_msg(irq, &msg);
340 		hwirq++;
341 	}
342 
343 	zdev->msi_first_bit = bit;
344 	zdev->msi_nr_irqs = msi_vecs;
345 
346 	rc = zpci_set_irq(zdev);
347 	if (rc)
348 		return rc;
349 
350 	return (msi_vecs == nvec) ? 0 : msi_vecs;
351 }
352 
353 void arch_teardown_msi_irqs(struct pci_dev *pdev)
354 {
355 	struct zpci_dev *zdev = to_zpci(pdev);
356 	struct msi_desc *msi;
357 	int rc;
358 
359 	/* Disable interrupts */
360 	rc = zpci_clear_irq(zdev);
361 	if (rc)
362 		return;
363 
364 	/* Release MSI interrupts */
365 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
366 		irq_set_msi_desc(msi->irq, NULL);
367 		irq_free_desc(msi->irq);
368 		msi->msg.address_lo = 0;
369 		msi->msg.address_hi = 0;
370 		msi->msg.data = 0;
371 		msi->irq = 0;
372 	}
373 
374 	if (zdev->aisb != -1UL) {
375 		zpci_ibv[zdev->aisb] = NULL;
376 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
377 		zdev->aisb = -1UL;
378 	}
379 	if (zdev->aibv) {
380 		airq_iv_release(zdev->aibv);
381 		zdev->aibv = NULL;
382 	}
383 
384 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
385 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
386 }
387 
388 bool arch_restore_msi_irqs(struct pci_dev *pdev)
389 {
390 	struct zpci_dev *zdev = to_zpci(pdev);
391 
392 	if (!zdev->irqs_registered)
393 		zpci_set_irq(zdev);
394 	return true;
395 }
396 
397 static struct airq_struct zpci_airq = {
398 	.handler = zpci_floating_irq_handler,
399 	.isc = PCI_ISC,
400 };
401 
402 static void __init cpu_enable_directed_irq(void *unused)
403 {
404 	union zpci_sic_iib iib = {{0}};
405 
406 	iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
407 
408 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
409 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
410 }
411 
412 static int __init zpci_directed_irq_init(void)
413 {
414 	union zpci_sic_iib iib = {{0}};
415 	unsigned int cpu;
416 
417 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
418 	if (!zpci_sbv)
419 		return -ENOMEM;
420 
421 	iib.diib.isc = PCI_ISC;
422 	iib.diib.nr_cpus = num_possible_cpus();
423 	iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
424 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
425 
426 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
427 			   GFP_KERNEL);
428 	if (!zpci_ibv)
429 		return -ENOMEM;
430 
431 	for_each_possible_cpu(cpu) {
432 		/*
433 		 * Per CPU IRQ vectors look the same but bit-allocation
434 		 * is only done on the first vector.
435 		 */
436 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
437 					       AIRQ_IV_DATA |
438 					       AIRQ_IV_CACHELINE |
439 					       (!cpu ? AIRQ_IV_ALLOC : 0));
440 		if (!zpci_ibv[cpu])
441 			return -ENOMEM;
442 	}
443 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
444 
445 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
446 
447 	return 0;
448 }
449 
450 static int __init zpci_floating_irq_init(void)
451 {
452 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
453 	if (!zpci_ibv)
454 		return -ENOMEM;
455 
456 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
457 	if (!zpci_sbv)
458 		goto out_free;
459 
460 	return 0;
461 
462 out_free:
463 	kfree(zpci_ibv);
464 	return -ENOMEM;
465 }
466 
467 int __init zpci_irq_init(void)
468 {
469 	int rc;
470 
471 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
472 	if (s390_pci_force_floating)
473 		irq_delivery = FLOATING;
474 
475 	if (irq_delivery == DIRECTED)
476 		zpci_airq.handler = zpci_directed_irq_handler;
477 
478 	rc = register_adapter_interrupt(&zpci_airq);
479 	if (rc)
480 		goto out;
481 	/* Set summary to 1 to be called every time for the ISC. */
482 	*zpci_airq.lsi_ptr = 1;
483 
484 	switch (irq_delivery) {
485 	case FLOATING:
486 		rc = zpci_floating_irq_init();
487 		break;
488 	case DIRECTED:
489 		rc = zpci_directed_irq_init();
490 		break;
491 	}
492 
493 	if (rc)
494 		goto out_airq;
495 
496 	/*
497 	 * Enable floating IRQs (with suppression after one IRQ). When using
498 	 * directed IRQs this enables the fallback path.
499 	 */
500 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
501 
502 	return 0;
503 out_airq:
504 	unregister_adapter_interrupt(&zpci_airq);
505 out:
506 	return rc;
507 }
508 
509 void __init zpci_irq_exit(void)
510 {
511 	unsigned int cpu;
512 
513 	if (irq_delivery == DIRECTED) {
514 		for_each_possible_cpu(cpu) {
515 			airq_iv_release(zpci_ibv[cpu]);
516 		}
517 	}
518 	kfree(zpci_ibv);
519 	if (zpci_sbv)
520 		airq_iv_release(zpci_sbv);
521 	unregister_adapter_interrupt(&zpci_airq);
522 }
523